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Preface

Cost–effectiveness analysis is the heading of a set of statistical method-

ologies for evaluating medical treatments. It is required that the evalu-

ation be based on the effectiveness and cost of the treatments. As the

effectiveness and cost change across the patient population to which a

given treatment is applied, it is assumed that they are random vari-

ables for which a statistical model has to be proposed. In this setting,

the aim of the analysis is that of choosing the “optimal” treatment in

a specified set of alternative treatments for a given disease whose cost

and effectiveness follow specified statistical models.

The interest in cost–effectiveness analysis has grown in the last three

decades, and the literature on the topic is spread out in scientific jour-

nals that include the European Journal of Health Economics, European

Journal of Operational Research, Health Economics, Journal of Health

Economics, Medical Decision Making, Pharmacoeconomics and Value

in Health. A few books, including Briggs et al. (2006), Willan and Briggs

(2006), Baio (2012) and Drummond et al. (2015), put together the ad-

vancements in different aspects of cost–effectiveness analysis to date.

This book provides the basis of statistical decision theory and meth-

ods required for the cost–effectiveness analysis and is aimed at students

of health economics with a solid background in statistics, applied statis-

ticians, researchers in health economics, and health managers.

We realized that treatment comparison problems can be included

as a particular case of the general statistical decision problem, and that

statistical decision theory provides the theoretical justification to the

traditional cost–effectiveness analysis methodology. Furthermore, deci-

sion theory suggests improvements of the analysis. For instance, the

xi



xii Preface

specification of alternative utility functions to the one typically used

for the traditional incremental net benefit analysis is immediately sug-

gested. Moreover, the identification in cost–effectiveness analysis of the

elements of a statistical decision problem such as the decision space,

the space of rewards, and the utility function helps in understanding

the conditions we are assuming when choosing optimal treatments. As

a consequence, the main motivation of this book was the formulation of

cost–effectiveness analysis as a statistical decision problem and the ap-

plication of the well–established statistical decision methodology to it.

The first three chapters of the book are dedicated to the exposition

of some basic ideas in cost–effectiveness analysis, in Bayesian and fre-

quentist statistical inference for parametric models, and in statistical

decision theory.

Chapter 1 presents an overview of traditional methods for the eco-

nomic evaluation of medical treatments which mainly apply to pairwise

treatment comparisons.

Chapter 2 summarizes the basic notions of Bayesian and frequentist

parametric estimation, hypothesis testing, and prediction for a few use-

ful parametric statistical models. We remark that hypothesis testing is

treated as a particular case of the Bayesian model selection problem.

The reason is that the results of model selection given by the Bayesian

and the frequentist approaches differ, and the Bayesian approach con-

siderably improves the frequentist, as is well–documented in the liter-

ature of Bayesian statistics.

Chapter 3 provides a summary of the elements, principles, and re-

sults of general statistical decision theory. A central role is played by

the utility function as the tool for ordering rewards of alternative deci-

sions, and in particular, rewards of alternative medical treatments for

a given disease.

Difficulties and challenges in the application of statistical decision

theory to cost–effectiveness analysis are discussed in the last three chap-

ters. The formulation of the cost–effectiveness analysis as a statistical

decision problem, the specification of the reward distributions, and the
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utility functions implicitly or explicitly used in the existing literature

are presented in Chapter 4. The parametric models frequently used for

costs and effectiveness are also given. These models will be utilized for

illustrating notions, methods, and case studies.

The realistic case where samples of costs and effectiveness of a given

treatment are collected in different health–care centers are presented in

Chapter 5. The rationale is that even when the protocol for the appli-

cation of the treatment is the same in the different health–care centers,

it seems reasonable to accept that a certain degree of heterogeneity of

the samples across centers is always present. It is seen that ignoring

the between–sample heterogeneity and pretending that they are homo-

geneous might give serious misleading results. To deal with heteroge-

neous models in cost–effectiveness analysis requires specific statistical

techniques such as clustering and meta-analysis. These statistical tech-

niques are formulated here from the Bayesian viewpoint, and presented

in Chapter 5.

In the last chapter, Chapter 6, cost–effectiveness analysis for sub-

groups of patients is considered. This subgroup analysis appears when a

potential set of covariates of patients under treatments are included in

the statistical model of cost and effectiveness. Given that patient sub-

groups are defined by the set of covariates, a previous step in subgroup

analysis is that of eliminating from the model noninfluential covariates.

This is an old and basic problem in regression models known as the

variable selection problem. The Bayesian variable selection approach

is presented as a model selection problem, and prior distributions for

models and for model parameters are discussed.

In the book we present, whenever possible, optimal treatments de-

rived using both the frequentist and the Bayesian approach to the un-

derlying statistical inference. However, model selection problems such

as variable selection or clustering are studied using only Bayesian pro-

cedures because of their methodological simplicity and excellent sam-

pling behavior. Moreover, although the original formulation of meta–

analysis with the well–known random effect models is a mixing of fre-
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quentist and Bayesian approaches, a fully Bayesian meta–analysis is

here proposed.

Computational difficulties inherent in the Bayesian model selec-

tion problem sometimes require numerical methods. When it is the

case, the codes utilized for finding a numerical solution are written

in Mathematica software, and they are available upon request to the

authors.

Las Palmas de Gran Canaria, Canary Islands, Spain

September 2018
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Miguel Ángel Negŕın-Hernández
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Miguel Ángel Negŕın-Hernández is Senior Lecturer in the Depart-

ment of Quantitative Methods at the ULPGC. His main research topics

are Bayesian methods applied to Health Economics, economic evalua-

tion and cost-effectiveness analysis, meta-analysis and equity in the

provision of healthcare services.

xv



http://taylorandfrancis.com


1

Health economics evaluation

1.1 Introduction

In the field of economics, health economics is one of the areas in which

research has recently had an intensive development. In this context, one

of the major concerns of researchers is the comparison between medi-

cal treatments or technologies. Comparing the effectiveness of different

treatments is not enough for medical treatment decision making. If we

choose only the effectiveness as the measure of goodness of a treatment,

we are accepting an unlimited capacity of resources for health, and the

reality is that health resources are limited and effectiveness comes at a

price. Weinstein and Stason (1977) stated that for a level of available

resources, society must maximize the total aggregate of health benefits.

Therefore, it is necessary to search for a methodology for adding the

cost to the effectiveness, as well as a relationship between the cost and

effectiveness that allows us to compare treatments.

As control over health expenditure has increased over the last thirty

years, the term cost–effectiveness has gained in popularity. This increas-

ing focus on cost–effectiveness analysis of new or existing treatments

has been led by the development of health technology assessment (HTA)

agencies, such as the National Institute for Health and Care Excel-

lence (NICE) in the United Kingdom, which seeks to provide guidelines

for health–care providers and decision makers about which treatments

should be covered by the National Health Systems.

1



2 Bayesian cost–effectiveness analysis

Most developed countries have developed HTA agencies in recent

years to inform policy making. Regional and national HTA agencies

offer recommendations on medicines and other health technologies that

can be financed or reimbursed by the health system of a state or

region. Among their functions we can highlight that of providing rel-

evant information about the safety, efficacy, outcomes, effectiveness,

cost and cost–effectiveness, as well as social, legal, ethical, and political

impacts of a health–care technology. Recently, they are gaining a strong

influence on patient access to new medicines, mainly due to increasing

pressure on health budgets (Ciani and Jommi, 2014).

In Europe, since 2008, the European Medicines Agency has been

working closely with HTA bodies in different member states, as well as

with the European Network for Health Technology Assessment, with

the objective of generating relevant data for regulators, HTA bodies,

and other interested parties.

In the United States, the federal government has provided financial

support for HTA since the early 1970s. The US Office of Technology

Assessment, the Medicare Coverage Division with the Centers for Medi-

care and Medicaid Services, and the Agency for Healthcare Research

and Quality are some of the federal institutions that undertake or fund

cost or cost–effectiveness analyses of medical technologies and interven-

tions (Luce and Brown, 1995; Sullivan et al., 2009). In other countries,

such as Australia or Canada, pharmaceutical companies are required

to submit their products to cost–effectiveness analysis (Henry, 1992;

Lee and McCarron, 2006; Hayley, 2009). Most of the HTA agencies be-

long to the International Network of Medical Technology Assessment

Agencies, which promotes exchange and collaboration among different

evaluation agencies.

The development of this area has aroused the interest of researchers

working on the statistical and methodological aspects of the decision

making process in the comparison of treatments. The cost–effectiveness

analysis research increases every year. To quantify this evolution, it may
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be helpful to show the number of articles published in MEDLINE,1 the

main database of medical literature in the world, from 1980 to 2017

(Figure 1.1). From this figure we observe an exponentially increasing

number of publications between those years.

0
1

0
0

0
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0
0

0
3

0
0

0
4

0
0

0
5

0
0

0

1980 1985 1990 1995 2000 2005 2010 2015

FIGURE 1.1

Number of references on economic evaluation in MEDLINE from 1980

to 2017.

In this chapter we give a historical summary of the types of eco-

nomic evaluation of health technologies, data sources, tools for cost–

effectiveness analysis, and a brief introduction to the Bayesian approach

of cost–effectiveness analysis.

1Search strategy: ((((“cost effectiveness”[Title/Abstract]) OR “cost util-

ity”[Title/Abstract]) OR “cost benefit”[Title/Abstract]) OR “economic evalua-

tion”[Title/Abstract]) (https://www.ncbi.nlm.nih.gov/pubmed/)

https://www.ncbi.nlm.nih.gov


4 Bayesian cost–effectiveness analysis

1.2 Conventional types of economic evaluation

The economic evaluation of health technologies for their comparison is

based on the outcome and cost of the technologies (usually, medical

treatments). Depending on how we measure the outcome of the tech-

nology, we can find three main types of methodologies for economic

evaluation: cost–benefit analysis, cost–effectiveness analysis, and cost–

utility analysis (Palmer et al., 1999). A succinct explanation of them is

given below.

• Cost–benefit analysis.

In this analysis, the cost and effect of the technologies are

measured in commensurate terms, usually monetary (Mishan, 1988;

Hutton, 1992; Robinson, 1993). The criterion for choosing the most

appropriate program is simple: their benefit is greater than their

cost.

This analysis has the advantage that it allows comparison of tech-

nologies with different measures of effectiveness. A disadvantage is

that it is very difficult to transform health units into monetary units.

The dependence of this type of analysis on the monetary valuation of

health and the methods used for its estimation means that this tech-

nique is less and less used in the evaluation of health technologies.

• Cost–effectiveness analysis.

This analysis is an economic evaluation technique in which two or

more health technologies are pairwise compared in terms of natu-

ral units of effectiveness, such as life years gained or improvements

in functional status, blood pressure, cholesterol, etc. (Detsky and

Naglie, 1990; Weinstein, 1990; Udvarhelyi et al., 1992; Gold et al.,

1996). Costs and effectiveness are measured in non–comparable

units, so one alternative will be preferred to another if it provides

greater benefit at the same or lower cost, or costs less to provide
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the same or greater benefit. This definition does not directly address

the preference for interventions which provide more effectiveness at

greater cost or less effectiveness at lower cost. In that case it is nec-

essary to set an amount that is acceptable to pay to gain a unit of

effectiveness. Cost–effectiveness analysis only allows the comparison

of treatments when the same outcome measure is used.

• Cost–utility analysis.

This is a label used for a special form of cost–effectiveness analy-

sis in which effectiveness is measured in terms of Quality-Adjusted

Life Years (QALYs) (Weinstein and Stason, 1977; Eisenberg, 1989).

QALYs provide a composite measure of the effects of treatments

that integrate the two most important dimensions of health: quan-

tity and quality of life (Torrance, 1976; Kaplan and Bush, 1982; Tor-

rance, 1986; Drummond et al., 1987; Torrance, 1987; Mehrez and

Gafni, 1989; Torrance and Feeny, 1989; Torrance, 1995). QALYs

can be interpreted as the number of healthy years equivalent to the

true state of health. Cost–utility analysis offers the possibility to

compare different types of interventions or health programs, consid-

erably expanding the range of application.

As in cost–effectiveness analysis, to compare interventions which

provide more effectiveness at greater cost and vice versa using cost–

utility analysis, it is necessary to define a threshold that reflects the

willingness to pay for a QALY. Different authors (Hirth et al., 2000;

Mason et al., 2009; Pinto et al., 2009; Donalson et al., 2011; Bobinac

et al., 2014) have tried to estimate the value of a QALY but there

is still no consensus on this issue. As a reference, NICE has stated

a threshold range of £20,000 to £30,000 per QALY gained (NICE,

2013), unless for end–of–life treatment where a threshold higher

than £30,000/QALY is acceptable (Collins and Latimer, 2013).

Cost–utility analysis can be seen as a specific type of cost–

effectiveness analysis in which the effectiveness is measured in terms
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of QALYs gained. Henceforth we will not distinguish between these

methods and will use the general term cost–effectiveness analysis.

1.3 The variables of cost–effectiveness analysis

• Effectiveness

Treatment effectiveness is one of the basic variables of a cost–

effectiveness analysis. By effectiveness we understand the extent

to which a treatment or health technology manages to achieve the

objectives for which it was designed under ordinary circumstances

(not controlled circumstances as we would see in a laboratory). Ef-

fectiveness must be distinguished from two very closely related con-

cepts: efficacy and efficiency. Efficacy refers to the extent to which

a treatment or intervention produces the desired effect under ideal

conditions. Efficiency is an economic concept which relates efficacy

and effectiveness to resources used. Assessment of efficiency is con-

cerned with whether or not acceptable efficacy and effectiveness are

achieved with optimal resources.

One of the key phases of any cost–effectiveness analysis is the selec-

tion of the relevant health measure for comparing treatments. An

error in choosing the right measure of effectiveness may lead to erro-

neous conclusions in the analysis. There is a wide variety of possible

measures of effectiveness. Some are final, health–related measures

of outcome, such as life–years gained or the probability of suffering

a relapse. Others are expressed as intermediate outcomes, such as

viral load in patients infected with Human Immunodeficiency Virus

(HIV) or percentage cholesterol reduction, etc.

There is no consensus on which measure of effectiveness should be

used in each cost–effectiveness analysis. Thus, researchers should se-

lect the appropriate effectiveness measure for each analysis. In sev-

eral studies (Yates, 1979; Yates et al., 1999; Negŕın and Vázquez–
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Polo, 2006; McCaffrey et al., 2015), the authors have considered

more than one measure of effectiveness for the comparison between

technologies. The most frequent procedure is to carry out an inde-

pendent cost–effectiveness analysis for each measure of effectiveness.

If the conclusions coincide, the decision making is easy. On the other

hand, if there are contradictions on which technology is more cost–

effective, the health provider should choose the measure of effective-

ness that he considers most appropriate or try to find some inter-

mediate solution. This way of solving the cost–effectiveness analysis

does not take into account the correlation between the different

measures of effectiveness.

Bjøner and Keiding (2004) proposed a cost–effectiveness analysis

with multiple measures of effectiveness, applying Data Envelopment

Analysis. Their method replaces the concept of cost–effectiveness

with that of relative cost–effectiveness, where treatments are com-

pared for different forms of aggregation of effectiveness measures.

In fact, treatments that are not dominated, that is, those for which

there is no other treatment that obtains more effectiveness per unit

of cost for each of the measures of effectiveness considered, cannot

be compared. Negŕın and Vázquez–Polo (2006) proposed a Bayesian

framework to carry out cost–effectiveness analysis with more than

one measure of effectiveness by weighting these measures based on

the willingness to pay for each effectiveness unit. More recently, Mc-

Caffrey et al. (2015) and McCaffrey and Eckermann (2016) showed

how to extend cost–effectiveness analysis for multiple effects in the

cost–disutility plane (Eckermann et al., 2008).

A measure of effectiveness: Quality–Adjusted Life Years.

Many studies have used the increase in life expectancy or the years of

life gained as the main outcome of the effectiveness of a treatment.

However, in many cases, the years of life gained is an incomplete

measure of effectiveness of the treatment. In addition to the years

of life gained, it is necessary to incorporate the improvement in qual-
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ity of life as a relevant result in health. Therefore, it is necessary

to obtain information on the health–related quality of life (HRQL)

associated with each intervention. In general, the quality of life is

measured continuously through a bounded index between 0 and 1,

where the value 1 indicates the optimal health status. The optimum

state of health is an abstract concept and has been considered by

different instruments such as normal health, disease–free health, or

the best state of health imaginable. The value 0 is associated with

the worst state of health imaginable, which can be death or not.

The comparison of treatments or interventions requires the combi-

nation of the years of life and HRQL in a single measure, giving rise

to QALY (Weinstein and Stason, 1977). There are different instru-

ments to measure the quality of life or utility associated with each

state of health as time trade–off scales, standard gamble, EQ5–5D,

EQ–5D–5L, SF–36, and so on (Alonso et al., 1994; Brooks, 1996;

Bad́ıa et al., 1999).

Although the QALY metric represents a rigorous methodological

tool for comparing treatments, there exist some limitations in its

application (Dolan, 2011; Pettitt et al., 2016). Ethical and method-

ological issues have been widely debated in the literature (Hirskyj,

2007; Schlander and Richardson, 2009). Besides, QALYs also appear

to have a limited function in some contexts, such as mental health

problems (Knapp and Mangalore, 2007), elderly patients (Pinto–

Prades et al., 2014) or palliative care interventions (Hughes, 2005).

The QALY framework provided a basis for the development of

other health synthetic indicators, including the DALYs (Disability–

Adjusted Life Years). DALYs summarize the impact on mortality

and disability related to specific diseases in different communities

(Sassi, 2006).

Effectiveness data sources

Randomized clinical trial is generally accepted as the most pow-

erful design for collecting data of the effectiveness of a treat-
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ment, intervention, drug, or health technology. It is a standardized

methodology that is based on well–founded scientific principles, and

has been incorporated into the legal provisions on clinical evalua-

tion of medicinal products. Thus, the Committee for Proprietary

Medicinal Products, a consulting body of the European Medicines

Agency, has set the standards under which clinical trials are to be

conducted.

Patients are randomly assigned to the treatments, thus minimizing

bias. This assignation also allows comparability of the study and

control groups and provides better inferences than those obtained

through an observational study. To carry out a clinical trial requires

a clinical plan (a protocol), where the phases to be performed are

defined. In general, two types of studies are usually distinguished,

although they can be done at the same time: confirmatory studies,

which try to verify the effectiveness of a technology from a very elab-

orate and concrete set of questions to be answered; and exploratory

studies, which try to respond to a wider range of issues, and do not

show the degree of accuracy that is attributable to the former.

There are some disadvantages associated with clinical trials that are

summarized below:

– The delicate selection of patients.

Patients selected for a clinical trial are, in general, highly de-

fined. This aspect allows the conclusions to be very specific,

but may make the sample not representative of the study pop-

ulation. For example, it may happen that those patients who

agree to participate in the clinical trial are the patients who

present better health outcomes. This is called the healthy vol-

unteer effect (Hunter et al., 1987; Goodwin et al., 1988; Mandel

et al., 1993).

Another problem related to patient selection is the under–

representation of minority groups. However, it is sometimes

these minority groups that present the highest levels of risk.
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– The difference between the results in a clinical trial and in real

conditions.

The clinical trial usually reproduces the ideal conditions for

the implementation of the intervention, conditions that rarely

occur in ordinary practice.

– Limited time horizon.

The temporal horizon of clinical trials is usually limited so that

in many cases, we obtain intermediate results. It is possible

that the long–term effectiveness differs from that observed in

the period of the clinical trial (Davies et al., 2013).

In addition to clinical trials, data for cost–effectiveness analysis

may be provided by observational studies. Observational studies

differ from clinical trials in that the investigator has no control over

which patients receive treatment. There are two main types of ob-

servational studies, observational cohort studies and case–control

studies. In observational cohort studies, a given sample is analyzed

over time to observe the effectiveness of the treatment. They usually

present a greater bias than clinical trials since each treatment can

be chosen by patients with different physical or social characteristics

that could have an effect on effectiveness and cost. It is therefore

necessary in this type of study to control the variables that may

have a relevant effect on the treatment results.

An advantage of observational studies is that the results obtained

more closely resemble the true effectiveness of treatment than in

clinical trials. In addition, they tend to be longer and include more

patients.

A case–control study is an epidemiological, observational, analyti-

cal study, in which the patients who present with the disease, or

in general a certain effect, are distinguished from those who do

not (control). Once individuals are selected from each group, they

are investigated as to whether they are exposed to a characteristic

of interest (intervention or treatment) and the proportion of those
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exposed in the group of cases are compared to that of the control

group. Case–control studies are useful for relatively small sample

sizes (i.e., the study of rare events), require little time in execution

and are relatively inexpensive compared to cohort studies.

• Cost

The analysis of the costs of an intervention includes the identifi-

cation, measurement, and evaluation of all resources that are used

in a given intervention. Any resource used should be considered,

identified, estimated in quantitative terms, and valued monetarily.

Different types of costs can be distinguished:

– Direct costs

These types of costs include the value of all goods and services

that are consumed in the development of a particular inter-

vention. Direct costs encompass all types of resources used,

including time consumption by professionals, family, volun-

teers, and the patient. They can be directly associated with

health services, such as drug costs, diagnostic tests, consulta-

tions, cost of treatment of adverse effects, hospitalization, etc.,

and non–health costs such as transfer to hospital, social ser-

vices, or therapy.

– Indirect costs

These are also known as productivity costs. These are costs

related to variations in the productive capacity of the patient,

such as lost workdays. These indirect costs may be associated

with loss of productivity due to illness, or loss of productivity

due to death. There is a wide literature that discusses the in-

corporation of these costs in the economic evaluation (Ernst,

2006, and references therein).

The weight of the indirect costs in the total will depend on the

technology evaluated. For example, technologies related to the

treatment of influenza or certain allergies may have low direct
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costs, but would entail significant indirect cost savings due to

the reduction of work–related casualties.

– Intangible costs

These are the costs related to the pain suffered by patients.

They are not usually included in the overall costs of the tech-

nologies because of their difficult quantification.

– Transition costs

Cost–effectiveness analysis usually assumes that the treatment

change is instantaneous so that the two treatments are on an

equal footing. However, to implement a new treatment is likely

to require some investment, for instance, some form of capital

(infrastructure and equipment), personnel (training or rede-

ployment), additional administrative complexity (data capture

or new guidelines). Such investments for changing treatments

are known as transition costs. As a consequence, it might be

necessary to include these costs (Fenwick et al., 2008).

The valuation of costs is one of the hardest problems in the evalua-

tion of a treatment. In relation to direct costs, for those goods and

services for which there is a market, the price is accepted as an op-

portunity cost. However, a wide variety of health goods and services

are not in a market (public services). The most common option is

to measure costs in average terms, dividing the hospital budget by

the number of annual stays, and eliminating the costs of resources

not related to the technology to be studied. The appropriate option

would be to account for all the resources used by the patient during

the treatment: medicines, tests performed, days of hospitalization,

staff, etc. Of course, a correct analytical accounting in public health

centers would facilitate the task of calculating direct costs.

The calculation of indirect costs could be done through the mean

wage values for a given cohort of patients. However, this method

would present problems in evaluating the productivity of certain

groups such as retirees, students, etc. (Liljas, 1998).
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• Perspectives in cost–effectiveness analysis

The perspective is the point of view from which the cost and effec-

tiveness are assessed. It is crucial to clearly define the perspective

to be used in an economic evaluation as it will have an influence on

the cost and effectiveness to be evaluated.

The societal perspective is used as the reference case, including all

relevant costs and effects no matter who pays the costs or who

receives them (Drummond et al., 2008). Other alternative perspec-

tives, as that from the payer (i.e., patient) or provider (i.e., National

Health System) point of view, only consider the direct costs in their

analysis, neglecting to include indirect costs (Neumann, 2009).

1.4 Sources of uncertainty in cost–effectiveness analysis

The study of the uncertainty in cost–effectiveness analysis has been

extensively reviewed (Manning et al., 1996; Briggs and Gray, 1999;

Briggs, 2000). In this section we present different sources of uncertainty:

1. Stochastic uncertainty.

This uncertainty refers to the natural variability that oc-

curs among homogeneous individuals in their response to a

treatment and their costs. Further evidence will not reduce

this variation. It is also called first–order uncertainty (Briggs,

2000).

2. Heterogeneity.

It refers to the variability of the stochastic uncertainty be-

tween subgroups of homogeneous individuals in their response

to a treatment and their costs. It is due to (a) subgroups of

identifiable individuals with common characteristics such as

age, sex or other characteristic, or (b) unmeasured differences

or latent variables. This type of uncertainty is called by Briggs
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(2000) as characteristics of the patients. Although most of the

cost–effectiveness studies compare the results of effectiveness

and cost from different treatment groups by assuming that the

differences between groups are not relevant, there is recent

literature that incorporates covariates for defining groups

showing that effectiveness and cost of a treatment may sub-

stantially differ across groups (Willan et al., 2004; Vázquez–

Polo et al., 2005a; Gomes et al., 2012; Moreno et al., 2013b,

2016, among others).

Heterogeneity also arises when there are different locations

in which patients receive treatment, even when the protocol

employed in the different health–care centers is the same.

3. Model parameter uncertainty.

This refers to the uncertainty as to the true value of the pa-

rameters of the models utilized for the cost and the effective-

ness of the treatments. The uncertainty in the estimation of

the parameters of interest is also called second–order uncer-

tainty. According to the estimation method used, the measure

of the estimation uncertainty varies. The most common meth-

ods are briefly discussed below.

• Frequentist. In the frequentist approach to statistical in-

ference, parameters are treated as having fixed but unknown

values. From this perspective, it is not possible to associate

probabilities with parameters. The uncertainty of parameter

estimation is measured through confidence intervals. A com-

mon mistake in interpreting confidence intervals is to consider

that parameters can vary, but it is the sample that can vary.

A 95% confidence interval means that as the sample varies,

95% of the confidence intervals will contain the true value of

the parameter. Thus, it is clear that the method for construct-

ing the confidence interval does not depend on the observed

data, and hence it cannot be interpreted as a measure of the
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uncertainty on the parameter estimation but a measure of the

sampling uncertainty on the parameter estimator.

• Bootstrap. This method does not require specifying the dis-

tribution of the cost and the effectiveness. If the data include n

observations, then the bootstrap analysis takes random sam-

ples from the empirical distribution for these observations.

For each of the bootstrap samples, the quantity of interest

is estimated. Efron and Tibshirani (1993) describe how to

perform this method for ratios, such as the cost–effectiveness

ratio. Some bootstrap applications in cost–effectiveness anal-

ysis are discussed in Tambour and Zethraeus (1998), Briggs

et al. (1997), Gray et al. (2000), O’Hagan and Stevens (2003)

and Korthals–de Bos et al. (2004).

• Bayesian. This methodology provides a procedure for mea-

suring the uncertainty of parameter estimation with probabil-

ities, since the parameters of the model are random variables

with a probability distribution. This way, the Bayesian analy-

sis offers, through the posterior distribution of the parameters,

point estimates as the posterior mean, the posterior median

assuming it is unique, or the global mode of the posterior

distribution, and also the uncertainty of the estimation.

An idea about the uncertainty of the likelihood function for

a sample is given by the likelihood sets: the smaller the like-

lihood sets the smaller the uncertainty of the likelihood func-

tion. An idea about the uncertainty of the parameter estimate

is given by the credible sets, which also depends on the prior

distribution of the parameter.

Nonparametric Bayesian analysis assumes that the distribu-

tion of the sample is random, and hence a prior distribution

for the sampling distribution is necessary. This approach will

not be considered in this book.
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One of the first applications of the Bayesian methodology in

the medical context is found in Eddy et al. (1992). Spiegel-

halter et al. (1994) and Jones (1996) discuss the Bayesian

approximation for statistical inference in the comparison of

sanitary technologies. Parmigiani (2002) discusses Bayesian

modeling in health decision making. There are many other

examples in the literature of the use of the Bayesian method-

ology for treatment comparison (Brophy and Joseph, 1995;

Heitjan, 1997; Al and Van Hout, 2000; Fryback et al., 2001;

Vanness and Kim, 2002; Moreno et al., 2013b, 2014; Negŕın

and Vázquez–Polo, 2006; Baio, 2014; Baio et al., 2017, among

others).

4. Model uncertainty.

Model uncertainty refers to the lack of knowledge regard-

ing the appropriate model for the cost and effectiveness. It

is a component of methodological uncertainty (Briggs, 2000;

Negŕın and Vázquez–Polo, 2008; Moreno et al., 2013b).

Typically, a set of models is proposed and the model uncer-

tainty is measured by a probability distribution on the set.

1.5 Conventional tools for cost–effectiveness analysis

The cost–effectiveness analysis of two alternative treatments aims to

combine information on both the clinical effectiveness and the costs of

the treatments. A first tool used in cost–effectiveness analysis is the so–

called incremental cost–effectiveness ratio. The objective of the ratio is

the comparison between two alternative treatments. Generally one of

the alternative treatments is a new treatment under study while the

other treatment may be the one utilized until that time.
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1.5.1 The incremental cost–effectiveness ratio

It is assumed that cost and effectiveness of treatment Ti, for i = 1, 2,

follow an unknown bivariate distribution with mean (γi, εi). Then, the

incremental cost mean is defined as the difference of the mean cost of

the treatments, that is ∆γ = γ1− γ2, and the incremental effectiveness

mean as ∆ε = ε1− ε2. The incremental cost–effectiveness ratio (ICER)

is given by

ICER12 =
∆γ

∆ε
. (1.1)

The subindex in the ICER denotes that the ICER is tied to treat-

ments T1 and T2. The ICER12 can be interpreted as the increment

of cost per unit of incremental effectiveness when adopting the alter-

native treatment T1 instead of the control treatment T2. Because the

means are unknown, ICER12 should be estimated. From the frequentist

approach, the ICER12 is estimated as

ÎCER12 =
c̄1 − c̄2
ē1 − ē2

, (1.2)

where c̄i and ēi represent the sample means of the cost and the effec-

tiveness of treatment Ti, i = 1, 2, respectively.

The ICER12 has been the most used tool for decision making in

cost–effectiveness analysis. However, this tool has been questioned in

recent years due to difficulties in its interpretation, as well as in calcu-

lating confidence intervals for ratios. Moreover, an additional problem

is that a small incremental effectiveness mean would cause the ICER12

to be unstable (Willan and O’Brien, 2001; O’Hagan et al., 2000).

For the representation of the ICER12, the plane is divided into four

quadrants where the incremental effectiveness mean (∆ε) is the x–axis,

and the incremental cost mean (∆γ) is the y–axis. The four quadrants

show the different possible combinations in relation to the sign of in-

cremental effectiveness and incremental cost mean (Figure 1.2).
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FIGURE 1.2

Cost–effectiveness plane.

Quadrants II and IV correspond to dominance of the treatments

T2 and T1, respectively. Quadrant II indicates that treatment T1 is

more expensive and less effective than treatment T2. In contrast, in

the IV quadrant, T1 is more effective and less expensive than T2. In

both quadrants the value of the ICER12 ratio is negative. This is one

of the limitations of ICER12, its interpretation changes according to its

sign. Thus, the same negative value may indicate dominance of the new

treatment or dominance of the control treatment.
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In the first quadrant, the new treatment is more effective, but also

more expensive. Therefore, a subjective input is necessary to determine

the preferred treatment. It is accepted that T1 treatment is preferred

when the ICER12 is smaller than a fixed amount R. The R value repre-

sents the maximum acceptable increment of cost per unit of increment

of effectiveness. Figure 1.2 shows the line ∆γ = R · ∆ε. The points

below that line (in gray color) in quadrant I corresponds with ICER12

values lower than R, which implies preference for treatment T1. In the

upper area the T2 treatment would be preferred. In quadrant III the

new treatment is less effective but less expensive than T2. In this quad-

rant treatment T1 will be preferred if the reduction increment of cost

per unit of increment of effectiveness is greater than the R value. Oth-

erwise, the preferred treatment is T2.

Several authors have suggested the use of different threshold values

depending on whether the incremental average effectiveness is positive

(new treatment would improve the average effectiveness) or negative

(new treatment would reduce the average effectiveness). O’Brien et al.

(2002) consider the difference in willingness to accept monetary com-

pensation for loss effectiveness with the new treatment and willingness

to pay for an increase on the same average effectiveness. From that

perspective the threshold represents social preferences rather than the

shadow price of a fixed budget constraint.

In conclusion, for decision making, the ICER12 estimate must be

complemented with information about the quadrant in which the so-

lution is found. For further discussion and illustrations of interpretive

problems of the ICER12 see Heitjan et al. (1999) and O’Hagan et al.

(2000).

To illustrate some of the concepts introduced in this chapter we use

real data from an observational study.

Example 1.1. Data consist of a multicenter Spanish study in which

various treatment regimens were compared for asymptomatic HIV pa-

tients receiving Highly Active Anti–Retroviral Therapy (Pinto et al.,

2000). A cohort of several asymptomatic HIV–infected patients were
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observed under real practice and treated with two nucleoside analogues.

A protease inhibitor was added and at least one nucleoside analogue

was changed, following the clinical recommendations.

The cost data correspond to direct costs (pharmaceutical, medical

visit and diagnostic test costs) and the effectiveness data was expressed

in QALYs. All patients used a monthly diary for six months to keep a

record of resource consumption and quality of life progress. Two triple

combination treatment regimens are compared. The first T1 (d4T +

ddl + IND) combines stavudine (d4T), didanosine (ddl) and indinavir

(IND), and the second treatment regimen T2 (d4T + 3TC + IND)

combines stavudine (d4T), lamivudine (3TC) and indinavir (IND).

Table 1.1 provides the mean, standard deviation and sample size of

the data for treatments T1 and T2. From Table 1.1 it follows that the

sample mean of the cost and effectiveness of T1 are greater than those

of treatment T2. The T1 treatment is on average 160.42 euros more

costly than T2. The T1 treatment is also more effective, 0.4024 QALYs

versus 0.3958 QALYs for the T2 treatment.

TABLE 1.1

Sample mean (standard deviation) and sample size of costs and effec-

tiveness in Example 1.1.

T1 T2

Costs (euros) 7302.70 (1702.85) 7142.28 (1568.12)

Effectiveness (QALYs) 0.4024 (0.0641) 0.3958 (0.0639)

n 95 270

For this data set, the ICER12 is estimated from a frequentist ap-

proach by 24306.06 = 160.42/0.0066 euros. Hence, it would be located

in quadrant I. Which treatment is preferred depends on the willingness

to pay for the unit of incremental effectiveness mean (R). For instance,

for a standard value R = 20000 euros per QALY, treatment T2 is pre-

ferred as the ICER12 is higher than the willingness to pay R.
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Confidence intervals for the ICER estimation

We note that in Example 1.1, only the means of the cost and the

effectiveness have been used. Decision making based on the value of

the ICER12 should not be based solely on the sample means. Fur-

ther analysis of the uncertainty associated with such an estimation

is necessary. In addition to the interpretive problems presented by the

ICER12, difficulties are found in the calculation of the confidence in-

tervals (Tambour et al., 1998). In order to determine the accuracy of

the ICER12 estimates, different techniques for computing confidence

intervals have been proposed (Polsky et al., 1997), such as (i) the Box

method (O’Brien et al., 1994; Wakker and Klaasen, 1995), (ii) Tay-

lor series method (O’Brien et al., 1994; O’Hagan and Stevens, 2001,

2003), (iii) Fieller’s method (Fieller, 1954; Chaudhary and Stearns,

1996; Willan and O’Brien, 1996; Laska et al., 1997; Heitjan, 2000), (iv)

nonparametric bootstrapping (Chaudhary and Stearns, 1996; Briggs

et al., 1997), and (v) confidence ellipses (Van Hout et al., 1994). Ex-

cluding the nonparametric bootstrap case, the remainder of the meth-

ods need to assume a probability distribution for the effectiveness and

cost, usually the normal distribution.

The confidence interval for the ICER12 estimation for any of the

above methods, presents serious methodological limitations. We bring

them here only for historical reasons. We use again the data from Ex-

ample 1.1 in order to compute the confidence interval of the ICER12

estimation obtained by the methods enumerated above.

Example 1.1 (continued). In Table 1.2 we present the 95% confidence

interval for ICER12.

We recall that the estimation of ICER12 is 24306.06. In spite of

this value, the Box method obtains negative values for both limits of the

confidence interval. The negative value of the lower limit is due to a

negative value of the lower limit for the incremental cost mean, and the

negative value of the upper limit is due to a negative value of the lower

limit for the incremental mean effectiveness. These numbers show that
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TABLE 1.2

Confidence Interval for the ICER12 in Example 1.1.

95% Confidence Interval

Box method (−2221.20, −340329.28)

Taylor series (−56587.19, 105025.74)

Bootstrapping (−216398.08, 374254.10)

Fieller’s method (19581.64, 59366.00)

the Box method does not make sense in this case. Wakker and Klaasen

(1995) argue that “a reliable decision is not available and the decision

should not be based on the ICER.” The Taylor series and the boot-

strapping (with 2000 replicates) methods obtain very wide confidence

intervals. Fieller’s method obtains a narrower confidence interval.

Figure 1.3 shows the cost–effectiveness plane from bootstrap sampling.

1.5.2 The incremental net benefit

The incremental net benefit (INB) has been proposed in cost–

effectiveness analysis as a tool for decision making that improves the

ICER (Stinnett and Mullahy, 1998). The INB is defined as

INB12 = R · (ε1 − ε2)− (γ1 − γ2) = R ·∆ε−∆γ, (1.3)

where R is interpreted as the cost that the decision maker is willing

to pay to increase the incremental effectiveness mean in one unit when

using treatment T1 instead of treatment T2. The incremental net bene-

fit thus defined is expressed in monetary units. In Chapter 4 we extend

this notion, which is tight to the means of the cost and the effectiveness

of two treatments. We will formalize the net benefit of a medical treat-

ment, and we will reinterpret R as the utility of a unit of effectiveness.

In this section we just give a brief historical development of the INB

notion.
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Points of incremental cost mean and effectiveness for 2000 bootstrap

replications in Example 1.1.

The relationship between the INB and the ICER for each of the

four quadrants in Figure 1.2 is as follows.

• Quadrant I: In this area, both the incremental mean cost and the

incremental mean effectiveness take positive values. In this case the

INB12 will be positive if

INB12 > 0⇐⇒ R ·∆ε−∆γ > 0⇐⇒ R >
∆γ

∆ε
= ICER12.

Therefore, positive values of the INB12 in Quadrant I correspond to

ICER12 values below R. This implies that the increment of cost per

unit of increment of effectiveness is smaller than R.

• Quadrant II: In this case, the new treatment reduces the effectiveness

and increases the costs of the control treatment, therefore it is a

region in which the control dominates. In this case the INB12 will

always take negative values since R is positive.
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• Quadrant III: In this quadrant, both the cost and the effectiveness

increment are negative. The INB12 will take a positive value if

INB12 > 0⇐⇒ R ·∆ε−∆γ > 0⇐⇒ R <
∆γ

∆ε
= ICER12.

Therefore, a positive INB12 in Quadrant III implies that the incre-

ment of cost for unit of increment is greater than R.

• Quadrant IV: In this quadrant the INB12 is positive. Values of the

ICER12 in this quadrant indicate that the new treatment dominates

the control since it increases the effectiveness, saving costs.

It is clear that positive values of the incremental net benefit indicate

a preference for the new treatment T1 versus the control treatment T2.

It is also obvious that if the value the decision maker is willing to

pay for increasing the incremental effectiveness mean in one unit (R)

coincides with the ICER12, the incremental net benefit will be zero.

Following Stinnett and Mullahy (1998), the straightforward estima-

tor of INB is

ÎNB12 = R · (ē1 − ē2)− (c̄1 − c̄2).

In contrast to the ICER, the expected value and variance of the

estimator ÎNB12 are easily obtained by

E[ÎNB12] = R · (ε1 − ε2)− (γ1 − γ2),

V[ÎNB12] =

2∑
i=1

(R2σ2
ei + σ2

ci − 2Rρiσciσei)/ni,

where σ2
ei and σ2

ci represent the variance of the random variables ei and

ci, respectively, ρi is the correlation for ei and ci, and ni is the sample

size of treatment i. It is assumed that there is no correlation between

treatments.
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The variance of ÎNB12 is estimated as

σ̂2
ÎNB12

=

2∑
i=1

(R2s2
ei + s2

ci − 2Rriscisei)/ni,

where s2
ei and s2

ci represent the sample variances; and ri is the sample

correlation for ei and ci.

We remark that the INB12 is estimated for a given value of R.

1.5.3 Cost–effectiveness acceptability curve

The cost–effectiveness acceptability curve (CEAC) was introduced by

Van Hout et al. (1994) as a way to assess the uncertainty surrounding

the cost–effectiveness ratio, and as an alternative to confidence intervals

for the ICER estimation. The CEAC (Figure 1.4) is a function of R

defined as the probability that the estimator of INB12 for a given R is

greater than zero, that is,

Pr(ÎNB12 ≥ 0) = Pr(R · (ē1 − ē2)− (c̄1 − c̄2) ≥ 0). (1.4)

We note that the sample means in (1.4) are now random variables,

and the probability is computed with respect to its sampling distri-

bution. The CEAC was described by Van Hout et al. (1994) as “the

probability that the ICER found in the study is acceptable” for a given

R. This interpretation has been followed by several authors who have

considered the CEAC as a useful tool for choosing between two alter-

native treatments (Van Hout et al., 1994; Fenwick et al., 2001; Fenwick

and Byford, 2005).

However, the CEAC does not determine the optimal decision. The

CEAC is not constructed from the mean of the distribution of the cost

and the effectiveness, as is the ICER or the INB. It is easy to realize

that if the distribution of the effectiveness and cost were completely

known, the CEAC would not exist.

The CEAC only evaluates the uncertainty around the estimation of

the INB (or ICER) and it may be useful to complement the conclusions
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FIGURE 1.4

A typical profile of the cost–effectiveness acceptability curve.

reached by the INB, but it has no value as a tool for decision making by

itself. A high probability (more than 50%) of having a positive ÎNB12

does not necessarily imply a positive estimation of the INB. This re-

sult is due to the possible asymmetry in the distribution of the INB.

CEACs have been usually based on symmetric distributions and thus,

a decision based on a positive mean coincides with a decision based

on a probability of being positive of at least 50%. However, the high

asymmetry frequently observed in the cost data does not recommend

this kind of simplistic analysis.

Fenwick et al. (2004) analyzed the characteristics of the cost–

effectiveness acceptability curve. A value of R = 0 would indicate

that the decision maker is not willing to pay anything to increase

effectiveness. Therefore, the CEAC will only be based on costs. The

CEAC for R = 0 coincides with the probability of estimating a nega-

tive ∆γ. This value would coincide with the ordinate at the origin of the
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cost–effectiveness acceptability curve. On the other hand, high R val-

ues indicate that the decision maker is willing to pay a lot to increase

effectiveness. For R values that tend to infinity, the CEAC is based

solely on which treatment is most effective. Therefore, the CEAC has a

horizontal asymptote that coincides with the probability of estimating

a positive ∆ε.

Several studies including Fenwick et al. (2004), Koerkamp et al.

(2007) and Jakubczyk and Kaminski (2010) have shown the inconsis-

tencies that can be reached when the CEAC is used as a tool for decision

making. In Chapter 4 we will come back to the CEAC and will give a

detailed discussion of its meaning.

1.5.4 Conventional subgroup analysis

The bulk of the literature on cost–effectiveness analysis proposes opti-

mal treatments for the whole population without subgroup considera-

tions. A small part of the literature assumes normal regression models

for both the cost and effectiveness of the treatments, where the treat-

ments are incorporated into the models as a binary variable and the

covariates are considered for the estimation of their regression coeffi-

cients (Willke et al., 1998; Willan et al., 2004; Vázquez–Polo et al.,

2005a,b).

If we denote the sample from treatment Ti as datai =

{(cij , eij ,xj), j = 1, . . . , ni} for i = 1, 2 where cij , eij are the ob-

served cost and effectiveness of patient j receiving treatment Ti, and

xj = (x1j , . . . , xkj) the vector of k covariates of patient j, a linear model

for the above data that typically appears in the literature (Willan et al.,

2004, and references therein) is

cij =

k∑
p=1

αipxpj + γTi + εi, εi ∼ N (ε|0, σ2
i ), (1.5)

eij =

k∑
p=1

βipxpj + γ′Ti + ε′i, ε′i ∼ N (ε′|0, τ2
i ), (1.6)



28 Bayesian cost–effectiveness analysis

where αip, γ, βip, γ
′ are the regression coefficients, σ2

i , τ
2
i the variance

errors, and Ti is a 0−1 deterministic covariate indicating the treatment.

Furthermore, model (1.5–1.6) is usually restricted by the assumptions

A.1 α1p = α2p, and β1p = β2p for p = 1, . . . , k,

A.2 σ1 = σ2 and τ1 = τ2.

Under these conditions, it follows that the INB12 is given by

INB12 = Rγ′ − γ. (1.7)

Thus, once the parameters γ and γ′ are estimated, the INB provides a

decision on the treatment to be chosen for each value of R.

Certainly, this ad hoc formulation makes the computation of the

INB extremely simple but, unfortunately, equation (1.7) is true only

under very stringent constraints that limit the applicability of the re-

sulting models. Indeed, the more important restrictions are as follows:

(a) Statistical assumptions A.1 and A.2 are unrealistic. It is not

clear at all that the covariates should have exactly the same

influence on the effectiveness of different treatments, and the

same can be argued for the costs. In fact, examples with real

data where the influential covariates for the effectiveness of a

treatment change when the treatment changes are common,

and the same can be observed for the cost. Further, these as-

sumptions imply that the decision making affects the whole

population as it does not depend on a specific value of the

regressors, and hence it renders useless the idea of the sub-

group.

(b) The statistical model above cannot model a possible depen-

dency between the cost c and the effectiveness e (Grieve

et al., 2005). However, this dependency seems to be a priori

a reasonable assumption. For instance, Willan et al. (2004)

and Vázquez–Polo et al. (2005b) assume a multivariate nor-

mal distribution for the error terms εi and ε′i according to
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a SURE (seemingly unrelated regression equations) model.

Willke et al. (1998) and Vázquez–Polo et al. (2005b) propose

an asymmetric model where the effectiveness is a covariate of

the regression model for the costs.

(c) It does not cover the case where the distribution of the net

benefit is not normal. However, in many applications the cost

is usually assigned an asymmetric distribution, for instance a

lognormal or a gamma distribution (Al and Van Hout, 2000;

O’Hagan and Stevens, 2002; Fryback et al., 2001), and for

these cases equation (1.7) is no longer useful.

(d) It is not clear how the above regression model (1.5–1.6) gen-

eralizes to multiple treatment comparisons, even when other

treatments are included in the analysis through indicator vari-

ables. It seems that only pairwise optimizations with the ref-

erence treatment can be handled.

On the other hand, some other papers directly model the net benefit

of the treatments as a linear model, where the net benefit of patient i

receiving treatment j is given by NBij = Reij − cij (Hoch et al., 2006;

Manca et al., 2005).

Again, to keep computations simple it is assumed that for each

value of R the observed net benefit of patient j, j = 1, . . . , ni, receiving

treatment i, i = 1, 2, can be written as

NBij =

k∑
p=1

ηpxpj + δTi + ε, ε ∼ N (ε|0, σ2), (1.8)

where the regression parameters η = (η1, . . . , ηk)> and the variance

error σ2 are independent of the treatment. Then, it follows that the

INB12 has the simple expression

INB12 = δ.

Model (1.8) is simple but very restrictive. Restriction (a) stated

above is also found here as it is assumed that the covariates have the
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same influence on the patients receiving different treatments. Further-

more, formulation (1.8) assumes the same unsupported constraints (c)

and (d) we mentioned above.

