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Preface

The goal of this course is to undertake a quantitative examination of the
physical structure of the Sun, the massive object which dominates the solar
system, and which helps to support life as we know it on Earth. The text
is aimed at upper-level physics undergraduates, and at graduate students in
their first or second year of graduate study.

In the broadest context, the human race has one principal question that it
requires solar physicists to answer: how stable is the Sun’s output of energy?
Specifically, is its power output steady enough that the Earth will not be
subjected to fluctuations in heating which could lead to serious negative effects
on life?

In order to arrive at reliable answers to these questions, we must begin with
what we know about the Sun. And the place where reliable knowledge starts is
with observations. A variety of instruments is at hand for observing the Sun.
Using the unaided eye, we know that the Sun appears as a circular object (a
“disk”) with a sharp edge (the “limb”). Apart from those pieces of information,
however, the eye is not especially useful. The Sun’s light overwhelms the rods
and cones in the eye, and the data handling system cannot deal with the
flood of photons which have to be processed. Since the time of Galileo in
the early 1600s, optical telescopes have been used to observe the Sun. These
observations have led to the discovery of certain features on the visible surface,
i.e., features which exist in the region known as the “photosphere.” The best
known among these features are dark regions called “sunspots.”

Access to spectroscopy in the 1800s led to the discovery of a region of
hotter gas above the photosphere called the “chromosphere.”

During an eclipse, the human eye is an excellent detector for a faint outer
extension of the Sun’s atmosphere known as the “corona.” Although some
information about the corona can be learned from observations of certain lines
in the visible spectrum, detailed knowledge about the physics of the corona
had to wait for the application of the techniques of radio astronomy and X-ray
astronomy. When the Sun is “viewed” in radio at microwave frequencies, the
emission is patchy, with certain regions much brighter than other. When the
Sun is “viewed” in X-rays, different images emerge depending on the energy
of the photon. At low energies, there is extended diffuse emission covering
a large fraction of the solar area, and also there are some dark areas which
seem to be empty (coronal “holes”). When viewed in higher energy photons,
the Sun is dominated by bright more or less localized emission regions: these

xv
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are referred to generically as “active regions.” Within each active region, it
is sometimes possible to trace out bright discrete structures (“loops”). The
brightest of all features in the corona, and also in the chromosphere, are short-
lived brightenings (“flares”) which occur unpredictably from time to time in
certain active regions.

Observations of the photosphere, the chromosphere, and the corona show
beyond any doubt that the surface of the Sun and its outer atmosphere are
subject to variability of different kinds. Sometimes dark spots appear on the
surface for a few days or weeks. The total number of spots which are visible on
the surface at any given time waxes and wanes every 11 years or so. At times,
the Sun ejects massive quantities of material from the corona, and there are
also, at times, sudden outbursts of high energy photons. Before the modern
era of solar observations, these occasional ejections and outbursts would have
affected life on Earth no more than providing a more or less brilliant show
of “northern lights,” when the northern sky would light up at night. But in
our day and age, the eruptions and outbursts from the Sun can have more
serious effects, including damage to expensive communication satellites or the
equipment that electric power companies rely on to distribute electricity to
their customers.

A good opportunity to examine graphical illustrations, examples, and
videos of the broad variety of highly dynamic phenomena as they occur on the
Sun can be found on the worldwide web at a site (maintained by NASA, the
National Aeronautics and Space Administration) which is devoted to a par-
ticular spacecraft: the Solar and Heliospheric Observatory. This spacecraft,
known by its abbreviated title, SOHO, is located in orbit around the Sun at a
special point in space. The point lies between Earth and Sun at the location
where the gravitational pull of the Earth is comparable to the gravitational
pull of the Sun. SOHO has a continuous and uninterrupted view of the Sun
since there is no day-night cycle and/or clouds to interfere with observations.
The website is http://sohowww.nascom.nasa.gov/, an excellent resource for
“viewing” the Sun in a broad variety of wavelengths.

Among the data sets that can be examined at the website, there is one in
particular that holds the key to understanding the fundamental nature and
origin of the most dynamic solar phenomena. This is an instrument known as
Michelson Doppler imager (MDI) which searches for magnetic fields on the
surface of the Sun. The data show clearly that magnetic fields are present
in the Sun, although the total amount of magnetic flux varies with time.
At certain times, there are many magnetic areas at various locations on the
disk, while at other times, the Sun appears almost devoid of fields. The fields
wax and wane in strength as the years go by: the waxing and waning is almost
periodic, with a period of about 11 years. When we compare the magnetic field
data that MDI measures with images of the photosphere, chromosphere, and
corona, it becomes apparent that the phenomena of sunspots, the patchy radio
corona, coronal loops, flares and mass ejections, are all related in different ways
to regions where stronger than average magnetic fields are present.
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The question that is important to address is the following. Do the solar
eruptions and outbursts that provide such a spectacular component to the
SOHO observational database represent perturbations that we should be wor-
ried about in the context of life on Earth? Or do they constitute relatively
minor disturbances against the backdrop of a much larger, and much steadier,
output of energy which the Sun generates continuously as the days, years, and
eons go by? In order to address these questions, we need on the one hand to
determine the properties of the Sun as a whole, and we need on the other
hand to determine the properties of the magnetically driven phenomena in
the atmosphere. Specifically we must determine how hot and how dense the
material is in the deep interior, and how much inertia this can provide to offset
the dynamic phenomena which attract our attention from time to time in the
surface layers.

The laws of physics indicate that the power output of the Sun depends on
how the physical parameters temperature T , pressure p, and density ρ vary as a
function of radial location r between the center of the Sun (r = 0) and a region
that we will refer to as “the visible surface” (r = R�). Here, and throughout
this book, the subscript � denotes a parameter of the Sun as a whole. An
important goal in our study of the Sun is to use various laws of physics to
determine the radial profiles T (r), p(r), and ρ(r) between r = 0 and r = R�.

The starting point for these profiles is provided by observations of certain
parameters at the “visible surface” of the Sun. Photons from those visible
layers reach us on Earth and carry information on local conditions at r = R�.
Once the global parameters of the Sun are determined, they serve as boundary
conditions to help us get started on our calculation of T (r), p(r), and ρ(r)
beneath the surface, i.e., at r < R�. By applying a variety of physical laws,
and also by a judicious choice of computational techniques, our goal is to
calculate T (r), p(r), and ρ(r) for all values of r down to r = 0. This will tell
us about the internal structure of the Sun.

An important aspect of modern solar physics is that once we have cal-
culated the internal structure, we can check our calculations by examining
the properties of the vast array of oscillations which the Sun supports. This
area of research, known as helioseismology, has opened up windows on the
solar interior which were totally absent prior to the 1970s. Not only can the
oscillations help us to check the structural calculations, but they can also
help us determine how the Sun rotates at depths far below the surface. By
1990, the oscillation data had become good enough that it became possible
to detect variations in the oscillation frequencies as the Sun varies during the
11-year sunspot cycle. Even more recently, in 2007, claims have been reported
for a type of oscillation (g-modes) which propagate mainly in the Sun’s deep
interior.

In view of the great advances in solar physics which the oscillations have
made possible, it is important that, even in a first course in solar physics,
attention be paid to understanding how to calculate the basic properties of
solar oscillations.
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However, as well as helping us get started on learning about the internal
structure, conditions at the visible surface also serve as boundary condition
for another problem: how do the physical parameters vary as a function of
radial location above the surface? A rich variety of physical phenomena occur
in these locations, which may be referred to as the “outer atmosphere of the
Sun.” Many of these physical phenomena, especially those which exhibit pro-
nounced variability with time, are covered by the umbrella term “solar activ-
ity.” This term includes sunspots, flares, and coronal mass ejections. Physical
parameters of the gas which lies between r = R� and the Earth’s orbit can
also be determined by applying the laws of physics to the increasingly rar-
efied environment which exists at greater and greater radial distances from
the center of the Sun.

In summary, our approach to studying the physics of the Sun consists of
starting at a certain location (r = R�) where the local physical parameters
can be reliably measured, and then proceeding in two distinct directions: first
inward, and subsequently outward.

As regards the long-term stability of the Sun, two aspects of the physics
are key. The first has to do with the pressure pc at the center of the Sun: if pc
can support the weight of the overlying material (i.e., the weight of the entire
Sun), then a condition known as hydrostatic equilibrium is ensured. In this
case, the Sun will be in a structural condition where, in a global sense, all the
mechanical forces are in balance.

The second aspect is that energy must be generated at such a rate that
the power output remains steady on time-scales of several billion years. The
only source of energy that will satisfy this is nuclear fusion. This requires that
the central temperature Tc be high enough that nuclear reactions can occur
at a suitably rapid rate to keep the Earth warm.

Our goal in this book is to determine enough information about the physi-
cal conditions inside the Sun, and in its extended atmosphere, so that we may
appreciate, from a global perspective, the amazing entity that enables life to
survive on Earth for eons of time.

In this study, a particular emphasis is placed on numerical modeling. In
five of the chapters (Chapters 5, 7, 9, 10, and 14), the reader is given step-by-
step instructions for calculating, in a simplified manner, the numerical values
of various physical quantities as a function of radial distance inside the Sun. I
believe that a student can gain a lot of insight into the conditions in the Sun
by watching, step by step, how the pressure, or the temperature, or the am-
plitude of an oscillation, vary as one moves from one radial position inside the
Sun to another. When the student, in a later more advanced course, eventu-
ally encounters the complete equations of stellar structure, including detailed
expressions for the equation of state, the opacity, and the energy generation
rate, the codes can become so complicated that it is not easy to understand
why the solutions behave the way they do. In the present course, I would like
the student to obtain a firm grasp of how the pressure (in “real” units, i.e.,
dyn cm−2) varies as a function of radial location (also in “real” units, i.e., cm)
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from the center of the Sun, to the photosphere, to the chromosphere, to the
corona, and eventually into the distant wind. Likewise, I want the student to
obtain a firm grasp on the radial profiles of density and temperature. A feel for
the actual physical length-scales and pressures can help a student to appre-
ciate the immensity of the Sun. And as the student will learn in Chapter 11,
this immensity is fundamentally what gives rise to the nuclear reactions which
make life on Earth possible.

Dermott J. Mullan
University of Delaware
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Chapter 1

Global Parameters of the Sun

In order to determine the physical processes which occur in the Sun, we need
to know certain properties of the Sun, including mass, radius, and other quan-
tities. In this chapter, we summarize the relevant information, with emphasis
on describing how the information is obtained, and how precise the current
measurements actually are.

When it comes to astrophysical measurements, the quantity which can be
measured with greatest accuracy is TIME. As a result, we begin our discus-
sion of the determination of solar parameters by referring to measurements of
certain intervals of time.

1.1 Orbital Motion of the Earth

The single most important property which determines the evolutionary
behavior of a star is its mass; it is the mass which determines whether a star
will eventually ends its life quietly or explosively.

In order to determine the mass of the Sun, M�, we begin by referring to
the time that is required for the Earth to orbit the Sun. Determination of this
time-scale is achieved by observing the interval of time required for the Sun
to return to a given location relative to the “fixed” stars as seen by an ob-
server on Earth. Actually the “fixed stars” used for this determination are a
class of galaxies known as quasi-stellar radio sources (“quasars”). Relative to
the quasar frame, this defines the unit of one sidereal year: P = 365.25636
days = 31,558,150 seconds. For this, and other precise estimates of various pa-
rameters of interest to solar system dynamics, refer to the website maintained
by NASA’s Jet Propulsion Laboratory: http://ssd.jpl.nasa.gov/?constants.

Now that we know the orbital period of the Earth, we now turn to the
equation of motion of the Earth in its orbit. This equation can be written in
terms of position vectors of Sun and Earth. Relative to a zero point which can
be arbitrarily chosen, the position vector of the Sun is r(S) and the position
vector of the Earth is r(E). The position vector of Earth relative to the Sun
is r = r(E) − r(S), and the unit vector associated with the relative position
vector, r̂, is directed from the Sun toward the Earth.

1
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The forces which act on the Sun (with mass M�) and on the Earth (with
mass m⊕) are given by Newton’s law of gravitation. The gravitational force
causes the Earth to accelerate according to the equation

m⊕
d2r(E)

dt2 = −GM �m⊕
r2 r̂ (1.1)

where G is Newton’s gravitational constant, and the negative sign indicates
that the force is toward the Sun, i.e., in the negative r̂ direction.

The gravitational force causes the Sun to accelerate according to the
equation

M�
d2r(S)

dt2 = +
GM �m⊕

r2 r̂ (1.2)

where the positive sign indicates that the force is toward the Earth, i.e., in
the positive r̂ direction.

In terms of the relative position vector r, the above equations can be
combined to yield

d2r

dt2 = −G(M� + m⊕)
r2 r̂ (1.3)

The solution of this equation is an ellipse with the center of mass at one
focus. With a semimajor axis D for the ellipse, the period P of orbital motion
is given by

P 2 =
4π2D3

G(M� + m⊕)
(1.4)

This leads to an expression for the mass of the Sun:

GM �
D3 =

4π2

P 2[1 + m⊕/M�]
(1.5)

The ratio of m⊕ to M� is very small (we will evaluate it shortly). If we
were to neglect the ratio m⊕/M� compared to unity, then we would get a
fairly precise first approximation to GM�/D3. According to this approxi-
mation, for each planet in the solar system, the square of the period P 2 is
proportional to the cube of the mean distance D3. This property was first
identified empirically by Kepler as his third law of planetary motion.

However, with or without the correction for the Earth’s mass, we can-
not determine the value of M� unless we first determine the value of D
(= 1 astronomical unit).

1.2 Astronomical Unit (AU)

Once the orbital periods of the various planets are known, the application
of Kepler’s third law provides a scale model of the solar system. The scale

T&F Cat # C3074, Chapter 1, Page 2, 14-7-2009



Global Parameters of the Sun 3

model provides knowledge, at any given instant of time, of the distances of
planets and other solar system objects in terms of AU, the semimajor axis
of the Earth’s orbit. As a result, at any given instant of time, we know how
far away any solar system object is from Earth in terms of AU. In favorable
conditions, radar reflection can be used to determine the linear distance to the
object at that instant. This has the advantage that a distance measurement
is performed in terms of a measurement of a time interval, which can be done
with high precision.

Reliable radar reflection measurements were first made around 1960 using
the planet Venus. It was not just the intensity of the signal which was mea-
sured, but also the Doppler shift. This means that the orbital motion of Venus
can be allowed for in the course of an extended period of observations. When
Venus is closest to Earth, the round-trip time for radar reflections during the
experiment is close to 5 minutes, and this interval can be measured with a
precision of many significant figures.

The International Astronomical Union currently defines the AU as follows:

1 AU ≡ D = 149,597,870.691 km

For future reference, we note that at a distance equal to D, the linear
diameter of any object which has an angular diameter of 1 arc sec is 728.8 km.

By inserting the value of D in Equation 1.5, a first approximation to the
quantity GM� can be determined. Moreover, in this approximation, Kepler’s
3rd law becomes an equality P 2 = D3 provided that P is expressed in years
and D is expressed in AU.

To obtain a more precise estimate of M�, we need to evaluate the ratio
m⊕/M�. We do that by comparing the motions of two objects, one in orbit
around the Sun, the other in orbit around the Earth. For both objects, we
need to determine two quantities: a period and a distance.

For the object (the Earth) that is in orbit around the Sun, with period
P (S) and semimajor axis D(S), we know that

P (S)2 ∼ D(S)3

M� + m⊕
(1.6)

For the object (an artificial satellite) that is in orbit around the Earth,
with period P (E) and semimajor axis D(E), we have that

P (E)2 ∼ D(E)3

m⊕
(1.7)

where we have made the reasonable assumption that the mass of the artificial
satellite is entirely negligible (by 20 orders of magnitude or more) compared
to the mass of the Earth.

Combining the above equations, we have that

M�
m⊕

+ 1 =
(

D(S)
D(E)

)3(
P (E)
P (S)

)2

(1.8)
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4 Physics of the Sun: A First Course

There are a large number or choices which we can make for an artificial
satellite in orbit around the Earth. Any one will suit our purpose. To obtain
information about any particular artificial satellite, it is convenient to examine
the website http://www.heavens-above.com/, where information is available
about many satellites in orbit around the Earth. There, by way of example,
we find that a satellite called RADCAT has the following orbital details: the
perigee lies at an altitude of 491 km above the Earth’s surface, the apogee at
495 km. This suggests that the mean altitude of RADCAT above the Earth’s
surface is h = 493 km. Note that only three significant digits are provided for
these distances: this will limit the precision of our evaluation of m⊕/M�.

With an mean altitude of h = 493 km, the semimajor axis of the orbit
is D(E) = R⊕ + h, where R⊕ is the radius of the Earth. The equatorial
radius of the earth has been accurately measured, by the International Union
of Geodesy and Geophysics, to be R⊕ = 6378.137 km. This leads to D(E) =
6871.137 km for RADCAT. Comparing this with the value of D(S) = 1 AU,
we see that D(S)/D(E) = 21,771.924 for RADCAT. Thus, the first factor on
the right-hand side of Equation 1.8 is 1.0320255 × 1013.

Turning now to the period, information on heavens-above.com indicates
that the RADCAT satellite orbits 15.24243084 times per day, corresponding
to a period P (E) = 5668.387 sec. Compared to the value of P (S) (= 1 sidereal
year), we find that the second factor on the right-hand side of Equation 1.8
has the value 3.2262344 × 10−8.

Combining the terms in Equation 1.8, we find that m⊕/M� = 1/332,955.
This is the mass ratio which we obtain when we use the orbital data for
a single satellite (RADCAT), for which we know the altitude to only three
significant digits. When multiple satellites are used, the currently accepted
value of m⊕/M� is found to be 1/332,946. Thus, our use of RADCAT data
alone leads to an error in the mass ratio of about 1 part in 30,000. Our
calculations would have led to the currently accepted value of m⊕/M� if we
were to use a value of 493.08 km (rather than 493 km) for the mean altitude of
RADCAT. It should be kept in mind that even small errors in a measurement
may translate to significant uncertainties in some of the quantities which are
of interest to us when we study the Sun.

1.3 GM� and the Mass of the Sun

We now have enough information to evaluate the product of the gravita-
tional constant and the mass of the Sun:

GM � = 1.327124 ×1026 cm3 sec−2 (1.9)

The precision with which the product GM� is known has increased over the
course of the space age, as more and more spacecraft have traveled throughout
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the solar system, always subject to a sunward acceleration which is propor-
tional to the above product. Currently, the numerical value of GM � is known
to 11–12 significant digits, but we do not need all those digits here, because
G is not that well known.

To extract a value for the mass of the Sun, we need to divide the above
product by G. The numerical value of G is among the most poorly measured
constants of nature, known only to 1 part in 104: G = 6.67428(±0.00067) ×
10−8 dyn cm2 gm−2 (see the list of physical constants maintained by the
National Institute of Standards and Technology: http://physics.nist.gov/cuu/
Constants/).

Using this, we obtain the following estimate of the mass of the Sun, reliable
to 1 part in 104:

M� = 1.9884 ×1033 gm (1.10)

1.4 Power Output of the Sun: The Solar Luminosity

Spacecraft which are equipped with radiometers can measure the flux of
radiant energy coming from the Sun: this flux, known as the solar irradi-
ance, Is, is reported on the SOHO website to have a mean value of about
1366 W m−2, i.e., 1.366 × 106 ergs cm−2 sec−1. The magnitude of Is is ob-
served to vary slightly in the course of a sunspot cycle (see Figure 1.1): the
variations are at the 0.1% level, i.e., about one part in 1000.

Given the distance from Earth to Sun (D), the mean Is transforms to an
output power from the Sun of L� = 4πD2Is, i.e.,

L� = 3.8416 ×1033 ergs sec−1 (1.11)

This power output from the Sun (also referred to as the “solar luminosity”)
varies by roughly ±1 part in 1000 on 10–12 year cycles. During each cycle, the
surface of the Sun is occupied by a greater or smaller number of dark patches
called “sunspots.” We will discuss sunspots in Chapter 16.

For future reference, comparing Equations 1.11 and 1.10, we note that the
ratio of L�/M� has a numerical value close to 2 ergs gm−1 sec−1. We will
find it useful to use this ratio when we calculate the internal structure of the
radiative interior of the Sun (Chapter 8).

Also for future reference, we note that the power output from the Sun
relies on the conversion of (nuclear) mass into energy in the deep inner core
of the Sun. Using the conversion formula E = mc2, we note that the value
of the Sun’s power output requires the conversion of mass to energy at a rate
(dM /dt)nucl = 4.274 × 1012 gm sec−1. In the course of the Sun’s lifetime,
which is estimated to be about 4.6 Gy, the mass of the Sun has been reduced
by nuclear processing by a few parts in 104.
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FIGURE 1.1: The solar irradiance, normalized to a solar distance of 1 AU,
measured over almost 30 years. (Courtesy of SOHO/VIRGO consortium.
SOHO is a project of international cooperation between ESA and NASA.)

1.5 Radius of the Sun: R�
Now that the mean distance to the Sun is known, it would seem to be a

simple matter to obtain the linear radius (diameter) of the Sun by measuring
the angular radius (diameter). However, measuring the angular radius of
the Sun from the ground is difficult to do with precision on account of the
phenomenon of “seeing.” Turbulent eddies in the Earth’s atmosphere make
the image of the Sun unsteady, smearing out the edge of the solar disc on
angular scales of order 1 arc sec. This leads to an uncertainty in the solar
radius of order 700 km derived from ground-based measurements.

Empirically, the existence of two distinct classes of eclipses of the Sun
(total and annular) indicates that the Sun has an angular diameter which is
comparable to the Moon’s: the latter is close to 32 arc min, i.e., 1920 arc sec.
So the Sun’s angular radius is of order 960 arc sec. But from the ground, this
cannot be measured to better than about 1 arc sec, i.e., to one part in 1000.

In order to obtain more reliable measurements, observations from space are
required. The SOHO spacecraft, launched in 1996, has made the most careful
measurements in this regard. In order to provide the best possible calibration
of the CCD pixels in the SOHO/MDI detector, a transit of Mercury was
observed on May 7 2003. In the course of a 5–6 hour period, Mercury moved
along a track which was known from planetary dynamics to a precision of
±0.025 arc sec. Kuhn et al. (2004) report that the angular radius of the Sun
(when observed at D = 1 AU) is 959.28 ± 0.15 arc sec.
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When this is converted to linear measure, it corresponds to a (linear) solar
radius of R� = 6.9574(±0.0011) ×105 km.

An alternate method of determining the (linear) radius of Sun is provided
by helioseismic data. In Chapters 13 and 14, we will study oscillatory modes in
the Sun, and we shall see that the periods of various modes can be measured to
better than 1 part in 30,000. By referring to models of the solar structure, the
frequencies of identifiable modes allow the solar radius to be determined with a
precision which is comparable to the precision of the frequency determinations
(Schou et al., 1997). The best determination of solar radius from helioseismic
data is

R� = 6.9568 ± 0.0003 ×105 km (1.12)

This result overlaps with the above estimate of angular diameter from
SOHO, but is about three times more precise. The improvement in precision
can be attributed to the fact that the analysis depends on measurements of
time (frequency) rather than angle.

For future reference, when we come to discuss the solar wind (Chapter 18),
it will be helpful to know how far the Earth is from the Sun in units of the solar
radius. Combining D with R�, we see that 1 AU is equivalent to 215.04 R�.

1.6 Surface Gravity of the Sun

Now that we know the mass and radius of the Sun, we can calculate the
acceleration due to gravity gs at the solar surface.

gs =
GM �
R2�

=
1.327124 ×1026

(6.9568 ×1010)2
= 27,421.6 cm sec−2 (1.13)

For future reference, we note that a convenient way to remember this value
is to recall the logarithmic value: log gs = 4.44.

1.7 Escape Speed from the Solar Surface

The escape speed from the surface of the Sun is given by

Vesc =

√
2GM �

R�
= 617.7 km sec−1 (1.14)

This escape speed is a measure of the depth of the gravitational potential
well due to the mass of the material in the entire Sun. It is a measure of how
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8 Physics of the Sun: A First Course

strongly the Sun’s weight crushes the gas in the core of the Sun. It is a law of
physics that, if the Sun is to remain in hydrostatic equilibrium, the crushing
effects of the weight of the overlying material on the core have to be balanced
by outward-directed pressure.

Now, pressure is determined by the momentum flux of the individual gas
particles. As a result, the thermal pressure in the core is related to the mean
square velocity of the thermal particles there (e.g., Sears, 1959). Thermal
particles, each with mass m, and in a medium with temperature T , have a root-
mean-square (rms) velocity Vrms =

√
(3kT/m) where k = 1.3806504 ×10−16

ergs deg−1 is Boltzmann’s constant.
The existence of the two velocities, Vrms and Vesc, which are both charac-

teristic of the Sun, suggests that in a model of the Sun which is in hydrostatic
(i.e., mechanical) equilibrium, Vrms and Vesc should have comparable magni-
tudes. We shall check on this expectation when we complete our calculation
of a mechanical model of the Sun (Chapter 9).

For future reference, we note that for a gas consisting of hydrogen atoms,
1/m = 1/mH (where mH is the mass of a hydrogen atom), and this equals
Avogadro’s number Na, which is the number of molecules in one mole. The
combination kNa is referred to as the gas constant Rg = 8.314472 ×107 ergs
deg−1 mole−1. For a gas consisting of particles with atomic mass µ, the rms
velocity Vrms =

√
(3RgT/µ).

1.8 Effective Temperature of the Sun

Now that we know the output power of the Sun as well as the radius, we can
calculate the effective temperature. This is the temperature of the equivalent
black-body which would radiate a flux equal to that emitted by the Sun:

L� = 4πR2
�σBT 4

eff

where the Stefan–Boltzman coefficient σB = 5.67040 ×10−5 ergs cm−2 sec−1

deg−4. The surface flux of energy at the Sun, F� = L�/4πR2
� has the numer-

ical value 6.3155×1010 ergs cm−2 sec−1. Using this, we find that the effective
temperature of the Sun is

Teff = 5777 K (1.15)

1.9 Shape of the Sun

To the unaided eye, the Sun appears to be essentially circular in shape. But
careful measurements reveal a slight departure from circularity. The difference
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between the solar radius at the equator and the solar radius at the pole is
expressed in terms of the oblateness ε = (Req − Rpole)/Req.

First attempts to measure ε were made using ground-based observations.
But the effects of seeing make this very difficult to do. Early results in the
1960s claimed that the Sun was oblate with ε = 4.2×10−5. Such an oblateness
would correspond to a linear difference of 30 km between the equatorial radius
and the polar radius. It would mean that the difference in angular radii would
be of order 0.04 arc sec. This is much smaller than the effects of seeing (typical
amplitude ≈ 1 arc sec), and so it is not surprising that it is difficult to make
the measurements reliably from the ground.

A balloon-borne instrument, the Solar Disk Sextant (SDS), flown in 1992
and 1994, made observations at altitudes which were above most of the at-
mosphere. The reported oblateness was ε = 9 ± 1 ×10−6 (Lydon and Sofia,
1996), considerably smaller than had been suggested by the earlier ground-
based data.

Measurements from space were made by SOHO: the spacecraft was rolled
through 360 degrees in small angular increments, each 0.7 degrees in extent,
corresponding to 360/0.7 = 514 individual “pie slices” of data around the
entire circumference. Each “pie slice” was fitted with a radial profile: taking
a numerical radial derivative of each profile, and squaring the derivative, the
location of the peak of squared derivative was defined to be the location of the
limb. With more than 500 samples, the rules of statistics suggest that the noise
in individual “pie slices” can be reduced from 0.15 arc sec (see Section 1.5)
to 0.15/

√
514 = 0.007 arc sec = 5 km. By making multiple observations over

several months, the authors claimed that they could achieve a precision of
0.5 km in the solar radius (Kuhn et al., 1998).

Observations obtained in 1996–1997 indicated a solar oblateness of

ε = (7.77 ± 0.66) ×10−6 (1.16)

This oblateness overlaps with the 1992/1994 results from SDS, although with
somewhat improved error bars.

The existence of a finite oblateness in the solar figure is expected because
the material in the Sun is subject to forces arising from rotation. If rotation
were absent, the Sun’s figure would settle into an equi-potential surface, for
which the potential would be spherically symmetric: ϕ = −GM �/r. With
such a potential, the surface acceleration due to gravity g = −dϕ/dr is also
symmetric. In the presence of rotation, however, the (inward) force due to
gravity is counter-acted to some extent by the (outward) centrifugal force.
With a solar angular velocity Ω, the net gravitational acceleration at colati-
tude θ becomes

g(rot) = g − rΩ2 sin2 θ (1.17)

corresponding to a potential

ϕ = −GM �
r

− 0.5r2Ω2 sin2 θ (1.18)
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10 Physics of the Sun: A First Course

This leads to an equi-potential surface which, in the presence of an equatorial
rotational velocity V (eq) = rΩ, has an oblateness of ε = 0.5V (eq)2/gr.

What is the rotational velocity of the Sun? We can answer this question
as regards the surface of the Sun by means of direct observations. Rotational
periods of material on the surface of the Sun can be measured from the Doppler
shifts of spectral lines at east and west limbs. An important finding is that the
rotational period is not constant at all latitudes. Instead, the period is found
to be shortest at the equator, and the period becomes longer as we observe
closer to the poles. This behavior is called “latitudinal differential rotation.”
An empirical fit to the rotation can be achieved by the following expression
for angular velocity as a function of latitude λ:

Ω(λ) = Ω(0)
[
1 − b sin2 λ − c sin4 λ

]
(1.19)

In a study involving Doppler shift data from many points on the sur-
face, obtained in the course of 14 years, Howard et al. (1983) reported av-
erage values for the parameters in this fit: Ω(0) = 2.867 × 10−6 rad sec−1,
b = 0.121, and c = 0.166. At the equator, the measured angular velocity
Ω(0) corresponds to a rotational period of P (rot, eq) = 2π/Ω(0) = 25.4 days.
The equatorial rotational velocity V (eq) = Ω(0)R� has a numerical value of
1.99 km sec−1. At latitudes of 60◦, the rotational period P (rot, 60) = 31.3
days. At the north and south poles, Equation 1.19 indicates that Ω(90) =
0.713Ω(0) = 2.044 ×10−6 rad sec−1, corresponding to a polar rotational pe-
riod P (rot, poles) = 2π/Ω(90) = 35.6 days. Remarkably, the gas in the polar
regions of the Sun rotates almost 30% more slowly than the gas near the
equator. If we needed any reminder that the Sun is not a solid body (but is
composed entirely of gas), differential rotation would provide the evidence.

If the entire Sun were to rotate at a period of 25.4 days, then the oblateness
due to rotation would have the numerical value ε(rot) = 10.4 ×10−6. This is
several standard deviations larger than the oblateness reported by SOHO. It
seems that the entire Sun cannot be rotating with a period that is as short as
25.4 days: some regions must be rotating more slowly than that.

The observed oblateness values (ε = (8–9) × 10−6) would be consistent
with rotational effects if the entire Sun were to rotate with a period which
is longer than 25.4 days by a factor of

√
(10.4/(8–9)) = 1.07 − 1.14. The

observed oblateness could be due entirely to rotation if the Sun were to rotate
as a solid body with angular velocity Ω(obl) = (2.5–2.7)×10−6 radians sec−1.

Converting the angular velocities to (temporal) frequency, ν = Ω/2π, we
note that the equatorial rotation Ω(0) corresponds to ν(0) = 456 nanoHertz
(nHz), while Ω(obl) corresponds to ν(obl) = 398–430 nHz.

As it turns out, the analysis of helioseismological data has revealed that the
inner regions of the Sun do not rotate as a solid body. Different regions in the
Sun rotate with different periods, depending on latitude and radial location.
The fastest rotation, at equatorial latitudes, and at radial locations close to
the surface, is about ν = 470 nHz, while the slowest (at polar latitudes, and
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also close to the surface) is about ν = 320 nHz. Thus, the material inside the
Sun spans a rather broad range of rotational frequencies: 320–470 nHz.

The rotational frequencies which are derived when the entire observed
oblateness is attributed to rotational effects viz. ν(obl) = 398–430 nHz, are
entirely consistent with the range of rotational frequencies which exist inside
the Sun. It appears therefore that most (or all) of the observed oblateness of
the Sun can be ascribed without serious contradiction to rotational effects.

1.10 Critical Frequency for Solar Oscillations

Now that we know the radius and mass of the Sun, there is a critical fre-
quency which can be constructed from R�, M�, and G which will be relevant
when we come to discuss the various modes of oscillations inside the Sun. By
analogy with a pendulum, for which the period is given by Pg = 2π

√
(d/g) if

the length of the pendulum is d and the local acceleration due to gravity is g,
a critical period in the gravity field of the Sun in a global sense can be written
down by considering a pendulum with a length that is equal to the natural
length of the system: the solar radius. This leads to Pg = 2π

√
(R�/gs). This

can be written as

Pg = 2π

√
R3�

GM �
(1.20)

Substituting GM � = 1.327124 ×1026 c.g.s. and R� = 6.9568 ×1010 cm,
we find Pg = 10,008 sec. The associated frequency νg = 1/Pg has the numeri-
cal value 99.92 microHertz (µHz). Thus, a fundamental frequency νg which is
very close to 100 µHz is expected to provide a significant marker among the os-
cillation frequencies of the modes in which the Sun oscillates on a global scale.

1.11 Mean Density of the Sun

Another quantity which can be calculated once the mass and radius of the
Sun are known is the mean density:

ρ̄ =
M�

(4/3)πR3�
(1.21)

Inserting the values of M� and R� from Equations 1.10 and 1.12, we
find ρ̄ = 1.410 gm cm−3. That is, the mean density of the (gaseous) Sun is
somewhat greater than the mean density of (liquid) water. Once we calculate
a model for the interior of the Sun (Chapter 9), it will be a matter of interest
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to compare the density at the center of the Sun to the mean density. We shall
find that the central density in the Sun is much larger than the density of
liquid water: the central density is actually about ten times larger than that
of solid lead.

Despite these large densities, the material of which the Sun is composed
does not behave as a liquid or a solid: instead, we shall find that it obeys the
laws which govern the behavior of a gas (Chapter 9).

We note that the critical period in Equation 1.20 scales as 1/
√

Gρ̄.
Now that we have information on the relevant physical parameters on a

global scale, we can turn to a study of the internal structure of the Sun.

Exercises

1.1 Consult a table of orbital periods for the planets Mercury, Mars, Jupiter,
and Neptune. Using Kepler’s third law, determine the mean distance of
each planet from the Sun in AU and in cm.

1.2 We shall see (Chapter 18) that the Sun’s influence over the surrounding
space extends out as far as about 100 AU. Determine the period (in
years) that a planet would have if it were in an orbit with that value
of D. Assuming the orbit is circular, determine the speed of the planet
in its orbit.

1.3 The Sun is currently estimated to be some 4.6 Gy old. When the Sun
was younger than 1 Gy, theory suggests that its luminosity was only 70%
of what it is today. Assuming that the Sun’s radius has not changed,
calculate the effective temperature of the young Sun.

1.4 Using information provided above, determine the mean density of the
Earth. Given the scaling Pg ∼ 1/

√
ρ̄, calculate Pg for the Earth. How

does Pg compare with the orbital period of the RADCAT satellite in its
near-Earth orbit?

1.5 Stars belonging to a feature called “the main sequence” have radii R∗
and masses M∗ which scale roughly as R∗ = R�(M∗/M�)0.7. For stars
with masses 0.1, 0.3, 1, 3, and 10 M� on the main sequence, calculate R∗,
and evaluate the surface gravity (Equation 1.13) and the escape speed
Vesc from the surface (Equation 1.14).

1.6 The masses and luminosities of main sequence stars can be approximated
by L∗ ∼ M3.8

∗ . Using the formula for luminosity in Section 1.8, and the
R∗ − M∗ formula in Exercise 5, show that Teff for main sequence stars
scales as M0.6

∗ . Using this scaling along with Equation 1.15, calculate
Teff for main sequence stars with masses of 0.1, 0.3, 1, 3, and 10 M�.
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Chapter 2

Radiation Flow through the Solar
Atmosphere

Now that we have knowledge of the global parameters of the Sun, we are in a
position to turn to an interpretive study of the photons which are the principal
means by which information comes to us from the Sun. If we can make certain
measurements on the photons from the Sun, such as their distribution in
wavelength, and the integrated flux of radiant energy, we may hope to extract
information about the temperature and other physical quantities in the region
from which the photons originated. The photons originate mainly in a region
which can be considered roughly as “the (visible) surface of the Sun”: a more
precise definition of this region will emerge subsequently from a discussion of
radiative transfer.

Our goal is to use the information carried by the solar photons to undertake
a task of physical interpretation which will take us in two opposite directions
away from the “surface”: (i) into the deep inner regions of the Sun, and
(ii) outward toward the rarefied material which lies above the visible surface.

We aim to use certain laws of physics to help us determine a “model of
the Sun,” i.e., to determine the radial profile of physical parameters such as
temperature, density, and pressure.

2.1 Radiation Field in the Solar Atmosphere

The goal of radiative transfer in the solar atmosphere is to determine how
radiation interacts with the medium as it passes through material with a
particular set of physical properties. The interaction is mutual: on the one
hand, the medium imprints certain properties on the radiation, and on the
other hand, the material in the medium is affected (as far as its temperature
and density are concerned) by the photons which stream outward from deep
inside the star.

An important way to characterize the radiant energy is the intensity Iλ:
this is the amount of radiant energy which flows through unit area per unit
time per unit wavelength and per unit solid angle. The units of Iλ which are

15
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appropriate for the visible spectrum from the Sun are ergs cm−2 sec−1 cm−1

steradian−1.
An alternative approach to quantifying the radiant power is to specify the

intensity per unit frequency : this is given the symbol Iν in units of ergs cm−2

sec−1 Hz−1 steradian−1. Conservation of energy requires that Iλdλ = Iνdν.
Since λν = c (where c is the speed of light), this means that Iλ = Iν(c/λ2).

The numerical value of Iλ (or Iν) at any point inside a medium (whether it
is inside the Sun or in a star, or inside an oven on Earth) depends on the local
temperature: other things being equal, the higher the temperature, the larger
the value of Iλ (or Iν). The value of Iλ (or Iν) also depends on the wavelength
λ at which observations are made.

The simplest example of Iλ (or Iν) which is useful for astrophysical studies
refers to the radiant energy field which is in thermal equilibrium inside a
closed cavity. This leads to the so-called black-body radiation. In thermal
equilibrium, the radiation is in equilibrium with the walls, and equal numbers
of radiant modes are being absorbed and emitted by the walls per unit time.
Inside a cavity, the only radiant modes which are present with significant
amplitudes have wavelengths such that an integral number of half-wavelengths
fit into the cavity. The existence of a discrete number (∼ 1/λ3 ∼ ν3/c3) of such
wavelengths means that it is possible, using classical physics, to enumerate
the numbers of radiant modes which are permitted to exist per unit volume
within a certain range of wavelengths (or within a certain range of frequencies)
inside the cavity. The number of such modes per unit frequency can be shown
to be equal to 8πν2/c3 cm−3 Hz−1.

The close coupling of radiation and walls in these circumstances suggests
that, since the thermal energy of a single particle corresponding to tempera-
ture T is kT, where k is Boltzmann’s constant, it might also be appropriate
to assign an energy of kT to each radiant mode. With such an assignment,
the radiant energy density per unit frequency would be Eν = 8πν2kT/c3 ergs
cm−3 Hz−1.

Evaluation of the energy density of the radiation field is the first step to-
ward deriving an expression for the intensity: the latter is associated specifically
with the flow of energy across an element of surface area and into unit solid
angle in a particular direction. To transform from energy density to intensity,
the energy density must be multiplied by the speed of propagation (c) and
also by the factor 1/4: the latter includes a factor of 1/2 to allow for inward
and outward propagation, and a factor of 1/2 for geometric averaging over
spherical angles. This leads to

Iν = 2πν2kT/c2 ergs cm−2 sec−1 Hz−1 steradian−1 (2.1)

Equation 2.1 for the radiant intensity is referred to as the Rayleigh–Jeans
law: it provides a good fit to the radiant flux which emerges from a black-
body at long wavelengths. However, as we apply the formula to progressively
shorter (ultraviolet) wavelengths, i.e., as ν → ∞, the above expression for Iν

diverges, a phenomenon known historically as the “ultraviolet catastrophe.”
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In order to avoid this catastrophe, Max Planck in 1900 suggested that,
despite the arguments of classical physics, it is not correct to assign the
same energy (namely, the mean thermal energy of a particle kT ) to each
and every mode of the radiation field. Instead, Planck postulated that for
modes of a given frequency v, only certain discrete energies are allowed:
E(i) = 0, hν, 2hν, 3hν, . . .. In this situation, the total energy which is available
from the thermal energy of the cavity is distributed among a large number of
modes. In this distribution, modes with energy E(i) are present in numbers
which are proportional to their Boltzmann factor exp(−E(i)/kT ): this takes
into account the fact that very few photons in the cavity are expected to have
energies which are greatly in excess of kT. Adding up the occupation numbers
to determine the overall partition function, it is possible to calculate the mean
energy per mode. This mean energy is found to be no longer 〈E〉 = kT (as in
the classical case): instead, Planck found

〈E〉 =
hν

ehν/kT − 1
(2.2)

In the limiting case of low energy photons, hν 
 kT , Planck’s formula
has the desirable property that it reduces to the classical result: 〈E〉 = kT .
However, in the opposite limit, for photons with energies which are greatly
in excess of kT, the mean energy per photon falls well below the classical
value: in the limit hv � kT , the mean photon energy 〈E〉 tends toward
zero.

Using the revised estimate of mean energy in the radiation modes, Planck
found that the classical energy density Ev = 8π(v2/c3)kT is replaced by
Ev = 8π(ν2/c3)hν/[exp(hν/kT ) − 1]. Multiplying this energy density by
the factor c/4 (as in the classical treatment), the radiant intensity which is
radiated per unit frequency from a surface at temperature T is found to be:

Iν =
2πhν3

c2

1
ehν/kT − 1

ergs cm−2 sec−1 Hz−1 steradian−1 (2.3)

If we wish instead to express the radiant intensity in terms of intensity per
unit wavelength, the corresponding result is

Iλ =
2πhc2

λ5

1
ehc/λT − 1

ergs cm−2 sec−1 cm−1 steradian−1 (2.4)

These are the expressions (the “planck functions”) for the intensity of
radiation associated with a “black-body.” Deep in the solar atmosphere, where
local thermodynamic equilibrium holds, we shall find that the mean free path
for photons is so short (typically a few km) that the photons within a “small”
volume can be considered to zeroth order to be essentially contained in a cavity
where the temperature changes only insignificantly across the cavity. In such
conditions, where a unique temperature is not a bad fit to local conditions,
the “black-body” expressions provide a useful approximation to the properties
of the local radiation field.
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FIGURE 2.1: Black-body radiation: radiant energy flux per unit wavelength
as a function of wavelength for black-bodies of different temperature. The
wavelengths are expressed in units of Ångstrom (1 Å = 10−8 cm). The units
of the ordinate are arbitrary.

Two important characteristic properties of black-body radiation are note-
worthy (see Figure 2.1). First, the curve Iλ peaks at a certain wavelength
λmax which decreases as the temperature increases according to Wien’s law:
λmax(cm) = 0.288/T . In the case of the Sun, where the temperature in the
vicinity of the “visible surface” is about 6000 K, λmax occurs at about 5000 Å.
Empirically, the solar spectrum, when plotted in the form of Iλ, is indeed found
to exhibit a peak at wavelengths near 5000 Å, suggesting that the black-body
provides a reasonable zeroth order fit to the radiation which emerges from the
Sun. Second, integrating over all wavelengths, the total energy density of the
photons in a cavity with temperature T is u(T ) = aRT 4 ergs cm−3, where
the radiation density constant aR is equal to 7.5658×10−15 ergs cm−3 deg−4.
Converting from total energy density to a total flux of radiation in a certain
direction, the integral over all frequencies and over all solid angles leads to a
total flux of σBT 4 where σB = aRc/4 is the Stefan–Boltzmann constant. The
numerical value of σB is 5.67040(±0.00004) ×10−5 ergs cm−2 sec−1 deg−4.

2.2 Empirical Properties of the Radiant Energy
from the Sun

The human eye is not adapted for direct observations of the Sun: under
no conditions should one ever point binoculars or a telescope at the Sun.
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FIGURE 2.2: An image of the Sun obtained from an artificial island in a
lake: in these conditions, the atmosphere around the telescope is less turbu-
lent, and a clearer image of the Sun can be obtained from the Earth’s surface.
(From Big Bear Solar Observatory/New Jersey Institute of Technology. With
permission.)

However, images of the Sun can be obtained with instruments which are de-
signed for that purpose. An example of an image of the full disk of the Sun
is presented in Figure 2.2.

In the image, one’s eyes are usually drawn to the localized dark spots
(“sunspots”), but that is not the point in the present context. (Chapter 16
deals with sunspots.) Here, we note that the solar disk is amenable to mea-
surements of radiant intensity at all positions across the disk, from center to
limb. Apart from sunspots, the intensity of the disk in visible light is az-
imuthally symmetric. Inspection of Figure 2.2 shows that as we move from
disk center toward the limb, the intensity varies in a systematic way. The
sense of the variation is such that the limb of the Sun is observed to be fainter
than the center of the disk when observations are made in visible light: this
gives rise to the term “limb darkening.”

From our observing platform (P) on Earth, it is convenient (see Figure 2.3)
to describe the location of a point S on the surface of the Sun in terms of the
azimuthally symmetric angle ψ between our line of sight and the local normal
to the Sun’s surface at point S.

When S lies at the center of the disk (from the observer’s vantage point),
the line of sight from P to S enters the solar atmosphere along a line which
is parallel to the local normal to the solar surface. As a result, ψ = 0 at the
center of the disk. On the other hand, if the point S lies close to the limb,
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FIGURE 2.3: Defining the angle ψ which is relevant to limb darkening.
The observer is at point P (e.g., the Earth), S is a point on the Sun’s
surface, O is the center of the Sun, Ω is the angular radius of the Sun as
seen by the observer, R is the linear radius of the Sun. The angle ψ is the
angle between the normal to the Sun at point S and the line of sight to the
observer P. An imaginary observer standing on the Sun at point S would
see the earth (P) at an angle ψ away from the local zenith. (Image downloaded
from http://upload.wikimedia.org/wikipedia/commons/9/94/Limb darkening
geometry.png. With permission.)

the line of sight from P to S intersects the solar surface at S at a large angle
to the local normal. As a result, as we attempt to make measurements of the
intensity at positions which lie progressively closer to the limb, our observing
direction corresponds to the limit ψ → 90 degrees.

In terms of the variable µ = cos ψ, observations at disk center correspond
to µ = 1, while observations at the limb correspond to µ → 0.

Measurements of limb darkening have been made from many sites on
Earth, and at many different wavelengths. These measurements indicate that,
for any particular wavelength, Iλ varies across the solar disk in a way that
can be described to first order as a first order polynomial in µ:

Iλ(µ) ≈ aλ + bλµ (2.5)

It may also be possible to fit higher order polynomials to the limb darken-
ing, but the linear fit Equation 2.5 often works well. For wavelengths in the
vicinity of 5000 Å, if we normalize Iλ to its value at disk center, Iλ(µ = 1),
the empirical values of the coefficients in the linear fit are given roughly by
aλ = 0.4 and bλ = +0.6. That is to say, when we observe the Sun in visible
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light, the intensity at the limb is only 40% as large as at the center of the
disk. The limb is fully 60% fainter than the center of the disk when observed
at 5000 Å.

A priori, it is difficult to say whether the empirical values of the coeffi-
cients in Equation 2.5 are “reasonable.” As regards aλ (the intensity at the
limb relative to the central intensity), it is limited to nonnegative values: the
intensity is a physical quantity which cannot fall below zero. The actual value
of aλ is related to the mechanism of energy transport in the atmosphere: in
an atmosphere where adiabatic equilibrium existed, such as would be the case
if efficient convection were transporting the energy, it can be shown that the
numerical value of aλ would approach zero. Thus, the fact that the empir-
ical value of aλ is definitely nonzero conveys physical information: energy
transport in the photosphere does not occur primarily by means of efficient
convection. We shall see below (Section 2.8) that radiative transport yields
an excellent fit to the empirical value of aλ.

As regards bλ, there is no obvious a priori reason why bλ should neces-
sarily be restricted to a particular algebraic sign. The empirical fact that
bλ is a positive number (for wavelengths around 5000 Å) indicates that the
intensity at the limb, when observed at 5000 Å, is less than the intensity at
disk center (hence the term: “limb darkening”). Limb darkening is a readily
discernable feature of images of the Sun which are obtained in visible light
(e.g., Figure 2.2).

At near infrared wavelengths (λ ≈ 1 µm), bλ it is observed to be less than
0.6: limb darkening is less severe in the infrared than at visible wavelengths.
At wavelengths as long as 5 µm, limb darkening is no more than about 10%:
the intensity at the limb is roughly 90% of the center intensity. At wavelengths
in the near ultraviolet (λ ≈ 0.3 µm), bλ is observed to be greater than 0.6,
indicating that the limb darkening is more severe in the near ultraviolet than
at visible wavelengths.

The fact that the Sun is limb darkened when observed at visible wave-
lengths does not exclude the possibility that at other wavelengths, the limb
may be observed to be brighter than the disk center. In fact, at long radio
wavelengths, limb brightening is observed. In such a case, bλ takes on a neg-
ative value: there is no mathematical difficulty with this as long as the sum
aλ + bλ remains nonnegative.

The numerical values of the empirical coefficients aλ and bλ, and the al-
gebraic sign of bλ, contain important information as to how the temperature
T (z) in the Sun’s atmosphere varies as a function of the linear depth z. (Note
that the depth z increases as we go downward into the interior of the Sun.
We will also have occasion to use a linear height variable h which increases
as we go upward in the solar atmosphere.) Obtaining this depth dependence
of T (z) is the first step toward determining the radial profile of temperature
inside the Sun. In order to extract T (z), it is first necessary to derive the ra-
diative transfer equation (RTE), which describes how Iλ varies as a function
of a related coordinate known as the “optical depth” τ .
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2.3 RTE

In a radiant medium, such as the solar atmosphere, the gas emits radiant
energy at a rate ελ ergs cm−3 sec−1 Å−1 ster−1. This quantity is a rate of
energy generation in each unit of volume in a certain region of the spectrum,
across a width of spectrum equal to 1 Å, and into unit solid angle. The origin
of this radiant emission can be traced ultimately to the pool of thermal energy
which resides in the particles of the gas (at temperature T ): as particles in
this thermal pool collide with each other, the mutual accelerations of charges
give rise to emission of photons with energies which are related to the ther-
mal energies, of order kT. Because of this, the emissivity ελ is a function of
temperature.

The gas in the solar atmosphere also absorbs radiant energy at a rate which
is described by a (linear) absorption coefficient kλ cm−1. The subscript indi-
cates that the absorption coefficient depends on the wavelength. There is also
a temperature-dependence. The wavelength-dependence of kλ is sometimes
extremely rapid, e.g., in the vicinity of a strong spectral line, or near an “ion-
ization edge.” However, in other cases, kλ varies only slowly with wavelength.
This is the case in the spectrum of the Sun, for wavelengths which span much
of the visible spectrum, from about 0.4 µm to about 1 µm.

In the presence of absorption, when a beam of radiation with intensity
Iλ(0) enters a uniform slab of linear thickness x, the emergent intensity is
given by

Iλ(x) = Iλ(0)e−τ (2.6)

The quantity τ = kλx is a dimensionless number called the optical depth
of the slab at wavelength λ. The quantity 1/kλ is a linear distance such that a
slab of this thickness reduces the intensity of a beam by a factor of 1/e. If light
passes through material with optical depth τ = 10, the emergent intensity is
attenuated below the initial value by a factor of order 2 × 104. This means
that when we view a medium where radiation is coming from a variety of
depths, it becomes progressively harder to detect a significant fraction of the
radiation which originated in layers of gas which have optical depths that are
much larger than τ = 1.

What numerical value is typical of the quantity kλ? The answer depends
on the medium. In the surface layers of the Sun, the value of kλ at λ ≈ 5000 Å
is found to be of order 10−6 cm−1. This means that two points in those layers
which are separated by a distance of 10 km are separated by a medium with
τ ≈ 1. Radiation which is emitted by gas that is, say, 100 km deeper than
at a reference point P′ arrives at P′ with an intensity of only 1/20,000 times
its original value. If P′ lies on the visible surface of the Sun, this means
that radiation emitted from 100 km below the Sun’s surface is essentially all
absorbed before we have a chance to see it.
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FIGURE 2.4: The arrowed line represents the path of a ray of light prop-
agating along a slanted path from below to above, passing through a slab of
material with vertical thickness dh. Inside the slab, the material has absorp-
tion coefficient kλ and emissivity ελ. Dashed line indicates the local vertical
direction. The ray enters the slab at point O, and exits the slab at point A.
The ray path makes an angle ψ relative to the local normal. The path length
OA of the ray as it passes through the slab has a length dh sec ψ.

If kλ is nonuniform in the slab, then the optical depth is given by τ =
∫kλdx . In the limit of a thin slab, with thickness dx, we see that

Iλ(x) = Iλ(0) − kλdxIλ(0) (2.7)

Thus, the magnitude of the reduction in Iλ associated with passing through
a path length dx is proportional to the path length and also to the intensity
of the radiation.

Combining the concepts of emission and absorption, we can now derive
the RTE using Figure 2.4.

Consider the line OA along which radiation is propagating in a stellar
atmosphere. Let OA extend across a slab which is located between heights
h and h + dh: in our notation, the numerical value of h increases in the
upward direction. Let the line OA lie along a direction which makes an angle
ψ relative to the local normal. The intensity at height h in the direction of the
line is Iλ(h, ψ): this is a measure of the energy flux which enters an element
of unit area per unit time at height h. The element of area is perpendicular
to the line OA. After traversing the atmosphere and arriving at the higher
level, the intensity which emerges from the element of unit area per unit
time Iλ(h + dh, ψ) differs from the value Iλ(h, ψ) because of two processes:
(i) reduction in intensity due to absorption along OA, and (ii) enhancement
in intensity due to emission along OA. Let us imagine that the elements of
unit area at h and at h + dh are connected by a rectangular prism of unit
area: the length dl of such a prism is equal to the slant length dl = dhsecψ
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along the axis of the prism. The reduction in energy along this path is equal
to −Iλ(h, ψ)kλdhsecψ. The volume of the prism is dh sec ψ. In such a volume,
the increase in energy flux due to local emission is ελ(h)dh sec ψ.

Combining the enhancement and the reduction, we find that

Iλ(h + dh, ψ) − Iλ(h, ψ) = ελ(h)dh sec ψ − Iλ(h, ψ)kλdh sec ψ (2.8)

In the limit dh → 0, and setting µ = cos ψ, this leads to

µ
dI λ

dh
= ελ − kλIλ (2.9)

2.4 Optical Depth and the Concept of “the Photosphere”

At this point, we introduce the concept of the optical depth which charac-
terizes a particular layer of the atmosphere τλ. The increment of this optical
depth dτλ is defined by dτλ = −kλdh, where the negative sign indicates that
the numerical value of τλ increases as the height coordinate h becomes more
negative, i.e., as we move deeper into the star. At any height h′ in the at-
mosphere, the local optical depth is computed by integrating from a height of
infinity in to the height h′:

τλ(h′) =
∫ h′

∞
kλdh (2.10)

The zero point of the optical depth scale lies far above the visible surface of
the Sun. For an observer P at a remote point (such as on Earth) (Figure 2.3),
the optical depth along the line of sight between P and a point S′ (which is
closer to the Sun than P) is determined by the location of S′. If S′ lies close
to P, the point S′ lies in gas of extremely low density. As a result, the optical
depth of point S′ (as viewed by observer P) remains small. However, as point
S′ is moved progressively closer to the Sun, there is a monotonic increase in
the optical depth of S′ as viewed by P. Eventually, point S′ is immersed in
atmospheric gas where the density has a value that is large enough to make
kλ appreciable: now the increments dτ start to build up appreciably in the
integral of τλ(h′). Eventually, the gas surrounding S′ is dense enough, and
deep enough in the solar atmosphere, that the integral τλ(h′) approaches a
value of order unity. We call that location the photosphere (from the Greek:
photo = having to do with light). The numerical value of h′ at the photosphere
depends on the wavelength: at certain wavelengths (e.g., λ ≈ 1.6 µm), the
absorption coefficient is smaller than at other wavelengths, and we can see
deeper into the atmosphere.

Why is the photosphere significant as far as our study of solar radiation is
concerned? Because as we go deeper into the Sun, below the photosphere, the
optical depth of the deeper layers rapidly becomes so large that any radiation
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emitted from the deep layers is significantly reduced before it can reach our
observational instruments. The photosphere can be regarded as more or less
the deepest lying gas from which we still have a good chance of seeing most
of what is emitted.

Casting the above equation in terms of optical depth, we can re-write it as

µ
dI λ

dτλ
= Iλ − Sλ (2.11)

where Sλ = ελ/kλ is referred to as the source function at wavelength λ.
The units of Sλ are the same as those of Iλ, namely, ergs cm−2 sec−1 Å−1

ster−1.
Equation 2.11 is referred to as the radiative transfer equation (RTE).

2.5 Special Solutions of the RTE

In the following illustrative solutions, we shall for simplicity omit the wave-
length subscript on all variables, but it is implied.

Because of the structure of Equation 2.11, a general aspect of the solution
can readily be identified: the integrating factor is e−τ/µ. Multiplying both
sides by the integrating factor, we can re-write the RTE as

d

dτ
(I(τ)e−τ/µ) = −S(τ)e−τ/µ

µ
(2.12)

The solution of this equation yields the intensity which an observer would
“detect” if an instrument were located in a layer with optical depth τ , and
if the instrument were pointed in such a way as to be observing only the
radiation propagating along a direction which makes an angle ψ = cos−1 µ
relative to the local normal.

The formal solution I(τ, µ) of Equation 2.12 can be considered in the limit
of two distinct regimes of the µ parameter, one for the radiant intensity which
flows into the upper hemisphere (relative to the point where the optical depth
is τ), and the other for the radiation which flows into the lower hemisphere.

For radiation which is flowing into the upper hemisphere, ψ takes on values
which range from 0 to 90 degrees, (i.e., µ takes on positive values between 1
and 0). In this case, the local intensity I(τ, µ) is due to radiation which
emerges from deeper layers (inside the Sun) and which is flowing outward
toward free space. As a result, the local value of intensity at depth τ in the
upper hemisphere (denoted by µ+) involves an integration over all gas which
lies deeper than τ , from τ → ∞ up to the level where the optical depth
equals τ :

I(τ, µ+) = −eτ/µ

∫ τ

∞

S(t)
µ

e−t/µdt (2.13)
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For radiation which is flowing into the lower hemisphere, ψ takes on values
from 90 to 180 degrees, (i.e., µ takes on negative values between −1 and 0).
In this case, the local intensity I(τ, µ) is due to radiation which emerges from
shallower layers (higher in the atmosphere) and which is flowing inward to-
ward the interior of the Sun. As a result, the local value of intensity at depth τ
in the lower hemisphere (denoted by µ−) involves an integration over all gas
which lies shallower than τ , from τ → 0 down to the level where the optical
depth equals τ :

I(τ, µ−) = −eτ/µ

∫ τ

0

S(t)
µ

e−t/µdt (2.14)

Let us limit our considerations now to the outermost layers of the Sun.
That is, let us move our radiation instrument to the upper atmosphere where
τ → 0. This could include moving the instrument all the way to the Earth’s or-
bit. In this way, we would be recording what is truly the “emergent intensity”
from the Sun. In this case, since there is essentially zero source of radiation
coming in from free space, the integral into the lower hemisphere I(τ, µ−) van-
ishes. Only the intensity I(τ, µ+) entering into the upper hemisphere retains
a nonzero value. And this component, in the limit τ → 0, becomes

I(0, µ+) =
∫ ∞

0

S(t)
µ

e−t/µdt (2.15)

Let us consider some simple cases.

2.5.1 S =Constant at all optical depths

If S(τ) = S, independent of τ , the integral in Equation 2.15 is straightfor-
ward: we find I(0, µ+) = S. Thus, the emergent intensity of radiation is just
equal to S itself. Moreover, I(0) is independent of µ: there is neither limb
darkening nor limb brightening.

2.5.2 Constant S in a slab of finite thickness

In the case of a slab with finite optical depth τ ′, in which S is constant,
the emergent intensity is

I(0, µ+) = S

∫ τ ′

0
e−t/µdt/µ = S(1 − e−τ ′/µ) (2.16)

Thus, the emergent intensity is not as large as S, but is reduced by an
optical depth term. In the special case where we observe perpendicular to the
slab, we can set µ = 1, and then find that

I(0,1) = S(1 − e−τ ′
) (2.17)
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In the limit of infinite thickness, τ ′ → ∞, we recover the solution in
Section 2.5.1: I(0,1) → S.

In the opposite limit, when the slab is optically thin, we find

I(0,1) → τ ′S (2.18)

Thus, the emergent intensity from a very thin slab can take on values
which are much less than the source function. The reduction factor is just the
optical depth of the slab.

In general, in the case of constant S, the emergent intensity cannot be
greater than S, but it may be much smaller than S if the optical depth is
small. This is an important result in helping to interpret certain properties
of the upper solar atmosphere.

2.5.3 Depth-dependent S: polynomial form

We now revert to the case of an infinite atmosphere, and consider a case
where the source function depends on the optical depth. Specifically, we
consider the polynomial form S(τ) = a+bτ +cτ2. (We shall see in Section 2.8,
that there is some basis for such a choice.) To obtain the emergent intensity
from such an atmosphere, we insert this function into Equation 2.15.

The first term in S(τ) corresponds to the case in Section 2.5.1 (i.e., con-
stant S): this term results in a contribution of a to I(0, µ+). The term bτ ,
when inserted in Equation 2.15 leads to an integral which can be integrated
by parts: it contributes a term bµ to I(0, µ+). Finally, the term cτ2, when
inserted in Equation 2.15, requires two integrations by parts: this leads to a
term 2cµ2 to I(0, µ+). Combining terms, we find that

I(0, µ+) = a + bµ + 2cµ2 (2.19)

Clearly, this solution is of particular interest for the Sun’s atmosphere
since the empirical limb darkening of the Sun (Equation 2.5) is of precisely
this form (in the special case c = 0, although empirical fits can be extended to
include a term in µ2). It therefore appears that the source function at optical
depth τ in the Sun (at visible wavelengths) can be described by the function
S(τ) = a + bτ . In view of the fact that the empirical value of the coefficient b
is positive, the source function in the solar atmosphere at visible wavelengths
increases with increasing τ .

We shall see below that the source function can be related to the local
temperature. In view of this, the empirical observation of limb darkening
(i.e., b > 0) provides us with a significant piece of information: in the visible
layers of the solar atmosphere, the temperature increases as we penetrate
deeper into the atmosphere. This is the start of a radial temperature gradient
which will carry us from temperatures of order Teff(≈6000 K) near the surface
to much larger temperatures in the deep interior of the Sun.
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2.5.4 Depth-dependent S: exponential form

Suppose the source function has the form S(τ) = eατ where α < 1/µ.
Inserting this into Equation 2.20, we find that

I(0, µ+) =
1

1 − αµ
(2.20)

2.6 Eddington–Barbier Relationship

The fact that a linear source function S(τ) = a+bτ yields a limb darkening
function I(0, µ+) = a+bµ which is exactly the same linear function of µ leads
to the Eddington–Barbier relationship: the intensity which is observed at any
value of µ equals the source function at the level where the local optical depth
τ has the value τ = µ. In other words, at any particular location on the disk
of the Sun, i.e., at a given value of µ, the radiation that is observed comes
effectively from gas where the optical depth is equal to µ.

In effect, when one observes the Sun at disk center (µ = 1), one’s line
of sight penetrates essentially down to the gas in the solar atmosphere where
τ = 1. On the other hand, when observing near the limb, say at µ = 0.1, one’s
line of sight penetrates only down to the gas where τ = 0.1. In terms of a
height scale in the solar atmosphere, the gas at τ = 1 lies 100–200 kilometers
deeper than the gas at τ = 0.1. The deeper gas is hotter.

2.7 Is Limb Brightening Possible?

Although limb darkening is certainly the feature which is most relevant to
observations of the Sun in the visible continuum (see Figure 2.2), this does
not exclude the possibility of limb brightening when the Sun is observed at
other wavelengths.

The existence of limb brightening requires that I(0, µ = 0) exceed
I(0, µ = 1).

In the case of a polynomial source function, this possibility is formally
excluded if all coefficients (a, b, c) are nonnegative. Limb brightening is
possible only in cases where either b or c is sufficiently negative to ensure that
b + 2c is negative.

In the case of an exponential source function, the ratio I(0, µ = 0)/
I(0, µ = 1) is equal to 1 − α. To avoid nonphysical (negative) intensities,
this requires that α have a value that is no greater than 1. This is stricter
than the limit (already noted above) α < 1/µ. Thus, limb brightening is
possible if α < 0, i.e., if the source function decreases exponentially as the
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optical depth increases. Although this result is of little relevance to the solar
photosphere, it will be useful when we consider the solar chromosphere and
corona.

2.8 Is S(τ ) = a + bτ Realistic? The Gray
Atmosphere

We have seen that the observed limb darkening in the Sun, which can be
described by I(µ) = a+ bµ, agrees with the limb darkening which is predicted
to be observed if the source function has a particular form: S(τ) = a + bτ .
Now we ask, is there any physical reason why S(τ) = a + bτ should be an
acceptable description of the depth-dependent source function in the Sun?

The answer is Yes, provided we consider a limiting case known as the gray
atmosphere. In this case, the opacity is independent of wavelength, allowing
immediate integration of Equation 2.11 (RTE) over frequency.

µ
dI (τ)
dτ

= I(τ) − S(τ) (2.21)

The unsubscripted τ -dependent variables I(τ) and S(τ) in this section
refer to quantities which, at any given optical depth, have been integrated
over the frequency spectrum.

At any optical depth in the atmosphere, the flux of radiation F (τ) flowing
towards an outside observer, integrated over all frequencies, is given by the
flux integral:

F (τ) =
∫

µI(τ)dω (2.22)

where the integration over dω represents all solid angles, and the direction
ψ = 0 points toward the observer. In conditions of radiative equilibrium,
there are no new sources of energy within the atmosphere: the energy flux
F (τ) is provided by processes which occur deep inside the star. As far as the
atmosphere is concerned, F (τ) is to be regarded as a boundary condition: a
certain quantity of energy flux “arrives” from the deep interior at the base
of the atmosphere, and must be transported through the atmosphere and
released into the darkness of space. Therefore, F (τ) is a constant at all optical
depths in the atmosphere. We use the symbol Fo to denote this constant flux.

At optical depth τ in the atmosphere, we define the mean intensity of
radiation J(τ) as

J(τ) =
1
4π

∫
I(τ)dω (2.23)

With these definitions of F (τ) and J(τ), we integrate both sides of
Equation 2.11 over dω and find that at any given location in the atmosphere,
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in the vicinity of optical depth τ ,

dF (τ)
dτ

= 4πJ(τ) − 4πS(τ) (2.24)

In performing the integrations over dω, we have assumed that the source
function S(τ), which is determined by atomic processes in the immediate
neighborhood of τ , is spherically symmetric. Inserting F (τ) = Fo in Equation
2.24, we find that

J(τ) = S(τ) (2.25)

Recall that both J(τ) and S(τ) have been integrated over all frequencies.
The quantities J(τ) and F (τ) represent zeroth and first moments of the

radiation intensity at optical depth τ . Now we introduce the second moment
of the radiation intensity at depth τ (again integrated over all frequencies):

K(τ) =
1
4π

∫
µ2I(τ)dω (2.26)

The quantity K(τ) is proportional to the radiation pressure pr at op-
tical depth τ . When the spectrum of a black-body is integrated over all
wavelengths, the radiation pressure pr is related to the energy density u (see
Section 2.1) by pr = u/3 = aRT 4/3.

With these definitions, let us now multiply both sides of Equation 2.11
by (µ/4π) and integrate over dω. This operation leads to dK (τ)/dτ on the
left-hand side of RTE. On the right-hand side, the first term reduces to the
constant Fo/4π. The second term, involving integration of µS over all solid
angles, reduces to zero due to the spherical symmetry of S. Thus we find

dK (τ)
dτ

=
Fo

4π
(2.27)

Since Fo is a constant, this equation can be integrated immediately to
obtain:

K(τ) = τ
Fo

4π
+ constant (2.28)

How are we to evaluate the “constant” in Equation 2.28? We introduce
the “two-stream approximation”: the angular distribution of the radiant in-
tensity is replaced by two streams, one with µ = +1 going into the outer
(upper) hemisphere Io(τ), the other with µ = −1 going into the inner (lower)
hemisphere Ii(τ). In this approximation, and noting that the element of solid
angle dω can be written as 2πdµ, we find the following expression for the three
moments of the radiation field:

J(τ) =
1
2
(Io(τ) + Ii(τ)) (2.29)

F (τ) ≡ Fo = π(Io(τ) − Ii(τ)) (2.30)

K(τ) =
1
6
(Io(τ) + Ii(τ)) (2.31)
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Comparing J(τ) and K(τ), we see that in this approximation, referred to as
the Eddington approximation, K(τ) = J(τ)/3 at all depths in the atmosphere.

In particular, let us consider the top of the atmosphere, where τ = 0. At
that location, the incoming flux of radiant energy Ii(τ = 0) is zero. As a
result, K(0) = Io(0)/6 and Fo = πIo(0) . Reverting to Equation 2.28, we
now have enough information to evaluate the “constant”: it equals Fo/6π.
Replacing K(τ) by J(τ)/3, and multiplying both sides by three, we then find

J(τ) =
Fo

2π
+ τ

3Fo

4π
(2.32)

Since J(τ) = S(τ) (see Equation 2.25 above), we finally have

S(τ) =
(

3Fo

4π

) (
2
3

+ τ

)
(2.33)

This is the Eddington solution for the gray atmosphere.
Now we can answer the question: is there any physical basis for considering

the function S(τ) = a + bτ?
Indeed there is: the Eddington solution yields just such a solution, with

a specific value of 2/3 for the ratio of a/b. The function in Equation 2.33
therefore leads to a limb darkening of the form I(µ) ∼ (2/3) + µ. Thus, we
see that the intensity at the limb (where µ = 0), i.e., I(0) ∼ (2/3), is only
40% of the intensity at the center of the disk (where µ = 1), i.e., I(1) ∼ (5/3).
In this regard, we recall that the limb darkening of the Sun (Section 2.2) is
in fact observed to be close to a linear function of µ, with a limb intensity of
about 40% of center intensity in visible wavelengths, just as the model here
predicts. Apparently, the assumptions of the Eddington solution provide a
valuable approach to replicating, in a quantitative manner, the observed limb
darkening of the Sun at visible wavelengths. We shall return to why this might
be so when we discuss possible sources of opacity in the solar photosphere at
visible wavelengths.

A more detailed solution of the RTE in a gray atmosphere (Chandrasekhar,
1944) shows that, rather than the solution in Equation 2.33, where S(τ) ∼
τ + (2/3), a more exact solution is S(τ) ∼ τ + q(τ) where q(τ) is a slowly-
varying function of τ , ranging from 0.58 as τ → 0 to 0.71 as τ → ∞. The two-
stream approximation, which replaces q(τ) with the constant 2/3 is entirely
consistent with the more detailed solution.

2.9 How Does Temperature Vary as a Function of τ?

Now that we derived how the source function behaves as a function of τ ,
our aim here is to derive the τ -dependence of the temperature. To do this,
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we use the equality established above between S(τ) and J(τ). Recalling the
frequency-dependent definition of Jν(τ) = (1/4π) ∫ Iν(τ)dω, we notice that
Jν(τ) at any particular frequency is related to the energy density of the radi-
ation uν at that frequency. In order to evaluate uν (with units of ergs cm−3

Hz−1) we must integrate Iν(τ) (with units of ergs cm−2 sec−1 ster−1 Hz−1)
over solid angle, and divide by the speed of light:

uν(τ) =
1
c

∫
Iν(τ)dω (2.34)

Comparing Equations 2.23 and 2.34, we see that

Jν(τ) =
c

4π
uν(τ) (2.35)

We have already noted (Section 2.1) that when the energy density uν

of black-body radiation is integrated over all frequencies for an object of
temperature T , the result is u(T ) = aRT 4, where aR is the radiation den-
sity constant. Therefore, if we integrate Jν(τ) over all frequencies, we find
J(τ) = (aRc/4π)T (τ)4. Noting also that aRc/4 = σB (the Stefan–Boltzmann
constant), we find that

J(τ) = σBT (τ)4/π (2.36)

Since S(τ) = J(τ) (see Equation 2.25), Equation 2.36 can be written as

S(τ) = σBT (τ)4/π (2.37)

Inserting this into Equation 2.33 we find

σBT (τ)4

π
=

(
3Fo

4π

) (
2
3

+ τ

)
(2.38)

The constant flux Fo which propagates through the atmosphere can be
expressed in terms of an effective temperature Teff by means of the definition

Fo ≡ σBT 4
eff (2.39)

Combining Equations 2.38 and 2.39, we finally arrive at an expression for
the profile of temperature as a function of optical depth in an Eddington
atmosphere:

T (τ)4 =
T 4

eff

4
(2 + 3τ) (2.40)

We shall refer to Equation 2.40 as the “Eddington relation.” It is this
relation which will eventually start us on the way to deriving profiles of density
and pressure at various heights in the atmosphere of the Sun.

Note that the source function, while at first sight (Equation 2.37) appears
similar to the expression for the flux Fo (Equation 2.39), differs from the flux
in two ways: (i) S(τ) varies with τ , but Fo is independent of τ ; (ii) S(τ)
includes an extra factor of π in the denominator.
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2.10 Properties of the Eddington Relation

In the upper layers of the atmosphere, as τ → 0, the Eddington relation
predicts that the temperature does not by any means fall to zero. Instead, it
approaches an asymptotic limit, the “boundary temperature,”

Tboundary ≡ T (τ = 0) =
Teff

21/4 (2.41)

In the case of the Sun, with Teff = 5777 K, we find a boundary temperature
of 4858 K. As a result, the Planck function in the upper atmosphere does not
go to zero, but tends to a constant value in the uppermost levels.

The optical depth at which the local temperature has a value which is equal
to Teff is τ = 2/3. This is consistent with the observation that the photons
we see coming from the Sun, emerging on the whole from layers where the
optical depth cannot be much greater than τ ≈ 1, appear to emerge from a
gas with a temperature that is about 6000 K.

Reference

Chandrasekhar, S. 1944. “On the Radiative Equilibrium of a Stellar Atmo-
sphere. II.,” Astrophys. J., 100, 76.
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Chapter 3

Toward a Model of the Sun: Opacity

Now that we have limb-darkening information as to how the temperature in
the vicinity of the solar photosphere behaves as a function of optical depth, we
have taken the first step in achieving one of the principal goals of solar physics:
to calculate how the physical quantities in the Sun behave as a function of
radial location. We refer to such a radial profile as a “solar model.”

When the only information that we have access to is limb darkening, the
range of radial locations in the Sun which can be modeled reliably is quite
restricted: we can extract information only for a range of heights in the vicinity
of the photosphere. For present purposes, the “vicinity of the photosphere”
refers to locations in the solar atmosphere which lie above the convection zone,
and below the chromosphere. For the sake of brevity, we refer to these limits as
the “lower” photosphere and the “upper” photosphere, respectively. In what
follows, given the physical conditions which exist in the solar atmosphere,
we shall find that the “lower” and “upper” photosphere differ in height by
∆h = several hundred kilometers.

In subsequent chapters, when we wish to progress our modeling efforts
deeper into the interior of the Sun, or upward into the chromosphere, we shall
need access to data over and above what limb darkening can provide. But in
all cases, we need to know the answer to the following question: what is the
opacity? That is the subject of this chapter.

3.1 Relationship between Optical Depth and Linear
Absorption Coefficient

Up to this point, the RTE has been discussed in terms of kλ cm−1, which is
a linear absorption coefficient. More customary in astrophysics is the opacity,
κλ = kλ/ρ: this is a measure of how opaque a medium of density ρ is to light
of wavelength λ. The units of κλ are cm2 gm−1. The units of κλ indicate that
the opacity is associated with a cross-sectional area which impedes the free
passage of radiation as the radiation propagates through 1 gm of material.

Since opacity includes a cross-sectional area which is responsible for scat-
tering and/or absorbing light, it is worthwhile to mention a fundamental cross-
section associated with a free electron. A free electron scatters a photon with

35

T&F Cat # C3074, Chapter 3, Page 35, 17-7-2009



36 Physics of the Sun: A First Course

a cross-section which is given by the Thomson formula σT = (8/3)πr2
e where

re = e2/mc2 is the classical radius of the electron. In discussions about the
interactions between photons and matter, the Thomson cross-section is an
important quantity:

σT = 6.6245873 ×10−25 cm2 (3.1)

In an ionized gas, there will always be free electrons which contribute to
opacity with the above cross-section. Note that σT is independent of wave-
length (at least for photons with energies less than mec

2 = 0.5 MeV).
However, in the gas which exists at various locations in the Sun, as well

as free electrons, there are also atoms and/or ions in which some electrons
are still held in bound orbits. Opacity is a measure of how strongly photons
interact with the atoms/ions of the medium through which the photons are
passing. We shall find that quantitative aspects of the opacity, and especially
its sensitivity to temperature, play a key role in modeling three regions of the
Sun: the photosphere, the deep interior, and the chromosphere. Because of
this, the more we understand the properties of opacity, its numerical values
and its variations with temperature, the more insight we will have into the
structure of the Sun.

3.2 Two Approaches to Opacity: Atomic
and Astrophysical

There are two different approaches to opacity, depending on one’s interest:
atomic physics or astrophysics. From the atomic point of view, the main goal
is to understand the following: given a photon with a specified wavelength
(but of unspecified origin), what is the cross-section for photon absorption by
a particular atom? Quantum mechanics can be used to derive quantitatively
the numerical value of the cross-section at any particular wavelength. We
shall take this viewpoint in Sections 3.4, 3.5, and 3.6.

From the point of view of astrophysics, the main goal is to understand how
photons with a wide range of wavelengths interact with the medium through
which they are passing. In the solar atmosphere, opacity involves a process of
interaction between photons and atoms: it is not merely the atomic physics
which is relevant, but also the “spectrum of radiation” in the atmosphere, and
how this spectrum overlaps with regions of large and small opacity. The key
question is: how many photons are present at wavelengths where the opacity
is large, and how many photons are present at wavelengths where the opacity
is small? It is all very well for the atomic physicist to report that hydro-
gen absorbs most strongly at wavelengths 912–1216 Å, but if researcher A is
studying the flow of radiation through an atmosphere where there are essen-
tially no photons at 912–1216 Å, then the peak in absorption at 912–1216 Å
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is of no great relevance to researcher A: the radiation in the atmosphere, with
most of its photons at (say) long wavelengths, may encounter very little effec-
tive opacity. However, if researcher B is considering an atmosphere where the
photon spectrum peaks at 912–1216 Å, then the effective opacity may indeed
be very large.

In astrophysics, the ease with which photons propagate through an atmo-
sphere depends on a convolution of the photon spectrum with the wavelength-
dependent opacity. Thus, we need to have a way of calculating a mean opacity
of some sort, such that the relevant atomic physics as well as the relevant
spectral information can be merged in a meaningful way. This will lead us to
define a “mean opacity” in Section 3.6 after we have considered certain details
of atomic physics.

3.3 Atomic Physics: (i) Opacity due to Hydrogen Atoms

To see how the opacity is related to the properties of individual atoms,
consider Figure 3.1. This shows what an observer sees when looking through
the “endface” of a column of length l. The area of each “endface” of the
column is 1 cm2, and the observer’s line of sight passes through a medium
(inside the column) which has density ρ = nama. Here, na cm−3 is the number
density of absorbers, each of mean mass ma (gm).

Each absorber in the column has a cross-sectional area σ for the absorption
of light. The total number of absorbers in the column is the column number
density : N = nal, with units of cm−2. (An equivalent quantity is the mass

FIGURE 3.1: Indicating how to estimate the blockage of light passing
through a column of material. Each endface of the column is a square with
dimensions 1 ×1 cm. In the Figure, we are looking in at one endface, and the
column extends a length l behind the page. (From the website http://mysite
.du.edu/∼jcalvert/phys/scat2.gif, used with permission from J. Calvert.)
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column density dc = Nma with units of gm cm−2.) In the limit Nσ 
 1, light
which enters the column at one “endface” and emerges through the other
“endface,” encounters a total absorption area of Nσ cm2. Comparing this to
the 1 cm2 area of the “endface,” this means that the light emerging from the
column is reduced by the fractional amount Nσ. Recalling that, in the limit
of small optical depth, e−τ = 1−τ , we see that the fractional reduction in the
light can be set equal to τ . By definition, in the limit of small τ , we have that
τ = lkλ. This indicates that kλ can be considered as equal to naσ. Note that
σ depends on wavelength, so we can write, more formally, that kλ = naσλ.

Converting to opacity, this leads to κλ = kλ/ρ = σλ/ma. This expression
helps us to see an important aspect of opacity. Since 1/ma is the number of
absorbers in 1 gm of the material, the opacity can be written as the product
of two factors: (i) the cross-section of an individual absorber, and (ii) the
number of absorbers per gram.

For gas of a given composition, ma is a constant, independent of wave-
length. So if we examine a plot of κλ versus λ, then we will be able to trace
how the cross-section σλ of individual absorbers behaves at each wavelength.
When the atoms (or ions) in the medium through which light is propagating
contain electrons in bound energy levels, σλ may vary by many orders of mag-
nitude as a function of wavelength. To see why this is so, let us consider the
simplest case: hydrogen atoms.

3.3.1 Absorption from the ground state: dependence on λ

If hydrogen atoms are in a medium with low enough temperature, only
the ground state has a significant population. Since the energy of the ground
state lies at an energy of E1 = −13.6 eV below the continuum, and since the
lowest excited state lies at an energy E2 = −3.4 eV, photons with energies less
than 10.2 eV (i.e., with wavelength λ > 1216 Å) do not have sufficient energy
to excite the electron from the ground state into any other energy level. As a
result, apart from some weak (Rayleigh) scattering off the atom as a whole,
κλ is small at λ > 1216 Å (see Figure 3.2).

Notice the units of opacity in Figure 3.2. First of all, they are expressed per
hydrogen atom. Also, they are expressed in the unit which has already been
mentioned above (Equation 3.1): the Thomson cross-section σT for scattering
of photons off a free electron. The plotted numbers are at many wavelengths
much larger than unity: the largest number in the plot is 1010. Thus, the plot
gives a clear indication that an electron which is bound inside a hydrogen atom
can be much better (by several orders of magnitude) at scattering photons
than a free electron. This is a key concept for understanding opacity.

For a narrow range of wavelengths in the vicinity of λ = 1216 Å, the value
of σλ increases to large values: this interaction is associated with the bound-
bound transition which gives rise to the Lyman-α spectral line. Shortward
of Lyman-α, over a range of about 200 Å in wavelength, there is another
range of wavelengths in which σλ is again small. In the vicinity of λ = 1026 Å
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FIGURE 3.2: Lyman scattering opacity per hydrogen atom, in units of the
Thomson scattering cross-section per electron. At wavelengths longer than
912 Å, Lyman lines are plotted as solid “spiky” features. At wavelengths
shorter than 912 Å, opacity due to the Lyman continuum is plotted as a dot-
dashed line. (From Stenflo, J. O. 2005. Astron. Astrophys., 429, 713. With
permission from Springer Science and Business Media.)

(Lyman-β), excitation from the ground state to the energy level E3 at −1.51 eV
gives rise to a locally significant value of σλ. A series of line absorptions (the
Lyman series of lines), separated by regions of continuum where σλ is small
continues until the wavelength becomes as short as λ1 = 912 Å. At that point,
σλ increases by several orders of magnitude, and stays large over a wavelength
interval of hundreds of Å. Why? Because photons with hν1 ≡ hc/λ1 = 13.6 eV
have an energy which is large enough to cause a bound-free transition, i.e., to
ionize the atom. At wavelengths shorter than 912 Å, σλ decreases systemati-
cally (∼λ3) toward shorter wavelengths.

When σλ is plotted as a function of λ (see Figure 3.2), the values are small
for all λ greater than (roughly) 1500 Å. At 912 Å, the value of σλ increases
discontinuously to a peak value. The discontinuity is referred to as the Lyman
“edge.”

How large does the cross-section for photon absorption become at λ =
912 Å? Quantum mechanical calculations indicate that the peak value is
σ912 = 6 × 10−18 cm2. Should this be considered as a “large” or a “small”
number in terms of the ability to interact with a photon? To make a meaning-
ful comparison, we note that the Thomson cross-section is some seven orders
of magnitude less than σ912.

By occupying the ground state of hydrogen, an electron enhances its abil-
ity to interact with a photon of wavelength 912 Å by a factor of 10 million.
The conclusion is that an electron which is in a bound orbit can be (if the
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wavelength is right) a powerful and effective absorber of photons, up to 10 mil-
lion times more effective at absorbing a photon than a free electron.

Another way to look at the “largeness” of σ912 is to consider the area
of the ground state orbit. According to the Bohr model, the orbital radius
of the ground state is 0.528 × 10−8 cm. The corresponding orbital area is
0.88×10−16 cm2. The value of σ912 amounts to almost 10% of this area. As far
as a passing 912 Å photon is concerned, it is as if the ground state electron in
the H atom has “spread itself out” over a significant fraction of the orbital area.

The large absorbing efficiency of a bound electron is an important result for
understanding why the numerical value of opacity varies strongly in different
regions of the Sun. In any region where there are still an appreciable fraction
of electrons bound to abundant nuclei, the opacity may be much larger than
elsewhere in the star. This fact plays a key role in determining the internal
structure of the Sun: in certain regions where hydrogen retains its electron,
or where helium retains at least one of its electrons, the passage of photons
may be rendered so difficult that radiation can no longer serve as an effective
method of transporting energy.

Now that we know the cross-section at the Lyman edge, we can calculate
the opacity. In a gas consisting only of hydrogen, the number of H atoms per
gram is 1/mH ≈ 6 ×1023. As a result, the opacity at the Lyman edge has the
numerical value κλ ≈ 3.6 × 106 cm2 gm−1. We shall return to this number
later.

We have referred to ways in which photons can lose/gain energy from
bound-bound transitions and from bound-free transitions. There is a third
class of interactions which also allow loss or gain of photon energy: these
are “free-free” transitions. A free electron in a plasma can be thought of as
being in a orbit (admittedly unbound) around a distant proton. If a passing
photon can cause that electron to move farther away from, or nearer to, the
distant proton, then the photon has caused the electron essentially to make
a transition into a different (again unbound) orbit. If the total energy of the
new orbit is greater than before, then the electron has gained energy from the
photon: the photon experiences this interaction as “free-free” opacity.

3.3.2 Absorption from excited states: dependence
on λ and T

So far, we have considered hydrogen atoms at “low” temperatures. In
such a case, there is essentially no interaction with photons at wavelengths
longward of (roughly) 1500 Å. However, in a medium which is sufficiently
hot, absorption at longer wavelengths becomes possible. Thermal excitation
causes some electrons to populate excited levels at a more or less significant
rate. As far as photon absorption is concerned, each excited level displays
at a certain wavelength its own “edge” where a free-bound transition can
occur. Each of these “edges” has similar characteristics to those of the Lyman
“edge.” That is, photons on the longward side of the “edge” pass essentially
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freely through the gas, but photons which lie shortward of the “edge” can
be effectively absorbed. The “edges” corresponding to the energy levels with
principal quantum numbers n lie at wavelengths λn(Å) = 912 n2. Two of these
“edges” are of interest for the Sun because they lie in a part of the spectrum
where the Sun emits much of its power: λ2 = 3648 Å, and λ3 = 8208 Å. These
are the Balmer and Paschen edges, respectively.

The peak opacity of hydrogen gas at the Lyman edge is essentially indepen-
dent of temperature, at least as long as hydrogen is not significantly ionized.
But this is not the case for the other “edges”: in those cases, the magnitude
of the peak opacity (in cm2 per gram) depends on the fraction of the atoms
which have an electron in the corresponding excited state. In a medium where
the total number density of hydrogen is nH, the number density ni of H atoms
with electrons in the n = i level is related to the number density in the ground
state (n1) by

ni =
gi

g1
n1 exp

(
−∆Ei1

kT

)
(3.2)

The term gi is the statistical weight of level i: in a hydrogen atom, gi = 2i2.
The quantity ∆Ei1 is the energy difference between levels 1 and i. When the
energy difference ∆E is expressed in units of eV, the exponential term is more
conveniently written in the form 10−θ∆E , where θ = 5040/T .

Consider, for example, the n = 2 level of hydrogen which can be ionized by
photons at the Balmer edge. For this level, ∆E = 10.2 eV. If we consider by
way of example a medium where the temperature T=104 K, we find n2/n1 =
2.89 × 10−5. Thus, in a parcel of gas which contains 1 gm of hydrogen at
T = 104 K, only one atom in 35000 is capable of absorbing photons at the
Balmer edge. Now, in terms of quantum mechanics, the cross-section for a
single H atom to undergo photoionization from n = 2 by means of a photon of
wavelength λ2 is not greatly different from that for photoionization from n = 1
by means of a photon of wavelength λ1. As a result, when we convert to the
absorption cross-section per gram of material (=opacity), the peak opacity at
the Balmer edge at T = 104 K is no more than ζBL = 3×10−5 times the peak
opacity at the Lyman edge.

Because of the exponential factor in Equation 3.2, the magnitude of the
reduction factor ζBL becomes rapidly smaller at low temperatures. For exam-
ple, in the lower photosphere, where T = 6000 K, ζBL is of order 10−8, while
in the upper photosphere, where T = 4900 K, ζBL falls to 10−10.

Since the opacity κλ for a medium consisting of pure hydrogen has the
value ≈ 3.6 × 106 cm2 gm−1 at the Lyman peak, the numerical value of
opacity in the solar photosphere at the Balmer peak κB does not exceed
0.036 cm2 gm−1. On the redward side of the peak, i.e., at wavelengths longer
than 3648 Å, κB is zero.

Another bound level of hydrogen which is relevant in a discussion of pho-
tons at visible wavelengths is the n = 3 level, which can be ionized by photons
at the Paschen edge. For this level, ∆E = 12.1 eV. As a result, in the lower
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photosphere, where T = 6000 K, n3/n1 = 6 ×10−10. As a result, the Paschen
peak opacity is 10 to 20 times smaller than the Balmer peak opacity in the
lower solar photosphere. Thus, κP does not exceed 0.0036 cm2 gm−1 at wave-
lengths near 8200 Å. Applying the λ3 law, we see that at wavelengths close to
4000 Å, the Paschen continuum opacity in the photosphere does not exceed
0.0004 cm2 gm−1.

As a result, when we consider the “visible spectrum” of the Sun, usually
considered to extend between wavelengths of λ ≈ 4000–7000 Å, the opac-
ity due to atomic hydrogen κv ranges from about 0.0004 to at most 0.002
cm2 gm−1. Later, we shall see (Chapter 5, Section 5.1) that the mass column
density in the photosphere is roughly dc ≈ 4 gm cm−2. Multiplying κv and
dc, we find that absorption by atomic hydrogen contributes an optical depth
τv = κvdc of no more than 0.008 in the photosphere. Since by definition, the
photosphere is the region where the optical depth is of order unity, it appears
that atomic hydrogen is not a significant contributor to the optical depth at
visible wavelengths in the solar photosphere.

So what is providing most of the absorption in the Sun’s photosphere? It
turns out to be an unusual “atom.”

3.4 Atomic Physics: (ii) Opacity due to Negative
Hydrogen Ions

The principal absorber in the solar photosphere at visible wavelengths
is the negative hydrogen ion, i.e., a hydrogen atom with an extra electron
attached. The standard hydrogen atom consists of one electron and one proton
bound (by means of an attractive central force) in a stable arrangement with
an infinity of bound energy levels. But there also exists the possibility that, if
free electrons are available in the surrounding medium, an extra electron can
be added without the system necessarily being unstable. In essence, the two
electrons in an H− ion arrange themselves (because of Coulomb repulsion)
to remain on opposite sides of the proton, as far away from each other as
possible. In this situation, the force acting on one of the electrons is no longer
central, and no longer purely attractive. As a result, it turns out that there is
no longer an infinite set of bound levels. But a bound state does exist. Just
one. The bound level lies at an energy of E(H−) = −0.754 eV.

Photons which have the capacity to excite a free-bound transition (re-
moving one of the electrons and leaving a neutral hydrogen atom), have a
wavelength λ < λ(H−) = 16,450 Å. In contrast to the sharp edge which oc-
curs in the case of free-bound transitions in the H atom, photoionization of
the H− ion shows a much more gradual wavelength dependence: the cross-
section σλ rises from zero at 16,450 Å to a maximum at wavelengths around
λmax ≈ 8500 Å, i.e., at energies of about 2E(H−). Detailed calculations of
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atomic structure indicate that the maximum cross-section has the numerical
value σλ(max) = 4.5 × 10−17 cm2. This value is almost an order of mag-
nitude larger than the maximum Lyman continuum cross-section for atomic
hydrogen. As a result, the absorption due to H− is by no means a negligible
process. On the redward side of λmax, the value of σλ falls to one-half of its
maximum value at λ ≈ 1.3 µm. On the blueward side, σλ falls to 0.5σλ(max)
at λ ≈ 0.4 µm.

Another source of continuous opacity due to H− arises when free electrons
pass by a “free” hydrogen atom. This “free-free” process (see Section 3.3.1)
contributes opacity which is relatively small at visible wavelengths, but which
increases monotonically toward longer wavelengths as λ2.

The total opacity due to H− is the sum of the bound-free and free-free
processes. The minimum opacity due to H− occurs at λ ≈ 1.6 µm, where the
free-bound process has its “edge.”

Thus, across the visible portion of the solar spectrum, from about 4000 Å
to about 7000 Å, where most of the solar energy flux emerges, the free-bound
opacity due to H− does not vary by more than a factor of two. There are no
large discontinuities in opacity throughout the visible spectrum. As a result,
for most of the photons passing through the solar photosphere (i.e., those
in the visible spectrum), the opacity is nearly independent of wavelength.
Because of this, the gray approximation is not too bad when we consider
the solar photosphere. This could explain why the gray atmosphere solution
(S(τ) = a + bτ) fits the solar limb darkening (I(µ) = a + bµ) quite well at
visible wavelengths.

We shall find (Section 5.1) that the column density N above the photo-
sphere is about 2 ×1024 cm−2. Most of this column is composed of hydrogen
atoms. Let the ratio of the abundance of H− ions to the abundance of H
atoms in the photosphere be ϕ. Then with a cross-section which does not
depart significantly from σλ(max) = 4.5×10−17 cm2, the optical depth above
the photosphere due to H− is τ ≈ 9 ×107ϕ. This can attain values of order
unity if the ratio ϕ is close to 10−8.

Is it plausible that the fractional number of H atoms which will capture
a second electron in the solar atmosphere is of order 10−8? To answer that
question, we need to know how ionization equilibrium depends on temperature
and pressure. For this, we need to consider the Saha equation, which will be
the topic of Chapter 4. For now, we note that in the solar photosphere, we
shall find (Chapter 4, Section 4.6) that it is entirely consistent with local
temperature and pressure that ϕ should be of order 10−8. As a result, there
are indeed enough H− ions in the solar atmosphere to cause the optical depth
at visible wavelengths to be of order unity in the photosphere.

It is essentially the formation of H− ions which limits how deeply we can
observe into the Sun at visible wavelengths. The favorable formation of H− in
the solar photosphere requires the presence of both hydrogen atoms and free
electrons. Where do the free electrons in the photosphere come from? Not
from the ionization of hydrogen: after all, we are seeking to have H atoms add
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an electron, not to lose an electron. In the photosphere, free electrons are
provided mainly by the most abundant “metals” which have low ionization
potentials (Mg, Si, S, and Fe). Together, these provide electrons with an
abundance of a few times 10−4 relative to the abundance of H.

In the lower photosphere, where the gas pressure pg is found to be of order
105 dyn cm−2 (see Chapter 5, Section 5.1), the electron pressure is given
roughly by the product of pg and a few times 10−4. This leads to an electron
pressure of roughly log pe ≈ 1.6. In the upper photosphere, where hydrogen is
becoming progressively ionized, the relative abundance of electrons is larger
than in the photosphere. As a result, the electron pressure falls off less rapidly
with height than the gas pressure. At a height where pg has fallen off by a
factor of (say) 100 relative to the photosphere, log pe ≈ 0. We shall use
these below when we apply the Saha equation to estimating the fractional
abundance of H− in the photosphere.

3.5 Atomic Physics: (iii) Opacity due to Helium Atoms
and Ions

The spectrum of HeII is analogous to that of HI, except that all wave-
lengths are reduced by a factor of four. Thus, the HeII-Lyman edge lies at
λ = 228 Å.

For HeI, with an ionization potential of 24.6 eV, the edge at which absorp-
tion is maximum lies at λ = 504 Å. The maximum absorption cross-section
at the HeI edge is 8 × 10−18 cm2, comparable to the maximum cross-section
at the Lyman edge of H.

3.6 Astrophysics: The Rosseland Mean Opacity

Once we know how opacity varies as a function of wavelength (κλ), or
as a function of frequency (κν), a mean opacity can in principle be obtained
simply by taking an arithmetic average over all wavelengths or frequencies.
But that would not be especially useful in our attempts to determine how
photons make their way through an atmosphere. The derivation of a relevant
“mean opacity” should also incorporate somehow the shape of the spectrum
of radiation.

