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Preface

This book combines the principles of special relativity and quantum me-
chanics needed to perform calculations of the electromagnetic scattering of
electrons and positrons, as well as the emission and absorption of photons.
I start by introducing the wave equations for spin-0 and spin-1/2 particles.
The basic principles of relativistic quantum mechanics are first introduced for
spin-0 particles, where the extra spin-degree of freedom does not obscure the
new concepts arising from a relativistic treatment of quantum mechanics. The
formalism is then redeveloped for spin-1/2 particles in which a rich set of new
concepts are revealed. Using this approach, the relativistic and spin effects
may be clearly distinguished by comparing the spin-0 and spin-1/2 cases. I
emphasise how the relativistic treatment of quantum mechanics and the spin-
1/2 degree of freedom are necessary to describe electromagnetic interactions
involving the scattering of electrons.

The field-theoretical approach to relativistic quantum mechanics is avoided
in this introduction since it is conceptually quite distinct from nonrelativistic
quantum mechanics covered at the undergraduate level; whereas relativistic
quantum mechanics is a natural extension of the nonrelativistic concepts. The
shortfalls of the wave-equation approach to relativistic quantum mechanics are
pointed out, and it is mentioned how a many-particle quantized field descrip-
tion of the theory is necessary. The calculational formalism of field theory
is also avoided by using the heuristic approach of the propagator formalism
developed by Feynman and Stückelberg. The Feynman rules for quantum
electrodynamics are developed by example. This is an intuitive and practical
approach that gets the reader doing calculations quickly.

This book is pedagogical in nature. It is meant to serve as a first intro-
duction to the theory of quantum electrodynamics, or interacting particles in
general. The material will provide adequate preparation for further studies
in relativistic quantum field theory or nonrelativistic many-body theory. For
readers with no intention of pursuing modern quantum theory in any greater
depth, it is hoped that the material presented in this book will give them an
intuitive feel for the meaning of the theory and the power of the calculational
method.

It is my belief that physics at an advanced level is learned by participation,
and in the case of the theoretical topics presented here, by performing numer-
ous calculations to develop hands-on experience. Many derivations have been
worked out in detail. This will be a benefit to a reader wanting to study the
subject on their own. It is hoped that by studying the material in this book



and working through the problems, that the reader will gain the necessary
background to pursue further study and research in theoretical and parti-
cle physics. The serious reader should be able to calculate simple diagrams,
lifetimes, and cross sections correctly.

This book can serve as a textbook for a graduate course in relativistic
quantum mechanics. The problems at the end of each chapter consist of filling
in mathematical steps left out of the presentation, proofs of expressions in the
main text, proofs of identities, or extensions to ad-hoc models or unusual cases
of the theory. Solutions to selected problems in the chapters can be found on
my web-site http://csr.phys.ualberta.ca/gingrich/qed/qed.html.

There is a list of books in the bibliography. In most cases, I have not
explicitely cited these books in the main text. These bibliography items should
therefore be regarded less as formal references than as acknowledgements of
those who originated some of the ideas I use in this book. I would like to
acknowledge the book by J.D. Bjorken and S.D. Drell [4], which has formed
the basis for many books on the subject. I would also like to acknowledge the
book by W. Greiner and J. Reinhardt [8] which came back into print in North
America while this book was being written. The debt I owe to these authors
will be quite obvious from the text.

I would also like to acknowledge Jos Vermaseren for writing the LATEX style
file axodaw1 that was used to make all the diagrams in this book. He is also
the author of the symbolic manipulation package FORM2 which was used to
check many of the trace calculations. Samples of these calculations can be
found in appendix D.

Finally, I would like to thank Kaston Leung for his assistance in proof
reading an early version of the manuscript, and James Fuite for proof reading
the final manuscript.

Doug Gingrich

1J.A.M. Vermaseren, “Axodraw”, Comp. Phys. Comm. 83 (1994) 45-58.
2J.A.M. Vermaseren, “New features of FORM”, math-ph/0010025.
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Chapter 1

Introduction

At the beginning of the 20th Century new branches of physics were developed
to describe two extreme realms of reality: the very small and the very fast.
The special theory of relativity was developed around 1905 and describes
physical systems traveling at near the speed of light. Likewise, quantum
mechanics was developed starting around 1900 to describe systems at the
atomic level. Both theories radically transformed our understanding of science
and philosophy, and now affect our everyday life.

In spite of the success of special relativity and quantum mechanics, certain
properties of the electron, and the emission and absorption of radiation by
atoms defied explanation until around 1926. An amalgamation of the theo-
ries of special relativity1 and quantum mechanics, called relativistic quantum
mechanics, was required before a satisfactory explanation emerged.

Since we will develop the wave-equation approach to relativistic quantum
mechanics in this book, we review some of the concepts of wave functions in
nonrelativistic quantum mechanics. For a given physical system there exists
a state function that can be used to describe all that we can know about the
system. We will usually deal directly with a coordinate realization of the state
function: the wave function ψ(q1, . . . , qN ; s1, . . . , sN ; t). This wave function
is a complex function of all the classical degrees of freedom q1, . . . , qN , of the
time t, and of any additional degrees of freedom, such as spin s1, . . . , sN , which
are intrinsically quantum mechanical. |ψ(q1, . . . , qN ; s1, . . . , sN ; t)|2 ≥ 0 is in-
terpreted as the probability of the system having values q1, . . . , qN ; s1, . . . , sN

at time t. This probability interpretation requires that the sum of positive
contributions |ψ|2 for all values of q1, . . . , qN ; s1, . . . , sN at time t be finite for
all ψ representing a physical system in the real world.

If the wave function is given at some instant, not only are all the properties
of the system at that instant described, but its behavior at all subsequent
instants is determined. The value of the derivative of the wave function with
respect to time ∂ψ/∂t at any given instant can be determined by the value
of the function itself at that instant. By the principle of superposition, the
relationship between ψ and ∂ψ/∂t must be linear.

The time development of a physical system is expressed by the equation

1Notice that I explicitly say special relativity. As of 2005, a satisfactory theory combining
general relativity and quantum mechanics does not yet exist.

3



4 Practical Quantum Electrodynamics

ih̄
∂ψ

∂t
= Hψ, (1.1)

where H is a linear hermitian operator2. This operator is what corresponds in
classical mechanics to Hamilton’s function. The operator is called the Hamil-
tonian operator, or more briefly, the Hamiltonian, of the system. The Hamil-
tonian has no explicit time dependence in the Schrödinger picture, ∂H/∂t = 0,
for a closed physical system. This means that the eigenvalues of H are the
possible stationary states of the system. If the form of the Hamiltonian is
known, equation 1.1 determines the wave function of the physical system con-
cerned. This fundamental equation of the quantum mechanics is called the
wave equation.

One approach to developing nonrelativistic quantum mechanics, that leads
to the Schrödinger equation from equation 1.1, is to invoke the correspondence
rule. We start with a classical dynamical system represented by a Hamiltonian
H(q1, . . . , qN ; p1, . . . , pN ; t), which depends on the coordinates qi of the system
in configuration space, on their momenta pi, and on the time t. The total
energy E of the system is

E = H(q1, . . . , qN ; p1, . . . , pN ; t). (1.2)

To this classical system corresponds a quantum system whose dynamical state
is represented by a wave function ψ(q1, . . . , qN ; t) defined in configuration
space and whose wave equation can be obtained by performing on both sides
of equation 1.2 the substitutions

E → ih̄
∂

∂t
and pi →

h̄

i

∂

∂qi
(i = 1, . . . , N), (1.3)

and by writing down that E and H , considered as operators, give identical
results when acting on ψ.

The equation thus obtained is a wave equation of the corresponding quan-
tum mechanical system. For a nonrelativistic Hamiltonian, the Schrödinger
equation is obtained. The wave equation will have all the invariance princi-
ples of the Hamiltonian from which it was derived. For an isolated system,
the Schrödinger equation will be invariant under spatial rotations and trans-
lations. It will also be invariant under a Galilean transformation between
two reference systems moving relative to each other with a constant velocity
(see problem 1.1). The Schrödinger equation is not invariant under a Lorentz
transformation and is thus not expected to describe physical reality as the
relative velocities of the particles involved becomes large.

This book embarks on the journey of relativistic quantum mechanics using
the correspondence rule and the wave-function approach. This approach will

2We will normally represent operators with the symbol ˆ over top of them. When there is
little chance for confusion, we drop the ˆ symbol, such as with the case of H � Ĥ.



Introduction 5

be applied to particles of matter (electrons), as well as, those of radiation (pho-
tons). This is the approach put forth by Dirac3. Quantum electrodynamics
will be developed as a result of the interaction of matter with radiation.

Because of their wave nature, it is tempting to treat radiation, or more
specifically light, and matter similarly within the wave equation approach to
quantum mechanics. However there is an important difference between the
two in nonrelativistic quantum mechanics. Even in the simplest situations,
the number of photons may vary in the course of time due to emission and
absorption through interactions with matter. By contrast, the number of elec-
trons, or more generally the number of elementary particles of matter, remain
constant. Thus a photon wave function would have to depend on a variable
number of parameters, and it is desirable to avoid such a situation. It must
be emphasized that the wave function described here is always interpreted as
representing just one particle of matter, and not the statistical distribution of
a number of particles.

In reality, the conservation law of the number of particles is not an absolute
conservation law, and the disparity between matter and radiation is not as
pronounced as we have just stated. Because of the equivalence of mass and
energy, particles can also be created or absorbed whenever the interaction
gives rise to energy transfers above the rest mass of the particles involved.
It is possible, under certain circumstances, to create electron-positron pairs
– emission of matter and antimatter. Conversely an electron and a positron
colliding can annihilate – absorption of matter and antimatter – giving off
energy in the form of radiation. In addition, an electron can be emitted
(created) in beta decay of atomic nuclei. Beta decay is not a process that
occurs within the theory of quantum electrodynamics and will thus not be
treated in this book.

If we restrict ourselves to phenomena of atomic physics, the positrons are
absent, nuclei are stable, and the energy transfers lie below the threshold for
electron-positron pair creation; the particle-number conservation law stated
above is then obeyed. Furthermore, we can approximately describe phenom-
ena concerning the interaction between radiation and matter, for example the
emission, absorption, or scattering of photons, using a semiclassical treatment
of such processes for atoms.

One of the main difficulties in elaborating relativistic quantum mechanics
comes from the fact that the law of conservation of the number of particles
ceases, in general, to be true. To be a complete theory, relativistic quantum
mechanics must encompass in a single scheme dynamical states differing not
only by the quantum state, but also by the number and the nature of the
elementary particles of which they are composed. To describe these dynamical
states and number, would require us to journey into the concepts of second

3Fermi teated the photon as a field and the electron as a particle. Heisenberg and Pauli
treated both as fields.



6 Practical Quantum Electrodynamics

quantization or quantized fields, otherwise known as quantum field theory.
That journey is beyond the scope of this book.

We will instead develop the propagator approach to quantum electrodynam-
ics first exploited by Feynman4. We obtain the solutions of the one-particle
wave equation for free electrons and then study the scattering of one particle
by another by treating the interaction as a perturbation. To incorporate the
creation and annihilation of antiparticles into the theory, the negative-energy
solutions of the relativistic wave equations will be used. The final formalism
will be a covariant version of nonrelativistic perturbation theory using only
solutions to single-particle wave equations. We will thus circumvent the enor-
mous task of developing the formalism of quantized field theory by using this
practical approach to performing calculations in quantum electrodynamics.

1.1 Problems

1. (a) Show that the Schrödinger equation is invariant under spatial ro-
tations and translations.

(b) Show that it is also invariant under a Galilean transformation be-
tween two reference systems moving relative to each other with a
constant velocity.

(c) Show that the Schrödinger equation is not Lorentz invariant.

4R.P. Feynman, “The Theory of Positrons”, Phys. Rev., 76 (1949) 749-759; R.P. Feynman,
“Space-Time Approach to Quantum Electrodynamics”, Phys. Rev., 76 (1949) 769-789.



Chapter 2

Notation and Conventions

In this chapter, we explain the notation and conventions adopted throughout
the book. Some useful definitions and formulae are also given. Only a brief
review of the necessary results will be presented – mainly without proof. It
is assumed the reader is familiar with the background material that leads
to the results presented in this chapter. If this is not the case, we suggest
readers familiarize themselves with the necessary background by referring to
the mathematical literature on the subject.

2.1 Units

Most often, we will work in a natural system of units in which Planck’s
constant h̄ and the speed of light in vacuum c are set to unity: h̄ = c = 1.
This implies that time has the unit of length, while energy, momentum, and
mass all have units of inverse length.

The final result of any calculation of a measurable quantity in electrody-
namics can always be expressed in terms of the dimensionless fine-structure
constant α ≈ 1/137.03599911. However, this constant is related in different
ways to the elementary electric charge e depending on the units used:

α =



e2/(h̄c) in the MKSA system,
e2/(4πh̄c) in the Gaussian system, or
e2/(4πε0h̄c) in the Heaviside-Lorentz system,

(2.1)

where ε0 is the permittivity of the vacuum (units Fm−1). In the MKSA and
Gaussian systems, the electric charge is dimensionless when using natural
units. The Heaviside-Lorentz system of units is sometimes referred to as the
rationalized Gaussian system of units.

When we state definitions or are considering the relative magnitudes of
quantities, we will often reintroduce the units. We will most often, but not
always, work in the Gaussian system of units.

7



8 Practical Quantum Electrodynamics

2.2 Maxwell’s Equations in Vacuum

We assume a working knowledge of Maxwell’s equations. Their form in
vacuum will be sufficient for our purposes:

�∇ · �E = 4πk1ρ, (2.2)

where

k1 =




1/(4πε0) in the MKSA system,
1 in the Gaussian system, and

1/(4π) in the Heaviside-Lorentz system;
(2.3)

�∇ · �B = 0; (2.4)

�∇× �E = −k2

c

∂ �B

∂t
, (2.5)

where

k2 =



c in the MKSA system,
1 in the Gaussian system, and
c in the Heaviside-Lorentz system;

(2.6)

k2
�∇× �B =

4πk1

c
�j +

1
c

∂ �E

∂t
. (2.7)

For Maxwell’s equations, the Heaviside-Lorentz system of units is the simplest
to work with, since all factors of 4π vanish.

2.3 Coordinates

A point in space-time is specified by the coordinates x0, x1, x2, x3, in which
x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. A four-vector in this notation can be written
as

xµ ≡ (x0, xk) ≡ (x0, x1, x2, x3), (2.8)

where µ = 0, 1, 2, 3 and k = 1, 2, 3. In general, Greek indices will run from 0
to 3, while Latin indices will run from 1 to 3.
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2.4 Metric Tensor

We will always work with the flat space-time metric (pseudo-Euclidean)
defined by the second-rank tensor gµν or g00 = 1, gkk = −1, and gµν = 0 if
µ �= ν. In the matrix representation,

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (2.9)

2.5 Covariant and Contravariant Indices

We will need to distinguish between covariant and contravariant vectors. A
contravariant vector transforms like the coordinate vector, while the covariant
vector transforms like the gradient. In terms of indices, we define for the vector
a,

covariant indices→ aµ (subscript),
contravariant indices→ aµ (superscript).

The metric tensor is used to convert from one type of vector to the other:

aµ =
4∑

ν=0

gµνa
ν ⇒ a0 = a0, ak = −ak. (2.10)

Normally the sum over identical indices is implied – Einstein summation con-
vention – and we simply write aµ = gµνa

ν . We can also raise indices: aµ =
gµνaν , where gµν = gµν for a Lorentz metric. Also g ν

µ = gµρg
ρν = gµ

ν = δ ν
µ ,

where δ ν
µ is the four-dimensional Kronecker-delta symbol:

δ ν
µ =

{
1 if µ = ν, or
0 if µ �= ν.

(2.11)

Also, notice that gµνg
µν = (gµµ)2 = 4.
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2.6 Three-Vector, Four-Vector, and Scalar Product

The three space components of a contravariant four-vector aµ form a three-
vector.

aµ ≡ (a0, a1, a2, a3) ≡ (a0,�a), (2.12)

where �a ≡ (ax, ay, az) and a1 = ax, a
2 = ay, a

3 = az.
The scalar product of two three-vectors �a and �b is defined as

�a ·�b ≡ axbx + ayby + azbz. (2.13)

Most often we omit the index and denote a four-vector aµ by just a. We
can thus write the scalar product of two four-vectors a and b as

a · b = aµb
µ = aµbµ = aµgµνb

ν = a0b0 − �a ·�b. (2.14)

This is often taken as the definition of the metric tensor gµν . We notice that
for finite four-vectors a and b, a · b can be positive, negative, or zero.

2.7 Classification of Four-Vectors

Three different types of four-vectors exist as shown in figure 2.1:

If aµa
µ < 0, aµ is a space-like vector. (2.15)

If aµa
µ = 0, aµ is a null or light-like vector. (2.16)

If aµa
µ > 0, aµ is a time-like vector. (2.17)

For a time-like vector in configuration space, a0 > 0 means the vector points
towards the future; a0 < 0 means the vector points towards the past.

2.8 Gradient and Differential Operators

The gradient vector operator is defined as

�∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (2.18)
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x

ct

space-like vector

time-like vector
(points towards the future)

time-like vector
(points towards the past)

light-like vector

FIGURE 2.1: Classification of four-vectors relative to the light cone.

The Laplacian scalar operator is defined as ∇2 ≡ �∇ · �∇.
The four partial-differential operators ∂/∂xµ form a covariant vector, called

the covariant gradient operator

∂µ ≡
∂

∂xµ
≡
(

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
≡
(

1
c

∂

∂t
, �∇

)
. (2.19)

Also, the contravariant gradient is defined as – notice the minus sign –

∂µ ≡ gµν∂ν ≡
(

1
c

∂

∂t
,−�∇

)
. (2.20)

Finally, the d’Alembert operator is defined as

� ≡ ∂µ∂
µ ≡ ∂ · ∂ ≡ ∂2 ≡ 1

c2
∂2

∂t2
−∇2. (2.21)

Sometimes the symbol � or �2 is used for the d’Alembert operator.
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2.9 Pauli Matrices

The Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.22)

The identity matrix I along with the three Pauli matrices form a basis for the
set of 2× 2 matrices (see problem 2.1).

The Pauli matrices are hermitian, and have the property (see problem 2.2)

σiσj = δij + iεijkσk, (2.23)

where εijk is the total antisymmetric tensor of third rank,

εijk =




+1 for an even permutation of 1, 2, 3,
−1 for an odd permutation of 1, 2, 3, or

0 otherwise.
(2.24)

For two arbitrary three-vectors �a and �b, the following identity is satisfied
(see problem 2.3).

(�a · �σ)(�b · �σ) = �a ·�bI + i�σ · (�a×�b), (2.25)

where �σ ≡ (σ1, σ2, σ3) and I is the 2× 2 identity matrix.

2.10 Groups

A group is a set of distinct elements, G ≡ {E,A,B,C,D, . . .}, endowed
with a law of composition – for example, addition, multiplication, matrix
multiplication, etc. – such that the following properties are satisfied:

1. The composition of any two elements A and B of G under the given law
results in an element which also belongs to G. Thus,

A ◦B ∈ G, B ◦A ∈ G, (2.26)

where we have denoted the composition of two elements of G by the
symbol ◦. This property is known as the closure property of the group
and the set is said to be closed under the given law of composition.

2. There exists an identity element E ∈ G such that for all A ∈ G,

E ◦A = A ◦ E = A. (2.27)

E is known as the identity element of G.
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3. For any element A ∈ G, there exists a unique element B ∈ G such that

A ◦B = B ◦A = E. (2.28)

B is called the inverse of A, and vice versa.

4. The law of composition of the group is associative, i.e. for any A,B,C ∈
G,

A ◦ (B ◦ C) = (A ◦B) ◦ C. (2.29)

Groups in which the commutative law of composition also holds, i.e. in
which A ◦B = B ◦A, are called Abelian groups.

Two groups G and G′ are isomorphic if their elements can be put into
a one-to-one correspondence which is preserved under composition. If we
indicate the correspondence of A in G by A′ in G′, so that the prime on an
element signifies its corresponding element, then G and G′ are isomorphic if
A′ ◦B′ = (A ◦B)′, where A′ ◦B′ means the product of A′ and B′ according
to the law of composition of G′, while A ◦ B means the product of A and B
according to the law of composition of the group G. Isomorphic groups are
essentially identical; the individual elements are merely labeled differently.

Homomorphism resembles isomorphism except that the correspondence is
not required to be one-to-one. A group G is homomorphic onto another group
G′ if one and only one element of G′ corresponds to every element of G and
if at least one element of G corresponds to every element of G′, and if the
correspondence is such that the product of A and B of G corresponds to the
product A′ ◦ B′ = (A ◦ B)′ of the corresponding elements A′ and B′ of G′.
Accordingly, homomorphism is not a reciprocal property. If G is homomorphic
to G′, then G′ is not necessarily homomorphic to G. The number of elements
of G must be equal to or greater than the number of elements of G′; if the
number is equal, the homomorphism becomes an isomorphism, which is then
reciprocal.

If we map an arbitrary group G homomorphically onto a group of operators
D(G) in a linear space RN , we say that the operator group D(G) is a repre-
sentation of the group G in the representation space RN . If the dimension of
RN is N , we say that the representation has degree N , or is an N -dimensional
representation of the group G. The group G can have in general many repre-
sentations of different dimensionality.

Any linear transformation can be looked upon as a linear operator of RN

and can be represented by an N ×N square matrix. Therefore the represen-
tation of an abstract group G means in fact a homomorphic mapping of the
elements Gi onto a set of N ×N matrices D(Gi) acting on the vectors of RN

and forming a group.
We shall primarily study representations in a linear space with a finite

number of dimensions for the Lorentz group. It is also possible to construct
representations in an infinite dimensional Hilbert space. In fact, we shall see
the important role these infinite dimensional representations play in relativis-
tic quantum mechanics.
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2.11 Useful Definitions

The following notation will be handy when dealing with scalar wave func-
tions. For two scalar functions φ1(x) and φ2(x),

φ1

↔
∂ µ φ2 ≡ φ1

(
∂φ2

∂xµ

)
−
(
∂φ1

∂xµ

)
φ2. (2.30)

The Dirac delta function δ can be defined using

∫ +∞

−∞
dx ei(pf−pi)x = 2πδ(pf − pi). (2.31)

A useful property of the Dirac delta function is

δ[f(x)] =
∑

i

1
|f ′(x)|x=xi

δ(x− xi), (2.32)

where xi is the ith root of the function f(x): f(xi) = 0. One particularly
useful example of the above general relationship is

δ(x2 − a2) =
1

2|a| [δ(x − a) + δ(x+ a)], (2.33)

where a is a constant.
The delta function in four dimensions is written as

δ4(x− x′) ≡ δ(x0 − x′0)δ3(�x− �x ′)
≡ δ(x0 − x′0)δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3). (2.34)

We define f(z) to be a complex function of a complex variable z. If f(z) is
analytic on a closed contour C and within the interior region bounded by C,
Cauchy’s integral formula is∮

C

dz
f(z)
z − z0

= 2πif(z0), (2.35)

where z0 is some point in the interior region bounded by C. The direction
of the contour of integration is clockwise. A counter-clockwise direction of
integration results in an overall minus sign.

For two functions u and v, integration by parts gives

∫ +∞

−∞
dxu

dv

dx
= uv|+∞−∞ −

∫ +∞

−∞
dx
du

dx
v. (2.36)

The “surface term” uv|+∞−∞ can usually be neglected by physical arguments.
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2.12 Problems

1. Show that any matrix with two rows and two columns can be expressed
as a linear combination of σ1, σ2, σ3, and I. Use this result to show
that there is no matrix that anticommutes with each of the first three
of these.

2. Using the explicit forms for the 2× 2 Pauli matrices, verify the commu-
tation (square brackets) and anticommutation (curly brackets) relation-
ships

[σi, σj ] = 2iεijkσk and {σi, σj} = 2δijI,

where I is the 2× 2 unit matrix. Hence show that

σiσj = δijI + iεijkσk.

3. Use the identity in the previous question to prove the result

(�σ · �a)(�σ ·�b) = �a ·�bI + i�σ · �a×�b,

were �a and �b are arbitrary three-vectors.

Using the explicit 2× 2 form for �σ · �a, show that

(�σ · �a)2 = �a 2I.





Chapter 3

Lorentz Covariance

In this book, we will develop a theory which has as its very foundation the
principles of the theory of special relativity. The mathematical formalism of
special relativity is embodied in the Lorentz transformation. A theory de-
scribing physical reality must be invariant under a Lorentz transformation.
In future chapters, we will require Lorentz covariance at each step of the de-
velopment. Historically it was only after a fully Lorentz covariant realization
of quantum electrodynamics was formulated in the late 1940s, that physical
effects could be untangled from the meaningless divergencies, allowing the
development of the theory to progress further. We begin by summarizing a
few properties of the Lorentz transformation.

3.1 Lorentz Group

According to the relativity principle, the form of a theory describing nature
has to be invariant under a transformation from one inertial reference frame
to another. Consider two observers, S and S′, in different inertial reference
frames. They describe the same physical event with their particular, different,
space-time coordinates. Let the coordinates of the event be xµ for observer
S and x′µ for observer S′. The Lorentz transformation is a real linear trans-
formation of the coordinates that conserves the norm of the intervals between
all points in space-time.

The Lorentz transformation Λν
µ of S’s coordinates to S′’s coordinates is

given by

x′
ν = Λν

µx
µ + aν , (3.1)

or in matrix form x′ = Λx + a. The real four-vector aν represents a transla-
tion of the space-time axes. In what follows, we shall treat the translations
separately and give the name Lorentz transformation to the homogeneous
transformations: aν = 0. The group formed by all Lorentz transformations
including translations is called the inhomogeneous Lorentz group, or Poincaré
group.

17
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If the underlying space is real, xµ real, a mapping of the real space onto
itself requires all transformation coefficients to be real. All the components
of Λν

µ are thus real, Λν
µ = (Λν

µ)∗, and depend only on the relative velocities
and spatial orientations of reference frames.

Since the components of Λν
µ are constant for inertial reference frames, the

distance between two space-time points in S′’s reference frame is

ds2 = dx′
µ
dx′µ = Λµ

αdx
αΛ β

µ dxβ . (3.2)

Since the norm must be conserved under a Lorentz transformation, ds2 =
dx′µdx′µ = dxµdxµ, we require

Λµ
αΛ β

µ = δ β
α . (3.3)

This is an orthogonality relationship for Lorentz transformations. Since we
are dealing with four-dimensional space-time, there are 16 elements of the
transformation. The orthogonality conditions give 10 relationships between
the elements. Thus there are six independent parameters of the Lorentz trans-
formation.

Using the orthogonality relationship, we can write (see problem 3.1)

xµ = Λ µ
ν x
′ν , (3.4)

where Λ µ
ν is the inverse Lorentz transformation. Since the inverse Lorentz

transformation exists, and the product of two Lorentz transformations is again
a Lorentz transformation, the set of all homogenous Lorentz transformations
form a group L called the homogeneous Lorentz group (see problem 3.2).

3.1.1 Classification of the Lorentz Subgroups

There are several types of transformations we can think of that preserve
the Minkowski interval s2 = (ct)2 − �x 2, for example, pure space rotations,
spatial reflections, and time reversal. To clarify the distinction between these
different transformations, we examine subgroups of the Lorentz group.

Equation 3.3 can be written as (see problems 3.3)

Λµ
αgµνΛν

β = gαβ . (3.5)

In matrix form, we can write

ΛT gΛ = g, (3.6)

where T denotes the transpose of a matrix: Λµ
α = (ΛT )α

µ. Equation 3.6 gives
the multiplication rule for elements of the Lorentz group.

The determinant of the Lorentz transformation can be determined by using
the orthogonality relationship equation 3.6:

det(ΛT gΛ) = detΛT det g detΛ = det g. (3.7)
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Since detΛT = detΛ, equation 3.7 becomes

(det Λ)2 = 1. (3.8)

Since Λ is real,

detΛ = ±1. (3.9)

Transformations with determinants ±1 are called unimodular.
The Lorentz group thus has two subsets, the transformations which are

characterized by det Λ = +1 and those transformations characterized by
detΛ = −1. There is no continuous path from one subset of the group to
the other. Since the subset of transformations satisfying detΛ = +1 contains
the identity transformation, it forms a group: the proper Lorentz group Lp.
The subset of transformations satisfying detΛ = −1 does not form a group.
A typical member of the subset with detΛ = −1 is coordinate inversion, e.g.
time or space inversion.

We can further classify the set of Lorentz transformations by looking at,
for example, the α = β = 0 component of equation 3.5:

(Λ0
0)

2 −
3∑

i=1

(Λi
0)

2 = 1 ⇒ (Λ0
0)

2 ≥ 1, (3.10)

so that Λ0
0 ≥ 1 or Λ0

0 ≤ −1. These two subsets are also disjoint, and are not
continuously connected.

A Lorentz transformation for which Λ0
0 ≥ 1 is called an orthochronous

Lorentz transformation. A Lorentz transformation is orthochronous if and
only if it transforms every positive time-like vector into a positive time-like
vector (see problem 3.4). The set of all orthochronous Lorentz transformations
forms a group: the orthochronous Lorentz group L↑.

The sign of the determinant of Λ and the sign of Λ0
0 can be used to classify

the elements of the Lorentz group. We denote these classifications by L
�
±,

where the subscript represents the sign of the determinant, and the superscript
represents the domain of Λ0

0. In the following, we represent all the elements
of transformation L�± by the set L�±. The disjoint subsets are

L↑+ : detΛ = +1 and Λ0
0 ≥ +1,

L↑− : detΛ = −1 and Λ0
0 ≥ +1,

L↓− : detΛ = −1 and Λ0
0 ≤ −1,

L↓+ : detΛ = +1 and Λ0
0 ≤ −1.

We will now describe each disjoint subset of the Lorentz group.
The transformations L↑+ are called the proper orthochronous Lorentz trans-

formations, sometimes referred to as the restricted Lorentz transformations.
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The elements consist of the identity transformation, the infinitesimal Lorentz
transformations, and their iterations to build up finite transformations, i.e.
all spatial rotations and special1 Lorentz transformations. These form an
invariant subgroup: the proper orthochronous Lorentz group L↑+.

The proper orthochronous group of Lorentz transformations contains a sub-
group which is isomorphic to the three-dimensional rotation group. This sub-
group consists of all the Λµ

ν of the form

Λ(R) =
(

1 0
0 R

)
, (3.11)

where R is the 3×3 matrix with RRT = RTR = 1. Such a Λ is called a spatial
rotation. Similarly, the proper orthochronous group of Lorentz transforma-
tions contains a subgroup which is isomorphic to the special Lorentz group.
This subgroup consists of Λµ

ν of the form, for example,

Λ(L1) =


L1 0 0

0 1 0
0 0 1


 , (3.12)

where L1 is a 2 × 2 matrix representing a special Lorentz transformation in
the x1-direction. Every proper orthochronous Lorentz transformation can be
decomposed as follows (see problem 3.5):

Λ = Λ(R2)Λ(L1)Λ(R1), (3.13)

where Λ(R1) and Λ(R2) are two spatial rotations.
A typical element of L↑− is spatial reflection: x0 → x0 and �x→ −�x. Space

reflection reverses the handedness of space. In the matrix representation

Λ(P ) =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (3.14)

All elements of L↑− can be reached continuously from the spatial reflection
element P when multiplied by elements of L↑+. However, since L↑− = PL↑+
will not contain the identity element, it is not a group.

The basic element of L↓− is time reflection: x0 → −x0 and �x → �x . Time
reflection interchanges the forward and backward light cones. In the matrix
representation

1The special Lorentz transformations are the transformations in four-space that mix the
time and space coordinates.
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Λ(T ) =



−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 . (3.15)

Starting with time reflection T and applying it successively to any element
of L↑+, we obtain in a continuous way all elements of this subset L↓+ = TL↑+,
which again, do not form a group.

The typical element of L↓+ is total reflection of four-space: x→ −x. In the
matrix representation

Λ(PT ) = Λ(P )Λ(T ) =



−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (3.16)

Multiplying total reflection PT with all the elements of L↑+, we obtain all the
elements of this subset and exhaust it. Again, L↓− = PTL↑+ is not a group.

Since the set of proper orthochronous Lorentz transformations form a group,
we can form Lorentz subgroups from it. The combination of the proper or-
thochronous Lorentz group L↑+ with the elements of L↓+ form the group called
the proper Lorentz group: Lp ≡ L+. It contains the identity transformation,
the spatial rotations, the special Lorentz transformations, time inversion, and
all combinations thereof.

In addition, joining all elements of the proper orthochronous group L↑− to
those of L↑+ we obtain another subgroup, L↑, which we call the orthochronous
group, or the full Lorentz group. It contains the identity transformation, the
spatial rotations, the special Lorentz transformations, space inversion, and all
combinations thereof.

If time reflection is included with the orthochronous Lorentz group, or space
reflection is included with the proper Lorentz group, we obtain the homoge-
nous Lorentz group L, often called the complete Lorentz group, or the ex-
tended Lorentz group. A summary of the Lorentz subgroups is shown in
table 3.1.

Any Lorentz transformation is either proper and orthochronous, or may be
written as the product of an element of the proper orthochronous Lorentz
group, with one of the discrete transformations P , T , or PT ; this is shown in
figure 3.1. Thus the study of the complete Lorentz group reduces to the study
of its proper orthochronous subgroup, plus space inversion and time reversal.

3.1.2 Infinitesimal Lorentz Transformations

A simple approach to working with continuous Lorentz transformations is to
build them up from infinitesimal transformations. This means we are consider-
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TABLE 3.1: The Lorentz Subgroups.
Lorentz Group Symbol Composition

proper orthochronous L↑+ L↑+
(restricted)
proper Lp L↑+ ∪ L

↓
+

orthochronous L↑ L↑+ ∪ L
↑
−

(full)
homogeneous L L↑+ ∪ L

↑
− ∪ L

↓
− ∪ L

↓
+

(complete or extended)

L↓+ = TL↑+ L↓− = PTL↑+

L↑+ L↑− = PL↑+

P

P

T T
PT

Proper Improper

Orthochronous

Nonorthochronous

FIGURE 3.1: Generation of the disconnected Lorentz subsets by the space
and time inversion operators.

ing only the proper orthochronous Lorentz transformations since the discrete
transformations can not be generated from infinitesimal transformations.

We can write

Λµν = gµν + ∆ωµν , (3.17)

where the components of ∆ωµν are infinitesimally small.
Since Λµν and gµν are real,

∆ωµν = ∆ω∗µν . (3.18)

Using the orthogonality relationship equation 3.3, and only keeping terms
to first order in ∆ω, gives

Λµ
νΛ λ

µ = ΛµνΛµλ = (gµν + ∆ωµν)(gµλ + ∆ωµλ),
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δ λ
ν = gµνg

µλ + gµν∆ωµλ + gµλ∆ωµν

= gνµg
µλ + gνµ∆ωµλ + gλµ∆ωµν

= δ λ
ν + ∆ω λ

ν + ∆ωλ
ν . (3.19)

Therefore

∆ω λ
ν + ∆ωλ

ν = 0
∆ωνµ + ∆ωµν = 0. (3.20)

We see that ∆ωµν is required to be an antisymmetric tensor. Since ∆ωµν

has dimensions 4 × 4, no diagonal components, and is antisymmetric, it will
have only six independent components. A general Lorentz transformation
thus has six parameters: three relative velocity parameters and three rotation
parameters. This is consistent with the similar statements we made after
equation 3.3.

For now, we will leave our discussion on general Lorentz transformations.
We could go on and develop representations of the Lorentz group, generators
of Lie groups, Poincaré algebra, and spinor calculus. However, to avoid for-
malism and keep the treatment practical, we will develop these formal, but
interesting, concepts of the Lorentz group as needed.

3.2 Lorentz Boost

We first define a Lorentz boost; we have previously referred to these trans-
formations as the special Lorentz transformations. Let S and S′ be two in-
ertial reference frames, each defined with an orthogonal set of space-time
coordinates (ct, x, y, z) and (ct′, x′, y′, z′), respectively (see figure 3.2). Let
the constant velocity of S′ relative to S be �v. Let the coordinate systems of
S and S′ be parallel to each other, and let their x- and x′-axes be collinear
with each other and with the relative velocity. Then the transformation from
S to S′ is a Lorentz boost along the common x-, x′-axis. Under this Lorentz
boost, four-dimensional space-time transforms as three irreducible subspaces:
one two-dimensional irreducible subspace (ct, x), and two one-dimensional ir-
reducible subspaces, y and z.

A Lorentz boost not only applies to the transformation of coordinates but
to any four-vector, such as the energy-momentum four-vector. The energy
and momentum (E′, �p ′) viewed from a reference frame moving with velocity
�β ≡ �v/c relative to (E, �p) are given by(

E′

p′||

)
=
(

γ −γβ
−γβ γ

)(
E
p ||

)
and p′T = pT , (3.21)
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x

y

z

S

x′

y′

z′

S′

�v

�v

FIGURE 3.2: Two frames of reference in uniform translation. The x- and
x′-axes are supposed to be collinear. The ct-axis can not be drawn.

where γ = (1−β2)−1/2, and pT and p || are the components of �p perpendicular
and parallel to �β.

When the relative velocity is taken as an independent parameter, the trans-
formation matrix represented by the Lorentz boost L(β) is

L(β) = γ(β)
(

1 β
β 1

)
. (3.22)

The determinant, inverse, adjoint, and transpose of the Lorentz boost are
given by (see problem 3.7)

detL(β) = 1, L−1(β) = L(−β), L†(β) = LT (β) = L(β). (3.23)

Since β and γ are related by γ2−β2γ2 = 1, we can define a single “rapidity”
parameter ω using

γ = coshω and γβ = sinhω, (3.24)

and thus

β = tanhω, (3.25)

where −∞ < ω < +∞ as −1 < β < +1. Using the properties of the hyper-
bolic functions, it is sometimes useful to use



Lorentz Covariance 25

eω =

√
1 + β

1− β and ω =
1
2

ln
(

1 + β

1− β

)
. (3.26)

In terms of the single rapidity parameter, we have

(
E′

p′||

)
=
(

coshω − sinhω
− sinhω coshω

)(
E
p ||

)

= coshω
(

1 − tanhω
− tanhω 1

)(
E
p ||

)
. (3.27)

Other four-vectors, such as the space-time coordinates of events transform
in the same way. If p || = pz, we can show that the Lorentz boost may be
regarded as a rotation through an imaginary angle iω in the ict-z plane.

3.3 Lorentz Covariance and Conservation Laws

According to the theory of special relativity, all physical laws of nature
must have the same form in any two coordinate systems which arise from
each other by a proper orthochronous Lorentz transformation. A relativistic
invariant theory need not be invariant under P and T . In addition to P
and T , we will encounter a third non-spacetime discrete operation: particle-
antiparticle conjugation, denoted by C. Under this operation, particles and
antiparticles are interchanged. All observations indicate that the combination
CPT is a perfect symmetry of nature.

A theory is Lorentz covariant if its equations are invariant in form under a
Lorentz transformation. It is not Lorentz covariant if it changes its structure
under a transformation from one inertial system to another. For an equation
to be Lorentz covariant, we must ensure that all unrepeated indices, upper and
lower separately, balance on each side of an equation, and that all repeated
indices appear once as upper and once as lower indices. An equation such as
∂µF

µν = jν is Lorentz covariant.
The invariance of a closed system under subsets of the Lorentz transfor-

mation lead to certain conservation laws. We will state them without proof
here (see Gross [10] or Schwabl [28]). If we assume space is homogenous, spa-
tial translational invariance implies the conservation of three-momentum. If
we assume time is homogenous, temporal translational invariance implies the
conservation of energy. If we assume space is isotropic, three-space rotational
invariance implies the conservation of angular momentum. Space-reflection
invariance implies that parity is conserved. When we say that nature is invari-
ant under time reflection we mean that there is nothing intrinsically inherent
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in directing the time axis along the increasing positive numbers – into the
future – rather than directing it in the opposite way.

3.4 Problems

1. Given the orthogonality condition for the Lorentz transformation, derive
the inverse Lorentz transformation.

2. Show that the set of homogenous Lorentz transformations form a group.

3. Prove the orthogonality relationship

Λµ
αgµνΛν

β = gαβ.

4. Show that a Lorentz transformation is orthochronous if and only if it
transforms every positive time-like vector into a positive time-like vector.

5. Prove equation 3.13.

6. Show that all three types of inversions satisfy the orthogonality rela-
tionship.

7. Prove the four identities given in equation 3.23.

8. We have seen that the Lorentz boost can be represented in terms of
the relativistic scale factor γ(β) or the rapidity using β = tanhω. An
alternative expression for the Lorentz boost uses the relativistic Doppler
factor λ(β) defined by

λ(β) =

√
1 + β

1− β .

(a) Derive the relationship between λ and γ.

(b) Derive an expression for β in terms of λ.

(c) Derive an expression for λ in terms of the hyperbolic functions of
the rapidity parameter, and

(d) in terms of the exponential as a function of the rapidity parameter.

(e) Show that the following identities are satisfied:

λ(β)λ(−β) = 1, λ(β) + λ(−β) = 2γ(β), λ(β) − λ(−β) = 2βγ(β).
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Chapter 4

Klein-Gordon Equation

In this chapter, and chapters 5 and 7, we develop relativistic wave equations
for particles of spin 0, spin 1/2, and spin 1, respectively. These wave equations
take the form of partial differential equations. We view the wave as the carrier
of dynamical observables such as energy, momentum, and angular momentum.
These waves carry the dynamical information by propagating according to
the wave equations. In principle, the only restriction we know on the form
of a wave equation is that it be Lorentz covariant; but Lorentz covariance is
not sufficient to completely determine the form of a possible wave equation.
We will see that a good description of nature can be achieved by requiring
the wave equations for free particles to be linear in the wave functions and
their derivatives, be at most second order in the differentials, and be local.
This latter requirement means that the state of a particle at a given space-
time point, is completely determined by the wave function and its derivatives
evaluated at that particular point, and not on neighbouring points.

We first develop the wave equation for a relativistic spin-0 particle. Start-
ing with a spinless particle allows us to elucidate some of the new physical
properties resulting from requiring relativistic covariance, while at the same
time delaying the development of the more involved mathematics needed to
handle particles with spin.

4.1 Wave Equation for a Spin-0 Particle

The simplest physical system is an isolated free particle. The nonrelativistic
classical Hamiltonian for such a system is

H =
�p 2

2m
, (4.1)

where m is the mass of the particle and �p is its three-momentum. Using the
operator formalism developed in chapter 1 (equations 1.2 and 1.3) we write

H → Ê ≡ ih̄ ∂
∂t

(4.2)

and

29
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�p→ p̂ ≡ −ih̄�∇. (4.3)

When operating on a wave function ψ(�x, t), we have

Êψ(�x, t) =
p̂ 2

2m
ψ(�x, t), (4.4)

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ, (4.5)

which is the familiar Schrödinger equation.
The left-hand and right-hand sides of the Schrödinger equation 4.5 trans-

form differently under a Lorentz transformation (see problem 1.1). To obtain
a Lorentz covariant wave equation, it is natural to repeat the above deriva-
tion, but this time starting with the classical Hamiltonian for a relativistic
free particle:

H =
√
�p 2c2 +m2c4. (4.6)

In terms of operators, we write

ih̄
∂ψ

∂t
=
√
−h̄2c2∇2 +m2c4 ψ ≡ Ĥψ. (4.7)

You might wonder how the square-root operator in equation 4.7 should be
interpreted. This operator can be defined by expanding ψ in terms of the
eigenfunctions of ∇, the momentum eigenfunctions, after which the operation
Ĥ can be carried out (see problem 4.2). Another approach is to define Ĥ by
its power series expansion

Ĥ ≈ mc2
[
1− (h̄c∇)2

2(mc2)2
− (h̄c∇)4

8(mc2)4
· · ·

]
. (4.8)

By expanding equation 4.7 in a power series, we obtain all powers of the gradi-
ent operator, and this will lead to a non-local theory which violates causality
(see problem 4.2). The requirement of locality is the requirement that physi-
cal processes cannot influence each other if they are outside each other’s light
cone, i.e. if speeds larger than that of light are needed to connect the events.
In addition, relativistic invariance is not clearly exhibited in equation 4.7 since
there is a lack of symmetry between the space and time coordinates.

We can avoid these difficulties by starting with the square of the classical
Hamiltonian, and thus removing the square-root:

H2 = �p 2c2 +m2c4. (4.9)

This Hamiltonian is equivalent to H = ±
√
�p 2c2 +m2c4. By squaring the

Hamiltonian we have introduced an extraneous solution. We will see later
that the negative sign will give rise to solutions of negative energy, which at
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first sight have no physical significance. After some hindsight, we will see in
section 4.7 that the negative-energy solutions can be interpreted physically in
terms of antiparticles.

Applying the operator form of equation 4.9 to a wave function ψ, we obtain

−h̄2 ∂
2ψ

∂t2
=
(
−h̄2c2∇2 +m2c4

)
ψ, (4.10)

1
c2
∂2ψ

∂t2
−∇2ψ +

m2c2

h̄2 ψ = 0

∂2ψ

∂(x0)2
− ∂2ψ

∂(xk)2
+
m2c2

h̄2 ψ = 0(
� +

m2c2

h̄2

)
ψ = 0. (4.11)

Using natural units, c = h̄ = 1, we obtain

(� +m2)ψ = 0 , (4.12)

which is the Klein-Gordon equation. The Klein-Gordon equation describes
relativistic particles with a unique rest mass m. This form is not surprising
since the only two Lorentz invariants with the dimensions of inverse length
squared available to us are ∂µ∂

µ and m2. If the particle has no rest mass,
m = 0, we obtain the classical wave equation, which is also relativistically
invariant.

4.2 Lorentz Covariance of the Klein-Gordon Equation

We now examine the Lorentz covariance of the Klein-Gordon equation. The
d’Alembert operator � ≡ ∂µ∂µ is invariant under a Lorentz transformation
because it is a scalar product of four-vectors ∂µ. Also, the mass m is a scalar
so the Klein-Gordon operator (� + m2) is Lorentz invariant. It remains to
show that ψ(x) is invariant under a Lorentz transformation. Transforming
from the primed to the unprimed system1, we write

(
∂

∂x′µ
∂

∂x′µ
+m′2

)
ψ′(x′µ) = 0

1When speaking about a system we mean a system described by an inertial reference frame.
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∂

∂xµ

∂

∂xµ
+m2

)
ψ′(x′µ) = 0

(� +m2)ψ′(x′µ) = 0. (4.13)

If ψ(xµ) = ψ′(x′µ), the Klein-Gordon equation is Lorentz covariant. This is
true if ψ is a scalar function – ψ(xµ) and ψ′(x′µ) refer to the same space-
time point. On the other hand, ψ′(x′µ) and ψ′(xµ) are different, and are
related by x′µ = Λ ν

µ xν . Also ψ(xµ) and ψ′(xµ) refer to two different points
with coordinates xµ in the old and new system, respectively. Since ψ(x) is
a Lorentz scalar, from now on we will denote solutions to the Klein-Gordon
equations as φ(x), since ψ(x) will be used for the Dirac equation in chapter 5.

Because of the form of the Klein-Gordon equation, we reason that the wave
function may be multiplied by a phase factor, with absolute value of unity,
under a Lorentz transformation. In other words, under a transformation from
the unprimed to the primed system,

φ(x)→ φ′(x′) = λφ(x), (4.14)

with |λ| = 1. Since the Lorentz transformation operator is real, λ must be
real2 and hence λ = ±1.

If the Lorentz transformation is continuously connected to the identity
transformation, i.e. a pure rotation in four-space, it will depend continuously
on the relative velocity and rotation angles, say αi. For all αi → 0, we must
approach the identity transformation and thus λ = 1 holds in this case. A
wave function which does not change under spatial rotations describes a scalar
particle with spin 0.

For space inversion, which is a discrete Lorentz transformation, x′k = −xk

and x′0 = x0. Applying the space inversion operator twice leads to the identity
transformation, regardless if φ is a real or a complex wave function. Therefore
λ2 = 1 or λ = ±1. We define two states under space inversion:

for the case λ = +1,

φ(�x, t)→ φ′(�x ′, t′) = φ′(−�x, t) = φ(�x, t) is a scalar, (4.15)

for the case λ = −1,

φ(�x, t)→ φ′(�x ′, t′) = φ′(−�x, t) = −φ(�x, t) is a pseudoscalar. (4.16)

Therefore, solutions of the Klein-Gordon equation are scalar or pseudoscalar,
i.e. invariant under proper orthochronous Lorentz transformations, and in-
variant (scalar) or change sign (pseudoscalar) under space inversion. The

2Strictly speaking this is only true for real wave functions. If the wave function is complex,
λ is an arbitrary phase factor. A consistent convention can be picked so that the phase
factor is real.
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value of λ is called the intrinsic parity of the particle. The difference between
the two parity states can only be revealed by studying their interactions. The
π-meson (pion) is an example of a pseudoscalar meson that under certain
circumstances can be described using the Klein-Gordon equation.

4.3 Plane-Wave Solutions of the Klein-Gordon Equation

Having developed a relativistic invariant wave equation for a spin-0 particle,
we now develop the plane-wave solutions of the Klein-Gordon equation. Like
other plane-wave solutions, they will form a complete set. We try (with
h̄ = c = 1)3

φ(x) = Ne−i(p0t−�p·�x), (4.17)

where, for now, N is an arbitrary normalization. The choice of a relative
minus sign between the two terms in the exponential is also arbitrary since
the Klein-Gordon equation is second order in the derivatives. Our convention
is in accordance with the nonrelativistic quantum theory. Because of the
exponential, wave functions 4.17 are eigenfunctions of the operators Ê and p̂
with eigenvalues p0 and �p.

We still need to show that the wave function 4.17 is a solution of the Klein-
Gordon equation. Operating with the Klein-Gordon operator on this wave
function gives

(� +m2)φ(x) = (−p2
0 + �p 2 +m2)φ(x) = 0. (4.18)

φ(x) must vanish for all x unless p2
0 = �p 2 +m2 or

p0 = ±
√
�p 2 +m2 = ±E. (4.19)

The constraint equation 4.19 – relativistic energy statement – shows there are
two classes of plane-wave solutions of the Klein-Gordon equation: positive-
energy and negative-energy.

Since �p and the sign of E are arbitrary (also N), we use them to label the
plane-wave solutions φ(x). For p0 = E, we have positive-energy solutions

φ(+)
p (x) = Ne−i(Et−�p·�x). (4.20)

For p0 = −E, it is standard to reverse the arbitrary relative minus-sign be-
tween the two terms in the exponential of equation 4.17 and write the negative-
energy solution as

3If natural units were not being used, there would be a factor of 1/h̄ in the argument of
the exponential in equation 4.17.
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φ(−)
p (x) = Nei(Et−�p·�x), (4.21)

where E =
√
�p 2 +m2. This enables us to write the plane-wave solutions in

the compact Lorentz covariant form

φ(±)
p (x) = Ne∓ip·x , (4.22)

where p is the energy-momentum four-vector (E, �p) and x is the space-time
four-vector (t, �x). According to this convention, the positive-energy solutions
have momentum eigenvalues �p, while the negative-energy solutions have mo-
mentum eigenvalues −�p. The positive- and negative-energy solutions will not
mix amongst each other. In the absence of interactions, once a wave is an
eigenstate of one type of energy it will not become an eigenstate of the other
type of energy.

We have not yet specified the normalization of the plane waves. Many differ-
ent normalizations of the wave function are in use. Some common amplitudes
N for plane waves (equation 4.22) are

1
(2π)3/2

,
1

(2π)3/2
√

2
,

1
(2π)3/2

√
2E

,
1

(2π)3/2

√
m

E
. (4.23)

The (2π)−3/2 factor4 is common in the so called “continuum language” or
the “delta-function normalization”. This factor is often replaced in the “box
normalization” convention by V −1/2, where V is the volume of a box in which
the physical interaction is confined. For the remainder of this chapter we will
use the third normalization 1/[(2π)3/2

√
2E].

Since plane waves are solutions of the Klein-Gordon equation, equation 4.22
describes waves associated with the unique spin of zero. According to de
Broglie, these waves can be associated with particles: plane waves with free
particles. Any particle that can be described by a plane wave has a definite
moment and sign of the energy (and thus energy). The occurrence of negative-
energy solutions does not present any difficulty for a free particle. A particle
originally in a positive energy state will always remain in a positive energy
state in the absence of any interactions. Relativistic spin-0 particles in the
absence of interactions are physical solutions of the Klein-Gordon equation.

4If natural units were not being used, the corresponding normalization would be (2πh̄)−3/2.
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4.4 General Solution of the Klein-Gordon Equation

The plane-wave solutions are eigenfunctions of a definite momentum and
energy. There is also a class of solutions which are the Fourier transform of
momentum functions, say φ̃(±)(p).

These solutions have either positive or negative energy, and can be written
as (using h̄ = c = 1)

φ(±)
a (x) =

1√
(2π)3

∫
d3p√
2E

e∓ip·xφ̃(±)
a (p) , (4.24)

where the index a is used to label different solutions of identical mass. Because
of d3p, the relativistic invariance of solutions of this form is not immediately
obvious. To reveal the relativistic invariance of equation 4.24, we write the
general solution as

φ(±)
a =

√
2√

(2π)3

∫
d4p
√
Ee−ip·xδ(p2 −m2)θ(±p)φ̃(±)

a (p). (4.25)

This form is manifestly Lorentz invariant if the Lorentz invariant step function
is defined as

θ(p) ≡ θ(p0) ≡
{

1 if p0 > 0 or
0 if p0 < 0. (4.26)

Lorentz invariance of δ(p2 − m2) restricts p to be a time-like vector, and
θ(p) distinguishes between the past and future (see problem 4.4). Thus the
expression

∫
dp0δ(p2 −m2)θ(±p) ensures the condition p0 = ±

√
�p 2 +m2.

We can show that the general solution (equation 4.25) gives rise to the usual
form of equation 4.24 by rewriting the delta function in the general solution
as

δ(p2 −m2) = δ(p2
0 − �p 2 −m2) = δ(p2

0 − E2) (4.27)

and then applying the identity given by equation 2.33.
For positive energy,

φ(+)
a (x) =

21/2

(2π)3/2

∫
d3pdp0

√
E

[
δ(p0 − E)

2E

+
δ(p0 + E)

2E

]
θ(p0)e−i(p0t−�p·�x)φ̃(+)

a (p)

=
1

(2π)3/2

∫
d3p√
2E

e−i(Et−�p·�x)φ̃(+)
a (E, �p)
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=
1√

(2π)3

∫
d3p√
2E

e−ip·xφ̃(+)
a (p). (4.28)

φ̃
(+)
a (E, �p) is written as φ̃(+)

a (p) for convenience. It is a function of the three-
momentum only with the condition that p0 = E.

For negative energy,

φ(−)
a (x) =

21/2

(2π)3/2

∫
d3pdp0

√
E

[
δ(p0 − E)

2E

+
δ(p0 + E)

2E

]
θ(−p0)ei(p0t−�p·�x)φ̃(−)

a (p)

=
1

(2π)3/2

∫
d3p√
2E

e−i(Et+�p·�x)φ̃(−)
a (−E, �p)

=
1√

(2π)3

∫
d3p√
2E

e−ip·xφ̃(−)
a (−p). (4.29)

In the last step, we have applied the transformation �p → −�p to the dummy
variable, and redefined φ̃

(−)
a (−E,−�p) as φ̃(−)

a (−p) for convenience. It is a
function of −�p only, with the condition that p0 = −E.

Equations 4.28 and 4.29 are identical to the initial solutions given by equa-
tion 4.24. Thus solutions 4.24 are Lorentz covariant. These solutions can be
considered as wave packets, i.e. a superposition of plane waves with wave
vector �p/h̄, which satisfy the restriction given by equation 4.19. Relativistic
spin-0 wave packets are thus solutions of the Klein-Gordon equation.

4.5 Conserved Charge and Current

Now that we have found the general solution to the Klein-Gordon equation,
we look for a physical interpretation of the wave function. Following the
approach used in nonrelativistic quantum mechanics, we define the position
probability density ρ and current probability density �j, which are required to
satisfying the continuity equation

∂ρ

∂t
+ �∇ ·�j = 0. (4.30)

Using the four-vector notation, jµ ≡ (j0,�j) ≡ (cρ,�j), we write the continuity
equation in the more compact form:

∂µj
µ = ∂ · j = 0. (4.31)
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Integrating equation 4.30 over a volume in space V large enough to contain
all the probability, and using the divergence theorem, we have

∫
V

d3x
∂ρ

∂t
= −

∫
V

d3x�∇ ·�j,

d

dt

∫
V

d3xρ = −
∫

S

�j · d�S, (4.32)

where S is the surface which bounds the volume V . Any probability which
flows out of the volume V must pass through the surface S. The continuity
equation 4.30 implies that probability cannot be created or destroyed at any
point; it can only flow from one point to another. Thus probability that
satisfies the continuity equation will be locally conserved.

We must now show that we can construct a position probability density and
current probability density which satisfy the continuity equation. In general,
solutions to the Klein-Gordon equation will be complex, and we want our
probability densities to be real. We start by multiplying the Klein-Gordon
equation for φ on the left by φ∗, and write

φ∗(∂µ∂
µ +m2)φ = 0

∂µ(φ∗∂µφ) − (∂µφ
∗)(∂µφ) +m2φ∗φ = 0. (4.33)

Similarly, multiplying the Klein-Gordon equation for φ∗ on the left by φ, we
write

φ(∂µ∂
µ +m2)φ∗ = 0

∂µ(φ∂µφ∗)− (∂µφ)(∂µφ∗) +m2φφ∗ = 0. (4.34)

Subtracting equation 4.33 from 4.34 gives

∂µ(φ∗∂µφ)− ∂µ(φ∂µφ∗) = 0
∂µ(φ∗∂µφ− φ∂µφ∗) = 0

∂µ(φ∗
↔
∂µφ) = 0, (4.35)

where in the last step we have used the notation introduced by equation 2.30.

Equation 4.35 is a continuity equation. Since (φ∗
↔
∂µ φ)∗ = −(φ∗

↔
∂µ φ), the

resulting conserved four-current is purely imaginary.
We want to interpret the zero component of the conserved four-current as

the probability density, so we multiply it by ih̄/2m. This normalization makes
the current real and have dimensions of inverse volume, if the wave functions
are normalized to have amplitude

√
m/(EV ). The current normalization
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also causes the three-current probability density to have the same form as in
nonrelativistic quantum mechanics. Applying this normalization, we write

∂µ

[
ih̄

2m
(φ∗∂µφ− φ∂µφ∗)

]
= 0 (4.36)

∂

∂(ct)
ih̄

2m

(
φ∗

∂φ

∂(ct)
− φ ∂φ

∗

∂(ct)

)
− �∇ ih̄

2m
(φ∗�∇φ− φ�∇φ∗) = 0. (4.37)

We define

j0

c
= ρ ≡ ih̄

2mc2

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
(4.38)

and

jk = �j ≡ h̄

2im

(
φ∗�∇φ− φ�∇φ∗

)
, (4.39)

such that ρ and �j satisfy the continuity equation 4.30. The expression for
�j is identical with the nonrelativistic form and the expression for ρ can be
shown to reduce to the nonrelativistic form in the nonrelativistic limit (see
problem 4.5).

Since the Klein-Gordon equation is second order in the time derivative, the
initial values of φ and ∂φ/∂t can be chosen independently. So at any given
time both φ and ∂φ/∂t may have arbitrary values, and since ρ contains two
terms it can be either positive or negative. Although we wanted to interpret
ρ as a position probability density, it is not positive definite.

To circumvent the problem of a non-positive definite probability density, we
need a wave equation first order in the time derivative. The Dirac equation,
developed in chapter 5, is first order in the time derivative but we will find
that it still proves impossible to retain a positive definite probability density
for a single particle, while at the same time providing a physical interpretation
of the negative-energy solutions. This means that the Klein-Gordon equation
is no worse than the Dirac equation with respect to physically interpreting
the probability density for a single particle.

As an example, let us calculate the current four-vector using unnormalized
plane waves (equation 4.17) and using natural units (h̄ = c = 1). We obtain

jµ =
(
p0

m
,
�p

m

)
=
pµ

m
. (4.40)

Since pµ is a four-vector, so is jµ. We notice that ρ = p0/m = ±E/m can be
either positive or negative, depending on the sign of the energy.
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In obtaining equation 4.40, we have used unnormalized plane waves. Often
the exponential of the plane-wave solutions is multiplied by the amplitude√
m/E so that the time component of the current is normalized to unity.
Equation 4.40 suggests that we could interpret |q|jµ as the current density

four-vector5. The continuity equation thus becomes a statement of the con-
servation of charge, assuming that jµ has been normalized to be real. As we
will see, for a theory representing reality, the number of particles many not be
conserved and thus the interpretation of |q|jµ as a current density only applies
to a single-particle, single-charge, theory. This single-particle interpretation
is also true in nonrelativistic quantum mechanics. A general treatment of the
conserved current requires a formulation in terms of quantum field theory.

Let us return to the continuity equation and the divergence theorem. Inte-
gration of the current over the configuration space gives

∂

∂t

∫
V

d3xρ = −
∫

S

�j · d�S. (4.41)

If we now take our volume of integration arbitrarily large, and if �j → 0 as
|�x | → ∞ sufficiently rapidly, then

∫
�j ·d�S → 0 on the surface. This is required

of a physical current. Thus
∫
d3xρ is constant in time. We can interpret this

constant as the charge q of the particle satisfying the Klein-Gordon equation
and define it using

q = i

∫
d3xφ∗

↔
∂ 0φ , (4.42)

where the i makes q purely real. At this point q is not required to have
the same magnitude as the fundamental charge e. If it does not, we should
normalize the wave function φ in equation 4.42 such that |q| = e.

4.5.1 Charge of a Klein-Gordon Particle

In deriving the current density, we had assumed the solutions to the Klein-
Gordon equation were complex. Using the definition of charge in equa-
tion 4.42, we see that φ and φ∗ have opposite charge. Real solutions are
also possible. However, in this case the current density does not exist, since
equation 4.35 is zero when φ = φ∗; a real wave function has zero charge. This
in turn means that there is no conservation law for neutral spin-0 particles.
The absence of a conserved current is a general property of neutral particles,
and does not require the spin to be zero. In general, we have

complex scalar solutions are charged,
real scalar solutions are uncharged.

5We define q as the charge of a particle and e as the fundamental electric charge, which is
always positive. For an electron q = −e.
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If the Klein-Gordon equation is applied to the description of a charged par-
ticle, the norm can be interpreted as a charge density, with positive norm
states describing + charge, and negative norm states − charge. The conser-
vation of charge then appears as a consequence of the invariance of the norm.
If the particle has no electric charge but some other quantum number – a
generalized charge – which satisfies an additive conservation law, the norm
can be interpreted as the density of this generalized charge. In either case, the
existence of two states, one carrying positive charge and one carrying negative
charge, is assumed.

We now examine the charge for a superposition of positive-energy and a
superposition of negative-energy solutions to the Klein-Gordon equation. If
φ

(+)
p (x) is a positive-energy plane-wave solution to the Klein-Gordon equation

with momentum �p, the superposition of all such positive-energy solutions is

φ(+)(x) =
∫
d3pa+(p)φ(+)

p (x), (4.43)

where a+(p) is a weighting function of three-momentum only and φ
(+)
p (x)

is given by equation 4.22. Using equation 4.42, the charge for this general
positive-energy solution is

q = i

∫
d3xφ(+)∗(x)

↔
∂ 0φ

(+)(x)

= i

∫
d3xd3pd3p′a∗+(p)a+(p′)φ(+)

p

∗
(x)
↔
∂ 0φ

(+)
p′ (x)

=
∫
d3xd3pd3p′

(2π)3
E + E′

2
√
EE′

a∗+(p)a+(p′)eit(E−E′)e−i�x·(�p−�p ′)

=
∫
d3pd3p′

E + E′

2
√
EE′

a∗+(p)a+(p′)δ3(�p− �p ′)eit(E−E′)

=
∫
d3p|a+(p)|2 > 0, (4.44)

where the last step follows because �p = �p ′ implies E = E′.
For a superposition of negative-energy solutions, q = −

∫
d3p|a−(p)|2 < 0

(see problem 4.6). Thus φ(+)(x) specifies a particle with positive charge and
φ(−)(x) a particle with the same mass but negative charge.

For zero charge spin-0 particles, the wave function φ(x) must be real:
φ∗(x) = φ(x). For a single momentum, we write

φ(0)(x) =
1√
2
[φ(+)

p (x) + φ
(−)
−p (x)]

=
1√
2

[
1

(2π)3/2

1√
2E

e−i(Et−�p·�x) +
1

(2π)3/2

1√
2E

ei(Et−�p·�x)

]
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=
1

(2π)3/2

1√
2E

2√
2

[e−i(Et−�p·�x) + ei(Et−�p·�x)]
2

=
√

2
(2π)3/2

1√
2E

cos(Et− �p · �x). (4.45)

From the relativistic wave equation for spin-0 particles and the interpreta-
tion of its wave functions, we are led to three solutions which correspond to
the charges +, −, and 0 for every momentum �p. The relativistic quantum
theory thus reveals the charge degree of freedom of particles.

According to our current observations, there are no fundamental spin-0
particles in nature. However, if we do not probe the internal structure of
mesons, they can be considered as Klein-Gordon particles. By convention it
is the positive-charged meson which is the particle, and the negative-charged
meson which is the antiparticle.

4.6 Normalization and Orthogonality

The quantity
∫
d3xφ∗

↔
∂ 0φ is time independent. If φ is a Lorentz scalar than

so is
∫
d3xφ∗

↔
∂ 0 φ, and it can be used for normalization. Since

∫
d3xφ∗

↔
∂ 0φ

is purely imaginary, we can define the normalization and orthogonality rela-
tionships for plane waves as

∫
d3xφp′ (±)∗(x)i

↔
∂ 0φ

(±)
p (x) = ±δ3(�p− �p ′), (4.46)∫

d3xφp′ (±)∗(x)i
↔
∂ 0φ

(∓)
p (x) = 0. (4.47)

If we have a set of wave functions with the same mass φa(x), a = 1, 2, 3, ...,
they may be orthonormalized via

∫
d3xφ(±)

a

∗
(x)i

↔
∂ 0φ

(±)
b (x) = ±δab, (4.48)∫

d3xφ(±)
a

∗
(x)i

↔
∂ 0φ

(∓)
b (x) = 0. (4.49)

The real solutions are normalized using φ(0) = (φ(+) + φ(−))/
√

2, and en-
suring that the complex solutions are normalized as above.
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4.7 Interaction with the Electromagnetic Field

Normally the theories of scalar particles and electromagnetic fields are de-
veloped separately. These two systems are considered free and independent
of each other. Interactions between them allow the transfer from one system
to the other of observable quantities such as energy and momentum. This
transfer of dynamic observables gives rise to all kinds of radiative processes.

We will treat interactions between the two systems by postulating the exis-
tence of coupling terms in the wave equation. The coupling terms will depend
on the wave functions of both systems, but leave the energy and momentum
operators unchanged. An obvious restriction which must be satisfied by any
interaction theory is the requirement of relativistic invariance. An arbitrary
requirement, which would simplify things, is that the wave equations shall be
modified only by terms which are lowest order in the wave functions and con-
tain no derivatives. In addition, the interaction terms should be local. This
means that the wave functions in the interaction terms are evaluated at the
same point in space-time. Interactions for which this is not the case are said
to be non-local, and if used, care must be taken to insure that the non-locality
is constructed in such a way that Lorentz invariance is not violated. The final
test of the correctness of the interaction terms will be that their observable
effects agree with experiments.

4.7.1 Gauge Invariance

Gauge invariance in quantum mechanics is directly related to an invariance
of the wave equation under a local phase transformation. The gauge invari-
ance principle allows us to describe the interaction between the electromag-
netic field and the particle represented by the wave function. A generalized
form of this phase invariance also underlies theories of the weak and strong
interactions. It is thus natural to look for coupling terms in our theory of
scalars and electromagnetic fields that satisfy the same invariance principles.
Such theories are known as gauge theories.

The origin of gauge invariance in classical electromagnetism lies in the fact
that the vector potential �A and scalar potential V are not unique for given
physical fields �E and �B. The transformations that �A and V may undergo,
while preserving �E and �B, and hence Maxwell’s equations, are called gauge
transformations. Details on gauge invariance in electromagnetism will be
presented in chapter 7.

In the following, we will distinguish between global and local transforma-
tions. Global invariance means that the same transformation is carried out at
all space-time points; the transformation is carried out simultaneously every-
where. Local invariance means that different transformations are carried out
at different space-time points. For example, the conservation of electric charge
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must be satisfied locally. A process in which charge is created at one point
and destroyed at a distant point is not allowed, despite the fact that it con-
serves charge overall, or globally. The reason for not allowing a global form of
charge conservation is that it would necessitate the instantaneous propagation
of signals, and this conflicts with special relativity.

The free-particle Klein-Gordon equation is invariant under a phase trans-
formation of the wave function

φ(x)→ φ′(x) = exp
(
iq

h̄c
χ

)
φ(x) (4.50)

provided that χ is independent of the space-time coordinate x. The reason
for factorizing the constants q/h̄c from χ will become apparent shortly6.