Several authors have proposed alternative models trying to over-

come the above restrictions. However, they only provide partial solu-

tions. Manca et al. (2007) propose a bivariate hierarchical modeling for

cost–effectiveness analysis using data from multinational trials. They

model dependency between cost and effectiveness and carry out multi-

ple treatment comparisons but restrictions (a) and (c) remain. Willan

and Kowgier (2008) proposed a cost–effectiveness analysis with a binary

measure of effectiveness and an interacting covariate. Although restric-

tion (c) is partially avoided, restrictions (a) and (b) remain. Nixon and

Thompson (2005) considered the gamma distribution for cost and ef-

fectiveness to suppress restriction (c). Further, none of these studies

consider the uncertainty associated with variable selection (Negŕın and

Vázquez–Polo, 2008). That is, in the literature of cost–effectiveness

analysis before year 2012, no attempt has been made to select a subset

of influential covariates in the regression models for ei and ci, i = 1, 2,

even when the elimination of non–influential covariates reduces the di-

mension of the model, a crucial point in regression analysis. However,

a completely new formulation of the linear models in this context was

given in Moreno et al. (2012).

Subgroup analysis was proposed in Willan et al. (2004), Nixon and

Thompson (2005), Vázquez–Polo et al. (2005a), Vázquez–Polo et al.

(2005b) and Manca et al. (2007). In all of them, subgroup analysis was

carried out by the inclusion of interactions between the treatment and

the subgroup in equations (1.5–1.6) or (1.8). In this case the evalua-

tion of subgroup analyses is reduced to a statistical test for interaction.

However, it is recognized that interaction terms could achieve signif-

icance by chance and it is important to acknowledge this problem to

avoid spurious subgroup analyses (Pocock et al., 2002). Further, this

way of analyzing subgroups is limited to discrete covariates. If we are

interested in the analysis of subgroups for a continuous variable (age,
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weight, initial health status, etc.), discretization of the variable is then

needed.

In equations (1.5), (1.6) and (1.8), treatment comparison has been

converted to an estimation problem where the patient covariates and

the treatments are put on an equal footing. We do not share these ideas

and believe that treatment comparison is not an estimation problem but

a testing problem. In Chapter 6 we follow the ideas in Moreno et al.

(2012, 2013b), and as a previous step of the cost–effectiveness analy-

sis in the presence of covariates, we propose the use of an objective

Bayesian method for variable selection. We also reformulate the regres-

sion models to overcome restrictions A.1 and A.2 mentioned above and

consider the treatment selection as a model selection problem.

1.6 An outline of Bayesian cost–effectiveness analysis

The frequentist approach has been the commonly used approach for

estimating parameters and comparing pairs of medical treatments

(Van Hout et al., 1994; Wakker and Klaasen, 1995; Willan and O’Brien,

1996; Laska et al., 1997; Stinnett and Mullahy, 1998; Tambour et al.,

1998). However, the frequentist analysis has certain limitations, es-

pecially about the measurement of the uncertainty of the parameter

estimation and model comparisons. The Bayesian approach gives an

adequate response on how to measure these uncertainties.

Clinical research is essentially a sequential process in which every

study is framed in a context of updating knowledge. The Bayesian

method adjusts to this situation in a natural way since initial beliefs

are sequentially modified by the new data. The possibility of incorpo-

rating prior information on the parameters of interest is an interesting

feature of the Bayesian approach. The key point is that the prior knowl-

edge about the model parameter or model is described by probability

distributions.
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Bayesian methodology differs from the frequentist one in the way

unobservable uncertain quantities, such as model parameters or models,

are considered. From a Bayesian approach, the uncertain quantities

are assumed to be random variables, and thus they are described by

probability distributions. Bayesian statistics generates results from the

posterior distribution of model parameters or models. It is possible to

produce Bayesian point estimates of model parameters or models and to

measure the uncertainty of the estimation in terms of probabilities. In

Chapter 2 we present a formal introduction to the Bayesian framework.

Due to the advantages of the Bayesian approach, several authors

have advocated its use in cost–effectiveness analysis. Spiegelhalter et al.

(2000) and O’Hagan and Luce (2003) are contributions that show how

the Bayesian method applies to the evaluation of health technologies.

The former article presents an analysis making use of prior information

and the latter demonstrates the value of such information. The former

assumes normality of the cost and the effectiveness. In a more recent

work, the latter authors drop this assumption and propose a general

framework (O’Hagan and Stevens, 2002). Stevens and O’Hagan (2001)

made an interesting comparison between the classical and Bayesian

methodologies in cost–effectiveness analysis.

In the Bayesian approach computation used to be hard, although

computational methods have been developed to remedy this difficulty.

We illustrate the Bayesian ICER computation using the data in Ex-

ample 1.1. The data for this illustration has been taken from Pinto

et al. (2000), and the priors for the model parameters have been chosen

essentially for their easy implementation in the Markov Chain Monte

Carlo (MCMC) machinery via OpenBUGS (Spiegelhalter et al., 2014);

also, these priors are not the ones we would recommend.

Example 1.1 (continued). We reanalyze the data in Example 1.1 from

the Bayesian viewpoint. A bivariate normal distribution is assumed

for the log of the cost and the effectiveness of treatment Ti, that is,

N ((log(c), e)>|(γi, εi)>,Σ).



Health economics evaluation 33

To complete the Bayesian model, a normal distribution with zero

mean and variance 10000 is assumed for γi, and also for εi. For the

covariance matrix Σ an inverse Wishart distribution is assumed with

parameters I2 and 2, where I2 is the 2 × 2 identity matrix. Posterior

distributions of the parameters are obtained by simulation using MCMC

methods implemented in OpenBUGS software (Spiegelhalter et al., 2014).

A summary of the results is shown in Table 1.3.

TABLE 1.3

Bayesian estimates in Example 1.1.

Mean Standard Deviation 95% Credible Interval

γ1 7316.95 127.20 (7078.77, 7577.78)

γ2 7136.38 70.27 (6999.10, 7277.32)

ε1 0.4024 0.0126 (0.3779, 0.4273)

ε2 0.3958 0.0054 (0.3852, 0.4063)

∆γ 180.57 144.97 (−100.15, 468.23)

∆ε 0.0068 0.0136 (−0.0198, 0.0337)

ICER −50599.2 5996410 (−223714.0, 191286.0)

From 20000 MCMC simulations we plot the cost–effectiveness ac-

ceptability plane (Figure 1.5). The posterior probability that T1 in-

creases both costs and effectiveness (quadrant I) is estimated to be

60.9%. The probabilities of the quadrants II, III and IV are 28.5%,

3.5% and 7.1%, respectively.

Although it is still a minority, the number of studies proposing

the Bayesian approach in cost–effectiveness analysis is rapidly growing

(Heitjan, 1997; Briggs, 1999; Heitjan et al., 1999; Al and Van Hout,

2000; O’Hagan and Stevens, 2001; O’Hagan et al., 2001; O’Hagan and

Stevens, 2003; Vázquez–Polo et al., 2004, 2005b; Moreno et al., 2010,

2012, 2013b, 2014, 2016; Baio, 2014; Baio et al., 2017, among others).
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FIGURE 1.5

Cost–effectiveness plane. Bayesian analysis in Example 1.1.

Cooper et al. (2013) examined the use of implicit and explicit

Bayesian methods in HTA published by the UK National Institute of

Health Research between 1997 and 2011. They conclude that 41% of

HTA reports contained a Bayesian analysis and 17% of them are ex-

plicit. The percentage increased from 0% in 1997 to 80% in 2011.

A simple search in MEDLINE.2 shows the growing interest in the

scientific literature concerning the use of Bayesian methods in cost–

effectiveness analysis (Figure 1.6).

2Search strategy: ((bayesian) AND cost-effectiveness[Title/Abstract])

OR ((bayes) AND cost-effectiveness[Title/Abstract]) OR ((bayesian) AND

cost-utility[Title/Abstract]) OR ((bayes) AND cost-utility[Title/Abstract])

OR ((bayesian) AND cost-benefit[Title/Abstract]) OR ((bayes) AND

cost-benefit[Title/Abstract]) OR ((bayesian) AND economic evalua-

tion[Title/Abstract]) OR ((bayes) AND economic evaluation[Title/Abstract])

(https://www.ncbi.nlm.nih.gov/pubmed/)

https://www.ncbi.nlm.nih.gov
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FIGURE 1.6

Number of references in MEDLINE to Bayesian analysis in cost–

effectiveness analysis from 1990 to 2017.
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2

Statistical inference in parametric models

2.1 Introduction

This chapter deals with parametric models, that is, with parametric

distributions of an observable random variable X. The basic notions

in parametric statistical inference, such as the random sample from

a model, the likelihood function of the parameters of the model, and

the maximum likelihood estimator of the parameters, are introduced.

Sometimes the interest is in a subparameter, that is, a function of the

parameters of the model. The notion of the likelihood of a subparam-

eter is revised and the convention needed for defining the maximum

likelihood estimator of the subparameter is given. The introduction of

a subparameter is also known as a reparametrization of the original

sampling model.

If the parametric sampling model is seen as the distribution of the

random variable X, conditional on a unknown parameter θ, and if we

add a prior distribution for θ, a parametric Bayesian model arises as the

joint distribution of the observable variable X and the nonobservable

parameter θ. In this setting, methods for eliciting prior distributions,

Bayesian parameter estimation, hypotheses testing, and prediction will

be discussed.

We remark that the predictive distribution of the random variable

X plays a central role in statistical decision theory, and, in particular,

in cost–effectiveness analysis, and hence we present both the frequentist

and the Bayesian predictive distribution of X, conditional on a sample

from the true model of X.

37
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Model selection appears in a natural way in most of the statisti-

cal applications to real problems. For instance, in hypotheses testing

problems more than one parametric model for the random variable

X are involved and the problem is that of choosing one of them. We

note that for estimating parameters from samples of moderate or large

sample sizes, the frequentist and Bayesian approaches typically pro-

vide estimators close to each other. However, for hypotheses testing,

the frequentist and Bayesian approaches give us results that substan-

tially differ no matter what the sample size is. Bayesian model selection

extends the hypotheses testing methodology and is clearly preferable

to the frequentist approach as it is able to account for the sample size

and the dimension of the parameter space. Further, the Bayesian pro-

cedure gives us an easy meaningful measure of the uncertainty in the

selection of a model. As a consequence, in this chapter we only consider

the Bayesian approach to model selection.

A first reason to include a background on model selection in this

book is that clustering samples is a model selection problem and, at the

same time, it is an important statistical problem in cost–effectiveness

analysis for heterogeneous data. When the samples of cost and effec-

tiveness of treatments come from patients from different health-care

centers, they are an aggregate of samples that are typically heteroge-

neous, a frequent scenario in cost–effectiveness analysis. This topic will

be considered later in Chapter 5.

A second reason to include model selection in the book is that the

variable selection problem is a model selection problem, and, at the

same time, it is a central problem in linear models that are the main

tool in cost–effectiveness analysis for subgroups. The variable selection

problem consists of selecting a subset of influential covariates based on

the information provided by a sample of the response variable and the

covariates associated with the response. This problem will be considered

later in Chapter 6, where the subgroup analysis is developed. In this

chapter we only outline the interest of this problem in cost–effectiveness

analysis.
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2.2 Parametric sampling models

Let X be an observable random variable that takes values in the sample

space X which is either Rp or a subset of Rp for some p ≥ 1, where

R denotes the real line. In the context of cost–effectiveness analysis

of treatments, the random variable X is a 2–dimensional vector (c, e),

where c represents the cost and e the effectiveness of the treatment.

The full description of a random variable X is provided by its prob-

ability distribution, which can be represented by either a probability

density f(x) if X is a continuous variable, or by a probability function

p(x) if X is discrete, in which case X is a countable set. The probability

density satisfies

f(x) ≥ 0, for any x ∈ X , (2.1)

and ∫
X
f(x) dx = 1. (2.2)

For the discrete case, the probability function satisfies

p(x) > 0, for any x ∈ X , (2.3)

and ∑
x∈X

p(x) = 1. (2.4)

The distribution of X is called the sampling model.

In statistical applications, the probability distribution of X is em-

pirically chosen, and typically depends on a nonobservable parameter

θ that belongs to a parameter space Θ, which is either Rp or an open

set in Rp for some p ≥ 1. This unknown parameter θ should have,

however, a physical meaning. Thus, a statistical application for a con-

tinuous random variable X starts with a parametric class of sampling

densities F =
{
f(x|θ), θ ∈ Θ

}
that describes the random variable X

up to the unknown parameter θ ∈ Θ. These densities must satisfy the

conditions:

f(x|θ) ≥ 0, for any (x, θ) ∈ X ×Θ, (2.5)
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and ∫
X
f(x|θ) dx = 1, for any θ ∈ Θ. (2.6)

The probability that X is valued in a Borel set A ⊂ Rp, or equiva-

lently the probability of the event A, is given by

Pr(A|θ) =

∫
A

f(x|θ) dx,

which depends on the unknown θ.

If the random variable X is discrete, it is valued in a countable

sample space X =
{

1, 2, . . .
}

, and the sampling distribution for X is

a family of probability functions P =
{
p(x|θ), θ ∈ Θ

}
satisfying

0 < p(x|θ) ≤ 1 for any (x, θ) ∈ X × Θ, and
∑
x∈X

p(x|θ) = 1 for any

θ ∈ Θ. In this case the probability that X is valued in a set A ⊂ X is

given by

Pr(A|θ) =
∑
x∈A

p(x|θ).

2.2.1 The likelihood function

To accommodate a sampling model f(x|θ) ∈ F to a specific data set

x = (x1, . . . , xn) of size n, the unknown parameter θ needs to be es-

timated using that data. It is assumed that the data have been inde-

pendently drawn from the sampling distribution f(x|θ), where θ is the

unknown true value. The sample x is called a random sample from

f(x|θ) and because of the independence assumption, the probability

density of x is given by

f(x|θ) =

n∏
i=1

f(xi|θ). (2.7)

When X is discrete, the random sample x is drawn from a probability

distribution p(x|θ) in P =
{
p(x|θ), θ ∈ Θ

}
, and because of the

independent assumption, the joint probability of x is

p(x|θ) =

n∏
i=1

p(xi|θ). (2.8)
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A central notion in statistical inference is the likelihood of θ for the

random sample x, which was introduced by Fisher (1922).

Definition 2.1. Let x = (x1, . . . , xn) be a random sample from a model

in the class F =
{
f(x|θ), θ ∈ Θ

}
. Then, the likelihood of θ for the

sample x is defined as

`x(θ) = k f(x|θ) = k
n∏
i=1

f(xi|θ), θ ∈ Θ, (2.9)

where k is an arbitrary positive constant. We note that the argument

of the likelihood function is θ.

When X is discrete, the likelihood of θ becomes

`x(θ) = k p(x|θ) = k
n∏
i=1

p(xi|θ). (2.10)

Since the likelihood of θ is a statistical tool for comparing different

values of θ, the arbitrary constant k is not relevant.

We remark that the term likelihood is not equivalent to the term

probability, although when X is a discrete random variable, the like-

lihood of θ for the sample x means the probability of the sample x

conditional on θ.

The likelihood of θ depends on the data x, although different data

sets with the same sample size n can give the same likelihood, and

hence the likelihood does not necessarily change as x changes.

We illustrate the likelihood function on some distributions com-

monly used in cost–effectiveness analysis.

The effectiveness of a treatment is sometimes described by a di-

chotomous random variable that indicates that a medical treatment is

successful or unsuccessful when applied to a patient. An appropriate

sampling distribution for that variable is the Bernoulli distribution.

Example 2.1 (Bernoulli sampling model). Let X be a discrete random

variable. X follows the Bernoulli distribution, Be(x|θ), if its distribu-

tion is given by

Be(x|θ) = θx(1− θ)1−x, x ∈ {0, 1}, (2.11)
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where the parameter θ is in the space Θ = (0, 1). The meaning of θ is

the probability of success, that is, the probability that X = 1.

The mean and variance of X are given by E(X|θ) =
∑1
x=0 xBe(x|θ)

= θ, and V(X|θ) =
∑1
x=0(x− θ)2Be(x|θ) = θ(1− θ).

Let x = (x1, . . . , xn) be a random sample from Be(x|θ). Then, the

likelihood of θ is

`x(θ) = θnx̄(1− θ)n−nx̄, (2.12)

where x̄ =
∑n
i=1 xi/n is the sample mean. Thus, the likelihood function

is a polynomial in θ that depends on x through x̄, so all samples x of

size n having the same sample mean x̄ provide the same likelihood of

θ. The mean x̄ is called a “sufficient statistic,” and the pair (x̄, n)

contains all the sample information we need to define the likelihood.

The sample size n is an “ancillary statistic.” Ancillary statistic means

that its distribution does not depend on the parameter θ.

A plot of the likelihood function of θ for any sample x such that

(x̄, n) = (0.2, 10) is given in Figure 2.1. From this curve it follows

that the likelihood is a bounded, unimodal function and its absolute

maximum is attained at point θ = 0.2.
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0.001
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FIGURE 2.1

Likelihood of θ for x̄ = 0.2 and n = 10 in Example 2.1.
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The effectiveness of a treatment is sometimes measured by a discrete

positive variable, for instance, the number of hospitalization days of

the patient receiving the treatment, or survival days, etc. A Poisson

distribution might then be an appropriate distribution to model this

discrete variable.

Example 2.2 (Poisson sampling model). Let X be a discrete random

variable. X follows the Poisson distribution, Po(x|λ), if its distribution

is given by

Po(x|λ) =
λx

x!
exp(−λ), x = 0, 1, 2, . . . (2.13)

where the parameter λ is in the space R+. The mean and variance of

X are E(X|λ) = λ and V(X|λ) = λ.

Let x = (x1, ..., xn) be a random sample from Po(x|λ). Then, the

likelihood of λ is

`x(λ) = λnx̄ exp(−nλ), (2.14)

where x̄ =
∑n
i=1 xi/n is the sample mean. Again, all samples x of size

n having the same sample mean x̄ provide the same likelihood.

A plot of the likelihood function of λ for any sample x such that

(x̄, n) = (1.5, 10) is given in Figure 2.2 showing that the likelihood is

a bounded, unimodal function and its absolute maximum is attained at

point λ = 1.5.

The normal distribution is one of the most used distributions in

cost–effectiveness analysis to model either the cost or the effectiveness

of a treatment.

Example 2.3 (Normal sampling model). A continuous random vari-

able X is normally distributed with parameters µ and σ, N (x|µ, σ2), if

its probability density function is given by

N (x|µ, σ2) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, x ∈ R. (2.15)
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FIGURE 2.2

Likelihood of λ for x̄ = 1.5 and n = 10 in Example 2.2.

The parameter (µ, σ) is in the space Θ = R × R+. The mean and

variance of X are E(X|µ, σ2) = µ and V(X|µ, σ2) = σ2.

Let x = (x1, . . . , xn) be a random sample from the distribution

N (x|µ, σ2). The likelihood of (µ, σ) is given by

`x(µ, σ) = σ−n exp

{
−ns

2

2σ2

}
exp

{
−n(x̄− µ)2

2σ2

}
, (2.16)

where x̄ =
∑n
i=1 xi/n and ns2 =

∑n
i=1(xi − x̄)2. Thus, all samples x

having the same (x̄, s, n) provide the same likelihood.

A plot of the likelihood function of (µ, σ) for any sample x such

that (x̄, s, n) = (2, 2, 10) is given in Figure 2.3. The likelihood is again

a bounded, unimodal function and its absolute maximum is attained at

point (µ, σ) = (2, 2).

The lognormal distribution is typically used to model the cost of a

treatment.

Example 2.4 (Lognormal sampling model). A positive continuous

random variable X is lognormally distributed, Λ(x|µ, σ2), if its proba-

bility density function is given by

Λ(x|µ, σ) =
1

xσ
√

2π
exp

{
− 1

2

(log(x)− µ)2

σ2

}
, x > 0. (2.17)
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FIGURE 2.3

The likelihood of (µ, σ) for (x̄, s, n) = (2, 2, 10) in Example 2.3.

The parameter (µ, σ) is in the space Θ = R × R+. The mean and

variance of X are E(X|µ, σ2) = exp(µ + σ2/2) and V(X|µ, σ2) =(
exp(σ2)− 1

)
exp(2µ+ σ2).

For a sample x = (x1, . . . , xn) the likelihood of (µ, σ) is

`x(µ, σ) = σ−n exp

{
−nv

2

2σ2

}
exp

{
−n(µ−m)2

2σ2

}
, (2.18)

where m =
∑n
i=1 log(xi)/n and nv2 =

∑n
i=1(log(xi)−m)2.

A plot of the likelihood function of (µ, σ) for any sample x such

that (m, v, n) = (2, 1, 10) is given in Figure 2.4. The likelihood is a

bounded, unimodal function and its absolute maximum is attained at

point (µ, σ) = (2, 1).
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FIGURE 2.4

The likelihood of (µ, σ) for (m, v, n) = (2, 1, 10) in Example 2.4.

An alternative to the lognormal distribution for modeling the cost

of a treatment is the gamma distribution.

Example 2.5 (Gamma sampling model). Let X be a positive contin-

uous random variable. X is gamma distributed, G(x|α, β), if its proba-

bility distribution is

G(x|α, β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0, (2.19)

where α is a shape parameter, β a scale parameter, (α, β) are in the

space Θ = R+ × R+, and

Γ(z) =

∫ ∞
0

tz−1 exp(−t) dt
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is the gamma function. The mean and variance of X are E(X|α, β) =

α/β and V(X|α, β) = α/β2.

Let x = (x1, . . . , xn) be a sample from G(x|α, β) in (2.19), then the

likelihood function of (α, β) is

`x(α, β) =
βnα

Γ(α)n
exp (n(α− 1)m) exp (−nβx̄) , (2.20)

where x̄ =
∑n
i=1 xi/n and m =

∑n
i=1 log(xi)/n. Thus, all samples x

having the same (x̄,m, n) provide the same likelihood. A plot of the

likelihood function of (α, β) for any sample x such that (x̄,m, n) =

(1, 0, 10) is given in Figure 2.5. Again, we can observe that the likelihood

is a bounded, unimodal function and its absolute maximum is attained

at point (α, β) = (1, 1).

FIGURE 2.5

The likelihood of (α, β) for (x̄,m, n) = (1, 0, 10) in Example 2.5.

The likelihood function for most of the usual models attains its

absolute maximum at a unique point as it occurs in the previous models.
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We have to go to a peculiar model to find a likelihood function that

attains its absolute maximum at several different points. Here is an

example of that model.

Example 2.6. Let X be a continuous random variable that follows the

mixture of the Cauchy distributions C(x|µ1, 1) and C(x|µ2, 1),

f(x|µ1, µ2) = 0.2
1

π (1 + (x− µ1)2)
+ 0.8

1

π (1 + (x− µ2)2)
, x ∈ R.

The parameter (µ1, µ2) is in the space Θ = R2.

For the random sample x = (x1, . . . , xn) from the distribution

f(x|µ1, µ2), the likelihood of (µ1, µ2) is

`x(µ1, µ2) =

n∏
i=1

(
0.2

(1 + (xi − µ1)2)
+

0.8

(1 + (xi − µ2)2)

)
.

FIGURE 2.6

The likelihood of (µ1, µ2) for x = (−2,−1, 0, 1, 2) in Example 2.6.
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A plot of this likelihood function for the data x = (−2,−1, 0, 1, 2) in the

region (µ1, µ2) ∈ (−4, 4)× (−4, 4) is given in Figure 2.6, and it shows

that its absolute maximum is attained at points (µ1, µ2) = (−1.53, 0.57)

and (µ1, µ2) = (1.53,−0.57).

2.2.2 Likelihood sets

The likelihood function `x(θ) of a parameter θ for a given sample x pro-

vides an order of preference among different values of θ. Those θ having

a large likelihood are preferred as candidates to estimate the value of

θ from which the data x come. This assertion is but a consequence of

Lemma 2.1 in Section 2.2.3. When X is discrete, a point θ with a large

likelihood assigns a large probability to the observed sample x.

A distinguished subset of Θ is the so–called likelihood set K(g,x) for

a level g > 0 and sample x. The set K(g,x) is defined by the condition

that for any point θ outside of K(g,x) there is one point θ′ inside of

K(g,x) having a larger likelihood. Thus, K(g,x) is defined by

K(g,x) =
{
θ : f(x|θ) ≥ g

}
. (2.21)

It is clear that the wider the likelihood set K(g,x) is, the flatter the

likelihood function f(x|θ), and hence the smaller the discrimination

between values of θ.

Example 2.7 (Lognormal likelihood sets). Let us suppose we have

the sample x = (2.17, 0.99, 1.29, 7.05, 2.33) from a lognormal sam-

pling model with unknown parameters µ and σ, for which (m, v2, n) =

(0.76, 0.46, 5). Figure 2.7 shows the likelihood sets for several values of

g. In the middle of the figure, the darkest grey likelihood set corresponds

to level g = 0.00012.

Interesting Bayesian properties of the likelihood sets are presented

in Section 2.3.

A distinguished point in the likelihood sets is the one that maxi-

mized the likelihood function that we present in the next subsection.
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FIGURE 2.7

Likelihood sets of (µ, σ) for x = (2.17, 0.99, 1.29, 7.05, 2.33) and levels

g = {2 10−5, 4 10−5, 6 10−5, 8 10−5, 10−4, 1.2 10−4} in Example 2.7.

2.2.3 The maximum likelihood estimator

Let x = (x1, . . . , xn) be a random sample from a model in F ={
f(x|θ), θ ∈ Θ

}
. It is assumed in what follows that the likelihood

function `x(θ) reaches its absolute maximum at just one point.

Definition 2.2. The maximum likelihood estimator (MLE) of θ for

the sample x is the point θ̂(x) that maximizes the likelihood function,

that is

θ̂(x) = arg sup
θ∈Θ

`x(θ), (2.22)

assuming that this point is unique.

A quite simple argument suggests that this estimator typically gives

an accurate estimation of the true value of θ for large sample sizes
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n. The proof follows from the general Kullback–Leibler information

inequality that we prove in the next lemma.

Lemma 2.1. If f(x) and g(x) are two probability densities, the fol-

lowing inequality

Ef(x)

(
− log

(
g(x)

f(x)

))
=

∫
X
f(x) log

(
f(x)

g(x)

)
dx ≥ 0

holds. The inequality is strict except for f(x) = g(x).

Proof. Since − log(x) is a convex function, it follows from Jensen’s in-

equality that

Ef(x)

(
− log

(
g(x)

f(x)

))
≥ − log

(
Ef(x)

(
g(x)

f(x)

))
= − log

(∫
X
g(x) dx

)
= 0,

and this proves the assertion.

If we write the information inequality for f(x) = f(x|θ0) and g(x) =

f(x|θ) we have that

Ex|θ0
(

log(f(x|θ0))
)
≥ Ex|θ0

(
log(f(x|θ))

)
.

Then, applying the Law of Large Numbers, it follows that when sam-

pling from f(x|θ0) and the sample size n is large, the sample means of

{log(f(xi|θ0)), i = 1, ..., , n} and {log(f(xi|θ)), i = 1, ..., n} satisfy the

inequality

1

n

n∑
i=1

log(f(xi|θ0)) ≥ 1

n

n∑
i=1

log(f(xi|θ)), [Pθ0 ].

The notation [Pθ0 ] means that when the samples come from the dis-

tribution Pθ0 , the probability that this inequality holds computed with

the distribution Pθ0 tends to 1 as n grows. Therefore, for large n we

have
n∏
i=1

f(xi|θ0) ≥
n∏
i=1

f(xi|θ), [Pθ0 ].
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This means that for large sample size n, the true value θ0 has a larger

likelihood than that of any θ 6= θ0. This suggests that by maximizing

the likelihood function, an accurate estimator of the true θ can be

obtained, which is an idea that we formalize later on.

In most practical situations, especially when the parameter is con-

tinuous, it is convenient to use the logarithm of the likelihood func-

tion. Since log is a monotone function, to find the maximum in (2.22)

is equivalent to finding the maximum of the logarithm of the likeli-

hood function. Let us illustrate the procedure on the Bernoulli sampling

model.

Example 2.1 (continued). Let x = (x1, . . . , xn) be a random sample

from Be(x|θ) in (2.11) with the likelihood function given in (2.12).

Then

log(`x(θ)) = nx̄ log(θ) + (n− nx̄) log(1− θ),

where nx̄ =
∑n
i=1 xi. Taking the first derivative of the log–likelihood we

obtain
∂ log(`x(θ))

∂θ
=
nx̄

θ
− n− nx̄

1− θ
= 0.

The unique root of this equation is θ̂ = x̄, and it turns out to be the

absolute maximum of the likelihood function.

To maximize the likelihood function is an optimization problem

that typically presents some difficulties. For instance, in some situations

the log–likelihood function is not differentiable everywhere in Θ or the

equation may have more than one root. In other situations, the equation

has to be solved numerically. Some of these difficulties are illustrated

using the gamma model.

Example 2.5 (continued). Let x = (x1, . . . , xn) be a sample from

G(x|α, β) where α, β are unknown. The log of the likelihood function is

given by

log(`x(α, β)) = nα log(β)− n log(Γ(α)) + n(α− 1)m− nβx̄.



Statistical inference in parametric models 53

The first derivative yields the nonlinear equations in α and β

n log(β)− nΓ′(α)

Γ(α)
+ nm = 0

nα

β
− nx̄ = 0.

From the second equation β = α/x̄, and replacing it in the first equation

we have

log(α)− Γ′(α)

Γ(α)
= log(x̄)−m. (2.23)

The α root of this equation, α̂, cannot be obtained in close form al-

though it can be numerically obtained. It can be shown that α̂ and

β̂ = α̂/x̄ are the MLEs of α and β.

Table 2.1 displays the MLEs for the parameters of some commonly

used sampling models in cost–effectiveness analysis.

To be able to show that the maximum likelihood estimators of the

parameter θ of the family of densities F have certain desirable prop-

erties for large samples sizes, the densities are required to be regular,

that is, Conditions 1 to 5 below have to be satisfied. For simplicity we

assume for the moment that Θ is either R or an open set in R.

Condition 1. The sample space X does not depend on θ.

Condition 2. The equalities

d

dθ

∫
X
f(x|θ) dx =

∫
X

d

dθ
f(x|θ) dx, (2.24)

and
d2

dθ2

∫
X
f(x|θ) dx =

∫
X

d2

dθ2
f(x|θ) dx, (2.25)

hold for any θ ∈ Θ.

Condition 3. The function

I(θ) =

∫
X

(
−d

2 log(f(x|θ))
dθ2

)
f(x|θ) dx, (2.26)

is positive for any θ ∈ Θ.
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TABLE 2.1

MLE of the parameters of some useful sampling models in cost–

effectiveness analysis.

Sampling model Parameter MLE

Be(x|θ) θ θ̂ = x̄

Po(x|λ) λ λ̂ = x̄

N (x|µ, σ2
0), σ2

0 known µ µ̂ = x̄

N (x|µ0, σ
2), µ0 known σ2 σ̂2 =

1

n

n∑
i=1

(xi − µ0)2

N (x|µ, σ2) µ, σ2 µ̂ = x̄,

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2

(yi = log(xi))

Λ(x|µ, σ2
0), σ2

0 known µ µ̂ = ȳ

Λ(x|µ0, σ
2), µ0 known σ2 σ̂2 =

1

n

n∑
i=1

(yi − µ0)2

Λ(x|µ, σ2) µ, σ2 µ̂ = ȳ,

σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2

G(x|α, β0), β0 known α α̂ such that
Γ′(α̂)

Γ(α̂)
= log(β0) + ȳ

G(x|α0, β), α0 known β β̂ =
α0

x̄

G(x|α, β) α, β α̂ in (2.23)

β̂ =
α̂

x̄

Condition 4. The random function

S(x|θ) =
d

dθ
log(f(x|θ)) (2.27)

is a continuous function of θ ∈ Θ.
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Condition 5. For any θ0 ∈ Θ, the function

A(θ, θ0) =

∫
X
S(x|θ) f(x|θ0) dx, (2.28)

is a continuous function of θ.

We note that Condition 1 excludes, for instance, the uniform sam-

pling density

f(x|θ) =
1

θ
1(0,θ)(x), (2.29)

where θ ∈ R+. However, the likelihood of θ for the sample x attains its

absolute maximum at point θ̂(x) = max
i=1,...,n

xi, which is a quite stable

estimator. Nevertheless, when Condition 1 is not satisfied, the MLE

can be very unstable.

For instance, Condition 1 fails in the binomial distribution with n

and θ unknown. We note that n ∈ {x, x + 1, ...}. Let us illustrate this

instability on a binomial example taken from Olkin et al. (1981).

Example 2.8 (Binomial sampling model with two unknown parame-

ters). Let X be a random variable with binomial distribution

Bin(x|n, θ) =

(
n

x

)
θx(1− θ)n−x, 0 < θ < 1, x = 0, 1, ..., n, (2.30)

where n and θ are unknown parameters.

Let x = (x1, . . . , xN ) be a random sample from Bin(x|n, θ). The

MLE n̂ and θ̂ are the solutions to the nonlinear equations (Johnson

et al., 2005, p. 129)

n̂ θ̂ = x̄,

maxi=1,...,N (xi)∑
j=0

Aj
n̂− j

= −N log
(

1− x̄

n̂

)
,

where Aj is the number of observations that exceed j.

For the data set x1 = (16, 18, 22, 25, 27) the MLE of n is n̂(x1) =

99. If the data set changes to x2 = (16, 18, 22, 25, 28), the MLE of

n is n̂(x2) = 190. However, the only difference between x1 and x2

is the last observation, which is 27 in x1 and 28 in x2. This shows
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the large instability of the MLE for estimating n. As a consequence,

instability is also present in the estimator of θ, in fact θ̂(x1) = 0.218

and θ̂(x2) = 0.114.

We will go back on this example to compare the MLEs of n and θ

with the Bayesian estimators for the samples x1 and x2.

The likelihood function `x(θ) does not necessarily reach its absolute

maximum at just one point, even when the above regularity conditions

hold as shown in Example 2.6. In that case the MLE is of no interest.

However, most of the models we usually use in statistical applications

have a unique MLE. In those cases the MLEs are “excellent” estimators

of θ providing that the sample size n is relatively large. The asymptotic

properties of the MLEs are summarized in the next theorem.

Theorem 2.1. Let (x1, . . . , xn) be n independent and identically dis-

tributed (i.i.d.) random variables with distribution f(x|θ0) ∈ F , where

θ0 is an arbitrary but fixed point in Θ. Then,

a) the random MLE sequence {θ̂(x1, . . . , xn), n ≥ 1} degenerates in

probability [Pθ0 ] to the point θ0 as n goes to infinity, that is

lim
n→∞

θ̂(x1, . . . , xn) = θ0, [Pθ0 ],

b) the limiting distribution of n1/2(θ̂(x1, . . . , xn) − θ0) is the normal

distribution with zero mean and variance I−1(θ0).

An estimator satisfying a) is said to be consistent, and if it also

satisfies b), is said to be asymptotically normal. Consistency of an es-

timator means that when the sample size n grows to infinity, our un-

certainty on the estimate of θ disappears. An inconsistent estimator

should consequently be rejected.

On the other hand, when the asymptotic normality of an estimator

is present, the normal distribution is typically used as an approximation

of the distribution of the estimator for moderate sample sizes. This

approximation plays a central role in hypothesis testing.

The asymptotic properties of the MLE in Theorem 2.1 can be ex-

tended to the case where Θ = Rp for p > 1. In that case θ̂(x1, . . . , xn)
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is a vector of dimension p for any n ≥ 1 and when sampling from

f(x|θ0), the limit in probability of the sequence {θ̂(x1, . . . , xn), n ≥ 1}
converges to the p−vector θ0, that is

lim
n→∞

θ̂(x1, . . . , xn) = θ0, [Pθ0 ].

Further, the limiting distribution of the random vector n1/2(θ̂(x1, . . . ,

xn) − θ0) follows a p−variate normal distribution with mean 0p and

covariance matrix I−1(θ0), where I−1(θ) is the inverse of the p × p

matrix with elements

Iij(θ) = Ex|θ
(
−∂

2 log(f(x|θ))

∂θi∂θj

)
for i, j = 1, . . . , p (Lehmann and Casella, 1998, Section 6.3).

2.2.3.1 Proving consistency and asymptotic normality

(This subsection can be omitted in a first reading.)

The random function S(x|θ) in Condition 4 is called the score func-

tion, and since f(x1, . . . , xn|θ) =

n∏
i=1

f(xi|θ) we have that the score

function for the sample (x1, . . . , xn) is given by

S(x1, . . . , xn|θ) =

n∑
i=1

S(xi|θ).

Function I(θ) in Condition 3 is called the Fisher informa-

tion of the sampling models f(x|θ) and represents the expectation

Ex|θ(−d2 log(f(x|θ))/dθ2). From Condition 1 it follows that the Fisher

information can also be written as Ex|θ(d log(f(x|θ))/dθ)2, that is

I(θ) =

∫
X

(
d log(f(x|θ))

dθ

)2

f(x|θ) dx.

From Condition 3 it follows that the sample mean of S(x|θ) with

respect to f(x|θ) is zero, that is

Ex|θS(x|θ) =

∫
X
S(x|θ)f(x|θ) dx = 0,

and hence the sample variance is

Ex|θS(x|θ)2 = I(θ).
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The function A(θ, θ0) in Condition 5 is the expectation of

log(f(x|θ)) with respect to model f(x|θ0), and for θ = θ0 we have

A(θ0, θ0) = Ex|θ0S(x|θ0) = 0.

The derivative of A(θ, θ0) with respect to θ is given by

d

dθ
A(θ, θ0) =

∫
X

d2 log(f(x|θ))
dθ2

f(x|θ0) dx,

and for θ = θ0 we have

d

dθ
A(θ0, θ0) = −I(θ0) < 0.

This implies that A(θ, θ0) is a decreasing function of θ in the interval

(θ0 − δ, θ0 + δ) for some δ. Thus, A(θ, θ0) ≥ 0 for θ ∈ (θ0 − δ, θ0) and

A(θ, θ0) ≤ 0 for θ ≥ θ0 + δ.

Then, when sampling from f(x|θ0) it follows from the Law of the

Large Numbers (LLN) that:

For θ ∈ (θ0 − δ, θ0),

lim
n→∞

1

n
S(x1, . . . , xn; θ) = A(θ, θ0) > 0 [Pθ0 ],

and for θ ∈ (θ0, θ0 + δ),

lim
n→∞

1

n
S(x1, . . . , xn; θ) = A(θ, θ0) < 0 [Pθ0 ].

Thus, when sampling from f(x|θ0) taking a root θ̂n = θ̂(x1, . . . , xn) of

the equation

S(x1, . . . , xn|θ̂n) =
d

dθ

n∑
i=1

log(f(xi|θ̂n)) = 0,

we have that the sequence {θ̂n, n ≥ 1} converges to the true value θ0.

If the root is unique we have shown that the root of the equation

`x1,...,xn(θ̂n) = 0,

is the MLE, and it converges in probability to the true value θ0. This

proves part a).
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On the other hand, when sampling from f(x|θ0) it follows from the

Central Limit Theorem that, in probability Pθ0 , as n tends to infinity,

the limiting distribution of the sequence

Zn =
1

n1/2

n∑
i=1

S(xi|θ0)

is the normal distribution with zero mean and variance I(θ0), that is

N (z|0, I(θ0)). Since S(xi|θ̂n) approximates S(xi|θ0) for large n, using

the Taylor expansion of S(xi|θ0) at point θ̂n we have

1

n1/2

n∑
i=1

S(xi|θ0) = n1/2(θ̂n − θ0)
1

n

n∑
i=1

(
− d2

dθ2
f(xi|θ∗n)

)
[Pθ0 ],

where θ∗n = θ∗n(x1, . . . , xn) is a random variable such that

|θ̂n − θ∗n| ≤ |θ̂n − θ0|, [Pθ0 ].

Further, from the LLN we have that as n tends to infinity

lim
n→∞

1

n

n∑
i=1

(
− d2

dθ2
f(xi|θ∗)

)
= I(θ0) [Pθ0 ],

and hence when sampling from f(x|θ0) the sequences

{Zn} and
{
n1/2(θ̂n − θ0)I(θ0)

}
have the same limiting distribution (Loève, 1963, Law–equivalence

Lemma, p. 278). Thus, the limiting distribution of n1/2(θ̂n − θ0) is

N (z|0, I−1(θ0)). This proves part b).

2.2.4 Reparametrization to a subparameter

We have seen that for the model f(x|θ) the likelihood of θ for the

sample x is defined as `x(θ) = f(x|θ) for θ ∈ Θ. If we reparametrize

the probability density to a subparameter λ(θ), where λ(θ) is a one–

to–one transformation, the likelihood of λ = λ(θ) is certainly defined

as `x(λ) = `x(θ), θ ∈ Θ. Further, it is clear that the MLE of λ is given

by λ̂ = λ(θ̂).
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However, when λ(θ) is not a one–to–one function, the notion of

likelihood of λ = λ(θ) is not at all clear, and a convention is then

necessary. In this case the coset of λ is the subset of Θ

G(λ) =
{
θ : λ(θ) = λ

}
,

and hence the likelihood of λ involves the set of original likelihoods{
`x(θ), θ ∈ G(λ)

}
.

Thus, the likelihood of λ is not uniquely defined.

A proposal for choosing a likelihood in the set
{
`x(θ), θ ∈ G(λ)

}
to be assigned as the likelihood of λ was given by Zehna (1966) who

defined

`x(λ) = sup
θ∈G(λ)

`x(θ).

The idea behind this definition is to get that λ(θ̂) is the point at

which supλ `x(λ) is attained. This behavior is called the invariant prin-

ciple of the MLE, and we remark that this convention is accepted by

the statistical community. Let us illustrate the invariance principle on

a Bernoulli distribution taken from Rohatgi (1976).

Example 2.1 (continued). Consider the Bernoulli sampling model

Be(x|θ) in (2.11) and let λ(θ) = θ(1 − θ), which is not a one–to–one

function.

Since Θ = [0, 1], λ(Θ) = [0, 1/4] and the MLE of θ based on a

random sample x of size n is θ̂ = x̄. Thus, for each 0 ≤ λ0 ≤ 1/4, the

coset of λ0 is the two–point subset

G(λ0) = {θ : θ(1− θ) = λ0} = {θ1, θ2} ,

where θ1 = (1 +
√

1− 4λ0)/2, and θ2 = (1−
√

1− 4λ0)/2.

The likelihood of λ0 is given by

`x(λ0) = max {`x (θ1) , `x (θ2)} .

Hence the MLE of parameter λ is λ̂ = λ(θ̂) = x̄(1− x̄).



Statistical inference in parametric models 61

2.3 Parametric Bayesian models

Let f(x|θ) be the sampling model of the observable random variable

X, where θ is an unobservable unknown parameter in Θ. The Bayesian

statistical approach assumes that the uncertainty one has on θ is de-

scribed by a probability distribution π(θ). This distribution is called

the prior distribution for θ. That is, the Bayesian approach assumes

that both X and θ are random variables, although X can be observed

and θ cannot.

Then, the parametric Bayesian model consists of a joint distribution

f(x, θ) for the random variable (X, θ), although it is convenient to

decompose the joint distribution f(x, θ) as

f(x, θ) = f(x|θ)π(θ),

and hence a Bayesian model is specified by two elements, the sampling

distribution f(x|θ), the distribution of the observable random variable

X conditional on θ, and the prior distribution π(θ) for the nonobserv-

able parameter θ.

Given a sample x = (x1, . . . , xn) from a model in the class

{f(x|θ), θ ∈ Θ}, the first step in Bayesian estimation is that of com-

puting the probability distribution of θ conditional on the sample x.

This distribution is given by

π(θ|x) =
f(x|θ)π(θ)

m(x)
, θ ∈ Θ, (2.31)

where

m(x) =

∫
Θ

f(x|θ)π(θ) dθ,

is the marginal distribution of the sample x.

Expression (2.31) is the so–called Bayes theorem, and the condi-

tional distribution π(θ|x) is called the posterior distribution of θ. Since

the marginal distribution m(x) does not depend on θ, we can write

π(θ|x) ∝ f(x|θ)π(θ), where ∝ means proportional to.
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A Bayesian estimator of θ is a distinguished point θ̃ = θ̃(x) drawn

from their posterior distribution. This point θ̃ is typically the mean of

the posterior distribution,

θ̃(x) = E(θ|x) =

∫
Θ

θ π(θ|x) dθ, (2.32)

assuming that the integral is finite. Sometimes θ̃ is the mode of π(θ|x),

θ̃(x) = arg sup
θ∈Θ

π(θ|x). (2.33)

When Θ is the real line R, a robust estimator of θ is the median of the

posterior distribution, assuming that it is unique, i.e., θ̃(x) is such that∫ θ̃(x)

−∞
π(θ|x) dθ =

1

2
. (2.34)

Example 2.9 (Gamma sampling model with a known shape parame-

ter). Let x = (x1, . . . , xn) be a random sample from a gamma sampling

model with known shape parameter α0, and unknown scale parameter

β > 0,

f(x|β) =
βα0

Γ(α0)
xα0−1 exp (−βx) , x > 0. (2.35)

Then, the likelihood of β is

`x(β) = βα0n exp (−nβx̄) ,

where x̄ =
∑n
i=1 xi/n. Let us assign to β the gamma prior,

π(β) =
βα1

1

Γ(α1)
βα1−1 exp (−β1β) , β > 0,

where α1 and β1 are hyperparameters. This is known as the “conjugate”

prior for the family f(x|β), a notion that we introduce later on in

Section 2.3.2.

From (2.31), the posterior density of β is given by

π(β|x) =
(nx̄+ β1)α0n+α1

Γ(α0n+ α1)
βα0n+α1−1 exp {−β(nx̄+ β1)} , β > 0,

(2.36)
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which is a gamma distribution with shape parameter α0n+α1 and scale

nx̄+ β1 that depends on the sample size, the sample mean, the known

shape parameter, and the hyperparameters of the prior.

In Figure 2.8 we plot the likelihood of the parameter β, the prior and

the posterior distribution for β for a sample with α0 = 10, n = 5, x̄ = 1,

and hyperparameters α1 = 3.5, β1 = 0.5.

Figure 2.8 indicates that the contribution of the likelihood to the

posterior distribution of β is greater than the contribution of the prior.

The mean, mode, and median of the posterior distribution of β turn

out to be 9.76, 9.58, and 9.70, respectively. These values are very close

to the MLE β̂ = 10.04.
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FIGURE 2.8

Triplot in Example 2.9: Likelihood function (dot-dashed), prior density

(dashed), and posterior density (continuous).

We note that in Example 2.9 the posterior distribution of β, con-

ditional on the sample x, depends on the mean of the sample, the suf-

ficient statistic of this family, and the ancillary sample size n. This is

because the sufficiency notion is formulated in the Bayesian approach
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as follows. A statistic T (x) is sufficient for the family of parametric

distributions {f(x|θ), θ ∈ Θ} if and only if the equality

π(θ|x) = π(θ|T (x))

holds for any prior π(θ) and any sample x.

Thus, in this book we will use indistinctly any of the two notations

of the posterior distribution.

When the interest is on a subparameter λ(θ), the sufficiency notion

is less demanding. A statistic T (x) is sufficient for the parametric family

{f(x|λ), λ ∈ Λ} if and only if the equality

π(λ|x) = π(λ|T (x))

holds for any prior π(λ) and any sample x. This notion was introduced

by Kolmogorov (1942) and is called K-sufficiency to distinguish it from

the sufficiency notion.

While the choice of the sampling distribution f(x|θ) is accepted as

an inevitable part of the statistical task, the need for a prior distri-

bution on θ for making inference has encountered some controversies

in the statistical community. The choice of the prior is perceived as

the weaker chain of the Bayesian approach, and the nonobservable na-

ture of parameter θ appears to be the responsible for that. However,

arguments in favor of the Bayesian approach include i) probability is

the natural tool to measure uncertainty, and this is what the prior dis-

tribution π(θ) does, and ii) given a sample x = (x1, . . . , xn) from a

model in the class
{
f(x|θ), θ ∈ Θ

}
, the Bayes theorem converts the

prior distribution π(θ) into the posterior distribution π(θ|x), and by

so doing sampling information is not only incorporated into the poste-

rior distribution for θ, but also the prior belief on θ contained in π(θ).