The most common method for calculating a mean opacity which is relevant
to the passage of radiation in the deep interior of a star is called the Rosseland
mean κR, defined by:

1
κR

∫
dBν

dT
dν =

∫
1
κν

dBν

dT
dν (3.3)
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In deriving Equation 3.3, it is assumed that the shape of the spectrum is
related to the local Planck function Bν . The appearance in Equation 3.3 of
(a) 1/κν and (b) the first derivative of Bν with respect to temperature can
be traced ultimately to the fact that the RTE provides an expression for 1/κν

times the first spatial derivative of the intensity (dI ν/dx ): in a given atmo-
sphere, the spatial gradient can be converted to the derivative with respect to
temperature.

The Rosseland mean as defined in Equation 3.3 is a “transparency mean”:
as far as opacity is concerned, Equation 3.3 gives maximal weight to regions
in the spectrum where the opacity is smallest. In the atmosphere of the Sun,
photons will tend to “leak out” through such regions. Also, Equation 3.3
weighs more heavily those parts of the spectrum where dBν/dT is larger, i.e.,
at wavelengths somewhat shorter than the Wien maximum.

The units of κR are cm2 gm−1.
For a medium which contains a certain mixture of elements, the Rosseland

mean is calculated by first determining the frequency-dependence of the opac-
ity due to each atomic species in the mixture. At each frequency, the total
opacity is obtained by summing the contributions before performing the inte-
gral in Equation 3.3. For absorption from the respective ground-states of the
various types of atoms in the mixture, there is no dependence on tempera-
ture. But absorption due to excited states introduces significant temperature
dependence at longer wavelengths. Further temperature dependence enters as
a result of the Planck function which enters in Equation 3.3. As a result, it is
not surprising that κR varies significantly with temperature.

To illustrate how κR depends on temperature, we show in Figure 3.3 the
results for a gas consisting of H and He (with mass fractions X = 0.7 for H
and Y = 0.28 for He) plus “metals” (with mass fraction z = 0.02). The range
of temperatures along the abscissa extends from T = 1000 K (log T = 3) to
temperatures (log T = 8) in excess of those at the center of the Sun. Each
curve is labeled with a value of log(R) where the parameter R = ρ/T 3

6 is a
combination of density ρ and T6, the temperature in units of 106 K.

How can we understand the behavior of κR which appears in Figure 3.3?
Let us examine certain limiting behaviors. Two aspects of the figure stand
out: at the highest temperatures, all curves converge to a single finite value,
and at the lowest temperatures, all curves plunge steeply toward zero opacity.

3.6.1 Limit of low ρ and/or high T :
electron scattering

In the limit of very low density, e.g., when the value of log(R) has its
smallest value (= −6 in Figure 3.3), and also in the limit of the highest
temperatures, H and He are essentially completely ionized. There are es-
sentially no bound states available for electrons to occupy: all electrons are
free particles, and electron scattering is the sole source of photon interaction.
With σe = 6.6 ×10−25 cm2 per electron, and a mean molecular weight of 1.3
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FIGURE 3.3: Rosseland mean opacity (κR, in units of cm2 gm−1) as a func-
tion of temperature T (deg K) for a number of densities. The parameter on
each curve is the quantity R = ρ/T 3

6 , where ρ is density in units of gm cm−3,
and T6 is temperature in millions of deg K. Data are taken from a table of
OPAL opacities for near-solar composition (hydrogen mass fraction X = 0.7,
helium mass fraction Y = 0.28, metals mass fraction Z = 0.02). (More exten-
sive tables of OPAL opacities are publicly available at the Lawrence Liv-
ermore website: ftp://www-phys.llnl.gov/pub/opal/type1data/GN93/ascii/
GN93hz)

(corresponding to some 5 ×1023 electrons per gram), we expect that in con-
ditions of complete ionization, κR ≈ 0.3 cm2 gm−1. Thus, the ordinate in
Figure 3.3, log(κR) = −0.5 when ionization is complete. Indeed, the curve
labeled −6 in Figure 3.3 lies close to this value at all temperatures except for
the very coolest (less than 6000 K).

3.6.2 Low T limit

As T falls below 104 K, all curves in Figure 3.3 fall steeply to very small
values. The reason for this behavior is readily understood: as T → 0, all
electrons collect in the ground states of HI and HeI. The only photons which
can be absorbed effectively require wavelengths shorter than 912 Å and 228 Å,
respectively. But at temperatures below 104 K, the Wien maximum lies at
λmax > 2880 Å, and the flux of photons at λ ≤ 912 Å is exponentially small.
The lower the temperature, the more drastic is the exponential reduction in
photon flux at λ ≤ 912 Å. In conditions which apply to the upper photo-
sphere, i.e., T = 4900 K, the Rosseland mean opacity falls to values of order
0.001 cm2 gm−1.
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3.6.3 Higher ρ: free-bound absorptions

At a fixed temperature, increasing density in Figure 3.3 corresponds to
an increase in log(R). At the highest temperatures (log(T ) > 7.5), density
effects are minimal: at such high temperatures ionization is almost complete
at all densities which are relevant to the Sun. As a result, electron scattering
dominates the opacity. However, at intermediate temperatures, increasing the
density leads to increased recombination rates in the gas. In such conditions,
the number of atoms with populated bound states grows, and this causes
significant increases in opacity, especially at the various bound-free “edges.”

For the lowest density curve in Figure 3.3 (labeled −6), the most significant
departure from electron scattering (i.e., departure from log(κR) = −0.5) is the
“bump” at temperatures log(T ) in the range 5.0–5.5. In this range, Wien’s law
indicates that the peak of the Planck function lies at wavelengths of 100–300 Å.
It is noteworthy that this range of wavelengths overlaps with the HeII–Lyman
edge at 228 Å. The overlap of the peak in the spectrum with the largest peak in
atomic opacity at the Lyman edge is conducive to creating enhanced opacity.
Of course, the ionization of HeII is almost complete due to the low densities,
so there are relatively few HeII ions available to contribute their Lyman-
edge absorptions: this explains why the “bump” reaches maximum opacities
(log(κR) = 0) which are larger than electron scattering opacity, but not by
orders of magnitude. However, when we examine higher densities, e.g., on the
curves labeled −4 and −3 in Figure 3.3, larger numbers of HeII ions survive
at log(T ) = 5.0–5.5, and the “bumps” in opacity grow to larger amplitudes.

There is a second “bump” on the curve labeled −6 in the range log(T ) =
4.5–4.75: at such temperatures, Wien’s law predicts a peak in the Planck
function around λ ≈ 500–900 Å. Such photons have energies which approach
the energies required to cause bound-free absorptions from HeI. This peak
also becomes more prominent at higher densities, where the number of HeI
atoms per gram (at a given temperature) increases significantly.

A third “bump” in log(κR), most prominent on the curves in Figure 3.3
labeled −4 and −3, occurs at log(T ) ≈ 4.0. At such temperatures, excited
states in HI are rapidly being populated: the populations grow exponentially
with increasing T . Each of these states contributes absorption due to its free-
bound “edges.” In particular the Balmer “edge” overlaps with the peak of
the black-body function at log(T ) ≈ 4.0. The exponential growth in bound
populations causes κR to increase rapidly with increasing T . However, as
log(T ) → 4.0, hydrogen is also ionizing rapidly. The competition between
excitation and ionization leads to a rather narrow peak in the opacity curves
in Figure 3.3.

3.6.4 Magnitude of the largest opacity

As density increases, the ranges of temperatures at which significant ioniza-
tions of HI, HeI, and HeII occur begin to overlap more and more. The various
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relatively narrow individual “bumps” in Figure 3.3 which are apparent at
relatively low densities tend to merge into a single broad “bump,” although
“shoulders” are still apparent on both sides of the broad “bump.” The broad
“bump” lies at temperatures of log(T ) = 4.5 − 5.

For the density range which enters into the data shown in Figure 3.3, the
largest values of opacity have numerical values in the range log(κR) = 3 − 4.

What is the maximum density for the results in Figure 3.3? At a temper-
ature of log(T ) = 4.75 (i.e., T6 = 0.06), the maximum density, corresponding
to the curve log(R) = −1, is of order 2 ×10−5 gm cm−3.

Other investigations (e.g., Ezer and Cameron, 1963) have extended
the calculation of Rosseland mean opacity to higher densities. With ρ =
10−3 gm cm−3, the peak in opacity at log(Tmax) = 4.5 − 4.75 has a value
log(κR) ≈ 5. If we attempt a rough extrapolation of the results of Ezer and
Cameron, it appears that the peak numerical value of κR might be as large
as 106 cm2 gm−1. Recalling that the (wavelength-dependent) opacity at the
Lyman edge has the numerical value κλ(max) ≈ 3.6×106 cm2 gm−1, it seems
unlikely that the maximum permissible value of κR, could be much larger than
κλ (max). If a black-body curve were to be matched optimally in wavelength
such that its peak overlapped with the Lyman edge, then we might expect
to see κR values approaching κλ (max): the temperature required for such
matching would be such that λmax = 0.288(cm)/Tmax = 912 Å. This leads to
log(Tmax) = 4.5. This is consistent with the peak in Figure 3.3 above.

The results in Figure 3.3 refer to a gas where H and He are the principal
constituents. There are a few “metals” included in the calculations, and these
alter the H/He opacity curves slightly, giving rise to some “bumps” appearing
at log(T ) = 5 − 6. The reason that the changes are only slight has to do
with the relatively small abundances of the “metals” compared to H and He:
even the most abundant “metals” have fractional abundances of no more than
0.001 times H (by number).

3.7 Power-Law Approximations to the Rosseland
Mean Opacity

For future reference, we note that it is at times convenient to fit the Rosse-
land mean opacity to power laws of temperature and density. This allows
analytic solutions to be extracted for certain problems. Different power laws
apply in different parameter regimes.

In the earliest attempts to model the deep interior of the Sun, at temper-
atures in excess of roughly 106 K, the Kramers opacity “law” was developed.
In this temperature range, the dominant constituents of the Sun are almost
completely ionized. The fractional abundances of incompletely ionized atoms
are becoming rapidly smaller as the temperature increases. As a result, the
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strongest contributors to opacity (bound electrons) are becoming progressively
scarcer in the gas. This leads to a rapid decrease in opacity as the temper-
ature increases. Valid for both bound-free and free-free transitions, certain
approximations lead to the functional form κ = κoρ/T 3.5. We shall find this
useful below in Chapter 8 (Section 8.3) when we model the radiative interior
of the Sun.

In a different limit, at temperatures below 104 K, the temperature sen-
sitivity is very different. Starting at the lowest temperatures, at say a few
thousand degrees, essentially all H and He atoms are in their ground states,
while most photons in the local black-body function are at long wavelengths.
As a result, the opacity falls off to very low levels. However, increasing the
temperature has two effects: (i) it populates excited states of H and He, creat-
ing opportunities for longer wavelength photons to be absorbed; (ii) the peak
in the black-body spectrum moves toward shorter wavelengths. Both effects
combine to cause opacity to increase rapidly as the temperature increases.
The opacity also increases as the density increases, although the sensitivity
to density is much less pronounced than the temperature-sensitivity. A power
law fit to opacities in this temperature regime suggests that κ = κ1ρ

aT b could
provide a reasonable zeroth order fit. In order to determine what the power
law indices a and b are, we refer to a specific table of opacities which has
been calculated by Kurucz (1992). Some of the opacities from that table
will be used later (in Chapter 5) to calculate a model of the photosphere.
For present purposes, we note that Kurucz lists log (Rosseland mean opac-
ity) for a series of log(temp) and log(press). (A portion of this table ap-
pears as Table 5.1.). In Kurucz’s complete table, at each value of log(T ) and
log(p), the local density is also listed. Using the values of log(κ) tabulated by
Kurucz at all values of log(T ) ≤ 4.0, we have obtained least squares fits for
the coefficients in the relationship log(κ) = c + a log(ρ) + b log(T ). We find
a = 0.343, b = 9.0583, and c = −31.97. The steep dependence on temper-
ature is noteworthy. We shall find this formulation of the opacity useful in
Chapter 15 when we model the rise in temperature between photosphere and
chromosphere.

3.8 Narrow Band Opacity: Absorption Lines
in the Spectrum

So far, the opacity we have discussed occurs mainly over broad regions of
the spectrum. For example, the negative hydrogen ion contributes significant
opacity at wavelengths from as short as 4000 Å to as long as 1–2 µm. And
bound-free absorption from the n = 2 level of hydrogen contributes opacity
at all wavelengths shortward of 3648 Å. These are truly “broad-band” sources
of opacity, and they help to determine, in conjunction with the atmospheric
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FIGURE 3.4: (See color insert following page 202.) Fraunhofer lines:
dark narrow absorption features in the solar spectrum. (Downloaded from
http://www.noao.edu/image gallery/html/im0600.html Credit: National Op-
tical Astronomy Observatory/Association of Universities for Research in As-
tronomy/National Science Foundation. With permission.)

temperature profile, the overall “rainbow” of the solar spectrum, extending
from peak intensity in the yellow-green region toward the red and toward the
violet, where the intensity gradually fades from sight.

However, when one is presented with a spectrum of the Sun (see Figure 3.4),
the first thing that attracts one’s attention is the presence of a multitude of
more-or-less narrow dark “lines” distributed across the entire range of visible
wavelengths. These are the features that Fraunhofer first discovered in 1814
when he fed sunlight into the entrance slit of a spectroscope. Fraunhofer drew
up a list of the strongest lines that he could discern, and labeled them with a
series of upper case letters from A to K (in order of decreasing wavelength). A
list of weaker lines was subsequently labeled with lower case letters, starting
with a in the red and moving toward shorter wavelengths. Although Fraun-
hofer did not identify the origin of his lines, many of his labels persist in
common use to this day: e.g., Fraunhofer’s D line near 5900 Å is now known
to be a close doublet, and is referred to as the D1 and D2 lines of neutral
sodium. The K line at 3934 Å, the strongest line in the solar spectrum, is
now known to arise from ionized calcium: observation of the Sun in the Ca K
line is a common practice in modern solar physics. It is now known that the
features labeled A, B, and a by Fraunhofer (at wavelengths near 7590, 6870,
and 6280 Å, respectively) have nothing to do with the Sun: they are caused
by oxygen molecules in the Earth’s atmosphere.

The occurrence of the solar “Fraunhofer lines,” so striking in their dark-
ness against the backdrop of the rainbow, indicates the presence in the solar
atmosphere of atoms and ions of particular elements in particular stages of
excitation.
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3.8.1 Characterizing the properties of absorption lines

It is helpful to consider quantitative measures of absorption lines. To do
this, we examine the “line profile,” i.e., how does the radiant intensity (or
flux) vary as a function of wavelength?

In each line, when one plots the radiation flux Fλ as a function of wave-
length (see Figure 3.5), one starts far from line center on (say) the blueward
side, with an intensity essentially equal to the continuum Fc. For all lines, if
one chooses a wavelength that is far enough from line center, the ratio Fλ/Fc

approaches unity (apart from some “noise” associated with other spectral
lines). As wavelength increases, and one enters into the line, the intensity
decreases more or less rapidly: this decrease gives rise to what are called the
“wings” of the line (Figure 3.5). At a certain wavelength, the radiation flux
reaches a minimum value. This location, where the depth of the line is maxi-
mum, is defined to be line center. The depth of line center varies from line to
line: some lines are so weak that they dip to no more than a percent or two
below the continuum: such weak lines, with central intensities of 0.98–0.99 of
the local continuum, can be difficult to identify against the continuum. At the
other extreme, the strongest lines have depths in excess of 90% . In the center
of such deep lines, the residual intensity may amount to only a few percent of
the continuum.

The strength of each line can be characterized in an empirical sense by the
area that the line subtracts from the continuum radiation which would pass
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FIGURE 3.5: (See color insert following page 202.) The shape of an
absorption line in the spectrum of the Sun. The rectangle with width W has
an area equal to the total area absorbed by the line. W is referred to as
the equivalent width. (From http://web.njit.edu/∼gary/321/equiv width.gif.
With permission.)
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through the local wavelength region if the line were absent. This area of ab-
sorption is known as the “equivalent width” W . The equivalent width of a line,
when expressed in wavelength units, is the width of an equivalent rectangular
shape, extending from the continuum to an intensity level of zero, which would
have the same area as the area absorbed by the line (see Figure 3.5). The
weakest lines that the eye can detect in a solar spectrum of good quality have
EW of a few milliangstrom. Lines which attract the most attention when one
takes a quick look at the spectrum, such as a closely spaced pair of lines due to
sodium in the yellow part of the spectrum (at wavelengths of 5890 and 5896 Å),
have EW of order 1 Å. The strongest lines in the visible spectrum of the Sun
are the H and K resonance lines of Ca II: the EW of the K line is some 20 Å.

The EW of a weak spectral line increases in proportion to the total number
of atoms/ions along the line of sight which contain electrons in the lower state
of the transition. This gives rise to a linear slope in what is called the “curve of
growth”: this curve illustrates how the EW increases with increasing column
density.

The EW is a measure of the area of a line. But there is also physically
valuable information contained in the actual shape of the line: this shape is
determined by a number of physical factors. For the weakest lines, random
motions cause the absorption to be spread out in wavelength as a result of
the Doppler effect. In such lines, where the width is determined by “velocity
broadening,” the line shape is Gaussian if the velocities of the atoms obey
a Maxwellian law. As a result, the absorption is maximum at line center,
where the wavelength has the value λo, and the absorption falls off along
a Gaussian curve to smaller values as one examines wavelengths that are
farther and farther from line center, on both sides of line center. This gives
rise to a characteristic shape of the “core” of the line (see Figure 3.5), with
a characteristic half-width of ∆λo. Thermal motions, with mean speeds Vt of
about

√
(2kT/ma), are certainly a contributor to ∆λo. If thermal motions are

the only random motions which are present in the absorbing gas, the value of
∆λo(th) is determined entirely by the mean thermal speed of the atoms/ions
which create the line: according to the Doppler formula:

∆λo(th)
λo

=
Vt

c
(3.4)

where c is the speed of light. In order to fully resolve the profile of an ab-
sorption line which is broadened only by thermal broadening, one needs to
use a spectrometer with a resolving power Rp which is at least as large as
λo/∆λ (th).

3.8.2 Line-broadening: more than merely
thermal motions

However, thermal motions are not the only contributor to the widths of
lines in the solar spectrum. To see that this is the case, note that if thermal
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motions were the only contributors, then lines from massive atoms/ions would
be much narrower than the lines from light atoms/ions. For example, lines due
to nitrogen (ma = 14) should have ∆λo which is twice as broad as lines due
to iron (ma = 56). And lines from even more massive atoms should become
increasingly narrow as the atomic weight increases. But observations of lines
in the solar spectrum do not behave in this way: instead, there is a minimum
width which is observed in lines from even the heaviest atoms. That minimum
width, when interpreted in terms of velocity by means of the Doppler formula,
is found to correspond to a speed of 1–2 km sec−1.

This is a very important piece of information about the gas in the solar
atmosphere. Apparently, the gas in the solar photosphere is subject to motions
of 1–2 km sec−1 over and above the purely thermal motions. The generic term
for such nonthermal motions is “microturbulence.”

What could the microturbulence in solar spectral lines be due to? In part,
it may arise because of the effects of convection in the lower photosphere
of the Sun (see Chapters 5 through 7), with upflows overshooting to some
extent into the layers of gas where the absorption lines are formed. Also, the
microturbulence may be caused by waves of some kind propagating upward
and downward through the photosphere, or even standing waves which arise
when waves are trapped in a cavity of some kind. (We shall see in Chapters 13
and 14 that sound waves of both kinds are present in the Sun as a whole.)

For stronger lines, there may be so many atoms along the line of sight that
some atoms cast a shadow on others, preventing the latter from absorbing as
much light as one might have expected. In such lines, the optical depth for
photons at line center τo exceeds unity by factors which may be large. In order
for photons to escape from such shadows, the photons undergo a scattering
process which leads to a slow increase in line width. The process by which this
increase in line width occurs (called “opacity broadening”) is quite different
from velocity broadening. In the presence of opacity broadening, a Gaussian
profile may still be present, but the half-width is larger than the thermal
value ∆λo(th) by an amount which scales as

√
(lnτo). For a line in which

τo is (say) equal to 104, the line profile has a width of roughly 3∆λo(th).
In the presence of such opacity broadening, the EW no longer increases in
proportion to the number of available atoms along the line of sight: instead,
the EW increases more slowly than a linear proportionality. This slow increase
is referred to as “the flat part of the curve of growth.” In such lines, the
presence of microturbulence helps to broaden the line in such a way that the
shadowing effect is less severe: as a result, larger microturbulence leads to
larger EW.

The strongest lines in the solar spectrum have broad wings: these are not at
all Gaussian in shape, but are much more widely spread out. Various physical
processes can give rise to such broad wings. In the case of hydrogen lines, free
electrons in the solar atmosphere create fluctuating electric fields as they pass
by a particular hydrogen atom. As a result of the Stark effect, the energy levels
of the hydrogen atom are perturbed, and the energy of the transition is shifted
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to either higher or lower energies. This gives rise to absorption at wavelengths
which may be relatively far removed from λo. In the case of strong lines such
as the Ca K line, the probability of spontaneous transition within the ion is so
large that an electron in the upper energy level survives for only a very short
interval of time. This leads to “radiation broadening” of the transition.

One final cause of line broadening in the Sun must be mentioned: mag-
netic fields. In the presence of such fields, the energy levels within an atom
or ion become split into several distinct sublevels. Only certain transitions
between the sublevels are permitted. As a result, a line which originally was
a single narrow feature in the spectrum can break up into a group of distinct,
but closely spaced, components. The amount of spacing is a measure of the
strength of the field (see Chapter 16, Section 16.4.1). The polarization of the
various components contains information as to the direction of the field lines
relative to the line of sight.

In summary, absorption lines in the spectrum of the Sun provide important
information about abundances of elements, about velocity fields, and about
magnetic fields in the solar atmosphere.

Exercise

3.1 Lines due to hydrogen, sodium, calcium, and iron occur in the solar spec-
trum at wavelengths of 6563 Å, 5890 Å, 3933 Å, and 5250 Å, respectively.
Assuming that each line arises in a gas with T = 6000 K, calculate the
thermal width in Å for each line. What resolving power is required to
resolve the thermally broadened line profile in each case?
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Chapter 4

Toward a Model of the Sun:
Ionization

The properties of opacity at high temperature (and low pressure) are con-
trolled by the physical process of ionization. Other physical properties of the
gas, including thermodynamic quantities such as the specific heats (which are
important for transport of energy), are also significantly affected by the ion-
ization process. In order to have a clear understanding of the physics of certain
regions in the Sun, it is important to have a quantitative model of ionization.
This leads us to consider an equation originally derived by Saha (1921) for
ionization equilibrium.

We have already mentioned how populations of atoms are distributed
among energy levels when the latter are bound : the number density ni of
atoms with electrons in the ith energy level is related to the number density
of atoms in the ground state n1 according to a Boltzmann distribution:

ni

n1
=

(
gi

g1

)
exp

(−∆Ei1

kT

)
(4.1)

where ∆Ei1 is the difference in energy between level i and the ground state.
The statistical weight gi has the value 2i2 for the ith level in a hydrogenic
atom. This value of gi is derived by noting that for principal quantum number
i, the angular momentum sublevels take on integer quantum numbers L from
zero up to i−1: each of these sublevels has orbital multiplicity 2L+1, as well
as multiplicity 2 for electron spin. Summing the combined multiplicity 4L+2
per sublevel over L sublevels from L = 0 to L = i − 1 yields a total of 2i2.

4.1 Statistical Weights of Free Electrons

Now, when we wish to consider the case of ionization, we need to write
down an expression for the population of unbound ions and electrons. Analo-
gously to the Boltzmann formula for bound states, the Boltzmann distribution
for ions and electrons is:

ni

na
=

gi+e

ga
exp

(
− I

kT

)
(4.2)
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Here, ni and na are number densities of ions and atoms respectively, and I
is the “ionization potential,” i.e., the energy required to ionize an atom from
the ground state. The statistical weight of the atom ga is essentially that of
the ground state, i.e., two for a hydrogenic atom.

The principal difference is that the statistical weight of the ionized system,
consisting of ion plus electron, must include not only the statistical weight of
the ion gi (also mainly in its ground state), but must also include the statistical
weight ge of the free electron. The overall statistical weight for ion and electron
is the product of two terms: gi+e = gige. In contrast to an electron which
occupies a bound energy level, where the number of available sublevels is small
(leading therefore to small statistical weight), a free electron has access to an
enormous number of states. This has the effect that, in Equation 4.2, the
right-hand side of Equation 4.2 may grow to values of order unity even when
the exponential term is small, i.e., even when kT is much smaller than I.

For example, consider the case of hydrogen, where I = 13.6 eV. What
do we have to do in order to achieve significant ionization, i.e., in order to
cause ni ≈ na? The answer is; we need to make the right-hand side of Equa-
tion 4.2 of order unity. At first, let us suppose that the statistical weight
factors are equal to unity, i.e., suppose that the only relevant term on the
right-hand side of Equation 4.2 is the exponential factor. In such a case, if we
are to achieve ni ≈ na, the temperature would have to satisfy the equation
kT ≈ 13.6 eV. This corresponds to T ≈ 158000 K. On the other hand, when
statistical weights are included (as of course they must be), it is possible to
achieve ni ≈ na even when T is less than 10000 K (at low pressure).

In order to evaluate ge, we need to know the number of states available
to a free electron. Such an electron moves in a 6-dimensional (6-D) p − r
phase space, where p is 3-D momentum, and r is 3-D coordinate space. The
uncertainty principle restricts the uncertainties in 1-D momentum and 1-D
position such that dpxdrx cannot be less than a quantity of order h, the
Planck constant. This leads to the concept of minimally occupiable “cells” in
phase space, each with volume d3pd3x ≈ h3. Allowing for electron spin, each
“cell” in phase space cannot be occupied by more than two electrons. As a
result, in a gas which occupies a volume V (r) of coordinate space and a volume
V (p) in momentum space, the total number of states which are available to
the free electrons is ge = 2V (p)V (r)/h3.

What are we to use for V (r) and V (p)? In a medium where the number
density of electrons is ne, the mean volume of coordinate space V (r) which is
occupied by a single electron is V (r) = 1/ne. Each such electron has access
to a large volume of momentum space. In momentum space, few electrons
have momenta faster than the mean thermal speed: Vth =

√
(8kT/πm). As

a result, momentum space is filled up out to a radius of order pth = mV th .
The associated volume V (p) in momentum space is (4/3)πp3

th.
Combining V (r) and V (p) we find

ge =
8π

3

(
8km
π

)3/2 1
h3

T 3/2

ne
(4.3)
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It is usual to rewrite this relation in terms of electron pressure rather than
in terms of electron number density. Replacing ne with pe/kT in Equation 4.3,
Equation 4.2 becomes

nipe

na
=

gi

ga
CiT

2.5 exp
(−I

kT

)
(4.4)

where Ci is a combination of numerical and physical constants. The physical
constants in Ci appear in the combination m1.5

e k2.5/h3: in c.g.s. units, the
numerical value is 0.021. Including the numerical constants, the value of Ci

turns out to be (coincidentally) close to unity (0.72).

4.2 Saha Equation

In logarithmic form, we can write Equation 4.4 as

log
(

ni

na

)
= − log pe + 2.5 log T − θI + log

(
gi

ga

)
− 0.14 (4.5)

where I is the ionization potential in units of eV, θ = 5040/T , and the log-
arithms are to base 10. As an aid to memory, we note that in cases where
gi ≈ ga, no significant error is made if we make the approximation of retain-
ing only the first three terms on the right-hand side of Equation 4.2. In what
follows, we adopt this approximation.

Equation 4.5 is the Saha equation: it allows us to evaluate the degree of
ionization in a medium of given T and pe.

It is worth reiterating why considerations of ionization are important as far
as opacity is concerned. If a gas is highly ionized, the lack of bound states for
electrons leads to low values of opacity. Because a bound electron may be up
to seven orders of magnitude more efficient than a free electron at interacting
with photons, the presence of even a few bound electrons can cause the opacity
to be enhanced significantly.

4.3 Application of the Saha Equation to Hydrogen
in the Sun

There are two distinct locations in the Sun where hydrogen makes a tran-
sition from mostly neutral to significant ionization. Since the photosphere is
the location in the Sun where neutral hydrogen is most abundant, it is no
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FIGURE 4.1: Ionization strips of neutral hydrogen HI, neutral helium HeI,
and singly ionized helium HeII in the (log pe– log T ) plane. Units of T are K,
and units of pe are dyn cm−2. The solid curves labeled 10 and 90% indicate the
loci along which hydrogen is 10% ionized and 90% ionized, respectively. The
dashed curves labeled 10 and 90% indicate the loci along which HeII is 10%
ionized and 90% ionized, respectively. The dotted lines refer to HeI, but the
10 and 90% labels are omitted from the upper and lower lines (respectively)
for the sake of clarity.

surprise to find that the two distinct locations lie on either side of the photo-
sphere. One lies above the photosphere, in the low-density gas of the upper
chromosphere. The second lies well below the surface, in the denser gas of the
convection zone. Let us use the Saha equation to determine the temperatures
of these locations.

In order to discuss the Saha equation, it is convenient to plot the Saha
equation in the (pe −T ) plane, and to introduce the concept of an “ionization
strip,” as shown in Figure 4.1. Along the curves labeled P% in Figure 4.1,
H and He are P percent ionized. To avoid crowding in the figure, we plot
only two curves for each element: P = 10% (essentially the onset of ioniza-
tion), and P = 90% (essentially the near completion of ionization). The area
between the 10 and 90% ionization levels can be considered an “ionization
strip,” where either H or He is in the process of transitioning from mostly
neutral to mostly ionized. Within each ionization strip, where heat input
tends to increase the ionization rather than increase the temperature, the
specific heat of the element in question becomes much larger (by an order of
magnitude or more) than the standard value from kinetic theory (see Chap-
ters 6 and 7).

To be specific, let us quantify the onset of “significant” ionization as the
location where ni ≈ na, corresponding to 50% ionization. According to the
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simplified version of Equation 4.5, this occurs for hydrogen when the temper-
ature satisfies the equation

θI − 2.5 log10 T ≈ − log10 pe (4.6)

where we must use I = 13.6 for hydrogen.
Let us consider the upper chromosphere, where the pressure is relatively

low: log pe ≈ 0 (see Chapter 15). In this case, Equation 4.6 reduces to
θ = (2.5/13.6) log T , i.e., T log T = 27400. To solve this, we can guess at
the slowly varying logarithm term and then iterate. For example, if we guess
log T = 4 (i.e., T = 104 K), then the first iteration at the solution would be
T = 27,400/4 = 6850, too low to be consistent with log T = 4. If we guess log
T = 3.7 (i.e., T = 5000 K), then the solution would be T = 7400 K, too high
to be consistent with the initial guess. An iterative solution to this equation
yields T = 7100–7200 K. Thus, when the electron pressure is as low as it is
in the upper chromosphere, hydrogen begins to ionize significantly when the
temperature rises above 7100–7200 K.

Now let us consider the gas below the photosphere. Photospheric models
(see Chapter 5) indicate that the gas pressure in the photosphere is log pg ≈ 5,
and it rises as we move deeper below the photosphere. In the photosphere,
electron number densities are less than atom number densities by about 2000.
(Reasons for this number will be discussed below.) As a result, log pe ≈ 1.7
in the photosphere. But with increasing depth, and increasing temperature,
increasing ionization of hydrogen causes the value of pe to approach closer to
the value of pg. At a depth where log pg ≈ 7, the electron pressure is within an
order of magnitude of pg. In this case, the 50% ionization point occurs when

θ ≈ 0.18 log10 T − 0.53 (4.7)

Iterative solution of this equation yields T = 20,000–21,000 K.
The contrast between the ease of ionization in the chromosphere and in

the subphotosphere is apparent. In the low pressure conditions of the chro-
mosphere, it is relatively easy to ionize hydrogen: a temperature of just above
7000 K will suffice. But in the high pressure gas below the surface, the ion-
ization of hydrogen is “postponed” to higher temperatures: 50% ionization of
hydrogen does not occur until the temperature has risen above 20,000 K.

As a final application of the Saha equation to hydrogen in the Sun, let
us check the fractional ionization of hydrogen in the photosphere. In the
lower photosphere, inserting log pe = 1.7, T = 6000 K (i.e., θ = 0.84), we find
log(ni/na) = −3.7. In the upper photosphere, inserting log pe = 0, T = 4900 K
(i.e., θ = 1.03), we find log(ni/na) = − 4.8. Thus, the average degree of hy-
drogen ionization in the solar photosphere is about 10−4.25: only one H in
some 20,000 is ionized. In contrast, all elements in the solar gas which have
ionization potentials of about 9 eV and less are essentially completely ionized.
This includes (in order of decreasing abundances) Si, Mg, Fe, Al, Ca, and Na.
Using the standard abundances of each of these elements, and summing over
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them, we find that their ionization provides about 10−4 electrons for every hy-
drogen atom. This clearly exceeds the average degree of ionization of hydrogen
in the upper photosphere: therefore, the “metals” are the primary source of
free electrons in the upper photosphere. In the lower photosphere, the supply
of free electrons comes from metals and hydrogen in comparable amounts.

4.4 Application of the Saha Equation to Helium
in the Sun

The double ionization of helium requires I = 54 eV. This means that the
equation for 50% ionization is

54θ − 2.5 log10 T ≈ − log10 pe (4.8)

Solutions to this equation occur at higher temperatures than those for
hydrogen. In the chromosphere (log pe ≈ 0), the solution satisfies T log T =
1.1 ×105: this corresponds to T ≈ 25,000 K.

In the case of the subphotosphere, we must go to deeper layers than those
where hydrogen ionization reaches the 50% level. In the deeper layers, log pe
may be as high as 10–12. This leads to

θ ≈ 0.046 log10 T − 0.2 (4.9)

The solution of this is T ≈ 140,000 K.
Again, the contrast between the ease of ionization in the chromosphere

and in the subphotosphere is apparent. In the low pressure conditions of
the chromosphere, it is relatively easy to ionize helium: a temperature of just
above 25,000 K will suffice. But in the high pressure gas below the surface, the
ionization of helium is “postponed” to higher temperatures: 50% ionization
of helium does not occur until the temperature has risen above 140,000 K.

These are quantitative illustrations of a point we made already in dis-
cussing Figure 3.3: at a given temperature, increasing pressure leads to lower
degrees of ionization, and therefore more bound states to cause high opacity.

4.5 Contours of Constant Ionization: The Two Limits

Another way to look at Equation 4.5 is in terms of contours in the (pe −T )
plane along which the degree of ionization is constant. Such contours are
shown in Figure 4.1 for 10 and 90% degrees of ionization. There are two prin-
cipal segments of each contour, with different dependences on temperature.
At low T , the term θI dominates on the left-hand side of Equation 4.6. As a
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result, each ionization contour is described essentially by θI = − log pe, i.e.,
pe ∼ exp(−1/T ). This is a curve which falls off steeply in the (pe−T ) plane at
low T . In the opposite limit, where temperatures are high, θI → 0, and each
contour is described essentially by pe ∼ T 2.5. This is a gently sloping line.
The transition from one segment to the other occurs at the location where the
terms θI and 2.5 log T are comparable in magnitude.

4.6 Application of the Saha Equation to the Negative
Hydrogen Ion

What about H−? Can we apply the Saha equation to this ion? Yes, except
that in this case, we start with a charged particle and end up with one neutral
particle plus one electron. But the principle remains the same, as long as
we replace na in Equation 4.2 by n(H−), and replace ni in Equation 4.2 by
n(H). (Here we use the symbol n(H) to emphasis that the resulting “ionized
particle” is actually a neutral hydrogen atom.) Inserting the known ionization
potential (0.754 eV), we find

log10

(
n(H)

n(H−)

)
= − log10 pe + 2.5 log10 T − 0.754θ (4.10)

It is more common to be interested in the (small) ratio ϕ = n(H−)/n(H).
So we rewrite the equation as

log10 ϕ = log10 pe − 2.5 log10 T + 0.754θ (4.11)

In the lower solar photosphere, where T ≈ 6000 K (θ ≈ 0.84), we have
already seen (Chapter 3, Section 3.4) that the electron pressure is given by log
pe ≈ 1.6. Inserting numerical values in Equation 4.6, we find log ϕ ≈ −7.22.
In the upper photosphere, where T ≈ 4900 K (θ ≈ 1.03), and log pe ≈ 0
(Chapter 3, Section 3.4), log ϕ ≈ −8.45. In view of these estimates for up-
per and lower photosphere, we conclude that the average value of log ϕ in
the solar photosphere is close to −8. It was a value of precisely this order,
ϕ ≈ 10−8, which we found in Chapter 3 (Section 3.4) to be necessary to have
H− contribute the dominant opacity in the solar photosphere.

Exercises

4.1 The ionization strips in Figure 4.1 are defined by the somewhat arbitrary
percentages of 10 and 90% ionization. Determine where the ionization
strips lie in the log pe– log T plane for the cases where the ionization
percentages are 0.1 and 99.9%. Do this for HI, HeI, and HeII.
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4.2 In Section 4.5, there is a definition of a transition point between the
two segments of the ionization contours. Use the appropriate ionization
potentials to evaluate the temperature of the transition point for HI,
HeI, and HeII.
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Chapter 5

Computing a Model of the Sun:
The Photosphere

Now that we have information about opacity, we are almost ready to undertake
the calculation of a model of the first segment of the Sun which is accessible to
modeling: the photosphere. In calculating this model, we do not inquire into
the origin of the energy which flows through the solar atmosphere. Instead,
we simply take the luminosity (or flux) as a given, and calculate how the
physical parameters of the medium arrange themselves so as to “handle” the
energy which is passing through.

But first we require the answer to two questions: (i) how is the pressure
related to the temperature? (ii) how does the pressure vary with height? As
regards (i), the gas in the solar photosphere is of sufficiently low density ρ
and of sufficiently high temperature T that the gas can be taken to behave as
a perfect gas, with pressure given by the formula p = RgTρ/µa. Here µa is
the mean molecular weight, and Rg = 8.31448 ×107 ergs deg−1 mole−1 is the
gas constant. The chemical composition of the solar photosphere, consisting
of some 90% hydrogen (by number), about 9% of helium, and about 1% of
heavier elements (“metals”), leads to µa ≈ 1.3. Moreover, between the upper
and lower photosphere (as defined earlier), the temperature ranges from the
boundary value To ≈ 4900 K to a temperature of order 6000 K. Over such a
range of temperature, variations in the degree of ionization of hydrogen and
helium are very small. This allows us to assume, without significant error,
that µa remains constant throughout the photosphere.

5.1 Hydrostatic Equilibrium: The Scale Height

As for question (ii), the variation of gas pressure with height in any medium
may be determined readily if the medium satisfies the condition of hydrostatic
equilibrium (HSE). The HSE condition is applicable if the pressure p(h) of the
atmospheric material at any location (at height h) supports the weight of all
of the atmospheric material which lies at heights above h. The equation which
describes HSE is

dp
dh

= −gρ (5.1)
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where g is the local acceleration due to gravity, acting downward, in the direc-
tion of decreasing h. In the photosphere of the Sun, we have already mentioned
that g = 27,421.6 cm sec−2. The value of g at any particular height h decreases
as h increases in proportion to 1/(R� +h)2. When we consider a photospheric
model in which the height h varies over a range of (say) ∆h = 500 km, the
relative change in gravity from lower to upper photosphere is given by

∆g

g
≈ 2∆h

R�
≈ 10−3 (5.2)

The ratio ∆g/g is so small that, in a model of the photosphere, g may
safely be taken to be a constant.

In a medium where g is constant, a particular solution of HSE provides
a useful length-scale. To see this, consider a medium which is an isothermal
perfect gas, with p = RgTρ/µ. Then the solution of Equation 5.1 for the
pressure as a function of height is as follows:

p(h) = p(0) exp
(

− h

Hp

)
(5.3)

And for the density as a function of height, the solution is analogous:

ρ(h) = ρ(0) exp
(

− h

Hp

)
(5.4)

That is, the pressure and the density both decrease exponentially with
increasing height. At some arbitrary height, which is chosen as the zero-point
of h, the local pressure and density are p(0) and ρ(0), respectively. The char-
acteristic length scale Hp is referred to as the “scale height” or the “pressure
scale height” or the “density scale height” of the isothermal atmosphere. The
formula for Hp is RgT/gµa. Inserting numerical values, we find that in the
photosphere, Hp varies over the range 115–140 km, i.e.,

Hp = (1.15 − 1.4) ×107cm (5.5)

The atmosphere which lies above the level where h = 0 presses down on
the gas at h = 0 due to the gravitational pull. The weight of the overlying
material exerts a pressure on the gas at h = 0. In order to evaluate the
pressure, let us consider a 1 cm2 horizontal element of area at h = 0, and
let us imagine a column with cross-sectional area 1 cm2 extending upward to
infinity from that element. The total amount of mass in that column can be
obtained by integrating Equation 5.4 from h = 0 to h = ∞. The result is
a mass column density dc equal to ρ(0)Hp gm cm−2. An alternative way to
state this information is to note that the column density, i.e., the number Nc

of atoms in a sq.cm column above h = 0 equals n(0)Hp cm−2, where n(0) is
the number density of atoms at h = 0.

We shall find that in the solar photosphere, ρ(0) ≈ (2 − 3) × 10−7 gm
cm−3, i.e., n(0) ≈ (1 − 2) × 1017 cm−3. Combining ρ(0) and n(0) with a
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mean Hp ≈ 130 km, we find dc ≈ (3 − 4) gm cm−2, and Nc ≈ (1 − 3) ×1024

cm−2. In HSE, the pressure which occurs due to the weight of this column is
p(0) = dcg ≈ 105 dyn cm−2. (We shall want to check, when we compute a
model of the photosphere, that our model yields pressures of this order: see
Section 5.6 below.)

For comparison, we note that the atmospheric pressure on the surface of
the Earth is about ten times larger than the photospheric p(0). Of course,
the processes which determine the atmospheric density and pressure at the
surface of the Earth are very different from those which determine ρ(0) in the
Sun: the latter is determined by the requirement that the optical depth τ(0)
be of order unity. There is no such requirement for the Earth: the fact that
an observer standing on the surface of the Earth can see the Sun and stars
clearly indicates that the optical depth τE of cloud-free atmosphere (in visible
light) is actually considerably less than unity.

5.2 Sharp Edge of the Sun’s Disk

Before moving on to the photospheric model, we make a short diversion
here to address a problem which we now have enough information to solve.
Combining the scale height in the photosphere with the results of Chapter 2
(Section 2.5.2) helps us to understand why the Sun, although a gaseous body,
has a sharp edge.

It is a fact of life on Earth that the atmosphere we breathe is in turbulent
motion. When we observe a distant object through the atmosphere, the tur-
bulence causes smearing of the object. This is referred to as “the effects of see-
ing.” As a result of “seeing,” it is typically true that an observer on the Earth
cannot distinguish two objects which are closer together than about 1 arc sec.

Suppose an observer wishes to make two measurements of solar intensity,
I1 and I2, near the limb of the Sun. The first measurement I1 is along a line
of sight which is as nearly as possible “on the limb.” This line of sight, at its
closest approach to the Sun, passes through gas at a certain height h1 in the
upper photosphere. This is the measurement which, in visible light, yields an
intensity I1 = aλ = 0.4 (relative to disk center) (see Chapter 2, Equation 2.5).
According to the results of Chapter 2 (Section 2.5.2), the value of I1 is deter-
mined by the product of the local source function Sλ times the optical depth
τ1 along the line of sight: I1 = τ1Sλ. To make the second measurement of
intensity, I2, the observer chooses a line of sight which is displaced off the
limb by the smallest possible amount permitted by “seeing.” The second line
of sight, shifted by 1 arc sec relative to the first, at its closest approach to the
Sun passes through gas which lies at a height h2 = h1+730 km (see Chapter 1,
Section 1.2). The gas which lies at height h2 has a density which is reduced
below that at height h1 by a factor exp[(h2 −h1)/Hp] ≈ e5.6 = 102.44 ≈ 270.
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The reduction in density has the effect that the optical depth through such gas
τ2 is less than τ1 by a factor of 270. Therefore the intensity I2 = τ1Sλ/270. We
have seen (Chapter 2, Section 2.10) that the temperature in the upper pho-
tosphere approaches a constant value as height increases. Thus, T does not
change significantly between h2 and h1. To the extent that the source function
can be identified with the Planck function, this means that Sλ is essentially
the same along both lines of sight. Therefore, I2 = I1/270 = 0.0015.

That is, by shifting my line of sight by a mere 1 arc sec away from the limb,
I measure that the observed intensity falls off by a factor of almost 300. This
is in contrast to what happens on the solar disk: as the line of sight is moved
from disk center to the limb, i.e., as the line of sight traverses some 960 arc
sec, the intensity decreases gradually from 1.0 to 0.4. But with a further shift
of only 1 arc sec in the line of sight, the intensity falls by a further factor of
almost 300. It is this rapid transition in behavior between observations on the
disk and off the disk which gives the Sun its sharp edge.

5.3 Preparing to Compute a Model of the
Solar Photosphere

The aim of this exercise is to combine HSE and the temperature structure
of the gray atmosphere to calculate a table of values of various physical pa-
rameters as a function of the vertical height coordinate (increasing upward).
The model begins by tabulating temperature as a function of optical depth τ
(increasing downward). Transformations between τ and h require knowledge
of the opacity as a function of relevant physical parameters.

The HSE equation (Equation 5.1) can be converted to an optical depth
scale by noting the definition dτ = −κρdh where κ is the (gray) opacity: we
shall use the Rosseland mean opacity for this quantity. This leads to the
central equation for the present chapter:

dp
dτ

=
g

κ
(5.6)

In order to solve this equation, we need to have access to values of Rosse-
land mean opacities as a function of temperature and pressure. A table of
such values was kindly made available by Dr. R. L. Kurucz of the Harvard-
Smithsonian Center for Astrophysics. For the convenience of the reader,
these are presented in Tables 5.1 and 5.2. (The reader may also be able
to find results obtained by other researchers on the web.) In the tables
below, the (log) opacities are tabulated as functions of temperature and
pressure for a mixture of elemental abundances which is a “standard” so-
lar mixture. Bound-bound, bound-free, and free-free transitions are included
for many stages of ionization of all elements in the mixture. Negative hy-
drogen ions and hydrogen molecules are also included. For bound-bound
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transitions, the lines are assumed to be broadened with a microturbulent
velocity of 2 km sec−1. Each row of Tables 5.1 and 5.2 is labeled with LT,
which is equal to the logarithm (to base 10) of the temperature (in degrees K):
the temperatures range from close to 2000 K to almost 100000 K. Each col-
umn of Tables 5.1 and 5.2 is labeled with LP, which is equal to the logarithm
(to base 10) of the pressure (in dyn cm−2): the pressures range over five or-
ders of magnitude. In order to fit the results into a standard page width,
the opacities are presented in the form of two tables, corresponding to a low
subrange of pressure and a high subrange of pressure. The tabulated values
of opacity exhibit the overall behavior described earlier in Chapter 3 (Fig-
ure 3.3) (where the results are presented in a different format): (i) in the limit
of high temperature (and low pressure), log(κ) → −0.5; (ii) in the limit of
low temperature, log(κ) tends to very small values; (iii) numerical values of
opacity reach maximum values at log(T ) = 4.0–4.5; (iv) maximum values of
opacity are 104−5 cm2 gm−1.

The goal of the present chapter is to calculate a tabulated model of the
solar photosphere. This means that we wish to obtain a table of values where
each row of the table refers to a particular optical depth in the atmosphere. On
that row, we wish to provide numerical values for the temperature, pressure,
density, and height in the solar atmosphere.

5.4 Computing a Model of the Photosphere: Step by
Step

The calculation proceeds by way of the following steps.

1. Choose a value of τ for the first row in the tabulated model: e.g., τ(1) =
10−4.

2. For row 1, choose the vertical depth coordinate to be z(1) = 0. (This is
an arbitrary choice, and is done merely for convenience. Afterward, you
may change the zero-point of height if you choose.) We will use h (in-
creasing upward) and −z (where z increases downward) interchangeably
in the calculation.

3. Calculate the temperature in row 1, T (1), from the Eddington solu-
tion (Chapter 2, Equation 2.40), using Teff = 5777 K (see Chapter 1,
Equation 1.15).

4. To obtain the pressure p(1) in row 1, one could guess any finite starting
value and then iterate. To avoid complications, I suggest that you simply
choose the following guess: log p(1) = 3.0. Note that in all cases, the
log function refers to logarithms to base 10, and the physical quantities
are in c.g.s. units.
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5. Now that you know T (1) and p(1), calculate the density in row 1, ρ(1),
from the perfect gas expression ρ(1) = p(1)µa/(RgT (1)). Here, Rg is the
gas constant (see Chapter 1, Section 1.7), and µa, the mean molecular
weight, can be set equal to a constant value 1.3 for the material of
the solar photosphere. (The value 1.3 arises because solar material is
roughly 90% H, 10% He by numbers, plus less than 1% heavier elements.)

6. Now that you know log T (1) and log p(1), interpolate in Tables 5.1
and/or 5.2 to find a local value for the opacity κ(1).

7. Step forward to the second row of the table, i.e., to the next value of τ .
In order to reduce numerical errors, I suggest that you keep the step size
small. For example, consider using τ(2) = 2 × 10−4. This means that
the interval in optical depth between rows 1 and 2 is ∆τ = 10−4.

8. With the new value of τ , calculate the new value of T from the Edding-
ton solution. Call this T (2).

9. Calculate the increase in pressure between rows 1 and 2 using an ap-
proximation to Equation 5.6: ∆p = g∆τ/κ(1), where g = 2.7 × 104 cm
sec−2. This then gives p(2) = p(1) + ∆p.

10. Knowing T (2) and p(2), interpolate in the opacity table for κ(2).

11. Calculate the density ρ(2) from T (2) and p(2).

12. Convert the step in optical depth to a step in linear depth: ∆z =
+∆τ/(ρ(2)κ(2)). If you want to be more precise, replace the denomina-
tor by the mean value of ρκ between row 1 and row 2: ρκ ≈ 0.5(ρ(1)κ(1)+
ρ(2)κ(2)). Once ∆z is calculated, you can calculate the depth z(2) =
z(1) + ∆z which is appropriate for row 2 of the tabulated model.

13. Calculate the local temperature gradient dT/dz = (T (2) − T (1))/∆z.
(This gradient will be used later when we wish to calculate a model for
the convection zone.)

At this point, there should be seven entries in row 2: τ , T , p, ρ, z, κ,
and (dT/dz ).

Use those values to step forward to row 3. For generality, we refer to
the quantities in the row we have just calculated as row i.

14. Step forward to row i + 1. To start this step, choose a new value of
τ(i + 1) = τ(i) + ∆τ . What step size should be used? Plausible choices
might be ∆τ = 10−4 until the optical depth τ reaches a value of 10−3.
Then use a step size of ∆τ = 10−3 until τ = 10−2. Then use a step size
of ∆τ = 10−2 until τ = 10−1. Then use a step size of ∆τ = 10−1 until
τ = 1. Finally use a step size ∆τ = 1 until τ = 10.
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15. Repeat steps 8–14 multiple times until τ reaches a value of about 10. In
each iteration, replace T (1) in the above instructions by T (i) and T (2)
by T (i + 1). Do the same replacements for the other variables.

5.5 The Outcome of the Calculation

The outcome of the exercise is a table of physical quantities as a function
of height: this is called a “model of the photosphere.” An example of such
an exercise, using the above tables of opacity, is given in Table 5.3. At each

TABLE 5.3: A model of the solar atmosphere
τ Temperature Pressure Density z log(κ) grad T

2.00E-04 4.86E+03 1.77E+03 5.69E-09 1.91E+06 −2.04E + 00 9.57E-08
3.00E-04 4.86E+03 2.02E+03 6.52E-09 3.35E+06 −1.97E + 00 1.26E-07
4.00E-04 4.86E+03 2.26E+03 7.26E-09 4.51E+06 −1.93E + 00 1.57E-07
5.00E-04 4.86E+03 2.47E+03 7.94E-09 5.48E+06 −1.89E + 00 1.87E-07
6.00E-04 4.86E+03 2.66E+03 8.57E-09 6.32E+06 −1.86E + 00 2.17E-07
7.00E-04 4.86E+03 2.85E+03 9.17E-09 7.06E+06 −1.83E + 00 2.48E-07
8.00E-04 4.86E+03 3.02E+03 9.73E-09 7.71E+06 −1.80E + 00 2.78E-07
9.00E-04 4.86E+03 3.19E+03 1.03E-08 8.30E+06 −1.78E + 00 3.07E-07
1.00E-03 4.86E+03 3.35E+03 1.08E-08 8.84E+06 −1.76E + 00 3.38E-07
1.10E-03 4.86E+03 3.50E+03 1.13E-08 9.33E+06 −1.75E + 00 3.68E-07
2.10E-03 4.86E+03 4.97E+03 1.60E-08 1.27E+07 −1.73E + 00 5.42E-07
3.10E-03 4.86E+03 6.07E+03 1.95E-08 1.47E+07 −1.60E + 00 8.85E-07
4.10E-03 4.87E+03 7.00E+03 2.25E-08 1.62E+07 −1.53E + 00 1.20E-06
5.10E-03 4.87E+03 7.83E+03 2.51E-08 1.74E+07 −1.48E + 00 1.52E-06
6.10E-03 4.87E+03 8.58E+03 2.75E-08 1.84E+07 −1.44E + 00 1.82E-06
7.10E-03 4.87E+03 9.27E+03 2.98E-08 1.93E+07 −1.40E + 00 2.13E-06
8.10E-03 4.87E+03 9.92E+03 3.18E-08 2.00E+07 −1.37E + 00 2.43E-06
9.10E-03 4.87E+03 1.05E+04 3.38E-08 2.07E+07 −1.35E + 00 2.73E-06
1.01E-02 4.88E+03 1.11E+04 3.56E-08 2.13E+07 −1.33E + 00 3.02E-06
2.01E-02 4.89E+03 1.67E+04 5.32E-08 2.51E+07 −1.31E + 00 4.71E-06
3.01E-02 4.91E+03 2.06E+04 6.55E-08 2.73E+07 −1.16E + 00 8.11E-06
4.01E-02 4.93E+03 2.39E+04 7.57E-08 2.89E+07 −1.08E + 00 1.11E-05
5.01E-02 4.95E+03 2.67E+04 8.45E-08 3.01E+07 −1.02E + 00 1.39E-05
6.01E-02 4.96E+03 2.94E+04 9.25E-08 3.11E+07 −9.79E − 01 1.66E-05
7.01E-02 4.98E+03 3.18E+04 9.97E-08 3.20E+07 −9.45E − 01 1.92E-05
8.01E-02 5.00E+03 3.40E+04 1.06E-07 3.28E+07 −9.14E − 01 2.18E-05
9.01E-02 5.01E+03 3.61E+04 1.13E-07 3.35E+07 −8.88E − 01 2.43E-05
1.00E-01 5.03E+03 3.82E+04 1.19E-07 3.41E+07 −8.64E − 01 2.67E-05
2.00E-01 5.19E+03 5.67E+04 1.71E-07 3.80E+07 −8.30E − 01 3.95E-05
3.00E-01 5.33E+03 6.98E+04 2.05E-07 4.04E+07 −6.80E − 01 6.14E-05
4.00E-01 5.46E+03 8.02E+04 2.30E-07 4.20E+07 −5.78E − 01 8.05E-05
5.00E-01 5.59E+03 8.89E+04 2.49E-07 4.33E+07 −4.99E − 01 9.75E-05
6.00E-01 5.70E+03 9.64E+04 2.64E-07 4.43E+07 −4.38E − 01 1.12E-04
7.00E-01 5.81E+03 1.03E+05 2.77E-07 4.52E+07 −3.73E − 01 1.28E-04
8.00E-01 5.92E+03 1.08E+05 2.87E-07 4.59E+07 −3.06E − 01 1.47E-04
9.00E-01 6.01E+03 1.13E+05 2.94E-07 4.65E+07 −2.46E − 01 1.64E-04
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tabulated value of optical depth (column headed “τ”), we list the temperature
(in units of K), pressure (units=dyn cm−2), density (in gm cm−3), depth (in
cm, relative to an initial h = 0 at the top), the logarithm of the Rosseland
mean opacity (in units of cm2 gm−1). In the seventh column, we give the tem-
perature gradient, dT/dz (in units of deg K cm−1). The reason for including
this quantity will be explained when we discuss Convection in Chapter 6.

5.6 Overview of the Model of the Solar Photosphere

Now we have a table which lists certain physical properties of the gas over
a range of heights in the solar photosphere. It is worthwhile to take a look at
the properties we have obtained.

First, the gas temperature in the photosphere (τ = 0.667) is 5777 K.
This is of course a natural consequence of the Eddington solution (Chapter 2,
Equation 2.40). But it is useful to remember that the effective temperature of
the radiation (i.e., the photons) which comes to us from the Sun (Chapter 1,
Equation 1.15) has a direct connection with the local thermodynamic tem-
perature of the atoms in the photosphere. The photons we see on Earth have
energies which are characteristic of the thermal energies of the atoms back
in the photosphere. The reason for this is that the radiation and the gas in
the photosphere are close to local thermodynamic equilibrium. (This is very
different from the condition on the surface of the Earth, where the dominant
photons [sunlight] have energies of a few electron volts [eV], while the gases
in Earth’s atmosphere have thermal energies of only 0.03 eV: this is far from
thermodynamic equilibrium.)

Second, the density in the photosphere ρ(ph) is (2 − 3) ×10−7 gm cm−3.
If the gas were purely hydrogen, the corresponding number density of atoms
would be n(ph) = (1.2−1.8)×1017 cm−3. (Given the presence of He and other
heavier elements, the true value of n(ph) is somewhat smaller than this.) The
number column density above the photosphere N(ph) is n(ph)Hp. Inserting
Hp = (1.15− 1.4)×107 cm (Equation 5.5), we find N(ph) = (1.4− 2.5)×1024

cm−2. This is the number of atoms which lie above each sq cm of the solar
photosphere. Of these, roughly 1 in 108 is an H− ion. Thus, there are some
N(H−) = (1.4−2.5)×1016H− ions lying above each sq cm of the photosphere.

Third, the pressure in the photosphere p(ph) is of order 105 dyn cm−2.
This is the pressure which is necessary to support the weight of the overlying
gas. Since each of the N(ph) atoms overlying the photosphere has a mass
that is close to the mass of a hydrogen atom (1.67 ×10−24 gm), we see that
the exponents cancel out and the mass which lies above each sq cm of the
photosphere is about 4 gm. In the presence of gravity with g = 27422 cm
sec−2, the corresponding force, mg, pressing down on each sq cm is therefore
close to 105 dyn cm−2. The fact that the pressure p(ph) is equal to mg is not
an accident; it indicates that vertical forces are in balance in the photosphere.
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This is another way to say that in deriving the model atmosphere, we have
assumed HSE.

Fourth, the range of depths ∆z between the photosphere and the “top”
of the model photosphere (which we have chosen to be at τ = 10−4) is 400–
500 km. The actual height range depends on the choice of opacity. If we
had used a different opacity table from Tables 5.1 and 5.2, then the height
range could have been somewhat different. Other parameters would also have
changed somewhat. But the values just cited give a reliable zeroth order
overview of the physical parameters in the solar photosphere.

Fifth, we recall that the principal contributor to opacity in the photosphere
is the negative hydrogen ion. The numerical values of p(ph) and ρ(ph) cited
above take on the numerical values they do mainly because of the particular
cross-section (σ = 4.5 ×10−17 cm2) which is presented by an H− ion to the
photons that are most abundant in the solar spectrum. Given that our model
has N(H−)H− ions lying above each sq cm of the photosphere, the column
density and the cross-section combine to yield an optical depth N(H−)σ of
order unity in the solar photosphere.

An important question arises concerning the last line of Table 5.3. Why
does Table 5.3 stop at a depth where τ = 0.9? This seems like an odd place
to stop the computation of a model photosphere. Shouldn’t we keep going
deeper? The answer is No, and the reason for this answer has to do with the
numerical value of the temperature gradient dT/dz. We shall see in Chap-
ter 6 that when dT/dz increases above a critical value gad, convection sets in
and radiative transfer is no longer the dominant mode of energy transport in
the atmosphere. Now, the computation which led to the results in Table 5.3
is based on solution (Equation 2.40) of the equation of radiative transfer,
i.e., radiation carries the entire energy flux through the atmosphere. There
is little meaning in applying such a computation to gas where convection is
occurring. In Chapter 6, we shall show that the critical value gad is about
1.7×10−4 deg cm−1. Inspection of Table 5.3 above shows that dT/dz increases
with increasing depth, and is approaching this critical value as we approach
the bottom of Table 5.3. In fact, if we were to continue the calculation of Ta-
ble 5.3 to greater depths, we would find that at optical depth τ=1.0, the local
value of dT/dz would exceed gad . Thus, our results suggest that convection
sets in at optical depths between 0.9 and 1.0. This corresponds to a depth of
only a few tens of kilometers below the photosphere.

Exercises

5.1 Evaluate the pressure scale height in regions of the solar atmosphere
where the gas has temperature of 104, 106, and 107 K. (Such tem-
peratures exist in the chromosphere, in the corona, and in flares: see
Chapters 15 and 17.) Use molecular weight µ ≈ 0.5.
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5.2 Perform the step-by-step calculation described in Section 5.4, using the
opacities given in Tables 5.1 and 5.2. Compare your results with those
in Table 5.3.

5.3 Repeat the calculations for different choices of various parameters. For
example, use a starting pressure log p(1) = 2 or 4. What differences
do you find compared to the results in Table 5.3? Are some parame-
ters more sensitive than others to the alteration in starting pressure?
As a further example, use ∆τ values which are twice as large as those
suggested in Section 5.4. Then repeat the calculations using ∆τ val-
ues which are one-half of the values suggested in Section 5.4. What
differences do you find in the various cases?

5.4 The opacity tables given in Tables 5.1 and 5.2 were computed (by
Dr R. Kurucz) using a number of choices of parameters (chemical mix-
ture, microturbulence, etc.). Other tables of Rosseland mean opacities,
using different choices of some parameters, exist in the literature (e.g.,
Iglesias and Rogers, 1996 and references therein). Use one of those ta-
bles to repeat the calculations in Section 5.4. Which parameters are
altered most compared to the results in Table 5.3?

Note: in Tables 5.1 and 5.2, opacities are listed as functions of T and of
gas pressure p. Opacity tables in the literature may list the opacity as
functions of the R parameter (Chapter 3, Section 3.6), or as a function of
T and electron pressure pe. In order to use such tables in the procedure
described in Section 5.4, you will need to convert from density to pressure
(assuming a perfect gas), or you will need to find auxiliary tables which
first convert from pe to gas pressure p.
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Chapter 6

Convection in the Sun:
Empirical Properties

So far, we have been restricting attention to the upper parts of the photosphere
in the Sun, where energy is transported through the gas almost entirely by
means of radiation. The gas in the photosphere (at least in all parts except
the very lowest regions) does not move, but simply “processes” the photons,
absorbing, emitting, and scattering them in such a way that there is a net
transport of energy in the outward (radial) direction. Because of the existence
of radiative equilibrium, the equation of radiative transfer allows us to extract
reliable physical properties of the gas in the photosphere, where there are no
systematic gas motions.

Now we turn our attention to a region of the Sun where radiative equi-
librium becomes progressively less important. In this new region, as we go
deeper into the Sun, photons play a progressively minor role in transporting
energy. In the deeper layers which now draw our attention, energy eventu-
ally is transported essentially completely by means of convection. Convection
occurs when the material itself experiences bulk flows in order to carry the
heat radially outward.

In order to obtain a complete physical model of the Sun, we shall eventually
have to develop a theory which will allow us to model convective heat transport
in solar conditions. The details of one such theory will be the subject of
Chapter 7. Before embarking on the task of developing such a theory, however,
we need to learn as much as we can from the empirical properties of convection
as they present themselves to us in the visible layers of the solar atmosphere:
these empirical properties will guide us in developing a convective model.

6.1 Nonuniform Brightness

Evidence for the presence of convection in the Sun can be seen when an
image of the solar surface is obtained with sufficiently high angular resolution.
An example is shown in Figure 6.1.

The Figure shows clearly that the surface of the Sun is not uniformly
bright. We see that there are brighter areas (called granules) and darker areas

77
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FIGURE 6.1: A close-up view of the solar surface. The field of view is about
48 × 48 Mm (where 1 Mm = 1000 km). The essential aspect is the “gran-
ular” structure of lighter patches surrounded by darker boundaries. (From
Dr. M. Mathioudakis, Queen’s University, Belfast, and the Swedish Solar
Telescope. With permission.)

(called intergranular lanes). Our knowledge of radiative transfer suggests that
the bright granules contain hotter gas than the dark intergranular lanes. The
difference in temperature between the bright and the dark gas will be discussed
quantitatively below.

We note the differing topology between brighter and darker features. It is
possible to start in one location in an intergranular lane and move to other
dark lanes without traversing a bright granule. But bright granules are for the
most part isolated from one another: one cannot go from one bright granule
to another without traversing an intergranular lane.

6.2 Granule Shapes

The individual granules in the image above have irregular shapes. On close
inspection, one notices that some of the boundaries of many granules consist
of lines which are nearly straight. One seems to be looking at a collection of
shapes which hint at the geometrical structures known as polygons. Is there

T&F Cat # C3074, Chapter 6, Page 78, 14-7-2009



Convection in the Sun: Empirical Properties 79

any physical reason why polygons might be of interest when we speak of
convection? Indeed there is.

From an empirical standpoint, polygons have been found to be the pre-
ferred spatial pattern of cells which occur in laboratory convection under
certain conditions. When a layer of liquid is heated from below, and the tem-
perature gradient between bottom and top is not too large, heat can be carried
up through the liquid by conduction. In this phase, each molecule is pursuing
its own purposes, carrying heat upward as an individual.

But at some point, when the temperature gradient becomes larger than a
critical value, the liquid begins to move in a macroscopic way. In conditions
which were studied by Benard (1900), the motions organize themselves into
a geometrical pattern consisting of polygons. Each element of the pattern is
called a cell (a “Benard” cell), involving the organized motion of trillions of
atoms or molecules. No longer do the molecules behave as individuals in order
to carry heat: instead, a lower energy condition can be reached if molecules
cooperate in a macroscopic pattern of motion, with hot liquid rising and cool
liquid sinking. This method of transporting heat is called convection. Benard
cells are long-lived structures. Thus, Benard cells provide heat transfer by
means of steady state convection.

In the Sun, the hint of polygonal structures among some granules is an
intriguing reminder of the cells which Benard found in his experiments. How-
ever, the polygons in the Sun are by no means in steady state. Quite the
contrary: individual granules are observed to live for only a finite time. When
one performs correlation studies on images of granules over a large area of the
Sun, one finds that on average, individual granules can no longer be clearly
identified after a time-scale of 5–10 minutes (Title et al., 1989). This time-
scale can be regarded as a sort of average “life-time” of a granule. We shall
return to the significance of this time-scale after we have discussed spatial
scales and velocities.

The contrast between Benard cells and solar granules contains important
information about fluid dynamics. In Benard cells, the material moves in a
steady pattern known as “laminar flow”: this is appropriate in conditions
where a fluid of relatively high viscosity flows at relatively low speeds. But in
solar granules, the gas flows in a highly nonsteady pattern: this is appropriate
in “turbulent” conditions where a low-viscosity medium moves faster than
a critical speed. The turbulent flows in solar convection are reminiscent of
eddies in fast-flowing water: each eddy lives for only a finite time.

6.3 Upflow and Downflow Velocities

For now, we need to note an important correlation which exists in the
bright and dark gas. When spectra of individual granules and intergranular
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lanes are obtained, it is found that the brighter regions are systematically
associated with upflows, while the darker lanes are associated with downflows.
As far as physics is concerned, the correlation of upflow with excess temper-
ature, and downflow with reduced temperature, is the essential characteristic
which indicates that convection is at work, transporting heat upward through
the solar material. There is a real difference between up and down in the solar
atmosphere when it comes to heat: heat flows in the upward direction.

As far as the quantitative flux of energy is concerned, an important physical
parameter is the algebraic difference in vertical velocity between upflows and
downflows. Spectroscopic data are required to evaluate these velocities. The
average amplitude of this velocity difference is reported to be about 2 km sec−1

(Bray et al., 1976). In some case, amplitudes as large as 6 km sec−1 have also
been reported (Beckers, 1968). Although not directly associated with upward
energy transport, it is of interest to mention that horizontal velocities asso-
ciated with granules can be measured by tracking algorithms: the rms values
are observed to be as large as 1.5 km sec−1 (Title et al.,1989).

We conclude that gas in the solar granulation moves with speeds V of
order a few km sec−1.

6.4 Linear Sizes of Granules

It is not a trivial matter to observe granules on the surface of the Sun:
they are small features which were not at all apparent to the early telescopic
observers of the Sun. The first clear images of granules were not reported
for almost three centuries after Galileo turned his small telescope to the Sun.
The granules do not become detectable until the resolution of the telescope
becomes large enough, and the disturbing effects of Earth’s atmosphere are
reduced to a minimum.

How high does the angular resolution have to be in order to distinguish
clearly the bright and dark areas? The empirical answer is: the observing in-
strument must be able to resolve angles of about 1 arc sec or better. Observa-
tions from favorable locations on the Earth’s surface may on occasion satisfy
this criterion. Observations from space routinely satisfy the criterion.

What are the horizontal spatial scales associated with granules and inter-
granular lanes? Some granules have diameters as large as 2–3 arc sec, while
others have diameters as small as the limiting resolution of the telescope. Title
et al. (1989) conclude: “it is fair to say that there is a characteristic granule
size in the vicinity of 1.2–1.4 arc sec.” The corresponding characteristic linear
dimensions are 900–1000 km. The fact that the size distribution extends to
2–3 arc sec indicates that the largest granules are up to 2000 km in diameter.
Observational limitations prevent us from determining the dimensions of the
smallest granules.
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6.5 Circulation Time around a Granule

Now that we know (1) the horizontal diameter D associated with the top
of a granule, and (2) a velocity of the gas flow in the cell, it is of some interest
to estimate how much time it takes the gas to circulate around a cell.

To make the estimate, we need to know also the vertical depth H of the
granule. Let us estimate the distance which an element of gas travels as it
starts at the bottom of the cell, rises to the top (distance H), spreads out
horizontally to the edge (distance D/2), sinks to the bottom (distance H),
and then returns to the center of the cell (distance D/2). The total distance
traversed by the element of gas is C = D + 2H. The time required for the
gas to complete one circulation is t(circ) = C/v. With D ≈ 1000 km, and
V ≈ 2 km sec−1, we find t(circ) ≈ 500 + H sec, if H is expressed in km.

What vertical depth should we consider for a convection cell in the Sun?
We have already identified a natural length scale which exists in the stratified
solar atmosphere: the scale height Hp. We have already seen (Chapter 5,
Section 5.1) that Hp ≈ 100 km in photosphere. It may be that H is related
to Hp by a number which is of order unity: H = αHp. With such a choice,
we find t(circ) ≈ 500 + 100α sec.

We have already seen that granules live for 300–600 sec. This range of life-
times overlaps with t(circ) as long as α does not exceed unity by a significant
amount. Detailed modeling of the Sun suggests α ≈ 1.5 (e.g. Mullan et al.,
2007). This leads to t(circ) ≈ 650 sec.

Thus, it appears that solar granules do not live long enough to complete
even a single complete circulation of the cell.

This is in significant contrast with Benard cells: under the carefully con-
trolled conditions of a laboratory experiment, convection cells can survive for
arbitrarily large numbers of circulation times.

6.6 Temperature Differences between Bright and
Dark Gas

The efficiency of heat transport by convection depends on the temperature
difference between rising and falling gas. This temperature difference gives
rise to the observed differences in intensity ∆I between hot gas (where the
intensity is Ih) and cold gas (where the intensity is Ic). Using the highest
quality ground-based observations, measurements of the emergent intensity
in different locations across the solar surface show that relative to a mean
intensity, there are excursions in ∆I/I of up to ±20% in visible light (Stein
and Nordlund, 1998). The rms excursions are about ±10%. Measurements
from space (Title et al., 1989) suggest that the rms values of ∆I/I are up
to ±16% in quiet Sun. However, when the effects of acoustic oscillations are
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allowed for, the rms values of ∆I/I are found to be ±10% at wavelengths
around 6000 Å (Title et al., 1989).

Thus, the bright granules have an rms intensity which is some 10% in excess
of the average , while the dark intergranular lanes have an rms intensity which
is some 10% smaller than the average.

For purposes of calculating how much energy is transported by convection,
we need to convert the intensity difference to a temperature difference between
the temperatures in the hot and cold gases, Th and Tc. When we observe bright
granules, we are seeing down into the solar atmosphere essentially to an optical
depth of τh ≈ 1 in the hot rising gas. When we observe dark intergranular
lanes, we are seeing into the solar atmosphere to an optical depth of τc ≈ 1
in the cold sinking gas. Although the optical depths are the same in hot and
cold gas, we are not observing gas at the same vertical height: we see more
deeply into the cold gas (where the opacity is lower).

Since we see to equal optical depths in both bright and dark gas, the emer-
gent intensities Ih and Ic are proportional to the respective source functions
Sh and Sc at optical depth unity. Thus, ∆I/I = ∆S/S to a rough approx-
imation. To the extent that the continuum source function at τ ≈ 1 can be
equated with the Planck function, we expect that

Ih

Ic
≈ exp(c2/λTc) − 1

exp(c2/λTh) − 1
(6.1)

where c2 = hc/k is the second radiation constant: c2 = 1.44 cm deg.
In view of 10% fluctuations in rms intensity, we have that Ih ≈ 1.1 while

Ic ≈ 0.9. For purposes of this calculation, we assume that the dark inter-
granular gas has a temperature at τ ≈ 1 equal to the effective temperature,
i.e., Tc = 5777 K. Then we find that, according to Equation 6.1 (assuming an
observing wavelength λ = 5500 Å), the “rms” temperature for the hot gases
is Th ≈ 6050 K. Thus, in the black-body approximation, the rms tempera-
ture difference ∆T between bright granules and dark intergranular material
at τ ≈ 1 in both materials is roughly 300 K.

More careful treatment of radiative transfer, using a fully 3-D radiative-
hydrodynamic code (Stein and Nordlund, 1998), indicates that the tempera-
tures at τ ≈ 1 in the coldest and hottest elements of gas can reach extreme
values which range from 5800 to 7000 K. Thus the extreme temperature dif-
ferences at τ ≈ 1 is 1200 K. The rms temperature differences are smaller
than this extreme value: from the results of Stein and Nordlund we estimate
∆Trms ≈ 500–600 K. Thus, our rough estimates of ∆T = 300 K at τ ≈ 1 using
the black-body approximation to interpret the observed intensity fluctuations
are too small by a factor of about two.

As we move upward and downward from the level τ ≈ 1, the results of 3-D
modeling (Stein and Nordlund, 1998) indicate that the range of temperature
differences ∆T increases. In the upper atmosphere, the extreme range is 1500
K at τ ≈ 0.001, while in the deeper layers, at τ ≈ 1000, the extreme ranges
of ∆T may be as large as 2500 K.
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If we were to compare the rising and sinking gas at equal geometric depths
(rather than at equal optical depths), the temperature differences would be
larger than the above estimates. The modeling of Stein and Nordlund (1998)
indicates that at equal depths close to the photosphere, the extremes of tem-
perature difference may be as large as 4000 K. However, the extremes of tem-
perature differences are confined to relatively small spatial regions: they arise
mainly in certain narrow downdraft columns of gas which plunge downward
after losing a lot of energy at the surface.

As a large-scale spatial average of temperature differences between rising
and falling gas, it is more appropriate, for our approximate estimates, to adopt
the values of ∆Trms ≈ 500–600 K.

6.7 Energy Flux Carried by Convection

Now that we know how fast the gas is moving and how much temperature
difference exists between the hot rising material and the cold sinking material,
we can turn to a consideration of the key question which is relevant for solar
physics: how much heat energy is being carried upward by the gas motions?

In a parcel of gas, a temperature difference of ∆T corresponds to a differ-
ence in the heat content of Cp∆T ergs gm−1. Here, Cp is the specific heat at
constant pressure, in ergs gm−1 K−1. This is the excess amount of internal
heat that the hot rising gas contains compared to the cool sinking gas.

Now, to calculate the upward flux of energy, in units of ergs cm−2 sec−1, we
need to multiply the heat content (in ergs gm−1) by the mass flux, Fm = ρV (in
gm cm−2 sec−1) . This leads us to the upward heat flux due to convection:

F (conv) = ρVC p(∆T ) (6.2)

This formula is applicable in any region of the Sun where bulk gas motions
are present.

6.7.1 Convective energy flux in the photosphere

To start off a discussion of convective energy transport, we consider the
particular case of a region in the Sun where we already know the magnitudes
of all the parameters which enter into the above formula: this particular region
is the photosphere. Subsequently, we shall consider deeper lying layers.

Let us see what is the magnitude of this energy flux in the photosphere.
The model of the solar atmosphere which we derived in Chapter 5 indicates
that in the photosphere, ρ ≈ (2–3) × 10−7 gm cm−3. The discussion given
in the earlier sections of the present chapter suggests that velocity differences
between hot and cold gas are of order a few km sec−1, say V ≈ 3×105 cm sec−1,
and that ∆T ≈ 500 K. The final quantity that we need to evaluate in order
to estimate the convective flux is Cp.
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To evaluate the specific heat, we note that in a perfect gas, where the par-
ticles are monatomic, and are not undergoing ionization, the internal energy
of an atom consists of a single term, due to thermal motion, i.e., (3/2)kT per
atom, where k is Boltzmann’s constant. In a gas composed of hydrogen atoms
only, the internal energy per gram is U = (3/2)kT/mH = (3/2)RgT ergs per
mole, where Rg = k/mH is the gas constant. For a gas mixture with mean
molecular weight µ, we find U = (3/2)RgT/µ per gram. This leads to a
specific heat per gram at constant volume

Cv =
dU
dT

=
3Rg

2µ
(6.3)

The specific heat at constant pressure, dU /dT + p(dV /dT )p (where sub-
script p denotes constant pressure) is given by

Cp = Cv +
Rg

µ
=

5Rg

2µ
(6.4)

For the gas in the solar photosphere, consisting of a non-ionizing mixture
of H (90%) and He (10%), we have µ ≈ 1.3. This leads to Cp ≈ 1.6 ×108 ergs
gm−1 deg−1.

In a monatomic, nonionizing gas, the ratio of specific heats γ = Cp/Cv has
the numerical value of 5/3. In terms of γ, the value of Cp can be written as

Cp =
γ

γ − 1
Rg

µ
(6.5)

Combining Equation 6.2 with the various parameters, we find that in the
photosphere, the numerical value of the flux of energy which is being trans-
ported by convection is

F (conv, ph) ≈ 7 ×109 ergs cm−2 sec−1 (6.6)

Is this a large quantity or a small one? Well, large and small are rela-
tive terms. What should we compare the convective flux to in order to decide
whether it is “large” or “small”? The relevant flux which passes thru the Sun’s
atmosphere is the flux of energy F� which eventually leaves the Sun and trav-
els out into space. In radiative terms, we have already specified (Chapter 1,
Section 1.8) what this is: F� = σT 4

eff = 6.3155 ×1010 ergs cm−2 sec−1.
Comparing F (conv, ph) with F�, we can see that in the photosphere, con-

vection is carrying some 10–15% of the total energy flux which passes upward
through the solar atmosphere. This shows us that although radiation domi-
nates in the process of transporting the energy flux up though the photosphere,
radiation is not the only process which contributes to transporting energy
though the photosphere. Gas motions are also of material assistance in the
photosphere.

6.7.2 Convective energy above the photosphere?

Once we move away from the particular case of the photosphere, and
consider gas which lies either shallower or deeper in the Sun, we can expect
that F (conv) will take on different values from that at the photosphere.
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In what sense will the numerical values of F (conv) change as we move
upward into shallower layers? Well, we have already seen (Chapter 5) that
the density of the gas falls off exponentially with increasing height. Moreover,
as the density falls off, it becomes increasingly difficult for the temperature
difference between rising and sinking gas to be maintained: leakage of photons
in the increasingly rarefied gas has the effect that the rising and sinking gases
tend toward the same temperatures. As a result, ∆T decreases in the upper
photosphere. In view of Equation 6.2, this, combined with the decrease in
density, causes F (conv) to decrease as we examine gas which lies above the
photosphere.

At a height of, say, 300 km above the photosphere, the density has fallen
to about 0.1 times the photospheric density. Due to this factor alone, the
local value of F (conv) would fall to a value of only 1–2% of the radiative
flux. Allowing for the radiative leakage, F (conv)/F� in fact falls below 1% at
heights of a few hundred km above the photosphere.

6.7.3 Convective energy flux below the photosphere

What about the deeper gas? How large is the convective flux there? In
these layers, densities increase exponentially rapidly as the depth increases.
Furthermore, the temperature differentials between rising and sinking gas ∆T
are larger than in the photosphere (see Section 6.6). Both of these factors
contribute to an increase in the convective flux as we go deeper beneath the
photosphere.

Moreover, there is a further factor, associated with ionization, which helps
the gas to transport convective flux more easily. As the temperature rises in
the deeper gas, the atoms begin to experience an increasing amount of ion-
ization; the gas enters into one of the “ionization strips” in Figure 4.1. When
ionization is in process, the internal energy of an atom of the gas U is no longer
due solely to thermal motions: instead, there is an extra term associated with
the ionization potential energy I. For hydrogen, I = 13.6 eV. This is larger by
more than an order of magnitude than the thermal energy: at temperatures
corresponding to gas just below the photosphere (where T = 6000–10,000 K),
the thermal energy per atom is only of order 0.6–1 eV. The occurrence of ion-
ization energy of 13.6 eV represents the addition of such a large temperature-
sensitive contribution to internal energy U that the numerical value of specific
heat Cv(= dU/dT) increases significantly compared to the values cited above
for a monatomic (and nonionizing) gas. The specific heat reaches a maximum
when the gas is roughly 50% ionized: as we noted in Chapter 4, this occurs for
hydrogen at depths where the temperature is about 20,000 K. In the vicinity
of 50% hydrogen ionization, the value of Cv rises to ≈ 36 times its “normal”
value [(3/2)Rg/µ], while the value of Cp rises to ≈ 27 times its “normal” value
[(5/2)Rg/µ] cited above for a monatomic nonionizing gas.

When the gas is undergoing ionization, and Cp and Cv both increase in
value by significant amounts, the ratio of specific heats γ = Cp/Cv is no longer
as large as 5/3 (the value for a nonionizing monatomic gas). Moreover, in
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adiabatic conditions, the pressure and density are no longer related by the
simple relationship p ∼ ργ . Instead, the pressure and density are related
by p ∼ ρΓ, where the numerical value of the generalized exponent Γ is no
longer strictly equal to Cp/Cv. When the degree of ionization is 50%, Γ for a
gas composed of hydrogen alone falls to minimum values of ≈ 1.135 (Clayton,
1968). In the Sun, where hydrogen is not the sole constituent, but helium con-
tributes almost 10% by number, the minimum value of Γ is not so small: when
hydrogen is 50% ionized, helium is still essentially neutral, with Γ(He) = 5/3.
The combination of (roughly) 90% of the atoms with Γ(H) = 1.135 and
(roughly) 10% of the atoms with Γ(He) = 5/3 lead to an overall minimum
value of Γ(H + He) of 1.19. We will return to this minimum value of Γ when
we consider the calculation of a model of the convection zone in Chapter 7.

In even deeper layers, where hydrogen ionization is approaching comple-
tion, the ionization energy becomes less important in the internal energy.
Thermal energy once again dominates. As a result, the specific heat reverts
(almost) to the value cited above. But now there is a difference: for every hy-
drogen atom in the photosphere, there are now two particles at great depth (a
proton and an electron), each with its own equal share of thermal energy. As
a result, the internal energy per gram is twice as large as in the photosphere.

Combining the increased factors of ρ, Cp, and ∆T , it is clear that F (conv)
must increase rapidly as we go below the surface. The only possibility for
off-setting this rapid increase in convective flux would be for the velocity V to
undergo a dramatic reduction as depth increases. However, this does not seem
likely: convective models indicate that V remains of order 1 km sec−1 even
at depths as great as 1000 km below the photosphere. The models indicate
that at depths of ≥ 100 km below the photosphere, convection is able to carry
more than 90% of the total energy flux.

The bulk motion of gas provides a very efficient method for the Sun to
transport energy in the layers of gas which lie not far beneath the photosphere.

Now that we have seen how effective convection is for energy transport
below the photosphere, this raises the question: does convection dominate the
transport of energy within the entire interior of the Sun? In order to arrive
at an answer to this question, we need to understand the physical causes of
convection. We now turn to those causes.

6.8 Onset of Convection in the Sun: The Critical
Gradient gad

Let us perform the following thought experiment. Consider an atmosphere
in which T is increasing as the depth increases. In the context of optical depth,
we have already found such a case when we discussed radiative equilibrium
in a grey atmosphere: T 4 ∼ (τ + 2/3). Once we know the opacity, we can
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convert this into the functional form which indicates how T varies with the
linear depth z. This was part of the solution of the solar atmosphere which
we obtained in Chapter 5.

In order to set the stage for a discussion of convection, it is helpful to
consider how T varies as a function of z. At each depth, the slope of T
versus z has a certain numerical value: we refer to that slope as the local
temperature gradient gT = dT/dz in units of degrees per cm. Because we are
considering an atmosphere in which T increases as z increases, the sign of gT

is positive. This is important for understanding the possibility for convection
to occur.

Consider a parcel of gas which lies initially at a depth z. The gas has
a well-defined temperature T . The question we ask is: is this parcel of gas
stable or unstable when we displace it vertically? To answer this question, we
consider the change in energy which occurs as a result of the displacement.
The algebraic sign of this energy change plays a key role in what follows.

Suppose we displace the parcel upward along a vertical path which has
length dz. The local ambient temperature at the new depth z − dz is T − dT
where dT = |gT dz|. Let the upward displacement of the parcel to the final
depth z − dz be performed in a time that is so short that the parcel has
no time to lose any of its internal energy by leakage to the ambient gas.
When the parcel arrives at z − dz , it will still have its initial temperature T :
therefore the parcel finds itself hotter than its surroundings by dT . That
is, the parcel will contain internal thermal energy which is in excess of that
in the ambient gas. Now let enough time elapse that the parcel releases all of
its excess thermal energy into the local gas under conditions where pressure
is maintained constant: the amount of thermal energy which it will release is
given by Cp dT ergs gm−1.

Is this energy release significant as far as the displacement of the parcel is
concerned? To answer that, we must compare the amount of thermal energy
which has been released with another energy term which arises as a result
of the displacement: gravitational potential energy. In order to displace the
parcel upward by the linear amount −dz, work has to be done against gravity.
The amount of that work is −gdz per gram of material.

Now we ask: what has happened to the total energy of the parcel in the
course of its displacement to its final position? On the one hand, the gas has
released CpdT ergs gm−1. On the other hand, energy had to be found (from
somewhere) to increase the potential energy by −gdz ergs gm−1. The total
amount of energy ∆W associated with the displacement of 1 gm of material
is therefore given by

∆W = −gdz + CpdT (6.7)

The key point to note in Equation 6.7 is the possibility that ∆W takes on
numerical values which can be either positive or negative.

For example, suppose that the magnitude of gdz exceeds the magnitude of
CpdT . In this case, ∆W is negative: in order to displace the parcel upward
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to its final position, we have had to supply more work than is released by
the thermal excess. There is not enough thermal energy released to compen-
sate for the work that was done in order to lift the parcel. As a result, the
parcel will tend to sink back down to its initial position. There is no in-
centive for the parcel to move upward. This is referred to as “convective
stability.”

But in the opposite limit, suppose that the magnitude of CpdT exceeds
the magnitude of gdz. In this case, release of thermal excess at the end of the
displacement is more than enough to compensate for the work of lifting the
parcel. All of that lifting work can be provided for by releasing the excess
internal energy of the parcel. In fact, after the work of lifting has been per-
formed, there is even some internal energy left over to make sure that the
parcel remains hotter than the ambient gas. In other words, the gas itself
contains more than enough internal energy to do the work of lifting the par-
cel against gravity. This is an unstable situation: the parcel, once displaced,
keeps on moving upward. We refer to this as “convective instability.”

The boundary between stability and instability as far as convection is
concerned occurs when ∆W has a value which is neither positive nor negative,
i.e., when the total energy exchange between the parcel and its surroundings
is zero. In such a situation, the parcel undergoes a change which is adiabatic.
This particular case occurs when gdz = CpdT , i.e., when the temperature
gradient gT ≈ dT/dz takes on the particular value known as the “adiabatic
temperature gradient”:

gT = gad ≡ g/Cp (6.8)

Gas in which the local temperature gradient has a particular value gT is
convectively stable if gT < gad . In gas where the opposite holds, i.e., where
gT > gad , the gas is convectively unstable.

This reminds us that the algebraic sign of gT is important: on the right-
hand side of Equation 6.8, the quantities g and Cp are both positive definite. If
gT is a negative quantity, i.e., if the temperature decreases as the linear depth
increases, it is impossible to satisfy the condition for convective instability:
gT > gad . As a result, such gas is always convectively stable.

The conclusion of the present section is the following. The onset of con-
vection is determined by the answer to the question: is the local temperature
gradient dT/dz larger or smaller than the value of the adiabatic temperature
gradient gad?

6.9 Numerical Value of gad

In the solar photosphere, we have seen (Chapter 1, Section 1.13) that
g = 27422 cm sec−2. And in Section 6.7.1, we have seen that Cp ≈ 1.6 ×108
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ergs gm−1 in the photosphere. Combining these values, we find the important
result

gad ≈ 1.7 ×10−4deg cm−1 (6.9)

as the numerical value of the critical temperature gradient which must be
exceeded if convection is to occur in the solar photosphere.

Now it is remarkable that, when we were calculating a model solar atmo-
sphere in Chapter 5, we eventually did reach a layer of gas (with optical depth
τ = 0.9–1.0, i.e., near the photosphere) where the local temperature gradient
dT/dz increased to a numerical value in excess of the above critical gradient
gad . This means that, in the model presented in Table 5.3 in Chapter 5, the
gas is convectively stable for all levels of the photosphere which are listed in
the table. According to the model, convection in the Sun sets in at optical
depth τ ≥ 0.9–1.0, i.e., just below the photosphere.

Why is this remarkable? It means that we Earth-based observers are lucky
enough to see down into the Sun deep enough to catch a glimpse of at least
the uppermost layers of convection (see Figure 6.1). There is nothing to say
a priori that this must happen: it is certainly possible that the onset of
convection might have occurred so deep below the photosphere that Earth-
based observers would be able to see nothing whatsoever of the convective
motions. (For example, if we lived near a hot star of spectral class O or B,
we would see no evidence for convection, which is confined to the innermost
core of the star.)

As it is, we Earthlings are able to see the Sun’s convection, with its up-
and-down gas motions of hot and cold gas. Without this privilege, we might
know a lot less about convection not just in the Sun, but in other stars also.

Below the photosphere, where hydrogen begins to undergo appreciable
ionization, the rapid increase of Cp (by factors which may be as large as ten
or more), has the effect that gad takes on values which are numerically much
smaller (by a factor of order 10) than in the photosphere. Because of this, it
is much easier for the local temperature gradient to exceed the local value of
gad when the ambient gas is undergoing ionization. As a result, it is much
easier to satisfy the convective instability condition gT > gad . Therefore, in a
region where gas is undergoing ionization, we are likely to find convection.

6.10 Alternative Expression for gad

As mentioned above, an alternative expression for Cp is [γ/(γ − 1)]Rg/µ.
Using this, we can rewrite gad as

gad ≡
(

dT
dz

)
ad

=
gµ(γ − 1)

γRg
(6.10)
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Now, for a medium which is in HSE, we also know that the pressure gra-
dient is given in Chapter 5 by Equation 5.1. In the present context, where
we are using the independent variable z (i.e., the depth), rather than (as in
Chapter 5, Equation 5.1) the height h, the HSE equation is written as

dp
dz

= +gρ (6.11)

Dividing Equation 6.10 by Equation 6.11, we find that(
dT
dp

)
ad

=
1

ρCp
=

(γ − 1)µ
γρRg

(6.12)

Among the terms on the right-hand side, we note that for a perfect gas,
µ/ρRg equals T/p. Carrying this over to the left-hand side of the equation,
we find (

d log T

d log p

)
ad

=
γ − 1

γ
(6.13)

We note that if the local conditions in a gas in any region of the Sun are
in fact adiabatic, then the local temperature and pressure will vary in such a
way that the local gradient of temperature relative to pressure, d log T/d log p,
will take on the value (d log T/d log p)ad as given by Equation 6.13. This has
the effect that the pressure p in that region of the Sun will vary as a power
law of T . In the presence of ionization, we need to replace γ in Equation 6.13
with the more generalized exponent Γ:

p ∼ TΓ/(Γ−1) (6.14)

In a monatomic nonionizing gas, where Γ = γ = 5/3, the right-hand side of
Equation 6.13 has the numerical value 0.4. In such a gas, adiabatic processes
lead to a pressure-temperature relationship of the form p ∼ T 2.5.

But if ionization is at work, the power law relationship becomes steeper.
For example, in a gas composed of pure hydrogen where the degree of ionization
is 50%, γ ≈ 1.135. In such a case, Equation 6.13 indicates that p ∼ T 8; in
such conditions, small increases in temperature would be associated with much
larger increases in pressure than in the nonionizing limit p ∼ T 2.5. These re-
sults will be applied to the solar convection zone in the next chapter.

Exercise

6.1 Consider flows at the surface of the Sun h = 0 with vertical speeds of 1,
3, 6, and 10 km sec−1. Given the gravity at the surface of the Sun
(Chapter 1, Equation 1.13), calculate the maximum heights to which
these flows can reach above the surface.
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Chapter 7

Computing a Model of the Sun:
The Convection Zone

In this chapter, we wish to calculate the structure of the region in the Sun
where convection dominates the transport of energy. As in Chapter 5, we will
not discuss the origin of the energy which is flowing through the convection
zone. Instead, we again accept the total luminosity (or flux) of the Sun as a
boundary condition, and seek to determine how the material arranges itself
so as to “handle” the energy which is passing through. We will examine the
forces which act on the medium, and determine how the medium responds.
In this sense, the model we will derive is better referred to as a mechanical
model rather than a complete model.

Based on empirical evidence, the gas in the photosphere of the Sun is
moving (up and down) with speeds of a few km sec−1. In order to determine
the equations which will allow us to describe solar convection in plausible
physical terms, we need first to understand why the convective motions in the
surface layers of the Sun have speeds of this order of magnitude. Why are the
motions not of order a few cm sec−1? Or hundreds of km sec−1? What is the
determining factor which sets the scale of the speeds?

7.1 Quantifying the Physics of Convection:
Vertical Acceleration

We have seen that certain parcels of gas in the Sun are observed to be
rising, while others are sinking. The rising parcels are hotter than the sinking
ones, and the rms temperature differences are of order ∆T ≈ 500–600 K in
the photosphere.

From a physics perspective, it is important to note that the speeds of
convective motion are less than the local (adiabatic) speed of sound, cs =√

(γRgT/µ), where γ is the ratio of specific heats and µ is the mean molecular
weight. (In the solar photosphere, cs ≈ 9 km sec−1.) This has the effect that
sound waves can propagate quickly between hot and cold gas and equalize
the pressures. Thus, the differences in pressure between hot and cold gas at
any height are not significant. Now, for material which obeys the equation of
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state of a perfect gas, the pressure difference ∆p is related to the temperature
difference by ∆p/p = ∆T/T + ∆ρ/ρ − ∆µ/µ. In the photosphere, there is
no significant difference in the degree of ionization between hot and cold gas:
therefore there is no significant difference in the molecular weights, and we
may set ∆µ/µ = 0.

Using this, and setting ∆p/p = 0, we see that the observed temperature
difference ∆T between rising and sinking gas in the photosphere corresponds
to a density difference ∆ρ/ρ = −∆T/T . The negative sign indicates that the
hotter (rising) gas has lower density than the cooler (sinking) gas. With a
fractional temperature difference in the photosphere observed to be ∆T/T ≈
(500–600)/5800 ≈ 0.1, we see that hotter gas has a density which is about 10%
smaller than the density of the cooler gas.

Now the photosphere of the Sun is for the most part in hydrostatic equi-
librium: this means that there are no net forces acting on the gas in the pho-
tosphere. This is not to say that there are no forces whatsoever acting on the
gas: it means only that whatever forces are at work, they are in general bal-
anced in the photosphere. On the one hand, there is an upward force (per unit
volume) due to the vertical pressure gradient dp/dz. On the other hand, there
is a downward force (per unit volume) due to the weight of the gas, ρg. When
these forces are in balance, there is no net acceleration, and the gas remains
at rest. This is the situation throughout the model of the photosphere which
was presented in Chapter 5. That is, given a photospheric model where, at
depth z, the density is ρo and the pressure is po, then dpo/dz has a numerical
value which is precisely equal to ρog at all heights in the photospheric model:

dpo

dz
= gρo (HSE)

This is the equation of HSE (cf. Chapter 5, Equation 5.1), rewritten
in terms of the depth z (which increases downward) rather than the height
parameter h (which increases upward).

But in a gas where convection is possible, the forces are no longer balanced.
Let us consider the imbalanced forces and the accelerations which they cause.