If χ is a function of x, the phase factor in equation 4.50 is the same for all
states φ, but not necessarily the same for all space-time points. A derivative
term transforms as

∂µφ(x)→ ∂µφ′(x) = exp
(
iq

h̄c
χ(x)

)[
∂µ +

iq

h̄c
∂µχ(x)

]
φ(x) (4.51)

and thus the Klein-Gordon equation is no longer invariant under the phase
transformation. Invariance may be restored by introducing the classical elec-
tromagnetic field as a four-vector Aµ = (V, �A) into the Klein-Gordon equation
and requiring that it transforms as

Aµ(x)→ A′µ(x) = Aµ(x) − ∂µχ(x) (4.52)

under a gauge transformation. This transformation is allowed in the standard
Maxwell equations (see chapter 7). A vector field such as Aµ, introduced to
guarantee local phase invariance, is called a gauge field.

As in classical Hamiltonian theory and nonrelativistic quantum mechanics,
we introduce Aµ into the Klein-Gordon equation using the “minimal coupling”
prescription

p̂µ → p̂′µ = p̂µ − q

c
Aµ (4.53)

or equivalently, by using the gauge-covariant derivative

∂µ → Dµ = ∂µ +
iq

h̄c
Aµ . (4.54)

6In this section, we explicity show the constants h̄ and c since it can be tricky to reintroduce
them in the following calculations if numerical results are needed.
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Equation 4.54 is usually just called the covariant derivative. It allows us to
write down the wave equation for the interaction directly from the free particle
equation.

The modified Klein-Gordon equation is

[
DµDµ +

m2c2

h̄2

]
φ = 0[(

∂µ +
iq

h̄c
Aµ

)(
∂µ +

iq

h̄c
Aµ

)
− m2c2

h̄2

]
φ = 0. (4.55)

BesidesAµ there is an extra constant q in the equation, which characterizes the
coupling of charged Klein-Gordon solutions φ, representing single particles, to
the electromagnetic field Aµ. The sign of q can be positive or negative, but
does not appear to be of any fundamental significance in this equation. When
the Klein-Gordon equation is used to describe charged mesons q = ±e.

Gauge invariance can be demonstrated by simultaneously transforming φ(x)
and Aµ(x) according to equation 4.50 and equation 4.52. The first-order
covariant derivative acting on the wave function gives

D′µφ′ =
[
∂µ +

iq

h̄c
A′µ

]
φ′

=
[
∂µ +

iq

h̄c
Aµ − iq

h̄c
∂µχ

]
exp

(
iq

h̄c
χ

)
φ

= exp
(
iq

h̄c
χ

)[
∂µ +

iq

h̄c
Aµ

]
φ

= exp
(
iq

h̄c
χ

)
Dµφ. (4.56)

The second-order covariant derivative acting on the wave function gives

D′µD′µφ
′ = D′µ exp

(
iq

h̄c
χ

)
Dµφ

= exp
(
iq

h̄c
χ

)
DµDµφ. (4.57)

Thus the invariance of the Klein-Gordon equation under this gauge transfor-
mation is easily seen:

[
D′µD′µ +

m2c2

h̄

]
φ′ = 0

exp
(
iq

h̄c
χ

)[
DµDµ +

m2c2

h̄2

]
φ = 0
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DµDµ +

m2c2

h̄2

]
φ = 0. (4.58)

The Klein-Gordon equation is gauge invariant for the minimal coupling
substitution given by equation 4.53. General gauge invariance can be shown
by applying the gauge transformation n times7

(D′µ)nφ′ = (D′µ)n−1 exp
(
iq

h̄c
χ

)
Dµφ

= exp
(
iq

h̄c
χ

)
(Dµ)nφ. (4.59)

For an arbitrary operator function f which can be expanded into a power
series of the Dµ operator, we write

[f(D′µ)]φ′ = exp
(
ie

h̄c
χ

)
[f(Dµ)]φ. (4.60)

Thus the minimal coupling prescription is gauge invariant in a very gen-
eral sense. This shows that not only |φ′|2 = |φ|2, but also forms such as
φ′∗f(D′µ)φ′ = φ∗f(Dµ)φ. Since physical observables are represented by bi-
linear forms with the structure φ∗ . . . φ, the common phase factor does not
play any role in the physics.

4.7.2 Electromagnetic Coupling

The coupling of scalar particles to an electromagnetic field is done using the
gauge-invariant approach explained in the previous section. Using minimal
coupling and writing the Klein-Gordon equation so that all terms involving
the electromagnetic potential appear on one side of the equation, we have

(� +m2)φ = −V̂ φ, (4.61)

where the potential operator V̂ is

V̂ = iq (∂ · A+A · ∂)− q2A2

= i(∂ · V + V · ∂) + S, (4.62)

where V µ = qAµ and S = −q2AµAµ.
Since the Klein-Gordon equation is second order in the derivatives, the

coupling term has a complicated structure, contains gradients, and is nonlinear
in Aµ. The first derivative in equation 4.62 operates on both Aµ and φ. All

7The covariant derivative four-vector operator to the nth power is understood to be con-
tracted pairwise, so that it is a scalar for even n and a four-vector for odd n.
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terms are scalars. The first two terms consist of a vector potential which is
contracted with the ∂µ operator to make up an overall scalar. The last term
is a scalar by itself. In the most general case, the scalar S and vector V µ parts
of the potential could be independent interactions, but in electromagnetism
they are related. The potential in equation 4.62 is a far cry from our aesthetic
requirements mentioned at the beginning of this section (page 42). Aesthetics
aside, gauge theories have been very successful in describing nature.

Using minimal coupling, the conserved current becomes (see problem 4.9)

jµ = φ∗
(
ih̄∂µ − q

c
Aµ

)
φ− φ

(
ih̄∂µ +

q

c
Aµ

)
φ∗. (4.63)

Multiplying by |q|/2m to get the usual normalization gives the time and space
components of the conserved current

ρ =
|q|ih̄
2mc2

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t
− 2q
ih̄
A0φ

∗φ

)
(4.64)

and

�j =
|q|h̄
2im

(
φ∗�∇φ− φ�∇φ∗ +

2q
ih̄c

�Aφ∗φ

)
. (4.65)

Returning to our initial normalization in equation 4.63 and using natural
units, we have

ρ = φ∗(x)[i
↔
∂ 0−2qA0(x)]φ(x) . (4.66)

For a stationary state, we can write

φ(�x, t) = φ(�x) exp
(
− iqEt|q|h̄

)
(4.67)

and equation 4.64 gives

ρ =
|q|ih̄
2mc2

(
− iqE|q|h̄ −

iqE

|q|h̄ −
2q
ih̄
A0(x)

)
|φ(�x)|2 (4.68)

= q
E − |q|A0(x)

mc2
|φ(�x)|2. (4.69)

We notice that the charge density can have either sign depending on the
relative values of E and |q|A0 at a particular point in space-time. If E > |q|A0,
the charge density has the same sign as q of the particle. But if E < |q|A0,
the charge density has the opposite sign as q of the particle. In this case, the
field is strong and we would need to invoke second quantization to show that
particles are created in this case. Strong fields will be discussed further in
section 4.10.
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4.7.3 Charge Conjugation

There are various symmetries that have nothing to do with Lorentz invari-
ance and appear the same in all inertial reference frames. An example is
the symmetry under interchange of neutrons and protons in nuclear physics.
Of interest here is the charge-conjugation symmetry between particles and
antiparticles.

Consider a positive-energy solution with charge q. The equivalent Klein-
Gordon equation satisfied by the positive-energy solution is

ih̄
∂φ

(+)
q

∂t
=
√
m2c4 + (−ih̄c�∇− q �A)2 φ(+)

q + qA0φ
(+)
q . (4.70)

The negative energy solution with charge q satisfies

ih̄
∂φ

(−)
q

∂t
= −

√
m2c4 + (−ih̄c�∇− q �A)2 φ(−)

q + qA0φ
(−)
q . (4.71)

Taking the complex conjugate of the negative energy equation gives

−ih̄∂φ
(−)
q

∗

∂t
= −

√
m2c4 + (ih̄c�∇− q �A)2 φ(−)

q

∗
+ qA0φ

(−)
q

∗
,

ih̄
∂φ

(−)
q

∗

∂t
=
√
m2c4 + (−ih̄c�∇+ q �A)2 φ(−)

q

∗ − qA0φ
(−)
q

∗
. (4.72)

Comparing equation 4.70 with equation 4.72 gives the proportionality rela-
tionship

φ
(−)
−q

∗
∝ φ(+)

q . (4.73)

Thus φ(−)
−q

∗
is the charge-conjugate solution and represents the charge conju-

gate state of φ(+)
q . Similarly, φ(+)

q

∗
is the charge conjugate state of φ(−)

−q . If we

(arbitrarily) call the particle described by φ(+)
q “the particle”, then we call the

particle described by φ
(−)
−q

∗
the antiparticle. For example, if we call the π+

meson the particle, then the π− meson is the antiparticle. The undesirable
negative-energy solutions have now been interpreted as antiparticles.

Neutral particles also fit into this picture, in that the charge-conjugate
state is the state itself. In other words, neutral spin-0 particles are their own
antiparticles. Let φ ≡ φ(+)

q and φC ≡ φ(−)
−q

∗
so that we can write

φC = αφ, (4.74)

where α is a proportionality constant which has to be real. α can be deduced
since for neutral particles both φ and αφ are real. Realizing that
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(φC)C = φ (4.75)

it follows that

(αφ)C = α2φ = φ (4.76)

so that α2 = 1 or α = ±1. Accordingly there exist two different kinds of
neutral particles, namely

1. neutral particles with positive charge parity, i.e. α = +1,

φC = φ,

2. neutral particles with negative charge parity, i.e. α = −1,

φC = −φ.

Neutral particles are thus eigenfunctions of the charge conjugation operator,
while charged particles are not.

Neutral particles by definition do not interact with the electromagnetic field.
However, the relativistic doubling of states still occurs, and we should rename
these two degrees of freedom so as to apply equally to both charged and neutral
particles. The process of transforming from the particle to the antiparticle
state, or vice versa, should be called particle-antiparticle conjugation rather
than charge conjugation.

The convenience of such a terminology depends upon whether or not inter-
actions with other fields distinguish between particles and antiparticles as, for
example, the electromagnetic field distinguishes between positive and negative
charge. If the interaction does distinguish between them, then the particle
and antiparticle have an analog of the charge associated with each. In nature
there occurs spin-0 particle, for example, the K0 and K

0
, which are electri-

cally neutral and are each other’s antiparticle, differing by the sign of their
“strangeness charge”. On the other hand, if the interactions with other fields
is identical for both particle and antiparticle it becomes possible to make an
abbreviation of the theory so that only one degree of freedom enters. An
example of a neutral spin-0 particle that is its own antiparticle is the π0.

4.8 Hamiltonian Form of the Klein-Gordon Equation

It can be advantageous to transform the Klein-Gordon equation into the
form of a Schrödinger equation, like equation 1.1. This would allow an easy
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comparison with the nonrelativistic results. Both equations are second order
in the space derivative. The Klein-Gordon equation is second order in the time
derivative as well. We thus need to absorb one order of the time derivative
into the wave function of the Klein-Gordon equation. The transformation will
come at a price. We will see that a single second-order differential equation
in time will become two first-order differential equations in time. We will
perform this transformation with the Aµ fields present.

We will now develop the Schrödinger form of the Klein-Gordon equation,
examine the charge density ρ, use ρ to state the normalization, develop free-
particle solutions, and take the nonrelativistic limit.

Using intuition, we form the linear combinations of wave functions

χ1 =
1
2

[
φ+

i

m

(
∂0 + iqA0

)
φ

]
(4.77)

and

χ2 =
1
2

[
φ− i

m

(
∂0 + iqA0

)
φ

]
, (4.78)

where φ is a solution of the Klein-Gordon equation. We see that φ = χ1 + χ2

and χ1 − χ2 = i
m

(
∂0 + iqA0

)
φ.

χ1 and χ2 obey the coupled equations

(i∂0 − qA0)χ1 =
1
2
(
i∂0 − qA0

)
φ+

i

2m
(
i∂0 − qA0

) (
∂0 + iqA0

)
φ

=
m

2
(χ1 − χ2) +

1
2m

(
i∂0 − qA0

)2
φ

=
m

2
(χ1 − χ2) +

1
2m

[(
−i�∇− q �A

)2

+m2

]
(χ1 + χ2)

=
1

2m

(
−i�∇− q �A

)2

(χ1 + χ2) +mχ1 (4.79)

and

(i∂0 − qA0)χ2 =
m

2
(χ1 − χ2)−

1
2m

[(
−i�∇− q �A

)2

+m2

]
(χ1 + χ2)

= − 1
2m

(
−i�∇− q �A

)2

(χ1 + χ2)−mχ2, (4.80)

where the Klein-Gordon equation has been used in the third step of equa-
tion 4.79 and the first step of equation 4.80. The differential equations now
mix χ1 and χ2; we have two coupled differential equations. If we define the
two-component spinor

χ =
(
χ1

χ2

)
, (4.81)
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we can combine equations 4.79 and 4.80 to obtain

(
i∂0 − qA0

)(χ1

χ2

)
=

1
2m

(
−i�∇− q �A

)2
(

χ1 + χ2

−χ1 − χ2

)
+m

(
χ1

−χ2

)
, (4.82)

(
i∂0 − qA0

)( 1 0
0 1

)(
χ1,
χ2

)
=

1
2m

(
−i�∇− q �A

)2
(

1 1
−1 −1

)(
χ1

χ2

)

+ m

(
1 0
0 −1

)(
χ1

χ2

)
. (4.83)

Using the Pauli matrices σi previously defined by equation 2.22, we write

σ3 + iσ2 =
(

1 1
−1 −1

)
(4.84)

and

(i∂0 − qA0)χ =
[

1
2m

(−i�∇− q �A)2(σ3 + iσ2) +mσ3

]
χ, (4.85)

where a 2×2 identity matrix is assumed on the left-hand side of the equation.
This is a first-order Schrödinger equation (cf. i∂0χ = Hχ). The quantity in
square brackets is H − qA0.

The charge density for these states is (setting h̄ = c = 1)

ρ =
iq

2m
[
φ∗(∂0 + iqA0)φ− φ(∂0 − iqA0)φ∗

]
=

iq

2m
m

i
[(χ1 + χ2)∗(χ1 − χ2) + (χ1 + χ2)(χ1 − χ2)∗]

=
q

2
(χ∗1χ1 − χ∗2χ2 + χ∗1χ1 − χ∗2χ2)

= q
(
|χ1|2 − |χ2|2

)
, (4.86)

which is rather simple and somewhat similar to the nonrelativistic case. Since
we are describing particles of both signs of charge, it is not surprising that
the density ρ appears as the difference of two positive definite densities.

Also in this notation, the charge density can be written as

ρ = q(|χ1|2 − |χ2|2) = qχ†σ3χ, (4.87)

where χ† is the hermitian conjugate of χ. Since χ†σ3χ is time independent,
we can use it for normalization:

〈χ|χ〉 ≡
∫
d3xχ†(x)σ3χ(x) = ±1. (4.88)
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It will be shown later that the sign is determined by whether we start with
particles (+) or antiparticles (−): φ(t = 0) = φ(±).

Returning to equation 4.85, the Klein-Gordon Hamiltonian operator is

H =
1

2m
(−i�∇− q �A)2(σ3 + iσ2) +mσ3 + qA0. (4.89)

The Hamiltonian appears to be non-hermitian, since

(σ3 + iσ2)† = σ3 − iσ2 �= σ3 + iσ2. (4.90)

However

〈χ′|H |χ〉 =
∫
d3xχ′

†(x)σ3Hχ(x) (4.91)

and

〈χ′|H |χ〉∗ =
(∫

d3xχ′
†(x)σ3Hχ(x)

)†

=
∫
d3xχ†(x)H†σ3χ

′(x)

=
∫
d3xχ†(x)σ3(σ3H

†σ3)χ′(x)

= 〈χ|σ3H
†σ3|χ′〉. (4.92)

We notice that

σ3(σ3 + iσ2)†σ3 = σ3(σ3 − iσ2)σ3 = σ3 − iσ3σ2σ3 (4.93)

and

σ3σ2σ3 = σ3(iσ1) = i(iσ2) = −σ2 (4.94)

gives

σ3(σ3 + iσ2)†σ3 = σ3 + iσ2. (4.95)

Therefore

σ3H
†σ3 = H. (4.96)

Because of the normalization condition, the Hamiltonian is effectively her-
mitian when calculating its expectation value.

Consider the free particle solutions which follow from equations 4.77 and
4.78:

χ1 =
1
2

[
φ+

i

m
∂0φ

]
and χ2 =

1
2

[
φ− i

m
∂0φ

]
. (4.97)
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The positive-energy plane-wave solution normalized to unit density (equa-
tion 4.40) is

φ(x) =
√
m

E
e−i(Et−�p·�x) =

√
m

E
e−ip·x. (4.98)

Since ∂0φ = −iEφ,

χ1 =
1
2

(
1 +

E

m

)
φ and χ2 =

1
2

(
1− E

m

)
φ. (4.99)

We write

χ ≡
(
χ1

χ2

)
=

1
2

√
m

E

1
m

(
m+ E
m− E

)
e−ip·x ≡ χ(+)(�p)e−ip·x, (4.100)

where

χ(+)(�p) =
1

2
√
mE

(
m+ E
m− E

)
. (4.101)

The corresponding negative-energy plane-wave solution is

φ(x) =
√
m

E
e−i(−Et−�p·�x) (4.102)

giving

χ(−)(�p) =
1

2
√
mE

(
m− E
m+ E

)
. (4.103)

Orthogonality follows:

〈χ(+)(�p)|χ(+)(�p)〉 ≡ χ(+)†(�p)σ3χ
(+)(�p)

=
1

4mE

(
m+ E
m− E

)†(
m+ E
−m+ E

)

=
1

4mE
[(m+ E)(m+ E) + (m− E)(−m+ E)]

=
1

4mE
(m2 + 2mE + E2 −m2 + 2mE − E2)

= 1, (4.104)

and it can also be shown (see problem 4.10) that

〈χ(−)(�p)|χ(−)(�p)〉 = −1, (4.105)

〈χ(+)(�p)|χ(−)(�p)〉 = 0, (4.106)
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〈χ(−)(�p)|χ(+)(�p)〉 = 0. (4.107)

In the nonrelativistic limit, we have

E = (p2 +m2)1/2 = m

(
1 +

p2

m2

)1/2

≈ m
(

1 +
1
2
p2

m2

)
= m+

p2

2m
. (4.108)

The components of equation 4.101 become

m+ E

2
√
mE

≈ m+m+ p2/2m

2m1/2
(
m+ p2

2m

)1/2
=

2m+ p2/2m

2m
(
1 + 1

2
p2

2m2

) = 1, (4.109)

m− E
2
√
mE

≈ m−m− p2/2m

2m1/2
(
m+ p2

2m

)1/2
=

−p2/2m

2m
(
1 + 1

2
p2

2m2

) =
−p2

4m2 + p2
≈ − p2

4m2
.

(4.110)

Equation 4.101 in the nonrelativistic limit is

χ(+)(�p) ≈
(

1
−p2/4m2

)
=
(

1
−1/4(v/c)2

)
≈
(

1
0

)
, (4.111)

which holds to second order in the velocity. Similarly (see problem 4.11)

χ(−)(�p) ≈
(

0
1

)
. (4.112)

Since the exponential functions form a complete set, any wave packet can
be expanded in terms of a linear combination of positive- and negative-energy
solutions

φ(�x, t) =
∫

d3p

(2π)3
ei�p·�x

[
a
(+)
�p (t)χ(+)(�p) + a

(−)
−�p (t)χ(−)(−�p)

]

=
∫

d3p

(2π)3
[
a
(+)
�p (t)χ(+)(�p)ei�p·�x + a

(−)
�p (t)χ(−)(�p)e−i�p·�x

]
,

(4.113)

where χ(�p) depends only on the magnitude of �p, and a
(±)
�p (t) is a function

of time and the magnitude of �p. The entire time dependence of φ(�x, t) is
contained in the functions a(±)

�p (t).
If the wave packet is normalized to ±1, we have
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±1 ≡ 〈φ|φ〉 =
∫
d3xφ†(�x, t)σ3φ(�x, t)

=
∫
d3x

d3p′

(2π)3
d3p

(2π)3
[
[a(+)

�p

∗
(t)χ(+)†(�p ′)e−i�p ′·�x + a

(−)
�p

∗
(t)χ(−)†(�p ′)ei�p ′·�x]

· σ3 [a(+)
�p (t)χ(+)(�p)ei�p·�x + a

(−)
�p (t)χ(−)(�p)e−i�p·�x]

]
=
∫
d3x

d3p′

(2π)3
d3p

(2π)3
[a(+)

�p

∗
(t)a(+)

�p (t)χ(+)†(�p ′)σ3χ
(+)(�p)ei�x·(�p−�p ′)

+ a
(−)
�p

∗
(t)a(−)

�p (t)χ(−)†(�p ′)σ3χ
(−)(�p)e−i�x·(�p−�p ′)

+ a
(+)
�p

∗
(t)a(−)

�p (t)χ(+)†(�p ′)σ3χ
(−)(�p)e−i�x·(�p+�p ′)

+ a
(−)
�p

∗
(t)a(+)

�p (t)χ(−)†(�p ′)σ3χ
(+)(�p)ei�x·(�p+�p ′)]

=
∫

d3p

(2π)3
[
|a(+)

�p (t)|2 − |a(−)
�p (t)|2

]
. (4.114)

The integral of |a(+)
�p (t)|2 gives the relative amount of positive energy, or pos-

itive charge, which is spatially distributed according to eigenstate χ(+)(�p),
while |a(−)

�p (t)|2 gives the relative amount of negative energy, or negative
charge, distrubuted according to χ(−)(�p). The total amount of charge is ±1.
For the normalization to be time independent, a(±)

�p (t) = e∓iEtf (±)(|�p |), where
f (±)(|�p|) are scalar functions of the magnitude of �p only.

4.9 Free-Particle Solutions and Wave Packets

The de Broglie relationship between momentum and wavelength of a par-
ticle suggests that it might be possible to use concentrated bunches of waves,
called wave packets, to describe localized particles of matter. Based on ex-
perimental observation, the wave packet should have three properties: 1) it
can interfere with itself, so that it can account for the results of diffraction
experiments, 2) it is large in magnitude where the particle is likely to be and
small elsewhere, and 3) the wave function will be regarded as describing the
behavior of a single particle, not the statistical distribution of a number of
such quanta.

It is possible to imagine configurations of waves that are very localized. Such
localized wave packets can be achieved by superposing continuous waves with
different frequencies in a particular way, so that they destructively interfere
with each other almost completely outside of a specified spatial region. Since
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the Klein-Gordon equation is a linear wave equation, the wave packets are also
solutions of the Klein-Gordon equation. The mathematical tools for dealing
with wave packets involve Fourier integrals.

The wave-packet description of the motion of a particle agrees with the
classical description when the circumstances are such that we can ignore the
size and internal structure of the packet. The uncertainty principle for position
and momentum of a quantum of matter follows directly from the wave-packet
description, as we shall see.

When dealing with covariant wave packets some new features, which were
absent in the nonrelativistic theory, will arise from the fact that the wave
packet includes negative-energy solutions. It is not possible to exclude the
negative-energy states simply by arguing that they are not realized in nature.
The positive-energy states alone do not represent a complete set of functions
in which to expand the wave-packet solutions.

Consider a wave packet containing only positive-energy components

φ(�x, t) =
∫

d3p

(2π)3
ei�p·�xa

(+)
�p (t)χ(+)(�p), (4.115)

where

a
(+)
�p (t) = e−iEptf([�p− �p0]2) (4.116)

is some function which peaks at the origin in momentum space. For example,
a narrow Gaussian distribution.

Let us consider the position operator x̂ operating on a positive-energy only
wave packet (equation 4.101)

x̂φ(�x, t) =
∫

d3p

(2π)3
�xei�p·�xa

(+)
�p (t)χ(+)(�p). (4.117)

Noticing that �xei�p·�x = −i�∇�p e
i�p·�x 8 and integrating by parts, we write

x̂φ(�x, t) = −i
∫

d3p

(2π)3
(
�∇�p e

i�p·�x
)
a
(+)
�p (t)χ(+)(�p)]

= i

∫
d3p

(2π)3
ei�p·�x

[
χ(+)(�p)�∇�pa

(+)
�p (t) + a

(+)
�p (t)�∇�pχ

(+)(�p)
]

= i

∫
d3p

(2π)3
ei�p·�x

[
χ(+)(�p)�∇�pa

(+)
�p (t)− �p

2E2
a
(+)
�p (t)χ(−)(�p)

]
,

(4.118)

where we have made use of the following identities:

8We are defining �∇�p ≡
(

∂
∂px

, ∂
∂py

, ∂
∂pz

)
.
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�∇�pE = �∇�p(m2 + �p 2)1/2 = 1/2(m2 + �p 2)−1/22�p =
�p

E
(4.119)

and

�∇�pχ
(+)(�p) = �∇�p

1
2
√
mE

(
m+ E
m− E

)

= −1
2
E−3/2

2
√
m

�p

E

(
m+ E
m− E

)
+
E−1/2

2
√
m

�p

E

(
1
−1

)

=
�p

4
√
mEE2

(
2E −m− E
−2E −m+ E

)
=

�p

4
√
mEE2

(
−m+ E
−m− E

)

= − �p

2E2
χ(−)(�p). (4.120)

Also notice

�∇�pχ
(−)(�p) = �∇�p

1
2
√
mE

(
m− E
m+ E

)

= −1
2
E−3/2

2
√
m

�p

E

(
m− E
m+ E

)
+
E−1/2

2
√
m

�p

E

(
−1

1

)

=
�p

4
√
mEE2

(
−2E −m+ E

2E −m− E

)
=

�p

4
√
mEE2

(
−m− E
−m+ E

)

= − �p

2E2
χ(+)(�p). (4.121)

In equation 4.118, we see that the position operator has introduced a
negative-energy piece into the wave function even though there was none
present originally. Equivalently, multiplication by the potential energy qA0(�x),
which is a function of �x only, introduces such negative-energy states. Thus
whenever a wave packet interacts with a potential, we should not be surprised
to find negative-energy states appearing.

There are other consequences of the behavior of wave packets that do not
appear in nonrelativistic quantum mechanics. A wave packet beginning at the
origin at t = 0 will move with a uniform velocity �pc/E. If we pick a functional
form for f , we will find that there is a minimum width of the wave packet, and
that it cannot be made smaller so long as only positive-energy components
are present (see problem 4.15).

We can also attempt to construct a wave packet localized at the origin. If
one wishes to localize a wave packet within a distance smaller than h̄/mc,
negative-energy components are required (see problem 4.15). The character-
istic length λ c = h̄/mc is called the Compton wavelength. For an electron
m = me and λ c = 3.9×10−11 cm, which is a typical scale in atomic processes.
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4.9.1 Zitterbewegung

As a final example, let us evaluate the expectation value of the position
operator for a wave packet that is a mixture of positive- and negative-energy
components (equation 4.113).

〈φ(t)|x̂|φ(t)〉 =
∫
d3xφ†(�x, t)σ3x̂φ(�x, t)

=
∫
d3x

∫
d3p′

(2π)3

∫
d3p

(2π)3

·
[
a
(+)
�p ′
∗
(t)χ(+)†(�p ′)e−i�p ′·�x + a

(−)
�p ′
∗
(t)χ(−)†(�p ′)e+i�p ′·�x

]
· σ3x̂

[
a
(+)
�p (t)χ(+)(�p)e+i�p·�x + a

(−)
�p (t)χ(−)(�p)e−i�p·�x

]
= i

∫
d3x

∫
d3p′

(2π)3

∫
d3p

(2π)3

·
[
a
(+)
�p ′
∗
(t)χ(+)†(�p ′)e−i�p ′·�x + a

(−)
�p ′
∗
(t)χ(−)†(�p ′)e+i�p ′·�x

]
· σ3

[
e+i�p·�x

(
χ(+)(�p)�∇�pa

(+)
�p (t) + a

(+)
�p (t)�∇�pχ

(+)(�p)
)

+ e−i�p·�x
(
χ(−)(�p)�∇�pa

(−)
�p (t)− a(−)

�p (t)�∇�pχ
(−)(�p)

)]
,

(4.122)

where we have again used �xei�p·�x = −i�∇�p e
i�p·�x and integrated by parts. Con-

tinuing, we have

〈φ(t)|x̂|φ(t)〉 = i

∫
d3p

(2π)3
[
a
(+)
�p

∗
(t)χ(+)†(�p)σ3χ

(+)(�p)�∇�pa
(+)
�p (t)

+ a
(−)
�p

∗
(t)χ(−)†(�p)σ3χ

(−)(�p)�∇�pa
(−)
�p (t)

+ a
(−)
�−p

∗
(t)χ(−)†( �−p)σ3a

(+)
�p (t)�∇�pχ

(+)(�p)

+ a
(+)
�−p

∗
(t)χ(+)†( �−p)σ3a

(−)
�p (t)�∇�pχ

(−)(�p) ]

= i

∫
d3p

(2π)3

[
a
(+)
�p

∗
(t)χ(+)†(�p)σ3

(
−it �p

E

)
a
(+)
�p (t)χ(+)(�p)

+ a
(−)
�p

∗
(t)χ(−)†(�p)σ3

(
it
�p

E

)
a
(−)
�p (t)χ(−)(�p)

+ a
(−)
�p

∗
(t)χ(−)†(�p)σ3

(
− �p

2E2

)
a
(+)
�p (t)χ(−)(�p)

+ a
(+)
�p

∗
(t)χ(+)†(�p)σ3

(
− �p

2E2

)
a
(−)
�p (t)χ(+)(�p) ] . (4.123)

The first two terms in the last expression above are obtained by noticing that
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∫
d3p

(2π)3
a
(±)∗

�p (t)�∇�pa
(±)
�p (t)

=
∫

d3p

(2π)3

[
∓it �p

E
f2([�p− �p0]2) + 2(�p− �p0)f([�p− �p0]2)f ′([�p− �p0]2)

]
.

(4.124)

Since f([�p− �p0]2) is very narrow, it approximates a Dirac delta function and
thus ∫

d3p

(2π)3
a
(+)∗

�p (t)�∇�pa
(+)
�p (t) ≈ ∓it �p

E
. (4.125)

Using the normalization of χ,

〈φ(t)|�x|φ(t)〉 =
∫

d3p

(2π)3
�p

E
t
(
|a(+)

�p (t)|2 − |a(−)
�p (t)|2

)

−�
[
i

∫
d3p

(2π)3
�p

E2
a
(+)
�p

∗
(t)a(−)

�p (t)
]
, (4.126)

where � represents taking the real part of the quantity in square brackets.
The first term in equation 4.126 represents the expected uniform motion of
the wave packet. In the second term

a
(+)
�p

∗
(t)a(−)

�p (t) ∼ e2i|E|t (4.127)

represents a rapid wiggling of the position of the particle about its central
location due to the interference of positive- and negative-energy components
of the wave. This “jitter” motion is referred to as Zitterbewegung and arises
when attempting to localize the particle or from interactions of the particle
with a potential.

The positive- and negative-energy components of the wave packet travel
in opposite directions. Thus wave packets damp out after a time ∆t ∼ 1/m
once the interactions with the potential have ceased. An exception is when
the potential is very strong. This problem is called the Klein’s paradox for
reasons which will become apparent in the next section.

4.10 Klein Paradox for Spin-0 Particles

To localize a particle, a strong external potential must be used to confine
it to the desired region. If a free particle of energy E is not to be found
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more than a distance d outside the confined region, the confining potential V
must rise sharply within an interval less than d to a height V > E so that
the solution for the particle falls off within a characteristic length less than
d. This is as in the Schrödinger theory. But when (V − E) increases beyond
mc2 and the confining length d shrinks to about the Compton wavelength
h̄/mc something different happens. To see what happens, we consider the
scattering of a Klein-Gordon particle of energy E and momentum �p from a
electrostatic step-function potential as shown in figure 4.1. This problem is an
archetypical problem in nonrelativistic quantum mechanics. For relativistic
quantum mechanics, we will find that the solution leads to a paradox – Klein
Paradox – when the potential is strong.

�

�

�

0 z

V (z)

E

V0

region I region II

FIGURE 4.1: Electrostatic potential idealized with a sharp boundary, with
an incident free scalar particle of energy E moving to the right in region I.

Mathematically, the step-function electromagnetic potential can be written as

�A = 0 and qA0 = V (z), (4.128)

where

V (z) =
{

0 for z < 0,
V0 for z > 0. (4.129)

The Klein-Gordon equation in the presence of this potential becomes

−∂
2φ

∂t2
+∇2φ−m2φ = 0 for z < 0, (4.130)(

i
∂

∂t
− V0

)2

φ+∇2φ−m2φ = 0 for z > 0. (4.131)
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A positive-energy incoming beam (z = −∞) is a plane wave of the form
e−i(Et−pz). We look for solutions of the form

φ< = e−iEt[eipz +Re−ipz] for z < 0,
φ> = Te−iEteip′z for z > 0,

(4.132)

where R and T are reflected and transmitted amplitudes, and p′ is the mo-
mentum in region II. Substitution of these solutions into the Klein-Gordon
equation yields

E2 − p2 −m2 = 0 ⇒ E =
√
p2 +m2 for z < 0,

E2 + V 2
0 − 2EV0 − p′2 −m2 = 0 ⇒ p′ = ±

√
(E − V0)2 −m2 for z > 0.

(4.133)
The positive sign is chosen for the square-root when z < 0, since this is
imposed by our initial conditions of solving the problem for a positive-energy
incoming beam. The sign for the square-root when z > 0 can not yet be
specified.

In region II there are three distinct cases, depending on the strength of the
potential. This is shown in figure 4.2.

�

V

0

E −mc2

E

E +mc2

Weak Potential Region

Intermediate Potential Region

Intermediate Potential Region

Strong Potential Region

FIGURE 4.2: Energy level diagram for a particle in region II.

weak potential: V0 < E −m ⇒ E − V0 > m ⇒ p′ is real,
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intermediate potential: (E −m) < V0 < (E +m) ⇒ |E − V0| < m ⇒
p′ is purely imaginary,

strong potential: V0 > E +m ⇒ |E − V0| > m ⇒ p′ is real.

We see that p′ can be real or imaginary depending on the strength of the
potential V0. In the region of strong potential, the kinetic energy (E − V0)
is negative, which is forbidden classically. The group velocity is given by
p′/(E − V0) and therefore has the opposite direction to the momentum p′ in
this region, if we choose p′ > 0. Since the group velocity is the velocity of
the moving wave packet, it looks as if the transmitted wave packet came in
from z = +∞; on the other hand this contradicts the initial condition, which
only allows an incoming wave packet from z = −∞. We thus have to choose
p′ < 0, i.e. the negative sign of the square root in equation 4.133, for the case
of a strong potential. Notice that this condition is not included in the Klein-
Gordon equation, but is forced upon us by the physical boundary conditions
of our problem.

Imposing the boundary conditions that φ and ∂φ/∂z be continuous at z = 0
gives

e−iEt(1 +R) = Te−iEt ⇒ 1 +R = T, (4.134)

e−iEtip(1−R) = ip′Te−iEt ⇒ 1−R =
p′

p
T. (4.135)

Solving for R and T we obtain

2 =
(

1 +
p′

p

)
T ⇒ T =

2
1 + p′/p

=
2p

p+ p′
, (4.136)

1−R =
p′

p
(1 +R) ⇒ R =

1− p′/p
1 + p′/p

=
p− p′
p+ p′

. (4.137)

Recall that the current is defined as

�j =
1

2im
(φ∗ �∇φ− φ�∇φ∗), (4.138)

so the incident current is

jI =
p

m
. (4.139)

The final currents to the left and right of the potential boundary are

j< =
1

2im
[(e−ipz +R∗eipz)ip(eipz −Re−ipz)

−(eipz +Re−ipz)ip(−e−ipz +R∗eipz)]
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=
1

2im
ip[1 +R∗e2ipz −Re−2ipz − |R|2 + 1 +Re−2ipz −R∗e2ipz − |R|2]

=
p

m
(1− |R|2) (4.140)

and

j> =
1

2im
[T ∗e−ip′∗zip′Teip′z + Teip′zip′

∗
T ∗e−ip′∗z]

=
p′ + p′

∗

2m
|T |2ei(p′−p′∗)z

=
{

p′
m |T |2 for p′ real,

0 for p′ imaginary.
(4.141)

The transmission coefficient is

T =
j>
jI

=
p′ + p′∗

2p
|T |2ei(p′−p′∗)z =

2p(p′ + p′∗)
(p′ + p)(p′∗ + p)

ei(p′−p′∗)z . (4.142)

The reflection coefficient is

R =
jI − j<
jI

= 1− (1− |R|2) = |R|2 =
∣∣∣∣p− p′p+ p′

∣∣∣∣
2

. (4.143)

For the case of the weak potential (p′ real), the transmission and reflection
coefficients are

T =
4pp′

(p+ p′)2
, R =

(
p− p′
p+ p′

)2

, T +R = 1. (4.144)

Thus the incident beam is partly reflected and partly transmitted. This is
similar to the result obtained in nonrelativistic quantum mechanics. The last
expression shows that the total probability is conserved.

For the case of the intermediate potential (p′ imaginary), the transmission
and reflection coefficients are

T = 0, R = 1, T +R = 1. (4.145)

Thus there is no transmission and only reflection. This is again the result
obtained in nonrelativistic quantum mechanics, and the probability is con-
served.

For the case of the strong potential (p′ real and negative), the transmission
and reflection coefficients are

T = − 4p|p′|
(p− |p′|)2 , R =

(
p+ |p′|
p− |p′|

)2

> 1, T +R = 1. (4.146)
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The probability is still conserved, but only at the cost of a negative transmis-
sion coefficient and a reflection coefficient which exceeds unity. The strong
potential appears to give rise to a paradox. There is no paradox if we con-
sider that in the strong potential case the potential is strong enough to create
particle-antiparticle pairs. The antiparticles are attracted by the potential
and create a negative current moving to the right. This is the origin of the
negative transmission coefficient. The particles, on the other hand, are re-
flected from the barrier and combined with the incident particle beam, which
is completely reflected, leading to a positive current, moving to the left, and
with magnitude greater than that of the incident beam.

4.11 Coulomb Interaction

The study of the structure of hypothetical atomic states with spin-0 con-
stituents is an interesting intellectual problem. In the next chapter, we will
compare the results obtained from the Klein-Gordon equation with those of
the Dirac equation so that we can tell how much of the observed energy-level
structure is due to relativistic effects alone and how much is due to the spin
of the electron.

Spin-0 “atoms” can be made in nature when a π− or K− meson is captured
by a nucleus. The object is called a pionic or kaonic atom. The mass of the
pion is 273 times heavier than the electron, and has a half-life of 2.6× 10−8 s.
Since the classical orbital period is about 10−21 s, we can think of the pion in
a well-defined stationary states, despite its finite half-life.

Consider the Coulomb interaction

A0 = −Ze
r

and �A = 0, (4.147)

and the substitution

p̂µ → p̂µ −
e

c
Aµ, (4.148)

where we are assuming the charge of the Klein-Gordon particle is the same
as the electron.

The Klein-Gordon equation with a Coulomb potential is

[
(ih̄∂µ − e

c
Aµ)2 −m2c2

]
Φ = 0[

(ih̄∂0 −
e

c
A0)2 − (−ih̄�∇− e

c
�A)2 −m2c2

]
Φ = 0[(

ih̄
∂

∂t
− eA0

)2

+ h̄2c2∇2 −m2c4

]
Φ = 0. (4.149)
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For stationary states Φ = e−iEt/h̄φ(�x), we write

(
E +

Ze2

r

)2

φ+ (h̄2c2∇2 −m2c4)φ = 0. (4.150)

This is a specific case of the more general equation for a stationary state in
the presence of a general potential:

(E − eV )2φ = c2
(
p̂− e

c
�A
)2

φ+m2c4φ. (4.151)

For spherical coordinates, the Laplacian is

∇2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
. (4.152)

For solutions of definite angular momentum l, we have

φ(r, θ, φ) = R(r)Y m
l (θ, φ) (4.153)

⇒ ∇2 =
1
r2

d

dr

(
r2
d

dr

)
− l(l + 1)

r2
, (4.154)

where l = 0, 1, 2, .... The Klein-Gordon equation in spherical coordinates is

[
(E + Ze2/r)2 −m2c4

h̄2c2

]
R =

[
− 1
r2

d

dr

(
r2
d

dr

)
+
l(l + 1)
r2

]
R. (4.155)

1
r2

d

dr

(
r2
dR

dr

)
+
[
E2 −m2c4

h̄2c2
+

2Ze2E
h̄2c2r

+
Z2e4

h̄2c2r2
− l(l+ 1)

r2

]
R = 0.

(4.156)
Defining E2−m2c4

h̄2c2 ≡ −α2

4 , we write

1
r2

d

dr

(
r2
dR

dr

)
− α2

4

[
1− 8Ze2E

h̄2c2α2r
− 4Z2e4

h̄2c2α2r2
+

4l(l+ 1)
α2r2

]
R = 0. (4.157)

Defining γ ≡ Ze2

h̄c , we write

1
r2

d

dr

(
r2
dR

dr

)
− α2

4

[
1− 8γE

h̄cα2r
− 4

γ2 − l(l+ 1)
α2r2

]
R = 0. (4.158)

Defining λ ≡ 2Eγ
h̄cα , we write
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1
r2

d

dr

(
r2
dR

dr

)
− α2

4

[
1− 4λ

αr
− 4

γ2 − l(l + 1)
(αr)2

]
R = 0

1
r2

d

dr

(
r2
dR

dr

)
+ α2

[
λ

αr
− 1

4
− l(l+ 1)− γ2

(αr)2

]
R = 0. (4.159)

Defining ρ ≡ αr and d
dr = dρ

dr
d
dρ = α d

dρ , we have

α2

ρ2
α
d

dρ

(
ρ2α

α2

dR

dρ

)
+ α2

[
λ

ρ
− 1

4
− l(l + 1)− γ2

ρ2

]
R = 0

1
ρ2

d

dρ

(
ρ2 dR

dρ

)
+
[
λ

ρ
− 1

4
− l(l + 1)− γ2

ρ2

]
R = 0. (4.160)

This radial equation is the same as in the nonrelativistic case if l(l + 1) →
l(l + 1)− γ2. Solving for E, we have

E2 −m2c4

h̄2c2
= −1

4

(
2Eγ
h̄cλ

)2

,

E2 −m2c4 = −E
2γ2

λ2
,

E2

(
1 +

γ2

λ2

)
= m2c4,

E = mc2
(

1 +
γ2

λ2

)−1/2

. (4.161)

We have chosen the positive square-root because in the case of no field,
Zα → 0, and the free-particle solution must be obtained. The parameter
λ is determined by the boundary condition on R when ρ =∞.

The remainder of this derivation is left as an exercise for the reader (see
problem 4.16). The comparison with the nonrelativistic case is discussed in
the problems. In general, the method of solving bound-state problems is
the same as in nonrelativistic quantum mechanics but the partial differential
equations are different.

4.12 Summary

By combining relativity and quantum mechanics in this chapter, we have
uncovered two new phenomena:
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1. Relativistic invariant wave packets cannot be localized to less than their
Compton wavelength (m−1).

2. For each charged particle there is an antiparticle with the same mass
but opposite charge.

There is nothing that prevents us from trying to construct a theory for
scalar (or pseudoscalar) bosons interacting with the electromagnetic field.
This would enable us to calculate cross sections for the scattering of spinless
particles from spinless particles, and the decay of spinless particles to spinless
particles. The greatest difficulty in this development would be moving from
a description for single-particle scattering in a potential to two-particle scat-
tering. The latter can be described by treating one particle as moving in the
field caused by the other particle. The particle field would be calculated from
Maxwell’s equation �Aµ = jµ, where the current jµ is that inferred from
single-particle scattering in a potential. The theory would be called scalar
electrodynamics. The importance of this theory would be limited because
there are no elementary charged scalar particles in nature. We will postpone
the development of interactions until later.

The best candidates for the role of pseudoscalar mesons are the π and
K. They are unstable and decay by weak interactions. Since this lifetime
is very long on a natural time scale, the pion can be considered stable to a
good approximation. The more basic problem is that pions have an internal
structure. It is well known that mesons are regarded as being composed of
two quarks with spin 1/2. Scalar electrodynamics is completely inadequate
for describing the coupling of mesons with each other, because the coupling
is dominated by the strong interaction.

Many problems arise from attempting to apply a simple single-particle wave
function picture to what is obviously a many-body situation. The correct way
in which to handle all the subtlety of these problems is to use the formalism of
quantum field theory. Nevertheless, the elementary wave function paradigm
has allowed us to obtain an accurate sketch of the physics of spinless particles
within the limitations of a one-particle theory.

4.13 Problems

1. Write down the wave equation for the nonrelativistic Hamiltonian de-
veloped from

E2 =
(
�p 2

2m

)2

,

and show that you get positive- and negative-energy solutions.
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2. The square-root operator in equation 4.7 is well defined if we write the
solutions ψ as a Fourier transform.

(a) Show that

i
∂

∂t
ψ(�x, t) =

∫
d3x′K(�x, �x ′)ψ(�x ′, t),

where

K(�x, �x ′) =
∫

d3p

(2π)3
ei�p·(�x−�x′)

√
�p 2 +m2.

(b) For large |�x − �x ′| most values of |�p | except for those with |�p | <
1/|�x − �x ′| will lead to rapid oscillations of the exponential and
consequently a very small value for the integral. In fact, the integral
will be sizable only for |�x − �x ′| < 1/m. Show that the result
just obtained may be used via a Taylor series expansion to relate
ψ(x, t + δt) to values of ψ(x′ ∼ x± 1/m, t).

(c) Show that values of ψ(x ± 1/m, t) are affecting ψ(x, t + δt) even
though these two space-time points are outside the forward light
cone, and thus causality is violated.

3. Show that in the nonrelativistic limit, the free-particle Klein-Gordon
equation becomes the free-particle Schrödinger equation.

4. The Lorentz-invariant step function θ(p) ≡ θ(p0) is defined by

θ(p) =
{

1 for p0 > 0,
0 for p0 < 0.

It is said that this step function is Lorentz invariant because it only dis-
tinguishes between the past and the future, which is a Lorentz invariant
concept. Show that this step function is Lorentz invariant.

Hint: I believe this is true only if p is restricted to be a time-like vector.

5. Show that

ρ =
ih̄

2mc2

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)

reduces to the nonrelativistic expression in the nonrelativistic limit.

6. Show that

q =
∫
d3xφ(−)∗(x)i

↔
∂ 0 φ

(−)(x) < 0

is satisfied for a solution to the Klein-Gordon equation φ(−)(x) that is
a superposition of negative energy plane-wave solutions.
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7. [26] Show that the expectation values of E2 and �p 2 for a general wave-
packet solution of the free-particle Klein-Gordon equation satisfy the
equation 〈E2〉 = c2〈�p 2〉+ (mc2)2. Discuss the connection between this
result and the classical equation E2 = (c�p)2 + (mc2)2.

8. Use explicit plane-wave solutions φ(±)
p (x) to establish the following nor-

malization and orthogonality relationships:

∫
d3xφ

(±)∗

p ′ (x)i
↔
∂ 0 φ

(±)
p (x) = ±δ3(�p− �p ′),∫

d3xφ
(±)∗

p ′ (x)i
↔
∂ 0 φ

(∓)
p (x) = 0.

9. Derive the conserved current for a scalar wave interacting with an elec-
tromagnetic field with minimal coupling.

10. The positive- and negative-energy two-component solutions of the Klein-
Gordon equation in the Schrödinger form were defined as

χ(±)(�p)e∓iEt+i�p·�x ≡ 1
2
√
mE

(
m± E
m∓ E

)
e∓iEt+i�p·�x.

Show that the χ(±)(�p) are orthonormalized.

11. Show that in the nonrelativistic limit

χ(−)(�p) ≈
(

0
1

)
.

12. By completeness, any wave packet can be expanded in terms of a linear
combination of positive- and negative-energy solutions:

φ(�x, t) =
∫

d3p

(2π)3
[
a
(+)
�p (t)χ(+)(�p)ei�p·�x + a

(−)
�p (t)χ(−)(�p)e−i�p·�x

]
.

The χ(±)(�p) are defined as

χ(±)(�p)e∓iEt+i�p·�x ≡ 1
2
√
mE

(
m± E
m∓ E

)
e∓iEt+i�p·�x

and the a(±)
�p (t) = e∓iEtf (±)(|�p|), where f (±)(|�p|) are general scalar func-

tions of the magnitude of �p. Derive the normalization requirement for
〈φ|φ〉 = ±1.
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13. Show that the energy and momentum expectation values in the two-
component Schrödinger representation are given by

Ê = 〈φ|H |φ〉 =
∫
d3xφ†(�x, t)σ3Hφ(�x, t)

=
∫

d3p

(2π)3
√
m2 + �p 2

(
|a(+)

�p (t)|2 + |a(−)
�p (t)|2

)

and

p̂ = 〈φ| − i�∇|φ〉 =
∫
d3xφ†(�x, t)σ3(−i�∇x)φ(�x, t)

=
∫

d3p

(2π)3
�p
(
|a(+)

�p (t)|2 + |a(−)
�p (t)|2

)
.

14. Invert

φ(�x, t) =
∫

d3p

(2π)3
[
a
(+)
�p (t)χ(+)(�p)ei�p·�x + a

(−)
�p (t)χ(−)(�p)e−i�p·�x

]

to obtain expressions for a(+)
�p (t) and a(−)

�p (t).

15. Starting with a positive-energy wave packet only, show that there is a
minimum width to the wave packet, and that it can not be localized
within a distance smaller than the Compton wavelength without creat-
ing negative-energy states.

16. Solve the coulomb potential problem. In equation 4.160, we obtained

1
ρ2

d

dρ

(
ρ2 dR

dρ

)
+
[
λ

ρ
− 1

4
− l(l+ 1)− γ2

ρ2

]
R = 0,

where γ ≡ Ze2

h̄c , λ ≡ 2Eγ
h̄cα , α2 ≡ 4(m2c4−E2)

h̄2c2 , and ρ ≡ αr.
Look for solutions that are finite at ρ = 0 and ∞, and show that

λ = n′ + s+ 1,

where n′ is 0 or a positive integer, and s is the non-negative solution of

s(s+ 1) = l(l + 1)− γ2.
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Show that the expression for the energy can be expanded in powers of
γ2, and to order γ4 is

E = mc2
[
1− γ2

2n2
− γ4

2n4

(
n

l + 1
2

− 3
4

)]
,

where n = n′+l+1 is the total quantum number and can take on positive
integer values. Identify the rest energy, the energy in the nonrelativistic
theory, and the fine-structure energy. Calculate the spread of the fine-
structure levels for a given n. Note: They are much larger than observed
experimentally in the hydrogen spectrum.

17. [14]

(a) Show that the energy levels of a mesonic atom are given by

E = m


1 +

Z2α2(
n− l − 1

2 +
√

(l + 1
2 )2 − Z2α2

)2



− 1

2

.

(b) Show that the ground-state energy for any mesonic atom heavier
than Z = 69 is complex. Explain what this complex energy means.

(c) Mesonic atoms have been studied at places like Los Alamos Lab-
oratory and it has been found that the ground states of atoms as
heavy as lead (Z = 82) or uranium (Z = 92) are quite stable.
How do you reconcile this fact with the result just obtained? Be
as quantitative as you can.

18. Solve the Klein-Gordon equation for an attractive square-well potential
of depth V0 and radius a, after determining the continuity conditions at
r = a. Obtain an explicit expression for the minimum V0 with given a
that just binds a particle of mass m.

19. Solve the Klein-Gordon equation for an exponential potential of the form

V (r) = −Zαe−r/α,

with α = mc2e2/h̄c; α characterizes the range of the potential. Restrict
yourself to s-states (l = 0) only.

20. Consider a free Klein-Gordon particle of mass m and charge e immersed
in a uniform magnetic field B in the z-direction. Using the gauge �A =
1/2( �B × �r) show that motion is quantized with energy

En =
√
m2 + p2

z + eB(2n+ 1) for n = 0, 1, 2, . . .
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21. [14] A rapidly varying electric field can lead to the creation of particle-
antiparticle pairs. Calculate to lowest order in α the probability per
unit volume per unit time for producing such pairs in the presence of
an external electric field,

�E(t) = x̂a cosωt,

and show that the probability is

prob = V T
αa2

6

(
1− 4m2

ω2

) 3
2

θ(ω − 2m).

Suggestion: Use as an interaction potential the usual form

Hint = e

∫
d3xjµA

µ,

where

jµ =
i

2m
(φ∗∂µφ− φ∂µφ

∗)

and

�A(t) = −x̂ a
ω

sinωt.

Utilize normalized plane-waves solutions of the Klein-Gordon equation,

φ(x) =
√
m

E
e−i(Et−�p·�x), with E =

√
�p 2 +m2,

and simple first-order perturbation theory

amp = −i
∫ T/2

−T/2

〈f |Hint(t)|0〉dt.

22. [14] Suppose a pionic atom is placed in a uniform magnetic field de-
scribed by the vector potential �A = 1/2( �B × �r).

(a) Neglecting the quadratic term (justify this) show that this problem
can be exactly solved to yield the energy levels

E = EB=0

(
1− 2ωL

m

mπ

) 1
2

,

where ωL = eB/2mπ is the Larmor frequency and m is the eigen-
value of L along the direction of the magnetic field.
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(b) Evaluate the nonrelativistic limit of the Klein-Gordon equation in
this case and show that the effective Hamiltonian is

H = HB=0 −
e

2mπ

�L · �B
(

1− �p 2

2m2
π

+ . . .

)
.

Thus the usual Bohr magneton e/2mπ is reduced by relativistic
effects to

e

2mπ

(
1− �p 2

2m2
π

)
.

(c) Calculate the energy shift induced by the magnetic field using per-
turbation theory and show that this result agrees with the exact
answer to first order in �B.



Chapter 5

Dirac Equation

We have seen in the previous chapter that the Klein-Gordon equation can
describe the motion of a particle with spin 0. In this chapter, we will develop
the Dirac equation which can be used to describe the motion of a particle
with spin 1/2. It is conceptually easier to investigate the properties of the
Dirac equation in its single-particle wave equation form, as we will do here. A
characteristic feature of the Dirac relativistic wave equation1 is that the spin
of the particle is built into the theory from the beginning, and is not added
afterwards as Pauli added the electron spin to the nonrelativistic Schrödinger
equation. Built-in features, such as spin, provide a useful measure of the
applicability of a particular wave equation to the description of a particular
spin of a particle.

5.1 Wave Equation for a Spin-1/2 Particle

Since most of the problems with the Klein-Gordon equation were because
it was second order in the time derivative, we seek a relativistic covariant
equation of the form

ih̄
∂ψ

∂t
= Ĥψ, (5.1)

which is first order in the time derivative, and should have positive definite
probability density. Since the Schrödinger and Klein-Gordon equations are
both second order in the space derivative, we try an equation that is first
order in the space derivatives. We write

ih̄
∂ψ

∂t
=
h̄c

i

(
α1

∂ψ

∂x1
+ α2

∂ψ

∂x2
+ α3

∂ψ

∂x3

)
+ βmc2ψ, (5.2)

where, for the moment, αi and β are constants of unspecified structure. Using
operator notation we have

1P.A.M. Dirac, “The Quantum Theory of the Electron”, Proc. Roy. Soc. 117 (1928)
610-624.

73
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ih̄
∂ψ

∂t
=
(
c�α · p̂+ βmc2

)
ψ , (5.3)

where p̂ is the three-vector momentum operator.
For invariance under spatial rotations, �α can not be numbers and ψ can

not be a scalar (see problem 5.1). In analogy with the spin wave function of
nonrelativistic quantum mechanics, we choose ψ to be a column vector, and
αi and β to be matrices. Explicitly,

ih̄
∂ψσ

∂t
=

N∑
τ=1

Ĥστψτ

=
h̄c

i

N∑
τ=1

(
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)
στ

ψτ +
N∑

τ=1

βστmc
2ψτ .

(5.4)

We thus have N coupled first-order equations.
These equations must

1. have free-particle solutions that satisfy E2 = �p 2c2 +m2c4,

2. yield a continuity equation and probability interpretation of ψ, and

3. be Lorentz covariant.

For the first condition to be satisfied, each component of ψσ must satisfy
the Klein-Gordon equation; all components of a wave function of definite mass
must satisfy the Klein-Gordon equation. Some wave functions satisfy other
wave equations as well, such as the Dirac equation, depending on whether, or
not, there are more components than independent particle states. Applying
the operator in equation 5.1 twice gives

(
ih̄
∂

∂t

)(
ih̄
∂

∂t

)
ψ = (Ĥ)(Ĥ)ψ,

−h̄2 ∂
2ψ

∂t2
= −h̄2c2

(
3∑

i=1

αi
∂

∂xi

)
 3∑

j=1

αj
∂

∂xj


ψ

+
h̄mc3

i

3∑
i=1

(αiβ + βαi)
∂ψ

∂xi
+ β2m2c4ψ

= −h̄2c2
3∑

i,j=1

αiαj + αjαi

2
∂2ψ

∂xi∂xj
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+
h̄mc3

i

3∑
i=1

(αiβ + βαi)
∂ψ

∂xi
+ β2m2c4ψ. (5.5)

To obtain the Klein-Gordon equation, the following must be satisfied

αiαj + αjαi = 2δij , (5.6)
αiβ + βαi = 0, (5.7)
α2

i = β2 = I, (5.8)

where I represents an N×N unit matrix. Normally we will not write the unit
matrix explicitly in an equation unless it is required for clarity. This should
not create any confusion since matrices can only equal matrices.

No terms in the Hamiltonian can have any space or time coordinates. Such
terms would have the property of space-time dependent energies, and would
give rise to forces and noninertial reference frames. Space and time derivatives
can only appear in p̂ and Ê, but not in αi or β, since the equation is to be
linear in the partial derivatives. Thus αi and β are independent of �x, t, �p,
and E, and hence commute with them.

Since the Hamiltonian must be hermitian, αi and β must be hermitian
matrices. Since the matrices are hermitian they must be square.

Since αi and β anticommute according to equation 5.7, they are traceless.
This can be seen as follows:

βαi = −αiβ,

αi = −βαiβ,

Tr[αi] = −Tr[βαiβ] = −Tr[β2αi] = −Tr[αi] = 0, (5.9)

where the last line follows from the cyclic property of the trace.
Since α2

i = β2 = I, the eigenvalues of αi and β are ±1. Since the trace is
the sum of eigenvalues, αi and β must be of even dimensions. For N = 2,
only three anticommuting matrices exist – the Pauli matrices (equation 2.22).
Thus the smallest dimension allowed is N = 4.

If one matrix is diagonal, the others can not be diagonal or they would
commute with the diagonal matrix. We can write a representation that is
hermitian, traceless, and has eigenvalues of ±1 (see problem 5.2):

αi =
(

0 σi

σi 0

)
and β =

(
I 0
0 −I

)
, (5.10)

where σi are the 2 × 2 Pauli matrices (equation 2.22), I is the 2 × 2 unit
matrix, and 0 is the 2× 2 null matrix. This choice of αi and β is not unique.
All matrices related to these by any unitary N×N matrix U , which preserves
the anticommutation relationships (equations 5.6 and 5.7), are allowed: α′i =
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UαiU
−1 and β′ = UβU−1 (see problem 5.3). We will continue to study the

properties of these matrices as needed in subsequent sections.
Now what can we say about the Dirac state function? It is a function of

the continuous space-time coordinates (�x, t). It also has four extra degrees
of freedom, which we can label by r = 1, 2, 3, 4. We can now ask what these
degrees of freedom, represented by the discrete index r, represent? We will
see that the Dirac equation describes particles of spin 1/2. However, since
spin-1/2 means two new degrees of freedom and ψ has four components, we
can still ask what is the reason for this seemingly redundant duplication in
the number of states? This question will be addressed in a subsequent section
of this chapter.

5.2 Current Conservation

To study the Dirac current, we will use an identical approach to section 4.5.
The hermitian conjugate wave function is a row vector ψ† = (ψ∗1 , ψ

∗
2 , ψ

∗
3 , ψ

∗
4).

Multiplying the Dirac equation 5.2 by the conjugate wave function from the
left gives

ih̄ψ†
∂ψ

∂t
=
h̄c

i

3∑
k=1

ψ†αk
∂ψ

∂xk
+mc2ψ†βψ. (5.11)

Forming the Dirac equation for the conjugate wave function and multiplying
by the wave function from the right gives

−ih̄∂ψ
†

∂t
ψ = − h̄c

i

3∑
k=1

∂ψ†

∂xk
αkψ +mc2ψ†βψ, (5.12)

where α†i = αi and β† = β. Subtracting equation 5.11 from equation 5.12
gives

ih̄
∂

∂t
ψ†ψ =

3∑
k=1

h̄c

i

∂

∂xk
(ψ†αkψ). (5.13)

Writing the result as a continuity equation, ∂ρ
∂t + �∇ ·�j = 0, gives the prob-

ability density

ρ = ψ†ψ, (5.14)

and the probability current density

jk = cψ†αkψ. (5.15)
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Equation 5.14 would lead us to believe that the problem with not obtaining
a positive-definite current, that we encountered for the Klein-Gordon wave
functions, seems to have gone away for Dirac wave functions. The form of the
probability density is identical to the nonrelativistic form. The operator cαk

in the probability current (equation 5.15) looks like a velocity operator. We
will follow up on these two ideas in subsequent sections.

Integrating the continuity equation over all space and using the divergence
theorem gives

∫
d3x

∂ρ

∂t
+
∫
d3x�∇ ·�j = 0

∂

∂t

∫
d3xρ+

∫
�j · d�S = 0

∂

∂t

∫
d3xψ†ψ = 0. (5.16)

We have now proven the first two conditions required of the Dirac equation
on page 74. We still need to show (cρ,�j) forms a four-vector under a Lorentz
transformation and that the Dirac equation is Lorentz covariant.

5.3 Dirac Particle at Rest

We search for a solution to the Dirac equation for a particle at rest. At rest,
a particle has an infinitely large de Broglie wavelength and the wave function
is uniform over all space: p̂ψ = 0. Therefore we drop the momentum operator
terms and the Dirac equation reduces to

ih̄
∂ψ

∂t
= βmc2ψ. (5.17)

For our representation of β (equation 5.10), the solutions are ψ(�p = 0):

ψ1(0) = e−(imc2/h̄)t




1
0
0
0


 , ψ2(0) = e−(imc2/h̄)t




0
1
0
0


 , (5.18)

ψ3(0) = e+(imc2/h̄)t




0
0
1
0


 , ψ4(0) = e+(imc2/h̄)t




0
0
0
1


 . (5.19)

ψ1 and ψ2 are positive-energy solutions, while ψ3 and ψ4 are negative-energy
solutions. We may have expected positive- and negative-energy solutions since
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we required ψ to also satisfy the Klein-Gordon equation. However, we now see
that we have four solutions rather than two solutions as in the Klein-Gordon
case. At first sight the Dirac equation seems to have worsened our situation
with extra unwanted solutions. We will see soon enough that these extra
solutions have desirable physical significance.

5.4 Electromagnetic Interaction

We now introduce the interaction of the electromagnetic field with the
solutions of the Dirac equation. Let us assume, for now, the existence of
single-particle charged solutions of the Dirac equation. The coupling to an
electromagnetic field will subsequently be used to obtain an interpretation of
the internal structure of Dirac particles.

Consider the interaction of a point particle of charge e with an external elec-
tromagnetic field2. We make the usual gauge-invariant minimal substitution
introduced in equation 4.53

p̂µ → p̂µ − e

c
Aµ, (5.20)

where e is the magnitude of the charge of the electron. The Dirac equation
becomes

c

[
ih̄

∂

∂(ct)
− e

c
A0

]
ψ =

[
c�α ·

(
p̂− e

c
�A
)

+ βmc2
]
ψ (5.21)

or

ih̄
∂ψ

∂t
=
[
c�α ·

(
p̂− e

c
�A
)

+ eA0 + βmc2
]
ψ. (5.22)

This equation contains the interaction with the electromagnetic field:

ih̄
∂ψ

∂t
=
(
Ĥ + Ĥ ′

)
ψ, (5.23)

where Ĥ is the original free-particle Hamiltonian and the piece of the Hamil-
tonian due to interactions with the electromagnetic potential is

Ĥ ′ = −e
c
c�α · �A+ eA0 = −e

c
v̂ · �A+ eA0, (5.24)

where we have defined

v̂ = c�α (5.25)

2We immediately assume the charge of the particle described by the Dirac equation is q = e.
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to be a velocity operator based on its appearance in the probability current
density (equation 5.15).

We can further convince ourselves of the velocity operator by examining the
relativistic extension of the Ehrenfest Theorem. The Ehrenfest Theorem gives
the law of motion of the mean values of the coordinates and the conjugate
momenta of a quantum system. It stipulates that the equations of motion of
these mean values are formally identical to the Hamilton equations of classical
mechanics, except that the quantities which occur on both sides of the classical
equations must be replaced by their average values. We can use the theorem
by looking at the relativistic extension of the Ehrenfest relationship:

d

dt
〈x̂〉 =

i

h̄
〈[Ĥ, x̂]〉 =

i

h̄
〈[c�α · p̂, x̂]〉 = ci

h̄
〈αi[p̂i, x̂]〉 = c〈�α〉, (5.26)

where we have used the commutator relationship [x̂i, p̂j] = ih̄δij .

5.5 Nonrelativistic Limit of the Dirac Equation

For consistency, the Dirac equation should reduce to the Schrödinger wave
equation for nonrelativistic quantum mechanics in the nonrelativistic limit.
We examine the nonrelativistic limit for the case of a positive-energy Dirac
particle in the presence of an electromagnetic potential. The Dirac equation
with the electromagnetic potential can be written as equation 5.22.

Consider a two-component representation of ψ(�x, t) =
[
φ(�x, t)
χ(�x, t)

]
, where

the four-component spinor3 ψ is decomposed into a pair of two-component
spinors, φ and χ. Substitution of this form into the Dirac equation 5.22 gives

ih̄
∂

∂t

(
φ
χ

)
=


 c�σ ·

[
p̂− e

c
�A
]
χ

c�σ ·
[
p̂− e

c
�A
]
φ


+ eA0

(
φ
χ

)
+mc2

(
φ
−χ

)
. (5.27)

If the rest energy mc2 is the largest occurring energy, our two-component
solution is approximately[

φ(�x, t)
χ(�x, t)

]
=
[
φ0(�x, t)
χ0(�x, t)

]
e−imc2t/h̄, (5.28)

where φ0(�x, t) and χ0(�x, t) are slowly varying functions of time. Substitution
of this nonrelativistic solution into the Dirac equation now gives

3A spinor will be defined more formally in section 5.9.
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ih̄
∂

∂t

(
φ0

χ0

)
=


 c�σ ·

[
p̂− e

c
�A
]
χ0

c�σ ·
[
p̂− e

c
�A
]
φ0


+ eA0

(
φ0

χ0

)
− 2mc2

(
0
χ0

)
. (5.29)

If the kinetic energy is small compared to the rest energy, χ0 is a slowly
varying function of time and∣∣∣∣ih̄∂χ0

∂t

∣∣∣∣� |mc2χ0|. (5.30)

If the electrostatic potential is weak, the potential energy is small compared
to the rest energy:

|eA0χ0| � |mc2χ0|. (5.31)

With the last two approximations, the lower component in equation 5.29
becomes

0 ≈ c�σ ·
(
p̂− e

c
�A
)
φ0 − 2mc2χ0, (5.32)

χ0 =
�σ ·

(
p̂− e

c
�A
)

2mc
φ0. (5.33)

The lower component χ is often referred to as the “small” component of the
wave function ψ, relative to the “large” component φ. The small compo-
nent is approximately a factor of v/c less than the large component in the
nonrelativistic limit.

The upper component of equation 5.29 becomes

ih̄
∂φ0

∂t
=
�σ ·

(
p̂− e

c
�A
)
�σ ·

(
p̂− e

c
�A
)

2m
φ0 + eA0φ0. (5.34)

Using identity 2.25, we have

�σ ·
(
p̂− e

c
�A
)
�σ ·

(
p̂− e

c
�A
)

=
(
p̂− e

c
�A
)2

+ i�σ ·
[(
−ih̄�∇− e

c
�A
)
×
(
−ih̄�∇− e

c
�A
)]

=
(
p̂− e

c
�A
)2

− eh̄

c
�σ · (�∇× �A), (5.35)

wherein obtaining the last line we remember that we are operating on a wave
function φ0, and have used the identity

�∇× �Aφ0 + �A× (�∇φ0) = (�∇× �A)φ0. (5.36)
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From the definition of the electromagnetic vector potential,

�σ ·
(
p̂− e

c
�A
)
�σ ·

(
p̂− e

c
�A
)

=
(
p̂− e

c
�A
)2

− eh̄

c
�σ · �B. (5.37)

Therefore the Dirac equation for the large component becomes

ih̄
∂φ0

∂t
=



(
p̂− e

c
�A
)2

2m
− eh̄

2mc
�σ · �B + eA0


φ0. (5.38)

This is the two-component Pauli equation for the theory of spin in nonrel-
ativistic quantum mechanics. The two components of φ0 describe the spin
degrees of freedom.