This probabilistic way of learning on the parameter from the data is

sequential: given a posterior distribution, new data update this poste-

rior distribution, and so on. That is, for a given pair of independent

data x1 and x2, conditional on θ, and drawn from f(x|θ), we have that
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π(θ|x1, x2) =
f(x1, x2|θ)π(θ)

m(x1, x2)
=
f(x1|θ)π(θ)

m(x1)
m(x1)

f(x2|θ)
m(x1, x2)

=
f(x2|θ)π(θ|x1)∫
f(x2|θ)π(θ|x1) dθ

.

The last equality follows from

m(x1)

m(x1, x2)

∫
f(x2|θ)π(θ|x1) dθ =

∫
f(x2|θ)f(x1|θ)π(θ)dθ

m(x1, x2)
= 1.

The Bayesian inference is carried out within a probabilistic setting

as it is extracted from the posterior distribution π(θ|x). Thus, condi-

tional on the data x, we can compute the posterior probability that θ

is in a specific set A as

Pr(A|x) =

∫
θ∈A

π(θ|x) dθ.

The relationship between the prior Pr(A) and the posterior Pr(A|x)

is an interesting question. One may wonder what sets have a posterior

probability greater than their prior probability. Those sets have been

characterized by Piccinato (1984). He proved that for any prior distri-

bution, the posterior probability of a set A is greater than or equal to

its prior probability if and only if the set A is a likelihood set K(g,x)

for some g ≥ 0 and x.

Further, confidence sets are now easily interpreted. For instance, for

the data x, the Highest Posterior Density (HPD) region of probability

1 − α ∈ (0, 1) is the smallest set in Θ that contains the parameter θ

with probability 1− α. Thus, it is given by

HPD(kα) =
{
θ : π(θ|x) ≥ kα

}
,

where kα is the largest value such that∫
HPD(kα)

π(θ|x) dθ = 1− α.

The computation of the HPD(kα) is quite simple when the parameter
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space is one–dimensional and the posterior density is unimodal and

symmetric with respect to its mode. Otherwise, the computation of the

HPD typically requires numerically solving a nonlinear equation.

Example 2.9 (continued). The 95% HPD for β conditional on the

data with n = 5 and x̄ = 1 in Example 2.9 turns out to be (7.32, 12.55).

Bayesian and MLE estimators might be different for small or mod-

erate sample sizes. Further, Bayesian estimators typically show more

stability than MLEs. Let us illustrate this assertion on the estimation

of parameter n and θ of the binomial distribution with two unknown

parameters in Example 2.8.

Example 2.8 (continued). Let us assume that θ and n are independent

a priori, and that the prior distribution

πJ(θ) =
1

π
θ−1/2(1− θ)−1/2, 0 < θ < 1,

is assigned to θ. This prior is known as the Jeffreys prior and it is the

objective prior for doing inference on the parameter θ of a Bernoulli

distribution. The notion of objective prior will be introduced in Section

2.3.3. To n we assign the prior

π(n) =
6

π2

1

n2
, n = 1, 2, . . .

This prior for n is proper with the mode at point n = 1 and a heavy

right tail, in fact it does not have a mean. The posterior expectation of

n for the sample x = (x1, . . . , xN ) is given by

E(n|x) =
A

B
,

where

A =

∞∑
n=maxi=1,...,N (xi)

1

n

Γ(Nn−Nx̄+ 1/2)

Γ(Nn+ 1)

N∏
i=1

(
n

xi

)
,

B =

∞∑
n=maxi=1,...,N (xi)

1

n2

Γ(Nn−Nx̄+ 1/2)

Γ(Nn+ 1)

N∏
i=1

(
n

xi

)
.
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Likewise, the posterior expectation of θ given the sample x is

E (θ|x) =
A′

B′

where

A′ =

∞∑
n=maxi=1,...,N (xi)

1

n2

Γ(Nn−Nx̄+ 1/2)Γ(Nx̄+ 3/2)

Γ(Nn+ 2)

N∏
i=1

(
n

xi

)
,

B′ =

∞∑
n=maxi=1,...,N (xi)

1

n2

Γ(Nn−Nx̄+ 1/2)Γ(Nx̄+ 1/2)

Γ(Nn+ 1)

N∏
i=1

(
n

xi

)
.

Table 2.2 displays the comparison between the Bayesian and maxi-

mum likelihood estimators of the parameters of the Binomial distribu-

tion for samples x1 = (16, 18, 22, 25, 27) and x2 = (16, 18, 22, 25, 28).

TABLE 2.2

Bayesian and maximum likelihood estimators of n and θ of a Binomial

distribution for x1 and x2

Sample Bayesian estimator MLE

E(n|xi) E(θ|xi) n̂(xi) θ̂(xi)

x1 = (16, 18, 22, 25, 27) 106 0.375 99 0.218

x2 = (16, 18, 22, 25, 28) 119 0.358 190 0.114

This example illustrates the fact that the Bayesian estimator of n

and θ is much more stable than the MLE.

For large sample sizes, however, Bayesian and MLE estimators are

very close to each other, which is a consequence of the following result.

Let {xi, i ≥ 1} be a sequence of i.i.d. random variables with dis-

tribution f(x|θ0) for θ0 ∈ Θ. Then, under wide regularity conditions

the Bayesian estimator E(θ|x1, . . . , xn) and the MLE θ̂(x1, . . . , xn) are

such that for any ε > 0,

Pr
(
|E(θ|x1, . . . , xn)− θ̂(x1, . . . , xn)| ≥ ε

)
= O(n−1),

where the probability is computed with the distribution f(x|θ0).
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Furthermore, from the above equality it follows that the Bayesian

estimator E(θ|x) is a consistent estimator of θ. Under regularity con-

ditions it can be shown that the sequence of posterior distributions

{π(θ|x1, . . . , xn), n ≥ 1} converges in probability, as n tends to infin-

ity, to the degenerate distribution on θ0. Thus, the sequence of posterior

expectations of θ,

E(θ|x1, . . . , xn) =

∫
Θ
θ
(∏n

i=1 f(xi|θ)
)
π(θ) dθ∫

Θ

(∏n
i=1 f(xi|θ)

)
π(θ) dθ

,

tends to θ0 in probability as n tends to infinity. Regularity conditions

for this result to hold are given in Sections 10.9 and 10.10 in DeGroot

(1970). Further, it is there shown that a normal distribution with mean

at θ̂(x1, . . . , xn) and variance 1/(nI(θ)) approximates the posterior dis-

tribution π(θ|x1, . . . , xn) for large n.

For small or moderate sample sizes, the contribution of the prior to

the posterior distribution might be relevant, and hence a main ques-

tion in Bayesian parametric inference is how a prior for the parameter

θ of the sampling model f(x|θ) is elicited. We briefly discuss some ap-

proaches to answer this question.

2.3.1 Subjective priors

A distribution π(θ) that incorporates subjective information on the

parameter θ is called a subjective prior. One may ask what kind of in-

formation on θ is accessible to an expert. An instance of such accessible

information would be the location of some quantiles of the distribution

π(θ). In particular, detection of symmetries of π(θ).

There is an extensive literature on the process of assigning or elic-

iting subjective probability distributions for the parameters of a model

from expert knowledge (Savage, 1971; Murphy and Winkler, 1977; Gen-

est and Zidek, 1986; O’Hagan et al., 2006). Chaloner (1996) provides

a review of methods of eliciting prior information in clinical trials, in-

cluding interviews with clinicians, questionnaires, etc. Other papers on

the elicitation process in clinical data are Freedman and Spiegelhalter
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(1983); Spiegelhalter and Freedman (1986); Wolpert (1989); Spiegelhal-

ter et al. (1994); Kadane and Wolfson (1995); Spiegelhalter et al. (1995);

Chaloner and Rhame (2001); and Vázquez–Polo and Negŕın (2004).

It seems to be clear that, in general, information on the tails of

π(θ) is hardly an accessible prior information, and hence the tails are

the bottleneck of the subjective elicitation. This seems to imply that a

class of priors with different tails compatible with the accessible prior

information would be a realistic subjective model. Bayesian inference

associated with the idea of having a class of priors instead of a single

prior was developed in the eighties and nineties, and grouped under

the heading “Bayesian Robustness.” Interesting thorough reviews of

Bayesian Robustness include Berger (1994), Berger et al. (1996) and

Rios and Ruggeri (2000).

In Bayesian Robustness the classes of distributions are typically

nonparametric classes, and unfortunately they usually provide a non–

robust Bayesian inference of our quantity of interest. An exception was

given by Wasserman (1989). He proved that the likelihood sets K(g,x)

are robust to contamination of the prior π0(θ). This means that the

posterior probability of the likelihood sets is relatively insensitive to

the prior when it varies in the class of contaminated priors

Γ = {π(θ) : π(θ) = (1− ε)π0(θ) + εq(θ), q ∈ Q}

where ε ∈ [0, 1] and Q is the set of all probability distributions.

The lack of robustness always appears when θ is a multidimensional

parameter. This yields considering predetermined tails for the prior

for θ.

2.3.2 Conjugate priors

A possible solution to the difficulty of eliciting the tails of the prior

distribution π(θ) would be to choose the tails as those of the likelihood

of θ. This yields the notion of conjugate priors.

Let x = (x1, ..., xn) be a random sample from a sampling dis-

tribution in F = {f(x|θ), θ ∈ Θ}. A parametric class of priors
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C = {π(θ|λ), λ ∈ Λ} is called a conjugate class of priors with re-

spect to the sampling model f(x|θ) in F if for any prior π(θ|λ) in C
the posterior distribution π(θ|x) is also in C for any x.

Example 2.1 (continued). For the Bernoulli sampling family given in

(2.11), the conjugate class of priors is the beta family

C =
{
π(θ|α, β), α, β > 0

}
,

that is

π(θ|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, θ ∈ (0, 1). (2.37)

For, the posterior distribution of θ is

π(θ|x) =
`x(θ)π(θ)∫ 1

0
`x(θ)π(θ) dθ

=
Γ(α+ β + n)

Γ(nx̄+ α)Γ(n− nx̄+ β)
θnx̄+α−1(1− θ)n−nx̄+β−1,

(2.38)

which is a beta distribution with updated parameters nx̄ + α and n −
nx̄+ β.

Example 2.2 (continued). For the Poisson sampling model given in

(2.13) the conjugate class of priors is the gamma family

C =
{
π(λ|α, β), α, β > 0

}
,

that is

π(λ|α, β) =
βα

Γ(α)
λα−1 exp (−βλ) , λ > 0.

Indeed, the posterior distribution of λ is

π(λ|x) =
`x(λ)π(λ)∫∞

0
`x(λ)π(λ) dλ

=
(n+ β)nx̄+α

Γ(nx̄+ α)
λnx̄+α−1 exp (−(n+ β)λ) ,

which is a gamma distribution with updated parameters nx̄ + α and

n+ β.
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Example 2.10 (Normal sampling model with known variance). For

the normal sampling model given in (2.15) with known variance

N (x|µ, σ2
0), the conjugate class of priors for the parameter µ is the

normal family

C =
{
N (µ|µ1, σ

2
1), µ1 ∈ R, σ1 ∈ R+

}
.

Indeed, for the sample x the posterior distribution of µ is the normal

family

π(µ|x) = N (µ|µ2, σ
2
2),

where

µ2 = µ1
σ2

0

σ2
0 + nσ2

1

+ x̄
nσ2

1

σ2
0 + nσ2

1

, σ2
2 =

(
1

σ2
1

+
n

σ2
0

)−1

, (2.39)

with x̄ =
∑n
i=1 xi/n. We note that the posterior mean is a convex

combination of the prior mean µ1 and the sample mean x̄.

We remark that hyperparameters µ2 and σ2 in the normal example

can be accommodated to match accessible subjective information on

µ, and the same can be said for the hyperparameters α and β of the

preceding examples.

Most of the one–dimensional models considered so far can be written

as a member of the exponential family

f(x|θ) = g(x)h(θ) exp (t(x)ψ(θ)) . (2.40)

For a random sample x = (x1, . . . , xn) the likelihood function of θ is

`x(θ) ∝ h(θ)n exp

{
n∑
i=1

t(xi)ψ(θ)

}
, (2.41)

and thus,
∑n
i=1 t(xi) is the sufficient statistics for θ, a result that fol-

lows from the Halmos–Savage factorization theorem (Zacks, 1981). The

conjugate class of priors for θ is

C =
{
π(θ|α, β), α, β ∈ R

}
,
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where

π(θ|α, β) ∝ h(θ)α exp (βψ(θ)) . (2.42)

In fact, from (2.41) and (2.42), the posterior distribution for θ is given

by

π(θ|x) ∝ h(θ)n+α exp

{(
n∑
i=1

t(xi) + β

)
ψ(θ)

}
,

which is also in C.
The one–parameter exponential family can be extended to the

k−parametric exponential family

f(x|θ) = g(x)h(θ) exp

 k∑
j=1

tj(x)ψj(θ)

 .

Then, the conjugate priors are given by

π(θ) ∝ h(θ)α exp


k∑
j=1

βjψj(θ)

 .

A detailed analysis of conjugate priors is given in DeGroot (1970)

and an extensive catalog of conjugate classes of priors in Bernardo and

Smith (1994), pp. 436–442.

2.3.3 Objective priors

When the prior information on θ is weak, an option that has many

followers in the statistical community is that of using the so–called

objective priors. These are operational priors derived with the help of

the sampling model f(x|θ). A first objective method for constructing

objective priors is due to Jeffreys (1961). For a real parameter θ in

the model f(x|θ), the Jeffreys prior is given by the squared root of the

Fisher information of the model, that is,

πJ(θ) ∝
√
I(θ).

When θ is a multidimensional parameter, I(θ) is replaced by the de-

terminant of the Fisher information matrix, although the priors so ob-

tained present some difficulties.
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Another method to construct objective priors, called reference pri-

ors, is due to Bernardo (1979) and further developed in Bernardo and

Smith (1994) and Berger et al. (2009), among others. When the param-

eter θ is one–dimensional, the reference priors π(θ) coincide with the

Jeffreys prior πJ(θ).

For a recent extensive review on objective priors, see the paper by

Consonni et al. (2018).

A difficulty with objective priors is that for most of the parametric

sampling models they are improper, that is, they do not integrate a

finite quantity. This implies that the reference prior cannot typically

be normalized to a probability distribution, and hence it is well defined

up to an arbitrary positive multiplicative constant.

While this is not a difficulty for computing the posterior distribution

of θ, as the arbitrary constant cancels out in the ratio appearing in

the posterior distribution, it is a serious drawback when the inference

is based on the marginal of the sample m(x) =
∫

Θ
f(x|θ)π(θ) dθ as

occurs in hypotheses testing. Therefore, improper priors are unsuitable

for model selection or hypotheses testing. Let us illustrate this fact on

a normal example with known variance.

Example 2.10 (continued). For the family of normal sampling models

with known variance, for simplicity σ2
0 = 1,

{
N (x|θ, 1), θ ∈ R

}
, the

Jeffreys prior for θ is given by

πJ(θ) = c 1(−∞,∞)(θ),

where c is an arbitrary positive constant. The posterior distribution of

θ for the random sample x = (x1, . . . , xn) is the well–defined normal

probability density with mean x̄ =
∑n
i=1 xi/n and variance 1/n, that is,

π(θ|x) = N
(
θ|x̄, 1

n

)
.

However, the marginal distribution of the sample x is given by
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m(x) = c
1

n1/2(2π)(n−1)/2
exp

{
−1

2

n∑
i=1

(xi − x̄)2

}
,

which is defined up to the arbitrary multiplicative constant c.

2.4 The predictive distribution

In cost–effectiveness analysis the predictive distribution of the cost and

the effectiveness play a central role. In general, given a random vari-

able X with distribution in the class {f(x|θ), θ ∈ Θ}, and a sample

x = (x1, . . . , xn) from a model in this class, the distribution of a fu-

ture observation y conditional on the sample is called the predictive

distribution of the random variable X.

From the frequentist viewpoint the predictive distribution of X is

given by f(y|θ̂), where θ̂ = θ̂(x) is the MLE of θ. The expected value

of y is given by

E(Y |θ̂) =

∫
yf(y|θ̂) dy.

From the Bayesian viewpoint the predictive distribution of X is

given by

f(y|x) =

∫
Θ

f(y|θ)π(θ|x) dθ, (2.43)

which depends not only on the sampling model f(x|θ), but also on

the prior distribution π(θ) of parameter θ. The expected value of the

predictive distribution is given by

E(Y |x) =

∫
y f(y|x) dy

=

∫
y

(∫
f(y|θ)π(θ|x) dθ

)
dy

=

∫ (∫
yf(y|θ) dy

)
π(θ|x) dθ

=

∫
E(Y |θ)π(θ|x) dθ. (2.44)
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Example 2.9 (continued). Consider the gamma sampling model with

a known shape parameter. From (2.43), the Bayesian predictive distri-

bution is

f(y|x) =

∫ ∞
0

f(y|β) π(β|x) dβ

=
Γ(α0(n+ 1) + α1) βα2

2

Γ(α2)Γ(α0)

yα0−1

(y + β2)
α0(n+1)+α1

, (2.45)

where α2 = α0n+ α1 and β2 = nx̄+ β1.

From (2.44), the expected value of a new observation is

E(Y |x) =

∫ ∞
0

α0

β
π(β|x) dβ

= α0
βα2

2

Γ(α2)

Γ(α2 − 1)

βα2−1
2

=
α0β2

α2 − 1
.

Under regularity conditions and for large sample size n, the

Bayesian and the frequentist predictive distributions f(y|x) and

f(y|θ̂(x)) are close each other. However, for small sample sizes these

distributions differ as the following simple example shows.

Example 2.11. Suppose X is a binary random variable with Bernoulli

distribution Be(x|θ) = θx(1 − θ)1−x for x = 0, 1 and 0 ≤ θ ≤ 1. The

random sample x = (x1, . . . , xn) from Be(x|θ) has distribution

f(x|θ) = θnx̄(1− θ)n−nx̄,

where nx̄ =
∑n
i=1 xi. The maximum likelihood estimator of θ is θ̂(x̄) =

x̄, and the frequentist predictive distribution

P̂r(y|x̄) = x̄y (1− x̄)
1−y

, y = 0, 1.

On the other hand, the Jeffreys objective prior for θ is the proper

Beta distribution with parameters (1/2, 1/2), that is

πJ(θ) =
1

π
θ−1/2(1− θ)−1/2, 0 < θ < 1.

The posterior distribution of θ conditional on the sample is given by

π(θ|x̄, n) =
Γ(n+ 1)

Γ(1/2 + n− nx̄)Γ(1/2 + nx̄)
θnx̄−1/2(1− θ)n−nx̄−1/2.
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Then, the Bayesian predictive distribution for the Jeffreys prior is given

by the probability function

Pr(y|x̄, n) =
Γ(3/2 + n− nx̄− y)Γ(1/2 + nx̄+ y)

(n+ 1)Γ(1/2 + n− nx̄)Γ(1/2 + nx̄)
, y = 0, 1.

Values of the Bayesian and frequentist predictive distributions for

x̄ = 0.2 and n = 5, 10, 15, 20, 25, 30 are given in the second and third

rows, in Table 2.3.

TABLE 2.3

Bayesian predictive probability for y = 1 (second row), and frequentist

predictive probability for y = 1 (third row).

(x̄, n) (0.2, 5) (0.2, 10) (0.2, 15) (0.2, 20) (0.2, 25) (0.2, 30)

Pr(y = 1|x̄, n) 0.25 0.23 0.22 0.21 0.21 0.21

P̂r(y = 1|x̄) 0.20 0.20 0.20 0.20 0.20 0.20

These numbers show that the difference between these predictive

distributions is large when the sample size n is small, and the difference

decreases as n increases.

We observe that the frequentist predictive distribution depends on

the MLE but it does not explicitly depend on the sample size n. How-

ever, P̂r(y|x̄) and Pr(y|x̄, n) have a consistent asymptotic behavior.

When sampling from Be(x|θ0) we have that

lim
n→∞

P̂r(y = 1|x̄) = lim
n→∞

x̄ = θ0, [Pθ0 ],

and

lim
n→∞

Pr(y = 1|x̄, n) = lim
n→∞

3
2 n
−1 + x̄

1 + 3n−1
= lim
n→∞

x̄ = θ0, [Pθ0 ].

The Bayesian predictive distribution depends on the prior distri-

bution we are using, and an alternative to the Jeffreys prior is the

uniform prior πU (θ) = 1(0,1)(θ), which was originally utilized by Bayes
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(1763). However, the predictive distribution for the uniform prior and

the Jeffreys prior are very close each other. Other priors can be used,

although the Jeffreys and the uniform are by far the most utilized priors

for binary data.

There are more sophisticated versions of the frequentist predictive

distribution that we do not bring here. References on this topic include

Komaki (1996) and Corcuera and Giummolè (1999).

2.5 Bayesian model selection

Let M1 =
{
f(x|θ1), θ1 ∈ Θ1 ⊂ Rk

}
be a class of sampling models

for the random variable X, and x = (x1, . . . , xn) a sample from an

unknown distribution in the class. The integer k is called the di-

mension of the model, and an important question is whether this di-

mension can be reduced on the basis of the sampling information x,

that is, whether the set of models M1 can be restricted to a subset

M0 = {f(x|θ0), θ0 ∈ Θ0}, where Θ0 is a specified subset of Θ1. The

class of sampling models M0 is said to be nested in M1, that is, the

equality f(x|θ1) = f(x|θ0) if θ1 = θ0 holds.

This decision problem is called hypothesis testing or model selec-

tion. The reduced class of sampling model M0 is denoted as the null

hypothesis and the full class M1 as the alternative hypothesis.

The Bayesian formulation of these models needs prior distributions

for the model parameters and models, and hence the Bayesian model

can be written as

M0 :
{
f(x|θ0,M0), π(θ0,M0)},

and

M1 :
{
f(x|θ1,M1), π(θ1,M1)

}
,

where f(x|θj ,Mj) =
∏n
i=1 f(xi|θj ,Mj), j = 0, 1.
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In model selection we are not interested in estimating θ0 or θ1,

but we are interested in estimating model M0 and M1 based on the

information given by a sample x drawn from a sampling model in M1.

The usual model estimator is the model having the highest posterior

probability in the model space {M0,M1}.
For computing the posterior model probabilities we decompose the

priors as

π(θ0,M0) = π(θ0|M0)π(M0)

and

π(θ1,M1) = π(θ1|M1)π(M1),

where π(M0) + π(M1) = 1. Then, the distribution of the sample x

conditional on M0 is given by

m(x|M0) =

∫
Θ0

f(x|θ0,M0)π(θ0|M0) dθ0,

and on M1 by

m(x|M1) =

∫
Θ1

f(x|θ1,M1)π(θ1|M1) dθ1.

The marginal distributions m(x|M0) and m(x|M1) are the likelihoods

of M0 and M1 for the sample x.

From the Bayes theorem, the posterior probabilities of M0 and M1

in the model space {M0,M1} turn out to be

Pr(M0|x) =
m(x|M0)π(M0)

m(x|M0)π(M0) +m(x|M1)π(M1)
,

and

Pr(M1|x) = 1− Pr(M0|x).

The posterior model probability of M0 is usually written as

Pr(M0|x) =
π(M0)

π(M0) +B10(x)π(M1)
,

where

B10(x) =
m(x|M1)

m(x|M0)
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is the model likelihood ratio, and it is called the Bayes factor to com-

pare model M1 versus M0. We note that the Bayes factor contains all

the sampling information for model selection, and it does not depend

on the prior probabilities of the models.

The objective prior distribution typically used for the models

{M0,M1} is the uniform prior

π(M0) = π(M1) =
1

2
.

To simplify, π(θj |Mj) will be denoted by π(θj) for j = 0, 1.

Unfortunately, the objective reference priors for the model parame-

ters π(θ0) and π(θ1) are typically improper, and hence the Bayes factor

for those priors is defined up to an arbitrary positive multiplicative

constant. Thus, the posterior model probabilities are defined up to an

arbitrary positive constant.

A solution to this problem consists of replacing the objective refer-

ence priors with the so–called intrinsic priors for model selection that

we introduce in the next section.

2.5.1 Intrinsic priors for model selection

A way of converting improper priors for model parameters π(θ0) and

π(θ1) into priors suitable for model selection was given by Berger and

Pericchi (1996a) and further explored by Moreno (1997) and Moreno

et al. (1998). For a review of model selection see Lahiri (2001).

The so–called intrinsic priors for model selection are constructed

in two steps. In a first step the intrinsic prior for θ1, conditional on θ0,

is defined as

πI(θ1|θ0,m) = π(θ1)Ey|θ1,M1

f(y|θ0,M0)

m(y|M1)
, (2.46)

where the random vector y = (y1, . . . , ym) is the training sample, m

is the training sample size, f(y|θ0,M0) =
∏m
j=1 f(yj |θ0,M0), the ex-

pectation is taken with respect to f(y|θ1,M1) =
∏m
j=1 f(yj |θ1,M1),

and

m(y|M1) =

∫
Θ1

f(y|θ1,M1)π(θ1) dθ1.
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It is easy to show that πI(θ1|θ0,m) is a probability density for any

training sample size m such that

0 <

∫
Θ1

f(y|θ1,M1)π(θ1) dθ1 <∞.

In fact,∫
Θ1

πI(θ1|θ0,m) dθ1 =

∫
Θ1

π(θ1)

(∫
Xm

f(y|θ0,M0)f(y|θ1,M1)

m(y|M1)
dy

)
dθ1

=

∫
Xm

f(y|θ0,M0)

m(y|M1)

(∫
Θ1

f(y|θ1,M1)π(θ1) dθ1

)
dy

=

∫
Xm

f(y|θ0,M0)

m(y|M1)
m(y|M1) dy

=

∫
Xm

f(y|θ0,M0) dy = 1.

In a second step the unconditional intrinsic prior for θ1 is obtained

from πI(θ1|θ0,m) integrating out θ0, that is,

πI(θ1|m) =

∫
Θ0

πI(θ1|θ0,m)π(θ0) dθ0.

The pair of priors {π(θ0), πI(θ1|m)} is called the intrinsic priors for

model selection in the model space {M0,M1}. It is easy to see that even

when the unconditional intrinsic priors are defined up to the arbitrary

multiplicative constant c0, the posterior model probability Pr(M0|x)

and Pr(M1|x) for intrinsic priors are well defined.

Model selection for intrinsic priors has been proved to enjoy excel-

lent behavior for moderate and large sample sizes (Casella and Moreno,

2006; Moreno et al., 2015, and references therein). Therefore, for model

selection, intrinsic priors are strongly recommended.

The intrinsic priors depend on the training sample size m and the

problem of choosing it has been considered by Berger and Pericchi

(1996a), Casella and Moreno (2006), and León–Novelo et al. (2012),

among others. The original proposal by Berger and Pericchi was to

choose m with a minimal size such that the marginals m(y|M0) and

m(y|M1) are finite and greater than zero.
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Another proposal consists of choosing m such that the conditional

intrinsic prior πI(θ1|θ0,m) satisfies a given condition to be fixed for the

specific problem. For instance, in a meta–analysis context, a specific

value of the linear correlation between the parameters θ1 and θ0 was

imposed (Moreno et al., 2014).

Let us illustrate, on a normal example, the construction of the in-

trinsic priors.

Example 2.12. Let M1 : {N (x|µ, τ2), (µ, τ) ∈ R×R+} be the family

of normal sampling models with unknown mean and variance. Suppose

that we are interested in the model selection between model M1 and

model M0 : {N (x|µ0, σ
2), σ ∈ R+} where µ0 is a fixed point. This

model selection problem is equivalent to testing the null H0 : µ = µ0

versus H1 : µ ∈ R.
The Bayesian formulation of this problem is the model selection

between model

M0 : {N (x|µ0, σ
2), π(σ)},

and

M1 : {N (x|µ, τ2), π(µ, τ)},

where

π(σ) =
c0
σ

1R+(σ),

and

π(µ, τ) =
c1
τ

1R×R+(µ, τ),

are the reference priors for σ and (µ, τ), and c0 and c1 are arbitrary

positive constants. We also assume that

π(M0) = π(M1) =
1

2
.

Applying the expression (2.46) for the training sample size m = 2,

the intrinsic prior for (µ, τ), conditional on (µ0, σ), turns out to be

πI(µ, τ |µ0, σ,m = 2) = N
(
µ|µ0,

τ2 + σ2

2

)
HC+(τ |0, σ),
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where HC+(τ |0, σ) represents the half Cauchy distribution with loca-

tion parameter 0 and scale parameter σ, that is,

HC+(τ |0, σ) =
2

π

σ

τ2 + σ2
.

Integrating out σ in πI(µ, τ |µ0, σ) with respect to π(σ), the uncondi-

tional intrinsic prior turns out to be

πI(µ, τ |µ0,m = 2) =

∫ ∞
0

πI(µ, τ |µ0, σ,m = 2)π(σ) dσ

= c0
2

π

∫ ∞
0

N
(
µ|µ0,

τ2 + σ2

2

)
1

τ2 + σ2
dσ.

If we substitute the reference prior π(µ, τ) with the intrinsic prior

πI(µ, τ |µ0,m = 2), the Bayesian model selection problem becomes that

of choosing between model

M0 :
{
N (x|µ0, σ

2), π(σ)
}

and model

M1 :
{
N (x|µ, τ2), πI(µ, τ |µ0,m = 2)

}
.

This problem has a well–defined solution. Indeed, for the sample

x = (x1, . . . , xn) from a unknown model in M1, the marginal of the

data x, conditional on M0, turns out to be

m(x|M0) =
1

2πn/2
Γ(n/2)

(n(s2 + (x̄− µ0)2))n/2
(2.47)

and conditional on M1

m(x|M1) =
2n/2Γ(n/2)

(
√

2π)n
√
n π

I(x̄, s2, n),

where

I(x̄, s2, n) =

∫ π/2

0

K1(ϕ, x̄, s2, n)K2(ϕ, x̄, s2, n) dϕ,

with

K1(ϕ, x̄, s2, n) =
1

sinn−1 ϕ
(
n+2
2n sin2 ϕ+ 1

2 cos2 ϕ
)1/2 ,
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and

K2(ϕ, x̄, s2, n) =

(
(x̄− µ0)2

n+2
2n sin2 ϕ+ 1

2 cos2 ϕ
+

ns2

sin2 ϕ

)−n/2
.

The integral on the interval (0, π/2) has no close form but numerically

it is easily solved.

Thus, the posterior probability of model M0 is given by

Pr(M0|x) =
1

1 +B10(x)
, (2.48)

where

B10(x) =
m(x|M1)

m(x|M0)

=
2I(x̄, s2, n)

π
√
n

[ns2 + n(x̄− µ0)2]n/2. (2.49)

We use simulated data from a normal distribution to illustrate the

performance of the Bayesian model selection for the intrinsic priors in

Example 2.12. We also compared the conclusions from this Bayesian

procedure with those from the p−values of the Student t test.

Example 2.12 (continued). We fix µ0 = 0 and hence the Bayesian

models to be compared are

M0 :
{
N (x|0, σ2), π(σ) =

c0
σ

}
,

and

M1 :

{
N (x|µ, τ2), N

(
µ|0, τ

2 + σ2

2

)
HC+(τ |0, σ)

}
.

We assume the model prior

π(M0) = π(M1) =
1

2
,

and compute the posterior probability of model M0 given in (2.48) for

a simulated sample of size n = 30 from the null distribution N (x|0, 1).

For these data we also compute the p−value for the testing problem

H0 : µ = 0 versus H1 : µ ∈ R
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using the well–known t test.

We repeat the simulation 100 times and compute the mean across

simulations of the posterior probability of model M0 and the mean of

the p−values. These mean values are displayed in the third row of Table

2.4.

On the other hand, we do the same calculations for simulated sam-

ples from the alternative model N (x|1, 1), and the mean across simu-

lations of the posterior probability of model M0 and the mean of the

p−values are displayed in the last row of Table 2.4.

From Table 2.4 it follows that when sampling from a null model,

both the Bayesian and the frequentist procedures accept the null model.

The uncertainty of this acceptance is given by a posterior probability

of the null as large as 0.8, and a large p−value equal to 0.44. On the

other hand, when sampling from an alternative model, the conclusion

from the Bayesian and frequentist procedures differ. While the Bayesian

procedure rejects the null with probability close to 1, the frequentist

procedure accepts the null with a p−value as large as 0.16.

TABLE 2.4

Mean of the posterior probability of model M0 and p−values across

simulations.

Sampling from the null N (x|0, 1)

Pr (M0|x) p−value

0.80 0.44

Sampling from the alternative N (x|1, 1)

Pr (M0|x) p−value

≈ 0.00 0.16

The discrepancy between the conclusions from the Bayesian and

the frequentist procedures for sharp null hypothesis has been well doc-

umented in the literature (Berger, 1985). Berger assumed that τ = σ
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and compared p−values from the normal distribution for specific values

of

z =
√
n
|x̄|
τ
,

with the posterior probability of M0 as a function of τ and n. He ob-

served that while samples for which the null is rejected with a given

p−value, for instance for z = 1.96 the p−value is 0.05, the posterior

probability of the null for any prior distribution on µ and any τ do not

support this conclusion.

For the case of testing a point null hypothesis from a normal pop-

ulation with known variance, Berger (1985), page 151, Table 4.2, ob-

serves that frequentist tests tend to reject the null hypothesis even when

its posterior probability is quite substantial (for large samples, n ≥ 50,

this probability is greater than 0.5).

Table 2.4 illustrates that the discrepancy also persists for not nec-

essarily sharp null hypotheses.

The main justification of the intrinsic priors has been to convert

improper priors into priors suitable for model selection. However, the

intrinsic priors are also useful when the reference priors are not im-

proper. Intrinsic priors for proper priors have been used for testing

the equality of two correlated proportions (Consonni and La Rocca,

2008), for studying Bayesian robustness in contingency testing prob-

lems (Casella and Moreno, 2009), in the Hardy–Weinberg equilibrium

testing problem (Consonni et al., 2011), for comparing nested models

for discrete data (Consonni et al., 2013) and for constructing copulas

in Bayesian meta–analysis (Moreno et al., 2014).

Extension

Many applications of model selection involve classes of sampling

models M = {f(x|θ0,M0), . . . , f(x|θk,Mk)} with a number of models

k greater than one. Variable selection in linear regression and clustering

are two important examples of model selection problems in which the

number of models k is larger than 1. The extension of the Bayesian
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formulation of the model selection problem to this case is immediate.

The Bayesian models are

Mi : {f(x|θi,Mi), π(θi|Mi)π(Mi)}, i = 0, . . . , k,

where the prior for model satisfies
∑k
i=0 π(Mi) = 1. For a sample x =

(x1, . . . , xn) from an unknown model inM, the likelihood of model Mi

is given by

m(x|Mi) =

∫
f(x|θi,Mi)π(θi|Mi) dθi,

and the posterior probability of Mi in M by

Pr(Mi|x) =
m(x|Mi)π(Mi)∑k
j=0m(x|Mj)π(Mj)

, i = 0, . . . , k.

The model selection rule is again to choose the model with the highest

posterior probability.

This Bayesian procedure enjoys very good statistical properties

when there is one model in the class M that is nested in the rest

of the models. If we assume that model M0 is nested in Mi for any

i = 1, . . . , k, it is convenient to write the posterior model probabilities

as

Pr(Mi|x) =
Bi0(x) π(Mi)/π(M0)

1 +
∑k
j=1Bj0(x)π(Mj)/π(M0)

, i = 0, . . . , k,

where

Bi0(x) =
m(x|Mi)

m(x|M0)

is the Bayes factor for comparing model Mi against M0. We note that

we have written the posterior model probabilities in terms of Bayes

factors for nested models. As a consequence, we can prove, for instance,

the consistency of the Bayes factor Bi0(x) for regular prior distributions

for the model parameters when sampling from eitherMi orM0. Further,

when sampling from f(x|θi,Mi) it follows that the posterior model

probabilities are consistent, that is,

lim
n→∞

Pr(Ms|x) =

1, if s = i,

0, if s 6= i
[Pθi ].
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When the prior for the model parameters π(θi|Mi) is improper

and thus it cannot be used for computing the likelihood of the model

m(x|Mi), i = 0, . . . , k, as typically happens for the reference priors, the

improper priors (π(θ0|M0), π(θi|Mi)) are replaced by the intrinsic priors

(π(θ0|M0), πI(θi|θ0,m)). The conditional intrinsic prior πI(θi|θ0,m) for

i = 1, . . . , k is computed using expression (2.47). The resulting poste-

rior model probabilities enjoy very good statistical properties (Moreno

et al., 2015). Examples of this intrinsic priors construction will be given

for clustering in Chapter 5 and for variable selection in Chapter 6.

2.6 The normal linear model

In this section we introduce the normal linear model, and a summary

of the frequentist and Bayesian estimations of their parameters. This is

a central model in subgroup cost–effectiveness analysis that we develop

in Chapter 6.

Definition 2.3. The random variable Y follows a normal linear model

if its distribution is normal N (y|µ, σ2) with mean

µ = β0 + β1x1 + . . .+ βkxk,

x1, . . . , xk being deterministic variables, and β0, . . . , βk real parameters.

This model is usually written as the linear function

Y = β0 + β1x1 + . . .+ βkxk + ε,

where ε is a random variable with distribution N (ε|0, σ2). The vari-

able Y is called the response variable, and the deterministic variables

x1, . . . , xk are called covariates, or regressors, and, as it is assumed that

the covariates explain most of the variability of the random variable Y ,

they are also called explanatory variables. The parameters β0, . . . , βk

are called regression coefficients, and σ2 the residual variance.
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2.6.1 Maximum likelihood estimators

Let y = (y1, . . . , yn)> be a column vector of n independent observations

of Y for the covariates (x1, . . . ,xn)>, where xi = (xi1, . . . , xik) for

i = 1, . . . , n.

Then, observation yi can be written as

yi = β0 +

k∑
j=1

βjxij + εi,

where xij is the j−th value of covariate xi, and εi a random nonob-

servable error. Thus, y is written as

y = Xβ + ε, (2.50)

where

X =


1 x11 . . . x1k

...
...

. . .
...

1 xn1 . . . xnk


is the design matrix of dimensions n× (k+1) , β = (β0, β1, . . . , βk)> is

the regression coefficient vector, and ε = (ε1, . . . , εn)> a random vector

of dimension n with the multivariate normal distributionNn(ε|0, σ2In),

where In is the identity matrix of dimensions n×n. It is assumed that

X is a full rank matrix, that is, X>X is a nonsingular squared matrix.

The likelihood of β and σ for the sample (y,X) is given by

`y,X(β, σ) = Nn(y|Xβ, σ2In) (2.51)

= σ−n exp

{
− 1

2σ2
(y −Xβ)>(y −Xβ)

}
.

Maximizing the likelihood function, the MLE of β and σ2 turns out to

be

β̂ =
(
X>X

)−1
X>y,

and

σ̂2 =
1

n
(y −Xβ̂)>(y −Xβ̂) =

y>(In −Hn)y

n
,

where Hn = X(X>X)
−1X> is known as the hat matrix.
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2.6.2 Bayesian estimators

To derive Bayesian estimators for the parameters we first complete the

sampling model with a prior distribution for β and σ2. Conjugate pri-

ors for the sampling model (2.51) are given by a multivariate Normal

distribution for β, conditional on σ2, and an Inverse–Gamma distribu-

tion for σ2. If we write π(β, σ2) = π(β|σ2)π(σ2) we have the conjugate

prior

π(β|σ2) = Nk+1

(
β|m, σ2V

)
,

π(σ2) = IG(σ2|a, b),

where m = (m0,m1, . . . ,mk)> is the prior mean of β, V the prior

covariance matrix of dimensions (k + 1) × (k + 1), and a and b are

positive hyperparameters. For the sample (y,X), the conjugate prop-

erty of π(β, σ2) makes it easy to compute the posterior distribution

π(β, σ2|y,X) which is given by

π(β|σ2,y,X) = Nk+1(β|m?, σ2V?),

and

π(σ2|y,X) = IG
(
σ2|a?, b?

)
,

where

m? =
(
X>X + V

)−1 (
X>y + Vm

)
,

V? = X>X + V,

a? = a+ n, (2.52)

and

b? =
1

a?

[
(y −Xβ̂)>(y −Xβ̂) + ab+ (m−m?)>V(m−m?)

+(β̂ −m?)>X>X(β̂ −m?)
]
. (2.53)

A pair of Bayesian estimators of β and σ2 are the posterior means

E(β|y,X) = m?,
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and

E(σ2|y,X) =
b?

a? − 1
.

We note that the conjugate family needs to elicit (k2 + 5k + 8)/2

hyperparameters, a serious elicitation problem.

A way of mitigating this elicitation problem is to use instead the

objective prior

π(β, σ) =
c

σk+2
1Rk+1×R+(β, σ)

where c is an arbitrary positive constant. This prior is improper, and

hence the constant c cannot be determined. The posterior distribution

of β and σ for this prior is given by

π(β|σ,y,X) = Nk+1

(
β|β̂, σ2X>X

)
,

and

π(σ2|y,X) = IG
(
σ2|n− (k + 1)

2
,

1

2
(y −Xβ̂)>(y −Xβ̂)

)
.

We note that the posterior mean of β coincides with the MLE β̂.

The fact that π(β, σ) is an improper prior leaves the marginal of

the data

m(y,X) = c

∫
Rk+1×R+

1

σk+2
Nn(y|Xβ, σ2In) dβ dσ

defined up to the arbitrary constant c. This makes this prior unsuitable

for model selection in linear models, and in particular for variable se-

lection. The alternative suggested by Berger and Pericchi (1996b) was

the use of the intrinsic Bayes factor, a tool that was the seed for the

definition of the intrinsic priors.

2.6.3 An outline of variable selection

Information on certain deterministic characteristics such as age, sex,

and some others related to a specific disease is typically available from

patients receiving a treatment. Linear models are adapted to this sit-

uation and thus they are of interest in cost–effectiveness analysis. In
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this setting arises the subgroup cost–effectiveness analysis (Sculpher

and Gafni, 2001; Sculpher, 2008; Espinoza et al., 2014). A subgroup of

patients is formed of patients sharing specified values of the covariates.

The optimal treatment for a given subgroup of patients now depends

on the covariates in the linear models, and hence it might not coincide

with the optimal treatment for the whole patient population. Therefore,

because the consideration of covariates improves the cost–effectiveness

analysis, an important task for finding the optimal treatment for sub-

groups is that of including in the linear model only those covariates that

do have an influence on the cost and the effectiveness of the treatments.

The statistical problem of selecting the influential covariates from

a potential set of them is an old and central problem in the statistical

literature on linear models, and it is known as the variable selection

problem. This problem has been given several alternative frequentist

and Bayesian solutions over the years. The solution proposed by the

objective Bayesian methodology will be presented in Chapter 6 where

the subgroup cost–effectiveness analysis is developed.
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3

Statistical decision theory

3.1 Introduction

In this chapter we provide the elements, fundamental concepts, and

basic results of the statistical decision theory. These results will be used

in the next chapters of the book. The statistical decision theory starts

with a space of alternative decisions D = {d} such that each decision

d has associated with it a reward so that we have the reward space

R = {rd : d ∈ D}, and the problem consists of choosing the decision

having the preferred reward in R, which is called the optimal decision.

In most of real applications of decision theory, the reward of a de-

cision is not deterministic but an observable random variable r which

is dictated by the decision problem. Thus, as r is a random variable,

it has to be described by a probability distribution, and the reward of

the decision d becomes the probability distribution Pd(r). Therefore,

in the space of rewards P = {Pd(r) : d ∈ D}, an ordering of preference

has to be given in order to choose an optimal decision.

It is really hard to figure out an ordering of preference between

probability distributions and it is not surprising that strong conditions

have to be imposed to achieve such an ordering. However, we cannot

escape from it.

A brief summary on how the ordering is defined is as follows. For

an arbitrary but fixed ordering of the distributions in the space P,

it is shown that there exists a utility function U(r) of the random

reward r valued in the real line that satisfies the faithful condition

for that ordering, that is, Pd′(r) is preferred to Pd′′(r) if and only if

93
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EPd′ (U) > EPd′′ (U), where EPd(U) denotes the expectation of U(r)

with respect to Pd(r), that is,

EPd(U) =

∫
r∈R

U(r) dPd(r), d ∈ D.

To obtain this result, the ordering of preference of the rewards must

satisfy a set of four rational behavior axioms. These axioms are dis-

cussed in the light of the consequences derived from them.

A rational decision maker is one who uses for decision making a

utility function. As a consequence, different rational decision makers

might use different utility functions depending whether they are either

adverse to the risk, lover risk, or hold an intermediate position.

The organization of the chapter is as follows. In Section 3.2 the ele-

ments of a decision problem and the ordering between reward distribu-

tions are formulated. In Section 3.3 it is assumed that the reward prob-

ability distributions in P are completely specified, and the existence of

the faithful utility function is presented. In Section 3.4 and 3.5 it is as-

sumed that the reward probability distributions in P are not completely

specified but they are parametric classes of probability distributions

Pd(r|θ), d ∈ D, where θ is an unknown parameter. In this case, either a

strategy to eliminate the unknown parameter θ is assumed, for instance

a minimax or a Bayesian strategy, or it is eliminated by assuming that

a sample (r1, . . . , rn) from Pd(r|θ) is available. The reason to impose

the latter assumption is that now the decision–making procedure in the

presence of sampling information can employ tools of statistical infer-

ence to manage the uncertainty in θ. In this case, both the frequentist

and the Bayesian statistical inference approaches are considered.

3.2 Elements of a decision problem

A decision problem arises when one has a space of decisions D ={
d1, . . . , dk

}
, and the choice of decision di yields a reward ri for

i = 1, . . . , k, that is not necessarily a monetary real quantity.
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Although the decision space D could be continuous, we keep in mind

that the decision problem we are interested in is that of choosing a med-

ical treatment among a finite collection of treatments whose rewards

are defined in terms of their cost and effectiveness. Thus, we restrict

ourselves to finite decision spaces.

The problem consists of choosing a decision in D having the pre-

ferred reward. In this section we introduce the elements of a statistical

decision problem, the notion of preference between rewards, and the

standard methodology for making optimal decisions.

3.2.1 Ordering rewards

We assume that for any i = 1, . . . , k, the reward of the decision di is

a point ri that belongs to the reward space R, which is usually either

the space Rp for p ≥ 1, where R is the real line, or a discrete subset of

Rp. Because of the need to establish a preference between rewards, we

assume that there exists a binary relationship � in R such that any

pair of rewards r1 and r2 in R can be compared.

We shall write r1 ≺ r2 if r2 is preferred to r1, r1 � r2 if r1 is

not preferred to r2, and r1 ∼ r2 if r1 and r2 are equivalent. We also

assume that the binary relationship � provides a complete ordering in

the space R. This means that the binary relationship � satisfies the

following three properties:

I. For any two rewards r1 and r2, only one of the relationships

r1 ≺ r2, r2 ≺ r1, r1 ∼ r2,

holds.

II. If r1 and r2 are such that r1 � r2 and r2 � r1, then r1 ∼ r2.

III. If r1, r2 and r3 are such that r1 � r2 and r2 � r3, then r1 � r3.

The existence of the binary relationship � in R satisfying I–III

implies that (R, �) is an ordered space.
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Given that the choice of a decision di provides the reward ri for any

i = 1, . . . , k, the optimal decision is clearly the one that corresponds

to the most preferred reward. That is, dj is the optimal decision with

respect to the binary relationship � if ri � rj for any i = 1, . . . , k.

3.2.2 Lotteries

For most practical decision problems, the reward of a decision d is rarely

a fixed reward r, but typically r is a random reward that follows a given

probability distribution Pd(r) for r ∈ R. Thus, we will assume that any

decision di ∈ D has associated a probability distribution Pi(r) on R.

This reward distribution is also called a lottery.