Suppose a certain parcel of gas is hotter than the ambient medium. The
density ρ′ in the parcel will be lower than the ambient density ρo. As a
result, the downward force on unit volume of gas in the parcel due to its
weight ρ′g is now less than the local upward force due to pressure dp/dz. The
unbalanced force dp/dz − ρ′g acting on a parcel of gas with unit volume leads
to an acceleration of that parcel in the upward direction. Since unit volume
of the gas has a mass of ρ′, Newton’s second law of motion (force=mass
times acceleration) tells us that the unit volume will be subject to an upward
acceleration dV/dt such that

ρ′ dV
dt

=
dp
dz

− gρ′ (7.1)

This equation expresses the conservation of momentum. Notice that in
the absence of flows (V = 0), conservation of momentum reduces to HSE.
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As we have seen, the motions which are observed in the solar photosphere
are such that pressure remains equalized between hot and cold gas. That
is, the pressure of the gas remains relatively unchanged in hot or cold gas
compared to the ambient medium. This means that we can, without serious
error, replace dp/dz by dpo/dz. But we already know that dpo/dz = ρog.
Therefore, the upward acceleration dV/dt experienced by the low-density gas
parcel is given by (dV/dt)u = g(ρo − ρ′)/ρ′. The fact that ρ′ is less than ρo

has the effect that the sign of the right-hand side is positive. Therefore, the
acceleration is in the upward direction. Buoyancy forces create this upward
acceleration.

If a parcel of gas is locally cooler (and denser) than ambient, with density
ρ′′ > ρo, then the acceleration will be downward, with a magnitude (dV/dt)d =
g(ρo − ρ′′)/ρ′′. Again, the effect is due to buoyancy.

Since the differences in density between the ambient medium and the hot
(upgoing) and cold (downgoing) gas are not large, we can write the relative
acceleration ahc between hot and cold gas as

ahc ≡
(

dV
dt

)
u

−
(

dV
dt

)
d

=
g(ρ′′ − ρ′)

ρo
≈ g∆ρ

ρ
= −g

∆T

T
(7.2)

Inserting the empirical result ∆T/T ≈ 0.1, we find that the magnitude of
the relative acceleration ahc between hot and cold gas in the photosphere is
given by ahc ≈ 0.1g ≈ 2.7 ×103 cm sec−2.

7.2 Velocities and Vertical Length Scales

Now that we have an estimate for the relative vertical acceleration between
hot and cold gas, we can ask: over what vertical length scale sv must the
acceleration ahc be allowed to operate in order to build up a vertical velocity
difference V which is comparable to the observed values, i.e., a few km sec−1?

The relevant formula is V 2 = 2ahc sv = 2svg∆T/T . Setting V = (2−3)×
105 cm sec−1, we find sv = 74–167 km. Thus, if the buoyancy forces due to
the density differences between hot and cold gas in the solar photosphere are
allowed to operate over distances of 74–167 km, the vertical velocities which
can be produced are comparable to the observed values.

Is there any physical significance to lengths scales of 74–167 km? Well, we
have seen (Chapter 5, Section 5.1) that the pressure (and density) scale height
Hp in the photosphere is 115–140 km. We note that this range of Hp values
is completely contained within the range of values for the vertical distance sv.
This suggests that the dynamics of convection in the solar photosphere are
constrained in such a way that the vertical acceleration due to buoyancy is
allowed to operate over vertical length scales which are comparable to Hp.
Specifically, with the above numbers, it appears that sv ≈ (0.5–1.5)Hp.
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This is an empirical conclusion. It is based on the observed temperature
differences between hot and cold gas, and on the observed relative differences
in velocity between rising and sinking gas. If we were not able to resolve
the granulation in the Sun, thereby measuring differences in temperature and
velocity between rising and sinking gas, we would have to rely on indirect
arguments in order to decide what might be the best choice for sv.

7.3 Mixing Length Theory (MLT) of Convection

It was mentioned earlier (Chapter 6, Section 6.2) that granules in the Sun
have properties which are similar to eddies in a fast-flowing river: such eddies
survive for a finite time and then dissolve into the ambient water. During
their life-time, they travel a finite distance, before they “mix” their contents
back into the river. This finite distance is called the “mixing length.”

In solar convection, by analogy, a parcel of convective flow can preserve its
identity for a finite time only. During that time, the material travels a finite
distance L (the “mixing length”) in the vertical direction (buoyancy forces
determine that the motion is preferentially vertical), and then mixes in with
the ambient gas. Based on the discussion in the previous section, it seems
plausible to equate L with the vertical distance sv, which is (as we have seen)
of order the local Hp. In solar convection, a “mixing length parameter” α
is defined as the ratio between the mixing length and the local scale height:
α = L/Hp. Based on the discussion in Section 7.2, an appropriate choice for
α in the solar photosphere is 0.5–1.5. Again, this is an empirical conclusion,
based on measured velocities and temperature differences.

Is there any theoretical reason why the mixing length might be expected
to be of order Hp? Well, when a parcel of gas starts its upward “lifetime”
at depth z, it has a density which is only slightly smaller than that of the
ambient gas. Once the parcel has risen to a new depth z − L, it finds itself
in lower density gas. When the parcel has time to adjust its density to the
ambient value at depth z−L, the parcel must expand in volume. If the vertical
distance L were as large as, say, 2.1Hp, the parcel would find itself at the top
of its path (at depth z − L) in a medium with an ambient density which
is e2.1 ≈ 8 times smaller than the initial. This would lead to an eight-fold
increase in the parcel’s volume, along with a four-fold increase in surface area.
As a result, if at depth z at any instant of time, a snapshot of the gas at that
depth showed the aggregate of all rising parcels occupying, say, 10–25% of the
available surface area, then at depth z − L, the parcels would have expanded
to occupy 40–100% of the available surface area. There would be no more
room for further expansion.

This leads us to suspect that the existence of the empirical limit α = 0.5–
1.5 may be related to a self-regulating process: there is simply not enough
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room for parcels which would expand, in the course of their lifetime, to ten
or more times their initial volume. Moreover, we have already mentioned
(Chapter 6, Section 6.5) that α = 1.5 seems to be the best choice to describe
the Sun.

7.4 Temperature Excesses Associated with
MLT Convection

As a check on the plausibility of choosing α ≈ 1, let us estimate how
large the temperature excess is expected to become between rising gas and
the ambient medium. In other words, what is the temperature excess relative
to ambient after a parcel of gas has traveled a length L?

To answer this question, consider a parcel of gas which rises from an initial
depth z to a new (upper) depth z − L, and rises so fast that it preserves its
initial temperature along the way. At the upper depth, if the gas in the
parcel were not called upon to perform any work, the parcel would have a
temperature in excess of the ambient temperature by an amount ∆To = Lgo.
(Here, go = dT/dz is the local temperature gradient in the ambient medium.)

Now, our discussion of the adiabatic gradient in Chapter 6 shows that, in
a convective region, some of the internal energy of the parcel of gas is used to
do the work of raising the parcel a distance L against gravity. Specifically, the
work against gravity, i.e., gL per gram, can be performed by extracting the
amount Cp∆Tad = Lg from the internal energy per gram of the gas. (Note,
gad = g/Cp is the adiabatic temperature gradient.)

As a result, when the parcel reaches its upper position, z−L, it finds itself
with a temperature that exceeds the ambient by an amount ∆T which is not
as large as the ∆To mentioned above. Instead, the temperature excess ∆T is
given by the reduced quantity ∆T = ∆To −∆Tad . Expressing ∆To and ∆Tad
in terms of the temperature gradients, we can write

∆T = L(go − gad) ≡ L(∆gT ) (7.3)

Here we define the ∆gT as the superadiabatic gradient, i.e., the amount by
which the ambient temperature gradient go exceeds the adiabatic gradient gad .

Let us estimate the numerical value of the temperature excess ∆T . We
have already seen that in the solar photosphere, gad has a numerical value
of about 1.7 × 10−4 deg cm−1. In regions of vigorous convection near the
photosphere, the local temperature gradient go may exceed gad by an amount
which is not necessarily small. There is no reason to exclude the possibility
that that go could exceed gad by an amount which is comparable to gad itself.
This suggests that ∆gT could have a value of order 10−4 deg cm−1. In such
a case, and setting L ≈ Hp ≈ 107 cm, we find that the mixing length theory
predicts ∆T ≈ 103 K in the photosphere.
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How does this compare with the temperature differences which exist in
the solar granulation? We have seen, from rough analysis of the empirical
brightness fluctuations in the granulation, that the rms temperature differ-
ences are estimated to be in the range 500–600 K. These are consistent, within
factors of two, with the above estimate.

It seems that estimates of temperature excesses based on MLT are not
inconsistent with empirical data by significant amounts.

The fact that the velocities of solar granulation, as well as the temperature
differences between hot and cold gas, can be replicated, at least roughly, in the
context of MLT suggests that the theory can be of service when we attempt
to model the complexities of turbulent solar convection.

7.5 MLT Convective Flux in the Photosphere

In the context of MLT, the convective heat flux F (conv) ≈ ρVC p∆T (see
Equation 6.2) can be expressed as follows. We replace V by the expression√

(2Lg∆T/T ), and we replace ∆T by the expression L∆gT . This leads to

F (conv) ≈ ρCp

√
2g

T
L2(∆gT )3/2 (7.4)

Near the photosphere, substitution of appropriate quantities (ρ ≈ (2−3)×
10−7gm cm−3, T ≈ 6000 K, L ≈ 107 cm, ∆gT ≈ 10−4 deg cm−1) leads to
F (conv) ≈ (1 − 2) ×1010 ergs cm−2 sec−1. This result is consistent, within a
factor of two, with the estimate given in Chapter 6 (Section 6.7.1).

7.6 MLT Convective Flux below the Photosphere

It is of great interest to determine what happens to F (conv) as we exam-
ine material that lies deeper inside the Sun. As we go beneath the surface,
temperatures increase greatly, and the mean molecular weight decreases (by
a factor of about two). As a result, L = αHp ∼ T/µ increases to values
which are much greater than those near the surface. In regions of the so-
lar interior where the gas has T ≈ 106 K, Hp approaches values as large as
1010 cm. In such gas, the density is also much larger than the photospheric
value: ρ approaches values of order 1 gm cm−3. Moreover, Cp increases above
the surface values by a factor of at least two. Let us see how these values
affect the expression for F (conv).

The value of F (conv) cannot exceed the overall flux of energy which
emerges from the deep interior of the Sun. At the surface, this flux F� equals
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6.3155 × 1010 ergs cm−2 sec−1 (Chapter 1, Section 1.8). As we go inward
into the Sun, the surface area decreases, but the total power from the Sun
(the “luminosity”) remains constant. By the time we reach a radial location
of 0.7R�, the energy flux increases to about 1011 ergs cm−2 sec−1.

Returning to Equation 7.4, this leads us to ask: how large must the supera-
diabaticity ∆gT be in order to transport a flux of 1011 ergs cm−2 sec−1 deep
inside the Sun? Substituting the above numerical values for the subsurface
gas, we can evaluate the ∆gT which is needed: we find ∆gT ≈ 10−11deg cm−1.

What is the significance of this result? The answer depends on what we
compare ∆gT to. Since ∆gT has the dimensions of a temperature gradient,
it is natural to ask: is there another temperature gradient which is relevant
to convection in the Sun? Indeed there is (see Chapter 6, Section 6.8): it is
the adiabatic gradient gad . Deep in the Sun, gad = g/Cp still has a numerical
value of order 10−4 deg cm−1: the subsurface increase in Cp is offset by the
subsurface increase in g. Compared to gad , we see that the superadiabaticity
∆gT is seven orders of magnitude smaller.

For all practical purposes, the superadiabaticity is zero. That is, the tem-
perature gradient in the deeper layers of the convection zone is equal to the
adiabatic gradient gad . Since we already have a simple expression for gad , this
provides an enormous simplification in our task of obtaining a model of the
convection zone. We do not have to be concerned with how the opacity or
density or pressure behave as a function of depth: instead, we simply accept
that (to a high degree of precision) dT/dz = g/Cp. In regions where g and Cp

are constant, this allows us to perform an immediate integral:

T (z) = T (zo) + (z − zo)
g

Cp
(7.5)

The fact that the temperature gradient in the deep convection zone equals
the adiabatic gradient means that the processes which occur in the solar con-
vection zone are essentially adiabatic in nature. This will help us determine
how pressure and density vary with depth.

7.7 Adiabatic and Nonadiabatic Processes

Once it has been determined that the temperature profile in the Sun’s deep
convection zone is essentially the adiabatic profile, we can in principle apply
the laws of adiabatic processes to the variations of density and pressure. Thus,
if the density varies as a function of depth according to ρ(z), then the pres-
sure at depth z is related to ρ(z) according to p(z) ∼ [ρ(z)]Γ (see Chapter 6,
Section 6.7.3.) The index Γ ≡ d(log p)/d(log ρ)ad is the adiabatic exponent
for pressure-density variations. For monatomic gases, under conditions where
ionization is not occurring (or is essentially complete), the numerical value of
Γ is 5/3.
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For a perfect gas, p ∼ Tρ, and so the density ρ(z) in an adiabatic region
is related to T (z) by ρ(z) ∼ [T (z)]1/(Γ−1). Also, as we have seen already
(Equation 6.14), the pressure p(z) in the adiabatic region is related to T (z)
by p(z) ∼ [T (z)]Γ/(Γ−1).

Thus, if we were considering an adiabatic medium where Γ = 5/3 at all
depths, then, given a temperature, density, and pressure at a reference depth
zo, the quantities at depth z would be given by Equation 7.5 plus the following
two equations:

ρ(z) = ρ(zo)
[

T (z)
T (zo)

]1.5

≡ KdT (z)1.5 (7.6)

p(z) = p(zo)
[

T (z)
T (zo)

]2.5

≡ KpT (z)2.5 (7.7)

In Equations 7.6 and 7.7, we have introduced proportionality constants
Kd ≡ ρ(zo)/T (zo)1.5 and Kp ≡ p(zo)/T (zo)2.5 for density and pressure, re-
spectively. The constants Kd and Kp are related to the specific entropy of the
gas at the top of the solar convection zone.

If Equations 7.5 through 7.7 were all that we needed to describe solar
convection, then the computation of a model of the convection zone would
be simple. We would start with our model of the photosphere (Chapter 5),
evaluate the constants Kd and Kp using the conditions at the base of the
photosphere (where convection sets in), and then proceed to deeper layers by
increasing the depth z.

Unfortunately, things are not so simple in the Sun.
Two effects are particularly important in seriously modifying the proper-

ties of the convection zone near its upper boundary. First, radiative losses near
the solar surface from convective elements (granules and intergranular regions)
are severe. As a result, processes in the granulation are highly nonadiabatic
within the uppermost 1–2 megameters (Mm) of the convection zone. Nonadi-
abaticity has the effect that the local temperature gradient in the uppermost
1–2 Mm rises to values which are well in excess of the adiabatic gradient.
(We have already used this information in Section 7.4 above, when we esti-
mated temperature differences between rising and falling material.) We simply
cannot assume that, as soon as convection sets in, the processes all become
adiabatic.

The second important effect is that the value of the exponent Γ departs
significantly from the monatomic value of 5/3 because of the effects of ioniza-
tion. To be sure, Γ is close to 5/3 in the photosphere, and Γ again reverts to
values within a few percent of 5/3 at depths in excess of 20−30 Mm below the
photosphere. In such regions, the exponents which appear in Equations 7.6
and 7.7 are entirely appropriate. However, at depths of a few megameters,
where the degree of ionization of hydrogen is greater than (say) 10% , and
less than (say) 90% (i.e., the gas lies in an “ionization strip” in Chapter 4,
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Figure 4.1), the numerical values of Γ falls well below 5/3. As was mentioned
earlier (Chapter 6, Section 6.7.3), Γ may fall as low as ≈ 1.19 in certain regions
in the Sun. Now, in a medium where Γ = 1.19, the exponents in Equations 7.6
and 7.7 would take on values of 5.3 and 6.3, respectively. In such a medium,
given an increase in temperature from depth zo to depth z, the accompanying
increases in density and pressure under adiabatic conditions would be signif-
icantly larger than Equations 7.6 and 7.7 would predict. The reason for this
behavior has to do with the increase in entropy associated with ionization. Be-
cause the ionization energy is large compared to the thermal energy, a large
input of energy dQ is required to cause ionization in unit mass of material,
without any significant increase in temperature. This leads to a significant
increase in the specific entropy dS = dQ/T .

Fully consistent modeling of solar convection requires inclusion of 3-D ra-
diative transfer as well as a detailed treatment of the ionization of hydrogen
(e.g., Stein and Nordlund, 1998). The results of such calculations indicate
that if we use the conditions at the top of the convection zone to calculate
Kd ≡ ρ(zo)/T (zo)1.5 and Kp ≡ p(zo)/T (zo)2.5, we will make large numerical
errors. The errors are in the following sense: if we were to use the above
numerical values of Kd and Kp in Equations 7.6 and 7.7, the pressures and
densities we would calculate in the deep convection zone would be too small
by two to three orders of magnitude.

In a complete model of the solar convection zone, we should include the full
effects of radiative losses and include ionization effects at all depths. Such a
model would demonstrate a behavior where p ∼ T 2.5 at the shallowest depths
near the surface (z < 1 Mm), then a narrow region of intermediate depths (a
few Mm) where the exponent would be significantly larger than 2.5, followed
by a deeper region where the exponent would decrease to approach 2.5 once
more. At depths z ≥ 20 − 30 Mm, conditions would revert to p ∼ T 2.5. We
shall see that the convection zone has a depth of order 200 Mm. Thus, the
functional form p ∼ T 2.5, as in Equation 7.7, applies throughout some 90%
of the depth of the convection zone, although Kp takes on different values in
the upper and lower portions of the convection zone.

7.8 Computing a Model of the Convection Zone:
Step by Step

How can we make allowance for the above properties of the solar material?
In this first course in solar physics, rather than following in detail the com-
plicated calculations of radiative transfer and of the ionization of hydrogen
at each depth, we make the following simplification: we use a single effective
value for the exponents in Equations 7.6 and 7.7 throughout the convection
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zone. To select the effective values, we use an effective value of Γ which is
given by the arithmetic mean of the minimum and maximum values cited
above, i.e., Γ(eff) = 0.5(1.19 + 1.67) = 1.43. With this choice, the exponents
in Equations 7.6 and 7.7 become 2.3 and 3.3. We therefore use the following
depth-dependences of density and pressure:

ρ(z) = ρ(zo)
[

T (z)
T (zo)

]2.3

(7.8)

p(z) = p(zo)
[

T (z)
T (zo)

]3.3

(7.9)

These equations, together with Equation 7.5, are the equations which we
use to compute a model of the solar convection zone. We proceed as follows.

Start at the deepest layer in the photospheric model (Chapter 5), which
also corresponds to the top of the convection zone. There, the tempera-
ture, depth, pressure and density are already known: since these are the first
(topmost) values in our model of the convection zone, we refer to these as
T (1) = 6010 K, z(1) = 465 km, p(1) = 1.13 × 105 dyn cm−2, and ρ(1) =
2.94 ×10−7gm cm−3.

Step down below the photosphere by taking a step of say ∆z = 1000 km.
Assuming adiabatic conditions, the increase in temperature across the step
∆z is

∆T = ∆z
g

Cp
(7.10)

What g should we use in estimating ∆T? The convection zone occupies
a spherical shell which extends inward to great depths in the Sun, as deep as
20–30% of the solar radius. Within the convective shell, the total amount of
mass is small compared to the total mass of the Sun. As a result, most of the
mass of the Sun lies interior to the convection zone. Because of this, the value
of g varies as 1/r2. Thus, at depth z, the local acceleration due to gravity can
be calculated from

g(z) = 27,422
[

R�
R� − z

]2

cm sec−2 (7.11)

At the base of the convection zone, g(z) is about twice as large as the
surface value.

What value of Cp should be used? Equation 6.5 provides a starting point.
In the photosphere of the Sun, where γ = 5/3 and the mean molecular weight
µ ≈ 1.3, we find Cp ≈ 1.6×108 ergs gm−1 K−1. Both quantities γ and µ vary
with depth. Let us consider µ first. Deep inside the Sun, where H and He
are completely ionized, there are two particles for each H nucleus, and three
particles for each He nucleus. As a result, the mean molecular weight per
particle is 1/2 for H, and 4/3 for He. In a mixture of 90% H and 10% He,
µ ≈ (0.5∗0.9) + (1.33∗0.1) ≈ 0.58. This is the value of µ which we shall use
in the deep interior of the Sun (Chapter 9). In the convection zone, where
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ionization is underway, causing µ to vary from 1.3 (at the top) to 0.58 (at the
bottom), we shall approximate the value of µ by the average of these limits,
i.e. µconv = 0.94. Let us now consider γ. As in Section 6.7.3, we replace γ
in the convection zone with the generalized Γ. Specifically, Equations 7.8 and
7.9 are based on the effective value Γ = 1.43. In order to preserve consistency,
in Equation 6.5 we replace γ/(γ − 1) by Γ/(Γ − 1) = 3.3. For simplicity,
we assign a constant value to Cp throughout the convection zone, namely
Cp = 3.3 Rg/µconv. Of course, this does not take into account the largest
values which Cp takes on at certain depths in the solar convection zone. We
shall therefore not be surprised if our simplified model of the solar convection
zone will be defective in certain ways.

Now that g and Cp can be evaluated at depth z(1), we can calculate ∆T
using Equation 7.10. Therefore, at the new depth z(2) = z(1) + ∆z, the
temperature T (2) has the value T (1) + ∆T .

Knowing the temperature T (2) at z(2), we calculate the local pressure and
density using p(2) = p(1)[T (2)/T (1)]3.3 and ρ(2) = ρ(1)[T (2)/T (1)]2.3.

Repeating the calculation at a greater depth, z(3) = z(2) + ∆z, we step
inwards into the Sun, evaluating temperature, pressure and density at each
step according to Equations 7.5 and Equations 7.8 and 7.9.

We continue increasing the depth until the temperature rises to a certain
value, Tb ≈ 2 ×106 K. At that point, we stop the calculation. Why? Because
we shall find in Chapter 8 that the base of the convection zone lies at a well-
defined temperature Tb which is close to 2 million K.

This step-by-step procedure leads to a table of values of z, T, p, and ρ down
to the base of the convection zone. An example of values selected from such
a table are shown in Table 7.1.

7.9 Overview of Our Model of the Convection Zone

We see that at the base of the convection zone, i.e., at the location where
the temperature Tb equals 2 × 106 K, our simplified model yields a pressure
pb of order 3 ×1013 dyn cm−2 and a density ρb of order 0.2 gm cm−3. These
values compare favorably with results from a recent detailed model of the
Sun (Bahcall et al., 2006): Tb = 2.01 ×106K, pb = 4.3 ×1013 dyn cm−2, and
ρb = 0.16 gm cm−3.

As far as the depth zb of the convection zone is concerned, our model
indicates a depth of 163 Mm. In terms of the solar radius, this is a depth of
23–24% of R�. That is, the convection zone occupies about one-quarter of
the distance from the solar surface to the center. This indicates clearly that
convection in the Sun is by no means confined to a thin shell. Instead, we
can properly refer to a thick “convective envelope” which penetrates inward
by some 25% of the solar radius in the outermost layers of the Sun.
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TABLE 7.1: A simplified model of the solar convection zone

Depth z (cm) T (K) p(dyn cm−2) ρ(gm cm−3)
9.6492E+07 1.0819E+04 7.8964E+05 1.1412E-06
1.9649E+08 2.0260E+04 6.3889E+06 4.9305E-06
3.9649E+08 3.9224E+04 5.7757E+07 2.3023E-05
6.9649E+08 6.7877E+04 3.5920E+08 8.2740E-05
9.9649E+08 9.6780E+04 1.1716E+09 1.8928E-04
1.4965E+09 1.4552E+05 4.5614E+09 4.9010E-04
2.0465E+09 1.9997E+05 1.3156E+10 1.0287E-03
3.0465E+09 3.0127E+05 5.1560E+10 2.6759E-03
4.0465E+09 4.0566E+05 1.3897E+11 5.3565E-03
5.0465E+09 5.1329E+05 3.0446E+11 9.2742E-03
6.0465E+09 6.2432E+05 5.8471E+11 1.4643E-02
7.0465E+09 7.3889E+05 1.0252E+12 2.1694E-02
8.4965E+09 9.1169E+05 2.0652E+12 3.5418E-02
1.0046E+10 1.1057E+06 3.9286E+12 5.5552E-02
1.1546E+10 1.3034E+06 6.7961E+12 8.1527E-02
1.3046E+10 1.5115E+06 1.1135E+13 1.1518E-01
1.4546E+10 1.7310E+06 1.7496E+13 1.5804E-01
1.6046E+10 1.9628E+06 2.6598E+13 2.1187E-01
1.6296E+10 2.0027E+06 2.8443E+13 2.2205E-01

Actually, according to inversions of helioseismological data (Chapter 13),
the Sun’s convective envelope is somewhat thicker than 25% of the radius. The
base of the convection zone is found to lie at a depth zb which amounts to 28.7±
0.3% of R� (Christensen-Dalsgaard et al., 1991). The simplified approach
which we have used in calculating Table 7.1 yields a shallower convection
zone than the helioseismological result by some 5% of R�, i.e., by ≈ 35 Mm.
How can we understand such a discrepancy? It is due in large part to our
neglect of the large increases in Cp which occur in regions where hydrogen is
undergoing ionization. In such ionization regions, the true values of Cp are
up to 10 or more times larger than the value of 3.3 Rg/µconv which we have
adopted in the upper convection zone. As a result, for a given step in depth
∆z, our computed ∆T = (g/Cp)∆z in the ionization zone is some ten times
too large. Conversely, for a given temperature interval, our estimated value of
the corresponding ∆z is too small in the ionization zone by a factor of order
ten. Thus, in an ionization region which spans a depth range of 1–3 Mm in the
“real” Sun, our method has the effect that as much as 10–30 Mm of depth are
“missing” by the time the integrated value of temperature reaches the limit Tb.

When solar models are computed with state-of-the-art computing tech-
niques (e.g., Bahcall et al., 2006), the models yield estimates of the convection
zone thickness which depend on the chemical composition which one assumes
for the model. With two different choices of the solar composition, Bahcall
et al. compute that the convective envelope has a thickness of 28.7 and 27.2%
of R�.

T&F Cat # C3074, Chapter 7, Page 104, 14-7-2009



Computing a Model of the Sun: The Convection Zone 105

Exercises

7.1 Perform the step-by-step calculation of the convection zone described
in Section 7.8, using values of T (1), z(1), p(1) , and ρ(1) which you
obtained in one of your models of the photosphere (Chapter 5). What
differences do you find from the results in Table 7.1?

7.2 Repeat the calculation of Section 7.8 using a different value of the step
size, ∆z, e.g., 500 km, 2000 km. How much do the various parameters
differ from those in Table 7.1?

7.3 Repeat the calculations of Section 7.8 using different values of Γ(eff).
Instead of using Γ(eff) = 1.43, consider Γ(eff) = 1.3 and 1.6. Each of
these will lead to changes in the exponents in Equations 7.8 and 7.9.
Proceed in each case to the depth zb where T = Tb = 2 MK. In each
case, how do your values of zb compare with the value obtained from
helioseismology (200 Mm)?
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Chapter 8

Radiative Transfer in the Deep
Interior of the Sun

Continuing inward to the deep interior of the Sun, we note that, below the
Sun’s convection zone, energy is transported once again by means of radia-
tion. We refer to this region as the radiative interior of the Sun. The aim of
this chapter is to derive the equations which determine the radial profiles of
temperature, pressure, and density in the radiative interior.

In this region of the Sun, hydrogen and helium are essentially completely
ionized. As a result, there are no longer many bound electrons available. At
temperatures in excess of 2 million K, the only remaining bound electrons
belong to some of the metals, and their relative abundances are small. There-
fore, photons are not as strongly absorbed in the radiative interior as they are
in the cooler gas in the convection zone. As a result, the opacity decreases
rapidly in the radiative interior.

With reduced opacity, radiation can more readily carry the energy flux out-
ward through the Sun without requiring the temperature gradient to become
large. That is, radiation once again takes over as the preferred means of en-
ergy transport. Thus, we can consider energy transport through the Sun in
an overall sense in terms of a “sandwich”: there are two regions in which
radiation transports the energy (the photosphere, but the radiative interior),
separated by a region where convection transports the energy.

8.1 Thermal Conductivity for Photons

When we come to consider how radiation travels deep inside the Sun, we
find that it is easier to describe the flow of radiative energy there than was
the case in the surface layers. As was described in Chapter 2 (especially
Equations 2.29 through 2.31), when we considered radiative transfer in the
surface layers, we had to give careful consideration to the large relative dif-
ference between outgoing Io and incoming Ii intensities: in the extreme case
of τ → 0, the incoming intensity can be set to zero, while the outgoing in-
tensity is proportional to the full outward flux of energy generated by the
Sun. But deep in the interior, the situation is different: Io and Ii at any given
point are both enormous compared to their values in the photosphere, but the
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difference between outgoing and incoming intensities is very small compared
to the magnitude of either. In this situation, the photons flow down the tem-
perature gradient in a manner which can be well described in diffusive terms.

This means that the flux F of radiant energy can be described in the form
of a generalized Fick’s law: the flux F is linearly proportional to the local
gradient of temperature. That is

F (r) = −kth
dT
dr

(8.1)

where kth is the thermal conductivity in units of ergs cm−1sec−1deg−1.
Referring to the kinetic theory of gases, we find (e.g., Roberts and Miller,

1960) that in a medium where particles are responsible for the transport of
heat, the general formula for thermal conductivity is

kth =
1
3
λVtρCv (8.2)

Here, Vt is the mean thermal speed of the particles which are transporting
the heat, λ is the mean free path of the particle (i.e., the mean distance a
particle travels between collisions with the background medium), ρ is the mass
density of the medium, and Cv is the specific heat per gram at constant volume
of the medium which is doing the heat transport. Inserting the appropriate
units, it is readily seen that the units of kth are ergs cm−1sec−1deg−1, as
required by Equation 8.1.

In the radiative interior of the Sun, we are dealing with a medium con-
sisting of two distinct components: photons and material particles. The two
components are closely coupled by means of emission and absorption of radi-
ation. Energy transport is performed by the photons, while mass density is
provided by the material particles. Let us apply Equation 8.2 to this case,
where photons are the “particles” which transport energy. For photons, the
mean speed of the “particles” is the speed of light: therefore, we replace Vt in
Equation 8.2 with c = 3 × 1010 cm sec−1. The mean free path for a photon
is determined by the length scale λ corresponding to optical depth of order
unity. Using the definitions in Chapter 3, Section 3.1, we see that this length
scale is given by the condition λκρ = 1 where κ is the local opacity. Thus, in
Equation 8.2, we replace λ by the quantity 1/κρ. The density ρ is the local
mass density.

How do we estimate the term Cv for the case of a photon-material mix-
ture in which the photons are the carriers of energy? We start by recalling
(Chapter 2, Section 2.1) that the energy contained in radiation per unit volume
is u = aRT 4 ergs cm−3 where aR = 7.5658 ×10−15 erg cm−3 deg−4 is the ra-
diation density constant. In terms of units, we note that Cv=(dU/dT)v refers
to an energy content U per gram of the medium. To convert from energy per
unit volume to energy per gram, we divide u by the local mass density. This
leads to U = aRT 4/ρ ergs gm−1. This yields Cv = 4aRT 3/ρ ergs gm−1deg−1.
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Combining the various terms, we finally have

kth =
4aRcT 3

3κρ
(8.3)

8.2 Flux of Radiant Energy at Radius r

Noting that the Stefan–Boltzmann constant σB is related to the radiation
constant aR by the formula σB = aRc/4, we finally have that

kth =
16σBT 3

3κρ
(8.4)

This is the thermal conductivity of a medium in which photons are trans-
porting energy. The larger the opacity, the smaller the thermal conductivity.

Now that we know the thermal conductivity, we can write down the local
flux of radiant energy at radial location r in terms of the local temperature
gradient:

F (r) = −16σBT (r)3

3κ(r)ρ(r)
dT
dr

(8.5)

8.3 Base of the Convection Zone

At this point, we can determine a quantity to which we have already
referred in Chapter 7: the temperature at the base of the convection zone.
This temperature, Tb, is determined by the location where the temperature
gradient due to radiation (given by Equation 8.5) becomes as large as the
adiabatic gradient g/Cp. As was mentioned in Chapter 7, the numerical values
of g and Cp at the base of the convection zone (at a radial location of about
0.7R�) are both larger than their respective surface values by a factor of about
two. Thus, the surface value of g/Cp(≈ 1.7 ×10−4 deg cm−1: see Chapter 6,
Equation 6.9) can be inserted for dT/dr in Equation 8.5 to determine the base
of the convection zone.

Also at the base of the convection zone, where r ≈ 0.713R�, F (r) is
larger than the surface flux F�(= 6.3155 ×1010 ergs cm−2 sec−1: Chapter 1,
Section 1.8) by a factor of (R�/r)2 ≈ 2. Thus, we can set F (rb) ≈ 1.3 ×
1011 ergs cm−2sec−1.

As regards the opacity, we have already noted (Chapter 3, Section 3.7) that
at temperatures in excess of about 106 K, a reasonable fit to the opacities can
be obtained by the Kramers “law”: κ = κoρ/T 3.5 cm2 gm−1. By fitting to
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tabulated values of opacity in conditions which are relevant to the solar interior
(e.g., Harwit, 1973), we have determined that a plausible numerical value of
κo is roughly 1024 when ρ is in units of gm cm−3 and T is in units of K. (This
choice leads to a value of κ ≈ 103 cm2 gm−1 in gas where ρ ≈ 1 gm cm−3 and
T ≈ 106 K.)

Inserting these factors in Equation 8.5, we find that the temperature and
density at the base of the convection zone are related by

T 6.5
b

ρ2
b

≈ 3 ×1042 (8.6)

The uncertainties in estimating the numerical values of the various param-
eters entering into Equation 8.5 are such that we retain only one significant
digit in Equation 8.6.

To proceed further, we need to know the relationship between Tb and ρb.
Such a relationship is already available: in the deep convection zone, we have
seen (Chapter 7) that the density and temperature are related by an adiabatic
function. This function, Equation 7.8 (Chapter 7), when applied to the base
of the convection zone, indicates that ρb = KdT

2.3
b , where Kd is related to

the parameters at the top of the convection zone by Kd = ρ(zo)/T (zo)2.3.
Inserting values of ρ(zo) = 2.9 × 10−7 gm cm−3 and T (zo) = 6010 K (from
Chapter 5, Table 5.3), we find that Kd ≈ 6 × 10−16, where we again retain
only one significant digit in view of the simplification which enters into the
choice of the exponent 2.3 (see Chapter 7).

Inserting these values into Equation 8.5, we find T 1.9
b = 1×1012. This leads

finally to Tb ≈ 2 × 106 K. This is the origin of our choice of temperature at
the base of the convection zone when we computed a model of the convection
zone in Chapter 7.

8.4 Temperature Gradient in Terms of Luminosity

It is useful to convert from units of flux to units of power (i.e., luminosity).
At any radial location inside the Sun, the luminosity L(r) (in units of ergs
sec−1) has a value which is determined by the summation of energy sources
which lie interior to radial location r. The value of L(r) is zero near the center
of the Sun, and it increases rapidly in magnitude in the energy-generating core.
Detailed models indicate that L(r) rises to > 90% of its asymptotic value at
a radial location of about 0.2 R�. The local flux of radiant energy F (r) (in
units of ergs cm−2 sec−1) is related to L(r) by F (r) = L(r)/4πr2.

Combining this with Equation 8.5, we see that we can write

T (r)3

κ(r)
dT
dr

= − 3L(r)
64πσB

ρ(r)
r2 (8.7)
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8.5 Temperature Gradient in Terms of Pressure

The usefulness of Equation 8.7 can be seen by comparing it with the equa-
tion of HSE:

dp
dr

= −g(r)ρ(r) = −GM (r)
ρ(r)
r2 (8.8)

where M(r) is the mass interior to radial location r. Does HSE apply to the
radiative interior of the Sun? Yes: there are no bulk flows of gas in that part
of the Sun.

Notice that on the right-hand sides, both Equations 8.7 and 8.8 contain
the factor ρ(r)/r2. Therefore, if we take the ratio of Equations 8.8 and 8.7,
we find an equation which relates T and p at any radial location in the star:

T (r)3

κ(r)
dT
dp

=
3

64πσBG

L(r)
M(r)

(8.9)

As already mentioned, detailed solar models indicate that L(r) builds up
rapidly to its asymptotic value as r increases from r = 0, reaching 90% of L�
at r = 0.2R�. For the mass function, M(r) also rises from zero at r = 0, and
tends to the asymptotic value M� as r increases. The rate of rise in M(r)
is not as great as for L(r): M(r) reaches 90% of its asymptotic value M�
around r = 0.5R�. In the outer parts of the radiative interior, where both
M(r) and L(r) are within 10% of their asymptotic values, the ratio L(r)/M(r)
can be well approximated with the asymptotic value (L/M)a ≡ L�/M� ≈
2 ergs sec−1gm−1 (see Chapter 1, Section 1.4). Closer to the center of the Sun,
where L(r) remains large while M(r) decreases, the ratio L(r)/M(r) becomes
larger than (L/M)a. Examination of detailed models suggests that L(r)/M(r)
exceeds (L/M)a by factors of 2, 4, and 6 at r ≈ 0.25R�, r ≈ 0.15R�, and
r ≤ 0.1R�. Thus, throughout 98% of the volume of the Sun, the right-hand
side of Equation 8.9 retains a constant value, within a factor of 2.

For purposes of the simplified solar model we are considering here, we
shall set the right-hand side of Equation 8.9 equal to a constant, C1 = 8×109

c.g.s. This is the appropriate value for regions of the Sun where L(r)/M(r) ≈
(L/M)a.

8.6 Integrating the Temperature Equation

In order to proceed with the integration of Equation 8.9, we use the
Kramer’s opacity law, as described above: κ = 1024 ρ/T 3.5 cm2gm−1. Sub-
stituting this in Equation 8.9, we find

T 6.5 dT = 1024C1ρdp (8.10)
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Using the perfect gas law, ρ = pµ/RgT , Equation 8.10 can be written as

T 7.5 dT = C2pdp (8.11)

where C2 = 1024 C1 µ/Rg ≈ 1026µ. In the radiative interior of the Sun,
µ ≈ 0.5. Integration yields an expression for pressure in terms of the temper-
ature:

p2 = C3T
8.5 + const (8.12)

where C3 = 1/(4.25 C2). In order to avoid the use of large numbers, it is
convenient to express the temperature as T6 = T/106 K. In these units, we
find

p2 = 5 ×1024 T 8.5
6 + const (8.13)

To evaluate the constant, we use the conditions which have been computed
for the base of the convection zone: according to Table 7.1 (Chapter 7), we see
that at that location, T6 = 2.0027, and p = 2.84 ×1013 dyn cm−2. Inserting
these in Equation 8.13, we find that the constant has the value −1.02 ×1027

c.g.s. We shall use this in the next Chapter.

Exercise

8.1 The Kramers “law” is not a perfect fit to the opacities in the solar
interior. Other possible fits to the opacities include the cases κ =
κ′ρ/T 3 cm2 gm−1 and κ = κ′′ρ/T 4 cm2gm−1. For both these cases,
evaluate κ′ and κ′′ by fitting (in both cases) κ = 103 cm2gm−1 at ρ = 1
and T = 106 K. Starting at Equation 8.10, and keeping C1 = 8 × 109

c.g.s., obtain revised versions of Equation 8.13, including revised values
for the constant of integration.
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Chapter 9

Computing a Mechanical Model of the
Sun: The Radiative Interior

Following the spirit of Chapters 5 and 7, we now proceed deeper into the
Sun and calculate a radial profile for the physical variables. As in the earlier
chapters, we still refrain from considering the origin of the energy which is
passing through. Our aim is purely mechanical: given a total luminosity, how
does the medium arrange itself so as to “handle” the energy which is passing
through? A complete model of the Sun would of course include a descrip-
tion of the processes whereby the energy is generated: we will discuss that
in Chapter 11. But in this chapter, we do not attempt to calculate a com-
plete model. Our goal is as follows: given the solar luminosity as a boundary
condition, what can we deduce about the structure of the Sun?

In Chapter 8 (Section 8.6), we derived the following relationship between
pressure and temperature:

p2 = 5 ×1024T 8.5
6 − 1.02 ×1027 (9.1)

This equation applies (within our simplification of constant L/M ratio)
to the radiative interior. We use Equation 9.1 to continue our computation
of a solar model. The model will consist of a table in which each line refers
to a particular depth (i.e., radial location), at which we calculate the local
temperature, pressure, and density.

9.1 Computational Procedure: Step by Step

We start at the base of the convection zone, where we already (see
Chapter 7, Table 7.1) have numerical values for the quantities zb, Tb(≈ 2 ×
106 K), pb, and ρb. It is convenient to convert now from depth z to radial
distance from the center of the Sun: r = R� − z. Thus, the starting values for
the four parameters in the table we wish to compute for the radiative interior
are: r(1) = R� − zb, T6(1) = 2.0027, p(1) = pb, and ρ(1) = ρb. These are
the parameters we enter into the first line of our table of the solar radiative
interior.

113
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The computation proceeds by means of the following steps:

1. Choose an increase in temperature of (say) ∆T6 = 0.01. Thus, T6(2),
the temperature (in units of 106 K) of the second row in the table, is
given by T6(2) = T6(1) + ∆T6.

2. Using T6(2) in Equation 9.1, the pressure p(2) on the second line of the
table can be calculated.

3. The pressure increment between lines 1 and 2 is ∆p = p(2) − p(1).

4. The density on the second line of the table is calculated from the perfect
gas law: ρ(2) = p(2)µ/(RgT (2)). Here, µ can be set equal to 0.5 (see
Chapter 7, Section 7.8). The mean density between lines 1 and 2 is
ρ(a) = 0.5(ρ(1) + ρ(2)).

5. The linear distance between lines 1 and 2 can be derived from the equa-
tion of hydrostatic equilibrium:

∆r = − ∆p

g(r)ρ(a)
(9.2)

However, before this step can be taken, we need to discuss what value
we should use for the acceleration g(r).

6. In order to calculate g(r), the physics of the solar interior tells us that
there are two different zones in the radial coordinate which we need
to distinguish. In the first zone, in the outermost parts of the Sun, at
radial location r, the local gas density is small enough that the mass
M(r) enclosed within radius r is essentially constant. As a result, g(r) =
GM(r)/r2 in the outermost parts of the Sun can be written essentially as
g(r) = GM �/r2. As a result, in this outer zone of the radial coordinate,
g(r) decreases as the radial location increases, according to the inverse
square law, 1/r2. In the second zone, near the center of the Sun, the den-
sity does not change rapidly: within the inner 10% of the solar radius, the
density changes by a factor of only about 2. In the limit of constant den-
sity ρc near the center, the local acceleration due to gravity tends toward

g(r) =
GM (r)

r2 ≈ 4πGρc

3
r (9.3)

Thus, near the center of the Sun, the acceleration due to gravity at
radius r increases linearly with increasing r.
The existence of the two distinct zones means that the radial profile of
g(r) inside the Sun is not monotonic. Instead, there exists, inside the
Sun, a radial location rm where g(r) has a maximum value.
In order to include this feature, and in the spirit of simplicity which
informs our approach to modeling the interior of the Sun, we assume
that the behavior of g(r) inside the Sun can be captured adequately
by a composite of two functions, depending on the radial location.
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At radial locations outside a certain critical radius rm, we use the inverse
square law:

g(r) = gs

(
R�
r

)2

(r ≥ rm) (9.4)

where gs = 27,422 cm sec−2 is the acceleration at the surface of the Sun
(see Chapter 1, Equation 1.13).
At radial locations inside rm, we use the linear law:

g(r) = g(rm)
r

rm
(r ≤ rm) (9.5)

where g(rm) is chosen so that g(r) is continuous at r = rm.
What value is appropriate for rm? Various values can be chosen in order
to determine what effect the choice would have on the solar model. One
possibility that we have used for the tabulated model to be reported be-
low is to identify rm with the radial location where the mass interior to
r = rm is 50% of the solar mass, i.e., M(rm) ≈ 0.5M�. Using information
from detailed solar models, it turns out that this condition corresponds
to rm ≈ 0.25R�. With this choice, as we move inward into the solar in-
terior, Equation 9.4 indicates that the value of g at first increases from
its surface value gs = 27,422 cm sec−2 to a sharp peak of g(rm) = 16gs.
Then in the inner zone, between rm and the center of the Sun, g decreases
along a linear ramp toward a value of zero at the center. In detailed solar
models (see Exercise 5 at the end of this chapter), the radial profile is
not sharply peaked, and has a smaller maximum value 8–9 gs.

7. Now that g(r) can be evaluated at any radial location, ∆r can be com-
puted using Equation 9.2, and then r(2) = r(1) + ∆r.

8. Repeat steps 1−7 n times until the computed radial location r(n+1) =
r(n) − ∆r reaches the value zero. At this point, the model has reached
the center of the Sun, and the tabulated parameters refer to conditions
at the center.

An example of an abbreviated table computed according to the above
prescription is given in Table 9.1.

9.2 Overview of Our Model of the Sun’s
Radiative Interior

What do the results of the model in Table 9.1 tell us about conditions in
the deep interior of the Sun?

According to this model, the gas at the center of the Sun has a temperature
of roughly Tc = 16.5 million K, a density of ρc = 141 gm cm−3, and a pressure
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TABLE 9.1: A mechanical model for the radiative interior of the Sun:
rm = 0.25R�

r(cm) T (K) p(dyn cm−2) ρ(gm cm−3) g(cm sec−2)
5.3093E+10 2.0127E+06 2.9803E+13 1.0329E-01 4.6766E+04
5.1046E+10 2.1027E+06 4.1817E+13 1.3873E-01 5.0548E+04
4.9373E+10 2.2027E+06 5.5592E+13 1.7605E-01 5.4111E+04
4.7997E+10 2.3027E+06 7.0541E+13 2.1369E-01 5.7301E+04
4.5697E+10 2.5027E+06 1.0561E+14 2.9436E-01 6.3262E+04
4.3737E+10 2.7027E+06 1.4960E+14 3.8613E-01 6.9084E+04
4.1179E+10 3.0027E+06 2.3715E+14 5.5092E-01 7.7965E+04
3.8249E+10 3.4027E+06 4.0589E+14 8.3209E-01 9.0393E+04
3.5726E+10 3.8027E+06 6.5218E+14 1.1964E+00 1.0364E+05
3.3520E+10 4.2027E+06 9.9832E+14 1.6570E+00 1.1775E+05
3.1572E+10 4.6027E+06 1.4696E+15 2.2273E+00 1.3275E+05
2.9839E+10 5.0027E+06 2.0944E+15 2.9204E+00 1.4865E+05
2.7924E+10 5.5027E+06 3.1399E+15 3.9805E+00 1.6977E+05
2.6240E+10 6.0027E+06 4.5442E+15 5.2808E+00 1.9229E+05
2.4747E+10 6.5027E+06 6.3846E+15 6.8491E+00 2.1621E+05
2.3416E+10 7.0027E+06 8.7472E+15 8.7135E+00 2.4153E+05
2.2220E+10 7.5027E+06 1.1726E+16 1.0903E+01 2.6825E+05
2.1141E+10 8.0027E+06 1.5426E+16 1.3446E+01 2.9636E+05
2.0162E+10 8.5027E+06 1.9958E+16 1.6373E+01 3.2588E+05
1.9269E+10 9.0027E+06 2.5443E+16 1.9715E+01 3.5680E+05
1.8452E+10 9.5027E+06 3.2014E+16 2.3501E+01 3.8912E+05
1.7702E+10 1.0003E+07 3.9810E+16 2.7763E+01 4.2284E+05
1.6998E+10 1.0503E+07 4.8980E+16 3.2532E+01 4.2916E+05
1.6272E+10 1.1003E+07 5.9684E+16 3.7840E+01 4.1087E+05
1.5513E+10 1.1503E+07 7.2092E+16 4.3720E+01 3.9173E+05
1.4714E+10 1.2003E+07 8.6382E+16 5.0204E+01 3.7161E+05
1.3870E+10 1.2503E+07 1.0274E+17 5.7325E+01 3.5033E+05
1.2970E+10 1.3003E+07 1.2138E+17 6.5116E+01 3.2768E+05
1.2004E+10 1.3503E+07 1.4249E+17 7.3612E+01 3.0334E+05
1.0953E+10 1.4003E+07 1.6630E+17 8.2845E+01 2.7687E+05
9.7901E+09 1.4503E+07 1.9304E+17 9.2851E+01 2.4760E+05
8.4694E+09 1.5003E+07 2.2295E+17 1.0366E+02 2.1438E+05
6.9014E+09 1.5503E+07 2.5628E+17 1.1532E+02 1.7498E+05
4.8543E+09 1.6003E+07 2.9330E+17 1.2785E+02 1.2370E+05
2.0805E+08 1.6503E+07 3.3427E+17 1.4130E+02 1.5297E+04

of pc = 3.34 × 1017 dyn cm−2. Protons at a temperature of Tc have an rms
speed Vrms =

√
(3RgTc) ≈ 640 km sec−1.

It is important to compare this proton speed at the center of the Sun
with another characteristic speed associated with the Sun as a whole: the
escape speed Vesc from the surface. In Chapter 1, Section 1.7, we saw that
Vesc = 617.7 km sec−1. The latter is a measure of the strength of the inward
pull of gravity which holds the hot gas at the center of the Sun together by
means of the crushing weight of the overlying gas. We see that in our simplified
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mechanical model of the Sun, we have found that the conditions at the center
are such that Vrms agrees with Vesc within about 4%. This agreement indicates
that in our model, the inward pull of the gravitational forces and the outward
force of pressure are close to achieving a balance.

How does our mechanical model in Table 9.1 compare with models which
have been computed by including many more details of the physics (including
energy generation by nuclear fusion)? To answer that, we note that in a series
of 10,000 “standard solar models” reported by Bahcall et al. (2006), the best
estimates of temperature, density and pressure at the center are found to be
15.48 million K, 150.4 gm cm−3, and 2.34 × 1017dyn cm−2. Compared with
these, our mechanical model yields a central temperature which is too high by
about 7%, a density which is too low by about 6%, and a pressure which is too
high by about 40%. The main reason for the error in pressure has to with the
mean molecular weight: we have assumed µ = 0.58 throughout the radiative
interior, whereas in the “real Sun,” nuclear reactions build up more and more
helium in the core as time goes on. As a result, in the Bahcall et al. model,
the central value of µ equals 0.83, i.e., some 40% larger than our assumed
value. In the best estimate models of Bahcall et al., protons at the center of
the Sun have Vrms = 621 km sec−1, agreeing with Vesc to better than 1%.
With a central density of 150 gm cm−3, and a mean nuclear weight of about 2
(He is building up in abundance in the core because of the reactions), the
corresponding number density of nuclei is of order 0.5 ×1026 cm−3.

The central density in the Sun (150 gm cm−3) exceeds the mean density of
the Sun (1.41 gm cm−3: see Chapter 1, Equation 1.21) by a factor of slightly
more than 100. This is a measure of the “central condensation” of the Sun to
which we shall return in Chapter 10 (Section 10.9).

Another aspect of our model which deserves attention concerns the ratio of
radiation pressure pr to gas pressure. The value of pr at the center of the Sun
can be determined from the result (see Chapter 2, Section 2.8) pr = aRT 4/3:
our model yields pr ≈ 2×1014 dyn cm−2. The gas pressure at the center of the
Sun exceeds pr by a factor of more than 1000. Elsewhere in the Sun, the gas
pressure exceeds the radiation pressure by even greater factors. For example,
in the photosphere, the gas pressure (≈ 105 dyn cm−2) exceeds the radiation
pressure by a factor of more than 3 × 104. These numerical values indicate
that we are justified in neglecting radiation pressure compared to the gas
pressure when we calculate a first model of the Sun: when we wrote down the
equation of hydrostatic equilibrium (Chapter 5, Equation 5.1), the quantity p
in Equation 5.1 includes only the gas pressure. In certain stars other than
the Sun, this might not be an acceptable approximation: but in the case of
the Sun, radiation pressure does not contribute significantly to supporting the
Sun against gravity. Finally, it should not be too surprising that our model is
not perfect. Because of various simplifications, and because we use different
modeling techniques and different µ values in different regions of the Sun,
our model includes an artificial “step” in density between the bottom of the
convection zone (see Table 7.1, bottom line) and the top of the radiative
interior (see Table 9.1, top line).
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9.3 Photons in the Sun: How Long before They Escape?

Now that we have obtained a model of the interior of the Sun where pho-
tons transport the energy, it is worthwhile to ask: how long does it take for a
photon to propagate from the center of the Sun to the surface? Subsequently
we shall compare the photon time-scale with the time-scale for the escape of
a very different type of elementary particle (the neutrino: Chapter 12) which
is also generated in the core of the Sun.

To estimate the photon time-scale, we note that photons which are gen-
erated at the center of the Sun make their way outward by diffusing through
the material of the solar interior. In this process, the photons make their way
outward in radius by means of a random walk: if the length of each step in
the random walk is on average lp, then after N steps, the photon will have
moved outward in the radial direction by a distance rN ≈ lp

√
N .

As a first step toward estimating the diffusion time-scale, we consider the
mean free path lp which a photon travels between interactions with the solar
material. In view of the definition of opacity, it is clear that 1/κρ is an ap-
propriate length-scale (see Chapter 8, Section 8.1). Therefore, we may take
lp ≈ 1/κρ.

What is a typical numerical value for this length scale? Near the center of
the Sun, the model in Table 9.1 indicates ρ ≈ 140 gm cm−3. Moreover, with
opacity in the solar interior given by the Kramer’s law, κ = κoρT−3.5, and
using the value κo = 1024 (see Chapter 8), we find that near the center of the
Sun, where T ≈ 1.6 ×107 K, the numerical value of the opacity κ is of order
10 cm2gm−1. This leads to lp ≈ 0.7 × 10−3 cm. In the center of the Sun,
photons are restricted to very short mean free paths.

How is lp expected to vary with increasing radial distance from the center of
the Sun? In the radiative interior, we have seen that the pressure (at least near
the center) varies as T 4.25. In such conditions, the perfect gas law indicates
that ρ ∼ T 3.25. Moreover, assuming Kramers opacity, κ ∼ ρ/T 3.5, we find
lp ≈ 1/κρ ∼ T 3.5/ρ2 ∼ 1/T 3. As a result, the value of lp increases as we move
away from the center of the Sun. However, even when we reach the base of the
convection zone, at a radial location of rb ≈ 0.7R�, where the temperature
has fallen to 2 million K, lp has increased by no more than about 450, i.e.,
lp ≈ 0.3 cm. Throughout the radiative interior the mean free time tp = lp/c
between photon collisions is no more than 10−11 sec.

In terms of the random walk argument given above, the number of “steps”
Nb that the photon must take in order to move outward from the center of
the Sun to the base of the convection zone is given by Nb ≈ (rb/lp)2. The
time required for this number of steps is tb ≈ Nbtp ≈ r2

b/lpc. Most of the
time required by a photon to random walk to the base of the convection
zone is spent in the core of the Sun, where lp is smallest. Inserting the values
rb ≈ 5 × 1010 cm, lp ≈ 0.001 cm we find tb ≈ 8 × 1013 sec, i.e., 2–3 × 106

years. Thus, photons require on average a few million years to propagate from
the core of the Sun out to the base of the convection zone. From there, their
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energies are transported to the surface by fluid flow on much shorter time-
scales.

This indicates that when we observe the Sun today, the energy entering
our eyes was actually generated several million years ago. It will be a matter
of interest in a subsequent chapter to compare this photon time-scale with the
corresponding value for neutrinos.

9.4 Global Property of the Solar Model

We can obtain a complete model of the Sun, based on our simplified ap-
proach, by combining Tables 5.3, 7.1, and 9.1.

In view of the large ranges of physical parameters between surface and
center, is there some way that we can check our calculations in some global
sense? There is one test we can do.

In Chapters 13 and 14, we shall be interested in the topic of helioseismol-
ogy, i.e., the study of eigenmodes of oscillation within the Sun. One class of
eigenmodes, relying on pressure as the restoring force, are referred to as p-
modes. Each eigenmode has an eigenfunction which, when plotted as a func-
tion of radius from the center of the Sun to the surface, exhibits a definite
number of “nodes” (where the eigenfunction passes through 0). The number
of such nodes in the radial direction, nr, helps to define each mode.

We shall find that at high frequencies, the p-modes display a well-defined
asymptotic behavior: for modes of a given angular degree (l), the frequencies
of modes which differ by unity in the value of nr differ from each other by
a characteristic frequency spacing ∆ν. Theory indicates that the frequency
spacing ∆ν is related to the time ts required for sound to propagate from
the center of the star to a reflection point at radial location R(r) near the
photosphere:

ts =
∫ R(r)

0

dr
cs(r)

(9.6)

where cs is the sound speed. Specifically, ∆ν can be shown to be equal to
1/(2ts).

Now that we have obtained a model of the Sun, albeit only a simplified
model, it is of interest to inquire: what is the sound travel time from center
to photosphere according to our model? The integration in Equation 9.6 can
be performed using the combined information in Tables 5.3, 7.1, and 9.1.
When we do this, we find that the sound crossing time from the center to the
photosphere of our combined model is ts = 3804 sec, a few minutes longer
than one hour. This leads to ∆ν = 131.5 µHz.

Empirically, p-modes in the Sun with low values of l(= 0, 1, 2), are found
to have asymptotic spacings of ∆ν = 134.8 − 135.1 µHz (Appourchaux et al.,
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1998). Thus, our mechanical model of the Sun replicates the solar asymptotic
spacings within 2–3%.

9.5 Does the Material in the Sun Obey the Perfect
Gas Law?

In computing the model of the three regions of the Sun (Chapters 5, 7,
and 9) we have used the equation of state for a perfect gas. Now that we
have calculated the conditions in the interior of the Sun, we need to perform
a consistency check, and ask: does the gas in the Sun really obey the perfect
gas law? After all, we have found that the density at the center of the Sun
exceeds 140 gm cm−3: this is denser than solid gold or solid lead, and the
latter materials certainly do not obey the perfect gas law.

What criterion can we use in order to test whether the perfect gas law,
which follows from the classical kinetic theory of gases, is actually obeyed
inside the Sun? The answer is: classical theories of matter are acceptable as
long as quantum mechanical effects are negligible.

According to quantum mechanics, particles in certain circumstances behave
with wave-like properties. The wavelength λp associated with a particle of
mass m, moving with speed V , is given by de Broglie’s formula: λp = h/(mV ),
where h = 6.62606896 ×10−27 gm cm2 sec−1 is Planck’s constant.

Classical physics provides a reliable description of the behavior of matter
as long as the de Broglie waves of individual particles do not overlap one
another significantly. But the laws of classical physics break down if the de
Broglie wave of one electron is so large that it overlaps significantly with the
de Broglie waves of a number of the neighboring electrons. How large should
the number of overlaps be? It must be at least two, because the existence
of electron spin allows two electrons to occupy the same element in phase
space without contradicting Pauli’s exclusion principle. Once the wave of one
particle overlaps the waves of (say) ten or more neighboring particles, then
the electrons with overlapping de Broglie waves begin to “feel the pressure” of
the Pauli exclusion principle. In a very real sense, the electrons are subject to
a physical pressure which “drives them away” from their neighbors in phase
space. In such a situation, quantum effects must be taken into account, and
the electrons are said to be “degenerate,” and the pressure which they exert
is called “electron degeneracy pressure.”

In conditions where quantum effects are important, the pressure associated
with electron degeneracy can be strong enough to support the overlying weight
of an object with a mass of order the Sun’s mass. In such an object, the
pressure of the thermal gas is no longer the physical agent which supports
the star against its own weight. As a result, even if HSE were to hold, there
would no longer be any reason why the rms thermal speed of the particles at
the center of the star should be equal to the escape speed from the surface.
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Let us see what happens to de Broglie waves at the center of the Sun. In
order to make the quantum effects as large as possible, we consider electrons:
their small mass ensures that their de Broglie wavelengths are larger than
those of other constituents. Therefore, electrons have the best chance of having
their de Broglie waves overlap with their neighbors. For electrons at the center
of the Sun, where the rms velocity is

√
(3kT/me), the de Broglie wavelength

has a mean value of λe = h/
√

(3kTme). Inserting the temperature at the
center of the Sun, T = 1.6 ×107 K, we find λe = 2.7 ×10−9 cm.

Now that we know the value of the de Broglie wavelength of an electron at
the center of the Sun, we can determine the conditions which are required for
degeneracy to be an important contributor to the pressure. In order that the
de Broglie wave of one particular electron would extend throughout a volume
in which there are ten or more other electrons, the mean distance between
the electrons at the center of the Sun must be less than λe by a factor of at
least 101/3. Thus if electron degeneracy is to be important in the center of the
Sun, the mean distance between electrons in the center of the Sun must be no
larger than de ≤ 1.3 ×10−9 cm.

In a medium where the electron density is ne cm−3, the mean distance de

between an electron and its neighbors is roughly 1/n
1/3
e cm. Thus, for electron

degeneracy to be important at the center of the Sun, the number density of
electrons would have to be at least as large as 5 ×1026 cm−3. At the center of
the Sun, where hydrogen burning has been going on for several billion years,
helium has increased to an abundance which is comparable to H. Correspond-
ing to each electron from He, there are two nucleons to contribute mass, each
with a mass of 1.67 × 10−24 gm. Therefore, the mass density in a helium-
dominated region with ne ≥ 5×1026 cm−3 would exceed 1700 gm cm−3. This
is more than ten times larger than the best estimates for the density at the
center of the Sun (150.4 gm cm−3 in the model of Bahcall et al., 2006).

Thus, despite the high gas density at the center of the Sun, the central
temperature is so large that the average de Broglie wavelength of each electron
is relatively short. As a result, there is no significant overlap of the electron
de Broglie waves at the center of the Sun.

This means that the laws of classical physics are adequate to describe the
gas at the center of the Sun. In particular, we are justified in assuming that
the material in the Sun, even at the very center where densities are highest,
obeys the equation of state of a perfect gas.

9.6 Summary of Our Solar Model

We have found that, even without considering the generation of energy in
detail, it is nevertheless possible, using the equation of hydrostatic equilibrium,
to calculate the radial profiles of various physical parameters from center to
surface. These are contained in our Tables 5.3, 7.1, and 9.1.
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Our results allow us to appreciate the great range which is spanned by
the various physical parameters in the Sun. Of the three principal parameters
(T, p, and ρ), we note that the smallest range is exhibited by the tempera-
ture: the central temperature exceeds the photospheric temperature by only
about 3.5 orders of magnitude. Pressure exhibits the widest range: the central
pressure exceeds the photospheric pressure by at least 12 orders of magni-
tude. Density presents an intermediate case: the central density exceeds the
photospheric density by 8–9 orders of magnitude.

It is encouraging to find that, despite these great ranges, we have arrived
at a model of the Sun which is consistent with a variety of observational
data, despite the fact that the model is purely mechanical, i.e., our model has
included the equation of momentum conservation but we have not paid much
attention to the energy equation.

Of course it is precisely the generation of energy which sets the Sun (and
stars) apart from other celestial bodies. Now that we have derived estimates of
certain physical parameters inside the Sun, we need to examine the processes
by which energy (which we have treated so far as a boundary condition) is
actually generated.

However, before we enter into the details of nuclear reactions, we make a
digression into a topic which at first sight seems to be rather idealized and far-
afield from a study of the Sun. The topic has to do with mathematical entities
called polytropes. However idealized these may seem, we shall find that we
have already been working with models (in the convection zone, and in the
radiative interior) which are actually not far removed from polytropes. More-
over, the discussion of polytropes will stand us in good stead in a subsequent
chapter when we consider oscillations in the Sun.

Exercises

9.1 Perform the computation described in Section 9.1, using whatever com-
putational technique that you prefer for the numerical work. How do
your numbers at the center of the Sun compare with those in Table 9.1?

9.2 In step 6 of the procedure in Section 9.1, there is a recommendation for
an approximation to the nonmonotonic radial profile of gravity inside
the Sun. Experiment with different choices for the parameters of the ap-
proximation, e.g., choose a smaller value of rm e.g., 0.20R� or 0.15R�,
and recalculate the model according to Section 9.1. How do the parame-
ters at the center change? Then choose a larger value of rm e.g., 0.30R�
or 0.35R�, and see how the central parameters change.

9.3 The formula in Equation 9.1 is based on the Kramers’ opacity law.
Use the two revised versions of Equation 9.1 which you obtained in
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Exercise 1 of Chapter 8. For each case of the revised opacity “law,”
repeat the calculation of Section 9.1. How do your revised results for the
parameters at the center of the Sun agree with the results of Bahcall
et al. (2006)?

9.4 For each of your models, calculate the sound crossing time (Equation
9.6) and the associated frequency interval ∆ν (express the frequency
in µHz). How well does your value of ∆ν agree with the observed solar
value of (about) 135 µHz?

9.5 An alternative approach to modeling the radial profile of the gravity is
to examine the profile of the mass parameter M(r) in a detailed solar
model, such as that on the website of J. Christensen-Dalsgaard. The
tabulated values of the model are contained in the file http://www.
phys.au.dk/∼jcd/solar models/fgong.l5bi.d.15c. A description of the
different columns and rows can be found at: http://www.phys.au.dk/
∼jcd/solar models/file-format.pdf. Extract M(r) at a number of points
in the tabulated model, and plot g(r) = GM(r)/r2 as a function of
log(r). A peak (≈ 8.4 times the surface gravity) occurs at a certain
value of log(r/R�)(≈ −0.8). Is there a simple functional form (such as a
parabola) that you can find to fit the peak? Use that functional form to
obtain a better estimate of the local value of g in step 6 of the procedure
in Section 9.1. How do the central parameters of the Sun change as a
result?
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Chapter 10

Polytropes

Now that we have computed a model of the solar interior, albeit a simplified
one, it is worthwhile to pay a certain amount of attention to a particular
aspect of our solutions. This digression will be valuable in a later chapter
when we come to consider how to compute the properties of oscillations in a
solar model.

10.1 Power-Law Behavior

Inspection of Equation 9.1 indicates that, when we consider regions in
the radiative interior of the Sun where the temperature is sufficiently large,
the constant term in Equation 9.1 can be neglected. In this limit, we see
that the pressure p varies as a power law of T : p ∼ T β . In the particular
case we are considering, the exponent β has the numerical value of 4.25. The
origin of this particular numerical value for the exponent can be traced to
two simplifications: (i) L(r)/M(r) remains constant as a function of radial
location, and (ii) the opacity depends on density and temperature according
to “Kramers’ law”: κ ∼ ρT−3.5. These are simplifications which deal with
matters of (i) energy generation, and (ii) energy transport. The fact that the
radial profiles of pressure and temperature are related to each other by a power
law therefore depends on certain assumptions we have made concerning the
energy equation.

In a very different context, the power-law relation p ∼ T β also emerged
when we were modeling the deep convection zone: see Equations 6.14 and 7.9.
Detailed models of the solar convection zone indicate that throughout
some 90% of the depth of the convection zone, the power law in the p ∼ T
relationship is close to 2.5. In the case of the convection zone, the reason for
the power law behavior can be traced to the physics of adiabatic processes,
i.e., on processes which enter into the transport of energy. Once again, certain
assumptions which we make concerning the energy equation lead to a power
law behavior between p and T .

It is noteworthy that we have encountered, in two quite different regions
of the Sun, a functional dependence of pressure on temperature which can be
written as a power law. In both cases, the emergence of the power law has to do
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with certain assumptions about the energy equation, although the assumptions
are quite different in the two different regions of the Sun.

In this chapter, we discuss the properties of equilibrium gas spheres (“poly-
tropes”) in which no explicit attention whatsoever is given to the energy
equation. Instead of attending to the details of the energy equation, a cer-
tain functional form is assumed to exist for the relationship between pressure
and density. Specifically, pressure and density are assumed to be related by
means of a power law. For a perfect gas, this means that pressure and tem-
perature are also related by a power law. A power law relationship between
pressure and density is referred to as a “polytropic” equation of state.

In our search for deriving radial profiles of physical parameters inside the
Sun (or for that matter inside any star), the only reason why polytropes
have any claim on our attention is that in “real stars,” the generation and
transport of energy occurs in fact in such a way that, in certain cases, the
pressure and density do turn out to obey the polytropic functional form, at
least over certain ranges of the radial coordinate.

10.2 Polytropic Gas Spheres

A polytrope is defined to be a medium in which the pressure and density
are related by the following relationship:

p = Kρ(n+1)/n (10.1)

where K and n are constants. The constant n is referred to as the “poly-
tropic index.” (In previous chapters, lower case n has been used to denote
number density of atoms/electrons in a gas. In the present chapter, and also
in Chapter 14, there are historical reasons for using n as the polytropic index,
a dimensionless number, which has nothing to do with density.) The proper-
ties of polytropic spheres of gas have been discussed by a number of authors,
including Lane, Ritter, Kelvin, Emden, and Fowler. A detailed study can be
found in a book by Chandrasekhar (1958).

Why are polytropes relevant to our study of the Sun? Because, in a non-
ionizing medium which obeys the perfect gas equation of state, p ∼ ρT , the
polytropic relationship can be written in the form of a power law relationship
between pressure and temperature: p ∼ T β , where β takes on a specific value:
β(polytrope) = n + 1.

This leads us to consider an application of polytropic concepts to the two
portions of the Sun in which we have already identified a power-law relation-
ship between pressure and temperature.

First, in the adiabatic portions of the convection zone, the fact that p
varies as T 2.5 suggests that the radial profile of the physical properties of
those portions of the Sun is related to the radial profile of a polytrope with
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index n = 1.5. We may say that the structure of the Sun in the convection
zone corresponds to an “effective polytropic index” of 1.5.

Second, in the radiative interior, the fact that p varies as T 4.25 suggests
that a polytrope with index n = 3.25 might provide useful information on the
radial profile of physical parameters. In this case, we may say that the struc-
ture of the Sun in the radiative interior corresponds to an “effective polytropic
index” of 3.25.

To make this more quantitative, it is instructive to calculate models of
polytropes. As was mentioned above, in this chapter, we continue the prac-
tice of not referring to the energy equation explicitly: all details of energy
generation and transport are subsumed into Equation 10.1. Then a polytrope
model is obtained by solving the equation for conservation of mass, and the
(static version of the) equation for conservation of momentum. In this way,
we are using information about the mechanical properties of the star without
including the thermal properties explicitly. Despite this limitation, since the
sound speed at any radial location r depends on the ratio of p(r) to ρ(r) (both
of which we shall calculate), our polytrope models will still provide sufficient
information to allow us to study quantitatively the propagation of acoustic
waves through the star.

The equation of mass conservation is:

dM (r)
dr

= 4πr2ρ(r) (10.2)

As we have already seen (Chapter 7, Equation 7.1), the equation of mo-
mentum conservation (in the limit of zero velocity) is simply the equation
of HSE:

dp(r)
dr

= −GM (r)ρ(r)
r2 (10.3)

These can be combined into a single second order equation:

1
r2

d

dr

(
r2

ρ(r)
dp(r)
dr

)
= −4πGρ(r) (10.4)

This is Poisson’s equation for a self-gravitating sphere. It is a second order
equation which includes two unknown functions of the radial coordinate: p(r)
and ρ(r). The polytropic assumption, i.e., that p is related to ρ at each and
every value of r by the relation p(r) = Kρ(r)(n+1)/n, allows Equation 10.4 to
be reduced to an equation for a single function of r.

Let the density and pressure at the center of the polytrope by ρc and pc.
Then at all values of radial location r, the local pressure and density satisfy
the relation

p(r)
ρ(r)(n+1)/n

=
pc

ρ
(n+1)/n
c

(10.5)
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10.3 Lane–Emden Equation: Dimensional Form

Let us introduce a dimensionless function y of the radial coordinate
according to the definition

yn =
ρ(r)
ρc

(10.6)

The function y is referred to as the Lane–Emden function. The goal of the
polytropic exercise is to derive, or compute, the function y as a function of
the radial location. In view of the definition of y, it is clear that the boundary
condition on y at the center of the polytrope is y(r = 0) = 1.

Inserting Equation 10.6 into Equation 10.5, we find that

p(r)
pc

= yn+1 (10.7)

From Equations 10.6 and 10.7, we see that at any radial location, y ∼
p(r)/ρ(r). From the equations of thermodynamics, we already know that the
ratio of pressure to density in a medium is related to the (square of the) sound
speed. Thus, the numerical value of y at any radial location is proportional to
the local sound speed. Because of this, in our subsequent study of helioseismol-
ogy, we shall be able to use polytropes to determine realistic global properties
of oscillation modes which involve the propagation of acoustic waves in a
sphere.

If the material of which the polytrope is composed happens to obey the
perfect gas equation of state, then at any given radial location, y ∼ p(r)/ρ(r)
is also proportional to T (r), the local temperature. In fact, y(r) = T (r)/Tc,
where Tc is the central temperature. In this case, Equations 10.6 and 10.7 indi-
cate that ρ(r) scales as T (r)n, while p(r) scales as one higher power T (r)n+1.
We have seen scalings of this kind earlier: see Chapter 7, Equations 7.8 and 7.9.

Using Equations 10.6 and 10.7 to replace ρ(r) and p(r) in Equation 10.4,
and collecting all the constants on the left-hand side of the equation, we find

(n + 1)pc

4πGρ2
c

(
1
r2

)
d

dr

[
r2 dy

dr

]
= −yn (10.8)

Given a value of the polytropic index n, the radial profile of the function
y can be obtained by solving Equation 10.8.

10.4 Lane–Emden Equation: Dimensionless Form

In order to convert the Lane–Emden equation to dimensionless form, we
introduce a new unit ro, the Emden unit of length, which is defined by

r2
o =

(n + 1)pc

4πGρ2
c

(10.9)
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How can we be sure that ro has the dimensions of length? To answer this,
we note that on the right-hand side of Equation 10.9, we can first isolate the
ratio of pc to ρc: this is related to the square of a sound-speed. Thus, the ratio
has dimensions of [length]2/[time]2. The remaining dimensional units are those
belonging to 1/Gρc. In Chapter 1, Section 1.10, we mentioned a characteristic
period Pg associated with the gravitational field of the Sun. The value of
Pg is proportional to

√
(R3

�/GM�). The dimensions of M/R3 are those of
density, indicating that the combination 1/

√
(Gρ) has the dimensions of [time].

Therefore the factor 1/Gρc in Equation 10.9 has the dimensions of [time]2.
Combining the dimensions, we see that the dimensions of the right-hand side
of Equation 10.9 are indeed [length]2. Therefore, ro has the dimensions of
length.

Is the Emden unit of length related to a length scale which might be
relevant in the context of the structure of “real stars”? In particular, would it
be useful to consider the dimensions of a star such as the Sun in terms of ro?
Or does the radius of a “real star” differ from ro by many orders of magnitude?
To answer these questions, we evaluate ro using the values of central density
and pressure which we have already obtained in our simplified solar model.
Substituting pc = 3.34×1017 dyn cm−2 and ρc = 141 gm cm−3 from Table 9.1,
we find that ro = 4.5 ×109√(n + 1) cm. We shall see below that the radius
Rp of a polytropic star is larger than ro by a factor x1 where the numerical
value of x1 depends on the n value. For example, with n = 3.25, the numerical
value of x1 is about 8 (see Table 10.1 below). Moreover, for n = 3.25, we see
that the Emden unit of length ro has a numerical value of about 9.3×109 cm.
Multiplying ro by x1, we find that Rp is about 7.4 ×1010 cm. This is within a
few percent of the actual solar radius. So it appears that the linear dimensions
of polytropes in which central pressures and densities overlap with those of the
“real Sun” provide a realistic and useful unit of length for characterizing a star
such as the Sun. Applicability of polytropes to other stars will be discussed
below.

In terms of the Emden unit of length, we introduce a new dimensionless
variable x for the radial coordinate: x = r/ro. This allows us to rewrite Equa-
tion 10.8 in the form

1
x2

d

dx

[
x2 dy

dx

]
= −yn (10.10)

This is the dimensionless form of the Lane–Emden equation. It is an ordi-
nary differential equation of second order containing one unknown, y(x).

In certain cases, it is convenient to rewrite Equation 10.10 in terms of an
auxiliary function z defined by z ≡ xy. Inserting this into Equation 10.10, we
find that the Lane–Emden equation can also be written in the form

d2z

dx 2 = − zn

xn−1 (10.11)
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10.5 Boundary Conditions for the Lane–Emden Equation

When we set out to calculate a polytropic model, the aim of the exercise is
to determine how physical parameters vary between the center of the sphere
and the surface. This involves solving Equation 10.10 for y as a function of the
radial coordinate x. Once we have such a solution, a plot of y as a function
of x will show, for a perfect gas, a curve which is proportional to the radial
profile of temperature from center to surface. According to Equation 10.6, the
radial profile of the density will be obtained by raising the local value of y
to the power n (the polytropic index). According to Equation 10.7, the radial
profile of the pressure will be obtained if the local value of y is raised to the
power n + 1.

Since Equation 10.10 is second order, we need two boundary conditions
(BC’s) in order to obtain a unique solution for any given value of n. One BC
is readily available from the definition in Equation 10.6: y = 1 at x = 0.

To obtain a second BC, it is helpful to consider how the acceleration due
to gravity g(r) is related to the Lane–Emden function y(r). To derive such a
relation, we recall that the value of g(r) is related to the gravitational potential
Φ by the formula g = −dΦ/dr . This allows us to rewrite the equation of
hydrostatic equilibrium in the form dp/dr = ρdΦ/dr , leading to dp = ρdΦ.
In view of the definition of a polytrope (Equation 10.1), we can write dp =
[(n + 1)/n]Kρ1/ndρ. This leads to the following differential equation relating
ρ and Φ in hydrostatic equilibrium: dΦ ∼ ρδdρ where the exponent δ = −1 +
(1/n). Integrating the equation, we find Φ ∼ ρ1/n + constant. Typically, the
gravitational potential is set to zero at infinity, where ρ → 0. This choice leads
to Φ ∼ ρ1/n. Recalling the definition of y in Equation 10.6, we see that Φ ∼ y.

Now at the center of the Sun, where density approaches a constant value,
we have already seen (Chapter 9, Section 9.1 (step 6, Equation 9.5)) that
g → 0 as r → 0. In other words, dΦ/dr → 0 as r → 0. Converting to the
dimensionless length parameter x, this is equivalent to dy/dx → 0 as x → 0.
This provides us with the second BC which we need in order to obtain a unique
solution for Equation 10.10 for any specified value of the polytropic index n.

In order to satisfy the two BC’s, a series expansion can be obtained near
the origin. For a polytrope with index n, the result is found to be (e.g., Chan-
drasekhar, 1958, p. 95)

y = 1 − x2

6
+

(
n

120

)
x4 − · · · (10.12)

10.6 Analytic Solutions of the Lane–Emden Equation

Since the boundary conditions both apply at x = 0, we obtain a solution
for y(x) (for any given value of n) by starting at the center of the polytrope
and integrating outward.
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We note that since dy/dx ∼ dΦ/dr, and dΦ/dr = −g (a negative num-
ber), the slope dy/dx is negative. Therefore, although y starts with the value
y = 1 at x=0, the value of y decreases as x increases, for all values of n.
Since y decreases as we move outward from the center, there exists a certain
radial location, x = x1 (which is different for different values of n), at which
the value of y passes through zero for the first time. At that radial location,
pressure and density are both equal to zero. The ratio of p/ρ (i.e., the tem-
perature, if the medium obeys the perfect gas law) is also zero at x = x1.
Compared to the values of unity at the center of the polytrope, it is natural
to consider that the first zero point of y corresponds to the “surface” of the
polytrope.

Analytic solutions are known for the Lane–Emden equation for three par-
ticular values of n.

10.6.1 Polytrope n = 0

In this case, Equation 10.10 becomes

d

dx

(
x2 dy

dx

)
= −x2 (10.13)

Integrating once, we find

x2 dy
dx

= −x3

3
+ const (10.14)

In order to satisfy the boundary condition dy/dx = 0 at x = 0, the constant
must be zero. This leads to

dy
dx

= −x

3
(10.15)

Integrating again, and applying the condition y = 1 at x = 0, we find

y(n = 0) = 1 − x2

6
(10.16)

The first zero of y(n = 0) occurs at x1 =
√

6.

10.6.2 Polytrope n = 1

In this case, it is convenient to use Equation 10.11, which reduces, in the
case n = 1, to the simple form

d2z

dx 2 = −z (10.17)

The solution of this equation, consistent with both boundary conditions
at x = 0 is z = sin(x). Reverting to the solution for y, we have

y(n = 1) =
sin(x)

x
(10.18)

The first zero of y(n = 1) occurs at x1 = π.
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10.6.3 Polytrope n = 5

Derivation of the solution in this case is more complicated than the two
cases above. (See Chandrasekhar’s 1958 book, pp. 93–94, for a derivation.)
Here we simply state the result:

y(n = 5) =
1

(1 + x2/3)1/2 (10.19)

The first zero of y(n = 5) occurs at x1 → ∞. Thus, for the case n = 5, the
equilibrium configuration of the polytrope is infinitely extended.

Numerical solutions of the Lane–Emden equation for arbitrary values of n
will be discussed in Section 10.8.

10.7 Are Polytropes Relevant for “Real Stars”?

Note that in all three polytropes for which analytic solutions exist, inspec-
tion of the solutions indicates that y is a monotonically decreasing function
of x for all values of x between 0 and x1. This property also emerges from
numerical solutions of the other polytropes, where only nonanalytic solutions
exist. Recalling that y is proportional to temperature (in a perfect gas) (see
Section 10.3), the fact that temperature decreases monotonically from center
to surface indicates that if energy is generated at the center (by an unspecified
mechanism), that energy will find itself in a medium which has a negative tem-
perature gradient: this facilitates the transport of energy toward the surface.
Here again, we come across a feature which makes it attractive to consider
polytropes as structures which, although highly idealized, nevertheless have
properties which are physically relevant in the context of modeling “real stars.”

The most successful application of polytropes to stellar structure is found
when one is modeling a star in which the equation of state in fact obeys
the polytropic relation (Equation 10.1). Do such stars exist? Yes. We can
summarize four examples.

First, the polytrope n = 1.5 is relevant to low-mass stars. We recall (Chap-
ter 7) that the Sun has a convection zone which occupies a spherical shell with
a finite thickness: the shell ends at a well-defined radial location (r ≈ 0.7R�),
so that only an outer envelope of the Sun is convective. It turns out that
when models are computed for stars with masses less than the Sun’s mass,
the convective envelope becomes deeper, reaching ever farther into the star
as we consider stars with lower and lower masses. Eventually, a mass Mc is
reached where the convective “envelope” extends all the way to the center of
the star. For stars with masses less than Mc, the entire star is convective, and
the adiabatic limit of convection applies throughout essentially the entire star.
Such stars can be represented quite well by the n = 1.5 polytrope.
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Second, for quite different reasons, the polytrope n = 1.5 also turns out
to be relevant to old stars called “white dwarfs.” These are objects where
nuclear burning is no longer happening: in these stars, electron degeneracy
pressure (see Chapter 9, Section 9.5) supports the star against gravity. In
such cases, if the electrons are nonrelativistic, Equation 10.1 applies with
n = 1.5 and a value of K which depends only on certain physical constants.
In this case, it can be shown that white dwarfs should obey a mass-radius
relationship R ∼ M−1/3. This is a very different relationship from that which
applies to solar-like stars: for the latter, the radius R increases as the mass
increases, roughly as R ∼ M . But white dwarfs are predicted to have radii
which decrease as their mass increases. There is observational evidence to
support this prediction (e.g., Provencal et al., 1998).

Third, if the electrons supporting a star are relativistic, it turns out that
the equation of state is given by Equation 10.1 with n = 3.0 and another
value of K, again determined by a (different) combination of physical con-
stants. For the particular value n = 3.0, it turns out that a unique mass M3
exists, determined by physical constants. For typical stellar compositions, M3
is found to be close to 1.4M(sun): this is the most massive object which can
exist in hydrostatic equilibrium with support from degenerate electrons. It is
remarkable that a polytrope which corresponds to an object being supported
against gravity by the pressure of relativistic electrons has a unique mass of
the same order as a “real star” such as the Sun. Nevertheless, this conclusion
has emerged as of fundamental importance in observational attempts to probe
the evolution of the stellar universe in its earliest stages. The stars which can
be observed farthest away in space (and therefore farthest back in time), are
exploding stars called supernovae. One class of supernova occurs when a white
dwarf accumulates so much mass that it exceeds M3: when that happens, the
star cannot exist in equilibrium, but collapses and releases gravitational en-
ergy in an explosion which is so large that it can be seen all the way across
the universe. The fact that each member of this class of supernova relies on
the same physical principles allows cosmologists to assume that each member
of the class is a “standard candle,” with a unique output power. This allows
a distance to be assigned to each such event.

Fourth, we have already seen (Chapter 9) that the Sun consists of distinct
regions in which a polytropic equation is “not too bad”: the convective enve-
lope has n = 1.5 and the radiative core has n = 3.25. The Sun can therefore
not be regarded as a “true polytrope” in the strict sense of the word. But how
about considering the possibility of approximating the Sun as having a single
“effective polytropic index” from surface to center? Might this help us to un-
derstand some of the global properties of the Sun? Let us see. From the results
which have emerged from our model of the Sun (see Chapter 9, Section 9.6),
we have seen that from surface to center, the temperatures, densities, and
pressures increase by (roughly) 3, 9, and 12 orders of magnitude respectively.
Now, if a single “effective polytropic index” ne could be considered as apply-
ing to the Sun as a whole, let us recall that in a polytrope, ρ scales as T to
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the power of ne, while p scales as T to the power of ne + 1 (see discussion be-
tween Equations 10.7 and 10.8). Therefore, an increase in T by 103 would be
accompanied by increases in ρ and in p by 109 and 1012 respectively if ne ≈ 3.
This value of ne has a value that is intermediate between the values of 1.5 and
3.25 which are applicable to the Sun’s envelope and core, respectively. As a
result, even in the case of a composite object such as the Sun, the concept of
a polytrope helps us (roughly) to understand why some of the global physical
properties of the Sun behave in the way that they do.

In summary, the study of polytropes is not at all irrelevant as far as “real
stars” are concerned. To be sure, the treatment is not complete: it tells us
nothing about the sources of opacity, or the sources of energy. Nevertheless,
there is useful information to be gained in this “first course” by considering
the mechanical properties that polytropes allow us to describe.

10.8 Calculating a Polytropic Model: Step by Step

For arbitrary values of the polytropic index n, numerical solutions can
be obtained for the Lane–Emden equation. These numerical solutions (e.g.,
Chandrasekhar, 1958) indicate that the first zeroes of polytropes with n = 1.5,
3.0, 3.25, and 4.0 occur at x1 ≈ 3.65, 6.90, 8.02, and 15.0, respectively. In di-
mensional units, the radius of the corresponding polytrope is R(n) = x1ro

where ro is the Emden unit of length corresponding to the particular poly-
tropic index.

By way of illustration, and because we shall use this particular case in
discussing certain oscillations in the Sun (Chapter 14, Section 14.5) let us
consider the polytrope n = 3.25. In this case, we have already pointed out
(Section 10.4) that the value of ro is 9.3 × 109 cm. Combining this with the
appropriate value of x1, we have seen that the radius of a complete n = 3.25
polytrope with a central pressure and density equal to that of our simplified
solar model would be R(3.25) = 7.4 × 1010 cm. Of course, the Sun is not a
complete polytrope, with a constant n value all the way from center to surface.
Nevertheless, the dimensional radius that we determine for such a polytrope,
is within 6% of the radius of the “real Sun.” It is amazing that a structure
which is as simple as a polytrope (and in which the energy equation is replaced
by a gross simplification) can have macroscopic properties which are not far
removed from those of an actual star.

To calculate the structure of a polytrope for arbitrary n, the aim is to
compute the value of y at each of a tabulated list of values of x. Also, at
each value of x, we wish to calculate the quantity y′(= dy/dx). For numer-
ical purposes, it is convenient to start with the version of the Lane–Emden
equation given in Equation 10.11, where the function z is defined by z = xy.
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Then we can rewrite Equation 10.11 in the form of two coupled first order
differential equations for the functions f1 = z and f2 = dz/dx. In terms of
these functions, the Lane–Emden equation can be replaced by two equations
for two unknowns:

f2 =
df1
dx

(10.20)

df2
dx

= − fn
1

xn−1 (10.21)

We start to integrate these equations at x = 0 using the BC’s f1 = 0 and
f2 = 1. In order to start off the numerical integration correctly, we use the se-
ries expansion for the Lane–Emden equation near the origin (Equation 10.12).
Then we find

f1 = x − x3

6
+

(
n

120

)
x5 (10.22)

and

f2 = 1 − x2

2
+

(
n

24

)
x4 (10.23)

The step-by-step procedure for calculating a polytrope, especially one that
will be useful when we come to determining the oscillation properties (see
Chapter 14), proceeds as follows. The goal is to obtain a table of values of
three quantities (x, y, and y′), extending from x = 0 (the center of the “star”)
to x = x1 (the surface of the “star”). The process is as follows.

1. Choose a value for the polytropic index n.

2. The first entries in the table refer to the center of the star. They are
x(1) = 0, y(1) = 1, and y′(1) = 0.

3. Choose a step size ∆x which may be as small as you like. A value
∆x = 0.01 will eventually lead to a table of values which, for n = 3.25,
will contain about 800 rows.

4. Advance the x value to its value for the second row in the table: x(2) =
∆x. Use x(2) in Equations 10.22 and 10.23 to calculate the correspond-
ing values of f1(2) and f2(2). Then the value of y(2) is given by f1(2)/x(2).
And the value of y′(2) is given by y′(2) = (f2(2) − y(2))/x(2).

5. For the third row of the table, we advance to x(3) = x(2) + ∆x. Now
we have enough information to start to use an integrator (such as a
Runge-Kutta routine) to step forward the solution of Equations 10.20
and 10.21. This leads to values of f1(3) and f2(3) which we then convert
to y(3) and y′(3) using the expressions in step 4.
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TABLE 10.1: Solution of Lane–Emden
equation for the polytrope n = 3.25 (Notation:
x · x Dyy = x · x times 10yy)

x y y′
0.00 1.0 0.0
0.02 0.99993D+00 −0.66662D-02
0.10 0.99833D+00 −0.31573D-01
0.20 0.99337D+00 −0.64203D-01
0.30 0.98521D+00 −0.95610D-01
0.40 0.97400D+00 −0.12524D+00
0.50 0.95995D+00 −0.15262D+00
0.70 0.92434D+00 −0.19925D+00
1.00 0.85655D+00 −0.24651D+00
1.50 0.72480D+00 −0.27000D+00
2.00 0.59385D+00 −0.24945D+00
2.50 0.47832D+00 −0.21231D+00
3.00 0.38202D+00 −0.17418D+00
3.50 0.30362D+00 −0.14111D+00
4.00 0.24015D+00 −0.11434D+00
4.50 0.18856D+00 −0.93307D-01
5.00 0.14626D+00 −0.76917D-01
5.50 0.11119D+00 −0.64141D-01
6.00 0.81774D-01 −0.54120D-01
6.50 0.56812D-01 −0.46189D-01
7.00 0.35392D-01 −0.39844D-01
7.50 0.16823D-01 −0.34709D-01
8.00 0.63652D-03 −0.30492D-01
8.02 0.28430D-04 −0.30332D-01

6. For each new row of the table, increase the x value by ∆x, and compute
the updated values of y and y′.

7. It is easy to see when the integration must be stopped: y cannot take
on negative values. Therefore, the last row of the table should contain
a y value which is close to zero, say, y ≤ 0.001. The last row in the
table should contain an x value that is close to x1 for the polytrope you
have chosen, e.g., for n = 3.25, the value of x1 is known to be 8.01894
(Chandrasekhar, 1958). All values of y′ in the table will be negative
numbers.

An example of an abbreviated table for the polytrope n = 3.25 is given in
Table 10.1. We will have occasion to use the results in (an expanded version of)
Table 10.1 in Chapter 14, when we calculate the periods of a certain class of
oscillations known as g-modes in a polytrope. It will be instructive to compare
the periods to the values which are observed for certain oscillations in the Sun.
We shall find that once again, the use of a polytrope, however idealized, to
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TABLE 10.2: Central condensation in
various polytropes

n = 1.0 1.5 2.0 3.0 3.25 3.5
Cc = 3.29 5.99 11.40 54.18 88.15 152.9

describe the structure of a star (e.g., the Sun) provides information which is
quite useful in interpreting data from the “real Sun.”

10.9 Central Condensation of a Polytrope

A polytrope has the property that, when one evaluates the gradient y′ at
the surface of the “star,” one can then calculate (Chandrasekhar, 1958) the
ratio Cc of the central density ρc to the mean density ρm = M/(4/3)πR3.
The quantity Cc is referred to as the “central condensation.” Values of Cc for
some polytropes (taken from Chandrasekhar, 1958, his Table 4) are given in
Table 10.2.

We have already noted (Chapter 9, Section 9.2) that the “real Sun” has
Cc ≈ 100. Therefore, in terms of central condensation, the Sun behaves like
a polytrope with an index n slightly larger than 3.25. Recall (Chapter 10,
Section 10.2) that for the radiative interior of the Sun, there are physical
reasons (related to opacity) why the polytrope n = 3.25 is relevant to the
relationship between pressure and temperature.

Exercises

10.1 Use the step-by-step procedure in Section 10.8 to calculate a table of
values xi (i = 1, 2, 3, . . .) of yi = y(xi) and y′ = dy/dx from center to
surface for the polytropes n = 1.0, 1.5, and 3.25.

10.2 For the case n = 1, also evaluate the analytic solution ya(x) = sin(x)/x
for each xi. For each entry in the table, xi, calculate the fractional
difference δy/y between your numerical y(xi) and the analytic solution
ya(xi). Repeat the calculation with a smaller and a larger choice of step
size ∆x. How do the fractional differences δy/y change?

10.3 At the “surface” of each polytrope in Exercise 1, your table will give you
the local values of x and y′. For each polytrope, use those surface values
to evaluate the quantity −x/3y′ at the surface. Compare the results with
the central condensations Cc listed in Table 10.2.
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Chapter 11

Energy Generation in the Sun

Historically, the source of energy generation on the Sun has been attributed
to a number of causes, including gravitational collapse and radioactive decay.
The possibility that nuclear fusion might be the source of solar energy could
not be evaluated quantitatively until certain key pieces of information were in
place. In particular, the masses of the relevant isotopes had to be measured to
three or four significant digits before it became evident that atomic masses,
although close to integer values, actually deviated from integers by small, but
systematic, amounts. The deviations amount to only a few parts per thousand,
but those small deviations are at the very heart of nuclear energy generation.

The characteristic which sets the Sun (and stars in general) apart from
other structures in the universe is precisely the fact that the Sun is able to
generate its own supply of energy by means of nuclear reactions. On Earth,
nuclear reactions can be made to happen by accelerating particles to energies
of millions of electron volts (MeV), and then “slamming” the fast particles into
a target nucleus. But there are no MeV accelerators in the Sun. Instead, the
only available particles are those belonging to a thermal population in which
the mean energies are much smaller than 1 MeV: mean thermal energies in
the Sun’s core (where T = 15–16 MK) are of order kT ≈ 1 keV only. Despite
energies of merely keV, the fact remains that the solar particles can (and
do) participate in nuclear reactions. The fact that the reacting particles are
thermal gives rise to the term “thermo-nuclear reactions” to describe the
process whereby light nuclei in the Sun fuse into heavier ones. The (slight)
loss of mass which occurs in the fusion reactions emerges in the form of kinetic
energy and energetic photons. It is this emergent energy which makes the Sun
a power generator.

Two distinct cycles of reactions were identified, almost simultaneously, by
Bethe in the years 1938 and 1939 as possibly contributing to nuclear energy
generation in the Sun. The cycles are referred to as the pp-cycle (Bethe and
Critchfield, 1938) and the CNO-cycle (Bethe, 1939). Recent models of the
Sun indicate that the CNO cycle contributes only 0.5% to the Sun’s energy
output (Bahcall et al., 2005). In this first course on solar physics, we focus on
the predominant pp-cycle.

The important questions in the context of solar energy generation are:
(i) Which reactions occur? (ii) How much energy is liberated in each reaction?
(iii) How many reactions occur per second? Now that we know certain physical
parameters in the Sun, we can address these questions in turn.

139
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TABLE 11.1: Isotope nuclear
masses in atomic mass units (a.m.u.)
Proton (H1) 1.0072764
Neutron (n) 1.0086649
Deuteron (D = H2) 2.0135532
Helium-3 (He3) 3.0149321
Helium-4 (He4) 4.0015061

In the following discussion, masses of the relevant nuclei (see Table 11.1)
will be cited in terms of atomic mass units (a.m.u.). The data in Table 11.1 are
obtained by starting with atomic masses (Audi and Wapstra, 1993) and then
subtracting electron masses to obtain the nuclear masses. In c.g.s. units, ac-
cording to the NIST Reference list (http://physics.nist.gov/cuu/Constants/),
1 a.m.u.= 1.6605388 ×10−24 gm. The rest-mass energy equivalent of 1 a.m.u.
is E(1) = 1.4924178 ×10−3 ergs. Expressed in units of electron volts (1 eV =
1.6021765 ×10−12 ergs), we find E(1) = 931.494 MeV.

11.1 The pp-I Cycle of Nuclear Reactions

In the Sun, the most common set of reactions which occur are referred to
as the pp-I cycle. There are also less common cycles referred to as pp-II and
pp-III, but all have the same overall end-result, namely, four protons are fused
into one helium nucleus. We shall return to the pp-II and pp-III cycles in the
next chapter when we discuss neutrinos. In the present section, where energy
generation is the principal focus of our discussion, we confine our attention to
the pp-I cycle.

There are three reactions to be taken into account in the pp-I cycle.

p + p → D + e+ + ν (E = 1.442 MeV) (a)

Here, p + p denotes the reaction of two protons, both of which belong
to the thermal distribution which exists at any given radial location with
local temperature T (r). The reaction products include a deuteron (a nucleus
consisting of one proton and one neutron), a positron (e+), and a particle
known as a neutrino (ν: see Chapter 12).