The Pauli equation, and thus the Dirac equation, yields the correct gyro-
magnetic factor of g = 2 for a free electron. To see this, we turn on a weak
field so that we can neglect the term quadratic in e �A. The square of the
momentum operator becomes

(
p̂− e

c
�A
)2

≈ p̂2 − e

c
p̂ · �A− e

c
�A · p̂ = p̂2 − 2

e

c
�A · p̂, (5.39)

where we have used p̂ · �A = −ih̄∇ · �A = 0 by the Coulomb gauge4.
Choosing a homogeneous magnetic field

�A =
1
2
�B × �x, (5.40)

we have

(
p̂− e

c
�A
)2

≈ p̂2 − e

c
( �B × �x) · p̂ = p̂2 − e

c
�B · L̂, (5.41)

where L̂ = �x× p̂ is the operator of orbital angular momentum.
Defining ŝ = 1

2 h̄�σ as the spin operator, the Pauli equation now becomes

ih̄
∂φ0

∂t
=
[
p̂2

2m
− e

2mc
L̂ · �B − eh̄

2mc
�σ · �B + eA0

]
φ0

=
[
p̂2

2m
− e

2mc
L̂ · �B − e

mc
ŝ · �B + eA0

]
φ0

=
[
p̂2

2m
− e

2mc
(L̂+ 2ŝ) · �B + eA0

]
φ0. (5.42)

Generally, the intrinsic magnetic moment �µ is related to the spin vector �s
by

4Specific gauges, such as the Coulomb gauge, will be discussed in section 7.2.
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�µ = gµB�s, (5.43)

where µB = eh̄/2mc is the Bohr magneton and g is called the Lande g-
factor. The gyromagnetic ratio is gµB = µ/s, i.e. the ratio of the magnetic
to mechanical moment. Thus the Dirac theory predicts for particles of spin
1/2 that

g = 2. (5.44)

Predicting the correct gyromagnetic ratio of the electron is one of the great
triumphs of the Dirac equation.

Experimental values for the g-factors for real spin-1/2 particles have been
measured:

electron gexp = 2
(
1 +

α

2π
+ · · ·

)
, (5.45)

proton gexp = 2(1 + 1.79), (5.46)
neutron gexp = 2(0− 1.91). (5.47)

In the case of the proton and neutron, a detailed look at these systems reveals
that they are far from being simple point-like spin-1/2 structures. In the
case of the electron, there exists no substructure. As far as we know, the
electron really is a point particle. However, the electron can fragment into an
electron-photon system which yields a modification to the g-factor, but only
at order α. From experiment, g = 2.00232 and the difference from g = 2 can
be accounted for by higher-order contributions (see section 8.13.3.2). This is
a great triumph for quantum electrodynamics and is one of the reasons it is
the “best” theory we have.

The Pauli equation is a nonrelativistic wave equation for a spin-1/2 particle.
The Dirac equation reduces to the Pauli equation at low velocities. We are
thus led to believe the Dirac equation describes a particle with spin 1/2 at
both low and high velocities. The Dirac equation has the spin-1/2 property
of the solution built into the theory from the beginning. The spin comes into
the Dirac theory when the second-order differential Klein-Gordon equation is
made first order.

We will discuss the anomalous magnetic moment of the electron further in
section 8.13.3.2.

5.6 Constants of the Motion

Constants of the motion Ĉ are those dynamic variables that commute with
the Hamiltonian. The mean value of the variable remains constant in time.
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If at time t = 0 the wave function is an eigenfunction of Ĉ with eigenvalue
c, this will be the case for all time. One says that c is a good quantum
number. It is important in quantum mechanics to identify which variables Ĉ
are constants of the motion and then to seek out their possible eigenfunctions
and eigenvalues.

For a free particle (h̄ = c = 1)

H = �α · �p+ βm. (5.48)

With the usual definition of the orbital angular momentum

�L = �x× �p, (5.49)

we will find (equation 5.53) that none of the components of �L commute with
H . Thus the orbital angular momentum is not a constant of the motion. On
the other hand, we find that

�J = �L+
1
2
�Σ (5.50)

with

�Σ =
(
�σ 0
0 �σ

)
(5.51)

does commute with H and thus is a constant of the motion. The 2 × 2
identity matrix has not been explicitly written in the �J and �L terms of the
three-component matrix equation 5.50. 1/2�Σ appears to be a generalized
spin operator in the four-component representation. For solutions at rest
(equations 5.18 and 5.19) the eigenvalues of this operator are ±1/2.

We now prove [J,H ] = 0.5 To do this, we simply verify that this result is
true for J1. We write

[J1, H ] = [J1, �α · �p] = [L1, �α · �p] +
1
2
[Σ1, �α · �p]. (5.52)

For the first term in equation 5.52,

[L1, �α · �p] = αi[x2p3 − x3p2, pi]
= αi([x2, pi]p3 − [x3, pi]p2)
= i(α2p3 − α3p2)
= −i(�p× �α)1, (5.53)

where we have used [xi, pj ] = iδij . For the second term in equation 5.52, we
make use of the relationship

5We use the square bracket to represent the commutator of two operators: [A, B] = AB −
BA.
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�Σ = γ5�α = �αγ5, (5.54)

where γ5 =
(

0 1
1 0

)
. Using γ5, we have

[Σ1, �α · �p] = [γ5α1, �α · �p] = γ5[α1, αi]pi. (5.55)

Since (see problem 5.6)

[αi, αj ] = 2iεijkΣk, (5.56)

we obtain

1
2
[Σ1, �α · �p] = iγ5ε1ijΣjpi = i(�p× �α)1. (5.57)

Thus, we have shown that

[J1, �α · �p] = 0. (5.58)

By symmetry it now follows that quite generally

[ �J, �α · �p] = 0. (5.59)

As a consequence, J2, J3, and H can be simultaneously diagonalized, as in
nonrelativistic quantum mechanics. The components of �J do not commute
with each other.

While the rest-frame 3rd-component of spin can be used to parameterize
the spin states, it is not Lorentz invariant. If spin is an intrinsic property
of a particle, it seems reasonable to expect the magnitude of the spin not
to change under a Lorentz transformation. For �p �= 0, the operator 1/2Σ̂ is
no longer a suitable spin operator, since it fails to commute with the energy
operator �α · p̂+βm, and hence it cannot be given a definite value at the same
time as the energy. Another drawback to the rest-frame spin eigenstates is
that they cannot be used to describe massless-particle wave functions, since
it is not possible to transform to a rest frame for massless particles.

Since there are still two independent states for each energy, there must
be some other operator which commutes with the energy operator H and
momentum operator p̂ whose eigenvalues can be used to distinguish the states.
Such an operator is not unique, but a common choice is helicity.

The component of spin along (or against) a particle’s momentum has a
simple meaning in any frame and is a valid concept even for a massless particle.
We see that the operator �Σ · p̂ commutes with H (see problem 5.7) and �p,
where p̂ is now the unit vector pointing in the direction of the momentum,
�p/|�p |, not the momentum operator. The “spin” component in the direction
of the motion, 1

2�σ · p̂, is therefore a “good” quantum number and can be used
to label the states. We call this quantum number the helicity of the state.
Helicity is manifestly rotationally invariant (see problem 5.8); helicity states
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also transform simply under Lorentz transformations (see problem 5.9). We
will return to the idea of helicity at the end of the next section.

5.7 Free Motion of a Dirac Particle

Consider the Dirac equation 5.3 without potentials – the free particle equa-
tion. We seek positive-energy ψ(+)(x) and negative-energy ψ(−)(x) plane-wave
solutions of definite momentum, of the form

ψ(+)(x) = u(p)e−i(Et−�p·�x)/h̄

= u(p)e−ip·x/h̄ (5.60)

and

ψ(−)(x) = v(p)ei(Et−�p·�x)/h̄

= v(p)eip·x/h̄, (5.61)

where p0 = E > 0 and we have chosen �p to have the opposite sign for the
two different energy solutions. ψ(±)(x) are eigenfunctions of energy and mo-
mentum with eigenvalues ±E and ±�p, respectively. u(p) and v(p) are four-
component spinors, which depend on the magnitude of the energy and mo-
mentum, and the mass. We call u(p) and v(p) four-spinors or spinors for
short. Sometimes they are called bispinors. The latter terminology is most
often used when u(p) and v(p) are represented by a pair of two-component
spinors.

We split up the four-component spinors into a pair of two-component spinors
giving

u(p) =
(
u1

u2

)
and v(p) =

(
v1
v2

)
. (5.62)

For these solutions, the Dirac equation becomes a set of algebraic relationships
– four linear homogeneous equations. With our representation for �α and β,
the positive-energy solution gives

E

(
u1

u2

)
= c

(
0 �σ
�σ 0

)
· p̂

(
u1

u2

)
+mc2

(
1 0
0 −1

)(
u1

u2

)
, (5.63)

(E −mc2)u1 − (c�σ · p̂)u2 = 0, (5.64)
(E +mc2)u2 − (c�σ · p̂)u1 = 0. (5.65)
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Similarly for the negative-energy solution

(E +mc2)v1 − (c�σ · p̂)v2 = 0, (5.66)
(E −mc2)v2 − (c�σ · p̂)v1 = 0. (5.67)

These linear homogenous systems of equations have solutions only if the de-
terminate of the coefficients vanishes. Using identity 2.25 (�σ · �p)2 = �p 2,
the requirement of a vanishing determinant of the coefficients leads to E2 =
(pc)2 + (mc2)2, which is automatically satisfied since we require solutions of
the Dirac equation to also be solutions of the Klein-Gordon equation.

Since E +mc2 is never zero, we can rewrite equation 5.65 for u2 and equa-
tion 5.66 for v1:

u2 =
c�σ · �p

E +mc2
u1, (5.68)

v1 =
c�σ · �p

E +mc2
v2. (5.69)

Equations 5.64 and 5.67 are not independent, but are identically satisfied by
substituting solutions 5.68 and 5.69, respectively. There are therefore two
linearly independent positive-energy solutions for every momentum �p, and
two linearly independent negative-energy solutions for every momentum −�p.
In the nonrelativistic limit, u2 and v1 are smaller than u1 and v2 by an amount
of order v/c.

We define

u1 = Nχ, (5.70)
v2 = N ′χ′, (5.71)

where χ and χ′ are two-component spinors, and N and N ′ are normalization
constants. There exists two linearly independent spinors u(p) corresponding
to the two linearly independent values for χ; call these χr, where r = 1, 2.
Similarly for v(p) we require χ′r, where r = 1, 2. χr and χ′r are arbitrary
two-component quantities subject only to the usual normalization conditions
χ†rχs = δrs and χ′†r χ

′
s = δrs.

The normalization constants N and N ′ are determined from the normal-
izations of u(p) and v(p). One’s first thought might be to place normalization
conditions upon u†(p)u(p) and v†(p)v(p). However, as we shall see later on
(equation 5.213), this is a nonrelativistic way of thinking and would not be
Lorentz invariant. The four solutions would also not be orthogonal. We will
find that a standard normalization6 is

6Another popular normalization is u†
r(p)βus(p) = 2mδrs and v†r(p)βvs(p) = −2mδrs.
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u†r(p)βus(p) = δrs, (5.72)
v†r(p)βvs(p) = −δrs. (5.73)

We now proceed to calculate the normalization constants N and N ′.

N2

(
χ†χ− χ† c

2(�σ · �p)(�σ · �p)
(E +mc2)2

χ

)
= 1

N2

(
1− c2�p 2

(E +mc2)2

)
= 1, (5.74)

or

N =

√
(E +mc2)2

(E +mc2)2 − c2�p 2

=

√
(E +mc2)2

E2 + 2Emc2 +m2c4 − c2�p 2

=

√
(E +mc2)2

2mc2(E +mc2)

=

√
E +mc2

2mc2
. (5.75)

Similarly, for the negative-energy normalization constant, we obtain

N ′ =

√
E +mc2

2mc2
. (5.76)

The complete set of positive- and negative-energy free-particle solutions is

ψ(+)
r (x) =

√
E +mc2

2mc2

(
χr

c(�σ·�p)
mc2+Eχr

)
e−ip·x/h̄, (5.77)

ψ(−)
r (x) =

√
E +mc2

2mc2

(
c(�σ·�p)

mc2+Eχ
′
r

χ′r

)
eip·x/h̄. (5.78)

The amplitude of the plane waves contains one arbitrary two-component
quantity for each energy. Thus, for a given sign of the energy and momentum,
there are two different independent states. We will see that these states
correspond to the two possible values of the spin component.

In the rest frame (�p = 0), we have
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ψ(+)
r =

(
χr

0

)
e−imc2t/h̄, (5.79)

ψ(−)
r =

(
0
χ′r

)
eimc2t/h̄. (5.80)

Comparing with the previously obtained rest solutions (equations 5.18 and
5.19), we identify

χ1 = χ′1 =
(

1
0

)
, (5.81)

χ2 = χ′2 =
(

0
1

)
. (5.82)

We saw in section 5.6 that the free-particle Hamiltonian does not commute
with the four-dimensional generalization of the spin-vector operator,

ŝ =
h̄

2
�Σ =

h̄

2

(
�σ 0
0 �σ

)
. (5.83)

On the other hand, it was mentioned in section 5.6 that helicity is a good
quantum number. We now show that helicity can be used to classify free
one-particle states.

We form

�Σ · p̂ =
(
�σ 0
0 �σ

)
· p̂ (5.84)

and show that it commutes with the free Dirac Hamiltonian operator Ĥf ,

[Ĥf , �Σ · p̂] = [c�α · p̂+mc2β, �Σ · p̂]. (5.85)

Since [β, �Σ] = 0, we need only consider [�α · p̂, �Σ · p̂]. In our representation
(equation 5.10) for the α matrices

[Ĥf , �Σ · p̂] = c[�α · p̂, �Σ · p̂]
= c�α · p̂�Σ · p̂− c�Σ · p̂�α · p̂

= c

(
0 �σ · p̂

�σ · p̂ 0

)(
�σ · p̂ 0

0 �σ · p̂

)
− c

(
�σ · p̂ 0

0 �σ · p̂

)(
0 �σ · p̂

�σ · p̂ 0

)

= c

(
0 (�σ · p̂)2

(�σ · p̂)2 0

)
− c

(
0 (�σ · p̂)2

(�σ · p̂)2 0

)
= 0. (5.86)
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Also [p̂, �Σ · p̂] = 0, therefore p̂, Ĥf , and �Σ · p̂ can all be diagonalized simulta-
neously.

The term �Σ · p̂ can be rewritten as the helicity operator Λ̂S

Λ̂S ≡
h̄

2
�Σ · p̂|�p | = ŝ · p̂|�p | . (5.87)

We see that helicity is the projection of the spin onto the direction of the
momentum.

For an electron propagating in the z-direction, �p = (0, 0, p),

Λ̂S =
h̄

2
�Σz ·

pz

|�p| ≡ ŝz =
h̄

2




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 . (5.88)

The eigenvalues are ±h̄/2 and the eigenvectors of Λ̂S are

(
χ1

0

)
,

(
χ2

0

)
,

(
0
χ1

)
,

(
0
χ2

)
, (5.89)

with

χ1 =
(

1
0

)
and χ1 =

(
0
1

)
. (5.90)

Therefore the complete set of solutions with momentum along the z-axis is

ψ
(+)
1 =

√
E +mc2

2mc2




(
1
0

)
cp

E+mc2

(
1
0

)

 e−i(Et−pz)/h̄, (5.91)

ψ
(+)
2 =

√
E +mc2

2mc2




(
0
1

)
−cp

E+mc2

(
0
1

)

 e−i(Et−pz)/h̄, (5.92)

ψ
(−)
1 =

√
E +mc2

2mc2




cp
E+mc2

(
1
0

)
(

1
0

)

 ei(Et−pz)/h̄, (5.93)

ψ
(−)
2 =

√
E +mc2

2mc2




−cp
E+mc2

(
0
1

)
(

0
1

)

 ei(Et−pz)/h̄. (5.94)
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5.8 Covariant Form of the Dirac Equation

We now cast the Dirac equation into a more apparent covariant form and
thus satisfy the last requirement of the Dirac equation stated on page 74.
Multiplying equation 5.3 by β/c from the left and defining

γ0 ≡ β and γi ≡ βαi, (5.95)

where i = 1, 2, 3, we have

ih̄

(
γ0 ∂

∂x0
+ γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3

)
ψ −mcψ = 0(

ih̄γµ ∂

∂xµ

)
ψ −mcψ = 0

(ih̄γ · ∂)ψ −mcψ = 0, (5.96)

where

γ · ∂ = γµ ∂

∂xµ
=
γ0

c

∂

∂t
+ �γ · �∇. (5.97)

In terms of the four-momentum operator, we write7

(γµp̂µ −mc)ψ = 0. (5.98)

Introducing the Feynman dagger, or slash notation, for an arbitrary four-
vector aµ, we define

�a ≡ γµaµ = gµνγ
µaν = γ0a0 − �γ · �a. (5.99)

We write

(� p̂−mc)ψ = 0 , (5.100)

the covariant form of the Dirac equation.
We introduce the electromagnetic interaction by the usual minimal substi-

tution for gauge invariance(
� p̂− e

c
�A−mc

)
ψ = 0. (5.101)

Let us now study the properties of the γµ matrices; we use the properties
given by equations 5.6, 5.7, and 5.8. For the space components

7Notice that we are now using p̂ to represent the four-component operator of momentum.
It previously was used to represent the three-momentum operator.
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αiαk + αkαi = 2δik,
βαiαk + βαkαi = 2βδik,
−αiβαk − αkβαi = 2βδik,

−βαiβαk − βαkβαi = 2δik,
γiγk + γkγi = −2δik. (5.102)

For the mixed time and space components

αiβ + βαi = 0,
βαiβ + ββαi = 0,
γiγ0 + γ0γi = 0. (5.103)

For the time component

β2 = 1 ⇒ γ0γ0 + γ0γ0 = 2. (5.104)

Putting together equations 5.102, 5.103, and 5.104, we write

γµγν + γνγµ = 2gµν , (5.105)

where the matrices are 4×4 and µ, ν = 0, 1, 2, 3. Although the Dirac matrices
γµ are written with Greek indices, they are not four-vectors. They have the
same value in every reference frame and do not change under a Lorentz trans-
formation. They do have the index lowering and raising properties discussed
in section 2.5.

The γi matrices are antihermitian and γ0 is hermitian:

(γi)† = (βαi)† = α†iβ
† = αiβ = −βαi = −γi, (5.106)

(γ0)† = β† = β = γ0. (5.107)

This can be summarized by writing

(γµ)† = γ0γµγ0 . (5.108)

Up until now everything is representation independent. Using our previous
representation (equation 5.10),

γi ≡ βαi =
(
I 0
0 −I

)(
0 σi

σi 0

)
=
(

0 σi

−σi 0

)
, (5.109)

γ0 ≡ β =
(
I 0
0 −I

)
. (5.110)
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Other frequently encountered representations of the γ-matrices are the Ma-
jorana representation and the chiral representation. In the Majorana rep-
resentation, all elements of all the γ-matrices are imaginary. One possible
Majorana representation is

γ0 ≡
(

0 σ2

σ2 0

)
, γ1 ≡ i

(
0 σ1

σ1 0

)
, γ2 ≡ i

(
I 0
0 −I

)
, γ3 ≡ i

(
0 σ3

σ3 0

)
. (5.111)

In the chiral representation, all of the γ-matrices have diagonal elements which
are zero. One possible chiral representation is

γ0 ≡
(

0 −I
−I 0

)
and γi ≡

(
0 σi

−σi 0

)
. (5.112)

Both of these representations are not unique and several different sets of γ-
matrices with the same Majorana and chiral properties are possible.

5.9 Proof of Covariance

The physics expressed by any relativistic equation, and by the Dirac equa-
tion in particular, must be independent of the Lorentz frame that is used.
Hence to be a true description of the physics, the equation itself must display
this same invariance with respect to the choice of coordinates. We have to
verify that, if we write down the wave equation in a different Lorentz frame,
the solutions of the new wave equation may be put into one to one correspon-
dence with those of the original equation in such a way that corresponding
solutions may be assumed to represent the same state. In actual fact, the rel-
ativity principle requires this invariance of form only with respect to proper
Lorentz transformations, and also with respect to space and time translations,
but it happens that the free-particle Dirac equation is formally invariant with
respect to the complete Poincaré group.

The Dirac space is a four dimensional abstract space unrelated to physical
space-time. To discuss the Lorentz transformation of a Dirac wave function,
Dirac equation, or Dirac matrix element, requires that we first construct a
representation of each Lorentz transformation on the Dirac space. In general,
a representation of a group is a mapping of each element of the group Λ onto
a matrix S(Λ) which preserves the group multiplication law (see section 2.10).

To prove Lorentz covariance two conditions must be satisfied:

1. If (ih̄γµ∂µ −mc)ψ(x) = 0 then (ih̄γ̃µ∂′µ −mc)ψ′(x′) = 0, where ∂′µ ≡
∂

∂x′µ .
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2. Given ψ(x) of observer O, there must be a prescription for observer O′

to compute ψ′(x′), which describes to O′ the same physical state.

It can be shown that all 4× 4 matrices (with γ0 hermitian and γi antiher-
mitian) are equivalent up to a unitary transformation8:

γ̃µ = U †γµU, (5.113)

where U † = U−1 and γ̃µ is just another representation of γµ. We drop the
distinction between γ̃µ and γµ, and write

(� p̂′ −mc)ψ′(x′) = 0, (5.114)

where � p̂′ ≡ ih̄γµ∂′µ.
The wave function ψ is a four-component column matrix – a four-component

spinor – not a four component vector. Therefore if we wish to transform ψ,
we must use some transformation S other than Λ developed in chapter 3. We
require that the transformation between ψ and ψ′ be linear since the Dirac
equation and Lorentz transformation are linear:

ψ′(x′) = ψ′(Λx+ d) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1(x′ − d)), (5.115)

where S(Λ) is a 4× 4 matrix which depends only on the relative velocities of
O and O′. S(Λ) has an inverse if O → O′ and also O′ → O. The inverse is

ψ(x) = S−1(Λ)ψ′(x′) = S−1(Λ)ψ′(Λx+ d), (5.116)

or we may write

ψ(x) = S(Λ−1)ψ′(x′) = S(Λ−1)ψ′(Λx+ d) (5.117)

⇒ S(Λ−1) = S−1(Λ). (5.118)

We now write

(ih̄γµ∂µ −mc)ψ(x) = 0
(ih̄γµ∂µ −mc)S−1(Λ)ψ′(x′) = 0

S(Λ)(ih̄γµ∂µ −mc)S−1(Λ)ψ′(x′) = 0
(ih̄S(Λ)γµS−1(Λ)∂µ −mc)ψ′(x′) = 0. (5.119)

Using ∂
∂xµ = ∂x′ν

∂xµ
∂

∂x′ν = Λν
µ

∂
∂x′ν , we have

8R.H. Good, Rev. Mod. Phys. 27 (1955) 187.
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(
ih̄S(Λ)γµS−1(Λ)Λν

µ

∂

∂x′ν
−mc

)
ψ′(x′) = 0. (5.120)

Therefore we require

S(Λ)γµS−1(Λ)Λν
µ = γν , (5.121)

or

S−1(Λ)γνS(Λ) = Λν
µγ

µ . (5.122)

This relationship defines S(Λ) only up to an arbitrary phase factor. For
Lorentz invariance of the Dirac equation, this phase factor is further restricted
to a ± sign if we require that the S(Λ) form a representation of the Lorentz
group. A wave function transforming according to equation 5.115 and 5.116
by means of equation 5.122 is a four-component Lorentz spinor.

To determine S we first specify S for an infinitesimal Lorentz transforma-
tion. We then build up a finite S by applying the infinitesimal transformation
an infinite number of times. Consider an infinitesimal proper Lorentz trans-
formation

Λν
µ = gν

µ + ∆ων
µ, (5.123)

where ∆ωνµ is antisymmetric for an invariant proper time interval (see sec-
tion 3.1.2). Each of the six independent non-vanishing components of ∆ωµν

generates an infinitesimal Lorentz transformation;

∆ω0
1 = −∆ω01 = −∆β, (5.124)

for a transformation to a coordinate system moving with velocity c∆β along
the x-direction;

∆ω1
2 = −∆ω12 = ∆φ, (5.125)

for a rotation through an angle ∆φ about the z-axis.
We expand S in powers of ∆ωµν . To first order,

S = I − i

4
σµν∆ωµν , (5.126)

S−1 = I +
i

4
σµν∆ωµν , (5.127)

with σµν = −σνµ, or S is trivially the identity. The factor ±i/4 is a convention
that will prove to be convent later on. The operators σµν and ∆ωµν act in
different spaces, such that ∆ωµν acts in coordinate space on xµ, while σµν

acts in wave-function – spinor space – on ψ(x).
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We now solve for σµν . Equation 5.122 becomes

(gν
µ + ∆ων

µ)γµ =
(
I +

i

4
σαβ∆ωαβ

)
γν

(
I − i

4
σαβ∆ωαβ

)
,

∆ων
µγ

µ =
i

4
σαβ∆ωαβγν − γν i

4
σαβ∆ωαβ

= − i
4
∆ωαβ(γνσαβ − σαβγ

ν)

= − i
4
∆ωαβ [γν , σαβ ]. (5.128)

Also,

∆ων
µγ

µ = 1/2(∆ων
µγ

µ + ∆ων
µγ

µ)

= 1/2(∆ωα
µg

ν
αγ

µ + ∆ωβ
µg

ν
βγ

µ)

= 1/2(∆ωα
βg

ν
αγ

β + ∆ωβ
αg

ν
βγ

α)

= 1/2(∆ωαβgν
αγβ + ∆ωβαgν

βγα)

= 1/2∆ωαβ(gν
αγβ − gν

βγα)

= −i/4∆ωαβ2i(gν
αγβ − gν

βγα). (5.129)

Combining equations 5.128 and 5.129 gives,

2i(gν
αγβ − gν

βγα) = [γν , σαβ ]. (5.130)

We must find six matrices σαβ which satisfy the above equation. We try
the antisymmetric product of two gamma matrices

σµν =
i

2
[γµ, γν ] , (5.131)

where i/2 is a convention that will prove convenient later on. Substituting
equation 5.131 into the right-hand side of equation 5.130 gives

[γν , σαβ ] =
i

2
[γν , [γα, γβ]]

=
i

2
([γν , γαγβ ]− [γν , γβγα])

=
i

2
([γν , γαγβ ] + [γν , γαγβ ]− 2[γν, gβα])

= i[γν , γαγβ ]
= i(γνγαγβ − γαγβγ

ν)
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= i(γνγαγβ + γαγ
νγβ − 2γαg

ν
β

= i(γνγαγβ − γνγαγβ + 2g ν
α γβ − 2γαg

ν
β )

= 2i[g ν
α γβ − g ν

β γα], (5.132)

which is the left-hand side of equation 5.130. Therefore equation 5.131 is a
solution to equation 5.130. Thus equation 5.126 becomes

S = I − i

4
σµν∆ωµν = I +

1
8
[γµ, γν ]∆ωµν . (5.133)

We now construct finite proper Lorentz transformations. We define

∆ων
µ = ∆ω(In)ν

µ, (5.134)

where ∆ω is an infinitesimal parameter of the Lorentz group. In is a 4 × 4
matrix for a general unit space-time rotation around an axis in the direction
labeled by n; ν labels the rows and µ labels the columns of the matrix.

We write the finite transformation using ∆ω → ω/N as

x′
ν = lim

N→∞

(
g +

ω

N
In

)ν

α1

(
g +

ω

N
In

)α1

α2

. . .
(
g +

ω

N
In

)αN−1

αN

xαN

= (eωIn)ν
µx

µ. (5.135)

In hyperbolic notation

x′
ν = (coshωIn + sinhωIn)ν

µx
µ

=
[(

1 +
(ωIn)2

2!
+

(ωIn)4

4!
+ ...

)
+
(
ωIn
1!

+
(ωIn)3

3!
+ ...

)]ν

µ

xµ.

(5.136)

For Lorentz translations (boosts), (In)3 = In and we write

x′
ν =

[(
1 + (In)2

ω2

2!
+ (In)2

ω4

4!
+ ...

)
+ In

(
ω

1!
+
ω3

3!
+ ...

)]ν

µ

xµ

= (1− I2
n + I2

n coshω + In sinhω)ν
µx

µ. (5.137)

For space rotations, (In)3 = −In and we write

x′
ν =

[(
1 + (In)2

ω2

2!
− (In)2

ω4

4!
+ ...

)
+ In

(
ω

1!
− ω3

3!
+ ...

)]ν

µ

xµ

= (1 + (In)2 − (In)2 cosω + In sinω)ν
µx

µ. (5.138)
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Turning now to the construction of a finite spinor transformation S, we
have

S = lim
N→∞

(
1− i

4
ω

N
σµνI

µν
n

)N

= exp
(
− i

4
ωσµνI

µν
n

)
. (5.139)

The following sections consider finite transformations for a rotation in three-
space, a general Lorentz boost, spatial inversion, and time reflection.

5.9.1 Rotations

Consider a rotation through an angle φ about the z-axis:

(I3)ν
µ =




0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


 (5.140)

and

(I3)2 =




0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0


 . (5.141)

Explicitly, equation 5.138 becomes



x0′

x1′

x2′

x3′


 =




1 0 0 0
0 cosω sinω 0
0 − sinω cosω 0
0 0 0 1





x0

x1

x2

x3


 , (5.142)

where ω is the finite rotation angle φ.
The matrix I3 has all zero elements except for I1

2 = −I2
1 = 1, or I12 =

−I21 = −1. Thus,

σµνI
µν = 2σ12I

12 = −2iγ1γ2 = −2
(
σ3 0
0 σ3

)
= −2Σ3. (5.143)

Therefore,

S = exp
(
− i

4
φσµνI

µν
n

)
= exp

(
i

2
φΣ3

)
. (5.144)

For a rotation about an arbitrary axis n̂, we write

S = exp
(
i

2
φ�Σ · n̂

)
. (5.145)
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Since �Σ is hermitian, S† = S−1 for spatial rotations.
By applying the rotation operator on the solution for the Dirac particle

at rest with spin in the z-direction, it is possible to form spin states in any
arbitrary direction.

The appearance of the half-angle in equation 5.145 tells us that S(φ+2π) =
−S(φ) and S(φ+4π) = S(φ). It thus takes a rotation of 4π to return ψ(x) to
its original value. This is a characteristic of half-integer spin particles. Thus
the Dirac wave function transforms under rotations like the wave function of
a particle of spin 1/2. We now feel justified in previously referring to the wave
function of the Dirac equation as a spinor. Because of the half-angle result,
the arbitrary sign of S mentioned after equation 5.122 cannot be removed
with S still forming a representation of the Lorentz group. Because of the
double valueness of ψ(x) under a rotation of 2π, physical observables in the
Dirac theory must be bilinear, or an even power in ψ(x). Only in this case do
observables become identical under a rotation of 2π; a property of observables
we know from experience.

5.9.2 Lorentz Boosts

Consider a Lorentz boost with a velocity β along the x-axis:

(Ix)ν
µ =




0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 (5.146)

and

(Ix)2 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 . (5.147)

Explicitly, equation 5.137 becomes



x0′

x1′

x2′

x3′


 =




coshω − sinhω 0 0
− sinhω coshω 0 0

0 0 0 0
0 0 0 0





x0

x1

x2

x3


 , (5.148)

where ω is the rapidity parameter given by β = tanhω.
For an arbitrary Lorentz boost direction v̂ = �p/|�p |, we may write in terms

of the direction9,

9We are using Iµ
ν a little differently than previously defined, but the important property

of (In)3 = In is still obeyed.
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Iµ
ν =




0 − cosα − cosβ − cosγ
− cosα 0 0 0
− cosβ 0 0 0
− cosγ 0 0 0


 . (5.149)

Raising the ν index makes Iµν antisymmetric. Also σµν is antisymmetric.
Therefore,

σµνI
µν = 2(σ01 cosα+ σ02 cosβ + σ03 cos γ)

= 2i(γ0γ1 cosα+ γ0γ2 cosβ + γ0γ3 cos γ)
= −2i(α1 cosα+ α2 cosβ + α3 cos γ)
= −2i�α · v̂. (5.150)

From equation 5.139, the finite spinor transformation for a general Lorentz
boost becomes

S = exp
(
−ω

2
�α · v̂

)
= cosh

(
−ω

2
�α · v̂

)
+ sinh

(
−ω

2
�α · v̂

)
= cosh

(ω
2
�α · v̂

)
− sinh

(ω
2
�α · v̂

)
. (5.151)

From the properties of the αi matrices, we have (see problem 5.14)

(�α · v̂)2 = I. (5.152)

Therefore, we write

S = cosh
(ω

2

)
− �α · v̂ sinh

(ω
2

)
= cosh

(ω
2

) [
I − �α · v̂ tanh

(ω
2

)]
. (5.153)

Unlike for rotations, S† �= S−1 for Lorentz boosts. However, by expanding
S in a power series, it has the property (see problem 5.15)

S−1 = γ0S
†γ0 . (5.154)

This can also be generalized to include rotations (see problem 5.15).
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5.9.3 Spatial Inversion

We now consider the improper Lorentz transformation of reflection in space
or the parity transformation:

�x ′ = −�x and t′ = t. (5.155)

We need to solve equation 5.122 for

Λν
µ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 = gνµ. (5.156)

We denote the Lorentz operator S(Λ) for parity by P . Consider the following
ansatz:

P = eiφγ0, (5.157)

where φ is an arbitrary real phase. Using equation 5.122, we have

e−iφγ0γ
νeiφγ0 = γ0γνγ0 = gνµγµ, (5.158)

as required.
In analogy to the proper Lorentz transformations for which a rotation of 4π

reproduces the original spinors, we postulate that four space inversions will
reproduce the original spinors,

P 4ψ = ψ = (eiφγ0)4ψ = ei4φ(γ0)4ψ = ei4φψ. (5.159)

Therefore,

ei4φ = 1 ⇒ eiφ = ±1 or ± i. (5.160)

We see that

P−1 = e−iφγ−1
0 = e−iφγ0, (5.161)

P † = e−iφγ†0 = e−iφγ0, (5.162)

and P−1 = P † ⇒ P is unitary.
The wave function thus transforms as

ψ′(x′) = ψ′(−�x, t) = eiφγ0ψ(�x, t). (5.163)

In the nonrelativistic limit, ψ =
(
φ
0

)
and ψ approaches an eigenstate of P .

The positive- and negative-energy states at rest have opposite eigenvalues,
or intrinsic parities:
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Pψ1(0) = +eiφψ1(0),
Pψ2(0) = +eiφψ2(0),
Pψ3(0) = −eiφψ3(0),
Pψ4(0) = −eiφψ4(0). (5.164)

The intrinsic parity of a Dirac particle and antiparticle with the same mass
are opposite, which has important consequences. This is to be contrasted to
the Klein-Gordon case wherein one finds identical parities for the particle and
antiparticle solutions.

5.9.4 Time Reflection

Consider the transformation corresponding to a pure time reflection. We
need to solve equation 5.122 for

Λν
µ =



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (5.165)

We denote the Lorentz operator S(Λ) for time reflection by T . We see that
equation 5.122 is satisfied (see problem 5.16) by

T = γ1γ2γ3. (5.166)

T defined in this way is known as the Racah time reflection operator.

5.10 Covariance of the Continuity Equation

As mentioned previously on page 77, we still need to show that the con-
served current transforms as a four-vector under a Lorentz transformation.
Using the gamma matrices and their properties, we have

j0 = cρ = cψ†ψ = cψ†γ0γ0ψ, (5.167)
jk = cψ†αkψ = cψ†γ0γ0αkψ = cψ†γ0γkψ. (5.168)

Therefore,

jµ(x) = cψ†(x)γ0γµψ(x). (5.169)
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Under a Lorentz transformation, we have

j′
µ(x′) = cψ†(x)S†γ0γµSψ(x)

= cψ†(x)γ0S−1γµSψ(x)
= cψ†(x)γ0Λµ

νγ
νψ(x)

= Λµ
νj

ν(x), (5.170)

where equations 5.154 and 5.122 have been used in the second and third lines,
respectively. Thus the current density jµ(x) transforms like a four-vector
under a Lorentz transformation.

5.11 Adjoint Spinor

Since a spinor is an intrinsically complex entity, the Dirac equation is not
sufficient to determine the space-time behavior of ψ without also using the
complex conjugate equation, or some equivalent form. Because the combina-
tion ψ†γ0 occurs so often, we define

ψ(x) ≡ ψ†γ0, (5.171)

where ψ(x) is the adjoint Dirac spinor. This definition allows quantities such
as the current density to be written in a concise form.

The adjoint spinor Lorentz transformation properties follow from

ψ′(x′) = Sψ(x),

ψ′
†
(x′) = ψ†(x)S† = ψ†(x)γ0S

−1γ0,

ψ′
†
(x′)γ0 = ψ

′
(x′) = ψ(x)S−1. (5.172)

From the definition of the adjoint spinor, the four-current is

jµ = cψγµψ, (5.173)

where cγµ acts like a current operator.

5.12 Bilinear Covariants

The wave functions themselves do not represent observables directly, but
one can construct bilinear expressions of the wave functions. Some of these
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have a simple physical interpretation. The Dirac matrices are simply constants
and have the same value in all Lorentz frames. However, when contracted with
ψ and ψ, different bilinears have their own distinct tensor transformation
properties.

The combination of all the gamma matrices occurs often enough that we
define

γ5 = γ5 = iγ0γ1γ2γ3 . (5.174)

We see that (γ5)2 = I, γ†5 = γ5 (see problem 5.18), and γ5 anticommutes with
γµ:

γµγ5 = iγµγ0γ1γ2γ3 = −iγ0γ1γ2γ3γµ = −γ5γ
µ. (5.175)

Also, γ5 commutes with σµν :

[γ5, σµν ] =
i

2
(γ5γµγν − γ5γνγµ − γµγνγ5 + γνγµγ5) = 0. (5.176)

Thus γ5 commutes with S for proper Lorentz transformations but anticom-
mutes with S for improper Lorentz transformations. We write these two
observations in the compact form

S(Λ)γ5 = γ5S(Λ)det|Λ| . (5.177)

By forming various products of gamma matrices and using the identity
matrix, it is possible to construct 16 linearly independent 4× 4 matrices Γn:

ΓS = I; Γµ
V = γµ; Γµν

T = σµν ; Γµ
A = γ5γµ; ΓP = γ5. (5.178)

We will see that S, V , T , A, and P represent scalar, vector, tensor, axial
vector, and pseudoscalar, respectively. There is one ΓS which has no gamma
matrices, Γµ

V has one gamma matrix of which there are four, Γµν
T has two

gamma matrices of which there are six, Γµ
A has three gamma matrices of

which there are four, and ΓP has four gamma matrices of which there is one.

We now show how the bilinears ψ(x)Γnψ(x) transform under a Lorentz
transformation. Using equations 5.122, 5.154, and 5.177, we have

ψ
′
(x′)ψ′(x′) = ψ′

†
(x′)γ0ψ′(x′) = ψ†(x)S†γ0Sψ(x) = ψ†(x)γ0S−1Sψ(x)

= ψ(x)ψ(x). (5.179)

ψ
′
(x′)γ5ψ

′(x′) = ψ(x)S−1γ5Sψ(x) = ψ(x)det|Λ|γ5ψ(x)
= det|Λ|ψ(x)γ5ψ(x). (5.180)
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ψ
′
(x′)γνψ′(x′) = ψ(x)S−1γνSψ(x) = ψ(x)Λν

µγ
µψ(x)

= Λν
µψ(x)γµψ(x). (5.181)

ψ
′
(x′)γ5γ

µψ′(x′) = ψ(x)S−1γ5γ
µSψ(x) = ψ(x)det|Λ|γ5Λν

µγ
µψ(x)

= det|Λ|Λν
µψ(x)γ5γ

µψ(x). (5.182)

ψ
′
(x′)σµνψ′(x′) = i/2ψ(x)S−1[γµ, γν]Sψ(x) = i/2ψ(x)Λµ

αΛν
β[γα, γβ ]ψ(x)

= Λµ
αΛν

βψ(x)σαβψ(x). (5.183)

Thus the Lorentz transformation properties of these bilinear forms can be
summarized as

scalar: ψ
′
(x′)ψ′(x′) = ψ(x)ψ(x), (5.184)

pseudoscalar: ψ
′
(x′)γ5ψ

′(x′) = det|Λ|ψ(x)γ5ψ(x), (5.185)

vector: ψ
′
(x′)γµψ′(x′) = Λν

µψ(x)γµψ(x), (5.186)

pseudovector: ψ
′
(x′)γ5γ

νψ′(x′) = det|Λ|Λν
µψ(x)γ5γ

µψ(x), (5.187)

second-rank tensor: ψ
′
(x′)σµνψ′(x′) = Λµ

αΛν
βψ(x)σαβψ(x). (5.188)

The bilinears should be multiplied by the necessary factors of i to make them
hermitian; any new term we added to the Hamiltonian to represent an inter-
action must be real.

Not all of these covariant forms are realized in electromagnetic scattering
theory. In the theory of the weak interaction, and the less established theories
involving gravity and super-symmetry, a rich set of bilinear forms are used.
Understanding which forms are realized in nature is still an ongoing field of
research in particle physics.

5.13 Plane-Wave Solutions

We have already solved the Dirac equation for free particles at rest (sec-
tion 5.3). The Lorentz transformation may be used to construct the free-
particle solutions with an arbitrary velocity. The result should be comparable
to the free-particle solutions we obtained in section 5.7.
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The exponential part of the solutions is a function of the space-time coordi-
nates but it only involves the dot product of four-vectors. Thus we expect it
to be Lorentz invariant. It is easy to see the invariant form of the exponential
by writing its form in the rest frame of the particle

exp(−iεrp · x/h̄)→ exp(−iεrEt/h̄)→ exp(−iεrmc2t/h̄), (5.189)

where r = 1, 2, 3, 4, and εr = +1 for r = 1, 2 and εr = −1 for r = 2, 3. The
positive-energy solutions (r = 1, 2) and negative-energy solutions (r = 3, 4)
transform among themselves separately and do not mix with each other under
proper Lorentz transformations, as well as, under spatial inversions.

If a particle is at rest in frame S′ it will have energy E and momentum
�p in the frame S moving with velocity of magnitude β = v/c and direction
v̂ = −�p/|�p | with respect to S′. The Lorentz transformation parameters for
this boost are

β =
pc

E
and γ =

E

mc2
. (5.190)

Using equation 5.153 and recognizing ω as the rapidity parameter (comparing
equation 5.148 with 5.153), we write

tanh
ω

2
=

sinhω
1 + coshω

=
γβ

1 + γ
=

pc

E +mc2
, (5.191)

cosh
ω

2
=

√
1 + coshω

2
=

√
1 + γ

2
=

√
E +mc2

2mc2
. (5.192)

To calculate the Lorentz transformation matrix S we will need, in our repre-
sentation,

�σ · �p =
(

0 px

px 0

)
+
(

0 −ipy

ipy 0

)
+
(
pz 0
0 −pz

)

=
(

pz px − ipy

px + ipy −pz

)

=
(
pz p−
p+ −pz

)
, (5.193)

where p± = px ± ipy. Using these results with equation 5.153 gives

S =

√
E +mc2

2mc2




1 0 pzc
E+mc2

p−c
E+mc2

0 1 p+c
E+mc2

−pzc
E+mc2

pzc
E+mc2

p−c
E+mc2 1 0

p+c
E+mc2

−pzc
E+mc2 0 1


 . (5.194)
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Using equation 5.18 and equation 5.19, we see that each of the spinor pieces
of the four general solutions to the Dirac equation correspond to one of the
columns of the above transformation matrix. This is identical to the result
obtained in section 5.7.

Let us now look at some of the properties of the general solution to the
Dirac equation. The general form of the wave function is

ψr(x) = ωr(�p)e−iεrp·x/h̄, (5.195)

where ω is a function of the three-momentum �p and the sign of the energy
given by r. Substitution into the Dirac equation gives

(
ih̄

∂

∂xµ
γµ −mc

)
ωr(�p)e−iεrp·x/h̄ = 0,(

ih̄
−iεrpµ

h̄
γµ −mc

)
ωr(�p) = 0,

(εr �p−mc)ωr(�p) = 0, (5.196)

(�p− εrmc)ωr(�p) = 0 , (5.197)

which is the Dirac equation in momentum space. It is an algebraic equation
without time or space derivatives. The adjoint equation is

ψ†r(x)

(
−ih̄

←
∂

∂xµ
γ†µ −mc

)
= 0,

ωr(�p)†eiεrp·x/h̄

(
−ih̄

←
∂

∂xµ
γ†µ −mc

)
= 0,

ωr(�p)γ0

(
−ih̄ iεrp

µ

h̄
γ†µ −mc

)
= 0,

ωr(�p)
(
εrp

µγ0γ
†
µγ0 −mc

)
= 0,

ωr(�p)(εr �p−mc) = 0,
ωr(�p)(�p− εrmc) = 0, (5.198)

where equation 5.108 has been used in the third from last line.
We now examine the normalization and completeness relationships for the

spinors ωr(�p). Since the covariant normalization statement

ωr(�p)ωr′(�p) (5.199)

is a Lorentz scalar (equation 5.179), we may evaluate it in the rest frame for
simplicity. Using equation 5.18 and equation 5.19, we have
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ωr(�p)ωr′(�p) = ωr(0)ωr′(0) = ωr†(0)γ0ω
r′(0) = εrδrr′ . (5.200)

The completeness relationship is

4∑
r=1

εrw
r
α(�p)wr

β(�p). (5.201)

The adjoint spinor appears in the completeness relationship, rather than the
Hermitian conjugate, because the Lorentz transformation of the spinors is
not unitary as expressed in equation 5.154. The reason for the factor εr will
become apparent in the next section.

We first evaluate equation 5.201 in the rest frame and then boost it into a
general moving frame. For a particle at rest,

ωr(0)ωr(0) = ωr(0)ωr†(0)γ0 =







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 for r = 1,




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 for r = 2,




0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


 for r = 3,




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 for r = 4.

(5.202)

Therefore,

4∑
r=1

εrω
r(0)ωr(0) = I or

4∑
r=1

εrω
r
α(0)ωr

β(0) = δαβ . (5.203)

For a particle in motion,

4∑
r=1

εrω
r
α(�p)ωr

β(�p) =
4∑

r=1

εrSαγ

(
−�pc
E

)
ωr

γ(0)ωr
λ(0)S−1

λβ

(
−�pc
E

)

= Sαγ

(
−�pc
E

)
δγλS

−1
λβ

(
−�pc
E

)
= δαβ. (5.204)
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The probability density

ωr†(εr�p)ωr′
(εr′�p) (5.205)

is not Lorentz invariant but transforms as the zeroth component of a vector.
Notice the εr factor in front of the momentum. The three-momentum must
change sign for orthogonality between the positive- and negative-energy states.
The positive-energy spinor is orthogonal to its hermitian conjugate spinor of
the negative energy and reversed momentum.

To determine the value of expression 5.205, we boost the particle from rest:

ωr†(εr�p)ωr′
(εr′�p) = ωr†

γ (0)S†γα

(
−εr�pc
E

)
Sαδ

(
−εr′�pc

E

)
ωr′

δ (0). (5.206)

We now calculate S†S. Using equation 5.194, defining ζ = (E +mc2)/c, and
noticing that p∗+ = p−, p∗− = p+, p+p

∗
+ = p2

x + p2
y, p−p

∗
− = p2

x + p2
y, we

calculate

S†
(
−εr�pc
E

)
S

(
−εr′�pc

E

)
=

1
2mcζ

·




ζ 0 −εrpz −εrp∗+
0 ζ −εrp∗− εrpz

−εrpz −εrp∗+ ζ 0
−εrp∗− εrpz 0 ζ






ζ 0 −εr′pz −εr′p−
0 ζ −εr′p+ εr′pz

−εr′pz −εr′p− ζ 0
−εr′p+ εr′pz 0 ζ




=
1

2mcζ



ζ2 + εrεr′(p2

z + p+p
∗
+) εrεr′(p∗− − p+)pz

εrεr′(p− − p∗+)pz ζ2 + εrεr′(p2
z + p−p

∗
−)

−(εr + εr′)pzζ −(εrp∗− + εr′p+)ζ
−(εrp∗− + εr′p+)ζ (εr + εr′)pzζ
−(εr + εr′)pzζ −(εrp∗− + εr′p+)ζ
−(εrp∗+ + εr′p−)ζ (εr + εr′)pzζ

ζ2 + εrεr′(p2
z + p+p

∗
+) εrεr′(p∗− − p+)pz

εrεr′(p− − p∗+)pz ζ2 + εrεr′(p2
z + p−p

∗
−)




=
1

2mcζ

·




ζ2 + εrεr′p2 0 −(εr + εr′)pzζ −(εr + εr′)p+ζ
0 ζ2 + εrεr′p2 −(εr + εr′)p−ζ (εr + εr′)pzζ

−(εr + εr′)pzζ −(εr + εr′)p+ζ ζ2 + εrεr′p2 0
−(εr + εr′)p+ζ (εr + εr′)pzζ 0 ζ2 + εrεr′p2


 .

(5.207)

If εr = −εr′ ,

S†
(
−εr�pc
E

)
S

(
−εr′�pc

E

)
=
ζ2 − p2

2mcζ
I = I (5.208)
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and

ωr†(εr�p)ωr′
(εr′�p) = ωr†

γ (0)Iγδω
r′
δ (0) = 0, (5.209)

since r �= r′.
If εr = εr′ , then

S†
(
−εr�pc
E

)
S

(
−εr′�pc

E

)
=

1
2mcζ




ζ2 + p2 0 −2εrpzζ −2εrp+ζ
0 ζ2 + p2 −2εrp−ζ 2εrpzζ

−2εrpzζ −2εrp+ζ ζ2 + p2 0
−2εrp+ζ 2εrpzζ 0 ζ2 + p2


 .

(5.210)
If r = r′,

ωr†(εr�p)ωr′
(εr′�p) =

ζ2 + p2

2mcζ
=

E

mc2
= γ. (5.211)

If εr = εr′ and r �= r′,

ωr†(εr�p)ωr′
(εr′�p) = 0. (5.212)

Combining the results of equations 5.209, 5.211, and 5.212, we have

ωr†(εr�p)ωr′
(εr′�p) = γδrr′, (5.213)

which is the time component of a four-vector.

5.13.1 Spin

The helicity operator is invariant under rotations (see problem 5.8). It is
also invariant for boosts in the direction of �p (see problem 5.9). Under boosts
transverse to �p, however, helicity is not invariant. In general, we may say that
the helicity operator is not covariant under arbitrary Lorentz transformations.
We would like a covariant description for the intrinsic spin of a particle, so as
to be able to transform easily from one frame to another. This description is
provided by the spin four-vector.

We have just seen how one can create a state of arbitrary momentum by
Lorentz boosting the solution for a particle at rest. In a similar manner, we
can create a state of arbitrary spin polarized along the �s-direction by applying
the rotation operator,

S = exp
(
i

2
φ�Σ · �s

)
, (5.214)

to the solution for a particle at rest and spin in the z-direction. The defining
relationship for such a state ωr(�p) is
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�Σ · �sωr(�p) = ωr(�p), (5.215)

where the spinor ωr(�p) corresponds to a particle polarized along the direction
of the unit vector �s. Remember that the spin operator is h̄

2
�Σ and thus the

eigenvalues of the spin operator in this case are ±1.
Let u(p, s) denote a spinor of positive energy, momentum pµ, and spin sµ.

The spin vector is defined as

sµ = Λµ
ν s̆

ν , (5.216)

where s̆ν = (0, ŝ) is the spin unit vector in the rest frame and Λµ
ν is a Lorentz

transformation from the rest frame. Thus we also have pµ = Λµ
ν p̆

ν , where
p̆ν = (m, 0). This tells us that

s · s = −1 (5.217)

and

p · s = 0, (5.218)

which are true in any frame since they are Lorentz scalars. Thus in the rest
frame,

�Σ · s̆u(p̆, s̆) = u(p̆, s̆). (5.219)

Let v(p, s) denote a spinor of negative energy, with spin −s̆ in the rest
frame. In this case,

�Σ · s̆v(p̆, s̆) = −v(p̆, s̆). (5.220)

In an arbitrary Lorentz frame, we define

ω1(�p) = u(p, uz),
ω2(�p) = u(p,−uz),
ω3(�p) = v(p,−uz),
ω4(�p) = v(p, uz), (5.221)

where uµ
z is a four-vector, which in the rest frame is ŭµ

z = (0, ŭz) = (0, 0, 0, 1).
An arbitrary spinor is thus specified by the sign of the energy, its momentum
pµ, and spin in the rest frame s̆µ.
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5.14 Projection Operators for Energy and Spin

5.14.1 Energy Projection Operators

The positive- and negative-energy projection operators can be guessed from
the Dirac equation in momentum space (equation 5.197):

Λr(p) =
εr �p+mc

2mc
or Λ±(p) =

±�p+mc

2mc
. (5.222)

Applying the “trial” positive-energy projection operator to an arbitrary Dirac
spinor and using equation 5.197, we have

Λ+(p)wr(p) =
�p+mc

2mc
wr(p) =

εrmc+mc

2mc
wr(p) =

{
wr(p) for r = 1, 2,

0 for r = 3, 4,
(5.223)

and similarly for the negative-energy operator, as required.
Applying the energy operator twice we have

ΛrΛr′ =
εrεr′ �p �p+ (εr + εr′) �pmc+m2c2

4m2c2
. (5.224)

Since �p �p = pµpνγ
µγν = 1/2pµpν(γµγν + γνγµ) = pµpνg

µν = p2 = m2c2,

ΛrΛr′ =
(εr + εr′) �p+ (1 + εrεr′)mc

4mc

=
(

1 + εrεr′

2

)
Λr. (5.225)

Therefore,

Λ2
±(p) = Λ±(p) and Λ±(p)Λ∓(p) = 0 (5.226)

as required of projection operators. Also

Λ+(p) + Λ−(p) =
�p+mc

2mc
+
− �p+mc

2mc
= 1, (5.227)

as required.

5.14.2 Spin Projection Operators

To deduce the spin-projection operator, we go to the rest frame and try
to find a projection operator in a covariant form. A candidate for a spin-up
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projection operator is (1 + σz)/2, where σz is the third Pauli-spin matrix.
Removing the explicit z dependence we write

1 + σ · û
2

, (5.228)

where û is a unit three-vector. Extending the operator to four-dimensions in
the rest frame, we have

1 + Σ3u3

2
=

1 + iγ1γ2u3

2
=

1 + γ5γ3γ0u3

2
→ 1 + γ5 �uγ0

2
, (5.229)

where we have used Σk = iεijkγ
iγj , which follows from equation 5.56 and the

definition of the gamma matrices in terms of the αi and β matrices.
Because we are in the rest frame, γ0 acting upon the Dirac spinor becomes

±1 and we can deal with this overall sign later. The covariant Dirac spin-
projection operator has the form

Σ(u3) =
1 + γ5 �u3

2
. (5.230)

Notice that Σ(u3) �= Σ3, and that they are different operators. For a general
spin vector sµ, we have

Σ(s) =
1 + γ5 �s

2
. (5.231)

In the rest frame,

Σ(u3)ω1(0) =
1 + γ5γ3

2
ω1(0) =

1 + Σ3γ0

2
ω1(0) = ω1(0), (5.232)

Σ(−u3)ω2(0) =
1− γ5γ3

2
ω2(0) =

1− Σ3γ0

2
ω2(0) = ω2(0), (5.233)

Σ(−u3)ω3(0) =
1− γ5γ3

2
ω3(0) =

1− Σ3γ0

2
ω3(0) = ω3(0), (5.234)

Σ(u3)ω4(0) =
1 + γ5γ3

2
ω4(0) =

1 + Σ3γ0

2
ω4(0) = ω4(0). (5.235)

The physical motivation for this seemingly backward association of the eigen-
values for the negative-energy solution will be discussed in section 5.15 when
we come to the hole theory.

Using the definition equation 5.221, we write

Σ(uz)u(p, uz) = u(p, uz),
Σ(uz)v(p, uz) = v(p, uz),

Σ(−uz)u(p, uz) = Σ(−uz)v(p, uz) = 0. (5.236)
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Because of the covariant form of the projection operator, we may write for
any spin vector sµ

Σ(s)u(p, s) = u(p, s),
Σ(s)v(p, s) = v(p, s),

Σ(−s)u(p, s) = Σ(−s)v(p, s) = 0. (5.237)

We now show that the spin projection operators have projection operator
properties:

Σ(±s)Σ(±s) =
1± γ5 �s

2
1± γ5 �s

2
=

1± 2γ5 �s− γ2
5s

2

4
= Σ(±s) (5.238)

and

Σ(±s)Σ(∓s) =
1± γ5 �s

2
1∓ γ5 �s

2
=

1− γ5 �sγ5 �s
4

=
1 + γ2

5s
2

4
= 0. (5.239)

Also,

Σ(±s) + Σ(∓s) =
1± γ5 �s

2
+

1∓ γ5 �s
2

= 1. (5.240)

The energy and spin projection operators commute:

[Σ(s),Λ±(p)] =
1 + γ5 �s

2
± �p+mc

2mc
− Λ±(p)Σ(s)

=
± �p+mc± γ5γ

µγνsµpν +mcγ5 �s
4mc

− Λ±(p)Σ(s)

=
± �p+mc± γ5(2gµν − γνγµ)sµpν +mcγ5 �s

4mc
− Λ±(p)Σ(s)

=
± �p+mc± (2gµνγ5 + γνγ5γ

µ)sµpν +mcγ5 �s
4mc

− Λ±(p)Σ(s)

=
± �p+mc± (2γ5s · p+ �pγ5 �s) +mcγ5 �s

4mc
− Λ±(p)Σ(s)

=
± �p+mc+ (± �p+mc)γ5 �s

4mc
− Λ±(p)Σ(s)

=
(± �p+mc)(1 + γ5 �s)

4mc
− Λ±(p)Σ(s)

= 0. (5.241)
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5.14.3 Projection Operators of Energy and Spin

We have found four operators which project from a given plane-wave solu-
tion of momentum �p, the four independent solutions corresponding to positive
and negative energy, and to spin up and spin down along a given direction.
These projection operators are covariant and satisfy

Pr(�p)wr′
(�p) = δrr′wr′

(�p), (5.242)

or equivalently,

Pr(�p)Pr′(�p) = δrr′Pr(�p). (5.243)

The four projection operators are:

P1(�p) = Λ+(p)Σ(uz),
P2(�p) = Λ+(p)Σ(−uz),
P3(�p) = Λ−(p)Σ(−uz),
P4(�p) = Λ−(p)Σ(uz). (5.244)

These projection operators are specific to the normalization uu = 1 and vv =
−1 for the spinors (see page 86).

We shall rely upon these projection operators very frequently in developing
rapid and efficient calculational techniques. They permit us to use closure
methods, thus avoiding the necessity of writing out matrices and spinor solu-
tions component by component.

5.15 Hole Theory

The energy-level diagram for solutions of the free-particle Dirac equation is
shown in figure 5.1. At first sight, it may appear that the negative-energy solu-
tions to the Dirac equation are a major problem with the theory. What stops
a positive-energy electron from radiating a photon and falling into a negative-
energy (lower-energy) state? This would create a “radiation catastrophe”
since nature prefers the lowest energy state. Dirac provided a first solution to
this problem by reinterpreting the vacuum state10.

For our purposes, we define the vacuum to be the lowest energy state or
ground state of the system. The vacuum state is the state with all negative-
energy levels filled and all positive-energy levels empty, as show in figure 5.2.

10P.A.M. Dirac, “A Theory of Electrons and Protons”, Proc. Roy. Soc. 126 (1930) 360-365.
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�

+mc2

0

−mc2

E

negative-energy continuum

bound states

positive-energy continuum

FIGURE 5.1: Spectrum of energy eigenvalues of the free-particle Dirac
equation.

The vacuum is required to have all the negative-energy states occupied or the
positive-energy electrons could fall into the lower-energy unoccupied states.
The negative-energy levels are filled according to the Pauli exclusion princi-
ple. The stability of the system is assured since no more electrons can be
accommodated in the negative-energy sea.

�

�

�

�

�

�

�

�

�

E

+mc2

0

−mc2

FIGURE 5.2: Negative-energy states are occupied (Dirac sea). This rep-
resents the vacuum state.

The most important result of the hole theory is that it was the first theory
which introduced a model for the vacuum. The vacuum should be unobserv-
able by having zero energy (mass) and no charge. However, it is clear that the
model in this simple form does not have these properties. The states occu-
pied with electrons of negative energy together have infinitely large negative
energy and infinitely large negative charge.

The infinite negative energy and infinite negative charge have to be renor-
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malized to zero, i.e. the zero point of energy and charge are chosen in such a
way that the Dirac sea has no mass and no charge. The net charge of a given
state must be defined with respect to the vacuum. Since a positive-energy
electron has charge −e, a hole state behaves as if it has charge

Qhole = [Qvacuum − (−e)]−Qvacuum = +e, (5.245)

i.e. the negative of the electron charge. In the above expression, Qvacuum is
infinite but subtraction of infinite quantities is quite normal for renormaliza-
tion procedures. Similarly if the momentum of this (negative energy) state is
�p, the hole, upon renormalization, will behave as if it has momentum

�phole = [�pvacuum − �p]− �pvacuum = −�p. (5.246)

In this case, we expect �pvacuum = 0 since for each negative-energy state with
momentum �p there is another with momentum −�p. For the energy and spin
we have

Ehole = [Evacuum − (−E)]− Evacuum = +E (5.247)

and

1/2�Σhole = [1/2�Σvacuum − 1/2�Σ]− 1/2�Σvacuum = −1/2�Σ, (5.248)

so that a hole state behaves as a positive-energy, positive-charge state of
momentum −�p and spin −1/2�Σ.

We now point out that the vacuum can be modified, for instance, by the
influence of external fields. If the fields have energy less than 2mc2, the fields
can cause a redistribution of the charge of the occupied negative-energy states.
Hence the fields can produce a measurable vacuum polarization with respect
to the state without external fields.

For strong fields with energy greater than 2mc2, it is possible to change the
vacuum state by lifting a negative-energy electron from the Dirac sea into a
positive-energy state. This situation corresponds to a negative-energy electron
absorbing radiation and being exited into a positive-energy state (figure 5.3).
If this occurs, we observe an electron of charge −e and energy +E, and in
addition a hole in the negative-energy sea. The hole registers the absence of
an electron of charge −e and energy −E, and would be interpreted by an
observer relative to the vacuum as the presence of a particle of charge +e and
energy +E, that is, the positron. This is the hole-theory interpretation of
pair production.

Correspondingly, a hole in the negative-energy sea, or a positron, is a trap
for a positive-energy electron. The positive-energy electron will lower its en-
ergy state by emitting radiation and falling into the lower negative-energy
hole. This appears to an observer relative to the vacuum as electron-positron
pair annihilation with the emission of radiation (figure 5.4).
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FIGURE 5.3: Pair production in the hole theory.
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FIGURE 5.4: Pair annihilation in the hole theory.

We recognize that with the hole theory, we move to a many-particle theory
describing particles of both signs of charge. No longer does the wave function
have the simple probability interpretation of the one-particle theory, since it
must now also account for the production and annihilation of electron-positron
pairs.

But what about the negative-energy solution of the Klein-Gordon equation?
Despite the success of the hole theory for spin-1/2 particles, the Dirac rein-
terpretation of the vacuum cannot be applied to spin-0 particles, since bosons
are not subject to the Pauli exclusion principle. For this reason, we shall not
use Dirac’s hole theory interpretation for spin-1/2 particles. Instead we shall
use a prescription for handling the negative-energy solutions which is due to
Stückelberg and Feynman.
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5.16 Charge Conjugation

To each particle there is an antiparticle and, in particular, the existence of
electrons implies the existence of positrons. In the hole theory, the absence
of an energy −E and charge −e, is equivalent to the presence of a positron
of positive energy +E and charge +e. The positron must satisfy the Dirac
equation with charge−e replaced by +e. Thus there must be a transformation
connecting the negative-energy solutions of positive charge with the positive-
energy solutions of negative charge. This symmetry transformation is referred
to as charge conjugation C. Charge conjugation is a symmetry in nature which
is independent of the Lorentz group.

For an electron of negative energy,

(i �∂ − e �A−m)ψ = 0, (5.249)

where we have written the Dirac equation with an electromagnetic potential
in a slightly different, but equivalent, form than equation 5.101.

For a positron with positive energy, we denote the wave function by ψC . It
satisfies the Dirac equation

(i �∂ + e �A −m)ψC = 0. (5.250)

We look for an operator transforming equations 5.249 and 5.250 into each
other. Taking the complex conjugate of the Dirac equation 5.249, multiplying
by −1, and remembering that Aµ is real, we have[(

i
∂

∂xµ
+ eAµ

)
(γµ)∗ +m

]
ψ∗ = 0. (5.251)

We look for a nonsingular matrix Cγ0 such that

(Cγ0)(γµ)∗(Cγ0)−1 = −γµ. (5.252)

This will cause equation 5.251 to be the same as equation 5.250. It is conve-
nient to separate γ0 from C. If we can find such an operator, we have

(i �∂ + e �A −m)(Cγ0ψ∗) = 0, (5.253)

with

ψC = Cγ0ψ∗ = C(ψ†γ0)T = Cψ
T

(5.254)

being the positron wave function. In our representation for the gamma ma-
trices,

γ0(γµ)∗γ0 = (γµ)T (5.255)
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follows from equation 5.108, or explicitly,

for µ = i, γ0(γi)∗γ0 = γ0(γiγ0)∗ = −γ0γ0(γi)∗ = −(γi)∗ = (γi†)∗ = (γi)T ,

for µ = 0, γ0(γ0)∗γ0 = γ0 = (γ0)T .

Therefore, equation 5.252 becomes

(Cγ0)(γµ)∗(Cγ0)−1 = C(γ0γµ∗γ0)C−1 = C(γµ)TC−1 = −γµ (5.256)

or

C−1γµC = −(γµ)T . (5.257)

Since in our representation

(γµ)T =
{

γµ for µ = 0, 2,
−γµ for µ = 1, 3, (5.258)

C must commute with γ1 and γ3, and anticommute with γ0 and γ2. Therefore,
we try

C = iγ2γ0 . (5.259)

This form of C is a standard for the charge conjugation matrix but it is not
the only possible form. It suffices to be able to construct a matrix C in any
given representation since a unitary transformation to any other representa-
tion when applied to this C will give a matrix appropriate to the new repre-
sentation. We again note that there is a phase arbitrariness in our definition
of C.

The properties of C are

C−1 = iγ0γ2 = −iγ2γ0 = −C, (5.260)
C† = −iγ0(γ2)† = iγ0γ2 = −iγ2γ0 = −C, (5.261)
CT = i(γ0)T (γ2)T = iγ0γ2 = −iγ2γ0 = −C. (5.262)

In our representation, the charge conjugate solution is

ψC = Cψ
T

= Cγ0ψ∗ = iγ2γ0γ0ψ∗ = iγ2ψ∗. (5.263)

Let’s consider an example. For a negative-energy electron at rest with spin
down
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ψ4 =
1

(2π)3/2




0
0
0
1


 eimt. (5.264)

The charge conjugate solution is

iγ2(ψ4)∗ = i




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0






0
0
0
1


 e−imt

(2π)3/2
=

1
(2π)3/2




1
0
0
0


 e−imt = ψ1,

(5.265)
which is a positive-energy state at rest with spin up. In terms of the hole the-
ory, the absence of a spin-down negative-energy electron at rest is equivalent
to the presence of a spin-up positive-energy positron at rest.

Noticing that [C, γ5] = i(γ2γ0γ5−γ5γ2γ0) = 0 and recalling that γ†5 = γ5 =
γ∗5 , we apply the transformation to an arbitrary spin-momentum eigenstate
ψεps:

(ψεps)C = Cψ
T

εps = Cγ0ψ
∗
εps = Cγ0

(
ε �p+m

2m

)∗(1 + γ5 �s
2

)∗
ψ∗

= C

(
εγ0 �p∗γ0 +m

2m

)(
1 + γ0γ5 �s∗γ0

2

)
γ0ψ

∗

= C

(
ε �pT +m

2m

)(
1− γ5 �sT

2

)
γ0ψ

∗

=
(
−ε �p+m

2m

)(
1 + γ5 �s

2

)
Cγ0ψ

∗

=
(
−ε �p+m

2m

)(
1 + γ5 �s

2

)
ψC . (5.266)

We see that the operation yields, from a negative-energy solution described
by four-vector pµ and spin sµ, a positive-energy solution with the same pµ

and sµ.
In terms of free-particle spinors

CuT (p, s) = v(p, s), (5.267)
CvT (p, s) = u(p, s). (5.268)

Therefore, v(p, s) and u(p, s) are charge-conjugate spinors of each other, within
a phase factor which may depend on p and s. Notice that s does not change
sign under charge conjugation but the spin does reverse.
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The charge-conjugate operator applied to a negative-energy solution of the
Dirac equation describes a positive-energy particle with identical mass and
spin but of opposite charge. If ψ describes a Dirac particle with charge −e
in the potential Aµ, then ψC describes a particle with charge +e in the same
potential Aµ. The Dirac equation is thus invariant under the combined trans-
formation of

ψ → ψC = Cψ
T
, (5.269)

Aµ → Aµ
C = −Aµ. (5.270)

This is a formal symmetry of the Dirac theory. It transforms the Dirac equa-
tion for an electron into the same equation for a positron.

Both ψ and ψC propagate forward in time. If a spin-1/2 particle is its
own antiparticle, it is called a Majorana fermion. Currently the neutrino is
the only possible candidate for such a particle from the known elementary
particles.