In what follows, by (R,A, P ) we denote a probability space on the

set of rewards R, where A is a class of subsets of R, and P a probability

distribution. The class A is a σ−field, which is a class that is closed

with respect to countable unions and complementations of sets in A.

For instance, when we choose a treatment Ti from the set of

alternative treatments
{
T1, . . . , Tk

}
in a cost–effectiveness analysis,

the reward we obtain is a probability distribution of the effective-

ness and cost of the treatment. A frequent case is the one where the

effectiveness of treatment Ti is independent of the cost and it fol-

lows a Bernoulli distribution with probability of success θi, that is,

Be(e|θi) = θei (1 − θi)1−e for e = 0, 1 and 0 ≤ θi ≤ 1. Assuming that

the probability distribution of the cost of the treatment is lognormal

Λ(c|µi, σ2
i ), the lottery we obtain when choosing treatment Ti is given

by Pi(c, e|µi, σi, θi) = Λ(c|µi, σ2
i )Be(e|θi), a probability distribution in

the σ−field A = B+ × {0, 1}, where B+ is the Borel σ−field in R+. If

we assume that the parameters µi, σi and θi are known, the lottery is

fully determined, and otherwise a strategy for eliminating them from

the lottery is needed.

In this section we assume that the lottery of any decision is fully

determined, and the situation where lotteries are not fully determined

is discussed in Sections 3.3 and 3.4.
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In what follows, the space of rewards P is the space of all distribu-

tions on R so that P contains the lotteries Pi(r) for i = 1, . . . , k, and

also any reward r ∈ R which is considered as the Dirac’s distribution

δr(r
′) on point r, r′ ∈ R.
On the set of lotteries P we assume that there exists a binary rela-

tionship of preference between them that we denote as �∗. This means

that for two arbitrary distributions P1 and P2 in P we can write P1 ≺∗

P2 if P2 is preferred to P1, P1 �∗ P2 if P1 is not preferred to P2, and

P1 ∼∗ P2 if P1 and P2 are equivalent. We note that the binary relation-

ship �∗ coincides with � for the degenerated rewards δr(r
′) ≡ r in R.

We assume that the binary relationship �∗ satisfies the following

three properties:

I∗. For any two rewards P1 and P2, only one of the following three

relationships

P1 ≺∗ P2, P2 ≺∗ P1, P1 ∼∗ P2,

holds.

II∗. If P1 and P2 are such that P1 �∗ P2 and P2 �∗ P1, then

P1 ∼∗ P2.

III∗. If P1, P2, and P3 are such that P1 �∗ P2 and P2 �∗ P3, then

P1 �∗ P3.

The existence of the binary relationship �∗ in P satisfying I∗–III∗

implies that (P,�∗) is an ordered space.

One may think that the set of assumptions I∗–III∗ are a very de-

manding set of assumptions. This is particularly true for assumption

I∗, which is really a strong assumption, although strong conditions are

necessary for rational decision making.

3.2.3 The utility function

Let (R,A, P ) be a probability space on the set of rewards R. Given an

A−measurable real function U(r) defined on the reward space R, the
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expectation of U(r) with respect to P (r) is the integral of U(r) with

respect to the probability distribution P (r), and it is denoted as

EP (U) =

∫
R
U(r) dP (r). (3.1)

We are interested in a special class of functions U(r) defined on

the probability space (R,A, P ), for P belonging to the ordered set of

distributions (P,�∗). The members of this special class of functions

are called utility functions, and are defined as follows.

Definition 3.1. A real–valued function U(r) : R −→ R is a utility

function if for any pair of distributions P1, P2 ∈ P such that EP1(U) <

∞ and EP2(U) <∞, the equivalence

P1 �∗ P2 ⇐⇒ EP1(U) ≤ EP2(U) (3.2)

holds.

The expectation EP (U) is called the utility of P , and for any de-

generate reward r ∈ R the real number U(r) is the utility of r.

The existence of a utility function U(r) means that the ordering of

the real numbers
{
EP (U), P ∈ P

}
is equivalent to the ordering of

the lotteries in the space (P,�∗). Thus, given a decision problem, it is

of utmost importance to establish conditions under which there exists

a utility function U(r), a point that we discuss in the next section.

As a consequence of the existence of a utility function U(r) we note

that

r1 � r2 ⇐⇒ U(r1) ≤ U(r2)

since the degenerate distributions δr1(r) and δr2(r) are in P.

We also note that for any function W (r) = aU(r) + b, where a > 0

is an scale parameter and b a location parameter, we have that

EP1
(W ) ≤ EP2(W )⇐⇒ EP1(U) ≤ EP2(U).

This equivalence means that any linear combination of a utility function

is also a utility function. Consequently, a utility function is defined up

to a scale and location parameters.
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3.3 Axioms for the existence of the utility function

The purpose of the utility theory is to establish a set of conditions

on the binary relationship �∗ in the space of lotteries P such that a

unique utility function U(r) can be constructed. The first set of axioms

on �∗ to guarantee the existence of a utility function were given by von

Neumann and Morgenstern (1944), and the axioms we give below have

been taken from the book by DeGroot (1970). We refer the reader to

this book for a more detailed development of the utility theory.

Axiom 1. Let P1, P2 and P be three distributions in P. Let 0 < α < 1.

Then,

P1 ≺∗ P2 ⇐⇒ αP1 + (1− α)P ≺∗ αP2 + (1− α)P.

The meaning of Axiom 1 is that a common part of a mixture of

distributions does not alter the sign of the binary relationship. An im-

portant consequence of this axiom is that for two rewards such that

r1 ≺ r2 and any α ∈ (0, 1) we have that r1 ≺ αr2 + (1 − α)r1 ≺ r2.

We note that the mixture αr2 + (1−α)r1 is a lottery whose meaning is

that reward r2 is obtained with probability α and r1 with probability

1− α.

Axiom 2. Let P1, P2 and P be three distributions in P such that P1 ≺∗

P ≺∗ P2. Then, there exist two numbers α, β ∈ [0, 1] such that

P ≺∗ αP1 + (1− α)P2 and P �∗ βP1 + (1− β)P2.

An important consequence of this axiom is that if the preference

relationship r1 ≺ r ≺ r2 holds, it is not enough to avoid that r ≺∗

αr2 + (1 − α)r1 for a value α ∈ (0, 1). Following DeGroot (1970) this

means that there is no “heaven” in R. Similarly, even when r1 is less

preferred to r it is not enough to avoid that r �∗ βr2 + (1− β)r1 for a

value β ∈ (0, 1). That is, there is no “hell” in R.
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A consequence of Axioms 1 and 2 is that if r1 � r � r2, there exists

a unique number γ(r) ∈ [0, 1] such that

r ∼∗ γ(r)r2 + (1− γ(r))r1 . (3.3)

This result allows us to define a function U(r) as follows.

Step 1. We first consider two reference rewards s0 and t0 such that s0

≺ t0, and then proceed defining,

Step 2.

a) For each r such that s0 � r � t0,

U(r) = α,

where α is the unique number such that r ∼∗ αt0 + (1−α)s0.

We note that U(s0) = 0 and U(t0) = 1.

b) For each r such that r ≺ s0 ≺ t0,

U(r) = − α

1− α
,

where α is the unique number such that s0 ∼∗ αt0 + (1−α)r.

c) For each r such that s0 ≺ t0 ≺ r,

U(r) =
1

α
,

where α is the unique number such that t0 ∼∗ αr+ (1−α)s0.

A function U(r) thus defined can be shown to be “linear,” that is,

for any three rewards r1, r2, r3 ∈ R such that r2 ∼∗ γr3 + (1− γ)r1 it

follows that

U(r2) = γU(r3) + (1− γ)U(r1).

Axiom 3. For any three rewards r1, r2, r3 ∈ R and any α, β ∈ [0, 1],

the set of rewards A(α, β) = { r : αr + (1− α)r1 �∗ βr2 + (1− β)r3}
is a measurable set, that is,

A(α, β) ∈ A.
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The consequence of this measurability Axiom 3 is that the utility

function U(r) defined above is an A−measurable function, so that the

expectation with respect to the distribution P defined on A is well

defined.

So far, U(r) has been defined with respect to the reference rewards

s0 and t0, with s0 ≺ t0, and hence U(s0) = 0 and U(t0) = 1. To define

the utility with respect to an arbitrary pair of rewards r1 and r2 such

that r1 ≺ r2 we can proceed as follows. First, we note that for any

r ∈ [r1, r2] = {r : r1 � r � r2} there exits a unique number γ(r) such

that

r ∼∗ γ(r)r2 + (1− γ(r))r1.

Further, the number γ(r) can be written in terms of U(r) defined above.

Indeed, from U(r) = γ(r)U(r2) + (1− γ(r))U(r1), we have that

γ(r) =
U(r)− U(r1)

U(r2)− U(r1)
.

This suggests that any P would be equivalent to βr2 + (1−β)r1 for an

appropriate β. This β would be

β =

∫
[r1,r2]

γ(r) dP (r).

This is formalized in the following Axiom 4.

Axiom 4. Let P be a distribution such that P [r1, r2] = 1. Then, we

accept that

P ∼∗ βr2 + (1− β)r1,

where β =
∫

[r1,r2]
γ(r) dP (r).

The main consequence of Axiom 4 is that we can write P in terms

of r1 and r2 as

P ∼∗ EP (U)− U(r1)

U(r2)− U(r1)
r2 +

U(r2)− EP (U)

U(r2)− U(r1)
r1.

Under Axioms 1 to 4 it can be proved that for two distributions P1

and P2 in P such that EP1(U) <∞ and EP2(U) <∞, we have that

P1 �∗ P2 ⇐⇒ EP1
(U) ≤ EP2

(U).
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Since the utility function is defined except for a location and scale

parameter, without loss of generality we can assume that the utility

function is valued in the positive part of the real line, that is U(r) :

R −→ R+.

Another consequence of the above developments is that if one has

a utility function U(r) for a decision problem, the optimal decision d is

the one having the reward P that maximizes the expected utility, that

is

EP (U) = sup
Q∈P

EQ(U). (3.4)

3.4 Criticisms of the utility function

Despite numerous criticisms, the utility theory framework has been

accepted by the vast majority of decision makers. An acute criticism of

the existence of a utility function is presented in the following example

given by Allais (1953).

The example assumes a monetary reward space with three elements

R = {r1, r2, r3}, where r1 = $2,500,000, r2 = $500,000 and r3 = $0,

and a utility function U(r) such that

U($2,500,000) > U($500,000) > U($0).

Let us consider the two lotteries, one given by

P1(r) =


0, if r = r1,

1, if r = r2,

0, if r = r3,

for which we get $500, 000 with probability 1, and a second given by

P2(r) =


0.10, if r = r1,

0.89, if r = r2,

0.01, if r = r3,
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for which we get $2,500,000 with probability 0.10, $500,000 with prob-

ability 0.89, and $0 with probability 0.01. The utility of the lotteries

P1 and P2 are

EP1(U) = U($500,000),

and

EP2(U) = 0.01 U($0) + 0.10 U($2,500,000) + 0.89 U($500,000).

On the other hand, let us consider two more lotteries

P3(r) =


0.00, if r = r1,

0.11, if r = r2,

0.89, if r = r3,

and

P4(r) =


0.10, if r = r1,

0.00, if r = r2,

0.90, if r = r3.

.

The utility of P3 and P4 are

EP3(U) = 0.89 U($0) + 0.11 U($500,000),

EP4(U) = 0.90 U($0) + 0.10 U($2,500,000).

We note that EP2(U) − EP1(U) = EP4(U) − EP3(U), and hence it is

satisfied that

EP2(U) > EP1
(U) ⇐⇒ EP4

(U) > EP3(U).

From this equivalence, it follows from the utility theory that P2 is

preferred to P1 if and only if P4 is preferred to P3. One can argue that

under P1 a gain of $500,000 is obtained with probability 1, and that

the reward P2 has a positive probability of gain $0. Then it might be

that for many people P1 �∗ P2. This implies that for these people, P3

should be preferred to P4.
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However, one might think that P4 has only a slightly greater

probability of getting $0 than P3, whereas the probability of gaining

$2,500,000 is much larger under P4 than under P3, so that for many

people, P4 is preferred to P3, and at the same time they prefer P1 to P2.

This behavior contradicts the ordering of the lotteries given by the

utility function U(r), and suggests that the ordering of the lotteries

might depend on something more than the utility U(r) of the degen-

erate rewards r ∈ R. Further discussion of this contradiction can be

found in Savage (1954) and DeGroot (1970).

3.5 Lotteries that depend on a parameter

So far the lotteries Pi(r), i = 1, . . . , k were fully determined. However,

as we mentioned at the beginning of Section 3.1, in most decision prob-

lems, the reward we obtain when making the decision di ∈ D is not

fully determined but it depends on a nonobservable parameter θi ∈ Θ.

Thus, the probability distribution Pi(r) now becomes Pi(r|θi).
In this setting, the expectation of the utility function U(r) with

respect to the reward Pi(r|θi) of the decision di is defined up to the

unknown parameter θi, that is, the utility of the lottery Pi becomes

ϕ(di|θi) =

∫
R
U(r) dPi(r|θi). (3.5)

As a consequence, two decisions di and dj are not comparable be-

cause the utility of their rewards are functions of θi and θj , respectively,

unless the utility of one lottery is uniformly greater than the utility of

the other lottery. For instance, if ϕ(dj |θj) ≥ ϕ(di|θi) for any θi and θj

in Θ, then dj is preferred to di. In this case it is said that dj domi-

nates di, and di is said to be an inadmissible decision. The subset of

inadmissible decisions must be suppressed from the decision space.

The class with no inadmissible decision is called the admissible

class of decisions. Consequently, for any two decisions di and dj in
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the admissible class the utility of their rewards Pi(r|θi) and Pj(r|θj)
are not comparable. In the following sections, two strategies to deal

with this situation are presented.

3.5.1 The minimax strategy

It is usual in statistical decision theory to consider the loss function

L(r), which is defined as minus the utility function, that is

L(r) = −U(r), r ∈ R.

The minimax strategy consists of selecting a decision, called a min-

imax decision, which is obtained as follows. The expectation of the loss

function L(r) with respect to the lottery Pi(r|θi) is called the risk of

the decision di, that is

ρ(di|θi) =

∫
r∈R
L(r) dPi(r|θi).

The idea is to first maximize the risk ρ(di|θi) with respect to θi ∈ Θ,

that is

ρ̂(di) = sup
θi∈Θ

ρ(di|θi),

for i = 1, . . . , k. Then, the maximized risks of the possible decisions

{ρ̂(di), i = 1, . . . , k} are minimized. This strategy means that we are

being “pessimistic” with respect to the unknown parameters {θi, i =

1, . . . , k} as the worst possible parameter values are being accepted.

Thus, the minimax decision in the class {d1, . . . , dk} is dj if the

equality

ρ̂(dj) = min
i=1,...,k

ρ̂(di)

holds.

3.5.2 The Bayesian strategy

Given the set of lotteries {Pi(r|θi), θi ∈ Θ, i = 1, . . . , k}, the Bayesian

strategy first completes the lotteries by assigning a prior probability

distribution πi(θi) to parameter θi. Then, the Bayesian risk of decision
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di is defined as the expectation with respect to πi(θi) of the risk function

ρ(di|θi), that is,

ρ(di, πi) =

∫
Θ

ρ(di|θi)πi(θi) dθi. (3.6)

This can be also written as

ρ(di, πi) =

∫
θi∈Θ

∫
r∈R
L(r) dPi(r|θi) πi(θi) dθi. (3.7)

The optimal Bayesian decision for the priors {πi(θi), i = 1, . . . , k},
is the decision that minimizes the risks {ρ(di, πi), i = 1, . . . , k}. Thus,

dj is an optimal Bayesian decision if the equation

ρ(dj , πj) = min
i=1,...,k

ρ(di, πi)

holds.

3.5.3 Comparison

The risk of the Bayesian optimal decision is smaller than or equal to

the risk of the minimax decision. Indeed, for decision di and any prior

distribution πi(θi) we have that its Bayesian risk satisfies

ρ(di, πi) =

∫
Θ

ρ(di|θi)πi(θi) dθi ≤ sup
θi∈Θ

ρ(di|θi)
∫

Θ

πi(θi) dθi

= sup
θi∈Θ

ρ(di|θi) = ρ̂(di),

for i = 1, . . . , k. Thus, it follows that

min
i=1,...,k

ρ(di, πi) ≤ min
i=1,...,k

ρ̂(di).

This means that the risk of the minimax strategy is unnecessarily large.

We mention in passing the interesting result that the class of admis-

sible decisions are either Bayesian decisions or the limit of sequences of

Bayesian decisions. This result was proved by Wald (1971) and confirms

the assertion that the Bayesian is preferred to the minimax strategy.
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3.6 Optimal decisions in the presence of sampling

information

In the preceding sections we did not use any empirical information

on the reward distribution {Pi(r|θi), θi ∈ Θ}, i = 1, . . . , k. However,

in decision problems there are typically available samples from these

distributions. For instance, when we consider the problem of choosing

a treatment Ti among a set of alternative treatments {T1, . . . , Tk}, it is

usual that we have samples of the effectiveness and cost from patients

under the treatments. This information can be employed for eliminating

the unknown parameters {θ1, . . . , θk} from the lotteries.

Therefore, we consider the situation in which there is an experiment

providing sampling information ri = (ri1, . . . , rini) of size ni from the

distribution Pi(r|θi), i = 1, . . . , k. Then, the likelihood of the parameter

θi for the sample ri is given by

Pi(ri|θi) =

ni∏
j=1

Pi(rij |θi). (3.8)

At this point we have two alternative procedures for incorporating the

sample information into the decision making that we briefly describe

in the next two subsections.

3.6.1 The frequentist procedure

This procedure is based on the maximum likelihood estimator θ̂i =

θ̂i(ri) of θi, given by

θ̂i = arg sup
θi∈Θi

P (ri|θi),

for i = 1, . . . , k. The frequentist procedure simply plugs in θ̂i in the

original set of lotteries P =
{
Pi(r|θi), i = 1, . . . , k

}
that is replaced by

the estimated set of lotteries

P ′ =
{
Pi(r|θ̂i), i = 1, . . . , k

}
.
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We note that Pi(r|θ̂i) is the predictive lottery for the data ri, introduced

in Section 2.4. The expected utility of Pi(r|θ̂i) is given by

ϕ(di|θ̂i) =

∫
R
U(r) dPi(r|θ̂i).

In this setting, decision dj is optimal if the equality

ϕ(dj |θ̂j) = max
i=1,...,k

ϕ(di|θ̂i)

holds. Thus, the optimal decision dj depends on the data
{
ri, i =

1, . . . , k
}

through the maximum likelihood estimators
{
θ̂i(ri), i =

1, . . . , k
}

.

3.6.2 The Bayesian procedure

Let πi(θi) be a prior distribution of parameter θi of the lottery Pi(r|θi),
i = 1, . . . , k. The Bayesian procedure for incorporating the sampling

information
{
ri, i = 1, . . . , k

}
into the decision problem is based on the

posterior distribution of θi

πi(θi|ri) =
Pi(ri|θi)πi(θi)∫

Θ
Pi(ri|θi)πi(θi)dθi

,

where Pi(ri|θi) is the likelihood of θi in (3.8).

We now proceed to integrate out θi from the reward distribution

Pi(r|θi) using the posterior distribution of θi, and lottery Pi(r|θi) be-

comes

Pi(r|ri) =

∫
Θ

Pi(r|θi)πi(θi|ri)dθi.

This reward is simply the predictive lottery, Section 2.4, conditional on

ri, of the Bayesian lottery (Pi(r|θi), πi(θi)).

Then, instead of considering the undetermined lotteries P =

{Pi(r|θi), i = 1, . . . , k}, we consider the predictive lotteries, condi-

tional on ri, given by

P ′′ =
{
Pi(r|ri), i = 1, . . . , k

}
.
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The Bayesian expected utility of decision di, conditional on the sam-

ple ri, is then given by

ϕ(di|πi, ri) =

∫
R
U(r) dPi(r|ri),

which depends on the prior πi(θi) and the sample ri.

The Bayesian optimal decision, conditional on the sample ri, is the

one having maximum expected utility, that is, dj is optimal if

ϕ(dj |πi, rj) = max
i=1,...,k

ϕ(di|πi, ri). (3.9)

We keep in mind that the Bayesian optimal decision depends on the

prior distributions {πi(θi), i = 1, . . . , k} and the samples {ri, i =

1, . . . , k}.
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4

Cost–effectiveness analysis: Optimal

treatments

4.1 Introduction

Cost–effectiveness analysis is a statistical decision problem in which,

for a given disease, there is a finite set of alternative medical treat-

ments {T1, . . . , Tk}, k ≥ 2, and the problem consists of choosing the

optimal treatment based on its cost and effectiveness. In this chapter

we introduce the elements of this decision problem, the utility func-

tions commonly used, and the procedure for characterizing the optimal

treatment.

The elements of this decision problem are i) the decision space D =

{d1, . . . , dk}, where di is the decision of choosing treatment Ti, and ii)

the reward space
{
P1(c, e), . . . , Pk(c, e)

}
, where Pi(c, e) is the reward

of the decision di, a probability distribution (lottery) of the cost and

the effectiveness of treatment Ti, i = 1, . . . , k. The cost is a continuous

positive real random variable and the effectiveness is either a continuous

or discrete random variable depending on the specific disease. Most of

the frequently used measures of effectiveness of medical treatments were

discussed in Chapter 1.

If we assume the existence of a utility function U(c, e) for (c, e) ∈ R,

the reward space is the set of distributions

P =

{
Pi(c, e) : EPi(U) =

∫
R
U(c, e) dPi(c, e) <∞, i = 1, . . . , k

}
.
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From the central result of the decision theory (Chapter 3) it follows

that the utility function U(c, e) induces an ordering �∗ of preference

between the distributions in P such that

Pi(c, e) �∗ Pj(c, e)⇐⇒ EPi(U) ≤ EPj (U).

As a consequence, the decision dj is an optimal decision in D for the

utility function U(c, e) if the expectation of U(c, e) with respect to

Pj(c, e), which is called the utility of the distribution Pj(c, e), is the

largest one, that is, if the equation

EPj (U) = max
i=1,...,k

EPi(U)

holds. Therefore, the optimal treatment strongly depends on the utility

function U(c, e) we adopt for the decision problem.

The utility functions we present in this chapter are those typically

used in cost–effectiveness analysis and they are defined in two steps.

In a first step the bidimensional space of cost and effectiveness (c, e)

is reduced to the one–dimensional space Z, a subset of the real line R.

Z is the space of the net benefit z of (c, e), a notion that we present

in Section 4.2. The price we pay for the dimension reduction is the

introduction of a new nonnegative real parameter R in the definition

of z which is tied to the decision maker.

In a second step the utility function U(z|R) of the net benefit,

conditional on R, is defined. Two utility functions of z along with the

procedure for computing optimal decisions are given in Section 4.3. The

frequent case of two treatments in which one treatment is the status

quo and the other a new treatment will be considered in Section 4.4. In

this situation we argue that the transition costs should be incorporated

into the analysis, and this yields a slight modification of the decision

rule.

For clarity in the presentation, all the developments in Sections 4.3

and 4.4 are carried out for the case where the reward distributions

{Pi(c, e), i = 1, . . . , k} are completely specified.
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In Section 4.5 we extend the decision–making process to the more

realistic case where the reward distribution Pi(c, e) depends on an un-

known parameter θi ∈ Θ, so that the distribution is now written as

Pi(c, e|θi) for i = 1, . . . , k. This implies that the optimal decision now

depends on this unknown parameter that has to be eliminated from

these distributions. The elimination is carried out using samples of the

cost and effectiveness. There are two ways of doing that, and we present

both the Bayesian and the frequentist (see Section 2.4 in Chapter 2).

The resulting distributions are the Bayesian and frequentist predictive

distributions. We will see that the Bayesian and frequentist optimal

treatments do not necessarily coincide, a consequence of the different

ways the sampling information is taken into account by these predictive

distributions.

Section 4.6 is devoted to illustrating the frequentist and Bayesian

predictive distributions on statistical models of frequent use in cost–

effectiveness analysis. For these predictive distributions and the utility

functions introduced in Section 4.3 the optimal treatments are charac-

terized.

Section 4.7 presents a case study with real data that compares four

alternative antiretroviral treatments for asymptomatic HIV patients.

Finally, in Sections 4.8 and 4.9 we present the cost–effectiveness

acceptability curve for the utility functions defined in Section 4.3. The

rationale for this curve is that since the elimination of parameter θi

from the reward Pi(c, e|θi) depends on the observed samples, this in-

troduces some uncertainty concerning the expectation of the utility

function with respect to the predictive distribution Pi(c, e|datai), and,

consequently, an amount of uncertainty about the optimal treatment.

The cost–effectiveness acceptability curve gives us an estimation of this

uncertainty.

This elusive curve entails, at the same time, a statistical evaluation

of the statistical procedure utilized for the estimation of the predictive

reward distribution Pi(c, e|datai). In a first reading of this book, these

sections can be skipped.
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4.2 The net benefit of a treatment

For a generic treatment T with random cost and effectiveness (c, e),

the net benefit of (c, e), conditional on a nonnegative parameter R, is

a real random variable defined as the linear combination of e and c

z(c, e|R) = e R− c,

where R ≥ 0 represents the amount of money the decision maker

(health provider) is willing to pay for the unit of effectiveness. In what

follows, for simplicity in the notation, the dependence of the net benefit

z on c and e, conditional on R, will not be explicitly written and we

will simply write

z = e R− c. (4.1)

We note that for small values of R the leading term of the net benefit

is the second term (−c), and as R grows, the term e× R becomes the

leading term. The net benefit of (c, e) is a slight modification of the

incremental net benefit for two treatments introduced by Stinnett and

Mullahy (1998).

For every R ≥ 0 the net benefit transforms the reward space R =

{(c, e) : (c, e) ∈ R+×E} into the new reward space R(R) = {z : z ∈ R},
and, consequently, the space of distributions P over R is transformed

into a new space of distributions P(R) over R(R).

This new space P(R) is obtained for a given value of the parame-

ter R as follows. The distribution P (c, e) ∈ P defines the distribution

P (z|R) ∈ P(R) by simply doing a change of variables in P (c, e). Indeed,

for a fixed R we transform the variables (c, e) into the new variables

(z, w) given by

z = e R− c,

w = e, (4.2)

whose Jacobian is 1. Thus, the distribution P (c, e) can be written as
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P (wR − z, w), and the marginal distribution of z is then obtained by

integrating out w as

P (z|R) =

∫
E
P (wR− z, w) dw. (4.3)

The range of z is defined by the transformation (4.2). For instance, for

(c, e) ∈ R+ × R we have that z ∈ R.
If the effectiveness space E is the discrete space {e1, . . . , em}, P (z|R)

becomes the sum

P (z|R) =
∑
w∈E

P (wR− z, w), (4.4)

and the range of z for a given R is the interval (−∞, max
i=1,...,m

ei ×R).

4.3 Utility functions of the net benefit

Two utility functions of the net benefit z, conditional on R, will be

introduced in this section. In Section 4.3.1 we introduce the utility

function U1(z|R), a linear function of the net benefit z for every R. We

remark that U1(z|R) provides a justification from the decision theory to

the well–known incremental net benefit (INB) procedure for comparing

two alternative treatments (Stinnett and Mullahy, 1998).

In Section 4.3.1.1 we give an interpretation of U1(z|R) and two

criticisms of its use in cost–effectiveness analysis. The main criticism

refers the fact that U1(z|R) takes into account the global net benefit

of the patient population, thus detracting from individual net bene-

fit.

In Section 4.3.2 we introduce a second utility function U2(z|R)

which is a nonlinear function of the net benefit z that was orig-

inally introduced to avoid the mentioned criticism of the use of

U1(z|R) (Moreno et al., 2010). The meaning of U2(z|R) is given in

Section 4.3.2.1.
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4.3.1 The utility function U1: Optimal treatments

The most used utility function of the net benefit z, conditional on R,

is the linear function of z

U1(z|R) = a z + b,

where a > 0 and b ∈ R are scale and location parameters. Since the

utility function is defined up to a scale and location parameter, in what

follows, without loss of generality, we will take a = 1 and b = 0, and

hence

U1(z|R) = z. (4.5)

Therefore, the space of probability rewards, conditional on R, is given

by the set of distributions

P(R) =
{
Pi(z|R) : EPi(z|R) =

∫
R
z Pi(z|R) dz <∞, i = 1, . . . , k

}
,

where the expectation EPi(z|R) is the utility of Pi(z|R). This utility is

a linear function of the expectation of e and c, that is,

EPi(z|R) = EPi(e) R− EPi(c).

Looking at EPi(z|R) as a function of R we see that it is a straight line

in the Cartesian plane (R,EPi(z|R)), whose slope is the expectation of

the effectiveness EPi(e).
Then, the optimal decision in D, conditional on R, is treatment Tj

if the equality

EPj (z|R) = max
i=1,...,k

EPi(z|R)

holds.

Since the optimal treatment is found conditionally on the quantity

R, it is convenient to present the set of points R for which decision dj

is optimal under U1(z|R). This set is given by

RU1
j =

{
R : EPj (z|R) = max

i=1,...,k
EPi(z|R)

}
, (4.6)
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for j = 1, . . . , k. Thus, we have that

R+ =

k⋃
j=1

RU1
j ,

where some sets in the class
{
RU1
j , j = 1, . . . , k

}
might be empty.

This way, for any amount of money R the health provider is will-

ing to pay for the unit of effectiveness, the sets RU1
1 , . . . ,RU1

k iden-

tify the optimal treatment. We can plot the straight lines
{
EPi(z|R),

i = 1, . . . , k
}

as a function ofR to delimit the subsets RU1
j , j = 1, . . . , k.

For the case of two treatments T1 and T2 with cost and effectiveness

expectation EPi(c|R) and EPi(e|R) for i = 1, 2, T1 is optimal if

EP1(e) R− EP1(c) ≥ EP2(e) R− EP2(c).

Then, assuming that EP1(e) 6= EP2(e), the set of points R for which T1

is optimal is given by

RU1
1 =


{R : R ≤ R∗} , if EP1(e) < EP2(e),

{R : R ≥ R∗} , if EP1(e) > EP2(e),

(4.7)

where

R∗ = max

(
0,

EP1(c)− EP2(c)

EP1(e)− EP2(e)

)
,

and T2 is optimal for any R in R+ −RU1
1 . If EP1(e) = EP2

(e) then T1

is optimal if EP1(c) ≤ EP2
(c) and T2 otherwise.

4.3.1.1 Interpretation of the expected utility

An interpretation of the expectation of U1(z|R) with respect to Pi(z|R)

follows from the following approximation. For a fixed value R let

(zi1, . . . , zin) be a sample of size n of the net benefit of patients un-

der treatment Ti. This is simply a sample of size n from the net benefit
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distribution Pi(z|R). From the Law of Large Numbers it follows that

for large n we have that

EPi(z|R) ≈ 1

n

n∑
j=1

zij = R
1

n

n∑
j=1

eij −
1

n

n∑
j=1

cij .

Thus, for a fixed R, the optimal decision under the utility function

U1(z|R) depends on the accumulated patient effectiveness
∑n
j=1 eij and

cost
∑n
j=1 cij of treatment Ti for i = 1, . . . , k, and consequently the

effectiveness and cost of the patients under a treatment compensate in

total.

While compensation of individual cost is acceptable, compensation

of individual effectiveness might not be (Horwitz et al., 1996; Kravitz

et al., 2004; Moreno et al., 2010). This first criticism of the use of U1(z)

suggests considering a utility function that does not involve transference

of health among patients. A utility function satisfying this requirement

is considered in Section 4.3.2.

A second criticism of U1(z|R) is that the set of rewards P(R) might

be empty. We will go back to this topic in Section 4.6.2.

4.3.2 The utility function U2: Optimal treatments

For simplicity in presentation, let us first consider the case of comparing

two treatments T1 and T2 with rewards P1(z1|R) and P2(z2|R). We

assume that the equality P1(z1|z2, R) = P1(z1|R) holds, that is, the

net benefit of treatments T1 and T2 are independent, conditional on R.

For clarity, the random net benefit will be written in capital letters,

that is, Z1 and Z2, and their values in small letters z1 and z2. Let us

first introduce the conditional utility function U2(z1|z2, R) for z1 ∈ R,
whose meaning is the utility function of the net benefit of treatment

T1, conditional on a given net benefit z2 of treatment T2 and R. This

is defined as

U2(z1|z2, R) =

{
1, if z1 ≥ z2,

0, if z1 < z2.
(4.8)
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Similarly, we define U2(z2|z1, R) as

U2(z2|z1, R) =

{
1, if z2 ≥ z1,

0, if z2 < z1.
(4.9)

If we integrate out z2 in U2(z1|z2, R) with respect to P2(z2|R), we

obtain the utility of the net benefit of treatment T1, conditional on

R, as

U2(z1|R) =

∫
z2∈R

1(z1≥z2)(z1, z2) dP2(z2|R) = Pr(Z2 ≤ z1|R).

Then, the expectation of U2(z1|R) with respect to P1(z1|R), the utility

of the reward P1(z1|R), turns out to be

EP1U2(z1|R) =

∫
z1∈R

Pr(Z2 ≤ z1|R) dP1(z1|R)

= Pr(Z1 ≥ Z2|R). (4.10)

That is, the utility of P1(z1|R) is the probability that the net benefit

of treatment T1 is greater than or equal to that of treatment T2.

Similarly, the expectation of U2(z2|R) with respect to P2(z2|R), the

utility of the reward P2(z2|R), is given by

EP2U2(z2|R) =

∫
z2∈R

∫
z1∈R

1(z2≥z1)(z2, z1) dP1(z1|R) dP2(z2|R)

= Pr(Z2 ≥ Z1|R). (4.11)

From (4.10) and (4.11) it follows that, conditional on R, treatment

T1 is preferred to treatment T2 if the inequality

Pr(Z1 ≥ Z2|R) ≥ Pr(Z2 ≥ Z1|R) (4.12)

holds.

Therefore, the set of points R for which treatment T1 is optimal is

given by

RU2
1 =

{
R : Pr(Z1 ≥ Z2|R) ≥ Pr(Z2 ≥ Z1|R)

}
, (4.13)
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and the set of points R for which treatment T2 is optimal by

RU2
2 =

{
R : Pr(Z2 ≥ Z1|R) ≥ Pr(Z1 ≥ Z2|R)

}
. (4.14)

It is clear that

R+ = RU2
1 ∪RU2

2 ,

and one of the sets RU2
1 and RU2

2 might be empty.

When the net benefit of treatment T1 and T2 are continuous random

variables, a simpler expression of the sets RU2
1 and RU2

2 in (4.13) and

(4.14) are given in the next lemma.

Lemma 4.1. When Z1 and Z2 are continuous random variables, the

set RU2
1 can be written as

RU2
1 =

{
R : Pr(Z1 ≥ Z2|R) ≥ 1/2

}
, (4.15)

and

RU2
2 = R+ −RU2

1 .

Proof. From

Pr(Z1 ≥ Z2|R) + Pr(Z2 ≥ Z1|R) = 1

we have that the inequality

Pr(Z1 ≥ Z2|R) ≥ Pr(Z2 ≥ Z1|R)

holds if and only if

Pr(Z1 ≥ Z2|R) ≥ 1

2
.

This proves the assertion.

Extension to more than two treatments

The extension of U2(zi|R) to the case of i = 1, . . . , k treatments with

k ≥ 3 is straightforward. For a given R, let Z1, . . . , Zk be the random
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net benefit of k treatments with distributions P1(z1|R), . . . , Pk(zk|R),

and let Z−i be the random variable defined as

Z−i = max{Z1, . . . , Zi−1, Zi+1, . . . , Zk}

with distribution P (z−i|R). We note that this distribution is defined

by the distributions {Pi(zi|R), i = 1, . . . , i− 1, i+ 1, . . . , k}. Then, we

define the utility U2 of zi conditional on z−i and R as

U2(zi|z−i, R) =


1, if zi ≥ z−i,

0, if zi < z−i,

for i = 1, . . . , k. Then, the utility of zi unconditional on z−i is given by

U2(zi|R) =

∫
zi∈R

1(zi≥z−i)(z−i) dP (z−i|R) = Pr(Z−i ≤ zi|R).

Therefore, the utility of Pi(zi|R) is

EPiU2(zi|R) =

∫
zi∈R

Pr(Z−i ≤ zi|R) dPi(zi|R) = Pr(Zi ≥ Z−i|R).

Consequently, the set of points R for which treatment Tj is optimal

is given by

RU2
j =

{
R : Pr(Zj ≥ Z−j |R) ≥ max

i=1,...,k
Pr(Zi ≥ Z−i|R)

}
.

The utility function U2(zi|R) was introduced in Moreno et al.

(2010). Applications to real data that use this utility function can

be seen in Moreno et al. (2012), where three methadone maintenance

programs are compared, Moreno et al. (2013b), which compares two

alternative treatments for exacerbated chronic obstrusive pulmonary

disease, and Bebu et al. (2016), which compares two treatments for

prostate cancer.
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4.3.2.1 Interpretation of the expected utility

The interpretation of the expectation of U2(zi|R) with respect to

Pi(zi|R) comes from the following argument. For a given R, let

(zi1, . . . , zini) be a sample of the net benefit of patients under treat-

ment Ti for i = 1, 2. Then, for large sample sizes n1 and n2 we have

that

Pr(Z1 ≥ Z2|R) ≈ 1

n1 · n2

n1∑
k=1

n2∑
j=1

1(z1k≥z2j)(z1k, z2j).

Hence, treatment T1 is optimal for a given R if for large sample sizes

n1 and n2 the inequality

1

n1 · n2

n1∑
k=1

n2∑
j=1

1(z1k≥z2j)(z1k, z2j) ≥
1

n1 · n2

n1∑
k=1

n2∑
j=1

1(z2j≥z1k)(z1k, z2j)

holds. That is, for a given R, T1 is optimal if, for large sample sizes, the

proportion of patients for whom the net benefit under T1 is greater than

that of T2 is larger than the proportion of patients whose net benefit

under T2 is greater than that of T1. Otherwise, T2 is optimal.

When Z1 and Z2 are continuous random variables the above ex-

pression becomes

1

n1 · n2

n1∑
k=1

n2∑
j=1

1(z1k≥z2j)(z1k, z2j) ≥
1

2
.

We recall that the utility function U1 does not take into account

the number of patients under the treatments but, the total amount of

net benefit of patients under the treatments.

We call attention to the fact that the optimal treatment for the

utility function U1 does not necessary coincide with that for the utility

function U2 as the following simple example shows.

Example 4.1. Let us suppose that the cost of treatments T1 and T2

is the same deterministic quantity c0 and their effectiveness is given by

a discrete variable with values 0, 1 and 2, as a health indicator of bad,
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good and excellent, with distributions

Pr(e1) =


0.1 if e1 = 0,

0.5 if e1 = 1,

0.4 if e1 = 2,

and Pr(e2) =


0.3 if e2 = 0,

0.1 if e2 = 1,

0.6 if e2 = 2.

The reward of treatments T1 and T2 are certainly different, although

for the utility function U1(z|R), the utility of P1(z1|R) and P2(z2|R) is

the same, that is,

EP1(z1|R) = EP2(z2|R) = 1.3R− c0.

This means that for the utility function U1(z|R), treatments T1 and T2

are equivalent for any R.

However, if we use the utility function U2(z|R), the utility of

P1(z1|R) is

Pr(Z1 ≥ Z2|R) = 0.4 + 0.50× 0.4 + 0.1× 0.3 = 0.63,

and the utility of P2(z2|R) is

Pr(Z2 ≥ Z1|R) = 0.6 + 0.1× 0.6 + 0.3× 0.1 = 0.69.

Therefore, for the utility U2(z|R), treatment T2 is preferred to treatment

T1 for any R.

4.4 Penalizing a new treatment

A frequent situation in cost–effectiveness analysis is that of comparing

two treatments T1 and T2 such that T1 is a new treatment and T2 the

treatment that is being applied.

Because of the transition cost, it might be reasonable in this case

to not choose T1 unless it is “clearly” preferred to T2. This implies

that for a given utility function U(z|R) of the net benefit, the utility

of the reward P1(z|R) of the new treatment should be penalized by a
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quantity greater than zero. Consequently, the decision rule is now that

treatment T1 is optimal for a given R, if the inequality

EP1U(z1|R)− p ≥ EP2U(z2|R)

holds, where p is the penalizing term to be fixed by the health provider.

In general, this penalty term can be thought of as a quantification

of the additional cost the health system incurs for changing the status

quo or simply as a consequence of aversion to the change of the decision

maker.

For the utility function U1(z|R), the decision rule is that the new

treatment T1 is optimal for any R in the set

RU1
1 (p1) =

{
R : EP1(z1|R) ≥ EP2(z2|R) + p1

}
,

where the penalizing constant p1 is such that 0 ≤ p1 < ∞. Treatment

T2 is optimal for any R in the set RU1
2 (p1) = R+ −RU1

1 (p1).

An explicit expression of the optimal treatment in terms of the

expectation of the cost and the effectiveness is as follows. For any

reward distribution of the cost and the effectiveness Pi(c, e) such

that EPi(c) < ∞ and EPi(e) < ∞, i = 1, 2, and assuming that

EP1(e) 6= EP2(e), treatment T1 is optimal for any R in the set

RU1
1 (p1) =


{R : R ≤ R(p1)} if EP1(e) < EP2(e),

{R : R ≥ R(p1)} if EP1(e) > EP2(e),

(4.16)

where

R(p1) = max

{
0,

EP1(c) + p1 − EP2(c)

EP1(e)− EP2(e)

}
.

Treatment T2 is optimal for any R in the complementary set RU1
2 (p1) =

R+−RU1
1 (p1). If EP1(e) = EP2(e), then T1 is optimal when EP1(c)+p1 ≤

EP2(c), and T2 otherwise.

Notice that when T1 and T2 are on an equal footing, p1 = 0 and

expression (4.16) coincides with (4.7), thus RU1
i (0) = RU1

i , for i = 1, 2.
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For the utility function U2(z|R), the set of points R for which T1 is

optimal becomes

RU2
1 (p2) =

{
R : Pr(Z1 ≥ Z2|R) ≥ Pr(Z2 ≥ Z1|R) + p2

}
,

where the penalizing constant p2 is such that 0 ≤ p2 ≤ 1. Treatment

T2 is optimal for any R in the set RU2
2 (p2) = R+ −RU2

1 (p2).

We note that when Z1 and Z2 are continuous random variables,

RU2
1 (p2) simplifies to

RU2
1 (p2) =

{
R : Pr(Z1 ≥ Z2|R) ≥ 1 + p2

2

}
. (4.17)

If p2 = 0 this formula coincides with (4.15), thus RU2
i (0) = RU2

i for

i = 1, 2.

4.5 Parametric classes of probabilistic rewards

In the preceding sections we assumed that the distribution of the net

benefit of treatment Ti was fully determined for i = 1, . . . , k. However,

this is not a realistic assumption. The cost–effectiveness analysis typ-

ically starts proposing a parametric class of distributions for the cost

and the effectiveness of the treatment.

Let {Pi(c, e|θi), θi ∈ Θ} be the proposed parametric class of distri-

butions of the cost and effectiveness of treatment Ti. This implies that

the distribution of the net benefit of treatment Ti,

Pi(z|R, θi) =

∫
E
Pi(e R− z, e|θi) de,

depends not only on R but also on the unknown parameter θi. As a

consequence, for a given utility function, the optimal treatment is not

well defined unless we eliminate the parameter θi.Once the parameter is

eliminated, the resulting distribution is the one we will use for defining

the optimal treatments.
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To deal with this situation we assume that there is available a sam-

ple of size ni of the cost and the effectiveness of patients under treat-

ment Ti that we denote as ci = (ci1, . . . , cini) and ei = (ei1, . . . , eini).

These samples are assumed to be drawn from the distribution Pi(c, e|θi)
for the unknown true value θi. With the help of these samples we may

use either the Bayesian or the frequentist statistical approach for elim-

inating θi from the reward distribution Pi(c, e|θi).

4.5.1 Frequentist predictive distribution of the net benefit

The frequentist approach replaces θi in the reward distribution

Pi(c, e|θi) with the maximum likelihood estimator θ̂i = θ̂i(ci, ei). This

is the frequentist way of accommodating the reward of treatment Ti

to the samples. The distribution P̂i(c, e|θ̂i) is the frequentist predictive

distribution of (c, e). From this predictive distribution the frequentist

predictive distribution of the net benefit is

P̂i(z|R, θ̂i) =

∫
E
P̂i(eR− z, e|θ̂i) de. (4.18)

We note that the frequentist predictive distribution of the net ben-

efit depends on the data through the MLE estimator but it does not

explicitly depend on the sample size ni.

4.5.2 Bayesian predictive distribution of the net benefit

The Bayesian model is given by the pair {Pi(c, e|θi), πi(θi)}, where

πi(θi) is the prior distribution for θi.

In the Bayesian approach, θi is eliminated from Pi(c, e|θi) integrat-

ing it with respect to the posterior distribution of θi, conditional on

the samples ci and ei.

Using the random samples ci = (ci1, . . . , cini) and ei =

(ei1, . . . , eini) coming from the unknown true distribution in the class

{Pi(c, e|θi), θi ∈ Θ}, we first update the prior πi(θi) to the posterior

distribution πi(θi|ci, ei). We recall that this posterior distribution of θi
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is given by

πi(θi|ci, ei) =
`ci,ei(θi)πi(θi)

m(ci, ei)
,

where `ci,ei(θi) =
∏ni
j=1 Pi(cij , eij |θi) is the likelihood function of pa-

rameter θi for the random samples ci and ei, and

m(ci, ei) =

∫
Θ

`ci,ei(θi)πi(θi) dθi

is the marginal distribution of the samples (ci, ei).

Integrating out θi from Pi(c, e|θi) with respect to the posterior dis-

tribution πi(θi|ci, ei) we obtain

Pi(c, e|ci, ei) =

∫
Θ

Pi(c, e|θi)πi(θi|ci, ei) dθi. (4.19)

This Bayesian predictive distribution accommodates the reward of

treatment Ti in the specific samples.

From the predictive distribution Pi(c, e|ci, ei) the predictive net

benefit distribution Pi(z|R, ci, ei) is obtained as

Pi(z|R, ci, ei) =

∫
E
Pi(eR− z, e|ci, ei) de. (4.20)

We remark that this distribution depends on the data (ci, ei) and the

prior πi(θi). When E is discrete, the integral in (4.20) becomes the sum

Pi(z|R, ci, ei) =
∑
e∈E

Pi(eR− z, e|ci, ei).

4.6 Statistical models for cost and effectiveness

In this section, for the most frequently used parametric statistical mod-

els for the cost and the effectiveness of the treatments, we compute the

Bayesian and frequentist predictive distributions of the cost c, the ef-

fectiveness e, and the net benefit z. Some models assume that c and

e of the treatment are independent, and for some others, a sort of de-

pendency between c and e are modeled. The expression of the sampling
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models and their mean and variance were given in Chapter 2. The priors

of the parameters for defining the Bayesian models will be the objective

priors for the sampling models.

For the predictive distributions of the net benefit z we will find

the frequentist and Bayesian optimal treatments, conditional on R, for

both the linear U1(z|R) and the nonlinear U2(z|R) utility functions.

For simplicity in illustrating the determination of the optimal treat-

ments, we consider two alternative treatments T1 and T2, and it will

be assumed that T1 is the new treatment and T2 the status quo. For

the situation where T1 and T2 are on an equal footing, the penalizing

constants p1 when using the utility function U1(z|R) and p2 when using

U2(z|R) will be set as p1 = p2 = 0.

4.6.1 The normal–normal model

Let c and e be independent random cost and effectiveness of treatment

Ti with normal–normal distribution N (c|µi, σ2
i ) and N (e|ηi, τ2

i ). For

this model and the improper objective reference priors

π(µi, σi) =
ki
σi

1R×R+(µi, σi), π(ηi, τi) =
k′i
τi

1R×R+(ηi, τi),

where ki and k′i are arbitrary positive constants, the Bayesian model is{
N (c|µi, σ2

i )N (e|ηi, τ2
i ), π(µi, σi)π(ηi, τi)

}
.