In order to determine the amount of energy which is released in reac-
tion (a), we use the masses of the various particles in Table 11.1. Using
these, we find that the combined mass on the left-hand side of reaction (a) is
2.0145528 a.m.u. This exceeds the deuteron mass by ∆m = 0.0009996 a.m.u.
The fractional excess in mass is small, only 0.1%, but the existence of an excess
(however small) ensures that the reaction is exothermic. In energy units, the
corresponding energy is c2∆m = 0.931 MeV. The positron is an antiparticle
which requires an equivalent rest-mass energy of 0.511 MeV. The net energy
which is available for the neutrino and D from reaction (a) is the remainder
0.931 − 0.511 = 0.420 MeV: this is the maximum (“end-point”) energy that
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the neutrino can carry away. Actually, because the reaction energy is shared
by three particles, the neutrino energy has a continuous spectrum between
zero and 0.420 MeV: the average energy carried off by the neutrino is about
one-half of the end-point energy, i.e., about 0.2 MeV. The positron quickly
annihilates on an ambient electron, releasing an energy of 1.022 MeV. Thus,
the total amount of energy released into the core of the Sun by reaction (a) is
1.442 MeV. Allowing for the average energy carried off by the neutrino, the
amount of energy which is available (on average) to be deposited in the core of
the Sun, thereby contributing to the thermal energy pool, is about 1.2 MeV.

The second reaction in the pp-I cycle is

p + D → He3 + γ(E = 5.493 MeV) (b)

In this second step of the pp-I cycle, a proton from the thermal population
reacts with a deuteron produced in reaction (a), and forms a nucleus of He3

plus an energetic photon. The combined masses of p and D on the left-hand
side (= 3.0208296 a.m.u.) exceeds the mass of the He3 nucleus (see Table 11.1)
by ∆m = 0.0058975 a.m.u. Once again, the fractional mass excess is small,
about 0.2%, but it is finite. Therefore, the reaction is exothermic, with an
energy release c2∆m of 5.493 MeV. This energy is divided between the He3

nucleus and the photon.
The final reaction in the pp-I cycle is

He3 + He3 → He4 + 2p (E = 12.860 MeV) (c)

In this third step of the pp-I cycle, after reactions (a) and (b) have oc-
curred twice, the two He3 nuclei fuse to create one nucleus of He4, releasing
two protons. The sum of the rest masses of two He3 on the left-hand side
(6.0298642 a.m.u.) exceeds the sum of the rest masses of the three particles
on the right-hand side (6.0160589 a.m.u.) by ∆m = 0.0138053 a.m.u. The
corresponding energy release c2∆m is 12.860 MeV.

For the Sun to produce energy by hydrogen fusion, it is essential that in
each reaction of the above cycle, the combined mass of the products is less
than the combined mass of the reactants. In the early days of measuring atomic
weights, when the masses of the isotopes were known with a precision of only
two significant digits, the mass of the reactants would equal the mass of the
products. It is only when the atomic weight measurements reach a precision
of at least three significant digits that the mass difference 2m(p) − m(D)
becomes a nonzero number. And in order to derive the energy release in the
reaction with a precision of N significant digits, the isotopic masses have to
be measured with precisions of N + 2 significant digits.

11.2 Reaction Rates in the Sun

Altogether, in a complete pp-I cycle, consisting of two reactions each of (a)
and (b), plus one reaction (c), the total energy released is 2(1.442 + 5.493) +
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12.860 = 26.73 MeV. However, some of this is carried off by neutrinos. The
amount of energy which is deposited into the thermal pool of the Sun’s core,
and which can therefore, contribute to the radiant output power of the Sun,
is roughly 2(1.2 + 5.493) + 12.860 = 26.25 MeV.

This is the amount of thermal energy which is released into the thermal
pool in the Sun’s core when four protons fuse into one helium nucleus. Con-
verting to c.g.s. units, each pp-I cycle generates ∆E(pp-I) = 4.206×10−5 ergs.

Now, we already know the total output power of the Sun (Chapter 1,
Section 1.4): L� = 3.8416 ×1033 ergs sec−1. Therefore, since pp-I cycles are
by far the largest source of energy generation in the Sun, the number of
these reactions which occur in the Sun every second (i.e., the frequency of the
reactions) is

Fr =
L�

∆E(pp-I)
= 0.91 ×1038 reactions sec−1 (11.1)

The Sun also relies, in a small percentage of cases, on pp-II and pp-III
cycles: however, both of those cycles also begin with reactions (a) and (b)
above, and their rates are controlled primarily by the (slowness of) reac-
tion (a). Moreover, some (< 1%) of the solar energy output comes from the
CNO-cycle: in this cycle, carbon acts as a catalyst to bring about the same
overall effect as in the pp-cycle, namely, fusing four protons into one helium
nucleus.

In summary, we will not make a gross error if we take Fr ≈ 1038 per second
as the number of nuclear reactions which occur in the Sun every second.

11.3 Proton Collision Rates in the Sun

In order to set the reaction rate Fr in context, let us compare Fr to the over-
all rate Fc at which collisions between protons occur in the nuclear-generating
core of the Sun. By the word “collision,” we mean an event in which the mo-
menta of the individual particles are altered, in a manner analogous to the
collision of two billiard balls. Two protons which at first happen to approach
each other, feel an increasingly strong Coulomb repulsion, which eventually
causes the two to move apart, changing directions and speeds in such a way
as to conserve energy and momentum.

With a mean velocity of V , and a number density of np protons cm−3,
the rate at which a single proton in the Sun experiences momentum-altering
collisions with other protons is fc = npV σ per second, where σ is the mo-
mentum collision cross-section. (Lower case f denotes the collision rate for
a single proton.) Between two protons, the value of σ is determined by the
Coulomb force. To calculate the Coulomb cross-section σc, we note that in a
gas with temperature T , the mean kinetic energy of thermal motion, of order
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kT, allows two protons to approach one another within a minimum distance
rm such that e2/rm ≈ kT . Such close collisions result in large deflections of
the protons in their motion. The cross-sectional area associated with rm (i.e.,
πr2

m) would be a reasonable estimate for σc if large deflections were the only
contributors to deflecting protons in their motion. But because the Coulomb
force is a long-range force, protons are also subject to a multitude of small
deflections as a result of distant collisions. The net effect of these is to yield a
cross-section which is larger than the estimate based on rm by a multiplying
factor called the Coulomb logarithm. It is conventional to write σ = πr2

mΛ,
where Λ is a logarithmic term which includes the effects of distant collisions.
Thus, σc ≈ πe4Λ/(kT )2. (Note that, for thermal particles, with Vth ∼ √

T , the
Coulomb cross-section σc scales as 1/V 4

th. i.e., fast particles have many fewer
collisions than slow particles.) In the core of the Sun, where np ≈ 1026 cm−3

(see Chapter 9, Section 9.2) and T = (1.5–1.6)×107 K, the value of Λ ≈ 5−8.
This leads to σc ≈ (2–3)×10−19 cm2. Since the mean thermal velocity of a pro-
ton in the core of the Sun is Vth ≈ 6 ×107 cm sec−1 (Chapter 9, Section 9.2),
we see that each proton undergoes fc ≈ (1–2) × 1015 momentum-changing
collisions per second.

The overall rate Fc of Coulomb collisions in the core of the Sun is given
by fc times the total number of protons Np(c) in the core. The core of the Sun,
in which nuclear reactions occur, is confined, according to detailed models,
within the innermost 20% (or so) of R�. Although the volume of this core is
a small fraction of the total solar volume, the high densities in the core have
the effect that the mass of the core is of order 0.1M�, i.e., about 2 ×1032 gm.
Dividing this by the mass of a proton, we find, Np(c) ≈ 1056. This leads to
Fc = fcNp(c) ≈ 1071 momentum-changing collisions occur every second in the
nuclear-generating core of the Sun.

Comparing the reaction rate Fr(≈ 1038 sec−1) in the solar core with the
collision rate Fc in the core, we see that a proton undergoes (on average) a
huge number of collisions Nc(react), where

Nc(react) ≈ Fc

Fr
≈ 1033 collisions (11.2)

before that proton ever participates in a pp-I cycle in the Sun’s core. Since
an individual proton experiences on average fc ≈ (1–2) × 1015 collisions per
sec, each proton in the Sun will participate in a pp-cycle only after an average
time-span of about Nc(react)/fc ≈ (5–10)×1017 sec, i.e., once in 15–30 billion
years. This explains why the life-time of the Sun in its hydrogen-burning phase
will be of order 10 billion years.

This discussion indicates that the occurrence of the nuclear reactions in
the pp-cycle is a very rare event indeed in the conditions of the Sun’s core: only
one collision in 1033 results in a nuclear reaction. It is worth while examining
why this is so: part of the answer will lead us to understand why thermonuclear
reactions are very sensitive to temperature.
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11.4 Conditions Required for Nuclear Reactions
in the Sun

Now that we know that nuclear reactions are occurring in the Sun, it is
worthwhile to consider the physical requirements that must be satisfied before
a reaction can occur at all.

In order to have a nuclear reaction occur, whether in the Sun or in the
laboratory, certain conditions have to occur. First, two nuclei must undergo a
collision with each other. The collision must be of a particular kind. We are not
interested merely in momentum-changing collisions where the particles stay
far apart and experience only a “glancing” blow off each other. Such “distant”
collisions are certainly important in a plasma when we wish to evaluate certain
transport coefficients in the plasma: because the Coulomb force is long-range,
the overall effect of many distant collisions can dominate over the rare large-
angle collisions. (This is in fact the origin of the factor Λ in the Coulomb cross-
section mentioned above.) However, distant collisions of this kind contribute
nothing to nuclear reactions.

11.4.1 Nuclear forces: short-range

In order for a nuclear reaction to occur, it is essential that two nuclei must
approach one another so closely that the strong force, which binds nucleons
(protons, neutrons) together inside a nucleus, can come into play. How close
do such collisions have to be?

The answer depends on the range of the strong force. From measurements
of nuclear size, it is known that nuclei have radii which are a few times
10−13 cm. This indicates that the strong force operates only within a finite
length-scale, of order rN ≈ 10−13 cm (≡ 1 “fermi” [fm]). Inside 1 fm, the force
between two nucleons is very strongly attractive. As a result, nuclear reactions
occur if, and only if, two nuclei can be brought as close together as rN .

The same can be said about the way that the weak force operates in the
Sun: in order for the pp chain of reactions to occur, the weak force must cause
a proton to “decay” into a neutron. This is only possible if the proton is inside
the deep potential well of the nuclear force. In effect, the weak force in the
Sun does its work only when particles are within a distance of rN .

As a result, if two nuclei approach each other no closer than, say, 10−11 cm
(or more), neither the nuclear force nor the weak force has a chance to come
into play. Such nuclei simply have a momentum-changing collision, bouncing
off each other and continuing on their way, completely unchanged as far as
their nuclear properties are concerned.

How strong is the attractive force which holds two nucleons together? Well,
it certainly has to be strong enough to overcome the Coulomb repulsion. The
Coulomb repulsion between two protons separated by only 1 fm has a potential
energy e2/r ≈ 1.5 MeV. Moreover, the nucleons inside a nucleus must not
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allow their de Broglie waves to “leak out of the nucleus”: this requires that
each nucleon must be moving with a speed Vn which is so fast that h/mV n is
no larger than a few fermi. At such speeds, a proton has a kinetic energy of
about 10 MeV. Such high speeds tend to disrupt the nucleus, and so the strong
force has to have an attractive energy of at least 10 MeV. Detailed calculations
suggest that the strong force has an attractive energy of 30–40 MeV.

11.4.2 Classical physics: the “Coulomb gap”

According to classical physics, when two positive point charges +Z1e
and +Z2e are separated from each other by a distance r, they experience
a Coulomb repulsive force. The potential energy of the repulsion is Z1Z2e

2/r.
The closer the two particles approach each other, the stronger the repulsion
becomes.

How closely can such particles be made to approach each other? In clas-
sical terms, the answer is straightforward: the two can come no closer than
a distance rc where their relative kinetic energy (KE) is equal to the re-
pulsive potential energy. Let the masses by A1 mp and A2 mp where mp

is the proton mass. In terms of the reduced mass Amp of the two nuclei
(A = A1 A2/(A1 + A2)), the average KE is given by 0.5 AmpV

2.
This leads to

rc =
2Z1Z2e

2

AmpV 2 (11.3)

For the collision of two protons, this reduces to

rc =
4e2

mpV 2 (11.4)

In order to appreciate how nuclear reactions occur in the Sun, and in
order to appreciate that something beyond classical physics is at work, we
need to ask a specific question: what is the magnitude of rc for two protons
near the center of the Sun? With a mean thermal speed of ≈ 600 km sec−1

(Chapter 9, Section 9.2), and inserting the values of e and mp, we find that
rc ≈ 1.5 ×10−10 cm ≈ 1500 fm.

The critical point of this result is that rc greatly exceeds the range of
the nuclear force rN . Specifically, with the values we use above, the classical
distance of closest approach of two protons in the center of the Sun is roughly
1000 times larger than the nuclear force range.

To be sure, not all of the protons have velocities equal to the rms speed.
There are some faster ones. For example, in a thermal distribution, one pro-
ton in e10 (i.e., one proton in 20,000) has a speed which exceeds the mean
by a factor of 3.2. If two such protons collide, then their distance of closest
approach, based on classical physics, would be reduced to ≈ 150 fm. Even so,
this is still some 100 times larger than rN , much too far apart for the strong
force to operate.
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Because of the Coulomb repulsive force, classical physics indicates that
protons in the core of the Sun are forbidden from approaching each other
closely enough to allow the nuclear force to come into play. In classical terms,
two protons are always separated by a distance which is at least as large as rc:
we refer to rc as the “Coulomb gap.”

If the Sun were governed by classical physics alone, the Coulomb gap
would be an insuperable barrier which would prevent any nuclear reactions
from occurring in the Sun in its present condition. In order to understand why
the Sun shines, we are forced to the following important conclusion: we need
to go beyond classical physics. We must admit that the Sun is an object in
which quantum physics plays an essential role.

11.4.3 Quantum physics: bridging the “Coulomb gap”

So, let us enter the world of quantum mechanics. In this world, particles in
certain circumstances no longer behave as points: a particle of mass m moving
with speed V has a finite probability of occupying an extended region of space.
This nonpoint-like behavior is modeled by saying that a quantum particle can
be represented by an associated wave. The wavelength is given by a formula
first derived by de Broglie (1924):

λp =
h

mV
(11.5)

where h is Planck’s constant. According to de Broglie, a quantum particle can
be considered as being “spread out” over a finite distance of order λp.

Now we come to the heart of the matter of nuclear fusion in the Sun: the
fact that any individual particle is actually “spread out” over a finite length
scale is precisely the property which allows for the possibility of “bridging
the Coulomb gap.” When classical physics has reached its limit, and two
particles can come no closer than the Coulomb gap, we appear to be faced
with two “point particles” separated by rc. But now quantum mechanics steps
in and replaces each particle by a structure which is no longer point-like:
instead, each “particle” has a finite size, of order λp. When the two protons
approach each other to a critical separation of 2λp, the wave of one proton
extends far enough to “touch” the wave of the other proton. Since the reduced
mass of two protons is 0.5mp, the critical separation equals the de Broglie
wavelength λp(Amp) for a single particle with a mass equal to the reduced
mass, Amp.

We now have two key length-scales in the problem: λp(Amp) and rc(Amp).
The two scales depend on different physical constants, and on different powers
of the particle speed. As regards numerical value, there is no a priori reason
why, in any particular environment, they might not differ from each other by
orders of magnitude: the ratio rc/λp in general might be much greater than
unity or much less than unity.
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But let us consider a particular location where physical parameters have
the values necessary to make λp comparable to rc. What happens then? Each
particle “spreads out” and in effect, the particles “touch” each other across
the Coulomb gap, i.e., they in effect come so close together that the distance
between them is essentially zero. In particular, the two particles effectively
approach each other within rN , the range of the nuclear force. This sets the
stage for nuclear reactions to occur.

The conclusion is that quantum effects allow the “Coulomb gap” to be
“bridged” if rc becomes small enough to be comparable to λp. Since λp

and rc both depend on the particle speed V (although to different pow-
ers), the “bridging” condition reduces to a condition on V . For collisions be-
tween two protons, the critical speed Vc is the speed for which 2e2/AmpV

2 ≈
h/AmpV , i.e.,

Vc ≈ 2e2

h
≈ 697 km sec−1 (11.6)

It is noteworthy that the critical speed which allows for “bridging the
Coulomb gap” between two nuclei is determined by two of the fundamental
constants of nature.

Even more interesting is the numerical value of the critical speed. Inserting
constants into Equation 11.6, we find Vc ≈ 690− 700 km sec−1. This is a very
significant number for the Sun.

11.4.4 Center of the Sun: thermal protons bridge
the Coulomb gap

We note that the critical speed Vc is close to Vth , the rms speed of protons
at the center of the Sun (≈ 620 km sec−1). Specifically, the ratio rc/λp =
Vc/Vth in the core of the Sun has a numerical value of about 1.1, i.e., close to
unity.

In any gaseous object which is in hydrostatic equilibrium, gravitational
effects ensure that the central temperature is such that the rms speed of the
dominant constituent in the core is comparable to the escape speed from the
surface of the object. In order for the object to further qualify for the special
title of “star,” this rms speed in the core must be large enough to allow
the Coulomb gap to be bridged by quantum effects (Mullan, 2006). Once this
condition is satisfied, nuclear reactions between thermal protons can occur in
the core. The Sun satisfies this condition. Therefore, the Sun can have access
to nuclear reactions, and the energy which emerges from such reactions. It is
this which makes the Sun a star.

In a thermal population, the particle speeds are distributed over a finite
range of values. Thus, not all protons in the core of the Sun have the same
speed. However, the possibility that thermo-nuclear reactions will set in is
quite sensitive to the proton speed. On the one hand, if the proton speed is
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a factor of (say) two less than Vc, then the Coulomb gap rc ∼ 1/V 2 opens
up to a value which is four times wider than estimated above. At the same
time, the wavelength λp ∼ 1/V increases by a factor of only two. Thus, the
Coulomb gap is now too wide to be bridged by the de Broglie wave. On the
other hand, if the proton speed is two times larger than Vc, then the wave-
length λp decreases by a factor of two, but the Coulomb gap is now four times
smaller. Therefore, the gap can still be bridged. This indicates that once the
temperature reaches a value that is high enough to ensure that the rms speed
is of order Vc, nuclear reactions will occur. But if the temperature is too small
to allow the rms speed to equal Vc, then nuclear reactions will not occur.

11.4.5 Other stars: bridging the Coulomb gap

In a global sense, the Sun’s mass M and radius R have values which
have the effect that the crushing effects of gravity [as measured by Vesc ≈√

(2GM /R)] provide enough “thermo” at the center of the Sun to create a
certain temperature. At that temperature, thermal protons have mean speeds
Vth of order Vesc. When conditions are such that Vth is comparable to Vc,
then quantum mechanics bridges the Coulomb gap between two protons, and
pp-nuclear reactions can set in.

Since Vc is determined by physical constants only, any star which has
the same M/R ratio as the Sun will also have pp-reactions in its core. Now,
astronomers discovered in the 1920s that if the stars we see in the night sky
are plotted in a diagram of luminosity versus effective temperature, 90% of
the stars lie close to a band known as the “main sequence.” After decades of
study, astronomers also determined masses M and radii R for many of the
stars. A striking result emerged from these data: although the masses and radii
vary by factors of 100–1000 along the main sequence, the ratio M/R is almost
constant from one end of the main sequence to the other. This means that
the main sequence is occupied by objects (stars) in which the mean thermal
velocity in the core Vth ≈ Vesc ∼ √

M/R is essentially equal to Vth in the
Sun. But the latter is , as we have seen, close to Vc: therefore, along the main
sequence, all stars have Vth ≈ Vc. In such objects, pp-reactions can occur in
the core. Therefore, the main sequence is the locus of stars which are fusing
hydrogen in their core.

11.4.6 Inside the nuclear radius

Once two particles approach each other closer than rN , nuclear reactions
become possible. If the strong force between nucleons is at work, then nu-
clear reactions occur on a short time-scale. For example, in the Sun, once a
deuterium nucleus is formed by reaction (a) in the pp-cycle (see Section 11.1
above), an ambient proton will interact with the deuteron via reaction (b):
the latter reaction involves the strong force, and it occurs within time-scales
of a few seconds.
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11.5 Rates of Thermo-Nuclear Reactions:
Two Contributing Factors

The overall rate of any particular thermonuclear reaction in thermal plasma
depends on two factors. One has to do with bridging the Coulomb gap: this
factor is sensitive to the temperature. The second has to do with the oper-
ation of forces within the nuclear radius: this is essentially independent of
temperature.

11.5.1 Bridging the Coulomb gap: quantum tunneling

We have described the process of bridging the Coulomb gap in terms of the
comparative equality of the two lengths rc and λp. More formally, quantum
mechanics treats the process in terms of tunneling through a potential barrier.

To quantify the tunneling, we first note that in quantum mechanics, the
dynamics of particles are described by an equation called the Schrodinger
wave equation. According to this equation, a free particle has a propagating
wave-like character which is described, in 1-D motion, by a sinusoidal relation
in space and time, i.e., an exponential with an imaginary argument:

ψ(x, t) ∼ exp 2πi

(
x

λp
− ft

)
(11.7)

In Equation 11.6, the spatial wavelength is λp, and f = E/h is the fre-
quency associated with a particle with energy E. When such a wave encounters
a vertical wall (or “mountain”) which is too high for a particle of energy E to
surmount, the sinusoidal solution of the Schrodinger equation is replaced by
a damped (nonpropagating) exponential:

ψ(x) ∼ exp
[
−2π

(
x

λp

)]
(11.8)

In the Sun, the very heart of energy generation depends on applying Equa-
tion 11.8 to the “mountain” of the Coulomb gap, i.e., to the (huge) obstacle
which prevents two thermal protons from approaching each other any closer
than rc.

According to quantum mechanics, the probability P (V ) that a particle
with speed V (and associated de Broglie wavelength λp) can penetrate a 1-D
barrier of width rc is proportional to

P (V ) ≈ |ψ(rc)|2 ≈ exp
[
−4π

(
rc

λp

)]
(11.9)

The fact that |ψ(rc)|2 is nonzero as long as rc/λp is finite, means that,
in the quantum world, there is a finite chance that a particle can pene-
trate through a wall (or pass over a “mountain”) which would be completely
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insurmountable in the classical world. This process is known as “quantum
tunneling.”

When the tunneling calculation is done rigorously, in 3-D and in the pres-
ence of a “mountain” which has the particular shape of the Coulomb barrier,
it is found that the numerical coefficient 4π(=12.6) in Equation 11.8 must
be replaced by the somewhat larger number 2π2(=19.7). That is, P (V ) ≈
exp(−2π2rc/λp). Inserting the expressions given above for rc and λp, we find
that the probability P (V ) for Coulomb barrier penetration is given by

PG(V ) = exp
[−4π2Z1Z2e

2

hV

]
(11.10)

This expression for the probability is known as the Gamow factor, in honor
of the physicist who first performed the tunneling integral (Gamow, 1928). In
recognition of Gamow’s role, we use subscript G in Equation 11.10.

What is the numerical value of the tunneling probability in the core of the
Sun? We have seen (Section 11.4.4) that in the core, rc/λp ≈ 1.1. In that case,
Equation 11.10 tells us that PG(V ) ≈ exp(−2.2π2) ≈ 4 ×10−10.

Note that PG(V ) is quite sensitive to the particle speed, e.g., suppose that,
instead of considering particles moving with speed Vth , we were to consider the
collisions of two particles each of which moves with speed 2Vth . In such a case,
the tunneling probability PG(2Vth , Sun) would be ≈ exp(−1.1π2) = 2 ×10−5.
Thus, by doubling the speed, we have increased the pp-tunneling probability
by a large amount (5×104). At first sight, this suggests that we may have made
an error of many orders of magnitude by evaluating the tunneling probability
at the particular speed Vth . But upon further consideration, we can see that
the error is much less serious.

To see why this is so, we note that in a thermal velocity distribution, where
f(V ) ∼ V 2 exp(−V 2/V 2

th), there are fewer particles moving at faster speeds.
For example, for every particle which moves with speed Vth , there are only
4e−4 ≈ 0.07 particles in a Maxwellian distribution moving with 2Vth . For this
reason alone, the number of possible interactions which might occur every
second between particles each of which moves with speed 2Vth is smaller by
0.072 ≈ 1/200 than the collision rate between two particles moving with speed
Vth . Furthermore, the cross-section for Coulomb collisions is smaller for faster
particles: σc ∼ 1/V 4 (see Section 11.3). This further reduces the collision rate
by a factor of 16 when we compare particles with speed 2Vth , to particles with
speed Vth . Combining the Coulomb and Maxwellian factors, we see that the
increase in pp-tunneling probability by 5 ×104 is offset by 200 ×16 ≈ 3 ×103.
Therefore, as far as the actual rate of tunneling, particles with speed 2Vth , are
indeed more effective than particles with speed Vth , but not by many orders
of magnitude. The increase in effectiveness is a factor of ∼ 17.

If we were to repeat this exercise for particles moving even faster, say
4Vth , we would find that the increase in tunneling probability (by a factor
of ≈ 107) is more than offset by the combined Maxwellian and Coulomb
factors. The relative number of Maxwellian particles is 16e−16 ≈ 2×10−6, and
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Coulomb collisions occur 256 times less frequently. Thus, despite the increased
Gamow factor, particles with speed 4Vth are about ten times less effective than
particles with speed Vth . Overall, the peak in pp-tunneling probability in a
thermal distribution of protons occurs for particles with speeds of 2 − 3Vth ,
and closer to 2Vth than to 3Vth .

This suggests that our estimate of tunneling probability obtained above
for particles moving with speed Vth(≈ 4×10−10) is a lower limit on the actual
probability in the Sun. The lower limit should be increased by a factor of
perhaps 20 in order to obtain a more realistic pp-tunneling probability for a
Maxwellian distribution in the Sun: PG(Sun) ≈ 8 ×10−9.

We can now see an important conclusion of this discussion. Even in the
“favorable” conditions which exists in the core of the Sun, only one collision in
(roughly) 125 million results in one proton tunneling close enough to another
to “feel” the nuclear force. On the other hand, as we have seen (Section 11.3),
each proton in the core undergoes some 2 ×1015 collisions per second. There-
fore, each proton in the Sun’s core experiences roughly 107 tunneling events
every second. When combined with the relevant post-tunneling processes (see
Section 11.5.2), this suffices to provide the Sun with its mighty output power.

We shall return below to examine how the functional form of PG(V ) has
the effect that the rates of thermonuclear reactions increase rapidly with in-
creasing temperature. But for now, we turn to what happens inside the nucleus
once the tunneling has occurred.

11.5.2 Post-tunneling processes

Once tunneling has occurred, the two particles are close enough together
that they can be regarded as being together inside a nucleus. The processes
which then occur depend on which forces come into play.

We have already mentioned (Section 11.4.6) that the strong force is at work
in reaction (b) of the pp-cycle. The strong force is also at work in reaction (c)
of the pp-cycle. However, even though reaction (b) occurs on a time-scale
of a few seconds in the Sun, reaction (c) requires on average several million
years to occur. The principal reason that reaction (c) is so much slower than
reaction (b) in the Sun has to do with the tunneling factor: referring to Equa-
tion 11.10, we see that the product Z1Z2 is four times larger for reaction (c)
than for (b). (We will return to this in Section 11.7.)

But reaction (a) in the pp-cycle is different. The strong force is not the
predominant factor which controls this reaction. When two protons interact
via the strong force, they in effect attempt to form a nucleus consisting of two
protons and nothing else. Such a nucleus would be a “di-proton.” However,
calculations of nuclear structure indicate that such a nucleus is not stable:
the combination of kinetic energy, Coulomb repulsion, and exchange forces
overwhelms the attractive nuclear energy. As a result the di-proton is un-
bound. The strong force is simply not strong enough to bind the two protons
in reaction (a) together.
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So how does reaction (a) proceed? We note that the product of the re-
action, the deuteron, is a stable (bound) nucleus consisting of one proton
and one neutron. To form such a nucleus, one of the protons which enters
into reaction (a) must become a neutron. During the (very) brief interval of
“collision-time” when the two protons are within a distance of rN of each
other, one of the protons must become transformed into a neutron.

How long does the “collision time” last? The duration of a collision is
tc ≈ rN/V where V ≈ 6 ×107 cm sec−1 is the mean thermal speed of protons
(and therefore neutrons) in the core of the Sun. Setting rN ≈ 10−13 cm, we
find tc ≈ 2 ×10−21 sec.

What is the chance that a proton-to-neutron transformation will happen
during an interval of duration tc? If we were considering a free proton in the
Sun, the answer would be straightforward: the chance would be zero. It is im-
possible for a free proton in the Sun to decay into a neutron because the proton
would have to gain a mass of 0.0014 a.m.u. (see Table 11.1). This is equiva-
lent to an energy gain of 1.29 MeV, about 1000 times larger than the thermal
energies in the Sun. However, inside a nucleus, in the presence of the strong
force, with an attractive energy of 30–40 MeV, the transformation of a proton
into a neutron becomes possible: in such an environment, in a potential well
some 30–40 MeV deep, the possibility of “picking up” 1.29 MeV is no longer
out of the question. In fact, the transformation (or “decay”) of a proton into a
neutron inside the nucleus occurs because of the operation of the weak force.

This requires that the weak force must work its transforming effects pre-
cisely during the “collision-time.” Now, a measure of the strength of the weak
force is provided by the empirical result that free neutrons decay with a half-
life t1/2 of about 650 sec.

What is the probability Pd(p) that a proton will decay into a neutron
during the “collision-time”? The correct answer to this question requires a
theory of beta-decay: Fermi’s theory was used by Bethe and Critchfield (1938)
in their calculation of the rate of the pp-cycle in the Sun.

Without going into the details of beta-decay theory, we can estimate an
upper limit to the probability by considering a hypothetical analog to proton-
proton collisions. Suppose two free neutrons were available in the thermal
population in the Sun’s core, and suppose they were to undergo a collision
in which the distance of closest approach happened to be rN . A free neutron
always has the option of decaying into a proton. So, what is the probability
Pc(n) that one of the neutrons would decay into a proton during the collision
time tc? The answer is: Pc(n) can be estimated roughly by the ratio of tc to
the neutron half-life, t1/2. This leads to tc/t1/2 of order 3 ×10−24. Thus, the
probability that a (free) neutron in the Sun’s core would decay into a proton
during the collision is Pc(n) ≈ 3 × 10−24. Even with the advantage of free
neutron decay, this is still a very small probability.

Returning now to the case of proton-proton collisions, we recall that the
proton and the neutron are both nucleons with similar properties. (In the
technical language of nuclear physics, protons and neutrons are members of
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the same “isospin doublet.”) As a result, they are expected to behave to a
certain extent in similar ways when they are within a distance of rN of each
other. However, there is a difference in the energy ∆E which is released in
the reaction: whereas reaction (a) above releases an energy of 1.44 MeV, the
excess mass energy of 1.29 MeV of the neutron relative to the proton would
have the effect that the energy released in the reaction n+n → D would equal
1.44 + 1.29 = 2.73 MeV. Now according to a general rule in particle decays
(known as the “Sargent rule”), the rate of beta decay scales as (∆E)α, where
α = 5 in the limit that the decay products are relativistic. As a result, the
reaction p + p → D is predicted to be less probable than n + n → D by a
factor of order (2.73/1.44)5 ≈ 24 in the relativistic limit. Even in the non-
relativistic limit, the probability Pc(p) that a proton will decay into a neutron
during the collision is expected to be smaller than Pc(n). Defining the ratio
of Pc(n)/Pc(p) as ξ(>1), we write Pc(p) ≈ (3/ξ) ×10−24.

11.5.3 Probability of pp-cycle in the solar core:
reactions (a) and (b)

Combining the probability factors for quantum tunneling and for the post-
tunneling process of proton transformation, we see that in the center of the
Sun, the overall probability P (pp) of a pp-nuclear reaction (i.e., reaction (a) in
the pp-cycle) in a collision in the solar core is given by the product of PG(Sun)
and Pc(p). Using the estimates given above, we find P (pp) ≈ (24/ξ) ×10−33.

We recall that the observed properties of the Sun indicate that a pp-cycle
occurs on average only once in every Nc(react) ≈ 1033 collisions in the Sun’s
nuclear-burning core (Equation 11.2). That is, the empirical probability of a
nuclear reaction is of order 10−33 per collision. Compared with our estimates
of P (pp), we see that we can replicate the empirical probability of nuclear
reaction in the Sun as long as Pc(n) does not exceed Pc(p) by more than ≈24.
This is precisely what is available based on the Sargent rule.

Thus, of the 33 orders of magnitude which occur in the empirical reaction
probability 1/Nc (react), the process of tunneling through the Coulomb barrier
provides about eight orders of magnitude, while the weak interaction which
occurs in the post-tunneling process contributes the remaining 25 orders of
magnitude. The weak interaction truly dominates (by ≈17 orders of magni-
tude) in regulating the slowness of the thermonuclear processes in the Sun.

It is the low value of the probability associated with the weak interaction
that causes reaction (a) of the pp-cycle to be so much slower than reactions (b)
or (c). We recall (Section 11.3) that on average, a proton participates in reac-
tion (a) once in 15–30 billion years. In reaction (b), since the Coulomb barrier
is similar to that in reaction (a), the tunneling probability is comparable to
that for reaction (a). However, the post-tunneling process in reaction (b) in-
volves the interaction between two nuclei so as to form a third stable nucleus.
The interaction in reaction (b) therefore operates by way of the strong force,
in sharp contrast to reaction (a), where the weak force is at work. In the
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nature of things, we expect that the strong force operates on much shorter
time scales than the weak force. In fact, measurements of the cross-section for
reaction (b) indicate that the post-tunneling process in (b) operates almost
18 orders of magnitude more rapidly than in reaction (a). As a result, instead
of a time-scale of almost 1018 sec between occurrences of reaction (a), reac-
tion (b) occurs on time-scales of order seconds. We shall return to discuss the
time-scale for reaction (c) in Section 11.7 below, after we quantify how the
tunneling probability depends on charge and mass.

11.6 Temperature Dependence of Thermonuclear
Reaction Rates

A significant characteristic of the Gamow tunneling probability PG(v)
(Equation 11.8) is the occurrence of the particle speed in the denominator
of the exponential argument. This has the effect that PG(V ) falls off expo-
nentially rapidly to zero as the speed decreases below a value that is related
to Vc (see Equation 11.6). In the opposite limit, for speeds V � Vc, PG(V )
eventually saturates at a value of unity.

In contrast to this behavior of the tunneling factor, the significant prop-
erty of a thermal velocity distribution f(V ) ∼ V 2 exp(−V 2/V 2

th) is that as the
speed increases, the exponential term eventually dominates over the V 2 term.
As a result, the number of available particles falls off exponentially rapidly at
high speed.

The overall rate of thermonuclear reactions involves an integral of the
product Π(V ) = PG(V )f(V ) over all velocities. Because of the contrasting
behavior of each of the terms as a function of velocity, the integral receives
essentially zero contribution from particles with low speeds or from particles
with high speeds. The integrand peaks at an intermediate velocity Vo, cor-
responding to energy Eo. The particles which contribute most to the rate of
thermonuclear reactions are those which lie within a range of velocities ∆V
in the neighborhood of Vo. As a result, when we integrate over all velocities,
the thermonuclear reaction rate rtn is proportional to f(Vo) (the number of
particles in the thermal distribution at V = Vo) times ∆V .

Converting from velocity to energy, we note that the exponential term in
f(V ) converts to f(E) ∼ exp(−E/kT ), while PG(V ) converts to PG(E) =
exp(−β/

√
E). In the expression for PG(E), β = C ′Z1Z2

√
A and C ′ = 2π2e2√

(2mp)/h = 1.23 × 10−3 c.g.s. units. Since the mean thermal energy kT
(≈ 1.9 × 10−9 ergs) in the core of the Sun is of order 1 keV (= 1.6 × 10−9

ergs), it is convenient (Clayton, 1968) to express energy in units of keV: Ek =
E/(1 keV). In these units, C ′ is replaced by C ′

k = 31 keV0.5.
In terms of energy, the product Π(E) = PG(E)f(E) has a maximum value

at an energy Eo where the sum of the two terms β/
√

E+E/kT in the exponent
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is a minimum. Taking the derivative with respect to energy, we find that this
minimum occurs when

−β

2E
3/2
o

+
1

kT
= 0 (11.11)

This leads to Eo = (βkT/2)2/3: this is the energy at which the particles
in the thermal distribution participate with maximum effectiveness in quan-
tum tunneling, and therefore, also in thermonuclear reactions. For example,
in the case of reaction (a) in the pp-cycle in the core of the Sun, we have
Z1 = Z2 = 1 and A = 0.5. These lead to β = 22 keV0.5. Since kT ≈ 1.2 keV
in the core of the Sun, we find Eo ≈ 5.6 keV, i.e., ≈ 4.7 times larger than
the mean thermal energy. The velocity of particles with energy Eo is there-
fore ≈ √

4.7 times the mean thermal speed, i.e., ≈ 2.2Vth . This confirms our
discussion in Section 11.5.1.

Using the estimate of Eo, we find that the rate of thermonuclear reactions
fr is proportional to Π(Eo), i.e., fr ∼ exp(−3Eo/kT ). Because of the expo-
nential factor, the rate fr is quite sensitive to temperature. To quantify this,
let us insert the expression derived above for Eo, and take the natural loga-
rithm. We find ln(fr) = −3(β/2)2/3/(kT )1/3. It is often convenient to write
the reaction rate in terms of a power law of the temperature, fr ∼ T δ. This
leads to

δ ≡ d ln fr

d lnT
= +

(
β2

4k

)1/3 1
T 1/3 (11.12)

Inserting c.g.s. values for β (for the pp-reaction) and k, and expressing the
temperature in units of 106 K (i.e., T6 ≡ T/106 K) we find

δ = +
11.1

T
1/3
6

(11.13)

In the core of the Sun, where T6 ≈ 15 − 16, Equation 11.13 indicates that
δ ≈ 4 − 5. Thus, the rate of pp-reaction increases rather rapidly as temperature
increases.

11.7 Rate of Reaction (c) in the pp-cycle

Reaction (c) (Section 11.1) involves a larger Coulomb barrier than re-
actions (a) or (b). It is interesting to see quantitatively how sensitive the
tunneling barrier is to the reacting nuclei.

In calculating the quantity β for reaction (c), using Z1 = Z2 = 2 and
A = 1.5, we find β = 152 keV0.5. Setting kT = 1.2 keV, this leads to Eo =
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20.3 keV, which is much larger than the 5.6 keV value for reaction (a). As a
result, the reaction rate, which is proportional to exp(−3Eo/kT ), is reduced
in reaction (c) compared to reaction (a) by exp(−3[20.3 − 5.6]/1.2) ≈ 10−16

in the core of the Sun. (Note, kT = 1.2 keV in the solar core.) However, the
post-tunneling process in reaction (c) depends on the strong force: the rate of
this process therefore greatly exceeds that for reaction (a). Empirically, the
excess in rates is found to be of order 1025 (Clayton, 1968, p. 380).

Combining the factors 10−16 and 1025, we see that each He3 nucleus reacts
at a rate which is 109 times more frequent than each proton. However, the
equilibrium abundance of He3 nuclei is much smaller than the proton abun-
dance: specifically, in equilibrium, for every proton, there are only 10−5 He3

nuclei. This has the effect that the mean free time interval that a particu-
lar He3 nucleus must wait between collisions with another He3 nucleus is 105

times longer than the mean free time for collisions with a proton.
The combination of the enhancement factor of 109 (due to tunneling plus

post-tunneling processes) and the decrease of 105 (due to abundances) has the
net effect that an individual He3nucleus has a collision leading to reaction (c)
in a time-scale which is some 104 times shorter than the time-scale for a
proton to undergo reaction (a). As a result, whereas a time-scale of order 1010

years is characteristic of reaction (a), the time-scale for reaction (c) is of order
106 years.

For reactions other than reaction (a), the numerical coefficient 11.1 in
the expression for δ must be replaced by 11.1(Z1Z2)2/3(A/0.5)1/3, where the
0.5 refers to the reduced mass which enters into reaction (a). This has the effect
that reaction (c) in the core of the Sun has a rate which increases as T 16. The
great sensitivity to temperature arises from the sensitivity of tunneling to the
strength of the Coulomb barrier.

Exercises

11.1 From Exercise 5 in Chapter 1, you already know the values of Vesc for
main sequence stars with masses of 0.1, 0.3, 1, 3, and 10 M�. Assuming
thermal speeds in the core Vth ≈ Vesc, evaluate the ratio rc/λp = Vc/Vth
in the core of each star (where Vc is given by Equation 11.6). Show that
on the main sequence, the ratio rc/λp does not vary by more than a
factor of roughly 2.

11.2 Using the tunneling probability formula P (V ) ≈ exp(−2π2rc/λp), cal-
culate P (V ) for the five stars in Exercise 1. Show that P (V ) for the
10M� star is two to three orders of magnitude larger than for the 1M�
star, while P (V ) for the 1M� star is three to four orders of magnitude
larger than for the 0.1M� star. Show how these results help us to ex-
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plain the empirical results that the luminosity of a 10M� star exceeds
L� by about 1000, while L� exceeds the luminosity of a 0.1M� star by
about 1000.
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Chapter 12

Neutrinos from the Sun

As a result of the calculations in Chapters 5, 7, and 9, we have obtained a
model for the interior of the Sun. Is there any way to check our model, to see
if it is correct?

In the 1960s, only one answer existed for this question: we need to detect
a certain kind of energetic particle (neutrinos) which emerges from nuclear
reactions in the core of the Sun. The goal of such experiments would be to
check that the numbers of neutrinos which reach the Earth, as well as their
energies, are consistent with the properties we calculated for nuclear reactions
in the solar core.

The existence of neutrinos was first postulated by Pauli in 1930 in order
to preserve the laws of conservation of momentum and energy in certain ra-
dioactive decays. Pauli’s approach was a bold one: he had to postulate that in
these decays, a hitherto unseen particle with zero electric charge must emerge
with a finite energy and momentum, but with a mass that must be so small as
to be almost zero, certainly much smaller than the mass of an electron. The
term “neutrino” was subsequently coined by Fermi for Pauli’s unseen parti-
cle. The absence of electric charge means that the neutrino does not interact
with its surroundings by means of electromagnetic processes. The fact that
the neutrino is associated with radioactive decay (a process which is driven by
the weak interaction) means that the neutrino interacts with other particles
via the weak force.

We have already seen (Chapter 11, Section 11.5.3) how the weak force
in the Sun makes for very long time-scales in certain reactions, whereas the
strong force makes reactions occur much more rapidly. There is also a large
difference in strength between the weak force and the electromagnetic force.
Because of this difference, photons (signatures of the electromagnetic force)
and neutrinos (signatures of the weak force) behave very differently as they
propagate inside the Sun. In Chapter 9, Section 9.3, we determined that pho-
tons which originate in the core of the Sun take millions of years to escape
from the Sun. In contrast to the photons, we shall see that neutrinos from
nuclear reactions in the solar core can reach the surface of the Sun in a matter
of a few seconds.

159
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12.1 Generation and Propagation of Solar Neutrinos

Every time the pp cycle occurs, a neutrino emerges from the first step of
the cycle (Chapter 11, Section 11.1, reaction (a)). A complete pp-cycle requires
this step to occur twice. As a result, since the pp-cycle occurs some 1038 times
per second in the Sun (see Chapter 11, Section 11.2), there are some 2 ×1038

neutrinos generated per second in the Sun’s core.
Are the neutrinos likely to be absorbed as they pass through the Sun? Or

can they escape more or less freely? To answer this, we return to the same sort
of calculation we did in Chapter 9, Section 9.3 when we were considering how
photons propagate inside the Sun. The relevant physical quantity is the mean
free path λm that a neutrino can travel between collisions inside the Sun.

In general, when a projectile moves through a medium containing n “target
objects” per cc, each with a cross-section of σ, the mean free path is given by
λm = 1/nσ. In the case of photons, where the opacity κ is conventionally ex-
pressed in units of cm2 gm−1, the product nσ can be replaced by the product
κρ (Chapter 3, Section 3.3). As a result, as we have already seen (Chapter 9,
Section 9.3), the mean free path of a photon 1/κρ is very short (≈ 0.001 cm)
in the Sun’s core.

Turning now to neutrinos, we revert to the general formula λm = 1/nσ.
The “target objects” that a neutrino from the core of the Sun encounters on its
way to the surface are mainly protons. In the core of the Sun, where the mass
density ρ is ≈ 140 gm cm−3 (see Chapter 9, Table 9.1), the number density of
nuclei is roughly ρ/mH (where mH = 1.67 ×10−24 gm). Thus, n ≈ 1026cm−3,
mainly hydrogens, but including He and a few “metal” ions.

Now we come to the key difference between photons and neutrinos. Pho-
tons which try to propagate past the ions in the core of the Sun “see” the ions
as having, on average, effective areas of order 10−23cm2. The reason that the
cross-section has a value larger than the Thomson cross-section (see Chap-
ter 3, Equation 3.1) is that the photon interacts via electromagnetism with
some bound electrons which remain in heavy nuclei. But for neutrinos, elec-
tromagnetism is not important: neutrinos interact with the nuclei in the Sun
by means of the weak interaction. For this, the cross-section is much smaller
than the Thomson value. Cowan et al. (1956) detected neutrinos from a fission
reactor by measuring their interaction with a specially designed detector. De-
pending on the power level of the reactor, Cowan et al. found a mean neutrino
reaction rate in the detector between 0.6 and 2.9 per hour. Running for almost
1400 hours, Cowan et al. determined that for the neutrinos associated with a
fission reactor (with energies of a few MeV, comparable to the energies of solar
neutrinos: see Figure 12.1), the scattering cross-section σ ≈ 6 ×10−44cm2. In
subsequent more refined experiments, the cross-section was found to be larger
by a factor of about 2. To a good approximation, we may take σ ≈ 10−43cm2

for neutrinos with energies of a few MeV.
The contrast between the photon cross-section and the neutrino cross-

section is striking: the difference amounts to some 20 orders of magnitude.
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“Weak” is indeed an appropriate adjective to describe the interaction that
neutrinos have with matter.

For neutrinos with energies of a few MeV, the cross-section is insensitive
to energy, and so we can, without serious error, apply the cross-section de-
termined from fission reactor neutrinos to the conditions in the core of the
Sun. Combining the neutrino σ with the value of n in the core of the Sun, we
see that even in the densest region of the Sun, the neutrino mean free path
λm = 1/nσ ≈ 1017 cm. In terms of a unit of length that is more familiar to
astronomers, this equals one-tenth of a light-year! As the neutrinos move out-
ward from the core of the Sun, and pass through gas of lower density, the value
of λm becomes even larger. Even at the center of the Sun, the value of λm

exceeds the solar radius (7 ×1010 cm) by more than six orders of magnitude.
As a result, the neutrinos from the pp reaction in the core of the Sun

barely “feel” the material of the solar interior at all. Less than one neutrino in
a million will undergo a scattering between the core of the Sun and its surface.
For the rest, the Sun is essentially “transparent,” and the neutrinos simply
stream freely out of the Sun. With essentially zero rest mass, a neutrino trav-
els at the speed of light: once a neutrino is generated in the core, it reaches the
surface in a time of R�/c = 2.3 sec. Some 500 sec later, the neutrino passes
the Earth’s orbit.

The lack of scattering in physical space does not mean that the neutrinos
feel no effects whatsoever from passing through the Sun: another type of effect
occurs, one which causes the neutrino to change into another type of neutrino.
We will return to this below, after we describe the experiments which have
been built to detect solar neutrinos.

12.2 Fluxes of Solar Neutrinos at the Earth’s Orbit

The Sun generates Nn ≈ 2 × 1038 pp-neutrinos per second. When the
neutrinos pass by the Earth, at a distance of D = 1 AU, the flux is Fn =
Nn/4πD2 ≈ 6 ×1010 cm−2 sec−1.

The neutrinos which emerge from the pp reaction have a range of energies,
all less than 0.42 MeV. Other channels of the pp-chain, as well as contri-
butions from the CNO cycle, ensure that the Sun generates other neutrinos
with a range of energies. The spectrum of solar neutrinos, calculated from a
detailed model of the Sun, and evaluated at the Earth’s orbit, is shown in
Figure 12.1. Neutrinos which emerge from reactions involving only two out-
going particles are emitted at unique energies: these appear as “lines” in the
spectrum. Reactions in which more than two outgoing particles are present
(including pp → De+ν) give rise to a “continuum” of energies for the neutri-
nos, up to a well-defined maximum “cut-off” energy, which is determined by
the difference in energy between initial and final state.
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FIGURE 12.1: Fluxes of solar neutrinos as a function of energy at a distance
of 1 AU from the Sun. Different ordinates are used depending on whether one
is dealing with “lines” or with “continua.” (From Nakamura K. 2000. Euro.
Phys. J. C, 15, 366. With permission.)

For the “lines” in the solar neutrino spectrum, the ordinate in Figure 12.1
refers to the flux in units of particles cm−2 sec−1 at Earth. For the “continua,”
the ordinate in Figure 12.1 refers to a differential energy flux, in units of
particles cm−2 sec−1MeV −1 at Earth.

In terms of overall flux, the neutrinos from the Sun are predominantly
those which emerge from reaction (a) of the pp-I chain. As Figure 12.1 illus-
trates, the maximum differential flux of pp neutrinos is (2 − 3) × 1011cm−2

sec−1MeV−1, while the cut-off energy is 0.42 MeV. Thus, the area under
the curve, i.e., the total flux of pp neutrinos at Earth orbit is no more than
(8−12)×1010 neutrinos cm−2sec−1. This is consistent with the rough estimate
of 6 ×1010 neutrinos cm−2 sec−1 given above.

12.3 Neutrinos from Reactions other than pp-I

In the Sun, most of the energy generation occurs via the pp-I chain of re-
actions which were discussed in Chapter 11. Now, in order to provide a more
complete discussion of the neutrinos which come from the Sun, we need to look
at certain less frequent reactions which also occur in the solar core, in particu-
lar the pp-II and pp-III chains. These reactions do not contribute much to the
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energy output of the Sun, but they do contribute significantly to the neutrino
fluxes which have been detected on Earth. In fact, for the first 25 years of
solar neutrino experiments, the only neutrinos which could be detected were
those from the pp-III chain. The reason has to do with the fact that neutrinos
must have a certain minimum energy before a detector can respond.

12.3.1 pp-II and pp-III chains

Both of these chains at first rely on the reactions pp-I (a) and (b) (see
Chapter 11, Section 11.1) to produce He3. Then, instead of interacting with
another He3 nucleus, the following reaction occurs:

He3 + He4 → Be7 + γ (d)

How fast does reaction (d) go compared with reaction (c) (see Chapter 11) of
the pp-I chain? To address this, we can first address the difference in Coulomb
barrier tunneling by proceeding analogously to the discussion in Chapter 11,
Section 11.7. For reaction (d), we use Z1 = Z2 = 2 and A = 1.71: this
leads to β = 162 keV0.5. Using kT = 1.2 keV in the solar core, we find
Eo = (βkT/2)2/3 = 21.1 keV. This is somewhat larger than the 20.3 keV
value for reaction (c) of the pp-I chain. As a result, the tunneling rate, which
is proportional to exp(−3Eo/kT ), is reduced in reaction (d) compared to reac-
tion (c) by almost ten in the core of the Sun. Thus, quantum tunneling reduces
the reaction rate of (d) compared to (c) by about one order of magnitude.

On the other hand, a significant factor which strongly favors the occurrence
of reaction (d) over reaction (c) has to do with the fact that He4 is much more
abundant in the Sun than He3: the excess is some four orders of magnitude.
As a result, any nucleus of He3 finds itself likely to collide, in a given time
interval, with 104 times more He4 nuclei than with He3 nuclei.

The final determination of how rapidly reaction (d) occurs compared to
reaction (c) has to do with what happens in the post-tunneling process, when
the strong force comes into operation. There is no easy way to see what dif-
ferences should be expected when the strong force comes into play: one must
rely on detailed quantum mechanical calculations. These indicate (Clayton,
1968) that for (d), the reaction rate has a numerical value which is 104 times
smaller than for reaction (c).

Combining the reduction in tunneling rate (10−1) with the increase in
abundance (104) and the decrease (10−4) in the post-tunneling rate, we find
that the net effect is that reaction (d) occurs about 10 times less frequently in
the solar core than reaction (c). As a result, the pp-I chain occurs about 90%
of the time in the solar core, while the pp-II and pp-III chains, in combination,
occur about 10% of the time.

Following reaction (d), the pp-II chain proceeds according to the reactions:

Be7 + e− → Li7 + ν (e)

Li7 + p → 2He4 (f)

T&F Cat # C3074, Chapter 12, Page 163, 14-7-2009



164 Physics of the Sun: A First Course

Reaction (e), which involves electron capture, leads to two (and only two)
particles in the exit channel. As a result, the neutrinos have a unique energy.
The energy difference between the ground states of the nuclei is 0.86 MeV. A
neutrino “line” indeed appears in Figure 12.1 at 0.86 MeV.

As it happens, the Li7 nucleus has an excited state at an energy of 0.48 MeV
above ground: this lies low enough that it is also below the energy of the ground
state of Be7. The transition from the ground state of Be7 to this excited state
produces a neutrino with an energy of 0.86 − 0.48 = 0.38 MeV. A neutrino
“line” also appears in Figure 12.1 at this energy. Laboratory measurements
indicate that the 0.86 MeV transition occurs 90% of the time. This accounts
for the fact that in Figure 12.1, the flux of 0.86 MeV neutrinos is about ten
times larger than the flux of 0.38 MeV neutrinos.

Following reaction (d), the pp-III chain proceeds as follows:

Be7 + p → B8 + γ (g)

B8 → Be8 + e+ + ν (h)

Be8 → 2He4 (i)

Reaction (g) differs from reaction (e) in the qualitative sense that in (g), the
repulsive force between two positively charged particles has to be penetrated,
whereas in (e), there is an attractive force between the Be7 nucleus and the
electron. For these reasons, the pp-II chain gets off to a faster start than the
pp-III chain. Detailed calculations show that the pp-II chain occurs about
100 times more frequently in the Sun than the pp-III chain.

Nevertheless, reaction (h), in the pp-III chain is the reaction which first
allowed solar neutrinos to be detected. Three particles emerge from the decay,
and as a result, the neutrino energies are spread across a continuum. Signifi-
cantly, the cut-off energy of the continuum is quite large, some 14 MeV. This
large value arises from the large difference in mass between the parent and
the daughter nuclei (see Audi and Wapstra 1993) 8.021864 a.m.u. (B8), and
8.003111 a.m.u. (Be8). If the decay in reaction (h) were to occur between the
ground states of parent and daughter, the cut-off energy would be the energy
corresponding to the total mass difference (0.0188 a.m.u.), i.e., 17.5 MeV.
However, although the decay starts in the ground state of B8, it is forbidden
to go to the ground state of Be8: instead, the decay goes to an excited state of
Be8 which lies 2.9 MeV above ground. The positron also requires 0.51 MeV.
As a result, the cut-off energy for reaction (h) is 14.1 MeV.

12.3.2 Other reactions

The pep reaction involves an electron capture by a proton and a subsequent
collision with another proton:

p + e− + p → D + ν (j)
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The energetics are the same as reaction (a) of the pp-I chain, except
that the electron appears on the left-hand side. Moreover, only two particles
emerge, and as a result, the emergent neutrino has a unique energy: 1.44 MeV.
Reaction (j) in the Sun occurs once for every 400 pp reactions.

The Hep reaction leads to a neutrino continuum with a cut-off at 18.8 eV:

He3 + p → He4 + e+ + ν (k)

These are certainly the most energetic neutrinos generated by solar nu-
clear reactions. However, models indicate that the Hep reaction is very rare,
occurring less than once for every million pp reactions. There are no claims in
the literature that any experiment has confidently identified a neutrino from
the Hep reaction.

In stars hotter than the Sun, energy is generated preferentially by a “bi-
cycle” of reactions in which carbon nuclei act as catalysts for fusing four
protons into one helium. In this “bi-cycle,” three decays occur (N13, O15,
and F17) with the emission of a neutrino with a continuous energy spectrum
extending up to 1 − 2 MeV. These are shown in Figure 12.1. In the Sun,
combinations of models and data suggest that the CNO cycle contributes
only 0.5% to the Sun’s energy output (Bahcall et al., 2005). We will not
consider CNO neutrinos any further in this first course.

12.4 Detecting Solar Neutrinos on Earth

The very smallness of the interaction cross-section which allows neutrinos
to escape from the center of the Sun has the inevitable corollary that detection
of neutrinos on Earth requires efforts which are nothing short of Herculean.

There are two general classes of experiment for the detection of neutrinos.
In one class, we rely on the properties of certain nuclei to absorb a neutrino,
thereby transforming the initial nucleus into the nucleus of a new element: the
goal is then to identify the amount of the new element which is produced in a
given time interval. In the second class of experiments, we do not use nuclear
physics at all: instead, we detect events in which a fast neutrino “smashes into”
an electron in a certain medium (e.g., water), giving the electron a speed which
exceeds that of light in the medium. When that happens, a burst of Cherenkov
radiation is emitted and is detected by light-sensitive photo-tubes.

12.4.1 Chlorine detector

The first neutrino detector, built by Raymond Davis Jr in the 1960s, used
a large tank of cleaning fluid (C2Cl4) containing 520 tons of Cl37. The goal
was to have solar neutrinos interact with Cl37 nuclei to produce nuclei of Ar37,
and then count how many Argons were in the tank after a certain length of
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running time. In order to avoid contamination from backgrounds, the detector
was buried deep, almost one mile, underground in a mine in South Dakota
(Davis et al., 1968).

The (forward) decay reaction

Ar37 → Cl37 + e+ + ν

is driven by the mass difference between the ground states of Ar37 and Cl37,
corresponding to an energy of 0.814 MeV (Audi and Wapstra 1993).

As a result, the Davis’ detector (which records events driving the above
reaction backward), responds only to neutrinos with energies in excess of
0.814 MeV. In principle, this means that if neutrino capture were to oc-
cur mainly via a transition from the Cl37 ground state to the Ar37 ground
state, then Davis should be able to detect the line neutrinos from the pep
reaction, and from the higher energy Be7 decay, as well as continuum neu-
trinos from B8 decay, the Hep reaction, as well as three decays in the CNO
bi-cycle.

However, the nuclear physics is such that transitions from the Cl37 ground
state to excited states of the Ar37 nucleus are preferred, especially to a level
at an energy of about 5 MeV above the ground state. As a result, neutrinos in
the B8 and Hep continua dominate the signal in the Davis detector. Of these,
the B neutrinos are dominant by far.

Now that we know which continua will be dominant, we turn to the ex-
perimental results. In principle, we are seeking a measurement of the neutrino
flux. A convenient unit can be devised which incorporates the likelihood of a
neutrino being detected. The common unit for discussing solar neutrino ex-
periments is the solar neutrino unit (SNU): this is defined to be one neutrino
capture per second in a detector which contains 1036 target nuclei.

Why is this unit useful? Because the interaction cross-section between a
neutrino and one of the target atoms is expected to be of order 10−43 cm2,
while the input flux from the Sun in the B8 continuum is expected to be a
few times 107 neutrinos cm−2 sec−1. The product of these numbers yields an
expected capture rate in a detector of a few times 10−36 per second. In view
of this, a detector containing 1036 targets should yield a detection rate of a
few per second. By definition, a detection of one per second per 1036 targets
equals 1 SNU.

The Davis’ detector contained roughly 1031 chlorine target nuclei. The
standard solar model predicted that in one day of running (i.e., about 105 sec),
the Davis’ detector should record about two neutrino captures. When the
exact calibration was done, it was found that two captures per day would
correspond to a solar neutrino rate of 8.1 SNU’s. (See Figure 12.2). Even
allowing the experiment to run for several months at a time, the total yield
of argon atoms in the tank at the end of the run was expected to be no more
than a few hundred, out of a tank which contained some 1031 chlorine atoms:
the chemical expertise required to flush out those few argon atoms from an
“ocean of chlorine” was truly impressive.
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Total rates: Standard model vs. experiment
Bahcall–Serenelli 2005 (BS05(OP))

C1 H2O

Theory 7Be
8B

D2O D2OGa

p–p, pep Experiments
UncertaintiesCNO
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2.56 ± 0.23 0.30 ± 0.02
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FIGURE 12.2: (See color insert following page 202.) Neutrino count-
ing rates: comparison between theory and experiments. The rates are given
in units of SNU’s (see text). (From the late John Bahcall’s website: www
.sns.ias.edu/∼jnb, under the heading “Solar Neutrinos: viewgraphs.” With
permission.)

The experimental results were a surprise. The observed count rates, when
averaged over 20 years and more, yielded a rate of only about 0.6−0.7 captures
per day. The corresponding average solar neutrino rate is 2.6 ± 0.2 SNU.

Davis’ experiment led to the startling conclusion that the experimental
capture rates of solar neutrinos were smaller than predicted by a factor of
about three. This shortfall became known as the “solar neutrino problem.”
We shall return to this below.

12.4.2 Cherenkov emission

If a neutrino collides with an electron in a medium, the electron, called the
“knock-on electron,” picks up some of the neutrino energy. Solar neutrinos,
with energies of up to 14 MeV, can create knock-on electrons which also have
energies which are measured in MeV. Such electrons travel with speeds that
are close to the speed of light in vacuo. If such an electron travels through a
medium where the speed of light is reduced to (say) 0.7c (such as water), the
knock-on electron will be moving faster than light in the medium. This causes
emission of light in a Cherenkov cone, with an opening angle determined by
the electron’s energy. To make the electron fast enough for the Cherenkov
process to be possible, the initial neutrino must have a minimum energy.

T&F Cat # C3074, Chapter 12, Page 167, 14-7-2009



168 Physics of the Sun: A First Course

The Kamiokande detector in Japan, containing some 2000 tons of water,
was instrumented with a spherical shell of phototubes to track the Cherenkov
cones from solar neutrinos: this detector came on line in 1983. Subsequently,
the super-Kamiokande detector, with 50,000 tons of water, and with more
than 10,000 phototubes, came on line in 1996. In both cases, the minimum
energy required to create knock-on electrons with significant Cherenkov emis-
sion is ≥ 5 MeV (e.g., Rothstein, 1992; Takeuchi, 2005). As a result, neither
detector could record the main (pp) neutrinos from the Sun: the detectors
could respond only to the upper end of the spectrum of B8 neutrinos.

The standard solar model predicted that the neutrino detection rates
should be 1 ± 0.2 SNU. But the experimental results yielded no more than
0.4 − 0.5 SNU.

A major advantage of the Kamiokande detectors is that they provide in-
formation as to the direction of the incoming neutrino. The data confirmed
that the neutrinos are indeed coming from the Sun.

12.4.3 Gallium detectors

In order to detect the most abundant neutrinos from the Sun (i.e., those
from reaction (a) of the pp-I chain), it is necessary to devise a detector in
which the threshold energy lies well below the cut-off energy (0.42 MeV) of
the pp neutrinos. An isotope of gallium satisfies this criterion.

The relevant decay scheme on which this neutrino detector is based is

Ge71 → Ga71 + e+ + ν

The mass difference between Ge71 and Ga71 corresponds to an energy
difference of only 0.23 MeV. Consequently, neutrinos can be captured by Ga71

if the neutrino energy exceeds 0.23 MeV. Most of the pp neutrinos satisfy this
criterion.

With a detector which is sensitive to the most abundant solar neutrinos,
the count rate is predicted to be much larger than in the chlorine detector or
in the Cherenkov detectors: the gallium detectors were predicted to respond
at the rate of 126 SNU’s.

Two experiments were built, one in Russia (SAGE, using 50 tons of liquid
gallium, with operations starting in 1990: see Abdurashitov et al., 1999), and
one in Italy (GALLEX, using a solution containing 30 tons of gallium, with
operations starting in 1991: see Kirsten, 2008).

The detection results from both experiments were in agreement with each
other, some 67−69 SNU’s, but both detection rates were definitely lower than
the predictions.

12.4.4 Heavy water detector

A detector containing 1000 tonnes of heavy water (D2O), surrounded by
an even larger volume of clean “ordinary water” (H2O), was buried 2 km be-
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FIGURE 12.3: The inner part of the SNO detector. Notice the scale of this
detector: the scale can be estimated from the size of the human beings near
the bottom of the image. (Image courtesy of SNO.)

low ground at the Sudbury Neutrino Observatory (SNO) in Ontario, Canada
(see Figure 12.3). The container of heavy water plus “ordinary water” was
viewed by almost 10000 photomultiplier tubes, arranged on a geodesic dome
framework, in order to detect the faint flashes of radiation emitted by par-
ticle interactions inside the heavy water. The size of the instrument can be
estimated by comparison with the two workers near the bottom of the image.
The entire container plus geodesic dome was immersed in a 30-meter barrel
of ordinary water (H2O): the barrel is as tall as a ten-storey building.

The presence of deuterium allowed three distinct classes of reactions to
occur involving neutrinos (Ahmad et al., 2002).

a. Knock-on electrons are created as in Kamiokande; these gave results
similar to those in Section 12.4.2.

b. Neutrinos associated with neutron/proton decays (called electron neu-
trinos) interact with D to cause the neutron to decay into a proton. The
nucleus then becomes a “di-proton,” which is unstable (see Chapter 11,
Section 11.5.2). There is a rapid decay into two free protons plus an
electron. If the electron is fast enough, a Cherenkov pulse can be de-
tected. The standard solar model predicted 30 of these events per day:
the experiment actually recorded only about ten per day.
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c. Neutrinos associated with decays other than neutron/proton decays be-
long to distinct families: they are referred to as µ-neutrinos and τ -
neutrinos, to indicate the decays with which they are associated. All
three neutrino families can interact with deuterium by a process known
as the neutral current reaction. This splits the deuterium nucleus, and a
free neutron emerges. In the presence of a suitable contaminant nucleus
(such as Cl35, added to the water tank in the form of table salt), neutron
capture can occur, and gamma rays are emitted.

The standard solar model predicted about 30 neutrinos per day: the ex-
periment recorded essentially that rate. For the first time, a neutrino detector
responded in the way that was predicted by the standard solar model.

12.5 Solution of the Solar Neutrino Problem

For a decade or more after Davis announced his first results, the com-
monest explanation for the solar neutrino problem was that there must be
something wrong with the solar model. Attempts were made by solar mod-
elers to add extra effects in the Sun (strong magnetic fields, fast rotation,
atypical metal abundances), but these were mostly ad hoc. However, as helio-
seismology (see Chapters 13 and 14) came into its own in the 1980s and 1990s,
it became clear that there was very little wrong with the solar model. The so-
lution of the solar neutrino problem must lie in the physics of the elementary
particles.

According to the standard model of particle physics, the fundamental con-
stituents of matter consist of six “flavors” of quarks (two of which exist in pro-
tons and neutrons) and six leptons. The latter consist of electrons, µ-mesons,
and τ -mesons, plus the “flavors” of corresponding neutrinos (electron neutri-
nos, µ-neutrinos, and τ -neutrinos). Leptons interact only through the weak
force, and also (if they are electrically charged) through the electromagnetic
force. Although in the standard model, all neutrinos have zero mass, exper-
imental evidence from cosmic rays indicates that this is not exactly true. It
turns out that neutrinos have nonzero masses, although the masses are orders
of magnitude less than the next lightest lepton (the electron). The existence of
finite mass has the effect that neutrinos in different flavors can “mix” among
themselves.

The Sun generates electron neutrinos only: all of the decays which gener-
ate neutrinos in the Sun involve electrons only (see Chapter 11, Section 11.1,
reaction (a), and Chapter 12, Section 12.3.1, reactions (e) and (h), and Sec-
tion 12.3.2, reactions (j) and (k)). The Sun does not generate either µ- or
τ -neutrinos directly. However, as the electron neutrinos propagate through
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the Sun, and between the Sun and Earth, the electron neutrinos undergo a
mixing process, thereby producing neutrinos in the other two flavors. If enough
mixing occurs so as to populate equally all three flavors, then roughly equal
numbers of neutrinos are produced in all three flavors.

As a result, only about one-third of the (electron) neutrinos which are
generated at Sun survive to reach the Earth as electron neutrinos. The re-
maining two-thirds reach the Earth as roughly equal mixtures of µ-neutrinos
and τ -neutrinos.

The chlorine and gallium detectors are sensitive only to electron neutrinos.
Their count rates are smaller than expected because the detectors do not
“see” the µ- or τ -neutrinos. The Cherenkov pure-water experiments are in
principle sensitive to all three neutrinos, but in practice the cross-section for
scattering off electrons in the water favors the electron neutrinos. Therefore,
the pure-water detectors respond best to the one-third electron neutrinos, with
a weaker response to the other two-thirds. But when SNO experiment (c) was
performed, with salty water, all three flavors of neutrinos could participate in
the reactions, and were therefore detectable.

The history of the solar neutrino “problem” reads like an exciting detec-
tive story. It took 35 years of “big science” in multiple countries to identify
the “culprit.” The case was solved in 2002 by the SNO experiment (see Sec-
tion 12.4.4c).

Two significant results emerged from the neutrino detective story. First,
as regards the physics of the internal structure of the Sun, the solar models
survived a stringent test. Second, in the field of particle physics, a new window
“beyond the standard model” was opened up. Both areas of research, solar
physics and particle physics, benefited from the long process of solving the
solar neutrino problem.

Exercises

12.1 Use the isotope masses in Table 11.1 to show that the cut-off energy in
reaction (k) (Section 12.3) is 18.8 MeV.

12.2 For reaction (k) (Section 12.3), show that the energy Eo at which quan-
tum tunneling has maximum effectiveness (see Chapter 11, Section 11.6)
is equal to 10.1 keV. Using this value of Eo, show that, due to Coulomb
effects alone, reaction (k) occurs almost 105 times less frequently than
reaction (a) (Chapter 11, Section 11.1).

12.3 Using tabulated values of atomic weights for C and Cl, how that a
detector which contains 520 tons of C2Cl4 contains close to 1031 atoms
of chlorine.
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Chapter 13

Oscillations in the Sun:
The Observations

We have already (in Chapter 12) raised the important question: how can we
possibly check on our models of the internal structure of the Sun? After all,
the interior of the Sun is surely one of the most inaccessible parts of the world
we live in. So it is natural to raise the question: how do we know we are on
the right track? Could it be that our calculations are far from reality, and are
just plain wrong? Is it possible to check on these calculations?

One way to address this issue is by studying neutrinos, which come from
the hottest parts of the solar interior, where nuclear reactions occur. The
neutrinos allow us to check on our calculations in the very core of the Sun
(see Chapter 12).

But in the 1970s, and especially following a landmark experiment in 1980 at
the South Pole (where the Sun was observed continuously for more than
five days), a second method of testing the solar models became available. In
terms of physics, the radial profile of the properties of the entire solar interior
can be checked by studying the properties of certain waves which propagate
back and forth inside the Sun. These waves provide us with a “window into
the Sun.” In this chapter and in Chapter 14, we turn to a study of these waves,
and how they can help us to check our calculations of the internal structure
of the Sun.

The Sun, although appearing to the unaided eye as being constant in its
output, nevertheless is not absolutely unchanging. The most obvious forms of
solar variability are sunspots: dark regions on the surface which appear and
disappear on semiregular time-scales of days to years (see Chapter 16).

However, when one observes the Sun with sufficiently high resolution, one
finds that there are some highly regular variations which occur on time-scales
of minutes. In this case, the periodicities of the variations are not at all
semiregular: on the contrary, they occur on highly precise time scales, which
are reproducible every time one observes the Sun. These extremely periodic
variations provide a means for us to obtain valuable information about the
solar interior akin to the information that geologists obtain about the Earth’s
interior by studying earthquakes.

The purpose of this chapter is to describe the observations which allow us
to determine the properties of the Sun’s variations on time-scales of minutes.

The variations can be studied from the point of view of temporal variations
alone (with no regard for spatial resolution). They can also be studied in data
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which are spatially resolved across the disk of the Sun. We turn first to the
purely temporal variations.

13.1 Variability in Time Only

When the Sun is observed “as a star,” data are gathered without regard
to spatial location on the surface of the Sun. The detector integrates over
the entire disk of the Sun. Using high spectral resolution, small variations in
velocity can be detected. When these are analyzed as a time series, a power
spectrum is obtained, showing how much power occurs (in velocity) as a func-
tion of frequency. An example is shown in Figure 13.1 (Fossat et al., 1981).
The data were obtained by observing the Sun continuously for a time interval
To ≈ 0.5 × 106 sec. The abscissa show the frequency in units of milliHertz
(mHz), while the ordinate shows the power in velocity (∼ V 2 per unit fre-
quency). The frequency resolution, of order 1/To, is a few microHertz (µHz).

The striking result in Figure 13.1 is that large amounts of power are ob-
served at certain frequencies, while at other frequencies, there is so little power
that it can hardly be distinguished from noise.

Inspection of Figure 13.1 illustrates that the Sun generates significant
quantities of power at certain well-defined frequencies ν which extend between
(roughly) 2.5 mHz and (roughly) 4.5 mHz. The corresponding periods (= 1/ν)
range from about 400 sec down to about 220 sec. Earlier observations of this
type, at lower resolution, had detected only a broad peak of power centered
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FIGURE 13.1: Power spectrum of solar oscillations in velocity. (From Fossat,
E., Grec, G., and Pomerantz, M. A. 1981. Solar Phys., 74, 59. Used with
permission of Springer Science and Business Media.)
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FIGURE 13.2: Logarithmic plot of p-mode power in the Sun. Ordinate:
power spectral density (PSD) of velocity oscillations in the Sun derived from
800 days of measurements. The p-modes are the dominant signal at low fre-
quencies (≤ 5 mHz). At high frequencies, a different phenomenon appears:
high interference peaks (HIPs), arising from partial wave reflection in the so-
lar atmosphere. (Courtesy of SOHO/GOLF consortium. SOHO is a project
of international cooperation between ESA and NASA.)

at frequencies of about 3.3 mHz, i.e., periods of about 300 sec: for this reason,
the early observers referred to the oscillations as “five-minute oscillations.”

The plot in Figure 13.1 uses a linear axis for the power scale. This allows
us to separate readily the largest peaks in the power spectrum. But a linear
plot makes it difficult to identify the smallest oscillations in the spectrum. In
order to enhance our ability to see the smaller oscillations, a logarithmic plot
(taken from the website of the Solar and Heliospheric Observatory [SOHO])
is presented in Figure 13.2. The range in frequency ν extends from less than
0.5 mHz to 8 mHz. The oscillations with the largest power levels (having
amplitudes of 4000 − 5000 m2 sec−2 Hz−1), exist at ν = 3 − 3.5 mHz, i.e., in
the 5-minute range, as expected. But now, the plot allows us to identify some
oscillatory power from the “noise” out to ν ≈ 5 mHz (i.e., periods as low as
200 sec). The last identifiable modes at large ν have amplitudes of less than
100 m2 sec−2 Hz−1 (after subtracting the background), i.e., almost 100 times
weaker than the peak power.

On the low-frequency side of the peak, oscillatory power can be identi-
fied down to ν ≈ 1.5–1.6 mHz (i.e., periods of order 10 minutes). The last
identifiable modes at low ν contain power which, after subtracting the back-
ground, has a numerical value of perhaps 10 m2 s−2 Hz−1, i.e., three orders
of magnitude smaller than the peak power in the 5-minute range.

The data in Figures 13.1 and 13.2 illustrate that the Sun produces power at
a multitude of remarkably “spiky” peaks, i.e., the Sun is oscillating (“ringing”)
in many very specific tones. The tones are referred to as “p-modes”: they are
caused by acoustic modes (i.e., pressure waves) which are trapped inside the
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Sun (see Chapter 14). The narrowness of the “spiky” peaks in Figure 13.1 is
striking. The ratio of line frequency (ν ≈3 mHz) to line width (≈1 µHz) is a
few thousand, indicating that when the Sun “rings,” the “quality factor” of
the resonant cavity is very high.

It is also apparent from Figures 13.1 and 13.2 that the spikes are not
distributed at random in frequency: even the unaided eye can see that there
is a preferred spacing (≈ 0.07 mHz) between adjacent peaks. Actually, a more
fundamental spacing turns out to have about twice this value: many modes
are found to be separated by ∆ν = 135–136 µHz (Appourchaux et al., 1998).
This interval contains important information about the interior of the Sun
(see Chapter 14).

The peak power in any given p-mode does not remain invariant, but fluc-
tuates with time. An example of the variability in a single mode (l = 0,
nr = 21: these labels will be defined below) is shown in Figure 13.3. The
mode amplitude is plotted in a perspective 3-D diagram with time along one
axis, frequency of the mode along another axis, and power along the vertical
axis. The mode in question has ν ≈ 3034 µHz. In the course of an observing
run of 4–5 months, the power of the mode varies by a factor of ≈ 10, forming a
“mountain range” in the plot. The peak in power does not shift significantly in
frequency as time goes on. The reason why peaks come and go in the “moun-
tain range” has to do with how the mode is generated: modes are generated
by convective flows at certain depths (see Chapter 14, Section 14.8), and these
flows are highly variable.

13.2 Variability in Space and Time
The data in Figures 13.1 and 13.2 refer to variability in time only: such

data are obtained when the Sun is observed as a star, with no attempt to
resolve the Sun’s disk spatially. However, valuable information about the Sun
can also be extracted from the spatial properties of the variations. To do that,
the Sun must be observed with data which are not only well-resolved in time,
but also spatially resolved. The higher the angular resolution which is used
to obtain the data, the smaller the patches on the Sun’s surface which can be
examined for oscillation.

From a mathematical perspective, when one analyzes the properties of spa-
tial variations on a spherical surface, it is natural to use “spherical harmonic
functions” Ylm = Pm

l (cos θ)eimφ to describe the surface structure. Here, θ
is the colatitude, and φ is the longitude. The index l refers to structure in
the latitudinal direction, between the North pole (θ = 0) and the South pole
(θ = π). The index m refers to structure in longitude. Initially, we neglect lon-
gitudinal variations, and consider m = 0. This allows us to reduce Ylm to the
Legendre functions Pl(cos θ). For l = 0, 1, 2, and 3, Pl(x) = 1, x, (3x2 − 1)/2,
and (5x3 − 3x)/2.
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FIGURE 13.3: A 3-D plot showing, as a function of time, the variations
which occur in the amplitude and in the frequency of one particular mode of
oscillation in the Sun. The mode in this figure has degree l = 0, and radial
order nr = 21. (The label n = 21 in the upper left corner of the figure corre-
sponds to nr = 21 in our notation.) Of the two axes which lie in the “horizontal
plane” in the plot, the one on the right-hand side of the figure indicates the
passage of time (in units of days) since the beginning of the observing window.
This particular observing run lasted more than four months. The second “hor-
izontal axis” indicates the frequency of the oscillation (in units of µHertz).
The particular mode in the figure has a frequency which lies between 3028
and 3038 µHz. Rising above the “horizontal plane” in the figure, the “vertical
axis” shows the power in the oscillation mode at each instant of time and
at each frequency: units of power are ppm2 µHz−1 (where ppm = parts per
million). (From Gavryusev, V. G. and Gavryuseva, E. A.1997. Solar Phys.,
172, 27. Used with permission from Springer Science and Business Media.)

The parameter l is the “angular degree” of the mode, the number of nodes
(i.e., regions of zero amplitude) which exist in the oscillatory structure between
North and South poles. For modes with l = 0 (no nodes in latitude), gas
motions are synchronized over the entire surface: at a given instant, the gas is
moving outward (at all points of the surface), and then one half-cycle later, the
gas is moving inward (at all points of the surface). For modes with l = 1, there
is one node in latitude, at cos(θ) = 0, i.e., the equator: at a given instant, when
the gas in the Northern hemisphere is moving outward, the gas in the Southern
hemisphere is moving inward. One half-cycle later, the Northern gas moves in,
while the Southern gas moves out. For modes with l = 2, at a given instant,
gas moves outward between the North pole and latitude sin−1(1/

√
3) = 35◦N,

gas moves inward in the equatorial regions (at latitudes between 35◦ N and
35◦S), and gas moves outward from 35◦S to the South pole. One half-cycle
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later, the outward motion is confined to the equatorial regions, while the polar
“caps” move inward. For modes with l = 3, nodes occur at latitudes 51◦N, 0
(the equator), and 51◦S.

The larger the l value, the more nodes one must “squeeze” into the range
of latitudes from +90◦ to −90◦, and the closer the nodes approach each other.
When l is large, the linear distance between adjacent nodes along a great
semicircle from the North to South pole is roughly equal to the length of that
semicircle divided by l. The distance between adjacent nodes is equivalent to
one-half of one wavelength. Formally, a linear distance which can be regarded
as the “horizontal wavelength” λh of a mode is given by

λh =
2πR�√
l(l + 1)

(13.1)

Thus, a mode with degree l = 250 has λh ≈ 17500 km. The angular
scale of this on the Sun’s surface, as observed from Earth, is about 20–25 arc
sec: therefore, in order to obtain meaningful information about modes with
l ≥ 250, we need to make observations of the Sun with angular resolutions
which are at least as good as 5–10 arc sec: this will allow us to have a few
“pixels” across one wavelength of the l = 250 modes.

So, given an observing scheme which allows us to measure velocities across
the disk of the Sun with resolutions that are as good as a few arc seconds, we
can analyze the data in terms of its spatial properties as well as its temporal
properties. To extract a power spectrum corresponding to a given l value, a
data set (which has been averaged over longitude) is convolved with the par-
ticular spherical harmonic Yl. For each l, the resulting series is subjected to
time-series analysis, and a power spectrum is obtained for that l value: the
power spectrum will consist of “spikes” at a number of discrete frequencies
(reminiscent of Figure 13.1). Repeating the analysis for many l values, the
resulting power spectrum can conveniently be plotted in 2-D, with spatial
information (the degree of the mode, l) along one axis, and temporal infor-
mation (the frequency of the mode) along the other axis. (See Figure 13.4).
The power in any particular mode is indicated by the intensity of the “dot”
which is used to plot that mode.

What do the results in Figure 13.4 tell us about the Sun? They tell us that
oscillations in the Sun occur preferentially at certain frequencies: this is easiest
to see near the left-hand edge of the figure, where individual white dots can
be distinguished clearly from one another. If, e.g., we fix attention on modes
with l = 10, i.e., with λh ≈ 420 Mm, we can determine the distribution of
power in the Sun by running our eye vertically along the left-hand side of the
figure. We see that power is present at detectable levels only at a particular
set of certain discrete frequencies.

Moreover, the white spots in Figure 13.4 do not exist near the top and
bottom edges of the plot, i.e., at high and low ν. In this data set, obtained at
the Earth’s South Pole, the noise in solar observing is such that power cannot
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FIGURE 13.4: Spatial-temporal power spectrum of solar oscillations. Ab-
scissa: angular degree of the mode. Ordinate: frequency of the mode. Power
in each mode is indicated by the intensity of the white “dot.” Observations
obtained during a 50-hour continuous run at the South Pole in December
1981. (From Duvall, T. L., Harvey, J. W., Libbrecht, K. G., Popp, B. D., and
Pomerantz, M. A., Astrophys. J., 324, 1158, 1988. With permission.)

be detected reliably at ν ≤ 2.5 mHz, or at ν ≥ 4 mHz. So far, this does not
seem to go much beyond what we learned from Figure 13.1.

However, in Figure 13.4, there is actually a great deal more information
than in Figure 13.1. Specifically, we can also choose l = (say) 11 or 30 or
100, and run our eye vertically through Figure 13.4 to identify where “white
spots” lie. Again, each white spot lies at a particular frequency, although not
the same set of frequencies as we found for l = 10. As we examine modes
with higher ν for a fixed value of l, a striking feature of solar oscillations
emerges: the interval in frequency between adjacent modes approaches a con-
stant asymptotic value ∆ν. The value of ∆ν varies only slowly with l: for l in
the range 0–10, ∆ν is found to lie in the range 135–138 µHz (Appourchaux
et al., 1998).

Frequencies can be derived for modes with all values of l down to l = 0
(although results in Figure 13.4 only go down to l = 10). For each value of l
a list of frequency “spikes” can be prepared. Each such list corresponds to a
vertical “cut” through Figure 13.4. By way of example, we note that, for l = 0,
some 20 peaks were listed by Duvall et al. (1988), with ν ranging from 1824
to 4669 µHz, e.g., the list contains entries at ν = 2899, 3034, and 3169 µHz.
The mode at ν = 3034 µHz is the one which appears in Figure 13.3 above.
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Notice that the intervals between these three modes are 135 and 135 µHz.
The presence of a well-defined separation in frequency between adjacent modes
is an example of “asymptotic behavior” (see Chapter 14).

13.3 Radial Order of a Mode

The question is: for a fixed value of l, what do the different “spikes” in
frequency correspond to? Why are there only certain frequencies in the list of
“spikes”? Empirically, the answer is not immediately obvious. We need to turn
to theory (Chapter 14). Theory tells us that each mode of the Sun follows a
certain pattern on the surface of the Sun (with nodes at well-defined latitudes,
determined by l), but as well, each mode has a certain functional form in the
radial coordinate between the center of the Sun and the surface. The functional
form in radius is called the “radial eigenfunction,” and it contains a series of
“ups and downs” (see e.g., Chapter 14, Figures 14.2 and 14.3). Between each
“up” and the next “down,” the eigenfunction passes through zero at a spe-
cific radial location. Each such zero is a node of the radial eigenfunction. The
number of nodes nr between the center and the surface is called the “radial
order” of the mode.

Now we are in a position to interpret the “spikes” in frequency for a given l:
each “spike” in ν corresponds to a particular integer nr. For a fixed l, the value
of nr increases as the ν increases.

In contrast to the angular degree l, which can be determined empirically
by examining how oscillations with a particular period are distributed across
the surface of the Sun, there is no purely empirical way to determine the value
of nr. The radial order can be determined only by comparing the observed
frequency with calculations of the interior structure of the Sun, and seeing
which frequency fits best. Such an exercise leads to the conclusion that the
three l = 0 modes mentioned above with ν = 2899, 3034, and 3169 µHz corre-
spond to nr = 20, 21, and 22. In terms of this notation, the mode in Figure 13.3
corresponds to l = 0 and nr = 21. (Note that the authors of Figure 13.3 use
the slightly different notation l = 0, n = 21: the reason we prefer to use the
label nr for the radial order rather than n is to avoid confusion with n as the
polytropic index.)

Now that we have introduced the radial order nr, we are in a position
to draw attention to another feature of Figure 13.4. Inspection of Figure 13.4
shows that, for modes with the largest l values in the plot, the individual white
“dots” merge together and form narrow “ridges” of whiteness (i.e., power)
slanting from lower-left to upper-right. Model fitting indicates that along each
of these ridges, the radial order nr retains a unique value. The value of nr is
smallest for the ridges which lie closest to the right-hand side of Figure 13.4.
Model fitting suggests that the right-most (barely) visible ridge in Figure 13.4
has nr = 4. More sensitive instruments (e.g., the long running MDI on the
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FIGURE 13.5: (See color insert following page 202.) Power spectrum
of solar oscillations obtained from long observing runs in space. The lowest
lying “ridge” at ν = 1.3–1.7 mHz and l = 200 − 300 is due to fundamental
modes, with nr = 0. (Courtesy of SOHO/MDI consortium. SOHO is a project
of international cooperation between ESA and NASA.)

SOHO spacecraft) can identify ridges of power even farther to the right, with
nr = 3, 2, 1, and even nr = 0 (the fundamental mode) (Figure 13.5).

Figure 13.5 shows that not only does the Sun emit acoustic power at
frequencies between 2.5 and 4 mHz (as in Figure 13.4), but there are also
ridges of power at frequencies down to (about) 1.3 mHz and up to (about)
5 mHz. Because the observing conditions at the South Pole are noisier than at
SOHO, the weaker ridges in the SOHO data (Figure 13.5) cannot be reliably
identified in the South Pole data (Figure 13.4). Nevertheless, the conclusion
we drew from Figure 13.4 remains valid: the amount of oscillatory power which
is observed in each ridge (i.e., the “height” of the ridge) becomes progressively
smaller as nr decreases to the smallest values.

13.4 Which p-Modes Have the Largest Amplitudes?

Inspection of Figure 13.4 shows that the Sun appears to pump power into
modes with lower l and/or larger nr values. For example, in tables of modes

T&F Cat # C3074, Chapter 13, Page 181, 15-7-2009



182 Physics of the Sun: A First Course

which were reliably identified in the Sun in the earliest data sets (e.g., Duvall
et al., 1988), modes with l = 0 and those with l = 1 have been identified with
nr values ranging from nr = 12 to nr = 33. Modes with l = 2 and l = 3
have been reliably identified with nr values ranging from nr = 11 to nr = 32.
Outside these ranges, e.g., at nr < 10, it is difficult to detect modes reliably
in most data sets. In terms of frequency, the highest and lowest ν which are
reliably detected are close to 5 and 1.5 mHz, respectively (Figure 13.2).

It is natural to ask: why does the Sun produce acoustic modes with just
this range of frequencies? Why do we not detect modes with ν as high as 10 or
20 mHz, or as low as 0.5–1 mHz? As regards the low ν behavior, we postpone
the discussion until we have a mathematical description of the eigenfunctions
(Chapter 14, Section 14.8). But we do not need to understand eignfunctions
in order to determine why high ν modes are absent. So let us turn to that
piece of the puzzle.

13.5 Trapped and Untrapped Modes

The reason why p-modes are detectable in the Sun has to do with the
fact that certain acoustic waves are able to build up to large amplitudes. And
the reason for the large amplitude is that certain waves are not allowed to
propagate freely out of the Sun from the place where they are generated. In-
stead, once those waves are generated, there is something about the Sun’s
internal structure that causes the waves to be trapped: given favorable con-
ditions, trapped waves can build up to large amplitudes. It is precisely such
waves which give rise to the high levels of power in the discrete peaks in Fig-
ures 13.1 and 13.2, and to the high levels of power in the discrete sets of “white
dots” in Figure 13.4.

On the other hand, certain other acoustic waves can propagate freely from
their place of origin, reaching into the upper atmosphere of the Sun. Those
propagating waves, which are not subject to trapping, are of great interest
in the context of the heating of the solar chromosphere (see Chapter 15,
Section 15.9).

In this section, we ask: can we identify a dividing line between trapped and
untrapped acoustic waves in the Sun? We shall find that the dividing line oc-
curs at a certain critical wave period Pc: waves which have periods shorter than
Pc are untrapped, while waves with periods longer than Pc can be trapped.

In this regard, we recall the empirical result that the p-modes which have
significant amplitudes are observed to have ν = 2.5–4.5 mHertz: such frequen-
cies correspond to wave periods of 220–400 sec. This tells us that there is
something about the solar atmosphere which causes waves with such periods
to be trapped: the “something” has to do with the fact that the atmosphere
is stratified. We now consider the physical reasons why this is the case.
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13.5.1 Wave propagation in a stratified atmosphere

Consider the propagation of a sound wave vertically in an atmosphere
which is in HSE. As a result of HSE, the pressure in the unperturbed atmo-
sphere has a vertical distribution po(z) which obeys the equation

dpo

dh
= −ρog (13.2)

In this equation, the vertical coordinate h increases in the upward direc-
tion. The right-hand side represents the weight of 1 cm3 of gas acting as a
downward force on each square cm of the atmosphere at height h. This down-
ward force is balanced by the gradient of the pressure acting upward on that
square cm.

We now superpose a small vertical displacement ξ on a parcel of gas caused
by a local perturbation in pressure. We assume that the displacement raises
or lowers the parcel in such a way that initially there is no change in density.
Denoting the new pressure by p(h) = po(h) + ∆p, we see that the vertical
forces acting on 1 cm3 of gas,

∆F =
dp
dh

+ gρo (13.3)

no longer sum to zero: HSE is not satisfied. In view of the conservation of
momentum (i.e., Newton’s second law of motion), the imbalance in vertical
forces ∆F acting on 1 cm3 of gas (with mass ρo) leads to a vertical acceleration
d2ξ/dt2 such that

ρoξ̈ = −dp
dh

− ρog = − d

dh
(∆p) (13.4)

In Equation 13.4, double dots denote the second time derivative. This is the
equation of motion for the parcel of gas as it responds to the change in ambient
pressure gradient. (In Chapter 7, Section 7.1, we also applied Newton’s law of
motion to gas in the convection zone, where the breakdown of HSE also leads
to an imbalance of forces, with consequent vertical acceleration.)

As the parcel of gas moves, its density does not remain constant: the inter-
nal density changes by a finite amount ∆ρ if the magnitude of the displacement
ξ varies with h. To quantify this, we consider the conservation of mass associ-
ated with the displacement. Suppose that the initial parcel of gas spanned an
interval of height ∆h, but when it is displaced, that parcel spreads out over a
different interval of height ∆ξ. There are two possibilities. On the one hand,
if ∆ξ exceeds ∆h, the parcel has been “stretched,” and the internal density
of the gas decreases as a result of the displacement. On the other hand, if
∆ξ is less than ∆h, the parcel has been compressed, and the internal density
of the gas increases as a result of the displacement. In both cases, the frac-
tional change in density is related to the ratio of ∆ξ to ∆h. In the limit, the
fractional change in density which occurs in the parcel of gas can be written as

∆ρ

ρ
= − dξ

dh
(13.5)
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Note that if ξ is the same at all h, i.e., if the atmosphere is displaced as
a whole by a constant amount, the derivative dξ/dh equals zero, and there is
no change in density.

Now that we have taken into account the conservation of momentum and
the conservation of mass, it remains to address the conservation of energy. In
the present case, we will incorporate this by assuming that the sound waves
propagate in an adiabatic manner, i.e., p ∼ ργ . Thus, ∆p/p = γ∆ρ/ρ =
−γdξ/dh. To first order, we replace ∆p in Equation 13.4 by −γpodξ/dh.

Using this in Equation 13.4, we find

ρoξ̈ =
d

dh

(
γpo

dξ

dh

)
= γpoξ

′′ + γξ′ dpo

dh
(13.6)

Here, primes denote spatial derivatives with respect to h. Dividing through
by ρo, and noting that the adiabatic sound speed cs is given by c2

s = γpo/ρo,
we rewrite Equation 13.6 in the form

ξ̈ = c2
sξ

′′ − γgξ′ (13.7)

Equation 13.7 is the equation which describes how a sound wave propa-
gates in a stratified atmosphere, i.e., in an atmosphere where finite gravity is
present.

In the special case where gravity is absent, i.e., g = 0, when the background
medium is unstratified, Equation 13.7 reduces to the standard wave equation
ξ̈ = c2

sξ
′′: this describes waves propagating with speed cs. In this case, there

are no limitations on the direction of travel, or on the frequency of the waves
which may propagate.

However, in the presence of gravity, the second term on the right-hand
side of Equation 13.7 comes into play. This is the term which makes a sig-
nificant difference to the properties of sound wave propagation in a stratified
atmosphere.

13.5.2 Simplest case: the isothermal atmosphere

Let us consider the case of an isothermal atmosphere with temperature T .
In this case, we have already (Chapter 5, Section 5.1) seen that the den-
sity is stratified as a function of height according to an exponential law:
ρ(h) = ρo exp(−h/H) where the scale height H is given by the expression
H = RgT/gµa where µa is the mean atomic weight of the atmospheric gas.
For a perfect gas, the sound speed cs can be written as c2

s = γRgT/µa = γgH.
In order to proceed with the solution in this case, it is convenient to trans-

form to dimensionless variables. We introduce a new dimensionless length co-
ordinate: h′ = h/2H. Note that in order to convert the dimensional length h
to dimensionless form, we normalize to a length which is not the scale height,
but twice the scale height.
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We also introduce a new dimensionless time scale: t′ = t/(2H/cs). In order
to arrive at a dimensionless time, we normalize to the time required for sound
to traverse the length scale (2H) which appears in the definition of h′.

Converting now the temporal and spatial derivatives to the new dimen-
sionless variables, and making use of the relation c2

s = γgH, we find that
Equation 13.7 takes on the form

ξ̈ = ξ′′ − 2ξ′ (13.8)

Here, dots denote differentiation with respect to the dimensionless time t′,
while primes denote differentiation with respect to the dimensionless length h′.
Equation 13.8 describes, in terms of dimensionless length and time variables,
how a stratified atmosphere responds to a sound wave propagating vertically.

To solve Equation 13.8, one further change of variables is helpful: we re-
place ξ with the auxiliary variable u = ξ exp(−h′). This leads to the equation

ü = u′′ − u (13.9)

In order to describe wave motion, we seek a periodic solution to this equa-
tion: u = uoe

iωt′
where uo is a function of the spatial coordinate h′ only, and

ω is the frequency associated with the dimensionless time t′. Substituting this
in Equation 13.9, we find

u′′
o = −(ω2 − 1)uo ≡ −Auo (13.10)

where A is defined as ω2 − 1.
Mathematically, Equation 13.10 has two well-known classes of solutions,

depending on the algebraic sign of A.
Class (i) A > 0. The parcel of gas undergoes a displacement u which is

simple harmonic motion in the (dimensionless) height coordinate h′:

uo = exp(±ih ′√A) (13.11)

When combined with the sinusoidal time factor eiωt′
, Equation 13.11 rep-

resents a sound wave freely propagating in a vertical direction through the
atmosphere.

The condition that A must exceed zero for the solution of Equation 13.11
to be valid means that ω2 must exceed unity. That is, the wave frequency
must exceed a certain value in order that the wave may propagate freely in the
vertical direction.

Class (ii) A < 0. In this case, the solution is an exponential with a real
argument:

uo = exp(±h′√A) (13.12)

In order to avoid divergence at infinity, only the damped solution in Equa-
tion 13.12 is physically meaningful. This damped solution indicates that waves
do not propagate in this case. The nature of the solution in Class (ii) is very
different from the solution in Class (i)
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13.5.3 Critical frequency and the critical period

The transition between the freely propagating solutions in Class (i) and
the damped (nonpropagating) solutions in Class (ii) occurs at A = 0, i.e.,
at ω2 = 1. Reverting to dimensional variables, the corresponding transition
occurs at the critical frequency

ω = ωac ≡ cs

2H
(13.13)

This critical frequency, identified by subscript “ac” is referred to as the
acoustic cut-off frequency.