5.17 Time Reversal

Now consider time-reversal: t→ t′ = −t. This time we start with the Dirac
equation in Hamiltonian form,

i
∂ψ(�x, t)
∂t

= Hψ = [�α · (−i�∇− e �A) + βm+ eφ]ψ(�x, t). (5.271)

Defining the transformation T such that t′ = −t and ψ′(t′) = T ψ(t), we have

∂

∂t
(T iT −1)ψ′(t′) = T HT −1ψ′(t′). (5.272)

Since �A is generated by currents which reverse sign when the sense of time is
reversed,

�A(t) → �A ′(t′) = − �A(−t), (5.273)
φ(t) → φ′(t′) = +φ(−t). (5.274)

Also �∇′ = +�∇, since �x ′ = +�x; time reversal does not effect the three-space
coordinates. The transformation must cause i → −i to get the correct form,
therefore T can be defined as:

1. take complex conjugate,

2. multiply by the 4× 4 constant matrix T .
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These rules give

ψ′(t′) = Tψ∗(t). (5.275)

Therefore,

i
∂ψ′(t′)
∂t′

= [(−T�α∗T−1) · (−i�∇′ − e �A ′(t′)) + (Tβ∗T−1)m+ eφ′(t′)]ψ′(t′).

(5.276)
This implies T must commute with α2 and β, and anticommute with α1 and
α3 in our representation. Therefore, we can try

T = −iα1α3 = −iα1γ
0γ0α3 = iγ0α1γ

0α3 = iγ1γ3 . (5.277)

The phase factor is arbitrary.
We apply T to a plane-wave solution for a free particle of positive energy.

Since

T �p = T �p∗ = iγ1γ3(γµ)∗pµ =
{

iγµγ1γ3pµ for µ = 0,
−iγµγ1γ3pµ for µ = 1, 2, 3, (5.278)

T
(
�p+m

2m

)(
1 + γ5 �s

2

)
ψ(t) = T

(
�p∗ +m

2m

)
T−1T

(
1 + γ5 �s∗

2

)
T−1ψ′(t′)

=
(
�p′ +m

2m

)(
1 + γ5 �s′

2

)
ψ′(t′), (5.279)

where p′ = (p0,−�p) and s′ = (s0,−�s). Therefore T projects out a free-particle
solution with reversed direction of momentum �p and spin �s. This is known as
“Wigner time reversal”.

5.18 Combined CPT Symmetry

In the previous sections, we have shown how one can define in a completely
general manner the charge conjugation C, parity P , and time reversal T trans-
formations. In section 3.1.1, we have also briefly discussed the conditions a
theory of interactions must satisfy in order to be invariant under these trans-
formations. In this section, we examine the combined effect of these three
transformations.

Acting on a Dirac spinor wave function, we found that C transforms a
fermion with a given spin orientation into an antifermion with the same spin
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orientation, P reverses the momentum without flipping the spin, and T re-
verses the momentum and also flips the spin:

Cψ(�x, t) = Cγ0ψ∗(�x, t) = iγ2ψ∗(�x, t),
Pψ(�x, t) = Pψ(�x, t) = eiφγ0ψ(�x, t),
T ψ(�x, t) = Tψ∗(�x, t) = iγ1γ3ψ∗(�x, t). (5.280)

Combine all three symmetries, C, P , and T , we obtain

ψCPT (x′) ≡ CPT ψ(x)
= iγ2(PTψ∗(x))∗ (5.281)
= iγ2e−iφγ0(iγ1γ3)∗ψ(x)
= e−iφγ2γ0γ1γ3ψ(x)
= −ie−iφ(iγ0γ1γ2γ3)ψ(x)
= −ie−iφγ5ψ(x), (5.282)

with x′µ = −xµ.
For a positive-energy momentum spin eigenstate, we have

ψCPT (x′) = −ie−iφγ5

(
�p+m

2m

)(
1 + γ5 �s

2

)
ψ(x)

=
(
− �p+m

2m

)(
1− γ5 �s

2

)
(−ie−iφγ5)ψ(x). (5.283)

This is a negative-energy momentum spin eigenstate running backwards in
space-time, and multiplied by the phase factor −ie−iφγ5. The Dirac wave
function ψCPT can represent the positron. Thus positrons are negative-energy
electrons running backwards in space-time. CPT turns incoming particles
into outgoing antiparticles, while flipping the spin. This is the basis of the
Stückelberg-Feynman form of positron theory that we will exploit in chapter 6.

The free-particle Dirac Hamiltonian is invariant under C, P , and T sepa-
rately, and thus is also invariant under the combination of CPT . How does
CPT work in the presence of electromagnetic fields? For an arbitrary solution
to the Dirac equation in the presence of electromagnetic fields, the negative-
energy eigenvalue equation is

[�α · (−i�∇− e �A) + βm+ eφ]ψ = −Eψ. (5.284)

Carrying out the CPT transformation gives

[�α · (−i�∇′ + e �A ′(x′)) + βm− eφ′(x′)]ψCPT (x′) = +EψCPT (x′). (5.285)
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Since

φ′(�x ′, t′) = Pφ(�x, t) = φ(�x, t),
�A ′(�x ′, t′) = P �A(�x, t) = − �A(�x, t),
φ′(�x ′, t′) = T φ(�x, t) = φ(�x, t),
�A ′(�x ′, t′) = T �A(�x, t) = − �A(�x, t), (5.286)

A′µ(x′) = +Aµ(x) under PT or CPT . Thus CPT is a symmetry that changes
the Dirac equation with electromagnetic interactions for an electrons of charge
−e to an identical equation for positrons of charge +e. The mass of an
antiparticle is identical to that of the particle in question. For stable particles
this is a consequence of the mass being an eigenvalue (in the rest frame) of
the simultaneously commuting operator Ĥ and CPT . A proof for unstable
particles follows from the CPT invariance of the S-matrix11.

There may be interactions – not electromagnetic – which are not invari-
ant under P and/or C and/or T . Consequently, the various wave functions
associated with the various kinds of particles need not be definite covariant
representations of the corresponding transformations. Nevertheless, the op-
erations P , C, and T must certainly have a definite meaning. It turns out
that one cannot build a Lorentz-invariant quantum theory with a hermitian
Hamiltonian that violates combined CPT . The CPT theorem claims that if
a theory of interacting particles is invariant under the proper Lorentz group,
then it will be automatically invariant under the combination of the succes-
sive applications of particle-antiparticle conjugation, space inversion, and time
reflection.

Other consequences of CPT symmetry are that the lifetime of an unstable
antiparticle is identical to that of the corresponding particle, regardless of the
dynamical interaction causing the decay. And likewise, the cross section for
particle and antiparticle reactions are equal.

5.19 Free-Particle Solutions and Wave Packets

When dealing with wave packets some new features which were absent in the
nonrelativistic theory will arise from the fact that there are negative-energy
solutions. It is not possible to exclude the negative-energy states simply by
arguing that they are not realized in nature. The positive energy states alone
do not represent a complete set of functions. Because of the completeness of
plane-wave solutions, we may superimpose plane waves to construct localized

11The concept of the S-matrix will be discussed in section 6.9.
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wave packets. The wave packets are also solutions to the Dirac equation since
it is linear.

A positive-energy wave-packet solution can be written as

ψ(+)(�x, t) =
∫

d3p

(2πh̄)3/2

√
mc2

E

∑
±s

b(p, s)u(p, s)e−ip·x/h̄, (5.287)

where b(p, s) is a complex scalar function. Normalizing to unit probability
gives

∫
d3xψ(+)†(�x, t)ψ(+)(�x, t)

=
∫
d3xd3pd3p′

(2πh̄)3

√
m2c4

EE′

∑
±s,±s′

b∗(p, s)b(p′, s′)u†(p, s)u(p′, s′)ei(p−p′)·x/h̄

=
∫
d3p

mc2

E

∑
±s,±s′

b∗(p, s)b(p, s′)u†(p, s)u(p, s′)

=
∫
d3p

mc2

E

∑
±s,±s′

b∗(p, s)b(p, s′)
E

mc2
δss′

=
∫
d3p

∑
±s

|b(p, s)|2 = 1. (5.288)

The average current for such a wave packet is given by the expectation
value of the velocity operator

�j(+) =
∫
d3xψ(+)†c�αψ(+)

=
∫
d3xψ

(+)
c�γψ(+)

=
∫
d3xd3pd3p′

(2πh̄)3

√
m2c4

EE′

∑
±s,±s′

b∗(p, s)b(p′, s′)ei(p−p′)·x/h̄

· u(p, s)c�γu(p′, s′). (5.289)

To proceed further, the space part of the Gordon decomposition (see prob-
lem 5.31),

cψ2γ
µψ1 =

1
2m

[ψ2p̂
µψ1 − (p̂µψ2)ψ1]−

i

2m
p̂ν(ψ2σ

µνψ1), (5.290)

can be used. The Gordon decomposition decomposes the Dirac current density
into a convection current-density term (first term in equation 5.290), similar to
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the nonrelativistic case, and an additional spin current-density term (second
term in equation 5.290). We now write

j
(+)
k =

∫
d3xd3pd3p′

(2πh̄)3

√
m2c4

EE′

∑
±s,±s′

b∗(p, s)b(p′, s′)ei(p−p′)·x/h̄

· u(p, s)
1

2m
[(pk + p′k) + σ ν

k (pν − p′ν)]u(p′, s′),

�j(+) =
∫
d3p

�pc2

E

∑
±s

|b(p, s)|2. (5.291)

Using the normalization condition, the current can be written

�j(+) = 〈c�α〉+ =
〈
c2�p

E

〉
. (5.292)

Thus, the average current for an arbitrary wave packet formed of positive-
energy solutions is just the classical group velocity. In the Schrödinger theory,
the velocity operator v̂ = p̂/m is proportional to the momentum, but this is
not the case in the Dirac theory. In the Dirac theory the velocity operator for
a free particle cα̂ is no longer a constant. We see that wave packets consisting
of plane waves with only positive energy have the expectation value of the
velocity |〈cα̂〉| ∼ |〈c2�p/E〉| < c, whereas the eigenvalues of cα̂ are exactly
±c. This motivates us to consider wave packets containing both positive and
negative-energy solutions:

ψ(�x, t) =
∫

d3p

(2πh̄)3/2

√
mc2

E

∑
±s

[b(p, s)u(p, s)e−ip·x/h̄+d∗(p, s)v(p, s)e+ip·x/h̄],

(5.293)
where b(p, s) and d∗(p, s) are complex scalar functions. Normalizing to unit
probability, we have

∫
d3xψ†(�x, t)ψ(�x, t)

=
∫
d3xd3pd3p′

(2πh̄)3

√
m2c4

EE′

∑
±s,±s′

[
b∗(p, s)b(p′, s′)u†(p, s)u(p′, s′)ei(p−p′)·x/h̄

+ b∗(p, s)d∗(p′, s′)u†(p, s)v(p′, s′)e−i(p+p′)·x/h̄

+ d(p, s)b(p′, s′)v†(p, s)u(p′, s′)ei(p+p′)·x/h̄

+ d(p, s)d∗(p′, s′)v†(p, s)v(p′, s′)e−i(p−p′)·x/h̄
]

=
∫
d3p

mc2

E

∑
±s,±s′

[
b∗(p, s)b(p, s′)u†(p, s)u(p, s′)
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+ b∗(p, s)d∗(−p, s′)u†(p, s)v(−p, s′)e−2ip0x0/h̄

+ d(p, s)b(−p, s′)v†(p, s)u(−p, s′)e2ip0x0/h̄

+ d(p, s)d∗(p, s′)v†(p, s)v(p, s′)
]

=
∫
d3p

mc2

E

∑
±s,±s′

[
b∗(p, s)b(p, s′)

E

mc2
δss′ + d(p, s)d∗(p, s′)

E

mc2
δss′

]

=
∫
d3p

∑
±s

[
|b(p, s)|2 + |d(p, s)|2

]
= 1. (5.294)

A short calculation (see problem 5.32) shows the current of the wave packet
is

jk =
∫
d3xψ†(�x, t)cα̂kψ(�x, t)

=
∫
d3p

{∑
±s

[
|b(p, s)|2 + |d(p, s)|2

] pkc2

E

+ c
∑
±s,±s′

b∗(−p, s)d∗(p, s′)e2ix0p0/h̄u(−p, s)σk0v(p, s′)

− ic
∑
±s,±s′

b(−p, s)d(p, s′)e−2ix0p0/h̄v(p, s)σk0u(−p, s′)
}
. (5.295)

The first term represents the time-independent group velocity that appeared
before in equation 5.291 for positive-energy only wave packets. The second and
third terms are the interferences of the solutions with positive and negative en-
ergy, which oscillate time-dependently because of the factors exp(±2ip0x0/h̄).
The frequency of this Zitterbewegung motion is

2p0c

h̄
>

2mc2

h̄
≈ 2× 1021 s−1 = 2× 1012 GHz, (5.296)

which is very large, and its strength is proportional to the amplitude d(p, s)
of the waves with negative energy in the wave packet.

5.20 Klein Paradox for Spin-1/2 Particles

Consider the scattering of an electron of energy E and momentum p = pz

by an electrostatic step-potential of the form (figure 5.5)

eφ =
{
V0 for z > 0,
0 for z < 0. (5.297)
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FIGURE 5.5: Electrostatic potential idealized with a sharp boundary, with
an incident free-electron wave of energy E moving to the right in region I.

For a free electron, we have (E/c)2 = p2 + m2c2, whereas in the presence of
the constant potential

(
E − V0

c

)2

= (p′)2 +m2c2, (5.298)

where p′ is the momentum of the particle inside the potential.
The Dirac equation for z < 0 is

(cαp̂+ βmc2)ψ = Eψ, (5.299)

while for z > 0, we have

(cαp̂+ βmc2)ψ = (E − V0)ψ, (5.300)

where it is understood that α = α3 and p̂ = p̂z.
The incident wave in region I is

ψI = a




1
0
pc

E+mc2

0


 eipz/h̄, (5.301)

with pc =
√
E2 −m2c4. The reflected wave in region I is

ψR = b




1
0
−pc

E+mc2

0


 e−ipz/h̄ + b′




0
1
0
pc

E+mc2


 e−ipz/h̄. (5.302)

The transmitted wave in region II is
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ψT = d




1
0

p′c
E−V0+mc2

0


 eip′z/h̄ + d′




0
1
0
−p′c

E−V0+mc2


 eip′z/h̄, (5.303)

with p′c =
√

(V0 − E)2 −m2c4.
From the Klein-Gordon analysis of the Klein Paradox (section 4.10), the

interesting energy region is the case of V0 > E +mc2 (strong field) for which
the momentum p′ is real and allows the free plane wave to propagate in region
II. Continuity at the boundary requires ψI + ψR = ψT , and thus

a+ b = d, (5.304)
b′ = d′, (5.305)

pc

E +mc2
a− pc

E +mc2
b =

−p′c
V0 − E −mc2

d, (5.306)

pc

E +mc2
b′ =

p′c

V0 − E −mc2
d′. (5.307)

The equations for b′ and d′ can only be satisfied if b′ = d′ = 0. There is thus
no spin flip of the electron at the boundary. Also,

a− b = −p
′

p

E +mc2

V0 − E −mc2
d

= −

√
(V0 − E +mc2)(E +mc2)
(V0 − E −mc2)(E −mc2)

d

≡ −rd. (5.308)

We thus have

a =
d

2
(1− r),

b =
d

2
(1 + r),

b

a
=

1 + r

1− r , (5.309)

d

a
=

2
1− r . (5.310)

The particle current is given by

j(x) = cψ†(x)α3ψ(x). (5.311)
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We calculate the currents:

jI = aa∗
2pc2

E +mc2
, (5.312)

jR = −bb∗ 2pc2

E +mc2
, (5.313)

jT = −dd∗ 2p′c2

V0 − E −mc2
. (5.314)

Since r is real, the ratio of currents is

jR
jI

= − bb
∗

aa∗
= − (1 + r)2

(1− r)2 , (5.315)

jT
jI

= −p
′

p

E +mc2

V0 − E −mc2
dd∗

aa∗

= − 4r
(1− r)2 . (5.316)

Since r > 1, we see that |jR| > |jI |. This result corresponds to the fact that
the flow of jT is in the −z-direction, i.e. the electrons are leaving region II,
but according to our assumptions up to now, there are no electrons in region
II. A reinterpretation is thus necessary.

To prevent the transition of all electrons to states of negative energy, one
has to require that all electron states E < −mc2 are occupied with electrons.
The potential V0 > mc2 +E raises the electron energy in region II sufficiently
for there to be an overlap between the negative-energy continuum for z > 0
and the positive-energy continuum for z < 0, as shown in figure 5.6. In the
case of V0 > E+mc2, the electrons striking the potential barrier from the left
are able to knock additional electrons out of the vacuum on the right, leading
to a positron current flowing from left to right in the potential region. It is
possible to understand the sign of jT by assuming that the electrons entering
region I are coming from the negative continuum.

jI + jR = jI

[
1− (1 + r)2

(1− r)2

]
= − 4r

(1− r)2 jI = jT . (5.317)

Since the holes remaining in region II are interpreted as positrons, the phe-
nomena can be understood as electron-positron pair creation at the potential
barrier, and is the process responsible for the decay of the vacuum in the
presence of a strong field.
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V

−mc2
0

z
0

+mc2

E

V0 −mc2
V0 > mc2 + E

V0 +mc2

e+ →← e−e− →

FIGURE 5.6: Klein Paradox interpretation using hole theory.

5.21 Summary

Most of the relativistic effects encountered with the Klein-Gordon equation
in chapter 4 have reemerged in the contexts of the Dirac equation in this chap-
ter, such as, the non-localizability of positive-energy-only wave packets and
the particle-antiparticle symmetry. The spin-1/2 structure of the solutions to
the Dirac equation have given rise to additional new effects.

Nevertheless, problems arise from attempting to apply a simple single-
particle wave-function picture to what is obviously a many-body situation.
The correct way in which to handle all the subtlety of these problems is to
use the formalism of quantum field theory. But the elementary wave func-
tion paradigm has allowed us to obtain an accurate sketch of the physics of
spin-1/2 particles within the limitations of a one-particle theory.

The hole theory permits the reconciliation of the Dirac theory with the ex-
perimental facts: the non-existence of negative-energy states, the existence of
positrons, and the creation and annihilation of pairs. It therefore constitutes
a considerable step forward. However, it has a number of limitations and
difficulties.

First of all, it is incomplete. By postulating the occupation of the quasi-
totality of negative-energy states, the theory ceases to be a one-particle theory,
even when it sets out to describe a single electron. The formalism of the Dirac
theory of a single particle, as set forth, is therefore insufficient for describing
such a situation, and it is only in the framework of field theory that one can
hope to obtain a self-consistent description.

The hole theory is only a first step in the direction of a correct theory of
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the quantized electron field. It has the merit of providing a simple picture
and can therefore serve as a guide in the elaboration of the correct theory.
But pitfalls and contradictions appear when it is pushed too far.

For example, having defined the vacuum as composed of an infinite number
of electrons, it is inconsistent to assume that these electrons do not inter-
act. Another weak point of the theory is the apparently very asymmetrical
role played by the electrons and the positrons. One can also construct a
corresponding charge-conjugate theory where the positrons play the role of
the particles and the electrons that of the holes, without any of the physical
consequences being changed.

Unlike the situation for fundamental scalar particles, there exists fundamen-
tal spin-1/2 particles in nature: the leptons. The three charged leptons: elec-
tron, muon, tau, and their antiparticles are believed to be exactly described
by the Dirac equation. The corresponding three neutrinos have recently also
been added to the set of particles described by the Dirac equation.

The remainder of this book will develop the theory of interacting spin-1/2
particles. This will enable us to calculate cross sections for the scattering of
spin-1/2 particles with spin-1/2 particles and with the electromagnetic field.
The theory is called quantum electrodynamics. The importance of this theory
is far-reaching and has inspired elements of the theories of the strong and weak
nuclear forces.

5.22 Problems

1. Show that the Dirac equation can not be invariant under spatial rota-
tions if αi are numbers and ψ is a scalar wave function.

2. Show that the eigenvalues of �α are ±1.

3. Show that the different representations of αi and β are related by a
unitary transformation. Find the transformation and show that it is
unitary.

4. Suppose the Dirac wave functions are normalized in the same way as
Klein-Gordon wave functions:

i

∫
d3xψα(x)

↔
∂ 0 ψβ(x) = δαβ .

Use the Dirac equation to show that these wave functions differ from
the ones normalized via∫

d3xψ†α(x)ψβ(x) = δαβ
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by a factor of
√

2m.

5. Show that the current density for a free-particle wave function agrees
with the corresponding nonrelativistic expression in the proper limit.

6. Prove that

[αi, αj ] = 2iεijkΣk.

7. Show that �Σ · p̂ commutes with the Dirac Hamiltonian.

8. Show that helicity is rotationally invariant.

9. Show that the helicity states transform simply under a Lorentz trans-
formation.

10. [12] For a massive fermion, show that handedness is not a good quantum
number. That is, show that γ5 does not commute with the Hamiltonian.
However, verify that helicity is conserved but is frame dependent. In
particular, show that the helicity is reversed by “overtaking” the particle
concerned.

11. [12] For an electron of momentum �p = (p sin θ, 0, p cos θ), calculate the
λ = +1/2 helicity eigenspinor(s).

12. Rederive current conservation using the Lorentz invariant form of the
Dirac equation.

13. In the Majorana representation all the γµ matrices are purely imaginary.
Find an explicit form of the Majorana representation.

14. Show that

(�α · v̂)2 = I.

15. Show that

S−1 = γ0S
†γ0

for proper Lorentz transformations, as well as space and time reflections,
where S is a 4 × 4 matrix which is a function of the parameters of the
Lorentz transformation and operates upon the four components of the
column vector of the wave function satisfying the Dirac equation.

16. Show that equation 5.166 is a solution to equation 5.122.

17. (a) Suppose ψ(x) is the Dirac wave function in a frame O. What is
the wave function ψ′(x′) in a frame O′ which is obtained from O
by a rotation about the x-axis through 60◦?
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(b) If a spin-1/2 particle at rest has its spin in the z-direction, what is
the probability that its spin will be observed to be in a direction
60◦ from the z-axis?

(c) Consider a Lorentz transformation to a frame moving in the +z-
direction with speed v. Obtain the transformation matrix S.

(d) Use the results of part (c) to get the wave function of a spin-1/2
particle whose spin is in the +z-direction and whose velocity is v
in the −z-direction. Assume the wave function in the rest frame is
u = (1, 0, 0, 0) and apply the boost of part (c).

(e) Obtain the transformation matrix for the boost of part (c) followed
by the rotation of part (a).

(f) In this new frame in which the particle has negative helicity and a
velocity 60◦ from the z-axis, calculate the probability that it will
be observed to have its spin in the new +z-direction.

18. Show that (γ5)2 = I and γ†5 = γ5.

19. Show that γ5 commutes with S for proper Lorentz transformations Λ
but anticommutes with S for improper Lorentz transformations Λ, and
hence

S(Λ)γ5 = γ5S(Λ)det|Λ|.

20. Determine how the bilinears

ψψ, ψγ5ψ, ψγµψ, ψγ5γ
µψ, and ψσµνψ

transform separately under charge conjugation, space reflection, and
time reversal. Using your results, apply the three operators in succession
to each bilinear. Comment on the results.

21. Obtain explicit representations for the matrix elements of the operators
Oi = γµ, γµγ5, γ5, σµν between spinors u(�p, s) and u(�q, r). Analyze in
detail the case of �p = (E, 0, 0, p) and �q = (E, 0, 0,−p). That is, compute
u(�p, s)Oiu(�q, r).

22. Prove

4∑
r=1

εrω
r
α(�p)ω̄r

β(�p) = δαβ

independently of the specific representation of the Dirac spinors.
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23. Prove the completeness relationship

4∑
r=1

wr
α(εr�p)wr†

β (εr�p) =
E

m
δαβ .

24. Derive equation 5.211 in a representation-free way directly from the
Dirac equation.

25. [4] Given a free-particle spinor u(p), construct u(p+ q) for qµ → 0 and
p · q → 0, in terms of u(p) by means of a Lorentz transformation.

26. Derive the following completeness relationships∑
±s

uα(p, s)uβ(p, s) = [Λ+(p)]αβ

and ∑
±s

vα(p, s)vβ(p, s) = −[Λ−(p)]αβ .

27. [14] The operators

PL =
1
2
(1 + γ5) and PR =

1
2
(1− γ5)

are projection operators which are said to identify states of definite
chirality (handedness).

(a) Show that PL and PR are legitimate projection operators in that

P 2
L = PL, P 2

R = PR, and PLPR = PRPL = 0.

(b) Demonstrate that in the limit of high energy E/m� 1 – or equiv-
alently in the massless limit – that the Dirac spinors for positive
helicity (right-handed) and negative helicity (left-handed) states of
momentum �p are given by

u±(�p) =

√
1
2

(
χ±p̂

±χ±p̂

)
,

where χ±p̂ are spinors such that

�σ · p̂χ±p̂ = ±χ±p̂.

Note: In order to conveniently deal with massless particles, it is
important to use the normalization u†(p)u(p) = 1. The appropriate
Dirac spinors can then be found by multiplying the usual forms by
the factor

√
m/E. Demonstrate this.
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(c) Show that

PLu−(p) = u−(p),
PRu+(p) = u+(p),
PLu+(p) = PRu−(p) = 0,

so that the chirality operator is equivalent to the helicity operator
in this limit.

28. [12] Show that at high energies

γ5u =
(
�σ · p̂ 0

0 �σ · p̂

)
u,

where u is the electron spinor. That is, show that in the extreme rela-
tivistic limit, the chirality operator γ5 is equal to the helicity operator;
and so, for example, 1

2 (1 − γ5)u = uL corresponds to an electron of
negative helicity.

29. Examine in detail the influence of the transformation ψC = Cψ
T

=
iγ2ψ∗ on the eigenfunctions of an electron at rest with negative energy.

30. [4] In order that T be a symmetry operation of the Dirac theory, the rules
of interpretation of the wave function ψ′(t′) must be the same as those
of ψ(t). This means that observables composed of forms bilinear in ψ′

and ψ′
†

must have the same interpretation – within a sign, appropriate
to the observable – as those of ψ.

(a) Verify that this is so for the current:

j′µ(x′) = jµ(x)

and also

〈�r〉′ = 〈�r〉 and 〈�p〉′ = −〈�p〉.

(b) Repeat these calculations for the charge-conjugation transforma-
tion C. In particular, show

ψC(x)γµψC(x) = +ψ(x)γµψ(x)

and interpret using the hole theory.

31. If ψ1 and ψ2 are two arbitrary solutions of the free Dirac equation, prove
the Gordon decomposition

cψ2γ
µψ1 =

1
2m

[
ψ2p̂

µψ − (p̂µψ2)ψ1

]
− i

2m
p̂ν(ψ2σ

µνψ1).
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32. Calculate the current

jk = c

∫
d3xψ†(�x, t)αkψ(�x, t) = c

∫
d3xψ(�x, t)γkψ(�x, t)

for the general wave packet which contains both positive- and negative-
energy plane waves.

33. [7] At time t = 0, the following wave packet with Gaussian density
distribution is defined as

ψ′(�x, 0, s) =
1

(πd2)3/4
e−|x|

2/2d2
w1(0).

Determine the wave packet at time t developed from the above. Consider
the intensity of the negative-energy solutions in the wave packet. What
does one learn in general about the applicability of the one-particle
interpretation of the Dirac equation?

34. Consider a Dirac electron of mass m in an attractive electrostatic po-
tential

V (z) =




0 for z < 0,
−V0 for 0 < z < a,

0 for z > a.

(a) Find an expression for the bound-state energy levels.

(b) Solve the problem of scattering of such an electron with momentum
�p off this potential. Obtain the transmission amplitude and phase
shift.

35. Solve the Dirac equation for an attractive square well potential of depth
V0 and radius a, after determining the continuity conditions at r = a.
Obtain an explicit expression for the minimum V0, given a that just
binds a particle of mass m.

36. Find the exact energy eigenvalues and eigenfunctions for an electron in
a uniform magnetic field �B = Bẑ, and show the energy eigenvalues can
be written as

E =
√
m2 + p2

z + 2neB, for n = 1, 2, 3 . . .

Compare your results with what is expected nonrelativistically.
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37. [14] The Dirac equation describing the interaction of a proton or neutron
with an applied external electromagnetic field has an additional term
involving the so-called anomalous magnetic moment:(

i �∇ − qi �A+
κi|e|
4m

σµνF
µν −m

)
ψ(x) = 0.

For the proton, qp = e and for the neutron qn = 0.

(a) Verify that the choice

κp = 1.79 and κn = −1.91

corresponds to the observed magnetic moments of these particles,
and

(b) Show that the additional interaction disturbs neither the Lorentz
covariance of the equation nor the hermiticity of the Hamiltonian.

38. [4] Suppose that the electron had a static electric dipole moment d
analogous to its magnetic moment.

(a) Show that this could be accommodated by modifying the Dirac
equation to become(

i �∇ − e �A− i ed
4m

σµνγ5F
µν −m

)
ψ(x) = 0.

Write down the expression for the resulting classical dipole mo-
ment.

(b) Demonstrate that the modified Dirac equation is Lorentz covariant
under proper Lorentz transformations but not invariant under a
parity transformation.

39. [14] Consider a positive-energy spin-1/2 particle at rest. Suppose that
at t = 0 we apply an external (classical) vector potential

�A(t) = −x̂ a
ω

sinωt,

which corresponds to an electric field of the form

�E(t) = x̂a cosωt.

Show that for t > 0 there exists a finite probability of finding the particle
in a negative-energy state if such negative-energy states are assumed to
be originally empty. In particular, work out quantitatively the two cases:
ω � 2m and ω ≈ 2m, and comment.
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40. [14] As we saw in problem 5.39, a rapidly varying electric field can lead
to the creation of particle-antiparticle pairs. Calculate to lowest order
the probability per unit volume per unit time of producing fermion pairs
in the presence of an external electric field

�E(t) = x̂a cosωt

and show that

prob = V T
e2a2

24π

(
1− 4m2

ω2

) 1
2
(

1 +
2m2

ω2

)
.

Suggestion: Utilize normalized plane-wave solutions of the Dirac equa-
tion:

ψ(x) =
√
m

E
u(p) exp i(�p · �x− Et) with E =

√
�p2 +m2,

and simple first-order perturbation theory

amp = −i
∫ T/2

−T/2

dt〈f |Hint(t)|i〉,

with Hint = e
∫
d3xjµA

µ as in the Klein-Gordon case (see problem 4.21).
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Chapter 6

Propagator Methods

We begin this chapter with a general discussion of the scattering process. To
understand the laws governing the interactions of elementary particles, the
most popular experiment technique is to scatter a variety of particles by a
variety of targets. On the other hand, atoms and molecular structure are
largely explored using spectroscopic methods. We can argue that, in some
sense, spectroscopy is another form of scattering. The atom in the ground
state is excited by some projectile, and then an outgoing photon is observed
with the atom going into the ground state again, or possibly another excited
state.

Our aim in this book is to calculate transition rates and cross-sections.
There are at least two approaches we could take: 1) a systematic approach
of quantizing the field, or 2) the propagator formalism, which is more intu-
itive and leads to being able to perform calculations quickly. The propagator
method will be defined in terms of integral equations with boundary condi-
tions incorporating the Stückelberg-Feynman physical interpretation of the
positron as a negative-energy electron moving backwards in time.

Starting with scattering processes in the framework of Dirac’s theory (rela-
tivistic from beginning), the calculations are exact in principle but practically
they will be carried out using perturbation theory, i.e. an expansion in terms
of small interaction parameters. Although Stückelberg started the relativis-
tic propagator idea, Feynman exploited it in calculations. J. Schwinger and
S. Tomonaga developed an alternative formalism, and the latter three physi-
cists were awarded the Nobel Prize in 1965 for the development of quantum
electrodynamics.

Quantum electrodynamics (QED) is one of the most successful and most
accurate theories known in physics. QED is the archetype for all modern
field theories, and important in its own right since it provides the theoretical
foundation for atomic physics. The theory also applies to heavy leptons –
muon and tau – and in general can be used to describe the electromagnetic
interaction of other charged elementary particles.

143
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6.1 Nonrelativistic Scattering Theory

In classical mechanics, the collision of two particles is entirely determined
by their relative velocity and impact parameter. The impact parameter is the
distance at which the particles would pass if they did not interact. In quantum
mechanics, motion with a definite velocity along a path is meaningless, and
therefore so is the concept of impact parameter. We can however calculate
the probability that the particles will deviate, or be scattered, through a given
angle as a result of a collision. Throughout this book we mean by collision, an
elastic collision in which the internal states of the colliding particles, if they
have one, is left unchanged.

We begin by considering the idealized problem of a beam of particles of mass
m traveling in the z-direction with velocity v, scattered by a fixed scattering
center place at the origin, r = 0, and acting primarily in the neighbourhood
of the origin. We describe this scattering center by a potential V (�r). As
a result of this potential field, the incident beam of particles experiences a
force and is deflected. The scattering center in an actual experiment will be
an atom, a nucleus, or another particle. The potential which the incident
particle experiences is usually more complicated, depending not only on the
separation �r but also on the internal coordinates of the target. Nevertheless,
one can in many cases represent the scattering center approximately by such
a potential.

A free incident particle moving in the positive direction along the z-axis
is described by the plane wave ψ(z) = Aeikz , where k = p/h̄ = mv/h̄. The
scattered particles can be described, at a great distance from the scattering
center, by an outgoing spherical wave of the form f(θ, φ)eikr/r. Its amplitude
depends on the scattering angles θ and φ, and is inversely proportional to r
since the radial flux must fall off as the inverse square of the distance.

The total asymptotic form of the solution of the Schrödinger equation which
we require is

ψ(r, θ, φ) ≈ A
[
eikz + f(θ, φ)

eikr

r

]
, for r →∞. (6.1)

f(θ, φ) is called the scattering amplitude of the process. The solution in
equation 6.1 is readily verified to satisfy the wave equation asymptotically
through terms of order 1/r in the region in which V = 0, for any form of the
function f(θ, φ) (see problem 6.1).

To specify the angular distribution of the particles which have been scat-
tered, we consider the passage of these particles through a large sphere of
radius R, whose center is at the target (see figure 6.1). Consider an element
of surface dS = R2dΩ, where dΩ is the element of solid angle on the sphere
subtending the spherical polar angles (θ, φ) at the target. The number of scat-
tered particles crossing dS per unit time, or the current of particles scattered
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across dS, is given by the product of the density of scattered particles at dS
times the velocity of scattered particles times the element of area dS, i.e. the
current of particles scattered across dS is given by

∣∣∣∣Af(θ, φ)
eikR

R

∣∣∣∣
2

vR2dΩ =
(
h̄k

m

)
|A|2|f(θ, φ)|2dΩ. (6.2)

θ
dΩ

dSR

FIGURE 6.1: Definition of the solid angle in scattering. The azimuthal
angle φ is not shown.

This expression gives the relative probabilities of a particle being scattered
into different directions. The absolute probability, however, still depends on
the flux of the incident beam of particles striking the target. The current
of particles scattered across dS is clearly proportional to the flux of incident
particles, i.e. the number of particles incident per unit area per unit time.
Since we have taken the density of the incident beam to be |A|2, the flux is
simply equal to Jinc = v|A|2 = h̄k|A|2/m. We then define the element of cross
section dσ(θ, φ) by

dσ(θ, φ) =
current of particles scatter across dS

flux of incident beam
= |f(θ, φ)|2dΩ, (6.3)

dσ

dΩ
(θ, φ) = |f(θ, φ)|2 . (6.4)

The differential cross section is equal to the absolute square of the scattering
amplitude. The choice of coefficient A is unimportant in the calculation of
scattering. We see that the cross section has the dimensions of area. It is the
effective area which the target presents to the incident beam of particles for
the process considered.
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From the angular distribution or differential cross section, we obtain the
total cross section by integrating over all angles on the unit sphere:

σtot =
∫
|f(θ, φ)|2dΩ. (6.5)

To find the scattering amplitude f(θ, φ), i.e. to solve the Schrödinger equa-
tion, it is most convenient to convert the Schrödinger equation first to an
integral equation.

6.2 Green Functions and Integral Equations

The propagator theory is based on the Green-function method of solving
inhomogeneous differential equations. Before we consider wave equations, we
explain the method in terms of a simple example that the reader may be
familiar with.

Suppose we wish to solve Poisson’s equation

∇2φ(�x) = −ρ(�x) (6.6)

for a known charge distribution ρ(�x), subject to some boundary conditions.
It is easier to first solve the “unit source” problem

∇ 2
�xG(�x; �x ′) = −δ3(�x− �x ′), (6.7)

where G(�x; �x ′) is the potential at �x due to a unit point source at �x ′. We
then move this source over the charge distribution and accumulate the total
potential at �x from all possible sources in the volume element d3x′:

φ(�x) =
∫
d3x′G(�x; �x ′)ρ(�x ′). (6.8)

We can check directly that φ is the desired solution:

∇ 2
�xφ(�x) =

∫
d3x′∇ 2

�xG(�x; �x ′)ρ(�x ′) (6.9)

= −
∫
d3x′δ3(�x− �x ′)ρ(�x ′)

= −ρ(�x).

The difficulty now becomes solving equation 6.7 for G(�x; �x ′). In this case,
the solution is well known to be the Coulomb potential

G(�x; �x ′) = G(�x− �x ′) =
1

4π|�x− �x ′| . (6.10)
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This can be easily verified by substitution into equation 6.7 (see problem 6.2).
In the case of quantum mechanics, the equivalent of φ appears on both sides
of the equation, and so an iterative perturbation-series solution is required.

We now treat the inhomogeneous Schrödinger equation:

− h̄2

2m
∇2ψ + V (�x)ψ = Eψ. (6.11)

By defining k =
√

2mE/h̄ and ρ(�x) = 2mV (�x)ψ/h̄2, we can write

(∇2 + k2)ψ = ρ(�x), (6.12)

where the inhomogeneous term ρ depends on ψ.
The Green function equation is

(∇2
�x + k2)G(�x; �x ′) = δ3(�x− �x ′). (6.13)

The solution is

G(�x; �x ′) = G(�x − �x ′) = − e
±ik|�x−�x ′|

4π|x− x′| , (6.14)

which again can be easily verified by substitution into equation 6.13 (see prob-
lem 6.3). These solutions correspond to an outgoing spherical wave generated
from a unit source at �x ′ and to an incoming spherical wave absorbed by a
sink at �x ′. For scattering problems, we are only interested in the outgoing
spherical wave, and shall not consider the solution containing the negative
exponential function further.

Equation 6.14 is a solution to the inhomogeneous equation 6.13; to this
solution we must add solutions ψ0(�x) to the homogeneous equation. The
general solution to the Schrödinger equation becomes

ψ(�x) = ψ0(�x)−
m

2πh̄2

∫
eik|�x−�x ′|

|�x− �x ′| V (�x ′)ψ(�x ′)d3�x ′. (6.15)

Equation 6.15 may look like an explicit solution to the Schrödinger equation
for any potential. Unfortunately there is a ψ in the integral on the right-hand
side. Thus it is not a solution unless we already know the solution. This
integral form of the Schrödinger equation is entirely equivalent to the more
familiar differential form. It is however particularly well suited to scattering
problems.
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6.3 The Born Approximation

To calculate the cross section, we need the asymptotic form of equation 6.15
for large distances1. A procedure which leads to a very useful approximation,
both when the potential is weak and when the kinetic energy is large, is called
the Born approximation. Suppose V (�r ′) is localized about r′ = 0 and falls off
rapidly for large r′; this is the typical case for scattering problems in quantum
electrodynamics.

When calculating ψ(�r) at points far away from the scattering center, r � r′

for all points that contribute to the integral in equation 6.15. Expanding to
lowest order in r′/r, we have

|�r − �r ′| = r

[
1− 2

�r · �r ′
r2

+
(
r′

r

)2
]1/2

≈ r
(

1− �r · �r ′
r2

)
= r − r̂ · �r ′ (6.16)

and

1
|�r − �r ′| =

1
r

[
1− 2

�r · �r ′
r2

+
(
r′

r

)2
]−1/2

≈ 1
r

(
1 +

�r · �r ′
r2

)
=

1
r

+
r̂ · �r ′
r2

,

(6.17)
where �r = rr̂. Defining �k = kr̂, we obtain

eik|�r−�r ′|

|�r − �r ′| ≈
eikr

r
e−i�k·�r ′

(6.18)

to leading order in r′/r.
In the case of scattering, we want ψ0(�r) = Aeikz to represent an incident

plane wave. Thus for large r, equation 6.15 becomes

ψ(�r) ≈ Aeikz − m

2πh̄2

eikr

r

∫
e−i�k·�r ′

V (�r ′)ψ(�r ′)d3�r ′. (6.19)

Comparing equation 6.19 with equation 6.1, we read off the scattering ampli-
tude to be

f(θ, φ) = − m

2πh̄2A

∫
e−

�k·�rV (�r)ψ(�r)d3�r, (6.20)

where we have renamed the dummy variable of integration.

1In this section, we switch our coordinate notation from �x to �r since the latter is more
common when discussing nonrelativistic scattering, and we will most often work in spherical
polar coordinates.
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Equation 6.20 is not a useful solution for the scattering amplitude since it
still contains the unknown wave function ψ(�r) inside the integral. To pro-
ceed further, we consider the case when the scattering potential V (�r) is weak
and can be considered as a small perturbation, which slightly distorts the
incoming plane wave. As a first approximation, we can use ψ(�r) ≈ ψ0(�r) =
Aeikz = Aei�k0·�r, where �k0 = kẑ, inside the integral. This gives the first Born
approximation

f(θ, φ) ≈ − m

2πh̄2

∫
ei(�k0−�k)·�rV (�r)d3�r, (6.21)

which is simple and therefore of practical use in calculations. Notice that the
normalization A has dropped out, as it should.

We may simplify equation 6.21 further by introducing the momentum trans-
fer variable h̄�q = h̄(�k0−�k), as shown in figure 6.2. Since �k = kr̂ and �k0 = kẑ,
q = 2k sin(θ/2), and we obtain

f(θ, φ) = − m

2πh̄2

∫
ei�q·�rV (�r)d3�r . (6.22)

This shows that the scattering amplitude in a particular direction is deter-
mined by the Fourier transform of the potential with the corresponding mo-
mentum transfer of the particle during the collision. Equation 6.22 is applica-
ble to the scattering from a potential, which is a function of all the coordinates
in general, not only a function of r. We now consider some special cases of
equation 6.22.

θ

�k0 = kẑ

�k = kr̂ �q = �k0 − �k

FIGURE 6.2: Relationship between the propagation vectors �k0 for the
incident particle, �k for the scattered particle, and the scattering angle θ. The
momentum transfer in the collision is h̄�q.

For a spherically symmetrical potential, V (�r) = V (r). We may integrate
equation 6.22 using spherical polar coordinates with �q taken along the polar
axis:
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f(θ, φ) = − m

2πh̄2

∫ ∞
0

r2V (r)
∫ 2π

0

dφ

∫ π

0

eiqr cos θ sin θdθ

= −2m
h̄2

∫ ∞
0

V (r)
sin(qr)
q

rdr. (6.23)

The scattering is independent of the angle φ; it depends on the speed v and
the scattering angle θ only through the combination q = (2mv/h̄) sin(θ/2). If
θ = 0, or q = 0, the integral diverges if r2V (r) does not approach zero as fast
as r →∞.

We now consider the two energy extremes. For low energy (long wavelength)
scattering, the exponential factor in equation 6.22 is approximately constant
over the scattering region:

f(θ, φ) ≈ − m

2πh̄2

∫
V (�r)d3�r. (6.24)

Furthermore, if V (�r) = V (r),

f(θ, φ) = −2m
h̄2

∫
r2V (r)dr. (6.25)

In this case, the scattering is isotropic and independent of the velocity.
For high energy (short wavelength) scattering, q is large and the factor ei�q·�r

in equation 6.22 is a rapidly oscillating function, if the scattering angle is not
too small. The integral of its product with the slowly varying function V will
be nearly zero. Thus as the velocity increases, the cross section, for not too
small θ, tends to zero.

Having calculated the lowest order term of the perturbative expansion of
equation 6.20, we now iterate to generate a series of higher-order corrections.
We assume the series converges to the exact wave function. Once more, the
integral form of the Schrödinger equation is

ψ(�r) = ψ0(�r) +
∫
G(�r − �r0)V (�r0)ψ(�r0)d3�r0, (6.26)

where G(�r) ≡ − m
2πh̄2

eikr

r . Dropping the arguments of the functions allows us
to write the equation in a more schematic form: ψ = ψ0 +

∫
GV ψ. If we take

this expression for ψ and plug it in under the integral of equation 6.26, we
obtain

ψ = ψ0 +
∫
GV ψ0 +

∫ ∫
GV GV ψ. (6.27)

Iterating this procedure, we obtain a formal series for ψ:

ψ = ψ0 +
∫
GV ψ0 +

∫ ∫
GV GV ψ0 +

∫ ∫ ∫
GV GV GV ψ0 + . . . . (6.28)
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In each integral, only the incident wave function ψ0 appears together with
more and more powers of GV . In subsequent sections we will develop this
type of series in a covariant manner.

6.4 Propagator Theory

Until now, we have treated scattering using a time-independent approach
and looked for stationary states Ψ(�x, t) = ψ(�x)e−iEt/h̄ of the Hamiltonian. In
this section, we will follow a time-dependent approach to solve the nonrela-
tivistic scattering problem. We will develop the wave function resulting from
the continuous interaction of a free-particle wave function with a potential.
This development begins by establishing the formalism for a single scattering
off a point potential. These single scatters are then summed to obtain the so-
lution to the scattering from n potentials. The continuum limit is then taken
to obtain the scattering solution from a continuous interaction.

We first answer a simple question. Given a wave packet, which in the remote
past represented a particle approaching a potential, what does that wave
look like in the remote future? We begin by considering the nonrelativistic
propagator. Huygens’ principle can be written as

ψ(�x ′, t′) = i

∫
d3xG(�x ′, t′; �x, t)ψ(�x, t) for t′ > t, (6.29)

where the integral extends over all space. ψ(�x ′, t′) is the total wave arriving
at the point �x ′ at time t′ and ψ(�x, t) is the original wave. G(�x ′, t′; �x, t) is the
Green function or propagator2. In general, one does not consider stationary
eigenstates of energy, i.e. stationary waves, in scattering problems. Knowledge
of G enables us to construct the physical state which develops in time from any
given initial state. This is equivalent to a complete solution to the Schrödinger
equation.

Consider a free-particle solution φ and its Green function G0. We introduce
a potential V (�x, t) which is “turned on” for a brief interval of time ∆t1 about
t1; V = 0 outside of time ∆t1. V (�x1, t1) acts as a source of new waves, and
we can write

(
i
∂

∂t1
−H0

)
ψ(�x1, t1) = V (�x1, t1)ψ(�x1, t1) for t = ∆t1,

= 0 for t �= ∆t1. (6.30)

2If one is careful with the factors of h̄ and c, there should be a factor of 1/h̄ in front of the
Green function.
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The new wave function can be written as

ψ(�x1, t1) = φ(�x1, t1) + ∆ψ(�x1, t1). (6.31)

Substituting this wave function into equation 6.30 and using the free-particle
Schrödinger equation gives

(
i
∂

∂t1
−H0

)
∆ψ(�x1, t1) = V (�x1, t1)[φ(�x1, t1) + ∆ψ(�x1, t1)]. (6.32)

The second terms on both sides of the equation are smaller than the first
terms on both sides of the equation. This is clear for the right-hand side of
the equation. To see it for the left-hand side, we drop the second term on the
right-hand side and write

i
∂

∂t1
∆ψ(�x1, t1) = V (�x1, t1)φ(�x1, t1) +H0∆ψ(�x1, t1), (6.33)

∆ψ(�x1, t1 + ∆t1) = −i
∫ t1+∆t1

t1

dt′ [V (�x1, t
′)φ(�x1, t

′) +H0∆ψ(�x1, t
′)] .

(6.34)

We see that the last term is less than the first term.
After dropping the second term on both sides of equation 6.32, we have

i
∂

∂t1
∆ψ(�x1, t1) = V (�x1, t1)φ(�x1, t1). (6.35)

To first order,

∆ψ(�x1, t1 + ∆t1) = −iV (�x1, t1)φ(�x1, t1)∆t1. (6.36)

The result shows that the potential produces an additional change in ψ during
∆t1 in addition to that taking place in the absence of V . Since the potential
V (�x1, t1) vanishes after the time interval ∆t1, the scattered wave also propa-
gates according to the free propagator G0. This added wave at a future time
t′ leads to a new contribution to ψ(�x ′, t′),

∆ψ(�x ′, t′) = i

∫
d3x1G0(�x ′, t′; �x1, t1)∆ψ(�x1, t1)

=
∫
d3x1G0(�x ′, t′; �x1, t1)V (�x1, t1)φ(�x1, t1)∆t1. (6.37)

Here we have replaced t1 + ∆t1 by t1, which is justified in the limit ∆t1 → 0.
The space-time coordinate (�x ′, t′) is in the future, (�x1, t1) is the present, and
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(�x, t) is in the past. Thus, the wave ψ developing from an arbitrary wave
packet φ in the remote past is

ψ(�x ′, t′) = φ(�x ′, t′) + ∆ψ(�x ′, t′)

= φ(�x ′, t′) +
∫
d3x1G0(�x ′, t′; �x1, t1)V (�x1, t1)φ(�x1, t1)∆t1 (6.38)

= i

∫
d3xG0(�x ′, t′; �x, t)φ(�x, t)

+
∫
d3xd3x1∆t1G0(�x ′, t′; �x1, t1)V (�x1, t1)G0(�x1, t1; �x, t)φ(�x, t)

= i

∫
d3x[G0(�x ′, t′; �x, t)

+
∫
d3x1∆t1G0(�x ′, t′; �x1, t1)V (�x1, t1)G0(�x1, t1; �x, t)]φ(�x, t).

(6.39)

Therefore, this Green function is the integrand

G(�x ′, t′; �x, t) = G0(�x ′, t′; �x, t)

+
∫
d3x1∆t1G0(�x ′, t′; �x1, t1)V (�x1, t1)G0(�x1, t1; �x, t).

(6.40)

The first term represents the propagation from (�x, t) to (�x ′, t′) as a free parti-
cle. The second term represents propagation from (�x, t) to (�x1, t1), a scattering
at (�x1, t1), and free propagation from (�x1, t1) to (�x ′, t′).

If we turn on another potential V (�x2, t2) for an interval ∆t2 at time t2 > t1,
the additional contribution to ψ(�x ′, t′) for t′ > t2 is, using equation 6.37,

∆ψ(x′) =
∫
d3x2G0(x′; 2)V (2)ψ(2)∆t2 (6.41)

= i

∫
d3x2d

3x∆t2G0(x′; 2)V (2)[G0(2;x)

+
∫
d3x1∆t1G0(2; 1)V (1)G0(1;x)]φ(x), (6.42)

where we have used the obvious notation: (x) ≡ (�x, t) and ψ(2) ≡ ψ(x2).
The first term represents a single scattering at time t2. The second term is a
double scattering.

The total wave is obtained by inserting equation 6.38 for ψ(2) into equa-
tion 6.41 and adding it to φ(x′):
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ψ(x′) = φ(x′) +
∫
d3x1∆t1G0(x′; 1)V (1)φ(1)

+
∫
d3x2∆t2G0(x′; 2)V (2)φ(2)

+
∫
d3x1∆t1d3x2∆t2G0(x′; 2)V (2)G0(2; 1)V (1)φ(1).

(6.43)

The four terms of the above equation are depicted in figure 6.3. As we proceed
through this book, we shall make increasing use of a pictorial representation
for amplitudes. These pictures are called Feynman diagrams (or graphs).

If there are n such time intervals when the potential V is turned on,

ψ(x′) = i

∫
d3xG(x′;x)φ(x)

= φ(x′) +
∑

i

∫
d3xi∆tiG0(x′;xi)V (xi)φ(xi)

+
∑

i,j;ti>tj

∫
d3xi∆tid3xj∆tjG0(x′;xi)V (xi)G0(xi;xj)V (xj)φ(xj)

+
∑

i,j,k;ti>tj>tk

∫
d3xi∆tid3xj∆tjd3xk∆tk

· G0(x′;xi)V (xi)G0(xi;xj)V (xj)G0(xj ;xk)V (xk)φ(xk)
+ · · · . (6.44)

The corresponding Green function is

G(x′;x) = G0(x′;x) +
∑

i

∫
d3xi∆tiG0(x′;xi, ti)V (�xi; ti)G0(�xi, ti;x)

+
∑

i,j;ti>tj

∫
d3xi∆tid3xj∆tj

· G0(x′; �xi, ti)V (�xi; ti)G0(�xi, ti; �xj , tj)V (�xj , tj)G0(�xj , tj ;x)
+ · · · , (6.45)

which is the probability amplitude per unit space-time volume for a particle
wave originating at x to propagate to x′, as depicted in figure 6.4. This
amplitude is a sum of amplitudes, the nth such term being a product of
factors corresponding to figure 6.4. Each line in the figure represents the
amplitude G0(xi;xi−1) that a particle wave originating at xi−1 propagates
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(�x, t)

(�x2, t2)
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c)
�

�

x

t

(�x, t)

(�x1, t1)

(�x2, t2)

(�x ′, t′)

d)

FIGURE 6.3: Space-time diagrams for propagation from (x,t) to (x′,t′) as
a) a free particle, b) with one scattering at (x1,t1), c) with one scattering at
(x2,t2), and d) with double scattering.
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freely to xi. At the point xi it is scattered with probability amplitude per
unit space-time volume V (xi) to a new wave propagating forward in time
with amplitude G0(xi+1;xi) to the next interaction. This amplitude is then
summed over all space-time points in which the interactions can occur.

�

�

x

t

x
x1

x2

x3

x4

xn−1

xn

x′

FIGURE 6.4: nth order contribution to G(x′;x).

We may lift the time-ordering restriction ti > tj , etc., if we define

G+
0 (�x ′, t′; �x, t) =

{
0 for t′ < t
G0(�x ′, t′; �x, t) for t′ > t

(6.46)

and

G+(�x ′, t′; �x, t) =
{

0 for t′ < t
G(�x ′, t′; �x, t) for t′ > t

. (6.47)

Since it only propagates waves forward in time, G+ is a retarded propagator.
Physically this just means that no Huygens’ wavelets ∆ψ from the ith iteration
(at time ti) appear until after ti.

If one wants to describe the evolution backwards in time, it is useful to
introduce the advanced Green function G−:

G−0 (�x ′, t′; �x, t) =
{
−G0(�x ′, t′; �x, t) for t′ < t
0 for t′ > t

(6.48)

and
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G−(�x ′, t′; �x, t) =
{
−G(�x ′, t′; �x, t) for t′ < t
0 for t′ > t

. (6.49)

In the limit of a continuous interaction, ∆t→ dt and n→∞, so that

∑
i

∫
d3x∆ti →

∫
d4x (6.50)

and we obtain

G+(x′;x) = G+
0 (x′;x) +

∫
d4x1G

+
0 (x′;x1)V (x1)G+

0 (x1;x)

+
∫
d4x1d

4x2G
+
0 (x′;x1)V (x1)G+

0 (x1, x2)V (x2)G+
0 (x2;x) + · · · .

(6.51)

This multiple scattering series is assumed to converge and may be summed
to yield

G+(x′;x) = G+
0 (x′;x) +

∫
d4x1G

+
0 (x′;x1)V (x1)G+(x1;x). (6.52)

This is the inhomogeneous Lippmann-Schwinger equation3. We have ignored
the possibility of bound states in the potential V .

Similarly the series for the wave function ψ(x′) can be summed, resulting
in

ψ(x′) = lim
t→−∞

i

∫
d3xG+(x′;x)φ(x)

= lim
t→−∞

i

∫
d3x

[
G+

0 (x′;x) +
∫
d4x1G

+
0 (x′;x1)V (x1)G+(x1;x)

]
φ(x)

= φ(x′) + lim
t→−∞

∫
d4x1G

+
0 (x′;x)V (x1)i

∫
d3xG+(x1;x)φ(x)

= φ(x′) +
∫
d4x1G

+
0 (x′;x1)V (x1)ψ(x1). (6.53)

This is the integral equation for ψ(x′), where the second term is the scattered
wave. The integral equations 6.52 and 6.53 are more useful than the original
Schrödinger differential equation. They allow a systematic approximation

3B.A. Lippmann & J. Schwinger, “Variational Principles for Scattering Processes. I”, Phys.
Rev. 79 (1950) 469-480.
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to be made in the case of weak perturbations, that is, a small perturbation
potential V . Moreover, one can easily impose the correct boundary conditions
when using integral equations.

It should be noted that not only does G+
0 (x′;x) vanish for t′ < t, but

also G+(x′, x). This property of the retarded Green function expresses the
principle of causality.

If the infinite series is truncated after a finite number of terms, equation 6.51
allows us to calculate G+ as a function of V and G+

0 . Given G+, one can
immediately solve the initial value problem. The wave function ψ(�x ′, t′) is
obtained by a simple integration according to equation 6.53 if it is known at
some former point in time.

6.5 The Nonrelativistic Propagator

Our goal in this section is to investigate the differential equation which
defines G, and in particular to solve for G0 explicitly, so that the expansion
of G can be explicitly carried out. From Huygens’ principle,

ψ(�x ′, t′) = i

∫
d3xG(�x ′, t′; �x, t)ψ(�x, t) for t′ > t. (6.54)

A form valid for all time is

θ(t′ − t)ψ(x′) = i

∫
d3xG+(x′;x)ψ(x). (6.55)

Using the chain rule and the fact that ψ(x′) satisfies the Schrödinger equation,
we have

[
i
∂

∂t′
−H(x′)

]
θ(t′ − t)ψ(x′) =

[
i
∂

∂t′
θ(t′ − t)

]
ψ(x′). (6.56)

Since (see problem 6.8)

dθ(τ)
dτ

= δ(τ), (6.57)

we have

[
i
∂

∂t′
−H(x′)

]
θ(t′ − t)ψ(x′) = iδ(t′ − t)ψ(x′). (6.58)

Substituting the right-hand side of equation 6.55 for θ(t′ − t)ψ(x′), we have
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i

∫
d3x

[
i
∂

∂t′
−H(x′)

]
G+(x′;x)ψ(x)

= iδ(t′ − t)ψ(x′)

= i

∫
d3xδ(t′ − t)δ3(�x′ − �x)ψ(x). (6.59)

Equating integrals,

[
i
∂

∂t′
−H(x′)

]
G+(x′;x) = δ(t′ − t)δ3(�x ′ − �x) = δ4(x′ − x) (6.60)

is the Green-function equation in the Schrödinger theory. Along with the
boundary conditions G(x′;x) = 0 for t′ < t this defines the retarded Green
function.

The Green function G+(x′;x) can depend only on the difference of the
coordinates (x′, t′) and (x, t). This is because the wave at (�x ′, t′) emerging
from a unit source at �x, which is turned on at t, depends only on the interval
(�x ′ − �x, t′ − t).

Consider the Fourier transform of G+
0 ,

G+
0 (x′;x) = G+

0 (x′ − x) =
∫
d3pdω

(2π)4
ei�p·(�x ′−�x)e−iω(t′−t)G+

0 (�p, ω) (6.61)

and the free-particle Hamiltonian H0(x′) = −∇2
x′/2m. The free-particle

Schrödinger equation for the Green function can be solved by substituting
this Fourier transform into equation 6.60, performing the differentiations, and
representing the delta function as a Fourier transform:(

i
∂

∂t′
+

1
2m
∇2

x′

)
G+

0 (x′;x) = δ4(x′ − x), (6.62)

∫
d3pdω

(2π)4

(
ω − p2

2m

)
G+

0 (�p, ω)e−iω(t′−t)+ip·(�x ′−�x)

=
∫
d3pdω

(2π)4
e−iω(t′−t)+ip·(�x ′−�x)

(6.63)

and hence for ω �= p2/2m,

G+
0 (�p, ω) =

1
ω − p2/2m

. (6.64)
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To complete the expression, we must have a rule for handling the singularity.
We will see that the retarded boundary condition

G(x′;x) = 0 for t′ < t (6.65)

requires us to add a positive infinitesimal imaginary part iε (ε is a real con-
stant) to the denominator. Substituting equation 6.64 into equation 6.61, we
have

G+
0 (x′ − x) =

∫
d3p

(2π)3
ei�p·(�x ′−�x)

∫ ∞
−∞

dω

2π
e−iω(t′−t)

ω − p2/2m+ iε

=
∫

d3p

(2π)3
ei�p·(�x ′−�x)

∫
dω

2π
e−i(ω+p2/2m)(t′−t)

ω + iε

=
∫

d3p

(2π)3
ei�p·(�x ′−�x)e−i(p2/2m)(t′−t)

∫
dω

2π
e−iω(t′−t)

ω + iε
. (6.66)

The integral over ω is evaluated as a contour integral in the complex ω-plane
as shown in figure 6.5. For t′ > t, the contour may be closed along an
infinite semicircle below the real axis in order to ensure exponential damping
of the integrand, and the value of the integral is −i by Cauchy’s theorem
(equation 2.35). For t > t′, the contour is closed above the real axis and
the integral vanishes because the pole at −iε lies outside the contour. The
integral is thus just −i times the step function.

�

�

�[ω]

�[ω]

−ε

t > t′

t′ > t

FIGURE 6.5: Contour in the complex ω-plane for integrating the unit step
function.

Continuing our previous integration, equation 6.66, we have

G+
0 (x′ − x) =

∫
d3p

(2π)3
ei�p·(�x ′−�x)e−i(p2/2m)(t′−t)(−i)θ(t′ − t)
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= −iθ(t′ − t)
∫
d3p

ei�p·�x ′−i(p2/2m)t′

(2π)3/2

e−i�p·�x+i(p2/2m)t

(2π)3/2

= −iθ(t′ − t)
∫
d3p

ei(�p·�x ′−ωt′)

(2π)3/2

e−i(�p·�x−ωt)

(2π)3/2

= −iθ(t′ − t)
∫
d3pφp(�x ′, t′)φ∗p(�x, t), (6.67)

where the subscript p stands for plane waves.
The plane-wave solutions arise in equation 6.67 because we are considering

the special case of the free-particle propagator. In general,

G+(x′;x) = −iθ(t′ − t)
∑

n

ψn(�x ′, t′)ψ∗n(�x, t), (6.68)

where
∑

n is a generalized sum and integral over the spectrum of quan-
tum numbers n and ψn(x) is a complete set of normalized solutions to the
Schrödinger equation, which satisfy the completeness (or closure) statement∑

n

ψn(�x ′, t)ψ∗n(�x, t) = δ3(�x− �x ′). (6.69)

The Green function G+(�x ′, t′; �x, t) defined by equation 6.68 has different
times t′ and t, yet the completeness relationship 6.69 has equal time t. At
first this may appear troublesome, but we can show that equation 6.68 does
indeed satisfy equation 6.60.

(
ih̄

∂

∂t′
− Ĥ(x′)

)
G+(x′;x)

=
(
ih̄

∂

∂t′
− Ĥ(x′)

)(
−iθ(t′ − t)

∑
n

φ∗n(�x, t)φn(�x ′, t′)

)

= −i
(
ih̄

∂

∂t′
θ(t′ − t)

)∑
n

φ∗n(�x, t)φn(�x ′, t′)

−iθ(t′ − t)
∑

n

φ∗n(�x, t)
(
ih̄

∂

∂t′
− Ĥ(x′)

)
φ(�x ′, t′)

= h̄δ(t′ − t)
∑

n

φ∗n(�x, t)φn(�x ′, t′)

= h̄δ(t′ − t)
∑

n

φ∗n(�x, t)φn(�x ′, t)

= h̄δ(t′ − t)δ3(�x− �x ′) = h̄δ4(x− x′). (6.70)

The Schrödinger equation has been used in the second step to eliminate the
second term. In the fourth step, t′ has been set equal to t because of the delta
function.
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There is an enormous amount of information contained in G+(x′;x). All the
solutions of the Schrödinger equation, including the bound states, as required
in the completeness relationship, appear with equal weight. It is no wonder
that G is difficult to compute.

The same Green function which propagates a solution of the Schrödinger
equation forward in time also propagates its complex conjugate solution back-
wards in time. To see this from equation 6.68, we write

i

∫
d3xG+(x′;x)ψn(x) = θ(t′ − t)

∑
m

ψm(x′)
∫
d3xψ∗m(x)ψn(x)

= θ(t′ − t)ψn(x′) (6.71)

and

i

∫
d3x′ψ∗m(x′)G+(x′;x) = θ(t′ − t)

∑
n

ψ∗n(x)
∫
d3x′ψn(x′)ψ∗m(x′)

= θ(t′ − t)ψ∗m(x). (6.72)

6.6 Propagator in Relativistic Theory

We now generalize our propagator development of the nonrelativistic theory
and apply it to the relativistic theory. Our starting point is provided by
the picture of the nonrelativistic G(x′;x) in figure 6.4. One may say the
interaction at the ith point, or vertex, destroys the particle propagating up
to xi and creates a particle which propagates on to xi+1, with ti+1 ≥ ti.

In the relativistic case, there are not only the scattering processes, but also
the pair creation and annihilation processes shown in figure 6.6. Diagram 6.6a
shows the production of an electron-positron pair by a potential acting at
point 1; the two particles of the pair then propagate to points x and x′.
Diagram 6.6b shows an electron originating at x and ending up at x′. Along
the way, a pair is produced by a potential acting at 1; the positron of the
pair annihilates an initial electron in the field at 2; the electron of the pair
propagates up to point 3, where it is destroyed by the potential. The potential
at 3 creates an electron which propagates to x′. Diagram 6.6c shows a pair
produced at 1, both propagating up to 2, and then being destroyed in the
field there.

In the relativistic theory, we need not only the amplitude for an electron to
be created, to propagate, and to be destroyed as in the nonrelativistic case,
but also the amplitude for a positron to be created, to propagate, and to be
destroyed. Once the positron amplitude is found, we may then attempt to
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FIGURE 6.6: Examples of space-time diagrams in relativistic theory for
a) pair production, b) scattering, and c) a closed loop.

associate a probability amplitude with each process: pair production, scatter-
ing, and annihilation, and to construct the total amplitude for any particular
process, by summing or integrating over all the intermediate paths which can
contribute to the process.

We may determine the positron amplitude in accordance with the hole
theory. Since the existence of a positron is associated with the absence of a
negative-energy electron from the filled sea, we may view the destruction of a
positron as equivalent to the creation of a negative-energy electron.

In addition to electron paths which zigzag forward and backwards in space-
time, there is also the possibility of closed loops (figure 6.6c). Processes
such as these may not simply be ignored. The formalism requires them and
experiments verify their existence.
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6.7 Propagator for the Klein-Gordon Equation

Having developed the nonrelativistic propagator, we now turn to the de-
velopment of the relativistic propagators. To delay the slight complication
introduced by the Dirac matrices, we first develop the Klein-Gordon propa-
gator. We will only consider the free-particle Klein-Gordon propagator.

The free-particle Klein-Gordon propagator �F (x′ − x) is defined to satisfy
the Green-function equation

(�x′ +m2)�F (x′ − x) = −δ4(x′ − x). (6.73)

The minus sign on the right-hand side of equation 6.73 is chosen by convention
since equation 4.61 also has a minus sign on the right-hand side. In addition
to satisfying equation 6.73, the propagator must also only propagate positive-
energy solutions forward in time and only propagate negative-energy solutions
backwards in time.

Rather than solve the Green-function equation in configuration space, we
work in momentum space. The momentum-space representation will be to-
tally adequate for our purposes since we will never require the explicit form
of the propagators in configuration space.

The Fourier transform of the momentum-space propagator �̃F (p) in con-
figuration space is

�F (x′ − x) =
∫

d4p

(2π)4
e−ip·(x′−x)�̃F (p). (6.74)

Substituting this Fourier transform into equation 6.73, performing the differ-
entiations, and representing the delta function as a Fourier transform gives∫

d4p

(2π)4
(p2 −m2)e−p·(x′−x)�̃F (p) =

∫
d4p

(2π)4
e−ip·(x′−x). (6.75)

Equating integrands gives

�̃F (p) =
1

p2 −m2
, (6.76)

provided p2 �= m2. There is a singularity at p2 − m2 = p2
0 − �p 2 − m2 = 0

or in other words, when p0 = ±
√
�p 2 +m2 = ±E. This means that the

particle represented by the Green function is off mass-shell, and p0 and E
are independent variables. The origin of negative-energy waves in relativistic
propagator theory is the pole at p0 = −E, which was not present in the
nonrelativistic theory.

A prescription for how to handle the singularities is needed to complete the
definition of the propagator. The interpretation given to the Green function
�F (x′ − x) is that it represents the wave produced at the point x′ by a unit



Propagator Methods 165

source located at x. A necessary physical requirement is that the wave prop-
agating from x into the future consists only of positive-energy components.
The boundary conditions on the integration of �F (x′ − x) can provide this
requirement.