Frequentist predictive distribution

For the samples (ci, ei) the frequentist predictive distribution of c and

e is given by

P̂i(c, e|ci, ei) = N (c|c̄i, s2
ci)×N (e|ēi, s2

ei)

where

c̄i =
1

ni

ni∑
j=1

cij , s2
ci =

1

ni

ni∑
j=1

(cij − c̄i)2,

ēi =
1

ni

ni∑
j=1

eij , s2
ei =

1

ni

ni∑
j=1

(eij − ēi)2,
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are the MLE of µi, σ
2
i , ηi and τ2

i .

Further, applying expression (4.3), the frequentist net benefit dis-

tribution of treatment Ti turns out to be

P̂i(z|R, ci, ei) =

∫ ∞
−∞
N (eR− z|c̄i, s2

ci)N (e|ēi, s2
ei) de

= N (z|ēiR− c̄i, s2
eiR

2 + s2
ci). (4.21)

Bayesian predictive distribution

For sample ci, the Bayesian posterior distribution of (µi, σi) is given

by

π(µi, σi|ci) = d×N
(
µi|c̄i, σ2

i /ni
)
× 1

σnii
exp

{
−
nis

2
ci

2σ2
i

}
,

where

d =
(nis

2
ci)

(ni−1)/2

2(ni−3)/2Γ((ni − 1)/2)
,

and a similar expression for the posterior distribution π(ηi, τi|ei). Then,

the Bayesian predictive distribution of c turns out to be

Pi(c|ni, c̄i, sci) =
1

B
(
ni−1

2 , 1
2

)
sci
√
ni + 1

(
1 +

1

ni + 1

(
c− c̄i
sci

)2
)−ni/2
(4.22)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) denotes the Beta function,

and a similar expression for Pi(e|ni, ei). The distribution in (4.22) is

recognized as a generalized Student t distribution with location param-

eter c̄i, scale parameter sci
√

(ni + 1)/(ni − 1), and degrees of freedom

ni − 1.

From (4.3), the integral expression of the Bayesian predictive dis-

tribution of the net benefit of treatment Ti is given by

Pi(z|R,ni, ci, ei) =

∫ ∞
−∞

Pi(eR− z|ni, ci)Pi(e|ni, ei) de.
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This net benefit predictive distribution does not have a closed form

expression and hence for every value of R, numerical integration is

required. However, its mean is given by EPi(z|R,ni, ci, ei) = ēi R− c̄i.
Notice that while the frequentist predictive distribution depends on

the MLE c̄i, sci , ēi, sei , the Bayesian posterior predictive distribution

of the net benefit depends on the MLE plus the sample size ni.

Example 4.2. We consider artificial data and normal–normal re-

wards. The sample means and variances are taken to be c̄ = 19992,

sc = 23.15, ē = 2.15, se = 0.29, and n = 10.

From (4.21) the frequentist predictive distribution of the net benefit

turns out to be

P̂ (z|R, c, e) = N (z|2.15R− 19992, 0.292R2 + 23.152).

For the above data, the Bayesian predictive distribution Pr(z|R,n,
c, e) is obtained by simulation from the product of generalized Student t

distributions Pr(e|R,n, e) Pr(c|R,n, c). Figure 4.1 shows the Bayesian

and frequentist predictive distributions of the net benefit z for two values

of R. From this figure we observe that the Bayesian predictive distri-

bution is more spread out than the frequentist.

Table 4.1 displays the means and standard deviations of both

the frequentist and Bayesian predictive distributions for three values

of R.

TABLE 4.1

Mean and standard deviation of the Bayesian and frequentist predictive

distributions of the net benefit for three values of R in Example 4.2

Bayesian Frequentist

Mean St. Dev. Mean St. Dev.

R = 5000 −9248.03 1870.38 −9261.15 1490.51

R = 10000 1589.97 3704.72 1469.62 2980.80

R = 15000 12297.10 5537.22 12200.40 4471.09
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FIGURE 4.1

Bayesian (dashed line) and frequentist (continuous line) predictive dis-

tribution of the net benefit in Example 4.2 for R = 5000 (upper panel)

and R = 10000 (lower panel).

Frequentist optimal treatments

The optimal treatment for the utility function U1(z|R) and penalizing

constant p1 is T1 for any R in the set

R̂U1
1 (p1) =

{
R : (ē1 − ē2)R− (c̄1 − c̄2) ≥ p1

}
,

and T2 in the set R̂U1
2 (p1) = R+− R̂U1

1 (p1). We remark that this is the

characterization of the optimal treatments for U1(z|R) not only for the

normal–normal model but for any model such that (ē1− ē2)R−(c̄1− c̄2)
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is the expectation of the frequentist predictive distribution of Z1 − Z2

conditional on R.

The frequentist predictive distribution of Z1−Z2, conditional on R,

is the normal distribution with mean (ē1 − ē2)R − (c̄1 − c̄2) and vari-

ance
∑2
i=1(s2

eiR
2 + s2

ci). Then, for U2(z|R) and penalizing constant p2,

treatment T1 is optimal for any R in the set

R̂U2
1 (p2) =

R : Φ

(ē1 − ē2)R− (c̄1 − c̄2)√∑2
i=1(s2

eiR
2 + s2

ci)

 ≥ 1 + p2

2

 ,

and T2 for any R in R̂U2
2 (p2) = R+ − R̂U2

1 (p2). Here, Φ(x) denotes the

cumulative standard normal distribution at point x.

Example 4.3. Let us consider the artificial data sets of cost and ef-

fectiveness displayed in Table 4.2.

TABLE 4.2

Data in Example 4.3.

Treatment ni Cost Effectiveness

c̄i sci ēi sei
T1 10 5224.64 370.84 0.203 0.09

T2 10 4297.39 715.59 0.10 0.009

For that data we plot in Figure 4.2

EP̂1
(z|R, data)− EP̂2

(z|R, data) = (ē1 − ē2)R− (c̄1 − c̄2),

and

P̂r(Z1 ≥ Z2|R, data) = Φ

(ē1 − ē2)R− (c̄1 − c̄2)√∑2
i=1(s2

eiR
2 + s2

ci)

 .

From those expressions we immediately obtain R̂U1
1 (p1) and R̂U2

1 (p2).

From Figure 4.2 it follows that in an equal–footing scenario where

p1 = p2 = 0, and due to the symmetry of the normal–normal model,

we have that R̂U1
1 = R̂U2

1 . For the above data, R̂U1
1 = {R : R ≥ 9002}.
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FIGURE 4.2

Upper panel: EP̂1
(z|R, data) − EP̂2

(z|R, data) as a function of R in

Example 4.3. Lower panel: P̂r(Z1 ≥ Z2|R, data) as a function of R in

Example 4.3.

Bayesian optimal treatments

For any penalizing constant p1 and the utility function U1(z|R), the

set of points R for which T1 is the Bayesian optimal treatment sat-

isfies RU1
1 (p1) = R̂U1

1 (p1). This is because the means of the Bayesian

and frequentist predictive distributions coincide in the normal–normal

model.

However, for the utility function U2(z|R), the optimal treatment for

the frequentist and the Bayesian predictive distributions can differ for
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some values of R. The following example gives a numerical illustration

of that.

Example 4.3 (continued). The probabilities P̂r(Z1 ≥ Z2|R, ci, ei) and

Pr(Z1 ≥ Z2|R,ni, ci, ei) for the data in Table 4.2 are displayed in

Figure 4.3 as a function of R.

p2 = 0

p2 = 0.25

5000 10000 15000
R

0.2

0.4

0.6

0.8

FIGURE 4.3

Frequentist (continuous line) and Bayesian (dashed line) predictive dis-

tribution of Z1 − Z2 as a function of R in Example 4.3.

For p2 = 0 and p2 = 0.25 the frequentist and Bayesian optimal treat-

ments for the utility function U2 are given in Table 4.3

4.6.2 The lognormal–normal model

Let us assume that c and e are independent random cost and effective-

ness of treatment Ti with lognormal–normal distribution Λ(c|µi, σ2
i )×

N (e|ηi, τ2
i ), where Λ(c|µi, σ2

i ) denotes the lognormal distribution given

in (2.17).
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TABLE 4.3

Sets of R for which treatment T1 is optimal for the utility U2 and

p2 = 0, p2 = 0.25.

Bayesian Frequentist

RU2
1 (0) = {R : R ≥ 9002} R̂U2

1 (0) = {R : R ≥ 9002}

RU2
1 (0.25) = {R : R ≥ 16036.70} R̂U2

1 (0.25) = {R : R ≥ 13537.30}

For this model the objective reference priors are

π(µi, σi) =
ki
σi

1R×R+(µi, σi), π(ηi, τi) =
k′i
τi

1R×R+(ηi, τi),

where ki and k′i are arbitrary positive constants and the Bayesian model

is
{

Λ(c|µi, σ2
i )N (e|ηi, τ2

i ), π(µi, σi)π(ηi, τi)
}

.

Frequentist predictive distribution

For the samples (ci, ei) the joint frequentist predictive distribution of

c and e is given by

P̂i(c, e|ci, ei) = Λ(c|c̃i, s̃2
ci)×N (e|ēi, s2

ei),

where

c̃i =
1

ni

ni∑
j=1

log(cij), s̃2
ci =

1

ni

ni∑
j=1

(log(cij)− c̃i)2.

Then, the integral expression of the frequentist net benefit distribution

is given by

P̂i(z|R, ci, ei) =

∫ ∞
−∞

Λ(eR− z|c̃i, s̃2
ci)N (e|ēi, s2

ei) de.

In contrast with the normal–normal model, this frequentist pre-

dictive distribution doesn’t have a closed form expression and needs

numerical integration to be evaluated for every R. However, the expec-

tation of z is easily obtained as it is a linear function of c and e, and
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hence it turns out to be

EP̂i(z|R) = ēiR− exp

{
c̃i +

s̃2
ci

2

}
.

Bayesian predictive distribution

The Bayesian predictive distribution of e for treatment Ti, conditional

on the data ei = (ei1, . . . , eini), is the generalized Student t distribution

Pi(e|ni, ēi, sei) given in (4.22) interchanging c, c̄i, sci with e, ēi, sei .

For the lognormal distribution Λ(c|µi, σ2
i ), and the reference prior

π(µi, σi) ∝ 1/σi1R×R+(µi, σi), the Bayesian predictive distribution of c,

conditional on the data ci = (ci1, . . . , cini) turns out to be the logStu-

dent t distribution

Pi(c|ni, c̃i, s̃ci) = A
1

c

(
1 +

1

ni + 1

(
log(c)− c̃i

s̃ci

)2
)−ni/2

, (4.23)

where

A =
1

s̃ci
√
ni + 1B((ni − 1)/2, 1/2)

.

Then, the Bayesian predictive distribution of (c, e) is given by

Pi(c, e|ni, ci, ei) = Pi(c|ni, c̃i, s̃ci)× Pi(e|ni, ēi, sei). (4.24)

Using expression (4.24) we can simulate the Bayesian predictive

distribution of z = eR− c, for every value of R.

Example 4.4. We consider artificial data sets and lognormal–normal

rewards for a generic treatment T . The sample means and vari-

ances are taken to be c̃ = 9.08, s̃c = 1.22, ē = 3.01, se = 0.08,

and n = 10.

Figure 4.4 shows the frequentist and Bayesian predictive distribu-

tions of the net benefit for R = 5000 euros, from which it can be

seen that the tails of the Bayesian are thicker than that of the fre-

quentist.
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FIGURE 4.4

Bayesian (dashed line) and frequentist (continuous line) predictive dis-

tribution of the net benefit in Example 4.4 for R = 5000.

Frequentist optimal treatments

For the utility function U1(z|R) and penalizing constant p1, treatment

T1 is optimal for any R in the set

R̂U1
1 (p1) =

{
R : (ē1 − ē2)R− d12 ≥ p1

}
,

where

d12 = exp

{
c̃1 +

s̃2
c1

2

}
− exp

{
c̃2 +

s̃2
c2

2

}
,

and T2 for any R in the set R̂U1
2 (p1) = R+ − R̂U1

1 (p1).

Further, for the utility function U2(z|R) and penalizing constant p2,

the optimal treatment is T1 for any R in the set

R̂U2
1 (p2) =

{
R : P̂r(Z1 ≥ Z2|R, c1, e1, c2, e2) ≥ 1 + p2

2

}
,

where the probability is computed using the frequentist predictive dis-

tributions P̂1(z|R, c1, e1) and P̂2(z|R, c2, e2).
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Bayesian optimal treatments

Unfortunately, the logStudent t distribution Pi(c|ni, c̃i, s̃ci) in (4.23)

does not have a mean as shown in Lemma 4.2.

Lemma 4.2. The logStudent t distribution P (c|n, c̃, s̃) has no mo-

ments.

Proof. The expectation of the logStudent distribution is such that

E(c|n, c̃, s̃) =

∫ ∞
0

c P (c|n, c̃, s̃) dc

= A

∫ ∞
0

(
1 +

(log(c)− c̃)2

(n+ 1)s̃2

)−n/2
dc

≥ A

∫ K

0

(
1 +

(log(c)− c̃)2

(n+ 1)s̃2

)−n/2
dc,

where K is an arbitrary positive real number. For c ≥ c0 the integrand

is a decreasing function of c, and hence for large K we have that∫ K

0

(
1 +

(log(c)− c̃)2

(n+ 1)s̃2

)−n/2
dc ≥ K

(
1 +

(log(K)− c̃)2

(n+ 1)s̃2

)−n/2
.

Taking the limit in the last inequality as K →∞ we have that

lim
K→∞

∫ K

0

(
1 +

(log(c)− c̃)2

(n+ 1)s̃2

)−n/2
dc ≥ lim

K→∞
K

(
1 +

(log(K)− c̃)2

(n+ 1)s̃2

)−n/2
=∞.

Since A > 0, we have that

E(c|n, c̃, s̃) =

∫ ∞
0

c P (c|n, c̃, s̃) dc =∞.

This proves the assertion.

Lemma 4.2 implies that the utility function U1(z|R) cannot be uti-

lized if the cost is modeled by a lognormal distribution and an objective

Bayesian analysis is carried out.

When the computation is made by simulation, and we are not aware

of the result in Lemma 4.2, we obtain a number for the expectation of
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U1(z|R) for every R, which gives the false impression of the existence

of the mean. The warning is that we first need to check whether the

expectation of c and e exist there for the model we are using.

For the utility function U2(z|R) and penalizing constant p2, the

Bayesian optimal treatment is T1 for any R in the set

RU2
1 (p2) =

{
R : Pr(Z1 ≥ Z2|R, c1, e1, c2, e2) ≥ 1 + p2

2

}
,

where the probability is computed using Pi(c|ni, c̃i, s̃2
ci) and Pi(e|ni,

ēi, s
2
ei) for i = 1, 2.

Example 4.5. We generate two data sets of size n1 = n2 = 10 from

Λ(c|9, 0.25) × N (e|3, 0.01) and Λ(c|8.50, 4) × N (e|3, 0.04) that are as-

sumed to be the reward distributions of treatment T1 and T2, respec-

tively. Means and standard deviations of these data are presented in

Table 4.4.

TABLE 4.4

Sample means and standard deviations in Example 4.5.

Treatment ni Cost Effectiveness

c̃i s̃ci ēi sei
T1 10 9.20 0.49 3.02 0.10

T2 10 8.86 1.85 2.78 0.15

The sets of R for which each treatment is optimal for the utility

U1(z|R) and U2(z|R) are presented in Table 4.5 for p1 = 0 and p2 = 0.

4.6.3 The lognormal–Bernoulli model

Let us assume that c and e are independent random cost and effective-

ness of treatment Ti with lognormal–Bernoulli distribution Λ(c|µi, σ2
i )×

Be(e|θi), where Be(e|θi) denotes the Bernoulli distribution given in

(2.11).

The prior for (µi, σi) is the objective reference prior π(µi, σi) ∝
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TABLE 4.5

R
Uj
1 and R̂

Uj
1 sets in Example 4.3 for j = 1, 2.

Utility Bayesian Frequentist

U1 It does not exist R̂U1
1 = R+

U2 RU2
1 = {R : R ≥ 8507.15} R̂U2

1 = {R : R ≥ 9671.41}

1/σi1R×R+(µi, σi) and for θi it is assigned the Jeffreys proper prior

distribution

π(θi) =
1

π
θ
−1/2
i (1− θi)−1/2, 0 < θi < 1.

Hence the Bayesian model is
{

Λ(c|µi, σ2
i ) Be(e|θi), π(µi, σi)π(θi)

}
.

Frequentist predictive distribution

For the samples (ci, ei) the frequentist predictive distribution of c and

e for treatment Ti is given by

P̂i(c, e|ci, ei) = Λ(c|c̃i, s̃2
ci)× Be(e|ēi).

Therefore, from (4.4) it follows that the frequentist net benefit pre-

dictive distribution turns out to be

P̂i(z|R, ci, ei) =

1∑
e=0

Λ(eR− z|c̃i, s̃2
ci)× Be(e|ēi)

= (1− ēi) Λ(−z|c̃i, s̃2
ci)1(−∞,0)(z)

+ ēi Λ(R− z|c̃i, s̃2
ci)1(−∞,R)(z). (4.25)

Bayesian predictive distribution

The Bayesian predictive distribution of c, conditional on ni, c̃i, s̃
2
ci , is the

logStudent t distribution given in (4.23), and the Bayesian predictive

distribution of e, conditional on ni and ēi, is given by

Pr(e|ni, ēi) =
ni(1− ēi) + 0.5

ni + 1
1(e=0)(e) +

niēi + 0.5

ni + 1
1(e=1)(e). (4.26)
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The difference between the Bayesian predictive distribution

Pr(e|ni, ēi) and the frequentist Be(e|ēi) becomes negligible when ni

is large. For instance, for ni = 5 and ēi = 0.2 we have

|Pr(e = 0|5, 0.2)− Be(e = 0|0.2)| = 0.05,

and for ni = 100 and ēi = 0.2 the absolute value of the difference is as

small as 0.003.

It is easy to show that when sampling from Be(e|θ) we have that

lim
ni→∞

Pr(e|ni, ēi) = Be(e|θ), [Pθ].

The Bayesian predictive net benefit distribution turns out to be

Pi(z|R,ni, ci, ei) =

1∑
e=0

Pi(eR− z|ni, c̃i, s̃2
ci) Pr(e|ni, ēi)

=
ni(1− ēi) + 0.5

ni + 1
Pi(−z|ni, c̃i, s̃2

ci)1(−∞,0)(z)

+
ni ēi + 0.5

ni + 1
Pi(R− z|ni, c̃i, s̃2

ci)1(−∞,R)(z),

(4.27)

where Pi denotes the logStudent t distribution given in (4.23). The next

example illustrates the frequentist and Bayesian predictive distributions

for this model.

Example 4.6. For the lognormal–Bernoulli model and artificial data

with n = 10, c̃ = 9.13, s̃c = 0.09 and ē = 0.7, Figure 4.5 displays

the Bayesian and frequentist predictive net benefit distributions for

R = 5000. They have two local modes located at points −9141.40 and

−4146.13 for the Bayesian, and −9153.54 and −4153.58 for the fre-

quentist.

From Figure 4.5 it follows again that the tails of the Bayesian pre-

dictive distribution are thicker than those of the frequentist.
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FIGURE 4.5

Bayesian (dashed line) and frequentist (continuous line) predictive dis-

tributions of the net benefit for R = 5000 in Example 4.6.

Frequentist optimal treatments

For the utility function U1(z|R) and penalizing constant p1, treatment

T1 is optimal for any R in the set

R̂U1
1 (p1) =

{
R : (ē1 − ē2)R− d12 ≥ p1

}
,

where

d12 = exp

{
c̃1 +

s̃2
c1

2

}
− exp

{
c̃2 +

s̃2
c2

2

}
,

and T2 for any R in the set R̂U1
2 (p1) = R+ − R̂U1

1 (p1).

Further, for the utility function U2(z|R) and penalizing constant p2,

the optimal treatment is T1 for any R in the set

R̂U2
1 (p2) =

{
R : P̂r(Z1 ≥ Z2|R, c1, e1, c2, e2) ≥ 1 + p2

2

}
,

where the probability is computed using the frequentist predictive dis-

tributions P̂1(z|R, c1, e1) and P̂2(z|R, c2, e2) given in (4.25) for i = 1, 2.
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Bayesian optimal treatments

For the utility function U1(z|R), Lemma 4.2 shows that the Bayesian

optimal treatment does not exist.

For the utility function U2(z|R) and penalizing constant p2, the

Bayesian optimal treatment is T1 for any R in the set

RU2
1 (p2) =

{
R : Pr(Z1 ≥ Z2|R,n1, n2, c1, e1, c2, e2) ≥ 1 + p2

2

}
,

where the probability is computed using Pi(z|R,ni, ci, ei) for i = 1, 2,

in (4.27).

Example 4.7. We simulate two data sets with size n1 = n2 = 20 of

c and e from two lognormal–Bernoulli distributions with parameters

µ1 = 3, σ2
1 = 2, θ1 = 0.7 and µ2 = 6, σ2

2 = 4, θ2 = 0.9. These

distributions are the rewards of treatment T1 and T2, respectively.

Sample means and standard deviations of the simulated data are

presented in Table 4.6.

TABLE 4.6

Sample means and standard deviations in Example 4.7.

Treatment ni Cost Effectiveness

c̃i s̃ci ēi sei
T1 20 2.71 1.34 0.55 0.50

T2 20 5.94 1.98 0.90 0.30

For these data we compute the set of points R for which treatment

T1 is optimal for the utility functions U1(z|R) and U2(z|R).

In an equal–footing scenario where p1 = p2 = 0, Figure 4.6 displays

EP̂i(zi|R, datai) for i = 1, 2, and P̂r (Z1 ≥ Z2|R, data) as a function of

R. From the upper panel in Figure 4.6 it follows that

R̂U1
1 = {R : R ≤ 7646.65} .

From the lower panel we conclude that R̂U2
1 = R+.
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FIGURE 4.6

Upper panel: EP̂i(zi|R, datai), i = 1, 2, as a function of R for the

lognormal–Bernoulli model. Lower panel: P̂r (Z1 ≥ Z2|R, data) as a

function of R for the lognormal–Bernoulli model.

Table 4.7 displays the sets of R for which treatment T1 is opti-

mal for the utility functions U1(z|R) and U2(z|R). The result using the

Bayesian predictive distribution and U2(z|R) is based on values gener-

ated from the net benefit distribution in (4.27).
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TABLE 4.7

Sets of R for which T1 is optimal under the Bayesian and frequentist

approaches in Example 4.7.

Utility Bayesian Frequentist

U1 It does not exist R̂U1
1 = {R : R ≤ 7646.65}

U2 RU2
1 = R+ R̂U2

1 = R+

4.6.4 The bivariate normal model

Let (c, e) be the random cost and effectiveness of treatment Ti that fol-

lows the bivariate normal distribution N2((c, e)>|(µi, ηi)>,Σi), where

(c, e)> denotes the transpose of (c, e), (µi, ηi)
> is the mean vector and

Σi =

(
σ2
i φi

φi τ2
i

)

is the covariance matrix, with σ2
i and τ2

i the variances of the cost and

effectiveness, and φi the covariance of cost and effectiveness. Let (ci, ei)

be a sample of size ni from this bivariate normal distribution.

The following lemma is useful in obtaining the distribution of the

net benefit.

Lemma 4.3. Let X be a random vector of dimension p following the

normal distribution with mean µ = (µ1, . . . , µp)
> and covariance ma-

trix V of dimensions p × p, invertible and positive definite. Then, the

random vector Y = a+BX, where a is a vector of dimension q, q ≤ p,
and B is a matrix of dimensions q × p, follows the q−variate normal

distribution with mean a + Bµ and covariance matrix BVB>.

For a given R ≥ 0, the distribution of z is obtained by applying

Lemma 4.3 for q = 1, p = 2, X = (c, e)>, a = 0, and B = (−1, R).

Hence, the distribution of the net benefit z is the normal distribution

N (z|ηR− µ, τ2R2 + σ2 − 2Rφ).
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Frequentist predictive distribution

The frequentist net benefit predictive distribution is the normal

P̂i(z|R, ci, ei) = N (z|ēiR− c̄i, s2
eiR

2 + s2
ci − 2Rsciei), (4.28)

where s2
ci and s2

ei are the sample variances of ci and ei, and

sciei =
1

ni

ni∑
j=1

(cij − c̄i)(eij − ēi).

Bayesian predictive distribution

For the improper Jeffreys prior for the parameters, that is,

π((µi, ηi),Σi) ∝ |Σi|−3/2,

some algebra shows (Gelman et al., 2004) that the posterior distribution

of (µi, ηi) is the bivariate Student t distribution

π(µi, ηi|ci, ei) = T2

(
(µi, ηi)

>∣∣(c̄i, ēi)>, 1

ni − 2
Si, ni − 2

)
,

and the posterior distribution of the matrix Σi is the multivariate in-

verted Wishart distribution

π(Σi|ci, ei) = IW (Σi|niSi, ni − 1) ,

where Si, the MLE of the covariance matrix Σi, is given by the matrix

Si =

(
s2
ci sciei

sciei s2
ei

)
.

Thus, the Bayesian predictive distribution of c and e becomes the bi-

variate Student t distribution

Pi(c, e|ci, ei) = T2

(
(c, e)>

∣∣(c̄i, ēi)>, ni + 1

ni − 2
Si, ni − 2

)
. (4.29)

The Bayesian predictive net benefit distribution Pi(z|R, ci, ei) does

not have a close form expression, although a sample from it can be

easily obtained by simulation from Pi(c, e|ci, ei).
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Example 4.2 (continued). We consider the artificial data sets in Ex-

ample 4.2 plus sce = 3.36. The frequentist predictive distribution of the

net benefit of treatment T , conditional on R, turns out to be

P̂ (z|R, c, e) = N (z|2.15R− 19992, 0.292R2 + 23.152 − 6.72R)

and the Bayesian predictive distribution of (c, e)

P (c, e|c, e) = T2((c, e)>|(19992, 2.15)>, 1.37S, 8),

where

S =

(
23.152 3.36

3.36 0.292

)
.

Frequentist optimal treatments

The optimal treatment in {T1, T2} for the utility function U1(z|R) only

depends on the sample means c̄i and ēi, and hence the analysis coincides

with that for the normal–normal model in Section 4.6.1.

For the utility function U2(z|R), and penalizing constant p2, treat-

ment T1 is optimal for any R in the set

R̂U2
1 (p2) =

R : Φ

 (ē1 − ē2)R− (c̄1 − c̄2)√∑2
i=1(s2

eiR
2 + s2

ci − 2Rsciei)

 ≥ 1 + p2

2

 ,

and T2 for any R in R̂U2
2 (p2) = R+ − R̂U2

1 (p2).

Observe that for case p1 = p2 = 0, R̂U1
1 and R̂U2

1 are the same set

and coincide with that obtained in the normal–normal model.

Bayesian optimal treatments

The marginal expected values of the predictive distribution of c and

e are c̄i and ēi (Kotz and Nadarajah, 2004). Thus, under the utility

function U1(z|R) and the penalizing constant p1, the sets RU1
1 (p1) and

R̂U1
1 (p1) for the Bayesian and the frequentist predictive distributions

coincide.

Finally, for the utility U2(z|R) we proceed by simulation from (4.29)

to obtain the Bayesian predictive distribution of the net benefit of the

treatment. The next example illustrates this situation.
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Example 4.3 (continued). We consider the artificial data sets in Table

4.2 plus sc1e1 = 2.57 and sc2e2 = 4.51.

We generate a sample of size 106 from the Bayesian predictive

distribution T2

(
(c, e)>|(c̄i, ēi)>, ni+1

ni−2Si, ni − 2
)

for i = 1, 2. For this

sample and a grid of values of R we estimate the probability Pr(Z1 ≥
Z2|R, data) by the proportion of times that z1 is greater than or equal

to z2 across the simulated samples. Figure 4.7 shows the results.

0 5000 10000 15000 20000
R

0.2

0.4

0.6

0.8

Pr (z1 � z2 R)

FIGURE 4.7

Pr(Z1 ≥ Z2|R, data) as a function of R in Example 4.3.

If we penalize treatment T1 by p2 = 0.25, then RU2
1 (0.25) =

{R : R ≥ 14559.00} .

4.6.5 The dependent lognormal–Bernoulli model

This model is a extension of the lognormal–Bernoulli model given in

Section 4.6.3 to the case of parameter dependency. Let (c, e) be the
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random cost and effectiveness of a treatment Ti such that e follows

a Bernoulli distribution Be(e|θi) and c, conditional on e, follows the

lognormal distribution Λ(c|µi(e), σi(e)2) for e = 0, 1. Let us consider

the reference prior πi(µi(e), σi(e)) ∝ 1/σi(e), and the Jeffreys prior

π(θi) = Beta(θi|1/2, 1/2).

Frequentist predictive distribution

For a sample (ci, ei) of treatment Ti, the frequentist predictive distri-

bution of c and e is

P̂i(c, e|ci, ei) = Λ(c|c̃i(e), s̃2
ci(e))× Be(e|ēi),

where

ni(e) =

ni∑
j=1

1(eij=e)(e), c̃i(e) =
1

ni(e)

ni∑
j=1

log(cij)1(eij=e)(e),

and

s̃2
ci(e) =

1

ni(e)

ni∑
j=1

(log(cij)− c̃i(e))21(eij=e)(e),

for e = 0, 1.

Then the frequentist predictive distribution of z renders

P̂i(z|R, ci, ei) = (1− ēi) Λ(−z|c̃i(0), s̃2
ci(0))1(−∞,0)(z)

+ ēi Λ(R− z|c̃i(1), s̃2
ci(1))1(−∞,R)(z). (4.30)

Bayesian predictive distribution

The Bayesian predictive net benefit distribution is obtained as in (4.27)

and it turns out to be

Pi(z|R,ni, ci, ei)

=
ni(1− ēi) + 0.5

ni + 1
Pi(−z|ni(0), c̃i(0), s̃ci(0))1(−∞,0)(z)

+
niēi + 0.5

ni + 1
Pi(R− z|ni(1), c̃i(1), s̃ci(1))1(−∞,R)(z). (4.31)
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Example 4.8. Let us consider the dependent lognormal–Bernoulli

model and artificial data with n = 20, (n(0), c̃(0), s̃c(0)) = (5, 9.16, 0.06)

and (n(1), c̃(1), s̃c(1)) = (15, 9.03, 0.12).

Figure 4.8 displays the Bayesian and frequentist predictive distri-

butions of the net benefit for R = 10000. They are bimodal densities,

and the Bayesian densities have modes at points −9468.03 and 1777.55,

and the frequentist at −9474.82 and 1769.52.
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FIGURE 4.8

Bayesian (dashed line) and frequentist (continuous line) predictive dis-

tributions of the net benefit for R = 10000 in Example 4.8.

Frequentist optimal treatments

For the utility function U1(z|R) and penalizing constant p1, treatment

T1 is optimal for any R in the set

R̂U1
1 (p1) =

{
R : (ē1 − ē2)R− (d1 − d2) ≥ p1

}
,

where

di = (1− ēi) exp

{
c̃i(0) +

s̃2
ci(0)

2

}
+ ēi exp

{
c̃i(1) +

s̃2
ci(1)

2

}
,

for i = 1, 2. T2 is optimal for any R in the set R̂U1
2 (p1) = R+−R̂U1

1 (p1).
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For the utility function U2(z|R), the set RU2
2 (p2) is found by simu-

lation from (4.30).

Bayesian optimal treatments

From Lemma 4.2, only the utility function U2(z|R) can be considered

for this model. The set RU2
1 (p2) is found by simulation from (4.31).

Example 4.9. We consider the data in Table 4.8 from two treatments

assuming they are drawn from dependent lognormal–Bernoulli models.

TABLE 4.8

Data in Example 4.9.

Treatment (n(0), c̃(0), s̃c(0)) (n(1), c̃(1), s̃c(1))

T1 (5, 9.16, 0.06) (15, 9.03, 0.12)

T2 (10, 9.50, 0.03) (10, 8.90, 0.15)

The sets of R for which treatment T1 is optimal for the utility func-

tions U1(z|R) and U2(z|R) in an equal–footing scenario are shown in

Table 4.9.

TABLE 4.9

R
Uj
1 and R̂

Uj
1 sets, j = 1, 2, for the Bayesian and frequentist pre-

dictive distributions and the utility functions U1(z|R) and U2(z|R) in

Example 4.9.

Utility Bayesian Frequentist

U1 It does not exist R̂U1
1 = R+

U2 RU2
1 = R+ R̂U2

1 = {R : R ≤ 8907.21}
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4.7 A case study

This is a cost–effectiveness analysis carried out by Moreno et al. (2010)

with real data from a clinical trial in which there are four highly

active antiretroviral treatment protocols applied to asymptomatic

HIV patients (Pinto et al., 2000). Each treatment protocol combines

three drugs chosen from the following five: stavudine (d4T), lamivu-

dine (3TC), indinavir (IND), didanosine (ddl) and azidothymidine

(AZT), as follows. Treatment T1: d4T+3TC+IND, T2: d4T+ddl+IND,

T3: AZT+3TC+ IND and T4: AZT+ddl+IND. The effectiveness is

described by a dichotomous success–not success random variable, where

success means that the patient has no detectable virus load. Effective-

ness data are summarized in Table 4.10.

TABLE 4.10

Observed effectiveness in the clinical trial.

Treatment Success Not Success Total

T1 175 94 269

T2 51 44 95

T3 48 43 91

T4 15 10 25

The collected cost data of the patients in euros are summarized in

Table 4.11. There are some large sample values of the cost of the first

treatment that suggest a lognormal distribution to accommodate them.

We assume the parametric lognormal–Bernoulli sampling model

with the standard reference prior for the parameters of the treatments,

and compute the Bayesian optimal decisions.

A partial analysis of the problem that compares T3 against T2 and

T3 against T1 yields the following conclusions. The Bayesian optimal

decision under U2 indicates that T3 is the optimal one against T1 and T2

for all values of the parameter R. For instance, the posterior probability
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TABLE 4.11

Observed costs in the clinical trial.

Treatment Mean St. Dev.

T1 7142.28 1568.12

T2 7302.70 1702.85

T3 6239.50 931.60

T4 6282.62 609.18

that treatment T1 is net benefit larger than T3 is always less than 1/2,

and in fact it varies in the interval (0.28, 0.45) as R varies.

FIGURE 4.9

Multiple treatment comparisons.

On the other hand, a full analysis of the problem should consider

multiple comparisons. The optimal decisions with respect to the utility

function U2 are derived from the four curves{
EPjU2(zj |R) = Pr (Zj ≥ Z−j |R, data) , j = 1, . . . , 4

}
,

that we plot in Figure 4.9.
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Figure 4.9 indicates that for small values of R, treatment T3 has the

highest expected utility, but for values of R greater than 1100 euros, T4

has the highest expected utility. We also observe that T2 has, uniformly

on R, the smallest expected utility, and T1 has the second smallest

expected utility. We note that the utility function U1 cannot be used

for the objective Bayesian analysis of the lognormal–Bernoulli reward

distributions.

4.8 The cost–effectiveness acceptability curve for the

utility function U1

For the case of two treatments T1 and T2 with rewards P1(z|R) and

P2(z|R), the difference of the expectation of the utility function U1(z|R)

with respect to these rewards yields the well–known incremental net

benefit given in equation (1.3) in Chapter 1, and the decision rule is

that treatment T1 is optimal for a value R if

INB12(R) = EP1(z|R)− EP2(z|R) ≥ 0.

Thus, the set of R for which treatment T1 is optimal is

RU1
1 =

{
R : INB12(R) ≥ 0

}
,

and hence T2 is optimal for any R in

RU1
2 =

{
R : INB12(R) ≤ 0

}
.

When the distribution P1(z|R) and P2(z|R) are not completely

known, we have to estimate RU1
1 and RU1

2 .

This is the setting in which appears the cost–effectiveness accept-

ability curve, and we give a detailed account of this notion when the

distribution of the net benefit is completely unknown and when it is

known except for a parameter.

Let ei = (ei1, . . . , eini) and ci = (ci1, . . . , cini) denote a sample of
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effectiveness and cost from patients under treatment Ti, i = 1, 2. Since

the estimate of the optimal treatment, conditional on R, depends on

these samples, the question is how the probability Pr(INB12(R) ≥ 0)

behaves as the samples vary in their sample spaces.

We note that for continuous cost and effectiveness,

Pr(INB12(R) ≥ 0) = 1− Pr(INB21(R) ≥ 0).

Definition 4.1. The curve

ψ1(R) = Pr(INB12(R) ≥ 0), (4.32)

for R ≥ 0 is called the cost–effectiveness acceptability curve (CEAC)

for treatments T1 and T2.

This curve depends not only on the sampling model of the cost and

the effectiveness of treatment T1 and T2, but also on the procedure we

use for estimating INB12(R).

In the next two sections we consider the CEAC for the nonparamet-

ric case where the sampling model for the cost and the effectiveness is

completely unknown, and also for the case of specified sampling models

with unknown parameters, which is the parametric case. In this latter

situation we consider both the case of using a Bayesian approach for

eliminating the parameters and the case of using a frequentist approach.

4.8.1 The case of completely unknown rewards

For a given R, let zi = (zi1, . . . , zini) be the net benefit of the samples

of the effectiveness and cost (ci, ei) from patients under treatment Ti

for i = 1, 2. A nonparametric estimation of Pi(z|R) is given by the

empirical distribution

Fi(z|R, zi) =
1

ni

ni∑
j=1

1(zij≤z)(z)

for z ∈ R. Resampling from the distributions F1(z|R, z1) and

F2(z|R, z2) we can compute the mean of each sample (bootstrap sam-

ple), and the proportion of bootstrap samples for which the mean from
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F1 is greater than that from F2. This proportion is the bootstrap esti-

mator of the probability Pr(INB12(R) ≥ 0).

If we repeat those calculations for a grid of points R we obtain a

nonparametric estimator of the curve

ψ1(R) = Pr(INB12(R) ≥ 0).

We note that ψ1(R) is tied to the utility function U1(z|R). The meaning

of this curve is the sampling probability that treatment T1 is optimal

for the utility function U1 when sampling from the estimated lotteries

F1(z|R, z1) and F2(z|R, z2). From ψ1(R) we can compute the proba-

bility that treatment T2 is optimal as ψ2(R) = 1− ψ1(R).

The rationale of the bootstrap procedure is that for large sample

sizes ni, i = 1, 2, the Law of Large Number yields

EF1(z|R)− EF2(z|R) ≈ 1

ni

ni∑
j=1

z∗1j −
1

ni

ni∑
j=1

z∗2j ,

where {z∗1j , j = 1, . . . , n1} and {z∗2j , j = 1, . . . , n2} are bootstrap sam-

ples of sizes n1 and n2.

It is clear that the accuracy of the estimator of ψj(R) depends

on the accuracy the empirical distribution Fi(z|R, zi) estimates the

true distribution Pi(z|R) for i = 1, 2. The Glivenko–Cantelli theorem

(Loève, 1963, pp. 20–21) guarantees an accurate estimation for large

sample size ni. Thus, for large sample sizes n1 and n2 we have that

INB12(R) ≈ EF1(z|R)− EF2(z|R).

Recall that we are assuming that we know nothing a priori about

P1(z|R) and P2(z|R), and hence we are using the bootstrap procedure

for estimating ψ1(R) and ψ2(R).

Let us illustrate this curve based on the data in Example 1.1 in

Chapter 1.

Example 4.10. As a continuation of Example 1.1, let us consider

the sample of size n1 = 270 of costs and effectiveness of treatment

T1, (c1j , e1j), j = 1, . . . , 270. Thus the observed net benefit of patient j
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under treatment T1 is z1j = e1j ×R− c1j . We construct the empirical

distribution

F1(z|R, z1) =
1

270

270∑
j=1

1(z1j≤z)(z). (4.33)

Analogously for the sample from treatment T2 of size n2 = 95, the

empirical distribution is

F2(z|R, z2) =
1

95

95∑
j=1

1(z2j≤z)(z). (4.34)

Now, resampling from the above distributions we consider 2000 boot-

strap replicates to estimate the probability of a positive incremental net

benefit. Figure 4.10 indicates that for R ≤ 21500 euros, the proba-

bility that the INB21 is greater than zero is smaller than 0.5 and for

R ≥ 21500 the probability that the INB21 is greater than zero is greater

than 0.5. We note that this assertion is with respect to the bootstrap

samples.

Extension to more than two treatments

It is straightforward to extend the CEAC notion to situations where

the number of treatments is greater than 2. Indeed, let {T1, . . . , Tk},
k ≥ 3, be alternative treatments with completely unknown lotteries

{Pi(z|R), i = 1, . . . , k}. Let ψj(R) denote the probability that treat-

ment Tj is optimal under U1, conditional on R, that is

ψj(R) = Pr

(
EPj (z|R)− max

i=1,...,k
EPi(z|R) = 0

)
.

For a given R, let zi = (zi1, . . . , zini) denote a net benefit sample

from patients under treatment Ti. Resampling from the empirical dis-

tributions {Fi(z|R, zi), i = 1, . . . , k} and taking the means of these

bootstrap samples, a nonparametric estimation of ψi(R) is the propor-

tion of bootstrap samples such that the mean for treatment Ti is greater

than the mean for any other treatment. Repeating those calculations

for a grid of points R we have a nonparametric estimator of the curve

ψi(R) for R ≥ 0.
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FIGURE 4.10

Cost–effectiveness acceptability curve in Example 1.1 for 2000 boot-

strap replications.

4.8.2 The case of parametric rewards

The situation where we know nothing about the model of cost and

the effectiveness is not an usual situation in cost–effectiveness analysis.

The common practice is that we are able to propose a model for the

cost and the effectiveness although the model might depend on some

unknown parameters. That is, we start from a specific parametric model

{Pi(c, e|θi), θi ∈ Θ} for i = 1, 2, where the parameter θi is unknown.

Then, the incremental net benefit

INB12(R, θ1, θ2) = EP1(z|R, θ1)− EP2(z|R, θ2), (4.35)

depends on the parameters θ1 and θ2. For estimating the INB12(R, θ1,

θ2) we need to estimate θ1 and θ2.

Frequentist CEAC

Let (cij , eij) for j = 1, . . . ni be ni random variables i.i.d. from

Pi(e, c|θi), θ̂i = θ̂i(ci, ei) the MLE estimator, and Pi(c, e|θ̂i) the
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predictive distribution for i = 1, 2. Then, for each R, the INB12 is

estimated as the difference of the expectations of these distributions,

that is,

ÎNB12(R, θ̂1, θ̂2) = EP1(z|R, θ̂1)− EP2(z|R, θ̂2).

The accuracy of this estimator depends on the accuracy of the MLE

estimators.

In this parametric setting the cost–effectiveness acceptability curve

ψ̂1(R) = Pr(ÎNB12(R, θ̂1, θ̂2) ≥ 0) is computed with respect to the

distribution gi(θ̂i) of the MLE θ̂i(ci, ei) for i = 1, 2. That is,

ψ̂1(R) =

∫
I

g1(θ̂1)g2(θ̂2) dθ̂1dθ̂2,

where

I =
{

(θ̂1, θ̂2) : ÎNB12(R, θ̂1, θ̂2) ≥ 0
}
.

In general, it is hard to figure out the distribution gj(θ̂j) so the

computation of CEAC is not necessarily an easy task. Further, to iden-

tify the set I in the sample space is not, in general, simple. However,

for large sample size nj a normal distribution can be an approximation

to the distribution gj(θ̂j), j = 1, 2.

Bayesian CEAC

If we complete the sampling model Pi(c, e|θi) by adding a prior for θi,

we have the Bayesian model {Pi(c, e|θi), πi(θi)} for i = 1, 2.

Let us consider the Bayesian predictive distribution for the cost and

effectiveness of treatment Ti

P̃i(c, e|ci, ei) =

∫
Pi(c, e|θi)πi(θi|ci, ei) dθi,

for i = 1, 2.

Then, the Bayesian estimation of the INB12(R) is

ĨNB12(R, c1, e1, c2, e2) = EP̃1
(z|R, c1, e1)− EP̃2

(z|R, c2, e2).
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In this Bayesian setting the cost–effectiveness acceptability curve

ψ̃1(R) = Pr(ĨNB12(R, c1, e1, c2, e2) ≥ 0) is computed with respect to

the marginal distribution of the samples mi(ei, ci) for i = 1, 2, that is

ψ̃1(R) =

∫
I′

2∏
i=1

mi(ci, ei) dcidei,

where

I ′ =
{

(c1, e1, c2, e2) : ĨNB12(R, c1, e1, c2, e2) ≥ 0
}
.

To identify the set I ′ in the sample space is not, in general, an easy

task.

The formal extension to the case where we have more than two

treatments is immediate and hence it is omitted.

4.9 The cost–effectiveness acceptability curve for the

utility function U2

The above ideas apply word–by–word to the case where the utility func-

tion is U2(z|R) instead of U1(z|R). In the parametric setting, treatment

T1 is preferred to T2 for the utility function U2 if

ϕ(R, θ1, θ2) = Pr(Z1 ≥ Z2|R, θ1, θ2)− Pr(z2 ≥ z1|R, θ1, θ2) ≥ 0.

These probabilities are computed with respect to the distribution

Pi(c, e|θi), for i = 1, 2.

Then, if we use the MLE θ̂i = θ̂i(ci, ei) for estimating θi, we have

that the estimation of ϕ(R, θ1, θ2) is given by

ϕ̂(R, θ̂1, θ̂2) = Pr(Z1 ≥ Z2|R, θ̂1, θ̂2)− Pr(Z2 ≥ Z1|R, θ̂1, θ̂2),

where the probabilities have been computed with respect to the pre-

dictive distribution Pi(zi|θ̂i) for i = 1, 2.
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The frequentist cost–effectiveness acceptability curve for the utility

function U2(z|R) is then given by

ψ2(R) = Pr
(
ϕ̂(R, θ̂1, θ̂2) ≥ 0

)
,

where the probability is computed with respect to the sampling distri-

bution of θ̂1(c1, e1) and θ̂2(c2, e2).

On the other hand, using the Bayesian predictive distribution

P̃i(c, e|ci, ei) for i = 1, 2, the Bayesian estimation of ϕ(R, θ1, θ2) is

given by

ϕ̃(R, c1, e1, c2, e2) =

∫
Θ×Θ

ϕ(R, θ1, θ2)π1(θ1|c1, e1)π2(θ2|c2, e2) dθ1dθ2.

The Bayesian cost–effectiveness acceptability curve for the utility func-

tion U2(z|R) is then given by

ψ′2(R) = Pr (ϕ̃(R, c1, e1, c2, e2) ≥ 0) ,

where the probability is computed with respect to the marginal distri-

bution

m(c1, e1, c2, e2) =

2∏
i=1

mi(ci, ei).

We remark that ψ2(R) and ψ′2(R) represent sampling evaluations of

the frequentist and Bayesian optimal treatment T1 under the utility

function U2 when sampling from the true model.

4.10 Comments on cost–effectiveness acceptability curve

The CEAC notion dates back to Van Hout et al. (1994) and Löthgren

and Zethraeus (2000), who tried defining the p−value associated with

the null hypothesis H0 : INB12(R) ≥ 0 for every R, an interpretation

largely adopted in the literature (Briggs and Fenn, 1998; Raikou et al.,

1998). We note that the probability that INB12(R) ≥ 0 when sam-

pling from a model such that INB12(R) ≤ 0 is the type II error, and



162 Bayesian cost–effectiveness analysis

the probability that INB12(R) ≤ 0 when sampling from a model such

that INB12(R) ≥ 0 is the type I error. We remark that this testing

procedure is not at all an evaluation of the probability of the optimal

treatment when sampling from the true model, which is the definition

of the CEAC.