The cut-off period Pac associated with the cut-off frequency is given by

Pac =
2π

ωac
=

4πH

cs
=

4π

g

√
RgT

γµa
(13.14)

13.5.4 Physical basis for a cut-off period

Why, in physical terms, does a cut-off period exist in the Sun’s atmosphere?
Why is it that waves with periods longer than Pac cannot propagate vertically?
To answer this, consider what happens if one tries to launch a wave with a
certain period into the atmosphere. If the wave period is longer than Pac, the
spatial extent of one wavelength (λ = csPac) of such a wave extends over many
(4π, i.e., > 10) scale heights of the atmosphere. With such a large length-scale,
during the time that the wave is propagating across one of its own wavelengths,
the atmosphere has time to “adjust itself” to the perturbation: the effects of
the adjustment are to cancel out the wave. The stratified atmosphere in effect
can “short out” the wave.

On the other hand, a wave with a short period can propagate across one
of its own wavelengths before the atmosphere has time to adjust and “cancel
out” the wave.

13.5.5 Numerical value of the cut-off period

Now we come to a key question: what is the numerical value of the critical
period in the Sun? In the upper photosphere of the Sun, where T = 4860 K
and µa ≈ 1.3, we find

Pac ≈ 195 − 200 sec (13.15)

The corresponding cut-off frequencies are νac ≈ 5.0–5.1 mHz.
Recall that the p-modes in the Sun have detectable amplitudes for frequen-

cies which are no greater than (about) 5 mHz (see Figure 13.2). Now that we
have derived the concept of the acoustic cut-off of a stratified atmosphere,
we can understand why p-modes are not detectable with periods shorter than
(roughly) 200 sec: such waves, with frequencies ν > 5 mHz, have ν > νac.
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Such waves are free to propagate vertically through the solar atmosphere.
Such waves are therefore not trapped: they escape easily from the location
where they are generated. They do not “stick around” long enough to build
up their amplitude.

On the other hand, acoustic waves with periods longer than 200 sec cannot
propagate vertically through the upper solar photosphere. When such waves
encounter the upper photosphere, they are not permitted to propagate further
in a vertical direction: instead, they are reflected back down into the Sun. This
sets up the possibility of those waves becoming trapped. And if they are
trapped, then they can “stick around” long enough to have energy pumped
into them. The more energy is pumped in, the larger their amplitudes becomes,
and the easier it is for us to detect them.

The principal conclusion of this section is the following: the effects of at-
mospheric stratification explain why p-modes are not detectable at ν larger
than (roughly) 5 mHz.

In order for waves to be trapped, the Sun needs to provide a “cavity” of
some kind to contain the waves. We have now identified wave reflection as a
reason why there exists an upper boundary to such a cavity in the Sun. In
Chapter 14, we shall discuss a mechanism which causes a lower boundary to
the cavity.

13.6 Long-Period Oscillations in the Sun

The presence of oscillations in the Sun at periods of a few minutes has
been known for several decades. These are the well-studied p-modes.

But we can also ask: are there oscillations in the Sun with much longer
periods (e.g., hours)? The answer to this question was controversial for many
years. However, in 2007, it was reported that the Sun exhibits a large number
of modes with periods as long as 15 hours (Garcia et al., 2007).

As mentioned in Chapter 1, Section 1.10, there exists a critical (global)
frequency νg ≈ 100 µHz which is expected to be relevant to solar oscillations.
The physical origin of νg is very different from the physical origin of the
acoustic cut-off frequency (Equation 13.13). The latter arises from acoustic
processes which are localized in the stratified atmosphere, within lengths scales
of order one scale height (≈ 100 km), whereas the critical (global) frequency
is determined by length scales of order the solar radius (≈ 700,000 km), νg is
controlled by gravity, rather than by acoustic processes.

The critical period corresponding to νg is 2–3 hours. We note that the p-
modes in the Sun all have frequencies which are larger than νg. It now appears
that the long-period modes reported by Garcia et al. (2007) have frequencies
which are smaller than νg.

The theory which will be presented in Chapter 14 predicts that two distinct
classes of oscillation should exist, one at high frequency (the p-modes), the
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other at low frequency (the g-modes). The critical frequency νg provides a
natural dividing point between these two classes. In view of this, it seems
likely that Garcia et al. have identified g-modes in the Sun.

Exercises

13.1 In Chapter 1, Exercise 5, you have already calculated surface gravities
for five “main sequence” stars with masses of 0.1–10M�. Calculate the
cut-off period Pac for each star, assuming µa = 1.3, and setting T = Teff
as calculated in Chapter 1, Exercise 6.

13.2 Using the properties of the same five “main sequence” stars as in Exer-
cise 1, calculate the critical gravity period Pg (Chapter 1, Equation 1.20)
for each star.

13.3 How large must the degree l of a mode in the Sun be in order to have
a horizontal wavelength equal to (a) a supergranule diameter (≈ 30
thousand km; see Chapter 15), (b) a granule diameter?
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Chapter 14

Oscillations in the Sun: Theory

In order to understand in physical terms why the Sun exhibits oscillations
at precisely defined frequencies, we consider in this chapter the oscillations
in an idealized “star.” Specifically, we revert to the topic of polytropes (see
Chapter 10), since these provide in certain cases an analytic form for the radial
profile of pressure and density in which oscillations can occur. Of course, if
we were undertaking a detailed examination of the Sun, we would have to
make use of the full numerical radial profiles of pressure and density: but
those numerical solutions make it more complicated to derive the properties
of the oscillations. So in this first course in solar physics, we simplify the
problem by considering the oscillation modes of a polytrope. Results from the
polytropic case contain many of the important characteristics of oscillations
in the “real Sun.”

In this chapter, we derive a pair of first order differential equations (Equa-
tions 14.17 and 14.18) which describe the properties of oscillations in a poly-
trope. The pair of equations which we shall derive represent a simplification
of the full oscillation problem (which requires four equations to specify com-
pletely). Nevertheless, many of the properties which are observed to occur in
solar oscillations can be modeled with the simpler system. Moreover, students
will have an easier time exploring the computational properties of the simpler
system.

From Chapter 10, Equation 10.10, we recall the Lane–Emden equation for
the polytrope of order n:

1
x2

d

dx

[
x2 dy

dx

]
= −yn (14.1)

Here, y is related to the density at any given radial location by the ex-
pression yn = ρ/ρc (where subscript c denotes the central value), and the
(dimensionless) spatial coordinate x is related to the (dimensional) radial co-
ordinate r by x = r/ro, where the Emden unit of length ro is defined by

r2
o =

(1 + n)pc

4πGρ2
c

(14.2)
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14.1 Small Oscillations: Deriving the Equations

In order to derive the equations which govern oscillations in a polytrope,
we follow the discussion first given (in the midst of World War II) by Cowl-
ing (1941). Let the material at any point in the polytrope undergo a vector
displacement h. This vector displacement is in a general direction, but the
component of h along the radial direction is of particular interest: we refer
to this radial component as R. The displacement is accompanied by localized
perturbations in density, pressure, and gravitational acceleration: we refer to
these as δρ, δp, and δg.

Our goal in this section is to derive equations which will allow us to solve
for the quantities which describe the oscillations: R, δp, and δρ.

The perturbations induced in the star by the displacement h have the effect
that the equation of HSE is no longer satisfied. The imbalance of pressure and
gravity forces leads to an acceleration which is given by the equation for
conservation of momentum

ρ
d2h
dt2 = −∇p − ρg (14.3)

where the spatial gradient operator ∇ includes a component along the radial
(outward) direction. Equation 14.3 is a more general (3-dimensional) form of
the 1-D Equation 7.1, where only vertical motions were being considered. In-
stead of containing only the vertical velocity V , Equation 14.3 includes the 3-D
velocity v = dh/dt . Moreover, in Equation 7.1, the pressure gradient involves
d/dz , where z increases inward, whereas in Equation 14.3, the operator ∇
involves d/dr , where r increases outward : this accounts for the difference in
sign in the first term on the right-hand side. Why do we need to consider more
than 1-D (radial) motions in the present chapter? Because the oscillations in
the Sun are not confined to the radial direction: most of the oscillations are
actually non-radial in nature. This is made explicit in the title of Cowling’s
(1941) article.

Suppose that the displacement h is periodic, with a time dependence eiωt,
where i =

√−1 and the angular frequency ω is related to the frequency ν (used
in Chapter 13) by ω = 2πν. Then the left-hand side of Equation 14.3 becomes
−ρω2h. Retaining only terms which are of first order in the perturbation
amplitude, the right-hand side of Equation 14.3 becomes

−∇δp − gδρ − ρδg

In order to keep the discussion as simple as possible, but retain the essential
physics of oscillation, we now invoke what is called the “Cowling approxima-
tion”: we neglect changes in the gravity, i.e., we set δg = 0. Why is it plausible
to neglect changes in the gravitational acceleration? Because the mass in a
star is concentrated toward the center: the central density is much larger than
the density in the outer regions. Now, the oscillations we consider here consist
of motions which have maximum amplitudes in the outer regions of the star,
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where the eignfunctions reach their maximum amplitudes (see Figures 14.2
and 14.3). As a result, the mass interior to a certain point remains almost
unchanged by the slight changes associated with oscillations. This allows us
to assume δg = 0 as a reasonable simplifying approximation.

The small oscillations occur as perturbations in a medium (the polytrope)
which is in HSE. This allows us to write g = −∇p/ρ, and so we can rewrite
Equation 14.3 in the form

−ρω2h = −∇δp + (δρ/ρ)∇p (14.4)

Turning now to the conservation of mass, the equation of continuity
∂ρ/∂t + ∇ · (ρv) = 0 can be written, to first order in the perturbations,
as δρ = −∇ · (ρh)

We can now eliminate h from Equation 14.4 by taking the divergence of
both sides:

ω2δρ = −∇2(δp) + ∇ ·
[
δρ

ρ
∇p

]
(14.5)

In a spherical object, it is natural to separate the oscillations into two
components: one depends only on the angular coordinates, and the second is
a function of the radial coordinate r. The Laplacian operator in Equation 14.5
contains a radial component and an angular component. The latter can be
taken to be a spherical harmonic, Ylm . Here, we ignore the m (longitudinal)
subscript, and consider only the latitudinal variations, which are characterized
by l, the degree of the mode. In this case, the angular part of the Laplacian in
Equation 14.5 is replaced by −l(l+1)δp/r2 where l is the degree of the mode.

In spherical coordinates, the expressions for the radial components of
Laplacian and divergence lead to the following form for Equation 14.5:

ω2δρ =
l(l + 1)

r2 δp − 1
r2

∂

∂r

(
r2 ∂δp

∂r
− r2 δρ

ρ

∂p

∂r

)
(14.6)

So far we have considered the generalized displacement h. Now let us
confine our attention to the radial component of the displacement R. The
radial component of Equation 14.4 gives us the following expression for R:

ρω2R =
∂

∂r
(δp) − δρ

ρ

∂p

∂r
(14.7)

This gives us the first equation of three which relate the three unknowns
R, δp, and δρ.

Substituting Equation 14.7 in Equation 14.6, we find a second equation
which relates the three unknowns:

ω2δρ =
l(l + 1)

r2 δp − 1
r2

∂

∂r

(
ρω2r2R

)
(14.8)

Now that we have eliminated the angular dependences, there is only one
remaining independent variable: the radial coordinate. As a result, we can
safely replace the partial derivative (∂/∂r) by the total derivative (d/dr).
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Equations 14.7 and 14.8 are two equations which relate the displacement
of the fluid element in the radial direction to the perturbations in pressure and
density. A third equation is needed if we are to solve for the three unknowns.
Having already used the equations which describe conservation of mass and
of momentum, we now turn to the equation for energy conservation.

The particular form of the energy equation which we use in this first course
in solar physics is the following: the oscillations are assumed to be adiabatic.
That is, when the oscillations occur, the total pressure variation ∆p is related
to the total density variation ∆ρ by an adiabatic relation: ∆p/p = γ∆ρ/ρ.
Here, γ is the adiabatic exponent. In a notation which is analogous to the
definition of the polytropic index (see Chapter 10, Equation 10.1), Cowling
(1941) writes γ in the form γ = 1 + (1/N). For a typical adiabatic index
γ = 5/3, the value of N is 1.5.

What are the total changes in pressure which occur as a result of the
oscillation? First, there is δp itself. However, since the oscillating element of
fluid has also moved a radial distance R, the fluid element finds itself at a radial
location where the ambient pressure is different from the value it had in the
unperturbed location. Thus, the total change in pressure ∆p associated with
the oscillation is the sum of two terms: ∆p = δp + R(dp/dr). An equivalent
sum of terms applies also to the total change in density. Then the adiabatic
version of the energy equation can be written:

δp + R(dp/dr)
p

=
(

1 +
1
N

)(
δρ + R(dρ/dr)

ρ

)
(14.9)

We now have three equations for three unknowns: Equations 14.7 through
14.9.

14.2 Conversion to Dimensionless Variables

To help cast the equations into more convenient form, we introduce some
dimensionless variables. In this process, we are guided by the choices which
were made in Chapter 10 in connection with dimensionless variables in a
polytrope of order n.

First, we change from the dimensional frequency ω to the dimensionless
quantity α according to the definition:

α =
ω2(1 + n)

4πGρc
(14.10)

The fact that α is dimensionless can be verified by recalling the definition of
the Emden unit of length ro (see Equation 10.9). Note that the (dimensional)
frequency ω scales as

√
α.
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Second, we reduce the radial displacement R to dimensionless form by
normalizing to the Emden unit of length: X = R/ro. Analogously, we express
the radial coordinate r as a new dimensionless variable x = r/ro. We reduce
the pressure and density perturbations to dimensionless forms by normalizing
to their central values: θ = δp/pc and η = δρ/ρc.

In terms of these dimensionless variables, we can convert Equations 14.7
through 14.9 into dimensionless form. So far, the derivation is quite general,
and could be applied to any particular star in order to solve for the three
unknowns.

But now, following Cowling (1941), and in the spirit of Chapter 10 above,
we restrict our attention to the case of a “polytropic star.” Specifically, we
now apply our three equations (in dimensionless form) to a polytrope where
the density profile is given by ρ = ρcy

n.
Then we find that Equation 14.8 becomes

αη =
l(l + 1)

x2 θ − 1
x2

d

dx

(
αx2ynX

)
(14.11)

Equation 14.11 shows, in dimensionless form, how the density perturbation
η is related to the pressure perturbation θ and to the radial gradient of the
radial displacement X.

In dimensionless form, Equation 14.7 becomes

αynX =
dθ

dx
− (1 + n)ηy′ (14.12)

where y′ denotes the spatial gradient dy/dx.
In dimensionless form, Equation 14.9 can be written

yη(1 + N) = Nθ − (n − N)Xyny′ (14.13)

Using Equation 14.13 to obtain an expression for η, we can eliminate η from
Equations 14.11 and 14.12 and obtain two equations for two unknowns, the
radial displacement X and the pressure perturbation θ. These two equations
describe the oscillations which occur inside a polytrope.

Substituting the expression for η into Equation 14.12, and gathering terms
in θ on the left-hand side, we find

dθ

dx
− (1 + n)Ny′

(1 + N)y
θ = X

(
ynα − (1 + n)(n − N)

1 + N
yn−1y′2

)
(14.14)

Substituting the expression for η into Equation 14.11, and gathering terms
in X on the left-hand side, we find

1
x2

d

dx

(
x2ynX

)
− (n − N)

1 + N
yn−1y′X = θ

[
l(l + 1)

αx2 − N

(1 + N)y

]
(14.15)
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The Equations 14.14 and 14.15 are coupled: the radial gradient of one
variable is expressed in terms of the value of the other variable.

It is convenient to define auxiliary variables, one for the pressure fluctua-
tion θ, the other for the radial displacement X. In order to see which auxiliary
variable is most helpful, we note that the left-hand side of Equation 14.14 can
be written in the form θ′ − (Ey′/y)θ where E = N(1 + n)/(1 + N) is a nu-
merical constant. This form of a differential equation suggests an integrating
factor y−E . This leads us to convert the pressure perturbation variable θ and
the radial displacement variable X to new auxiliary variables:

w = θy−E , z = XyE (14.16)

The two variables w = w(x) and z = z(x) describe how the pressure per-
turbation and radial displacement vary as a function of radial location in the
polytrope. In terms of these two variables, and also introducing the constant
Q = 2E − n, we finally arrive at two ordinary differential equations for w and
z as functions of the radial coordinate:

dw
dx

= zy−Q

(
α − (1 + n)(n − N)

1 + N

y′2

y

)
(14.17)

d

dx

(
x2z

)
= wyQ

(
l(l + 1)

α
− Nx2

(1 + N)y

)
(14.18)

14.3 Overview of the Equations

Let us summarize what we have done up to this point. Equations 14.17 and
14.18 describe the profiles of radial displacements (∼z(x)) and fluctuations
in pressure (∼w(x)) which occur when a “star” oscillates with a particular
frequency (∼√

α). The “star” extends in radial coordinates from x = 0 (the
center) to x = x1 (the surface). Inside the star, the function y(∼T ) varies
from y = 1 at the center to y = 0 at the surface. The radial gradient y′ (which
appears on the right-hand side of Equation 14.17 as a squared quantity) is
negative throughout the star. The star obeys a polytrope equation of state:
p ∼ ρ1+1/n and the oscillations are adiabatic: ∆p/p = (1 + 1/N)∆ρ/ρ. The
oscillations vary in latitude such that l nodes exist between the North and the
South poles of the star.

For any chosen polytrope (with index n), the Lane-Emden equation can
be integrated (either analytically or numerically) to obtain a table of values of
y and y′ as a function of x between 0 and x1. (The latter is set by the choice
of the polytropic index n). A value is assumed for N (typically 1.5), and this
then fixes the value of Q. Then for each assigned value of l(= 0, 1, 2, 3, . . .), the
quantities inside the large brackets on the right-hand side of Equations 14.17
and 14.18, as well as the yQ terms, can be evaluated at all tabulated values
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of x between 0 and x1. This provides the information required to undertake a
numerical integration for the two unknowns w(x) and z(x).

The properties of oscillations in a polytrope can be determined by integrat-
ing Equations 14.17 and 14.18 numerically for w(x) and z(x) with appropriate
boundary conditions at the center and at the surface. Numerical integration
can be performed either by programming a Runge-Kutta subroutine, or by
using one of the widely available software packages such as MATLAB r© or
Mathematica.

In order to begin the integration at the center of the star, asymptotic
functional forms for w and z must be specified: see step 6 in Section 14.4.1
below. The boundary conditions at the surface of the “star” for an eigenmode
are that w → 0 and z → 0 as x → x1.

By experimenting with different choices of polytropic index n, one can
learn a great deal about the properties of oscillations in stars.

The properties of Equations 14.17 and 14.18 are such that, in asymptotic
terms, there are two distinct classes of eigenmodes: one is relevant in the limit
α → ∞, the second is relevant in the limit α → 0 (see Chapter 14, Sec-
tion 14.6). In the limit of high frequency (α → ∞), pressure dominates as
the restoring force: such modes are referred to as p-modes. The p-modes exist
in all polytropes. In the limit of long period (α → 0), gravity dominates as
the restoring force: these are g-modes. Unlike the p-modes, g-modes do not
exist in all polytropes: because of the presence of the term (n − N) in Equa-
tion 14.17, g-modes with finite periods do not exist if the polytropic index n
is less than the value that is assumed for N (typically N = 1.5).

14.4 The Simplest Exercise: Solutions for the
Polytrope n = 1

In order to get a feel for how the oscillation equations work, and how
they lead to eigenfrequencies, it is instructive to integrate Equations 14.17
and 14.18 numerically for the case of a particularly simple polytrope, namely,
n = 1. Although that polytrope makes no claim to describe any actual star,
it still retains the overall structure of high pressure and density at the center,
and much lower pressure and density at the surface. For present purposes, the
outstanding advantage of the polytrope n = 1 is that the functions y(x) and
y′(x) are known analytically: y(x) = sin(x)/x, y′(x) = cos(x)/x − sin(x)/x2.
As a result, we do not need to prepare a table of values of y and y′: the
local values can be calculated analytically. The surface of the star occurs at
x1 = 3.14159. We assume N = 1.5. This leads to E = 1.2 and Q = 1.4.

To perform the calculation, one must first specify a certain value of α:
this remains fixed throughout the “star.” Start at the center of the star (x =
0), and increase the value of x by some chosen increment ∆x. Integrate the
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coupled Equations 14.17 and 14.18 for the two unknowns w and z at each step.
Because the two equations are coupled, one integrates outward first in (say) w
using the current value of z: given the current value of z, the right-hand side
of Equation 14.17 can be evaluated, and this therefore allows one to evaluate
dw/dx. Knowing this, one can take a step ∆x and use one’s numerical scheme
(e.g., Runge-Kutta) to calculate an updated value of w. This is then inserted
in the right-hand side of Equation 14.18 in order to evaluate dz/dx. This then
allows the numerical scheme to calculate an updated value of z across the
step ∆x. This process is repeated for all tabulated values of x between 0 and
3.14159. The result is a table of values of w and z as a function of x.

Of special interest is the value of w(x) at the star’s surface (x = x1 =
3.14159). In most cases, for arbitrary values of α, the value of w(x1) will be
found to be nonzero. But in certain special cases, when α takes on certain
values, one finds that when the calculation reaches the surface of the poly-
trope, the computed value of w(x1) equals zero. Those special cases are the
eigenmodes of the polytrope.

14.4.1 Procedure for computation

1. Pick a value of l among the set 0, 1, 2, and 3.

2. Pick a starting guess for α, the (dimensionless) frequency. Because of
the choice of normalizations, the starting guess for α should not be too
far from unity. A recommended starting guess is α = 0.1. The reason for
this choice is as follows: for l = 0, 1, 2, and 3, the lowest eigenfrequency in
the n = 1 polytrope is found to have the numerical value α ≈ 1, 0.3, 0.55,
and 0.7, respectively.

3. Start the integration near the center of the polytrope by setting x = 0.01
(or x = 0.1 if you are confident about your equation solver routine).

4. At that value of x, evaluate the local values of y(x) = sin(x)/x and
y′(x) = cos(x)/x − sin(x)/x2.

5. With choices now made for l, α, n(=1), and N(=1.5), you have all the
information you need to compute the local numerical values of the ex-
pressions in large brackets on the right-hand side of Equations 14.17 and
14.18.

6. You will have to choose initial values for w and z. What initial values
should you use for w and z? When one examines the asymptotic prop-
erties of Equations 14.17 and 14.18, it turns out that in the limit x → 0,
the functional form of z is as follows:

z(x) = xl−1 (14.19)
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for all values of l. Also in the limit x → 0, the functional form of w is

w(x) =
αxl

l
(14.20)

for l > 0, and w = 1 for l = 0.

Using these, evaluate w and z at whatever value of x you have chosen
as the starting point.

7. Increase x by ∆x = 0.01 (if that is your choice of step size). Using
the values of w and z from step (6), and recalculating the local values
of y and y′ at the new value of x, evaluate the right-hand side of Equa-
tions 14.17 and 14.18. With the new numerical values for the derivatives,
step forward to calculate the new values of w and z.

8. Repeat step (7) until x has a value that is slightly smaller than x1 =
3.14159. Where should you stop the integration in x? That is, how close
should you approach the limiting value x1 = 3.14159? You cannot go
too close, because then the terms in 1/y on the right-hand side of both
equations will become infinitely large. One possible approach is to stop
the integration in x when the value of y(x) has decreased to a “small”
value, such as 0.001. (Recall that starting at the center, y has a value
of 1.0.) For purposes of the oscillation calculation, this stopping point
may be considered to be “the surface” of the polytrope.

9. Once you reach this “surface,” your code will give you a certain value
for the pressure fluctuation variable w. Call this w(surf), and enter this
value into a table alongside the value you specified for α (in step 2).

10. Pick a new, larger value for α. How large should the new value of α
be? Recommended increases are 0.1 up to α = 5. That is α = 0.2, 0.3,
0.4, . . . , 4.9, 5.0. Then increase the increment to 0.5 for values of α be-
tween 5 and 20. Then use increments of three for α up to (about) 300.
Alternatively, one could choose constant steps in log(α).

11. For each value of α, repeat steps (3)–(9). For each α, tabulate the value
you compute for w(surf). Since α is proportional to the square of the
frequency (see Equation 14.10), it is more convenient to convert from
α to a dimensional frequency using the unit νg ≈ 100 µHz (Chapter 1,
Section 1.10). For a polytrope with index n, the conversion factor for a
“star” with mass and radius equal to the solar values is (Mullan and Ul-
rich, 1988) ν = νg

√
(3Ccα/(n+1)) where Cc is the central condensation

of the polytrope (Chapter 10, Section 10.9). In the present case, n = 1,
this leads to ν = 222.0

√
α µHz.

12. Once you have computed results for all values of α from 0.1 to about
300, plot w(surf) versus α, or (more conveniently) w(surf) versus ν. Two
such plots are shown in Figure 14.1, one for l = 2 (solid curve) and the
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FIGURE 14.1: Surface value of oscillation variable w (the pressure fluc-
tuation) as a function of frequency for polytrope n = 1 and for two val-
ues of the degree l. Crossings of the horizontal line w(surf) = 0 identify the
eigenfrequencies.

other for l = 0 (dotted curve). One sees that, as the frequency increases,
w(surf) swings back and forth between positive and negative values.
For each value of l, there exists a discrete set of values of ν (i.e., ν1,
ν2, ν3. . .) at which the computed curves cross the horizontal axis, i.e.,
w(surf) passes through a value of zero. At such values of ν, the pressure
fluctuation in the oscillation goes to zero at the surface of the polytrope.
Such an oscillation is an eigenmode of the polytrope for the particular
value of l that was chosen for the calculation. The sequence of values νi

are eigenfrequencies of the polytrope.

For your chosen value of l, you will now have a series of eigenfrequencies
for the n = 1 polytrope.

13. Pick a new value of l and repeat steps (2)–(12). For each value of l, you
will find a different series of eigenfrequencies.

14.4.2 Comments on the results: patterns in
the eigenfrequencies

Our results for the Cowling approximation in a polytrope, although greatly
simplified, nevertheless allow us to draw conclusions which would remain valid
if we had applied the (more complicated) full oscillation equations to a detailed
solar model. Because of this, it is instructive to examine certain properties of
the output of the polytrope oscillation program.
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To begin with, we note that at the highest frequencies plotted in Fig-
ure 14.1, the last four eigenfrequencies for l = 0 are found to be at ν = 3490,
3653, 3816, and 3980 µHz. For l = 2, the highest four eigenfrequencies are
found to be at ν = 3474, 3637, 3801, and 3965 µHz. Two patterns are striking
here.

First, for modes with a given degree l, the intervals between adjacent
eigenfrequencies are ∆ν = 163, 163, and 164 µHz for l = 0, and ∆ν = 163,
164, and 164 µHz for l = 2. That is, both sequences of modes show a striking
asymptotic behavior: there is a (roughly) constant frequency interval between
adjacent eigenmodes. The asymptotic frequency separation we have found
here is slightly larger than ∆ν(= 153 µHz) obtained for the n = 1 polytrope
from a precise calculation (Mullan and Ulrich, 1988): this difference can be
ascribed to inadequacies in treating the surface boundary conditions in the
solutions of the equations presented in the above figure.

Although the present results pertain to the n = 1 polytrope, it will be
shown (Chapter 14, Section 14.6) that a constant frequency interval between
adjacent p-modes is predicted to be a general property of the oscillation equa-
tions in the limit of high frequencies. For reasons which will soon become
clear, we refer to ∆ν as the “large separation” between adjacent modes. In
the Sun, observations indicate that the “large separation” ∆ν has values of
135–136 µHz for modes with l = 0−3 (Appourchaux et al., 1998). Clearly, this
observed separation is smaller than the 153–163 µHz that we have found for
the n = 1 polytrope. But this is not a matter for any great concern: we have
never claimed that the n = 1 polytrope is supposed to be an accurate repre-
sentation of the Sun. The point is, there is a “large separation” for the modes
in the “real Sun,” just as we have discovered in our model for the n = 1 modes.

Second, we note that the sequences of eigenfrequencies for l = 0 and l = 2
pair up with each other such that the two curves in Figure 14.1 cross the
horizontal axis at almost the same frequencies. This indicates that the eigen-
frequencies for certain modes with l = 0 and l = 2 differ from each other by an
amount that is small compared to the “large separation” of either sequence.
The frequency separations between corresponding l = 0 and l = 2 modes
are δν(0 − 2) = 16, 16, 15, and 15 µHz, i.e., about one order of magnitude
smaller than the numerical values of ∆ν. The frequency differences δν(0 − 2)
are referred to as “small separations,” to distinguish them from the “large
separations” (∆ν) between adjacent modes at constant l.

Although we do not present the results graphically here, we note that when
the analog of Figure 14.1 is plotted for l = 1 and l = 3, results similar to those
in Figure 14.1 emerge. There is again an asymptotic “large separation” ∆ν of
about 163 µHz in frequency between adjacent modes with the same l value,
and a “small separation” between corresponding l = 1 and l = 3 modes. In
this case, the “small separations” turn out to be δν(1 − 3) = 10 − 12 µHz.

In the Sun, empirically it is found that the “large separations” are 135–
136 µHz, while the “small separations” for modes with frequencies of 3500–
4000 µHz are δν(0 − 2) ≈ 10 µHz and δν(1 − 3) ≈ 12 µHz (Appourchaux
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et al., 1998). We notice that the numerical values of the “small separations”
are about one order of magnitude smaller than the numerical values of the
“large separations.” Of course there is no reason to expect the n = 1 polytrope
to reproduce the structure of the Sun in detail. Nevertheless, it is encouraging
that even with the simplification of using the n = 1 polytrope, and also
using the simplification of the Cowling approximation, we recover some salient
features of the Sun’s eigenfrequencies.

Finally, there is one further piece of information that we need in order to
interpret Figures 13.1 and 13.2. It is this: given the frequencies of two adjacent
modes with l = 0 (say the modes observed at ν = 3034 and 3169 µHz: see
Chapter 13, Section 13.2), it is observed that there exists a mode with l = 1
with a frequency which is almost exactly half-way between the two adjacent
l = 0 modes. Thus, the (l = 1, nr = 21) mode is observed at ν = 3099 µHz,
only 0.1% away from the mid-point frequency of the two surrounding l = 0
modes. Now, modes with l = 0 are excited in the Sun with almost equal
power to those with l = 1. Therefore, rather than seeing in Figures 13.1 and
13.2 separations between peaks of 135 µHz (the “large separation”), one sees
separations of only about one-half that value, i.e., about 0.07 mHz.

14.4.3 Eigenfunctions

Now that frequencies of the eigenmodes have been identified, it is also
important to consider the structure of the radial eigenfunctions. Two examples
are shown in Figure 14.2, where we plot the radial profile of the function w
(corresponding to the pressure perturbation) in Equations 14.17 and 14.18.
The abscissa in Figure 14.2 is the radial coordinate x in Equations 14.17
and 14.18: it runs from 0 at the center of the “star” to the boundary value
x = x1 = π which is appropriate for the n = 1 polytrope.

Two features are noticeable about the eigenfunctions in Figure 14.2. First,
the numerical values have excursions on both sides of the w = 0 (horizontal)
axis. As a result, there exist a finite number of “nodes” where the eigenfunction
passes through the value of zero. The number nr of times that an eigenmode
crosses the w = 0 axis between center and surface is used to label the mode
as being of “radial order nr.”

Second, as we approach the surface, the excursions of the eigenfunction in-
crease to larger (absolute) values. The peaks in the eigenfunction can be con-
sidered as “antinodes” where the pressure fluctuation has a local maximum.
The antinode which occurs nearest to the surface has a larger amplitude than
those which lie somewhat deeper. (This is not always true for some of the very
lowest order l modes, such as l = 0, but for moderate and high l values, the
antinode nearest the surface has the largest amplitude.)

A question that is of particular interest in solar physics is the following:
at what radial location is the largest antinode of any given eigenfunction situ-
ated? The answer to this question has a bearing on the basic question: why are
only certain p-modes excited in the Sun? For the two examples in Figure 14.2,
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FIGURE 14.2: Pressure eigenfunctions of two modes with similar frequen-
cies, differing in degree l by +2, and differing in radial order by −1. The radial
coordinate in the abscissa extends from center to surface.

the radial locations at which the largest antinode occurs are located at about
0.99 times the radius of the n = 1 polytrope. That is, the largest antinodes oc-
cur at depths zan which are close to the surface, no more than 1% of the stellar
radius below the surface. The larger the numerical value of nr, the closer the
last (and largest) antinode lies to the surface (for a given l value). In order to
demonstrate this result in more detail, we show in Figure 14.3 some details
of eigenfunctions which do not refer to a polytropic model, but which instead
were obtained from a realistic solar model. For the three modes shown, with
nr = 10, 15, and 25 (and ν = 1610, 2290, and 3650 µHz, respectively), we see
that the largest antinodes lie at fractional depths of 0.5%, 0.2%, and < 0.1% of
R�, respectively. These depths will be important subsequently when we con-
sider why certain p-modes are excited in the Sun more effectively than others.

The eigenfunctions in Figure 14.3 were computed theoretically using an
oscillation code: they show the scaled amplitudes of the eigenfunctions. What
is not shown in the figure is how much power the Sun actually pumps into
the various modes. In fact, there are striking differences in the levels of power
which are observed to occur in the modes whose eigenfunctions are plotted in
Figure 14.3. The frequency of the nr = 25 mode in Figure 14.3 (ν = 3650 µHz)
is such that the mode lies near the peak of power for solar p-modes (see Fig-
ure 13.2): the power level is observed to be almost 5000 m2 s−2 Hz−1. On the
other hand, the frequency of the nr = 10 mode in Figure 14.3 (ν = 1610 µHz)
is such that the mode lies in the barely detectable regime in Figure 13.2: the
observed power level is perhaps 10 m2 s−2 Hz−1 above background. Thus, the
observations indicate that the (l = 1, nr = 10) mode is present in the Sun

T&F Cat # C3074, Chapter 14, Page 201, 15-7-2009



202 Physics of the Sun: A First Course

0.980

rp
1/

2 δr

0.985 0.990
r/R

0.995 1.000

FIGURE 14.3: Eigenfunctions of (scaled) radial displacement δr (analogous
to z in Equation 14.18) for l = 1 modes in a realistic model of the Sun. The
abscissa is radial location expressed in terms of the solar radius R. Notice that
the horizontal scale is greatly expanded: only the outermost 2% of the radial
coordinate is plotted. Dotted, dashed, and solid curves refer to modes with
radial orders nr = 10, 15, and 25, respectively. (From Christensen-Dalsgaard,
J. 2003. p. 88 of http://www.phys.au.dk/∼jcd/ oscilnotes/chap-5.pdf. With
permission.)

at a power level which is almost three orders of magnitude smaller than the
power in the (l = 1, nr = 25) mode. The intermediate mode (l = 1, nr = 15),
at ν = 2290 µHz, is present in Figure 13.2 at a power level which is about 10
times smaller than the peak power. We will return to these power levels when
we consider the excitation of the modes in Section 14.8 below.

The eigenfunctions in Figure 14.2 belong to two modes which are separated
by the “small separation” δν(1 − 3). As can be seen from Figure 14.2, each
of the two eigenfunctions crosses the w = 0 axis several times between the
center and the surface. Inspection shows that, of the two eigenfunctions in
Figure 14.2, the l = 1 curve has one more node in the radial direction than
the l = 3 curve. It is a general relation that modes which differ by two units
in l are separated by the “small separation” δν if they also differ by one unit
in nr. That is, ν(l + 2, nr) ≈ ν(l, nr + 1).

Although not plotted in Figure 14.2, when we plot the radial profile of
the radial displacement z of the oscillations, the maximum excursions of z are
found to be smaller by an order of magnitude or more than the excursions
of the pressure fluctuation variable w. The fact that pressure fluctuations are
dominant confirms that we are dealing with p-modes.
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14.5 What about g-Modes?

Our choice of polytrope n = 1 (chosen for the simplicity of its analytic so-
lution) prevents us from discussing g-modes: because of our choice N = 1.5, no
g-modes with finite periods exist in any polytrope with n ≤ 1.5. If we wished
to numerically model g-modes in a polytrope, we must use n > 1.5 (assuming
N = 1.5). As we have seen (Chapter 10), for polytropes with n > 1.5, no ana-
lytic formulas exist for the polytrope structure (apart from the uninteresting
case of n = 5 for an infinitely distended star). Therefore, a study of g-modes
in polytropes requires us first to determine numerically a table of values of y
and y′ as a function of x, and then interpolate in this Table to obtain local
values of y and y′ at each value of x in the right-hand side of Equations 14.17
and 14.18. Such a study has been reported for the polytropes n = 2, 2.5, 3, 3.5,
and 4 by Mullan (1989).

Since the case n = 3.25 is relevant for the radiative interior of the Sun (see
Chapter 10, Section 10.2), we focus on that case here. An abbreviated table
of y and y′ values as a function of x in the n = 3.25 polytrope has already
been given (see Table 10.1). A more extended version of that table, including
more than 800 rows, was prepared so that it could be used for interpolation in
the right-hand side of Equations 14.17 and 14.18. Those equations were then
numerically integrated from center to surface, using a series of frequencies
appropriate for g-modes, using the steps outlined in Section 14.4.1 above.

There are four alterations to the steps outlined in Section 14.4.1 when
we discuss g-modes. First, the range of permissible l does not include l = 0:
so step (1) should read: “Pick a value of l among the set 1, 2, 3.” Second, in
step (4), the local values of y and y′ for each value of x cannot be obtained ana-
lytically: instead, they must be obtained by interpolating into Table 10.1 (or an
extended version thereof). Third, in step (10), one must choose a new, smaller
value of α: the study of g-modes requires that one goes to smaller and smaller
frequencies, i.e., long and longer periods. Fourth, in step (11), the conversion
factor from α to (dimensional) frequency for n = 3.25 is ν = 789.0

√
α µHz.

Apart from these alterations, the numerical integration proceeds step-by-
step at each frequency as described in Section 14.4.1. The result is again
that, at each frequency, the code provides a value for the oscillation variable,
w(surf), at the surface of the polytrope.

Analogous to the plot in Figure 14.1 for the p-modes, we present in Fig-
ure 14.4 the surface values of w in the polytrope n = 3.25 for g-modes with
l = 1 and l = 2. In contrast to Figure 14.1, where we plotted w(surf) as
a function of frequency, in Figure 14.4, it makes more sense to plot w(surf)
for the g-modes as a function of the period. The modes we plot have periods
between about 8 and 16 hours: this range overlaps with the range that is
relevant to observations of oscillations which have been reported in the Sun
(Garcia et al., 2007). Once again, the zero points of w(surf) define the loca-
tions of eigenmodes. Inspection of Figure 14.4 shows that, for the g-modes,
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where w(surf) = 0. Note that the separation between adjacent eigenmodes ap-
proaches a constant value in period. The asymptotic separation in the quantity
P

√
l(l + 1) is about 2500 sec. Contrast this plot with Figure 14.1, where the

abscissa was in terms of frequency.

the separation between adjacent eigenmodes approaches an asymptotic limit
which is constant in period. In the case of the particular examples that are
plotted in Figure 14.4, the period separation between adjacent eigenmodes
times

√
l(l + 1) is found to be about 2500 sec. For l = 1, this corresponds

to a period separation of 1770 sec, i.e., about 30 minutes between adjacent
modes. For l = 2, this corresponds to a period separation of 1020 sec, i.e.,
about 17 minutes between adjacent modes.

Thus, whereas p-modes exhibit constant asymptotic separation in fre-
quency (with a “large separation” ∆ν between the frequencies of adjacent
modes at high frequency), g-modes exhibit constant asymptotic separation ∆P
in period. This dramatic distinction in asymptotic behavior between p-modes
and g-modes is a striking feature of the oscillation equations.

We turn now to a discussion as to why the p-modes and the g-modes
display these distinctly different asymptotic behaviors.

14.6 Asymptotic Behavior of the Oscillation Equations

We can use the mathematical properties of Equations 14.17 and 14.18
to see why p-modes have asymptotically equal spacing in frequency between
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adjacent modes, whereas g-modes have asymptotically equal spacing in
period.

14.6.1 p-modes

As regards p-modes, asymptotic behavior emerges in the limit of high fre-
quencies, α → ∞. In this limit, Equation 14.17 reduces to dw/dx = αzy−Q

while Equation 14.18 reduces to d(x2z)/dx = −wϕ(x, y) where ϕ = Nx2yQ−1/
(N + 1). Let us concentrate on the values of the quantities w and z close to
the “surface” of the star, i.e., at a fixed value of x (close to x1). In essence,
this is a rough method of concentrating on the value of w which we referred
to as w(surf) when we plotted Figure 14.1. Although this is not a mathe-
matically rigorous procedure, it helps us to see (roughly) that we can write
dz/dx ≈ −Aw where A = yQ−1/Γ is a constant at a fixed value of x. (We
use the quantity Γ to replace (N + 1)/N). The numerical value of A depends
on the (almost zero) value of y close to x1. Again treating y−Q as essentially
constant (because we are treating a point at a fixed value of x close to the
surface), we take the second derivative of w and find d2w/dx2 ≈ αy−Qdz/dx.
Substituting the above expression for dz/dx, we find

d2w

dx 2 ≈ −wαAy−Q ≈ −w

(
α

Γy

)
(14.21)

Recall that in a polytrope composed of a perfect gas, the Lane-Emden
function y is related to the local temperature by y = T/Tc (Chapter 10,
Section 10.3). The combination Γy (which occurs on the right-hand side of
Equation 14.21) is therefore proportional to the square of the local sound
speed: Γy = A′c2

s.
Substituting this in Equation 14.21, and also substituting the expression

ν = A′′√α (see Equation 14.10) relating α to the (dimensional) frequency, we
can rewrite Equation 14.21 as

d2w

dx 2 ≈ −w

(
Bν

cs

)2

(14.22)

where B2 = 1/A′A′′2.
The solution of Equation 14.22 is a sinusoidal function: w ∼ sin(xBν/cs).

Here, w is to be interpreted as w(surf), (i.e., the ordinate in Figure 14.1), while
ν is the frequency (i.e., the abscissa in Figure 14.1). The quantity x can be
regarded as fixed at the value x = x1. As a result, w(surf) is expected to vary
sinusoidally as ν increases. The essence of a sinusoid is that it passes through
successive zeroes as the argument x1Bν/cs passes through the set of discrete
values jπ where j is an integer. The interval between successive zeroes of the
sinusoid corresponds to increments of π between successive eigenfrequencies
multiplied by x1B/cs. Thus, in this limit, adjacent modes differ in frequency
by a constant amount ∆ν = πcs/Bx1.
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Note that ∆ν ∼ cs/x1. Now, the combination x1/cs is related to ts, the
time for sound to propagate from the Sun’s center to the surface (Chapter 9,
Equation 9.6). Thus, ∆ν is proportional to 1/ts. Detailed mathematical work
shows that in fact, the asymptotic frequency separation ∆ν should equal
1/(2ts).

14.6.2 g-modes

As regards g-modes, the treatment of asymptotic behavior follows the
above discussion for p-modes, except that now we consider the limit α → 0.
In this limit, the dominant term in dz/dx is l(l + 1)/α, while the dominant
term in dw/dx is proportional to (n−N). Repeating the above steps, we again
find a sinusoidal solution, with zeroes separated by a constant interval π in
the argument. In this case, adjacent modes differ by a constant value of the
argument Ag = (n − N)

√
l(l + 1)/ν.

There are two features to be noted about Ag. First, the presence of n − N
has the effect that sinusoidal solutions exist only for n > N : in a polytrope
where n ≤ N , the solutions are no longer propagating waves, but are instead
damped exponentials.

Second, Ag includes the frequency in the denominator. Thus, Ag is propor-
tional to the period of the mode. As a result, the constant interval between
neighboring g-modes is proportional to the period. Thus adjacent g-modes
(with fixed l) are separated by a constant interval Po/

√
l(l + 1) in the pe-

riod. The quantity Po is predicted to have a well-defined value for a given
value of the polytropic index: e.g., for n = 3, Po = 3497 sec, while for n = 3.5,
Po = 1927 sec (see Mullan, 1989). Thus, for modes with degree l = 1, the
asymptotic separation in period between adjacent modes is predicted to be
41 minutes for n = 3, and 23 minutes for n = 3.5. As can be seen from Fig-
ure 14.4, for the intermediate case n = 3.25, the asymptotic separation for l = 1
modes is about 30 minutes.

The feature of a constant separation in period between adjacent g-modes
may aid observers in identifying such modes in the Sun. In fact, precisely this
technique was used by Garcia et al. (2007) to identify modes in the Sun with
periods between 1 and 15 hours. These modes exhibit asymptotic separations
of about 9, 13, and 24 minutes with l = 3, 2, and 1, respectively. The discov-
ery of 24-minute asymptotic separations between adjacent g-modes with l = 1
lies between the predicted separations for the l = 1 g-modes in the polytropes
n = 3.5 and 3.25. We note that in Chapter 10, Section 10.2, for independent
reasons, “the structure of the Sun in the radiative interior corresponds to an
effective polytropic index of 3.25.” Now the g-modes can propagate only in
the radiative interior of the Sun (where n > 1.5): they are evanescent in the
convection zone (where n = 1.5). This explains why their amplitudes at the
surface are so small as to make them difficult to identify. Therefore, observa-
tional properties of the g-modes should be determined by the physical struc-
ture in the radiative interior. The asymptotic separations in period reported
by Garcia et al. can be fitted with the results from a polytrope n = 3.25−3.5.
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It is remarkable that a structure as simple as a polytrope, and one with
an index close to what is expected for completely independent reasons in the
radiative interior of the Sun, can yield asymptotic g-mode separations which
are consistent with the observed separations.

In contrast to the asymptotic behavior of p-modes (where the asymptotic
interval in frequency is determined by the radial profile of the sound speed), it
is not surprising that for g-modes, the asymptotic interval in period between
adjacent g-modes is not determined by the sound speed: instead, it is deter-
mined by the radial profile of a very different physical quantity known as the
Brunt–Vaisala frequency (νBV ∼ n − N).

In the solar convection zone, where n = 1.5, and therefore n = N , g-modes
are exponentially damped.

14.7 Depth of Penetration of p-modes beneath
the Surface of the Sun

Now that we know that p-modes are associated with the propagation of
sound waves, we can obtain a valuable piece of information about the following
question: how deeply into the Sun do p-modes with a particular l penetrate?
To see this, we note that when sound waves propagate in a medium where
the local sound speed is cs, the wave frequency ω is related to the wavelength
λ by a dispersion relation: ω2 = k2c2

s. Here, the wavenumber k is defined by
k = 2π/λ. Let us examine k2 in more detail.

We have already (see Chapter 13, Section 13.2) introduced the concept of
“horizontal wavelength” λh = 2πR�/

√
[l(l + 1)] in connection with modes of

angular degree l: this wavelength is a measure of how many nodes exist along
the meridian from north to south pole. Associated with λh, we introduce the
“horizontal wave number” kh defined by kh = 2π/λh =

√
[l(l + 1)]/R�.

A second component of the wave number which enters into the solar p-
modes is associated with the wavelength in the radial direction λr. The “radial
wave number” is defined by kr = 2π/λr, such that k2 = k2

h + k2
r .

The dispersion relation for sound waves can be written in the form

k2
h + k2

r =
ω2

c2
s

(14.23)

Let us consider what happens to a sound wave as it penetrates deeper and
deeper below the surface of the Sun. At the surface, the degree of the mode is
identified in terms of the angular degree l: this fixes the value of kh, and the
sound-wave associated with the mode of degree l retains that value of kh at
all depths.

With increasing depth below the surface, the ambient temperature T in-
creases, leading to an increase in c2

s = γRgT/µa. As a result, the right-hand
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side of Equation 14.23 decreases as we go deeper into the Sun. At a cer-
tain depth zr, the right-hand side falls to a value which is equal to k2

h. At
that depth, the only way to satisfy Equation 14.23 is for kr to become zero.
Propagation in the radial direction is no longer permitted. The wave number
becomes entirely horizontal. When the wave is near the surface, it has a finite
value for both kh and kr: such a wave propagates at a certain angle relative
to the radial direction. But at depth zr, the wave propagates horizontally,
and can penetrate no deeper into the Sun. Thus, although the wave starts
off its journey into the Sun by propagating away from the surface at a finite
angle to the radial direction, the wavefront gradually becomes more and more
refracted away from the radial direction, until at depth zr, the wave becomes
horizontal, and then begins to refract back toward the surface.

The depth zr is indicative of the maximum depth to which a wave with
a given degree l penetrates into the Sun. We cannot expect that such a wave
will contain much (or any) information about what is happening in the deep
interior of the Sun, at depths in excess of zr. If we wish to study conditions at
radial locations of (say) r in the deep interior of the Sun, we must make sure
to study the properties of waves which can propagate into depths zr which
are at least as great as R� − r.

Setting k2
r = 0 in Equation 14.23, and setting c2

s = γRgT/µ, we find
that the depth zr occurs when the local temperature T has the value Tr =
ω2µ/γRgk

2
h. At what depth does the temperature have such a value? Well, as

long as we are considering depths which are not too far beneath the surface
of the Sun, specifically, as long as we consider depths of no more than about
200,000 km (roughly 0.3 R�), we know that the solar structure is determined
by convective heat transport. In such conditions, the temperature gradient is
equal to the adiabatic gradient, g/Cp. This means that the temperature as
a function of depth is T (z) = T (zo) + g(z − zo)/Cp (see Chapter 7, Equa-
tion 7.5). We set zo = 0 where T (zo) ≈ 6000 K. Throughout most of the
convection zone, T (z) � 6000 K. Therefore, the depth zr is essentially equal
to TrCp/g. Recalling that Cp can be set equal to γRg/µ(γ−1) (see Chapter 6,
Equation 6.5), we find

zr =
ω2

k2
h

1
g(γ − 1)

(14.24)

In the limit of large l, and for modes with (linear) frequency ν(= ω/2π),
the depth of penetration can be expressed as a fraction of the solar radius as
follows:

zr

R�
=

4π2ν2R�
l2

1
g(γ − 1)

(14.25)

Thus, the larger the degree l, the shallower is the penetration of the mode
beneath the surface of the Sun.

As an illustration of Equation 14.25, it is instructive to ask: how large
must l be in order to have the depth of penetration no deeper than the con-
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vection zone? In such a case, zr/R(sun) ≤ 0.3. Inserting this in Equation 14.25,
and using g = 27422 cm sec−2 and γ = 5/3, we find that the degree l must
exceed a value equal to lc ≈ 22400 ν. The modes which are most commonly
excited in the Sun have ν ≈ 0.003 Hz. This leads to lc ≈ 60−70. This indicates
that if we want to use p-modes to study the convection zone in the Sun, it
will be best to concentrate on the properties of modes with degree l in excess
of 60–70. Referring to Figure 13.4 in Chapter 13, we see that modes which
lie on the prominent ridges toward the right-hand side of the figure are all
confined within the solar convection zone.

For modes with large l, i.e., for modes which do not penetrate deeply
beneath the surface, the eigenfunctions are effectively “squeezed” into a shell
in the outer parts of the Sun between a depth of zr and the surface. For
example, observed modes with the largest l in Figure 13.4, with l ≈ 200, and
ν = 3 mHz, are confined to a shell which penetrates beneath the surface to
a distance of only about 0.03R�. And yet there still exist a series of modes,
each with its own radial order nr, which must be “squeezed” into this thin
shell. It is obvious that, in such a case, even relatively small values of nr will
result in having the last antinode very close to the surface.

14.8 Why Are Certain Modes Excited More Than
Others in the Sun?

In order to understand how the p-modes are excited in the Sun, and why
certain p-modes are not excited at all (or at best, only at a very low level), let
us recall an important feature of the observed power spectrum in Chapter 13,
Figure 13.2. We have seen (Chapter 14, Section 14.4.3) that the solar mode
with l = 1 and nr = 10 is present at a power level which is 500 times smaller
than the mode with l = 1 and nr = 25. And for the mode with l = 1 and
nr = 15, the power level is some ten times smaller than the mode with l = 1
and nr = 25.

14.8.1 Depths where p-modes are excited

These results invite comparison with the eigenfunctions which are plotted
in Figure 14.3. We note that the largest antinode of the mode with l = 1 and
nr = 10 lies at a depth of 0.5% of the solar radius, i.e., at a depth of 3500 km
below the photosphere. On the other hand, the mode with l = 1 and nr = 25
has its largest antinode at depths of <700 km. The (l = 1, nr = 15) mode has
its largest antinode at an intermediate depth, 1400 km.

These results lead us to ask the question: is there some physical quantity
in the Sun which can provide power to the p-modes, and is favorable for
excitation of p-modes at depths of <700 km but is less favorable (by a factor
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of ten) at depths of 1400 km, and is even less favorable (by factors of 500) at
depths of 3500 km?

14.8.2 Properties of convection at the excitation depth

The most obvious characteristic of depths z = 700–3500 km is that they
lie within the solar convection zone. The principal characteristic of that zone
is that the gas is driven effectively to finite velocities by means of convective
instability. Convective granules come and go on time-scales of a few minutes.
When a compressible medium is in motion, it is inevitably a source of pressure
fluctuations, i.e., sound waves. As a result, the solar convection zone is an
effective generator of sound waves. This raises the possibility that such waves
may serve as a source of p-modes, if conditions are favorable to allow transfer
of energy into the modes.

At what location is energy likely to be transferred most effectively into a
p-mode? The answer is: at the location where the mode’s eigenfunction has
its largest antinode. That is where the mode “likes” to have a large pressure
fluctuation. This suggests that p-modes can be excited in the Sun most effec-
tively if the largest antinode (i.e., in general, the antinode which lies closest
to the photosphere) lies at a depth where convection generates sound waves
effectively.

How much power do the convective flows in the Sun emit as sound waves?
The maximum available power can be computed by noting that an individual
granule survives for only about one turnover time, i.e., for a time interval tc ≈
D/V , where D is a length associated with circulation around the convection
cell, and V is the convective velocity. When a granule reaches the end of its
lifetime, and loses its identity by dissolving back into the ambient medium,
it is as if the energy density of the convective flow (Ed ≈ ρV 2 ergs cm−3),
equivalent to a ram pressure, is made available (over a time-scale of order tc)
as a pressure pulse in the ambient medium. The maximum available power Pp

emerging from each cm3 in the pressure pulse is of order

Pp ≈ Ed

tc
≈ ρV 3

D
ergs cm−3sec−1 (14.26)

By integrating over the linear extent of the granule (∼D), we find that
the maximum available flux of pressure Fp from the dissolving granule is
∼ ρV 3ergs cm−2sec−1.

Only a fraction of Fp is converted into a flux of sound waves, Fs, with
periods in the five-minute range. In a medium where the sound speed is ≈
10 km sec−1, a five-minute sound wave has a wavelength λ ≈ 3000 km, i.e.,
larger than the linear extent of the granule D. The dissolving granule acts
in essence as a “short antenna” for radiating sound waves with wavelength
λ. Antenna theory indicates that an antenna of length D is quite inefficient
at emitting waves with λ > D. Specifically, by considering the details of a
multipole expansion, it can be shown that the efficiency of emission from a
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short antenna is proportional to (D/λ)2m+1, where m = 1 for dipole emission
and m = 2 for quadrupole emission. It turns out that the sound which is
emitted by solar convection is generated mainly by quadrupole terms, i.e., the
efficiency of sound emission scales as (D/λ)5.

The periods Ps(= λ/cs) of the sound waves emerging from a cell with
lifetime tc are comparable to tc. As a result, we can write D/λ ≈ V/cs. This
leads to the following expression for the flux of sound Fs

Fs ∼ Fp

(
V

cs

)5

∼ ρV 3M5 (14.27)

where M = V/cs is the Mach number associated with the convective flows.
In order to proceed with a quantitative discussion, we need to know how

the convective velocity V varies with depth beneath the solar surface. Unfor-
tunately, the model of the convection which we computed in Chapter 7 does
not contain this information: we made no attempt to compute V because
we did not attempt to apply “mixing-length theory” in detail. Instead, we
“skipped over” the superadiabatic and ionizing layer and went right to the
limit of setting the temperature gradient equal to the adiabatic temperature
gradient: by referring to more detailed models, we pointed out (Chapter 7,
Section 7.7) that the layer which we “skipped over” has a linear extent of a
few Mm. These are precisely the range of depths that we now need to know
about in order to discuss excitation of p-modes. Therefore, with the approach
we have adopted in this “first course in solar physics,” we are not really in
a position to provide a quantitative answer to the question “why are certain
p-modes excited more than others?”

Rather than leave this important question unanswered, it is worthwhile to
refer briefly to one particular solar model in which the depth-dependence of the
convective velocity was explicitly calculated. Inspection of that model (Baker
and Temesvary, 1966) indicates that at depths of 700, 1400, and 3500 km
below the photosphere, the combination of parameters ρV 3M5(∼Fs) takes on
numerical values of 3.4×104, 2.3 ×103, and 24 ergs cm−2 sec−1, respectively.
That is, at 1400 km, Fs is reduced by a factor of ≈10 compared to Fs at
700 km: this could explain why the power observed in the (l = 1, nr = 15)
p-mode is ten times smaller than the power observed in the (l = 1, nr = 25)
p-mode. Note also that at 3500 km, Fs is reduced by a factor of ≈ 1000
compared to Fs at 700 km: this could explain why the power observed in the
(l = 1, nr = 10) p-mode is almost 1000 times smaller than the power observed
in the (l = 1, nr = 25) p-mode.

Finally, note that if we consider modes with large l, where the eigenfunc-
tions are “squeezed” into a thin shell close to the solar surface (see Equa-
tion 14.25), even rather small values of nr may result in the last antinode
lying quite close to the surface, i.e., right in the zone where acoustic genera-
tion by convection is highly efficient. This explains why, at large values of l,
modes with small values of nr (e.g., nr = 4) can be excited to detectable
amplitudes (see Chapter 13, Figure 13.4).
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14.9 Using Helioseismology to Test a Solar Model

Now that we have computed a solar model, we have obtained tables of
values of various physical parameters as a function of the radial distance from
center to surface inside the Sun. The question arises: how can we test the
validity of the results we have obtained? After all, they are numbers in a
table, and their values are only as good as the assumptions and approximations
which went into their calculation. It would be good to have an independent
means of checking. This is where helioseismology comes into its own: it allows
us to “peer into” the interior of the Sun and check some of the physical
variables we have calculated.

14.9.1 Global sound propagation

We have already seen (Chapter 14, Section 14.6.1) that the asymptotic
frequency separation ∆ν should equal 1/(2ts). In view of this, we can now
see the significance of a calculation we did in Chapter 9, Section 9.4. There,
we computed the value of ts for our complete solar model, and found ts =
3804 sec. Using that, we find ∆ν = 1/2ts = 131.5 µHz. This is within 2–4%
of the observational values of ∆ν: 135–136 µHz (Appourchaux et al., 1998).
This tells us that our model for the Sun is doing a good job of reproducing a
key global property of the “real Sun.”

14.9.2 Radial profile of the sound speed

A solar model provides a radial profile of (among other things) the sound
speed from center to surface. Once this is available, it is in principle possible
to calculate a table of the eigenfrequencies of p-modes with various values of l
and nr.

The modifier “in principle” in the previous sentence is meant to emphasize
that Equations 14.17 and 14.18 above refer only to the case of a polytrope:
in the case of a realistic solar model, no single value of the polytropic index
exists throughout the entire model. Therefore, new (nonpolytrope) versions
of Equations 14.17 and 14.18 must be derived in which the radial profile
of sound speed is incorporated explicitly. Also, for maximum precision, the
Cowling approximation would have to be replaced with a more complete set
of equations.

Once those changes have been made, a table of mode frequencies can be
calculated. These can be checked against the measured frequencies in order to
determine how good the model is. In general, the calculated frequencies will
not reproduce the observed values. The discrepancies can be used to determine
what numerical changes need to be made to the model sound-speeds in order
to achieve better fits. An example is shown in Figure 14.5.
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FIGURE 14.5: Radial profile of discrepancies between sound speeds in a
solar model and the sound speeds required to reproduce the observed eigen-
frequencies. (Courtesy of SOHO/MDI consortium. SOHO is a project of in-
ternational cooperation between ESA and NASA. With permission.)

The first thing to notice about Figure 14.5 is that although discrepancies
between model and data are present, the discrepancies are small: nowhere
inside the Sun is the sound speed (squared) in error by more than 0.4%.
This is a striking endorsement of the reliability of current solar models: the
run of temperature inside a solar model from center to surface, ranging from
> 10 million K to a few thousand K, reproduces what happens at all radial
locations inside the Sun to better than a few parts per thousand.

Because modes of different degree l penetrate into the Sun by different
amounts (see Equation 14.25), discrepancies between modes with the largest
l values contain information about errors in the model in the outermost layers
of the Sun. Modes with intermediate l values (≈ 60–70) may be used to
probe conditions down to the base of the convection zone (at radial locations
r ≈ 0.7R�. Such regions are the site of the largest discrepancies in sound speed
(see Figure 14.5): this suggests that certain physical phenomena which occur
at the interface between the convection zone and the radiative core may not
yet be properly incorporated in the model. Among these phenomena might
be rotational shear, or magnetic fields, or overshooting of convection.

In the deepest regions of the radiative interior, information about the model
is contained in p-modes with the lowest l values. But even then, the innermost
part of the Sun, at radial locations within (say) 0.2R� of the center of the
Sun, cannot be probed with great reliability by p-mode data. This explains
why the error bars in Figure 14.5 become considerably larger in the inner-
most regions of the Sun. Probing conditions near the center of the Sun will
be greatly helped if the properties of g-modes can be determined with high
precision.
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14.9.3 The Sun’s rotation

We do not need helioseismology to study the rotation on the surface of
the Sun: that rotation can be observed directly. The observations (Chapter 1,
Section 1.9) show that the Sun rotates faster at the equator than at high
latitudes, with a difference of almost 30% between the equator and the poles.

When it comes to studying the Sun’s rotational properties beneath the
surface, then we must rely on helioseismology. In describing the modes which
exist inside the Sun, we have concentrated on only two of the integers which
specify a mode: l, and nr. These are related to properties of the modes in the
latitudinal and radial directions respectively.

However, in order to study rotation, we would also need to include, in our
spherical harmonic analysis, an index m to describe properties of modes in
a third direction, namely, in longitude. For a mode with any given value of
the degree l, there exist 2l + 1 submodes with m values varying from m = −l
to m = +l. The algebraic sign of m indicates the longitudinal direction in
which the mode propagates. Now, the Sun is rotating with a speed Vr which,
at the equator and on the surface, has a magnitude of about 2km sec−1. A
p-mode (sound wave) which propagates in the same longitudinal direction as
rotation propagates with speed cs +vr relative to a nonrotating frame. On the
other hand, a p-mode which propagates opposite to the direction of rotation
propagates with speed cs−vr relative to a nonrotating frame. These differences
in propagation speed lead to differences in the frequencies of eigenmodes with
±m. Near the base of the convection zone, where cs ≈ 100 km sec−1, Vr

amounts to some 2% of cs so rotational effects are not negligible. Careful
measurements of the differences in frequency allow one to extract information
about Vr. Again making use of the depth-dependence of mode penetration as
a function of degree l, one can obtain the radial profile of rotation.

The p-modes allow us to probe rotation in the regions of the Sun which
extend from the surface in to radial locations of a few tenths of R�. In the core
of the Sun, studies of g-modes will eventually allow more detailed extraction
of rotational information there.

In this “first course” in solar physics, we unfortunately do not have enough
information to describe how helioseismology is used to study rotation inside
the Sun. The data which are now available also allow extraction of information
as to how the rotation profile varies between the equator and the pole. But
analysis of such a process would carry us far beyond the limits of this “first
course” in solar physics.

Suffice it to say that we present in Figure 14.6 the profile of rotational
angular velocity which has been determined by analyses of this kind. The
results are presented as a function of two variables: (i) the fractional radial
coordinate (r/R) inside the Sun, and (ii) the latitude.

Focusing first on the surface of the Sun, i.e., at r/R = 1, the curves in
Figure 14.6 show that at low latitudes (0 deg), the surface rotates relatively
rapidly: Ω/2π ≈ 450–460 nanoHertz (nHz), i.e., a rotation period of 25.2–
25.7 days. (This range overlaps the rotation period obtained by averaging
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FIGURE 14.6: Angular velocity versus fractional radius inside the Sun at
various latitudes. (Courtesy of SOHO/MDI consortium. SOHO is a project of
international cooperation between ESA and NASA. With permission.)

surface Doppler data over 14 years: see Chapter 1, Section 1.9.) At higher
latitudes, the surface rotates more slowly: at 60 deg latitudes, Ω/2π ≈ 370–
380 nHz, i.e., a rotation period of 30.5–31.3 days. (This range also overlaps
with the average of surface Doppler data: see Chapter 1, Section 1.9) Although
the surface Doppler data allow in principle the study of rotation all the way
to the poles (see Chapter 1, Equation 1.19), the helioseismological data are
not sensitive enough at latitudes above (about) 60o to allow Figure 14.6 to be
extended reliably to the poles.

The fact that the Sun’s surface does not rotate as a solid body has been
known for a long time (see Chapter 1, Section 1.9). What Figure 14.6 demon-
strates is that it is not merely the surface of the Sun which departs from
solid-body rotation: this feature also exists in the interior of the Sun.

The long-known departure from solid body rotation at the surface is called
latitudinal differential rotation (LDR). As we examine the sub-surface gas in
Figure 14.6, we see that LDR persists (with values similar to the surface) down
to depths of at least 0.2 solar radii, i.e., to radial locations as small as 0.8R�.
At greater depths, as we approach the base of the convection zone, at radial
location r ≈ 0.7R�, there is a remarkable convergence of the angular velocities
to essentially a unique value. Below the convection zone, in the radiative
interior, i.e., at r ≤ 0.65R�, and into a radial coordinate of order 0.5R�, the
Sun rotates at essentially the same rate at all latitudes: Ω/2π ≈ 430 nHz.
That is, the radiative interior of the Sun, at least in its outer regions, rotates
as a solid body with a period of 26.9 days. Analysis of g-modes will be useful
for determining the rotational properties of the central regions of the Sun, but
these are not yet well developed. We do not yet know the rotation of the Sun in
the inner half (r ≤ 0.5R�) with as much confidence as we do in the outer half.
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The fact that the radial profiles in the convection zone in Figure 14.6 have
finite slopes means that the convection zone of the Sun, at fixed latitude, has
a variation in angular velocity as a function of radius. Thus, the Sun exhibits
radial differential rotation (RDR), in addition to the LDR which is evident at
the surface.

Why exactly the Sun shows the rotational properties shown in Figure 14.6
is not readily explainable in terms of the physics of a “first course.” For exam-
ple, from the simplest perspective, one might expect that the convection zone,
with its turbulent stresses (which serve as a highly effective viscosity), should
be able to enforce solid body rotation more easily than the radiative interior.
And yet Figure 14.6 shows exactly the opposite: it is the radiative interior
which exhibits solid body rotation. Given this empirical result, one might
then expect (since the radiative interior contains 98% of the Sun’s mass) that
the gas in the convection zone (amounting to only 2% of the mass) could easily
be “kept in line,” and forced into solid body rotation also. But this expectation
is contrary to what occurs in the real Sun. Some powerful internal dynamics
must be at work to drive the convection zone into differential rotation: appar-
ently, the forces which are at work in the convection zone (rotation, gravity,
thermal buoyancy, viscous stresses) have the overall effect that the rotation of
the convection zone lags behind the core (by about 10%) at high latitudes, but
is ahead of the core (by about 10%) at low latitudes. Computational models
are required to incorporate multiple physical effects if they are to replicate
successfully the observed LDR and RDR (e.g., Kitchatinov, 2005).

We shall return to the rotational properties of the Sun when we discuss
how magnetic fields are generated in the Sun (Chapter 16).

Exercises

14.1 Perform the step-by-step procedure described in Section 14.4.1 for p-
modes with l = 1 and 3. Plot the equivalent of Figure 14.1, and obtain
a table of the eigenfrequencies for l = 1 and l = 3 p-modes in the n = 1
polytrope for an object with solar mass and radius. For each l value,
determine the “large separations” ∆ν (in µHz) between adjacent modes.
And for appropriate pairs of modes, determine the “small separations”
δν(1 − 3) between modes with l = 1 and l = 3.

14.2 You have already (Chapter 10, Exercise 1) calculated a table of val-
ues of y and y′ for the polytrope n = 3.25. Use your tabulated values
(including interpolation if necessary), and the step-by-step procedure
in Section 14.5, to integrate Equations 14.17 and 14.18 in the n = 3.25
polytrope for g-modes with l = 3. Plot the results in the form shown in
Figure 14.4. Compare your eigenperiods for l = 3 with those for l = 1 in
Figure 14.4.
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Chapter 15

The Chromosphere

So far, when we have discussed the Sun, we have been interested in the material
which extends from the visible surface downward into the interior of the
Sun. The visible surface, the “photosphere” (the “light sphere”), provides the
light which dominates human vision. Our model of the interior of the Sun,
extending over the entire radial extent from center to photosphere, spanned a
radial distance of some 700,000 km. When we computed the model, we did so
in three segments, focusing on distinct laws of physics which play dominant
roles in each segment. As it turned out, the three segments were found to be
of unequal radial depth. The model of the deep interior (Chapter 9) extended
over some 500,000 km. The model of the convection zone (Chapter 7) had a
depth of some 200,000 km. And the model of the photosphere (Chapter 5)
spanned no more than a few hundred kilometers in linear extent.

Now, we turn our attention in the opposite direction. Instead of starting
at the photosphere and moving inward, we now start at the photosphere and
move upward and outward. This brings us into the more rarefied gas that
forms the outer atmosphere of the Sun. And just as we did for the interior,
it will be convenient to recognize that different laws of physics are dominant
in different segments of the outer atmosphere. We shall find it convenient
to again discuss three segments of the outer atmosphere: the chromosphere
(Chapter 15), the corona (Chapter 17), and the solar wind (Chapter 18). Of
these, the linear extents are again very different: the solar wind is by far
the largest, extending over vast distances of interplanetary space, with linear
scales up to 10 billion km; the corona can be detected with optical equipment
out to distances of 1–2 million km; and the chromosphere has a thickness of
no more than 1–2 thousand km.

Thus, as we move outward from the surface, the chromosphere is by far
the thinnest of the three segments, by analogy with the thinness of the photo-
sphere as regards the interior of the Sun. This raises the question: why should
we spend time on such a narrow region? What is there for us to learn about
solar physics by paying attention to such a thin shell of gas? The answer is; the
chromosphere allows us to study the effects of one particular mode of energy
in the Sun: sound waves. We have already seen (Chapters 13 and 14) that
sound waves provide a key mechanism for us to study the interior of the Sun.
Now we turn to another location where sound waves play a key role, this time
in terms of energy deposition.

219
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15.1 Definition of the Chromosphere

The word “chromosphere” is derived from a Greek word meaning “color-
sphere.” Why is the word “color” used to describe this structure? The reason
has to do with the phenomena which are visible to the human eye during an
eclipse of the Sun.

There are two distinct phenomena which can be seen during an eclipse
as the Moon blocks out the brilliant light of the photosphere. One of these
phenomena last for a long time, while the other is over “in a flash.” But both
tell us something valuable about the Sun’s atmosphere.

i. The long lasting phenomenon, which can be seen as long as the total
phase of the eclipse lasts, is an extended white region (see Figure 15.1)
that extends above the surface in a more or less uniform manner to
radial distances of a few solar radii: this is the corona (Chapter 17).

ii. The short-lived phenomenon is visible only for a few (4–8) seconds at the
start and end of totality (see innermost rings of Figure 15.1). A brightly
colored ring is seen, confined to a narrow region very close to the solar
limb. The predominant color of the narrow ring is “rose-colored.” The

FIGURE 15.1: (See color insert following page 202.) The chromo-
sphere of the Sun as seen briefly during a total eclipse of the Sun in 1999
in France. Notice that the chromosphere is confined to a narrow ring, and
it has a pronounced reddish color. (Copyright Luc Viatour/www.lucnix.be.
With permission.)
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FIGURE 15.2: (See color insert following page 202.) Intensity of
radiation from the flash spectrum: notice the strong emission lines. (From
http://www.eurastro.de/pictures/sofi99/mr/linspec.jpg. Used with permis-
sion of Manfred Rudolf/Eurasto.)

fact that the layer is obviously colored (in contrast to the white corona)
gives rise to the term “chromosphere.” We shall see that the fact that
the dominant color is red tells us something significant about the physics
of the chromosphere (see Section 15.12.3 below).

When a spectrum is obtained, the chromosphere reveals a large number of
emission lines in the spectrum (Figure 15.2). The presence of emission lines in
the flash spectrum provides a remarkable contrast to the photosphere, where
most of the spectrum (in visible light) contains absorption lines (see Chap-
ter 3, Figure 3.4). The fact that the chromosphere lasts for only a few seconds
gives rise to the phrase “flash spectrum” for the chromospheric emission lines.
The strongest lines originate in hydrogen (including the Balmer lines known as
Hα, Hβ, Hγ, and Hδ at wavelengths of 6563, 4861, 4340, and 4102 Å respec-
tively). There are also prominent lines due to helium (5876 Å), and ionized
calcium (CaII H and K at 3968 and 3934 Å).

The presence of emission lines in the flash spectrum indicates that in the
chromospheric gas, bound electrons in atoms and ions are cascading down
from upper energy levels to lower ones: this process must start by free elec-
trons being present in significant numbers in the gas, and then being captured
by the ions. The fact that free electrons are abundant indicates that the lo-
cal temperature in the chromosphere is greater than the temperature in the
photosphere. Something has heated up the gas in the chromosphere to tem-
peratures in excess of those in the photosphere. It will be our primary goal in
this chapter to determine what causes this heating.

Historically, the presence of the line at 5876 Å in the flash spectrum is note-
worthy. This line was first observed in a solar eclipse in 1868 when a spectro-
scope was used to view the Sun during the few seconds of the flash spectrum.
The line could not be identified with any known material on Earth at the time:
the name “helium” was given to the material, after the Greek work “helios”
meaning the Sun. It would take 30 years before helium was discovered on
Earth.
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15.2 Linear Thickness of the Chromosphere

The fact that the flash spectrum lasts only for a few seconds contains
information on the linear extent of the chromosphere along the radial direc-
tion. To see this, we note that the timings of the various phenomena which
occur during an eclipse are determined by how fast the Moon moves across
our line of sight to the Sun. Now, the Moon is in orbit around the Earth
such that one orbit (360 deg) requires about 30 days. This corresponds to an
angular velocity of 0.5 deg per hour, i.e., 1800 arc sec per hour, or 0.5 arc
sec per second of time. As a result, in a time interval of 4–8 sec, the Moon
traverses an arc having an angular extent of 2–4 arc sec. At the distance
of the Sun, where the conversion factor is 728.8 km per arc sec (Chapter 1,
Section 1.2), such an angular extent corresponds to a linear extent of 1500–
3000 km.

The chromosphere is truly a thin shell around the Sun, extending to no
more than 0.5% of the solar radius above the photosphere.

15.3 Observing the Chromosphere on the Solar Disk

Observations during a total solar eclipse allow us to see the chromosphere
at the limb of the Sun. Such observations were the first to discover the existence
of the chromosphere. But total solar eclipses do not happen very often. Is there
a way to observe the chromosphere outside an eclipse? Yes: it is possible to
detect the chromosphere by judicious choice of observing conditions on the
disk of the Sun.

To see why this is the case, let us recall how we are best able to observe
the photosphere: the strategy is to take advantage of photons which have an
optical depth of unity in the photosphere. To achieve this goal, we use visible
light, with a continuous spectrum in the vicinity of 5000 Å, where the contin-
uum opacity κ is of order 0.1−0.5 cm2 gm−1 (see Chapter 5, Table 5.3). Using
such light, a line of sight which starts far from the Sun (e.g., at Earth orbit)
and penetrates inward, passes through enough material (with column density
Hρo) to build up optical depth τ = κHρo of order unity in the photosphere.
With scale-heights of (1 − 2) × 107 cm, we recall that the level in the solar
atmosphere where τ(5000 Å) ≈ 1 occurs in material which has a density ρo of
(2 − 3) ×10−7 gm cm−3.

Following this line of reasoning, what must we do if we wish to probe
levels of the atmosphere which lie at greater altitudes, where the gas has
lower density than the photosphere? Clearly, we must choose an observing
wavelength in some spectral line Ls where the opacity exceeds that in the
continuum by a factor of (say) F . As a result, our line of sight coming inward
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to the Sun from our observing point on Earth will reach a surface where
τ(Ls) ≈ 1 at an altitude which is higher up than the photosphere. Now, the
τ(Ls) ≈ 1 level occurs at a height where (provided κ and H are still about
the same), ρo is smaller than in the photosphere by a factor of F .

Suppose F = 104: such an enhancement of opacity relative to the contin-
uum is readily achievable in the cores of strong lines such as the first Balmer
line, Hα, or the resonance lines of CaII (the so-called H and K lines). In
the core of such a line, the line of sight from Earth can penetrate in only to
levels where the local gas density is some 104 times smaller than in the pho-
tosphere. This corresponds to a density reduction of e9−10 compared to the
photosphere. In an isothermal atmosphere, such a density reduction occurs
across a vertical interval of nine to ten scale heights above the photosphere.
With scale heights of 100–200 km near the photosphere, this corresponds to
vertical heights of 1000–2000 km. Recalling the linear thickness of the chromo-
sphere (1500–3000 km) which has been revealed by the flash spectrum, we see
that, if we observe at a wavelength which allows our line of sight to penetrate
no deeper than 1000–2000 km above the photosphere, this will put us right in
the chromosphere.

The trick of observing the chromosphere without waiting for an eclipse
is to tune a detector to a wavelength that is close to the center of Hα or
the CaII K line: with such a setting, the observations will reveal the “sur-
face” of the Sun as it exists at an altitude of 1000–2000 km above the photo-
sphere.

15.4 Appearance of the Chromosphere on the Disk

When the Sun is observed in the center of the CaK line, the chromosphere
is seen to be nonuniform in brightness, especially around sunspots (see Fig-
ure 15.3).

At certain times, the things which first catch the eye are localized en-
hancements in brightness which lie in certain regions of the surface. These
bright features lie within a range of latitudes, roughly between 10 and 30 deg,
in both the Northern and the Southern hemispheres. The bright features are
spatially associated with localized dark features (“sunspots”) when observed
in the visible continuum. The bright features in the CaK images of the chro-
mosphere are larger in area than the sunspots: the bright features are referred
to as “plages” (French for “beaches”).

The rest of the surface has an appearance which is reminiscent of the skin
of an orange: there are many small discrete features (pock-marks) distributed
across the surface. The pock-marks look as if someone has used a broad-
tipped marker to put many darker splotches on the surface, and each splotch is
surrounded by a fine line of brighter material around the border. According to
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FIGURE 15.3: Part of the Sun as viewed in the K line (wavelength = 3933 Å)
of singly ionized calcium. (Image downloaded from www.skytrip.de/sonne/
kline2006-07-01d.jpg.)

another popular analogy, it is as if we are looking at a large number of (darker)
fields, each surrounded by its own (brighter) “hedgerow” (see Figure 15.5
below).

There is well-defined topological structure: each darker region (known as
a “cell”) is surrounded by a brighter rim. This means that it is possible to
move continuously from any element of bright rim to any other element of
bright rim continuously without crossing a dark cell. But it is not possible to
move from one cell to another without crossing a bright rim. The fact that the
bright rims in the CaK images are connected to one another across the surface
of the Sun gives rise to the descriptive term “network” for the “hedgerows”
which are bright in CaK.

This topology of cells surrounded by borders is reminiscent of what we ob-
serve in the photospheric features called granules (see Chapter 6, Figure 6.1).
However, whereas the photospheric granules consist of bright centers sur-
rounded by dark rims, in the case of the chromosphere, we have the opposite
structure: dark cell centers, surrounded by bright rims. The topological simi-
larities to the granules gives rise to the term “supergranules” for the features
which appear in the CaK images. A supergranule can be defined as one of the
dark cells surrounded by its “hedgerow” of bright network.

15.5 Properties of Supergranules in the CaK Line

The linear dimensions of a supergranule can be determined roughly by
inspection of a CaK image of the entire disk of the Sun. Starting at the center
of the disk, one can draw a radial line and count the number of dark cells as
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one moves out toward the limb. Estimates made from “typical” CaK images
suggest that one encounters some 20–30 cells. This leads to a linear extent of
order R�/(20–30) ≈ 23–35,000 km.

Compared with the linear scale of granules (about 1000 km), the super-
granules are ≈ 30 times larger in linear extent. Each supergranule has room
to contain ≈ 1000 granules within its area.

Doppler studies of supergranules indicate that the network is the site of
down-flowing material, while the cells are regions where flows are mainly hor-
izontal. It appears that material is flowing upward near the center of the cell,
sweeping out horizontally to the network, and sinking in the network. At first
sight, this is reminiscent of the convective flows in granules. However, there
is a major difference: in the supergranule flows, the material which sinks is
brighter than the rising material. This is opposite to the behavior in gran-
ules, where rising material is brighter (Chapter 6, Section 6.3). Therefore, it
is not obvious that thermal convection, which is so helpful in interpreting the
properties of granules, is at work in the supergranules.

Nevertheless, the similarity between the titles “granules” and “supergran-
ules” raises the question: why are there preferred length scales associated with
these phenomena? We have seen (Chapter 6, Section 6.4) that granules are
convection cells with preferred horizontal scales of order 1000 km. Modeling
of the convective flows in terms of mixing length theory suggests that, corre-
sponding to the observed preferred horizontal scales, the convective flows have
vertical extents of less than 200 km (Chapter 7, Section 7.2). The physical sig-
nificance associated with such depths is that they represent 1–2 pressure scale
heights: vertical motions over such distances would cause significant spreading
of the material, and it is hard to imagine how gas could rise from much deeper
layers and still preserve any identity. But what are supergranules? Are they re-
ally convection cells analogous to granules, except that they penetrate inward
to depths that are some 30 times deeper, thereby giving rise to convection cells
which have horizontal scales some 30 times larger than granules? If this is a
correct interpretation, then supergranule convective flows must extend inward
to depths of 6000–9000 km. Is there anything special that we could identify
with material in the Sun at such depths? Maybe these are the depths where
HeI → HeII ionization is increasing from less than 10% to more than 90% (see
Chapter 4, Figure 4.1). However, no one has ever successfully reproduced a
supergranule pattern in a model. This is in striking contrast to the remark-
able success that has been achieved in replicating the observed properties of
granulation in the context of thermal convection (Stein and Nordlund, 1998).

In order to make a quantitative statement about the properties of super-
granules, let us ask the question: how much brighter is the network compared
to the darker cell interiors? Spectra which have been obtained in plage regions
(where the network is dominant) suggest that in the region of the K line, the
intensity is about twice as large as the intensity in quiet Sun (where the cells
are dominant) (Worden et al., 1998). We shall return later to a discussion of
what causes this difference between cell and network (see Figure 15.7 below).
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15.6 Supergranules Observed in the Hα Line

Another strong spectral line which is useful for observing the chromosphere
is Hα. When the limb of the Sun is observed at the center of Hα, the chro-
mosphere is observed to consist not only of an overall region of emission, but
there are also multiple discrete bright linear structures (Figure 15.4).

These structures extend upward from near the photosphere to heights of
a few thousand km. They appear as “spikes” of Hα emission. This spiky
structure leads to the descriptive title of “spicules.” Each spicule lives on
average 5–10 minutes, and material moves upward along each spicule at speeds
of 20–30 km sec−1. Each spicule appears to be a structure along which material
is guided. Magnetic fields would provide a natural conduit for ionized material
to flow along.

When the disk is observed at the center of Hα (see Figure 15.5), super-
granules can be identified but the topology is inverted relative to the CaK
images. After one stares at the image for some time, one again sees a combi-
nation reminiscent of “field surrounded by hedgerow,” except that in Hα, the
“fields” are brighter and the “hedgerows” are darker. Within the hedgerow,
individual short dark straight streaks (or “brush-strokes”) can be identified:

FIGURE 15.4: 11 panels showing short segments of the solar limb: each
panel is taken in a wavelength near the Hα line, from the center of the line
(labeled CL) to 1.0 Å on the blue side (−1.0, topmost image) to 1.0 Å on
the red side (+1.0: image at bottom). In each panel, the Sun’s disk and limb
are in the lower region, and blank sky is at the top. Short linear structures
reaching above the limb toward the sky are spicules. (From Big Bear Solar
Observatory, New Jersey Institute of Technology. With permission.)
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FIGURE 15.5: Image of a portion of the solar disk in Hα. The dark features
that look like “brush-strokes” are composed of individual “spikes,” referred
to as “dark mottles.” Each dark mottle is probably a spicule. Notice that
the spicules are not distributed uniformly over the disk: instead, they form
groups. With practice, the eye can identify brighter patches of surface which
are surrounded by groups of spicules. The brighter patches correspond to
supergranule cells in CaK images. The (dark) spicules correspond with the
(bright) network in CaK images. (Image taken at the National Solar Observa-
tory is operated by the Association of Universities for Research in Astronomy,
under a cooperative agreement with the National Science Foundation.)

these are referred to by solar observers as “dark mottles.” It seems likely that
each dark mottle is actually a spicule seen in projection against the bright disk.

Why would a spicule appear bright when seen at the limb and dark when
seen on the disk? Because of the background. At the limb, there is no back-
ground light to absorb, and as a result, the spicule appears as an emitting
structure. But on the disk, the spicule material has plenty of H atoms in the
n = 2 energy level which are capable of absorbing photons with wavelengths
near 6563 Å coming from the photosphere. Why are there large populations of
H atoms in the n = 2 state in a spicule? An answer is provided by Chapter 3,
Section 3.3.2: because of a local increase in temperature inside the spicule,
which is a region of localized energy deposition.

15.7 The Two Principal Components of
the Chromosphere

Observations in both CaK and in Hα indicate that the chromosphere con-
sists of two principal components, cell and network, each with its distinct
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properties. High-resolution observations of magnetic fields indicate that the
fields are concentrated in the network. It appears that the horizontal mo-
tions outward from the center of the cell “sweep up” magnetic field lines and
deposit them in the network. Each spicule in the network represents a local-
ized magnetic flux tube in which the local gas has become energized (probably
by magnetic energy in some form) and has reached up to heights of several
thousand km.

15.8 Temperature Increase into the Chromosphere:
Empirical Results

Images of the Sun in CaK or Hα exhibit one important and noticeable
difference from an image in the white light continuum. The latter shows a
pronounced limb darkening : the intensity at the limb in visible light is a very
significant 60% fainter than the center of the disk (see Chapter 2, Equation 2.5
and discussion). The observed limb darkening I(µ) = a+bµ (where b is a pos-
itive number) can be ascribed to the source function S(τ) = a+bτ(Chapter 2,
Section 2.5.3), indicating that the temperature is increasing as the optical
depth in the continuum increases. However, when the Sun is observed in a
wavelength which emphasizes the chromosphere, the eye is struck by the fact
that limb darkening is not always evident (e.g., Figure 15.5). On the contrary,
there are more or less extended regions where the limb actually appears to be
brighter than the center of the disk. This is a great difference from what oc-
curs in the visible continuum. This difference suggests that the temperature in
the chromosphere is not increasing as the optical depth (in the chromospheric
line) increases. In fact, the behavior is precisely the opposite: analysis of the
chromospheric emission lines which are seen in the “flash spectrum” indicates
that the temperature of the gas increases as the optical depth decreases. That
is, the temperature in the chromosphere rises as the height above the photo-
sphere increases.

How much does the temperature rise in the chromosphere? An empirical
determination of an answer to this question requires detailed study of various
lines, both absorption and emission, as well as continua, in the solar spectrum.
This leads to a profile of temperature versus height. It is found that the pro-
file of the chromospheric temperature rise in a cell differs somewhat, and in
a systematic manner, from the profile of the chromospheric temperature rise
in the network. In fact different pieces of the network, some of which are ob-
served to be brighter than others, also have somewhat different profiles. And
in the cell, some areas are darker than others, and these also yield somewhat
different profiles. In Figure 15.6, we illustrate the profiles which have been
obtained for the average cell center (B), a dark point within a cell (A), the
average network (D), and a bright network element (E). (The notation is that
of Vernazza et al., 1981.)
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FIGURE 15.6: Temperature profiles as a function of height from the pho-
tosphere up into the chromosphere. The height scale is zeroed at the pho-
tosphere: negative heights refer to layers of the Sun which lie below the
photosphere. Four distinct features on the Sun (labeled A, B, D, and E)
are illustrated. Above the photosphere, notice the temperature minimum at
h ≈ 500 km, the rising temperatures between h = 500 and 1000 km, the tem-
perature “plateau” between h = 1000 and 2000 km, and the steep increase in
temperature above ≈ 2100 km. (The fair profiles were constructed by plotting
data from Vernazza, J. E. Avrett, E. H., and Loeser, R. 1981. Astrophys. J.
Suppl., 45, 635.)

Let us consider some important features of the profiles in Figure 15.6.
First of all, all four profiles merge in and below the photosphere: it is only

at heights of a few hundred kilometers above the photosphere that the curves
begin to differ.

Second, in all four cases, the temperature passes through a minimum value
at heights close to 500 km above the photosphere. We may regard the temper-
ature increase at heights above 500 km as an indication that we have entered
into “the lower chromosphere.”

Third, above 500 km, the temperature at first begins to increase rather
steeply, but at heights of about 1000 km, the temperature profile flattens out
to some extent. This gives rise to a “plateau” in the temperature at heights
between (roughly) 1000 and 2000 km. The temperatures in the plateau are
mainly in the range 6000–6500 K. This plateau can be regarded as defining
the “middle chromosphere.” In the plateau, the local temperature exceeds the
temperature minimum by roughly 2000 K.

Fourth, at heights of about 2100 km, there is a steep increase in tempera-
ture: this is referred to as the “upper chromosphere.”
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Fifth, within the plateau, the four distinct features differ from one another
in temperature by several hundred degrees. E.g., at h = 1500 km, the average
cell center has T ≈ 6200 K, while the bright network element has T ≈ 6600 K.
Although the difference in temperature of 400 K is only some 20% of the
2000 K increase in temperature above the temperature minimum, we shall
find (Section 15.12.2) that this relatively small difference in temperature ac-
tually requires a much large difference in energy deposition in the network
than in the cell.

Sixth, the overall thickness of the chromosphere, from “lower” to “upper,”
is some 1600–1700 km. This overlaps with the range of thicknesses reported
in Section 15.2 from eclipse timings.

Seventh, we have mentioned (Section 15.6) that discrete structures
(spicules) exist at certain locations in the network: these may extend upward
in height to a few thousand kilometers. Some spicules therefore have heights
which exceed the thickness of the chromospheric profiles in Figure 15.6. The
“real chromosphere” includes some spiky structure which is not well described
by the results in Figure 15.6. The latter should be regarded as applicable to
the “nonspiky” parts of the solar atmosphere.

15.9 Temperature Increase into the Chromosphere:
Mechanical Work

The most striking result in Figure 15.6 is that the local temperature
increases as the height increases above the photosphere. This result indi-
cates that it is no longer useful to think in terms of the Eddington atmo-
sphere, where radiative equilibrium was operative. In the latter conditions,
we have seen (Chapter 2, Equation 2.40) that the temperature should vary as
T 4 ∼ τ + const, i.e., T should approach a constant value as we go higher up
in the atmosphere, where τ → 0. In the Eddington atmosphere, there should
certainly be no tendency for the temperature to increase as we move toward
smaller values of τ .

Clearly, something quite different from radiative equilibrium is operating
in the chromosphere. What could it be?

Up to this point, in our calculations of the solar model (Chapters 5, 7,
and 9), we have always been dealing with material where the temperature
falls off monotonically as radial distance from the center of the Sun increases.
In the presence of such a negative radial gradient of temperature, it is natural
to think in terms of the heat which flows down the temperature gradient.

Now, as we enter into the chromosphere, T starts to increase as the radial
distance increases. The radial gradient of temperature is now positive. Such a
positive gradient cannot be a consequence of heat flow from the inner portions
of the Sun. There is a different physical process at work in order to raise the
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temperature in the chromosphere: this process is mechanical work. The source
of the work can be identified with the thermodynamic term PdV, which occurs
when a suitable pressure P compresses the volume V of 1 gm of gas. Where
can we find suitable pressures to perform such work in the solar atmosphere?
In sound waves: we have already seen that the Sun supports multiple p-modes,
each of which is a sound wave. Sound waves are longitudinal modes in which
pressure compresses and rarefies the local gas as the wave propagates past any
point.

Thus, sound waves can do mechanical work on the gas in the Sun. How-
ever, the fact that the chromosphere extends above the photosphere by lin-
ear distances of a few thousand kilometers indicates that the waves which
are responsible for chromospheric heating are not identical to the trapped
p-modes: the latter are trapped below the photosphere, whereas now we need
to have waves which are propagating above the photosphere. As we have seen
(Equation 13.15), waves which are capable of freely propagating above the
photosphere must have periods shorter than 195–200 sec, i.e., frequencies
higher than 5 mHz.

The increase in chromospheric temperature is found to occur in both the
cell and the network. However, material in the network increases in tempera-
ture faster than material in the cell (see Figure 15.6: curve E vs. curve A). Over
the same range of heights, the average network gas is hotter than the average
cell gas by an extra few hundred degrees. This suggests that the supply of me-
chanical energy is greater in the network than in the cell. Although the excess
temperature in the network seems relatively small (about 20% ), we shall see
that it actually requires a large difference in mechanical energy deposition.

15.10 Modeling the Chromosphere: The Input
Energy Flux

The aim of any attempt to model the chromosphere is to calculate how
the temperature varies as a function of height. Specifically, how fast does
the temperature increase above the boundary value that is predicted by the
photospheric model? Does it increase by (say) 1000 K over a height interval
of 10 km? or 100 km? or 1000 km?

In order to calculate the temperature rise, let us consider how sound waves
could provide mechanical energy to the gas. Let us start in the photosphere
with a flux of mechanical energy in sound waves, and calculate what happens
as the waves propagate upward. A sound wave can be characterized by an
amplitude in velocity δV . In a medium of density ρ, the energy density of the
wave is 0.5 ρ δV 2 ergs cm−3. The waves propagate at the speed of sound cs.
As a result, the acoustic energy flux is given by

F (ac) = 0.5 ρ δV 2cs (15.1)
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In the photosphere of the sun, our solar model informs us that ρ ≈ 3×10−7

gm cm−3. We also know that the local (adiabatic) speed of sound cs is given
by the formula

√
(1.67RgT/µ), where µ is the mean molecular weight. In

the photosphere, the numerical value of cs is ≈10 km sec−1. This leads to
F (ac) ≈ 0.15 δ V 2.

What are we to use for δV , the amplitude of the sound waves in the pho-
tosphere? We have seen (Chapter 3, Section 3.8) that line profiles in the solar
spectrum have excess widths over and above what the lines would have in the
presence of purely thermal motions. The excess widths, of order 1–2 km sec−1,
and ascribed to “microturbulence,” in all likelihood include contributions from
sound waves in the photosphere. The observed amplitude of the turbulence
may therefore be regarded as an upper limit on the amplitude of sound waves
in the photosphere.

Of the observed microturbulence of 1–2 km sec−1, let us suppose that
sound waves contribute no more than 50%: i.e., we assume that the amplitude
of sound waves in the photosphere is no more than δV (photo) ≈ 1 km sec−1.
This sets a limit on F (ac) of ≤1.5 × 109 ergs cm−2 sec−1. Compared to the
energy flux passing through the photosphere in the form of radiation (F� =
6.3155×1010 ergs cm−2 sec−1: see Chapter 1, Section 1.8), we see that F (ac) in
the photosphere is less than 2% of the overall flux of energy coming up through
the solar atmosphere. We are certainly not discussing a major channel for the
transport of energy through the photosphere: radiation is still far and away
the dominant channel for energy transport in the visible layers of the Sun.

Any acoustic energy which is present in the photosphere, and which con-
tributes to microturbulent line broadening, certainly includes some p-modes
with periods in excess of (about) 200 sec. However, such long-period waves
cannot propagate up into the chromosphere. The only segment of the acoustic
flux which is of interest as far as the heating of the chromosphere is concerned
is the segment where the waves have periods which are short enough to allow
vertical propagation. This segment contains only those waves with periods
which are shorter than 200 sec. In order to estimate the flux of sound waves
which can actually reach the chromosphere (thereby contributing to heating),
we need to reduce the above upper limit on F (ac).

What fraction of F (ac) reaches the chromosphere? The answer depends
on the spectrum of the acoustic power which is generated by the convective
motions. Most of F (ac) is expected to be generated at periods correspond-
ing to granule turnover times, or lifetimes (see Chapter 14, Section 14.8.2),
i.e., at periods of 300–600 sec (Chapter 6, Section 6.2). Waves with peri-
ods of less than 200 sec are expected to contribute only a small fraction to
the overall spectrum. According to one estimate (Musielak et al., 1994), the
acoustic energy flux which reaches the chromosphere F (chr) is no more than
5 ×107 ergs cm−2sec−1. That is, only 3–4% of F (ac) is in the form of waves
which are free to propagate vertically in the solar atmosphere: as expected,
the great majority of F (ac) created by granules which live 300–600 sec is in
the form of waves with periods that are longer than 200 sec. Musielak et al.
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(1994) find that their estimate of F (chr) is quite sensitive to various assump-
tions about the properties of turbulence. It is entirely possible that F (chr)
could be in error by a factor of two or more.