One can evaluate �F (x′ − x) by Cauchy integration in the p0-plane. We
perform the p0 integration along the contour in the complex p0-plane, which is
infinitesimally close to the real axis and avoids the poles at p0 = ±E in some
way. As shown in figure 6.7, we close the contour with a semicircle at infinity:
above for t > t′ and below for t′ > t. This causes the exponential to vanish
in the limit �[p0] → ±∞. Only the positive pole contributes for t′ > t and
only the negative pole contributes for t > t′. After the contour integration
has been performed, one must take the limit as the contour approaches the
real axis and the enclosed semicircle approaches infinity along the imaginary
axis.

For t′ > t, the contour is closed in the lower half-plane and includes the
positive-energy pole at p0 = +

√
�p 2 +m2 only. The factor e−ip0(t′−t) in the

integrand will vanish as �(p0) → −∞, if t′ > t. Performing the integral in
this case, we have

�F (x′ − x) =
∫

C

d4p

(2π)4
e−ip·(x′−x)

p2 −m2

= lim
ε→0

[∫ 0−iε

−∞−iε

d4p

(2π)4
e−ip·(x′−x)

p2 −m2
+
∫ +∞+iε

0+iε

d4p

(2π)4
eip·(x′−x)

p2 −m2

]

=
∫

d3p

(2π)3
ei�p·(�x ′−�x)

∮
C

dp0

2π
e−ip0(t

′−t)

p2 −m2

=
∫

d3p

(2π)3
ei�p·(�x ′−�x)

∮
C

dp0

2π
e−ip0(t′−t)

(p0 + E)(p0 − E)
. (6.77)

Using Cauchy’s integral formula (equation 2.35) for the pole at p0 = E gives

�F (x′ − x) = −
∫

d3p

(2π)3
ei�p·(�x ′−�x) ie

−iE(t′−t)

2E
, (6.78)

where the minus sign comes from the clockwise direction of the contour en-
closing the pole.

For t > t′, the contour is closed in the upper half-plane and includes the
negative-energy pole at p0 = −

√
�p 2 +m2. The factor e−ip0(t′−t) in the inte-

grand will vanish as �(p0) → +∞, if t > t′. Performing the integral in this
case, we have

�F (x′ − x) = −
∫

d3p

(2π)3
ei�p·(�x ′−�x) ie

iE(t′−t)

2E
. (6.79)

Notice that the only difference between the result of the two integrations is
the sign of E in the exponential.
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FIGURE 6.7: The causal contours in the complex p0-plane used for inte-
gration of the Klein-Gordon propagator.

We point out that any other choice of the integration contour, for example
those shown in figure 6.8, would lead to contributions from negative-energy
waves propagating into the future (figure 6.8a) or positive-energy waves prop-
agating into the past (figure 6.8b) (see problem 6.9).

An equivalent procedure for performing the integration along the real axis
is to displace the poles slightly away from the axis by a small real number ε:

p0 − E → p0 − E + iε,

p0 + E → p0 + E − iε. (6.80)

This procedure is shown in figure 6.9 (see problem 6.10). After the integration
one takes the limit as the poles approach the real axis (ε→ 0).
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FIGURE 6.8: Integration contours which do not lead to physical solutions.

The procedure of displacing the poles from the real axis is equivalent to
adding a small positive imaginary part +iε to the denominator of the propa-
gator and taking ε→ 0 at the end of the calculation:

�F (x′ − x) =
∫

d4p

(2π)4
e−ip·(x′−x) 1

p2 −m2 + iε
. (6.81)

Then the singularity corresponding to positive-energy states is

p0 = +
√
�p 2 +m2 − iε = +

√
�p 2 +m2 − iε′, (6.82)

which lies below the real p0-axis, while the pole corresponding to negative-
energy states is
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C

FIGURE 6.9: Displacing the poles away from the real axis allows the in-
tegration to be carried out along the real axis in the complex p0-plane.

p0 = −
√
�p 2 +m2 − iε = −

√
�p 2 +m2 + iε′, (6.83)

which is located above the p0-axis, as required, ε′ is another small positive
real number.

This prescription is most easily remembered in the form of a rule: to ensure
the correct boundary conditions, the mass has to be given a small negative
imaginary part (m→ m− iε). Writing it this way, we have

p2 −m2 → p2 − (m− iε)2

≈ p2 −m2 + 2imε
= p2 −m2 + iε′, (6.84)

where ε′ = 2mε.
Returning to our two propagator solutions (equations 6.78 and 6.79), we

can combine them into one form by using the step functions θ to give

�F (x′ − x) = − i

∫
d3p

(2π)32E
ei�p·(�x ′−�x)e−iE(t′−t)θ(t′ − t)

− i

∫
d3p

(2π)32E
ei�p·(�x ′−�x)e+iE(t′−t)θ(t− t′). (6.85)

Using the normalized plane-wave solutions (equation 4.22), we can write
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�F (x′ − x) = −
∫
d3pφ(+)

p (x′)φ(+)
p

∗
(x)θ(t′ − t)

−
∫
d3pφ(−)

p (x′)φ(−)
p

∗
(x)θ(t − t′). (6.86)

The propagator now consists of a term (first term) propagating positive-energy
solutions and another term (second term) propagating negative-energy solu-
tions. The step functions ensure that the positive-energy solutions are prop-
agated forward in time and the negative-energy solutions backwards in time.

When propagating waves in the Klein-Gordon theory, the operator i
↔
∂ 0

is sandwiched between the propagator and the wave function to allow the
orthogonality and normalization conditions (equations 4.46 and 4.47) to be
used.

Consider a general wave,

φ(x) = φ(+)(x)+φ(−)(x) =
∫
d3ka+(k)φ(+)

k (x)+
∫
d3ka−(k)φ(−)

k (x), (6.87)

consisting of positive- and negative-energy components. Propagating the
positive-energy component gives

∫
d3x�F (x′ − x)i

↔
∂ 0 φ

(+)(x)

= −i
∫
d3xd3p

[
φ(+)

p (x′)φ(+)
p

∗
(x)θ(t′ − t)

+ φ(−)
p (x′)φ(−)

p

∗
(x)θ(t − t′)

] ↔
∂ 0

∫
d3ka+(k)φ(+)

k (x). (6.88)

Using the orthonormal relationships (equations 4.46 and 4.47) gives

∫
d3x�F (x′ − x)i

↔
∂ 0 φ

(+)(x) = −i
∫
d3pd3ka+(k)θ(t′ − t)φ(+)

p (x′)δ3(�p− �k)

= −iθ(t′ − t)
∫
d3pa+(p)φ(+)

p (x′)

= −iθ(t′ − t)φ(+)(x′). (6.89)

Similarly for the negative-energy component,

∫
d3x�F (x′ − x)i

↔
∂ 0 φ

(−)(x)

= −i
∫
d3xd3p

[
φ(+)

p (x′)φ(+)
p

∗
(x)θ(t′ − t)



170 Practical Quantum Electrodynamics

+ φ(−)
p (x′)φ(−)

p

∗
(x)θ(t − t′)

] ↔
∂ 0

∫
d3ka−(k)φ(−)

k (x)

= i

∫
d3pd3ka+(k)θ(t− t′)φ(−)

p (x′)δ3(�p− �k)

= iθ(t− t′)
∫
d3pa+(p)φ(−)

p (x′)

= iθ(t− t′)φ(−)(x′). (6.90)

Thus �F (x′ − x) propagates only the positive-energy part of a general wave
function forward in time and the negative-energy part backwards in time, as
required. The occurrence of a relative minus sign between equations 6.89 and
6.90 results from the difference in the direction of propagation in time.

6.8 Propagator for the Dirac Equation

The relativistic Dirac propagator SF (x′, x;A) is defined to satisfy a Green-
function equation

[
γµ

(
i
∂

∂x′µ
− eAµ(x′)

)
−m

]
αλ

SFλβ
(x′, x;A) = δαβδ

4(x′ − x). (6.91)

The Dirac propagator is a 4×4 matrix corresponding to the dimensionality of
the gamma matrices. Note that the definition of the Dirac propagator differs
from the nonrelativistic counterpart; the differential operator i∂t′ − Ĥ(x′)
has been multiplied by γ0 to form the covariant operator i � ∂ ′ − e �A′ − m.
Suppressing the matrix indices, we have

(ˆ�p ′ − e �A′ −m)SF (x′, x;A) = δ4(x′ − x). (6.92)

We can compute the free-particle propagator SF (x′, x) using

(ˆ�p ′ −m)SF (x′;x) = δ4(x′ − x), (6.93)

and Fourier transforming to momentum space. SF (x′;x) depends only on the
interval (x′−x). This property is a manifestation of the homogeneity of space
and time, and in general would not be valid for the interacting propagator
SF (x′, x;A). We try

SF (x′;x) = SF (x′ − x) =
∫

d4p

(2π)4
e−ip·(x′−x)SF (p). (6.94)

This gives
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(�p−m)αλSFλβ
(p) = δαβ . (6.95)

Solving for the Fourier amplitude SF (p) and suppressing matrix indices, we
find

SF (p) =
1

�p−m ≡
�p+m

p2 −m2
for p2 �= m2. (6.96)

A prescription for how to handle the singularity at p2 = m2 or p0 = ±E =
±
√
�p 2 +m2 is needed. This comes from the boundary conditions put on

SF (x′ − x) in the integration.
The interpretation given to the Green function SF (x′ − x) is that it repre-

sents the wave produced at the point x′ by a unit source located at the point
x. The Fourier components of such a localized point source contain many mo-
menta larger than m, the reciprocal of the electron Compton wavelength, and
we expect that electrons as well as positrons may be created at x by the source.
However, a necessary physical requirement of the hole theory is that the wave
propagating from x into the future consist only of positive-energy electron
and positron components. Since positive-energy electrons and positrons are
represented by wave functions with positive energy-time behavior, SF (x′−x)
can contain in the future x′0 > x0 only positive-energy components.

We perform the p0 integration along the contour in the complex p0-plane.
For t′ > t, the contour is closed in the lower half-plane and includes the
positive-energy pole at p0 = +

√
�p 2 +m2 = +E only. This gives

SF (x′ − x) =
∫

d3p

(2π)3
ei�p·(�x ′−�x)

∮
dp0

2π
e−ip0(t′−t)

p2 −m2
(�p+m)

= −i
∫

d3p

(2π)3
ei�p·(�x ′−�x)e−iE(t′−t)Eγ0 − �p · �γ +m

2E
for t′ > t,

(6.97)

so that the wave at (�x ′, t′) contains positive-energy components only. For
t′ < t, the contour can be closed above the real axis, including the pole at
p0 = −

√
�p 2 +m2 = −E. This gives

SF (x′ − x) = −i
∫

d3p

(2π)3
ei�p·(�x ′−�x)e+iE(t′−t)−Eγ0 − �p · �γ +m

2E
for t′ < t,

(6.98)
showing that the propagator consists of negative-energy waves for t′ < t.
Any other choice of contours leads to negative-energy waves propagating into
the future or positive-energy waves propagating into the past. Moreover, the
negative-energy waves propagating into the past that we have just found are
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welcome; they are the positive-energy positrons. The origin of the negative-
energy waves is the pole at p0 = −

√
�p 2 +m2, which was not present in the

nonrelativistic theory.
The choice of the contour is summarized by adding a small positive imag-

inary part to the denominator, or simply taking m2 → m2 − iε, where the
limit ε→ 0 is understood:

SF (x′ − x) =
∫

d4p

(2π)4
e−ip·(x′−x)

p2 −m2 + iε
(�p+m). (6.99)

The two integrations (equations 6.97 and 6.98) can be combined by changing
the dummy variable �p to −�p in the negative-energy part, and introducing
projection operators:

SF (x′ − x) = −i
∫

d3p

(2π)3
m

E

[
Λ+(p)e−ip·(x′−x)θ(t′ − t)

+Λ−(p)eip·(x′−x)θ(t− t′)
]
, (6.100)

with p0 = E > 0.
Equivalently, in terms of normalized plane-wave solutions, we find

SF (x′ − x) = −iθ(t′ − t)
∫
d3p

2∑
r=1

ψr
P (x′)ψ

r

P (x)

+iθ(t− t′)
∫
d3p

4∑
r=3

ψr
P (x′)ψ

r

P (x). (6.101)

We see that SF (x′ − x) carries the positive-energy solutions ψ(+) forward in
time and the negative-energy ones ψ(−) backwards in time:

θ(t′ − t)ψ(+)(x′) = i

∫
d3xSF (x′ − x)γ0ψ

(+)(x), (6.102)

θ(t− t′)ψ(−)(x′) = −i
∫
d3xSF (x′ − x)γ0ψ

(−)(x). (6.103)

The minus sign in the second equation results from the difference in the di-
rection of propagation in time between equations 6.102 and 6.103.

The propagator SF (x′ − x) is known as the Feynman propagator. As a
matter of interest, this spin-1/2 propagator is related to the Klein-Gordon
propagator by

SF (x′ − x) = (i �∂ −m)∆F (x′ − x). (6.104)
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From the free propagator SF (x′ − x), we may formally construct the com-
plete Green function and amplitudes for various scattering processes of elec-
trons and positrons in the presence of potentials. The exact Feynman propa-
gator SF (x′, x;A) satisfies equation 6.92 and can be expressed in terms of a
superposition of free Feynman propagators:

(ˆ�p ′ − e �A′ −m)SF (x′, x;A) = δ4(x′ − x), (6.105)

(ˆ�p ′ −m)SF (x′, x;A) = δ4(x′ − x) + e �A′SF (x′, x;A) (6.106)

=
∫
d4yδ4(x′ − y)[δ4(y − x) + e �A(y)SF (y, x;A)]

=
∫
d4y(ˆ�p ′ −m)SF (x′; y)

· [δ4(y − x) + e �A(y)SF (y, x;A)], (6.107)

SF (x′, x;A) =
∫
d4ySF (x′ − y)[δ4(y − x) + e �A(y)SF (y, x;A)]

= SF (x′ − x) + e

∫
d4ySF (x′ − y) �A(y)SF (y, x;A). (6.108)

This is the relativistic counterpart of the Lippmann-Schwinger equation. An-
other notation for SF (x′, x;A) is SF (x′;x;A). The integral equation 6.108
determines the complete propagator SF (x′;x;A) in terms of the free-particle
propagator SF (x′;x).

Proceeding analogously to the nonrelativistic treatment (equation 6.51),
the iteration of the integral equation yields the following multiple scattering
expansion

SF (x′, x;A) = SF (x′ − x) (6.109)

+ e

∫
d4x1SF (x′ − x1) �A(x1)SF (x1 − x)

+ e2
∫
d4x1d

4x2SF (x′ − x1) �A(x1)SF (x1 − x2) �A(x2)SF (x2 − x)

+ · · · . (6.110)

In analogy to equation 6.53, the exact solution of the Dirac equation

(�p−m)Ψ(x) = e �A(x)Ψ(x) (6.111)

is completely determined in terms of SF if one imposes the boundary condi-
tions of Feynman and Stückelberg. If ψ(x) is the solution of the free Dirac
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equation, i.e. of the homogeneous version, and the potential V (x) occurring
in equation 6.53 is replaced by e �A(x), we have

Ψ(x) = lim
t′→−∞

∫
d4x′SF (x, x′;A)ψ(x′)

= lim
t′→−∞

∫
d4x′[SF (x− x′) +

∫
d4ySF (x− y)e � A(y)SF (y − x′)]ψ(x′)

= ψ(x) + lim
t′→−∞

∫
d4ySF (x− y)e � A(y)

∫
d4x′SF (y − x′)ψ(x′),

Ψ(x) = ψ(x) + e

∫
d4ySF (x− y) �A(y)Ψ(y) . (6.112)

The scattering wave contains only positive energies in the future and negative
energies in the past:

Ψ(x)− ψ(x)→
∫
d3p

2∑
r=1

ψr
P (x)[−ie

∫
d4yψ

r

P (y) �A(y)Ψ(y)] as t→ +∞

(6.113)
and

Ψ(x)− ψ(x)→
∫
d3p

4∑
r=3

ψr
P (x)[+ie

∫
d4yψ

r

P (y) �A(y)Ψ(y)] as t→ −∞.

(6.114)

6.9 S -Matrix

In a scattering process, we may mathematically view the initial incoming
state as being transformed into the final outgoing state by a transformation
matrix. The S-matrix (or scattering matrix) is the matrix which transforms
an incoming state into an outgoing scattered state. We develop the S-matrix
by first considering the nonrelativistic case and then the relativistic case.

In order to define properly the scattering problem, there should be no in-
teraction at the initial time,

lim
t→−∞

V (�x, t) = 0, (6.115)

so that φ(�x, t) is a solution of the free-particle wave equation which incorpo-
rates the required initial conditions. The exact incoming wave ψ(�x, t) becomes
the incoming wave φ(�x, t) in the limit t→ −∞:
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lim
t→−∞

ψ(�x, t) = φ(�x, t). (6.116)

We are primarily interested in the form of the scattered wave as t′ →∞, and
assume the potential vanishes after a certain time:

lim
t′→∞

V (�x ′, t′) = 0. (6.117)

In this limit, the particle emerges from the interaction region, and ψ(�x ′, t′)
becomes a different solution of the free-particle wave equation. All information
about the scattered wave may be obtained from the probability amplitude for
the particle to arrive in various final free states φf (�x ′, t′) as t′ → ∞, for a
given incident wave φi(�x, t).

Let ψ(+)
i (�x, t) be a solution of equation 6.38, which reduces to a plane wave

of momentum �k as t→ −∞. The superscript (+) over ψi is meant to express
the fact that we are dealing with a wave which propagates into the future. The
probability amplitude for a given pair of wave functions (f, i) is an element
of the S-matrix:

Sfi = lim
t′→∞

〈φf (�x ′, t′)|ψ(+)
i (�x ′, t′)〉

= lim
t′→∞

∫
d3x′φ∗f (�x ′, t′)ψ(+)

i (�x ′, t′)

= lim
t′→∞

lim
t→−∞

i

∫
d3x′φ∗f (�x ′, t′)

∫
d3xG+(�x ′, t′; �x, t)φi(�x, t)

= lim
t′→∞

∫
d3x′φ∗f (�x ′, t′)

[
φi(�x ′, t′)

+
∫
d4xG+

0 (�x ′, t′; �x, t)V (�x, t)ψ(+)
i (�x, t)

]
= δ3(�kf − �ki)

+ lim
t′→∞

∫
d3x′d4xφ∗f (�x ′, t′)G+

0 (�x ′, t′; �x, t)V (�x, t)ψ(+)
i (�x, t).

(6.118)

We may expand ψ
(+)
i (�x, t) in a multiple scattering series by iteration of

equation 6.38, and thus express the S-matrix as a multiple scattering series.
If we insert ψ(+)

i (�x, t) from the iterated solution of equation 6.112, we get an
expression for the S-matrix in terms of multiple scattering events:

Sfi = δ3(�kf − �ki) + lim
t′→∞

∫
d3x′d4xφ∗f (�x ′, t′)G+

0 (�x ′, t′; �x, t)V (�x, t)φi(�x, t)

+ lim
t′→∞

∫
d3x′d4x1d

4xφ∗f (�x ′, t′)G+
0 (�x ′, t′; �x1, t1)V (�x1, t1)
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· G+
0 (�x1, t1; �x, t)V (�x, t)φi(�x, t) + · · · . (6.119)

The first term – the delta function – does not describe scattering but charac-
terizes the particle flux without scattering. The second term represents single
scattering, the third term double scattering, etc. The terms are coherently
summed4 to give the total S-matrix element.

For the relativistic Dirac case, the S-matrix elements are defined in the
same manner as in the nonrelativistic case. Defining ψf (x) as the final-state
free wave with the quantum numbers f that is observed at the end of the
scattering process, we infer

Sfi = lim
t→±∞

〈ψf (x)|Ψi(x)〉

= lim
t→±∞

〈ψf (x)|ψi(x) +
∫
d4ySF (x− y)e �A(y)Ψi(y)〉. (6.120)

Here the limit t → +∞ is understood if ψf (x) describes an electron and
t→ −∞ if ψf (x) describes a positron, since the latter is considered a negative-
energy electron moving backwards in time.

For electron scattering, we have

Sfi = δfi − ie lim
t→+∞

〈ψf (x)|
∫
d3p

2∑
r=1

ψr
p(x)

∫
d4yψ

r

p(y) �A(y)Ψi(y)〉, (6.121)

while positron scattering is described by

Sfi = δfi + ie lim
t→−∞

〈ψf (x)|
∫
d3p

4∑
r=3

ψr
p(x)

∫
d4yψ

r

p(y) �A(y)Ψi(y)〉. (6.122)

The
∫
d3x integral, implied by the angular brackets, projects out just that

state ψr
p(x) whose quantum numbers agree with ψf (x). All other terms of

the integral-sum
∫
d3p

∑
r do not contribute. For electron scattering (equa-

tion 6.121), this yields

Sfi = δfi − ie
∫
d4yψf (y) �A(y)Ψi(y) (6.123)

and a similar expression for positron scattering. Both results can be combined
by defining εf = +1 for positive-energy waves in the future and εf = −1 for
negative energy waves in the past:

4By coherent we mean that the amplitudes are summed and then squared. By incoherent
we mean that the amplitudes are squared and then summed.
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Sfi = δfi − ieεf
∫
d4yψf (y) �A(y)Ψi(y) , (6.124)

where Ψi(x) stands for the incoming wave, which either reduces at y0 → −∞
to an incident positive-energy wave ψi carrying quantum number i, or at
y0 → +∞ to an incident negative-energy wave propagating into the past with
quantum number i, according to Feynman-Stückelberg boundary conditions.

Equations 6.112 and 6.124 contain the rules for calculating the pair pro-
duction and annihilation amplitudes, as well as, the “ordinary” scattering
process. In practice, we shall usually calculate only the first non-vanishing
contribution – lowest-order in e – to the S-matrix for a given interaction. The
validity of this procedure depends on the weakness of the interaction eA and
the rapid convergence of the series in powers of the interaction strength.

The application of the theory to specific systems is considerably simplified
by the symmetry properties of the S-matrix under charge conjugation. For
example, the matrix elements of charge-conjugated processes are equal to
those of the non-charge-conjugated processes (see problem 6.17). This means
the photon-positron scattering cross section is equal to the photon-electron
scattering cross section. The cross section for electron-electron collisions is
also valid for positron-positron collisions. These two examples show that the
charge symmetry of the theory considerably reduces the number of processes
which must be calculated.

The S-matrix is unitary by construction – if the interaction Hamiltonian is
hermitian (see problem 6.18). If we start directly with an assumed interaction
Hamiltonian then we do not know if the resulting S-matrix is unitary. This
is truly important, because unitarity implies conservation of probability, and
probability is the link between the formalism and physical reality. If unitarity
is violated, then we have nothing that can be interpreted as probability and the
link to observed processes disappears. In any case, properties like unitarity,
Lorentz invariance, locality, etc. must be the framework within which the
theory is formulated.

6.9.1 Electron Scattering

Consider ordinary scattering of electrons. In this case,

Ψi(y)
y0→−∞=⇒ ψ

(+E)
i (y) =

1
(2π)3/2

√
m

E−
u(p−, s−)e−ip−·y (6.125)

reduces to an incoming electron wave with positive energy E−, momentum �p−,
and spin s−. The minus sign designates the negative charge of the electron.

The nth order contribution to the S-matrix element is

S
(n)
fi = −ien

∫
d4y1 · · · d4ynΨ

(+E)

f (yn) �A(yn)SF (yn − yn−1) �A(yn−1)
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· · · SF (y2 − y1) �A(y1)ψ
(+E)
i (y1). (6.126)

This expression contains both types of diagrams as shown in figure 6.10. That
is, in addition to ordinary scattering, intermediate pair creation and pair
annihilation are included in the series, since the various d4yi integrations also
allow for a reverse time ordering, y0

n+1 < y0
n.

6.9.2 Positron Scattering

Consider positron scattering, which, in lowest order in eA, is represented by
either of the two equivalent diagrams shown in figure 6.11. The incident wave
is an electron of negative energy labeled by quantum numbers (−�p+,−s+) and
εf = −1. The final state (outgoing wave) is also represented as a negative-
energy electron.

Arrows on a world line in a Feynman diagram keep track of the entry and
exit at each vertex. An arrow forward in time implies positive energy, while
an arrow backwards in time signifies negative energy. There is no distinction
between particle and antiparticle propagators since the Feynman prescription
describes both simultaneously.

6.9.3 Pair Creation

Next, consider pair production as shown in figure 6.12. In this case, Ψi(y)
at y0 → +∞ reduces to a plane wave with negative energy. This particle
state propagating backwards in time represents a positron. We use the nota-
tion (�p−, s−) for the three-momentum and spin corresponding to the physical
electron and (�p+, s+) for the physical positron, where p0

± > 0. The physi-
cal positron state at t → ∞ is described by a plane wave of negative energy
with quantum numbers (−�p+,−s+) and εf = −1. The wave propagating
backwards in time entering into the vertex is

Ψi(y)
y0→∞=⇒ ψ

(−E)
i (y) =

1
(2π)3/2

√
m

E+
v(p+, s+)eip+·y. (6.127)

This form of the wave function explicitly exhibits the negative energy and
negative three-momentum. The fact that the spin direction is reversed, i.e.
−s+, is taken into account by the definition of the spinor v(p+, s+). Recall
(equation 5.221) that the spinors have been defined according to

v(p+,+1/2) = ω4(p+) and v(p+,−1/2) = ω3(p+), (6.128)

where ω4 is the spinor corresponding to a negative-energy electron with spin
up and ω3 to a negative-energy electron with spin down.

The final wave function ψf in the case of pair production is a positive-energy
solution carrying the quantum numbers (�p−, s−) and εf = +1, and describes
an electron.
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FIGURE 6.10: Two third-order diagrams for electron scattering.
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FIGURE 6.11: Positron scattering: a) viewed as a negative-energy electron
moving backwards in time and b) viewed as a positron moving forward in time.
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FIGURE 6.12: Pair creation.

The two second-order amplitudes for pair creation are shown in figure 6.13.
These two second-order diagrams are said to differ in the time ordering of
the two scattering processes. Since the Feynman propagator consists of two
parts, there is no need to deal explicity with time orderings when calculating
any process; the formula for the S-matrix automatically contains them all.
However, we do not work with the general S-matrix, but visualize it one term
at a time, and hence one diagram at a time.
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FIGURE 6.13: Second-order diagrams for pair creation.
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6.9.4 Pair Annihilation

Finally, consider pair annihilation as shown in figure 6.14. In this case, we
insert for Ψi(y) a solution that reduces to Ψ(+E)

i (y) as t→ −∞. This positive-
energy solution represents an electron that propagates forward in time into
the interaction volume, is scattered backwards in time, and emerges into a
negative energy state. The nth order amplitude for electron scattering into a
given final state ψ(−E)

f , labeled by the physical quantum numbers (�p+, s+),
εf = −1, is given by

S
(n)
fi = ien

∫
d4y1 · · ·

∫
d4ynψ

(−E)

f (yn) �A(yn)SF (yn − yn−1)

· · · �A(y1)ψ
(+E)
i (y1). (6.129)

In hole theory, this is the nth order amplitude for a positive-energy electron
to scatter into an electron state of negative three-momentum −�p+ and spin
−s+.

�

�

x

t

x x′

1

e− e+

FIGURE 6.14: Pair annihilation.

6.10 Problems

1. Verify that the solution in equation 6.1 satisfies the wave equation as-
ymptotically through terms of order 1/r in the region in which V = 0,
for any form of the function f(θ, φ).
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2. Verify that equation 6.10 is a solution to equation 6.7.

3. Verify that equation 6.14 is a solution to equation 6.13.

4. Using the first Born approximation, calculate the cross section for elec-
tron scattering off a Coulomb potential due to an atomic nucleus.

5. [4] Show that the rate for an electron in the hydrogen-atom ground state
to radiate and fall into empty negative-energy states (treated in Born
approximation) in the energy interval −mc2 to −2mc2 is approximately
2α6mc2/πh̄ ≈ 108 s−1.

6. [8] Show the following relationships for the nonrelativistic propagator.

(a) If t′ > t1 > t,

G+(�x ′, t′; �x, t) = i

∫
d3x1G

+(�x ′, t′; �x1, t1)G+(�x1, t1; �x, t).

(b) If t′ < t1 < t,

G−(�x ′, t′; �x, t) = −i
∫
d3x1G

−(�x ′, t′; �x1, t1)G−(�x1, t1; �x, t).

(c) If t > t1,

δ3(�x− �x ′) =
∫
d3x1G

+(�x ′, t′; �x1, t1)G−(�x1, t1; �x, t).

(d) If t < t1,

δ3(�x− �x ′) =
∫
d3x1G

−(�x ′, t′; �x1, t1)G+(�x1, t1; �x, t).

7. [8] Show

G+(�x ′, t′; �x, t) = G−
∗(�x, t; �x ′, t′).

8. Show

θ(τ) = − 1
2πi

lim
ε→0

∫ ∞
−∞

dω
e−iωτ

ω + iε

by performing the ω-integral as a contour integral in the complex ω-
plane.

Prove equation 6.57 by differentiating your result.
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9. Show that using the integration contours in figure 6.8 leads to con-
tributions from negative-energy waves propagating into the future or
positive-energy waves propagating into the past.

10. Show that using the integration procedure in figure 6.9 is equivalent to
using the integration contours in figure 6.7.

11. Show that SF (x′, x) reduces to the free-particle retarded propagator of
the Schrödinger equation in the nonrelativistic limit.

12. Verify equation 6.101 explicitly.

13. [4] Calculate SF (x) explicitly. How does it behave as x→∞, as x→ 0,
and on the light cone?

14. [4] Suppose in our formalism we replace the vacuum by a Fermi gas
with Fermi momentum kF . How is the Feynman propagator modified?
Compute the change in SF in the low-density limit.

15. Show that the forms

SF (x′ − x) = −i
∫

d3p

(2π)3
ei�p·(�x ′−�x)e−iE(t′−t) +Eγ0 − �p · �γ +m

2E

for t′ > t and

SF (x ′ − x) = −i
∫

d3p

(2π)3
ei�p·(�x ′−�x)e+iE(t′−t)−Eγ0 − �p · �γ +m

2E

for t′ < t can be combined into a single expression by using energy-
projection operators.

16. Verify

θ(t′ − t)ψ(+)(x ′) = i

∫
d3xSF (x ′ − x)γ0ψ

(+)(x)

and

θ(t− t′)ψ(−)(x ′) = −i
∫
d3xSF (x ′ − x)γ0ψ

(−)(x),

and derive analogous relationships for the adjoint solutions ψ
(+)

and
ψ

(−)
.

17. Show that the S-matrix is symmetric under charge conjugation.

18. Show that the S-matrix is unitary.





Chapter 7

Photons

In this chapter, we examine the main properties of the photon that will be used
in subsequent discussions. Starting from the classical Maxwell’s equations
and a discussion of gauge transformations, the wave function, polarizations,
and propagator of the photon are developed. A complication in specifying
the polarization states and propagator arises from the massless nature of the
photon and gauge invariance.

7.1 Maxwell’s Equations

Maxwell’s equations of classical electrodynamics for the electric �E(�x, t) and
magnetic �B(�x, t) fields in vacuum, but in the presence of a charge density
ρ(�x, t) and a current density �j(�x, t), are

�∇ · �E = ρ, (7.1)

�∇× �B − 1
c

∂ �E

∂t
=
�j

c
, (7.2)

�∇ · �B = 0, (7.3)

�∇× �E +
1
c

∂ �B

∂t
= 0, (7.4)

where we are using Heaviside-Lorentz (rationalized Gaussian) units1.
In three-dimensional tensor form, Maxwell’s equations 7.1-7.4 can be writ-

ten as

∂Ek

∂xk
=
j0
c
,

εijk
∂Bk

∂xj
− ∂Ei

∂x0
=
ji
c
,

1The different systems of units for Maxwell’s equations have already been reviewed in
section 2.2.
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∂Bk

∂xk
= 0,

εijk
∂Ek

∂xj
+
∂Bi

∂x0
= 0, (7.5)

where we have used xµ = (ct, �x), and introduced the four-current density
jµ = (cρ,�j). The above tensor forms suggest defining the second-rank elec-
tromagnetic contravariant field four-tensor,

Fµν =




0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


 . (7.6)

The components of this antisymmetric tensor can be written in the form
F 0i = Ei and 1

2ε
ijkFjk = Bi.

Using the field tensor, the inhomogeneous Maxwell’s equations 7.1 and 7.2
can be written as

∂νF
µν =

jµ

c
, (7.7)

and the homogenous equations 7.3 and 7.4 as

∂λFµν + ∂µF νλ + ∂νFλµ = 0. (7.8)

In four-vector notation, current conservation

∂νj
ν = 0 (7.9)

follows automatically when contracting the antisymmetric field tensor Fµν

with the symmetric tensor operator ∂µ∂ν .
Maxwell’s equations in covariant form simplify further if we introduce po-

tentials. We may introduce a vector potential �A, such that

�B = �∇× �A. (7.10)

Since the divergence of a curl vanishes, Maxwell’s equation 7.3 is satisfied for
all vector potentials satisfying equation 7.10. Similarly, the scalar potential φ
is defined, such that

�E = −1
c

∂ �A

∂t
− �∇φ. (7.11)

Using the definition of �A in equation 7.10 and that the curl of a gradient
vanishes, Maxwell’s equation 7.4 is automatically satisfied for all potentials
satisfying equations 7.10 and 7.11. In three-dimensional tensor form, the
equations for the potentials are
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Bi =
∂Aj

∂xk
− ∂Ak

∂xj
= F jk, (7.12)

Ei =
∂φ

∂xi
− 1
c

∂Ai

∂t
= F oi. (7.13)

If we define the four-potential Aµ = (φ, �A), we can combine equations 7.12
and 7.13 to obtain

Fµν = ∂νAµ − ∂µAν . (7.14)

This form automatically satisfies the four-vector form of Maxwell’s homoge-
nous equation 7.8. In terms of the inhomogeneous Maxwell’s equation 7.7,
this form gives

∂ν(∂νAµ − ∂µAν) =
jµ

c
,

�Aµ − ∂µ(∂ · A) =
jµ

c
. (7.15)

This result could have also been obtained by using the scalar and vector po-
tentials along with Maxwell’s two inhomogeneous equations in three-vector
form. The form of the resulting two coupled inhomogeneous differential equa-
tions would not be as compact as equation 7.15, but the covariant form could
be readily obtained by defining the four potential and four-current density
(see problem 7.1).

7.2 Gauge Transformations

As we will see, there remains some freedom in the choices of Aµ. This
freedom, called the “choice of gauge”, can be utilized to impose relationships
that the Aµ components must satisfy. We already introduced gauge transfor-
mations briefly in section 4.7.1.

The potentials φ and �A are not uniquely determined. We may replace �A
by �A ′ = �A+ �∇χ, where χ is a scalar function – the gauge field. Then

�B = �∇× �A→ �B ′ = �∇× �A ′ = �∇× �A = �B, (7.16)

since the curl of a gradient vanishes. If in addition, φ is replaced by some φ′,
then

�E = −�∇φ− 1
c

∂ �A

∂t
→ �E ′ = −�∇φ′ − 1

c

∂ �A ′

∂t
= −�∇φ′ − 1

c

∂ �A

∂t
− 1
c
�∇∂χ
∂t
. (7.17)
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The electric field �E will remain unchanged if

φ′ = φ− 1
c

∂χ

∂t
. (7.18)

In four-vector form these two transformations can be combined into a single
gauge transformation

Aµ → A′µ − ∂µχ. (7.19)

This means that there is a continuous family of four-vector potentials all
of which give the same observable electromagnetic field. Since only the fields
have direct physical interpretation – not the potentials – the theory is invariant
under gauge transformations.

Gauge invariance is a very powerful concept that can lead to current conser-
vation. The interaction of any electromagnetic current Jµ(x) with the vector
potential Aµ(x) is given by ∫

d4xJµ(x)Aµ(x). (7.20)

The integral must be invariant under a gauge transformation (equation 7.19).
Integrating the new term by parts implies

0 =
∫
d4xJµ(x)

∂χ(x)
∂xµ

=
∫
d4x

∂Jµ(x)
∂xµ

χ(x). (7.21)

Since χ(x) is an arbitrary function, this yields the condition of current con-
servation

∂Jµ(x)
∂xµ

= 0, (7.22)

which can be written in momentum space as

kµJ
µ(k) = 0, (7.23)

where Jµ(x) =
∫
d4xJµ(k)e−k·x. We will see in section 7.4, this property is

also shared by quantum-mechanical transition currents.

7.2.1 Lorentz Gauge

In the Lorentz gauge, we choose from among the family of vector potentials
those satisfying the covariant equation

∂νA
ν =

1
c

∂φ

∂t
+ �∇ · �A = 0. (7.24)

In this gauge, the inhomogeneous Maxwell’s equation for Aµ reduces to
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�Aµ =
jµ

c
. (7.25)

Notice that if some given Aµ does not satisfy the equation ∂νA
ν = 0, we can

make a gauge transformation to a new A′µ = Aµ − ∂µχ such that ∂νA
′ν = 0

by finding a χ that solves the equation �χ = ∂ ·A. Solutions to this equation
always exist.

Even after choosing a gauge, there is still some residual freedom in the
choice of the potential Aµ in the Lorentz gauge. We can still make another
gauge transformation

A′µ → A′′µ = A′µ − ∂µχ′, (7.26)

where χ′ is any function that satisfies

�χ′ = 0. (7.27)

This last equation ensures that the Lorentz condition is still satisfied.
The advantage of the Lorentz gauge is its Lorentz covariance. We will see,

that in this gauge there are, in addition to the two transverse polarization
states of the photon, longitudinal and scalar photon states.

7.2.2 Coulomb Gauge

The Coulomb Gauge is specified by

�∇ · �A = 0. (7.28)

The advantage of the coulomb gauge is that it yields only two transverse-
photon states, or after an appropriate transformation, two photons with he-
licity ±1. The Coulomb gauge is also called the transverse gauge since the
polarization vector is transverse to the direction of motion, or radiation gauge
since the photon is real and represents radiation. By similar arguments as
above, the required gauge fields needed to transform the potentials to those
satisfying the Coulomb gauge are given by ∇2χ = −�∇ · �A.

7.2.3 Other Gauges

Some other gauges include the time or temporal gauge, A0 = 0, the axial
gauge, A3 = 0, and the unitary gauge, A0 real. These gauges will not be
used here, although A0 = 0 will sometimes be imposed to satisfy the Lorentz
gauge.
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7.3 Polarization Vectors

Turning now from classical electrodynamics to quantum mechanics, a free
photon can be represented by a wave function Aµ, which satisfies equation 7.15
in the absence of charges and currents. Aµ is a four-dimensional vector field
and thus appears to have four degrees of freedom – labeled by λ. For now,
we restrict ourselves to the Lorentz gauge, and thus the four-potential must
satisfy equation 7.25 in the absence of charges and currents.

Consider a plane-wave solution to this equation:

Aµ(x; k) =
1√
2ωV

[
εµ(�k, λ)e−ik·x + ε∗µ(�k, λ)eik·x

]
, (7.29)

where kµ = (ω,�k) is the four-momentum and εµ is the unit polarization four-
vector of the photon. The choice for εµ is arbitrary. They can be chosen
differently for each �k. We will discuss the polarization and normalization
presently.

On substituting this solution into equation 7.25 for the case of free electro-
magnetic fields, we find the condition

k2 = 0, that is, m = 0. (7.30)

The photon is massless as required by special relativity.
In general, the polarization vectors have four components. The Lorentz

condition ∂µA
µ = 0 gives

k · ε = 0, (7.31)

and this reduces the number of independent components of εµ to three.
We may further restrict the gauge transformation, provided �χ = 0 is

satisfied. For a free field, one can choose a gauge in which A0 = 0, whence the
Lorentz condition reduces to �∇ · �A = 0. This is also a solution to Poisson’s
equation – which results from the absence of external sources – which vanishes
at infinity. This gauge condition is not covariant and will be valid only in one
particular reference frame. In this frame, ε0(�k, λ) = 0, and all the polarization
vectors are purely space-like transverse vectors:

εµ = (0, �ε(�k, λ)) (7.32)

and

�k · �ε(�k, λ) = 0. (7.33)

If �ε were along �k, �ε would be associated with a helicity-zero photon. This
state is missing because of the transversality condition. It can only be absent
because the photon is massless. This additional gauge condition restricts the
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number of degrees of freedom of Aµ to two. Thus we have derived the well-
known fact that photons can have only two polarization states, λ = 1, 2.

The polarization vectors are orthonormalized to unity:

�ε ∗(�k, λ) · �ε(�k, λ′) = δλλ′ , (7.34)

or

ε∗(�k, λ) · ε(�k, λ′) = −δλλ′ . (7.35)

In this special reference frame, εµ is purely space-like. In an arbitrary refer-
ence frame εµ will remain space-like (see problem 3.4) and orthonormalized
according to equation 7.35.

The polarization vector acts as the “spin part” of the wave function for the
photon. The various cases which can occur with regards to the polarization of
the photon are identical with the possible types of polarizations of the classical
electromagnetic wave. Any polarization can be represented as a superposition
of two mutually orthogonal polarizations chosen in some specified manner.

We see that there are only two independent polarization vectors and that
they are both transverse to the three-momentum of the photon. As an exam-
ple, for a photon traveling along the z-axis, we may take

�ε1 = (1, 0, 0), �ε2 = (0, 1, 0), (7.36)

if �ε(�k, λ) are real. These are referred to as linear polarization vectors. If
�ε(�k, λ) is complex2, the linear combinations

�εR = −�ε1 + i�ε2√
2

+ 1 helicity, (7.37)

�εL = +
�ε1 − i�ε2√

2
− 1 helicity, (7.38)

are called circular polarization vectors.
We can continue to explore the consequences of the gauge freedom by notic-

ing that, since k2 = 0, any gauge field of the form

χ = −ia(k)e±ik·x, (7.39)

with a(k) an arbitrary real function of k only, will automatically satisfy �χ =
0. The orthogonality condition continues to be satisfied. This, together with
the solution for Aµ shows that the physics is unchanged by the replacement

εµ → ε′µ = εµ + a(k)kµ. (7.40)

2When using the Feynman dagger notation in chapter 8 with polarization vectors we should
be careful: �ε∗ = ε∗µγµ �= (�ε)∗.
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In other words, two polarization vectors εµ and ε′µ which differ by a multiple
of kµ describe the same photon. We may use this freedom to ensure that the
time component of εµ vanishes: ε0 ≡ 0. A free photon is thus described by
its three-momentum �k and a polarization three-vector �ε. Since �ε transforms
as a vector, we anticipate that it is associated with a particle of spin-1.

The intrinsic symmetry properties of a particle will manifest themselves in
the rest frame of the particle. Symmetry with respect to all possible rotations
about the center of the particle, i.e. with respect to the entire spherical
symmetry group, must be considered when examining the intrinsic symmetry
properties. The property which describes the symmetry of the particle with
respect to this group is its spin s. The degree of degeneracy is the number of
different wave functions which can be transformed into linear combinations of
one another, and is given by 2s+ 1. In particular, a particle having a vector
(three-component) wave function has spin-1.

A free particle with non-zero mass always has a rest frame in which to
examine the symmetries. If the mass of a particle is zero, however, there
is no rest frame, since it moves with the velocity of light in every reference
frame. For such a particle, there is always a distinctive direction in space, the
direction of the momentum vector �k (the ζ-axis say). In such a case, there
is clearly no symmetry with respect to the whole group of rotations in three
dimensions, but only axial symmetry about the preferred ζ-axis.

When there is axial symmetry, only the helicity of the particle is conserved,
i.e. the component of its angular momentum along the ζ-axis, which we denote
by λ. If we also impose the condition of symmetry under reflections in planes
passing through the ζ-axis, the states differing in sign of λ will be mutually
degenerate, and when λ �= 0 there is therefore twofold degeneracy. The states
of a photon having a definite momentum in fact corresponds to one type of
these doubly degenerate states. It is described by a “spin” wave function
which is a vector �ε in the plane orthogonal to the ζ-axis; the two components
of this vector are transformed into combinations of each other by any rotation
about the ζ-axis and any reflection in a plane passing through that axis.

The various cases of the polarization of the photon are in a certain rela-
tionship to the possible values of its helicity. The relationship connects the
components of a vector wave function with those of the equivalent spinor of
rank two. Vectors �ε with only non-zero components ε1 + iε2 or ε1 − iε2 cor-
respond to the components λ = +1 or −1, respectively. In other words, the
values λ = +1 and −1 correspond to right-handed and left-handed circular
polarization of the photon. Thus, the component of the photon angular mo-
mentum along the direction of its motion can have only the two values ±1;
the value zero is not possible.

The completeness relationship for polarization vectors in the transverse
gauge is

∑
λ=1,2

εi(�k, λ)ε∗j (�k, λ) = δij − k̂ik̂j . (7.41)
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This relationship can easily be shown to be correct by examining each case
of i, j (see problem 7.2). The completeness relationship is clearly not Lorentz
invariant. We shall return to this point in the next section.

The normalization constant of the plane wave for a photon is chosen such
that the energy in the wave Aµ is just ω = k0 = |�k|, i.e. E = h̄ω for a single
photon. To verify this, we compute

Ephoton =
1
2

∫
d3x〈 �E 2 + �B 2〉. (7.42)

This is for the Heaviside-Lorentz system of units3. Since φ = A0 = 0 in the
Coulomb gauge,

�E = −�∇φ− ∂ �A

∂t
= 0 + i

√
ω

2V
�ε (e−ik·x − eik·x)

=

√
2ω
V
�ε sin k · x, (7.43)

�B = �∇× �A = i

√
ω

2V
k̂ × �ε (e−ik·x − eik·x)

=

√
2ω
V

k̂ × �ε sin k · x, (7.44)

and

(k̂ × �ε) · (k̂ × �ε) = εijk k̂jεkεinmk̂nεm

= (δjnδkm − δjmδkn)k̂j k̂nεkεm

= k̂j k̂jεkεk − k̂j k̂kεkεj

= k̂ · k̂�ε · �ε− k̂ · �εk̂ · �ε
= �ε · �ε− (k̂ · �ε)2

= −1. (7.45)

Thus �E 2 = �B 2, and

Ephoton =
2ω
V

∫
d3x sin2(ωt− �k · �x)

3In the Gaussian system of units, the constant in front of the integral in equation 7.42
would be 1/8π.
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=
2ω
V

∫
dx1dx2dx3

(
ei(ωt−�k·�x) − e−i(ωt−�k·�x)

2i

)2

= − ω

2V

(
(e2iωt

∫
dx1e

−2ik1x1

∫
dx2e

−2ik2x2

∫
dx3e

−2ik3x3

+ e−2iωt

∫
dx1e

2ik1x1

∫
dx2e

2ik2x2

∫
dx3e

2ik3x3

−2
∫
dx1

∫
dx2

∫
dx3

)

= − ω

2V

(
e2i(ωt−�k·�x)

8ik1k2k3
− e−2i(ωt−�k·�x)

8ik1k2k3
− 2V

)

= − ω

2V

(
sin 2(ωt− �k · �x)

4k1k2k3
− 2V

)

= ω, (7.46)

where we have taken the time average. By not quantizing the photon wave
function, we are essentially treating the electromagnetic field semiclassically.
We are treating �A as an external field, though its magnitude is adjusted so
that the total energy associated with the electromagnetic field corresponds to
that carried by a single photon.

7.4 Photon Propagator

We now develop the propagator for the photon using Green-function tech-
niques in a similar fashion to the Klein-Gordon and Dirac propagators. The
propagator for a photon is not unique, on account of the gauge freedom in
the choice of Aµ.

From equation 7.15, we see that the wave equation for a photon can be
written in the form

(gνλ�− ∂ν∂λ)Aλ =
jν

c
. (7.47)

In fact, a photon propagator cannot exist until we remove some of the gauge
freedom of Aλ, i.e. the inverse of the “momentum space operator” (gνλ� −
∂ν∂λ) does not exist (see problem 7.3).

If we chose to work in the Lorentz class of gauges with ∂λA
λ = 0, the wave

equation simplifies to

gνλ�Aλ =
jν

c
. (7.48)
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Using Green-function techniques, the wave equation for the Green function
Dµν(x′ − x) is

gνλ�Dµν(x′ − x) = δ λ
µ δ(x′ − x). (7.49)

Because of the presence of gνλ in the wave equation, the Green function is
a second-rank tensor. The Green-function equation is contracted over one of
the indices only. This allows us to determine the four potential using

Aµ(x) =
∫
d4yDµν(x− y)j

ν(y)
c

. (7.50)

We could also add on a solution of the homogeneous equation �Aλ = 0.
However, the solution which we wish for Aµ(x) is that which vanishes in the
absence of a transition current density jν(y). This is a requirement we impose
on all our Green-function solutions.

In momentum space, we have

gνλ(−k2)Dµν(k) = δ λ
µ . (7.51)

The most general form of Dµν(k) satisfying Lorentz covariance is

Dµν(k) = D(k2)gµν +D(l)(k2)kµkν , (7.52)

where D(k2) and D(l)(k2) are scalar functions of k2 only. We thus obtain

−k2
[
D(k2)gνλgµν +D(l)(k2)gνλkµkν

]
= δ λ

µ ,

D(k2)δ λ
µ +D(l)(k2)kµk

λ = − 1
k2
δ λ
µ . (7.53)

Therefore,

D(k2) =
−1
k2

and D(l)(k2) = 0. (7.54)

The photon propagator in momentum space (in the Lorentz gauge) is thus

Dµν
F (k2) =

−gµν

k2 + iε
. (7.55)

The gauge condition ∂λA
λ = 0 was imposed covariantly, and the resulting

covariant propagator is ideal for quantum-electrodynamic calculations. It
is called the Feynman propagator. We have used Heaviside-Lorentz units4.
The subscript F conventually is used to denote the Feynman propagator. In
analogy with the Klein-Gordon and Dirac propagators, we have appended an

4If Gaussian units were chosen, the numerator in equation 7.55 would be multiplied by 4π.
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infinitesimally small positive imaginary part to k2; this is equivalent to adding
a small negative imaginary mass. It is often convenient to discard the tensor
indices, and write Dµν

F (k2) = gµνDF (k).
The condition ∂λA

λ = 0 does not fully define the propagator. We are at
liberty to rewrite the wave equation as[

gνλ�−
(

1− 1
ζ

)
∂ν∂λ

]
Aλ =

jν

c
, (7.56)

where ζ is a real parameter. For ζ �= 0, the system is not really a Maxwell
system. However, if we confine ourselves to currents that are conserved, the
Lorentz condition will be satisfied. Therefore, in the Lorentz gauge everything
is equivalent to classical electrodynamics. Equation 7.56 can be viewed as an
extension of the Maxwell system beyond the “current-conservation shell”.

Performing a similar calculation to that performed previously, we have

[
gνλ�−

(
1− 1

ζ

)
∂ν∂λ

]
Dµν(x− y) = δ λ

µ δ(x− y),[
gνλ(−k2) +

(
1− 1

ζ

)
kνkλ

] [
gµνD(k2) + kµkνD

(l)(k2)
]

= δ λ
µ

−D(k2)k2δ λ
µ +

[
D(k2)

(
1− 1

ζ

)
− 1
ζ
k2D(l)(k2)

]
kµk

λ = δ λ
µ , (7.57)

D(k2) = − 1
k2

and D(l)(k2) =
1− ζ
k4

. (7.58)

In this case, the propagator is

Dµν(k) =
1
k2

[
−gµν + (1 − ζ)kµkν

k2

]
. (7.59)

ζ = 1 is referred to as the Feynman gauge5. ζ = 0 is referred to as the Landau
gauge. In this form, the propagator obeys the condition kµDµν(k) = 0. This
gauge appears to be more complicated but the extra term in the propagator
vanishes in quantum-electrodynamic calculations, in which the virtual photon
is coupled to conserved currents, which satisfy kµj

µ = kνj
ν = 0.

When the photon propagator appears in physical quantities, such as scat-
tering amplitudes, it is multiplied by the transition currents of two Dirac
particles, as shown in figure 7.1. That is, it appears in combinations of the
form (jµ)21Dµν(jν)43, where (jµ)21 = ψ2γ

µψ1 and (jν)43 = ψ4γ
νψ3. From

current conservation (∂ · j = 0), the transversality conditions kµ(jµ)21 = 0
and kν(jν)43 = 0, where k = p2− p1 = p4− p3, will be satisfied. We therefore
see that terms in the photon propagator involving kµ and kν will not effect
physical quantities.

5It is really the Lorentz gauge.
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1

2

(jµ)21
µ ν

(jν)43

3

4

FIGURE 7.1: Virtual photon exchange between two charged currents.

All physical results will be unchanged by the substitution

Dµν → Dµν + χµkν + χνkµ, (7.60)

where χµ and χν are any functions of �k and ω. This arbitrariness in the
choice of Dµν corresponds to the arbitrariness in the choice of the gauge for
Aµ. The arbitrariness of the gauge can violate the Lorentz invariant form of
Dµν if the quantities χµ and χν are not four-vectors. Even if we consider only
Lorentz invariant forms of the propagator, the choice of the function D(l)(k2)
is entirely arbitrary; it does not effect any physical results, and can be chosen
in any convenient manner.

The determination of the propagator function amounts to that of a single
gauge-invariant function D(k2). If we take the z-axis in the direction of �k, the
transformation given by equation 7.60 will not effect the transverse compo-
nents of Dµν . We see that D11 = D22 = −D(k2), and it is therefore sufficient
to calculate a single transverse component, D11 say, using any gauge for the
potentials.

In order to obtain the propagator for the Coulomb gauge, we put

χ0 =
k0

2k2�k 2
and χi = − ki

2k2�k 2
(7.61)

into equation 7.60 to get

Dij = −gij

k2
− kikj

k2�k 2
=

1
k2

(
δij −

kikj

�k 2

)
. (7.62)

The remaining components are

D0i =
k0

2k2�k 2
ki −

ki

2k2�k 2
k0 = 0 (7.63)

and



198 Practical Quantum Electrodynamics

D00 = −g00
k2

+
k0k0

k2�k 2
= − 1

k2�k 2
(�k 2 − k2

0) =
1
�k 2

. (7.64)

We notice that D00 is the Fourier component of the Coulomb potential, and
we will elaborate on this point soon.

The general form of the propagator of a virtual particle is∑
spins

p2 −m2
. (7.65)

The spin sum is the completeness relationship for the spin wave functions of
the corresponding particle. It includes all possible spin states of the propagat-
ing particle. For the Klein-Gordon propagator

∑
spins = 1 and for the Dirac

propagator
∑

spins =
∑

s uu. In the case of the photon, m = 0 and

3∑
r=0

ςrε
µ∗(�k, r)εν(�k, r) = −gµν , (7.66)

where ς0 = −1 and ς1 = ς2 = ς3 = 1.
For a real photon, the completeness relationship for the polarization vec-

tors was given by equation 7.41. On the other hand, we have associated with
the virtual photon the covariant propagator −gµν/k

2, where −gµν implies we
are summing over four polarization states. In addition to summing the two
transverse components, we now have the longitudinal component εµ(�k, 3) and
the scalar component εµ(�k, 0). The longitudinal and scalar components are
important in the completeness relationship but they do not correspond to
physical photons. For real photons, the longitudinal and scalar polarization
components cancel (see problem 7.4). For a virtual photon the longitudinal
and scalar components cannot be neglected. These terms become the instan-
taneous Coulomb interaction between the charges of the two particles, as we
will now show and as was hinted at in equation 7.64.

Consider a more general analysis of the photon propagator. If we do not
pick the z-axis as the direction of motion, we can write the four orthonormal
polarization vectors as

εµ(�k, 0) = nµ ≡ (1, 0, 0, 0), (7.67)

εµ(�k, r) = (0, �ε(�k, r)) r = 1, 2, 3 (7.68)

with

�ε(�k, r) = �ε(�k, λ) r = λ = 1, 2, (7.69)

�ε(�k, 3) =
�k

|�k|
. (7.70)
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The longitudinal polarization vector can also be expressed in the form

εµ(�k, 3) =
kµ − (k · n)nµ√

(k · n)2 − k2
. (7.71)

By inserting our specific representation for the polarization vectors into
equation 7.66 and using equation 7.65, we obtain the general photon propa-
gator in momentum space

Dµν(k) =
1

k2 + iε


 ∑

λ=1,2

ε∗µ(�k, λ)εν(�k, λ)

+
(kµ − (k · n)nµ)(kν − (k · n)nν)

(k · n)2 − k2
− nµnν

]
. (7.72)

The first term on the right-hand side represents the exchange of transverse
photons:

Dµν
trans(k) =

1
k2 + iε

∑
λ=1,2

ε∗µ(�k, λ)εν(�k, λ). (7.73)

We separate the remainder of the expression in equation 7.72, i.e. the second
and third terms, into two parts:

Dµν
coul(k) =

1
k2 + iε

[
(k · n)2nµnν

(k · n)2 − k2
− nµnν

]

=
k2

k2 + iε

nµnν

(k · n)2 − k2

=
nµnν

�k 2
(7.74)

and

Dµν
red(k) =

1
k2 + iε

[
kµkν − (k · n)(kµnν + nµkν)

(k · n)2 − k2

]
. (7.75)

In coordinate space, the Coulomb piece is

Dµν
coul(x) = nµnν

∫
d4k

(2π)4
e−ik·x 1

|�k|2

= gµ0gν0

∫
d3k

(2π)3
eik·x

|�k|2

∫
dk0

2π
e−ik0x0

= gµ0gν0 1
|�x|δ(x

0). (7.76)
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This part of the propagator represents the instantaneous Coulomb interaction.
The longitudinal and scalar photons thus yield the instantaneous Coulomb
interaction between charged particles. In the Coulomb gauge only transverse
photons occurred. The Coulomb interaction now no longer occurs explicitly
in the theory, but is contained as the exchange of scalar and longitudinal
photons in the propagator.

The remaining term Dµν
red makes no physical contribution, and is redundant

since it comprises terms proportional to kµ and kν , which do not contribute
in matrix-element calculations.

7.5 Problems

1. Obtain equation 7.15 by using the scalar and vector potentials along
with Maxwell’s two inhomogeneous equations in three-vector form.

2. Show that equation 7.41 is correct.

3. Verify that the inverse of the “momentum space operator” in the equa-
tion

(gµν�− ∂µ∂ν)Aν = jµ

does not exist.

4. For real photons, show that the longitudinal and scalar polarization
components cancel.



Chapter 8

Quantum Electrodynamic Processes

During the period from 1929 to 1936, a number of cross sections were calcu-
lated to lowest order in powers of α for various electrodynamic processes, such
as those shown in figures 8.1 and 8.2. These lowest-order calculations gave
finite results in reasonable agreement with the experimental data. The suc-
cessful agreement with measurements demonstrated the calculational power
and practicality of the theory of quantum electrodynamics.

We will now develop the practical abilities to calculate lowest-order quan-
tum electrodynamical processes (figures 8.1 and 8.2). That is, we will apply
the propagator formalism to problems involving electrons, positrons, and pho-
tons. As we go, we will derive general rules for the calculation of transition
probabilities and cross sections: the Feynman rules.

We continue the pedagogical approach of this book. Some of the calcu-
lations performed in this chapter take about ten pages to complete. Some
textbooks do these calculations in a single page. While this may show off the
calculational power of quantum electrodynamics, and the author, our intent
is to explain each step in detail so that they can be adapted or modified by
the reader in more complicated calculations.

8.1 Lifetimes and Cross Sections

In this section, we present an overview of the general approach taken in
the following calculations. Only an outline is given here. The details will be
worked out as needed.

The S-matrix permits the calculation of two types of observable quantities:
lifetimes and cross sections. Both can be calculated from the transition prob-
ability per unit space-time volume. If there were no interactions between the
particles, the state of the system would be unchanged, which corresponds to
a unit S-matrix δfi (absence of scattering). It is convenient to separate out
this unit matrix, and writing the scattering matrix in the form

Sfi = δfi +Rfi

= δfi + i(2π)4δ4(pf − pi)Tfi, (8.1)

201
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γ → e+e− e+e− → γ

γe− → e− γe+ → e+

e− → e−γ e+ → e+γ

e− → e− e+ → e+

FIGURE 8.1: Lowest order 1 → 1, 1 → 2, and 2 → 1 processes involving
electrons, positrons, and photons. Time runs upward in the diagrams.
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γe− → γe− γe+ → γe+

γγ → e+e− e+e− → γγ

e+e− → e+e− e+e− → e+e−

e−e− → e−e− e+e+ → e+e+

FIGURE 8.2: Lowest order 2→ 2 processes involving electrons, positrons,
and photons. Time runs upward in the diagrams.
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where Tfi is another matrix – the transition matrix1. In the second term, we
have written separately the four-dimensional Dirac delta function, which we
will see comes from the integral

1
(2π)4

∫
ei(pf−pi)·xd4x = δ4(pf − pi). (8.2)

The product of exponentials in this expression comes from the product of the
initial and final particle wave functions. The Dirac delta-function expresses
the law of conservation of four-momentum – pf and pi being the sums of the
four-momenta of all the particles in the final and initial states – the other
factor of i(2π)4 is included for subsequent convenience.

If one of the colliding particles is sufficiently heavy, and its state is unaltered
by the collision, it acts only as a fixed source of a constant field in which the
other particle is scattered. Since the energy – though not the momentum
– of the system is conserved in a constant field, we will write the S-matrix
elements in the form

Sfi = δfi + i(2π)δ(Ef − Ei)Tfi. (8.3)

The structure of the scattering amplitude Tfi in equations 8.1 and 8.3 is of
the form

Tfi = u∗1u
∗
2 · · ·Q · · ·u2u1, (8.4)

where on the left-hand side we have the amplitude of wave functions of the
final particles, and on the right-hand side those of the initial particles; Q is
some matrix relating the indices of the wave amplitude components of all the
particles.

The matrix elements of the R-matrix in equation 8.1, 〈f |R|i〉, are the tran-
sition probability amplitudes for transitions to take place over all space and
all time from the infinite past to the infinite future. The corresponding prob-
ability, |〈f |R|i〉|2, is not a meaningful quantity – and not at all a probability
– since observations are carried out over finite times, and only the transition
probability per unit time is essentially measurable. Indeed, |〈f |R|i〉|2 is in-
finite and simply expresses the fact that, during an infinite time, a nonzero
incident flux of particles will cause an infinite number of repetitions of the
elementary process under consideration.

The interesting quantity is the transition probability per unit time, or for
convenience in our covariant formalism, the transition probability Γ per unit
space-time volume. The latter can be obtained as a limit from a finite space-
time volume:

1Actually, the matrix elements Tfi which remain after separation of the delta function are
called the scattering amplitudes.
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Γ = lim
V→∞
T→∞

|〈f |R|i〉|2V T

V T
. (8.5)

Here, |〈f |R|i〉|2V T is |〈f |R|i〉|2 calculated for a finite space-time volume V T .
We remember that the expression for 〈f |R|i〉 results from an integration

over infinite space-time,

〈f |R|i〉 = i〈f |T |i〉
∫
ei(pf−pi)·xd4x. (8.6)

Therefore,

〈f |R|i〉V T = i〈f |T |i〉
∫

V T

ei(pf−pi)·xd4x. (8.7)

To obtain a probability from an amplitude, the moduli |Sfi| are squared.
The square of the delta function appears, and is to be interpreted as follows.
If another such integral is calculated with pf = pi – since one delta function
is already present – and if the integral is taken over some large finite volume
V and time interval T , the result is V T/(2π)4.

The evaluation of Γ involves the limit

lim
V→∞
T→∞

1
V T

∣∣∣∣
∫

V T

ei(pf−pi)·xd4x

∣∣∣∣
2

= (2π)4δ4(pf − pi). (8.8)

We find for the transition probability per unit space-time volume,

Γ = (2π)4δ4(pf − pi)|〈f |T |i〉|2, (8.9)

where Γ depends on the details of the observation – the experiment. For
example, if the spin of the outgoing electron is not observed, a summation
over the final spin states must be carried out. Or, if the initial spin state is
unknown, a suitable average must be found.

Let S indicate a generalized summation symbol representing integrations
over momenta, and summations over electron spins and photon polarizations,
depending on the type of process. The average transition probability per unit
space-time volume is

Γ = (2π)4SfSiδ
4(pf − pi)|〈f |T |i〉|2, (8.10)

where the bar over Si indicates the average process. To calculate the cross
section, we take an incoherent average in the sense that we average the cross
sections rather than the amplitudes.

In our expression, it is not necessary to restrict the considerations to a
single initial electron, positron, or photon. Let us then consider one single
initial system of particles. The transition probability per unit time into all
other possible states will be
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Γtot = V Γ, (8.11)

which is independent of V .
The most important cases are those where the initial state comprises only

one or two particles: decay and scattering, respectively. We can form simpli-
fied expressions for special cases like a two-body decay or a 2→ 2 scattering
process; the 2 on either side of the arrow represents 2 particles. For a decay,
the characteristic time is given by the inverse of Γtot,

τ =
1

Γtot
, (8.12)

which is called the lifetime of the system.
For the case of two initial systems of particles, the ratio of the transition

probability per unit volume Γ and the flux density of the initial state I is
called the cross section

σ̄ =
Γ
I
. (8.13)

The flux density can be written in such a way that it is valid in any reference
frame:

I =
1
V

1
2E12E2

F, (8.14)

where

F = 4
√

(p1 · p2)2 −m2
1m

2
2. (8.15)

The flux factor F will be first encountered in equation 8.104 and is calculated
for each case in appendix A. The cross sections can be written as

σ̄ = 4(2π)4
V E1E2

|F | SfSiδ
4(pf − pi)|〈f |T |i〉|2. (8.16)

According to the summation in Sf there exists various partial cross sections
σ̄f . If the momentum vectors of the final state fall within a certain differential
range, we call the right-hand side of equation 8.16 the differential cross section.

Generally, one wants to express a cross section in units of cm2, and a lifetime
in units of seconds. We use h̄ = c = 1, and will express everything else in
MeV. The cross section will have the dimensions of (MeV)−2, the decay rate
is of dimension MeV (and lifetime (MeV)−1). To go to cm2 the cross section
must be multiplied by (h̄c)2. To go from MeV to s−1 the decay rate must be
divided by h̄ and the lifetime is thus h̄/Γ.
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8.2 Coulomb Scattering of Electrons

As our first practical calculation, we consider the relativistic treatment of
Rutherford scattering of an electron from a fixed Coulomb potential. Ruther-
ford derived this historic formula using classical concepts. The formula is of
great importance since it was used to interpret Rutherford’s famous experi-
ments involving the collisions of alpha particles with heavier nuclei.

The most important approximation to the elastic scattering of electrons
by atoms consists in neglecting the electron cloud surrounding the nucleus.
The atom is then considered as an infinitely heavy positive point charge of
magnitude Ze. The system under consideration is thereby simplified to the
motion of an electron in a Coulomb field (see figure 8.3).

pi, si

pf , sf

FIGURE 8.3: Scattering of an electron from a fixed Coulomb potential.

In dealing with the expansion of the S-matrix, we have a double expansion,
one in e which describes the radiation field of the electron, and one in Ze
which corresponds to a power series expansion in the external field. We shall
refer to Coulomb scattering as the scattering of an electron in a Coulomb field
to all orders in the external field, but to lowest order in the radiation field of
the electron. The effects of virtual (or real) photons emitted and reabsorbed
by the scattered electron in this process can be found in Jauch & Rohrlich [15].

In terms of diagrams, the three lowest orders in the Coulomb field can be
depicted as in figure 8.4. The static external field is represented using a wavy
line with a cross. In this section, we evaluate the diagram in figure 8.4a.

The S-matrix element for a scattered electron is

Sfi = ie

∫
d4xψf (x) �A(x)Ψi(x), (8.17)

where the final state f differs from the initial state i, and the electron charge
is −e = −|e| < 0.
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pi, si

pf , sf

��

a) pi, si

pf , sf

��

��

b) pi, si

pf , sf

��

��

��

c)

FIGURE 8.4: Coulomb scattering: a) first order, b) second order, and c)
third order.

In lowest order, Ψi(x) is approximated by the incoming wave ψi(x) of an
electron. In this approximation, the wavefunctions reduce to the plane waves

ψi(x) =
√

m

EiV
u(pi, si)e−ipi·x (8.18)

and

ψf (x) =
√

m

EfV
u(pf , sf )eipf ·x, (8.19)

where we have normalized to unit probability in a box of volume V , and are
using natural units (h̄ = c = 1). We can set V = 1. The advantage of using V
will be apparent when calculating physical rates, lifetimes, or cross sections.
The normalization volume V cancels out of the quantity of physical interest;
any unphysical quantity will vanish or become infinitely large as V → ∞.
If we had employed the continuum normalization with periodic boundary
conditions, then V → (2π)3, and typical scattering amplitudes would contain
as many as 12 powers of 2π. Using the box normalization goes a long way
towards keeping the factors of 2π straight. The further modification of m/E
keeps the box normalization covariant and is useful for relativistic particles
(see problem 8.2).

The Coulomb potential from a positive point charge Ze is

A0(x) =
Ze

4π|�x | and �A(x) = 0. (8.20)

We are working in the Heaviside-Lorentz (rationalized Gaussian) system of
units2. For a nucleus, Ze > 0 and the validity of the perturbation expansion
is valid provided Z is not too large.