Both the frequentist and Bayesian CEACs are sampling evaluations

of the procedure we use for estimating the unknown parameters of the

lotteries when sampling repeatedly from the true lottery of the cost and

the effectiveness. An interpretation of the CEAC for every value R is

the proportion of samples from the true model for which the optimal

treatment beats the alternative treatments. This notion is certainly

quite involved.



5

Cost–effectiveness analysis for

heterogeneous data

5.1 Introduction

Let T1, . . . , Tk be k alternative treatments for a given disease and

the parametric class of distributions of their cost and effectiveness

P (c, e|θ1), . . . , P (c, e|θk), where θ1, . . . , θk are unknown parameters.

So far we have assumed that the samples ci = (ci1, . . . , cini) and

ei = (ei1, . . . , eini) of the cost and effectiveness of treatment Ti are

homogeneous, that is, the observations come from a unique distribution

P (c, e|θi), i = 1, . . . , k. However, a frequent situation is the one where

the data (ci, ei) are heterogeneous, that is, they are an aggregate of

samples

ci = (ci1, . . . , cih), ei = (ei1, . . . , eih),

where the subsamples cij = (cij1, . . . , cijnij ), eij = (eij1, . . . , eijnij ) are

such that ni =
∑h
j=1 nij , and come from the distribution P (c, e|θij)

for j = 1, . . . , h. If full heterogeneity is present we have that θij 6= θis

for j 6= s and j, s = 1, . . . , h. The homogeneous case corresponds to

θi = θi1 = · · · = θih.

Heterogeneous samples are typically obtained when the subsamples

of cost and effectiveness, cij and eij , of treatment Ti are collected in h

different health–care centers.

When the samples (ci, ei) are heterogeneous a central problem is

figuring out how to compute the predictive distribution P (c, e|ci, ei) of

the cost and the effectiveness of treatment Ti for i = 1, . . . , k. We note

163
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that from the data (cij , eij) we can find P (c, e|cij , eij), the predictive

distribution of (c, e) conditional on health center j. However, the quan-

tity of interest is not the predictive distribution conditional on center

j, but we are interested in the unconditional predictive distribution

P (c, e|ci, ei) of treatment Ti. The statistical procedure that accounts

for the between–sample heterogeneity, and is able to provide the un-

conditional predictive distribution of (c, e), is called meta–analysis.

Most of the applications of meta–analysis have been carried out

in clinical trials, where samples of effectiveness are collected from pa-

tients in h different health–care centers, and the quantity of interest is

the effectiveness of the treatment. DuMouchel and Waternaux (1992)

encouraged the use of meta–analysis in medicine and in controlled clini-

cal trials of psychopharmacological agents by asserting that even when

the study protocols are similar (dosage, length of treatment, control

treatment), there is often considerable variation between studies. Het-

erogeneity of the data might also appear in multicenter studies even

when the protocols are identical.

The literature on meta–analysis is large and the main statistical

model is the so–called random effect model (DerSimonian and Laird,

1986; Malec and Sendrask, 1992; Consonni and Veronese, 1995; Evans,

2001; Sutton and Higgins, 2008; Bhaumik et al., 2012; Cornell et al.,

2014; Moreno et al., 2014; Friede et al., 2017, among others).

In this chapter we assume the existence of certain heterogeneity

degree in the samples of cost and effectiveness across health–care cen-

ters, and develop the cost–effectiveness analysis for such heterogeneous

data. In this setting, the uncertainty of the underlying models is higher

than that of the preceding chapter, where the data were assumed to

be homogeneous. Indeed, if the samples {(cij , eij), j = 1, . . . , h} are

independent and homogeneous across centers, the sampling model of

the whole sample (ci, ei) is given by

P (ci, ei|θi) =

h∏
j=1

nij∏
r=1

P (cijr, eijr|θi) =

ni∏
r=1

P (cir, eir|θi). (5.1)
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The dimension of this model is the dimension of parameter θi. If the

samples {(cij , eij), j = 1, ..., h} are fully heterogeneous the sampling

model is

P (ci, ei|θi1, . . . , θih) =

h∏
j=1

nij∏
r=1

P (cijr, eijr|θij). (5.2)

The model dimension is now the sum of the dimensions of θij for j =

1, . . . , h.

It is clear that model (5.2) for full heterogeneity is much more com-

plex than the model for homogeneity (5.1), and whether or not the di-

mension of model (5.2) can be reduced by grouping those models that

have the same parameter is an interesting question that might imply a

reduction of the model uncertainty. Therefore, based on the sampling

information {(cij , eij), j = 1, . . . , h} we want to know whether some

of the parameters θi1, . . . , θih are equal, that is, what centers have the

same distribution. We note that we are accepting that the situation of

full heterogeneity (5.2) is not necessarily present, and partial hetero-

geneity is deemed possible. The investigation of the heterogeneity of the

data {(cij , eij), j = 1, . . . , h} is a statistical multiple testing problem,

a model selection problem which is called probabilistic clustering.

Therefore, before a meta–analysis is applied for finding the un-

conditional predictive distribution of cost and the effectiveness of the

treatments, it is convenient to apply a statistical clustering procedure to

detect equalities between parameters θi1, . . . , θih, for every i = 1, . . . , k.

A Bayesian product partition models clustering procedure (Hartigan,

1990; Barry and Hartigan, 1992; Casella et al., 2014) will be presented

in Section 5.2. After that, in Section 5.3, we will present a general

Bayesian meta–analysis to account for the resulting heterogeneity of

the samples. Then, we will consider in Sections 5.4 and 5.5 the predic-

tive distributions of (c, e) and z. Optimal treatments are computed in

Section 5.7, and examples with real data are given in Section 5.8.

Before we undertake this task, we illustrate the consequences of

ignoring clustering in the estimation of the treatment effectiveness in



166 Bayesian cost–effectiveness analysis

the presence of heterogeneity. We give an example with simulated data

and use the standard random effect model.

The popular version of the random effect model for meta–analysis in

clinical trials is the following normal–normal hierarchical model (DerSi-

monian and Laird, 1986). Let pj be the probability of success of treat-

ment T conditional on center j for j = 1, . . . , h, and ej independent

effectiveness outcomes from nj patients receiving the treatment. The

distribution of ej is the binomial

Pr(ej |pj , nj) =

(
nj
ej

)
p
ej
j (1− pj)nj−ej , ej = 0, 1, . . . , nj .

The quantity of interest is the unconditional effectiveness of treat-

ment T , which is denoted by θ. This parameter θ is known as the

meta–parameter.

The standard random effect model assumes that the logit transfor-

mation of the data

yj = log

(
ej

nj − ej

)
follows the normal distribution

yj |θj , σj ∼ N (yj |θj , σ2),

where θj is the unknown true treatment effect in center j, and σ2 the

unknown variance.

It is also assumed that the distribution linking the experimental

parameter θj and the meta–parameter θ is normal

θj |θ, τ ∼ N (θj |θ, τ2), j = 1, . . . , h,

where θ is the true treatment effect, and τ2 the variance of θj . When

τ = 0 there is no variation in the treatment effects across centers,

and we then have full homogeneity. However, when τ > 0 its meaning

is simply the standard deviation of θj , and it does not say anything

about the variability of θj across centers.

Specific formulae for estimating the meta–parameter θ can be seen

in DerSimonian and Laird (1986). Some estimated corrections have
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been considered in Hartung and Knapp (2001) and Bhaumik et al.

(2012).

Example 5.1 illustrates the consequences of ignoring clustering in

the estimation of the meta–parameter θ.

Example 5.1. We consider six independent random variables

{xj , j = 1, . . . , 6} such that xj follows the Binomial distribution

Bin(x|nj , θj), where n1 = · · · = n5 = 100, n6 = 500, and θj = 0.1

for j = 1, . . . , 5 and θ6 = 0.7.

We simulate the data xj from the binomial distribution Bin(x|θj , nj)
and consider the logit transformation

yj = log

(
xj

nj − xj

)
for j = 1, . . . , 6. The first five samples contain a certain number of

zeros, and a continuity correction is applied to the zeros to assure that

the logit transformation has meaning.

Using the random effect model for h = 6 and samples y =

(y1, . . . , y6), we compute the estimate θ̂(y) of the meta–parameter θ.

Then, we repeat the simulation 1000 times and the mean across simu-

lations of the estimator of the meta–parameter θ turns out to be 0.18.

If we use the random effect model after grouping the samples in two

groups with samples s = (s1, s2), where

s1 = log

( ∑5
j=1 xj∑5

j=1 nj −
∑5
j=1 xj

)
,

with
∑5
j=1 nj = 500 and s2 = y6 with size 500, the mean of the estimate

θ̂(s) of the meta–parameter θ across simulations turns out to be 0.35.

The difference between the two estimates is astonishing. The lat-

ter estimate is almost twice the former. The reason for the difference

is that the latter estimate incorporates information on how the sam-

ples have been clustered before proceeding with the meta–analysis, while

the former estimate does not take into account this fact and gives a

misleading inference.
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5.2 Clustering

As we mentioned above, for a given treatment Ti we want clustering

of those models in the set
{
P (c, e|θij), j = 1, . . . , h

}
that have the

same parameter based on the sampling information provided by the

data
{

(cij , eij), j = 1, . . . , h
}

, and we want to do it for treatments

T1, . . . , Tk.

To simplify the notation, in this section we consider a generic

treatment T with rewards {P (c, e|θj), j = 1, . . . , h} and samples

{(cj , ej), j = 1, . . . , h} from these distributions.

Definition 5.1. The samples (cj , ej) from the distribution P (c, e|θj)
and (cs, es) from P (c, e|θs) are in the same cluster if θj = θs.

If parameters {θj , j = 1, . . . , h} are all equal we have only one clus-

ter, and this recovers the homogeneous case. In this case the likelihood

of the unique parameter θ for the sample (c, e) = {(cj , ej), j = 1, . . . , h}
is given by

P (c, e|θ) =

h∏
j=1

P (cj , ej |θ). (5.3)

If parameters {θj , j = 1, . . . , h} are all different we have h clusters,

and every distribution P (c, e|θj) is a cluster. In that case the likelihood

of the parameters {θj , j = 1, . . . , h} for the sample (c, e) is

P (c, e|θ1, . . . , θh) =

h∏
j=1

P (cj , ej |θj). (5.4)

We note that (5.3) and (5.4) represent two extreme situations of

clustering and that intermediate situations, where the number of clus-

ters in the samples is between 1 and h, are certainly possible. There-

fore, the problem is to know the cluster structure of the observed data

{(cj , ej), j = 1, . . . , h}. This is a model selection problem in which the

class of models is defined by the class of all possible clusters of the data.

We give here the Bayesian approach to this model selection problem
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following the product partition models approach introduced by Harti-

gan (1990) and further studied by Barry and Hartigan (1992), Crowley

(1997) and Casella et al. (2014).

Let us introduce some notation. The sample of cost and effectiveness

from health–care center j are simply denoted as xj = (cj , ej), and by

x = (x1, . . . ,xh) the joint sample. In what follows we refer indistinctly

to clustering models {P (c, e|θj), j = 1, . . . , h} or clustering samples

{xj , j = 1, . . . , h}.
The integer p, 1 ≤ p ≤ h, denotes the number of clusters we form

with the samples {xj , j = 1, . . . , h}. A partition of the sample in p

clusters is defined by the vector rp = (r1, . . . , rh), where rj is an integer

between 1 and p that indicates the cluster to which xj is assigned. For

instance, for h = 4 and p = 3, the partition r3 = (1, 2, 1, 3) indicates

the clustering {x1,x3}, {x2}, {x4}.
By Rp we denote the set of possible partitions rp. The number of

partitions in Rp is the Stirling number of second kind S(h, p). This

number is given by

S(h, p) =
1

p!

p∑
j=0

(−1)p−j
(
p

j

)
jh.

The set of all possible partitions is R = ∪hp=1Rp, and the number of

partitions is given by the Bell number Bh =
∑h
p=1 S(h, p).

Given a partition rp with p clusters, the sampling model conditional

on partition rp is given by the product

P (x|p, rp,θp, h) =

p∏
j=1

∏
i:ri=j
i=1,...,h

P (xi|θj), (5.5)

where θp = (θ1, . . . , θp) is an unknown parameter in the space Θp, and

the component θj indicates the parameter of the distribution of the

sample xi such that ri = j.

We remark that the partition rp defines the sampling model, so that

partition and model are equivalent words in this context.
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The partition r1 = (1, . . . , 1) corresponds to the singular case of only

one cluster, the homogeneous case, and in this notation the sampling

distribution, conditional on this partition, is

P (x|1, r1, θ, h) =

h∏
j=1

P (xj |θ).

It is interesting to note that the singular model P (x|1, r1, θ, h) is nested

into any cluster model P (x|p, rp,θp, h).

5.2.1 Prior distributions

Given the sampling cluster model P (x|p, rp,θp, h), to complete the

specification of the Bayesian cluster model, a prior distribution for the

discrete parameters (p, rp) and for the typically continuous parameter

θp have to be specified. A natural decomposition of the prior distribu-

tion π(p, rp,θp|h) is

π(p, rp,θp|h) = π(θp|p, rp, h)π(rp|p, h)π(p|h).

General priors π(θp|p, rp, h), π(rp|p, h), and π(p|h) have been in-

troduced in Casella et al. (2014). The priors they recommend can be

summarized in the three following points.

1. The prior for the parameter θ of the homogeneous model

P (x|1, r1, θ, h) is assumed to be the reference prior πN (θ).

This is the commonly used objective prior for estimating θ

(Berger et al., 2009).

The prior for parameter θp of the cluster model P (x|p, rp,
θp, h) is the intrinsic prior arising from the model comparison

P (x|p, rp, θp, h) against P (x|1, r1, θ, h), and it was presented

in two steps as in Chapter 2, Section 2.5.1. In a first step,

the intrinsic prior for θj conditional on θ, is obtained using

the intrinsic methodology for the model comparison between

model {P (y|θj), πN (θj)} and P (y|θ), where πN (·) is the ref-

erence prior, θ is an arbitrary but fixed point in Θ, and y is
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the training sample of size t such that

0 <

∫
Θ

P (y|θj)πN (θj) dθj <∞.

The dimension t can be fixed as the minimal integer for which

these inequalities hold (Berger and Pericchi, 1996a; Moreno

et al., 1998). This conditional intrinsic prior for θj is given by

πI(θj |θ) = πN (θj)

∫
X

P (y|θ)∫
Θ
P (y|θj)πN (θj) dθj

P (y|θj) dy. (5.6)

Then, the intrinsic prior for θp, conditional on θ, is defined as

πI(θp|p, rp, θ, h) =

p∏
j=1

πI(θj |θ).

In a second step, the unconditional intrinsic prior for θp is

obtained as

πI(θp|p, rp, h) =

∫
Θ

πI(θp|p, rp, θ, h)πN (θ) dθ.

This prior is a useful prior distribution for model selection.

Further, it has been applied to different contexts, including

cost–effectiveness analysis, change point problems, variable

selection in regression, etc. (Berger and Pericchi, 1996a, 2001;

Berger et al., 2014; Casella and Moreno, 2006, 2009; Girón

et al., 2007; Moreno et al., 2013a,b, 2015, among others).

2. The rationale to define π(rp|p, h) is as follows. The class of

partitions in p clusters Rp is first decomposed by noting that

if ki is the number of samples assigned to the ith cluster for

i = 1, . . . , p, then the class Rp can be expressed as

Rp = ∪
1≤k1≤···≤kp
k1+···+kp=h

Rp;k1,...,kp ,

where Rp;k1,...,kp is the class of partitions in Rp having sizes

(k1, . . . , kp). To the vector (k1, . . . , kp) we call a configuration.
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Using this decomposition of Rp we can now write the prior

π(rp|p, h) as

π(rp|p, h) = π(rp|Rp;k1,...,kp , h)π(Rp;k1,...,kp |p, h).

Since the labels of the clusters are irrelevant, the number of

partitions in Rp;k1,...,kp is given by(
h

k1 · · · kp

)
1

R(k1, ...kp)
,

where
(

h
k1···kp

)
is the multinomial coefficient, and

R(k1, . . . , kp) =

h∏
i=1

 p∑
j=1

1(kj=i)

!

corrects the count by considering the redundant strings in the

vector (k1, . . . , kp) . For instance, for a vector (k1, . . . , kp) such

that k1 = · · · = kp−4 < kp−3 = kp−2 < kp−1 = kp, we have

that R(k1, . . . , kp) = (p− 4)!2!2!.

Since the partitions rp in Rp;k1,...,kp are exchangeable, it seems

reasonable to assign a uniform prior to them, that is

π(rp|Rp;k1,...,kp , h) =

(
h

k1 · · · kp

)−1

R(k1, . . . , kp).

Further, since the configuration classes{
Rp;k1,...,kp , 1 ≤ k1 ≤ · · · ≤ kp, k1 + · · ·+ kp = h

}
in Rp contain models of the same complexity, it seems reason-

able to assign to these classes a uniform prior. Therefore, to

define this uniform prior we only need to count the number of

configuration classes in Rp. We note that this number is also

the number of ways the integer h can be partitioned into p or-

dered integer parts, which we denote by b(h, p). This number

does not seem to have a closed form expression as a function
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of p and h. However, it can be shown that b(h, p) satisfies the

recursive equation

b(h, p) = b(h− 1, p− 1) + b(h− p, p), 1 ≤ p ≤ h,

with the restrictions

b(h, 1) = b(h, h) = 1.

These recursive equations can be numerically solved. There-

fore, we have

π(Rp;k1,...,kp |p, h) =
1

b(h, p)
, Rp;k1,...,kp ∈ Rp.

3. In the cost–effectiveness analysis scenario there is no reason

to penalize, a priori, a large number of clusters, so that the

prior on the number of clusters π(p|h) is assumed to be the

uniform distribution

π(p|h) =
1

h
, p = 1, . . . , h.

Thus, we finally have the prior on the discrete parameter

p, rp as
π(p, rp|h) = π(rp|p, h)π(p|h). (5.7)

For instance, for r3 = (1, 2, 1, 3) we have that k1 = 1, k2 = 1,

k3 = 2, b(4, 3) = 1, and hence

π(r3|p = 3, h = 4) =
3!

1!1!2!

1

2!

1

4
=

3

8
.

5.2.2 Posterior distribution of the cluster models

Let
Mrp : {P (x|p, rp,θp, h), π(θp|p, rp, h)π(p, rp|h)},

be a Bayesian cluster model defined by the partition rp in the class of

cluster models with at most h clusters. From the Bayes theorem the

posterior probability of Mrp , or equivalently the posterior distribution

of the partition (p, rp), is given by

Pr(p, rp|x, h) =
m(x|p, rp,h)π(p, rp|h)∑h

p=1

∑
rp∈Rpm(x|p, rp,h)π(p, rp|h)

, Mrp ∈ R, (5.8)
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where m(x|p, rp,h), the marginal of the data, is

m(x|p, rp, h) =

∫
Θp
f(x|p, rp,θp, h)πI(θp|p, rp, h) dθp.

Each model Mrp ∈ R indicates a different heterogeneity structure

of the samples x = {xi, i = 1, . . . , h}, and the set of probability distri-

butions {Pr(Mrp |x), Mrp ∈ R} gives us a measure of the uncertainty

we have on these models.

5.2.3 Examples

Clinical trials often include binary data. In this section we use simu-

lated and real binary data to illustrate the accuracy of the clustering

procedure for estimating the true cluster model.

Example 5.1 (continued). As in Example 5.1 we consider six inde-

pendent samples xj, j = 1, ..., 6, with sample size n1 = . . . = n5 = 100

and n6 = 500. The samples are simulated from six Binomial distribu-

tions with parameters θj = 0.1 for j = 1, ..., 5, and θ6 = 0.7. Thus, the

true model is the cluster model formed by the groups {1, 2, 3, 4, 5}, {6}.
For h = 6 we have 203 cluster models and for the six simulated

samples we compute their posterior probabilities. We repeat the simu-

lation 500 times and find the mean of the posterior model probabilities

across the simulations. We found that the true model had the largest

posterior probability in 485 out of 500 simulations.

In Table 5.1 we present the mean across simulations of the posterior

probability of the top cluster models. We note that the mean of the

posterior probability of the six cluster model {1}, {2}, {3}, {4}, {5}, {6}
is as small as 0.005.

To illustrate the performance of the proposed Bayesian clustering

procedure for estimating the true cluster model, when the difference be-

tween θ6 and θ1 = · · · = θ5 decreases, a simulation study has been con-

ducted. Keeping as a true model the clusters {1, 2, 3, 4, 5}, {6} we con-

sider different values of θ6 (from 0.2 to 0.7) capturing scenarios from

more to less “closeness between clusters.” Also, in order to illustrate

the behavior of the proposed model with respect to the sample size, we
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TABLE 5.1

Mean of the posterior probabilities of the top cluster models across the

500 simulations.

Top cluster model Mean of the

posterior probability

{1, 2, 3, 4, 5}, {6} (true model) 0.87

{1}, {2, 3, 4, 5}, {6} 0.015

the rest < 0.01

other models

{1}, {2}, {3}, {4}, {5}, {6} (full heterogeneity) 0.005

{1, 2, 3, 4, 5, 6} (homogeneity) < 10−4

consider the following cases: I: n1 = · · · = n5 = 10, n6 = 50; II:

n1 = · · · = n5 = 25, n6 = 125; III: n1 = · · · = n5 = 50, n6 = 250, and

IV: n1 = · · · = n5 = 100, n6 = 500. Each case is identified by n6 and

thus we refer to it by the corresponding n6 value.

For all cases, a simulation run consisted of 500 samples. Figure 5.1

displays the estimated posterior probabilities of the true cluster model.

Figure 5.1 also shows that when the sample size increases and the dis-

tance between clusters increases, both the posterior probabilities of the

true model and the average rate of success also increase. This behav-

ior shows a very reasonable perform of the Bayesian product partition

model clustering procedure. For instance, from the bottom panel in Fig-

ure 5.1 we observe that even for small values of θ6, the model performs

very well for moderately large sample sizes reaching values of the aver-

age rate of success above 60%.

Example 5.2. Data in Table 5.2 correspond to a classical six ma-

jor multicenter clinical trials carried out in the seventies to assess the

beneficial effect of a daily dose of aspirin in post–myocardial infarc-

tion patients (Canner, 1987). The data were collected from six ma-

jor randomized multicenter clinical trials of aspirin and placebo during

the period 1970–79 in post–myocardial infarction patients. The trials
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FIGURE 5.1

Top panel: Behavior of the mean of the posterior probabilities of the

true model across the 500 simulations for different values of θ6 from 0.2

to 0.7 by increments of 0.05. Bottom panel: Average rate of success

of the true model across the 500 simulations. In both pictures, symbols

4, �, � and ◦ refer to n6 = 50, 125, 250, and 500, respectively.
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were the First United Kingdom trial (number 1), the Coronary Drug

Project Aspirin trial (number 2), the German–Austrian Multicenter

Study (number 3), the Second United Kingdom trial (number 4), the

Persantine–Aspirin Reinfarction study (number 5), and the Aspirin

Myocardial Infarction Study (number 6).

TABLE 5.2

Number of patients and number of deaths under aspirin and placebo

in six clinical trials.

Trial number Aspirin Placebo

ni xi ni xi

1 615 49 624 67

2 758 44 771 64

3 317 27 309 32

4 832 102 850 126

5 810 85 406 52

6 2267 246 2257 219

Using the clustering methodology explained above for binomial sam-

pling models, the resulting cluster models under aspirin and placebo and

their posterior probabilities are displayed in Table 5.3.

We note that the class of cluster models contains 203 models.

TABLE 5.3

Top cluster models for aspirin and placebo data and their posterior

probabilities.

Aspirin Placebo

Cluster Post. Cluster Post.

Model Prob. Model Prob.

{1,2,3},{4,5,6} 0.17 {1,2,3,6},{4,5} 0.14

{1},{2},{3},{4},{5},{6} 0.09 {1,2,3,5,6},{4} 0.10

{1,2},{3,4,5,6} 0.07 {1},{2},{3},{4},{5},{6} 0.06

{2},{1,3,4,5,6} 0.05 {1,2,3,6},{4},{5} 0.05

the rest < 0.05 the rest < 0.05
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We observe that the one–cluster model does not appear as one of the

top cluster models because the homogeneity has a very small posterior

probability.

Example 5.3. The dataset in Table 5.4 is extracted from Cosmi et al.

(2008) and corresponds to the comparison of total mortality in 4 studies

for patients treated with ticlopidine (treatment T1) versus oral antico-

agulation for coronary stenting (treatment T2).

TABLE 5.4

Number of patients and number of deaths under treatment T1 and T2

in Example 5.3.

Study T1 T2

ni xi ni xi

1 243 2 230 4

2 257 1 260 2

3 177 3 173 2

4 546 0 550 0

Table 5.5 shows the top clusters we found from this dataset among

the 15 possible cluster models.

TABLE 5.5

Top cluster models for treatment T1 and T2 and their posterior proba-

bilities in Example 5.3.

T1 T2

Cluster Model Post. Prob. Cluster Model Post. Prob.

{1,3},{2,4} 0.21 {1,2,3},{4} 0.27

{1,2,4},{3} 0.17 {1,3},{2,4} 0.14

{1,2,3},{4} 0.13 {1},{2,3},{4} 0.09

{1,2,3,4} 0.13 {1,3},{2},{4} 0.08

{1},{2,4},{3} 0.08 {1},{2,3,4} 0.08

{1,2},{3}, {4} 0.07 {1,2,3,4} 0.07

the rest < 0.05 the rest < 0.07
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We note that the full heterogeneity cluster denoted by {1}, {2}, {3}, {4}
has a posterior probability lower than 0.03 for any of the treatments,

and the homogeneous cluster model {1, 2, 3, 4} appears in treatment T2

with a probability as small as 0.07.

Examples 5.2 and 5.3 illustrate that full heterogeneity or homogene-

ity are not usual cluster models in multicenter studies.

5.3 Bayesian meta–analysis

In real meta–analysis applications, the true cluster model has to be

estimated, and the uncertainty of the model estimation must be incor-

porated into the meta–inference. The standard random effect model

does not take into account the model uncertainty, as it only considers

the full heterogeneity model. This, however, can be misleading as il-

lustrated in Example 5.1. The Bayesian meta–analysis model that we

introduce in this section does not share this inconvenience and the un-

certainty on the cluster model estimation is automatically incorporated

into the meta–inference.

Let T be a generic treatment with rewards {P (c, e|θj), j =

1, . . . , h}, and data x = (x1, . . . ,xh), where xj = (cj , ej) is the data

from center j for j = 1, . . . , h. The sampling distribution of x, condi-

tional on the partition rp of x in p clusters, is given by

P (x|p, rp,θp, h) =

p∏
j=1

P (yj |p, rp, θj , h),

where
P (yj |p, rp, θj , h) =

∏
i:ri=j

i=1,...,ni

P (xi|θj).

We complete the model with the reference prior πN (θj) and the objec-

tive Bayesian cluster model Mrp is the pair

Mrp :

P (x|p, rp,θp, h),

p∏
j=1

πN (θj)

 . (5.9)
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5.3.1 The Bayesian meta–model

The cost and the effectiveness x = (c, e) of a generic treatment T are

latent nonobservable random variables, and its distribution P (x|θ) is

called the meta–model and θ the meta–parameter. We are only able to

observe x = (c, e) in a center, and by P (x|θj) we denote the experi-

mental distribution of x conditional on center j and the experimental

parameter θj , j = 1, . . . , h.

In the heterogeneous case the meta–model is in the same family as

the experimental models P (x|θj), and the prior of the meta–parameter

π(θ) is of the same type as that of the experimental model π(θj). This

prior can certainly be the objective reference prior. Thus, the Bayesian

meta–model M is defined by

M :
{
P (x|θ), πN (θ)

}
. (5.10)

5.3.2 The likelihood of the meta–parameter and the linking

distribution

Let x = {xj , j = 1, . . . , h} be a multiple sample drawn from

{P (x|θj), j = 1, . . . , h}, such that θj 6= θs, for j 6= s. Assuming that the

data from different centers are independent, conditional on θ1, . . . , θh,

the likelihood of θ1, . . . , θh for the data x is given by

P (x|θ1, . . . , θh) =

h∏
j=1

P (xj |θj).

With the elements we have so far we cannot find the likelihood of

the meta–parameter θ for the sample x. To be able to do that, we have

to introduce a prior distribution linking the experimental parameter

θj and the meta–parameter θ. This linking distribution π(θj |θ) is a

probability distribution of θj conditional on θ for j = 1, . . . , h.

Assuming that θ1, . . . , θh are a priori independent, conditional on

θ, the likelihood of the meta–parameter θ for the whole sample x

follows from the likelihood of θ1, . . . , θh and the linking distributions
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π(θ1|θ), . . . , π(θh|θ), and it turns out to be

P (x|θ) =

∫
Θ

h∏
j=1

P (xj |θj)π(θj |θ) dθj =

h∏
j=1

∫
Θ

P (xj |θj)π(θj |θ) dθj

=

h∏
j=1

P (xj |θ).

Thus, the likelihood of the meta-parameter θ for the multiple sample x

is the product of the likelihoods of θ for the samples xj for j = 1, . . . , h.

5.3.3 Properties of the linking distribution

We note that the linking distribution π(θj |θ) for j = 1, . . . , h cannot

be arbitrarily chosen but it has to satisfy the following properties.

1. The linking distribution π(θj |θ) has to be a proper prior, that

is, for any θ the equality∫
Θ

π(θj |θ) dθj = 1,

must be satisfied. Otherwise, the conditional and marginal

prior distribution might be incompatible, as will be shown

later on.

2. The linking distribution π(θj |θ) has to be compatible with the

specified priors π(θj) and π(θ). This means that the bivariate

distribution

π(θj , θ) = π(θj |θ)π(θ)

must satisfy the integral equations∫
Θ

π(θj , θ) dθj = π(θ),

∫
Θ

π(θj , θ) dθ = π(θj). (5.11)

When this occurs, it is said that π(θj , θ) belongs to the Frèchet

class of bidimensional distributions with given marginal π(θj)

and π(θ).
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A general linking distribution π(θj |θ) is provided by the conditional

intrinsic priors for model selection (Berger and Pericchi, 1996a; Moreno,

1997; Moreno et al., 1998) given in expression (5.6). Let πI(θj |θ, t) be

the conditional distribution arising from the model comparison between

the meta–model M : P (x|θ) for an arbitrary but fixed value θ, and

the Bayesian experimental model Mj : {P (x|θj), π(θj)} for a training

sample of size t. This conditional intrinsic prior for a fixed t, is given by

πI(θj |θ, t) = π(θj)

∫
Rt

(
t∏
i=1

P (xi|θ)
)(

t∏
i=1

P (xi|θj)
)

∫
Θ

(
t∏
i=1

P (xi|θj)

)
π(θj) dθj

dx1 . . . dxt.

The conditional intrinsic prior πI(θj |θ, t) is a probability density for

any integer t. For,

∫
Θ

πI(θj |θ, t) dθj =

∫
Θ

π(θj) dθj

∫
Rt

(
t∏
i=1

P (xi|θ)
)(

t∏
i=1

P (xi|θj)
)

∫
Θ

(∏t
i=1 P (xi|θj)

)
π(θj) dθj

dx1 . . . dxt.

Reversing the order of integration in the right side of this equation we

have∫
Θ

πI(θj |θ, t) dθj =

∫
Rt

(
t∏
i=1

P (xi|θ)

)

×

∫
Θ

(
t∏
i=1

P (xi|θj)

)
π(θj)dθj∫

Θ

(
t∏
i=1

P (xi|θj)

)
π(θj) dθj

dx1 . . . dxt

= 1.

We assume that parameters θ1, . . . , θp are independent, conditional

on θ and t, and hence the conditional distribution of θp = (θ1, . . . , θp)

is given by

π(θp|θ, t) =

p∏
j=1

πI(θj |θ, t). (5.12)



Cost–effectiveness analysis for heterogeneous data 183

Lemma 5.1 shows that the intrinsic joint distribution πI(θj , θ|t) satisfies

equations (5.11).

Lemma 5.1. The bidimensional distribution

πI(θj , θ|t) = πI(θj |θ, t)π(θ)

has marginals π(θ) and π(θj) for any integer t.

Proof. We first note that for any t we have∫
Θ

πI(θj , θ|t) dθj = π(θ)

∫
Θ

πI(θj |θ, t) dθj = π(θ)

and hence the first equation in (5.11) is satisfied.

On the other hand, for any t we have∫
Θ

πI(θj , θ|t) dθ = π(θj)×

∫
Rt

∫
Θ

(
t∏
i=1

P (xi|θ)

)
π(θ) dθ

∫
Θ

(
t∏
i=1

P (xi|θ)

)
π(θj) dθj

t∏
i=1

P (xi|θj) dxi.

Since
t∏
i=1

P (xi|θ) = P (x1, . . . , xt|θ) and
t∏
i=1

P (xi|θj) = P (x1, . . . , xt|θj)

belong to the same family of parametric distributions, we have that∫
Θ

P (x1, . . . , xt|θ)π(θ) dθ∫
Θ

P (x1, . . . , xt|θj)π(θj) dθj

= 1.

Therefore,∫
Θ

πI(θj , θ|t) dθ = π(θj)

∫
Rt
P (x1, . . . , xt|θj) dx1 . . . dxt

= π(θj),

and this proves the assertion.
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The training sample size t controls the concentration degree of the

probability distribution of θj around θ. Lemma 5.2 shows that, under

mild conditions, as t tends to infinity, the distribution πI(θj |θ, t) degen-

erates to a point mass on θ. In other words, the larger the sample size

t, the larger the concentration of the conditional intrinsic prior around

the meta–parameter.

Lemma 5.2. For any regular sampling model P (x|θ) we have that

πI(θj |θ, t) degenerates to a point mass on θ as t tends to infinity. Fur-

ther, if limt→∞ π
I(θj |θ, t) is a probability density we then have that

lim
t→∞

πI(θj |θ, t) = δ{θ}(θj),

where δ{θ}(θj) represents the Dirac delta.

Proof. We note that πI(θj |θ, t) can be written as

πI(θj |θ, t) = π(θj)Ex1,...,xt|θjB01(x1, . . . , xt),

where B01(x1, . . . , xk) is the Bayes factor to compare model

M0 : P (x|θ), for fixed θ,

versus model

M1 : {P (x|θj), π(θj)},

for the sample x1, . . . , xt. Using the consistency property of Bayes fac-

tors for nested models (Casella et al. 2009), it follows that the limit in

probability when sampling from model M1 is zero, that is

lim
t→∞

B01(x1, . . . , xt) = 0, [Pθj ],

and hence Ex1,...,xt|θjB01(x1, . . . , xt) goes to zero as t→∞. Thus, the

distribution πI(θj |θ, t) degenerates to zero when t→∞ and θj 6= θ.

Further, when limt→∞ π
I(θj |θ, t) is a probability density, it follows

that

lim
t→∞

πI(θj |θ, t) =

0, for θj 6= θ,

1, for θj = θ,

and this completes the proof of Lemma 5.2.
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5.3.4 Examples

We give two examples to illustrate the linking distribution for Bernoulli

and normal Bayesian models.

Example 5.4. Let {ej , j = 1, . . . , h} be the independent random ef-

fectiveness of a treatment in h health centers. We suppose that ej fol-

lows a Bernoulli distribution with parameter θj . The prior for θj is the

Jeffreys prior, π(θj) = Beta(θj |1/2, 1/2). Hence, the Bayesian experi-

mental models are

Mj :
{

Be(ej |θj),Beta(θj |1/2, 1/2)
}
, j = 1, . . . , h,

and then, the Bayesian meta–model is

M : {Be(e|θ),Beta(θ|1/2, 1/2)} .

Then, the intrinsic prior for θj, conditional on θ and t, turns out

to be

πI(θj |θ, t) =

t∑
i=0

Beta(θj |i+ 1/2, t− i+ 1/2)Bin(i|t, θ), (5.13)

a Beta–Binomial mixture distribution. In Figure 5.2 we plot the distri-

bution πI(θj |θ, t) for θ = 0.4 and several values of t. We note that the

larger the t, the higher the concentration of the intrinsic distribution

around 0.4.

From Lemma 5.1 it follows that the marginals of the joint distribution

πI(θj , θ|t) = πI(θj |θ, t)Beta(θ|1/2, 1/2) are the Jeffreys prior for θj and

θ for any integer t. Thus the conditional and marginal distributions of

(θj , θ) are coherent.

It is interesting to note that the correlation coefficient between θj

and θ is ρ = t/(t + 2), and as t varies over the integer set, the corre-

lation coefficient varies over the interval (1/3, 1). Thus, a wide range

of correlation between θj and θ can be modeled as the hyperparameter

t varies.
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FIGURE 5.2

From bottom to top intrinsic linking distributions for θ = 0.4 and

t = 5, 10, 15 and 20.

Example 5.5. Let cj , j = 1, . . . , h, be the independent random cost

of a treatment such that cj follows a normal distribution with mean

and variance (θj , σ
2
j ), j = 1, . . . , h. The reference prior for (θj , σj)

is πN (θj , σj) = k/σj1R×R+(θj , σj), where k is an arbitrary positive

constant. Thus, the objective experimental cost Bayesian models are

Mj : {N (cj |θj , σ2
j ), πN (θj , σj)}, j = 1, . . . , h.

Then, the Bayesian meta–model is

M : {N (c|θ, σ2), πN (θ, σ)},

where the meta–parameters θ and σ2 are the mean and variance of the

cost of the treatment.

The intrinsic prior for θj , σj, conditional on the minimal training

sample size t = 2 and the meta–parameters (θ, σ), is given in Section

2.5.1 Example 2.12 as

πI(θj , σj |θ, σ) = π(θj |θ, σ, σj)π(σj |σ)

= N
(
θj |θ,

1

2
(σ2 + σ2

j )

)
HC+(σj |σ), (5.14)
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where HC+(σj |σ) denotes the half Cauchy distribution

HC+(σj |σ) =
2

πσ(1 + σ2
j/σ

2)
.

From Lemma 5.1 it follows that the joint distribution πI(θj , σj , θ, σ)

= πI(θj , σj |θ, σ)πN (θ, σ) has marginals πN (θj , σj) and πN (θ, σ), and

hence the distributions πI(θj , σj |θ, σ), πN (θj , σj) and πN (θ, σ) are co-

herent.

Example 5.5 (continued). For the Bayesian model

Mj : {N (cj |θj , σ2
j ), πN (θj , σj)}

and meta–model

M : {N (c|θ, σ2), πN (θ, σ)},

an alternative choice to the intrinsic linking distribution πI(θj , σj |θ, σ)

is the following normal–inverse–gamma distribution,

π(θj , σj |θ, σ) = N (θj |θ, σ2
j ) IG

(
σj |1/2, σ2/2

)
, (5.15)

where

IG(σj |1/2, σ2/2) =

(
2

π

)1/2
σ1/2

σ2
j

exp

(
− σ2

2σ2
j

)
,

is the inverse–gamma distribution with parameter (1/2, σ2/2).

Next lemma proves that the linking distribution π(θj , σj |θ, σ) in

(5.15) and the marginals πN (θj , σj) and πN (θ, σ) are coherent.

Lemma 5.3. The joint distribution

π(θj , σj , θ, σ) = N (θj |θ, σ2
j ) IG(σj |1/2, σ2/2)

k

σ
,

has marginals πN (θj , σj) and πN (θ, σ).
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Proof. The first assertion follows from∫ ∞
0

∫ ∞
−∞

π(θj , σj |θ, σ)πN (θ, σ) dθdσ =

∫ ∞
0

IG(σj |1/2, σ2/2)
k

σ
dσ∫ ∞

−∞
N (θj |θ, σ2

j ) dθ

=

∫ ∞
0

IG(σj |1/2, σ2/2)
k

σ
dσ

= πN (θj , σj).

The second assertion follows from∫ ∞
0

∫ ∞
−∞

π(θj , σj |θ, σ)πN (θ, σ) dθjdσj

=
k

σ

∫ ∞
0

IG(σj |1/2, σ2/2) dσj

∫ ∞
−∞
N (θj |θ, σ2

j ) dθj = πN (θ, σ).

This completes the proof.

5.4 The predictive distribution of (c, e) conditional on a

partition

Let rp be a partition in p clusters of the data x = (x1, . . . ,xh). The

Bayesian model is that given in (5.9), that is,

Mrp :

P (x|p, rp,θp, h),

p∏
j=1

πN (θj)

 ,

and the linking distribution π(θp|θ) =
∏p
j=1 π

I(θj |θ). The sampling dis-

tribution of x, conditional on the partition rp and the meta–parameter
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θ, is given by

P (x|p, rp, θ, h) =

∫
Θp

 p∏
j=1

P (yj |p, rp, θj , h)

 p∏
j=1

πI(θj |θ)

dθ1 . . . dθp

=

p∏
j=1

∫
Θ

P (yj |p, rp, θj , h)πI(θj |θ) dθj

=

p∏
j=1

P (yj |p, rp, θ, h).

Then, from the Bayes theorem it follows that the posterior distribution

of the meta–parameter θ, conditional on the partition rp, is given by

π(θ|x, p, rp, h) =
P (x|p, rp, θ, h)πN (θ)

m(x)
, (5.16)

where the marginal of the data m(x) is

m(x) =

∫
Θ

P (x|p, rp, θ, h)πN (θ) dθ.

We note that the posterior distribution of θ is well defined even when

πN (θ, σ) is an improper prior, because the arbitrary constant c cancels

out in the ratio of the posterior distribution.

Then, using the meta model of x in (5.10) M :
{
P (x|θ), πN (θ)

}
,

the Bayesian predictive distribution of the cost and the effectiveness of

treatment T , conditional on rp, is given by

P (x|x, p, rp, h) =

∫
Θ

P (x|θ)π(θ|x, p, rp, h) dθ. (5.17)

An alternative to the Bayesian predictive distribution, conditional

on rp, is the frequentist predictive distribution of the treatment. If we

consider the maximum likelihood estimator of θ̂rp = θ̂(x|rp) of the

meta–parameter θ, conditional on rp, that is,

θ̂(x) = arg sup
θ∈Θ

P (x|p, rp, θ, h),

the frequentist predictive distribution of x for treatment T is given by

P̂ (x|x, p, rp, h) = P (x|p, rp, θ̂, h). (5.18)
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5.4.1 The unconditional predictive distribution of (c, e)

Using the Bayesian predictive density P (c, e|x, p, rp, h), conditional on

rp, given in (5.17) and the posterior distribution of the partitions

{Pr(p, rp|x, h),Mrp ∈ R}

in (5.8), the unconditional Bayesian predictive distribution of (c, e) is

obtained as the mixture

P (c, e|x, h) =

h∑
p=1

∑
rp∈Rp

P (c, e|x, p, rp, h) Pr(p, rp|x, h). (5.19)

If we use the frequentist predictive distribution, conditional on rp,

in (5.18) the unconditional frequentist predictive distribution of (c, e)

is then given by

P̂ (c, e|x, h) =

h∑
p=1

∑
rp∈Rp

P̂ (c, e|x, p, rp, h) Pr(p, rp|x, h). (5.20)

We note that the number of terms in the mixtures (5.19) and (5.20)

is the Bell number Bh, a huge number even for moderate values of h.

Thus, the computation of P (c, e|x, h) for moderately large values of h is

not feasible. However, in clustering applications, most of the posterior

probabilities {Pr(p, rp|x, h), rp ∈ R} used to be negligible, and the

number of nonnegligible models becomes small.

5.5 The predictive distribution of the net benefit z

Using the Bayesian predictive distribution of (c, e) in (5.19), the

Bayesian predictive net benefit distribution of the treatment for a given
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R, unconditional on the cluster structure of the data, is obtained as

P (z|R,x, h) =

∫
E
P (eR− z, e|x, h) de

=

h∑
p=1

∑
rp∈Rp

Pr(p, rp|x, h)

∫
E
P (eR− z, e|p, rp, h)de.

(5.21)

If we use the frequentist predictive distribution of (c, e) in (5.20), the

frequentist predictive net benefit distribution of the treatment for a

given R, unconditional on the cluster structure of the data, is obtained

as

P̂ (z|R,x, h) =

∫
E
P̂ (eR− z, e|x, h) de

=

h∑
p=1

∑
rp∈Rp

Pr(p, rp|x, h)

∫
E
P̂ (eR− z, e|p, rp, h) de.

(5.22)

5.6 The case of independent c and e

When c and e are independent, the Bayesian clustering procedure is

applied to the cost samples c = {cj , j = 1, . . . , h} and independently

to the effectiveness samples e = {ej , j = 1, . . . , h}, and hence two sets

of cluster models and their corresponding posterior distributions are

obtained. Let {Pr(p, rp|c, h), rp ∈ R} and {Pr(p, rp|e, h), rp ∈ R} be

the posterior probabilities of the cluster models.

If we factorize the distribution of (c, e) as P (c, e|ξ) = P (c|ξ)P (e|ξ),
where ξ is an unknown parameter, then from the application of the

clustering and meta–analysis procedure to the data c, we obtain the

Bayesian predictive distribution of the cost as

P (c|c, h) =

h∑
p=1

∑
rp∈Rp

P (c|p, rp, h) Pr(p, rp|c, h),



192 Bayesian cost–effectiveness analysis

and similarly the Bayesian predictive distribution of the effectiveness as

P (e|e, h) =

h∑
p=1

∑
rp∈Rp

P (e|p, rp, h) Pr(p, rp|e, h).

Therefore, the Bayesian predictive net benefit distribution of the treat-

ment z turns out to be

P (z|R, c, e) =

∫
E
P (eR− z|c, h)P (e|e, h) de =

=

∫
E

 h∑
p=1

∑
rp∈Rp

P (eR− z|p, rp, h) Pr(p, rp|c, h)


 h∑
p=1

∑
rp∈Rp

P (e|p, rp, h) Pr(p, rp|e, h)

 de. (5.23)

It is apparent that expression (5.23) cannot be derived from expression

(5.21) unless the equality

Pr(p, rp|c, h) = Pr(p, rp|e, h)

holds for any rp ∈ R. If the equality holds, then (5.23) becomes

P (z|R, c, e) =

∫
E
P (eR− z|c, h)P (e|e, h) de

=

h∑
p=1

∑
rp∈Rp

Pr(p, rp|c, e, h)∫
E
P (eR− z|p, rp, h)P (e|p, rp, h) de

which is indeed the particular case of (5.21) under the independence

assumption.

A similar discussion can be made when using the frequentist pre-

dictive distribution instead of the Bayesian predictive distribution.

5.7 Optimal treatments

Let T1, . . . , Tk be our set of competitive treatments with reward

P (c, e|θ1), . . . , P (c, e|θk), and samples x1, . . . ,xk. Each sample xi is an
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aggregate of samples from h hospitals. Applying formula (5.17) or (5.18)

to the data xi we get either the unconditional Bayesian predictive distri-

bution of the net benefit P (z|R,xi, h) or the unconditional frequentist

predictive distribution P̂ (z|R,xi, h) of treatment Ti for i = 1, . . . , k.

Using P (z|R,xi, h) for i = 1, . . . , k and a utility function U(z|R),

treatment Tj is optimal for any R in the set

RU
j =

{
R : EP (z|R,xj , h) = max

i=1,...,k
EP (z|R,xi, h)

}
,

where

EP (z|R,xi, h) =

∫
P (z|R,xi, h)U(z|R) dz.

We have that

R+ = ∪ki=1R
U
i ,

where some sets in {RU1
j , j = 1, . . . , k} might be empty.

If we use P̂ (z|R,xi, h) for i = 1, . . . , k, treatment Tj is optimal for

any R in the set

R̂U
j =

{
R : EP̂ (z|R,xj , h) = max

i=1,...,k
EP̂ (z|R,xi, h)

}
,

where

EP̂ (z|R,xi, h) =

∫
P̂ (z|R,xi, h)U(z|R) dz.

Again we have that R+ = ∪ki=1R̂
U
i , and some sets in

{
R̂U
j , j =

1, . . . , k
}

might be empty.