In view of the uncertainties, a conservative range of estimates of the flux
of acoustic energy that is available as the input for chromospheric heating in
the Sun may be

F (chr) = 107−8 erg cm−2 sec−1 (15.2)

Since the two basic components of the chromosphere are observed to differ
in brightness, it seems plausible that the lower limit of the range of F (chr) in
Equation 15.2 might apply to one component (the cell), while the upper limit
in Equation 15.2 might apply to the other component (the network). We shall
return to this when we discuss the amount of heating.

15.11 Modeling the Chromosphere: Depositing
the Energy

What happens to the flux of acoustic energy F (chr) as it propagates up-
ward in the Sun’s atmosphere? At first, the amplitudes of the waves are small
enough that the waves simply “ride” through the gas, dissipating no energy. In
this regime, the energy flux of the waves remains constant. In the upper pho-
tosphere, where the temperature is almost constant with height (Chapter 2,
Section 2.10), cs is also almost constant with height. As a result, the constancy
of F (chr) ∼ ρδV 2cs requires that the wave amplitude δV varies as 1/

√
ρ.

Now, in an atmosphere which is essentially isothermal, ρ falls off expo-
nentially with height: ρ(h) ∼ exp(−h/Hp) (Equation 5.4). As a result, δV
increases exponentially with increasing height according to δV (h) ∼ exp(+h/
2Hp). As we have already seen (Section 5.1), in the solar photosphere Hp =
115–140 km.

We have seen that the amplitude of sound waves in the photosphere layers
δV (photo) is perhaps 1 km sec−1. Compared to the local sound speed, the
sound wave amplitudes in the photosphere are ≈0.1cs. Applying the exponen-
tial growth formula, we see that when the waves reaches a height hs where
exp(hs/2Hp) ≈ 10, then the amplitude of the sound waves will have grown
to a value δV (hs) which approaches cs. This occurs at a height hs ≈ 4.6Hp

above the photosphere, i.e., hs ≈ 530–640 km above the photosphere.
What happens to an acoustic wave when its amplitude becomes compara-

ble to the local sound speed? To see what happens, we note that a sound wave
consists of a crest and a trough: the wave is moving forward as a whole at
speed cs. However, the meaning of the term “amplitude of the wave” means
that the matter in the crest is moving with a speed of δV relative to the wave.
That is, the matter in the crest of the wave is moving relative to a stationary
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observer at a speed δV + cs, while the material in the trough of the wave is
moving relative to a stationary observer at speed −δV + cs. When δV ap-
proaches cs, the material in the crest overtakes the material in the trough.
Then the wave profile becomes so steep that a vertical step in pressure devel-
ops: in this condition, the sound wave has become a shock front. This behavior
is reminiscent of water waves approaching a beach: when the wave becomes
vertical, the wave can no longer continue to be a sinusoidal motion. At that
point, the wave “breaks,” and deposits its energy in the form of a churning
white-cap. Analogously, when an acoustic wave evolves to the condition of
a shock front, the pressure jump across the wave “breaks,” leading to local
churning and compression of the gas. As a result, the PdV work appears in
the form of localized heat.

This leads us to an important conclusion about a certain region in the solar
atmosphere, particularly the region hs ≈ 530–640 km above the photosphere.
At such heights, we expect that sound waves from the photosphere will begin
to “break” and, as a result, acoustic energy will begin to be deposited effec-
tively in the solar atmosphere. In this regard, it is important to note from
Figure 15.6, that this height range is precisely where the empirical models
of the chromosphere indicate that the temperature reaches a minimum, and
starts to increase upward. In view of what we have said about acoustic waves
undergoing steepening, and forming shock waves, it is natural to attribute
the empirical increase in temperature at heights of 500 km or more above the
solar photosphere to the onset of shock heating.

In contrast to the Eddington model, where T was predicted to fall off
slowly as height increases, now the dissipation of acoustic power indicates
that the temperature should start to increase above a certain height, hs. The
temperature in the solar atmosphere reaches a minimum value, T (min), in the
vicinity of height hs.

The region of the “temperature minimum” may be thought of as a bound-
ary between the upper photosphere (below) and the low chromosphere (above).

Although we expect that shock heating will set in at heights of order hs,
we do not expect the acoustic energy to be deposited in its entirety at a single
location. For one thing, the local heating increases the scale height, and this
helps to postpone further steepening of the wave to greater heights. Instead
of instantaneous local dissipation, the process is spread out in the vertical
direction such that the acoustic flux falls off roughly as exp(−h/λd), where
λd is a dissipation length scale. Since dissipation is associated with steepening
of the waves, and the steepening is associated with the falling-off in density
(which occurs on an e-folding scale of Hp), we expect that λd might be of
order a few times Hp. For purposes of rough estimation, we use λd ≈ 300 km.

This result allows us now to estimate the rate E(chr) at which acoustic
energy is deposited into each cubic cm of the atmosphere: E(chr) ≈ F (chr)/λd.
Inserting the values given above, we find that acoustic energy is deposited in
the chromosphere at a rate which is, at least as to order of magnitude

E(chr) ≈ 0.3 − 3 ergs cm−3 sec−1 (15.3)
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15.12 Modeling the Equilibrium Chromosphere:
Radiating the Energy Away

When mechanical energy is “dumped” into a cubic cm of gas, the gas
attempts to get rid of the energy by whatever means are available. One of
the most efficient means available to gas at the temperature minimum is to
increase the local temperature by a finite amount, and then use the increased
efficiency of radiative ability at the higher temperature to radiate the energy
away. If the gas is successful in finding a way to radiate energy at a rate of 0.3–
3 ergs cm−3 sec−1, then an equilibrium can be reached: the local temperature
can achieve a more or less steady state.

Let us turn to a calculation of the excess temperature which would allow
the solar atmosphere to reach such an equilibrium.

15.12.1 Radiative cooling time-scale

We first estimate how long it takes for gas to cool by means of radiation.
Suppose a parcel of gas is heated (for whatever reason) to a temperature T
which is hotter than its surroundings: the latter are at temperature To. How
long would it take for the heated parcel to radiate away its excess heat energy?
The gas (with density ρ) in a volume element dV has excess internal energy
E(exc) = Cvρ(T − To)dV ergs, where Cv is the specific heat.

How quickly can this excess energy be radiated from this volume element?
It depends on what form of radiation is available to the gas. Suppose the ra-
diation is predominantly in the continuum. Let the surface area of the volume
element be dA. If the element is optically thick, then the energy will be radi-
ated from the surface dA at a rate given by that of a black body: the emergent
intensity is such that the rate at which energy is radiated out of each sq cm
into a background medium with temperature To (integrated over 4π solid an-
gle) is given by the difference in source functions: Sbb(T ) = 4πσB(T 4 −T 4

o )/π
(see Chapter 2, Equation 2.37). In this limit, the rate at which the excess
energy in the volume element is radiated away in the continuum (dE/dt)rad
would simply by Sbb(T)dA, i.e., 4σB(T 4 − T 4

o )dA ergs sec−1.
However, as we move upward in the solar atmosphere, and encounter gas

with smaller and smaller densities, the volume element will not always be
optically thick. Instead, the line of sight through the element may have a
small optical depth τ(< 1). This has the effect that the emergent intensity is
reduced by the factor τ (Chapter 2, Equation 2.18): S = τSbb(T ). This leads to

(
dE
dt

)
rad

= 4σBτ(dA)(T 4 − T 4
o ) (15.4)

At this rate of energy loss, how long will it take for radiation to cause
the parcel to cool down to T = To? This “cooling time” t(cool) is given by
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E(exc)/(dE/dt)rad. This leads to

t(cool) =
E(exc)

(dE/dt)rad
=

Cvρ(T − To)
4σB(T 4 − T 4

o )
1
τ

dV
dA

(15.5)

The cooling time depends on the local conditions and also on the optical
depth of the parcel. In general, the ratio of the volume of the element dV
to its surface area dA is associated with the linear scale ds of the element:
dV/dA=ds. However, according to the definition of optical depth, we can also
write the optical depth of the element in terms of the linear scale: τ = κρ ds.
Substituting this in Equation 15.5, we obtain

tcool =
Cv(T − To)

4σBκ(T 4 − T 4
o )

(15.6)

This expression is valid for the regions in the solar atmosphere where
continuum radiation is efficient. In higher layers, where emission lines become
more efficient radiators, we do not expect to find Equation 15.6 as useful.

15.12.2 Magnitude of the temperature increase:
the low chromosphere

Now that we know how rapidly energy can be radiated away from a volume
element near the temperature minimum, we can estimate the local increase in
temperature ∆T = T −To which occurs as a result of deposition of mechanical
energy at a rate E(chr).

An increase in the local temperature by an amount ∆T causes the local
thermal energy density to increase by ∆E = Cvρ∆T ergs cm−3. This excess
energy can be radiated away at a rate that is determined by the cooling time-
scale t(cool): (

dE
dt

)
rad

≈ ∆E

tcool
= 4σBκρ(T 4 − T 4

o ) (15.7)

The units of the right- and left-hand sides of Equation 15.7 are ergs
cm−3 sec−1. Equilibrium is possible if the rate at which energy is being deposited
into a unit volume E(chr) (see Equation 15.3) is equal to the rate at which
energy is radiated out of that unit volume (dE/dt)rad. This leads to

4σBκρ(T 4 − T 4
o ) = 0.3–3 (15.8)

Inserting the value of the Stefan–Boltzmann constant σB , we find that the
gas in the solar atmosphere can reach equilibrium if

κ(T 4 − T 4
o ) ≈ (1 − 10) ×103/ρ (15.9)

Can we find a solution to this equation? In order to answer this, we need
to know how the opacity κ depends on temperature and density in the upper
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parts of the solar photosphere. We have already seen (Chapter 3, Section 3.7)
that κ can be fitted in certain regimes of temperature with power laws in
density and temperature. In the present case, we are interested in gas where
the temperature lies below 104 K. In that case, as we found in Chapter 3,
Section 3.7, κ ≈ 10−32ρ0.3 T 9. The steep dependence on temperature is note-
worthy: it arises mainly because an increase in temperature (in this temper-
ature range) leads to rapid increases in the populations of the upper levels of
hydrogen atoms. Inserting this in Equation 15.9, we find

T 9(T 4 − T 4
o ) ≈ (1 − 10) ×1035/ρ1.3 (15.10)

Solutions of this equation, for a given density ρ, indicate the temperature
to which gas in the solar atmosphere of density ρ would be heated if (i)
energy were deposited in that gas at a rate given by Equation 15.3, and if (ii)
continuum opacity determines the radiative losses.

What value of density should we use in Equation 15.10? The answer
depends on where exactly in the solar atmosphere the mechanical energy is
being deposited. Densities in the solar atmosphere vary over a wide range. In
the photosphere, our solar model suggests ρ ≈ 3×10−7 gm cm−3. Densities at
the temperature minimum, i.e., some 4.6 scale heights above the photosphere,
are lower than the photospheric densities by factors of e−4.6 = 0.01. Thus, lo-
cal densities in the low chromosphere start at about 3×10−9 gm cm−3. In the
upper chromosphere, at heights of 2000 km, i.e., at least 14Hp above the pho-
tosphere, the densities are smaller than photospheric values by e−14 ≈ 10−6.
As a result, when we consider conditions in the solar chromosphere, we are
interested in the solutions of Equation 15.10 over a range of densities from
(roughly) 3 × 10−9 gm cm−3 to 3 × 10−13 gm cm−3. (For future reference,
we note that the latter mass density corresponds to a number density in the
upper chromosphere of order 2×1011 protons cm−3). Using the condition of hy-
drostatic equilibrium, i.e., ρ(h) = ρo exp(−h/Hp), we can associate (roughly)
each value of density with a corresponding height above the photosphere. (We
use Hp = 140 km and ρo = 3 ×10−7 gm cm−3).

Let us assume that the background atmosphere (before acoustic waves are
present) has To = T (min) ≈ 4000 K (see Figure 15.6). Using this, we can ob-
tain solutions to Equation 15.10 for any choice of density throughout the above
range. For clarity, we consider two distinct components of the chromosphere:
in one, the deposition of acoustic flux occurs at a low rate (we use the num-
ber 1 in brackets on the right-hand side of Equation 15.10), while in the other,
the acoustic flux is deposited at a ten times higher rate (10 in brackets on the
right-hand in Equation 15.10). The corresponding solutions to Equation 15.10
are presented in Figure 15.7. We see that, over a range of heights from about
500 km to about 1000 km, the temperature is predicted to rise steeply to a
value that is at least 2000 K above the temperature minimum. Thus, acoustic
dissipation, in combination with continuum radiative losses appears to account
quite well for the initial rise in temperature in the low chromosphere.
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The high-flux solution agrees best with empirical curve E, the bright net-
work element. The low-flux solution lies closer to empirical curve A, the dark
point in the supergranular cell. At heights in the low chromosphere, the high-
flux solution gives rise to temperatures which, at any particular height, are
hotter than on the low-flux solution by several hundred degrees. Thus, even
though the empirical curves appear to be separated in temperature by a rel-
atively small amount (a few hundred degrees), that temperature difference
corresponds to input rates of mechanical energy which differ by a factor of ten.

Why are the rates of mechanical energy deposition in the bright network
elements ten times larger than in the dark point in the cell? One obvious
difference between such locations is the magnetic field strength: supergranule
flows cause magnetic fields to be strong in the network, but weak in the cell.
The strong fields in the network provide channels for spicules to exist. As a
result, it seems likely that magnetic effects have something to do with ten
times enhanced mechanical energy deposition rates in the network.

15.12.3 Magnitude of the temperature increase:
the middle chromosphere

The results in Figure 15.7 show clearly that although we have been success-
ful in fitting the temperatures in the low chromosphere, using Equation 15.10,
the fit definitely breaks down in the middle chromosphere. The reason for the
break-down is related to the choice of source function that was used for the
radiative losses in the low chromosphere: we chose the black-body relation
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FIGURE 15.7: Fits to chromospheric temperature increases using low and
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Sbb ∼ T 4, which is valid only as long as the continuum photons and the gas
are tightly coupled in local thermodynamic equilibrium (LTE).

However, as we rise to greater altitudes above the solar photosphere, and
the density falls off exponentially, the coupling between continuum photons
and gas diminishes. The gas becomes less and less efficient as a continuum
radiator.

At the same time, bound levels in the dominant atoms and ions are being
increasingly well populated by the rising temperatures. Emission lines from
certain bound levels become effective coolants of the gas in the middle chro-
mosphere. Among these lines, the H and K lines of Ca II, as well as the H
and K lines of Mg II are particularly effective in the lower regions of the mid-
dle chromosphere (Vernazza et al., 1981: see their Figure 49). In the upper
regions of the middle chromosphere, as the temperature reaches values close
to 7000 K, hydrogen lines become the predominant channels of radiative cool-
ing. The radiative cooling rates in these various lines have temperature and
density dependences which depart significantly from black-body curves.

In order to understand the plateau in temperature in the middle chro-
mosphere, it is important to recall that the flux of acoustic power which is
responsible for chromospheric heating originates in the convective turbulence
below the photosphere. As a result, the acoustic flux F (ac) is maximum near
the photosphere, and it diminishes with increasing height. Moreover, the me-
chanical energy which is deposited in the middle chromosphere does not go
simply into increasing the local temperature. Instead, the energy is diverted
in increasingly large amounts to internal degrees of freedom: population of
bound levels, and (ultimately) the ionization of hydrogen (and helium). In
Chapter 4 (Section 4.3), we saw that at temperatures of about 7000 K in the
chromosphere, H approaches 50% ionization. In the upper part of the middle
chromosphere, hydrogen ionization rises above the 50% level.

The combination of reduced rates of input of mechanical energy, the onset
of strong radiative cooling which occurs predominantly in emission lines, and
the siphoning off of energy into bound levels and ionization, leads to a plateau
in the temperature. The bound levels of hydrogen act, in effect, as a kind of
thermostat for the middle chromosphere.

From the plateau in the middle chromosphere, where hydrogen is roughly
50% ionized, strong emission of the Balmer lines occurs. The first member of
the Balmer series, Hα (at a wavelength of 6563 Å), is the strongest emitter
from the chromosphere in the visible spectrum. The red color of this strong
line accounts for the “rose-colored hue” that is a common feature of the flash
spectrum during an eclipse of the Sun (see Figure 15.1).

15.12.4 Magnitude of the temperature increase:
the upper chromosphere

In the upper chromosphere, where the temperature increases above 7000 K,
rapidly approaching 104 K and higher, hydrogen approaches complete
ionization. No longer are there internal degrees of freedom (bound levels,

T&F Cat # C3074, Chapter 15, Page 239, 17-7-2009



240 Physics of the Sun: A First Course

ionization) available to absorb mechanical energy. No longer are there strong
continua or lines available to radiate away the mechanical energy. Equilibrium
is not possible: there is a “runaway” of the temperature to high values.

With only thermal energy available, and with the low density of the gas
(approaching 10−13 gm cm−3), the deposition of energy even at a rate E(chr)
that is much lower than in Equation 15.3, leads to rapid local heating. To
see this, note that the thermal energy density e, which is comparable to
the local pressure, RgρT/µ, obeys the equation de/dt = E(chr) when there
are no longer any effective channels to carry away the energy. Thus, even
if the deposition rate is as low as (say) 0.1% of the lowest value in Equa-
tion 15.3, the rate of temperature increase in gas of density 10−13 gm cm−3

is dT/dt = 0.001µE(chr)/Rgρ. With µ = 0.5 in ionized hydrogen, and Rg =
8.31 ×107 ergs gm−1 deg−1, we find dT/dt ≈ 20 K sec−1. Within a matter of
minutes, the local temperature increases by several thousand K.

This can help us to understand why the temperature rises steeply in the
upper chromosphere (see Figure 15.6).

For future reference, we note that at the top of the chromosphere, where
T ≈ 104 K, and number densities are of order 2 × 1011 cm−3, the gas pres-
sures (p = 2NekT) are of order 0.6 dyn cm−2. When we discuss the corona
(Chapter 17), it will be valuable to compare this pressure near the top of the
chromosphere with the pressure near the base of the corona.

Exercise

15.1 The estimates of chromospheric heating given in Equation 15.10 are ob-
tained by picking a particular fitting formula for the opacity in Equation
15.9, κ ≈ 10−32ρ0.3T 9. Other choices of fits to the opacities are possible,
using a different coefficient and different exponents. Choose values of
5, 7, and 11 for the temperature exponent, and values of 0 and 0.5 for
the density exponent. For each pair of exponents, recalculate the fitting
formula such that, in all cases, log κ = 4 when log ρ = 0 and log T = 4,
and then recalculate the curves labelled Flux=Hi and Flux=Lo in
Figure 15.7.
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Chapter 16

Magnetic Fields in the Sun

Up to this point, we have been considering the Sun in terms of material which
can be described reliably by the laws of “ordinary” gas dynamics and radiative
transfer. This has been sufficient to allow us to describe in some detail the
overall structure of the Sun, including radial profiles of pressure, temperature
and density from the center all the way to the surface. But the very concept
of a radial profile incorporates the assumption that the profile is the same in
all directions, i.e., the material is spherically symmetric. This is certainly an
adequate assumption deep in the interior of the Sun.

However, as we approach the surface, certain features become apparent in
the Sun where departures from spherical symmetry are more or less severe.
One such effect is introduced by rotation: the Sun departs from a spherical
shape by having a slightly oblate figure. But the effect is so small that the un-
aided eye cannot see the effect. In fact, reliable measurements of the oblateness
are quite difficult to make (Chapter 1, Section 1.9).

16.1 Sunspots

The most dramatic departures from spherical symmetry on the Sun’s sur-
face are sunspots (see Figure 16.1). These are darker areas of the surface
which are sometimes large enough to be seen by the unaided eye. Occasional
reports of naked-eye sunspots by Chinese observers are on record for the past
two millennia. To be sure, the advent of telescopes has greatly increased the
observability of sunspots. But even during the time period 1600–1650, when
telescopes first became available, there are records of as many as 33 naked-eye
sunspots, including one by Galileo himself (Vaquero, 2004).

Sunspots spanning a wide range of sizes appear from time to time, in an
unpredictable way, as dark spots somewhere on the surface of the Sun, usually
as a pair of spots, or in groups. As solar rotation carries a pair of spots across
the disk of the Sun, one spot is in the lead, and the other follows. This gives
rise to the notation “leader” spot and “follower” spot. Thus, when a pair of
spots first rotates onto the disk, appearing at the East limb, we see first the
leader. And when the pair eventually (about two weeks later) reaches the West
limb, it is the leader spot which disappears from view first.

243
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FIGURE 16.1: Sunspots on the Sun in 1947, including the largest sunspot
ever photographed. Some of the small groups consist of only two spots, the
“leading” (on the right) and “following” (on the left) components. The largest
group contains many spots, although there is one dominant “leading” spot
and one dominant “following” spot. The pointed lines at top and bottom
denote the rotational North and South poles of the Sun. (Image is accessible
to the public on the NASA website http://sunearthday.gsfc.nasa.gov/2006/
multimedia/gal 015.php.)

In most spot pairs, the line between the centers of the leader spot and
the follower spot is aligned almost East–West, although there is a slight (but
definite) tilt away from the exact East–West direction. The sense of the tilt is
clearly defined: the leader is situated at slightly lower latitudes (i.e., closer to
the equator), while the follower is situated at slightly higher latitudes. That
is, in the Northern (Southern) hemisphere, the follower is situated closer to
the North (South) pole. The existence of this slight but definite tilt has a role
to play in our understanding of the solar cycle (see Section 16.9).

A large spot (either leader or follower) consists of a darker central core (the
“umbra”=“shadow” in Latin) surrounded by a “penumbra,” which is interme-
diate in brightness between the umbra and the photosphere (see Figure 16.2).

16.1.1 Spot temperatures

How dark is the umbra relative to the photosphere? The answer depends on
the wavelength: the shorter the wavelength, the darker is the intensity of the
umbra Iλ(∗, µ) compared to the intensity of the undisturbed photosphere at
the same distance from the disk center Iλ(µ). At wavelengths of 4000 Å, large
spots may have Iλ(∗, µ) values which are 10 to 20 times smaller than Iλ(µ)
(Bray and Loughhead, 1979; their Table 4.1). The contrast between umbra and
photosphere becomes less pronounced as we observe at longer and longer wave-
lengths: around 1 micron, the spot intensity is almost half as bright as the pho-
tosphere. Model atmospheric fits to umbral radiation allow one to obtain the
profile of temperature versus optical depth in the umbra. Expressing tempera-
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FIGURE 16.2: A sunspot, showing the dark umbra (center) plus striated
penumbra, surrounded by undisturbed photosphere (containing granules).
(From Dr. M. Mathioudakis, Queen’s University Belfast, and the Swedish
Solar telescope. With permission.)

tures in terms of the variable which appears in the Saha equation (Chapter 4,
Section 4.2), θ = 5040/T , the difference between θ(∗, τ) inside the spot at op-
tical depth τ and θ(τ) in the undisturbed photosphere at the same τ , can be as
large as ∆θ ≈ 0.3–0.4 at τ ≈ 1. Since the local temperature in the photosphere
at τ ≈ 1 is close to 6000 K, i.e., θ(1) ≈ 0.84, this leads to θ(∗, 1) ≈ 1.14–1.24.
Thus, the temperature in the spot at τ ≈ 1 is 4100–4400 K. That is, the gas in
the “photosphere” of the spot (i.e., around τ ≈ 1) is some 1600–1900 K cooler
than the gas at equal optical depth in the photosphere. Estimates of the effec-
tive temperature of a spot are 4100–4200 K, i.e., almost 2000 K cooler than
the photosphere. The fractional deficit in effective temperature in the umbra
is about 30% compared to the undisturbed photosphere. Thus, the bolometric
flux (∼T 4

eff) from the umbra is only about 25% of the photospheric flux. The
blocking of some 75% of the photospheric energy flux indicates that there ex-
ists a severe perturbation of energy flow in the subsurface layers of the umbra.
We shall see that magnetic fields hold the key to understanding this process.

16.1.2 Spot areas

How large are sunspots? The smallest ones, consisting of umbra only (with
no penumbra), are called “pores,” and have angular diameters of 2–5 arc sec.
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The smallest pores are comparable in size to the sizes of individual granules.
(We shall see in Section 16.7.2 that this is not a coincidence.) The largest
pores have diameters of no more than 10 arc sec: once a pore grows to a
diameter of 10′′ or more, a penumbra appears, and the feature becomes a
bona fide sunspot. Large spots have areas which are often cited in units of
“millionths of the visible hemisphere area.” The largest spot ever recorded
(Figure 16.1) had an area of A ≈ 6300 millionths, i.e., it occupied about 0.6%
of the visible surface. More commonly, the spots have areas of up to a few
hundred millionths of the disk area: 95% of spots have A ≤ 500 millionths
(Bray and Loughhead, 1979; p. 229, their Table 6.1). Although spots are
indeed striking phenomena when seen against the background of the solar
surface, these numerical values of areal coverage remind us that an individual
sunspot is truly a small-scale object in comparison with the Sun as a whole.

16.1.3 Spot numbers: the 11-year cycle

The number of spots on the surface of the Sun varies with time. The
numbers increase and decrease in a nearly cyclical manner: sometimes there
are many spots on the surface, while at other times, there are few (or even
no) spots visible (see Figure 16.3).

In order to quantify this variability, observers have devised certain rules
to count the number of spots on the Sun: the commonest system is referred
to as the Zurich Sunspot Number, RZ , which counts both single spots and
groups of spots. When RZ is small (or zero) for a period of time (a month or
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FIGURE 16.3: Number of sunspots, averaged over one year, plotted as a
function of time over a span of three centuries. (The data were obtained from
the Solar Influences Data Center at http://www.sidc.be/sunspot-data/)
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more), the Sun is said to be in a stage of “minimum activity.” When there are
a great numbers of spots, and RZ rises to values of 100–200 or more, the Sun
is said to be at “maximum activity.” These phases are also known as “solar
minimum” and “solar maximum,” respectively.

The interval of time between one “solar minimum” and the next is not
constant: the interval can be as short as nine years, and as long as 12 years.
The average length of the sunspot cycle (based purely on the sunspot counts)
is about 11 years. In Figure 16.3, we see that recent “solar maxima” oc-
curred around the years 1980 and 1990. The most recent “solar maximum”
was observed in 2000–2001.

Something unexpected happens to the power output from the Sun in the
course of the sunspot cycle (see Chapter 1, Figure 1.1). You might expect that
when sunspots are most abundant, the Sun would emit less power. But this
is not what is observed. Instead, the solar power output is observed to have
maximum values in or around the years 1980, 1990, and 2000, when there
are most sunspots on the surface. This surprising discovery emerged from
spacecraft data during the last decades of the twentieth century: it was only
in those decades that the precision of measurements of the total (bolometric)
luminosity of the Sun, integrated over all wavelengths, became at least as
good as 0.1%. (In previous years, observations from the ground were plagued
by uncertainties arising from Earth’s atmosphere, which blocks some 2% of the
luminosity.) When such precision became available in instruments which also
remained stable enough over an entire 11-year cycle, the data indicated that
the solar luminosity has a maximum value when the number of spots is largest.
The excess power output at solar maximum compared to solar minimum is of
order 0.1% (see Chapter 1, Figure 1.1).

This is counterintuitive: when there are lots of spots, each dark umbra
emits less power than the undisturbed photosphere, and therefore, one would
expect the solar output to be a minimum. We shall return to this “problem”
in Section 16.1.5.

16.1.4 Spot lifetimes

How long do spots live? Small spots may come and go in a matter of hours.
Larger spots require days or weeks to reach maximum size, and days or weeks
to decay. Typically, the lifetime is (roughly) proportional to the maximum
area of the spot (A millionths): T (days) ≈ 0.1A (Bray and Loughhead, 1979;
p. 229). Most spots decay by breaking up into smaller units, and these are
then eroded over time by the “pounding” of the convective turbulence around
the periphery.

16.1.5 Energy deficits and excesses

Sunspots are localized regions where the process of transporting the solar
energy flux upward from the deep interior is subject to a severe deficit. As
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FIGURE 16.4: Faculae in a white-light image of sunspots near the limb
of the Sun. Faculae, located in the vicinity of sunspots, appear slightly
brighter than the undisturbed photosphere. (Photo by Damian Peach. With
permission.)

long as the sunspot is present, upward heat transport is blocked in that
location. The missing heat is trapped in the convection zone: as a result,
the overall energy output from the Sun decreases as long as a large spot is
present on the surface. Once the spot decays, the normal outflux of the Sun
is restored.

However, sunspots are not the only contributors to perturbations in the
solar energy output. Careful photometry of the photosphere in the vicinity
of sunspots reveals the presence of multiple small features which are slightly
brighter (by at most a few percent) than the undisturbed photosphere when
viewed in white light. These bright point-like features (called “faculae”) are
much less obvious to the human eye than sunspots. In fact, even with tele-
scopes, faculae are almost impossible to pick out near the center of the solar
disk: the easiest place to observe them is in the vicinity of sunspots as the
latter approach the limb (see Figure 16.4).

The excess of facular flux above the photospheric value helps to offset
some of the flux deficit of a large sunspot in the vicinity. In the case of smaller
spots, it is possible that facular emission actually overcompensates for the spot
deficit. This might explain why solar power output is slightly larger (by 0.1%)
at epochs where spots are most numerous on the solar surface.

16.2 Chromospheric Emission

Another departure from spherical symmetry in the solar atmosphere, which
we came across in the preceding chapter, appears when we observe the
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FIGURE 16.5: (See color insert following page 202.) The chromo-
sphere: departures from spherical symmetry may include sunspots, plage, fila-
ments, or prominences. (Copyright Peter Ward/Advanced Telescope Supplies.
Used with permission.)

chromosphere. When the Sun is viewed in the light of a chromospheric line
(such as the CaII K line, or Hα), the Sun is not spherically symmetric. Quan-
titatively, as we have seen, the differences in brightness between network and
cell centers indicate that mechanical energy is being deposited in the network
at a rate which exceeds the rate in the cell centers by a significant factor,
possibly by as much as an order of magnitude.

Also when we observe the chromosphere, we find that there are features
which have a close connection with sunspots in the photosphere (see
Figure 16.5). In the chromosphere, the locations of sunspots (as determined
from photospheric images) are found to be surrounded by regions of enhanced
emission (“plages”: see Chapter 15, Figure 15.3). Thus, sunspots are in fact
only one component of a more extended physical structure, a “plage,” in which
chromospheric emission is enhanced. The (white-light) faculae are colocated
with plage. The overall feature, including sunspots, plages, and faculae, is
called an “active region.”

Active regions do not appear randomly at all locations of the solar surface:
from centuries of observation, it has been found that there are more favored
areas (near the equator, at latitudes of no more than ±35 degrees), and there
are less favored (or even forbidden) areas (near the poles, at latitudes in excess
of ±35 degrees).
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Also present in chromospheric lines are features called “prominences.”
These are structures which were first observed in emission standing above
the limb of the Sun: they consist of material which appears to be suspended
“in mid-air” (see Figure 16.5).

Prominences can also be viewed on the disk of the Sun when the latter
is observed in Hα: in such cases, they appear as dark more-or-less ribbon-
shaped features (“filaments”: see Figure 16.5) located preferentially at posi-
tions where the surface magnetic fields change polarity. The filaments can be
“quiescent,” i.e., stationary for hours or days, but they can also, at the end
of their lifetime, reveal rapid evolution as the prominence material “erupts”
rapidly, either because of heating or expulsion of the material into the upper
atmosphere.

16.3 Magnetic Fields: The Source of Solar Activity

Why does the Sun depart from spherical symmetry? The answer is well-
established: it is due to the presence of magnetic fields. These fields give rise
to a variety of observational phenomena. The umbrella term “magnetic ac-
tivity” is used to cover the magnetically driven phenomena which are such a
striking characteristic of the Sun at times. Under the term “magnetic activ-
ity,” we include the presence of sunspots, faculae, the chromospheric network,
and prominences, all of which are more-or-less long-lived phenomena which
can be regarded as quasi-stationary in nature. On the other hand, “magnetic
activity” also includes phenomena which are by no means stationary, such as
flares and coronal mass ejections (CMEs). Both of the latter involve highly
time-dependent processes which disturb the solar atmosphere in striking ways,
giving rise (at times) to “fireworks displays” which involve the most energetic
phenomena in the solar system.

Our aim in this chapter is to describe, in terms of physical processes, how
magnetic effects give rise to a rich variety of phenomena in the Sun.

Before discussing the general properties of magnetic fields and their inter-
actions with plasma, and in order to keep the discussion rooted in the Sun, we
start with what the observations tell us about the magnetic fields themselves.
We need first to understand how astronomers measure the strength of the fields
in solar features of various kinds. Once we have a feel for the orders of magni-
tude of the field strengths in various features, then we will turn to the physics
to determine which processes are most relevant in the various phenomena.

To set the scale, we note that the strongest fields on the solar surface occur
in the umbrae of large sunspots: the maximum field strength (in Gauss) in a
sunspot with area A millionths (Section 16.1.2) is B ≈ 3700 A/(A+66) (Bray
and Loughhead, 1979; p. 207). That is, large spots have fields with strengths
of a few kilogauss.
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16.4 Measurements of Solar Magnetic Fields

There are several approaches to measuring solar fields. One involves remote
sensing using optical photons: we observe certain photons coming from a cer-
tain feature on the Sun, examine the spectral and polarimetric properties of
the photons, and infer the strength and direction of the field in the feature
under observation. A second approach uses remote sensing using radio pho-
tons: polarization data again contains information on strength and direction.
A third approach involves direct measurements of the field in situ in the
plasma which streams out of the Sun (the “solar wind”: see Chapter 18) into
interplanetary space, and then extrapolate back to infer the fields at the Sun.
Let us consider these approaches.

16.4.1 Remote sensing of solar magnetic fields:
optical data

To measure these fields, solar astronomers use a technique which seeks to
identify changes in the shape of a spectral line when a field is present.

16.4.1.1 Zeeman splitting

How is a spectral line altered in the presence of a magnetic field? To answer
this, let us recall what happens in the absence of the field. Each spectral line
involves the transition of an electron from one atomic energy level E1 to
another level E2. In the absence of external magnetic fields, the energy levels
are determined by atomic structure. Radiation from an atom is spherically
symmetric: there is no preferred direction in the problem. When the atom is
observed from any direction, what is observed is a single line with frequency
νo = (E2 − E1)/h, i.e., a single line with a wavelength λo = c/νo.

Now introduce an external magnetic field. Two aspects of the situation
change. First, the energies of the atomic levels are altered: this will cause the
lines to shift in wavelength. Second, the photons which emerge have proper-
ties which are no longer spherically symmetric: observers who are situated in
different viewing positions see different spectra.

To understand how magnetic processes affect atoms, we first refer to a basic
result of magnetostatics: what happens when one places a magnetic moment
in a field? Recall that when iron filings are sprinkled on paper near a bar
magnetic, a clear pattern is seen: each iron filing, which is a small magnet in
itself, with its own magnetic moment, aligns itself with the local magnetic field
lines. Now, every electron has an intrinsic “spin” (with angular momentum
�/2), and associated with this spin is a magnetic moment µB = e�/2mec.
In a magnetic field B, an electron can settle into one of two states: one,
with µB parallel to the external field, the second, with µB antiparallel to the
external field. In one of these states, the electron gains an energy + µBB,
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while in the other state, the electron energy is reduced by −µBB. Thus, an
electron which initially was in an atomic level with a particular energy E1
now finds that the level “splits” into two levels, with energies E1 + µBB and
E1 − µBB.

What will we observe if we detect the photons which emerge from the
above atom? The answer depends on the direction from which we make
the observation. Suppose we choose to make the observations parallel or an-
tiparallel to the external magnetic field: that is, we choose to “look straight
down the field.” Let us also suppose for simplicity that the energy level
E2 does not undergo any splitting in a magnetic field (atomic levels with
this property do exist). In that case, what we see is the following: the orig-
inal single line at a frequency νo, i.e., at wavelength λo = c/νo, is now
seen to consist of two lines (a “doublet”), at frequencies νo ± ∆ν, where
∆ν = µBB/h.

This conversion of a single line into a doublet as a result of a magnetic
field is called Zeeman splitting, after the discoverer (see Figure 16.6).

FIGURE 16.6: Zeeman splitting of spectral lines in a magnetic region on the
Sun. The vertical slit of the instrument is located as shown in the left-hand
image: the slit overlaps with the umbra of a sunspot. On the right-hand side, a
(vertical) spectral line which is single in the undisturbed Sun (at top and bot-
tom), become multiple when the slit overlaps the umbra, where magnetic fields
are strong. (Image downloaded from the website of High Altitude Observatory,
a division of the National Center for Atmospheric Research, funded by the
National Science Foundation.)
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The wavelengths of the two components of the doublet are λo + ∆λ and
λo − ∆λ, where ∆λ = λ2

o ∆ν/c. Inserting the value for µB , we find that
in the presence of a magnetic field, the wavelength shift is ∆λ = constBλ2

o

where the constant, equal to e/4πmec
2, has the numerical value of 4.9 ×

10−5 cm Gauss−1cm−2. For convenience, if we express wavelengths in units
of Å(= 10−8 cm), we find

∆λ = 4.9 ×10−13B(G)λ2
o (16.1)

Equation 16.1 is valid for the simplest case, when only the electron’s mag-
netic moment is responding to the external magnetic field. This is referred to
as the “normal” Zeeman effect.

The actual Zeeman effect in “real atoms” differs slightly from the above
formula because there are other sources of magnetic moments. For example,
when an electron orbit has a finite angular momentum, that orbit also has an
associated magnetic moment. The process by which an external field interacts
with an orbital magnetic moment is quantitatively different from the process
by which the external field interacts with the electron spin. As a result, the
above expression is only part of the story of the wavelength shift for any
given transition. Each “real” transition has a factor gL associated with it (the
so-called Lande g-factor), and the right-hand side of the above expression
must be multiplied by gL. For transitions of various kinds, the numerical
value of gL may be as small as zero, or may be as large as (roughly) three.
Moreover, depending on the atomic structure, rather than splitting into two
components, a line may split into multiple components, leading to what is
sometimes referred to as the “anomalous” Zeeman effect.

To give a numerical example, consider an atom which has a line in the
visible part of the spectrum, at (say) λo = 5000 Å. In a field of 3000 G (typ-
ical for a sunspot umbra), and assuming gL ≈ 1, we find that ∆λ ≈ 0.037 Å.
Therefore, in order to detect a clean splitting of the lines in a sunspot, ob-
servers are required to use instruments with a resolving power (defined by the
ratio of λo/∆λ) of more than 100,000. Achieving such a high resolving power
requires careful attention to instrumental design.

16.4.1.2 Zeeman polarization: the longitudinal case

The splitting of a single line into two (and only two) components occurs
when we make observations along the magnetic field. This is referred to as
“longitudinal Zeeman splitting.”

Observations show that the two lines of a doublet are not merely different
in their wavelength: they also differ in polarization: the two lines are circularly
polarized in opposite senses. To see why this is so, consider a spectral line in
which the upper level is not affected by the field (i.e., its Lande g-factor = 0),
but the lower level undergoes normal Zeeman splitting. In the lower level, the
angular momentum (spin) of the electron has a component along the field
of ±�/2, depending on whether the electron spin is in the “up” or “down”
position relative to the field.
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To understand how a passing photon interacts with an electron in the
split level, we note that the angular momentum (spin) of a circularly polar-
ized photon is ±�, depending on whether the photon has right- or left-hand
polarization. Consider an electron which is sitting in the “down” position,
with spin −�/2. If a photon with left-hand polarization (i.e., spin −�) passes
by that electron, the electron cannot interact with the photon, because if the
interaction occurred, then the electron would have to absorb the photon’s
spin, add it to its own, and enter a state with spin of −3�/2. Such a state
is not available to the electron: the only available states have spins of ±�/2.
As a result, the electron simply ignores the left-hand polarized photon, and
the photon passes through unperturbed. But now consider the case where the
passing photon is right-hand polarized, i.e., the photon has spin +�. Now,
the electron can interact with the photon, adding the photon’s spin +� to its
own (−�/2), and ending up with spin +�/2. Such a spin is allowed: the elec-
tron simply transitions to the “up” position. Thus, an electron in the “down”
position preferentially absorbs right-hand polarized photons out of the beam.
The remaining photons, i.e., the left-hand circularly polarized photons, pass
through and reach the observer: the observer therefore, sees left-hand circular
polarization as the dominant component of the absorption feature.

How do we know that circularly polarized photons interact with electrons
in this way? Because experimental confirmation is available in the laboratory.
Specifically, in a thin sheet of iron, the magnetization can be chosen so that
the elementary magnets in the iron all tend to be aligned in one particular
direction. Then if a circularly polarized photon passes through the sheet, the
photon will be scattered preferentially if its polarization has the correct sign
to flip an aligned magnet. Of course, such a test does not work with optical
photons: the iron sheet prevents them from passing through. But if one uses
high energy photons (gamma-rays), then these can pass through the iron,
and the aligned magnets can be flipped. In fact, this property of photon-
electron interactions played a role in establishing the existence of parity vi-
olation in weak interactions: a key experiment was performed by Goldhaber
et al. (1958).

Returning now to our Zeeman doublet, we recall that a “down” electron
has a specific energy shift, depending on the direction of the field. Let us
consider a case in which the field points toward the observer. Recall that the
magnetic moment of the electron is proportional to the electron spin, and
the proportionality factor depends on the (negative) charge of the electron.
As a result, when the electron spin is sitting in the “down” position, the
magnetic moment is sitting “up” relative to the field. Therefore, the electron
has an excess energy +µBB relative to the unperturbed state. This means
that the lower energy level is no longer the unperturbed value El, but a
larger value: El + µBB. The upper energy level is (by assumption) still at
the unperturbed value E2. As a result, the frequency of the transition is no
longer equal to (E2 −E1)/h, but takes on a lower value. A lower value for the
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FIGURE 16.7: When observations are made along the direction of the
field (vector B), Zeeman splitting leads to components which are circularly
polarized. When observations are made perpendicular to the field, the split
components are linearly polarized. (From PHYWE Systeme GmbH and Co,
Gottingen, Germany. With permission.)

frequency means a longer wavelength for the photon: therefore, we are dis-
cussing the redward shifted component of the Zeeman doublet, at wavelength
λo + ∆λ.

We conclude that when the field in a certain location of the Sun is pointing
toward the observer, and we observe a Zeeman line in absorption, the redward
component will be observed to be circularly polarized in the left-handed sense.
Analogous arguments can be applied to the “up” electron, showing that the
blueward component, when seen in absorption, will be right-hand polarized.

Conversely, if we observe a region where the solar field is pointing away
from the observer, the blueward component of the Zeeman doublet will be
left-hand polarized (Figure 16.7).

This provides a powerful diagnostic of the direction of magnetic fields in
the Sun. If I point my telescope at a particular umbra on the Sun, and I observe
a Zeeman doublet in absorption, and find that the blueward component, at
wavelength λo − ∆λ, is (say) right-hand polarized, then I know that the field
lines are pointing toward me. Such fields are directed outward from the Sun.
And I also know how strong the field is along the line of sight, by measuring
the shift ∆λ and inserting this in Equation 16.1.

16.4.1.3 Zeeman polarization: the transverse case

Magnetic fields in the solar atmosphere are complicated in spatial struc-
ture. As a result, although there are certainly possibilities for observing
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“straight down the field,” this is not always the case. In other locations, the
line of sight will turn out to be perpendicular to the field lines.

If I observe the photons which propagate in directions perpendicular to the
external magnetic field, the results are different from the longitudinal case. In
the perpendicular case, known as the “transverse Zeeman effect,” we observe
not two, but three components. Two components are still found at wavelengths
λo + ∆λ and λo − ∆λ (as before), but now there is also a third component at
the undisplaced wavelength λo. In the case of the transverse Zeeman effect,
the polarizations of the components are observed to be linear (rather than
circular): the undisplaced line is linearly polarized parallel to the field, while
the two shifted components are polarized perpendicular to the field.

Because of the polarization properties, by (i) measuring the splitting ∆λ,
(ii) counting components of the split line, and (iii) measuring polarizations, we
can determine the strength of the field, and also the angle of the magnetic field
relative to our line of sight. This is a powerful diagnostic for the properties of
magnetic fields, especially in the Sun where the fields in an active region can
be very complicated, with many changes from one location to another.

16.4.1.4 Babcock magnetograph

The polarization properties of the Zeeman effect provide a practical tech-
nique for measuring weak solar magnetic fields. No longer do we have to
build an instrument that can cleanly separate the components of the Zee-
man doublet. Instead, solar observers (starting with Babcock, 1953) use the
trick of observing in one polarization at a certain wavelength which is shifted
by +∆λ on one side of line center, and in the opposite polarization at a
wavelength which is shifted by −∆λ on the other side of line center. By care-
fully choosing ∆λ so that the observations are made on the steepest part
of the absorption line profile, even a slight amount of Zeeman splitting can
then be detected. This allows detection of fields as weak as tens of Gauss on
the Sun.

An instrument which takes advantage of the circular polarization proper-
ties of the Zeeman doublet is referred to as a Babcock magnetograph. It is
useful for measuring the longitudinal field at all points of the solar disk. Such
instruments have been in widespread use for decades for daily monitoring of
solar magnetic fields.

Instruments which also measure linear polarization are called “vector mag-
netographs.” These require more extensive data analysis in order to interpret
the signals. They are typically used for analysis of the magnetic fields in
selected active regions.

16.4.1.5 Orderly properties of sunspot fields

Results from Babcock magnetographs reveal a high degree of order in the
fields on the Sun. We have already mentioned that spots typically appear in
pairs, a leader and a follower. When a magnetograph is applied to each spot,
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a highly ordered behavior emerges. At any given time, essentially all leader
spots in (say) the Sun’s Northern hemisphere are observed to have the same
magnetic polarity. That is, all leader spots in the Northern hemisphere are
found to have fields which (say) point toward the observer. At the same time,
all follower spots in the Northern hemisphere will exhibit fields which point
away from the observer. And simultaneously, in the Southern hemisphere, the
situation will be precisely reversed: the fields in leader spots will point away
from the observer. When the same observations are repeated 11 years later,
the fields are found to be reversed: leader spots in the Northern hemisphere
will now be found to have fields pointing away from the observer. These rules
are referred to as Hale’s polarity law, from the observer who discovered the
effect. Thus, the true solar cycle is actually 22 years long.

16.4.2 Remote sensing of solar magnetic fields:
radio observations

The Sun’s corona (Chapter 17) emits radiation over a broad band of radio
wavelengths. The source of the radio emission depends on the local condi-
tions, and on the frequency. At frequencies which are in the microwave band,
between (roughly) 1 and 20 GHz, two principal emission mechanisms con-
tribute to the radio flux. One is a free-free process, where electrons are ac-
celerated when they pass close to ions in the coronal plasma (see Chapter 3,
Section 3.3.1). The second has to do with electrons gyrating in a magnetic
field: circular motion involves acceleration, and when a charged particle accel-
erates, it emits radiation. This “gyro-emission” has a preference to be emitted
at certain frequencies, namely, at the “gyrofrequency” νB (see Section 16.6.1)
and its harmonics.

As we shall see (Section 16.6.1), the value of νB depends only on the field
strength in the plasma which emits the radiation. Therefore, if νB can be
derived from observations, we can determine the field strength in the coronal
plasma.

Polarization again plays an important role in determining coronal magnetic
properties. In some active regions, the free-free emission is observed to be
circularly polarized. That is, when the radio flux is measured at a certain
frequency ν in right-hand polarization FR, this flux differs from the flux at
the same frequency in left-hand polarization FL. The degree of polarization
dp = (FR − FL)/(FR + FL) is observed to have values which may be as large
as tens of percent. It can be shown theoretically (e.g., Lee, 2007) that dp is
simply proportional to the ratio of νB/ν. Therefore, a measurement of dp at
frequency ν can be converted to νB ≈ dpν, and thence to the field strength B
in the coronal emitting region.

Values of B in the corona span a wide range: in a survey of ten active
regions, Schmelz et al. (1994) reported B ranging from as low as 55 G to almost
600 G. Over certain sunspots, the coronal field strength has been reported to
be as large as 1800–2000 G (Lee, 2007).
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16.4.3 Direct measurements in space: the global field
of the sun

Clearly, when we use the term “direct measurement,” it is not a question
of measuring the fields in the atmosphere of the Sun itself. Instead, we rely
on a particular property of solar material, i.e., magnetic fields which were at
one time situated in the Sun’s atmosphere are carried out into interplanetary
space by the expanding solar wind. (We shall see below that fields and plasma
are effectively “frozen together.”) Measurements of the magnetic field in situ
in interplanetary space are the nearest we can get to “direct measurements” of
solar fields. If we can measure the field strength in space, at a certain distance
from the Sun (e.g., near 1 AU), we may be able to calculate how strong the
fields are back at the surface of the Sun.

Measurements of the magnetic field strength in interplanetary space have
been made since the 1960s, when spacecraft first escaped beyond the confines
of the Earth’s magnetic field and sampled the interplanetary magnetic field
(IMF). At first, when there was no clear knowledge as to how strong the
IMF might be, some of the early magnetometers were so swamped by the
background of magnetic fields caused by the spacecraft itself that they could
not reliably identify the IMF. It was soon realized that the detectors had to be
sensitive enough to measure fields of order 10−5 Gauss, i.e., 1 nanotesla. (For
convenience in discussing IMF’s, the nanotesla is referred to as 1 gamma (1 γ).
For comparison, the magnetic field at the Earth’s magnetic North pole is
60,000 γ.) Detection of such weak fields required paying special attention to
making sure that electric currents in the spacecraft itself did not generate
fields which would swamp the IMF’s.

It is not always a simple matter to extrapolate the field back to the Sun: one
needs to make allowance for certain properties of the solar wind (Chapter 18).
Allowing for these, it is found that much of the IMF emerges from the po-
lar regions of the Sun. The fact that the North and South poles of the Sun
contain magnetic fields is strongly suggested by certain images of the solar
corona, especially those which are taken close to solar minimum. On August 1,
2008, an eclipse of the Sun occurred (Figure 16.8), and on that day, there
were no sunspots visible on the surface. (For evidence of the lack of sunspots
on that day, see http://sidc.oma.be/news/105/welcome.html.) Thus, the Sun
contained none of the strong fields associated with active regions and sunspots
on August 1, 2008. This gives the best opportunity to detect the weaker fields
associated with the Sun as a whole. In Figure 16.8, the upper and lower parts
of the Sun exhibit bright and dark streaks which are reminiscent of how iron
filings line up when they are scattered near the North and South poles of a
bar magnet.

Extrapolation of IMF data indicate that the radial component of the solar
magnetic field near the North and South poles may range from six to 12 G
(Hundhausen, 1977). These numbers are subject to revision if the solar wind
properties have not been incorporated correctly. The solar polar fields are
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FIGURE 16.8: (See color insert following page 202.) Image of the Sun
obtained during the eclipse of August 1, 2008, when sunspots were absent.
The Sun is hidden by the Moon, and some of the Moon’s surface features
are faintly illuminated by sunlight scattered off the Earth. Notice the nearly-
radial streaks emerging from the North and South poles of the Sun (top and
bottom of the image): these are indications of near-radial magnetic fields at
North and South poles. (From Dr. H. Luethen. With permission.)

stronger than the fields at the Earth’s magnetic poles by up to one order of
magnitude.

The magnetometers which have been flown on spacecraft are such that
not only can the magnitude of the IMF be measured, but also its direction.
Such measurements indicate that at any instant of time, there is a preferred
direction for the field at the Sun’s North pole, and simultaneously the field at
the South pole has the opposite direction. The preferred directions at the two
poles remain constant for years on end. But at intervals of time which range
from as short as (about) nine years to as long as (about) 12 years, the field
directions at the solar poles reverse sign. The polar reversals do not always
occur in coincidence: they may be separated by periods of months or maybe
a year. During such periods, both poles of the Sun have the same magnetic
polarity. However, for 90% of the cycle, there is a clearly defined polarity
for the global field of the Sun. The fact that the global polarity switches in
(about) 11 years indicates that the true magnetic cycle of the Sun has a period
of (about) 22 years.

The fields of 6–12 G which exist at the poles of the Sun, and which extend
far out into interplanetary space, represent the global magnetic field of the
Sun. The fact that the field reverses sign every 9–12 years indicates that
the global magnetic field of the Sun is subject to periodic behavior. This is
quite different from the Earth’s magnetic field, which, although not strictly
constant, nevertheless retains a more-or-less constant value over time-scales
of many thousand of years.

Can the polar fields of the Sun be recorded by Zeeman techniques? Fields
with strengths of at most 12 G are so weak that they are close to the limit of
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observability for Babcock magnetographs. Moreover, fields in the polar regions
of the Sun tend to be radially directed. As a result, observations from Earth
see these fields as mainly transverse to the line of sight. Therefore, Babcock
magnetographs, which are sensitive to the field components along the line of
sight, are not ideally suited to detecting the global polar fields of the Sun.
Nevertheless, estimates of mean polar fields are reported as part of the output
from solar magnetic observatories, e.g., the Wilcox Solar Observatory (see
http://wso.stanford.edu/gifs/Polar.gif). The polar fields are found to have
strengths of at most 2–3 G. These are certainly weaker than the 6–12 G
estimates mentioned above: perhaps the solar wind corrections should be re-
examined, or perhaps the Wilcox data are averaging over polar field strengths
in different ways. Whatever the source of the discrepancy, the Wilcox data
confirm the space-based discovery that the polarities of the Sun’s North and
South poles reverse every 11 years (or so).

16.5 Empirical Properties of Solar Magnetic Fields

We now have information about two apparently distinct components of
magnetic fields in the Sun. One is global and quite weak, while the others
(especially in spots) are highly localized and very strong. The localized fields
are stronger than the global field by factors of at least 100, and in some
cases by almost 1000. In the umbra of a sunspot, the direction of the field
is found to be essentially vertical, i.e., perpendicular to the solar surface.
As we move from the umbra outward into the penumbra, the field lines are
observed to tilt more and more toward a horizontal direction: the horizontal
fields give rise to dark and bright “striations” (or “zebra-stripes”) which are
the hallmark of the penumbra when it is observed at high angular resolution
(Figure 16.2).

The active regions surrounding sunspots have fields of hundreds of G. In
the quiet Sun, average magnetic fields (averaged over a field of view of, say,
10 arc sec2) are weaker, and those fields are not uniformly distributed: the
field is highly clumped into compact flux ropes. In the center of each flux-
rope, the field may reach values of 1–2 kG. This leads to the graphic term
“pin-cushion” which is sometimes used to describe the nature of the magnetic
field structure in the quiet Sun (Parker, 1974). Given a field of view of an in-
strument, the average magnetic field strength that will be measured for that
area depends on how many “magnetic pins” happen to lie within the field of
view. Active regions are locations where there are enhanced areal densities of
the “magnetic pins.” Sunspot umbrae are locations where the areal density
of “magnetic pins” reaches a maximum: a very efficient process sweeps in,
and holds together, the vertical magnetic flux ropes which are the defining
characteristic of an umbra.
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Both for the global field and for the localized strong fields, there is a 22-year
cycle in the direction of the magnetic fields. For several years prior to solar
maximum, there is found to be a close correlation between the direction of
the global field in (say) the Northern hemisphere and the preferred polarity
of leader spots in the Northern hemisphere at the same time. These empirical
results indicate that there is a close physical connection between the Sun’s
weak global fields and the strong fields which appear from time to time on
the surface in highly localized structures.

In order to understand why such a connection exists, we need to under-
stand how magnetic fields and the gas in the Sun act and react upon each
other. To achieve this understanding, we need to take a long step back from
the Sun, and come down to the level of individual charged particles. We need
to spend considerable effort (in Section 16.6) on the physical processes which
govern the interactions of magnetic fields and charged particles before we
apply those processes to specific phenomena on the Sun (Section 16.7). In-
vestment of effort at this stage will pay off well when we return to the rich
variety of solar magnetic phenomena.

16.6 Interactions between Magnetic Fields and
Ionized Gas

To understand the physical process whereby magnetic fields and gas
interact with each other, we need to understand the forces that magnetic
fields exert on charged particles.

In a gas which is electrically neutral, such as the air that we all breathe
on Earth to stay alive, magnetic fields have no interesting dynamical effects.
The motions of the gas on Earth (i.e., the winds) are not at all affected by the
Earth’s magnetic field. But things are very different in the Sun’s atmosphere.
It is the fact that the gas in the Sun’s atmosphere is electrically charged that
opens up the possibility of interesting interactions between field and gas.

16.6.1 Motion of a single particle

A particle with electric charge e, when placed in an electric field E is acted
on by a force eE. When a charged particle moves with (vector) velocity V in
a (vector) magnetic field B, the particle experiences a motional electric field
Em = (1/c)V × B. As a result, the charged particle is subject to the Lorentz
(vector) force (e/c)V × B. Here, we use boldface to denote that a quantity is
a vector, with magnitude and direction. The magnitude of B is written as B.
The symbol “×” between two vectors denotes the cross-product of the two
vectors: the magnitude of the cross-product V × B is equal to |V||B| sin θ,
where θ is the angle between the vectors. The Lorentz force acts in a direction
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which is perpendicular to the particle velocity, and also perpendicular to the
magnetic field.

As regards the units, if we express the charge e in electrostatic units, and
B in Gauss, then the Lorentz force is in units of dynes.

For a particle of mass m, the equation of motion in a magnetic field is

m
dV
dt

=
e

c
V × B (16.2)

The solutions of Equation 16.2 have certain distinct properties. First, if
the particle is moving in a direction that is parallel, or antiparallel, to the
field, then the right-hand side has zero value. This means there the magnetic
field exerts no force on the particle. As a result, there are no constraints on
the motion of a charged particle along a magnetic field. If a field line stretches
from the Sun to the Earth, an electron or a proton can propagate freely along
that line between Sun and Earth, and back again.

Second, in all other cases, when there is a component of particle velocity
that is perpendicular to the field, then the Lorentz force on the particle is finite
in magnitude, and acts in a specific direction. Suppose the field is in the +z-
direction, and the particle moves exactly perpendicular to the magnetic field,
in (say) the +y-direction. Then taking the vector product V×B, we find that
the force acts in the +x-direction. If the electric charge is positive, then the
particle motion will be deflected toward the x-direction. Once an x-component
of velocity occurs, the Lorentz force V × B will contain a component in the
−y-direction. This will eventually reduce the y-velocity to zero, at which point
the x-velocity will have its maximum magnitude. However, the y-velocity will
not stop there. Instead, the y-component of the velocity will increase in the
−y-direction, causing the x-component of the force to become negative. This
will cause the x-velocity to decrease, eventually falling to zero, at which point
we are back to the initial condition.

The net effect of the Lorentz force is that the particle moves in a circular
path in the x − y plane. Because the electric charge enters into the Lorentz
force, a positively charged particle moves along the circle in one direction,
while a negatively charged particle moves along the circle in the opposite
direction. In both cases, the Lorentz force is directed toward the center of the
circle.

The essential aspect of the effects of magnetic fields in the solar atmo-
sphere can be understood by considering the following question: how large is
the circular path of a particle in the magnetic fields which exist in the solar
atmosphere?

The answer to that question comes by balancing the forces that act on a
particle which is moving in a circular orbit: in this case, the two forces are the
centrifugal force and the Lorentz force.

Balancing these forces in an orbit of radius rg we find∣∣e∣∣
c

∣∣V∣∣∣∣B∣∣ =
m

∣∣V∣∣2
rg

(16.3)
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where we indicate the magnitude of the electron charge, with the understand-
ing that opposite charges circulate in opposite directions. Solving the above
equation leads to an expression for rg:

rg =
mc

∣∣V∣∣∣∣e∣∣∣∣B∣∣ (16.4)

The particle is confined to a circular motion, and cannot depart from the
field line in the perpendicular direction by a distance of more than rg. The
subscript g denotes that we are dealing with the “gyro-radius,” for it identifies
the size of the orbit on which the particle is forced to “gyrate” around the
field.

Equation 16.4 refers to nonrelativistic motion. In the case of an ultrarela-
tivistic particle, where the time-dilation factor γ is � 1, |V| can be set equal
to c, the KE equals γmc2, and the mass m in Equation 16.4 must be replaced
by γm.

Recalling that motion parallel and antiparallel to the field is unconstrained,
the true “orbit” of a charged particle in a magnetic field is a helix: the particle
is free to move up and down the field line, but cannot depart form the field
line by more than rg.

A key aspect of Equation 16.4 is that rg is proportional to the particle’s
speed |V|. As a result, the time required for a charged (nonrelativistic) particle
to traverse one gyration circle is tB = 2πrg/|V|, which is independent of the
speed of the particle. The associated frequency νB = 1/tB = eB/2πmc, called
the “gyro-frequency” depends only on B. If a value can be estimated for νB in
any locality on the Sun (such as an active region), that will give us information
about the field strength in that active region (see Section 16.4.2).

Now we come to the question which is at the heart of understanding mag-
netic effects in the Sun. How large is a typical rg in the solar atmosphere?

Consider a thermal proton in the photosphere, where T = 6000 K. The
mean thermal speed of the proton is |V| ≈ 106 cm sec−1. Inserting proton
mass and charge, we find that in a field of B Gauss, rg(cm) ≈ 100/B. Thus,
in a region of the photosphere where the field has a strength of 10 G, protons
are constrained to gyrate no more than 10 cm away from the field line. In
a field of 1000 G, they can move only 1 mm away. Electrons are even more
tightly constrained: if we consider thermal electrons, the above gyro-radii must
be reduced by factors of 43.

In the corona, the temperatures are larger, of order 106 K (see Chapter 17).
This leads to gyro-radii which are about 10 times larger than in the photo-
sphere. Proton gyroradii in the corona, in regions with B = 10 G, are of order
100 cm.

The most striking aspect of these gyroradii is how small they are compared
to any of the relevant length-scales in the Sun: the solar radius (≈1011 cm), the
scale height in the atmosphere (≈107 cm in the photosphere), or the size of a
granule (≈108 cm). In all cases, the gyroradii of thermal protons and electrons
are miniscule compared to any of the relevant length-scales in the Sun.
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The conclusion is clear and inevitable: charged particles in the Sun cannot
move freely in directions which lie perpendicular to the magnetic field. In the
solar atmosphere, the ionized gas is “tied” tightly to the field lines.

In principle, neutral gas is not affected by the field: at first sight, this might
be taken to mean that in the photosphere (where hydrogen is at least 99.9%
neutral), the fields might have little effect. But this is not the case. The pres-
ence of even a few ions and electrons gives the field “something to hold on to”:
and then the charged particles communicate the magnetic forces to neutrals in
collisions. If there is only one ion for every 1000 neutrals, then that ion has to
collide eventually with 1000 neutrals in order to pass on the magnetic forces
which the ion is responding to. There may be some local spatial separation
between neutrals and ions as the collisions do their work, but the separa-
tions (referred to as “ambipolar diffusion”) occurs over length scales which
are small compared to the length scales of features in the solar atmosphere,
such as granules. For all intents and purposes, even in the photosphere, where
the gas is more neutral (in an electrical sense) than anywhere else in the Sun,
the gas is still “tied” to the field.

16.6.2 Motion of a conducting fluid

So far, we have considered the interaction between a magnetic field and a
single charged particle. Now we move up to the macroscopic case, where we
consider a fluid (plasma) composed of many individual charged particles. In
such a fluid, electrons and ions can move in different directions: the result is
that, in the plasma, a finite current can flow. The current density j is given
by e(NiVi −NeVe) where Vi and Ve are velocities of ions and electrons, and
Ni and Ne are number densities of ions and electrons in the plasma.

Each cubic cm of the solar atmosphere contains Ni ions, on each of which
the Lorentz force equals +(e/c)Vi × B. Each cubic cm of the solar atmo-
sphere also contains Ne electrons: on each electron, the Lorentz force equals
−(e/c)Ve × B. The equation of motion for 1cm3 of solar material, with total
mass ρ = Nimi + Neme ≈ Nimi and bulk velocity V, now includes not only
the terms with which we are familiar from hydrodynamics (pressure gradient,
and gravity), but also a term which describes the Lorentz force acting on that
cubic cm:

ρ
dV
dt

= −∇p − ρg +
1
c
j × B (16.5)

This equation describes the dynamical effects that a magnetic field exerts
on the medium. Let us look in detail at the nature of the magnetic forces:
they have interesting properties which will help us to understand why the
solar atmosphere contains a variety of magnetic phenomena.

16.6.2.1 Magnetic pressure and tension

The gas pressure p enters into Equation 16.5 because the gradient of p
exerts a well-known force on the gas. This is true even in the absence of
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magnetic effects, such as in the Earth’s atmosphere. (Localized winds blow
from high to low pressure.) On small length scales, the force due to ∇p can
be considered isotropic without serious error. However, this is not true of the
Lorentz force. The term in j × B in Equation 16.5 can be rewritten in a way
that brings out the fact that a magnetic field also exerts a force which is not
the same in all directions.

To see this, we use Maxwell’s equation curl B = (4π/c)j to replace j in
the Lorentz force in Equation 16.5. Then the Lorentz force becomes (1/4π)
curl B × B. This can be rewritten, using vector identities, as the sum of two
components L1 + L2, where L1 = −∇(B2/8π), and L2 = (B · ∇)B/4π.

Comparing with Equation 16.5, L1 has the same form as the term −∇p.
This suggests (at first sight) that the magnetic field gives rise to a pres-
sure analogous to gas pressure. The magnitude of the “magnetic pressure”
is pmag = B2/8π. (Expressing B in units of Gauss, pmag is in dyn cm−2.)
If this were the only term we needed to consider, we would be tempted to
think that the magnetic pressure at any position might behave just like the
gas pressure.

But the Lorentz force also includes L2. The expression for L2 can also
be written as the sum of two components, L2a + L2b. Let us define a unit
vector ê along the direction of the magnetic field. Then L2a can be written
as ê(ê · ∇)B2/8π: this is a force which acts along the vector ê, i.e., along
the field lines. As regards the magnitude of this component, the magnitude is
equal and opposite to −∇(pmag). As a result, L2a cancels the component of
L1 which lies along the field direction. The net effect is that although pmag at
first sight appears to be analogous to the gas pressure, with equal pressures in
all directions, this is not the complete picture of the Lorentz force. In a more
complete picture, we find that the gradient of magnetic pressure along the
field direction is zero. Thus, the magnetic field gradient exerts a force only in
the direction perpendicular to the field direction. This is a striking indication
of anisotropy in the presence of a magnetic field.

The component L2b can be written (B2/4π)(ê · ∇)ê. By considering the
unit vector and its gradient, it can be shown that L2b is a vector which lies
in a direction perpendicular to the field lines. The magnitude of L2b is equal
to B2/4πRcurv, where Rcurv is the radius of curvature of the field lines. The
vector L2b points toward the center of curvature of the field lines. The term
B2/4π represents a magnetic tension Tm along the field lines.

The fact that magnetic fields give rise to both tension and pressure (al-
though in different directions) should alert us to the fact that magnetic fields
will have effects which may have no analogs in the simpler world of gas dy-
namics (such as in the atmosphere we live in on Earth). The fact that the
Lorentz force is highly anisotropic is important for understanding magnetic
activity in the Sun.

From a dimensional point of view, the units of pressure are equivalent to
the units of energy density. Therefore, the energy density of the magnetic
field is equal to Wmag = B2/8π. If B is in units of Gauss, Wmag is in units of
ergs cm−3.
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16.6.2.2 The equations of magnetohydrodynamics (MHD)

The equations which describe the interaction between a moving fluid and
a magnetic field are those of magnetohydrodynamics (MHD). We shall find
in MHD an analog to the result (Equation 16.4) that an individual charged
particle in the solar atmosphere is confined close to the field lines.

To obtain the MHD equations, we start with Maxwell’s equations:

∇ ·B = 0 (16.6)
∂B
∂t

= −c∇ × E (16.7)

In a resistive medium, the current j which flows in response to an electric
field is proportional to that field (according to Ohm’s law). The constant of
proportionality is determined by how effective the plasma is at conducting the
current flow. In terms of j, Ohm’s law can be written as follows:

j = σe(E + Em) = σe

(
E +

V × B
c

)
(16.8)

In Equation 16.8, σe is the electrical conductivity of the medium.
From Equation 16.8, the external electric field can be written as E =

j/σe − (1/c)V × B. Inserting this in Equation 16.7, we find ∂B/∂t = −c∇ ×
(j/σe)+∇×(V×B). Replacing j with (c/4π)∇×B, and using Equation 16.6,
we finally have the following equation for the magnetic field:

∂B
∂t

= ∇ × (V × B) + ηe∇2B (16.9)

The quantity ηe in Equation 16.9, defined by ηe = c2/4πσe, is the magnetic
diffusivity, which is a measure of the electrical resistivity of the medium.

Equation 16.9 describes the interactions between magnetic fields and a
fluid medium. There are two distinct terms on the right-hand side of Equa-
tion 16.9. We consider the effects of these two terms separately.

First, suppose that the conductivity of the medium is so large that ηe → 0.
Then the second term on the right-hand side of Equation 16.9 becomes neg-
ligible compared to the first. The surviving term, which includes the velocity
of the medium, can be shown to have the following property: if you choose a
particular parcel of fluid which contains a magnetic field B within its area, and
follow that parcel around, the amount of magnetic flux (= ∫ BdA) enclosed
by that parcel of fluid remains constant. That is, magnetic flux neither enters
nor leaves the parcel of fluid as it moves. The phrase which is commonly used
to describe this behavior is that the field and the fluid are “frozen together.”
This is the equivalent, in the fluid limit, of the tightly bound nature of single
particle motion: the limit of infinite conductivity is formally equivalent to the
limit in which the radius of gyration is so small (compared to other lengths
in the problem) that the gyroradius can be taken to be zero.
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Second, suppose the velocity of the fluid is zero. Then the first term on
the right-hand side of Equation 16.9 vanishes. We are left with an equation in
which the time derivative of the field is related to the second spatial derivative
of the field. This is a diffusion equation: it describes how the magnetic field
decays as time goes on. If the spatial properties of the field are such that
significant changes in field strength occur over length-scales of L, we can
approximate ∇2 in Equation 16.9 by 1/L2. Defining the time-scale τd = L2/ηe,
we see that Equation 16.9 can be written ∂B(t)/∂t = −B(t)/τd. The solution
is B(t) = B(0) exp(−t/τd), i.e., the field decays on time-scale τd. That is, a
field in a stationary medium does not remain constant with time, but decays
on a characteristic time-scale

τd =
4πσeL

2

c2 (16.10)

What does this decay time signify? The energy in the electric current is
dissipated by resistive effects at a rate j · j/σe such that in the time-scale τd,
resistive dissipation within 1cm3 leads to a reduction in the magnetic energy
Wmag in that cubic cm by an amount of order B2/8π. Thus, resistive dissipa-
tion causes the field strength to decay on a time-scale of τd.

The conductivity which enters into Equation 16.10 is the electrostatic con-
ductivity: when we express the field in G, and the charge on the electron in
electrostatic units (|e| = 4.8 ×10−10), the conductivity σe has units of sec−1.

16.6.2.3 Magnetic diffusion time-scales in the Sun

The electrical conductivity of the gas in the solar atmosphere is determined
by the rate at which electrons (and ions) undergo collisions with the ambient
medium when the electrons (and ions) attempt to carry the current. In the
limit of complete ionization (e.g., in the corona, or deep below the surface), the
collisions are determined by Coulomb effects. In such a case, the conductivity
is given by the Spitzer formula σe ≈ 107T 3/2 sec−1 (Spitzer, 1962: note that
we have converted Spitzer’s formula from electromagnetic units (e.m.u). to
electrostatic units (e.s.u.) using the factor c2). In the upper chromosphere
(T = 104 K) and in the corona (T = 106 K), typical values of σe are 1013 sec−1

and 1016 sec−1, respectively.
In the photosphere and low chromosphere, where the degree of ionization

may be much less than unity, σe is not as large as the Spitzer value. In a
partially ionized gas, σe is proportional to the ratio of the number densities
of electrons to neutrals. According to Bray and Loughhead (1979, Table 4.7),
at optical depth τ = 1 in the photosphere, and at τ = 1 in the umbra of a
sunspot (where the degree of ionization is lower than in the photosphere), σe

has numerical values of order 1012 sec−1 and 1011 sec−1, respectively.
Now we can evaluate the time-scale for a field to decay in the Sun. Suppose

we consider one of the smallest identifiable magnetic units on the Sun: a
pore. The characteristic length scale is comparable to granule diameters, i.e.,
L = 108 cm. Using this in Equation 16.10, along with the photospheric value
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of σe(1012 sec−1), we find τd ≈ 108 sec, i.e., about 3 years. This is to be
compared with the observed life-times of pores: at most a few hours. At the
other extreme, consider the largest spot ever observed: with an area A =
6300 millionths of the visible hemisphere, the associated linear scale L is about
8 ×109 cm. According to Equation 16.10, the decay time in the photosphere
would be 1012 sec, i.e., some 30,000 years. However, the observed lifetime was
less than one year.

Thus, the decay of the field by resistive diffusion is several orders of magni-
tude too long to be consistent with the observed lifetimes of pores and spots.
The conclusion is that when we consider a pore (or a larger structure), resis-
tive dissipation is not a significant contributor to the decay of the structure.
As a result, the second term in Equation 16.9 is very small compared to the
first term: it is as if ze → 0. Therefore, the magnetic field in the pore, and in
other magnetic structures with length scales as large as (or larger than) gran-
ules, can be considered as “frozen” into the gas. This means that wherever
the gas (or field) goes, the field (or gas) must go also.

One of the interesting features about MHD in the context of solar physics
is that sometimes the field dominates the gas, and at other times the gas
dominates the field. Which of the two is dominant in any given situation
depends on the relative energy densities. In both cases, however, the field and
gas are effectively frozen together.

16.7 Understanding Magnetic Structures in the Sun

Now let us see how the effects of MHD operate in a variety of solar features.
The solar atmosphere provides a number of interesting situations where we
may profitably study the effects of MHD in different limiting conditions.

16.7.1 Sunspot umbrae: inhibition of convection

In an “ordinary” convection cell (i.e., granule), when no magnetic field is
present, the circulation of the gas (which is responsible for upward transport of
heat) occurs in several stages. (1) Hot matter starts its circulation at depth H,
and rises vertically to the photosphere in the bright center of the granule.
(2) As the matter approaches the photosphere, it expands (due to reduced
ambient density), and spreads out horizontally. In this phase, the material
cools off, mainly by radiative losses into space. (3) The cooled material finds
a location where it can sink vertically: this occurs in the dark intergranular
lanes, and the gas returns eventually to depth H. (4) The material eventually,
as a result of fluctuations, absorbs some excess heat, and this begins the
circulation of a new cell. Each granule lives long enough to allow roughly one
complete circulation to occur.
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In the photosphere, with densities of (2 − 3) ×10−7 gm cm−3, and granu-
lation flow velocities V ≈ (1 − 3) km sec−1, the energy densities of the flows
(≈ 0.5ρV 2) are 103−4 ergs cm−3. These convective properties are ultimately
determined by the requirement that the gas must transport outward the flux
of energy which is provided by nuclear reactions deep inside the Sun.

Now we ask: what happens to the circulation in a granule when a magnetic
field is present? In an umbra, the magnetic field lines are mainly vertical, and
have strengths as large as 3000 G. Since ionized gas can move freely along field
lines, stages (1) and (3) of the granule circulation are unaffected by the field.
However, stage (2) is severely impeded: matter which contains even the small
degree of ionization of photospheric gas is effectively frozen to the field lines.
Since the latter are vertical, they restrain the gas from flowing horizontally.
The energy density of the field (Wmag = B2/8π) is ≈ 4 ×105 ergs cm−3, i.e.,
40–400 times greater than the energy densities of the granular flows. Because
of the excessive magnetic energy density, the “frozen fields” are capable of
preventing the horizontal flows in stage (2) of granule flow.

The overall effect is that granule circulation is inhibited by the umbral
field. Now, it is precisely that circulation which allows convection to transport
heat to the solar surface. Shutting down the circulation has the effect that
convection cannot function properly in an umbra. To be sure, radiation is
available to carry some heat upward, but this is not very effective. As a result,
the upward heat flux decreases below the normal value by a significant factor.
The umbra becomes darker (by many tens of percent) than the photosphere.

16.7.2 Pores: the smallest sunspots

Sunspots are dark because a vertical magnetic flux tube inhibits convection
in one or more granules. But what happens if the flux tube has a diameter
which is smaller than a typical granule diameter, i.e., smaller than about
1000 km? In such a case, the flux tube is too small to impose control over
the complete circulation of the granule. The gas flows would “move over”
into a nonmagnetic area, and convection could proceed uninhibited. Thus,
the smallest sunspots (pores) must have diameters which are at least as large
as a single granule, i.e., ≥1000–2000 km.

16.7.3 Sunspots: the Wilson depression

Magnetic fields exert a pressure perpendicular to the field lines. In an
umbra, where the magnetic field tube is vertical, the field exerts a pressure
of B2/8π in the horizontal direction. The gas inside the flux tube also exerts
a pressure pin. In order for the flux tube to be a stable structure, the sum
of these forces must be balanced by the gas pressure pext in the external
(nonmagnetic) medium:

pext = pin +
B2

8π
(16.11)
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Let us consider some typical numerical values for the photosphere. At
τ ≈ 1 in the undisturbed photosphere, pext ≈ 105 dyn cm−2 (see Chapter 5,
Table 5.3). A sunspot in which the vertical field has B = 1 kG requires, for
stability, that pin = pext − B2/8π have the value 0.6 × 105 dyn cm−2. If the
sunspot has B = 1.5 kG, then pin must be ≈ 0.1×105 dyn cm−2, i.e., an order
of magnitude smaller than the pressure in the undisturbed photosphere. Truly,
the flux tube is a region which has been almost “evacuated” of gas.

Recalling that in a sunspot umbra, the field can be as strong as 3 kilogauss,
we see that in order to contain such a field, pext must be at least as large as
3.6×105 dyn cm−2. In fact, to allow for the presence of any finite gas pressure
inside the spot, pext must be even larger, perhaps (4−5)×105 dyn cm−2. Such
high pressures are simply not available in the photosphere: these pressures
exceed the photospheric value by factors of e1−2. Therefore, in order to contain
the sunspot fields, we must rely upon gas pressures which lie one to two scale
heights deeper than the photosphere. This corresponds to distances of 150–
300 km below the photosphere.

In fact, the “umbral photosphere,” i.e., the region where τ∗ ≈ 1 in the
umbra, does not lie at the same physical depth as τ = 1 in the undisturbed
photosphere. Instead, because of reduced gas density in the umbra, one can
“peer in” more deeply into the umbra than in the undisturbed photosphere.
As a result, the level where τ∗ ≈ 1 in the umbra lies deeper by a few hundred
kilometers than the level where τ ≈ 1 in the undisturbed photosphere. This
is referred to as the “Wilson depression,” named in honor of an eighteenth
century observer who first observed the effect in sunspots near the limb.

If we imagine that we could (somehow) stand in the undisturbed photo-
sphere, and look horizontally into a sunspot, what would we see? We would
see a medium where the gas pressure is greatly reduced compared to the gas in
which we are “standing.” In other words, the gas in the spot would be “miss-
ing.” Where did the missing gas go? The answer is: the cooler conditions have
caused the gas to “slump” to greater depths.

To see why this is so, consider the operation of hydrostatic equilibrium
in the vertical direction. Below the photosphere, the gas pressure increases
exponentially with depth, but the magnetic field does not increase in strength
very much. As a result, we quickly arrive at depths where pext � B2/8π. At
such depths, the field can no longer interfere significantly with convection. This
means that sunspots are relatively shallow phenomena, probably retaining
their identity to depths of no more than Zb ≈ 1–2000 km (i.e., 1–2 Mm)
below the photosphere (Parker, 1979).

Consider the “base of a sunspot” to occur at depth Zb below the photo-
sphere. At Zb we may assume that pin(Zb) ≈ pext(Zb). At smaller depths z
(closer to the surface), the pressure inside the sunspot is given by pin(z) =
pin(Zb) exp[(z − Zb)/Hss], where Hss is the pressure scale-height inside the
sunspot. In the undisturbed photosphere, the vertical profile of pressure fol-
lows a similar law, except that the scale height Hp is larger, because of the
higher temperature: the gas in the undisturbed photosphere at depth z is
given by pext(z) = pext(Zb) exp[(z − Zb)/Hp].

T&F Cat # C3074, Chapter 16, Page 270, 14-7-2009



Magnetic Fields in the Sun 271

Comparing the two pressures, we see that the pressure in the sunspot at
depth z is less than in the undisturbed photosphere by the ratio

pin(z)
pext(z)

= exp
[
(z − Zb)

(
1

Hss
− 1

Hp

)]
(16.12)

Near the photosphere, we know (Chapter 5) that the scale height Hp is
about 150 km. In the photosphere of the sunspot, where the effective temper-
ature is reduced by 30% relative to the photosphere (Section 16.1.1), Hss is
smaller than Hp by some 30%. Thus, Hss ≈ 100 km. Therefore, at the pho-
tosphere (1/Hss − 1/Hp) ≈ 0.0033 km−1. At depth Zb, where the sunspot is
not distinguishable from the surrounding gas (1/Hss − 1/Hp) = 0. As a rough
approximation, we may consider that the mean value of (1/Hss − 1/Hp) be-
tween the bottom of the sunspot (Zb) and the surface is about one-half of the
above value, i.e., about 0.0017 km−1. Setting z = 0 and Zb = 1000–2000 km,
we find that pin(0)/pext(0) ≈ exp(−1.7 to − 3.4). Thus, gas pressures in the
surface layers of a sunspot are reduced compared to the photosphere by at
least five, and possibly by more than ten.

Therefore, when we view an umbra from the photosphere, and find that
there is “gas missing” from the umbra, the explanation is that the missing gas
has “slumped downward” because of the smaller scale height, which cannot
support as much overlying weight.

16.7.4 Prominences

Near the topmost portions of a prominence, the magnetic field lines are
mainly horizontal. Material on such field lines can be supported against grav-
ity. Ionized material is not permitted to move vertically because that would
involve motions perpendicular to field lines. Motion along the field lines is
permitted, but this can be impeded if there is a dip in the field lines.

16.7.5 Faculae

Faculae (singular: facula) are flux tubes with diameters that are too small
to create pores. Without the ability to impede the circulation in a complete
granule, there is no reason why convection should be inhibited. As a result,
a facula does not appear as a dark feature in the photosphere. However, the
presence of fields has the effect (see Equation 16.11) that the pressure inside
faculae is lower than in the external gas. The reduced internal pressure allows
us to see deeper inside faculae, i.e., faculae also exhibit Wilson depressions,
although not as large as in the largest spots. Depressions in faculae are 100–
200 km. The deepest gas that we can see in a facula is surrounded by walls of
hotter gas extending upward by 100–200 km.

What effect does this have on what we see when we observe faculae? There
is almost no observable effect when a facula is observed near the center of the
solar disk. However, when a facula is near the limb of the Sun, conditions are
different. Now, our line of sight enters the facula at an angle to the vertical.
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This allows us to observe granules behind the walls of the tube; those gran-
ules lie deeper than the photosphere, and are therefore hotter than the photo-
sphere. As a result, each facula is seen as a localized feature which is brighter
than the photosphere. The excess in brightness can be up to a few percent.

Facular excesses play a significant role in explaining the fact that the “solar
irradiance” is observed to be larger at solar maximum (i.e., when sunspots
counts are maximum) than at solar minimum. For each sunspot, there are
many faculae in the surrounding active region. Even though the power deficit
of a sunspot (many tens of percent) is much larger than in any individual fac-
ula, the area occupied by the multiple faculae in the vicinity of the spot is large
enough that the facular excesses more than compensate for the spot deficits.

16.7.6 Excess chromospheric heating:
network and plages

In Chapter 15, we saw that the chromosphere in cell centers is heated
by acoustic waves emerging from turbulent convection. Excess heating of the
chromosphere in the network, and in plages, can be understood in terms of an
extra source of wave energy. Since the network and plages can be identified
with confidence as locations where the magnetic field strengths are larger than
in quiet Sun, it is natural to look to the magnetic field as the source of extra
wave energy.

The fact that a magnetic field is associated with a tension Tm = B2/4π
along the field lines suggests that we consider the analog to transverse waves
on a stretched string. Classical mechanics tells us that if a string is under a
tension Tm, and the string has a mass density ρ, the speed of transverse waves
on the string is

√
(Tm/ρ). Now, even though a magnetic field line in and of

itself has no mass, nevertheless in the solar atmosphere, where field and gas
are “frozen together,” the gas is tightly tied to the field. Therefore, when the
field lines move, the gas also moves along. This confers on the field in effect
a mass density equal to that of the ambient gas. Analogous to the stretched
string, therefore, a magnetic field line can support a transverse wave mode
which propagates at a speed

VA =
√

(Tm/ρ) = B/
√

(4πρ) (16.13)

This propagation speed is referred to as the Alfven speed, after the Swedish
physicist who, in the midst of World War II, discovered this wave mode in a
magnetized gas (Alfven, 1942).

Let us look at numerical values for the Alfven speed in the Sun. In the
photosphere, where ρ ≈ 3 × 10−7 gm cm−3, the numerical value of VA is
given by 515 B cm sec−1, if B is in Gauss. In the upper chromosphere, where
ρ ≈ 3 × 10−13 gm cm−3, VA = 5.15 B km sec−1. In the low corona, where
number densities are 108−9 cm−3, i.e., ρ ≈ 2×10−(15−16) gm cm−3, VA = 60–
200 B km sec−1. Thus, in the photosphere, even in the umbra of a sunspot,
Alfven speeds are no more than 10–20 km sec−1. These speeds are not greatly
different from the local sound speed. But in the corona, in active regions where
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the fields can be as large as 1000 G or more (Lee, 2007), Alfven speeds may
be as large as 60,000 km sec−1. Such speeds greatly exceed the speed of sound,
indicating that the fields are definitely in control of the plasma in the corona.

The acoustic waves which heat the quiet chromosphere are longitudinal
modes: the spatial displacements in the wave occur in the direction of propa-
gation. In the presence of magnetic fields, the fact that transverse wave modes
are also present means that magnetic regions of the Sun have access to an extra
(nonlongitudinal) source of wave energy.

Is there a physical mechanism which can generate Alfven waves in a mag-
netic region? Consider a vertical magnetic field line which passes through a
granule in the photosphere. Recalling that Alfven waves are transverse, and
that the gas and field are frozen together, we see that the horizontal motions
at the top and bottom of the granule will push and pull the field in a direction
perpendicular to the field line with a certain velocity δV . By analogy with
the formula for the flux of acoustic waves (Chapter 15, Equation 15.1), the
flux of Alfven waves can be written as FA ≈ ρ(δV )2VA. This differs from the
flux of sound waves (Chapter 15, Equation 15.1) as regards the propagation
speed: it also may differ as regards the amplitude. However, the motions in a
convection cell (granule) are such that the horizontal velocity is probably not
greatly different from the turbulent velocities (δV ≈ 1 km sec−1) which were
cited in connection with the acoustic waves in Equation 15.1. In the presence
of a vertical magnetic field, the velocities of the flow may be impeded some-
what by the field. But if the field is weak enough, this impeding may not be
serious. As a result, in regions of the photosphere where the field strengths are
(say) 10–100 G, the fluxes of Alfven waves could be of order FA ≈ 107−8 ergs
cm−2 sec−1.

These fluxes are one to two orders of magnitude smaller than the acoustic
fluxes F (ac) in the photosphere (see Chapter 15, Section 15.10). At first sight,
this might lead to the conclusion that Alfven waves are of no significance in the
heating of the solar atmosphere. But this conclusion is not necessarily correct.
Compared to the acoustic fluxes F(chr) which can reach the chromosphere,
(see Chapter 15, Equation 15.2), the Alfven wave fluxes estimated here in
the photosphere are not at all negligible. As a result, in photospheric regions
where the field strength is at least 10 G, waves in the Alfven mode may provide
a significant supplement to the flux of waves which enter the chromosphere.
Therefore, since the latter have been shown (Chapter 15) to be energetically
significant for the heating of (at least) the lower chromosphere, the extra flux
due to Alfven waves in magnetic regions may also significantly contribute to
heating the solar chromosphere. Now, empirical evidence shows that plages
and network are precisely regions where the field strength is enhanced: there-
fore Alfven waves may be responsible for the excess chromospheric heating
observed in plages and network.

The transverse nature of Alfven waves has the effect that these waves dif-
fer in an important respect from sound waves (which are longitudinal). Since
Alfven waves are not associated with compressions and rarefactions of gas
(as sound waves are), Alfven waves are not subject to the steepening which
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leads sound waves to form shock waves and thereby dissipate (see Chapter 15,
Section 15.11). An important conclusion is that Alfven waves are more dif-
ficult to dissipate than sound waves. Therefore, if a region of photosphere
creates equal fluxes of sound and Alfven waves, the Alfven waves survive for
a longer time in the upper solar atmosphere. In particular, in favorable con-
ditions, Alfven waves might even survive to reach the corona (Chapter 17,
Section 17.1.2).

16.7.7 Magnetic fields and gas motions:
which is dominant?

In the photosphere, we have now seen two distinct behaviors of the mag-
netic field. In some cases (sunspots), the field causes the solar surface to be
darker than normal, while in other cases (network), the field causes enhanced
brightening.

Can we identify a transition between these behaviors? We have already
identified one such transition in the case of pores. There, the critical parameter
was the diameter of the flux tube: in order for darkening to occur, the pore
must be larger than the diameter of a typical granule.

We can also consider the matter from the perspective of frozen flux. The
essence of frozen flux is that gas and field are forced to move together. This
raises the question: which one dominates? Does the gas dominate the field or
does the field dominate the gas? The answer is: the Sun provides us with the
luxury of a “yes and no” answer. Examples of both situations can be found
in different features.

The question of dominance can be discussed in terms of the energy densities
which are available to gas and field in the photosphere. A moving gas has
kinetic energy density Ed = 0.5ρV 2 ergs cm−3. Inserting typical values of
density (2−3×10−7 gm cm−3) and velocity (1–3 km sec−1) in the photosphere,
we find Ed ≈ 0.1–1.4 ×104 ergs cm−3. A magnetic field, with energy density
Emag = B2/8π, is comparable in energy density to Ed if B ≈ 150–600 G.

Therefore, in any magnetic structures in the photosphere where the local
field strengths are in excess of (roughly) 600 G, we expect to find that the gas
flows are not sufficiently energetic to “push the field around.” In such situa-
tions, the field will “win out” and impose changes on the gas. Sunspots, where
the field suppresses convection and darkness ensues, are an example of this.

In photospheric structures where the field strength is less than (roughly)
150 G, the field is not sufficiently energetic to “push the gas around.” In such
situations, the gas “wins out,” and imposes changes on the field. For example,
in the network, moving gas induces wave modes on the field, thereby heating
the overlying chromosphere, and causing local brightening.

For more evidence that there is a transition from local brightening (“the
gas wins”) to local darkening (“the field wins”) at fields of a few hundred G,
see Ortiz (2005).
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16.8 Amplification of Strong Solar Magnetic Fields

Where do the strongest fields in the Sun come from? The answer is that
the weak polar fields can be amplified by the differential rotation which is
observed on the solar surface. The amplification occurs because the field is
frozen into the solar material, and the latter rotates differentially in latitude.
As we saw in Chapter 14, Section 14.9.3., the rotation period at the Sun’s
surface is 25.7 days near the equator, and 31.3 days at 60◦ latitude, i.e., a
difference of about 20%. We have seen (Section 16.4.2) that the solar polar
field has a strength of 6–12 G. Assuming that the polar field is a dipole (i.e., its
field lines run in the north–south direction), the equatorial field strengths are
3–6 G. Because of field freezing, the equatorial field (which is originally in the
north-south direction) will be sheared (i.e., stretched) by differential rotation.
Both components of differential rotation (latitudinal and radial) can come
into play. But for simplicity, let us consider only LDR. Then a particular field
line, after one rotation (i.e., after 25.7 days) will return to the same longitude
on the equator, but the high-latitude section of the same field line will lag
behind by about 20% of a rotation. After five rotations, i.e., after 4.2 months,
the high-latitude section of the field line will have fallen behind by about
one full rotation, i.e., the equatorial will have “lapped” the polar section. In
one year, the polar portion will have lost 2.8 full rotations on the equatorial
portion of the field line.

The excess stretching of the field leads to field lines which become more
and more stretched from east to west. That is, although the initial (polar)
fields essentially were directed from north to south (i.e., they were poloidal
fields), the stretching due to differential rotation leads to increasingly strong
fields in the east–west direction (i.e., toroidal fields). It is this tendency for
stretched fields to be mainly toroidal which determines that most pairs of
sunspots lie almost east–west (see Section 16.1): each pair of spots originates
in a strong toroidal (almost) east-west magnetic flux tube.

How strong do the toroidal fields become? It depends on how the area
of a flux tube is distorted by the stretching motion. As the field lines are
stretched, the area of a flux tube will likely be “squeezed.” How much will
the squeezing be? This is a complicated problem and it is not easy to give a
simple answer. But suppose, for the sake of numerics, that an increase in length
by 20% (after one rotation) leads to a reduction in area by (say) ϕ = 10%.
To conserve magnetic flux, the reduction in area by 0.1 in 25.7 days would
mean that the toroidal field would be larger than the initial value (3–6 G) by
≈1.1 after one rotation. After one year, i.e., after 14.2 equatorial rotations,
the toroidal field strength near the equator would be increased by 1.114.2, i.e.,
by a factor of 3.9. After two, three, four, and five years, the initial equatorial
field of 3–6 G would be amplified by factors of 15, 58, 220, and 870. Thus,
the toroidal field strength at the equator would be 2600–5200 G after 5 years.
These are comparable to field strengths observed in sunspot umbrae.
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Suppose our estimate of ϕ is too large: suppose a more realistic value is
ϕ ≈ 0.05. Then the toroidal field strength would require about eight years
to reach a strength of 1 kG. Thus, depending on the actual value of ϕ, the
continuous operation of LDR could result in fields as strong as sunspot fields
in time-scales of 5–8 years.

So far, we have considered only LDR as we see it at the surface. But the
amount of LDR varies as we examine different depths beneath the surface. In
Chapter 14, Figure 14.6, we see that the angular velocity difference between
gas at 0 deg latitude and 60 deg latitude is maximum at radial locations of 0.9–
0.95 solar radii. As a result, the stretching of poloidal fields will build up faster
at depths of 35–70 thousand km below the surface. Another region of strong
shear occurs at the interface between convection zone and radiative interior:
there, a strong shear occurs over a relatively short interval in the radial co-
ordinate. Magnetic fields which are frozen into such a highly sheared medium
may also generate fields of strength ≥1 kG in relatively short time-scales.

However, in the radiative interior, where the gas rotates almost as a solid
body, there is little or no tendency for the poloidal field to undergo stretching.

In view of these processes, toroidal fields of order 1 kG can be built up
in the course of a few years not just in the surface layers, but at all depths
throughout the convection zone. Now, the sunspot cycle is observed to last, in
fact, some 11 years on average. So the stretching time-scales estimated above
are in the right ball-park to allow surface fields to build up to kG strength in
the course of (roughly) one-half of the sunspot cycle.

Since stretching of field lines is an inherent process in a medium with frozen
fields and differential rotation, the question arises: what eventually stops the
process of stretching? Why do the surface fields reach strengths of a few kilo-
gauss and not much more? One reason has to do with buoyancy forces. To see
how this operates, consider the application of Equation 16.11 to a stretched
flux tube. The internal pressure pin is lower than the ambient pressure pext by
the amount B2/8π. How does the temperature inside the flux tube compare
with the temperature outside? To answer this, we note that, deep in the inte-
rior of the Sun, where radiative transport dominates (see Chapters 8 and 9),
photons can carry heat efficiently back and forth between neighboring parcels
of gas. These photons are not impeded by the magnetic field. As a result, the
temperatures inside and outside the flux tube remain essentially equal. There-
fore, reduced pressure pin corresponds to reduced density ρin inside the flux
tube: ρin/ρext = pin/pext = 1 − (B2/8πpext). Notice that, in order to avoid
negative densities inside the flux tube, the maximum value which the field
strength can have is Bmax =

√
(8πpext).

Because the flux tube contains gas with lower density than in the ambient
(nonmagnetic) medium, buoyancy forces act to push the flux tube upward.
How strong are the buoyancy forces? In the presence of gravity g and a density
difference ∆ρ = ρext − ρin, buoyancy creates an upward acceleration ab which
is given by (see Chapter 7, Equation 7.2):

ab = g
∆ρ

ρ
≈ gB2

8πpext
(16.14)
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How long does it take for a parcel of gas, subject to the acceleration ab,
to be buoyed up to the surface? To make the time as long as possible, let us
consider a parcel of gas starting from as deep as we can reasonably assume,
i.e., near the base of the convection zone. Such a parcel starts at a depth
D ≈ 2 × 1010 cm. What field strength should we use? Well, in the interest
of making the rise as fast as possible, let us consider B to have its largest
permissible value, Bmax. In that case, and assuming that the flux tube is free
to rise, Equation 16.13 indicates that the full acceleration of gravity (ab ≈ g ≈
2 ×104 cm sec−2) would come into play. In such conditions, the parcel would
rise to the surface in a time τr =

√
(2D/ab) ≈ 1400 sec. This is less than one-

half hour, a very short time indeed in the context of the solar 11-year cycle!
The effects of buoyancy have a well-defined effect in the Sun: they cause

flux tubes to move “up and out.” And the stronger the field, the faster the
buoyancy forces bring it up to the surface. As a result, when we try to impose
the condition that the Sun must make a strong (toroidal) field by amplifying its
(weak) poloidal field, there is a race against time. On the one hand, differential
rotation takes a finite time (5–8 years) to stretch the field and amplify it. On
the other hand, as the field becomes stronger, the stronger are the buoyancy
forces which want to drive the flux tube “up and out.”