2If we were working in the Gaussian system of units, the Coulomb potential would be
A0(x) = Ze/|�x |.
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Inserting the plane waves and Coulomb potential into the S-matrix element,
we have

Sfi =
iZe2

4π
1
V

m√
EfEi

u(pf , sf )γ0u(pi, si)
∫
d4x

ei(pf−pi)·x

|�x |

=
iZ(4πα)

4πV
m√
EfEi

u(pf , sf )γ0u(pi, si)[2πδ(Ef − Ei)]

·
∫
d3x

e−i(�pf−�pi)·�x

|�x | . (8.21)

We have expressed the result in terms of the dimensionless fine-structure con-
stant α ≈ 1/137. The delta function comes from the integral over the time
coordinate x0, and expresses energy conservation between the initial and final
states in a static potential. Energy conservation will always occur for time
independent potentials.

The space integral is the Fourier transform of the Coulomb potential∫
d3x

e−i�q·�x

|�x | =
4π
|�q |2 , (8.22)

where �q = �pf − �pi is defined in figure 8.5. Therefore,

Sfi =
2i(2π)Zα

V

m√
EfEi

u(pf , sf )γ0u(pi, si)
|�q |2 [2πδ(Ef − Ei)]. (8.23)

θ θ/2
�pi

�pf
�q

FIGURE 8.5: Definition of the three-momentum transfer.

The number of final states in the momentum interval �pf to �pf + d�pf is
V d3pf/(2π)3. To see this, we notice that standing waves in a cubic box of
volume V = L3 require

kxL = 2πnx,

kyL = 2πny,

kzL = 2πnz, (8.24)
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with integer numbers nx, ny, nz. For large L, the discrete set of �k-values
approaches a continuum of values. The number of states is (setting h̄ = 1)

dN = dnxdnydny

=
1

(2π)3
L3dkxdkydky

=
V

(2π)3
d3k. (8.25)

The transition probability per particle into these states is

|Sfi|2V
d3pf

(2π)3
=

4(Zα)2m2

2πEiV

|u(pf , sf)γ0u(pi, si)|2
|�q |4

d3pf

Ef
[2πδ(Ef − Ei)]2.

(8.26)
The square of the delta function is mathematically not well defined. It is a
divergent quantity and has to be specified by a limiting procedure. We can
reason it to be

[2πδ(Ef − Ei)]2 = lim
T→∞

∫ T/2

−T/2

dtei(Ef−Ei)t[2πδ(Ef − Ei)]. (8.27)

If Ef = Ei as required by the other remaining delta function, then

2πδ(Ef − Ei) = lim
T→∞

∫ T/2

−T/2

dtei(Ef−Ei)t. (8.28)

For Ef = Ei,

2πδ(0) = lim
T→∞

∫ T/2

−T/2

dt = lim
T→∞

T (8.29)

and

[2πδ(Ef − Ei)]2 = 2πTδ(Ef − Ei). (8.30)

Another way of viewing this is that the finite time interval smears the delta
function:

lim
T→∞

1
T

∣∣∣∣∣
∫ T/2

−T/2

dtei(Ef−Ei)t

∣∣∣∣∣
2

= lim
T→∞

1
T

∣∣∣∣∣ e
i(Ef−Ei)t

i(Ef − Ei)

∣∣∣∣
T/2

−T/2

∣∣∣∣∣
2

= lim
T→∞

1
T

[
sin[(Ef − Ei)T/2]

(Ef − Ei)/2

]2

=
2πδ(Ef − Ei)

T
. (8.31)
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Using wave packets in the S-matrix element (equation 8.17) instead of plane
waves would remove the need to square the delta function.

If we consider transitions in a time T and divide out the time, we obtain the
rate, which is the number R of transitions per unit time into the momentum
interval d3pf :

R = |Sfi|2
V

T

d3pf

(2π)3
=

4(Zα)2m2

EiV

|u(pf , sf )γ0u(pi, si)|2
|�q |4

d3pf

Ef
δ(Ef − Ei).

(8.32)
A cross section is defined as the transition rate R divided by the flux of

incident particles Jµ
inc = ψi(x)γµψi(x), where µ denotes the vector component

along the incident velocity �vi = �pi/Ei, and again we are using c = 1. With
the normalization we have adapted, the flux is

|Jµ
inc| =

m

EiV
uiγ

µui =
m

EiV

pµ
i

m
=

pµ
i

V Ei
, (8.33)

where we have used the Gordon decomposition (equation 5.290)

u(p)γµu(q) =
1

2m
u(p) [(p+ q)µ + iσµν(p− q)ν ]u(q). (8.34)

Therefore the flux of incident electrons is

|Jinc| =
|�pi|
V Ei

=
β

V
. (8.35)

Thus the differential cross section dσ per unit solid angle dΩ is

dσ

dΩ
=

R

|Jinc|
=
∫

4(Zα)2m2

βEi

|u(pf , sf)γ0u(pi, si)|2
|�q |4

p2
fdpf

Ef
δ(Ef − Ei), (8.36)

where we have used spherical coordinates d3pf = p2
fdpfdΩ, and the solid angle

is defined in figure 8.6.

θ

�pi

�pf

dΩ

FIGURE 8.6: Definition of the solid angle for electron scattering.
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Since pfdpf = EfdEf , we obtain

dσ

dΩ
= 4(Zα)2m2

∫ |u(pf , sf )γ0u(pi, si)|2
|�q |4 dEf

| �pf |
|�pi|

δ(Ef − Ei)

=
4(Zα)2m2

|�q |4 |u(pf , sf )γ0u(pi, si)|2, (8.37)

where it is understood that Ei = Ef and |�pi| = |�pf | in the above expression.
In the nonrelativistic limit,

|u(pf , sf )γ0u(pi, si)|2 →
∣∣∣∣(1 0)

(
1 0
0 1

)(
1
0

)∣∣∣∣
2

= 1. (8.38)

Calculating |�q |4 and using E = p2/2m, equation 8.37 can be shown to reduce
to the Rutherford scattering formula (see problem 8.3).

The resulting differential cross section in equation 8.37 can in principle be
applied to calculate the scattering of an electron with initial spin si to the
final spin sf (see problem 8.4). In general, one does not know the initial spin
of the electron. If the probability of either spin state is equal, we sum over
both polarization directions with weight 1/2, or we average over initial-state
polarizations. This is an incoherent average in the sense that we average the
cross sections rather than the amplitudes. Furthermore, most experiments do
not measure the final polarization of the electron, and we simply detect all of
them. We thus sum over all final-state polarizations.

The unpolarized scattering cross section is

dσ̄

dΩ
=

4(Zα)2m2

2|�q |4
∑
±sf ,±si

|u(pf , sf )γ0u(pi, si)|2, (8.39)

where the bar over σ denotes average. By unpolarized we mean that no
information about the electron spin is recorded by the experiment.

The double sum over spins can be written in component form

∑
±sf ,±si

uα(pf , sf )γ0
αβuβ(pi, si)u

†
λ(pi, si)(γ0

λδ)
†(γ0

δσ)†uσ(pf , sf )

=
∑
±sf ,±si

uα(pf , sf )γ0
αβuβ(pi, si)uδ(pi, si)γ0

δσuσ(pf , sf )

=
∑
±sf

uα(pf , sf )γ0
αβ

(∑
±si

uβ(pi, si)uδ(pi, si)

)
γ0

δσuσ(pf , sf ). (8.40)

The completeness relationship (equation 5.204) for Dirac spinors can be writ-
ten as
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uα(p, s)uβ(p, s) + uα(p,−s)uβ(p,−s)
−vα(p, s)vβ(p, s)− vα(p,−s)vβ(p,−s) = δαβ . (8.41)

If we operate on equation 8.41 with a positive energy projection operator
Λ+(p), we have

uα(p, s)uβ(p, s) + uα(p,−s)uβ(p,−s) = [Λ+(p)]αβ∑
±s

uα(p, s)uβ(p, s) = [Λ+(p)]αβ . (8.42)

The spin sum (equation 8.40) thus becomes

∑
±sf

uα(pf , sf )
(
γ0 �pi +m

2m
γ0

)
αβ

uβ(pf , sf )

=
(
γ0 �pi +m

2m
γ0

)
αβ

( �pf +m

2m

)
βα

=
(
γ0 �pi +m

2m
γ0 �pf +m

2m

)
αα

, (8.43)

which is a trace. Therefore, the differential cross section is

dσ̄

dΩ
=

2(Zα)2m2

|�q |4 Tr
[
γ0
�pi +m

2m
γ0

�pf +m

2m

]
. (8.44)

Using trace theorems, which we shall develop in the next section, we have

Tr
[
γ0
�pi +m

2m
γ0

�pf +m

2m

]
=

1
4m2

(
Tr[γ0 �piγ0 �pf ] +m2Tr[(γ0)2]

)
=

1
m2

(
p0

i p
0
f + p0

fp
0
i − pi · pf +m2

)
=

1
m2

(
2EiEf − pi · pf +m2

)
(8.45)

and

dσ̄

dΩ
=

2(Zα)2

|�q |4
(
2EiEf − pi · pf +m2

)
. (8.46)

The differential cross section can be written in terms of the scattering energy
E and scattering angle θ. The scattering angle is the angle between the in-
coming electron three-momentum and the outgoing electron three-momentum
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(figure 8.6). Since Ei = Ef ≡ E as required by our energy-conserving delta
function, |�pi| = |�pf | ≡ |�p |, but �pi �= �pf . The kinematical relationships become

pi · pf = E2 − �p 2 cos θ
= m2 + �p 2(1 − cos θ)

= m2 + 2β2E2 sin2 θ

2
(8.47)

and

|�q |2 = |�pf − �pi|2

= 2�p 2 − 2�pf · �pi

= 2�p 2(1− cos θ)

= 4β2E2 sin2 θ

2
. (8.48)

Reintroducing the correct powers of c, we find

dσ̄

dΩ
=

(Zα)2

4(γβ2)2(mc2)2 sin4(θ/2)

(
1− β2 sin2 θ

2

)
. (8.49)

This formula is known as the Mott cross section and was first calculated to
order α3 by Mott3.

In the nonrelativistic limit β → 0 and the second term of the Mott cross
section vanishes. This is in agreement with our previous result shown in
equation 8.38. One can also show (see problem 8.5) that the equivalent cross
section using spinless Klein-Gordon theory is

dσ

dΩ
=

(Zα)2

4(γβ2)2(mc2)2 sin4(θ/2)
. (8.50)

Thus we see in three different ways that −β2 sin2(θ/2) is a spin correction to
the Rutherford formula. The physical origin of the spin correction is due to
the fact that the Dirac electron has a magnetic moment interacting with the
magnetic field of the scattering center (viewed from rest frame of electron).
For small velocities this effect is negligible.

The remaining term in the cross section (equation 8.49) reduces in the
nonrelativistic limit γ → 1 to

3N.F. Mott, “The Scattering of Fast Electrons by Atomic Nuclei”, Proc. Roy. Soc. 124
(1929) 425-442.
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dσ̄

dΩ
≈ (Zα)2

4v4m2 sin4(θ/2)

=
(Zα)2

16E2 sin4(θ/2)
, (8.51)

where we have used E = p2/2m. Thus the Mott cross section reduces to
the Rutherford formula in the nonrelativistic limit. Apart from the spin-
dependent term, the relativistic result (equation 8.49) differs from the Ruther-
ford formula by a kinematic factor 1/γ2 = 1− β2.

In the extreme-relativistic limit β → 1 and

dσ̄

dΩ
≈ (Zα)2 cos2(θ/2)

4E2 sin4(θ/2)
, (8.52)

which differs from spinless case by factor of cos2(θ/2). The physical origin of
this result can be argued in terms of chirality (see Holstein [14]).

In all cases the cross section diverges for small momentum transfers (small
θ). This is due to the infinite range of the Coulomb potential, and that it
decreases only slowly with distance. Hence electrons passing even at a great
distance from the atom experience small angle scattering. For the same reason
the total cross section is infinite.

The Rutherford cross section is known to be an exact formula in the non-
relativistic limit. We have derived the Rutherford cross section exactly using
only a first approximation to the scattering matrix without including the con-
tributions from other diagrams. It has been shown that the second-order
process in figure 8.4b leads to a divergent integral. This is connected with the
infinite range of the Coulomb field. In the nonrelativistic limit, a far-distant
particle cannot be described by a plane wave, as was assumed. We must
represent the incoming state using a “Coulomb wave”, i.e. a distorted plane
wave, to be able to physically interpret the higher-order processes.

8.3 Trace Theorems

We must now digress and establish useful properties of traces of products
of Dirac gamma matrices. These properties will allow us to calculate cross
sections without ever looking directly at a Dirac matrix or spinor. They
are derived from the commutation algebra of the γ’s (equation 5.105) and
the cyclic property of the trace, and are valid independently of the choice of
representation for the γ’s. The order of the theorems below is of no particular
significance, and the numbering of the theorems is arbitrary.
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Theorem 1

The trace of an odd number of γ matrices is zero.
Proof: For n odd,

Tr[�a1 · · · �an] = Tr[�a1 · · · �anγ5γ5]
= Tr[γ5 �a1 · · · �anγ5]
= (−1)nTr[�a1 · · · �anγ5γ5]
= 0 for n odd. (8.53)

Theorem 2

Tr[I] = 4. (8.54)

Tr[� a � b] = Tr[� b � a] =
1
2
Tr[� a � b+ � b � a]

=
1
2
Tr[aµbν(γµγν + γνγµ)]

=
1
2
Tr[aµbν(2gµν)]

= Tr[a · b]
= a · bTr[I]
= 4a · b. (8.55)

This also shows

Tr[aµγ
µbνγ

ν ] = 4aµb
µ,

aµbνTr[γµγν ] = 4aµbνg
µν ,

⇒ Tr[γµγν ] = 4gµν . (8.56)

Theorem 3

Tr[�a1 · · · �an] = a1 · a2Tr[�a3 · · · �an]− a1 · a3Tr[�a2 �a4 · · · �an] + · · ·
+a1 · anTr[�a2 · · · �an−1]. (8.57)

In particular,

Tr[�a1 �a2 �a3 �a4] = 4(a1 · a2a3 · a4 + a1 · a4a2 · a3 − a1 · a3a2 · a4). (8.58)
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Proof: Using �a1 �a2 = − �a2 �a1 + 2a1 · a2,

Tr[�a1 �a2 · · · �an] = 2a1 · a2Tr[�a3 · · · �an]− Tr[�a2 �a1 �a3 · · · �an]
= 2a1 · a2Tr[�a3 · · · �an]− · · ·

+2a1 · anTr[�a2 · · · �an−1]− Tr[�a2 · · · �an �a1]. (8.59)

Using the cyclic property of the trace proves the theorem. This also shows

bµdνTr[� aγµ� cγν ] = 4(aµbµc
νdν + aνdνbµc

µ − a · cbµdµ)
= bµdν4(aµcν + aνcµ − a · cgµν),

⇒ Tr[� aγµ� cγν ] = 4(aµcν + aνbµ − a · cgµν). (8.60)

Theorem 4

Tr[γ5] = Tr[iγ0γ1γ2γ3]
= −Tr[iγ1γ0γ2γ3]
= Tr[iγ1γ2γ0γ3]
= −Tr[iγ1γ2γ3γ0]
= −Tr[γ5]
= 0. (8.61)

This leads to

Tr[γ5 � a � b] = 0 (8.62)

(see problem 8.7), and

Tr[γ5 � a � b � c � d] = 4iεαβγδa
αbβcγdδ, (8.63)

where the totally antisymmetric tensor εαβγδ is +1 for (α, β, γ, δ), an even
permutation of (0, 1, 2, 3) and is −1 for an odd permutation, and is 0 if two
indices are the same.
Proof: For a non-vanishing contribution, all components of a, b, c, d must be
different and the total contribution is the sum of the various combinations of
components multiplied by the sign of the permutation. To fix the overall sign
take an example case:

Tr[γ5γ0γ1γ2γ3a
0b1c2d3] = iε0123a

0b1c2d3Tr[γ2
5 ]

= 4iε0123a0b1c2d3. (8.64)
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Theorem 5

γµγ
µ = 4I. (8.65)

γµ � aγµ = aνγµγ
νγµ

= −aνγµγ
µγν + 2aνγ

µgνµ

= −4aνγ
ν + 2 � a

= −4 � a+ 2 � a
= −2 � a. (8.66)

γµ � a � bγµ = γµ � abνγνγµ

= −γµ � abνγµγν + 2γµ � abνgνµ

= 2 � a � b+ 2 � b � a
= 2aµbν(γµγν + γνγµ)
= 4aµbνg

µν

= 4a · b. (8.67)

This leads to

γµ � a � b � cγµ = −2 � c � b � a, (8.68)
γµ � a � b � c � dγµ = 2[� d � a � b � c+ � c � b � a � d]. (8.69)

Theorem 6

Tr[�a1 �a2 · · · �a2n] = Tr[�a2n · · · �a2 �a1]. (8.70)

Proof: From the charge conjugation discussion, recall that there exists a ma-
trix C such that CγµC

−1 = −γT
µ . Then

Tr[�a1 �a2 · · · �a2n] = Tr[C �a1C
−1C �a2C

−1 · · ·C �a2nC
−1]

= (−1)2nTr[�aT
1 �aT

2 · · · �aT
2n]

= Tr[�a2n · · · �a2 �a1]T

= Tr[�a2n · · · �a2 �a1]. (8.71)

A general form which we shall often encounter, where Γ is some combination
of Dirac matrices, is
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|u(f)Γu(i)|2 = |u†(f)γ0Γu(i)|2

= [u†(f)γ0Γu(i)][u†(i)Γ†(γ0)†u(f)]
= [u(f)Γu(i)][u(i)γ0Γ†γ0u(f)]
= [u(f)Γu(i)][u(i)Γu(f)], (8.72)

where Γ = γ0Γ†γ0. Therefore,

γµ = γ0(γµ)†γ0 = γµ,

iγ5 = γ0(iγ5)†γ0 = iγ5,

γµγ5 = γ0(γ5)†(γµ)†γ0 = γµγ5,

�a � b � c · · · � p = γ0 � p† · · · � c† � b† �a†γ0 = � p · · · � c � b �a. (8.73)

When averaging over initial-spin states and summing over final-spin states,
we often encounter the form

1
2

2∑
r=1

2∑
s=1

|ur
f (pf )Γus

i (pi)|2

=
1
2

2∑
r=1

2∑
s=1

∑
α,β,γ,δ

ur
f (pf )βΓβαu

s
i (pi)αu

s
i (pi)δΓδγu

r
f (pf )γ

=
1
2

∑
α,β,γ,δ

Γβα

(
�pi +m

2m

)
αδ

Γδγ

( �pf +m

2m

)
γβ

(8.74)

=
1

8m2
Tr[Γ(�pi +m)Γ(�pf +m)].

The other “trick” we will use is to introduce the unit four-vector aµ =
(1, 0, 0, 0) to put γ0 into the slash notation: aγ0 = �a. For example,

Tr[γ0� b] = Tr[� a � b] = 4a · b = 4b0. (8.75)

8.4 Coulomb Scattering of Positrons

To help elucidate the similarities and differences between electron and
positron scattering, we perform one calculation with the electron replaced
by a positron. Consider the scattering of a positron in the Coulomb field of a
nucleus of charge Ze. For the Coulomb scattering of an electron, the S-matrix
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was proportional to e2. We therefore expect the form of the cross section for
positron scattering to be similar to the Coulomb scattering of an electron.
In fact, we expect the result to be identical to lowest order in e2. It would
be identical to all orders in e if the Coulomb field was due to a negatively
charged nucleus of charge −Ze. Figure 8.7 shows the diagram for positron
scattering in a coulomb field. Throughout this book we will draw positrons
as negative-energy electrons with the arrows indicating motion backwards in
time (cf. section 6.9.2).

−pi,−si

−pf ,−sf

��

FIGURE 8.7: Scattering of a positron from a fixed Coulomb potential.

The S-matrix element for the process in figure 8.7 is

Sfi = −ie
∫
d4xψf (x) �A(x)Ψ(−)

i (x). (8.76)

Here the incoming state is in the future and is to be interpreted as a negative-
energy electron of four-momentum −pf and spin −sf running backwards in
time. Using plane waves in lowest order, the incident wave function is

ψi(x) =
√

m

EfV
v(pf , sf )e+ipf ·x. (8.77)

Similarly, the outgoing state is the negative-energy electron running back-
wards into the past. Its wave function is

ψf (x) =
√

m

EiV
v(pi, si)e+ipi·x, (8.78)

which represents the incident positron with momentum �pi and spin �si before
the scattering. The S-matrix element becomes (cf. equation 8.21)

Sfi = − iZe
2

4π
1
V

m√
EfEi

v(pi, si)γ0v(pf , sf )
∫
d4x

ei(pf−pi)·x

|�x | . (8.79)
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By the same calculation as in equation 8.39, we find the differential cross
section is

dσ̄

dΩ
=

2(Zα)2m2

|�q |4
∑
±sf ,si

|v(pi, si)γ0v(pf , sf )|2. (8.80)

Again the spin sum may be reduced to a trace, using the completeness rela-
tionship for positron spinors

∑
±si

vα(pi, si)vβ(pi, si) = −
(
−�pi +m

2m

)
αβ

. (8.81)

The first minus sign comes from the normalization of the negative-energy
spinors and the relative minus sign between the two terms comes from the
negative-energy projection operator.

The differential cross section now becomes

dσ̄

dΩ
=

(Zα)2

2|�q |4 Tr
[
γ0(�pi −m)γ0(�pf −m)

]
. (8.82)

This is the same as the result of equation 8.44 for the electron with mass
m replaced by −m. Since our answer for electron scattering was even in m,
this shows that the positron scattering cross section is equal to the electron
scattering cross section to lowest order in α.

We could have anticipated this result from charge-conjugation invariance of
the S-matrix. We could equally well write

Sfi = ie

∫
d4x(ψC)i �A(ψC)f , (8.83)

where we have written the S-matrix element for electron scattering with
positron wave functions and an electromagnetic potential unchanged from
electron scattering (cf. equation 8.76). Using the definition of ψC , we write

Sfi = ie

∫
d4x

(
−ψT

i C
−1
)
�A
(
Cψ

T

f

)
= −ie

∫
d4xψT

i

(
C−1 �AC

)
ψ

T

f . (8.84)

Using equation 5.257 and the fact that Aµ is real, we write C−1 �AC = − �AT ,
and thus

Sfi = ie

∫
d4xψT

i �ATψ
T

f

= ie

∫
d4x(ψf �Aψi)T

= ie

∫
d4xψf �Aψi, (8.85)
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which is the same as equation 8.17. The last step follows from the fact that
ψf �Aψi is just an ordinary number. In this picture, the positron runs forward
in time and ψCf(x) = Cγ0ψ∗f is the wave function of the initial positron.

In section 5.16, we saw that for each solution of the electron in the potential
Aµ there is a corresponding solution of the positron in the potential −Aµ, that
is, the scattering of an electron from the potential +Ze/4πr is the same as
that of a positron from potential −Ze/4πr. However, since the calculated
cross section depends only on α2, the sign of Aµ does not matter. This is
not true for the α3 correction which comes from the product of the first- and
second-order scattering amplitudes, which have opposite signs for electrons
and positrons.

Figure 8.8 compares electron with positron Coulomb scattering to second
order. The first-order amplitudes for electron and positron scattering (fig-
ures 8.8a and 8.8c) differ only in the sign of Ze2, while the amplitudes are
identical at second order in (Ze2)2. When squaring the amplitudes to cal-
culate the measurable cross section, the results to first order will be equal.
The second-order contributions will also be equal (figures 8.8b and 8.8d), but
the cross term resulting from the combination of first order and second-order
amplitudes will differ in sign at order (Ze2)3. Therefore electron and positron
Coulomb scattering will differ in second order due to the interference between
the first- and second-order amplitudes4.

We should also notice that the positron cross section is obtained from that
of the electron cross section by replacing u(pi) with v(−pf) and u(pf ) with
v(−pi); this is a general feature of the relativistic theory, and is one of the
substitution rules described in the next section.

8.5 Crossing Symmetry and Substitution Rules

One of the most powerful consequences of the structure of the S-matrix
is crossing symmetry. Consider figure 8.9. If two processes S ′ and S differ
only in one external particle, such that this particle is an outgoing photon,
electron, or positron in S′ and an ingoing photon, positron, or electron in S,
respectively, then the S-matrix elements associated with S ′ and S are related
as shown in table 8.1. In the case of circular polarization, right-circular ↔
left-circular polarization. The double arrow indicates that the substitution
necessary to obtain S from S′ is reversible, so that one can also obtain S′
from S.

4W.A. McKinley & H. Feshbach, “The Coulomb Scattering of Relativistic Electrons by
Nuclei”, Phys. Rev. 74 (1948) 1759-1763.
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e �� Ze

(e)(Ze) = Ze2

c)

e

e

��

��

Ze

Ze

d)
(Ze2)(Ze2) = Z2e4

−e �� Ze

(−e)(Ze) = −Ze2

a)

−e

−e

��

��

Ze

Ze

b)
(−Ze2)(−Ze2) = Z2e4

FIGURE 8.8: Coulomb scattering: a) electron first order, b) electron sec-
ond order, c) positron first order, and d) positron second order.

These substitution rules can also be applied to the square of the matrix
elements M after the spin summations have been carried out. In this case,
we have transformed to momentum space and projection operators take the
place of the wave functions. The substitutions can then be carried out directly
in the projection operators as shown in table 8.2. This simply means that
there is also an overall sign change of the trace in addition to the momentum
substitution.

Repeated application of the substitution rules allow one to calculate all
permutations of a process involving the same number and types of particles
from a single calculation. Some of the resulting processes many not be possible

TABLE 8.1: Substitution rules for photons, electrons, and
positrons.

Process S′ Process S Kinematics Spin

photon k′ out photon k in k′ ↔ −k ε∗′ ↔ ε
electron p′ out positron q in p′ ↔ −q u(p′) ↔ v(q)
positron q′ out electron p in q′ ↔ −p v(q′) ↔ u(p)
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SS′

FIGURE 8.9: Two arbitrary processes related by crossing symmetry.

TABLE 8.2: Substitution rules for spin sums.

M Projection Operator

electron p′ ↔ q Λ−(p′) ↔ −Λ+(q) = −Λ−(−q)
positron q′ ↔ p Λ+(q) ↔ −Λ−(p) = −Λ+(−p)

because they violate the conservation of energy and momentum.
An example of an application of the substitution rules is the calculation

of electron-photon scattering, electron-positron annihilation, and electron-
positron production, as shown in figure 8.10. After any one of these processes
is calculated, the others follow by the substitution rules (see problem 8.9).
However, the original matrix elements – or traces – must be known in com-
plete generality, without restriction to a special coordinate system, in order
to make the procedure work.

8.6 Electron Scattering from a Dirac Proton

The treatment of electron scattering from a fixed potential in section 8.2
was not relativistic covariant; energy was conserved but momentum was not.
This was because the scattering center was assumed to be fixed. In order to
deal with a more realistic situation, we consider the scattering of an electron
from a freely movable nucleus, in particular, a proton. Now all the recoil
effects are present.

As a first approximation, we treat the proton as a structureless – point-like
– Dirac particle. By Dirac particle we mean a particle having a gyromagnetic
ratio g = 2, which obeys the Dirac equation.

With two particles – the electron and proton – there is no external classical
electromagnetic potential in the calculation. Since the electron and proton
are charged, they act as sources of electromagnetic fields. We can picture the
process as one in which each particle scatters off the “virtual” field produced
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b) c)

a)

FIGURE 8.10: Processes related by the crossing symmetry: a) electron-
photon scattering, b) electron-positron annihilation, and c) electron-positron
productions.

by the other. We will consider the electron scattering off the electromag-
netic field of the proton; although we should expect the physical results to be
equivalent to proton scattering off the electromagnetic field of the electron.

If we know the current of the proton Jν(y), we can calculate the electromag-
netic potential it generates using Maxwell’s equations and the Green-function
techniques of section 7.4:

Aµ(x) =
∫
d4yDµν

F (x− y)Jν(y). (8.86)

This equation is the same as equation 7.50, and needs the Feynman propagator
in configuration space for electromagnetic radiation:

Dµν
F (x − y) = gµνDF (x − y) =

∫
d4q

(2π)4
e−iq·(x−y)

(
−gµν

q2 + iε

)
. (8.87)

To lowest order in α, we can consider the radiation as a photon exchanged
between the electron and proton. The interaction photon is said to be virtual,
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or “off-mass-shell”; its effective mass squared is q2. This photon is said to be
virtual since for real photons, the energy-momentum vector qµ satisfies q2 = 0.
Hence the propagator becomes infinite and does not exist for real photons; it
has its biggest contribution close to mass shell. Likewise for the Klein-Gordon
and Dirac equations, the propagator becomes infinite when the particle is on
its mass shell: p2 = m2.

Using plane waves for the electron, the S-matrix element is

Sfi = ie

∫
d4xψf (x) �A(x)Ψ(+)

i (x)

= ie

∫
d4xψf (x)γµ

∫
d4ygµνDF (x− y)Jν(y)ψi(x)

= −
∫
d4xd4y

[
−eψf (x)γµψi(x)

]
[iDF (x− y)] Jµ(y). (8.88)

In this calculation, we group the factors in mathematical expressions in
what might appear a strange fashion. The reason is to show the correspon-
dence between factors in the scattering amplitude and pieces of the diagrams
for the process. We recognize −eψf (x)γµψi(x) as the current of the electron.
It is a matrix element of the current operator between initial and final electron
states, and is usually referred to as a transition current.

Now we must face the problem of what to choose for the proton current
Jµ(y). Since we have identified the electron transition current, we may want to
choose a similar form for the proton current. This is particularly justified since
we could have equally well taken the approach at the beginning of the problem
of considering proton scattering off the electromagnetic field produced by the
electron. It is thus reasonable to try

Jµ(y) = ePψ
P

f (y)γµψP
i (y), (8.89)

where eP = +e is the proton electric charge. ψP
i (y) and ψ

P

f (y) represent
the initial and final state plane-wave solutions for a free Dirac proton. Using
plane-wave solutions for the proton gives

Jµ(y) =

√
M2

E′fE
′
i

e

V
ei(Pf−Pi)·yu(Pf , Sf )γµu(Pi, Si), (8.90)

where Pi, Si, E′i and Pf , Sf , E′f are the four-momentum, spin, and energy of
the initial and final state protons. The mass of the proton is M .

We now write for the S-matrix element

Sfi = −
∫
d4xd4y

[√
m

EiV

√
m

EfV
ei(pf−pi)·xu(pf .sf )(ieγµ)u(pi, si)

]
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·
∫

d4q

(2π)4
e−iq·(x−y)

(
−igµν

q2 + iε

)

·
[√

M

E′iV

√
M

E′fV
ei(Pf−Pi)·yu(Pf , Sf )(−ieγν)u(Pi, Si)

]

= −
∫
d4xd4yd4q

(2π)4

√
m2

EiEfV 2

√
M2

E′iE
′
fV

2
ei(pf−pi−q)·xei(Pf−Pi+q)·y

· [u(pf , sf )(iγµ)u(pi, si)]
−igµν

q2 + iε
[u(Pf , Sf )(−ieγν)u(Pi, Si)] . (8.91)

The x- and y-integrations can be performed using the definitions of the Dirac
delta function:

Sfi = −
∫
d4q

√
m2

EfEiV 2

√
M2

E′fE
′
i

V 2(2π)4δ4(pf − pi − q)δ4(Pf − Pi + q)

· [u(pf , sf )(ieγµ)u(pi, si)]
−gµν

q2 + iε
[u(Pf , Sf )(−ieγν)u(Pi, Si)]

= i(2π)4δ4(Pf − Pi + pf − pi)

√
m2

EfEiV 2

√
M2

E′fE
′
iV

2
Mfi, (8.92)

where

iMfi = [u(pf , sf )(ieγµ)u(pi, si)]
−igµν

(pf − pi)2 + iε
[u(Pf , Sf )(−ieγν)u(Pi, Si)] .

(8.93)
The amplitude iMfi is the Lorentz invariant matrix element for the process

under consideration. It is usually simply called the invariant amplitude. The
choice of this name is quite natural since the matrix element consists of scalar
products of four-vectors, which are Lorentz invariant. It is understood that
the momenta in iMfi are restricted by the four-momentum conserving delta
function δ4(Pf − Pi + pf − pi). Equations 8.92 and 8.93 give the electron-
proton scattering amplitude to lowest order in e. Higher order interaction
effects which distort the plane waves that were inserted in the currents have
been ignored.

Comparing this result with the amplitude for Coulomb scattering of elec-
trons, equation 8.23, shows two differences:

Zγ0

|�q |2 → γµ

(
−1

q2 + iε

)√
M2

E′fE
′
i

u(Pf , Sf )γµu(Pi, Si) (8.94)

and
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V → (2π)3δ3(�Pf − �Pi + �pf − �pi). (8.95)

The latter difference guarantees momentum conservation, which was a prob-
lem in Coulomb scattering, which we are trying to circumvent in this calcu-
lation.

The invariant matrix element (equation 8.93) shows a clear symmetry be-
tween the electron and proton variables, giving us faith in our choice of pro-
ton current. In addition, we notice that the two factors u(f)γµu(i) are the
momentum-space versions of the x-dependent current matrix elements. Thus
the amplitude iMfi has the form of two currents connected together by a
photon propagator.

Based on the arguments at the end of section 7.4, it can be shown (see
problem 8.10) that the covariant amplitude includes contributions from the
exchange of transversely polarized photons and from the familiar Coulomb
potential, showing that the result is truly a relativistic extension of static
Coulomb scattering.

The expression for the S-matrix element in momentum space may be repre-
sented by a “Feynman diagram” as shown in figure 8.11. Sfi always contains
a four-dimensional delta function expressing overall energy-momentum con-
servation. In addition, for each line and intersection of the diagram there
corresponds a unique factor in the invariant matrix element. A solid line with
an arrow pointing toward positive time represents the electron and a double
line the proton. The double line is to represent structure, which a real proton
has. The wavy line represents the influence of the electromagnetic interaction,
which is expressed in the matrix element by the reciprocal of the square of
the momentum transfer, or the inverse d’Alembert operator in momentum
space – the propagator. We refer to this line as representing a virtual photon
exchanging four-momentum q = pf − pi = Pi − Pf between the electron and
proton. The amplitude for the virtual photon to propagate between the two
currents is −i(q2 + iε)−1. At the points – or vertices – on which the photon
lands there are operators −ieγµ sandwiched between spinors

√
m/Eu(p, s)

representing the real incident and outgoing free particles. To get the spinor
factor in expressions such as these, the rule is to start at the ingoing fermion
line u and follow the line in the direction of the arrow through until the end,
inserting vertices and propagators in the right order, until you reach the out-
going state u. For the factors of i, there is a uniform rule: −i for each vertex
and i for each internal line in the diagram.

It should be made clear that the internal particles in a Feynman diagram
are not on their mass shell: q2 �= m2. The energy component q0 and the
momentum components �q of the four-momentum qµ of the internal line are
independent variables.

The exchange photon is not to be thought of as either emitted by the elec-
tron and absorbed by the proton, or the other way around; rather, it includes
both processes. This must be the case since we do not have any measuring
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pi

pf

q = pf − pi

Pi

Pf

t
line

√
m
E u(p, s) or

√
m
E u(p, s)

propagator −i
q2+iε

vertex ±ieγµ

FIGURE 8.11: Feynman diagram for electron-proton scattering.

instrument inside the interaction region to tell us about the sequence of what
goes on inside; it is a non-physical question.

We now form a transition rate per unit volume wfi by dividing |Sfi|2 by the
time interval of observation T and by the spatial volume V of the interaction
region.

wfi =
|Sfi|2
V T

= (2π)4δ4(Pf + pf − Pi − pi)
1
V 4

m2

EfEi

M2

E′fE
′
i

|Mfi|2, (8.96)

where

Mfi = [u(pf , sf )γµu(pi, si)]
e2

q2 + iε
[u(Pf , Sf )γµu(Pi, Si)]. (8.97)

We have used, in analogy to equations 8.27-8.31, the square of the delta
function

[(2π)4δ4(Pf + pf − Pi − pi)]2 = (2π)4δ4(0)(2π)4δ4(Pf + pf − Pi − pi),
→ V T (2π)4δ4(Pf + pf − Pi − pi), (8.98)

since the four-dimensional delta function is just the product of four one-
dimensional delta functions.

We divide the transition rate per unit volume by the flux of incident parti-
cles |Jinc| and by the number of target particles per unit volume, which is just
1/V , since the normalization of the wave functions was performed in such a
way that there is just one particle in the normalized volume V .

To get a physical cross section, we must integrate over a given group of
final states of the electron and proton corresponding to the laboratory condi-
tions for observing the process. The number of final states in the momentum
interval d3pfd

3Pf is
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V
d3pf

(2π)3
V
d3Pf

(2π)3
, (8.99)

and thus the six-fold differential cross section for transitions to the final states
is

dσ =
∫
V 2 d

3pf

(2π)3
d3Pf

(2π)3
V

|Jinc|
wfi

=
∫

m

Ef

d3pf

(2π)3
M

E′f

d3Pf

(2π)3
mM

EiE′i

(2π)4δ4(Pf + pf − Pi − pi)
|Jinc|V

|Mfi|2.

(8.100)

The physics lies in |Mfi|2, the square of the invariant amplitude. There is
a factor m/E for each external fermion line, that is, for each Dirac particle
incident upon or emerging from the interaction. The phase-space factor for
each final-state particle is d3pf/(2π)3. Thus each final-state particle gives rise
to the factor m

E
d3p

(2π)3 . We have deliberately kept these factors together. We
now show that this factor is Lorentz invariant by working some of the results of
section 4.4 backwards. The following combination forms a Lorentz-invariant
volume element in momentum space.

d3p

2E
=
∫ ∞

0

dp0
δ(p0 − E)

2p0
d3p+

∫ ∞
0

dp0
δ(p0 + E)

2p0
d3p

=
∫ ∞

0

dp0δ(p2
0 − E2)d3p

=
∫ ∞

0

dp0δ(p2 −m2)d3p, (8.101)

d3p

2E
=
∫ ∞
−∞

d4pδ(p2 −m2)θ(p0) , (8.102)

which is invariant provided pµ is time-like, as is the case here.
In the factor 1/(V |Jinc|), |Jinc| is the flux. For collinear beams, it is the

number of particles per unit area which run by each other per unit time,

|Jinc| =
|�vi − �Vi|

V
, (8.103)

which is the particle density times the relative velocity.
We have required that the velocity vectors are collinear. When V |Jinc| is

combined with the normalization factors for two incident particles, it forms a
Lorentz-invariant expression
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mM

EiE′i|�vi − �Vi|
=

mM

|�pi|E′i + |�Pi|Ei

=
mM√

(pi · Pi)2 −m2M2
. (8.104)

The last expression can be seen by working backwards:

(pi · Pi)2 −m2M2 = (EiE
′
i + |�pi||�Pi|)2 − (E2

i − |�pi|2)(E′i
2 − |�Pi|2)

= 2EiE
′
i|�pi||�Pi|+ E2

i |�Pi|2 + E′i
2|�pi|2

= (|�pi|E′i + |�Pi|Ei)2. (8.105)

In the case of collinear collisions, both results are identical. Consequently the
näıve flux factor in the cross section can be replaced by the Lorentz-invariant
flux factor so that the total cross section is Lorentz invariant. This shows
that the total cross section is invariant under Lorentz transformations along
the direction of motion of the incident beams. We write the invariant form

dσ =
mM√

(pi · Pi)2 −m2M2
|Mfi|2

· (2π)4δ4(Pf − Pi + pf − pi)
md3pf

Ef (2π)3
Md3Pf

E′f (2π)3
. (8.106)

This is a general form for a 2→ 2 process
We see that the cross section consists of three invariant quantities: the

Lorentz-invariant flux factor equation 8.104, the Lorentz-invariant matrix el-
ement, and the Lorentz-invariant phase-space factor:

dLips(s; pf , Pf ) = (2π)4δ4(pf +Pf − pi −Pi)
m

(2π)3
d3pf

2Ef

M

(2π)3
d3Pf

2E′f
, (8.107)

where s = (pi+Pi)2 is the sMandelstam variable. Equation 8.107 is referred to
as the two-particle Lorentz-invariant phase space factor, and will be elaborated
on further in appendix B.

Like in the case of Coulomb scattering, we will calculate the unpolarized
cross section by averaging over initial and summing over final spin states. This
gives four sums over spin and two factors of 1/2. We have (see problem 8.11)

|Mfi|2 =
1
4

∑
sf ,si,Sf ,Si

∣∣∣∣u(pf , sf)γµu(pi, si)
e2

q2 + iε
u(Pf , Sf )γµu(Pi, Si)

∣∣∣∣
2

=
(
e2

q2

)2 1
4
Tr

[
(�pf +m)

2m
γµ (�pi +m)

2m
γν

]

·Tr
[
(�P f +M)

2M
γµ

(�P i +M)
2M

γν

]
, (8.108)
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where the bar overMfi denotes spin average.
Note that squaring the amplitude, which contained the scalar product of

two Lorentz four-vectors u(f)γµu(i), has led to the contraction of two tensors,
i.e. a double sum. One often abbreviates this as

|Mfi|2 =
(
e2

q2

)2

LµνHµν , (8.109)

were Lµν is the leptonic, i.e. electron in this case, tensor andHµν the hadronic,
i.e. proton in this case, tensor:

Lµν =
1
2

∑
si,sf

u(pf , sf )γµu(pi, si)u(pi, si)γνu(pf , sf )

=
1
2
Tr

[ �pf +m

2m
γµ �pi +m

2m
γν

]
. (8.110)

And similarly,

Hµν =
1
2
Tr

[
�P f +M

2M
γµ
�P i +M

2M
γν

]
. (8.111)

This factorization remains meaningful as long as a single virtual photon is
exchanged in the scattering process, even if the transition currents are more
complicated than those here (see problem 8.12).

Now consider the evaluation of the traces. The first trace is

Tr
[ �pf +m

2m
γµ �pi +m

2m
γν

]
=

1
4m2

Tr[�pfγ
µ �piγ

ν +m2γµγν ]

=
1

4m2
[4pµ

fp
ν
i + 4pν

fp
µ
i − 4pi · pfg

µν + 4m2gµν ]

=
1
m2

[pµ
fp

ν
i + pµ

i p
ν
f − gµν(pf · pi −m2)]. (8.112)

The second trace has the same form:

Tr
[
�P f +M

2M
γµ
�P i +M

2M
γν

]
=

1
M2

[Pf µPiν + PiµPf ν − gµν(Pf · Pi −M2)].

(8.113)
Both are second-rank tensors consisting of products of four-vectors.

The square of the invariant amplitude now becomes, by contracting the two
tensors,

|Mfi|2 =
e4

4m2M2q4

[
pµ

fp
ν
i + pµ

i p
ν
f − gµν(pf · pi −m2)

]
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·
[
Pf µPiν + PiµPf ν − gµν(Pf · Pi −M2)

]
=

e4

2m2M2q4
[(pi · Pi)(pf · Pf ) + (pi · Pf )(pf · Pi)

−pi · pf (Pi · Pf −M2)− Pi · Pf (pi · pf −m2)
+ 2(pi · pf −m2)(Pi · Pf −M2)]

=
e4

2m2M2q4
[(Pf · pf)(Pi · pi) + (Pf · pi)(Pi · pf)

−m2(Pf · Pi)−M2(pf · pi) + 2m2M2]. (8.114)

To evaluate the scattering cross section further, the frame of reference has
to be specified. Usually calculations take their simplest form in the center-of-
mass reference system (see problem 8.13). However, electron-proton scattering
experiments are traditionally performed using a beam of electrons and a fixed
target of atoms, corresponding to protons at rest in the laboratory frame.
Therefore we evaluate the differential cross section in the laboratory frame in
which the initial proton is at rest (figure 8.12):

pf = (E′, �p ′), (8.115)
pi = (E, �p), (8.116)
Pi = (M, 0), (8.117)

Pf = (E′f , �P
′
f ). (8.118)

pi = (E, �p)

pf = (E′, �p ′)

q
P = (M, 0)

Pf = (E′f , �P
′

f )

θ

FIGURE 8.12: Electron-proton scattering in the rest frame of the proton.

In the rest frame of the proton, the square of the invariant matrix element
becomes
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|Mfi|2 =
e4

2m2M2q4
[MEpf · (Pi + pi − pf ) +ME′pi · (Pi + pi − pf)

−pi · pfM
2 −m2M(M + E − E′) + 2m2M2]

=
e4

2m2M2q4
[ME(ME′ + pf · pi −m2) +ME′(ME +m2 − pi · pf )

−pi · pfM
2 −m2M2 −m2ME +m2ME′ + 2m2M2]

=
e4

2m2M2q4
{
2M2EE′ + 2m2M(E′ − E)

−pi · pf [M2 +M(E′ − E)] +m2M2
}
. (8.119)

We calculate the differential cross section for electron scattering into a given
solid-angle element dΩ centered around the scattering angle θ, as shown in
figure 8.6. We thus integrate the differential cross section over all momentum
variables except for the direction of �pf . The volume element in spherical
coordinates is written as

d3p′ = |�p ′|2d|�p ′|dΩ = |�p ′|E′dE′dΩ, (8.120)

where |�p ′|d|�p ′| = E′dE′ has been used. For the final-state proton, we use
equation 8.102:

d3Pf

2E′f
=
∫ ∞
−∞

d3Pfδ(P 2
f −M2)θ(P 0

f ). (8.121)

The invariant flux factor reduces to

mM√
(pi · Pi)−m2M2

=
mM√

(EM)2 −m2M2
=

m

|�p | . (8.122)

Combining the results for the flux factor and final-state phase-space inte-
grals, the differential cross section in the rest frame of the proton becomes

dσ =
m

|�p | |Mfi|2(2π)4δ4(Pf − Pi + pf − pi)

· m

(2π)3
|�p ′|dE′dΩ 2M

(2π)3
d4Pf δ(P 2

f −M2)θ(P 0
f ). (8.123)

Integrating over dE′ and d3Pf , the differential cross section becomes

dσ̄

dΩ
=

2m2M

|�p |

∫ |�p ′|dE′
(2π)2

|Mfi|2d4Pfδ
4(P 2

f −M2)θ(P 0
f )δ4(Pf + p′ − Pi − p)

=
m2M

2π2|�p |

∫
|�p ′|dE′|Mfi|2δ[(Pi − p′ + p)2 −M2]θ(M − E′ + E)



Quantum Electrodynamic Processes 235

=
m2M

2π2|�p |

∫ M+E

m

|�p ′|dE′|Mfi|2δ[(Pi − p′ + p)2 −M2].

(8.124)

The lower bound on the integration over E′ is m because the rest mass is the
lowest energy of the electron. The upper bound comes from the requirement
of the step function: M − E′ + E > 0⇒ E′ < M + E.

Expressing the argument of the delta function in equation 8.124 in terms
of the kinematic variables in the rest frame of the proton, we have

f(E′) ≡ (Pi − p′ + p)2 −M2

= P 2
i + p′2 + p2 − 2Pi · p′ + 2Pi · p− 2p′ · p−M2

= M2 +m2 +m2 − 2ME′ + 2ME − 2EE′ + 2|�p ′||�p | cos θ −M2

= 2m2 + 2M(E − E′)− 2EE′ + 2|�p ||�p ′| cos θ. (8.125)

Using the identity for a delta function of an arbitrary function (equation 2.32),
we calculate

df(E′)
dE′

= −2 [M + E − |�p |(E′/|�p ′|) cos θ] , (8.126)

where we have used |�p ′|d|�p ′| = E′dE′. With this expression, the differential
cross section becomes

dσ̄

dΩ
=
m2M

4π2

|�p ′|
|�p |

|Mfi|2
M + E − |�p |(E′/|�p ′|) cos θ

. (8.127)

This differential cross section is a function of E, |�p |, E′, |�p ′|, and θ. However,
|�p | and |�p ′| are fixed by |�p |2 = E2 −m2 and |�p ′|2 = E′2 −m2. In addition,
E, E′, and θ are constrained by the energy-conserving delta function. The
argument of the delta function is

m2 +M(E − E′)− EE′ + |�p ||�p ′| cos θ = 0, (8.128)

which is a quadratic equation in E′. Thus the differential cross section is a
function of the two variables E and θ. That is, for a given initial electron
energy E and a measured scattering angle θ, we can solve the three constraint
equations to determine all the kinematic variables in the invariant matrix
element 8.114, and hence the cross section 8.127.

The differential cross section result in equation 8.127 is general. However, it
is difficult to interpret given its complexity, and this is best left for numerical
calculations. In order to understand the scattering formula (equation 8.127),
we will investigate its low-energy and high-energy limits.

A low-energy limit is obtained when the energy of the electron is much less
than the proton rest mass, E/M � 1. We anticipate that in this limit we
will reproduce the Mott cross section. Since E/M � 1 implies m/M � 1
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and |�p |/M � 1, equation 8.128 leads to M(E −E′) ≈ 0, or E ≈ E′, which is
complete elastic scattering.

In this limit, the differential cross section equation 8.127 becomes

dσ̄

dΩ
=
m2

4π2
|Mfi|2 for

E

M
� 1, (8.129)

where

|Mfi|2 =
8π2α2

m2q4
(2E2 − pf · pi +m2) for

E

M
� 1, (8.130)

or

dσ̄

dΩ
=

2α2

|�q |4 (2E2 − pf · pi +m2) for
E

M
� 1, (8.131)

where we realize that the momentum transfer q has no time component, i.e.
q2 = −�q 2. The result is exactly the Mott cross section in equation 8.46 for
Z = 1. In this limit the proton does not recoil.

When the proton recoil becomes important, the electron may be treated
as extremely relativistic and the electron rest mass is negligible with respect
to the electron energy, m/E � 1. In this limit, |�p | =

√
E2 −m2 ≈ E and

|�p ′| =
√
E′2 −m2 ≈ E′. The differential cross section equation 8.127 becomes

dσ̄

dΩ
=
m2M

4π2

E′

E

|Mfi|2
M + E − E cos θ

=
m2

4π2

E′/E

1 + (2E/M) sin2(θ/2)
|Mfi|2 for

m

E
� 1. (8.132)

To evaluate the square of the invariant matrix element, we express the scalar
product pi · pf in terms of the square of the momentum transfer through

q2 = (pf − pi)2 = p2
fp

2
i − 2pf · pi = 2(m2 − pi · pf ). (8.133)

We obtain

|Mfi|2 =
e4

2m2M2q4

{
2M2EE′ + 2m2M(E′ − E)

+
(
q2

2
−m2

)
[M2 +M(E′ − E)] +m2M2

}

=
16π2α2EE′

m2q4

[
1 +

q2

4EE′

(
1 +

E′ − E
M

)
+

m2

2EE′
(E′ − E)

M

]
.

(8.134)

This expression for the square of the invariant matrix element is still exact
and no approximations have been made.



Quantum Electrodynamic Processes 237

In the extreme-relativistic limit, the square of the momentum transfer can
be related to the scattering angle:

q2 = −2EE′(1− cos θ) = −4EE′ sin2 θ

2
. (8.135)

In the limit m/E → 0, conservation of energy (equation 8.128) gives

M(E − E′) − EE′ + EE′ cos θ ≈ 0,
M(E − E′) = EE′(1 − cos θ),

E − E′
M

=
EE′

M2
(1 − cos θ)

=
2EE′

M2
sin2 θ

2

= − q2

2M2
. (8.136)

Thus equation 8.134 becomes

|Mfi|2 =
16π2α2EE′

m216E2E′2 sin4(θ/2)

[
1 +

q2

4EE′

(
1 +

q2

2M2

)]

=
π2α2

m2EE′ sin4(θ/2)

[
1− sin2 θ

2

(
1 +

q2

2M2

)]

=
π2α2

m2EE′ sin4(θ/2)

(
cos2

θ

2
− q2

2M2
sin2 θ

2

)
for

m

E
� 1.

(8.137)

The differential cross section thus becomes

dσ̄

dΩ
=

α2

4E2 sin4 θ
2

cos2 θ
2 −

q2

2M2 sin2 θ
2

1 + 2E
M sin2 θ

2

for
m

E
� 1 . (8.138)

The total cross section is of limited interest, so we do not integrate the differ-
ential cross section here.

In the limit of E �M , but still E � m, we have

dσ̄

dΩ
=

α2

4E2 sin4 θ
2

cos2
θ

2
, (8.139)

which is equal to the extreme-relativistic limit of the Mott cross section (equa-
tion 8.52). The result in equation 8.138 differs from the Mott cross section
in the limit as β → 1 in two important ways. First, the denominator of the
second factor in equation 8.138,
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E′

E
=

1
1 + 2E

M sin2 θ
2

, (8.140)

arises from the recoil of the target proton. Second, the q2-dependent second
term in the numerator of the second factor in equation 8.138 originates from
the fact that the target is a spin-1/2 particle. This term is absent in the
calculation of the collision of electrons with spin-0 particles (see problem 8.14).
We can now understand the sin−4(θ/2) factor in the Rutherford formula,
Mott cross section, and equation 8.138 in terms of the exchange of a massless
quantum, via the propagator factor (1/q2)2.

The derivation in this section has treated the proton as a heavy “electron”
of massM . The description is incomplete since it fails to take into account the
proton structure and proton anomalous magnetic moment. Our result would
however apply with great accuracy to the scattering of electrons off muons,
which are structureless Dirac particles. A complete description of the proton
leads to modifications, which are important at high energies exceeding several
hundred MeV. This is because the de Broglie wavelength of the electron,
λ = h̄c/E ∼ 10−13 cm, at these energies is so small that the structure of the
proton becomes detectable. In a complete treatment at very high energies, the
formula has to be modified by introducing electric and magnetic form factors,
which represent the internal structure of the proton. The result yields the
so-called Rosenbluth formula (see problem 8.15).

A powerful technique for exploring the internal structure of a target is to
bombard it with a beam of high-energy electrons and to observe the angular
distribution and energy of the scattered electrons. Such experiments have
repeatedly led to major advances in our understanding of the structure of
matter.

8.7 Bremsstrahlung

When an electron scatters off an electromagnetic field, it can emit real pho-
tons. This process is called bremsstrahlung because it involves an acceleration
– in German “bremson” – of the electron. More accurately, a deceleration of
the electron occurs. We will see that the emission of a single photon is a
well-defined process only within certain kinematical limits. The simultane-
ous emission of very soft, or low-energy, photons can never be excluded from
consideration if they are too soft to be observed within the accuracy of the
experimental energy resolution of the incident and outgoing electron energy
measurements. In fact, bremsstrahlung radiation is always present, even in
so-called elastic scattering. It is thus impossible to make a clean physical dis-
tinction between bremsstrahlung and radiationless scattering when the emit-
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ted photon is very soft. In the following calculation, we shall restrict ourselves
to the emission of one not-too-soft photon.

Consider the emission of radiation of a charged particle (electron) in the
presence of an external field. The four-vector potential of a photon with
momentum kµ = (ω,�k) and polarization εµ(�k, λ) is written in the Heaviside-
Lorentz system of units as the plane wave

Aµ(x; k, λ) =
εµ(�k, λ)√

2ωV
(e−ik·x + eik·x), (8.141)

where we take the polarization vectors to be real (cf. equation 7.29). In work-
ing with photon plane waves, we add the two exponential solutions together
since a photon is its own antiparticle. One of the terms represents photon
emission and the other photon absorption. This two-termed plane-wave so-
lution will give rise to terms in the S-matrix element which are other than
those we are interested in. Rather than restrict the two terms in the photon
plane-wave solution at the beginning, we keep them both to help elucidate the
meaning of the other terms in the S-matrix element. For this same reason,
we do not put arrows on external real photons in Feynman diagrams.

To illustrate the concepts of bremsstrahlung, we return to the static approxi-
mation and replace the proton by an external Coulomb field. Bremsstrahlung
in electron-proton scattering will be calculated in problem 8.16. We will
calculate the S-matrix element to lowest non-vanishing order in the electric
charge e. There can be no first-order emission of radiation by a free elec-
tron in the absence of an external field (figure 8.13). This is kinematically
forbidden, since it is impossible to conserve energy and momentum simultane-
ously. For a real photon k2 = 0, while conservation of four-momentum gives
k2 = (pi − pf )2 < 0, which is a contradiction.

pi, si

pf , sfk, ε

FIGURE 8.13: First-order bremsstrahlung. This process is forbidden be-
cause energy and momentum cannot be conserved simultaneously.
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The Feynman diagrams for the lowest-order bremsstrahlung process are
shown in figure 8.14. There are two diagrams since we can not tell if electron
scattering occurs before or after photon emission. The separation of the ma-
trix element into terms corresponding to the individual diagrams, although
extremely useful, has in general no physical meaning. Only the sum of both
diagrams is observable. The process shown in figure 8.14 is second order with
one vertex for the interaction of the electron with the Coulomb field and one
for the emission of the bremsstrahlung photon. This is our first example with
a real photon and the Dirac propagator, represented by the internal electron
line in figure 8.14.

pi, si

pi + q = pf + k

pf , sfk, ε

q
Ze

pi, si

pi − k = pf − q

pf , sfk, ε

q

Ze

FIGURE 8.14: Feynman diagrams for bremsstrahlung in a Coulomb field.

The calculations we have carried out thus far are valid only to lowest non-
vanishing order in e2. To obtain the next higher-order corrections in e we
must return to equations 6.112 and 6.124, and consider the amplitude for
second-order interactions between the electron and an external electromag-
netic potential. The S-matrix element is given by

S
(2)
fi = −ie2

∫
d4xd4yψf (x) �A(x))SF (x− y) �A(y)ψi(y). (8.142)

For bremsstrahlung production in a Coulomb field, the lowest-order nonva-
nishing terms in the S-matrix element becomes

Sfi =
∫
d4xd4yψf (x)[(ie �A(x; k))(iSF (x− y))(ieγ0)Acoul

0 (y)

+ (ieγ0)Acoul
0 (x)(iSF (x− y))(ie �A(y; k))]ψi(y), (8.143)

where the two terms correspond to the two time orderings of the vertices
(figure 8.14). We have again included a factor of i with the propagator and
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a factor of ieγµ at each vertex involving an electron, where e = |e| > 0.
Acoul

0 = Ze
4π|�x | is as before, with Ze > 0.

It is convenient to transform to momentum space by Fourier expanding all
factors and carrying out the coordinate integrations.

Sfi =
∫
d4xd4y

√
m

EfV
u(pf , sf )eipf ·x

·
[
ie � ε√
2ωV

(e−ik·x + eik·x)
∫

d4q

(2π)4
e−iq·(x−y) i

� q −m (ieγ0)
(

Ze

4π|�y |

)

+ (ieγ0)
(

Ze

4π|�x |

)∫
d4q

(2π)4
eieq·(x−y) i

� q −m
ie � ε√
2ωV

(e−ik·y + eik·y)
]

·
√

m

EiV
u(pi, si)e−ipi·y

=
∫
d4xd4yd4q

(2π)4V 3/2

√
m2

2ωEiEf
u(pf , sf )

·
[
(ie � ε) i

� q −m (ieγ0)
Ze

4π|�y |e
ix·(pf∓k−q)eiy·(q−pi)

+ (ieγ0)
Ze

4π|�x |
i

� q −m (ie � ε)eix·(pf−q)eiy·(q∓k−pi)

]
u(pi, si), (8.144)

where the use of ∓ here is unconventional. Rather than it representing either
− or +, here it represents the sum of two terms: one term with +, plus an
identical term with −. Continuing,

Sfi =
Ze

4π

∫
d4q

V 3/2

√
m2

2ωEiEf
u(pf , sf )

·
[
(ie �ε) i

� q −m (ieγ0)
∫
d4y

|�y | δ
4(pf ∓ k − q)eiy·(q−pi)

+ (ieγ0)
∫
d4x

|�x |
i

� q −m (ie � ε)eix·(pf−q)δ4(q ∓ k − pi)
]
u(pi, si)

=
Ze

4π
1

V 3/2

√
m2

2ωEiEf
u(pf , sf )

·
[
(ie � ε) i

� pf∓ � k −m
(ieγ0)

∫
d4y

|�y | e
iy·(pf∓k−pi)

+ (ieγ0)
∫
d4x

|�x |
i

� pi± � k −m
(ie � ε)eix·(pf−pi∓k)

]
u(pi, si)

=
Ze

V 3/2
2πδ(Ef + ω − Ei)

1√
2ω

√
m2

EfEi

1
|�q |2u(pf , sf )
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·
[
(ie �ε) i

�pf+ �k −m(ieγ0) + (ieγ0)
i

�pi− �k −m
(ie �ε)

]
u(pi, si),

(8.145)

where we have taken the Ef +ω−Ei solution only. The other solution comes
from the first term of the photon wave function, e−ik·x, which gives rise to the
energy delta function δ(Ei+ω−Ef). This term describes absorption of energy
(a photon) in the scattering process (figure 8.15), and is not the process of
interest here, i.e. the bremsstrahlung process in which the incident electron
gives up energy to the radiation field and emerges with Ef = Ei − ω < Ei.

FIGURE 8.15: Feynman diagrams for photon absorption by an electron
in a Coulomb field.

In equation 8.145, �q = �pf + �k − �pi is the three-momentum transfer to the
nucleus. There is no energy transfer to the nucleus since it was assumed to
be infinitely heavy.

We notice the factor ie�ε appears at the vertex, where a free photon of polar-
ization εµ is emitted, and 1/

√
2ωV appears as the normalization factor for a

photon wave function. We add these to our Feynman rules (see appendix C).
The invariant matrix element in equation 8.145 can be identified by writing

the S-matrix element as

Sfi = i2πδ(Ef + ω − Ei)
1√
2ωV

√
m2

EfEiV 2

Ze

|�q |2 ε ·Mfi(k), (8.146)

where

εµMµ
fi(k)

= −e2u(pf , sf)
[
�ε 1
�pf+ �k −mγ0 + γ0

1
�pi− �k −m

�ε
]
u(pi, si)
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= −e2u(pf , sf)
[
�ε
�pf+ �k +m

(pf + k)2 −m2
γ0 + γ0

�pi− �k +m

(pi − k)2 −m2
�ε
]
u(pi, si)

= −e2u(pf , sf)
[
�ε
�pf+ �k +m

2k · pf
γ0 + γ0

�pi− �k +m

−2k · pi
�ε
]
u(pi, si), (8.147)

where we have used p2
i = p2

f = m2 and k2 = 0 in the last step. The amplitude
iε · Mfi(k) is the Lorentz-invariant matrix element for the bremsstrahlung
process. Besides depending on the initial- and final-state electrons, it now
also depends on the photon polarization ε and four-momentum k.

The general result of this calculation is known as the Bethe-Heitler for-
mula5 (see problem 8.17). To illustrate the concepts, we limit the derivation
presented here to the emission of a very soft photon. In the limit as k → 0,
the invariant matrix element becomes

iε · Mfi(k) ≈ −ie2u(pf , sf )
[
�ε
�pf +m

2k · pf
γ0 + γ0

�pi +m

−2k · pi
�ε
]
u(pi, si). (8.148)

The order of the �p and �ε matrices can been reversed by using the anticom-
mutation relationship for the gamma matrices, �ε �p+ �p �ε = 2ε · p:

iε · Mfi(k)

= −ie2u(pf , sf)
[
2ε · pf− �pf �ε+m

2k · pf
γ0 + γ0

2ε · pi− �ε �pi +m

−2k · pi

]
u(pi, si)

= −ie2u(pf , sf)
[
2ε · pf − (�pf −m) �ε

2k · pf
γ0 + γ0

2ε · pi− �ε(�pi −m)
−2k · pi

]
u(pi, si).

(8.149)

The reason why we reversed the order of �p and �ε is so that we can use the
Dirac equation (�pi −m)u(pi, si) = 0 and u(pf , sf )(�pf −m) = 0 to simplify
the matrix element to

iε ·Mfi(k) = −i4παu(pf , sf )γ0u(pi, si)
(
ε · pf

k · pf
− ε · pi

k · pi

)
. (8.150)

Proceeding to the cross section, we square Sfi, divide by the flux |�vi|/V =
|�pi|/(EiV ) and by 2πδ(0), formerly T , to form a rate, and integrate over the
final states (V 2d3kd3pf)/(2π)6 in the observed interval of phase space. We
obtain

5H. Bethe & W. Heitler, “On the Stopping of Fast Particles and on the Creation of Positron
Electrons”, Proc. Roy. Soc. 146 (1934) 83-112.
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dσ =
V Ei

|�pi|
|Sfi|2
2πδ(0)

V d3k

(2π)3
V d3pf

(2π)3

=
Ei

|�pi|
[2πδ(Ef + ω − Ei)]2

2πδ(0)
1
2ω

m2

EfEi

(Ze)2

|�q |4 |ε · Mfi(k)|2
d3kd3pf

(2π)6

=
Z2(4πα)m2

2ω|�pi|Ef

|ε ·Mfi(k)|2
|�q |4 δ(Ef + ω − Ei)

d3kd3pf

(2π)5

=
4Z2α3m2

ω|�pi|Ef

|u(pf , sf)γ0u(pi, si)|2
|�q |4

·
(
ε · pf

k · pf
− ε · pi

k · pi

)2

δ(Ef + ω − Ei)
d3kd3pf

(2π)2
. (8.151)

We use the energy-conserving delta function to integrate over the final-state
electron energy using d3pf = |�pf |2dpfdΩf = |�pf |EfdEfdΩf , such that

dσ =
4Z2α3m2

|�q |4 |u(pf , sf )γ0u(pi, si)|2

·
(
ε · pf

k · pf
− ε · pi

k · pi

)2

δ(Ef + ω − Ei)
|�pf |
|�pi|

dEfdΩfd
3k

ω(2π)2
. (8.152)

Since k → 0, we can take |�pf |/|�pi| → 1, and using

∫ ∞
m

dEf δ(Ef + ω − Ei) =
∫ ∞
−∞

dEfδ(Ef + ω − Ei)θ(Ef −m)

= θ(Ei − ω −m), (8.153)

we have

dσ =
4Z2α3m2

|�q |4 |u(pf , sf )γ0u(pi, si)|2

·
(
ε · pf

k · pf
− ε · pi

k · pi

)2

θ(Ei − ω −m)
dΩfd

3k

ω(2π)2
. (8.154)

We identify a set of factors with the elastic-scattering cross section from
equation 8.37:

(
dσ

dΩf

)
elastic

=
4(Zα)2m2

|�q |4 |u(pf , sf )γ0u(pi, si)|2. (8.155)

Thus
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dσ

dΩfdΩkdω
=
(
dσ

dΩf

)
elastic

α

(
ε · pf

k · pf
− ε · pi

k · pi

)2
ω

(2π)2
θ(Ei − ω −m),

(8.156)
where we have used d3k = ω2dωdΩk. This is the cross section for the electron
to be observed in a solid angle dΩf , and for a soft photon of polarization
ε to emerge with momentum �k in the interval dΩkdω. It is natural that
the bremsstrahlung cross section for soft photon emission is proportional to
the elastic-scattering cross section for the electron at the same energy and
scattering angle, since the amount of energy and momentum carried off by
the photon is very small.

If the cross section for unpolarized electrons is to be calculated, one has to
sum over the final spin states and average over the initial spin states of the
electrons. Owing to the factorization property of equation 8.156 this is easily
achieved. One simply replaces the elastic cross section by the unpolarized
expression, equation 8.37, since the remaining factors in equation 8.156 do not
depend on the electron spin. Factorization also shows that the bremsstrahlung
cross section for soft photon emission from a positron is identical to that of
an electron to lowest nonvanishing order in α.

The factorization of equation 8.156 is more general than one might expect.
It has been shown, in the limit as k → 0, that the amplitude for any process
leading to photon emission can be factorized according to

lim
k→0

M(k) =
√
α

(
ε · pf

k · pf
− ε · pi

k · pi

)
M0, (8.157)

where M0 is the amplitude for the same process without photon emission.
This result is true for any kind of process, irrespective of the spin or internal
structure of the charged particle.

We notice that the photon energy spectrum in equation 8.156 behaves as
dω/ω and therefore the probability to emit a zero-energy photon is infinite.
This is called the infrared catastrophe. For a consistent comparison with ex-
periment, we must include both elastic and inelastic cross sections calculated
to the same order in the electric charge e. Since the bremsstrahlung con-
tribution is of order e2 higher than elastic scattering, we must also include
so-called radiative corrections to (dσ/dΩ)elastic to the same order in e. These
correspond to second-order scattering of the electron in a Coulomb field. We
must also take into account the interaction of the electron with itself via the
radiation field as shown in figure 8.16. The amplitudes coming from these
processes contain a divergent term which precisely cancels the divergence in
equation 8.156 at k = 0.

In section 7.2, we saw how gauge invariance of the electromagnetic field puts
a condition on the electromagnetic current in momentum space: kµJ

µ(k) = 0.
This property of a conserved current in momentum space is shared also by
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Ze

Ze Ze

FIGURE 8.16: Radiative corrections to Coulomb scattering (self interac-
tions).

quantum-mechanical transitions currents. Thus we can expect that the matrix
element Mµ(k) satisfies

kµMµ
fi(k) = 0, (8.158)

since Mfi is the transition current for bremsstrahlung, up to a numerical
factor. Using the matrix element in equation 8.150, this condition is easily
shown to be true (see problem 8.18).

In most cases of soft-photon bremsstrahlung, we will not observe the final
photon polarization; we thus sum over them. The quantity of interest is

|ε · M|2 =
∑

λ=1,2

|εµ(�k, λ)Mµ(k)|2

=
∑

λ=1,2

εµ(�k, λ)ε∗ν(�k, λ)Mµ(k)M∗ν(k). (8.159)

Since this is a scalar, we can evaluate it in an arbitrary Lorentz frame. We
orient the axis such that kµ = ω(1, 0, 0, 1), where ω = |�k |, since k2 = 0. We
choose A0(x) = 0. In the time gauge, the polarizations are transverse to the
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direction of motion, and the two independent transverse polarizations may be
taken as

ε(�k, 1) = (0, 1, 0, 0), (8.160)

ε(�k, 2) = (0, 0, 1, 0). (8.161)

Therefore ε(�k, 1) · k = 0 and ε(�k, 2) · k = 0, ε(�k, 1) · ε(�k, 2) = 0 and ε(�k, 1) ·
ε(�k, 1) = ε(�k, 2) · ε(�k, 2) = −1.