5.8 Examples

Two examples with real data sets are presented in this section. It is

assumed that the distribution of the cost and the effectiveness in each

center is normal, and they are independent random variables. All the

expectations and probabilities in the examples are conditional not only

to R but to the data.
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Example 5.6. The data were obtained from a study to compare three

methadone maintenance programs: high, medium and low intensity, for

opioid–addicted patients (Puigdollers et al., 2003). A 12–month follow–

up study of 586 patients beginning methadone treatment at four drug

care centers in Barcelona was performed. The Nottingham Health Pro-

file (NHP) was used to measure quality of life. This is a questionnaire

of 38 items that measures quality of life through a scale that varies from

0, the normal health state, to 100, the worst health state.

The difference between the NHP value at the start of the treatment

and the value one month later was used as the effectiveness measure.

Although three methadone maintenance programs were compared in the

original study, for simplicity of this illustration we only compare the

medium–intensity program, to be denoted in the following as treatment

T1, and the high–intensity program, to be denoted as treatment T2.

To treatment T1 were randomly assigned 165 patients, and 155 to

treatment T2. Both treatments were applied in four hospitals. Table 5.6

shows the mean and standard deviation of the effectiveness and cost of

this data set.

To these data sets we applied a cluster analysis and Table 5.7 dis-

plays the top cluster models for the original data from the four hospi-

tals. This analysis shows that the effectiveness and cost data present a

strong partially heterogeneous behavior for both treatments. The proba-

bility of the one–cluster model {1, 2, 3, 4} is close to zero for any of the

four data sets.

The cost–effectiveness analysis of treatment T1 and T2 for the util-

ity function U1 for the heterogeneous data is summarized by the con-

tinuous straight line in Figure 5.3. This line displays the expecta-

tion E(z1 − z2|R, data) as a function of R for 0 < R < 1000 euros,

and the conclusion is that treatment T1 is the optimal treatment for

0 < R < 122.7 euros, and for 122.7 < R < 1000 the optimal one is

treatment T2.

If the heterogeneity of the data is not considered and we assume

that the data are homogeneous, the cost–effectiveness analysis is that
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TABLE 5.6

Summary of effectiveness, cost and sample sizes in Example 5.6.

Center Effectiveness Cost Sample size

Treatment T1

Overall 16.59 (20.73) 552.81 (306.33) 126

1 16.61 (21.10) 507.88 (230.98) 23

2 16.73 (20.88) 562.06 (304.17) 39

3 16.81 (21.29) 508.69 (223.29) 29

4 16.91 (20.97) 564.34 (282.47) 35

Treatment T2

Overall 19.10 (21.77) 652.84 (336.38) 133

1 19.33 (21.79) 612.68 (264.18) 34

2 20.43 (21.76) 689.88 (277.62) 35

3 16.11 (21.85) 657.30 (333.69) 32

4 19.33 (21.84) 649.04 (279.85) 32

given by the dashed straight line in Figure 5.3. We note that in this

latter case, T1 is an optimal treatment for the range 0 < R < 36.8.

Therefore, for 36.8 < R < 122.7 the homogeneous cost–effectiveness

analysis chooses treatment T2 while the heterogeneous cost–effectiveness

analysis chooses treatment T1.

The heterogeneous cost–effectiveness analysis of treatment T1 and

T2 for the utility function U2 is summarized by the continuous line in

Figure 5.4. This line displays the probability Pr(z1 > z2|R, data), as a

function of R euros. We recall that treatment T1 is now preferred to

T2 if Pr(z1 > z2|R, data) ≥ 0.5. The conclusion is that treatment T1 is

the optimal treatment for 0 < R < 122.7 euros, while treatment T2 is

optimal for 122.7 < R < 1000 euros.

This conclusion does not coincide with the one we would obtain if

homogeneity of the data from the four hospitals were assumed. In this

latter case, the dashed line in Figure 5.4 shows that treatment T1 is

preferred to T2 only for 0 < R < 36.8.
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TABLE 5.7

Top clusters for effectiveness and cost data for treatments T1 and T2

and their posterior probabilities.

Treatment T1 Treatment T2

Effectiveness Posterior Effectiveness Posterior

Clusters Probabilities Clusters Probabilities

{1, 3, 4}, {2} 0.63 {1, 3, 4}, {2} 0.64

{1, 3}, {2, 4} 0.19 {1, 3}, {2, 4} 0.17

{1}, {2, 3, 4} 0.07 {1, 4}, {2, 3} 0.05

the rest < 0.05 the rest < 0.05

Cost Posterior Cost Posterior

Clusters Probabilities Clusters Probabilities

{1, 3}, {2, 4} 0.86 {1}, {2, 3, 4} 0.52

{1}, {2}, {3}, {4} 0.12 {1, 3}, {2, 4} 0.17

the rest < 0.05 the rest < 0.05

In Example 5.7, we consider the clinical trials conducted by Burns

et al. (1999) in four health–care centers for comparing intensive inter-

vention with standard intervention for psychotic patients. The principal

effectiveness outcome was the time in hospital for psychiatric problems

over 24 months. As part of the baseline data, information was collected

on the number of days each patient spent in hospital in the 24 months.

The societal cost for each individual over 24 months was estimated

by Nixon and Thompson (2005) who evaluated the cost of the treat-

ments according to recorded resources used (including social, hospital

and community components).

The effectiveness and cost of each treatment are assumed to be

independent. The distribution for the effectiveness in each center is

assumed to be normal, and the distribution of the cost lognormal. As

we know, this latter assumption implies that the expected Bayesian

net benefit does not exist and hence we use the criteria of choosing

treatment T1 if Pr (z1 ≥ z2|R, data) ≥ 0.5.
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FIGURE 5.3

E(z1− z2|R, data) for heterogeneous data (continuous line), and under

the assumption that the data are homogeneous (dashed line).

Example 5.7. Burns et al. (1999) randomly assigned 708 psychotic

patients in four centers to standard case management (355 patients) or

intensive case management (353 patients). The trial compared intensive

intervention (treatment T2) in which managers had a case load of 10–15

patients, with the standard intervention (treatment T1), with case loads

of 30–35 patients. Table 5.8 shows the mean and standard deviation of

the observed cost and effectiveness in Example 5.7.
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FIGURE 5.4

Pr(z1 > z2|R, data) for heterogeneous data (continuous line), and under

the assumption that the data are homogeneous (dashed line).

The rationale for the trial was that, by providing more intensive

support, the patients’ use of health and other services might be reduced,

and clinical outcomes might be improved. The effectiveness analysis

by Burns et al. (1999) led the authors to the conclusion that “There

was no significant decline in overall hospital use among intensive–case–

management patients.”

A clustering analysis of the data reveals the cluster structures

we display in Table 5.9, which clearly shows that the data are

heterogeneous.

The heterogeneous cost–effectiveness analysis of treatment T1 and

T2 for the utility function U2 is summarized in Figure 5.5, where the

solid line displays the probability Pr(z1 > z2|R, data), as a function of

R ∈ (0, 5000) euros.
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TABLE 5.8

Summary of effectiveness, cost and sample sizes in Example 5.7.

Center Effectiveness Cost Sample size

Treatment T1

Overall 74.66 (112.45) 22704.19 (22000.33) 332

1 64.27 (85.09) 19434.63 (22743.37) 92

2 60.58 (114.19) 25194.08 (23491.82) 73

3 91.95 (125.24) 22934.61 (19881.67) 98

4 78.86 (121.95) 24102.09 (22190.83) 69

Treatment T2

Overall 74.19 (124.52) 24553.40 (23407.54) 335

1 73.45 (138.44) 24161.33 (25036.03) 93

2 79.92 (129.85) 25455.22 (24772.52) 76

3 66.67 (112.49) 23346.90 (19776.63) 91

4 78.43 (116.40) 25589.62 (24334.89) 75

This solid line shows that for R ≤ 889 euros, treatment T1 is the

optimal one, while for R ≥ 889, the optimal treatment is T2.

Assuming that the data are homogeneous, the probability Pr(z1 >

z2|R, data) as a function of R is given by the dashed line in Figure 5.5.

The cost–effectiveness conclusion would then be that treatment T1 is

the optimal one for any R.
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TABLE 5.9

Top clusters for cost and effectiveness data for two treatments and their

posterior probabilities.

Treatment T1 Treatment T2

Effectiveness Posterior Effectiveness Posterior

Clusters Probabilities Clusters Probabilities

{1}, {2, 3, 4} 0.90 {1, 2}, {3, 4} 0.27

{1, 2}, {3, 4} 0.08 {1}, {2, 3, 4} 0.22

the rest < 0.05 {1, 2, 4}, {3} 0.20

{1, 2, 3}, {4} 0.13

{1, 3, 4}, {2} 0.10

the rest < 0.05

Cost Posterior Cost Posterior

Clusters Probabilities Clusters Probabilities

{1, 2}, {3, 4} 0.68 {1, 2, 3}, {4} 0.23

{1}, {2, 3, 4} 0.19 {1, 3, 4}, {2} 0.22

{1, 2, 3}, {4} 0.11 {1}, {2, 3, 4} 0.15

the rest < 0.05 {1, 2, 4}, {3} 0.14

{1, 4}, {2, 3} 0.10

{1, 3}, {2, 4} 0.09

{1, 2}, {3, 4} 0.08

the rest < 0.05
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FIGURE 5.5

Pr(z1 ≥ z2|R, data) as a function of R for heterogeneous data (contin-

uous line), and under the assumption that the data are homogeneous

(dashed line).
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6

Subgroup cost–effectiveness analysis

6.1 Introduction

In preceding chapters we have seen that, given a set of alternative

treatments {T1, . . . , Tk} and the parametric class of distributions of

their cost and effectiveness {Pi(c, e|θi), i = 1, . . . , k}, the reward of

choosing treatment Ti is the predictive distribution of the net benefit

Pi(z|R, datai), conditional on the amount of money the decision maker

is willing to pay for the unit of effectiveness R and the cost and ef-

fectiveness datai. Furthermore, if a utility function U(z|R) of the net

benefit z is assumed, the cost–effectiveness analysis provides an opti-

mal treatment for the whole patient population, conditional on R and

the data sets {datai, i = 1, . . . , k}.
In this chapter we enlarge the above scheme by adding to the data

of cost and effectiveness of every patient, a set of patient covariates

x = (x1, . . . , xp). The covariates indicate certain deterministic physical

characteristics of the patient such as age, sex, health status, and semio-

logical variables of the disease (Sculpher and Gafni, 2001; NICE, 2013;

Espinoza et al., 2014). In this setting the predictive distribution of the

net benefit of treatment Ti depends not only on R and datai but also on

the covariates x, that is, we now have the rewards Pi(z|R, datai,x) for

i = 1, . . . , k. The adaptation of the cost–effectiveness analysis to this

situation yields the cost–effectiveness analysis for subgroups. Thus, the

aim of the subgroup cost–effectiveness analysis is that of finding opti-

mal treatments with respect to a given utility function for subgroups

of patients defined by x.

203
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A subgroup is formed with those patients sharing specified values of

some covariates of x. For instance, a possible subgroup is formed with

those patients having an age in a given interval of years and the same

sex. It is clear that for a given utility function U(z|R), the expected

utility of the reward Pi(z|R, datai,x),

EPi(U) =

∫
Z
U(z|R) dPi(z|R, datai,x),

is a function of R, datai, and x, for i = 1, . . . , k, and hence the re-

sulting optimal treatment might change as x changes, so that different

subgroups might have different optimal treatments. The optimal treat-

ment for the whole patient population might be suboptimal for a given

subgroup.

Since the definition of patient subgroups is made in terms of the set

of covariates, it is important to exclude those covariates that do not

have an influence on the disease. This means that for carrying out a

cost–effectiveness analysis for subgroups, an initial step should be the

statistical detection of the influential covariates from the original set

of them. The statistical selection of covariates is known as the variable

selection problem, an old and important problem in regression analysis

for which different methods have been utilized through its long history

and include methods based on p−values (R2, R2 corrected, Mallows

Cp), on Bayes factor approximations (Akaike AIC, Schwarz BIC, and

Spiegelhalter et al. DIC), and on genuine Bayes factors for g−priors

and intrinsic priors.

We note that the statistical variable selection typically yields not

only a more realistic definition of patient subgroups, but also a de-

sirable reduction of the dimension of the regression model. We also

note that the statistical variable selection introduces model uncertainty

in the cost–effectiveness analysis, an uncertainty that the Bayesian

methodology incorporates into the decision making in an automatic

way.

A coherent Bayesian solution to the variable selection problem for-

mulates the problem as a particular case of the general model selection
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problem, and in this chapter, Bayesian variable selection procedures

in normal and probit regression models, and some of their statistical

properties, are discussed.

On the other hand, in Chapter 4 two utility functions of the net

benefit of a given treatment were introduced, the linear utility function

U1(z|R) and the nonlinear utility function U2(z|R). The former assumes

that transfers of health among the patient population are acceptable,

and the latter does not. In this chapter we study optimal treatments

for subgroups for both the utility function U1(z|R) and U2(z|R).

The chapter is organized as follows. The data and the linear models

for the cost and the effectiveness of the treatments are described in

Section 6.2. In Section 6.3 we present Bayesian statistical procedures

for variable selection in normal and probit linear models. For simplicity

in the presentation we consider the case where the cost, conditional on

the effectiveness, and the effectiveness can be written as a linear model.

The particular case where the cost and the effectiveness are independent

is also presented.

For the linear model for the selected influential covariates, we com-

pute the Bayesian predictive distribution of the net benefit of the treat-

ments in Section 6.4. In Section 6.5 we present the optimal treatments

for subgroups, and in Section 6.6 we illustrate the analysis on exam-

ples for simulated and real data. Section 6.7 calls attention to the fact

that sometimes the statistical variable selection carried out for one–

dimensional distributions of the cost and the effectiveness presents some

inconveniences, suggesting that variable selection should then be car-

ried out for the joint distribution of them.

6.2 The data and the Bayesian model

The data collected from ni patients under treatment Ti, i = 1, . . . , k,

are given by the triple (ei, ci,X), where ei = (ei1, . . . , eini)
> is a sample
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of the effectiveness, ci = (ci1, . . . , cini)
> a sample of the cost, and

X =


1 x11 . . . xp1
...

...
. . .

...

1 x1ni . . . xpni


the design matrix, a matrix of dimensions ni × (p+ 1), where the col-

umn s+ 1 contains the values (xs1, . . . , xsni)
> of the covariate xs from

the ni patients under Ti, s = 1, . . . , p. The number p denotes the po-

tential number of covariates. Thus, the cost of the ni patients are not

identically distributed, and the same happens for the effectiveness. For

this type of data, linear regression models are typically used (Nixon

and Thompson, 2005; Hoch et al., 2006; Chib and Jacobi, 2007; Manca

et al., 2007; Moreno et al., 2012, 2013b).

When the cost and the effectiveness are both continuous random

variables we consider the following regression models: a first one in

which c and e are independent and their distributions are normal; a

second one in which c, conditional on e, is normal distributed, and the

distribution e is also normal; and a third regression model in which the

distribution of c, conditional on e, follows a lognormal distribution, and

e is normal distributed. When the effectiveness e is a discrete random

variable the normal model is replaced by the probit model.

Suitable priors for models and model parameters for the Bayesian

variable selection procedure for the mentioned models will be presented

in Section 6.3. For these priors, the procedure enjoys a very good sam-

pling behavior for moderate and large sample sizes.

6.2.1 The independent normal–normal model

The model assumes that the cost and effectiveness of treatments Ti for

i = 1, . . . , k, are continuous independent random variables such that

ci = αi0 +

p∑
s=1

αisxs + εi, (6.1)
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and

ei = βi0 +

p∑
s=1

βisxs + ε′i, (6.2)

where the random error εi and ε′i follow the normal distributions

N (εi|0, σ2
i ) and N (ε′i|0, τ2

i ), σ2
i and τ2

i are unknown variance errors,

and αi = (αi0, . . . , αip)
> and βi = (βi0, . . . , βip)

> are unknown regres-

sor coefficients.

Thus, the model for the sample cost ci = (ci1, . . . , cini)
> and effec-

tiveness ei = (ei1, . . . , eini)
> can be written as

Nni(ci
∣∣Xαi, σ2

i Ini) Nni(ei
∣∣Xβi, τ2

i Ini).

To complete the specification of the Bayesian model for treatment Ti

we need a prior distribution for the parameters αi, σi and βi, τi. In the

absence of subjective prior information on these parameters, we can

use the reference priors

πN (αi, σi) ∝
1

σi
1Rp+1×R+(αi, σi) and πN (βi, τi) ∝

1

τi
1Rp+1×R+(βi, τi),

although, as we mentioned in Chapter 2, they are improper priors, and

while this is not an inconvenience for estimating the parameters, they

cannot be used for variable selection.

6.2.2 The dependent normal–normal model

The model assumes that the cost and the effectiveness of treatment

Ti, i = 1, . . . , k, are continuous random variables that can be written as

ci = αi0 +

p∑
s=1

αisxs + αi,p+1 ei + εi, (6.3)

and

ei = βi0 +

p∑
s=1

βisxs + ε′i, (6.4)

where the random error εi and ε′i follow the normal distributions

N (εi|0, σ2
i ) and N (ε′i|0, τ2

i ), σ2
i and τ2

i are unknown variance errors,
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and αi = (αi0, αi1, . . . , αip, αi,p+1)> and βi = (βi0, . . . , βip)
> are un-

known regression coefficients.

We note that the cost model includes the effectiveness as a regressor.

This simple form of conditioning the cost on the effectiveness has been

considered by Willke et al. (1998), Vázquez–Polo et al. (2005b), Manca

et al. (2007), Willan and Kowgier (2008) and Moreno et al. (2012,

2013b).

Therefore, the model for the sample cost ci = (ci1, . . . , cini)
> and

effectiveness ei = (ei1, . . . , eini)
> can be written as

Nni(ci
∣∣Xcαi, σ

2
i Ini)×Nni(ei

∣∣Xeβi, τ
2
i Ini), (6.5)

where the design matrix Xc has dimensions ni × (p+ 2) and is defined

by adding to the design matrix X a column with the effectiveness data

ei, that is,

Xc =


1 x11 . . . xp1 ei1
...

...
. . .

...
...

1 x1ni . . . xpni eini

 ,

Xe = X, and Ini is the identity matrix of dimensions ni × ni.
To complete the specification of the Bayesian model we again con-

sider the reference priors

πN (αi, σi) ∝
1

σi
1Rp+2×R+(αi, σi) and πN (βi, τi) ∝

1

τi
1Rp+1×R+(βi, τi).

6.2.3 The dependent lognormal–normal model

Most of the time, the distribution of the cost exhibits a certain degree of

skewness, so an asymmetric lognormal distribution is typically proposed

as an appropriate distribution for the cost. Thus, it is typically assumed

that the logarithm of the cost and the effectiveness of treatment Ti, i =

1, . . . , k, can be written as

log(ci) = γi0 +

p∑
s=1

γisxs + γi,p+1ei + εi, εi ∼ N (εi|0, η2
i ), (6.6)
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ei = βi0 +

p∑
s=1

βisxs + ε′i, ε′i ∼ N (ε′i|0, τ2
i ), (6.7)

where γi = (γi0, . . . , γip, γi,p+1)> are unknown regression coefficients

and η2
i the unknown variance error of the logarithm of the cost. This

formulation (6.6) and (6.7) means that the cost is partially explained

by a set of covariates that includes the effectiveness, which has a mul-

tiplicative effect on it.

Therefore, the model for the sample cost ci = (ci1, . . . , cini)
> and

effectiveness ei = (ei1, . . . , eini)
> is now written as

Λni(ci
∣∣Xcγi, η

2
i Ini)×Nni(ei

∣∣Xeβi, τ
2
i Ini), (6.8)

where Λni denotes the multivariate lognormal distribution.

The priors for γi, ηi and βi, τi are the reference priors given in

Section 6.2.1.

6.2.4 The probit sampling model

When the effectiveness e of treatment T is a discrete 0−1 random vari-

able indicating nonsuccess and success, the following regression model

in the presence of the covariates x> = (1, x1, . . . , xp) of the patients

can be assumed (León–Novelo et al., 2012). The variable e follows the

Bernoulli distribution

Be(e|θ) = θe(1− θ)1−e, e = 0, 1,

and the probability of success θ is such that

θ = Φ(−x>β),

where

Φ(−x>β) =
1√
2π

∫ −x>β
−∞

exp

{
−u

2

2

}
du,

and β> = (β0, β1, . . . , βp) is an unknown vector of regression

parameters.
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That is, we are assuming that θ is a function of the covariates and

it is given by the cumulative standard normal distribution at point

−x>β = −(β0 +
∑p
j=1 xjβj).

This probit model for e can be thought of as a normal regression

model with incomplete sampling information. Let y be a latent random

variable with the normal distribution N (y|x>β, 1) for which only its

sign can be observed, and define e as

e =

0, if y > 0,

1, if y ≤ 0.

This way, a sample y = (y1, . . . , yn) of size n of the latent variable

y is identified with the sample e = (e1, . . . , en)> of effectiveness from

n patients under treatment T by the equality

(sign(y1), . . . , sign(yn))> = (e1, . . . , en)>.

Further, we have that

θ = Pr(y ≤ 0) =

∫ 0

−∞
N (y|x>β, 1) dy =

1√
2π

∫ −x>β
−∞

exp

{
−u

2

2

}
du.

The idea behind this artificial construction is that of using the well–

established Bayesian variable selection procedure for the normal model

for variable selection in probit models. This point will be considered in

Section 6.3.7.

6.3 Bayesian variable selection

For the construction of the patient subgroups of a generic treatment

T , the covariates we include in the regression model of the cost c and

the effectiveness e are crucial. The question is whether p, the initial

number of covariates, can be reduced by selecting a subset of them

that has an influence on (c, e) based on the sampling information c =

(c1, . . . , cn)> and e = (e1, . . . , en)> from patients under treatment T.
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Several frequentist and Bayesian statistical solutions to this important

variable selection problem have been proposed in its vast literature.

This is in nature a decision problem with sampling information

(c, e), where the decision space is the set of 2p regression models M for

c and e defined by all possible subsets of the original set of p covariates.

This set can be written as the union

M =

p⋃
k=0

Mk

where Mk is the set of regression models with k regressors. The reward

of model Mk in M is their posterior probability conditional on the

sample y = (c, e). The utility function we choose is a 0 − 1 function

whose meaning is to win 1 unit when making the decision of choosing

the true model for y, and 0 otherwise.

It is immediate to see that the optimal model, the model having

the maximum expected utility, is the one having the highest posterior

probability. Thus, the quantity of interest in variable selection is the

posterior distribution of the models in M, conditional on the sample

y = (c, e) and the design matrices {Xk, k = 1, . . . , 2p}.
Here we give a Bayesian procedure for variable selection in normal

regression models for some prior distributions for models and model

parameters commonly used. Popular prior distributions for the model

parameters are Zellner’s g−priors, mixtures of Zellner’s g−priors, and

the intrinsic priors. These priors are presented in Section 6.3.4. Further,

a firm candidate prior for models is the hierarchical uniform prior, which

is presented in Section 6.3.5.

It can be shown that the posterior model probability for the hi-

erarchical uniform prior for the models and either the Zellner or the

intrinsic priors for the model parameters exhibits very good sampling

behavior. Our favorite priors for model parameters are the intrinsic

priors because they are completely automatic, no assumption on com-

mon parameters for the models is required, and the computation of the

posterior model probability is simpler for the intrinsic priors than for

Zellner’s priors.
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Since the quantity of interest in variable selection is the posterior

model probability in a space of 2p regression models, one might worry

when observing that the number of models grows exponentially with

p. A number of potential regressors p that are not very large, yields a

certainly large number of models. For instance, for p = 20 the number

of models is as large as 1048576. This exponential growing provokes

a serious numerical problem even for moderately large values of p. In

Casella and Moreno (2006) a Metropolis–Hasting stochastic search al-

gorithm was used to overcome the numerical problem for p moderately

large. The idea behind the search is that of reducing the computation

of posterior model probabilities to a subset of models. This subset is

defined by a sequence of models such that their posterior model prob-

ability grows sequentially as the Metropolis–Hasting steps go forward.

Unfortunately, there is no guarantee that we get the optimal model, but

certainly we typically get a model with high enough posterior proba-

bility.

In this section we give the Bayesian variable selection procedure for

a generic normal class of linear models, and the results will be applied

to the normal–normal models, the lognormal–normal models, and the

probit regression models.

6.3.1 Notation

Let (y,X) be the observed responses and covariates from n indepen-

dent patients. We assume that (y,X) follows the n dimensional nor-

mal distribution Nn(y|Xβp+1, σ
2
pIn). This model, which includes all

covariates, is called the full model, and is denoted as Mp. The model

Nn(y|β01n, σ
2
0In), which includes no covariates, is called the intercept–

only model, and is denoted as M0.

By Mj we denote a generic model Nn(y|Xj+1βj+1, σ
2
j In) with j

covariates, 0 ≤ j ≤ p, where βj+1 = (β0, β1, . . . , βj)
>, Xj+1 is an

n × (j + 1) submatrix of X formed with j specific covariates, and σ2
j

is the variance error. The number of models Mj with j regressors is

p!/(j!(p − j)!), and the set of them is denoted as Mj . The class of all
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possible regression models with at most p regressors is M = ∪pj=0Mj .

We remark that the regression coefficients change across models, al-

though for simplicity we use the same alphabetical notation.

To complete the sampling models we need a prior for models in M

and for model parameters. Thus, for a generic model Mj we need a

prior π(βj+1, σj ,Mj). It is convenient to decompose this prior as

π(βj+1, σj ,Mj) = π(βj+1, σj |Mj)π(Mj)

for Mj ∈Mj , (βj+1, σj) ∈ Rj+1 × R+.

6.3.2 Posterior model probability

Given the sample (y,X) from a model in M it follows from the Bayes

theorem that the posterior probability in the class M of model Mj ,

which contains j specific covariates, is given by

Pr(Mj |y,X) =
mj(y,X) π(Mj)∑p

i=0

∑
Mi∈Mi

mi(y,X) π(Mi)
, (6.9)

where

mi(y,X) =

∫
Ri+1

∫ ∞
0

Nn(y|Xi+1βi+1, σ
2
i In)π(βi+1, σi|Mi) dβi+1 dσi

denotes the marginal distribution of the sample under model Mi.

If we divide the numerator and the denominator of (6.9) by the

marginal of the data under the intercept–only model m0(y,X), the

posterior probability of model Mj becomes

Pr(Mj |y,X) =
Bj0(y,X)π(Mj)∑p

i=0

∑
Mi∈Mi

Bi0(y,X) π(Mi)
, (6.10)

where

Bi0(y,X) =
mi(y,X)

m0(y,X)

is the Bayes factor for comparing models Mi and M0. We note that the

Bayes factor Bi0(y,X) is simply the ratio of the likelihood of model

Mi and model M0 for the data (y,X). We also note that model M0 is

nested in model Mi.



214 Bayesian cost–effectiveness analysis

The advantage of writing the posterior model probability as we do

in (6.10) is that the Bayes factors only involve nested models, and it

is known that the Bayes factor for nested models enjoys, under mild

conditions, excellent asymptotic properties.

On the other hand, Bayes factors do not depend on the prior for

models but only on the prior for model parameters. We recall that

improper priors for model parameters leave the Bayes factor defined

up to an arbitrary multiplicative constant, and thus they cannot be

used for computing Bayes factors. Priors for model parameters suitable

for computing Bayes factors for variable selection in normal regression

models are given in the next two sections. We also give the prior for the

models by which to compute the posterior probability of the models.

6.3.3 The hierarchical uniform prior for models

Since M is a discrete space with 2p models, a natural default prior over

this space is the uniform prior, but, as Moreno et al. (2015) showed, it

is not necessarily a good prior. A generalization of the uniform prior is

the parametric class of Bernoulli priors (George and McCulloch, 1993,

1997). For this class of priors the probability of a generic model Mj

containing j out of p regressors, j ≤ p, is given by

π(Mj |θ) = θj(1− θ)p−j , 0 ≤ θ ≤ 1,

where θ is an unknown hyperparameter whose meaning is the proba-

bility of inclusion of a regressor in the model. We note that the model

prior π(Mj |θ) assigns the same probability to models with the same di-

mension, that is, it is uniform on Mj . Further, for θ = 1/2, the uniform

prior π(Mj |1/2) = 2−p on M is obtained.

If we further assume a uniform distribution for θ, the unconditional

probability πHU(Mj) of model Mj is given by

πHU(Mj) =

∫ 1

0

θj(1− θ)p−jdθ =

(
p

j

)−1
1

p+ 1
. (6.11)

If we decompose this probability as

πHU(Mj) = πHU(Mj |Mj)π
HU(Mj),
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it follows that the model prior distribution, conditional on the class Mj ,

is uniform, and the marginal over the classes
{
Mj , j = 0, 1, . . . , p

}
is also uniform. Then, it seems appropriate to call to this prior the

hierarchical uniform prior (Moreno et al., 2015). It can be shown that

for variable selection, the hierarchical prior πHU(Mj) outperforms the

behavior of the prior π(Mj |θ) for any value of θ.

6.3.4 Zellner’s g−priors for model parameters

Zellner’s g−priors were introduced by Zellner and Siow (1980) and

Zellner (1986). A simplification of the regression models when using

the g−priors for model selection is obtained by assuming that the in-

tercept and the variance error are common parameters to all models.

This reduces the number of parameters involved in the comparison of

model Mj versus model M0 from j+4 to j+2. According to this restric-

tion the regression parameters of a generic model Mj will be denoted

as (β0,βj)
> = (β0, β1, . . . , βj)

> and the variance error as σ2, where β0

and σ are common to all models.

For a sample (y,X), most references to g−priors in the variable

selection literature (Berger and Pericchi, 2001; Clyde and George, 2004;

Clyde et al., 1998; George and Foster, 2000; Fernández et al., 2001;

Hansen and Yu, 2001; Liang et al., 2008, among others), refer to them

as the pair πN (β0, σ) and π(βj |σ, g), where

πN (β0, σ) =
k

σ
1R×R+(β0, σ)

is the reference prior and k an arbitrary positive constant, and

π(βj |σ, g) = Nj(βj |0j , gσ2(X>j Xj)
−1).

In this expression, 0j denotes the column vector of zeros of dimension

j, g > 0 is an unknown positive hyperparameter, and Xj the matrix

of dimensions n× j resulting from suppressing the first column in the

design matrix Xj+1 of the original formulation of the regression model

Mj .
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The conjugate property of these priors makes the expression of the

Bayes factor quite simple, and it is well known that the hyperparameter

g plays an important role in the behavior of the Bayes factor. Several

values for g have been suggested, although none of them satisfies all the

reasonable requirements (Berger and Pericchi, 2001; Clyde and George,

2004; Clyde et al., 1998; George and Foster, 2000; Fernández et al.,

2001; Hansen and Yu, 2001; Liang et al., 2008). For instance, large

g values induce the Lindley–Bartlett paradox (Bartlett, 1957), and a

fixed value for g induces inconsistency, which can be corrected if g was

dependent on n.

We consider two versions of the g−prior. The first is the one ob-

tained for g = n, which is justified on the grounds that it provides a

consistent Bayes factor, and it is a unit information prior (Kass and

Wasserman, 1996). The second g−prior version was derived for avoiding

an incoherent property of the g−prior detected by Berger and Pericchi

(2001). To avoid this incoherent behavior it was suggested to integrate

out g from the conditional g−priors
{
π(βj |σ, g), g > 0

}
to obtain the

mixture of g−priors

πmix(βj |σ) =

∫ ∞
0

π(βj |σ, g) π(g) dg,

where π(g) is the inverse–gamma density

π(g) =
(n/2)1/2

Γ(1/2)
g−3/2 exp

(
− n

2g

)
.

This mixture has been considered by some other authors, including

Clyde and George (2004), Liang et al. (2008), Scott and Berger (2010)

and Moreno et al. (2015).

6.3.5 Intrinsic priors for model parameters

Intrinsic priors for computing Bayes factors in variable selection have

been used by Moreno and Girón (2005), Casella and Moreno (2006),

Girón et al. (2006), León–Novelo et al. (2012), Consonni et al. (2013),

Moreno et al. (2015), among others.
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The standard intrinsic method for comparing the null model M0

versus the alternative Mj starts with the improper reference priors

for the parameters of these models (α0, σ0) and (βj+1, σj), that is,

πN (α0, σ0) = c0/σ0 and πN (βj+1, σj) = cj/σj , and provides a proper

intrinsic prior for the parameters (βj+1, σj) conditional on the param-

eter (α0, σ0) of the model M0, as

πI(βj+1, σj |α0, σ0) = Nj+1(βj+1|α̃0, (σ
2
j + σ2

0)W−1
j+1)HC+(σj |σ0),

where α̃0 = (α0,0
>
j )>, W−1

j+1 =
n

j + 2
(X>j+1Xj+1)−1, and

HC+(σj |σ0) =
2

π

σ0

σ2
j + σ2

0

is the half Cauchy distribution on R+ with location parameter 0 and

scale σ0. The unconditional intrinsic prior for (βj+1, σj) is then given

by

πI(βj+1, σj) =

∫ ∞
−∞

∫ ∞
0

πI(βj+1, σj |α0, σ0) πN (α0, σ0) dα0 dσ0.

For comparing model Mj versus M0 the intrinsic priors are the pair

(πI(βj+1, σj), π
N (α0, σ0)). We remark that πI(βj+1, σj) depends on

the arbitrary constant c0 that cancels out in the Bayes factor Bj0(y,X),

and hence no tuning hyperparameters have to be adjusted.

Thus, the intrinsic priors are automatically constructed from the

sampling models and the reference priors, and when using the intrinsic

prior we do not need to assume that the intercept and the variance

error are common parameters to all models.

A summary of the properties of the Bayes factors for the two ver-

sions of Zellner’s g−priors and the intrinsic priors for variable selection

in a normal regression are given in Moreno et al. (2015).

6.3.6 Bayes factors for normal linear models

For the data (y,X), it can easily be seen that the Bayes factor for

comparing Mj versus M0 for the g−prior with g = n is given by
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Bg=nj0 (y,X) =
(1 + n)(n−j−1)/2

(1 + n Bj0)(n−1)/2
, (6.12)

for the mixture of g−priors by

Bmix
j0 (y,X) =

(n/2)1/2

Γ(1/2)

∫ ∞
0

(1 + g)(n−j−1)/2

(1 + g Bj0)(n−1)/2
g−3/2 exp

(
− n

2g

)
dg,

(6.13)

and for the intrinsic priors by

BI
j0(y,X) =

2

π
(j + 2)j/2

∫ π/2

0

sinj ϕ (n+ (j + 2) sin2 ϕ)(n−j−1)/2

(n Bj0 + (j + 2) sin2 ϕ)(n−1)/2
dϕ.

(6.14)

The integrals on (0,∞) in (6.13) and on (0, π/2) in (6.14) do not have

explicit expressions but need numerical integration.

We note that all these Bayes factors depend on the data through

the statistic Bj0, which is the ratio of the square sum of the residuals

of models Mj and M0, that is

Bj0 =
y>(I−Hj)y

y>
(

I− 1

n
1n1>n

)
y

,

where Hj = Xj(X
>
j Xj)

−1X>j is the hat matrix associated with Xj .

In the next example we use simulated data to illustrate the perfor-

mance of the three Bayesian variable selection procedures with Bayes

factors (6.12), (6.13) and (6.14), and the hierarchical uniform model

prior given in (6.11).

Example 6.1. Let N (y|xβ, 1) be the full normal distribution for the

random variable y, where x = (1, x1, . . . , x6) is the vector of six de-

terministic covariates and β = (β0, β1, . . . , β6)> the regression coeffi-

cients. We consider the class of 26 = 64 normal models defined by the

subsets of the original six covariates.

We simulate a vector of covariates xt from a uniform distribution

on (0, 10) and set βt = (1, 0, 1, 0, 1, 0, 1). Then, a value of the variable

y is simulated from the normal distribution N (y|xtβt, 1). We note that
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only covariates x2, x4, and x6 enter in the true model that generated

y. We repeat the simulation of the covariates and the response variable

30 times, and the simulated data are written as (y,X6) where y =

(y1, . . . , y30)> and X6 is a matrix of dimension 30 × 6 containing the

regressors.

With these data we compute the posterior probabilities of the 64

models for the following priors: the hierarchical uniform prior πHU(M)

for models M ∈ M, Zellner’s g−prior for g = 30, the mixture of

g−priors, and the intrinsic priors for the model parameters.

We repeat the simulations and computations 100 times, and the

mean across simulations of the posterior probabilities of the true model

for the priors for the model parameters are displayed in the second

column in Table 6.1.

TABLE 6.1

Priors (first column) and posterior probabilities of the true model (sec-

ond column).

Prior for model Mean of the posterior probabilities

parameters of the true model across simulations

g−prior with g = 30 0.34

Mixture of g−priors 0.55

Intrinsic priors 0.57

From Table 6.1 it follows that the largest mean across simulations

of the posterior probability of the true model is obtained for the intrinsic

priors, and the second largest for the mixture of g−priors. We recall

that these posterior probabilities are computed in the space of 64 models,

and hence their values are really large.

We also found that the proportion of times the true model has

the highest posterior probability across simulations was 91% for the

g−prior and 92% for either the mixture of g−priors or intrinsic

priors.
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We remark that Table 6.1 has been constructed for samples of mod-

erate size, n = 30. The posterior probability of the true model certainly

changes as n increases, and for large enough n, it will be close to one

for any of the priors used. This result follows, under mild conditions,

from the posterior model consistency of the Bayesian variable selection

procedure for the above priors in Moreno et al. (2015).

6.3.7 Bayes factors for probit models

The Bayes factor for the probit model and the intrinsic priors for the

regression parameters are computed from the Bayes factors for normal

linear models as follows. We consider the latent random variable y,

for which we are only able to observe its sign, whose distribution is

N (y|x>β, 1). Let N (y|α, 1) denote the intercept–only model.

For a the latent sample y = (y1, . . . , yni), the marginal mj(y,Xj)

of the data for the normal model with j regressors and the intrinsic

prior πI(βj |α)πN (α) is given by

mj(y,Xj) =

∫
Rj+1

∫
R
N (y|Xjβj , In)πI(βj |α)πN (α) dα dβj

= c

∫
Rj+1

∫
R
N (y|Xjβj , In)Nj+1(βj+1|α̃0, (σ

2
j + σ2

0)W−1
j+1)

×HC+(σj |σ0) dα dβj

where c is a positive arbitrary constant, Xj a matrix of dimension

ni×(j+1), and βj a column vector of dimension j+1. If the conditional

intrinsic prior πI(βj |α) is replaced with any version of the g−prior, a

different but close marginal is obtained.

The marginal under the intercept–only model for πN (α) is

m0(y) =

∫
R
N (y|α1n, In)π(α) dα = c

∫
R
N (y|α1n, In) dα,

where 1n = (1, . . . , 1)>.

Let ei = (ei1, . . . , eini) be a sample of effectiveness of the treatment

Ti. Since ei = (sign(y1), . . . , sign(yni)), the marginal of (ei,Xj) under

model Mj is given by
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mj(ei,Xj) =

∫
A1×...×Ani

mj(y,Xj) dy

where

Ai =

(0,∞), if ei = 0,

(−∞, 0), if ei = 1.

Likewise, the marginal under the intercept–only model is given by

m0(ei) =

∫
A1×···×Ani

m0(y,Xj) dy.

The integration on A1 × · · · × Ani does not have an explicit form,

and it has to be computed numerically. This way we obtain the Bayes

factor to compare model Mj against the intercept–only model M0 as

Bj0(ej ,X) =
mj(ei,Xj)

m0(ei)
.

The posterior probability of model Mj for j = 1, . . . , 2p, is obtained

from expression (6.10). This set of posterior model probabilities is the

solution to the variable selection problem for the probit model. For

more details on the subject, see León–Novelo et al. (2012).

Example 6.2. The data in this example were obtained from a study

to compare three methadone maintenance programs: high, medium and

low intensity, for opioid–addicted patients (Puigdollers et al., 2003).

In those programs, a 12–month follow–up study of 586 patients begin-

ning methadone treatment at five drug care centers in Barcelona was

performed. For illustrating the variable selection procedure in probit

models we focus on the high–intensity program (treatment T ).

The effectiveness is a binary variable e that takes value 0 if the

patient leaves the treatment, and 1 otherwise.

The potential set of covariates are the age of patient, the number

of years of consumption, the Nottingham Health Profile (NHP) at the

beginning of the treatment period, and the gender.
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The NHP is a generic and standardized measure of health–related

quality of life in terms of the subjective emotional, functional and social

impact of disease. It ranges from 0 (normal health) to 100 (very poor

health). We use the value of the NHP at the beginning of the treatment

period. The gender takes a value 1 for female, and 0 otherwise. Table

6.2 gives a summary of these covariates.

TABLE 6.2

Summary of the effectiveness and covariates in Example 6.2 (mean and

standard deviations, in parentheses).

Effectiveness (e = 1) 0.748

Sample size n2 = 155

Age (x1) 30.53 (6.43)

Years (x2) 10.17 (5.78)

NHP (x3) 42.47 (23.55)

Gender (x4) 0.28

Table 6.3 shows the top models and their probabilities after the ap-

plication to the objective Bayesian probit model of the variable selection

procedure.

TABLE 6.3

Top models in Example 6.2.

Model Posterior Probability

{ Intercept, x1, x3 } 0.493

{ Intercept, x1, x3, x4 } 0.254

{ Intercept, x1, x2, x3 } 0.085

{ Intercept, x1, x2, x3, x4 } 0.051

the rest < 0.05

From Table 6.3 it follows that not only the variables x1 and x3 de-

fine the top model but they are in the four top models. The posterior
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probability of selecting x1 is 0.99 and x3, 0.88. The rest of the vari-

ables, x2 and x4, have marginal posterior probabilities 0.18 and 0.35,

respectively.

6.4 Bayesian predictive distribution of the net benefit

In this section we assume that the effectiveness e and cost c follow either

the normal–normal distribution (6.5) or the lognormal–normal (6.8),

and compute the Bayesian predictive distribution of the net benefit z,

conditional on R, the data, and the covariate vector x.

6.4.1 The normal–normal case

Suppose that from the application of the variable selection procedure

to the original regression models for the sample of effectiveness and

costs e = (e1, . . . , en)> and c = (c1, . . . , cn)> of n patients, we end up

with the models Nn(e|Xeβ, τ
2In) and Nn(c|Xcα, σ

2In), where Xe and

Xc are the design matrices of the selected regressors having dimensions

n×m and n×m′, respectively. In general, we will have that m 6= m′,

m ≤ p and m′ ≤ p+ 1.

If the effectiveness e is an influential regressor for the cost c, the

matrix Xc will contain column e.

The aim of this section is that of finding the Bayesian predictive

distribution of the net benefit of a treatment for the dependent normal–

normal model for the cost c and the effectiveness e. Assuming the ref-

erence prior densities for the regression parameters and the variance

errors, that is,

πN (α, σ) ∝ 1

σ
, πN (β, τ) ∝ 1

τ
,

the posterior density of parameter (α, σ), conditional on (c,Xc), turns

out to be

π(α, σ|c,Xc) = Nm′InvGa(α, σ|α̂, (X>c Xc)−1;
ν′

2
,
ν′

2
s2
c), (6.15)
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and the posterior distribution of (β, τ2), conditional on (e,Xe), is

π(β, τ |e,Xe) = NmInvGa(β, τ2|β̂, (X>e Xe)−1;
ν

2
,
ν

2
s2
e), (6.16)

where NqInvGa represents a q−variate Normal–inverted–Gamma dis-

tribution, α̂ = (X>c Xc)−1X>c c and β̂ = (X>e Xe)−1X>e e are the MLE

estimators of α and β, respectively, ν′ = n − m′ and ν = n − m

are degrees of freedom, s2
c = RSSc/ν

′and s2
e = RSSe/ν are the

usual unbiased estimators of the variances σ2 and τ2, respectively, and

RSSc = (c−Xcα)>(c−Xcα) and RSSe = (e−Xeβ)>(e−Xeβ).

Before finding the Bayesian predictive distribution of z, conditional

on the samples (c, e), we need the results in Lemmas 6.1 and 6.2.

Lemma 6.1. Let y1 and y2 be random vectors of dimensions n1 and

n2, and τ a nonnegative random variable with joint distribution

Nn1(y1|Ay2 + b, τS)×Nn2InGa(y2, τ |m,V; ξ, υ).

Then, the joint distribution of (y1, τ) is given by

Nn1InGa(y1, τ |Am + b,S + AVA>; ξ, υ).

Proof. The joint density of the vectors y1 and y2, conditional on τ, is

the following n1 + n2 bivariate normal distribution

Nn1+n2

((
y1

y2

)∣∣∣(Am + b

m

)
, τ

(
S + AVA> AV

AA> V

))
.

Then, the marginal distribution of y1 conditional on τ, is the n1 variate

normal distribution

Nn1(y1|Am + b, τ(S + AVA>).

Further, since the marginal distribution of τ is an InvGa(τ |ξ, υ), Lemma

6.1 follows from the definition of the normal–inverted–gamma distribu-

tion. This proves the assertion.
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Lemma 6.2. If (y, τ) follows the normal–inverted–gamma distribu-

tion NnInvGa(y, τ |m,V;α, β), then the marginal of the n dimensional

vector y is the following multivariate Student t distribution

Tn
(

y|m,
β

α
V; 2α

)
.

Proof. The joint density of (y, τ) is

NnInvGa(y, τ |m,V;α, β) =
|V|−1/2

(2π)−n/2
β

Γ(α)
τ−(α+n/2+1)

× exp

{
−1

τ

[
β + (y −m)>V−1(y −m)

]}
.

If we integrate out the variable τ in the joint density, we can then

recognize the density function of an n variate Student t distribution

with location parameter m, scale matrix (β/α)V, and degree of freedom

2α. This proves the assertion.

From the posterior distribution in (6.16), and Lemma 6.1 and 6.2

we can derive the Bayesian predictive distribution of the effectiveness

e, given the data, as follows. Let xe be a generic vector of regressors

for the effectiveness e. Then, the distribution of e is

f(e|β, τ2,xe) = N (e|x>e β, τ2)

and the predictive distribution of e and τ is the distribution

f(e, τ |xe) = N InvGa(e, τ |β̂
>

xe, (1 + xe(X>e Xe)−1x>e );
ν

2
,
ν

2
s2).

Now, from the properties of the normal–inverted–gamma distribu-

tion, the Bayesian predictive marginal distribution of e is the following

Student t distribution

f(e|xe) = Student(e|xeβ̂, (1 + xe(X>e Xe)−1x>e )s2
e; ν). (6.17)

In a similar way, we can derive the Bayesian predictive distribution

of c. In order to stress the possible dependency of this conditional pre-

dictive distribution on the effectiveness e when the effectiveness is an
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influential regressor, we now write xc(e) instead of xc to make clear

the possible dependence on e. The conditional distribution of c given e

and a generic regressor xc(e) is

f(c|e,α, σ2,xc(e)) = N (c|xc(e)α, σ2).

As before, from equation (6.15) and Lemma 6.1, the Bayesian pre-

dictive distribution of c and σ given e, f(c, σ|xc(e)) is

N InvGa(c, σ2|xc(e)α̂, 1 + xc(e)(X>c Xc)−1xc(e)>;
ν′

2
,
ν′

2
s′2).

Then, the Bayesian predictive of the cost c, conditional on e, the data,

and the regressors xc(e) is the following Student t distribution

f(c|e,xc(e)) = Student(c|α̂>xc(e), (1+xc(e)(X>c Xc)−1xc(e)>)s2
c ; ν
′).