As regards numerical values, we note that at the base of the convection
zone, where pext ≈ 3 × 1013 dyn cm−2 (see Chapter 7, Table 7.1), Bmax ≈
3 × 107 G. There is no evidence that fields as strong as this exist anywhere
in the Sun: the strongest field ever observed in a sunspot is no more than
a few kG. Therefore, in all likelihood, the fields which actually exist inside
the Sun are much weaker than Bmax. In view of Equation 16.14, the buoyant
accelerations ab in the “real Sun” are therefore much less than g. Therefore,
the time-scales τr for buoyant rise are much longer than 1400 sec. For a given
value of the starting depth D, the time scale τr scales as 1/

√
ab ∼ 1/B (see

Equation 16.14). Therefore, other things being equal, a flux tube containing
fields of 3 kG (= 10−4Bmax) will be buoyed up from the base of the convection
zone on a time-scale which is 104 times longer than the time-scale for Bmax.
This results in a time-scale of ≈ 1 year for the flux-tube to rise to the surface.

16.9 Why Does the Sun Have a Magnetic Cycle
with P ≈ 10 Years?

The Sun’s magnetic cycle occurs over a time interval P of 9–12 years, as
the sunspots come and go in numbers. The spots are the regions where the
field grows to its largest values (3 kG), and the poles are the locations where
the weak global fields (6–12 G) are easiest to identify.

In order to understand why the Sun has a cycle, let us start by considering
the global field of the Sun at time to. Let the global field at to be directed
in such a way that the Sun’s North pole has field lines which point outward
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from the Sun. Also at to, suppose for simplicity that there are no sunspots
on the surface, i.e., the Sun is at sunspot minimum, and ready to start a new
cycle. Let us see if we can understand the directions of the fields which occur
in sunspots in this new cycle.

Differential rotation operates on the poloidal field, and in the course of
5–8 years, the poloidal field lines are stretched out so as to form strong toroidal
fields (≥1 kG) beneath the surface. This can be considered as the growth
phase of the cycle. At certain locations and at certain (unpredictable) times,
when something causes the local toroidal field to become unstable, a section of
toroidal field rises up and breaks through the solar surface. The time-scale for
buoyancy to bring up a field of strength 3 kG to the surface is <1 year. The
breakthrough forms a pair of sunspots (leader plus follower) with a definite
polarity. Given the outward direction of the Sun’s North pole field in the
Northern hemisphere at time to, the leader during the growth phase will also
have field lines pointing outward from the Sun. But the follower will have field
lines pointing inward. Conversely, in the Southern hemisphere, at the same
time, pairs of spots will exhibit leaders with inward field lines and followers
with outward field lines. That is, during the growth phase of the cycle, the
leader spots in a given hemisphere retain the same sense of the magnetic field
as exists at the pole in that hemisphere at time to. This helps us to understand
Hale’s polarity law.

Each spot pair is surrounded by an active region, which retains the overall
polarity of the leader and follower spots. After a certain amount of time,
which may be as long as weeks or months, each active region decays. The
decay occurs due to the incessant “pounding” effects of supergranule motions
beating against the magnetic flux tubes, shredding the accumulated flux on
length-scales of a supergranule diameter (23–35 thousand km: Chapter 15,
Section 15.5) and spreading it out in a diffusive manner over larger and larger
areas.

To understand the diffusive decay of active regions, we note that the action
of horizontal flows of gas in supergranules act as elements of random walk,
pushing field lines around on the surface of the Sun. With diameters of order
d = 30,000 km, and horizontal velocities V of order 0.3 km sec−1 in the
supergranules, the associated diffusivity D ≈ dv is of order 1014 cm2 sec−1.
In the presence of such a random walk, the time-scale required to cover a
distance L is τd ≈ L2/D. Therefore, in order for a flux tube to be transported
from equator to pole, i.e., across a distance of L ≈ (π/2)R� ≈ 1011 cm, the
time required is of order 108 sec, i.e., ≈ 3 years.

In the process of diffusive spreading, the slight tilt which is characteristic of
spot pairs (i.e., they do not lie exactly East–West), and the predominant sense
of their polarities, becomes important: the follower spots lie at slightly higher
latitudes. As a result, in the process of shredding and spreading in (say) the
Northern hemisphere, the effect is overall to ensure that fields from the follower
spots diffuse toward the North pole. However, because they are followers, their
magnetic polarity is opposite to the global polarity which existed at time to
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at the North pole. As time goes on, and as more of the shredded and spread-
out follower flux accumulates “up North,” the North polar field is weakened,
eventually passing through zero strength, and the North pole takes on the
opposite polarity.

The analogous process is at work in the Southern hemisphere, causing the
South pole also eventually to reverse sign. Because the reversal of the field
depends on diffusive processes, the reversal does not occur at a precise instant
of time: rather, it happens gradually over time. As a result, the polar reversals
need not occur at exactly the same time in both hemispheres. But eventually,
by time to + P , both poles reverse their polarities, and the Sun enters a new
cycle.

What is the value of the cycle time-scale P? The physical properties of
the Sun itself set the various time-scales which go into determining P . First,
there is a time-scale on which fields can be amplified by differential rotation
(5–8 years); second, there is a time-scale for the fields to be buoyed up by
gravity to the surface (≈1 year); third, there is a time-scale for the turbulence
to shred and disperse the fields up to the polar regions (≈3 years). Combin-
ing these three time-scales, we see that a time interval of 9–12 years could
encompass all of the elements which contribute to a solar cycle.

This helps us to see why the Sun has a magnetic cycle whose length is
measured not in millennia or centuries, and not in minutes or hours, but in
time-scales of about 10 years. The time-scale of the solar cycle is determined by
the Sun’s own differential rotation, its gravity, the diffusivities of supergranule
flows, and the linear extent of its surface.

16.10 Releases of Magnetic Energy

We have seen that magnetic fields have energy densities equal to their
pressures, i.e., Wmag = B2/8π ergs cm−3. In favorable circumstances, the
energy in the field can be converted into other forms. The two most prominent
classes of events in the Sun which owe their existence to release of magnetic
energy are flares and CMEs. We will discuss flares in Chapter 17, in the context
of the solar corona, and CMEs in Chapter 18, in the context of the solar wind.

Exercises

16.1 Calculate the Zeeman splitting of a line at λ = 6000 Å in fields of 1, 100,
and 104 G.
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16.2 Consider an electron, a proton, and a lead nucleus gyrating in the Earth’s
magnetic field (B = 1 G) with a variety of energies. Calculate the radius
of gyration for each particle in cases where the kinetic energy is (a) 1 eV,
(b) 1 MeV, and (c) 1 GeV.

16.3 In the space between the stars (the interstellar medium: ISM), energetic
particles (galactic cosmic rays) gyrate about a field with a strength of
about 3 × 10−6 G. Determine the relativistic γ factor for an ultrarela-
tivistic proton which has a radius of gyration of 10 AU in this field.

16.4 Calculate the Alfven speed in the ISM, where the gas number density is
1 proton cm−3. (The mass of a proton is 1.67 ×10−24 gm.).

16.5 Calculate the range of Alfven speeds in the interplanetary medium near
Earth: the field strengths range from one to 10×10−5 G, and the number
densities range from one to 10 protons cm−3.
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Chapter 17

The Corona

Since ancient times, people who are fortunate enough to witness a total eclipse
of the Sun have been able to see a remarkable phenomenon with the unaided
eye: this feature becomes visible during the short interval of time (no more
than 7–8 minutes) when the brilliant light from the photosphere of the Sun is
blocked totally by the Moon. When the total eclipse begins, the disappearance
of the solar photosphere does not mark the onset of the complete darkness of
night. Instead, witnesses see a faint residual brightness in an extended region
surrounding the dark side of the Moon. At its brightest, the faint light has an
intensity which is no more than 5 × 10−6 times the brightness at the center
of the solar disk (van de Hulst, 1950). The faint light is the corona, the Latin
word for “crown,” because it appears that the Sun is “wearing” a (faint)
covering on top of its brilliant (but hidden) photosphere.

In certain eclipses, the corona is seen to extend more or less uniformly
all the way round the dark Moon. But in other eclipses, the corona is seen
to be concentrated in localized regions. These different behaviors can be seen
in Figure 17.1. In the left image, obtained in 1988, the corona is brighter at
low latitudes, with bright elongated “streamers” radiating outward close to
the equatorial plane of the Sun. At the same time, one notices that there
exist obvious decreases in brightness (or even a total absence of brightness)
near the North and South poles of the Sun. At those locations, there are dark
areas which can be seen extending all the way in to the edge of the Moon’s
disk. The dark areas in the polar regions are referred to as “coronal holes”:
the holes are regions where the material is less dense than elsewhere. In the
right-hand image, obtained in 1980, bright features can be seen in the corona
at all azimuths: not that all areas are equally bright, but at least there is little
or no evidence for regions where the corona is completely dark. The difference
in the Sun between 1980 and 1988 has to do with the magnetic fields: in 1980,
the Sun’s magnetic activity was at a maximum (in the 11-year cycle), while
in 1988, the magnetic activity was close to minimum.

To the unaided eye, the corona has a pearly white color. For this reason,
the corona as seen in Figure 17.1 is referred to as the “white-light corona.”
Subsequently, we will compare this corona with what is observable in other
spectral regions, especially in X-rays. Instrumental measurements show that
the spectrum of the white light corona is more or less identical to sunlight,
apart from the presence of some emission lines which have no counterpart
in the photosphere. The corona appears brightest at locations close to the
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FIGURE 17.1: (See color insert following page 202.) The corona as
seen during eclipses in 1988 (left) and 1980 (right). Both images are from the
website of the High Altitude Observatory, a division of the National Center
for Atmospheric Research, funded by the National Science Foundation.

surface of the Sun, and the brightness decreases with increasing distance from
the photosphere: this can be seen by inspection of Figure 17.1. At greatest
extent, the corona (or at least segments of it) remains visible out to radial
distances that are as large as one solar radius or more.

The origin of the corona i.e., the identification of the physical process(es)
which heat(s) the corona, is a long-standing problem in solar physics. Mag-
netic fields play a key role in structuring the corona, and in heating it. In
this chapter, we summarize the physical parameters which have been deter-
mined for the corona in various locations on the Sun. These provide boundary
conditions which have to be explained by solar researchers.

17.1 Electron Densities

Quantitative measurements of the brightness of the corona during eclipses
indicate that the brightest regions of the corona, near the edge of the Moon’s
disk, have intensities of no more than 5×10−6 times the brightness at the center
of the (uneclipsed) solar disk. The intensity falls off rapidly with increasing
radial distance: at a radial location of two solar radii, the coronal brightness
has fallen off by a factor of at least ten, and in some locations (near the
poles) by more than a factor of 100. The steep radial profile of the brightness
of the coronal light contains important information about the radial profile
of electron densities in the corona. However, the brightness is not the only
information-containing parameter in the white light corona.
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A remarkable feature of the white light corona (at least out to radial
distances of a few solar radii) is that the light is polarized. Coronal light in
which the electric vector is in the radial direction (pointing directly away from,
or toward, the Sun) differs in intensity from coronal light in which the electric
vector is in the tangential direction. The difference is by no means small: at
radial locations of one to three solar radii, the degree of polarization can be as
large as 50%. This significant polarization indicates that coronal light arises
as a result of scattering of radiation off free electrons. The radiation which
is being scattered comes from the nearby abundant supply of photons: the
photosphere. By fitting the observed values of not only the brightness but
also the degree of polarization as a function of radial distance, it is possible
to extract the radial profile of electron density.

Results obtained by these methods indicate (Newkirk, 1967) that the elec-
tron densities in the inner corona fall off steeply as the observing instrument
is pointed progressively farther from the Sun. For example, at radial locations
of two, five, and ten solar radii, the densities are smaller than the near-Sun
values by factors of about 100, 104, and 105. The radial profile of density is
different in the polar regions from what it is at the equator: the corona is
denser (at a given radial location) in the equatorial plane than in the polar
regions. The radial profile of density is also different at the minimum of solar
activity from what is observed at the maximum of solar activity: the corona
(at a given radial location) is denser at solar maximum. The coronal den-
sity also varies depending on whether one observes inside a streamer or out-
side.

However, in all cases the density profile decreases monotonically as one
observes farther from the Sun. The coronal regions which lie closest to the Sun,
where the densities are highest, are referred to as the “base of the corona.”
The numerical values of the density in the various cases listed above are found
to lie between 108 and 109 cm−3 at the base of the corona. We shall see later
that other methods of estimating densities yields results which overlap with
this range.

17.2 Spatial Structure in the White Light Corona

A striking feature of both images of the corona in Figure 17.1 is the nonuni-
formity in the coronal brightness. If an instrument is used to measure the local
brightness around a circle at a fixed radial location (say, r = 1.2R�), i.e., if
one measures the brightness at different latitudes, the brightness will be found
to be larger in certain latitudes, and smaller at other latitudes. The corona
at solar minimum (1988) is an extreme case of this: there are regions near
latitudes of +90 and −90 degrees (at the top and bottom of the image) where
the brightness goes to essentially zero. In 1980, the brightness variations as a
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function of latitude are not as extreme. However, even the unaided eye can
see that in the right-hand image in Figure 17.1, there exist brighter and less
bright regions of the corona at a fixed radial location. In other words, the
corona exhibits large-scale spatial “structure.” The brightest structures are
referred to as “streamers.”

In both images, several streamers can be identified which start off as fea-
tures which are quite broad near the Sun, but become narrower as the height
increases above the solar limb. In some cases, the narrowing proceeds to such
an extent that, at a certain height, the streamer narrows down to a “cusp,”
above which a narrow straight-line feature (a “spike”) extends farther from
the Sun. A particularly clear example can be seen at the bottom of the 1980
image in Figure 17.1, where the spike can be traced with the eye almost to the
edge of the field of view. Because of the similarity to certain military helmets
which were worn in the World War I era, these structures in the solar corona
are called “helmet streamers.”

A question that is of interest as regards the physics of the Sun is the
following: what are the typical linear sizes of the structures? Visual inspection
of both images in Figure 17.1 reveals that within one quadrant of the Sun’s
limb, there is room to “fit in” perhaps two to three helmet streamers. This
suggests that the base of each streamer may extend up to as much as a few tens
of degrees of solar latitude. Recalling that the radius of the Sun is 7×1010 cm,
and therefore, this corresponds to 57 degrees of latitude, we see that the bases
of helmet streamers span regions of the Sun which are not small compared
to a solar radius. The linear extent of helmet streamers at their base may
therefore be as large as several times 1010 cm.

The fact that the corona contains significant spatial structure contains
valuable information about the origin of the corona as a whole. We shall see
below, when we examine images of the Sun obtained in X-rays, that spatial
structure plays a key role in determining coronal properties. We shall return
to this point once we have described how the temperature and density of the
corona are measured.

17.3 Electron Temperatures

The physical parameters of the corona, specifically its density and tem-
perature, cannot be derived by the techniques which were used to study the
photosphere. There, the theory of radiative transfer was the tool which pro-
vided information as to the variation of physical quantities as a function of
optical depth. In the corona, the gas is so rarefied that optically thin condi-
tions prevail at all wavelengths which are visible to the unaided eye. So we
have to rely on different techniques if we wish to determine numerical values
for the key physical parameters such as density and temperature.
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17.3.1 Optical photons

The first reliable estimates of temperatures in the coronal gas were ob-
tained by Edlen (1945), who identified certain emission lines in the visible
spectrum of the corona.

The optical emission lines in the coronal spectrum had been known for
some years before Edlen’s work, but they had not been identified. There was
even talk of assigning them to a hitherto unknown element “coronium.” But
in an impressive feat of spectroscopic detective work, Edlen showed that the
strongest coronal emission line in the red part of the visible spectrum (at
λ = 6375 Å) originates as a transition between two fine-structure energy
levels which exist in the Fe X ion, i.e., iron with nine electrons removed.
Edlen also showed that the strongest coronal emission line in the green part
of the visible spectrum (at λ = 5303 Å) originates in a transition between
two fine-structure levels in the Fe XIV ion, with 13 electrons removed. The
removal of nine or 13 electrons from iron atoms is an energetic process: the
electrons in the plasma must have a temperature of at least 1 MK. (In what
follows, we use the abbreviation MK for million degrees Kelvin.)

Since Edlen’s discovery of these large temperatures, the key question about
the solar corona has been: how does the Sun manage to heat up electrons
in its atmosphere to temperatures which are at least 200 times hotter than
the photosphere? Already when we discussed the chromosphere (Chapter 15),
we raised the question as to how chromospheric gas could become heated
above the photospheric temperature. In the chromosphere, the problem was
relatively mild: we “only” had to explain why the temperature should increase
above the photospheric value by a factor of about two. In that case, mechanical
heating due to acoustic waves was found to be adequate to provide much of
the chromospheric heating, at least in the low-to-mid chromosphere. When
we come to the corona, we are faced with an analogous problem, except that
now we have to account for an increase in temperature by a factor of at least
200. To be sure, we are dealing with gas that has a lower density than the
gas in the low-to-mid chromosphere: as a result, even a relatively small flux
of mechanical energy may be all that is needed to boost the temperature to
the MK mark. Nevertheless, the questions remain: what is the source of the
mechanical energy? and how much is needed?

Although Edlen’s major achievement was to help to determine the temper-
ature in the corona, his study also helped to set an upper limit on the electron
density in the corona. To see why this is so, we note that the two coronal emis-
sion lines which were analyzed by Edlen were found to be forbidden lines: the
transitions occurred in both cases between the P3/2 ground level and a fine-
structure P1/2 level which lies about 2 electron-volts (eV) above the ground
level. Electric dipole transitions are not allowed between such levels according
to the common selection criteria which apply to LS coupling in an atom. But
magnetic dipole transitions can occur: Edlen found that their radiative proba-
bilities are in the range 10–500 sec−1. This requires that the Fe X and Fe XIV
ions must be preserved free from collisions for time-scales of up to 0.1 sec. This
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sets an upper limit on the local electron density. The mean free time between
collisions τc is given generally by the formula 1/(NeσV ), where σ is the colli-
sion cross-section. For Coulomb collisions, σ ≈ 2 ×10−4/T 2 ≈ 2 ×10−16 cm2

in the corona (with T = 1 MK). The electron thermal velocity has a mean
value of 7×105√T cm sec−1, i.e., V ≈ 7×108 cm sec−1 in the corona. There-
fore, in order to ensure that the mean free time between collisions is longer
than 0.1 sec, Ne should not exceed 109 cm−3. As we have already seen (Sec-
tion 17.1), the density at the base of the corona is indeed observed to be not
significantly in excess of this limit.

In passing, we note that the fine-structure splitting of about 2 eV between
the P3/2 and the P1/2 levels in Edlen’s ions is very large compared to the
fine-structure splitting that we normally see in optical spectra. A famous pair
of lines in the yellow part of the solar optical spectrum, the lines which were
labeled the D lines by Fraunhofer, lie at wavelengths of 5890 and 5896 Å. The
separation of the lines occurs because of the fine structure splitting between
P3/2 and P1/2 levels in neutral sodium, analogous to Edlen’s lines. However,
in the case of the yellow lines, the fine-structure splitting is only 0.002 eV, i.e.,
three orders of magnitude smaller than in Fe X and Fe XIV. The difference
arises because of the highly stripped nature of the ions in Edlen’s study.

17.3.2 X-ray photons

At temperatures of order 1 MK, the mean thermal energies of the particles
in the coronal plasma are of order 0.1 keV. In such a plasma, much of the
radiation emerges in spectral lines with energies of order 0.1 keV, extending
in energy up to a few times this value.

Photons with energies of 0.1–1 keV have wavelengths of 100–10 Å. Such
photons are referred to by astronomers as “soft” X-rays. (“Hard” X-rays
are those with energies of ≥10 keV.) Soft X-rays are strongly absorbed in
the Earth’s atmosphere, and therefore, cannot be observed from the ground.
Direct detection of the strongest lines in the coronal X-ray spectrum had to
await the launching of rockets and spacecraft which would carry X-ray in-
struments, with spectral capabilities, into regions of space above the Earth’s
atmosphere. Such instruments were first launched in the late 1940s, using
rocket technology which had been developed during World War II. Solar
X-ray astronomy came into its own in the 1960s with the launch of a se-
ries of satellites called Orbiting Solar Observatories (OSO), and also with the
flight of the Skylab space station (in orbit in 1973–1974). The last in the OSO
series, OSO-8, was launched in 1975.

An example of an X-ray spectrum of a region on the Sun is shown in
Figure 17.2. The wavelength range (13–18 Å) corresponds to photon energies
between (roughly) 0.5 keV and 1 keV.

It is striking to notice in Figure 17.2 how completely different the spectrum
of the Sun is at X-ray wavelengths compared to what we see when we view the
Sun in visible light. In the latter, there is a strong continuum (which we can
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FIGURE 17.2: X-ray spectrum of the Sun between wavelengths of 13 and
18 Å obtained during a University of Leicester rocket flight December 6, 1970
(Parkinson, 1973). (Used with permission of K. Pounds, Professor of Space
Physics, University of Leicester, and Director of the Research Group in change
of the 1970 rocket experiment.)

see with our own eyes when a rainbow is visible), from which many absorption
lines remove light (see Chapter 3, Figure 3.4): this is characteristic of the
radiation which emerges from the optically thick photosphere. But when we
examine the coronal spectrum in Figure 17.2, we see that the continuum (if
there is one at all) is very weak, and the spectrum is dominated by a multitude
of strong emission lines.

By comparing the wavelengths of the lines in the spectrum with tables
of lines observed in laboratory plasmas, it is possible to identify the origin
of many of the emission lines from the solar corona in Figure 17.2. Interest-
ingly, and in corroboration of Edlen’s pioneering work on the interpretation of
optical photons, many of the observed X-ray lines can be assigned to highly
stripped stages of ionization of some of the more abundant elements in the
Sun, including oxygen, neon, and iron. For the lines which are present in
Figure 17.2, the emitting element with the highest levels of ionization is Fe,
including Fe XVI and Fe XVIII, i.e., iron which has lost two and four more of
its electrons than the most highly ionized iron that was discussed by Edlen.

Prominent in the solar X-ray spectrum are the Lyman-series lines of the
hydrogenic ions of several elements. The Lyman lines occur when an electron
makes a transition into the ground state (the n = 1 level) from levels with
n = 2, 3, 4, 5 . . . . A hydrogenic ion is one in which only one electron remains
in bound orbit around the nucleus. In an element of atomic number Z, the
Bohr model of the hydrogen atom indicates that Lyman lines are predicted
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to lie at wavelengths which are proportional to 1/Z2. Thus, the first four
lines in the Lyman series are predicted to lie at wavelengths of 1216 Å/Z2,
1026 Å/Z2, 973 Å/Z2, and 950 Å/Z2, respectively. In the case of oxygen, the
hydrogenic ion O VIII has Z = 8. As a result, the wavelengths of the first
four Lyman lines of O VIII are predicted to be 19.0 Å, 16.0 Å, 15.2 Å, and
14.8 Å. In Figure 17.2, the last three of these lines are labeled as O VIII
lines: the longest wavelength line lies off-scale to the right. Other spectra of
the Sun, obtained over a wider wavelength range, and obtained during flares
(see Section 17.18) show Lyman-α lines of the hydrogenic ions of O at 19.0 Å,
Ne(Z = 10) at 12.16 Å, Mg(Z = 12) at 8.4 Å, Al(Z = 13) at 7.2 Å, Si(Z = 14)
at 6.2 Å, S(Z = 16) at 4.75 Å, and Ca(Z = 20) at 3.0 Å.

The presence of highly stripped ions is a clear indication of high tempera-
tures for the electrons in the plasma which emits the lines. How high are the
temperatures? To estimate these, we can do the following thought experiment:
suppose we were to strip the last remaining electron off O, Ne, and Mg, how
much energy would that require? To answer this, we note that, according to
the Bohr theory of the atom, the ionization potentials I(Z) required to strip
all Z electrons off an element with atomic number Z are larger by factors of
Z2 than the ionization potential of hydrogen (13.6 eV).

Now when we applied the Saha equation to a medium with low elec-
tron pressure (such as occur in the chromosphere and corona), we found that
hydrogen begins to undergo significant (50%) ionization at temperatures of
7100–7200 K (see Chapter 4, Section 4.3). Analogously, in order to gener-
ate significant populations (50%) of the hydrogenic ions of O, Ne, and Mg,
we need to solve the Saha equation θI − 2.5 log T = − log pe(see Chapter 4,
Equation 4.6) for cases with I = I(Z). In the low corona, the electron pressure
does not differ greatly from that in the upper chromosphere (see Section 17.9).
Therefore, if we set log pe = 0 (as in Chapter 4, Section 4.3, for the upper chro-
mosphere), we shall not make a serious error. The logarithmic temperature
term is slowly varying, and so the solution for the temperature of 50% ioniza-
tion in each ion is roughly T ∼ Z2. Since the appropriate T for 50% ionization
is about 7000 K for hydrogen (Z = 1), when we set Z = 8, 10, and 12, we find
that 50% of O, Ne, and Mg are in the hydrogenic state when the temperature
has values of roughly at T = 0.5–1 MK.

Thus, the observational detection of Lyman-α lines of hydrogenic O and Ne
(and also other elements, including Mg) in the solar X-ray spectrum provided
significant corroboration that Edlen (1945) was correct in his identification
of the red and green emission lines in the visible spectrum of the corona as
arising in highly stripped iron.

17.4 Temperature of Line Formation

Each emission line in the X-ray spectrum of the Sun, arising as it does
from a specific element (say, Fe), and from a specific stage of ionization of

T&F Cat # C3074, Chapter 17, Page 288, 15-7-2009



The Corona 289

that element (say, Fe XIV), is emitted from gas in which the temperature
is not strictly uniform, but spans a finite range. However, if we observe a
strong line from Fe XIV emitted by the coronal gas, this tells us that the
range of electron temperatures in that gas cannot be arbitrarily broad. If the
temperature were to be too low, the fraction of Fe which is in ionization stage
XIV would be negligible, and so all lines originating in the Fe XIV ion would
be weak. If the temperature were to be too high, one or more electrons would
be stripped from the ion, forming Fe XV or higher, and X-ray lines from Fe
XIV would no longer be emitted in significant quantities. As a result, there
exists a finite range of temperatures over which any given X-ray line is emitted
with significant efficiency. In fact, detailed atomic structure calculations show
that any given ion (say, Fe XIV) is present with maximum relative abundance
over a finite range of temperatures. Most importantly, the relative abundance
of (say) Fe XIV peaks at a certain temperature: according to the calculations
of Jordan (1969), the peak abundance of Fe XIV occurs at about 2 MK. For
Fe X, the peak abundance occurs at T = 1 MK (see Figure 17.3).

Now it is true that at T ≈ 2 MK, gas containing iron will contain some iron
ions which have lost “only” eight or 10 or 12 electrons, while other iron ions
will be present which have lost 14 or 16 electrons. However, the dominant ion
of iron in that gas is (according to Figure 17.3) Fe XIV. As a result, spectral
lines which originate in transitions between energy levels of the Fe XIV ion
(such as Edlen’s “green line” in the visible spectrum) will be maximally strong
in gas with T ≈ 2 MK.

Because each line originates in a certain stage of ionization, there is a
more-or-less well-defined temperature at which each line is emitted with peak
efficiency. Given the existence of such a peak, it is reasonable to refer to
“the temperature of formation” Ti(f) of each line (labeled by i) in the X-ray
spectrum.
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FIGURE 17.3: Fractional abundances of different ionization stages of iron
as a function of electron temperature. The ordinate is the ratio of the density
of Fe in ionization stage m+ to the total density of Fe. Each curve in the
figure is labeled with the integer m. Thus, m = 0 would correspond to neutral
iron, Fe I, and m = 9 and 13 correspond to Fe X and Fe XIV respectively.
(From Jordan, C. 1969. Monthly Not. Royal Astron. Soc., 142, 501. Used with
permission from Blackwell Publishing.)
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Note that the temperatures we refer to in discussing ionization processes
are electron temperatures: they are measures of the mean thermal speeds of
electrons in the plasma. Why do the temperatures refer to electrons? Because
it is the fast motion of passing (free) electrons which determines whether or
not an iron ion in that gas, in the presence of those free electrons, can retain
its own bound electrons, or whether it would be energetically favorable to
move to a higher ionization stage, or to a lower one. And it is also the passing
(free) electrons, with their characteristic thermal speeds of order kT, that are
responsible for inducing transitions of bound electrons in (say) Fe XIV from
a lower to an upper energy level.

17.5 Pressure Scale Heights in the Corona

Now that we know the coronal temperature, it is useful to consider the con-
cept of scale height (as defined in Chapter 5, Section 5.1). This concept applies
to a medium which is in hydrostatic equilibrium: the low corona (within a
radial distance of one to two solar radii of the surface) is such a medium.
(However, as we shall see in Chapter 18, the more distant corona is definitely
not in hydrostatic equilibrium.) Applying the values of coronal temperature
1–2 MK, and mean molecular weight of 0.5 (since hydrogen is essentially com-
pletely ionized), we find that the scale height in the corona Hc is of order
0.5–1.0 ×1010 cm.

The magnitude of the scale height helps us to understand why the observed
brightness of the corona (at most a few millionths of the brightness of the
photosphere) corresponds to electron densities of 108−9 cm−3 (as reported in
Section 17.1 above). In order to see this, let us recall what happens when
we make an observation of coronal brightness from the Earth. Because of the
steeply falling radial profile of coronal density, when an Earth-based observer
makes measurements of coronal brightness, the line of sight can be thought of
as a column which passes through the corona. At one point, that column passes
more closely to the Sun than at other points of the column. Let this point be
at radial location rp. The local number density of electrons at that location
is Ne(rp). The column density of electrons along the line of sight is therefore
given by Ne(rp) times an effective path-length L through the corona. The
reason we see the corona at all is because the Ne(rp)L electrons per sq. cm.
in that column are able to scatter photons (from the photosphere, hidden
behind the Moon during a total eclipse) into our line of sight. The density is
stratified with a scale-height, Hc, with average values of about 7 ×109 cm in
the low corona. In view of the stratification, our line of sight has an effective
path-length of a few times Hc, say L ≈ 2 ×1010 cm. Electrons along our line
of sight scatter light from the photosphere with a cross-section which equals
the Thomson value (see Chapter 3, Equation 3.1): σT = 6.6×10−25 cm2. The
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combination Ne(rp)LσT indicates the fraction of photospheric light which is
scattered into our line of sight by the electrons in the column. With maximum
brightness intensities in the corona observed to be ≈ 5 × 10−6 relative to
the photosphere (van de Hulst, 1950), and equating this relative intensity to
Ne(rp)LσT , we find that Ne(rp) is ≈ 4 ×108 cm−3.

17.6 Ion Temperatures

What can we say about the temperature of the ions in the corona? Are the
ion temperatures the same as the electron temperatures? In principle, if there
are sufficient collisions between ions and electrons, the thermal energy should
be equilibrated, and the ion temperatures should be equal to the electrons.
This is more likely to happen in denser gas, such as occurs in the dense
streamers. In the less dense gas of “coronal holes,” equilibration of ion and
electron temperatures is more difficult to achieve.

In the event that equilibration occurs, the thermal velocities of (say)
iron ions in a coronal region where the electron temperature is 1–2 MK
should have mean values Vth =

√
(2kTe/AmH) (where A = 56 for iron),

i.e., Vth = 17–24 km sec−1. Therefore, if we measure the line width of a coro-
nal iron line, the half-width of the line ∆λ should in principle have a value
that is related to λ by the relationship ∆λ = λVth/c. However, empirical
data reveal that the observed line widths are larger than the thermal pre-
dictions. What causes the excess line widths? Is it enhanced temperature of
ions relative to electrons? Possibly: some extremely high ion temperatures
(>100 MK) have been reported in fast solar wind (e.g., Cranmer et al., 2008).
But there is another possibility: there might be nonthermal motions (“turbu-
lence”) in the corona, and the ion lines might be broadened by those motions.
We have already come across the idea of “turbulence” in a very different con-
text: “microturbulence” plays a role in the photospheric spectrum of the Sun
(Chapter 3, Section 3.8.2). Quantitatively, however, there is a large difference
between photosphere and corona: whereas in the photosphere the amplitude of
the turbulence is 1–2 km sec−1, the amplitude in the corona is much larger, up
to 60 km sec−1 at altitudes of order 0.3R� above the surface (Wilhelm et al.,
1998). Waves on the magnetic field might explain this coronal “turbulence”
(Section 17.17): some models of coronal wind acceleration by magnetic waves
predict that the wave amplitudes could be as large as 60 km sec−1 (or more)
in fast wind (Tu and Marsch, 1997). The presence of such large turbulent mo-
tions makes it difficult to determine with confidence how much of the observed
broadening of coronal lines can be attributed to thermal motions. Thus it is
not always easy to say definitively whether or not the ion temperatures differ
from electron temperatures. But if it could be shown that indeed the heavy
ions were definitely much hotter than protons or electrons, that might contain
important information about the physical process which heats the heavy ions.

T&F Cat # C3074, Chapter 17, Page 291, 15-7-2009



292 Physics of the Sun: A First Course

17.7 X-ray Line Strengths: The Emission Measure

When an instrument in near-Earth orbit points at the Sun and measures
the solar X-ray spectrum quantitatively, the data provide a numerical value
for the strength of each line. The line strength can be quantified as the flux of
energy FE (in units of ergs cm−2 sec−1) at a distance of D = 1AU = 215R�
from the corona. Back at the Sun, the flux FS emerging from the corona is
larger than FE by the areal factor (215)2. Multiplying FS by the area of the
coronal source, we now have an estimate of the rate ES (ergs sec−1) at which
the coronal source emits energy in any given line. The aim of coronal analysis
is to convert ES into the electron density Ne in the coronal source.

To determine Ne, we start by noting that a particular coronal line from
a certain ion is generated by collisions between electrons and that ion: a col-
lision pumps an electron into the upper level, and then the photon emerges
when that electron returns to the lower level. Consider 1 cm3 of plasma in
which there exists one ion and one electron. Knowing the quantum properties
of the ion, and how fast the electron moves (i.e., temperature T ), it is pos-
sible to calculate quantum mechanically the rate at which the line would be
emitted. Multiplying by the photon energy hν, this yields an energy emission
rate Φ(T )(ergs cm3 sec−1) from that 1 cm3 volume at temperature T . At low
T , it is hard to excite any atomic levels, and so Φ(T ) → 0. And at the highest
T , above (say) 10 MK, all the elements are ionized, and there are no bound
levels to radiate lines: only the (weak) continua remain, and Φ(T ) is small. As
a result, for each element, Φ(T ) has a peak value at an intermediate tempera-
ture. In the solar atmosphere, where a broad mixture of elements are present,
each element contributes somewhat differently to the overall Φ(T ) function.
The result is a function which peaks at T = 1–3 × 105 K (see Figure 17.6).
This function is the “radiative loss function” for an optically thin gas.

If the 1 cm3 volume contains Ne electrons and one ion, the energy emission
rate is NeΦ. If the 1 cm3 volume contains Ne electrons and Ni ions, and if all
the photons can escape without being blocked by other ions, then the energy
emission rate is NeNiΦ(T ) ergs cm−3 sec−1. Finally, if the coronal source
we are observing has a volume of Vc, the source emits energy at a rate of
NeNiVcΦ(T ) ergs sec−1.

Given a measurement of ES (ergs sec−1) in a particular line, and knowing
Φ(T ) for that line, we can obtain the quantity NeNiVc for the coronal source
at temperature T . The ion density Ni of (say) Fe XIV depends on two factors:
(i) the abundance of Fe relative to hydrogen in the Sun, and (ii) the fraction
of Fe which is in the XIV stage of ionization (Figure 17.3). Item (i) is fixed by
a certain choice of chemical abundances for the Sun as a whole. Thus, Ni at a
given T is a known fraction ϕi of the local density NH of the most abundant
element, hydrogen. In the high-temperature corona, hydrogen is fully ionized,
such that Ne ≈ NH . As a result, from the quantity NeNiVc, we can obtain the
“emission measure” EM(T) = N2

e Vc of the coronal source at temperature T .
The units of EM(T) are cm−3.
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EM(T) is a quantitative indication of the amount of material at temper-
ature T in the source region. By choosing the lines we observe strategically,
i.e., lines which are formed at different temperatures, we can determine how
much material is present in the source as a function of T . Knowing EM, the
local density Ne can be estimated if the volume of the source region is known.
Another way to determine Ne is to measure the ratio of the observed intensi-
ties of certain pairs of lines in the X-ray spectrum: the relevant pairs of lines
share a common energy level in the parent ion. Since collisions control the
rate of photon emission in the various lines, quantum mechanics predicts that
the intensity ratio should depend in a well-defined way on the local density.

17.8 Densities and Temperatures: Quiet Sun
Versus Active Regions

In the quiet Sun, it has been found (Brosius et al., 1996), that EM(T)
is maximum at T = 1–2 MK, confirming the early work of Edlen (1945). In
active regions, EM(T) retains significant values up to T = 4–5 MK. Thus,
active regions contain material which is definitely hotter, by factors of up to
two to three, than that which is present in the quiet Sun.

In the quiet Sun, Brosius et al. (1996) report densities of 109 cm−3, while
in active regions, the densities are large by factors of four to five.

Thus, coronal material in active regions is somewhat hotter, and somewhat
denser, than coronal material in the quiet Sun.

17.9 Gas Pressures in the Corona

Let us notice an important point about the pressure at the base of the
corona. Now that we have information about temperatures and densities, we
can evaluate empirically the gas pressures at the base of the corona (pcb =
2NekT). Inserting T = 1–2 MK and Ne = 1–4 × 109 cm−3, we find coronal
base pressures in the range 0.3–2 dyn cm−2.

The physical significance of these pressures becomes apparent when we
compare them with the pressure at the top of the chromosphere, ptc. In Chap-
ter 15 (last paragraph), we noted that ptc is of order 0.6 dyn cm−2. It is im-
portant to notice that the range of pcb overlaps with ptc It seems that the
pressure at the base of the corona is essentially identical to the pressure at
the top of the chromosphere.

This discussion of pressure reminds us that when hydrostatic equilibrium
applies, it is useful to think in terms of pressure scale heights, Hp. The
scale height is defined to be the vertical distance across which the density
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(or pressure) falls off by a factor of e. In terms of this definition, the number
np of scale heights which separates the top of the chromosphere from the base
of the corona is given by np = ln(ptc/pcb). Inserting the above ranges of values
of ptc and pcb, and noting that np cannot be negative, we find that np ranges
from at most 0.7 to a value which approaches zero. In chromospheric gas,
Hp is a few hundred km. As a result, the transition from the chromosphere to
the corona occurs across a height range which is no more than 100–300 km:
it may in fact be close as zero.

On a scale of one solar radius, even a transition over 300 km can be con-
sidered relatively abrupt. If we perform the thought experiment of starting
in the photosphere, and moving up in altitude through the solar atmosphere,
we will find that, after we pass through the chromosphere, the onset of the
corona occurs over a height scale of no more than 300 km. Such a transition
is essentially discontinuous.

We shall return below (Section 17.15), once we discuss thermal conduction,
to discuss a physical reason how such a discontinuity might arise in the solar
atmosphere.

17.10 Spatial Structure in the X-ray Corona

Hot material at T = 4–5 MK in the corona is highly localized to active
regions: it is not found in the quiet Sun. On the other hand, the cooler coronal
material, at temperatures of 1–2 MK, can be found in the quiet Sun, which
extends over large portions of the Sun’s surface. As an illustration, we show
in Figure 17.4 an image of the Sun obtained in the 195 Å line of Fe XII, a line
which is formed at T ≈ 1.6 MK (see Figure 17.3). This line is representative
of the 1–2 MK material which is found in the quiet Sun.

Visual inspection of Figure 17.4 indicates that the 1–2 MK coronal material
is spread more or less everywhere throughout the corona: one can see a “fuzzy
glow” which permeates most of the field of view (apart from coronal holes).
However, when the Sun is imaged with an instrument which is sensitive to
hotter gas (T > 3 MK), the result is a more “patchy” picture: see Figure 17.5.

Apparently, as long as we exclude coronal holes, the Sun finds a way to heat
material almost everywhere in the corona to temperatures of order 1–2 MK,
but heating the gas to temperatures of > 3 MK is a less common phenomenon.

The contrast between the low-to-mid chromosphere and the hotter coro-
nal regions is worth noting. No matter where one looks on the surface of
the Sun, one finds chromospheric material at temperatures of 6–7000 K. But
the hotter corona is far from spherically symmetric. This suggests that what-
ever is heating the hottest parts of the corona is distinct from whatever is
heating the low-to-mid chromosphere. The spherical symmetry of the latter
led us (in Chapter 15) naturally to the conclusion that acoustic waves from
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FIGURE 17.4: (See color insert following page 202.) Image of the Sun
obtained in a line of Fe XII, with formation temperature 1.6 MK. The image
was obtained on August 29, 2008, when the Sun was very quiet. (Courtesy
of SOHO/EIT consortium. SOHO is a project of international cooperation
between ESA and NASA.)

the ubiquitous convection may be heating the low-to-mid chromosphere. In
Chapter 15, we provided quantitative evidence in favor of this hypothesis.

But in the hotter coronal regions, there must be additional localized sources
of mechanical energy. Since the hotter coronal regions coincide with active re-
gions, with their locally strong magnetic fields, it is natural to conclude that
the heating of coronal material to > 3 MK is associated somehow with mag-
netic processes. Magnetic fields can provide mechanical energy over and above
what is supplied by the acoustic waves from convection. One source of this ex-
tra energy is a variety of wave modes which exist in a magnetized plasma and
which have no counterparts in a nonmagnetic medium (Alfven waves: Chap-
ter 16, Equation 16.13). But there are also physical processes in a magnetized
medium which do not occur in a nonmagnetic medium. The most striking of
these (“magnetic reconnection”) will be discussed below (Section 17.18.8).

17.11 Magnetic Structures: Loops in Active Regions

The fact that localized magnetic fields are associated with coronal heating
receives strong confirmation from images such as Figure 17.5. This image was
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FIGURE 17.5: (See color insert following page 202.) Image of the
Sun in X-rays emitted by gas at temperatures hotter than (roughly) 3 MK
(Yohkoh/SXT). (Image is from the Yohkoh mission of ISAS, Japan. The X-ray
telescope was prepared by the Lockheed-Martin Solar and Astrophysics Lab-
oratory, the National Astronomical Observatory of Japan, and the University
of Tokyo with the support of NASA and ISAS.)

obtained with the YOHKOH spacecraft, where the imager responds mainly
to gas at temperatures of 3 MK and above. Even a casual inspection of the
image shows that the strongest emission comes from features which appear to
have shapes of a particular type, namely, the emission looks like it is coming
from features which are best described by the terms “arcs” or “arches.” Each
arch has well-defined “foot points” which are rooted in the solar surface, while
the central part of the arch loops up to a greater or lesser height above the
surface.

One particularly clear example of a loop appears in Figure 17.5 about half
way between the center of the Sun and the right-hand limb. That loop has a
length which can be estimated visually from Figure 17.5: the foot points are
separated by a distance Dp of about one-half a solar radius, i.e., ≈ 3×1010 cm.
Other loops in X-ray images of the corona can be identified as having smaller
foot point separations. In some images, loops can be identified with foot points
that are separated by not much more than a couple of times 109 cm. How high
does a loop with foot point separation Dp extend above the surface of the Sun?
At one extreme, magnetic field properties are such that it is unlikely that a
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stable loop would extent to heights which exceed Dp by a large factor: such
elongated loops would tend to “pinch off” near their base. At the other ex-
treme, it is also unlikely that the loop would reach up only a very low height,
much less than Dp: such a squat loop would need to have a shape which was
essentially flat on top. In general, a loop with foot point separation Dp is ex-
pected to have a maximum height above the surface which is also of order Dp.

The largest loops in Figure 17.5 have lengths which are comparable to the
spatial scales which were mentioned above in connection with the white-light
corona (Section 17.2). In fact some helmet streamers in the white-light corona
are spatially correlated with some of the loops seen in X-rays. The difference is
that X-ray observations allow the loops to be observed on the disk of the Sun,
and also in regions where the loops extend beyond the limb. In contrast, the
white-light data can record loops only when these are extended above the limb,
where the brilliant photosphere does not overwhelm the (faint) coronal light.

The loop shapes in Figure 17.5 are reminiscent of structure which one
observes in the laboratory when iron filings are scattered on a sheet of paper
held above a bar magnetic: the filings line up in shapes which include arcs
stretching from one end of the magnet to the other. In fact, comparison with
solar magnetic data obtained at the same time (with a different instrument)
as the X-ray image (such as Figure 17.5) shows that each arc (or loop) has its
foot points in an active region. Each loop follows the location of a magnetic
flux rope which emerges from the surface of the Sun at a location where
the magnetic polarity has a particular sign, and reenters the Sun at another
location, where the magnetic polarity has the opposite sign.

Such a loop is said to be “closed,” because both foot points are rooted
in the denser material of the solar surface. In the presence of a closed loop,
solar material is constrained to follow the loop field lines (Chapter 16, Sec-
tion 16.6.1): the material is forbidden from flowing across the field lines. In
this sense, it can be said that coronal gas is “trapped,” and density builds
up on the loop. As a result, if there are magnetic waves, or other processes,
which supply energy to the loop, the energy supply has a “captive audience,”
i.e., the trapped gas in the loop. This material can be subjected to heating,
which will be greater or less, depending on how much mechanical energy the
magnetic field can deposit in the gas. This is the ultimate source of the hotter
and denser gas which is observed in active regions (see Section 17.8).

17.12 Magnetic Structures: Coronal Holes

Coronal holes differ from the remainder of the Sun not merely in having
lower than average density. They also differ in the sense that they exhibit a
different magnetic topology. In the holes, the magnetic data indicate that the
magnetic field lines, rather than containing closed loops, are in fact open to
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space. As a result, coronal material is not trapped, but can stream out freely
from the Sun. In this situation, there is no “captive audience,” and the density
does not build up as much as on the closed loops of active regions. Whatever
supply of magnetic energy is available goes into accelerating the plasma away
from the Sun. So efficient is this acceleration that the fastest solar wind is
observed to emerge from coronal holes. This conclusion is true whether we
are considering the coronal holes which are permanently present around the
North and South poles of the Sun, or the coronal holes which occasionally
exist at low latitudes.

17.13 Magnetic Structures: The Quiet Sun

What about the solar image of the cooler coronal gas which appears in Fig-
ure 17.4? This image of quiet Sun shows that the material with temperatures
of 1–2 MK is found essentially at all locations in the quiet corona.

Is this 1–2 MK material also to be attributed solely to magnetic loops,
maybe smaller in size than those which feature prominently in the active Sun
(as in Figure 17.5)? In some cases, the answer appears to be “yes.” There
are certainly many small bright “points” in Figure 17.4: it is easy to imagine
that these may be due to small magnetic regions, each with its own localized
source of magnetic energy.

But what about the more diffuse, almost spherically symmetric “fuzzy
glow” that permeates essentially the entire image? Are magnetic fields also
responsible for this material? Maybe so: magnetic data show that magnetic
fields can be detected at essentially all locations of the quiet Sun. To be sure,
the strength of the fields is not as large as in active regions. But the fields
are present in the quiet Sun. And when coronal field structures are computed
from the surface fields, the calculations suggest that there do exist closed loops
in the quiet Sun. (This is in contrast to coronal holes, where the calculations
show that the fields are open.) However, from visual inspection of Figure 17.4,
it is not obvious that any loop-like structures can be identified with certainty
in the “fuzzy glow.” We shall revisit this in Section 17.17.2.

17.14 Why Are Quiet Coronal Temperatures
of Order 1–2 MK?

At the end of Chapter 15, we noted that the material in the upper chro-
mosphere is less and less efficient at disposing of any mechanical energy which
is deposited therein. The cooling mechanism which provided such an effective
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thermostatic effect in the low-to-mid chromosphere diminishes greatly in ef-
ficiency in the upper chromosphere. The reason for the decreased cooling ef-
ficiency is that hydrogen is becoming almost completely ionized, and free
protons plus free electrons are much less effective radiators than the bound
electrons in hydrogen atoms. (Recall that bound electrons are much better
absorbers of photons than are free electrons: see Chapter 3, Section 3.3.1.) As
a result, if any mechanical energy is deposited at the top of the chromosphere,
the temperature in the gas increases rapidly (“runs away”) to much higher
values.

What will stop the temperature run-away above the upper chromosphere?
The answer is: the run-away will stop when an additional source of cooling
(over and above radiation) comes into play in order to dispose of the deposited
energy. If and when that happens, a new equilibrium condition becomes pos-
sible.

Two additional cooling options are available in the solar corona. One has
already been mentioned in the context of coronal holes (Section 17.12): the
material begins to flow outward from the Sun. This option is available in
coronal holes because the magnetic field lines there are open to interplanetary
space. The openness of the field lines is a characteristic signature of coronal
holes.

17.14.1 Thermal conduction by electrons

But in the quiet Sun, the outflow option is not always available as a cooling
mechanism: the magnetic fields in the quiet Sun’s corona are for the most part
closed. Here, the new option which becomes available to assist in cooling is
the mechanism of thermal conduction.

We have already come across this mechanism when we discussed (in Chap-
ter 8) how heat is transported deep inside the Sun. According to Equation 8.1,
in the presence of a temperature gradient dT/dr, the flux of heat down the
temperature gradient is F = –kth(dT/dr), where kth = (1/3)λVtρCv is the
thermal conductivity. In Chapter 8, we calculated the value of kth in a man-
ner which was appropriate for the deep interior of the Sun: there, the principal
agent for the transport of heat was photons. Now we need to consider conduc-
tion in the corona, where photons are no longer the principal agents of heat
transport. In the corona, it is thermal electrons which transport the heat most
effectively.

Let us see what value of kth results from the electrons in the solar corona.
We need to evaluate four parameters. (i) The mean thermal speed of the
electrons is given by Vt =

√
(2kT/me). (ii) The mass density of the corona

is given by ρ = NeµmH . (iii) The specific heat per gram at constant volume
(Chapter 6, Equation 6.3) is given by Cv = (3/2)k/µmH. (iv) The mean free
path λ is given by 1/Neσ, where the collision cross-section is σ.

To calculate σ for electrons in the corona, we note that collisions occur be-
cause of the Coulomb forces. We have already seen (Chapter 11, Section 11.3)
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that the Coulomb cross-section is given by σc ≈ πe4Λ/(kT)2. In coronal con-
ditions, the numerical value of Λ is typically 10–20.

Combining the factors in Equation 8.2, we find that the thermal conduc-
tivity in the solar corona is given by

kth =
1
3

k2T 2

Neπe4Λ

√
2kT

me

3k

2µmH
NeµmH (17.1)

Collecting terms, we see that the density Ne cancels out, and the conduc-
tivity depends only on a power law of the temperature, according to kth =
koT

2.5. In the corona, inserting appropriate values for the physical constants,
we find that the numerical value of the coefficient ko is about 10−6 in c.g.s.
units.

The high power of the temperature dependence in kth (index = 2.5) is
noteworthy. It has the effect that although thermal conduction by electrons
is negligible in the (cold) photosphere (where photons dominate the trans-
port), this is no longer the case in coronal conditions. In the corona, with
temperatures which are 200–400 times larger than in the photosphere, the
electron thermal conductivity is a million times more effective than in the
photosphere. In the corona, thermal conduction is a physical process which
cannot be neglected.

Now that we have an expression for the thermal conductivity, we revert
to a discussion of energy balance, such as that which was given earlier (given
in Chapter 15, Section 15.12) in the context of the chromosphere. Given that
energy is deposited at a certain rate every second into 1 cm3 of the corona,
we need to know the rate Econd at which the energy is conducted out of that
cubic cm per second by conduction. This rate, i.e., the rate of energy loss per
unit volume, is given by the spatial divergence of the heat flux F .

To proceed, we note that in the presence of a closed loop of half-length L,
the coronal part of the loop (near the apex of the loop) has a temperature T
which is much larger than the foot-points. As a result, the temperature gra-
dient dT/dr along the loop is given roughly by T/L. This leads to a heat
flux downward toward the surface F = kthdT/dr ≈ koT

2.5T/L. The spatial
divergence of this flux, div F can be written roughly as F/L. Therefore, if we
express everything in c.g.s. units, the conductive contribution to the rate of
cooling is Econd ≈ koT

3.5/L2 ergs cm−3 sec−1.

17.14.2 Radiative losses

Although radiative cooling operates with reduced effectiveness in the corona
compared to the chromosphere, this is not to say that the radiative losses from
the corona should be neglected altogether. They do contribute to removing
energy which has been deposited in the coronal gas.

In the chromosphere, our discussion of radiative losses was cast in terms
of the local opacity (see the discussion in Chapter 15 after Equation 15.9).
Now that we are in the corona, it is more convenient (see Section 17.7) to
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FIGURE 17.6: Radiative loss function (labelled Λ in this figure, rather than
Φ(T )) as a function of temperature, for two different sets of elemental abun-
dances. Figure kindly provided by J. Raymond, Harvard-Smithsonian Center
for Astrophysics (2008).

express the radiative losses in terms of an optically thin loss function Φ(T )
(sometimes written as Λ(T ), where Λ is the Greek form of the initial letter of
the word “loss”). The function Φ(T ) (or Λ) is defined in such a way that for an
optically thin medium at temperature T , the rate of energy loss from 1 cm3

per second due to radiation is given by N2
e Φ(T ) (or N2

e Λ). The numerical
value of Φ(T ) (or Λ) at any given T depends on the particular mixture of
chemical elements which are present in the gas: if certain metals which “like”
to emit at certain temperatures are abundant, then the value of Φ(T ) (or Λ)
will be larger at those temperatures. Results obtained by Raymond (2008) for
Φ(T ) for two different mixtures of elements are plotted in Figure 17.6. (Gas
with “coronal abundances” differs from gas with “photospheric abundances”
mainly in containing more easily ionized elements.)

For both chemical mixtures, the radiative loss function has a maximum
value at a temperature of 0.1–0.2 MK. There is a sharp decrease in the loss
function at temperatures below 104 K, and a more gradual decline (almost
monotonic) in the loss function at temperatures between 1 and 10 MK. This
behavior is reminiscent of the shapes of opacity curves (Chapter 3, Figure 3.3).
This is no coincidence: the opacity due to lines and continua arises from the
same atomic levels as are responsible for effective radiative losses in an opti-
cally thin plasma.

We note that in the conditions which are appropriate to the quiet so-
lar corona, i.e., at temperatures of a few MK, the radiative loss function
decreases as the temperature increases. We can approximate the slope of the
curve in Figure 17.6 at temperatures between 1 and 10 MK by the function
Φ(T ) ∼ 1/T 0.5. Visual inspection of Figure 17.6 suggests that, for a gas with
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photospheric abundances, the numerical value of Φ(T ) in the temperature
range 1–10 MK can be approximated by Φ(T ) ≈ 10−19/T 0.5 ergs cm3 sec−1.

Then the volumetric loss of energy by radiation Erad = N2
e Φ(T ) ≈ 10−19

N2
e /T 0.5 ergs cm−3 sec−1.

17.14.3 Combined radiative and conductive losses

Now we can return to the energy balance in the corona. If mechanical
energy is deposited at a volumetric rate of Emech ergs cm−3 sec−1, this can
be balanced by the combined effects of radiation and conduction according to

Emech = Erad + Econd ≈ 10−19N2
e T−0.5 + 10−6T 3.5/L2 (17.2)

In order to arrive at the lowest energy state, the corona adopts a tem-
perature Tc such that the rates of radiative and conductive energy loss are
comparable: this makes the cooling time-scale as long as possible. At temper-
atures which are either higher or lower than Tc, the cooling time-scale would
be shorter, and the Sun would have to provide larger fluxes of mechanical
energy to compensate for the more rapid cooling.

Equating the two terms on the right-hand side of the above equation at
temperature Tc, we find that

T 4
c = 10−13N2

e L2 (17.3)

Let us convert from electron density to coronal pressure: p = 2NekTc. This
leads to

T 6
c =

10−13

4k2 (pL)2 (17.4)

Inserting the numerical value of Boltzmann’s constant k = 1.38 × 10−16

ergs K−1, we find

T 6
c = 1.3 ×1018(pL)2 (17.5)

Taking the sixth root of each side, we find

Tc = 1050(pL)1/3 (17.6)

where the units of Tc are degrees K.
What should we use for the pressure p? In the low corona, p is essentially

equal to the pressure at the top of the chromosphere (see Section 17.9). At the
top of the chromosphere (see Chapter 15, Section 15.12.4), p ≈ 0.6 dyn cm−2.

What values are appropriate for loop lengths in the corona? The discussion
above about spatial structure indicates that L values range from a few times
109 to a few times 1010 cm. Substituting these values, we find that at the
lower limit, pL ≈ 109, leading to Tc ≈ 1 MK. At the upper limit, pL ≈ 1010,
leading to Tc ≈ 2 MK.
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It is interesting that simply by considering the lowest energy configuration,
with equal loss rates in radiation and conduction, we have arrived at a range
of coronal temperatures which spans the observed range in the quiet Sun
(1–2 MK: Section 17.8).

To be sure, we have not solved the problem of coronal heating completely:
Equation 17.6 depends on the two parameters p and L, which are determined
by certain physical processes in the Sun. The value of p is ultimately deter-
mined by the flux of mechanical energy which is generated by the convection
zone. And the values of L are controlled by the processes which generate mag-
netic fields in the Sun. So in calculating Tc by means of Equation 17.6, let
us not read more than we should into the result: we can obtain a numerical
result for Tc only if we first turn to empirical results in order to identify the
most appropriate values to insert for p and L.

17.15 Abrupt Transition from Chromosphere
to Corona

We have already noted (Section 17.9) that the transition between chromo-
sphere and corona in the Sun occupies a spatial width that is quite narrow.
The thickness of the transition is no more than 300 km, and may be much
less. Now that we know about thermal conduction in the corona, we return to
the question: why is the transition so abrupt?

The answer has to do with the fact that with the hot corona lying above
the chromosphere, heat is conducted from the corona down into the chromo-
sphere. The corona adopts a thermal structure such that a certain heat flux
F = −kthdT/dr flows downward, supplying energy from above to the upper
chromosphere. This is distinct from the supply of (acoustic) energy which
emerges from the convection zone, and which enters the chromosphere from
below.

At coronal temperatures, kth ∼ T 2.5 is so large that a given heat flux F can
be transported by a small temperature gradient, dT/dr. But as the tempera-
ture decreases toward chromospheric values, the value of kth decreases rapidly.
In the upper chromosphere, where temperatures are lower than coronal values
by factors of 100, kth is a mere 10−5 times its coronal value. Therefore, in
order to transport the same heat flux F downward, dT/dr must become 105

times larger in the chromosphere than in the corona. That is, the temperature
gradient must become much steeper in the chromosphere than in the corona.

For numerical purposes, we note that in a coronal loop with half-length
L, dT/dr ≈ T/L. Inserting coronal values (T = 106 K, L = 109−10 cm), we
see that in the coronal portion of a loop, dT/dr has a numerical value of
typically 10−(3−4) K cm−1. In order to transport the same flux F in the much
less conductive chromosphere, we need to increase dT/dr by 105. This leads
to dT/dr ≈ 10–100 K cm−1. Of course, the heat flux may not remain strictly
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constant all the way down from the corona into the chromosphere: some of the
energy may be dissipated along the way by radiative losses. But even if only
1–10% of the coronal heat flux survives into the chromosphere, a temperature
gradient of order 1 K cm−1 would be required to transport that flux in the
upper chromosphere. In the presence of such a gradient, the transition from
the upper chromosphere (at T = 104 K) to a region where the temperature
is (say) 105 K, would occur across a spatial distance of no more than 105 cm,
i.e., 1 km.

Our previous estimate of the thickness of the transition (≤300 km), based
on a comparison of pressures (see Section 17.9), can easily accommodate such
a steep conductive structure. On the scale of the solar radius, the transition
region between chromosphere and corona is essentially a discontinuity.

The discussion in the present section is based on a highly idealized treat-
ment of conditions in the corona and chromosphere, as if there is a unique
temperature in the chromosphere at all locations, and a unique temperature
in the corona. Actually, as we have already seen, there are spatial inhomo-
geneities in the chromosphere (spicules) and spatial structures in the corona
(loops). In places where spicules exist, their lengths (up to several thousand
km) allow them to extend well into the corona. As a result, the localized
roughness of the solar surface is such that it is not accurate to think of a
uniform spherically symmetric thin shell of thickness 1 km separating the
chromosphere from the corona at all points on the solar surface. Instead, the
transition region occurs at different heights above the photosphere in different
locations, depending on local conditions. Nevertheless, wherever the transition
from chromosphere to corona does occur, it is abrupt, occurring across spatial
scales which may be as short as 1 km.

17.16 Rate of Mechanical Energy Deposition
in the Corona

Since the corona in the quiet Sun seems to be essentially always at tem-
peratures of 1–2 MK, it seems reasonable to conclude that the corona has
reached an equilibrium: as fast as the mechanical energy is deposited in unit
volume, the material in that volume disposes of the energy through radiation
and conduction losses (at comparable rates).

Now that we know the temperature and density of the solar corona, we
can evaluate the radiation loss rate Erad = N2

e Φ(T ) ≈ 10−19N2
e /T 0.5. In the

quiet Sun, where Ne ≈ 4 ×108 cm−3 (Section 17.5) and T = 1–2 MK, we find
Erad(QS)≈ 10−5 ergs cm−3 sec−1. In active regions, where Ne is enhanced
over quiet Sun by as much as 4–5 and T is enhanced by 2–5, Erad (AR) is
enhanced over quiet Sun values by a factor of at least 5. Thus, Erad (AR)≥
5 ×10−5 ergs cm−3 sec−1. Since conductive losses are essentially equal to the
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radiative losses, we see that the rate of input of mechanical energy into the
corona Emech must be roughly as follows:

Emech(QS) ≈ 2 ×10−5 ergs cm−3sec−1 (17.7)

Emech(AR) ≈ 10−4 ergs cm−3sec−1 (17.8)

It is worthwhile to compare these rates of energy deposition in the corona
with the rates of mechanical energy deposition in the chromosphere (see Chap-
ter 15, Equation 15.3): Emech(chr) = 0.3–3 ergs cm−3 sec−1. In each cubic
centimeter of the corona, mechanical energy is deposited at a rate which is
three to five orders of magnitude smaller than in the chromosphere. The de-
mands of the chromosphere for mechanical energy are much greater than the
demands of the corona. Despite the large reduction in mechanical energy de-
position rate in the corona, the greatly reduced density of coronal material
(compared to chromospheric densities) allows even this low rate of energy
input to heat the coronal gas to temperatures of 1–2 MK.

Now that we know the rate of emission Erad (QS) from unit volume of the
quiet corona, we can ask: how much power does the entire quiet corona emit
in the form of radiation? The quiet corona is distributed over essentially the
entire solar surface, i.e., it has an area A(QS) ≈ 4πR2

� = 6 ×1022 cm2. With
an exponential scale height Hc ≈ 7 ×109 cm in the low corona (Section 17.5),
the volume of the quiet corona is Vc(QS) ≈ A(QS)Hc ≈ 4 × 1032 cm−3.
Multiplying this by Erad (QS), we find that the radiative power of the quiet
corona is Lcor ≈ 4 × 1027 ergs sec−1. Comparing to the total power output
from the Sun (Chapter 1, Equation 1.11), we see that the corona radiates at
a rate which is only one millionth of the photospheric radiation rate.

17.17 What Heats the Corona?

The problem of coronal heating is an active topic of research interest. The
heating hypotheses can conveniently be divided into two major groups: waves
and nonwaves.

17.17.1 Wave heating

One possibility for heating the corona is that a flux of waves (of some sort)
is entering the corona and dissipating. According to this viewpoint, by analogy
with our discussion of the chromosphere (Chapter 15), the local volumetric
rate of energy deposition would be given by the divergence of the flux of energy
F (w) in the waves. Also by analogy with our discussion of the chromospheric
heating, the divergence can be approximated by the ratio F (w)/λd, where λd is
a dissipation length (see Section 15.11). In a stratified medium, if dissipation
is driven by nonlinear processes (such as shocks), λd might be a few times
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the local scale height. If this line of reasoning applies to the low corona, this
suggests that λd may be (2–3)×1010 cm. In the context of this “wave model of
coronal heating,” the necessary wave flux F (w) = Emechλd would be of order

F (QS) ≈ 5 ×105 ergs cm−2 sec−1 (17.9)

and

F (AR) ≈ 3 ×106 ergs cm−2 sec−1 (17.10)

Recalling that in the chromosphere, the wave flux F (chr) is estimated to
be in the range 107−8 ergs cm−2 sec−1 (see Chapter 15, Equation 15.2), we
see that the coronal flux of waves (if waves are indeed the source of coronal
heating) is smaller than the chromospheric wave flux by a factor of at least
three, and maybe by as much as 200.

In the chromosphere, the nature of the waves which perform the heating
(at least in the low-to-mid chromosphere) can be identified with a fair degree
of confidence: acoustic waves emitted by the turbulent convection beneath
the photosphere. As a quantitative confirmation of this hypothesis, the theory
of sound emission from convective turbulence predicts enough wave flux to
perform the required heating (Chapter 15, Section 15.12.2). Moreover, the
fact that convection is always present, and occurs at all locations of the solar
surface, means that the low-to-mid chromosphere is essentially spherically
symmetric on the solar surface.

But what might be the source of waves which could be responsible for
coronal heating? Could some acoustic waves be responsible? Since coronal
heating is stronger in active regions, it is natural to suspect that waves of a
magnetic nature might serve the purpose. Let us consider two candidates.

17.17.1.1 Acoustic waves?

What about acoustic waves? It is true that a large fraction of the acoustic
flux coming up from the convection zone is dissipated in the chromosphere.
But a “large fraction” does not necessarily mean “all.” Might there be some
acoustic wave flux “left over” at the top of the chromosphere? After all, even
if as much as 99.5% of a flux of 108 ergs cm−2 sec−1 were dissipated in the
chromosphere, the surviving 0.5%, i.e., 5 ×105 ergs cm−2 sec−1 would suffice
to supply the necessary flux of energy to heat the corona, at least in the quiet
Sun. The spherical symmetry of the acoustic flux could help to explain why
the “fuzzy glow” of 1 MK gas in the quiet Sun can be found almost everywhere
on the surface.

However, there are empirical reasons which make it difficult to accept
the acoustic wave heating possibility: the last of the OSO missions (OSO-8,
launched in 1975) was used to search for acoustic waves coming up into the
corona. The flux was found to amount to no more than 7×104 ergs cm−2 sec−1

(Bruner, 1978). This is almost an order of magnitude smaller than what is
required to heat even the quiet Sun corona (Equation 17.9). It seems that
there are simply not enough acoustic waves to heat the corona.
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17.17.1.2 Alfven waves?

We have seen (Chapter 16, Section 16.7.6) that the flux of Alfven waves in
the photosphere FA(∼B) could be of order 107−8 ergs cm−2 sec−1 in regions
where B = 10–100 G. Now, we have also seen (Equation 17.9) that a wave
flux of 5 ×105 ergs cm−2 sec−1 would suffice to heat the quiet Sun’s corona.
Comparison with FA indicates that a field strength of even 0.5 G in the pho-
tosphere (quite weak by solar standards) could be sufficient to provide enough
Alfven wave flux to heat the quiet Sun corona.

However, we must remember some important provisos. First, waves which
are generated in the photosphere must survive into the corona, and second,
the waves must be dissipated in the corona, i.e., on length scales of a few times
1010 cm. The first of these may be difficult to satisfy because Alfven waves
tend to be reflected from a jump in density. Now, between the photosphere
(where, with mass densities of 2–3 ×10−7 (Chapter 5, Table 5.3), the number
densities are of order 1017 cm−3) and the coronal base (where number densities
are ≈ 109 cm−3 Section 17.8), there is a reduction in density by ϕd ≈ 10−8.
This jump in density occurs mainly across a length scale of 1–2 thousand
km (the chromosphere), with a nearly discontinuous (smaller) jump between
chromosphere and corona (see Section 17.15). Waves with periods of a few
minutes (such as those emitted by gas circulating in granules), in regions
where the Alfven speed VA is at least a few km sec−1, will have wavelengths
λw = PVA which exceed 1000 km. In such a case, the Alfven waves will “sense”
the change in density from photosphere to corona as essentially a discontinuity.
Across a discontinuity where the density jumps by a factor of ϕd, the flux of the
transmitted wave is only 4

√
ϕd of the incident flux (Alfven and Falthammer,

1963). Using the above estimate of ϕd ≈ 10−8, the fraction of the incident
waves which survives into the corona is only 4 ×10−4. Thus, even if we were
to allow the field in the photosphere to be as large as 100 G, in which case the
photospheric flux is as large as FA ≈ 108 ergs cm−2 sec−1, the flux transmitted
into the corona might be no more than 4 ×104 ergs cm−2 sec−1. This is too
small to supply the wave flux even for the quiet corona (Equation 17.9).

It is possible that, rather than restricting attention to Alfven waves which
are generated in the photosphere, we should consider that the Sun may gen-
erate Alfven waves elsewhere. Magnetic reconnection (see Section 17.18.8)
events in the chromosphere or in the corona might provide localized sources
of Alfven waves. But it is hard to obtain quantitative estimates of wave fluxes
from such events.

17.17.2 Non-wave heating: the magnetic carpet

A hypothesis which relies on magnetic fields, but which may also explain
the near-spherical symmetry of the quiet Sun corona, is called the “magnetic
carpet” (Figure 17.7).

In Figure 17.7, the background (with local hot spots in white) repre-
sents a segment of an image of the Sun taken in the same Fe XII line as
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FIGURE 17.7: (See color insert following page 202.) Illustration of
the “magnetic carpet” in the solar atmosphere. (Image available for public
use at the NASA/Goddard website http://stargazers.gsfc.nasa.gov/images/
sun images/sunspots cmes occur/aerialcarpt.gif)

in Figure 17.4 above. The background reminds us that the “fuzzy glow” of
material at 1–2 MK is present at most locations in the solar corona. Super-
posed on the image are magnetic field lines. Each field line is rooted in a
pixelated feature on the Sun’s surface which is either white or dark. White
and dark pixels represent opposite magnetic polarity: therefore, each field line
begins and ends in opposite polarity spots, looping upward between one white
foot point and one dark foot point. As regards linear scale, each pixelated
feature is some 104 km across. (On this scale, 700 pixels = 1R�.)

Any given pixelated feature may have multiple field lines emerging from
it, each connecting to a separate pixel of opposite polarity at another loca-
tion. Thus, although field lines fill up most of the available space at high
altitudes, when one approaches the surface, the field lines become clumped,
or concentrated into specific “threads” which emerge from specific locations.
The analogy to a domestic carpet, with its multiple clumps of thread emerging
from a substrate, in which all clumps are “rooted,” leads to the nomenclature
”magnetic carpet” for the structure which dominates in the low solar corona.

However the analogy with a domestic carpet goes only so far. The Sun’s
magnetic carpet is not a static structure: far from it. Temporal variability
is of the essence because new magnetic fields are continually emerging from
beneath the solar surface. The image in Figure 17.7 is only a single “still frame”
taken from a movie which shows dramatic variability. Any particular one of the
many white and dark pixelated features which appear in the “still frame” in
Figure 17.7 actually emerges at a certain point in time, splits apart or coalesces
with neighbors, drifts around the surface because of granule motions, and
eventually disappears. The time-scale during which any given feature survives
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from emergence to disappearance has been found to be 1–2 days. As the
features on the surface evolve, driven by continual emergence of new magnetic
fields, the magnetic field loops in the solar atmosphere also evolve, expanding,
contracting, distorting in a multitude of ways (Schrijver et al., 1997).

One possible outcome of this complex process is that field lines in the
corona can find themselves in situations where they undergo a process known
as “magnetic reconnection” (see Section 17.18.8 below). Magnetic energy is
released in each reconnection event, and converted into heat. It is possible that
the energy which is released as a result of the multitude of reconnection events
which occur in the magnetic carpet every second may be the primary source
of energy which heats the coronal plasma. And because there is some field
present in essentially all parts of the Sun’s surface at any given time, coronal
heating due to the magnetic carpet could account for the “fuzzy glow” which
permeates most of the solar surface (see Figure 17.4).

17.18 Solar Flares

The most spectacular phenomena on the Sun are associated with explosive
events called flares. These are transient short-lived brightenings which can be
observed in all regions of the electromagnetic spectrum. Here, we first describe
the general properties of flares, and then examine the physical processes which
are at work.

17.18.1 General

Flares are difficult to see in the optical continuum (“white light flares”)
because the surface of the Sun is so bright: in a 2.5-year period around solar
maximum in 1980, only 12 white light flares were detected (Neidig and Cliver,
1983). Flares are much easier to detect in chromospheric lines: in a two-year
period 1978–1979, 15,500 flares were recorded in Hα (Kurochka 1987). Flares
are also easy to detect in X-rays, where the brightness of the entire Sun can
increase by an order of magnitude or more in a matter of minutes or even
seconds, and then decay to the previous level of brightness. A plot of intensity
of radiation as a function of time is referred to as a “light curve.”

Examples of flare light curves, as recorded by one particular series of X-ray
satellites (GOES 10,12) are shown in Figure 17.8. Along the abscissa is plotted
the time, covering a range of three days in 2005, when the Sun was moderately
active. The ordinate shows the soft X-ray flux measured by GOES in two
different wavelength (energy) ranges: 1–8 Å (1.5–12 keV) (upper curves), and
0.5–4 Å (3–25) keV (lower curves). Flares emit more energy at lower energies
(upper curves) than at higher energies (lower curves). The labels A, B, C, M,
and X along the right-hand side indicate the class of flare, depending on the
peak flux observed in the GOES 1 − 8 Å channel.
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FIGURE 17.8: (See color insert following page 202.) Time profiles of
soft X-ray flux emitted by the entire Sun in two ranges of wavelengths (ranges
of energies) during a three-day interval. Data are in the public domain. (From
Space Weather Prediction Center, Boulder, CO; National Oceanic and Atmo-
spheric Administration; U.S. Department of Commerce. With permission.)

A flare is characterized by a rapid increase in radiative flux, followed by
a slower decline. When data are obtained simultaneously in other wavelength
ranges (radio, optical and UV spectral lines), flares are also apparent as rapid
increases in those spectral regions, followed by slower declines. The various
time-scales may be different in different wavelength ranges. In the hardest
X-rays, the rise time-scale of a flare may be very abrupt, no more than one
second. As can be seen in Figure 17.8, the largest flare events observed in soft
X-rays may take the better part of one day to return to the “quiet Sun level,”
whereas the smaller events are complete in a matter of a few minutes.

17.18.2 Plasma temperature and density

In Figure 17.8, results are given for X-rays with two different energies. By
comparing the relative fluxes of flare X-rays of different energies, an estimate
of flare temperature can be obtained. These temperatures Tf are found to
range from 5 to 25 MK: the largest flares typically have higher temperatures
(Feldman et al., 1996). In comparison with the quiet (i.e., nonflaring) corona,
where T = 1–2 MK, we see that flares can involve a temperature increase by
as much as ten or more.
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FIGURE 17.9: Image of the full Sun taken in the Hα line during a large
solar flare. The flare is the brightest area in the image, occupying a signifi-
cant fraction of the active region in which the flare occurred. (Image avail-
able to the public on the NASA wevsite http://nssdc.gsfc.nasa.gov/image/
solar/killerha.gif)

Electron densities Nf in coronal flare plasma are also larger than the densi-
ties in the quiet Sun. For example, in a sample of flares analyzed by Moore and
Datlowe (1975), the mean Nf was found to be 0.2–0.7×1011 cm−3, depending
on certain assumptions about the flare volume. Compared with the quiet Sun
densities 0.4–1 × 109 cm−3 (see Sections 17.5, 17.8), the flare densities are
larger by a factor of up to 100.

17.18.3 Spatial location and extent

The X-ray detector on the GOES spacecraft (Figure 17.8) cannot make
an image of the Sun. The detector measures flux from the entire Sun. As
a result, there is no way to tell on which part of the Sun any given flare
occurred. But other instruments, which can make images in optical photons,
demonstrate unambiguously that flares occur in active regions, especially in
active regions where sunspots with opposite polarities are in close spatial
contact. This indicates that flares draw their energies (by a process to be
discussed below) from magnetic fields.

When the largest flares are imaged in Hα, they are found to spread out
spatially to cover an area which is a significant fraction of the area of the
active region (see Figure 17.9). The linear extent of the largest flares on the
surface of the Sun can be several times 109 cm, with areal coverage of order
1019 cm2. In the vertical direction, flare plasma may extend up to altitudes
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which are not greatly different from the extent on the surface. As a result, the
total volume Vf of a large solar flare can be 1028−29 cm3.

Although most of the attention in solar flare research is paid to the rapid
(and spectacular!) energy release process, there is actually another process
which also deserves attention: the build-up and storage of energy in the mag-
netic field prior to a flare. The latter process is much less dramatic than the
flare itself. Build-up and storage occurs slowly over time intervals of hours
and days. It occurs in active regions because magnetic field lines are rooted in
the photosphere, where convective motions are ubiquitous. At the footpoint
of a magnetic loop, convection pushes the field lines in complicated ways,
with twistings and stretchings and braidings. These complex motions causes
stresses to build up in the field lines, and the stressed fields serve as a reser-
voir in which free magnetic energy is stored. The build-up of free energy can
continue as long as no process occurs to stop it. At certain times and places, a
trigger comes into operation, and this releases the stored free energy quickly
as a flare. The trigger causes a transition from a long-drawn out storage pro-
cess (on time-scales of 105 sec) to a rapid release process (on time-scales of
seconds): the two processes occur on time-scales which differ by as much as
five orders of magnitude. We will return to this in Section 17.18.9.

17.18.4 Amount of energy released

In order to appreciate the physics of flares, we first need to determine the
amount of energy which is released in one such event.

Solar flares come in a very broad range of energies. Some are so small that
the only evidence for an event is a slight short-lived increase in brightness
in the chromospheric line Hα. Essentially the flare energy emerges purely in
the form of photons. Measurements provide the excess luminosity in Hα over
and above the luminosity in the quiet Sun. Integrating the excess luminosity
over the lifetime of the flare yields an energy Eα for the flare in Hα photons.
However, if we wish to evaluate the total energy of a flare, we have to count
up the energy which emerges in other photons, and in other forms.

For example, in large flares, hard X-rays emerge with photon energies of
tens or 100s of keV. Such X-rays indicate the presence of fast electrons, also
with energies of tens or 100s of keV, i.e., much higher than the typical ther-
mal energies in the corona. (In 1 MK plasma, thermal energies are of order
0.1 keV.) Large flares are quite efficient at accelerating these “nonthermal
electrons.” From the shape of the X-ray spectrum, information can be ex-
tracted about the energy distribution of the nonthermal electrons: typically,
the spectrum is found to be a power law in energy:

dN e

dE
∼ E−δ (17.11)

where the index δ is found to range between two and five, with most values
between three and 4.5 (Brown et al., 1981). To evaluate the total energy
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Ent contained in the nonthermal electrons in a flare, we need to multiply
dNe/dE by E and integrate over the energy spectrum from a minimum energy
Emin to a maximum energy Emax. The result is

Ent ∼ 1
Eδ−2

min

− 1
Eδ−2

max
(17.12)

Since δ typically exceeds two, the value of Ent is determined mainly by
the term which depends on 1/Eδ−2

min . The smaller Emin is, the larger Ent. It
is not easy to determine the value of Emin reliably, but it is probably no
more than 20 keV. If we set Emin = 10–20 keV, then Ent can reach values
approaching 1032 ergs. Apparently, a flare site is very effective at accelerating
many electrons to energies of tens of keV.

As well as the energy which is contained in fast electrons, flares also con-
tain other forms of energy (see, e.g., Sturrock 1980). Thermal energy in flare
plasma (≈NfkTfVf ) over and above the energy density in an equal volume
of “quiet” coronal plasma can be 1030 ergs and more. Moreover, some flares
inject energetic protons and other nuclei into the solar wind: in large solar
flares, the energy contained in the fast protons may be comparable to the
energy in fast electrons. Finally, some of the largest flares eject bulk mate-
rial from the corona into the solar wind: in a flare volume of up to 1029 cm3

(Section 17.18.3), the preflare corona in the active region, with densities of
4 ×109 cm−3 contained a mass of order 1015 gm. A flare may eject all of this
mass. In the largest mass ejections from the Sun, ejecta mass Mfe may be as
large as 1015−16 gm (Jackson and Howard 1993), and the ejection velocity Vfe
may be as fast as 1000 km sec−1. Thus, the kinetic energy of ejected material,
E(kin) = 0.5MfeV

2
fe, can reach values as large as 1032 ergs.

Adding up the various channels among which flare energy is distributed,
estimates indicate that the largest solar flares are found to have energies of a
few times 1032 ergs. One of the largest events reported by a space-borne total
irradiance monitor (Kopp et al., 2005) had a total energy of 6± 3 ×1032 ergs.

At the opposite extreme of energies, it may not really be meaningful to
speak of “the smallest solar flare.” Depending on the sensitivity of the detec-
tor, and on how quiet the Sun is in the wavelength of measurement, one may
be able to pick out smaller and smaller events which might qualify as “flares.”
In hard X-rays (where the “quiet corona” emits at a very low level), events can
be identified as flares with E (tot) as small as ≈1026 ergs (Lin et al., 1984).
These small events are sometimes referred to as “microflares”: the prefix “mi-
cro” indicates they have energies which are 106 times smaller than the largest
flares. If it could ever be demonstrated with confidence that there are events
in the Sun with E(tot) as small as (roughly) 1023 ergs, they might justifiably
be referred to as “nanoflares.”

Is there anything on Earth to which we can compare solar flares in terms of
energy release? Well, in a nuclear explosion which is rated as equivalent to one
megaton (MT) of TNT, the energy released is 4×1022 ergs. Each “nanoflare”
in the Sun (if such events occur) therefore corresponds to a 2.5 MT explosion.

T&F Cat # C3074, Chapter 17, Page 313, 15-7-2009



314 Physics of the Sun: A First Course

17.18.5 Numbers of small and large flares

Now that we know that solar flares come in a broad range of energies, an
important physics question is the following: do large flares occur as often as
small flares? The answer is a clear No: small flares occur much more frequently
than large ones. When a large sample of flares is analyzed, it is found that the
differential flare distribution, i.e., the number of flares dNf which have total
energies between Et and dEt, follows a power law distribution.

dN f

dE t
∼ E−β

t (17.13)

For example, in a sample of 15500 flares detected in Hα in the years
1978–1979, and converting energy observed in Hα to total energy Et (including
all lines and continua from hydrogen), Kurochka (1987) obtained a good fit to
the data with Equation 17.13 using β ≈ 1.77. In the two years of Kurochka’s
observations, only one (large) flare was observed with Et ≥ 1032 ergs, whereas
some 10000 (small) flares were observed with Et ≥ 1027 ergs. The observing
noise was such that Kurochka was unable to identify any flare events with Et

less than (roughly) 1027 ergs. For all we know, the Sun may be generating
millions of “microflares” and/or “nanoflares” every year, but such events are,
up to the present time, generally lost in the observational noise.

The existence of a power law distribution of flare energies contains im-
portant information about flare physics: there is no “characteristic energy”
associated with solar flares. Instead, there is simply a broad range of energies
available to the solar atmosphere when it “decides” to create a solar flare.

This leads us to raise the question: might there be a true physical upper
limit to the energy of a solar flare? Or is the “empirical upper limit” of 6±3×
1032 ergs (mentioned above) merely a limitation set by the finite amount of
time that the Sun has been observed? If we were to observe the Sun for another
100 or 1000 years, would the Sun occasionally perhaps have a flare with even
larger energies? The answers to these questions are currently unknown. We
will return to this issue of maximum energy of flares when we discuss coronal
mass ejections in Chapter 18.

17.18.6 Do flares pose a significant perturbation on
solar structure?

The largest flares, with energy releases of a few times 1032 ergs, certainly
involve important disruptions of the active region in which they occur: field
lines connecting different spots in the active region are rearranged, and some
matter may be ejected into space. However, in the larger context of the Sun
as a whole, flares represent only a small perturbation.

To see this, we note that even the largest flares have durations which are
no more than a fraction of a day (see Figure 17.8). During such an interval
(e.g., 50,000 sec), the nuclear reactions in the core of the Sun continue to pour
out energy at the standard rate, i.e., 4 ×1033 ergs sec−1. Therefore, over the
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duration of a large flare, the Sun puts out 2 × 1038 ergs of nuclear energy.
Compared to this, the energy released in even the largest flares is only a small
perturbation of the solar energy budget.

According to Equation 17.13, smaller flares occur more frequently. How-
ever, the total energy Et(fl) emitted in the form of flares is obtained by per-
forming the integral of EtdNf/dEt over all flares from the smallest energy Et

(min) to the largest energy Et(max). In the integral, it is important that the
index β in Equation 17.17 has a value which is smaller than two. As a result,
Et(fl), which is given by the expression

Et(fl) ∼ Et(max)2−β − Et(min)2−β (17.14)

is dominated by Et(max), i.e., by the largest flares.
Equation 17.14 shows that, if it can ever be demonstrated that there exist

a class of flares where the value of β is in excess of two, then the smallest
flares in that class would occur so frequently that they would dominate the
total flare energy budget.

17.18.7 Energy densities

Now that we know, for large flares, that Et(fl) ≈ 1032 ergs, while the flare
volume Vf ≈ 1028−29 cm3, we can estimate the mean energy density in large
flares. The result is Et(fl)/Vf ≈ 103−4 ergs cm−3.

What is the origin of this energy density? Since flares are observed to
occur in active regions, it is reasonable to expect that the magnetic field
is somehow responsible. In quantitative terms, we have already seen (Chap-
ter 16, Section 16.6.2.1) that magnetic fields have an energy density Wmag =
B2/8π ergs cm−3 if B is expressed in Gauss.

Magnetic fields have energy densities of 103−4 ergs cm−3 in regions where
the field strengths are 160–500 G. Now, we have already seen that active
regions in the Sun have fields of hundreds of Gauss (Chapter 16, Section 16.5).
Thus, the energetics suggest that the magnetic fields in active regions are
sufficiently strong that they could (at least in principle) supply the energy
which is released in a flare. The trick is to identify a mechanism which has the
ability to convert magnetic energy into fast electrons and heat. Let us now
turn to one such mechanism.

17.18.8 The physics of flares: magnetic reconnection

Magnetic reconnection is a process which converts magnetic energy into
plasma kinetic energy, and eventually thermal energy. According to the Sweet–
Parker mechanism (named after the two researchers who first proposed a
model, see Parker, 1957), reconnection occurs when two regions of magnetic
field, with oppositely directed field lines, approach each other with (slow)
speed u (see Figure 17.10). In the limit of MHD, where fields and plasma
are “frozen” together, plasma plus field comes in from top and bottom, and
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FIGURE 17.10: Schematic of magnetic reconnection. Plasma flows in slowly
from top and bottom toward the central region, where field lines of opposite
polarity come into close contact. The result is that plasma emerges at high
speed (the Alfven speed) toward the left-hand and right-hand sides. (From
Hantao Ji (PPPL). With permission.)

plasma plus field “squirts out the side” at (faster) speed v. As a result of the
inflow, a plasma sheet builds up between the regions of opposite polarity. In
this sheet, the magnetic field changes sign, passing through values close to zero
in the process. The region of zero field strength (the neutral line) lies close
to the horizontal dashed line in Figure 17.10. In equilibrium, the thickness of
the sheet (δ in Figure 17.10), and the length of the sheet (∆ in Figure 17.10)
take on values which are determined by mass conservation: δ/∆ ≈ u/v.

The field lines in the outflow are farther apart than in the inflow, indicating
that the emergent fields are weaker than the ingoing fields. Since magnetic
energy is proportional to B2, the magnetic energy in the outflow is reduced
compared to the inflow. To conserve energy, the original magnetic energy is
converted into another form: kinetic.

The central process is that an ion which is initially gyrating around the
incoming field eventually finds itself swept into a region where the field strength
is very weak. In that region, the gyroradius, which is proportional to 1/B
(Equation 16.4), becomes so large that it exceeds the distance between the
particle and the neutral line. In such conditions, the ion essentially “breaks
loose” from the field, and the conclusions of MHD are no longer valid. The ion
is now free to flow in a different direction, e.g., in the outflow direction.

The time-scale ti required for an inflowing particle to traverse the plasma
sheet is δ/u. Because of finite resistivity in the plasma, the magnetic field
diffuses out of the plasma sheet on a time scale td ≈ 4πσeδ

2/c2 (where σe is in
electrostatic units: see Chapter 16, Equation 16.10). Parker (1957) suggested
that the inflow would adjust itself to a value which would ensure that the two
time-scales ti and td are equal.

The influx of energy occurs mainly in magnetic form: the rate of influx per
unit length is uB2∆/8π. The outflux of energy occurs mainly in kinetic form:
the rate per unit length is 0.5δρv3. In steady state, these rates are equal: this
leads to v2 ≈ B2/4πρ. That is, the outflow proceeds at the Alfven speed VA
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(see Chapter 16, Equation 16.13). Recall that in the corona, there are locations
where VA can be as large as 60,000 km sec−1 (Chapter 16, Section 16.7.6).

Now we have enough information to determine, in terms of the local pa-
rameters, the inflow speed and the thickness that a steady-state Sweet–Parker
reconnection layer must have in any coronal site. For the inflow speed u, we
find:

u

VA
=

c

2

√
1

σeπVA∆
(17.15)

In coronal reconnection, ∆ will be comparable in scale to the transverse
dimensions of the magnetic loops which are reconnecting, i.e., ∆ may be of
order 109 cm. Using the Spitzer conductivity in the corona (T = 1 MK), i.e.,
σe ≈ 1016 e.s.u. (see Chapter 16, Section 16.6.2.3), we find that the inflow
speed is of order 1 meter sec−1. Compared to the speed at which diffusion
would merge the field lines over length scales of order ∆ (i.e., Vd = c2/4πσ∆),
the value of u at a reconnection site is several orders of magnitude faster.
Reconnection really does speed up the process.

For the thickness of the Sweet–Parker reconnection layer, we find

δ =
c

2

√
∆

σπVA
(17.16)

Inserting numerical values, we find that δ is a few meters in the corona.

17.18.9 Triggering a flare

At first sight, we might be tempted to conclude that a structure with a
thickness δ of only a few meters could hardly have any significant role to play in
the Sun. After all, the magnetic field structures which we see in active regions
have linear scales of 108−10 cm, i.e., orders of magnitude larger than δ. But
such a conclusion would miss an essential point of reconnection: a reconnection
site is a dynamic structure where material and fields participate in a symbiotic
way of being “swept up” together and brought into the reconnection sheet. As
time goes on, more and more field can be swept in to be “processed” through
the reconnection site. By this means, magnetic energy which was originally
distributed over a large volume (as much as 1028−29 cm3) can be converted to
kinetic energy during the course of a flare.

However, there is a problem with the time-scale: with u ≈ 100 cm sec−1,
material which was originally located in a flux tube with linear width of
108−10 cm would require some 106−8 sec (≈10–1000 days!) to reach the recon-
nection sheet. This is much too slow to be relevant for a flare, where rise-times
are seen to be as short as seconds. In order for a flare to occur as we see it on
the Sun, something must happen to increase the local value of u dramatically.
What could this be?

To address this, we note that the Sweet-Parker model is a model which
is based on a theory of fluid flow known as magnetohydrodynamics (MHD).
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The key word in the previous sentence is “fluid,” i.e., a continuous medium
in which any small volume element in the fluid contains a very great number
of molecules. However, in a situation where the thickness δ of the “fluid”
layer becomes smaller than a certain critical length-scale, the assumptions of
MHD break down. Two possible critical length-scales in this regard are the
ion gyroradius rg (see Chapter 16, Equation 16.4) and the ion inertial length,
di = c/ωpi, where ωpi is the ion plasma frequency (=

√
(4πNie

2/mi). In a
plasma where magnetic pressure and thermal pressure are comparable, these
two length scales are also comparable, i.e., rg ≈ di.

Computer simulations of reconnection show that if δ decreases to a value
which is so small that δ ≤ di, the dynamics of the reconnection sheet are no
longer dominated by the ordinary electrical conductivity σe (as the Sweet–
Parker model assumes). Instead, the dynamics becomes dominated by a pro-
cess known as the Hall effect: this is a collisionless process whereby charged
particles drift perpendicular to the E and B fields. When the Hall effect sets
in, the simulations show that there is a dramatic increase in the reconnection
rate: u increases by as much as 106. When that happens, the inflow time-scales
for solar magnetic loops become as short as 1–10 sec. This is fast enough to
be relevant to triggering solar flares.

Is there a way to check that the computer simulation results are indeed
relevant to the onset of flares? Yes, it seems that there is. By evaluating typi-
cal values of δ (see Equation 17.20) and di for flares on the Sun and on other
stars (Cassak et al., 2008), it appears that δ in flare conditions indeed takes
on numerical values which are comparable to di. Not all active regions can
actually satisfy this criterion: in such active regions, the slow Sweet-Parker
process would be all that would ever happen. In such active regions, flares
would not occur. This is consistent with observations which show that not all
active regions produce flares: some active regions live out their life in a quiet
nonflaring manner.

17.18.10 Consequences of magnetic reconnection

What consequences does reconnection have in the solar corona? Using
typical coronal values of field and density, we find that the coronal VA has
values which are typically several hundreds of km sec−1 and more. Thus, the
gas which emerges from a reconnection site forms a high speed jet which flows
out into the ambient corona.

Collisional processes ensure that the jet energy will eventually be deposited
in a finite volume around the reconnection site, leading to local heating. How
hot will the heated plasma be? If all of the kinetic energy can be converted into
heat, then the temperature Tf of the heated plasma will be such that the mean
thermal speed

√
2RgT/µ is comparable to VA. For VA = 500–1000 km sec−1,

and µ = 0.5, this corresponds to Tf ≈ 10–30 MK, consistent with temper-
atures deduced from X-ray data (Section 17.18.2). Thus, reconnection is a
mechanism whereby magnetic energy is converted (ultimately) into the ther-
mal energy of the hot flare plasma.
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Another process which occurs at a reconnection site is particle acceleration.
The motional electric field Ef = (1/c)u × B at the reconnection site can ac-
celerate electrons: in conditions where Ef exceeds a certain limit ED (known
as the Dreicer field), the electrons experience “runaway” to high energies,
100 keV or more. In a large flare, as we have seen, the fast electrons may actu-
ally contain energies of 1032 ergs, i.e., a large fraction of the overall flare energy.

Finally, reconnection results in changes in field line connectivity: magnetic
field lines which were previously closed, i.e., which previously looped back to
the Sun’s surface, can become open to interplanetary space. This can allow
a volume of plasma which was previously trapped (on closed field lines) to
escape from the Sun. This process may occur during events known as coronal
mass ejections (see Chapter 18, Section 18.8).

In summary, a flare involves conversion of magnetic energy into three dif-
ferent channels: accelerated particles, thermal energy, bulk motion away from
the Sun. Different flares divide up the magnetic energy in different proportions
among these channels.
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Chapter 18

Solar Wind

We have already seen that the solar corona, with its temperature in excess
of 1 MK, is the site of some processes which are related to several distinct
physical processes: high levels of ionization, effective thermal conduction, and
emission of spectral lines over a broad range of the electromagnetic spectrum.
Now we turn to a different physical property of the corona which also depends
on the fact that the temperature is of order 1 MK. We shall find that, given
the global properties of the Sun (specifically, its mass and radius), the corona
cannot “stand still,” but must undergo expansion.

In order to describe this aspect of the corona, we start by considering the
equation of HSE. In previous chapters, we have found that HSE applies to
certain locations in the Sun but not to others. For example, HSE applies in
the radiative interior and in the photosphere/chromosphere, but not in the
convective zone. Now we ask: does HSE apply to the corona?

18.1 Global Breakdown of Hydrostatic Equilibrium
in the Corona

In order to apply the equation of HSE, dp/dr= −ρg, to the corona and
solar wind, we need to allow for the fact that g = GM �/r2, is no longer a
constant. (In the photosphere, it is safe to assume that g is a constant as the
height varies: see Chapter 5, Equation 5.2.). Now we must make allowance for
the fact that g decreases as we move away from the Sun. This has a dramatic
effect on the solution of the HSE.

To see this, let us assume at first that the coronal material is a perfect
gas at a constant temperature: i.e., p = RgρT/µ. This allows us to write the
HSE as

1
p

dp
dr

= − A

r2 (18.1)

where A = GM �/a2, and a =
√

(RgT/µ) is the isothermal sound speed.
Notice that the quantity A has the dimensions of a length.

The solution of Equation 18.1 is ln(p) = (A/r) + const. To evaluate the
constant of integration, we consider the conditions at the base of the corona,

321

T&F Cat # C3074, Chapter 18, Page 321, 14-7-2009



322 Physics of the Sun: A First Course

where r = ro. From our discussion in Chapter 17, we know that ro is essentially
the radial location of the top of the chromosphere, which is in turn given by
ro = R� within a fraction of 1%. At this location, the pressure po is known
to be 0.3–2 dyn cm−2 (see Chapter 17, Section 17.9).

Therefore, the coronal pressure as a function of radial distance is given by

p(r) = po exp
[
A

(
1
r

− 1
ro

)]
(18.2)

As r → ∞, Equation 18.2 shows that the pressure does not tend to zero.
Instead, the pressure p(∞) approaches the asymptotic value po exp(−A/ro).

The striking aspect of this solution is that it is a very different result from
the one we would get if we were to extend the photospheric solution to in-
finity (see Chapter 5, Section 5.1). Using the photospheric solution p(h) =
po exp(−h/H) where H is the scale height (with g=const), we see that as
h → ∞, p(h) goes exponentially rapidly to zero. It is the fact that in the
corona, g is not a constant, but decreases as r increases, which makes the
solution in the corona qualitatively different. In the corona, there is no expo-
nentially rapid decrease of pressure toward zero.