Summing over polarizations, we have

|ε ·M|2 =M1M∗1 +M2M∗2. (8.162)

Invoking our condition of current conservation (equation 8.158), we have

k · M = ω(M0 −M3) = 0, (8.163)

which implies M0 = M3. We transform equation 8.162 into a four dimen-
sional scalar product by adding a vanishing contribution

|ε ·M|2 =M1M∗1 +M2M∗2 +M3M∗3 −M0M∗0 = −MµM∗µ. (8.164)

Since this result is covariant, we compare it with equation 8.159 to obtain∑
λ=1,2

εµ(�k, λ)ε∗ν(�k, λ) = −gµν + gauge terms. (8.165)

The additional gauge terms need not be specified in detail. They are pro-
portional to kµ and kν , and thus do not contribute to any observable quan-
tity, since our result will be multiplied with conserved currents which satisfy
k · J = 0. Nevertheless these terms have to be present since a complete basis
in four-dimension space of Lorentz vectors has to contain four elements. The
contribution of longitudinal εµ(�k, 3) and scalar εµ(�k, 0) photons to the com-
pleteness relationship makes their appearance on the right-hand side of our
result. However, they do not correspond to physical photons.

We now apply the completeness relationship for photon polarizations to the
bremsstrahlung cross section. The sum over polarizations is

∑
λ=1,2

(
ε · pf

k · pf
− ε · pi

k · pi

)2

= −
(

pf

k · pf
− pi

k · pi

)2

= −
p2

f

(k · pf )2
− p2

i

(k · pi)2
+

2pf · pi

(k · pf )(k · pi)
,

(8.166)
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and thus the differential cross section given by equation 8.156 becomes

dσ̄

dΩf
=
(
dσ

dΩf

)
elastic

α

(2π)2

∫
ωdω

∫
dΩkθ(Ei − ω −m)

·
[

2pf · pi

(k · pf )(k · pi)
− m2

(k · pf )2
− m2

(k · pi)2

]
. (8.167)

Using �βf = �pf/Ef and �βi = �pi/Ei to write

k · pf = ωEf − �k · �pf = ω(Ef − k̂ · �pf ) = ωEf (1− k̂ · �βf ), (8.168)

k · pi = ωEi − �k · �pi = ω(Ei − k̂ · �pi) = ωEi(1− k̂ · �βi), (8.169)

pf · pi = EfEi − �pf · �pi = EfEi(1 − �βf · �βi), (8.170)

we have

dσ̄

dΩf
=
(
dσ

dΩf

)
elastic

α

π

∫
dω

ω

∫
dΩk

4π

[
2(1− �βf · �βi)

(1 − k̂ · �βf )(1 − k̂ · �βi)

− m2

E2
f (1− k̂ · �βf )2

− m2

E2
i (1 − k̂ · �βi)2

]
. (8.171)

Integrating over all photon emission angles and energies in the interval 0 <
ωmin ≤ ω ≤ ωmax � Ei −m gives

dσ̄

dΩf
=
(
dσ

dΩf

)
elastic

α

π

∫ max

min

dω

ω

∫
dΩk

4π

[
2(1− �βf · �βi)

(1− k̂ · �βf )(1− k̂ · �βi)

− m2

E2
f (1− k̂ · �βf )2

− m2

E2
i (1− k̂ · �βi)2

]

=
(
dσ

dΩf

)
elastic

α

π
ln
ωmax

ωmin

∫
dΩk

4π

[
2(1− �βf · �βi)

(1− k̂ · �βf )(1− k̂ · �βi)

− m2

E2
f (1− k̂ · �βf )2

− m2

E2
i (1− k̂ · �βi)2

]
. (8.172)

If the emitted bremsstrahlung photon is very soft, the initial and final en-
ergies of the electron are almost the same |�βi| = |�βf | = β, and we get for
numerator of the first term

2(1− �βf · �βi) = 2(1− β2 cosΘ), (8.173)
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where Θ is the scattering angle of the electron.
To integrate the last two terms in equation 8.172, we use

∫
dΩf

4π
m2

E2(1 − �β · k̂)2
=
m2

E2

∫ 1

−1

d cos θ
2(1− β cos θ)2

=
(m
E

)2
∫ 1

−1

dz

2(1− βz)2

=
(m
E

)2
(
− 1
β

)∫ 1−β

1+β

dx

2x2

= −
(m
E

)2
(

1
2β

)[
− 1
x

]1−β

1+β

=
(m
E

)2 1
(1− β)2

= 1, (8.174)

where we have used (m/E)2 = 1/γ2 = 1 − β2. The differential cross section
now becomes

dσ̄

dΩf
=
(
dσ

dΩf

)
elastic

2α
π

ln
ωmax

ωmin

[
(1− β2 cosΘ)I − 1

]
, (8.175)

where

I =
∫
dΩk

4π
1

(1− k̂ · �βf )(1 − k̂ · �βi)
. (8.176)

To evaluate this integral we use

1
ab

=
∫ 1

0

dx

[ax+ b(1− x)]2 (8.177)

to obtain

I =
∫ 1

0

dx

∫
dΩf

4π
1

[(1 − k̂ · �βf )x + (1− �k · �βi)(1 − x)]2

=
∫ 1

0

dx

∫
dΩf

4π
1

{1− k̂ · [�βfx+ �βi(1− x)]}2

=
∫ 1

0

dx

∫ 1

−1

d cosϑ
2

1

[1− |�βfx+ �βi(1− x)| cosϑ]2

=
∫ 1

0

dx
1
2

(
−1
ζ

)∫ 1−ζ

1+ζ

dz

z2
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=
∫ 1

0

dx
1

1− ζ2

=
∫ 1

0

dx
1

1− |�βfx+ �βi(1− x)|2

=
∫ 1

0

dx
1

1− β2 + 4β2x(1− x) sin2(Θ/2)
, (8.178)

where we have temporarily defined ζ = |�βfx+ �βi(1− x)|.
The integral in equation 8.177 is a simple example of a set of integrals

referred to as Feynman integrals. Using these integrals is a useful trick, par-
ticularly if one is calculating higher-order processes. The method transforms
the denominator factors into a single quadratic polynomial in cos θ, raised to
a power. We can then shift cos θ by a constant to complete the square in the
polynomial, and evaluate the remaining spherically-symmetric integral. The
price is the introduction of an auxiliary parameter x to be integrated over.

The integral in equation 8.178 can be solved in closed form using

∫
dx

a+ bx+ cx2
=

1√
−d

ln
2cx+ b−

√
−d

2cx+ b+
√
−d

if d < 0, (8.179)

where d = 4ac− b2. Including the limits of integration, we have

∫ 1

0

dx

a+ bx+ cx2
=

1√
−d

ln
(2c+ b−

√
−d)(b+

√
−d)

(2c+ b+
√
−d)(b−

√
−d)

. (8.180)

For the case of c = −b,
∫ 1

0

dx

1 + bx(1− x) =
2√
−d

ln
√
−d+ b√
−d− b

, (8.181)

where −d = b(b+ 4a). For our case a = 1− β2 and b = 4β2 sin2(Θ/2), giving

√
−d = 2β sin(Θ/2)

√
4β2 sin2(Θ/2) + 4(1− β2)

= 4β sin(Θ/2)
√

1− β2 cos2(Θ/2). (8.182)

Therefore the integral in equation 8.178 becomes

I =
1

2β sin(Θ/2)
√

1− β2 cos2(Θ/2)
ln

√
1− β2 cos2(Θ/2) + β sin(Θ/2)√
1− β2 cos2(Θ/2)− β sin(Θ/2)

.

(8.183)
The integral in equation 8.183 gives the general cross section for soft pho-

ton emission. We now simplify the cross section expression by taking the
nonrelativistic and extreme-relativistic limits.
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In the nonrelativistic limit (β � 1), the factors in equation 8.183 can be
Taylor expanded as power series in β, such that

I =
1 + 1/2β2 cos2(Θ/2)−O(β4)

2β sin(Θ/2)
·
{
ln[1 + β sin(Θ/2)− 1/2β2 cos2(Θ/2) +O(β4)]

− ln[1− β sin(Θ/2)− 1/2β2 cos2(Θ/2) +O(β4)]
}

=
1 + 1/2β2 cos2(Θ/2)−O(β4)

2β sin(Θ/2)
·
{
[β sin(Θ/2)− 1/2β2 cos2(Θ/2)]

− 1/2[β sin(Θ/2)− 1/2β2 cos2(Θ/2)]2

+ 1/3[β sin(Θ/2)− 1/2β2 cos2(Θ/2)]3

− [−β sin(Θ/2)− 1/2β2 cos2(Θ/2)]
+ 1/2[−β sin(Θ/2)− 1/2β2 cos2(Θ/2)]2

− 1/3[−β sin(Θ/2)− 1/2β2 cos2(Θ/2)]3 +O(β4)
}

=
1 + 1/2β2 cos2(Θ/2)−O(β4)

2β sin(Θ/2)

·
[
2β sin(Θ/2) + β3 sin(Θ/2) cos2(Θ/2) + 2/3β3 sin3(Θ/2) +O(β4)

]
=
[
1 + 1/2β2 cos2(Θ/2)−O(β4)

]
·
[
1 + 1/2β2 cos2(Θ/2) + 1/3β2 sin2(Θ/2) +O(β4)

]
= 1 + 1/2β2 cos2(Θ/2)1 + 1/2β2 cos2(Θ/2) + 1/3β2 sin2(Θ/2) +O(β4)
= 1 + 1/2β2 − 1/2β2 sin2(Θ/2) + 1/3β2 sin2(Θ/2) +O(β4)
= 1 + β2 − β2 sin2(Θ/2) + 1/3β2 sin2(Θ/2) +O(β4)

= 1 + β2 − 2
3
β2 sin2 Θ

2
+O(β4), (8.184)

where O means “order of”.
The differential cross section for soft-photon emission in the nonrelativistic

limit is

dσ̄

dΩf
=
(
dσ

dΩf

)
elastic

2α
π

ln
ωmax

ωmin

[
4
3
β2 sin2 Θ

2
+O(β4)

]
for β � 1 .

(8.185)
In the extreme-relativistic limit (β → 1), the factor in front of the logarithm

in equation 8.183 can be approximated by 2 sin2(Θ/2), and the numerator of
the logarithm can be approximated by 2 sin(Θ/2). The denominator of the
logarithm requires some care. If we let β = 1−δ, where δ → 0 in the extreme-
relativistic limit, we can Taylor expand the denominator of the logarithm as
a power series in δ:



252 Practical Quantum Electrodynamics

√
1− β2 cos2(Θ/2) =

[
1− (1− δ)2 cos2(Θ/2)

]1/2

=
[
1− cos2(Θ/2) + 2δ cos2((Θ)/2)−O(δ2)

]1/2

=
[
sin2(Θ/2) + 2δ cos2(Θ/2)−O(δ2)

]1/2

= sin(Θ/2)
[
1 + 2δ cot2(Θ/2)−O(δ2)

]1/2

= sin(Θ/2)
[
1 + δ cot2(Θ/2)−O(δ2)

]
(8.186)

and

√
1− β2 cos2(Θ/2)− β sin(Θ/2) ≈ sin(Θ/2)

[
1 + δ cot2(Θ/2)− (1− δ)

]
=

δ

sin(Θ/2)
+O(δ2). (8.187)

The integral (equation 8.183) in the extreme-relativistic limit becomes

I =
1

2 sin2(Θ/2)
ln
(

2 sin2(Θ/2)
δ

)
[1 +O(δ)] . (8.188)

We will express δ in terms of the momentum transfer

q2 = (pf − pi)2 = m2 +m2 − 2EfEi + 2�pf · �pi,

≈ −2EfEi(1− cosΘ)

≈ −4E2 sin2 Θ
2

(8.189)

and

− q2

m2
=

4
1− β2

sin2 Θ
2

≈ 2
δ

sin2 Θ
2
. (8.190)

The differential cross section for soft-photon emission in the extreme rela-
tivistic limit is

dσ̄

dΩf
=
(
dσ

dΩf

)
elastic

2α
π

ln
ωmax

ωmin

[
ln
−q2
m2
− 1 +O

(
m2

q2

)]
for β → 1 .

(8.191)
The divergence in the limit as ω → 0 is evident in all the bremsstrahlung

formula. The infrared divergence has been cut off by using ωmin as the lower
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limit in the momentum integration. This value will be determined by the
resolution of the measuring apparatus. In the limit ωmin → 0, we have to
include radiative corrections in the calculation of the electron elastic scattering
in order to get a finite result (see section 8.13.2.6).

The above formula for the cross sections was derived under the assumption
that the field of the nucleus is a pure Coulomb field. The question arises as
to whether the screening of the Coulomb field due to the charge distribution
of the outer electrons necessitates any important alterations. To address this
question one would ask, in a classical treatment, whether the field is screened
appreciably for those impact parameters r which give the main contribution
to the effect. In quantum theory, the idea of impact parameter has no exact
meaning because the electron is represented by a plane wave. We can con-
sider r ∼ h̄c/q as the most important impact parameter. Small momentum
transfers correspond to large impact parameters. For high electron energies,
Ei � m, the minimum value of q is given by

|�qmin| = |�pi| − |�pf | − |�k |
qmin = |�pi| − |�pf | − ω

= |�pi| − |�pf | − (Ef − Ei)

= Ei −
m2

2Ei
−
(
Ef −

m2

2Ef

)
− (Ei − Ef )

=
m2ω

2EiEf
. (8.192)

Therefore we can obtain a large contribution to the cross section for distances
of the order

rmax =
1
qmin

=
2EiEf

m2ω
. (8.193)

We see that for high energies, the screening of the Coulomb field by the
outer electrons will lead to a decrease in the cross section. For soft photons,
screening will even occur for somewhat smaller energies.

The value rmax has to be compared with the extent of the atomic shell a.
According to the Thomas-Fermi model, a is of the order Z−1/3 times the Bohr
radius of a hydrogen atom

a =
1
mα

Z−1/3. (8.194)

We can deduce that atomic screening will significantly reduce the radiation
intensity at distances exceeding rmax > a, or

E >
m

Z1/3α
, (8.195)
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where we have taken Ei ∼ Ef ∼ ω. If this condition is satisfied, the pure
Coulomb field should be replaced by a screened Coulomb field, and the entire
calculation should be repeated.

8.8 Photon-Electron Scattering

Quantum electrodynamic processes can be classified by the number and
type of particles in the initial state. Our goal in this chapter is to consider the
two-particle initial states that lead to scattering processes. Photon-electron
scattering will be considered in this section, while the photon-photon and
electron-electron systems will be considered in subsequent sections. Our use
of the word “electron” is generic and includes both electrons and positrons,
in general.

The photon-electron system can have two kinds of final states, those in
which there is only one electron present (and one or more photons), and those
in which there is also one or more electron-positron pairs present. Processes
leading to the former kind of final states are called photon-electron scatter-
ing, whereas processes in which pairs are produced are referred to as pair
production in photon-electron collisions.

Photon-electron scattering with only one photon in the final state is the
lowest-order photon-electron process involving a real incident photon. The
separation of the lowest-order from the higher-order contributions is an ide-
alization which does not correspond to physical reality. In any measurement,
the energy of the final state can only be determined to within the energy res-
olution of the detector. It is therefore impossible to determine with certainty
whether the final state contains exactly one photon or whether it contains an
additional number of very soft (low energy) photons. These multiple-photon
final states are suppressed relative to the lowest-order single-photon final state
by at least order α.

The lowest order photon-electron scattering process is second order in α
and is called Compton scattering. The Compton scattering process differs
from bremsstrahlung in that the incoming photon in Compton scattering is
real, while the non-outgoing photon in the bremsstrahlung process is due to
a the static Coulomb field or a particle current.

Because of charge conjugation invariance of the S-matrix, the cross section
for the photon-electron process is equal to the cross section for the photon-
positron process.

Figure 8.17 shows the two diagrams leading to Compton scattering. It is
important to realize that only the sum of the two diagrams in figure 8.17 de-
scribes photon-electron scattering. The separation of the matrix element into
terms corresponds to the individual diagrams, though extremely useful, has
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in general no physical meaning. Only the sum of both diagrams is observable.

pi, si

pf , sf

k, ε

pi + k = pf + k′

k′, ε′

1

2

a)
pi, si

pf , sf

k, ε

pi − k′ = pf − k

k′, ε′

1

2

b)

FIGURE 8.17: Feynman diagrams for Compton scattering.

In the first diagram (figure 8.17a), the incident photon (k, ε) is absorbed by
the incident electron (pi, si) and then the electron emits a photon (k′, ε′) into
the final state. In the second diagram (figure 8.17b), the incident electron
(pi, si) emits a photon (k′, ε′) before it absorbs the incident photon (k, ε).
Since each photon is associated with a different momentum four-vector and
each electron path can be labeled as referring to the first, second or third
electrons, we have two distinct Feynman diagrams in figure 8.17. The two
diagrams are different since they differ in the sequence of the emitted and
absorbed photons as one follows the arrows in the electron paths.

One can draw the second diagram (figure 8.18a) such that the intermediate
electron is horizontal, or even reversed, and the two photons do not cross in
the diagram, as shown in figures 8.18b and 8.18c. It is irrelevant whether
or not point 2 is later in time than point 1. The relative position of the
vertices in a diagram is not significant, since the diagram stands for a typical
integrand, and x1 and x2 are dummy variables. The diagrams in figure 8.18
are not topologically different and will not be considered further, since the
propagator includes all of them.

Let Aµ(x; k) represent an incident photon, which is absorbed by an electron
at one vertex, and A′µ(x′; k′) represent a final photon emitted at the second
vertex:
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1

2

b)

1

2
c)

1

2

a)

FIGURE 8.18: Three topologically equivalent diagrams of photon-electron
scattering.

Aµ(x; k) =
εµ(�k, λ)√

2ωV
(e−ik·x + eik·x) (8.196)

and

A′µ(x′; k′) =
ε∗µ(�k ′, λ′)
√

2ω′V
(e−ik′·x′

+ eik′·x′
), (8.197)

where ω = k0 and ω′ = k′0. In this calculation, we shall be more general and
not immediately restrict the photon polarizations to be real.

The second-order Compton amplitude is

Sfi =
∫
d4yd4xψf (y)[ie �A(y; k′)iSF (y − x)ie �A(x; k)

+ ie �A(y; k)iSF (y − x)ie �A(x; k′)]ψi(x)

=
∫
d4yd4x

√
m

EfV
u(pf , sf )eipf ·y

[
ie � ε ′∗√
2ω′V

(e−ik′·y + eik′·y)
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·
∫

d4q

(2π)4
e−iq·(y−x) i

� q −m
ie � ε√
2ωV

(e−ik·x + eik·x)

+
ie � ε√
2ωV

(e−ik·y + eik·y)
∫

d4q

(2π)4
e−iq·(y−x) i

� q −m

· ie � ε
′∗

√
2ω′V

(e−ik′·x + eik′·x)
]√

m

EiV
u(pi, si)e−ipi·x. (8.198)

Each term in equation 8.198 represents one of the eight diagrams shown in
figure 8.19. Not every term that occurs in the scattering amplitude is physi-
cally relevant to the process considered. The first two diagrams (figures 8.19a
and 8.19b) are the processes we are interested in when studying Compton
scattering. The second pair of diagrams (figures 8.19c and 8.19d) have the
photon momenta k and k′ interchanged. This interchange of momenta corre-
sponds to the scattering of an incident photon with momentum k′ to a final
photon with momentum k. The process represented by these diagrams is not
the physical process that we are interested in, and has energy-momentum con-
serving conditions that are incompatible with Compton scattering. We thus
drop these terms from the scattering amplitude since they are not the process
under study. The third and fourth pairs of diagrams have two photons in
the final state (figures 8.19e and 8.19f) and two photons in the initial state
(figures 8.19g and 8.19h), respectively. These processes are not kinematically
allowed. Such terms in the scattering amplitude contain delta functions with
an argument describing these kinematically forbidden processes. The delta
functions cause these terms to vanish when the momenta are integrated over.

For the diagrams we are interested in, we retain from the incident photon
wave function only the first term, e−ik·x, which corresponds to absorption at
x of a photon of four-momentum k from the radiation field, and retain from
the final photon wave function only the second term, eik′·x′

, which represents
the emission at x′ of a photon with four-momentum k′.

The scattering amplitude now becomes

Sfi =
∫
d4yd4x

√
m

EfV
u(pf , sf)eipf ·y

·
[
ie �ε ′∗√
2ω′V

eik′·y
∫

d4q

(2π)4
e−iq·(y−x) i

� q −m
ie �ε√
2ωV

e−ik·x

+
ie �ε√
2ωV

e−ik·y
∫

d4q

(2π)4
e−iq·(y−x) i

� q −m
ie �ε ′∗√
2ω′V

eik′·x
]

·
√

m

EiV
u(pi, si)e−ipi·x

=
∫
d4yd4x

d4q

(2π)4

√
m2

EfEiV 2

1√
2ω2ω′V 2
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FIGURE 8.19: Possible terms in the S-matrix for Compton scattering.
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· u(pf , sf )
[
eiy·(pf+k′−q)eix·(q−k−pi)(ie �ε ′∗) i

� q −m (ie �ε)

+ eiy·(pf−k−q)eix·(q+k′−pi)(ie �ε) i

� q −m (ie �ε ′∗)
]
u(pi, si)

=
∫

(2π)4d4q

√
m2

EfEiV 2

1√
2ω2ω′V 2

·u(pf , sf)
[
δ4(pf + k′ − q)δ4(q − k − pi)(ie �ε ′∗)

i

� q −m (ie �ε)

+ δ4(pf − k − q)δ4(q + k′ − pi)(ie �ε)
i

� q −m (ie �ε ′∗)
]
u(pi, si)

=

√
m2

EfEiV 2

1√
2ω2ω′V 2

(2π)4δ4(pf + k′ − pi − k)u(pf , sf )

·
[
(ie �ε ′∗) i

�pi+ �k −m
(ie �ε) + (ie �ε) i

�pi− �k′ −m
(ie �ε ′∗)

]
u(pi, si).

(8.199)

To allow us to use the Feynman diagram technique, we write

Sfi = i(2π)4δ4(pf + k′ − pi − k)
√

m2

EfV EiV
Mµν

fi (k, k′)
ε∗µ(�k ′, λ′)εν(�k, λ)
√

2ωV 2ω′V
,

(8.200)
where

Mµν
fi (k, k′)

= −iu(pf , sf )
[
(ieγµ)

i

�pi+ �k −m
(ieγν) + (ieγν)

i

�pi− �k′ −m
(ieγµ)

]
u(pi, si).

(8.201)

The invariant matrix element iMµν
fi (k, k′) in this case is a second-rank

tensor depending on the kinematic variables of all four particles. Notice that
Sfi is symmetric under interchange of k and ε with −k′ and ε′, respectively.
The two diagrams in figure 8.17 are thus related by this symmetry. This
is known as crossing symmetry (see section 8.5), and it persists as an exact
symmetry to all orders in α.

We form the differential cross section dσ by squaring the scattering ampli-
tude, then dividing by (2π)4δ(4)(0) = V T to form a rate per volume. We then
divide the rate by an incident flux |�vrel|/V , where �vrel is the relative velocity
of the photons with respect to the electrons. Then we divide by the number
of target particles per unit volume 1/V . Finally, summing over phase space
of the final particles (V 2/(2π)6)d3pfd

3k′, dσ becomes
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dσ =
|Sfi|2

(2π)4δ4(0)V
V

|�vrel|
V d3pf

(2π)3
V d3k′

(2π)2

=
m

2ωEi|�vrel|
(2π)4δ4(pf + k′ − pi − k)|ε∗µMµνε

ν | m
Ef

d3pf

(2π)3
1

2ω′
d3k′

(2π)3
.

(8.202)

We use d3k′ = ω′
2
dω′dΩ to write the differential cross section per unit solid

angle for scattering into a differential angular interval between θ and θ + dθ,
and φ and φ+ dφ. The angle θ is defined in figure 8.20. The integral over all
recoil electron momenta can be evaluated with the aid of equation 8.102.

k = (ω,�k)

k′ = (ω′, �k ′)

θ

FIGURE 8.20: Definition of the scattering angle for Compton scattering
in the rest frame of the electron.

The differential cross section now becomes

dσ

dΩ
=

m2

2(2π)2ωEi|�vrel|

∫ ∞
0

dω′ω′

·
∫ +∞

−∞
d4pf |ε∗µMµνε

ν |2δ4(pf + k′ − pi − k)δ(p2
f −m2)θ(pf 0)

=
m2

2(2π)2ωEi|�vrel|

∫ ∞
0

dω′ω′

· |ε∗µMµνε
ν |2δ[(pi + k − k′)2 −m2]θ(Ei + ω − ω′)

=
m2

2(2π)2ωEi|�vrel|

∫ Ei+ω

0

dω′ω′|ε∗µMµνε
ν |2δ[2pi · (k − k′)− 2k · k′],

(8.203)

where the kinematic variables in the square of the matrix element |ε∗µMµνε
µ|2

must now obey the condition pi + k = pf + k′.
The cross section simplifies considerably if we calculate it in the rest frame of

the initial or final electron. Since electrons in atoms move nonrelativistically,
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the laboratory frame for high-energy (x-ray and gamma-ray) photon-electron
scattering experiments is usually, though not always, one in which the initial
electron can be taken to be at rest. In this frame, pi = (m, 0) and the
incident beam consists of photons with unit velocity such that |�vrel| = 1. The
differential cross section now becomes

dσ

dΩ
=

m

2(2π)2ω

∫ Ei+ω

0

dω′ω′|ε∗µMµνε
ν |2δ[2m(ω − ω′)− 2ωω′(1− cos θ)]

=
m

2(2π)2ω
|ε∗µMµνε

ν |2 ω′

|2m+ 2ω(1− cos θ)|

=
1

4(2π)2

(
ω′

ω

)2

ε∗µ|Mµνε
ν |2, (8.204)

where θ is the angle between the initial- and final-state photons.
The last line in equation 8.204 was obtained by using the root of the delta

function to relate ω to ω′:

ω′ =
ω

1 + (ω/m)(1− cos θ)
=

ω

1 + (2ω/m) sin2(θ/2)
. (8.205)

This is known as the Compton condition. This kinematic relationship takes
on a familiar form if one uses the wavelength, λ = 2π/ω:

λ′ = λ+
2π
m

(1− cos θ). (8.206)

This is the familiar Compton formula. The wavelength of the scattered photon
is increased by an amount of order 1/m, and h̄/mc is called the Compton
wavelength.

The differential cross section for electron-photon scattering with specific
initial- and final-state polarizations is now

dσ

dΩ
= α2

(
ω′

ω

)2 ∣∣∣∣u(pf , sf )
[
�ε ′∗ 1
�pi+ �k −m

�ε+ �ε 1
�pi− �k′ −m

�ε ′∗
]
u(pi, si)

∣∣∣∣
2

.

(8.207)
We can simplify the spinor matrix element considerably by choosing the

special gauge in which both initial- and final-state photons are transversely
polarized in the rest frame of the electron. We choose

εµ = (0, �ε) so that �ε · �k = 0 and (8.208)

ε′∗
µ = (0, �ε ′∗) so that �ε ′∗ · �k ′ = 0. (8.209)

Since the electron is initially at rest, it follows that
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ε · pi = ε ′∗ · pi = 0. (8.210)

This amounts to choosing the “radiation gauge” in which the electromagnetic
potential has no time component. However, the condition in equation 8.210
can be imposed in any given frame of reference. This can be shown by applying
a gauge transformation to any arbitrary set of polarization vectors ε and
ε ′∗. The normalization and transversality conditions are not affected by the
transformation. Thus without restricting the generality of our calculation, we
will impose the condition in equation 8.210.

Because of our choice of gauge, �k, �pi, and �p′i anticommute with �ε, �k′, and
�ε ′∗, respectively. The invariant matrix element thus becomes

ε∗µMµνε
ν = −e2u(pf , sf )

[
�ε ′∗ �pi+ �k +m

2k · pi
�ε+ �ε �pi− �k′ +m

−2k′ · pi
�ε ′∗

]
u(pi, si)

= −e2u(pf , sf )
[
�ε ′∗ �ε− �pi− �k +m

2k · pi
+ �ε �ε ′∗− �pi+ �k′ +m

−2k′ · pi

]
u(pi, si)

= e2u(pf , sf )
[
�ε ′∗ �ε �k
2k · pi

+
�ε �ε ′∗ �k′

2k′ · pi

]
u(pi, si), (8.211)

where the energy-projection operator (−�p + m)u(p, s) = 0 has been used in
the last step.

We now consider the case when the electrons are unpolarized but the initial-
and final-state photons may be polarized with polarizations λ and λ′. We thus
average over the initial electron spins and sum over the final electron spins
only:

dσ̄

dΩ
(λ, λ′) =

1
2

∑
±si,±sf

dσ

dΩ
. (8.212)

Applying the usual trace techniques, we have

dσ̄

dΩ
(λ, λ′) =

α2

2

(
ω′

ω

)2

· Tr
[ �pf +m

2m

(
�ε ′∗ �ε �k
2k · pi

+
�ε �ε ′∗ �k′

2k′ · pi

)

· �pi +m

2m

(
�k �ε �ε ′∗
2k · pi

+
�k′ �ε ′∗ �ε
2k′ · pi

)]
, (8.213)

where we have used the rule given by equation 8.73 �a �b �c = � c � b � a (see prob-
lem 8.7) in the last factor.

Equation 8.213 contains traces with six and eight gamma matrices in them.
In general, traces of products of six or eight gamma matrices would be given by
a sum of 15 or 105 terms, respectively. To reduce the traces which contain the
same vectors, we anticommute the gamma matrices until the identical vectors
are alongside each other, then the identity � a � a = a2 removes two gamma
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matrices. We also make use of k2 = 0, ε2 = (ε ′∗)2 = −1, k · pf = k′ · pi, and
k · ε ′∗ = pf · ε ′∗. Evaluating the traces one by one, we have

T1 = Tr[(�pf +m) �ε ′∗ �ε �k(�pi +m) �k �ε �ε ′∗]
= Tr[�pf �ε ′∗ �ε �k �pi �k �ε �ε ′∗] +m2Tr[�ε ′∗ �ε �k �k �ε �ε ′∗]
= 2k · piTr[�pf �ε ′∗ �ε �k �ε �ε ′∗]
= 2k · piTr[�pf �ε ′∗ �k �ε ′∗]
= 2k · pi(Tr[�pf �k] + 2k · ε ′∗Tr[�pf �ε ′∗])
= 8k · pi(pf · k + 2k · ε ′∗pf · ε ′∗)
= 8k · pi[k′ · pi + 2(k · ε ′∗)2]. (8.214)

Using the symmetry we had earlier (ε, k↔ ε ′∗,−k′), we write

T2 = Tr[(�pf +m) �ε �ε ′∗ �k′(�pi +m) �k′ �ε ′∗ �ε]
= 8k′ · pi[k · pi − 2(k′ · ε)2]. (8.215)

We show that the two cross-terms are equal:

T3 = Tr[�pf +m) �ε ′∗ �ε �k(�pi +m) �k′ �ε ′∗ �ε]
= Tr[�ε �ε ′∗ �k′(�pi +m) �k �ε �ε ′∗(�pf +m)]

= Tr[(�pf +m) �ε �ε ′∗ �k′(�pi +m) �k �ε �ε ′∗]. (8.216)

Using energy-momentum conservation we have

T3 = Tr[(�pf +m) �ε ′∗ �ε �k(�pi +m) �k′ �ε ′∗ �ε ]

= Tr[(�pi+ �k− �k′ +m) �ε ′∗ �ε �k(�pi +m) �k′ �ε ′∗ �ε ]
= Tr[(�pi +m) �ε ′∗ �ε �k(�pi +m) �k′ �ε ′∗ �ε] + Tr[(�k− �k′) �ε ′∗ �ε �k �pi �k′ �ε ′∗ �ε ]
= Tr[(�pi +m) �k(�pi +m) �k′ �ε ′∗ �ε �ε ′∗ �ε]− Tr[�ε ′∗ �k �ε �k �pi �k′ �ε ′∗ �ε ]
−2k · ε ′∗Tr[�k �pi �k′ �ε ′∗] + Tr[�ε ′∗ �ε �k �pi �k′ �ε ′∗ �k′ �ε] + 2k′ · εTr[�ε �k �pi �k′]

= −Tr([�pi −m) �k(�pi +m) �k′ �ε ′∗ �ε �ε ′∗ �ε] + 2k · piTr[�pi �k′ �ε ′∗ �ε �ε ′∗ �ε ]
−8k · ε ′∗[k · ε ′∗pi · k′] + 8k′ · ε[ε · k′k · pi]

= −2k · piTr[�pi �k′] + 4k · piε · ε ′∗Tr[�pi �k′ �ε ′∗ �ε ]
−8(k · ε ′∗)2k′ · pi + 8(k′ · ε)2k · pi

= −8[k · pipi · k′] + 16k · piε · ε ′∗[pi · k′ε ′∗ · ε ]
−8(k · ε ′∗)2k′ · pi + 8(k′ · ε)2k · pi

= 8(k · pi)(k′ · pi)[2(ε ′∗ · ε)2 − 1]− 8(k · ε ′∗)2k′ · pi + 8(k′ · ε)2k · pi.

(8.217)
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Therefore the differential cross section becomes

dσ̄

dΩ
(λ, λ′) =

α2

4m2

(
ω′

ω

)2 [
k′ · pi + 2(k · ε ′∗)2

k · pi
+
k · pi − 2(k′ · ε)2

k′ · pi

+ 2[2(ε ′∗ · ε)2 − 1]− 2
(k · ε ′∗)2
k · pi

+ 2
(k′ · ε)2
k′ · pi

]

=
α2

4m2

(
ω′

ω

)2 [
k′ · pi

k · pi
+
k · pi

k′ · pi
+ 4(ε ′∗ · ε)2 − 2

]
. (8.218)

The calculation of the invariant matrix element has so far been covariant.
In the rest frame of the initial electron, the differential cross section becomes

dσ̄

dΩ
(λ, λ′) =

α2

4m2

(
ω′

ω

)2 [
ω′

ω
+
ω

ω′
+ 4(ε′∗ · ε)2 − 2

]
, (8.219)

which is the Klein-Nishina formula for Compton scattering.
In the low-energy limit of ω → 0, equation 8.205 shows that ω′/ω → 1, and

the cross section reduces to the classical Thomson scattering cross section

(
dσ̄

dΩ
(λ, λ′)

)
ω→0

=
α2

m2
(ε · ε′∗)2 , (8.220)

where

r0 ≡
α

m
=

e2

4πmc2
= 2.8× 10−13 cm (8.221)

is the classical electron radius. The Thomson cross section for an electron

σThom =
8πr20

3
∼ 10−24 cm2 (8.222)

was originally determined using classical mechanics and electromagnetism by
calculating the reradiation of light by a nonrelativistic point charge in a plane-
wave electromagnetic field. For an electron, the charge radius and cross section
are far larger than the classical charge radius and cross section for a target
proton of σp ∼ 10−31 cm2. Since the classical limit is recovered for low
energies, the Thomson cross section must be the low-energy limit for radiation
scattering off any charged object, depending only upon the ratio of the object’s
charge squared to it mass.

For forward scattering, θ → 0 and according to equation 8.205 ω → ω′. The
Thomson cross section is thus also valid for forward scattering at all energies.

Returning to the general expression for the cross section (equation 8.219),
we can sum over final-state photon polarizations ε∗λ′ and average over initial-
state polarizations ελ to obtain the unpolarized cross section, as follows:
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dσ̄

dΩ
=

1
2

2∑
λ,λ′=1

dσ̄

dΩ
(λ, λ′)

=
α2

8m2

(
ω′

ω

)2 2∑
λ,λ′=1

[
ω′

ω
+
ω

ω′
+ 4(ελ · ε∗λ′)2 − 2

]

=
α2

2m2

(
ω′

ω

)2

ω′
ω

+
ω

ω′
+

2∑
λ,λ′=1

(ελ · ε∗λ′)2 − 2


 . (8.223)

We evaluate the remaining spin sum by choosing the incident photon to arrive
along the z-direction, while the final photon departs into the solid angle dΩ
described by polar angles θ and φ, such that

k̂ = (0, 0, 1), (8.224)

k̂ ′ = (sin θ cosφ, sin θ sinφ, cos θ). (8.225)

We may select the associated polarization vectors to be

�ε(1) = (1, 0, 0), ε′(1) = (sinφ,− cosφ, 0), (8.226)

�ε(2) = (0, 1, 0), ε′(2) = (cos θ cosφ, cos θ sinφ,− sin θ). (8.227)

Since we are now using linear polarization, the polarization vectors are real.
It is easy to show that this choice of vectors satisfies all the required normal-
ization and orthogonality relationships. We obtain

2∑
λ,λ′=1

(ελ · ελ′)2 = sin2 φ+ cos2 θ cos2 φ+ cos2 φ+ cos2 θ sin2 φ = 1 + cos2 θ.

(8.228)
The cross section thus becomes

dσ̄

dΩ
=

α2

2m2

(
ω′

ω

)2 (
ω′

ω
+
ω

ω′
− sin2 θ

)
. (8.229)

The low-energy or forward-scattering limit (classical limit) now becomes

(
dσ̄

dΩ

)
class

=
r20
2
(
1 + cos2 θ

)
. (8.230)
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To integrate the differential cross section, we simplify the notation by in-
troducing z = cos θ, and use equation 8.205 to write

σ̄ =
πα2

m2

∫ 1

−1

dz

[
1

[1 + (ω/m)(1− z)]3

+
1

1 + (ω/m)(1− z) −
1− z2

[1 + (ω/m)(1− z)]2

]
. (8.231)

To perform the integration, we define x = 1− z, then

σ̄ =
πα2

m2

∫ 2

0

dx

[
1

[1 + (ω/m)x]3
+

1
1 + (ω/m)x

+
x2 − 2x

[1 + (ω/m)x]2

]
. (8.232)

Using the integrals (b is an arbitrary constant)

∫
dx

1 + bx
=

1
b

ln(1 + bx)
∣∣∣∣
2

0

=
1
b

ln(1 + 2b), (8.233)

∫
dx

(1 + bx)3
= − 1

2b(1 + bx)2

∣∣∣∣
2

0

=
1
2b

[
1− 1

(1 + 2b)2

]
, (8.234)

∫
x2dx

(1 + bx)2
=

1
b3

[
1 + bx− 2 ln(1 + bx)− 1

1 + bx

]∣∣∣∣
2

0

=
1
b3

[
2b− 2 ln(1 + 2b)− 1

1 + 2b
+ 1

]
, (8.235)

∫
xdx

(1 + bx)2
=

1
b2

[
ln(1 + bx) +

1
1 + bx

]∣∣∣∣
2

0

=
1
b2

[
ln(1 + 2b) +

1
1 + 2b

− 1
]
, (8.236)

we write

σ̄ =
πα2

m2

(m
ω

)3
{

1− 1
1 + 2(ω/m)

− 2 ln
(
1 + 2

ω

m

)

+ 2
( ω
m

) [
2− 1

1 + 2(ω/m)
− ln

(
1 + 2

ω

m

)]

+
1
2

( ω
m

)2
[
1− 1

[1 + 2(ω/m)]2
+ 2 ln

(
1 + 2

ω

m

)]}
, (8.237)

which is valid for all initial photon energies ω.
For low energies, ω/m→ 0 and
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σ̄ ≈ πα2

m2

(m
ω

)3
{
−2

( ω
m

)
+

8
3

( ω
m

)3

+ · · ·

+ 2
( ω
m

)[
1− 2

( ω
m

)2

+ · · ·
]

+
1
2

( ω
m

)2 [
8
( ω
m

)
+ · · ·

]}

≈ 8π
3
α2

m2
=

8π
3
r20, (8.238)

which is the total classical Thomson cross section σ0 = 8πr20/3.

At high energies, m/ω → 0 and

σ̄ ≈ πα2

m2

(m
ω

)3
{

2
( ω
m

) [
− ln

2ω
m

+ · · ·
]

+
1
2

( ω
m

)2
[
1 + 2 ln

2ω
m

+ · · ·
]}

≈ πα2

ωm

[
ln

2ω
m

+
1
2

+O
(m
ω

ln
ω

m

)]

= πr20
m

ω

[
ln

2ω
m

+
1
2

+O
(m
ω

ln
ω

m

)]

= σ0
8
3
m

ω

[
ln

2ω
m

+
1
2

+O
(m
ω

ln
ω

m

)]
. (8.239)

Thus for very high energies, the cross section decreases with increasing photon
energy. This is the reason why the penetrating power of gamma-rays increases
with increasing energy, as long as no other absorption processes, such as pair
production, are important.

An experimental test of the total cross section in equation 8.237 is provided
by measurements of the total absorption coefficient of x-rays or gamma-rays in
various materials. For a comparison of the theory with experiment one has to
correct for two effects. One, for x-rays the total absorption is not only due to
scattering but also to the photoelectric effect, which gives a strong absorption,
but, however, decreases rapidly with photon energy. Two, for gamma-rays,
the absorption is largely due to pair production, which increases with photon
energy. The theoretical predictions fit the experimental data excellently, and
thus confirm the Klein-Nishina formula.

We have considered the electron as free. This would no longer be true for
softer radiation, for which the binding of the electrons has to be taken into
account. Our result is based on first-order perturbation theory. Corrections
(radiative and damping corrections) exist. They are small for all energies.
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8.9 Electron-Positron Annihilation into Two Photons

There are three essentially different kinds of electron-positron pair annihila-
tions. The first kind is the annihilation of a free positron with a free electron
in relative motion towards each other; we shall call this the annihilation of
free electron-positron pairs and shall discuss it here. Since the probability
for the occurrence of this process increases with decreasing relative velocity,
as we shall see, it will compete with the process of capture into the bound
positronium state, which in turn can decay into photons. This positronium
annihilation most likely occurs from one of the lowest energy levels (S-state)
and will always be governed by selection rules. Finally, the third kind of an-
nihilation takes place in the presence of an external field, e.g. the Coulomb
field of a nucleus. This pair annihilation in an external field is of impor-
tance when positrons annihilate with tightly bound electrons whose binding
to the nucleus cannot be neglected. This latter process is the only one in which
energy-momentum conservation does not exclude one-photon annihilation, i.e.
pair annihilation with the emission of only one photon (see problem 8.19).

Consider the process of annihilation of an electron-positron pair into two
gamma-rays, as shown in figure 8.21. This is the lowest order in e2 in which
this process can occur, since pair annihilation to a single photon cannot con-
serve energy and momentum simultaneously: (p−+p+)2 = 2m2+2E−E+(1−
β−β+ cos θ) > 0 but k2 = 0. The diagrams can be viewed as Compton scat-
tering turned on their sides.

Using our previously determined Feynman rules, we can write down the
relevant S-matrix element in momentum space from inspection of the diagram
in figure 8.21:

Sfi =
e2

V 2

√
m2

E+E−2ω12ω2
(2π)4δ4(k1 + k2 − p+ − p−)v(p+, s+)

·
[
(−i �ε2)

i

�p−− �k1 −m
(−i �ε1) + (−i �ε1)

i

�p−− �k2 −m
(−i �ε2)

]
·u(p−, s−). (8.240)

We notice that the S-matrix element is symmetric under interchange of the
two photons, which is required by Bose statistics. Both diagrams must be
included in order to ensure this required symmetry.

Compared to Compton scattering (table 8.1 the first two rows), the substi-
tutions

Compton↔ Pair Annihilation
ε, k ↔ ε1,−k1, (8.241)
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p−, s−

p− − k1

−p+, s+

k1, ε1 k2, ε2

a)

p−, s−

p− − k2

−p+, s+

k1, ε1 k2, ε2

b)

FIGURE 8.21: Feynman diagrams for pair annihilation into gamma-rays.

ε′, k′ ↔ ε2,+k2, (8.242)
pi, si ↔ p−, s−, (8.243)
pf , sf ↔ −p+, s+, (8.244)

transform the two amplitudes into each other. This is an example of a general
substitution rule which is valid to arbitrary order and which relates processes
of the type AB → CD to processes of the type AC̄ → B̄D, where B̄ denotes
the antiparticle of B, and C̄ the antiparticle of C.

By familiar steps, we proceed from the matrix element to a differential cross
section

dσ =
|Sfi|2
V T

V

| �Jinc|
V d3k1

(2π)3
V d3k2

(2π)3

=
e4

(2π)2

∫
m2

E+E−|�v+ − �v−|
|Mfi|2

d3k1

2ω1

d3k2

2ω2
δ4(k1 + k2 − p+ − p−).

(8.245)

The two common frames of reference for this process are the rest frame
of one of the particle or the center-of-mass frame. The calculation in the
center-of-mass frame can be found in problem 8.20. For an electron at rest,



270 Practical Quantum Electrodynamics

dσ =
e4

(2π)2

∫
m

E+β+
|Mfi|2

d3k1

2ω1

d3k2

2ω2
δ4(k1 + k2 − p+ − p−), (8.246)

where β+ = p+/E+ is the incident positron velocity. The invariant amplitude
is

Mfi = v(p+, s+)
[
(−i �ε2)

i

�p−− �k1 −m
(−i �ε1)

+ (−i �ε1)
i

�p−− �k2 −m
(−i �ε2)

]
u(p−, s−)

= iv(p+, s+)
[
�ε2
�p−− �k1 +m

2p− · k1
�ε1+ �ε1

�p−− �k2 +m

2p− · k2
�ε2
]
u(p−, s−)

= −iv(p+, s+)
[
�ε2 �k1 �ε1
2p− · k1

+
�ε1 �k2 �ε2
2p− · k2

]
u(p−, s−), (8.247)

where we have used (�p−+m) �εu(p−, s−) = �ε(−�p−+m)u(p−, s−) = 0 and have
chosen the special transverse gauge in which p− · ε1 = p− · ε2 = 0.

For an unpolarized positron incident on an unpolarized electron, we average
over the initial spins s− and s+. Representing the quantity in square brackets
in equation 8.247 as Γ, we write

1
4

∑
s−,s+

|Mfi|2 =
1
4

∑
s−,s+

v(p+, s+)αΓαβu(p−, s−)βu(p−, s−)δΓδρv(p+, s+)ρ

=
1
4

∑
s+

v(p+, s+)αΓαβ

( �p− +m

2m

)
βδ

Γδρv(p+, s+)ρ

= −1
4

(
m− �p+

2m

)
ρα

Γαβ

( �p− +m

2m

)
βδ

Γδρ

= −1
4
Tr

[
m− �p+

2m

(
�ε2 �k1 �ε1
2p− · k1

+
�ε1 �k2 �ε2
2p− · k2

) �p− +m

2m

(
�ε1 �k1 �ε2
2p− · k1

+
�ε2 �k2 �ε1
2p− · k2

)]
.

(8.248)
The unpolarized cross section becomes

dσ̄ = − e4

(2π)2

∫
m

E+β+

1
4

·Tr
[
m−�p+

2m

(
�ε2 �k1 �ε1
2p− · k1

+
�ε1 �k2 �ε2
2p− · k2

) �p− +m

2m

(
�ε1 �k1 �ε2
2p− · k1

+
�ε2 �k2 �ε1
2p− · k2

)]

·d
3k1

2ω1

d3k2

2ω2
δ4(k1 + k2 − p− − p+). (8.249)
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Notice the overall minus sign, which comes from our normalization of the
positron spinors. The simplified form of the matrix element is due to the
choice of transverse gauge ε1 · p− = ε2 · p− = 0 and is the same gauge used in
the Compton scattering calculation. We thus obtain the trace directly from
our previous result using the substitutions above (see problem 8.21):

dσ̄ =
e4

(2π)2

∫
m

E+β+

−1
4

1
2m2

[
ω2

−ω1
+
−ω1

ω2
+ 4(ε1 · ε2)2 − 2

]
d3k1

2ω1

d3k2

2ω2

· δ4(k1 + k2 − p− − p+)

=
α2

2m

∫
1
p+

[
ω2

ω1
+
ω1

ω2
+ 2− 4(ε1 · ε2)2

]
d3k1

2ω1

d3k2

2ω2

· δ4(k1 + k2 − p− − p+). (8.250)

It remains to reduce the delta function for laboratory kinematics:

∫
d3k1

2ω1

d3k2

2ω2
δ4(k1 + k2 − p+ − p−)

=
∫
d3k1

2ω1

∫ ∞
−∞

d4k2δ
4(k1 + k2 − p+ − p−)δ(k2

2)θ((k2)0)

=
∫
d3k1

2ω1
δ[(p+ + p− − k1)2]θ(E+ + E− − ω1)

=
1
2

∫ ∞
0

ω1dω1dΩk1δ[(p+ + p−)2 − 2k1 · (p+ + p−)]θ(E+ + E− − ω1)

=
dΩk1

2

∫ E++m

0

ω1dω1δ[2m2 + 2mE+ − 2ω1(m+ E+ − p+ cos θ)].

(8.251)

The delta function requires

ω1 =
m(m+ E+)

m+ E+ − p+ cos θ
(8.252)

and the property of the delta function given in equation 2.32 requires us to
calculate

f ′(ω1) = −2(m+ E+ − p+ cos θ). (8.253)

We now obtain

∫
d3k1

2ω1

d3k2

2ω2
δ4(k1 + k2 − p+ − p−) =

1
4

m(m+ E+)
[m+ E+ − p+ cos θ]2

dΩk1 . (8.254)

The delta functions allow us to write (z ≡ cos θ, β = p+/E+, γ = E+/m)
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ω1

m
=

(m+ E+)
m+ E+ − p+ cos θ

=
1/γ + 1

1/γ + 1− βz =
1 + γ

1 + γ(1− βz) , (8.255)

ω2

m
= 1 +

E+

m
− ω1

m
=

(1 + γ)γ(1− βz)
1 + γ(1− βz) , (8.256)

ω1 + ω2

m
=
m+ E+

m
= 1 + γ, (8.257)

ω2

ω1
= γ(1− βz). (8.258)

Combining the above expressions gives

dσ̄

dΩk1

=
α2

8m2βγ

(ω1

m

)2 m

ω1 + ω2

[
ω1

ω2
+
ω2

ω1
+ 2− 4(ε1 · ε2)2

]
. (8.259)

The angle between the two photons Θ can be found from

(k1 + k2)2 = (p− + p+)2,
2k1 · k2 = 2m2 + 2mE,

ω1ω2(1− cosΘ) = m(m+ E),

1− cosΘ =
m(m+ E)
ω1ω2

= m
ω1 + ω2

ω1ω2
= m

(
1
ω1

+
1
ω2

)
. (8.260)

This leads to

dσ̄

dΩk1

=
α2

8m2βγ

(
ω1

ω2

)
1

1− cosΘ

[
ω1

ω2
+
ω2

ω1
+ 2− 4(ε1 · ε2)2

]
. (8.261)

The sum over the final polarization states in the rest frame gives (cf. equa-
tion 8.228) ∑

(ε1 · ε2)2 = 1 + cos2 Θ, (8.262)

and a factor of 4 for those terms which are independent of ε1 and ε2. We now
have

dσ̄

dΩk1

=
α2

2m2βγ

(
ω1

ω2

)
1

1− cosΘ

[
ω1

ω2
+
ω2

ω1
+ 1− cos2 Θ

]

=
α2

2m2βγ

(
ω1

ω2

)
1

1− cosΘ

[
(ω1 + ω2)

(
1
ω2

+
1
ω1

)
− 1− cos2 Θ

]

=
α2

2m2βγ

(
ω1

ω2

)
1

1− cosΘ
[
(1 + γ)(1 − cosΘ)− (1 + cos2 Θ)

]
=

α2

2m2βγ

ω1

ω2

[
1 + γ − 1 + cos2 Θ

1− cosΘ

]
. (8.263)
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We now express the cross section in terms of the energies of the two photons.
Simple kinematics gives

cosΘ = 1− m

ω1
− m

ω2
,

cos2 Θ = 1 +
(
m

ω1

)2

+
(
m

ω2

)2

− 2
m

ω1
− 2

m

ω2
+ 2

m

ω1

m

ω2
, (8.264)

1 + cos2 Θ
1− cosΘ

=
ω1ω2

m(ω1 + ω2)

[
2 +

(
m

ω1

)2

+
(
m

ω2

)2

− 2
m

ω1
− 2

m

ω2
+ 2

m

ω1

m

ω2

]

=
m

ω1 + ω2

[
2
ω1

m

ω2

m
+
ω2

ω1
+
ω1

ω2
− 2

ω1

m
− 2

ω2

m
+ 2

]

=
1

1 + γ

[
2γ(1 + γ)2(1 − βz)

[1 + γ(1− γz)]2 + γ(1− βz) +
1

γ(1− βz)
−2(1 + γ) + 2]

=
1

1 + γ

[
2γ(1 + γ)2(1 − βz)

[1 + γ(1− γz)]2 +
[1 + γ(1− βz)]2

γ(1− βz)
−2(1 + γ)] . (8.265)

The differential cross section in terms of photon’s energy becomes

dσ̄

dΩk1

=
α2

2m2βγ2(1− βz)

[
γ + 3− [1 + γ(1− βz)]2

γ(1 + γ)(1− βz) −
2γ(1 + γ)(1− βz)
[1 + γ(1− βz)]2

]
.

(8.266)
For the total cross section, we integrate over the solid angle. The final state

contains two identical particles (photons). One of the photons emerges in
dΩk1 , and because of their indistinguishability, this can be either of the two
photons. If we were to integrate dσ̄/dΩk1 over the entire 4π solid angle, we
would be counting each distinguishable state exactly twice. We therefore take
one-half of this integral in forming a total cross section:

σ̄ =
1
2

∫
dσ̄

dΩk1

dΩk1 . (8.267)

We now integrate the differential cross section using

∫ 1

−1

dz

[1 + γ(1− βz)]2 =
1

1 + γ
, (8.268)

∫ 1

−1

dz

(1− βz)2 = 2γ2, (8.269)

∫ 1

−1

dz

1− βz = − 1
β

ln
1− β
1 + β

. (8.270)
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Using these integrals, we have

σ =
πα2

2m2βγ2

[
−γ + 3

β
ln

1− β
1 + β

− 2γ
1 + γ

+
2

β(1 + γ)
ln

1− β
1 + β

− 2γ
1 + γ

− 2γ
]

=
πα2

2m2β2γ2(γ + 1)

[
(γ2 + 4γ + 1) ln

1 + β

1− β − 2βγ(γ + 3)
]

=
πα2

m2β2γ(γ + 1)

[(
γ + 4 +

1
γ

)
ln

√
1 + β

1− β − β(γ + 3)

]

=
πα2

m2β2γ(γ + 1)

[(
γ + 4 +

1
γ

)
ln(γ +

√
γ2 − 1)− β(γ + 3)

]
. (8.271)

For incident positrons of low energy, γ → 1 and β → 0 gives

σ̄ ≈ πα2

2m2β2

[(
6− 1

2
β4 + · · ·

)(
β − 1

4
β4 + · · ·

)
− 4β − 1

2
β3 · · ·

]

≈ πα2

2m2β2

[
2β − 1

2
β3 + · · ·

]

=
πα2

m2β
[1 +O(β)] for β � 1. (8.272)

This expression is seen to approach infinity as β approaches zero. But the
number of annihilations per unit time remains finite, since the current of the
incoming positron eβ approaches zero in this limit.

In the extreme-relativistic limit, γ � 1 and β → 1 gives

σ̄ =
πα2

m2γ2
[(γ + 4 · · ·+) ln(γ + γ(1− · · ·))− γ]

=
πα2

m2γ

[
ln 2γ − 1 +

4
γ

ln 2γ + · · ·
]

=
πα2

mE+

[
ln

2E+

m
− 1 +O

(
m

E+
ln
E+

m

)]
for γ � 1. (8.273)

The cross section has a maximum and tends to zero for large energies.

8.10 Electron-Positron Pair Production

An electron-positron pair can be created from a quantum of energy. For the
process to occur we must have at least 2mc2 of energy. Any excess energy will
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appear as the kinetic energy of the electron and positron. The energy needed
to create an electron-positron pair can be supplied through the absorption of
a photon or by the impact of a particle with kinetic energy greater than 2mc2.

In the case of photon absorption, energy and momentum can only be con-
served simultaneously if another particle is present. The additional particle
can be a nucleus, an electron (or positron), and even another photon. The
case of a photon interacting with the electromagnetic field of a nucleus is the
most common in atomic physics. Electron-positron pairs are created by the
passage of gamma-rays or fast particles through matter.

The process of pair production by a photon in the Coulomb field of a nu-
cleus is shown in figure 8.22. It is very closely related to the process of
bremsstrahlung (see problem 8.22). A comparison shows that the correspond-
ing diagrams are related by the substitution law.

Ze

a)

Ze

b)

FIGURE 8.22: Pair production in a Coulomb field.

Other methods of pair production are known. Pairs can be produced in
photon-electron collisions. The process is like Compton scattering but the
emitted photon splits into an electron-positron pair. In addition, a single
virtual bremsstrahlung photon can split into an electron-positron pair since
its momentum is off mass shell. These are higher-order processes, which
involve at least three vertices.

A theoretical process for producing pairs is γγ → e+e−. The process is ex-
actly the inverse process of electron-positron annihilation to two photons. The
cross section for this process is reasonably large (see problem 8.23). However,
pair production by two real photons has not yet been observed experimen-
tally, since it is difficult to prepare two colliding beams of high-energy photons
with high intensity. Experimentally, there are two ways around this. One ap-
proach is to use high-intensity laser photons. Another approach is to use
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particle accelerators by observing the collision of virtual photons which pro-
duce electron-positron pairs – the virtual photons are the radiation produced
by the colliding beam particles.

8.11 Electron-Electron Scattering

Electron-electron systems are specified by their initial states: two electrons,
two positrons, or one electron and one positron. The last case is of special
interest, since it permits bound states; these states, however, are not stable.
The bound structure which consists of one electron and one positron is called
positronium.

As in the photon-electron system, the scattering of two electrons into a
final state of exactly two electrons and no photon is only an approximate
description of the process. This is so because the scattering of a charged par-
ticle through a finite angle will always be accompanied by an undetermined
number of very low-energy photons. We obtain correct results only in the
approximation in which the possible emission of photons in the final state
can be consistently neglected. This occurs only in lowest order and when the
scattering angle is not too small. The radiative corrections to this approxima-
tion require the knowledge of the energy resolution of the experiment, which
determines the minimum energy of possible photons in the final state. The
affect of bremsstrahlung in electron-electron collisions is therefore strictly not
separable from that of electron-electron scattering.

Electron-electron scattering is like electron-proton scattering but with an
important addition. Since the scattering particles are the same type, there
is no way to tell which of the two emerging electrons is the incident one and
which is the target particle. This ambiguity leads to an additional exchange
contribution to the scattering. The two diagrams for electron-electron scat-
tering are shown in figure 8.23. The second diagram arises because of the
identity of the electrons. This process is also known as Møller scattering.

The S-matrix element, with spin labels suppressed, is

Sfi =
−m2

V 2
√
E1E2E′1E

′
2

[
i
u(p′1)(ieγµ)u(p1)u(p′2)(ieγ

µ)u(p2)
(p1 − p′1)2

−i iu(p
′
1)(ieγµ)u(p2)u(p′2)(ieγµ)u(p1)

(p1 − p′2)2

]
(2π)4δ4(p′1 + p′2 − p1 − p2).

(8.274)

We have written down the amplitude in momentum space directly, using the
Feynman rules, since we have encountered all pieces in the diagrams before.
Compared to electron-proton scattering (equations 8.92 and 8.93) there is a
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p1

p′2

p1 − p′1

p′1

p2b)

p1

p′1

p1 − p′1

p′2

p2a)

FIGURE 8.23: Feynman diagrams for electron-electron scattering: a) di-
rect and b) exchange.

change in sign because the proton has the opposite charge to the electron.
The second, or exchange, term can be neglected for scattering in the forward
direction with small momentum transfer (p1−p′2)2. In this limit, the scattering
reduces to Coulomb scattering.

The relative minus sign between the direct and exchange terms is due to
Fermi statistics, which requires the amplitude to be antisymmetric under in-
terchange of the two identical electrons – either the exchange of the final-state
electrons, or the initial-state electrons. By a similar argument, the scatter-
ing amplitude to or from a state containing two identical bosons must be
symmetric under their interchange.

No additional normalization factors, such as 1/
√

2 or 2, are introduced
when the exchange term is added. The rules for constructing differential
cross sections from the S-matrix are not altered by the presence of identical
particles in the initial or final states. We must only take care that a factor of
1/2 is included when integrating the differential cross section over the solid
angle, if two identical particles appear in the final state. No special factors
appear for identical particles in the initial state, since the incident flux is
unchanged.

The differential cross section for the scattering of unpolarized electrons can
be constructed:
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dσ =
∫ |Sfi|2

V T

V

Jinc

V d3p′1
(2π)3

V d3p′2
(2π)3

=
∫

1
(2π)2

m4

|�v1 − �v2|
d3p′1d

3p′2
E1E2E′1E

′
2

|Mfi|2δ4(p′1 + p′2 − p1 − p2).

(8.275)

We now evaluate the invariant matrix element

|Mfi|2 = e4
[
u(p′1)γµu(p1)u(p′2)γ

µu(p2)u(p2)γνu(p′2)u(p1)γνu(p′1)
(p1 − p′1)4

−u(p
′
1)γµu(p1)u(p′2)γ

µu(p2)u(p1)γνu(p′2)u(p2)γνu(p′1)
(p1 − p′1)2(p1 − p′2)2

−u(p
′
1)γµu(p2)u(p′2)γ

µu(p1)u(p2)γνu(p′2)u(p1)γνu(p′1)
(p1 − p′2)2(p1 − p′1)2

+
u(p′1)γµu(p2)u(p′2)γµu(p1)u(p1)γνu(p′2)u(p2)γνu(p′1)

(p1 − p′2)4

]
.

(8.276)

We only need to calculate the first two terms since the last two terms can
be obtained from the first two terms by the substitution p′1 ↔ p′2. Averaging
over initial spin states and summing over final spin states, we evaluate

∑
s1,s2,s′

1,s′
2

u(p′1)α(γµ)αβu(p1)βu(p′2)γ(γµ)γδu(p2)δ

·u(p2)ε(γν)εφu(p′2)φu(p1)ρ(γν)ρθu(p′1)θ

=
(
�p′1 +m

2m

)
θα

(γµ)αβ

(
�p1 +m

2m

)
βρ

(γµ)γδ

·
(
�p′2 +m

2m

)
φγ

(γν)εφ

(
�p2 +m

2m

)
δε

(γν)ρθ

= Tr
[
�p′1 +m

2m
γµ
�p1 +m

2m
γν

]
Tr

[
�p2 +m

2m
γν �p′2 +m

2m
γµ

]
(8.277)

and

∑
s1,s2,s′

1,s′
2

u(p′1)α(γµ)αβu(p1)βu(p′2)γ(γµ)γδu(p2)δ

·u(p1)ε(γν)εφu(p′2)φu(p2)ρ(γν)ρθu(p′1)θ

=
(
�p′1 +m

2m

)
θα

(γµ)αβ

(
�p1 +m

2m

)
βε

(γν)εφ
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·
(
�p′2 +m

2m

)
φγ

(γµ)γδ

(
�p2 +m

2m

)
δρ

(γν)ρθ

= Tr
[
�p′1 +m

2m
γµ
�p1 +m

2m
γν
�p′2 +m

2m
γµ �p2 +m

2m
γν

]
. (8.278)

Two of the traces have been evaluated previously. The third trace can be
simplified for relativistic energies E � m, in which case we can neglect terms
proportional to m2.

Tr
[
�p′1 +m

2m
γµ
�p1 +m

2m
γν

]

=
1
m2

[(p′1)µ(p1)ν + (p1)µ(p′1)ν − gµν(p1 · p′1 −m2)], (8.279)

Tr
[
�p′2 +m

2m
γµ �p2 +m

2m
γν

]

=
1
m2

[(p′2)
µ(p2)ν + (p2)µ(p′2)

ν − gµν(p2 · p′2 −m2)], (8.280)

Tr
[
�p′1 +m

2m
γµ
�p1 +m

2m
γν

]
Tr

[
�p′2 +m

2m
γµ �p2 +m

2m
γν

]

=
2
m4

[p′1 · p′2p1 · p2 + p′1 · p2p1 · p′2], (8.281)

Tr
[
�p′1 +m

2m
γµ
�p1 +m

2m
γν
�p′2 +m

2m
γµ �p2 +m

2m
γν

]

=
1

16m4
Tr[�p′1γµ �p1γν �p′2γµ �p2γ

ν ] +O(m2)

= − 1
8m4

Tr[�p′1γµ �p1 �p2γ
µ �p′2]

= − 1
2m4

p1 · p2Tr[�p′1 �p′2]

= − 2
m4

p1 · p2p
′
1 · p′2. (8.282)

We see that traces corresponding to the two interference terms, which are the
complex conjugates of each other, are identical since they are real.

In the center-of-mass frame, neglecting terms to order m2, we define the
kinematics according to figure 8.24. We obtain

E1 = E2 = E′1 = E′2 ≡ E, (8.283)
|�v1| = |�v2| ≡ β, (8.284)
|�v1 − �v2| = 2β, (8.285)
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where E is the center-of-mass energy of each electron and β their velocities.
At relativistic energies, the relative velocity approaches twice the velocity of
light. This is the relative velocity as observed in the center-of-mass system.
The velocity of one electron as seen from the other electron is given by the
relativistic velocity-addition formula and can never exceed the speed of light.
There is thus no contradiction with special relativity.

e−(p2) e−(p1)

e−(p′1)

e−(p′2)

θ

FIGURE 8.24: Definition of the kinematics and scattering angle for
e−e− → e−e− in the center-of-mass frame.

The dot products of the four-momenta become

p1 · p2 = p′1 · p′2 ≈ 2E2, (8.286)
p1 · p′2 = p′1 · p2 ≈ 2E2 cos2(θ/2), (8.287)
p1 · p′1 = p′2 · p2 ≈ 2E2 sin2(θ/2), (8.288)

(p′1 − p1)2 ≈ −2p1 · p′1 = −4E2 sin2(θ/2), (8.289)
(p′2 − p1)2 ≈ −2p1 · p′2 = −4E2 cos2(θ/2). (8.290)

The traces are

Tr
[
�p′1 +m

2m
γµ
�p1 +m

2m
γν

]
Tr

[
�p′2 +m

2m
γµ �p2 +m

2m
γν

]

= 8
(
E

m

)4 [
1 + cos4

(
θ

2

)]
(8.291)

and

Tr
[
�p′1 +m

2m
γµ
�p1 +m

2m
γν
�p′2 +m

2m
γµ �p2 +m

2m
γν

]
= −8

(
E

m

)4

. (8.292)
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The differential cross section and invariant matrix element thus become

dσ̄ =
m4

8(2π)2

∫
d3p′1d

3p′2
βE4

|Mfi|2δ4(p′1 + p′2 − p1 − p2), (8.293)

where

|Mfi|2 =
2(2π)2α2

m4

[
1 + cos4(θ/2)

sin4(θ/2)
+

2
sin2(θ/2) cos2(θ/2)

+
1 + sin4(θ/2)

cos4(θ/2)

]
.

(8.294)
The first and third terms are the square of the matrix elements for the two
diagrams, and the second term is the interference contribution.

Using equation 8.102 and integrating the delta function over p′2, we have

dσ̄ =
m4

2(2π)2E2

∫
d3p′1
2E′

d3p′2
2E′
|Mfi|2δ4(p′1 + p′2 − p1 − p2)

=
m4

2(2π)2E2

∫
d3p′1
2E′

d4p′2δ[(p
′
2)

2 −m2]θ(p ′20
)|Mfi|2δ4(p′1 + p′2 − p1 − p2)

=
m4

2(2π)2E2

∫
d3p′1
2E′

δ((p1 + p2 − p′1)2 −m2]θ(2E − E′)|Mfi|2. (8.295)

Using d3p′1 = |�p ′1|2d|�p ′1|dΩ = |�p ′1|E′dE′dΩ, we have

dσ̄

dΩ
=

m4

4(2π)2E2

∫ 2E

0

|�p ′1|dE′δ[(p1 + p2)2 − 2(p1 + p2) · p′1]|Mfi|2

=
m4

4(2π)2E2

∫ 2E

0

|�p ′1|dE′δ[(2E)2 − 2(2E)E′]|Mfi|2

=
m4

4(2π)2E2

|�p ′1|
| − 4E| |Mfi|2

=
m4

16(2π)2E2
|Mfi|2,

dσ̄

dΩ
=

α2

8E2

[
1 + cos4(θ/2)

sin4(θ/2)
+

2
sin2(θ/2) cos2(θ/2)

+
1 + sin4(θ/2)

cos4(θ/2)

]
.

(8.296)
We have obtained the high-energy limit of the differential cross section for
Møller scattering in the center-of-mass frame.