(6.18)

Thus, from equations (6.17) and (6.18) we have that the joint Bayesian

predictive distribution of c and e, conditional on the data and the

generic regressors xe and xc(e), f(c, e|xc(e),xe) is

Student(c|α̂>xc(e), (1 + xc(e)(X′cXc)−1xc(e)>)s2
c ; ν
′)

× Student(e|β̂
>

xe, (1 + xe(X>e Xe)−1x>e )s2
e; ν). (6.19)

Unfortunately, f(z|R, data,Xc,Xe,xc,xe), the Bayesian predictive

distribution of the net benefit z, has no an explicit form. However, sam-

pling from the predictive distribution of the net benefit z is straightfor-

ward: first, for each R and the covariate xe, we sample from f(e|xe) in

equation (6.16), and then for the covariate xc from f(c|e,xc) in equa-

tion (6.18). From these samples of e’s and c’s we immediately have

a sample of the net benefit z for any value of R and the covariates

xc,xe.

6.4.2 The case where c and e are independent

A particular interesting case is that where xc(e) does not depend on e,

so that c and e are independent and the predictive distribution of z is

the convolution of two Student t distributions. That is, equation (6.18)
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simplifies to

f(c|e,xc) = Student(c|xcα̂, (1 + xc(X>c Xc)−1x>c )s2
c ; ν
′) (6.20)

and, from Theorem 1 of Girón et al. (1999), it follows that the predictive

distribution of z is the following Behrens–Fisher distribution

f(z|R,xe,xc) ∼ BeF(z|Rxeβ − xcα, (1 + xe(X>e Xe)−1x>e )s2
eR

2

+(1 + xc(X>c Xc)−1x>c )s2
c , ν, ν

′;φ) (6.21)

where the angle φ ∈ [0, π/2] is such that

tan2(φ) =
(1 + xe(X>e Xe)−1x>e )

(1 + xc(X>c Xc)−1x>c )

s2
e

s2
c

R2.

Further, formulae (6.15) and (6.17) simplify due to the fact that the

scale terms of the t densities can be simplified and we have that

1 + xe(X′eXe)−1x>e = 1 + hxejj ,

and

1 + xc(X>c Xc)−1x>c = 1 + hxcjj ,

where hxejj and hxcjj are the diagonal elements of the corresponding hat

matrices Hxe = Xe(X>e Xe)−1X>e and Hxc = Xc(X>c Xc)−1X>c , re-

spectively.

6.4.3 The lognormal–normal case

The case where the cost follows a lognormal distribution and the effec-

tiveness a normal distribution, is analogous to the preceding normal–

normal case with the exception that now the costs are replaced by

their logcosts in the computations. The predictive distribution of the

effectiveness is exactly the same as that of formula (6.14), while the

predictive of the costs, conditional on the effectiveness, the equivalent

of formula (6.16), is now a logStudent t distribution. In this case the

predictive distribution of the net benefit has no known form. However,

simulation of the joint distribution of (c, e) is straightforward, and from
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this sample we can obtain samples of the posterior predictive distribu-

tion of the net benefit z for any value of the parameter R and the

covariates.

An important difference with the normal–normal case is that in the

lognormal–normal case the expectation of z does not exist because the

logStudent t distribution has no mean. This means that we cannot use

the U1(z|R) utility function. Fortunately, we can compute the optimal

treatment for the U2(z|R) utility function.

6.5 Optimal treatments for subgroups

A way of presenting the optimal treatments, conditional on R and x, is

as follows. For simplicity in the presentation, we consider the case of two

treatments T1 and T2 and denote z1 as the net benefit of treatment T1

and z2 the net benefit of treatment T2. For the utility function U1(z|R),

and a fixed value of R, the set of covariate values, or equivalently the

subgroups, for which treatment T1 is optimal is given by

CU1

R =
{

x : ϕ(R,x) ≥ 0
}
,

where

ϕ(R,x) = EP1(z1|R, data1,x)− EP2(z2|R, data2,x).

Likewise, assuming that zi is continuous, i = 1, 2, when using the

utility function U2(zi|R) for fixed R, the set of covariate values, or

equivalently the subgroup, for which T1 is optimal is given by

CU2

R =
{

x : ψ(R,x) ≥ 1/2
}
,

where

ψ(R,x) = Pr(Z1 ≥ Z2|R, data1, data2,x).

The computational difficulty for characterizing CU1

R and CU2

R de-

pends on the complexity of the functions ϕ(R,x) and ψ(R,x). When

the components of x are discrete, the sets CU1

R and CU2

R are easily char-

acterized by direct evaluation of the functions ϕ(R,x) and ψ(R,x).
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6.6 Examples

We illustrate the theory developed in this chapter with two real data

sets including a number of covariates. In the first example the cost and

effectiveness are both assumed to be normal distributed, and in the

second example the cost is lognormal and the effectiveness is normal.

In Example 6.3 we compute and compare the subgroup optimal deci-

sions under both the utility functions U1 and U2, conditional on R.

In Example 6.4, the optimal decision under U1 does not exist as the

predictive distribution of the net benefit has very heavy tails, and thus

we only compute the optimal decision for U2, conditional on R.

To both sets of data we first apply the preceding Bayesian method-

ology to select the set of influential covariates for the effectiveness and

cost of the treatments. This step is crucial for picking up the relevant

subgroups, for which the optimal treatments are then found. We em-

phasize two important facts derived from the data: One is that the

influential covariates for different treatments do not coincide, and the

second is that the optimal treatment changes as the influential covari-

ates change their value. The resulting optimal decisions are compared

with those derived by assuming that there are no covariates involved

in the problem.

Example 6.3. The data in this example were obtained from a study to

compare three methadone maintenance programs: high, medium and low

intensity, for opioid–addicted patients (Puigdollers et al., 2003). A 12–

month follow–up study of 586 patients beginning methadone treatment

at five drug care centers in Barcelona was performed.

We note that this example is an extension of Example 6.2. Although

three methadone maintenance programs were compared in the original

study, for simplicity of the illustration we only compare the medium–

intensity program, to be denoted in the following as treatment T1, and

the high–intensity program, treatment T2. To each program, 165 and

155 patients were randomly assigned, respectively. Table 6.4 shows the
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mean and standard deviation for the effectiveness and cost of both treat-

ments.

TABLE 6.4

Summary of the effectiveness, costs and covariates in Example 6.3.

T1 T2

Cost 645.27 (288.43) 725.70 (317.47)

Effectiveness 18.65 (22.25) 19.35 (23.09)

Sample size n1 = 165 n2 = 155

Age 30.95 (6.12) 30.53 (6.43)

Years 10.53 (5.56) 10.17 (5.78)

HIV 0.24 0.30

Education 0.79 0.75

Poly–drug 0.28 0.52

NHP0 41.28 (24.76) 42.47 (23.55)

Gender 0.21 0.28

After analyzing these data sets for normality, we found that a nor-

mal model might be appropriate for both the cost and the effectiveness

of the two treatments. Thus, results in Section 6.4.1 will be used.

In addition, seven covariates of the patients were recorded in the

study: age; years of illness; the existence of HIV; education, which takes

a value 1 for patients who have at most elementary education, and 0 in

all other cases; poly-drug use, which takes the value 1 for patients who

use more than one psychoactive drug and 0 otherwise; the initial health

status NHP0; and the gender. Table 6.4 shows the mean and standard

deviation of the observed covariates.

From the application of the objective Bayesian variable selection

procedure to select the set of most influential covariates for the effec-

tiveness and the cost of each treatment, we find that the cost does not

depend on the effectiveness or on the rest of the covariates. Further, the

variable selection procedure demonstrates that only three covariates are

worthwhile taking into account for the effectiveness of treatment T1 and
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only one for treatment T2. That is, the effectiveness of T1 only depends

on the covariates NHP0, education, and gender. The Bayesian estima-

tion of the regressors’ coefficients in expressions (6.3) and (6.4), the

posterior mean using a non–informative prior, are 0.55 (0.05 for the

standard deviation), −7.11(3.31), and −12.39(3.29), respectively. The

effectiveness of T2 only depends on NHP0 and the coefficient is esti-

mated as 0.59 with a standard deviation of 0.06. In both cases, the set of

most influential covariates has been selected with a posterior probability

larger than 0.8.

Computing optimal treatments

For comparison purposes we first compute the optimal treatments when

no covariates are considered. The cut–off point in R of the equation

ϕ(R) = E(z1 − z2 ≥ 0|R, data) = 0 is R = 90, so that under U1,

treatment T1 is the optimal one for values R ≤ 90, and treatment T2

for R ≥ 90. Likewise, the solution to the equation ψ(R) = Pr(z1−z2 ≥
0|R, data) = 1/2 is R = 90, so the optimal decisions under U1 and U2

coincide. The plots of the straight line ϕ(R) and the curve ψ(R) are

shown in Figure 6.1.

From the curve ψ(R) we learn that for any R ≥ 90 the probability

that the net benefit of T2 is larger than that of T1 by only 0.51, a weak

statement on the strength of the preference of T2 over T1.

We now compute the optimal treatments in the presence of covari-

ates. As we have seen, the variable selection procedure concludes that

there are only three influential covariates. When using the utility func-

tion U1 we plot in the plane (NHP0, R) the region where Ti is opti-

mal, i = 1, 2, which follows from the values of the function for each

a, b ∈ {0, 1},

ϕ(R, data, NHP0, a, b)

= E(z1 − z2 ≥ 0|R, data, NHP0, education = a, gender = b),

and similarly when using the utility function U2, which follows from

the values of the function
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FIGURE 6.1

Graphics of ϕ(R) (upper panel) and ψ(R) (lower panel) in Example 6.3.

ψ(R, data, NHP0, a, b)

= Pr(z1 − z2 ≥ 0|R, data, NHP0, education = a, gender = b).

The resulting four graphics for a, b ∈ {0, 1}, are displayed in Fig-

ure 6.2.

The optimal regions from ϕ(R, data, NHP0, a, b) ≥ 0 and

ψ(R, data, NHP0, a, b) ≥ 1/2, a, b = 0, 1, coincide, so the optimal treat-

ments when using either U1 or U2 are the same.

We want to remark that although the optimal decisions produced

by considering the utility functions U1 and U2 are the same, the

three-dimensional plots of the surfaces ϕ(R, data, NHP0, a, b) ≥ 0 and
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FIGURE 6.2

Regions for the allocation of the best treatment for the subgroups char-

acterized by the three influential covariates. These regions are valid for

the utility functions U1 and U2.

ψ(R, data, NHP0, a, b) for a, b fixed, are different, and they convey dif-

ferent information. In particular, the surface ψ(R, data, NHP0, a, b) for

a, b fixed, provides more information on the strength of preference of a

treatment over the other (measured by a probability), than the surface

ϕ(R, data, NHP0, a, b) for a, b fixed, provides by the INB.

Figure 6.2 reveals the dramatic changes that the subgroup analysis

produces on the allocation of any of the two treatments to the patients.

The most striking conclusions we derive from Figure 6.2 are the fol-

lowing: For patients having the covariate education = 0, the gender

is determinant for allocating the optimal treatment. For those having

the covariate gender = 0, the optimal treatment is T1 while for those

having gender = 1 the optimal treatment is T2, except for very small

values of the parameter R; in fact, for R < 25.
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The difference between the two graphics for the subgroups having

gender = 1 is very small, and in this case the message is that treatment

T2 is the optimal one except for very small values of R.

For patients having education = 1 and gender = 0 the allocation

of the best treatment depends heavily on the values of the covariate.

For values of this covariate smaller than 74, the optimal treatment is

T1 while for larger values of this covariate the optimal treatment is T2

except for small values of R, as indicated in the left-hand bottom panel.

We recall that the analysis, which does not take into account the co-

variates, indicates that the optimal treatment is T2, except for R ≤ 90.

The conclusion from the cost–effectiveness analysis in this example

is that the subgroup analysis adds information that might be crucial in

the optimal allocation of a treatment.

Example 6.4. This is an example based on real data from a random-

ized clinical trial (Hernández et al., 2003) that compares two alterna-

tive treatments for exacerbated chronic obstructive pulmonary disease

(COPD) patients. It was postulated that home hospitalization, which

is treatment T2, of selected chronic obstructive pulmonary disease ex-

acerbations admitted at the emergency room could facilitate a better

outcome than conventional hospitalization, which is treatment T1. For

patients under treatment T2, integrated care was delivered by a special-

ized respiratory nurse with the patient’s free phone access to the nurse

ensured for an 8–week follow–up period.

We use information from 167 patients with COPD exacerbations

over a 1–year period (1st November 1999 to 1st November 2000) among

those admitted to the emergency department of two tertiary hospitals,

Hospital Cĺınic and Hospital de Bellvitge of Barcelona, Spain. The two

primary criteria for inclusion in the study were COPD exacerbation as

a major cause of referral to the emergency room and absence of any

criteria for imperative hospitalization as stated by the British Thoracic

Society guidelines. The number of patients randomly allocated to treat-

ment T1 was 70 and 97 to T2.
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TABLE 6.5

Summary of the effectiveness, costs and covariates in Example 6.4.

T1 T2

log(cost) 7.08 (1.11) 6.55 (0.98)

Effectiveness −1.593 (20.15) 7.01 (14.07)

Sample size n1 = 70 n2 = 97

Age 70.443 (9.22) 71.28 (9.90)

Gender 0.971 0.979

Smoker 0.171 0.268

FEV 0.398 0.434

HOSV 0.8715 (1.34) 0.567 (0.83)

SGRQ1 50.121 (28.01) 54.986 (20.2)

The effectiveness of a treatment was the quality of life of the pa-

tients under the treatment measured by the difference between the score

at the beginning and at the end of the study on the St. George’s Res-

piratory Questionnaire (SGRQ). SGRQ is one of the most widely used

instruments for assessing health–related quality of life in respiratory

patients (Ferrer et al., 2002). This variable SGRQ ranges from 0 to

100; a zero score indicates no impairment of overall health. The total

direct cost per patient, expressed in euros, includes hospital cost, am-

bulatory cost, pharmaceutical, and health–care costs. It can be checked

that the normal distribution fits the effectiveness dataset, and the log-

normal distribution fits the cost dataset.

The potential set of covariates considered includes age, gender,

smoking habit, forced expiratory volume in one second (FEV), exac-

erbations requiring in–hospital admission (HOSV), and the score at

the beginning of the study (SGRQ1). Table 6.5 summarizes the dataset

(mean and standard deviation) of each treatment.

The results of applying the variable selection procedure to the ef-

fectiveness conclude that the influential covariates for the effectiveness

of treatment T1 are age and SGRQ1, and for the effectiveness of treat-

ment T2 are FEV and SGRQ1. The cost of treatment T1 only has one
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influential covariate, the FEV, while the influential covariates for the

cost of treatment T2 are age, SGRQ1 and effectiveness (e2). In pass-

ing, we note that the influential covariates change when the treatment

changes.

Computing optimal treatments

Note that, in contrast with the cost–effectiveness analysis of the data

in the preceding Example 6.3, we cannot establish comparisons between

the analysis using the U1 and U2 utility functions as the expectations of

U1 do not exist for the Bayesian predictive for the lognormal–normal

model.

For comparison purposes we first carry out a cost–effectiveness

analysis of the treatments T1 and T2 for the utility function U2 with-

out the consideration of covariates. Figure 6.3 illustrates this cost–

effectiveness analysis by showing the curve ψ(R) = Pr(z1 − z2 ≥
0|R, data).

In Figure 6.3 we observe that the posterior probability ψ(R) is

smaller than 0.5 for any value of R, and hence the conclusion we get

FIGURE 6.3

Graphic of the posterior probability Pr(z1− z2 ≥ 0|R, data), as a func-

tion of R.
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is that treatment T2 is uniformly better than treatment T1. This asser-

tion coincides with the conclusion reported in Hernández et al. (2003):

“The home hospitalization intervention generates better outcomes at

lower costs than conventional care.”

However, if the cost–effectiveness analysis is carried out in the pres-

ence of the influential covariates, the above conclusion cannot be main-

tained, and now the optimality of treatment T2 depends on the covari-

ate values (or equivalently, depends on the type of patients). To illus-

trate this assertion, Figure 6.4 shows nine graphics in two dimensions

(R,SGRQ1) showing how the covariates FEV and age modify the treat-

ment to be chosen. We recall that treatment T1 is chosen when Pr(z1−
z2 > 0|R, data, SGRQ1, FEV, age) ≥ 0.5, and treatment T2 otherwise.

From Figure 6.4 it follows that the regions where T1 is the optimal

treatment tends to be smaller as the age increases from 40 to 90, and

they are nearly empty regions for age ≥ 90. We note that this is true

for any value of FEV.

On the other hand, for young patients, age ≤ 40, the regions where

T1 is optimal become smaller as FEV increases. The same happens

for intermediate ages. We also note that for older patients, T2 is the

optimal treatment regardless the value of any other covariate.

The overall conclusion we can draw from this example is that the

information provided by the influential covariates can be crucial for

detecting the optimal treatment.

6.7 Improving subgroup definition

The linear models utilized so far to model cost and effectiveness were

denoted as P (c, e|θi,x), where θi is an unknown multidimensional

parameter and x a covariate vector. This bidimensional model was

decomposed as P (c, e|θi,x) = P (c|e, θi,x)P (e|θi,x). This decomposi-

tion is certainly correct and it gives us a warning that an incoherency
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FIGURE 6.4

Regions indicating the optimal treatments in the plane (R, SGRQ1) for

some specific values of (FEV, age). Shaded areas represent the regions

where the optimal treatment is T1 and for the non–shaded regions the

optimal treatment is T2.
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might appear when we separately apply the variable selection to the

one-dimensional models for c and e.

Indeed, let us select covariates in the bidimensional model

P (c, e|θi,x), the univariate conditional model P (c|e, θi,x), and the uni-

variate marginal model P (e|θi,x), and let xsb,xsc,xse be the resulting

subsets of selected covariates for each of the models. Then, the models

for the selected regressors P (c, e|θi,xsb), P (c|e, θi,xsc), and P (e|θi,xse)
do not satisfy the equality

P (c, e|θi,xsb) = P (c|e, θi,xsc)P (e|θi,xse)

unless the three subsets of covariates are either equal or xsb is the union

of xsc and xse.

Furthermore, even when the three subsets of covariates coincide it

is not clear how the underlying uncertainty in choosing the covariates

in the marginal density of the effectiveness is propagated to the condi-

tional distribution of the cost, and hence it is not clear how to compute

the total variable selection uncertainty. We note that the model space

for the effectiveness, in which model selection is carried out, contains

2p models while the model space of the cost, conditional on the ef-

fectiveness, contains 2p+1 models. Therefore, our uncertainties are set

in different probability spaces making it difficult to evaluate the to-

tal uncertainty in the statistical variable selection procedure. This has

undesirable implications. For instance, if more than one model has a

high posterior probability, inferences based on model averaging can-

not be considered when the covariates are selected from the univariate

decomposition because the weights are not well defined.

We remark that the subsets of covariates xsb,xsc and xse do not

necessarily coincide as the following example shows. This example is

based on a real clinical trial carried out in Hospital Clinic and Hospital

de Bellvitge of Barcelona, Spain.

Example 6.4 (continued). The Bayesian variable selection procedure

for the intrinsic priors was applied to the data for each treatment and

the bivariate model for the cost and the effectiveness, the cost model
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conditional on the effectiveness, and the model for the effectiveness.

The variables selected are given in Table 6.6.

TABLE 6.6

Influential variables for models of treatments T1 and T2.

Model Treatment T1 Treatment T2

Bivariate model {SGRQ1, FEV, age} {SGRQ1, FEV}
Model for c|e { FEV } {SGRQ1, age}
Model for e { SGRQ1, age} {SGRQ1, FEV}

The conclusion we draw for treatment T1 is that both ways of se-

lecting variables convey the same message, and hence no incoherency

appears. However, for treatment T2 the influential covariates for the

bivariate model do not coincide with the ones selected when using the

univariate models.

A way to avoid the difficulty observed in the above example is to

return to the original bivariate distribution P (c, e|θi,x) and select the

covariates directly from this model. In this setting we have only one

model space containing 2p bivariate models and the above–mentioned

difficulty disappears. The price we pay for defining subgroups with

the variables selected for the bivariate model is the higher complexity

of the underlying sampling model that now becomes a 1 × 2 matrix–

variate normal (or lognormal) distribution. Given the complexity of

this bivariate formulation, a slightly different notation with respect the

above is now introduced. A detailed study of this problem is given in

Moreno et al. (2013b).

Let us consider a sample of joint cost and effectiveness {yj =

(cj , ej)
>, j = 1, . . . , n} from n patients receiving a generic treatment

T, which we write as the n× 2 matrix

Y =


c1 e1

...
...

cn en

 . (6.22)
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Let Xp be the n× p design matrix

Xp =


x11 . . . x1p

...
. . .

...

xn1 . . . xnp

 , (6.23)

and Bp the p× 2 matrix of regression coefficients

Bp =


β11 β12

...
...

βp1 βp2

 . (6.24)

The likelihood of the parameters (Bp,Σp) for the data (Y,Xp) is

assumed to be given by the sampling matrix normal density

Nn×2

(
Y
∣∣XpBp, σ

2
p(In ⊗V)

)
, (6.25)

where σp is an unknown positive number and V a 2× 2 specified sym-

metric matrix.

Therefore, the sampling distribution of a submodel Mj contain-

ing a subset of j regressors, is given by the matrix–normal density

Nn×2

(
Y
∣∣XjBj , σ

2
j (In ⊗V)

)
, where Xj is the n× j design matrix re-

sulting from suppressing the p− j columns in Xp, and Bj an unknown

parameter matrix of dimensions j×2, and thus, the sampling full model

Mp containing all p covariates coincides with (6.25). The number of such

submodels is 2p. To ensure that the intercept–only model is contained

in any model we assume that xk1 = 1 for k = 1, ..., n, so that the

number of submodels is now 2p−1.

From Section 6.3, assuming a prior πj(Bj , σj) for the model pa-

rameters and the standard uniform objective prior for models π(Mj),

j ≥ 1, the posterior probability of a generic model Mj is given by

Pr(Mj |Y,Xj) =
B10(Y,Xj)∑2p

k=0Bk0(Y,Xk)
, (6.26)

where Bk0(Y,Xk) is the Bayes factor to compare model Mk against
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the intercept–only model M0, and it is written as

Bk0(Y,Xk) =

∫ ∫
Nn×2

(
Y
∣∣XkBk, σ

2
k (In ⊗V)

)
πk(Bk, σk) dBk dσk∫ ∫

Nn×2

(
Y
∣∣X1B1, σ2

1 (In ⊗V)
)
π1(B1, σ1) dB1 dσ1

.

(6.27)

When intrinsic priors are considered as prior πk, the Bayes factor

for intrinsic priors is given by (Torres–Ruiz et al., 2011)

Bk0(Y,Xk) = 2(k+1)k−1

∫ π/2

0

sin(ϕ)2(k−1)+1(n+ (k + 1) sin2 ϕ)(n−k)

cos(ϕ)−1[(k + 1) sin2 ϕ+ nBk0](n−1)
dϕ,

(6.28)

where Bk1 is the statistic

Bk0 =
trace

(
HXk

YV−1Y>
)

trace (HX1YV−1Y>)
,

and HX = In −X(X>X)−1X>.

The statistic Bk0 contains all the sample information needed for

comparing model Mk against M0. We call attention to the simplicity

of the Bayes factor in formula (6.28) that generalizes the Bayes factor

arising in the unidimensional regression normal case (Moreno et al.,

2003).

Following the methodology presented in this chapter, the next

step consists of finding the posterior predictive distribution of the

net benefit. Suppose that from the application of the variable selec-

tion procedure to the original regression model for the effectiveness

and the cost, we end up with the matrix–variate regression model

Nn×2

(
Y
∣∣XsBs, σ

2(In ⊗V)
)
, where Y is an n× 2 matrix as in (6.22),

Xs is the design matrix of the selected regressors that has dimensions

n× q, where q ≤ p, and Bs is the q× 2 submatrix of Bp corresponding

to the selected regressors. Using results in Moreno et al. (2012), the

posterior predictive distribution of the pair (c, e)> for a generic vec-

tor of influential covariates x turns out to be the following bivariate

Student t distribution

(c, e)>|x,Xs,Y,V ∼ T2((c, e)>
∣∣B̂>s x, s2(1 + x>(X>s Xs)

−1x)V; ν),

(6.29)
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where B̂s = (X>s Xs)
−1X>s Y is the least squares or maximum likeli-

hood estimator of Bs, ν = 2(n−p) is the number of degrees of freedom,

s2 = trace(V−1R>R)/ν2 is the unbiased estimator of the variance σ2,

and R = Y −XsB̂s is the matrix of residuals.

From the properties of the multivariate Student t distribution, the

posterior predictive distribution of the net benefit z = e R − c is the

following univariate Student t distribution, i.e., z|x,Xs,Y,V follows a

Student(z
∣∣(−1, R)B̂>s x>, s2(1 + x>(X>s Xs)

−1x)

× ((−1, R)V(−1, R)>); ν). (6.30)

This predictive distribution depends on the matrix V which has to

be assessed or estimated from the data. One obvious way to estimate

the covariance matrix of the error term Σ = σ2V of a linear model is

through the maximum likelihood estimator

Σ̂ =
1

n
R>R,

or the unbiased estimator based on the maximum likelihood one

Σ̂ =
1

n− p
R>R,

or another Bayesian estimator of Σ proportional to the matrix R>R.

Example 6.5. This is a simulated example inspired by the case study

developed in Section 4.7 in Chapter 4 where real data taken for four

treatments from a clinical trial (Pinto et al., 2000) were analyzed. Data

were collected for direct costs (pharmaceutical, medical visit, and di-

agnostic test costs), and the effectiveness was measured by quality–

adjusted life years (QALYs). The QALYs were calculated as the area

above/below the EuroQOL visual analogue scale (VAS) (Richardson

and Manca, 2004). The VAS is a self–rating of health–related quality

of life that simulates a thermometer, ranging from a minimum of 0 (the

worst health state imaginable) to a maximum of 100 (the best one). All

477 patients were followed–up for 6 months.

The potential set of covariates in the data are six: x1 denotes age, x2
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sex, x3 the existence of concomitant illnesses which takes a value 1 if a

concomitant illness is observed and 0 in all other cases, x4 takes value 1

if two or more concomitant illnesses exist and 0 in all other cases. The

concomitant illnesses that were studied were hypertension, cardiovas-

cular diseases, allergies, asthma, diabetes, gastrointestinal alterations,

urinary troubles, prior renal disease, raised cholesterol and/or triglyc-

eride levels, chronic skin problems, or depression/anxiety. Other po-

tential covariates are x5 denoting the time, in months, from the onset

of illness to obtaining real clinical data, and x6 represents the initial

health status measured through the VAS at the beginning of the treat-

ment (VAS).

TABLE 6.7

Summary of the simulated effectiveness, the cost (in euros) of four

treatments (standard deviations in parenthesis), and the covariates in

Example 6.5.

Treatment

T1 T2 T3 T4

Effectiveness 0.429 0.433 0.421 0.393

(0.11) (0.115) (0.112) (0.141)

Cost 7083.09 7253.60 6268.45 5948.12

(1662.09) (1530.04) (1719.61) (1398.19)

Covariates

x1 (years) 35.26 33.95 34.70 33.64

(7.36) (6.77) (8.68) (9.73)

x2 (female) 0.29 0.35 0.37 0.12

x3 0.27 0.33 0.30 0.24

x4 0.11 0.07 0.19 0.08

x5 79.37 87.18 69.10 58.52

(91.99) (138.42) (51.35) (41.78)

x6 76.89 78.07 74.70 74.20

(16.60) (16.84) (16.46) (17.60)

n 268 93 91 25



Subgroup cost–effectiveness analysis 245

The file we have used for illustrating the subgroup analysis is based

on the real design matrices whose summary is in Table 6.7, where we

have simulated the cost and effectiveness from a bivariate normal linear

model keeping the original design matrices. Thus, for each treatment

i = 1, 2, the data Yi come from the model

Nn×2

(
Yi

∣∣XiBi, In ⊗Σi

)
,

where Bi was chosen as a 6 × 2 matrix whose coefficients were the

same as the least squares estimation of the regression matrix with the

original data, and the covariance matrix Σi was chosen equal to the

estimated covariance matrix. In this way, we reproduce a set of cost–

effectiveness data which have similar values to the original ones but

have the property of being bivariate normal distributed.

After applying the variable selection procedure, the models having

the highest posterior probabilities for each of the treatments are given

in Table 6.8.

TABLE 6.8

Model with the highest posterior model probability for each treatment

in Example 6.5.

Treatment Top model Post. Prob.

T1 {x4, x6} 0.923

T2 {x4} 0.778

T3 {x4, x5, x6} 0.437

T4 {x4} 0.511

In Figure 6.5 we present, in the plane defined by (R, x6), optimal

treatments for subgroups using the utility function U1. For the subgroup

defined by (x4, x5) = (0, 0) the optimal treatments in the plane (R, x6)

are presented in the left upper panel: in the medium grey region, T2

is optimal, in the dark grey, T3, and in the light grey, T4. For this

subgroup, treatment T1 is not optimal in any point of the plane. The

interpretation of any other panel is similar. It is interesting to note
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that for the subgroup (x4, x5) = (1, 1) treatment T3 is the optimal one

in almost any point in the plane.

The optimal treatments are located in the plane (R, x6) for all pos-

sible values of the covariates x4 and x5, and they are displayed in the

four graphics in Figure 6.5.
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FIGURE 6.5

Regions indicating the optimal treatments in the plane (R, x6) for the

subgroup defined by (x4, x5) in Example 6.5. Colored areas represent

the regions where the optimal treatments are T1 (Black), T2 (medium

grey), T3 (dark grey), and T4 (light grey).
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For comparative purposes, we present the optimal treatment as a

function of R when no covariate is considered. We find that T1 is

never optimal, T2 is optimal if R ∈ (102382,∞), T3 is optimal if

R ∈ (11184, 102382), and T4 is optimal if R ∈ (0, 11184).

Example 6.4 (continued). We saw in Table 6.6 that the influ-

ential covariates for the cost and effectiveness of treatment T1 are{
SGRQ1, FEV, age

}
and for treatment T2,

{
SGRQ1,FEV

}
.

Figure 6.6 presents twelve plots illustrating the optimal treat-

ment in the plane (R,SGRQ1) for subgroups defined by the co-

variates FEV and age and the utility function U2. We recall that

for this utility function, treatment T1 is optimal when Pr(z1 −
z2 ≥ 0|R, data, SGRQ1, FEV, age) ≥ 0.5, and treatment T2

otherwise.

The plots in Figure 6.6 essentially show that for patients with age

below 50 years, the predominant treatment in the plane (R,SGRQ1) is

T1 and this situation reverses as the patients get older. For instance, for

patients older than 80, the optimal treatment is always T2, regardless

of the covariate SGRQ1. For patients older than 80, these conclusions

are close to the ones obtained in Example 6.4 in Section 6.6 where we

used the decomposition of the bivariate lognormal–normal model into a

product of two univariate models.
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FIGURE 6.6

Regions indicating the optimal treatments in the plane (R, SGRQ1) for

subgroups defined by the covariates (FEV, age) in Example 6.4 (contin-

ued). Shaded areas represent the regions where the optimal treatment

is T1 and for the non–shaded regions the optimal treatment is T2.



Bibliography

M.J. Al and B.A. Van Hout. Bayesian approach to economic analysis of

clinical trials: The case of stenting versus balloon angioplasty. Health

Economics, 9(7):599–609, 2000.

M. Allais. Le comportement de l’homme rationnel devant le risque: Cri-

tique des postulats et axiomes de l’ecole americaine. Econometrica,

21(4):503–546, 1953.

J. Alonso, L. Prieto, and J.M. Anto. The Spanish version of the Not-

tingham Health Profile: A review of adaptation and instrument char-

acteristics. Quality of Life Research, 3(6):385–393, 1994.

X. Bad́ıa, M. Roset, S. Montserrat, M. Herdman, and S. Segura. The

Spanish version of EuroQol: A description and its applications. Eu-

ropean Quality of Life scale. Medicina Cĺınica, 112:79–86, 1999.
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J.O. Berger, B. Betró, E. Moreno, L.R. Pericchi, F. Ruggeri,

G. Salinetti, and L. Wasserman, editors. Bayesian Robustness, vol-

ume 29 of Lectures Notes–Monograph Series. Institute of Mathemat-

ical Statistics, Hayward, CA, 1996.

J.O. Berger, J.M. Bernardo, and D. Sun. The formal definition of

reference priors. The Annals of Statistics, 37(2):905–938, 2009.

J.O. Berger, M.J. Bayarri, and L.R. Pericchi. The effective sample size.

Econometric Reviews, 33(1–4):197–217, 2014.



Bibliography 251

J.M. Bernardo. Reference posterior distributions for Bayesian inference.

Journal of the Royal Statistical Society. Series B (Methodological),

41(2):113–147, 1979.

J.M. Bernardo and A.F. M. Smith. Bayesian Theory. John Wiley &

Sons, Inc., Chichester, 1994.

D.K. Bhaumik, A. Amatya, S.T. Normand, J. Greenhous, E. Kaizar,

B. Neelon, and R.D. Gibbons. Meta–analysis of rare binary adverse

event data. Journal of the American Statistical Association, 107

(498):555–567, 2012.

J. Bjøner and H. Keiding. Cost–effectiveness with multiple outcomes.

Health Economics, 13(12):1181–1190, 2004.

A. Bobinac, J. van Exel, F.H. Rutten, and W.B.F. Brouwer. The value

of a QALY: Individual willingness to pay for health gains under risk.

PharmacoEconomics, 32(1):75–86, 2014.

A. Briggs, M. Sculpher, and K. Claxton. Decision Modelling for Health

Economic Evaluation. Oxford University Press, 2006.

A.H. Briggs. Bayesian approach to stochastic cost–effectiveness analy-

sis. Health Economics, 8(3):257–261, 1999.

A.H. Briggs. Handling uncertainty in cost–effectiveness models. Phar-

macoeconomics, 17(5):479–500, 2000.

A.H. Briggs and P. Fenn. Confidence intervals or surfaces? Uncer-

tainty on the cost–effectiveness plane. Health Economics, 7(8):723–

740, 1998.

A.H. Briggs and A.M. Gray. Handling uncertainty when performing

economic evaluation of health care interventions. Health Technology

Assessment, 3(2):1–134, 1999.

A.H. Briggs, D.E. Wonderling, and C.Z. Mooney. Pulling cost–

effectiveness analysis up by its bootstrap: A non–parametric ap-



252 Bayesian cost–effectiveness analysis

proach to confidence interval estimation. Health Economics, 6(4):

327–340, 1997.

R. Brooks. EuroQol: The current state of play. Health Policy, 37(1):

53–72, 1996.

J.M. Brophy and L. Joseph. Placing trials in context using Bayesian

analysis: GUSTO revisited by Reverend Bayes. Journal of the Amer-

ican Medical Association, 273(1):871–875, 1995.

T. Burns, F. Creed, T. Fahy, S. Thompson, P. Tyrer, and I. White. In-

tensive versus standard case management for severe psychotic illness:

A randomised trial. UK 700 Group. Lancet, 353(9171):2185–2189,

1999.

P.L. Canner. An overview of six clinical trials of aspirin in coronary

heart disease. Statistics in Medicine, 6(3):255–263, 1987.

G. Casella and E. Moreno. Objective Bayesian variable selection. Jour-

nal of the American Statistical Association, 101(473):157–167, 2006.

G. Casella and E. Moreno. Assessing robustness of intrinsic tests of in-

dependence in two–way contingency tables. Journal of the American

Statistical Association, 104(487):1261–1271, 2009.

G. Casella, E. Moreno, and F. J. Girón. Cluster analysis, model se-

lection, and prior distributions on models. Bayesian Analysis, 9(3):

613–658, 2014.

K. Chaloner. Elicitation of priors distributions. In D.A. Berry and

D.K. Stangl, editors, Bayesian Biostatistics. Marcel Dekker, New

York, 1996.

K. Chaloner and F.S. Rhame. Quantifying and documenting prior be-

liefs in clinical trials. Statistics in Medicine, 20(4):581–600, 2001.

M.A. Chaudhary and S.C. Stearns. Estimating confidence intervals

for cost–effectiveness ratios: An example from a randomized trial.

Statistics in Medicine, 15(13):1447–1458, 1996.



Bibliography 253

S. Chib and L. Jacobi. Modeling and calculating the effect of treatment

at baseline from panel outcomes. Journal of Econometrics, 140(2):

781–801, 2007.

O. Ciani and C. Jommi. The role of health technology assessment

bodies in shaping drug development. Drug Design, Development and

Therapy, 8:2273–2281, 2014.

M. Clyde and E.I. George. Model uncertainty. Statistical Science, 19

(1):81–94, 2004.

M. Clyde, G. Parmigiani, and B. Vidakovic. Multiple shrinkage and

subset selection in wavelets. Biometrika, 85(2):391–401, 1998.

M. Collins and N. Latimer. Nice’s end of life decision making scheme:

Impact on population health. British Medical Journal, 346:f1363,

2013.

G. Consonni and L. La Rocca. Tests based on intrinsic priors for the

equality of two correlated proportions. Journal of the American Sta-

tistical Association, 103(483):1260–1269, 2008.

G. Consonni and P. Veronese. A Bayesian method for combining re-

sults from several binomial experiments. Journal of the American

Statistical Association, 90(431):935–944, 1995.

G. Consonni, E. Moreno, and S. Venturini. Testing Hardy–Weinberg

equilibrium: An objective Bayesian analysis. Statistics in Medicine,

30(1):62–74, 2011.

G. Consonni, J.J. Forster, and L. La Rocca. The Whetstone and the

Alum Block: Balanced objective Bayesian comparison of nested mod-

els for discrete data. Statistical Science, 28(3):398–423, 08 2013.

G. Consonni, D. Fouskakis, B. Liseo, and I. Ntzoufras. Prior distri-

butions for objective Bayesian analysis. Bayesian Analysis, 13(2):

627–679, 2018.



254 Bayesian cost–effectiveness analysis

N.J. Cooper, D. Spiegelhalter, S. Bujkiewicz, P. Dequen, and A.J. Sut-

ton. Use of implicit and explicit Bayesian methods in health tech-

nology assessment. International Journal of Technology Assessment

in Health Care, 29(3):336–342, 2013.
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Interpretation of quality of life scores from the St George’s Respi-

ratory Questionnaire. European Respiratory Journal, 19(3):405–413,

2002.

E.C. Fieller. Some problems in interval estimation (with discussion).

Journal of the Royal Statistical Society, Series B, 16(2):175–188,

1954.



Bibliography 257

R.A. Fisher. On the mathematical foundations of theoretical statistics.

Philosophical Transactions of the Royal Society of London, Series A,

222:309–368, 1922.

L.S. Freedman and D.J. Spiegelhalter. The assessment of the subjective

opinion and its use in relation to stopping rules for clinical trial.

Journal of the Royal Statistical Society. Series D (The Statistician),

33(1/2):153–160, 1983.
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also Cost effectiveness
analysis optimal treatments
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case of completely unknown
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comments on, 161–162
frequentist, 158–159, 161
Glivenko-Cantelli theorem, 156
profile of, 26
rationale of bootstrap procedure,

156
for utility function, 154, 160–161

Cost-effectiveness analysis, 111; see
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analysis optimal treatments
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effectiveness analysis;
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effectiveness, 6–11
frequentist approach, 14–15
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Cost-effectiveness
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Data and Bayesian model, 205–206;
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effectiveness analysis
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frequentist predictive
distribution, 149
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model, 208–209; see also
Subgroup cost effectiveness
analysis
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cost effectiveness analysis

Dimension of the model, 77; see
also Bayesian model selection
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E

Effectiveness, 6; see also Cost
effectiveness analysis

case-control study, 10–11
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data sources, 8–10
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quality-adjusted life years, 7–8
randomized clinical trial, 8
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F
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Frequentist approach, 14–15, 31,
32; see also Cost effectiveness
analysis

Full model, 212
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also Parametric sampling
models

Glivenko-Cantelli theorem, 156
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Hat matrix, 88; see also Normal
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Health economics evaluation, 1
concerns of researchers, 1
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Healthy volunteer effect, 9
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data
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Bayesian models
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Human Immunodeficiency Virus
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Bayesian model selection

I

ICER, see Incremental
cost-effectiveness ratio

INB, see Incremental net benefit
Incremental cost-effectiveness ratio

(ICER), 17; see also Cost
effectiveness analysis

confidence intervals for ICER
estimation, 21

cost-effectiveness plane, 18
estimation, 17
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Incremental net benefit (INB), 22,
115; see also Cost
effectiveness analysis

relationship between INB and
ICER for each of four
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straightforward estimator of, 24
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cost effectiveness analysis

Intrinsic priors for model
parameters, 216–217

L

Law of the Large Numbers (LLN),
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LLN, see Law of the Large
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Lognormal-Bernoulli model, 139;
see also Statistical models for
cost and effectiveness

Bayesian optimal treatments,
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Bayesian predictive distribution,
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frequentist optimal treatments,
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frequentist predictive
distribution, 140

Lognormal likelihood sets, 49–50;
see also Parametric sampling
models

Lognormal-normal model, 134; see
also Statistical models for
cost and effectiveness

Bayesian optimal treatments,
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Bayesian predictive distribution,
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frequentist optimal treatments,
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frequentist predictive
distribution, 135–136

Lognormal sampling model, 44–46;
see also Parametric sampling
models

Lotteries, 96–97; see also Statistical
decision theory

admissible class of decisions, 104
Bayesian risk of decision,
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Bayesian strategy, 105–106
comparison, 106
depending on parameter,

104–105
inadmissible decision, 104
minimax decision, 105
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optimal Bayesian decision, 106
risk of the decision, 105

M

Markov Chain Monte Carlo
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Maximum likelihood estimator
(MLE), 50; see also
Parametric sampling models

asymptotic properties of, 56–57
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gamma model, 52–53
invariant principle of MLE, 60
limiting distribution of sequence,

59
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models in cost-effectiveness
analysis, 54

procedure on Bernoulli sampling
model, 52

proving consistency and
asymptotic normality, 57–59

score function, 57
MCMC, see Markov Chain Monte

Carlo
Meta-analysis, 164; see also Cost

effectiveness analysis for
heterogeneous data

Meta-parameter, 166; see also Cost
effectiveness analysis for
heterogeneous data

Metropolis-Hasting stochastic
search algorithm, 212

MLE, see Maximum likelihood
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Model parameter uncertainty, 14;
see also Cost effectiveness
analysis

Model selection, 38; see also
Hypothesis testing;
Parametric models

Model uncertainty, 16

N

National Institute for Health and
Care Excellence (NICE), 1

NHP, see Nottingham Health
Profile
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Health and Care Excellence

Normal linear model, 38, 87; see
also Parametric models

Bayes factors for, 217–220
Bayesian estimators, 89–90
covariates/regressors, 87
hat matrix, 88
linear function, 87
maximum likelihood estimators,

88
outline of variable selection,

90–91
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subgroup of patients, 91
variable selection problem, 91

Normal-normal hierarchical model,
166; see also Cost
effectiveness analysis for
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Normal-normal model, 128; see also
Statistical models for cost and
effectiveness

Bayesian optimal treatments,
133–134

Bayesian predictive distribution,
129–131

frequentist optimal treatments,
131–133

frequentist predictive
distribution, 128–129

Normal sampling model, 43–44; see
also Parametric sampling
models

Nottingham Health Profile (NHP),
194

Null hypothesis, 77; see also
Bayesian model selection

O

Observational studies, 10
Optimal decision, 93; see also

Statistical decision theory
Bayesian procedure, 108–109
frequentist procedure, 107–108
in presence of sampling

information, 107
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P

Parametric Bayesian models, 37,
61; see also Parametric
models

arguments in favor of Bayesian
approach, 64

Bayesian and MLE estimators,
66–68

Bayesian Robustness, 69
Bayesian statistical approach, 61
Bayes theorem, 61
conjugate priors, 69–72
prior distribution for θ, 61
elements, 61
gamma sampling model with

known shape parameter, 62
HPD, 65
Jeffreys prior, 72
K–sufficiency, 64
normal sampling model with

known variance, 71
objective priors, 72–74
posterior probability, 65
probabilistic way of learning on

parameter from data, 64
reference priors, 73
subjective priors, 68–69

Parametric models, 37
Bayesian model selection, 38,

77–87
model selection, 38
normal linear model, 38, 87–91
parametric Bayesian models, 37,

61
parametric sampling models, 37,

39
predictive distribution, 37, 74–77
reparametrization of original

sampling model, 37
Parametric sampling models, 37,

39; see also Parametric
models

Bernoulli sampling model,
41–43

gamma sampling model,
46–48

invariance principle on Bernoulli
distribution, 60

likelihood function, 40–49
likelihood of θ for random

sample, 41
likelihood sets, 49–50
lognormal likelihood sets, 49–50
lognormal sampling model,

44–46
maximum likelihood estimator,

50–59
normal sampling model, 43–44
Poisson sampling model, 43
probability density, 39
probability function, 39
reparametrization to

subparameter, 59–60
sampling model, 39

Poisson sampling model, 43; see
also Parametric sampling
models

Predictive distribution, 37, 74; see
also Parametric models

Bayesian predictive distribution,
75–77

Bayesian viewpoint, 74
expected value of, 74
frequentist viewpoint, 74

Probabilistic clustering, 165; see
also Cost effectiveness
analysis for heterogeneous
data

Probit sampling model, 209–210;
see also Subgroup cost
effectiveness analysis

Bayes factors for, 220–223

Q

QALYs, see Quality-Adjusted Life
Years

Quality-Adjusted Life Years
(QALYs), 5, 7–8, 243
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R

Random effect model, 164, 166
Randomized clinical trial, 8
Rational decision maker, 94; see

also Statistical decision theory

S

Sampling model, 39; see also
Parametric sampling models

Second-order uncertainty, see
Model parameter uncertainty

SGRQ, see St. George’s
Respiratory Questionnaire

Statistical decision theory, 93
axioms for existence of utility

function, 99–102
criticisms of utility function,

102–104
elements of decision problem,

94–95
lotteries, 96–97
lottery parameter, 104–106
optimal decision, 93
optimal decisions in presence of

sampling information,
107–109

ordered space, 95
ordering rewards, 95–96
rational decision maker, 94
real-valued function, 98
utility function, 97–98

Statistical models for cost and
effectiveness, 127; see also
Cost effectiveness analysis
optimal treatments

bivariate normal model,
145–148

dependent lognormal-Bernoulli
model, 148–151

lognormal-Bernoulli model,
139–145

lognormal-normal model,
134–139

normal-normal model, 128–134

St. George’s Respiratory
Questionnaire (SGRQ), 235

Stirling number of second kind, 169
Stochastic uncertainty, 13
Subgroup cost effectiveness

analysis, 203
Bayesian predictive distribution

of net benefit, 223–228
Bayesian variable selection,

210–223
bidimensional model, 237, 239
data and Bayesian model,

205–206
dependent lognormal-normal

model, 208–209
dependent normal-normal

model, 207–208
examples, 229–237
improving subgroup definition,

237–248
independent normal-normal

model, 206–207
matrix-normal density, 241
maximum likelihood

estimator, 243
optimal treatments for

subgroups, 228
patient covariates, 203
patient subgroups, 204
posterior predictive distribution

of net benefit, 243
posterior probability of generic

model, 241
probit sampling model, 209–210
statistical variable selection, 204
unbiased estimator based on

maximum likelihood
one, 243

variable selection problem, 204
Subjective priors, 68–69; see also

Parametric Bayesian models

U

Utility function, 97–98; see also
Statistical decision theory
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axioms for existence of,
99–102

criticisms of, 102–104
Utility functions of net benefit,

115; see also Cost
effectiveness analysis optimal
treatments

interpretation of expected
utility, 117–118, 122–123

net benefit of treatment T1 and
T2, 120

optimal treatments, 116–117,
118–121

Utility of the distribution, 112; see
also Cost effectiveness
analysis optimal treatments

V

Variable selection problem, 91, 204;
see also Normal linear model

VAS, see Visual analogue scale
Visual analogue scale (VAS), 243

Z

Zellner’s g–priors, 215–216
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