In order to evaluate the asymptotic pressure p(∞), we need to know the
value of A. To calculate A, we need to choose a value for µ: what value
should we use? In the corona, hydrogen and helium are completely ionized,
just as they are in the deep interior; this suggests that we should use the value
µ = 0.58 which we used in the hot interior of the Sun (Chapter 7, Section 7.8).
Inserting T = 1 MK and µ= 0.58, we find a2 = 1.43×1014 cm2sec−2. Combining
this with the value of GM�(Chapter 1, Equation 1.9), we find A ≈ 9×1011 cm,
i.e., A ≈ 13R�. For a coronal temperature T = 2 MK, we find A ≈ 6.5R�.

As a result, if the entire corona were to be in HSE, the pressure of the coro-
nal gas at infinity would be smaller than po by a factor e−13 ≈ 2×10−6. Insert-
ing po = 0.3–2 dyn cm−2 this would lead to p(∞) = (1 − 4) ×10−6 dyn cm−2.

What are we to compare this to? The answer is: the Sun does not exist
in a vacuum, but is surrounded by the “interstellar medium” (ISM) which
exists in the space between the stars. The ISM contains gas, dust, mag-
netic fields, and energetic particles (“cosmic rays”). The ISM near the Sun
contains hydrogen with number densities na ≈ 0.14 cm−3, electrons with
ne ≈ 0.07 cm−3, and temperatures T of order 104 K (e.g., Gayley et al.,
1997). The gas pressure in the ISM, p(ISM) ≈ (na + ne)kT, is therefore,
≈ 3 × 10−13 dyn cm−2. The mass of dust contributes only about 1% of the
mass of gas, and contributes negligibly to the pressure. The magnetic fields,
with strengths of 1.6–3 × 10−6 G (Gayley et al., 1997), contribute pressures
B2/8π of order 0.1–0.4 × 10−12 dyn cm−2. And the cosmic rays contribute
pressures of ≈10−12 dyn cm−2 (Ip and Axford, 1985). The combined effects
of all ISM constituents provide p(ISM) ≈ 1.4–1.7 ×10−12 dyn cm−2.

Compared with p(∞), we see a large difference in the pressure: p(∞) for a
corona in HSE exceeds p(ISM) by five to six orders of magnitude. As a result,
it is physically impossible for the ISM to contain the pressure of the solar
corona if the latter is in HSE.
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The conclusion is that the corona cannot be in HSE. If the corona does not
have the property of being hydrostatic, what other option is available? The
answer is: the corona must be hydrodynamic. This means that the coronal
material must undergo expansion, moving from high pressure (at the base of
the corona) to low pressure (in the ISM). This expansion has nothing to do
with evaporation: instead it involves the bulk flow of the coronal material out-
ward from the Sun. This outflow of bulk coronal material from high pressure
to low pressure is described by the term solar wind, by analogy with winds on
Earth, which (in the absence of Coriolis forces) blow from high to low pressure.

18.2 Localized Applicability of HSE

Are there any conditions in which an entire corona could be in HSE? In
principle, yes: it could happen if p(∞) were to have a value no larger than
p(ISM). If we could achieve that goal, then the solar coronal pressure could
be contained by the ISM. One way to achieve that goal, would be to reduce
p(∞) by reducing the coronal temperature, thereby increasing the numerical
value of A. According to Equation 18.2, the value of p(∞) could be made
as small as p(ISM) ≈ 10−12 dyn cm−2 if A were to have a value as large as
≈ 26–28R�. This would require T ≈ 0.46–0.5 MK.

However, as we have seen, the solar corona is not as cool as this: there are
physical reasons (see Chapter 17, Section 17.14.3) for the quiet solar corona to
have T = 1–2 MK. (The active corona is even hotter.) Given the actual values
of the physical constants which enter into the electron thermal conductivity
and the radiative losses, we simply are not free to make the coronal temper-
ature as low as 0.46–0.5 MK. Therefore HSE is not applicable to the entire
corona: given the observed properties of the Sun (M�, R�), and the empir-
ical coronal temperatures, we are led to the conclusion that hydrodynamic
expansion is an intrinsic global property of the solar corona.

Although HSE is certainly not applicable in a global sense to the corona,
this should not be construed to mean that HSE is absolutely excluded in each
and every locality of the corona. On the contrary, in certain favorable localized
regions, it may turn out that circumstances do allow HSE to be applied locally.

Two examples can be considered. First, in a closed magnetic loop
(Chapter 17, Section 17.11), magnetic forces prevent ionized gas from escap-
ing into the wind: hydrodynamic outflow is not allowed to occur. Within the
confines of such a loop, HSE may be a good approximation to the profile of
density as a function of height.

Second, it can be shown from fluid dynamics that, in the limit where
outflow speeds are much less than a (the speed of sound), the hydrodynamic
solution approaches the hydrostatic solution. We shall see (Equation 18.8)
that the flow speed of the solar wind does (eventually) indeed become as large
as a (and larger), but this happens only at radial distances which are at least
several R� from the Sun. It is critical to note that, there is a finite range of
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radial distances, close to the Sun, where the wind speed is actually much less
than a. Within this region, HSE can be used as a reasonable approximation
for the density. We shall take advantage of this result in Section 18.7.

18.3 Solar Wind Expansion: Steady State Flow

The breakdown of HSE in the corona means that dp/dr cannot be equal to
−ρg. The imbalance of forces between the pressure gradient and gravity causes
the coronal gas to accelerate. The conservation of momentum, when applied
to unit volume of the corona (in which the mass equals ρ, the local density),
leads (see Chapter 7, Equation 7.1, replacing z with r) to the equation

ρ
dV
dt

= −dp
dr

− ρg (18.3)

The total time-derivative d/dt can be written as the sum of two terms:
∂/∂t + V ∂/∂r. In a steady state situation, where the flow does not depend
explicitly on time, only the radial gradient term is present. In a situation
where only radial gradients are important, we can write ∂/∂r as the ordinary
derivative d/dr. Then inserting g = GM �/r2, Equation 18.3 becomes

V
dV
dr

= −GM �
r2 − 1

ρ

dp
dr

(18.4)

Let us consider the simplest case, in which the corona is assumed to be
isothermal, i.e., T = const at all radial locations. With this assumption, we are
greatly simplifying the equation for the conservation of energy. In an isother-
mal corona, the pressure and density are related at all locations by the formula
p(r) = a2ρ(r). This allows us to rewrite Equation 18.4 as follows:

V
dV
dr

= −GM �
r2 − a2

ρ

dρ

dr
(18.5)

Turning now to conservation of mass, we note that, at a radial distance r,
the rate of mass outflow from the Sun in a spherically symmetric wind is given
by dM/dt = 4πr2ρ(r)V (r). Once the solar wind leaves the corona, and flows
out into interplanetary space, no further significant mass can be added to the
outflow. Therefore, dM/dt is independent of r, i.e., r2ρ(r)V (r) = const. Thus
the radial derivative of r2ρ(r)V (r) is zero. Taking logarithms, this means that

1
ρ

dρ

dr
+

1
V

dV
dr

+
2
r

= 0 (18.6)

Using Equation 18.6, we can replace the final term in Equation 18.5. Then
collecting terms in the radial gradient dV/dr, we obtain an equation for dV/dr :(

V − a2

V

)
dV
dr

=
2a2

r
− GM �

r2 (18.7)
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The structure of this equation indicates that dV/dr can be written as the
ratio of two terms, N (r)/D(r). The numerator N (r) is the radial function on
the right-hand side of Equation 18.7, while the denominator D(r) is the radial
function V (r) − a2/V (r).

At a certain radial location, the function D(r) passes through the value
zero. This occurs when the wind speed V (r) becomes equal to the sound speed,
a ≈ 120

√
T6 km sec−1 (where T6 is the temperature in MK). In coronae

with T6 = 1 and 2, the sound speeds are a ≈ 120 and a ≈ 170 km sec−1,
respectively. The radial position where V (r) = a is referred to as the “sonic
point.” In order to prevent dV/dr from becoming infinitely large at the sonic
point, N (r) must also pass through the value zero at the sonic point.

Setting N (r) = 0 at radial location r = rs, we find that the sonic point
lies at

rs =
GM �
2a2 (18.8)

Inserting the numerical value GM� = 1.327124×1026 cm3 sec−2 (Chapter 1,
Equation 1.9), we find that in a corona with T = 1 MK (i.e., a2 = 1.43 ×
1014 cm2 sec−2), the value of rs is 4.6 ×1011 cm. In a corona with T = 2 MK,
rs ≈ 2.3 × 1011 cm. Compared with the solar radius, we see that the sonic
point lies at radial locations of rs ≈ 6.6R� and 3.3R� for T = 1 and 2 MK,
respectively.

Thus, in response to the breakdown of HSE, the material in an isother-
mal corona is accelerated outward, increasing from essentially zero velocity
at the base of the corona to a velocity as large as the sound speed at radial
locations of a few solar radii. With T = 1 MK, the wind reaches a velocity of
≈ 120 km sec−1 at r ≈ 6.6R�. With T = 2 MK, the wind reaches a velocity
of ≈ 170 km sec−1 at r ≈ 3.3R�.

The larger the coronal temperature, the faster is the acceleration of the
wind. To quantify this, we note that if an increase in velocity by ∆V = 120 (or
170) km sec−1 were to occur with constant acceleration over a spatial interval
of ∆x = 4.6 (or 2.3) ×1011 cm, the corresponding acceleration (≈ (∆V )2/
(2∆x)) would be roughly 160 (or 630) cm sec−2. Thus, the inner solar wind
experiences an outward acceleration which, as regards the magnitude, coinci-
dentally is not far from the (downward) acceleration (981 cm sec−2) which is
experienced by objects near the Earth’s surface.

18.4 Observational Evidence for Solar Wind
Acceleration

The outflow of the solar wind can be measured in situ by spacecraft near
Earth’s orbit, and farther out in the solar system. Those measurements indi-
cate that the solar wind accelerates only slowly at radial distances of 200R�
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and more. But no spacecraft has up to now flown through the region where
the solar wind undergoes its greatest acceleration, i.e., close to the sonic point
at distances of several R�.

Is there any way to probe the regions of maximum wind acceleration? Yes,
it can be done by remote sensing of distance radio sources as the radio waves
from those source propagate through the inner solar wind. As the Sun moves
through the sky during the year, it passes close to certain natural radio sources
at definite times. For example, the Crab Nebula (a bright supernova remnant)
passes behind the Sun in mid-June each year. Also, certain spacecraft are in
orbit around the Sun, and from time to time, they pass behind the Sun (as
viewed from Earth).

When a distant source is observed with a radio telescope, the line of sight
to that source approaches closest to the Sun at a certain point. The radial
distance from the Sun’s center to that point of closest approach is called the
impact parameter p. Because the solar wind density falls off with increasing
radial distance, a radio observation of that source is most heavily influenced
by the properties of the solar wind at the particular radial location r = p.

What do the radio data reveal? The most prominent feature is that many
radio sources (especially the smallest ones) exhibit rapid fluctuations in inten-
sity as the source comes closer and closer to the Sun. This is the phenomenon
of scintillation (twinkling), analogous to that which causes stars to twinkle in
the night sky: it is caused by clumps of more or less dense material moving
across the line of sight to the distant (small) source. Each clump acts as a
miniature lens which can change the intensity of the light. The solar wind is
not a smooth flow: instead, it is a turbulent medium, which does, on average,
expand outward. But there are, in the wind, clumps of matter akin to the
eddies which form in fast-flowing water, or which form in the jet streams in
the atmosphere and ionosphere of the Earth.

As the shadow of an individual clump moves across a radio telescope,
the intensity which is recorded changes in a way which is determined by the
shape of the clump. If two telescopes, separated on the Earth’s surface by a
distance d, record the same clump (identified by its shape), but separated in
time by an interval t, then the speed of the shadow across the Earth’s surface
can be determined: d/t. This is equal to the speed of the clumps across the
line of sight, and therefore gives an estimate of the speed of the solar wind at
the impact parameter, i.e., at the radial location r = p.

An example of the variation of clump speed as a function of the impact
parameter is shown in Figure 18.1. There is obviously a lot of scatter. Why?
Because the data in Figure 18.1 were obtained over a time interval of several
days, and from day to day, as the Sun rotates, the line of sight may shift from
a helmet streamer into a coronal hole into quiet Sun. Therefore, we cannot
expect that the line of sight to a given source will continue to pass through
exactly the same coronal material throughout an observing run which lasts
several days. It would be surprising if there was not considerable scatter in the
data. But overall, one can see that the outflow speed is small close to the Sun,
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FIGURE 18.1: Estimates of the outflow speed of solar wind clumps as a
function of radial distance from the Sun. The abscissa contains the impact
parameter p, which is the radial distance from the Sun to the point where the
line of sight to a distant source passes closest to the Sun. (From Yakovlev, O. I.
and Mullan, D. J., Irish Astron. J., 23, 7, 1996. With permission.)

and the outflow speed increases with increasing radial distance. The outflow
speed first reaches roughly 120 km sec−1 (i.e., the sound speed) at radial
distances of about 10R�, slightly larger than the 6.6R� which we estimated
for a 1 MK corona. And by the time p has increased to values of 20R� or
so, the speed is up to 300–400 km sec−1. Thus, at a radial distance of about
0.1 AU from the Sun, the wind is well on its way to reaching a typical speed
of 470 km sec−1 at Earth’s orbit (i.e., at 215R�) (see Section 18.6 below).

Thus, radio studies of the solar wind using scintillation provide useful infor-
mation about the otherwise inaccessible region where the solar wind undergoes
its greatest acceleration.

18.5 Energy Equation

So far, we have obtained information about the solar wind by explic-
itly referring to the conservation of momentum and conservation of mass.
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Our assumption T = const involves a particular solution of the energy equa-
tion. But we have not specified, in physical terms, how a constant temperature
of 1–2 MK might be maintained out to distances of (3.3–6.6)R� and beyond.

In order to determine how, in physical terms, the temperature actually
varies as a function of radial distance, we need to solve the equation of energy
conservation. In order to do that, we would have to include processes which
deposit energy in the gas, or remove energy from the gas, or distribute energy
through the gas.

As an example of the latter, the effects of thermal conduction are impor-
tant. In spherical symmetry, the equation of heat conduction in steady state
is described by

d

dr

(
r2kth

dT
dr

)
= 0 (18.9)

We have already seen (Chapter 17, Section 17.14.1) that in coronal plasma,
the thermal conductivity kth = koT

2.5. Inserting this in Equation 18.9, we find,
after a first integration, that

T 2.5 dT
dr

=
const

r2 (18.10)

The solution of this equation is T ∼ r−2/7. This is a rather slow function
of radial distance. For example, if T = 2 MK at r = R�, then at the sonic
point distance (3.3R�), a thermally conducting wind would have T ≈ 1.4 MK.
Thus, contrary to our assumption above of constant T , the temperature would
not in fact have remained constant all the way out to the sonic point. Nev-
ertheless, it is also true that T would not have cooled off “drastically.” From
this perspective, a model which assumes constant temperature (at least out
to a few solar radii) is not totally unrealistic.

There are other possibilities for keeping the corona hot. These include
the deposition of energy from wave modes of various kinds (Alfven waves,
shocks). Another approach is to assume that the solar wind material has the
property that the pressure at any radial location is related to the density at
that location by a simple relation, p(r) ∼ ρ(r)(n+1)/n. This is nothing less
than the “polytrope law” (see Chapter 10, Equation 10.1) which we found to
be helpful in describing certain properties of the solar interior.

It turns out that a rich variety of solar wind solutions can be derived
by considering various values of the polytropic index n. The isothermal case
corresponds to n= ∞. The adiabatic case corresponds to n = 3/2. In the latter
case, p ∼ ρ5/3, which for a perfect gas (p ∼ ρT ) corresponds to T ∼ ρ2/3.
Once the solar wind approaches a nearly constant value (see next section),
Equation 18.6 implies that ρ ∼ r−2. In an adiabatic wind, this leads to rapidly
declining T as r increases: T ∼ r−4/3.

However, discussions of the application of the full energy equation to the
solar wind lie outside the bounds of this “first course.”
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18.6 Asymptotic Speed of the Solar Wind

We have seen that according to Equation 18.7, the wind is moving at 120
(or 170) km sec−1 at radial locations of 6.6 (or 3.3) R� for a coronal tem-
perature of 1 (or 2) MK. Let us now consider how the speed behaves as we
examine the flow at very large distances from the Sun.

In N (r) (see Equation 18.7), the term in 1/r dominates over the term
in 1/r2 as r → ∞. That is, N (r) → 2a2/r. Moreover, at large r, the wind is
supersonic, i.e., V exceeds a. As a result, the dominant term in D(r) as r → ∞
is V . Therefore, at large r, dV/dr = N (r)/D(r) → 2a2/rV. In an isothermal
wind, this can be integrated to give the solution

1
2
V 2 = 2a2 loge(r) + const (18.11)

Recalling that at r = rs, V = a, we can evaluate the constant. This leads to

(
V

a

)2

= 1 + 4 loge

(
r

rs

)
(18.12)

This solution shows that, at large distances, the solar wind speed asymp-
totically approaches the functional form V (r) → 2a

√
(log(r/rs)). This is a

very slow function of radial distance. For example, if T = 1 MK, by the
time the solar wind reaches Earth orbit, i.e., r = 215.04 R�(see Chapter 1,
Section 1.5), the ratio r/rs has the value ≈33. According to Equation 18.12,
this gives V (1 AU)≈ 3.9a ≈ 470 km sec−1. At a distance which is 100 times
greater than Earth’s orbit (i.e., far beyond the orbit of Pluto), V has increased
to ≈690 km sec−1.

Turning briefly to energy considerations, we note that if thermal conduc-
tion (mainly by electrons) dominates the energy equation in the solar wind,
then compared to the coronal temperature at r = R�, T at 1 AU would be re-
duced by factors of 2152/7 = 4.6. Thus, with T = 1–2 MK at r = R�, T at 1 AU
should be 2–4×105 K. On the other hand, if the solar wind were described by
an adiabatic polytrope (n = 3/2), with T (r) ∼ r−4/3 (see Section 18.5), the
ion temperatures at r = 1 AU would be very low, of order 103 K.

Thus, the model of an isothermal solar wind predicts that wind speeds
of several hundred km sec−1 and temperatures of up to a few times 105 K
should occur near Earth’s orbit. These predictions have been tested by many
spacecraft since the 1960s, and have been found to be not too bad on average.
(For an informative overview of the early experiments to measure solar wind
properties, and the scientists involved, see Hufbauer, 1991.) However, the data
also indicate that the solar wind has highly variable properties. Examples of
solar wind velocity, density, and proton temperature close to the Earth’s orbit
are shown for a 27-day interval in Figure 18.2. During the interval of the
measurements, the Sun was at a low level of activity. The speed varies from
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FIGURE 18.2: Solar wind properties (density, speed, temperature) for a
27-day interval early in the year 2008. DOY=day of year. These (and other)
data are publicly available for any time interval between 1998 and 2008 from
the ACE spacecraft data archive at http://www.srl.caltech.edu/ACE/ASC/
level2/lvl2DATA SWEPAM.html.

roughly 300 to roughly 800 km sec−1. And the proton temperature ranges
from a few times 104 to a few times 105 K.

Despite the large amount of variability, two major categories of solar wind
have been identified (Zirker 1981): “slow wind,” with mean speeds (near Earth)
of 330 km sec−1, and “high speed wind” with mean speeds of 700 km sec−1.
The high speed wind has been found to emerge preferentially from coronal
holes. Since those holes are always present to some extent at North and South
solar poles, the wind over the solar poles is always “high speed.” This was
confirmed by the Ulysses spacecraft which traversed the solar wind emerging
from both solar poles. But there are also times when high speed stream flows
in the plane of the Earth’s orbit: when a high speed stream flows past the
Earth, the geomagnetic field may become disturbed.
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At 1 AU, in the plane of the Earth’s orbit, as well as identifying the two
major components at low and high speeds, it is possible to define an “average”
set of plasma characteristics for solar wind flows (e.g., Zirker, 1981). The mean
values of velocity, density, and ion temperature in the “average” solar wind at
1 AU are found to be 470±120 km sec−1, 8.7±6.6 cm−3, and 1.2±0.9×105 K.

Thus, the model of an isothermal corona does a good job at predicting at
least the average speed of the wind near the Earth. And the proton tempera-
tures overlap well with the predicted values due to thermal conduction.

18.7 Rate of Mass Outflow from the Sun

In order to determine how much mass the Sun loses per unit time, we need
to know not only the speed but also the density of the solar wind. We already
know that the speed (in an isothermal corona) is equal to the sound speed
at the radial location r = rs. Can we also estimate the density at r = rs?
This is more difficult, but we can do it, roughly. To do this, we note that
between the surface of the Sun and r = rs, the flow speed has not yet reached
values as large as the sound speed. In fact, close to the surface, the speed is
much smaller than the sound speed. As a result, the hydrodynamic terms in
the equation of motion are small compared to the hydrostatic terms. In other
words, close to the surface, the corona, although in principle expanding, is
flowing so slowly that the material is not far from HSE. To be sure, the closer
we get to r = rs, the farther the conditions depart from HSE. And by the
time we arrive at r = rs and beyond, HSE has broken down altogether.

But as a rough approximation, we can use Equation 18.2 (rewritten in
terms of particle number density n, assuming constant T ) to evaluate the
density at the sonic point:

n(rs) = no exp
[
A

(
1
rs

− 1
ro

)]
(18.13)

Inserting the empirical values no = 108−9 cm−3 (see Chapter 17, Section
17.1), we find that in a corona with T = 1 MK, where A = 13 and rs ≈ 6.6 (both
in units of r0 = R�), the density at the sonic point n(rs) ≈ 2 ×103−4 cm−3.
Repeating the calculation for a corona with T = 2 MK, we find a much larger
density at the (closer) sonic point n(rs) ≈ 1 ×106−7 cm−3. Outside the sonic
point, in the limit where the velocity is varying only slowly with distance,
we expect to have n(r) ∼ r−2. Thus, between r = rs and the Earth’s orbit
(r = 215.04 R�), the density should decrease by a factor of (215/6.6)2 ≈1100
(for T = 1 MK) and by a factor of (215/3.3)2 ≈ 4200 (for T = 2 MK). Thus,
near the Earth’s orbit, we expect to find n(1 AU) ≈2–20 cm−3 (if T = 1 MK),
and n(1AU) ≈ 240–2400 cm−3 (if T = 2 MK). The empirical densities in
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Figure 18.2 are consistent with the estimates for an isothermal corona with
T = 1 MK, but not for T = 2 MK.

In the context of the approximate discussion given here (i.e., HSE remains
roughly valid out to a radial distance of rs, and constant speed outside rs),
we conclude that the Sun may well be able to maintain a coronal temperature
of 1 MK out to r ≈ 6.6R�, but the Sun is probably not able to maintain a
temperature as large as 2 MK out to r ≈ 3.3R�. Ultimately, the inability of
the Sun to maintain coronal gas at 2 MK out to several R� is an indication
that the Sun supplies only a finite flux of mechanical energy to the corona. We
have already seen in Chapter 17, Section 17.14.3 that the coronal temperature
is controlled by the chromospheric pressure, which is in turn controlled by the
amount of mechanical energy flux emerging from the Sun.

How large would the mechanical flux have to be in order to maintain a
corona at T = 1 MK and at T = 2 MK? We can estimate a lower limit on the
necessary energy flux by considering one component only, namely, the kinetic
energy. The flux of K.E. in the wind equals the K.E. density 0.5ρV 2 times the
flow speed V . At r = rs, this K.E. flux FK(rs) equals 0.5ρ(rs)a3. Transforming
back to the base of the corona, this would correspond to an energy flux crossing
the surface r = 1 solar radius of FK(1) = r2

sFK(rs). Inserting numerical values
for the case T = 1, we find FK(1) = 130–1300 ergs cm−2 sec−1. For the case
T = 2 MK, the result is much larger, FK(1) = 0.5 × 105−6 ergs cm−2 sec−1.
Now, the solar wind does not escape easily from active regions, where magnetic
loops are closed (Chapter 17, Section 17.11). It seems preferable to look to the
quiet Sun as the source of mechanical energy to power the “typical” solar wind.
According to Equation 17.9, the flux of mechanical energy entering the base
of the quiet corona is limited, F (QS)≈ 5 ×105 ergs cm−2 sec−1. Comparing
with FK(1) for the case T = 1 MK, we see that the quiet Sun would have
no problem in supplying the demands of the coronal K.E. flux, with plenty of
energy to spare for the radiated flux, plus the internal energy flux (∼nTa), plus
the conductive flux (∼ T 3.5). On the other hand, for the case T = 2 MK, even
FK(1) alone may already “soak up” the entire available supply F (QS): there
would be nothing available for the radiated flux, or for the increased demands
on internal energy flux (increased by > 103 compared to the T = 1 MK case),
or for the increased demands on conductive flux (increased by ten). For the
case T = 2 MK, the numerical values indicate that the Sun simply does not
generate enough mechanical energy to “go around.”

Let us use the empirical data at radial distances D = 1 AU to estimate
the solar mass loss rate in the “average” solar wind (Zirker, 1981), where
V (1 AU) = 470 km sec−1 and n(1 AU) ≈ 9 protons cm−3. Allowing for the
presence of a few percent helium nuclei as well, the mean gas density at 1 AU
is ρ(1 AU) ≈ 2 ×10−23 gm cm−3.

Expressing 1 AU in cm (Chapter 1, Section 1.2), we find that the rate of
mass outflow of a spherically symmetric wind, 4πD2ρ(1 AU)V (1AU), is some
3 × 1012 gm sec−1, i.e., a few metric tons per second. To be sure, the wind
is not altogether spherically symmetric: the polar wind is certainly faster on
average than the equatorial wind, while the mean density in the polar wind
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is smaller. So we do not expect the assumption of spherical symmetry to be
reliable to better than a factor of (maybe) two.

As well as mass loss in the solar wind, the Sun is also losing mass as a result
of nuclear reactions in the core. The solar power output L of 3.8416×1033 ergs
sec−1 (Equation 1.11) corresponds to a nuclear mass loss rate (dM/dt)nuc =
L/c2 ≈ 4×1012 gm sec−1. This is close to the mass loss rate in the solar wind.
Is this a coincidence? It is hard to say: the mass loss rate in the wind is
determined by coronal heating processes which we cannot yet fully identify.
Perhaps when all mechanisms are better understood, there may be a deep-
rooted reason why the Sun has the property of comparable mass loss rates
from core and corona.

Given the lifetime of the Sun (≈ 4.5 × 109 years, from measurements of
meteorite ages), and assuming that the mass loss rates have remained con-
stant over time, we find that in the course of its lifetime, the Sun’s mass has
decreased by only a few parts in 10,000.

18.8 Coronal Mass Ejections

No matter when spacecraft observations of the solar wind are made, they
essentially always report the presence of an outflow of matter at speeds of a
few hundred km sec−1, and with densities within an order of magnitude of 10
cm−3. In the sense that “there is always something there,” the solar wind can
be considered to be more or less a steady-state phenomenon.

However, from time to time, a major disruption is observed to propagate
out through the wind. These events are called “coronal mass ejections,” or
“CME’s” for short. They originate in the solar corona. An example is illus-
trated in Figure 18.3, where a “bulb” of material expands and breaks open,
dumping its contents into the solar wind. The contents propagate outward
through the solar wind, maintaining identity for a finite distance. In some
cases, CME’s survive as far as Earth’s orbit, where they can (in certain cases)
disturb the Earth’s geomagnetic shield. The disturbances in the Earth’s field
may give rise to large induced voltages in terrestrial power lines. The speed
of the CME may be larger than 2000 km sec−1, or may be smaller than
100 km sec−1, depending on the physical properties of the CME.

CME’s occur more frequently when the Sun is at maximum activity than
at minimum activity. Near solar maximum, several CME’s may emerge per
day. But near solar minimum, the rate is on average less than one per day.
These data indicate that CME’s owe their existence to the magnetic fields
which are present in the corona.

Is there a typical mass associated with CME’s? The data show that small
CME’s occur more frequently than large CME’s. According to data which were
obtained for almost 1000 CME’s during the years 1979–1981, close to solar
maximum (Jackson and Howard, 1993), the number of CME’s with mass M
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in the sample is given by the expression:

N(M) = 370 exp(−9.43 ×10−17M) (18.14)

The fact that the masses of CME’s follow an exponential law indicates
that there is in effect an upper cut-off in the mass distribution: for CME’s
with masses in excess of 1016 gm, the number of CME’s falls off exponentially
rapidly compared to those with masses less than 1016 gm. It appears as if the
Sun (at least in the years 1979–1981), was capable of producing CME’s with
masses up to (essentially) 1016 gm, but not much more than that. After many
years of observations by means of many spacecraft, the most massive CME
observed so far has Mmax ≈ 7 ×1016 gm.

What energies are associated with CME’s? The kinetic energy is easy to
evaluate. With speeds which are typically in the range 300–1000 km sec−1, the
KE of a CME with mass M is typically 0.5M×1015−16 ergs. The existence of an
upper cut-off in M sets an upper limit on the KE of CME’s: 0.5×1031−32 ergs.
Inserting Mmax, we find an upper limit on CME energy of a few times 1032 ergs.

We have already seen (Chapter 17, Section 17.18.5) that solar flares also
have energies which extend up to no more than a few times 1032 ergs. To
be sure, the flares differ from CME’s in the sense that flare energies follow
a power-law distribution, whereas CME’s have an exponential distribution.
Thus, it is more difficult to be sure about an upper cut-off of flare energies.
Nevertheless, it is striking that the two most prominent classes of transient
energy release from the Sun can apparently produce events which, in their
largest manifestations, have comparable maximum energies.

The physical feature which provides a common denominator to flares and
CME’s is the magnetic field. In the presence of solar gravity, and given the
amount of plasma in coronal gas, it appears that the magnetic fields which the
Sun produces are limited in the maximum amount of energy they can store.
If, in a given active region, that limit is exceeded, the field apparently “must”
respond by releasing the stored energy. The form that the released energy
takes can be either a flare or a CME or a combination of the two, depending
on local conditions.

Do CME’s contribute significantly to solar mass loss? Apparently not: it
has been estimated (Jackson and Howard, 1993) that even at solar maximum,
the Sun loses mass in the form of CME’s at a rate which is only about 16% of
the total mass loss rate. At solar minimum, the percentage would be smaller.

18.9 How Far does the Sun’s Influence Extend
in Space?

The solar wind originates in the Sun’s corona, and it flows out past the
Earth’s orbit. Disturbances in the wind (e.g., CME’s) can have an effect on
our lives on Earth (e.g., radio blackouts, voltage surges). In that sense, the
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solar wind allows the Sun to “reach out” far beyond the confines of one solar
radius and cause certain events on Earth which have nothing to do with the
Sun as a source of heat and light.

The solar wind also influences the surroundings of other planets, especially
those with magnetic fields. All four giant planets (Jupiter, Saturn, Uranus, and
Neptune) were discovered to have strong magnetic fields when the Voyager 2
spacecraft visited all four in the decade from 1979 to 1989. The planetary
magnetic fields trap charged particles into confined orbits, giving rise to an
environment of interesting interactions between fields and plasma. Neptune is
on average 30 times farther from the Sun than the Earth is, but even so, the
solar wind has an influence on the shape of the magnetosphere out there.

How far out does the Sun’s influence extend? To answer that, we recall
(Section 18.1) that in the ISM, the total pressure p(ISM) (including magnetic
fields and cosmic rays) is ≈1.4–1.7 × 10−12 dyn cm−2. Now the solar wind
outflow, with its energy density Ew(r) = 0.5ρ(r)V (r)2, exerts an outward
ram pressure equal to Ew(r). This is the pressure which allows the Sun to
“push back” the ISM. But this “pushing back” can work only a long as Ew(r)
exceeds p(ISM). Therefore we can determine the maximum radial extent of the
Sun’s influence by seeking the radial distance rm at which Ew(rm) ≈ p(ISM).

To solve this, we recall that in an isothermal wind, the speed V in the
outer wind varies only very slowly as the distance r from the Sun increases
(see discussion following Equation 18.12). Since V is essentially constant, the
density ρ must fall off as 1/r2. As a result, Ew(r) varies essentially as ∼ 1/r2.

At r = 1 AU, using a mean density of 9 protons cm−3 and a mean wind
speed of 470 km sec−1, we find Ew(r = 1AU) ≈2×10−8 dyn cm−2. At a distance
of r AU, Ew(r) ≈2 × 10−8r−2 dyn cm−2. This pressure becomes equal to
p(ISM) at rm ≈110–120 AU. Therefore, at distances of order 100 AU, the
pressure of the ISM should bring the solar wind to a halt. Depending on the
local conditions, the halt may be so abrupt that a shock wave is set up: this
is referred to as the “termination shock” of the solar wind.

Thus, the influence of the Sun extends, via the solar wind, to a radial
distance which lies well beyond Pluto’s orbit, to a distance of order 100 AU.
Beyond that distance, the pressure of the ISM prevents the solar wind from
escaping. The Sun’s “sphere of influence,” also known as the “heliosphere,”
comes to an end at a distance of about 100 AU.

So far, two spacecraft have traveled far enough to make the transition
through the termination shock. The Voyager 1 transition occurred in Decem-
ber 2004 at a radial distance r = 94 AU. The Voyager 2 transition occurred
(in a different direction) in August 2007, at r = 84 AU. The different radial
distances of the two transitions indicate that the termination shock is not
spherical. However, both transitions occurred at distances which are not far
from the estimate given above (≈100 AU).

The heliosphere presents a barrier to the galactic cosmic rays (GCR) which
are present in the ISM. A fraction of those GCR can reach the Earth’s orbit,
but only at the expense of “swimming upstream” against the solar wind. In
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FIGURE 18.3: (See color insert following page 202.) A coronal mass
ejection (“CME”) lifts off from the Sun. Image obtained by the LASCO
instrument on board the SOHO spacecraft. LASCO obscures the brilliant
photosphere of the Sun behind the dark mask in the center of the image: the
white circle inside the mask represents the location of the Sun’s photosphere.
(Courtesy of the SOHO/LASCO consortium. SOHO is an international col-
laboration between ESA and NASA.)

the course of penetrating in as far as the Earth’s orbit, the GCR scatter off
magnetic fluctuations in the wind, thereby losing some energy. As a result,
the Sun protects us on Earth from some of the harmful effects of cosmic rays.

During the 11-year activity cycle, as the sunspot numbers go up and down,
the magnetic fluctuations in the wind also change their properties. This alters
the flux of GCR arriving at Earth by as much as tens of percent (see Fig-
ure 18.4). When sunspots are more abundant, and the magnetic fields gener-
ated by the Sun are stronger, GCR have a harder time making their way in
to the Earth’s orbit. When sunspots are less abundant, the fluxes of GCR at
Earth are larger.

Given that the “typical” solar wind travels at a speed of 470 km sec−1

at Earth orbit, and not much more than that at greater distances, we can
estimate roughly the time tp required for solar wind to travel from the Sun to
the edge of the heliosphere. With a heliospheric radius rm ≈100AU ≈ 1.5 ×
1015 cm, and an assumed constant speed V = 4.7 × 107 cm sec−1, we find
tp is very close to one year. As a result, when magnetic conditions change at
the Sun, it takes a full year before the heliosphere as a whole “knows” that
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FIGURE 18.4: (See color insert following page 202.) Count rates of
GCRs over a 50-year interval. Neutron monitors are instruments which re-
spond to GCR with energies of a few GeV. (Plot provided by Roger Pyle via
website http://neutronm.bartol.udel.edu)

the magnetic properties of the wind have changed. This leads to a phase shift
in the GCR count rates relative to the sunspot counts: the minimum GCR
counts occur on average a year or two later than the peak in the sunspot
counts.

The size of the heliosphere rm depends on two independent quantities: the
solar wind flux (determined by the Sun), and the ISM pressure (determined
by conditions in the ISM). In the course of the Sun’s lifetime, the local ISM
may have a variety of properties. As a result, the edge of the heliosphere may
approach the Earth more closely than the current distance of about 100 AU.
In extreme cases, it is even possible that Earth’s orbit might lie at or beyond
the edge of the heliosphere. See Exercises 1–3.

Exercises

18.1 The Sun is in orbit around the center of the Galaxy, taking some 250
My to orbit once. In the course of an orbit, the Sun encounters various

T&F Cat # C3074, Chapter 18, Page 337, 14-7-2009



338 Physics of the Sun: A First Course

types of ISM. In some of these, the local density may rise to values of
n = 103 cm−3, 105 cm−3, or even 107 cm−3. Assuming that the gas
temperature remains at the value T = 100 K in all clouds, and that all
other components of ISM pressure are unchanged, calculate the extent
of the heliosphere in each of the above clouds.

18.2 Also in the various components of ISM, the field strength increases
roughly in proportion to n2/3. For the values of n given in Exercise 1,
evaluate the local field strengths. With these new B values, recalculate
the extent of the heliosphere.

18.3 Assuming that only n or B varies, what values of n and B are necessary
in order that the extent of the heliosphere shrinks to become smaller
than the size of the Earth’s orbit?
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Symbols used in the text, their units, and where they are introduced

a isothermal speed of sound (cm sec−1) (Chapter 18.1)
ahc relative acceleration of hot and cold gas (Chapter 7.1)
aR radiation constant (ergs cm−3 K−4) (Chapter 2.1)
aλ limb darkening coefficient (Chapter 2.2)
A area of solar surface (Chapter 17.16)
Å Angstrom (unit of length = 10−8 cm) (Chapter 2.1)
bλ limb darkening coefficient (Chapter 2.2)
B magnetic field vector (Chapter 16.6.1)
B magnitude of B (Chapter 16.6.1)
c speed of light (= 3 ×1010 cm sec−1) (Chapter 2.1)
cs adiabatic speed of sound (cm sec−1) (Chapter 7.1)
Cp specific heat at constant pressure (ergs gm−1 K−1) (Chapter 6.7.1)
Cv specific heat at constant volume (ergs gm−1 K−1) (Chapter 6.7.1)
dc mass column density (gm cm−2) (Chapter 3.3, 5.1)
D distance of Earth from Sun (= 1.5 ×1013 cm) (Chapter 1.2)
D horizontal diameter of convection cells (cm) (Chapter 6.5)
e unit of electric charge (= 4.8 ×10−10 e.s.u.) (Chapter 16.6.1)
E electric field vector (Chapter 16.6.1)
F flux of radiation at arbitrary depth (ergs cm−2 sec−1) (Equation

2.22)
Fs flux of sound waves emitted by convection (Equation 14.27)
F� flux of radiation at the solar surface (= 6.3155 ×1010 ergs cm−2

sec−1) (Chapter 1.8)
g acceleration due to gravity (cm sec−2) (Chapter 5.1)
gad adiabatic temperature gradient (K cm−1) (Chapter 6.8)
gi statistical weight of atomic level i (Chapter 3.3.2)
gs acceleration due to gravity at the Sun’s surface (= 27422 cm sec−2)

(Chapter 1.6)
gT temperature gradient (K cm−1) (Chapter 6.8)
G Newton’s gravitational constant (cm3 gm−1 sec−2) (Chapter 1.1)
h height in the atmosphere, increasing outward from the Sun (cm)

(Chapter 5.1)
H vertical depth of a granule (Chapter 6.5)
Hp pressure scale height (cm) (Chapter 5.1)
i

√ − 1 (Chapter 13.5.2)
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I ionization potential (electron volts) (Chapter 4.1)
Iλ intensity of radiation per unit wavelength (Chapter 2.1)
Iν intensity of radiation per unit frequency (Chapter 2.1)
J mean intensity at arbitrary depth (Equation 2.23)
k Boltzmann’s constant (= 1.38 × 10−16 ergs K−1 ) (Chapter 1.7)
kh horizontal wavenumber of oscillation mode in the Sun (Chapter 14.7)
kr radial wavenumber of oscillation mode in the Sun (Chapter 14.7)
kλ absorption coefficient at wavelength λ (cm−1) (Chapter 2.3)
kth thermal conductivity (ergs cm−1 sec−1 K−1) (Chapter 8.1)
K degrees Kelvin: unit of temperature (Chapter 2.1)
K(τ) related to radiation pressure at optical depth τ (Equation 2.26)
l angular degree of oscillation mode in the Sun (Chapter 13.2)
L half-length of coronal loop (cm) (Chapter 17.14.1)
L� luminosity (=power output) of the Sun (= 3.84 ×1033 ergs sec−1)

(Chapter 1.4)
mH mass of the hydrogen atom (= 1.66 ×10−24 gm) (Chapter 1.7)
M Mach number of granule flows (Chapter 14.8)
M� mass of the Sun (1.99 ×1033 gm) (Chapter 1.3)
n polytropic index (Equation 10.1)
na number density of photon absorbers (cm−3) (Chapter 3.3)
ne number density of electrons (cm−3 ) (Chapter 4.1)
N column number density (cm−2) (Chapter 3.3)
N number related to adiabatic exponent (Chapter 14.1)
Ne number density of electrons (cm−3) (Chapter 17.7)
Ni number density of ions (cm−3) (Chapter 17.7)
p gas pressure (dyn cm−2) (Chapter 5.1)
pe electron pressure (dyn cm−2 ) (Chapter 4.1)
pmag magnetic pressure (dyn cm−2) (Chapter 16.6.2.1)
Pac acoustic cut-off period (sec) (Equation 13.14)
Pg critical period of gravity modes in the Sun (Chapter 1.10)
Pp power density in pressure pulse due to granules (Equation 14.26)
q slowly varying function of optical depth (Chapter 2.8)
r radial coordinate (cm) (Chapter 2.1)
rg gyroradius (cm) (Equation 16.4)
ro Emden unit of length (cm) (Equation 10.9)
Rg the gas constant (= 8.3 ×107 ergs mole−1 K−1) (Chapter 1.7)
R� radius of the Sun (= 6.96 ×1010 cm) (Chapter 1.5)
Sλ the source function at wavelength λ (Chapter 2.4)
t time (sec) (Chapter 7.1)
T temperature (degrees K) (Chapter 2.1)
Tb temperature at the base of the convection zone (Chapter 8.3)
Teff effective temperature (K) (Chapter 1.8)
uν energy density of radiation per unit frequency (ergs cm−3 Hz−1)

(Chapter 2.9)
U internal energy (ergs gm−1) (Chapter 6.7)
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V velocity of vertical gas motion (cm sec−1) (Chapter 7.1)
Vesc escape speed from the surface (Chapter 1.7)
Vth mean thermal speed of particles (Chapter 17.6)
w auxiliary pressure variable in oscillation calculations (Equation

14.16)
Wmag magnetic energy density (ergs cm−3) (Chapter 16.6.2.1)
x dimensionless unit of length in the Lane–Emden equation (Chapter

10.4)
X dimensionless unit of length in oscillation calculations (Chapter 14.2)
y Lane–Emden function, which describes polytrope structure

(Equation 10.6)
z depth in atmosphere, increasing inwards towards the solar center

(Chapter 7.1)
z auxiliary radial displacement variable in oscillation calculations

(Equation 14.16)
zb depth of the base of the convection zone (Chapter 7.9)
zr depth below the surface where a p-mode is refracted upwards

(Equation 14.24)
α mixing length parameter = ratio of H to Hp (Chapter 6.5)
α dimensionless frequency in oscillation calculation (Equation 14.10)
β power law index in flare distribution (Equation 17.13)
γ ratio of specific heats (Chapter 6.7.1)
Γ generalized exponent for adiabatic conditions in ionization zone

(Chapter 6.7.3)
δ power law index for nonthermal electron energy distribution

(Equation 17.11)
ε oblateness of the Sun (Chapter 1.9)
ελ radiant emissivity at wavelength λ (Chapter 2.3)
ηe magnetic diffusivity (cm2 sec−1) (Equation 16.9)
θ variable in Saha equation = 5040/T (Chapter 4.2)
θ dimensionless unit of pressure in oscillation calculation

(Chapter 14.2)
ξ vertical displacement of a parcel of gas (Chapter 13.5.1)
κ opacity (cm2 gm−1) (Chapter 3.1)
λ wavelength (cm, Å, µm) (Chapter 2.1)
Λ Coulomb logarithm (Chapter 11.3)
Λ radiative loss function (Chapter 17.14.2)
µ cos(ψ), where ψ = angle between line of sight and Sun’s normal

(Chapter 2.2)
µ mean molecular weight (Chapter 1.7)
ν temporal frequency (sec−1) (Chapter 2.1)
νg critical frequency in the Sun (Equation 1.20)
π 3.14159
ρ mass density (gm cm−3) (Chapter 3.1)
ρb density at the base of the convection zone (Chapter 8.3)
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ρc density at the center of a polytrope (Chapter 10.2)
ρ̄ mean density of the Sun (= 1.4 gm cm−3) (Equation 1.21)
σ collision cross-section for a particle (cm2) (Chapter 11.3)
σB Stefan–Boltzmann constant (5.67 ×10−5 ergs cm−2 sec−1 K−4)

(Chapter 2.1)
σc Coulomb collision cross-section (Chapter 11.3)
σe electrical conductivity (sec−1 [in e.s.u.]) (Equation 16.8 )
σλ absorption cross-section (cm2) for a photon with wavelength λ

(Chapter 3.3.1)
σT Thomson cross-section for photon scattering by a free electron

(Equation 3.1)
τ optical depth (Chapter 2.3)
ϕ fractional abundance of negative hydrogen atoms (Chapter 3.4)
Φ radiative loss function (ergs cm3 sec−1) (Chapter 17.7)
ψ angle between line of sight and Sun’s normal (Chapter 2.2)
ω solid angle (Equation 2.22)
ω angular frequency of solar oscillations (radians sec−1) (Chapter 14.1)
ωac cut-off frequency for vertically propagating acoustic waves (Equation

13.13)
Ω angular frequency of solar rotation (radians sec−1) (Chapter 1.9)
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Absorption coefficient, 22–24
defined, 22
linear, 35
numerical values, 22

Absorption lines
solar spectrum, 49–54

Acceleration
due to gravity, 5, 7, 9, 11, 63, 64, 102,

114, 115, 130, 190, 321
solar wind, 325–327
vertical, 93–95, 183, 190, 276, 277

Acoustic dissipation
balanced by radiation, 237
rate of, 233, 234

Acoustic energy flux, 231, 232
Acoustic modes, 175, 182
Acoustic waves; see also Sound waves

in Sun
chromospheric heating, 230–238,

272, 273, 294
cut-off frequency, 186
cut-off period, 186
empirical limit in corona, 306
flux of energy, 231
generated by convection, 210, 211, 295
in polytrope, 127, 128
in the corona?, 285, 306
propagating, 182–187
propagation time from center to

surface, 119, 206
trapped, 182–187

Active regions, xvi
coronal density, 293
coronal magnetic fields, 257
coronal temperature, 293
defined, 249
diffusive decay, 278
latitudes, 249
localized heating, 295

Activity cycle, see Eleven year cycle
Adiabatic index

generalized, 86, 103
ionization, effects of, 90

Adiabatic oscillations, 192, 194

Adiabatic processes, 86, 90, 99, 101,
102, 110, 125, 126, 132, 184,
328, 329

Adiabatic region, 100
Adiabatic temperature gradient, 88, 97,

109, 208, 211
Alfven speed

defined, 272
in chromosphere, 272
in corona, 272, 307
in photosphere, 272, 307
in sunspot umbra, 272
reconnection outflow, 316

Alfven waves
chromospheric heating, 273
coronal heating, 295, 307, 328
difficult to dissipate, 274
in the photosphere, 273
into the corona, 274
transverse, 272

Ambipolar diffusion, 264
Amplification of fields

solar cycle, 275
time-scale for, 275, 276

Amplitude
Alfven waves, 273
antinode, 200
g-modes, 206
largest p-modes, 181
p-modes, 186, 211
perturbation, 190
radiant modes, 16
related to energy flux, 231, 273
“seeing,” 9
solar irradiance, 6
solar oscillations, 175–177
sound waves in photosphere, 231–233
trapped vs untrapped, 182, 187
turbulence, 291
variation with height, 233
velocity differences in convection, 80

Analytic solutions 48, 130, 131, 132,
137, 189, 194, 195, 203

Angstrom unit, 18

343
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Angular degree l

defined, 177
empirical determination, 119, 178,

179, 181
horizontal wavelength, 178, 207

Angular frequency of small oscillations, 190
Angular momentum

of electron, 251, 253
of orbit, 253
of polarized photon, 254
sublevels in atom, 55

Angular radius, 3, 6–8, 20
Angular resolution

p-mode observations, 176
required for granules, 77, 80
required for high−l modes, 178
required for penumbral observations,

260
Angular velocity, 9, 10, 214–216, 222, 276
Anisotropy of Lorentz force, 265
Antenna, 210, 211
Antinodes of eigenfunctions, 200, 201,

209–211
Arches in X-rays, 296
Arcs, see Arches
Artificial satellite, 3, 4
Astronomical unit, 2, 3
Asymptotic functional forms, 195–197
Asymptotic spacing

from oscillation equations, 204–207
in frequency, 179, 180, 199, 204–206, 212
in period, 206–207
of p-modes, 119, 120

Asymptotic values
boundary temperature, 33
coronal pressure, 322
L/M ratio, 111
luminosity, 110
mass, 111
solar wind speed, 329

Atomic energy levels
bound electrons, 38–42, 49, 53–56,

221, 227, 237, 239, 251–254,
286–287, 289, 290, 292, 293, 301

in magnetic field, 251–254
Atomic mass units, 140
Avogadro’s number, 8
Azimuthal symmetry, 19

Babcock magnetograph, 256, 260
Balmer lines

in chromosphere, 221, 223, 239
Barrier penetration, see Quantum tunneling

Base of convection zone, 102–104, 109, 110,
112, 113, 118, 213–215, 277

Base of corona
defined, 283
density at, 286
energy flux at, 332
pressure at, 240, 293, 294, 321, 323
velocity at, 325

Base of photosphere, 100
Base of sunspot, 270
Benard, Henri

convection cells, 79, 81
study of laboratory convection, 79

Beta-decay, 152, 153
Black-body radiation, 16–18, 30, 32
Bohr model of hydrogenic atom, 40, 287,

288
Bolometric flux

umbra vs photosphere, 245
Bolometric luminosity, 247
Boltzmann distribution, 55
Boltzmann factor, 17
Boltzmann’s constant, 8
Boundary conditions, xvii, xviii, 29, 93,

113, 122, 131
in corona, 282
Lane-Emden equation, 128, 130
oscillation equations, 195

Boundary of polytrope, 200
Boundary temperature, 33, 63, 231
Bound-bound transition, 38, 40
Bound electrons, 107
Bound-free transition, 38, 39, 40, 42
Bound state

negative hydrogen ion, 42
Breaking waves

defined, 234
local heating, 234

Bridging the Coulomb gap, 146, 159
Brunt-Vaisala frequency, 206
Bulk motions, 86, 111
Buoyancy

in granules, 95, 96
in magnetic field, 276

Calcium lines (H and K)
ionized calcium, 50, 221

“Captive audience”
loops, 297
none in coronal holes

Cavity
radiation, 16
sound waves, 187

Cell, center of supergranule, 224
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Cell versus network
differences, 228–230
energy supplies, 233

Central condensation, 117, 137, 197
Central density

in a polytrope, 127, 137, 190
in the Sun, 12, 115, 117, 122, 129

Central pressure
in a polytrope, 127, 129, 134
in the Sun, xviii, 115, 116, 122,

129, 134
Central temperature

in a polytrope, 128
in hydrostatic equilibrium, 8,

117, 147
in the Sun, 115–117, 121, 122

Channels for flare energy, 319
Characteristic gravitational period in

the Sun, 11, 129, 187
Charged particle

in a magnetic field, 261–264
Chemical composition

in corona, 292, 301
in photosphere, 63, 301
solar interior, 104

Cherenkov radiation
neutrinos, 165, 167–169

Chlorine (cleaning fluid)
neutrinos, 165–167

Chromosphere, 219–240
acoustic flux, 231–233
CaK observations, 223–225
calculating the temperature increase,

235–238
cells, 224, 225, 227–231, 233, 238,

249, 272
color, 220
definition, 220
deposition of energy, 231–233
dissipation length, 233
eclipse image, 220
Hα observations, 226–227
heating by untrapped modes, 182
helium ionization, 60
hotter than photosphere, 221, 228
input energy flux, 231–233
low chromosphere, 229, 234, 236–238,

267, 273
mechanical work, 230–231
middle chromosphere, 238
network, 224, 225, 227–231, 233,

238, 249, 250, 272–274
not heated by p-modes, 231
observations on the disk, 222–227

opacity power-law, 49, 237
plage, 223, 225, 249, 272, 273
radiative cooling, 235–238
spectrum, 221
supergranules, 224–225
temperature profiles (empirical),

228–230
thermostatic effect of hydrogen, 239
thickness, 222
two components, 227
upper chromosphere, 58, 59, 229, 237,

239, 240, 267, 272, 288, 298,
299, 303, 304

volumetric rate of energy deposition,
233–234

Chromospheric heating
excess due to Alfven waves, 273
network, 272
plage, 272

Circular path
particle in magnetic field, 262

Circular polarization, 253
Circulation time

granules, 81
Closed loops, 297

densities in, 297
trapped gas in, 297

Clumps in solar wind, 326
CME’s, see Coronal mass ejections
CNO cycle, 139, 165
Collisions between particles

defined, 142
distant, 144
frequency in solar core, 142, 143

Column density
mass, 37, 42, 64, 65
number, 36, 43, 64, 74

Communication satellites, xvi
Completely convective star, 132
Computational procedure (“step-by step”)

convection zone, 101–103
interior, 113–115
oscillations, 196–198
photosphere, 71–73
polytrope, 134–136

Conducting fluid
magnetic interactions, 264

Conduction of heat
kinetic theory, 108
molecular process, 79

Conductivity
electrical, 266, 318

in solar atmosphere, 267
Spitzer value, 267, 317
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thermal, 107, 299
electrons, 299, 300
photons, 107–109

Conservation
energy, 123, 192, 324
mass, 127, 183, 191, 324
momentum, 94, 122, 127, 190, 324

Continuous energy spectrum
neutrinos, 141, 161

Contrast heating of chromosphere vs
corona, 305

Convection in laboratory, 79
Convection in Sun

empirical properties, see Granules
inhibited in umbra, 268

Convection modeling
critical temperature gradient, 86–88
energy flux, 83, 98

above the photosphere, 84
below the photosphere, 85, 86, 98, 99
in the photosphere, 83, 84, 98

generalized exponent, 99–102
mixing length theory, 96–99
model computation, 101–104
onset, 86–90
power laws of temperature, 100, 102
speeds, 210, 211
step-by-step, 101–104
3-D modeling, 101
vertical acceleration, 93–95
vertical length scales, 81, 95, 96

Convection speeds
depth dependence, 211
determining factors, 93

Convection zone, 93–105
acceleration due to gravity, 102
base location, 102–104, 109, 110, 112,

113, 118, 213–215, 277
deep regions, 101
depth, 102, 103
differential rotation, 216
p-mode excitation, 208, 210
power law behavior, 100–102, 125,

126, 132
spherical shell, 102, 132
superadiabatic region, 97, 211
uppermost layers, 35, 89, 100–102, 104

Convective envelope, 103, 104, 132–134
Convective inhibition

in umbra, 268
Convective instability/stability, 88

ionization effects, 89
Convective turbulence

and sunspot erosion, 247

Convergence of rotation curves, 215
Cooling rate in corona

conductive, 300
radiative, 300

Cooling time-scale
continuum radiation, 235–236

Coordinate space, 56
Core of the Sun, 159, 173
Corona, 281–320

abrupt transition from chromosphere,
293, 294, 303, 304

active region parameters, 293
Alfven speed, 272, 273
asymptotic hydrostatic pressure, 322
densities, 282–286, 290, 292, 293
eclipse images: Figs. 15.1, 16.8, 17.1
electrical conductivity, 267, 318
electron temperatures, 284–290, 293
emission measure, 292–293
energy fluxes, 305
expansion, see Solar Wind
fields dominate gas, 272, 273
gas pressures, 293
ion temperatures, 291
magnetic loops, 295–297
maximum brightness, 281, 282
polar fields Fig. 16.8
polarized light, 283
quiet Sun parameters, 293
radiative losses, 300–302
radio polarization, 257
scale height, 290, 305, 306
spatial structure, 283, 284
temperature of line formation,

288–290
thermal conduction, 299–300
trapped gas in loops, 297
volumetric energy deposition rate, 304
X-ray images, 295, 296
X-ray line strength, 292
white-light corona, 281–283

Coronal analysis to determine Ne, 292
Coronal density

Edlen’s limit, 285
radial profile, 283

Coronal emission lines
Edlen, 285
green line, 285
in X-rays, 286–288
red line, 285

Coronal heating
magnetic carpet, 307–309
volumetric rate of energy deposition,

304, 305
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wave fluxes required, 305–306
waves, acoustic?, 306
waves, Alfven?, 307

Coronal holes, 281
high-speed wind, 330
low density 297, 298
open fields, 297–299

Coronal mass ejections (CME’s), xvi,
xviii, 333–334

characteristic mass, 334
mass distribution, 334
mass loss rate, 334
maximum mass, 334
solar cycle variations, 333

Coronal radiation, output power, 305
Coronal shape, and, 11-year cycle,

281
Coronal streamers, 281, 284
Coronal temperatures

empirical, 284–291
theoretical estimate, 298–303

Coulomb cross-section, 142, 143, 300
Coulomb effects in conductivity, 267
Coulomb gap

bridging the gap, 146
defined, 145

Coulomb logarithm, 143
Coulomb repulsion

negative H ion, 42
Cowling approximation, 190, 198, 212
Crab nebula, remote sensing of solar

wind, 326
Critical frequency

acoustic, 186
gravitational, 11, 187

Critical radius, location of peak gravity,
115

Critical temperature gradient, onset of
convection, 75, 86–90

Cross-product of vectors, 261
Cross-section

Coulomb, 142
HeI edge, 44
Lyman edge, 39
negative H ion, 43
neutrino, 160
photon absorption, 36, 37
Thomson, 36

Current density, 264
Curvature of field lines 265
Cut-off

acoustic frequency, 186
acoustic period, 182, 186
neutrino energy, 161, 164

Damped solutions
g-modes, 206, 207
nuclear wave function, 149
sound waves, 185, 186

De Broglie wavelength, 120, 145, 146, 149
Decay of magnetic field, 267

in a pore, 268
in a spot, 268

Deep interior of the sun, 98, 107
Degenerate electrons, 120, 133
Degree of oscillation mode l, 191
Degree of polarization, 283
Density, exponential profile, 85
Density differential, 94
Departures from spherical symmetry

cell vs network, 249
in chromosphere, 249

Deposition of energy
by sound waves, 219
heating caused by, 237
in chromosphere, 233, 234
in corona, 305, 306

Depths for p-modes
excitation, 209
penetration, 207

Depth scale
linear, 21
optical, 21

Detectors of solar neutrinos, 165–170
Deuteron, 140, 148, 169, 170

stability, 152
Differential rotation

effects on fields, 215, 216, 275–279
latitudinal, 10, 215
magnitude, 10
radial, 216

Diffusion
of magnetic field, 267, 317
of photons from core, 118
of radiant energy, 108

Diffusive decay
active regions, 278
time-scale for, 278

Diffusivity
due to supergranules, 278
magnetic fields, 266

Di-proton, instability, 51
Discrete frequencies, solar oscillations, 178
Dispersion relation, 207
Displacement of gas, vertical sound

wave, 183
Dissipation length (waves)

chromosphere, 234
corona, 305
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D lines (sodium), 50
Dominance: field or gas?, 268, 274
Doppler effect, 3, 10, 52, 53
Downflows

convection, 80, 83
in intergranular lanes, 80, 268

Dreicer field, 319
Dynamics of convection, 95

Earth
atmosphere, 6, 65, 80, 265
earthquakes, 173
magnetic field, 259, 333
mass, 2
orbit, xviii, 1–3
oxygen, 50
radius, 4

Eclipse of Sun, 220, 281
Eddies in turbulent flow, 79
Eddington approximation, 31
Eddington-Barbier relationship, 28
Eddington relation, 32, 33
Eddington solution

applicability, 31, 74
non-applicability, 230, 234

“Edge” (in spectrum)
Balmer, 41
bound-free transition, 47
HeI, HeII, 44
Lyman, 39, 40, 41, 48
negative H ion, 43
Paschen, 41

Edge of Sun’s disk, sharp, 65–66
Effective polytropic index, 127, 133
Effective temperature

photosphere, 8, 32, 74, 82, 148
umbra, 245, 271

Efficiency of sound emission, 211
Eigenfrequency, 119, 196, 198
Eigenfunction, 119, 182, 191, 200–202, 209
Eigenmodes

g-modes, 203
p-modes, 119, 196, 198

Electrical conductivity, 266
Electrical resistivity, 266
Electric field, motional, 261
Electron

charge, 262
magnetic moment, 251
spin, 251

Electron degeneracy, 120, 133
Electron density

in corona, 282
radial profile, 283

Electron pressure, 44
Electrons

bound, 36
free, 35, 36
nonrelativistic, 133
relativistic, 133

Electron scattering
coronal light, 283
Thomson cross-section, 35, 36

Electron volt, 140
Eleven-year cycle, xvi, xvii, 5, 6, 244,

246, 247, 259, 276–279, 281,
336, 337

Emden unit of length, 128, 134, 189,
192, 193

Emission lines
Edlen, 285
in chromospheric spectrum, 220, 221
in coronal spectrum, 281, 287

Emission measure
defined, 292

Emissivity, 22
End-point energy (neutrino), 140
Energy build-up (pre-flare), 312
Energy change in displacement, 87

algebraic sign, 87
Energy deficit (in spots), 247
Energy density

black-body radiation, 32
flares, 315
kinetic energy, 210, 269, 274
magnetic field, 265, 269, 274, 279, 315
radiation, 16, 18, 30, 32, 108
solar wind, 335
thermal, 236, 240, 313
wave, 231

Energy deposition rates (volumetric)
in chromosphere, 234
in corona, 305

Energy distribution (flares), 314
Energy equation, 122, 125–127, 134, 192,

327–329
Energy flux input

to chromosphere, 231–233
to corona, 306

Energy-generating core, 110, 125
Entropy and ionization, 101
Equation of state, xviii

perfect gas, 93, 94, 120, 126, 128
polytrope, 126, 132, 133, 194

Equilibrium
gas spheres, 126
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hydrostatic, 8, 63, 94, 114, 117, 121,
130, 133, 147, 237, 270, 290,
293, 321

radiative, 29, 77, 86, 230
thermodynamic, 17, 74, 239

Equipotential surface, 9, 10
Equivalent width, 51, 52
Errors in solar parameters, 4
Escape speed, 7, 116, 120
Escape time from Sun’s center

neutrinos, 161
photons, 118

Evacuation of gas (spots), 270
Exact solution of RTE, 31
Excitation depth of p-modes, 209
Excited states

atoms/ions, 40–42
nuclei, 164, 166

Exclusion principle, 120
Exothermic reactions, 140, 141
Extent of Sun’s influence, 335

Faculae
and pores, 271
defined, 248
excess brightness, 272
near the limb, 248, 271
Wilson depression, 271

Fast particles from flares
electrons, 312, 313, 315, 319
protons, 313

Fast solar wind
from coronal holes, 298
high ion temperatures, 291

Fermi, Enrico, and neutrinos, 159
Fermi (unit of length), 144
Fick’s law of diffusion, 108
“Fields” and “hedgerows”

in Ca K, 224
in Hα, 226

Five-minute oscillations, 175
Flares, xv, vxii, 309–319

amount of energy, 312–313
areas, 311
electron densities, 311
energy densities, 315
in Hα, 309, 314
light curves, 310
linear scales, 311
locations, 311
magnetic energy, 311, 315
magnetic field strengths, 315
magnetic reconnection, 315–319
maximum energy release, 314

size distribution, 314
spatial location, 311
temperatures, 310
triggering, 312, 317, 318
white light, 309

Flash spectrum, 221
Flux of

mechanical energy, 231, 233, 303, 305
neutrinos, 161
radiant energy, 29

Follower sunspot, 243
magnetic polarity, 256, 257

Foot-points of loops, 296
active regions, 297
coronal fields, 308
separation, 296

Forbidden lines, 285
Forces of nature, strong and weak, 154
Fraunhofer lines, 50
Free-free opacity, 40, 43
Frequency of solar oscillations, xvii

asymptotic spacing, 174, 175, 200
determinant of p-mode spacing,

119–120
empirical results, 174–181

“Frozen” field, 266, 275
gives mass to field line, 272
in pores, 268
in reconnection, 315

Functional forms, asymptotic, 196, 197
Fusion, nuclear, xviii, 117, 139, 141, 146
“Fuzzy glow” corona, 294, 298, 306

Galactic cosmic rays (GCR), 335
11-year cycle, 336
phase shift relative to sunspots, 337
solar wind protects Earth, 336

Galileo, xv, 243
GALLEX (neutrino detector), 168
Gallium neutrino reaction, 168
Gamma-rays, polarized, 254
Gamow factor

defined, 150
value in the Sun, 151
velocity-sensitive, 154

Gas constant, 8, 63, 84
Gaussian shape of spectral line, 52
GCR, see Galactic cosmic rays
Generalized adiabatic exponent, 86, 90, 103
Global magnetic field of Sun, 258–261,

277, 278
Global sound propagation, 119, 212
g-modes xvii, 136, 187, 195

asymptotic spacing in period, 204
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in solar core, 213
non-existence if n < N , 195

GOES X-ray satellite, 309, 310
Gradient

critical (for convection), 75
of temperature, 72, 74

Granules, 77
acoustic effects in, 81–82
and magnetic carpet, 308
empirical properties, 77–85

circulation pattern, 81, 268
circulation time, 81
energy flux, 83–84
intensity differentials, 81, 82
lifetime, 79, 210, 232
shape, 78
sizes, 80, 225
temperature differentials, 81–83
velocities, 80
vertical depth, 81

Gravitational constant, Newton’s, 2, 4, 5
Gravitational potential, 7, 87, 130
Gravitational well, 7
Gravitation, Newton’s law, 2
Gray atmosphere, 29–31, 66, 86
Ground state

atomic, 38, 39, 40, 41, 45, 46, 49, 55, 56,
287

nuclear, 164, 166
Gyrofrequency, 257, 263
Gyroradius, 263, 316

and MHD breakdown, 318
fluid analog, 266
in reconnection, 316
numerical values, 263

Hale’s polarity law, 257, 278
Half-width of line, 52
H-alpha

filaments, 250
in flares, 309, 312
observing the chromosphere, 221, 239,

249
Hall effect in reconnection, 317–318
H and K lines (ionized calcium), 52,

221, 223, 239
Hard X-rays, 286, 312, 313
Heavy water (neutrino detector), 168–169
“Hedgerows” and “Fields”

in Ca K, 224
in Hα, 226

Helioseismology, xvii, 7, 10, 128
global sound propagation, 119
radial profile of the sound speed, 212

solar rotation, 214
testing a solar model, 212

Heliosphere, 335
Helium

in chromosphere, 221
ionization temperature, 60

Helix, motion of charged particle, 263
Helmet streamers

extent, 284
X-ray loops, 297

High-speed wind
coronal holes, 330

Horizontal wavelength, 178, 207
HSE, see hydrostatic equilibrium
Hydrodynamic expansion

global coronal property, 323
of corona, 323

Hydrogen
atom, 36–42
dominant cooling, 239
ionization fraction in photosphere, 59
ionization strips, 58
negative ion, 42, 61
spectral lines, 221
upper level populations, 237

Hydrostatic equilibrium
center of Sun, 8, 147
chromosphere/corona transition, 293
degenerate electrons, 130
global breakdown in corona, 321–325
in a polytrope, 127
inner solar wind, 321, 322, 331, 332
in the umbra, 270
photosphere, 63–65, 66, 75, 94
polytrope, 127, 191
radiative interior, 111
spherical solution, 321
stratified atmosphere, 183

Imbalanced forces in convection, 94
IMF, 258
Impact parameter, 326
Inhibiting convection in umbra, 268
In situ measurements of magnetic field, 251
Instability, convective, 88
Intensity of radiation, 15

black-body radiation, 18
incoming, 107
outgoing, 107
per unit frequency, 16, 17
per unit wavelength, 15, 17

Interface convection zone/radiative interior,
213

Intergranular lanes, 78
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Internal energy
chromosphere, 235
convection zone, 87, 88, 97
corona, 332
ionizing gas, 85, 86
neutral gas, 84

Internal structure of the Sun: checking,
173

International Astronomical Union, 3
International Union of Geodesy and

Geophysics, 4
Interplanetary magnetic field (= IMF), 258
Interstellar medium pressure, 322, 335
Ion inertial length, 318

role in reconnection, 318
Ionization, 55–62

degree of, 57, 59, 60, 63
effects of, 100, 101
equilibrium, 43, 55
facilitates convection, 89
in chromosphere, 59, 60
in photosphere, 59, 60, 63, 267, 269
Saha equation, 57
umbra, 267

Ionization potential, 56
Ionization strips, 58, 61, 85, 100
Ionized gas, “tied” to field lines, 264
Ion temperatures, 291
Iron filings in magnetic field, 251, 258
Iron, in corona, 285, 287
ISM, see Interstellar medium
Isospin doublet, 153
Isothermal atmosphere, 184
Isothermal gas, 64

Jet, from reconnection, 318

Kamiokande neutrino detector, 168
Kepler, Johannes, 2, 3
Kinetic theory, 108, 120
K line (ionized calcium), 50, 52, 54
Knock-on electrons, in Cherenkov

detector, 167, 168
Kramers “law” of opacity, 48, 109,

112, 125

Laminar flow, 79
Lande g-factor, 253
Lane-Emden equation, 128–132, 134–136,

189, 194, 205
Lane-Emden function, 128, 130, 205
Laplacian operator, 191
Large separation, 199
Latitudes of active regions, 249

Latitudinal structure index l, 191
Leader sunspot, 243

magnetic field, 256–257
Legendre functions, 176
Leptons, 170
Lifetime of Sun, 143
Light curve, 309
Limb brightening, 21, 28
Limb darkening, 19–21, 26–29, 31, 35,

43, 228
Linear absorption coefficient, see

absorption coefficient
Linear polarization, 256
Line broadening, 52–54
Line profile, 51
Line width

p-modes, 176
spectral lines, 52–54

Longitudinal (line-of-sight) field, 253, 356
Longitudinal structure index m, 176
Loops, in X-rays, xvi

active regions, 295
spatial scales, 297

Lorentz force
anisotropic, 265
direction, 261, 262
magnitude, 261

Low chromosphere
and temperature minimum, 234
defined, 229
onset of temperature increase, 237

Lower boundary, p-mode cavity, 187
Lower hemisphere, radiative transfer, 25
Lower photosphere, 35, 63

hydrogen ionization, 60
negative H ion, 61

Luminosity of the Sun, 5, 63, 93, 99, 110,
113, 148, 247

Lyman edge, 39
Lyman lines, 38, 39, 287, 288

Mach number, 211
Magnetic activity, xvii

and coronal shape, 281, 282
defined, 250

Magnetic carpet and coronal heating, 307
Magnetic diffusivity, 266
Magnetic energy and reconnection, 316
Magnetic field direction

polarization of Zeeman lines, 255
Magnetic fields, 243–280

active regions, 260
Alfven waves, 272–274, 295, 307,

316, 328
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amplification, 275
Babcock magnetograph, 256
chromospheric network, 228
coronal heating, 282, 295
cyclic behavior, 277–279
diffusion, 267
dominant over gas?, 274
dominated by gas?, 274
effects in spectral line, 54, 251–256
energy density, 265
enhanced energy supply, 238
global field, 258
maximum strength in Sun, 250
measurements, 251–259
MHD, see Magnetohydrodynamics
polarization of light, 251–256
pressure, 264, 265
quiet Sun, 260
radio polarization, 257
reconnection, see Flares
release of magnetic energy, see Flares
strength

at solar poles, 259–260, 275
in active regions, 260, 263
in compact flux ropes, 260
in coronal plasma, 257, 273
in flares, 315
in IMF, 258
in ISM, 322
in photosphere, 263, 273
in sunspot umbrae, 250, 260, 269
in toroidal structures, 275, 276
maximum permitted in Sun, 276

stronger in network/plage, 238, 272,
273

sunspot flux blocking, 245
swept into network, 228
tension, 265
umbra, 250
vertical, 250
wave energy, 272
wave modes, 272–274, 295, 328
Zeeman effect, 251–256

Magnetic flux, xvi, 266
Magnetic interactions

with charged particles, 261
with conducting fluid, 264

Magnetic moment
electron, 251
orbital, 253

Magnetic reconnection
coronal heating, 309
flares, 315–319
motional electric field, 319

Magnetohydrodynamics
defined, 266
interactions with charged particles, 261
interactions with conducting fluids, 264
reconnection, 315, 317, 318

Main sequence, 148
Mass ejections, see Coronal mass ejections
Mass loss rate from the Sun

in nuclear reactions, 333
in solar wind, 331, 332

Mass of Sun’s core, 143
Mass profile of Sun, 111
Mass-radius relationship, 133
Maximum acceleration due to gravity in

Sun, 114
Maximum effectiveness of tunneling, 155
Maxwellian velocity distribution, 52, 150
Maxwell’s equations, 265, 266
MDI (= Michelson Doppler Imager), xvi,

180, 181
Mean free path, 108, 118, 160
Mean free time, 118
Mean intensity (radiation), 29
Mean thermal energy, 139
Mean thermal speed, 56

protons in Sun’s core, 116, 143
Mechanical energy deposition rate

(volumetric)
chromosphere, 234
corona, 304–305

Mechanical energy fluxes
chromosphere, 233
corona, 306
finite supply, 332

Mechanical properties of star, 127, 134
Megameter, 78
Megatons of TNT, 313
Mercury transits Sun, 6
Metals, 44

ionized in photosphere, 59, 60
MHD (= magnetohydrodynamics), see

Magnetic fields
Microflares, 313, 314
Microturbulence

in photosphere, 53, 291
sound wave amplitudes, 232

Middle chromosphere
defined, 229
hydrogen thermostat, 239
lack of fit by model, 238

Millionths, units of sunspot area, 246
“Missing depth” of convection model, 104
Mixing length theory, 96–99, 211, 225

convective energy flux, 98
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mixing length parameter, 96
temperature differential, 97

MLT, see Mixing length theory
Model of the Sun, 15, 63, 119

chromosphere, 231
mechanical, 93, 113
photosphere, 73

Molecular weight, mean, 45, 63, 72, 84,
114, 117

in convection zone, 102
in deep interior, 103

Moments of radiation intensity, 30
Momentum-changing collisions, 142, 144
Momentum space, 56
Monatomic gas, 84, 85
Moon

diameter, 6
motion during eclipse, 222

Motion parallel to field, 262
Multipole expansion, 210

Nanoflares, 313, 314
National Aeronautics and Space

Administration (NASA), xvi
National Institute of Standards and

Technology (NIST), 5, 140
Negative hydrogen ion, 42–44, 61, 74, 75
Network, chromospheric

bright in Ca K, 224
dark in Hα, 226
enhanced heating, 238, 272–273
magnetic fields, 228

Network versus cell
energy supplies, 231, 233, 238
temperature, 229

Neutral gas in magnetic field, 264
Neutrinos, 140–142, 159–172

coming from Sun, 168
continua, 161–162
cross-section, 160
detection, 165–170
flavor mixing, 170
fluxes at Earth, 161, 162
lines, 161–162
rest mass, 161

Neutron decay, 152
Newton’s second law, 94, 183
Nodes of eigenfunctions

in latitude, 177, 178, 194, 207
in radius, 119, 180, 200

Nonadiabatic processes, 99
Nonanalytic solutions, 132
Nonthermal electrons, 312
Nonthermal motions, 53, 291

Nonuniform brightness, 77
Northern lights, xvi
Nuclear force, 144, 148, 151–154, 156,

159, 163
strength of, 145

Nuclear reactions, 117, 122, 139–156, 159,
165, 173, 269, 314, 333

bridging the Coulomb gap, 146–148
CNO cycle, 139, 142, 161, 165–167
conditions required, 144–148
energy generation, 139–167
pp-I chain, 140
pp-II chain, 163
pp-III chain, 163
probability of occurrence, 153–154
quantum tunneling, 149–151
rates in Sun, 141, 142
temperature sensitivity, 154–157
weak interaction effects, 151–153

Numerical modeling, see Computational
procedure

Oblateness, 9
Ohm’s law, 266
Onset of convection, 86
Opacity, xviii, 35–54

effectiveness of bound electrons, 38
in gray atmosphere, 29
in photosphere, 67–70, 222
in strong lines, 222, 223
Kramers “law,” 48, 109, 112, 125
limiting behavior, 45–48
Lyman edge, 40, 41, 44, 47, 48
maximum values, 47, 48, 71
power-law fits, 48, 49, 237
radiative interior, 107–111, 118,

137, 160
related to radiative loss function, 301
Rosseland mean, 44–48
sources of, 37–44

absorption lines, 49–54
bound electrons, 36, 38
bound-free transitions, 39, 40, 43,

47, 49, 66
electron scattering, 35, 36
free-free transitions, 40, 43, 49, 66,

257
helium, 40, 44
hydrogen, ground state, 38–40
hydrogen, excited states, 40–42
negative hydrogen ion, 42–44

units, 35
Opacity broadening, 53
Open magnetic fields, coronal holes, 297
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Optical depth, 21, 22–24, 65
and cooling time, 236
in chromosphere, 223
in photosphere, 74, 222
zeropoint, 24

Orbiting Solar Observatories (OSO), 286
Oscillations in the Sun; observations,

173–182
frequency spacings, 119, 176, 179
long period, 187
short period (“5-minute oscillations”),

174–176
spatial structure, 176–180
temporal variability, 174–176
trapped and untrapped waves, 182–187

Oscillations in the Sun: theory, 189–216
asymptotic behavior, 204–207
derivation of equations, 190–194
eigenfrequencies, 198–200
eigenfunctions, 200–202
g-mode period spacing, 206–207
penetration of modes below surface,

207–209
p-mode frequency spacing, 205–206
preferred excitation of certain modes,

209–211
Overshooting, convective, 213

Pairs of sunspots
east-west alignment, 275
toroidal field origin, 278

Parcel of gas, 87, 88, 94, 96, 97
“Patchy” corona, in hottest gas, 294
Pauli, Wolfgang, 120, 159
Penumbra, 244

absent from pores, 246
horizontal field, 260

Perfect gas
behavior, 63, 64, 84, 90, 100, 112, 118,

120, 121, 126, 130–132, 184,
205, 321, 328

equation of state, 93, 94, 126, 128
internal energy, 84
material at center of Sun, 120, 121

Period of g-mode oscillations
asymptotic spacing, 204

Phase space, 56, 120
Photons

conductivity, 108–109
escape time, 118
heat transporters, 108
ionization by, 42

Photosphere, xv
acoustic energy flux, 231, 232, 239

Alfven waves, 272–274, 307
antinodes near, 210
base, 75
calculating a model, 63–75
column density, 74
convective flux, 83, 98
convective turbulence, 239
definition, 24
density in, 74, 237
electrical conductivity, 267
energy densities of flows, 269
images (showing granules), 78, 245
linear extent in depth (radius),

75, 219
lower, 35, 44, 61
magnetic decay time, 268
magnetic fields, 263, 273
mass column density in, 42, 74
microturbulence in, 53
mixing length parameter, 96
model of, 63–75
nearly gray opacity, 43
negative H ion, 42–44, 75
opacity, 35–44, 75
pressure in, 74, 117, 270
principal source of opacity, 42–44, 75
scale height, 64, 95, 233
sound speed, 93, 232
sound travel time from core, 119
sound wave amplitudes, 232
temperature in, 74
upper, 35, 46, 61, 186, 187, 233

Plages, 223, 225, 249
excess heating, 272–273

Planck, Max, 17
constant, 56, 120
function, 17, 33, 66, 82

Plasma, 264
Plateau in chromosphere, 229
p-modes

asymptotic spacing in frequency, 174,
175

degree, 177
depth of penetration below surface,

207
excitation, 209
largest amplitudes, 176, 181
preferred spacing, 176
pressure dominates, 202
radial order, 200
trapped, 182
wavenumber, horizontal, 178
wavenumber, vertical, 207

Poisson’s equation, 127
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Polarized light
from corona, 283
in Zeeman lines, 253–256
circular, 254
linear, 256

Polarized radio emission, 257
Polar regions of the Sun, 258

reversals of field, 259
Poloidal magnetic field, 275
Polynomial fit, 20
Polytropes, 125–137

adiabatic, 125, 328
analytical solutions, 130–132
central condensation, 117, 137, 197
defined, 126
Emden unit of length, 128, 129,

134, 192, 193
equation of state, 126
Lane-Emden equation, 128–132
numerical computation, 134–136
oscillations in, 189–207
relevance to “real” stars, 129, 132,

134
series expansion at center, 130, 135
surface, 131

Polytropic index, 126, 128, 192
Polytropic “star” and oscillations, 193
Pores, 245

and granules, 246, 269
decay time, 267, 268

Position vector, 1
Post-tunneling processes, 151, 154
Potential well

gravitational, 7
nuclear, 144, 145, 152

Power-law
conductivity, 300
electron distribution, 312
flare energy distribution, 314, 334
opacity fits, 48, 49, 237
polytrope, 125, 126
pressure, 90

Power output
radiation (“luminosity”), 5
sound, 210

Power spectrum
of single l value, 178
temporal, 174–176
two-dimensional, 176–180
velocities in Sun, 174

pp-cycle, see Nuclear reactions
Pressure

comparison chromosphere/corona, 293
comparison umbra/photosphere, 271

electron, 44
fluctuations, 194, 200, 202, 210
gas, 8, 44, 63
waves, 175

Pressure pulse from granule, 210
Pressure scale height, see Scale height
Pressure-temperature relation

adiabatic, 90
polytrope, 126, 127

Probability of nuclear reaction, 143, 153
Probability of quantum tunneling, 150, 151

peak value, 151
Prominences, 250

on the disk, 250
support by horizontal field, 271

Propagation of sound waves, 183

Quadrupole emission from convection, 211
Quality factor, 176
Quantum effects, 120, 121, 147
Quantum mechanics, 36, 120, 146, 149, 163
Quantum tunneling, 149–151
Quarks, 170
Quiet Sun

coronal density, 293
coronal temperature, 293
ubiquitous 1–2MK gas, 298

Race against time: solar cycle, 277
Radar, 3
RADCAT (artificial satellite), 4
Radial component of oscillation

displacement, 190, 194
Radial eigenfunction, 180, 200–202
Radial order of eigenmode, 177, 180,

200–202, 209
Radial profiles of parameters

in corona, 282, 283, 290
in polytropes, 125–128, 130
in the Sun, 9, 15, 21, 35, 107, 113,

114, 121, 173, 200, 202, 207,
212–216, 243, 282, 283, 290

Radiation
density constant, 18, 32, 108
flow through the solar atmosphere, 15
intensity, 16
transfer equation, 22–33

Radiation pressure
Eddington approximation, 30
ratio to energy density, 30
ratio to gas pressure, 117

Radiative cooling, 235
chromosphere, 235
corona, 300
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hydrogen lines, 239
rate in active regions, 305
rate in quiet Sun, 305

Radiative equilibrium, 29, 77, 86, 230
inapplicable to chromosphere, 230

Radiative-hydrodynamic code, 82
Radiative interior, 5, 49, 107–118, 122–127,

137, 203–207, 213–216, 276, 321
pressure gradient, 111
temperature gradient, 110

Radiative leakage, 85
Radiative loss function (optically thin),

292, 300–302
Radiative probability of forbidden lines, 285
Radiative transfer equation (= RTE),

21–25, 107
special solutions, 25–28

Radioactive decay, and the neutrino, 159
Radio astronomy, xv
Radio emission mechanisms, 257
Radiometer, 5
Radio observations, magnetic fields, 257
Radius of polytropic “star,” 129, 134
Ram pressure, 335
Random walk

field lines, 278
photons, 118

Ranges of parameters, surface to
center, 122

Rayleigh-Jeans law, 16
Rayleigh scattering, 38
Realistic solar model, eigenfunctions,

201, 202
“Real” stars and polytropes, 129, 132, 134
Reconnection (magnetic), see Flares
Remote sensing

magnetic fields, 251
solar wind, 326

Resistive dissipation, 267
Resolving power, 253
Resonant cavity, 176
Rest-mass energy, 1 a.m.u., 140
Reversal of polar fields, 279
Ridges in power spectrum, loci of constant

nr, 180
Ringing of the Sun, multiple tones, 175
Rise-time for flux tube, 277
R.m.s. (= root mean square) thermal

speed, 8
Rose color of chromosphere, 220

due to Hα line emission, 239
Rosseland mean opacity

definition, 44–48
table of, 67–70

Rotation of the Sun
interactions with magnetic fields, 215,

216, 275–279
interior, 215
surface, 9–11, 214
velocity, 10

Roughness of solar surface, 304
RTE, see Radiative transfer equation
Runaway temperature, 240, 299, 319
Runge-Kutta numerical scheme, 135,

195, 196

SAGE neutrino detector, 168
Saha equation, 43, 44, 55, 57–61, 245

helium in the chromosphere, 60
helium in the interior, 60
highly ionized elements, 288
hydrogen in the chromosphere, 59, 288
hydrogen in the interior, 59
ionization strips, 58
negative hydrogen ion, 61

Sargent rule in particle decay, 153
Scale height, 63–65, 81, 95, 96, 184–187,

222–225, 234, 237, 263, 270, 271
in corona, 290, 293, 294, 305, 306, 322

Schrodinger equation, 149
Scintillation of radio sources, 326

probe solar wind acceleration, 327
“Seeing,” 6, 65
Self-gravitating sphere, 127
Shape of spectrum and the mean

opacity, 36
Sharp edge of disk, 65
Shock formation, 234
Shock heating, 234
Simple harmonic motion, 185
Sinusoid, 205
Slab, finite, 26
Slow solar wind, 330
Small separation of p-modes, 199
SNO (= Sudbury Neutrino Observatory),

169–170
SNU (= solar neutrino unit), 166
Sodium D lines, fine structure, 286
Soft X-rays, 286
SOHO (= Solar and Heliospheric

Observatory), xvi, xvii, 5, 6, 9
images, 295, 336
solar oscillations, 175, 181, 213

Solar activity, xviii, 250, 283
effects on coronal shape, 283

Solar chromosphere, see Chromosphere
Solar core, 143, 153, 156, 159, 162, 163
Solar cycle, see Eleven-year cycle
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Solar disk sextant, 9
Solar flares, see Flares
Solar interior, probe with sound waves,

173–218
Solar irradiance, largest at solar maximum,

6, 272
and faculae, 273

Solar maximum, minimum defined, 247
Solar model, 35, 104, 111, 113, 117, 119,

121, 125, 129, 134, 166, 168–171,
173, 198, 201, 211–213, 230, 232,
237

Solar neutrino problem, 167, 170–171
Solar oscillations, see Oscillations in the

Sun
Solar polar fields, 258
Solar spectrum

acoustic power, 232
visible, 50
X-rays, 287

Solar wind
acceleration, evidence for, 325–327
asymptotic speed, 329
average wind at 1AU, 331
defined, 323
density at 1AU, 329–331
density at sonic point, 331
energy equation, 327, 328
fast (high-speed) wind, 291, 330
hot ions in fast wind, 291
hydrodynamic outflow, 324, 325
hydrostatic equilibrium, global?,

321–323
hydrostatic equilibrium, local?, 323–324
kinetic energy flux, 332
magnetic fields, 258
rate of mass outflow, 331–333
slow wind, 330
sonic point, 325
spatial extent of Sun’s influence,

334–337
speed at 1AU, 329–331
steady-state flow, 324–325
temperature at 1AU, 329–331

Solid body rotation, departures from,
see Differential rotation

Sound speed, 119, 127–129, 205, 207,
210, 212, 213, 272

adiabatic, 184
in photosphere, 93, 232
isothermal, 321, 325, 327, 331
radial profile in Sun, 212

Sound travel time in Sun, 119

Sound waves in Sun; see also Acoustic
waves

ability to do work, 231
amplitudes in chromosphere, 233
amplitudes in photosphere, 232, 233
flux generated by convection, 210–211,

232
flux reaching the chromosphere, 233
important for chromospheric heating,

219
propagation in stratified atmosphere,

183–187
reflection (trapped), 187
refraction, 208

Source function, 25, 27, 30–32, 65, 235, 238
exponential form, 28
Planck function, 66, 82
polynomial form, 27, 29, 228

South Pole, observing solar oscillations,
173, 178

Spatial structure in corona, 283, 284
Specific entropy, 100

and ionization, 101
Specific heat

constant pressure, 83, 84, 86
constant volume, 84, 86, 108, 235,

299
energy transport, 55
in convection zone, 103
ionizing medium, 58, 85
ratio, 85, 93

Spectral lines
absorption, 50
emission, 287

Speed of light, 108
Speed of sound, see Sound speed
Spherical harmonics, 176, 178
Spherical symmetry

in deep interior, 243
in low chromosphere, 306

Spicule properties, 226, 304
and the network, 227, 228

Spitzer formula for conductivity, 267
Spots, see Sunspots
“Squeezed” eigenfunctions, high-l, 209, 211
Standard solar model, 117, 166, 168–170
Stark effect, 53
Statistical weight

bound levels, 41, 55
free electrons, 55–57

Steep temperature gradient, upper
chromosphere, 303

Stefan-Boltzmann constant, 8, 18, 32,
109, 236
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Step-by-step modeling, see Computational
procedures

Storage of pre-flare energy, 312
Stratified atmosphere

cut-off frequency, 186
cut-off period, 186
wave propagation, 183–187

Stretching field lines, 275
Strong force, see Nuclear force
Sub-modes with index m, 214
Sun “as a star,” 174, 176
Sun, global parameters

acceleration due to gravity, 7
angular radius, 6, 20
central density, 12, 117, 122, 129, 137,

190
critical (gravity) frequency, 11, 188
distance from Earth, 3
effective temperature, 8, 32, 74, 82
effects on life, xv, xvi, xviii, xix
energy flux at surface, 8, 84, 98, 99, 232
escape speed, 7, 116, 120, 147
irradiance (= solar constant), 5, 6
lifetime, 5
limb, xv, 9, 10, 19–21, 26–29, 31, 35, 43,

65, 66, 220, 222, 225–228, 243,
248, 250, 270, 271, 284, 296, 297

linear scale corresponding to 1 arc sec, 3
luminosity, 5, 63, 93, 99, 110, 113, 247,

312
mass, 1–5, 7,11, 102
mean density, 11, 12, 117, 137
power output, see luminosity
radius, 6–9, 11, 20, 102–104, 114, 129,

134, 148, 161, 187, 197, 202, 208,
209, 222, 263, 282, 284, 294,
296, 304, 321, 325, 332, 35

solar constant (= irradiance), 5, 6
shape, 8–11
sharpness of the disk edge
sunspot cycle, xvii, 5, 244, 246, 247, 257,

259, 261, 276–279, 281, 336, 337
variable power output, xvi, 5
visible surface, xv, xvii, xviii, 15,

18, 22, 24, 219, 246
Sunspots, xv–xviii, 19, 173, 223, 243–248,

268–271
Alfven speed, 272
angular diameters, 245–246
areas, 245
changes in luminosity, 6, 247
chromosphere, 223
cycle, 5, 246, 247
direction of field, 255

effective temperature, 245, 271
electrical conductivity in umbra, 267
energy deficits, 245, 248
evidence for umbral magnetic field,

252, 253
faculae associated with, 248
follower, 243, 244, 256, 257, 278
Hale’s polarity law, 256, 257
horizontal field in penumbra, 260
images, 19, 224, 244, 245, 248, 249, 252
inhibition of convection, 268, 269
internal gas pressure, 269–271
leader, 243, 244, 256, 257, 261, 278
lifetimes, 247
magnetic activity, 250
magnetic field strengths, 250, 253, 275
magnetic pressure, horizontal, 269
numbers, 246
pairs, 243, 244
penumbra, 244, 246, 260
pores, 245, 246, 269
radiant intensity relative to

photosphere, 244, 269
reduced density in umbra, 270
shallowness of, 270
surrounded by plage, 249
temperatures in, 244, 245
umbra, 244, 245, 247, 250, 252, 260, 270
vertical field in umbra, 260, 269
wavelength dependence of intensity,

244
Wilson depression, 269, 270

Superadiabatic gradient, 97
Superadiabaticity, 99
Supergranules

active region decay, 278
defined, 224
flows in, 225
linear size, 225
number of granules contained, 225
observed in Ca K, 224
observed in Hα, 226

Superkamiokande neutrino detector, 168
Supernovae, 133
Sweet-Parker mechanism

magnetic reconnection, 315
thickness of layer, 317

Temperature
boundary (Eddington model), 33
chromospheric, 228–230
Edlen’s work, 285
effective, 8
electron, in corona, 284
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extremely high, in fast wind, 291
in corona, 284
ions, 291
of line formation, 288
photospheric, 73, 74
quiet corona, 298–303
solar wind, 330

Temperature differences
empirical: in granules, 81
theory: in MLT convection, 97, 98

Temperature gradient
adiabatic, 88–90
critical value, 86, 87
related to luminosity, 110
related to pressure, 111

Temperature minimum, 229
associated with shock heating, 234
density at, 237

Temperature sensitivity
of thermonuclear reactions, 154

Temperature vs height
chromosphere, 228–230
differences cell vs network,

228–230
Temporal variability, 173–176
Termination shock, 335

location of, 335
Thermal conduction

by electrons, 299
in corona, 299
in solar wind, 328

Thermal conductivity
electrons, 299, 300
in corona, 299
in solar interior, 108, 109

Thermal convection
in granules, 225
not in supergranules, 225

Thermal energy
in flare, 313

Thermal energy release, 87
Thermal motions, 52
Thermal pool, 142
Thermal population, 139, 147
Thermal properties

of stellar interior, 127
Thermal protons

bridging the Coulomb gap, 147
Thermal speed, 108, 120
Thermal velocities

iron in corona, 291
Thermal velocity distribution, 150
Thermodynamics, 128
Thermonuclear reactions, 139, 143, 147

Coulomb barrier penetration, 149–151
Gamow factor, 150
maximum effectiveness, 154
rates of, 149
regulated by weak force, 153
sensitivity to temperature, 154–156

Thermostat
in middle chromosphere, 239

Thin slab, 27
Thomson cross-section, 36, 38, 160
Thomson scattering

corona, 290, 291
3-D modeling of granules, 82
3-D radiative transfer, 101
“Tied” to the field

ions, 264
neutrals, 264

Time-scale
for flare, 317
in reconnection, 316

Time-scale of magnetic decay, 267
for solar cycle, 279

Time series
solar velocity, 174

Topology
of CaK chromosphere, 224
of granules, 78

Toroidal field, 275
Transfer of energy

into p-mode, 210
Transition region

chromosphere/corona, 294
conduction, 303
“discontinuity,” 294, 304
thickness, 293, 294, 303, 304

Transmission of Alfven waves, density
jump, 307

Trapped modes, 175
Triggering of flare, 312, 317, 318
Turbulence

effects on acoustic power, 233
in Earth’s atmosphere, 65

Turbulent flow, 79
Turbulent stresses, 216
Turnover time of convection cell, 210
Twenty-two year cycle

magnetic polarity, 257, 259, 261
Two-stream approximation, 30

Ultraviolet catastrophe, 16
Ulysses spacecraft, 330
Umbra, 244

darkness of, 269
field strength, 250
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inhibiting convection, 268, 269
vertical field, 260, 269

Unit vector
magnetic field, 265

Untrapped waves, 182
Upflows

associated with bright granules, 80
convective, 80

Upper boundary
convection zone, 100
p-mode cavity, 187

Upper chromosphere
definition, 229
density in, 237
hydrogen ionized, 239
temperature runaway, 240

Upper hemisphere, 25
Upper photosphere, 35, 46, 68, 85

and temperature minimum, 234
cut-off period, 186
hydrogen ionization, 60
negative hydrogen ion, 61

Variability
luminosity, 6
of single p-mode, 176
polar fields, 259, 260
sunspot numbers, 246

Variability of Sun
timescale of days/years, 173
timescale of minutes, 173

Vector displacement in oscillation, 190
Vector magnetograph, 256
Velocities in granules

difference downflows/upflows, 80
horizontal, 80
vertical, 80

Velocity broadening, 52
Venus, 3
Vertical acceleration, 93, 95, 96
Vertical displacement, 87
Vertical field in umbra, 260, 269
Vertical length scale, 95
Vertical sound waves, 183
Viscosity, 216
Volumetric rates

energy deposition, 301
radiative losses, 301
conductive losses, 300

Wave equation in stratified atmosphere, 184
Wave heating

chromosphere, 233–238
corona, 305–307

Wavelength of sound waves, 210
Wavelength shift

due to Zeeman effect, 253
Wave modes, magnetic, 295
Wavenumber, 207

horizontal, 207
radial, 207

Waves
acoustic, 182
in a stratified atmosphere, 184
inside the sun, 173
in solar atmosphere, 53
longitudinal (sound), 273
magnetic, in corona, 291
transverse (Alfven), 273

Weak force (= weak interactions), 144
and neutrinos, 159, 160
controls pp-rate, 152, 153
in the pp reaction, 152

White dwarf stars, 133
White-light corona, 281
Why 11 years for the solar cycle?, 277–279
Wien maximum, 45, 46, 47
Wien’s law, 18
Wilcox Solar Observatory, 260
Wilson depression

in faculae, 271
in spots, 270

Wind, see Solar Wind
Wings of absorption line, 51
Work against gravity, 87

X-ray astronomy, xv
X-rays

coronal, 286
hard, 286, 312, 313
soft, 286
spectrum, 287
temperature of line formation, 288

Year, sidereal, 1

Zeeman effect
anomalous, 253
longitudinal, 253
normal, 253
transverse, 256

Zeeman splitting, 251
circular polarization, 253–255
defined, 252
linear polarization, 255, 256
longitudinal, 253–255
transverse, 255, 256

Zurich sunspot number, 246
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