The cross section can not be integrated over all angles, because the integrals
diverge at θ = 0 and π. This divergence is connected with the physical
unrealizable requirement that the two electrons scatter without emission of
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photons. Very low energy photon emission cannot be neglected when the
momentum transfers become very small (θ → 0). However, because the two
electrons are indistinguishable, the case θ → π will lead to the same difficulty.

Now that we have examined the contribution from the separate terms, we
can use trigonometric expressions to write the cross section in a simpler form
(see problem 8.24):

dσ̄

dΩ
=

α2

4E2

(3 + cos2 θ)2

sin4 θ
. (8.297)

8.12 Electron-Positron Scattering

The Feynman diagrams for the electron-positron scattering process are
shown in figure 8.25. This process is also known as Bhabha scattering6. The
direct scattering diagram (figure 8.25a) for Bhabha scattering is similar to
the direct scattering diagram (figure 8.23a) for Møller scattering, with the
replacement of an electron by a positron. Comparing the second diagram
(figure 8.23b) for Møller scattering with the second diagram (figure 8.25b)
for Bhabha scattering reveals a significant difference. The exchange effect
in electron-electron scattering has been replaced by an annihilation effect in
electron-positron scattering.

p

p′

p− p′

−q

−q′

a) p −q

p+ q

p′ −q′

b)

FIGURE 8.25: Feynman diagrams for electron-positron scattering: a) ex-
change and b) annihilation.

6H.J. Bhabha, “The Scattering of Positrons by Electrons with Exchange on Dirac’s Theory
of the Positron”, Proc. Roy. Soc. 154 (1936) 195-206.
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Apart from the exchange of spinors, the annihilation amplitude has one
qualitative difference compared to the scattering processes we have studied up
to now: the virtual photon is time-like, i.e. the square of its four-momentum is
greater than zero. This is most easily seen in the center-of-mass frame, where
for annihilation p = (E, �p) and q = (E,−�p) gives a four-momentum transfer
of p + q = (2E, 0), which is time-like. Whereas for scattering p = (E, �p) and
p′ = (E, �p ′) gives a four-momentum transfer of p− p′ = (0, �p − �p ′), which is
space-like.

We invoke the substitution rules to obtain the Bhabha cross section from
the Møller formula. Using the substitutions in the last two rows of table 8.1

p1 ↔ p, (8.298)
p′1 ↔ p′, (8.299)
p2 ↔ −q′, (8.300)
p′2 ↔ −q, (8.301)

and changing of sign in the S-matrix, we find

Sfi = +
m2

V 2

1√
EpEp′EqEq′

[
i
u(p′)(ieγµ)u(p)v(q)(ieγµ)v(q′)

(p− p′)2

−iu(p
′)(ieγµ)v(q′)v(q)(ieγµ)u(p)

(p+ q)2

]
(2π)4δ4(p′ + q′ − p− q).

(8.302)

The overall relative minus sign between Bhabha and Møller scattering comes
from the sign difference between the S-matrix for electron and positron scat-
tering. The first term represents direct electron-positron scattering. The
second term represents annihilation. When integrating the differential cross
section over the solid angle, there will be no factor of 1/2 as in Møller scat-
tering, because the particles are distinguishable – by their charge.

The relative minus sign between the two terms in Bhabha scattering comes
from applying the substitution rules to the S-matrix for Møller scattering.
The antisymmetry of Møller scattering under the interchange of the two final-
state, or initial-state, electrons becomes in Bhabha scattering, an antisym-
metry between an incoming positive-energy electron (p) and an incoming
negative-energy electron (−q′) running backwards in time, or between out-
going electrons (p′) and outgoing positrons (−q).

In order to obtain the cross section for electron-positron scattering in the
center-of-mass system, we apply the substitution rules and carry out the traces
as for Møller scattering. Only the invariant matrix element changes. The four-
momentum transfer in the denominator of the terms in the invariant matrix
element become, according to figure 8.26,
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p · q = p′ · q′ = 4E2, (8.303)
p · p′ = q · q′ = 4E2 sin2(θ/2), (8.304)
p · q′ = p′ · q = 4E2 cos2(θ/2), (8.305)

(p− p′)2 ≈ −2p · p′ = −4E2 sin2(θ/2), (8.306)
(p+ q)2 ≈ 2p · q = 4E2. (8.307)

e+(q) e−(p)

e−(p′)

e+(q′)

θ

FIGURE 8.26: Definition of the kinematics and scattering angle for
e+e− → e+e− in the center-of-mass frame.

The traces become

Tr
[
�p′ +m

2m
γµ
�p+m

2m
γν

]
Tr

[
− � q +m

2m
γµ− � q′ +m

2m
γν

]

=
2
m4

[p′ · qp · q′ + p′ · q′p · q]

= 8
(
E

m

)4

[1 + cos4(θ/2)], (8.308)

Tr
[
− � q′ +m

2m
γµ
�p+m

2m
γν

]
Tr

[
�p′ +m

2m
γµ− � q′ +m

2m
γν

]

=
2
m4

[q · p′p · q′ + q · q′p · p′]

= 8
(
E

m

)4

[sin4(θ/2) + cos4(θ/2)]
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= 8
(
E

m

)4
[(

1− cos θ
2

)2

+
(

1 + cos θ
2

)2
]

= 4
(
E

m

)4

[1 + cos2 θ], (8.309)

and

Tr
[
�p′ +m

2m
γµ �p+m

2m
γν− � q +m

2m
γµ
− � q′ +m

2m
γν

]

= − 2
m2

p · q′p′ · q

= −8
(
E

m

)4

cos4(θ/2). (8.310)

Thus the invariant matrix element is

|M|2fi =
1

2m4

[
1 + cos4(θ/2)

sin4(θ/2)
− 2 cos4(θ/2)

sin2(θ/2)
+

1 + cos2 θ
2

]
. (8.311)

In the extreme-relativistic limit, the differential cross section becomes

dσ̄

dΩ
=

α2

8E2

[
1 + cos4(θ/2)

sin4(θ/2)
− 2 cos4(θ/2)

sin2(θ/2)
+

1 + cos2 θ
2

]
. (8.312)

We have obtained the high-energy limit of the differential cross section for
Bhabha scattering in the center-of-mass frame. We see that the first term
in the Møller and Bhabha cross sections are identical. The last term is the
exchange term in Møller scattering and it is the annihilation term in Bhabha
scattering. The middle term in each formula is the respective interference
term, since both exchange and annihilation effects are added in the scattering
amplitude, rather than in the scattering probability.

Like Møller scattering, the differential cross section cannot be integrated
completely since it diverges as the scattering angle approaches zero. The
physical reason for this divergence is as before. There is no difficulty at θ = π
for Bhabha scattering, in contradistinction to Møller scattering.

For muon pair creation, e+e− → µ+µ−, only the annihilation diagram can
contribute because the initial and final states of particle-antiparticle pairs are
of different types. In the extreme-relativistic limit (E > mµ) the differential
cross section for muon pair creation thus becomes (given by the last term in
equation 8.312)

dσ̄

dΩ
=

α2

16E2
(1 + cos2 θ). (8.313)
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Integrating over the solid angle gives the total cross section:

σ̄ =
πα2

3E2
. (8.314)

This form has been used to analyze the reaction wherein an electron and
positron annhilate to a quark-antiquark pair. The fact that the experimental
cross section behaves as (1+cos2 θ) supports the fact that quarks are spin-1/2
objects.

Finally, we note that quantum electrodynamics no longer gives a correct
description of annihilation processes of the type e+e− → �+�− (where � refers
to any lepton) if the available energy comes close to the mass of the neutral
intermediate vector boson Z (91 GeV). This particle can be produced on mass
shell as a resonance (width 2.5 GeV) and then it completely dominates over
the contribution from the virtual photon.

The theory of electroweak interactions gives a unified description of both
contributions. If the theoretically well understood contributions from the
weak interaction are introduced, the predictions of quantum electrodynamics
compare well with experimental data. From this, we conclude that the electron
is a point-like elementary particle. An extended composite object would be
described by a momentum-dependent form factor F (q2). Experiments tell
us that for the electron F (q2) = F (0) up to momentum transfers of several
hundreds GeV. This implies that the electron is a point-like object down to
a distance of at least re < h̄c/q = 10−16 cm. The same conclusion also holds
for the heavy leptons µ and τ .

8.13 Beyond Tree Diagrams

So far, we have considered the calculation of scattering amplitudes to lowest
order in α. The lowest-order calculations give reasonable results because of
the small value of α. We should be able to improve the accuracy of our
results by including calculations to higher-order in α. When we do, we find
the paradoxical result that the higher-order contributions often diverge at
high and low energies. It seems that there is a flaw with our perturbation-
expansion approach or there is a serious inconsistency in the theory, as we
have developed it.

Feynman diagrams represent terms in a perturbation expansion of physical
amplitudes. Terms of a given order all involve the same power of e. In
practice it often turns out that the relevant parameter is actually the square
of the coupling constant α = e2/4π. Equivalently, an expansion in terms
of the number of vertices appearing in the diagram can be made, since one
power of e is associated with each vertex (see appendix C). By increasing the
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number of vertices, and thus propagators, that we have used in the lowest-
order Feynman diagrams, we can draw more complicated diagrams with the
same initial and final states. If in electron-electron scattering, for example,
one includes higher-order Feynman diagrams, one obtains correction terms
in powers of the fine-structure constant α. Some of these diagrams are of a
completely new form, whereas others can be shown to be modifications of the
electron propagator, the photon propagator, or the electron-electron-photon
vertex.

One example of a diagram with a completely new form is shown for electron-
electron scattering in figure 8.27. All higher-order processes beyond lowest-
order involve “loops”. By applying four-momentum conservation at each ver-
tex one finds there is a free loop-momentum k. The correct procedure for
handling this momentum is to integrate over all possible values including
k = 0 and k = ∞. Unfortunately, most of the integrals that arise in the cal-
culation of such loop diagrams are divergent. Depending upon the number of
momentum factors at each vertex in the loop and the geometry of the closed
loop, the closed-loop integral can diverge at k = ∞ (ultraviolet divergence).
If one of the internal loop particles has zero mass, then the loop integral can
also diverge at k = 0 (infrared divergence), but only when one of the other
particles at a vertex in the loop is external – on its mass shell. It thus becomes
important to be aware of which diagrams give finite contributions and which
infinite contributions. It is useful to distinguish between “tree” diagrams –
ones with no loops – and “loop” diagrams – ones with one or more loops.

k

FIGURE 8.27: Two-photon exchange contribution to 2 → 2 scattering of
order α2 in the amplitude.

For theories in which the physical coupling constant is small, such as quan-
tum electrodynamics, the tree diagram calculations are usually a good ap-
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proximation to compare with experiment. Moreover, at the loop level, all the
subtleties of handling infinities enter, and so for many purposes it is practical
to just perform calculations at the tree level.

In this last section, we investigate the Feynman loop diagrams where lots
of interesting physics shows up. The intention is to give the reader a general
qualitative impression of the way in which higher-order corrections are calcu-
lated and the approach to handling the infinities. Unlike the previous sections
of the book, we will not present detailed quantitative calculations.

8.13.1 Types of Divergences and Renormalization

In quantum electrodynamics many loop diagrams diverge not only as the
loop momentum goes to infinity (ultraviolet divergence) but also as it goes
to zero (infrared divergence). Ultraviolet divergences are generic. Infrared
divergences can only arise when there are massless particles in the theory,
such as photons, otherwise the particle mass in the propagator will always
prevent any infinity at low k.

In a complete and satisfactory theory, we should be able to calculate all
radiative processes. This is not possible without adding to the theory we have
developed so far. The precise program for manipulating and “taming” these
infinities is known as “renormalization” of the theory. It is so called because all
the infinities are miraculously swept up into formal expressions for quantities
like the physical mass and charge of the particle. If for a particular process
one considers all diagrams up to some finite order n, then these are equivalent
to the lowest-order diagrams plus some finite radiative corrections, mass and
charge renormalization having been applied to eliminate all divergences.

The divergent diagrams are dealt with by various methods. In order to
characterize these methods, it is convenient to classify the divergent diagrams
into four types as follows:

• Vacuum fluctuations can simply be ignored.

• Certain closed-loop divergences associated with the photon self-energy
can be handled with one of two methods. One can invoke the invariance
of the theory under gauge transformations. We have already formulated
the free fields and the coupling of the fields in a gauge-invariant man-
ner. Consistency of the theory requires that all results also be gauge
invariant. A second method is to introduce gauge invariance only for
the coupled and renormalized fields. The free photons are treated as
neutral vector meson fields of undetermined mass. With this approach
the divergencies can be treated in exactly the same way as those of the
next type.

• Divergences due to vacuum polarizations, electron self-energy, and ver-
tex modifications can be handled by renormalization. In the first step,
we separate the infinite from the finite observable parts of the matrix
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elements. The second step consists in showing that the infinite parts
can all be combined with the two phenomenological constants m and e
to which finite values are imposed a posteriori as observed experimental
values. These divergences are then eliminated by a redefinition of the
mass and charge. This procedure is called mass and charge renormal-
ization.

• Infrared divergences can be tamed by careful consideration of the contri-
bution to the physical cross section of amplitudes involving real emission
of very low energy photons, along with infrared divergent virtual photon
processes.

Therefore all divergences are removed from the theory and it then becomes
possible to calculate radiative processes to any desired accuracy. Some of the
aspects mentioned above are now elaborated on.

8.13.2 Radiative Corrections

There are three characteristic subgraphs which can occur at various places
in a diagram. It suffices to consider the effects of these subgraphs on the
propagator, vertices, and wavefunction once and for all, and then to substitute
the results into any Feynman diagram.

It is useful to distinguish between reducible and irreducible diagrams. Di-
agrams that are really repeated diagrams of lower order, are called reducible.
Diagrams that can not be split in two by cutting just one line are called
irreducible.

8.13.2.1 Vacuum Fluctuations

A lowest-order diagram representing vacuum fluctuations is shown in fig-
ure 8.28. A vacuum diagram is one with no external lines of any kind, and is
a disconnected diagram. These vacuum fluctuations take place all the time,
independent of whether there are real particles present or not. Lowest-order
scattering can take place, and independently in the vacuum a virtual pair can
be created and annihilated some time later. The vacuum fluctuations can
thus combine with lowest-order processes to give higher-order contributions.

FIGURE 8.28: Lowest-order vacuum diagram.
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The vacuum diagrams when considered by themselves contribute only to
the diagonal matrix element of the vacuum state. These diagrams do not give
rise to any new transitions.

The S-matrix element for a process combined with the vacuum diagrams
separates into a product of matrix elements for the connected part, which
contains the external lines, and the disconnected vacuum loops. The vacuum
loops simply have the effect of multiplying any element of the S-matrix by the
same phase factor. Although the phase factor is infinite, this factor cannot
lead to any observable effects, since physical effects are always expressed by
the absolute value of the matrix elements. This circumstance makes it possible
to ignore vacuum fluctuations altogether.

8.13.2.2 Furry’s Theorem and the Tadpole Diagram

In the previous subsection, we considered a fermion loop with no external
photon lines; in this section we consider a fermion loop with an arbitrary
number of external photon lines. Furry’s theorem states that a diagram, or
part of a diagram, from which only photon lines emerge does not contribute
to the matrix element if the number of these photon lines is odd. Figure 8.29
shows a plausible explanation for this result. In a closed loop there can be
an electron as well as a positron circling around. These particles interact
with the electromagnetic field with their opposite sign for the electric charge.
Thus their contributions cancel each other for an odd number of vertices –
odd power of ±e. The existence of two contributions having equal absolute
value has the additional consequence that for an even number of vertices, the
contribution to the amplitude made by a loop diagram is doubled.

1

23

n
··
·

1

23

n
··
·

FIGURE 8.29: Two diagrams with opposite directions of the internal
fermion loop.

In the case of two vertices, Furry’s Theorem is incorrect since both diagrams
in figure 8.29 represent exactly the same Feynman diagram, and are not topo-
logically different. For the case of more than two vertices Furry’s Theorem
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does apply since the loops turning left and turning right lead to topologically
distinct diagrams which differ in the ordering of the vertices.

Figure 8.30 shows the case of a loop with a single vertex. Again there can
be no cancellation in Furry’s theorem. This so called “tadpole” diagram does
not vanish automatically. The photon line can not refer to a free photon since
it cannot simply disappear – violating energy-momentum conservation. The
tadpole diagram will contribute in higher orders of perturbation theory where
the loop is coupled via a virtual photon to an electron line in some more
complicated diagram. This leads to a contribution to the self-energy of the
electron. It turns out that the tadpole contribution has no physical observable
consequence since its size is independent of the momentum of the electron, in
contrast to the self-energy correction. The tadpole contribution can be fully
absorbed into the renormalization constant which at the end drops out of any
calculation. The same effect can be achieved more economically by simply
leaving out any tadpole contributions from the onset.

FIGURE 8.30: Tadpole diagram.

8.13.2.3 Fermion Self-Energy

An electron can interact with its own radiation field by emitting and re-
absorbing photons. Figure 8.31 shows the lowest-order radiative correction
to the spin-1/2 fermion line. This may be an external line, i.e. an incident
or emitted fermion, or it may be an internal line, i.e. a fermion propagator.
The modification describes a radiative correction that is second order in the
coupling constant.

FIGURE 8.31: Fermion self-energy diagram.

These radiative corrections modify the properties of the electron propaga-
tor. The loop integral can be expanded into three terms: a term that appears
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linearly divergent but turns out to be logarithmically divergent, a logarith-
mically divergent term, and a finite piece. All the divergencies are at high
values of the loop momentum (ultraviolet divergent). One of the logarithmi-
cally divergent terms causes the mass in the propagator to shift, the other
logarithmically divergent term modifies the amplitude of the propagator, and
the finite term gives an observable radiative correction of second order. In the
case of an external fermion line, the loop integral only modifies the amplitude
of the wave function.

The mass of the electron is changed from its free-space value by the presence
of interactions with the vacuum; there are no other external sources present.
The effective mass of the electron includes all vacuum interactions to all orders.
Since the electron’s own radiation field modifies the particle’s energy, the
process is called self-energy.

Since the electron propagator (internal line) is always located between two
vertices, one can absorb the factor modifying the propagator amplitude into
the electric charge. Similarly, since external lines always connect a vertex,
the wave function correction can also be absorbed into the electric charge.
Thus in the calculation of matrix elements, the wave function modification
and propagator amplitude modification can be combined in a consistent way
to represent just an overall modification to the electric charge.

Electron self-energy thus implies that the electron’s mass and charge need
to be renormalized. The radiative photons modify the propagation properties
of the “bare” electron, giving rise to a physical electron. A physical electron is
thus a bare electron surrounded by its photon cloud. An electron which origi-
nally had the bare mass m, now moves with the physical mass mR = m+ δm,
if one takes into account the interaction with the self-generated electromag-
netic field. Since it is completely impossible to switch off this interaction, the
quantities m and δm separately do not have any physical significance, just as
the bare charge has no physical significance in the case of charge renormaliza-
tion. All observables, i.e. S-matrix elements, contain the renormalized mass
mR ≈ 0.511 MeV. Thus we need not worry too much about the fact that δm
is a divergent expression.

8.13.2.4 Vacuum Polarization

The lowest-order contribution to the photon self-energy is represented by
the diagram in figure 8.32. The photon creates a virtual fermion-antifermion
pair, which subsequently recombines to yield a photon once more. The virtual
pairs act as dipoles of length ∼ 1/m which screen the bare electron charge
as shown in figure 8.33. If an external electromagnetic field is present, these
virtual pairs are polarized, much in the same way in which a dielectric is
polarized by an applied electric field. For this reason, it is called a vacuum
polarization effect. The modification describes a radiative correction that is
second order in the coupling constant. The correction can be applied to an
external photon line or a photon propagator.



Quantum Electrodynamic Processes 293

FIGURE 8.32: Vacuum Polarization.
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FIGURE 8.33: Virtual e+e− pairs acting as dipoles to screen the bare
charge of the electron.

The two phenomena of vacuum polarization and self-energy are analogous
and essentially describe the interaction of each particle (i.e. the electromag-
netic field and the e+e− field) with the vacuum fluctuations of the other field.

The photon self-energy would give the same results as the fermion self-
energy if the photon had mass, i.e. renormalization of the mass and electric
charge, and a modification to the photon propagator to second order. The loop
integral causes the propagator to change by a q2-dependent term and modifies
the amplitude of the propagator. The mass of the bare photon must vanish in
order that the theory be gauge invariant. This causes us to essentially throw
away the mass renormalization on grounds of gauge invariance. There exists
alternative, perhaps more comfortable, approaches to handling this problem,
for example, Pauli-Villars regularization.

In the case of an external photon line, the propagator corrections vanish
because the particle is on-mass shell, but the amplitude of the photon wave
function is modified. Again, modifications to external lines can be absorbed
into the electric charge at the vertex connecting the external lines to the
remainder of the diagram. It is thus sufficient to just drop the contribution of
the vacuum polarization in the calculation of a diagram with external photon
lines.

The loop in the propagator affects the attraction between the charges which
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it connects. A particle with the bare charge e for a distant observer seems to
carry the renormalized charge eR given by

eR ≡ e
(

1− α

3π
ln

Λ2

m2
R

)1/2

, (8.315)

where Λ2 is a cut-off to replace ∞ as the upper limit of integration. The
bare charge e is the charge appearing in the lowest-order Feynman diagrams.
The physical charge eR is the charge measured in any long-range Coulomb
experiment, and is the electric charge listed in tables of constants, that is,
e2R/4π = 1/137. We say that the infinity associated with the cut-off Λ → ∞
has been absorbed into eR.

8.13.2.5 Vertex Correction

Just as a loop in the propagator effects the attraction between the electric
charges which it connects, we can anticipate that a loop around a vertex will
modify the structure of the electron current. Figure 8.34 shows the lowest-
order radiative correction to the vertex. The modification describes a radiative
correction that is second order in the coupling constant, and has the same
structure as uγµAµu. It is called a vertex correction.

FIGURE 8.34: Vertex correction diagram.

The amplitude for the diagram, without the external lines is logarithmi-
cally divergent. The loop integral can be expanded into two terms, one which
is logarithmically divergent and another which is finite. The divergent term
modifies the electric charge. The finite term gives second-order radiative cor-
rections.

This charge renormalization must be combined with the charge renormal-
ization originating from the electron and photon self-energy effects. The diver-
gent integral from the vertex correction exactly cancels the divergent integral
from the self-energy. Thus the charge renormalization stems entirely from the
vacuum polarization, not from the fermion self-energy or vertex corrections.
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The result is truly general, not only to second order, and it also holds for
spin-0 particles. This has the important consequence that the charge renor-
malization depends exclusively on the self-energy effects of the photon, i.e.
on the vacuum polarization modifications inserted into photon lines. Hence
the charge renormalization is the same for all elementary particles. It follows
that the experimentally observed equality of the charges of the elementary
particles implies the equality of their bare charges.

A computation of the finite piece of the diagram gives the generalized vertex
function

γµF1(q2) +
i

2mR
σµνq

νF2(q), (8.316)

which we had postulated earlier (see problems 8.12 and 8.15) by general con-
siderations of the interaction of a photon with a spin-1/2 particle. The func-
tions F1(q2) and F2(q2) are called form factors. The electron acquires an
apparent internal structure due to its interaction with the virtual radiation
field and thus differs in its behavior from a pure Dirac particle.

For most cases of interest −q2 → 0,

F2(0) =
α

2π
(8.317)

and

F1(q2) ≈ 1 +
α

3π
q2

m2
R

(
ln
mR

µ
− 3

8

)
. (8.318)

Neither ultraviolet nor infrared divergencies affect F2(0) to lowest order. This
result was first obtained by J. Schwinger7.
F1(0) shows a new feature arising since the loop also diverges for small

(infrared) loop momenta. This problem is sidestepped by giving the photon
a small fictitious mass µ. The prescription for rendering the integrals finite
by introducing fictitious massive particles is known as Pauli-Villars regular-
ization. The fictitious photon has no physical significance, and this method is
only one of many for defining the divergent integrals. We must hope that the
new parameter µ will not appear in our final result for the observable cross
section. In this case, the divergence disappears when the contributions from
the bremsstrahlung emission of soft photons is included in the cross section.

8.13.2.6 Infrared Catastrophe

The result for the form factor F1(q2) of the electron in equation 8.318 is
incomplete. The expression is infrared divergent as the fictitious photon mass

7J. Schwinger, “On Quantum-Electrodynamics and the Magnetic Moment of the Electron”,
Phys. Rev. 73 (1948) 416.
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µ tends to zero. This divergence cancels when bremsstrahlung emission of soft
photons to the same order in perturbation theory as the radiative corrections
are included. The result is independent of the photon mass µ, which had been
introduced only as means of computation.

To describe a scattering process to higher order, it is not sufficient to sum up
only the diagrams for the radiative corrections from the fermion self-energy,
vacuum polarization, and vertex correction. In addition to the purely elastic
scattering there is also the possibility of bremsstrahlung radiation. Due to
the finite energy resolution δE of the measurement apparatus, the emission
of a real photon with ω < δE cannot be detected. Purely elastic scattering
and scattering in which soft photons are emitted are indistinguishable, and
consequently their cross sections must be added. The scattering amplitudes
of the diagrams corresponding to elastic scattering are summed coherently;
in addition, the amplitudes for the corresponding bremsstrahlung emission
process are summed coherently. Both contributions must then be added inco-
herently because the quantum mechanical final states are different. The sum
must then be integrated over all photon energies ω from the lower bound µ
up to the value δE.

Including infrared real photons, the form factor F1(q2) in equation 8.318 to
lowest order in α becomes

F1(q2) = 1 +
α

3π
q2

m2
R

(
ln
mR

2δE
+

5
6
− 3

8
− 1

5

)
. (8.319)

This is the infrared-corrected form factor. It is independent of the photon
mass µ. The energy δE is determined by the experimental apparatus and the
result depends on this energy resolution.

We have seen that in a careful analysis, the problem of the infrared catastro-
phe turns out to be fictitious. It arises if one does not account for the fact that
the electron is always surrounded by a cloud of soft photons, which can be
virtual as well as real (soft bremsstrahlung). Inconsistent results are obtained
if one tries to separate the electron from its radiation cloud, for instance, by
insisting on a final state without photons. It can be shown, that in every scat-
tering process of charged particles an arbitrary number of soft photons are
emitted. Thus pure elastic scattering does not exist in a theory of massless
particles. In higher orders of perturbation theory, the infrared catastrophe can
always be removed by combing internal and external radiative corrections.

8.13.3 Examples of Measurable Radiative Corrections

In spite of the difficulties with infinities, there is not one single experi-
mental fact known today concerning radiative processes, which can not be
quantitatively explained by the theory. The following are three examples of
which the effects of radiative corrections are measurable. The effects are not
only measurable, but for two of the cases the measurements agree with the-
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ory to unprecedented accuracy. With such good agreement it is very easy
to sweep aside all the pathologies mentioned above and think of quantum
electrodynamics as a very practical theory for performing calculations. The
last example leads us to question the concepts of a fundamental constant: the
electric charge.

8.13.3.1 Lamb Shift

According to the Dirac theory of the hydrogen atom, the 2s1/2 and 2p1/2

levels are degenerate. The effect of radiative corrections is to cause a shift in
the energy levels, by different amounts for different states, leading to a split-
ting of the 2s1/2-2p1/2 levels, as shown in figure 8.35. It is this phenomenon
which is known as the Lamb shift of the hydrogen atom.

1s1/2

2s1/2

2p1/2

2p3/2

Lamb splitting

FIGURE 8.35: Lamb shift splitting.

High precision measurements, by Lamb and collaborators, of the Lamb shift
in hydrogen gave the value8

∆E
2πh̄

≡
∆E(2s1/2)−∆E(2p1/2)

2πh̄
= (1057.77± 0.10) MHz. (8.320)

The calculation of the second-order radiative corrections due to the electron
self-energy gives a value of 1011.45 MHz for ∆E/2πh̄, showing that the Lamb
shift is mainly due to electron self-energy effects. The vacuum polarization
and the vertex correction (anomalous magnetic moment) diagrams also con-
tribute: −27.13 MHz and 67.82 MHz, respectively (see Jauch & Rohrlich [15]).
Combining these results one obtains to second order in perturbation theory(

∆E
2πh̄

)
2nd order

= 1052.14± 0.08 MHz. (8.321)

8S. Triebwasser, E.S. Dayhoff, W.E. Lamb, “Fine Structure of the Hydrogen Atom. V”,
Phys. Rev. 89 (1953) 98-106.
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The agreement between the experimental and theoretical values is suffi-
ciently good to give one considerable confidence in the renormalization theory
outlined above. The remaining discrepancy can be removed if one takes into
account fourth-order radiative corrections, small corrections due to the finite
size and mass of the proton, etc. In this way, one obtains for the improved
theoretical value of the Lamb shift9

(
∆E
2πh̄

)
4th order

= (1057.911± 0.012) MHz. (8.322)

8.13.3.2 Anomalous Magnetic Moment of the Electron

According to the Dirac theory, the electron possesses a magnetic moment.
The electron’s magnetic momentum is augmented by an anomalous contribu-
tion due to second-order, and higher, radiative corrections.

The magnetic moment of an electron is

�µ = − eR

2mR

(
1 +

α

2π

)
2
�σ

2
= −g eR

2mR
�s, (8.323)

where �σ is a Pauli matrix and �s = �σ/2. The contribution proportional to the
fine-structure constant is identified with the anomalous magnetic moment of
the electron. The modification to the g-factor is10

g − 2
2

=
α

2π
= 0.00116. (8.324)

When one includes corrections of order α2, α3, etc. which arise from higher-
order diagrams, one finds the value, to eighth order,11

g − 2
2

= 0.5
(α
π

)
− 0.328478966

(α
π

)2

+ (1176.11± 42)× 10−3
(α
π

)3

+ · · ·

= (1 159 652 140± 28)× 10−12. (8.325)

The result is in excellent agreement with the experimental value12

(
g − 2

2

)
exp

= (1 159 652 186.9± 4.1)× 10−12. (8.326)

9A. Peterman, “A New Value for the Lamb Shift”, Phys. Lett. 38B (1992) 330-332.
10J. Schwinger, “On Quantum-Electrodynamics and the Magnetic Moment of the Electron”,
Phys. Rev. 73 (1947) 416.
11T. Kinoshita & W.B. Lindquist, “Eight-order magnetic moment of the electron. V.
Diagrams containing no vacuum-polarization loop”, Phys. Rev. D 42 (1990) 636-655.
12P.J. Mohr & B.N. Taylor, “CODATA recommended values of the fundamental physical
constants: 1998”, Rev. Mod. Phys. 72 (2) (2000) 351-495.
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We thus see that the agreement between experiment and theory is good to
one part in 1012.

The increase in the magnetic moment of the electron can be understood
qualitatively as follows. The electron is continually emitting and reabsorb-
ing photons and is thus surrounded by a cloud of photons. Thus, a certain
amount of the electron’s energy, and therefore mass, resides with these pho-
tons. Hence, the charge-to-mass ratio of the electron is effectively increased
and this reveals itself in a measurement of the magnetic moment.

8.13.3.3 Running Coupling Constant

At large q2 = −Q2, we must include the q-dependent term in the vac-
uum polarization that gave equation 8.315. Including loops to all orders and
defining α(Q2) = e2R(Q2)/4π, we have

α(Q2) ≡ α0

1− α0
3π ln Q2

Λ2

(8.327)

for large Q2.
To eliminate the explicit dependence of α(Q2) on the cutoff Λ, we choose

a renormalization momentum µ. The renormalization procedure is then to
subtract α(µ2) from α(Q2) to get

α(Q2) =
α(µ2)

1− α(µ2)
3π ln

(
Q2

µ2

) . (8.328)

The electric charge the experimenter measures depends on the Q2 of the
experiment and is referred to as the running coupling constant. The running
coupling constant α(Q2) describes how the effective charge depends on the
separation of the two charged particles. By inserting numerical values, we find
that for all practically attainable Q2, the variation of α with Q2 is extremely
small; α increases from 1/137 very slowly as Q2 increases.

At high Q2 not only can electron-positron pairs be produced in the vacuum
but also other particles, such as, the heavy leptons and quarks. Including
both the leptonic and hadronic (quark) contributions we have

α(Q2 = (50 GeV)2) ≈ 1
137
· 1
0.94

≈ 1
129

. (8.329)

We can understand the slowly varying fine structure constant as follows.
In the vicinity of a test charge in the vacuum, charged pairs can be created.
Pairs of particles of mass m can exist for a time of the order ∆t ∼ h̄/mc2.
They can spread apart a distance of order c∆t in this time, i.e. a distance
of approximately h̄/mc, which is the Compton wavelength. The polarized
virtual pairs provide a vacuum screening effect around the original charged
particle. The bare vacuum corresponds to no virtual pairs, while the physical
vacuum contains virtual pairs. We cannot get outside the physical vacuum,
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so that we are really always dealing with effective charges that depend on r.
The familiar e is the effective charge as r → ∞ or Q2 → 0; or, in practice,
the charge relevant for distances much larger than the particles’ Compton
wavelength. When q2 moves to large space-like values, such that Q2 is much
greater than m2, i.e. to distances well within the cloud, the fine structure
constant has a Q2 dependence.

This ends our phenomenological description of radiative corrections. Rather
than applying the wavefunction approach to calculate radiative corrections,
the reader is probably best served by moving on at this point to studying
quantum field theory, armed with the practical calculational abilities provided
by this book.

8.14 Problems

1. [12] In the center-of-mass frame for the process AB→ CD, show that
the phase-space element is

dQ =
1

4π2

pf

4
√
s
dΩ,

the flux is

F = 4pi

√
s,

and hence that the differential cross section is

dσ

dΩ

∣∣∣∣
CM

=
1

64π2s

pf

pi
|M|2,

where dΩ is the element of solid angle about �pC , s = (EA + EB)2,
|�pA| = |�pB| = pi, and |�pC | = |�pD| = pf .

2. [4] Show that the plane-wave solutions, normalized as

ψi(x) =
√

m

EiV
u(pi, si)e−ipi·x and ψf (x) =

√
m

EfV
u(pf , sf )eipf ·x,

have the desired Lorentz transformation properties. In particular, in-
clude the effect of a Lorentz transformation on the box volume V to show
that ψ(x)ψ(x) is a scalar and that ψ†(x)ψ(x) is the time component of
a four-vector, as desired.
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3. Show that equation 8.37 reduces to the Rutherford scattering formula
in the nonrelativistic limit.

4. Obtain an expression for the spin matrix element in equation 8.37 by
using free-particle spinors.

5. Calculate the Coulomb scattering of a spin-0 particle of charge −e from
a static external field of charge +Ze.

6. Calculate the differential scattering cross section dσ
dΩ(λf , λi) for Coulomb

scattering of electrons with longitudinal polarization.

7. Prove the following:

(a) Tr[γ5 � a � b] = 0,

(b) Tr[γ5 � a � b � c � d] = 4iεαβγδa
αbβcγdδ,

(c) γµ � a � b � cγµ = −2 � c � b � a,
(d) γµ � a � b � c � dγµ = 2[� d � a � b � c+ � c � b � a � d],
(e) � a � b � c · · · � p =� p · · · � c! � b � a.

8. Compute

(a) γµγ
µ, γµγαγ

µ, and γµγαγβγ
µ.

(b) Simplify �p �p, �pγµ �p, and �pγµγν �p.

9. Describe the substitution rules required to calculate the following:

(a) Calculate electron-positron annihilation and electron-positron pro-
duction, given electron-photon scattering.

(b) Calculate electron-photon scattering and electron-positron annihi-
lation, given electron-positron production.

(c) Calculate electron-photon scattering and electron-positron produc-
tion, given electron-positron annihilation.

10. Show that the amplitude given by equation 8.93 is proportional to

jµ(e)
gµν

q2
jν(P ).

Using the methods at the end of section 7.4, show that the above expres-
sion can be written as the exchange of a transversely polarized photon
and an instantaneous coulomb interaction between charge densities.

11. Show equation 8.108.
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12. [7] The realistic description of the scattering of an electron from a spin-
1/2 hadron has to take into account the internal structure and anom-
alous magnetic moment of the hadron. To that end, one replaces the
transition current in momentum space originating from the Dirac equa-
tion, with the more general bilinear expression

u(P ′)γµu(P )→ u(P ′)Γµ(P ′, P )u(P ).

(a) Show that the most general expression for a transition current that
fulfills the conditions of Lorentz covariance, hermiticity, and gauge
invariance can be written as

u(P ′)Γµ(P ′, P )u(P ) = u(P ′)
[
γµF1(q2) +

i

2M
F2(q2)qνσµν

]
u(P ).

Here q = P ′ − P is the four-momentum transfer, and F1(q2) and
F2(q2) are unspecified real functions called form factors.

(b) What is the physical meaning of F1(0) and F2(0)? This can be
deduced by studying the energy of the interaction with static elec-
tromagnetic fields in the nonrelativistic limit.

(c) Calculate the unpolarized cross section for electron scattering from
a hadron with the above vertex function in the extreme relativistic
limit.

13. Calculate the electron-proton scattering cross section in the center-of-
mass reference frame. Calculate it in a frame in which the proton has
energy 820 GeV and the electron has energy 30 GeV. How does the cross
section change for positron-proton scattering?

14. Show that the cross section for elastic scattering of unpolarized electrons
from spinless point-like particles at rest is

dσ̄

dΩ
=

α2

4E2 sin4 θ
2

E′

E
cos2

θ

2
,

where we have neglected the mass of the electron.

15. [14] We derived the laboratory frame cross section for scattering of a
high energy electron from an “ideal structureless” proton. However, the
proton matrix element of the electromagnetic current was assumed to
have a näıve form. In reality one should use the current matrix element

〈Pf |Jem
µ |Pi〉 = uf (Pf )

[
γµF1(q2)− i

κ

2M
σµνq

νF2(q2)
]
ui(Pi),

where q = Pi − Pf is the four-momentum transfer, κ = 1.79 is the
anomalous magnetic moment of the proton, and F1(q2) and F2(q2) are
form factors which account for the finite hadronic size.
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(a) Calculate the high-energy laboratory cross section for electron-
proton scattering using the full current matrix element and show
that

dσ

dΩ
=

α2 cos2 θ/2
4E2

i sin4 θ/2
1[

1 + 2Ei sin2 θ/2
M

]{|F1(q2)|2

+
q2

4M2

[
2|F1(q2) + κF2(q2)|2 tan2 θ

2
+ κ2|F2(q2)|2

]}
,

where

q2 =
4E2

i sin2 θ/2

1 + 2Ei sin2 θ/2
M

.

(b) Verify that this expression reduces to that given earlier in the limit
that κ→ 0 and F1(q2)→ 1.

16. [4] Construct the amplitude for bremsstrahlung in electron-proton scat-
tering and show that the static limit reduces to

Sfi =
−Ze3
V 3/2

2πδ(Ef + k − Ei)
1√
2ω

√
m2

EfEi

1
|�q|2u(pf , sf )

[
(−i � ε) i

� pf+ � k −m (−iγ0) + (−iγ0)
i

� pi− � k −m
(−i � ε)

]
u(pi, si)

(8.330)

for bremsstrahlung in a Coulomb field. Show that there is the same
correspondence in factors between these two cases as was found in

Sfi = iZe2
1
V

√
m2

EfEi

u(pf , sf )γ0u(pi, si)
|�q|2 2πδ(Ef − Ei)

and

Sfi =
−ie2
V 2

(2π)4δ4(Pf − Pi + pf − pi)

√
m2

EfEi

√
M2

E′fE
′
i

· [u(pf , sf )γµu(pi, si)]
1

(pf − pi)2 + iε
[u(Pf , Sf )γµu(Pi, Si)]

for elastic scattering.
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17. Derive the Bethe-Heitler cross section for bremsstrahlung of photons of
arbitrary energy.

18. Using the matrix element in equation 8.150 show that kµMµ
fi(k) = 0.

19. Calculate the cross section for electron-positron pair annihilation to a
single photon in the presence of the Coulomb field of a nucleus.

20. Derive the differential and total unpolarized cross section for pair anni-
hilation e+e− → γγ in the center-of-mass reference frame.

21. Show that equation 8.250 follows from previous results by using substi-
tutions.

22. Calculate the cross section for electron-positron pair creation by an in-
coming photon in the field of a heavy nucleus with charge +Ze. Hint:
the calculation can be considerably simplified by exploiting crossing
symmetry which relates pair creation and bremsstrahlung.

Show that the amplitude for this process is related to the bremsstrahlung
amplitude in equation 8.330 by substitution rules. Write down the dif-
ferential cross section as a five-fold differential in terms of the positron
energy, and the solid angles of the electron and positron. Also write
down the average squared Lorentz invariant matrix element in terms of
a single trace. Do not evaluate the trace.

23. Derive the total unpolarized cross section for creation of an electron-
positron pair by two colliding photons, γγ → e+e−. Express the result
in terms of the velocity of the produced particles in the center-of-mass
reference frame. Hint: use the result for the pair annihilation cross
section.

24. Show that equation 8.297 follows from equation 8.296.

25. [4] Construct the differential cross section for electron-electron scattering
in the lowest order Born approximation in terms of laboratory energies
and scattering angles.

26. Repeat the Møller scattering cross section calculation in the rest frame
of one of the electrons.

27. Evaluate the unpolarized cross section for Møller scattering in the non-
relativistic limit.

28. [12] Using e+e− → e+e− in the s-channel process, verify that

s = 4(k2 +m2),
t = −2k2(1− cos θ),
u = −2k2(1 + cos θ),
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where θ is the center-of-mass scattering angle and k = |�ki| = |�kj |, where
�ki and �kj are the momenta of the incident and scattered electrons in the
center-of-mass frame. Show that the process is physically allowed pro-
vided s ≥ 4m2, t ≤ 0, and u ≤ 0. Note that t = 0 (u = 0) corresponds
to forward (backwards) scattering.

29. [7]

(a) Show that the kinematics of any binary scattering process ab→ cd
can be expressed in terms of the three Lorentz-invariant Mandel-
stam variables.

s = (pa + pb)2 = (pc + pd)2,
t = (pc − pa)2 = (pd − pb)2,
u = (pc − pb)2 = (pd − pa)2.

Prove the identity

s+ t+ u = m2
a +m2

b +m2
c +m2

d.

(b) Derive the differential cross section for electron-electron scatter-
ing and electron-positron scattering in terms of the Mandelstam
variables. Do not neglect the electron mass in this calculation.

(c) Write down the explicit results for the Møller and Bhabha cross
sections in the center-of-mass system and in the laboratory system.

30. [4] Calculate the cross section for the absorption of light by a bound elec-
tron in an atom with low atomic number Z, such that Zα = Z/137� 1
and Ebinding � mc2. Assume also that the frequency of the light is such
that h̄ω � Ebinding. Making these simplifying assumptions calculate
the differential and total cross sections for the two limiting cases:

(a) Ebinding � h̄ω � mc2 nonrelativistic ,

(b) h̄ω � mc2 extremely relativistic.

31. [27] The formula for electron scattering from a Dirac proton can be
modified to represent ionization energy loss of charged particles in mat-
ter, dE/dx. Energetic protons traversing a medium lose energy Q =
Ep − E′p = E′e −m in collisions with atomic electrons,

p e−(�pe ≈ 0)→ p e−. (8.331)

Show that a change of variables converts dσ/dΩ to
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dσ

dQ
=

2πα2

mβ2

1
Q2

(
1− β2 Q

Qmax
+

1
2
Q2

E2
p

)
, (8.332)

where Qmax ≈ 2mγ2β2 for incident protons of velocity β � 1, and
where the last term is absent for a beam of spinless particles. The mean
free path is computed via the exponential dampening law exp(−nσx),
where n is the number density formula. Show that the ideal ionization
loss is

dE

dx
= n

∫ Qmax

Qmin

Qdσ ≈ 2πα2

mβ2
n

(
ln
Qmax

Qmin
− β2

)
, (8.333)

for Q2 � E2
p. Realistic modifications of the above formula lead to the

Bethe-Bloch formula.

32. To show your understanding of QED, develop spinless QED. Calculate

(a) Compton scattering of bosons and

(b) electro-production of pion pairs.
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Appendix A

Lorentz-Invariant Flux Factor

The Lorentz-invariant flux factor is defined as

F =
4
√

(p1 · p2)2 −m2
1m

2
2

N1N2
, (A.1)

where Ni = 1 for photons, and Ni = 2mi for spin-1/2 fermions.
Table A.1 summarizes the flux factors for different cases in the center-of-

mass frame and the laboratory frame. An outline of the calculations and
meaning of the symbols follows.

TABLE A.1: Flux factors.
Reference Frame No Photons One Photon Two Photons

center-of-mass 2γ2β 8ω1ω2

laboratory γβ 2ω

For two photons m1 = m2 = 0, and

Fγ1γ2 = 4p1 · p2 = 4ω1ω2(1− cos θ). (A.2)

For collinear beams θ = π, and

Fγ1γ2 = 4p1 · p2 = 8ω1ω2. (A.3)

For one photon, p1 = ω(1, k̂), and one fermion, p2 = E(1, �β),

Fγe = 4
p1 · p2

2m
= 2γω(1− β cos θ), (A.4)

where γ = E/m. For collinear beams

Fγe = 2γω(1 + β). (A.5)

In the laboratory (LAB) frame β = 0, γ = 1, and

FLAB
γe = 2ω. (A.6)

For no photons
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Fee = 4

√
E2

1E
2
2(1 − β1β2 cos θ)2 −m2

1m
2
2

2m12m2
=
√
γ2
1γ

2
2(1− β1β2 cos θ)2 − 1.

(A.7)
For collinear beams

Fee =
√
γ2
1γ

2
2(1 + β1β2)2 − 1. (A.8)

In the laboratory frame β2 = 0, γ2 = 1, and

FLAB
ee =

√
γ2 − 1 = γβ, (A.9)

where γ = γ1 and β = β1. For identical particles in the center-of-mass (CMS)
frame γ = γ1 = γ2, β = β1 = β2, and

FCMS
ee =

√
γ4(1 + β2)2 − 1 = 2γ2β. (A.10)
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Lorentz-Invariant Phase Space

The element of n-body phase space is defined as

dLips(s; pi, . . . , pn) = (2π)4δ4(
√
s−

n∑
i

pi)
n∏
i

Ni

(2π)3
d3pi

2Ei
, (B.1)

where s is the square of the available four-momentum, Ni = 1 for photons,
and Ni = 2mi for spin-1/2 fermions. The phase-space element is Lorentz
invariant because each d3pi/Ei is Lorentz invariant. The most practical use
of this formula, and the one encountered previously in equation 8.107, is for
the 1 + 2→ 3 + 4 process:

dLips(s; p3, p4) = (2π)4δ4(p1 + p2 − p3 − p4)
N3

(2π)3
d3p3

2E3
,
N4

(2π)3
d3p4

2E4
, (B.2)

where s = (p1 + p2)2.
We will now evaluate this phase-space element. First we perform the inte-

gration over particle 4 invariantly using equation 8.102:

dLips(s; p3, p4) =
N3N4

8π2
δ4(p1 + p2 − p3 − p4)

d3p3

E3
d4p4δ(p2

4 −m2
4)θ(p

0
4)

=
N3N4

8π2

d3p3

E3
δ[(p1 + p2 − p3)2 −m2

4]θ(E1 + E2 − E3).

(B.3)

Using d3p3 = |�p3|2d|�p3|dΩ = |�p3|E3dE3dΩ, we have

dLips(s; p3, p4) =
N3N4

8π2
|�p3|dE3dΩδ[(p1 + p2 − p3)2 −m2

4]θ(E1 + E2 − E3).

(B.4)
Using the property of the delta function given by equation 2.32, the delta
function can be re-expressed:

δ[(p1 + p2 − p2
3)

2 −m2
4] =

δ(E3 − Ẽ3)

2
∣∣∣∣W − Ẽ3√

Ẽ2
3−m2

3

|�p1 + �p2| cos θ
∣∣∣∣
, (B.5)
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where W = E1 + E2, and Ẽ3 is the solution to

s+m2
3 −m2

4 − 2WẼ3 + 2|�p1 + �p2| cos θ
√
Ẽ2

3 −m2
3 = 0. (B.6)

Integrating over E3, the Lorentz-invariant phase-space element in a very gen-
eral, but impractical, form is

dLips(s; p3, p4) =
N3N4

16π2

√
Ẽ2

3 −m2
3∣∣∣∣W − Ẽ3√

Ẽ2
3−m2

3

|�p1 + �p2| cos θ
∣∣∣∣
dΩ. (B.7)

The result is general and includes no approximations. There are two com-
mon reference frames used in practical calculations: the center-of-mass frame,
and the laboratory frame in which one of the initial particles is at rest. In the
center-of-mass reference frame (CMS), |�p1 + �p2| = 0 and

dLips(s; p3, p4) =
N3N4

16π2

|�p3|√
s
dΩ center-of-mass frame , (B.8)

where

|�p3| =
√
Ẽ2

3 −m2
3 and Ẽ3 =

s+m2
3 −m2

4

2
√
s

. (B.9)

In quantum electrodynamics, the result is often not this general. For two
photons in the initial state

dLips(s; p3, p4) =
N3N4

32π2

√
1− 4m2

s
dΩ CMS: γ + γ → 3 + 4, (B.10)

where m ≡ m3 = m4. For two photons in the final state

dLips(s; p3, p4) =
N3N4

32π2
dΩ CMS: 1 + 2→ γ + γ. (B.11)

For processes with no photons, the expression does not simplify unless at least
E3 ≈ |�p3|:

dLips(s; p3, p4) =
N3N4

32π2

s+m2
3 −m2

4

s
dΩ CMS: E3 ≈ |�p3|. (B.12)

Obvious additional simplifications follow, if some of the masses can be ignored.
Equation B.8 can be easily adapted to two-body decays of a particle at rest:

dLips(m1; p2, p3) =
N2N3

16π2

|�p |
m1

dΩ decay 1→ 2 + 3 . (B.13)
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The other reference frame of interest is the laboratory rest frame. In the
rest frame of particle 1, �p1 = 0 and

dLips(s; p3, p4) =
N3N4

16π2

√
Ẽ2

3 −m2
3

W − Ẽ3√
Ẽ2

3−m2
3

|�p2| cos θ
dΩ laboratory frame .

(B.14)
This is still not a very practical form. If particle 3 is a photon, or very
energetic such that E3 ≈ |�p3|, we have

dLips(s; p3, p4) =
N3N4

8π2

Ẽ2
3

s+m2
3 −m2

4

dΩ, (B.15)

where

Ẽ3 =
s+m2

3 −m2
4

2W − 2|�p2| cos θ
. (B.16)

Again, obvious additional simplifications follow, if some of the masses can be
ignored. For example, in a case of elastic scattering in which the mass of the
beam particle can be ignored, we have

dLips(s; p3, p4) =
N3N4

16π2m1

|�p3|
|�p2|

dΩ, (B.17)

where

|�p3| =
|�p2|

1 + (2|�p2|/m1) sin2(θ/2)
. (B.18)





Appendix C

Feynman Rules for Tree Diagrams

In chapter 6 we developed propagator methods which allowed us to calcu-
late transition amplitudes using the S-matrix. In chapter 8 we calculated the
lowest-order S-matrix elements for several quantum electrodynamic processes.
In each case, we also drew diagrams in space-time, or graphs, that allowed
us to visualize the process. Based on observations, we identified elements of
each diagram with factors in the S-matrix elements. We gained enough expe-
rience to extract a set of rules – the Feynman rules – which in principle allow
the calculation of any quantum electrodynamic process no mater how compli-
cated. The set of diagrams in which each vertex is connected to every other
vertex by only one internal line are called tree diagrams. In this appendix,
we summarize the Feynman rules for tree diagrams.

The Feynman rules can be stated in configuration or momentum space. In
configuration space there is a direct correspondence to the S-matrix elements
as we have developed them. However, for plane waves, these expressions can
always be integrated over the coordinates to leave an expression which depends
only on the momenta of the particles. Thus it is simpler to perform these
integrations ahead of time and state the Feynman rules in momentum space.
The momentum-space diagrams are usually preferred because of the simpler
structure of the integrand, and because the initial- and final-state particle are
usually known in terms of their momenta rather than their positions.

We have, and will, restrict our attention to final states f that are different
from the initial state i such that no subset of particles in the state f has
precisely the same four-momentum as some corresponding subset of particles
in the state i, other than the whole state itself. This means that we are
considering only, so called, connected diagrams. A state can be specified
by giving the momentum and the internal degrees of freedom, e.g. spin for
electrons and polarization for photons. Choosing plane waves for the initial
and final states is usually sufficient for most applications involving lowest-
order – tree level – diagrams. In this case, the S-matrix element can be
written as

Sfi = i(2π)4δ4(pi − pf )
N∏

j=0

√
mj

EjV

M∏
k=0

1√
2ωkV

Mfi, (C.1)

where pi and pf are the total momenta of the initial and final states. The
square-root factors are due to the normalization of the incoming and outgoing
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plane waves. If the process of interest contains N spin-1/2 particles and M
photons, there is a factor of

√
m/(EV ) for each fermion – electron or positron

– and a factor of
√

1/(2ωV ) for each photon. The delta function arises from
the integration of the exponential factors of the plane waves over the configu-
ration coordinates, using the exponential representation of the delta function
equation 2.31. Further integrations over the momentum variables in the prop-
agators lead to the single over-all four-momentum conserving delta function
in equation C.1. If the process involves Coulomb scattering off an external
fixed potential, the delta function conserves energy only, and there is only a
single power of 2π in front of the delta function. Separating the factors of 2π
from the factor iMfi is a convention. The remaining factor iMfi is called the
Lorentz-invariant matrix element, or amplitude. It contains all the essential
physics, while the other factors simply represent kinematics.

The most practical use of the S-matrix element is in the calculation of
processes involving one or two initial-state particles, and two final-state par-
ticles. These two processes are represented by the following decay rate and
differential cross section.

1→ 2 + 3 decay rate:

dΓ =
1

2m1
|M|2dLips(m2

1; p2, p3). (C.2)

1 + 2→ 3 + 4 cross section:

dσ =
1
F
|M|2dLips(s; p3, p4), (C.3)

where s = (p1+p2)2. Appendix A describes the flux factor F , and the Lorentz
invariant phase space factor dLips is described in appendix B. We see that
the expression for the cross section is divided into two parts: the square of the
invariant amplitude |iM|2, which is a Lorentz scalar containing the physics,
and two kinematical factors, the incident particle flux and the final-state phase
space, which are also Lorentz invariant.

To compare the cross section with experiment, one has to integrate the
differential cross section dσ over the phase-space intervals which are not dis-
tinguished in the measurements. In addition, one has to average over the
initial spins and polarizations, and sum over the final spins and polarizations,
if these polarizations are not measured.

If there are identical particles in the final state, we must take special pre-
cautions. Since configurations differing only by a permutation of the particles
describe the same quantum-mechanical state, the phase-space must be re-
duced by a degeneracy factor. If there are n identical particles of type k in
the final state, we must include a degeneracy factor 1/nk! in the decay rate
or cross section. The denominator is nk! because there are nk! possibilities of
arranging (countering) these particles, but only one such arrangement is mea-
sured experimentally. For example, in the case of electron-electron scattering
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this means the cross section is multiplied by a factor of 1/2!. Another exam-
ple of practical importance is the process of multiple photon bremsstrahlung,
where the denominator factor nk! can become very large.

Now the remaining task is just to write down the invariant amplitude iMfi

for the process of interest. The following explains how to draw the Feynman
diagrams for the process of interest, how to read these diagrams, and apply
the Feynman rules to obtain the invariant amplitude iMfi.

C.1 Drawing and Reading Feynman Diagrams

In the nth order of perturbation theory, one has to draw all possible topo-
logically distinct and connected Feynman diagrams with n vertices that have
the prescribed number of particles in the initial and final states: external
lines. When drawing Feynman diagrams, only the topological structure is im-
portant. Since the theory was formulated in a relativistically covariant way,
all possible time orderings are automatically taken into account. As long as
the order of the vertices along the fermion lines is kept, the diagrams can be
arbitrarily deformed without changing their meaning.

To convert the diagrams to an expression for the invariant amplitude iMfi,
we assign multiplicative factors, using the Feynman rules given in the next
section, to the various elements of each diagram. The complete perturbation
series for iMfi in powers of the coupling constant e is obtained by adding
up the contributions from each Feynman diagram to the desired order. The
amplitude associated with a particular Feynman diagram is determined as
follows.

There are basically three elements of a Feynman diagram at the tree level:
external lines, vertices, and internal lines. When the diagrams are read, fac-
tors are written from left to right in the order of movement along a continuous
line against the direction of the arrows. Arrows always point in the direction
a particle is moving, and opposite to the direction an antiparticle is moving.
Arrows are omitted for external photon lines since a photon is its own an-
tiparticle. The choice of direction for a virtual photon line is also immaterial:
a change in its direction simply reverses the sign of the four-momentum k,
which does not matter, since the propagator Dµν

F (k) is an even function of k.
For each vertex, the four-momenta of the three lines that meet at a point sat-
isfy energy and momentum conservation. The four-momentum of the virtual
particle is determined by the conservation of four-momentum at the vertex:
the total momentum of the incoming lines equals the total momentum of the
outgoing lines at any vertex. The factors associated with each element in a
Feynman diagram are now stated.
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C.2 Rules for Tree Diagrams in Momentum Space

External Particles

With each external line, we associate one of the following factors.

Spin 0: For each incoming or outgoing spin-0 boson assign a factor 1.

1 1

Spin 1/2: For each incoming or outgoing spin-1/2 fermion include a bispinor,

u(p, s) u(p′, s′)

and for each incoming or outgoing spin-1/2 antifermion include a bispinor.

v(p, s) v(p′, s′)

Photons: For each incoming or outgoing photon include a polarization vector.

εµ(k, λ) ε∗µ(k′, λ′)

External Field: For each external field include the electromagnetic potential.

k

Aµ(k)
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Propagators

With each internal line connecting two vertices, we associate one of the
following propagators.

Spin-0:

p
i�F (p) =

i

p2 −m+ iε

Spin-1/2:

p
iSF (p) =

i

�p−m+ iε
=

i(�p+m)
p2 −m2 + iε

Photon:

k
µ ν iDµν

F (k) =
i

k2 + iε

[
−gµν + (1− ζ)k

µkν

k2

]

for a general ζ-gauge. Calculations are usually performed in the Lorentz or
Feynman gauge with ζ = 1. In this gauge, the photon propagator is

iDµν
F (k) =

−igµν

k2 + ε
.

Vertices

If two or more external lines meet at a point, we associate with it one of
the following vertex factors.

Spin-0:
One-photon vertex

p

p′

µ
k

ie(p+ p′)µ
(for charge −|e|)
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Two-photon vertex

p

p′ µ

ν

2ie2gµν

Spin-1/2:

p

p′

µ
k

ieγµ

(for charge −|e|)

The index µ (and ν) has to be multiplied with that of the photon line and
summed over.

Additional Rules

The amplitudes corresponding to all diagrams have to be added coherently.
The following relative phase factors between the amplitudes must be taken
into account when forming the coherent sum.

A factor of −1 must be included for each incoming positron (outgoing elec-
tron with negative energy). This is the sign factor εf in the S-matrix
element equation 6.124, which is positive for electrons and negative for
positrons.

A relative factor of −1 must be included between two diagrams which differ
only by the exchange of two external fermions lines. The rule also holds
for the exchange of an incoming (outgoing) particle line with an outgoing
(incoming) antiparticle line, since the latter is an incoming (outgoing)
particle line with negative energy. This minus sign originates from the
antisymmetry of the wave function required by Fermi-Dirac statistics.
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Do not include any extra factor for boson external lines – according to Bose-
Einstein statistics.

C.3 Steps in a Calculation

Based on our experience, we can now enumerate a set of simple steps to
calculate processes at the tree level in quantum electrodynamics.

1. Draw the diagrams for the desired process.

2. Use the Feynman rules to write down the amplitude Mfi.

3. Square the amplitude, and average or sum over spins and polarizations,
using the completeness relationships.

4. Evaluate traces using the trace theorems, collect terms, and simplify the
answer as much as possible.

5. Specialize to a particular frame of reference and draw a picture of the
kinematic variables in that frame. Express all four-momentum vectors
in terms of a suitable set of variables such as E and θ.

6. Plug the resulting expression for |Mfi| into the cross section formula to
obtain a differential over phase-space variables. Integrate over variables
that are not measured to obtain a differential cross section in the desired
form.





Appendix D

Trace Calculation Using FORM

The following are some example calculations using the symbolic-manipulation
program FORM1. Equations 8.45, 8.114, 8.130, and 8.134 are solved symbol-
ically. In addition, the last example calculates all the traces required for the
photon-electron scattering cross section.

****************************************************************
FORM by J.Vermaseren,version 3.1(Oct 13 2002)
Run at: Sat Jun 11 15:01:48 2005

*
* Equation 8.45.
*
OFF STATS;
SYMBOLS m, Ei, Ef;
VECTORS pi, pf;
*
LOCAL TR = g_(1,0) * (g_(1,pi) + m)/(2*m)

* g_(1,0) * (g_(1,pf) + m)/(2*m);
*
TRACE4,1;
*
ID pi(0) = Ei;
ID pf(0) = Ef;
*
BRACKET m;
*
PRINT;

TR =
+ m^-2 * ( 2*Ei*Ef - pi.pf )

+ 1;

****************************************************************
FORM by J.Vermaseren,version 3.1(Oct 13 2002)

1J.A.M. Vermaseren, “New features of FORM”, math-ph/0010025.
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Run at: Sat Jun 11 14:50:12 2005
*
* Equation 8.114.
*
OFF STATS;
INDICES mu, nu;
SYMBOLS m, M;
VECTORS pi, pf, Pi, Pf;
*
* Equation 8.110.
LOCAL L = ((g_(1,pi) + m)/(2*m) * g_(1,mu)

* (g_(1,pf) + m)/(2*m) * g_(1,nu))/2;
* Equation 8.111.
LOCAL H = ((g_(2,Pi) + M)/(2*M) * g_(2,mu)

* (g_(2,Pf) + M)/(2*M) * g_(2,nu))/2;
* Equation 8.114.
LOCAL Mfi2 = L*H;
*
TRACE4,1;
TRACE4,2;
*
BRACKET m, M;
*
PRINT;

L =
+ m^-2 * ( 1/2*pi(mu)*pf(nu) + 1/2*pi(nu)*pf(mu)

- 1/2*d_(mu,nu)*pi.pf )

+ 1/2*d_(mu,nu);

H =
+ M^-2 * ( 1/2*Pi(mu)*Pf(nu) + 1/2*Pi(nu)*Pf(mu)

- 1/2*d_(mu,nu)*Pi.Pf )

+ 1/2*d_(mu,nu);

Mfi2 =
+ m^-2*M^-2 * ( 1/2*pi.Pi*pf.Pf + 1/2*pi.Pf*pf.Pi )

+ m^-2 * ( - 1/2*pi.pf )

+ M^-2 * ( - 1/2*Pi.Pf )

+ 1;
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****************************************************************
FORM by J.Vermaseren,version 3.1(Oct 13 2002)
Run at: Sat Jun 11 15:26:21 2005

*
* Equation 8.130.
*
OFF STATS;
INDICES mu, nu;
SYMBOLS m, M, E, Ep;
VECTORS pi, pf, Pi, Pf;
*
LOCAL L = ((g_(1,pi) + m)/(2*m) * g_(1,mu)

* (g_(1,pf) + m)/(2*m) * g_(1,nu))/2;
LOCAL H = ((g_(2,Pi) + M)/(2*M) * g_(2,mu)

* (g_(2,Pf) + M)/(2*M) * g_(2,nu))/2;
LOCAL Mfi2 = L*H;
*
TRACE4,1;
TRACE4,2;
*
ID Pf = Pi + pi - pf;
ID Pi.Pi = M^2;
ID pi.pi = m^2;
ID pf.pf = m^2;
ID Pi.pi = M*E;
*
ID Pi.pf = M*E;
ID E/M = 0;
*
BRACKET m;
*
PRINT;

L =
+ m^-2 * ( 1/2*pi(mu)*pf(nu) + 1/2*pi(nu)*pf(mu)
- 1/2*d_(mu,nu)*pi.pf )

+ 1/2*d_(mu,nu);

H =
+ 1/2*pi(mu)*Pi(nu)*M^-2 + 1/2*pi(nu)*Pi(mu)*M^-2
- 1/2*pf(mu)*Pi(nu)*M^-2 - 1/2*pf(nu)*Pi(mu)*M^-2
+ Pi(mu)*Pi(nu)*M^-2;

Mfi2 =
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+ m^-2 * ( E^2 - 1/2*pi.pf )

+ 1/2;

****************************************************************
FORM by J.Vermaseren,version 3.1(Oct 13 2002)
Run at: Sat Jun 11 16:31:33 2005

*
* Equation 8.134.
*
OFF STATS;
INDICES mu, nu;
SYMBOLS m, M, E, Ep, q;
VECTORS pi, pf, Pi, Pf;
*
Local L = ((g_(1,pi) + m)/(2*m) * g_(1,mu)

* (g_(1,pf) + m)/(2*m) * g_(1,nu))/2
;
Local H = ((g_(2,Pi) + M)/(2*M) * g_(2,mu)

* (g_(2,Pf) + M)/(2*M) * g_(2,nu))/2
;
Local Mfi2 = L*H;
*
TRACE4,1;
TRACE4,2;
*
ID Pf = Pi + pi - pf;
ID Pi.Pi = M^2;
ID pi.pi = m^2;
ID pf.pf = m^2;
ID Pi.pi = M*E;
ID Pi.pf = M*Ep;
ID pi.pf = m^2 - q^2/2;
*
BRACKET m, E, Ep;
*
PRINT;

L =
+ m^-2 * ( 1/2*pi(mu)*pf(nu) + 1/2*pi(nu)*pf(mu)
+ 1/4*d_(mu,nu)*q^2 );

H =
+ E * ( - 1/2*d_(mu,nu)*M^-1 )
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+ Ep * ( 1/2*d_(mu,nu)*M^-1 )

+ 1/2*pi(mu)*Pi(nu)*M^-2 + 1/2*pi(nu)*Pi(mu)*M^-2
- 1/2*pf(mu)*Pi(nu)*M^-2 - 1/2*pf(nu)*Pi(mu)*M^-2
+ Pi(mu)*Pi(nu)*M^-2;

Mfi2 =
+ m^-2*E*Ep * ( 1 )

+ m^-2*E * ( - 1/4*M^-1*q^2 )

+ m^-2*Ep * ( 1/4*M^-1*q^2 )

+ m^-2 * ( 1/4*q^2 )

+ E * ( - 1/2*M^-1 )

+ Ep * ( 1/2*M^-1 );

****************************************************************
FORM by J.Vermaseren,version 3.1(Oct 13 2002)
Run at: Sat Jun 11 16:33:44 2005

*
* Photon-Electron Scattering Traces.
*
OFF STATS;
SYMBOLS m;
VECTORS pi, pf, k, kp, e, ep;
*
LOCAL T11 = g_(1,pf,ep,e,k,pi,k,e,ep);
LOCAL T12 = g_(1,pf,ep,e,k, k,e,ep);
LOCAL T13 = g_(1, ep,e,k,pi,k,e,ep);
LOCAL T14 = g_(1, ep,e,k, k,e,ep);
LOCAL T1 = T11 + m*T12 + m*T13 + m^2*T14;
*
LOCAL T21 = g_(1,pf,e,ep,kp,pi,kp,ep,e);
LOCAL T22 = g_(1,pf,e,ep,kp, kp,ep,e);
LOCAL T23 = g_(1, e,ep,kp,pi,kp,ep,e);
LOCAL T24 = g_(1, e,ep,kp, kp,ep,e);
LOCAL T2 = T21 + m*T22 + m*T23 + m^2*T24;
*
LOCAL T31 = g_(1,pf,ep,e,k,pi,kp,ep,e);
LOCAL T32 = g_(1,pf,ep,e,k, kp,ep,e);
LOCAL T33 = g_(1, ep,e,k,pi,kp,ep,e);
LOCAL T34 = g_(1, ep,e,k, kp,ep,e);
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LOCAL T3 = T31 + m*T32 + m*T33 + m^2*T34;
*
LOCAL T41 = g_(1,pf,e,ep,kp,pi,k,e,ep);
LOCAL T42 = g_(1,pf,e,ep,kp, k,e,ep);
LOCAL T43 = g_(1, e,ep,kp,pi,k,e,ep);
LOCAL T44 = g_(1, e,ep,kp, k,e,ep);
LOCAL T4 = T41 + m*T42 + m*T43 + m^2*T44;
*
TRACE4,1;
*
ID pf = pi + k - kp;
ID k.k = 0;
ID kp.kp = 0;
ID e.e = -1;
ID ep.ep = -1;
ID k.e = 0;
ID kp.ep = 0;
ID pi.e = 0;
ID pi.ep = 0;
ID k.kp = k.pi - k.pf;
ID k.pf = kp.pi;
ID pi.pi = m^2;
*
PRINT T1, T2, T3, T4;

T1 =
8*pi.k*pi.kp + 16*pi.k*k.ep^2;

T2 =
8*pi.k*pi.kp - 16*pi.kp*kp.e^2;

T3 =
16*pi.k*pi.kp*e.ep^2 - 8*pi.k*pi.kp
+ 8*pi.k*kp.e^2 - 8*pi.kp*k.ep^2;

T4 =
16*pi.k*pi.kp*e.ep^2 - 8*pi.k*pi.kp
+ 8*pi.k*kp.e^2 - 8*pi.kp*k.ep^2;
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