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Preface

Given the current explosion of data gathering and storage, we face a
shortage of trained scientists and engineers who are able to extract
knowledge from such data. In order to solve the big problems of to-
day and tomorrow, we need more people with adequate training, and
we need to create better tools for extracting knowledge from huge
collections of data. Building a new generation of tools will require in-
terdisciplinary teams that can think in new ways. In order for these
teams to be productive, they require a common language, and the
fundamentals of scientific computing and visualization (SCV) form
this language. Thus, the primary goal of Mathematical Principles
for Scientific Computing and Visualization is to bring SCV tools to
a diverse group of people.

Recently, a new trend has started in computer science depart-
ments: the move to bring computer- and technology-based knowl-
edge to a broader group of people. This movement is called infor-
matics.1 Computer applications are ubiquitous today, influencing
nearly every aspect of our lives. Computer scientists and engineers
alone cannot keep pace with the developments. Thus, informatics
departments are emerging at colleges and universities to train a new
breed of specialists.

1This is a US term. In Europe, “informatics” is synonymous with “computer
science.”

xi
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xii Preface

Mathematical Principles for Scientific Computing and Visualiza-
tion was written with the goals of informatics in mind. In our opin-
ion, it is the first book on SCV that targets such a broad audience. It
is intended for students and researchers in engineering and science-
related areas, such as biology, geography, and psychology. It will
appeal to students because it concisely covers a range of important
topics from an application-oriented perspective. Professionals will
find this book helpful as a review of key computational methods,
or as an update to what they were taught. Individuals in either of
these audiences, in the course of their professional applications or
research pursuits, will be exposed to various software packages for
solving problems, be it problems from statistics, applied mathemat-
ics, or scientific visualization, in addition to domain-specific software.
This book is intended as a guide to understanding the mathematical
principles that underly the more general software packages. That
knowledge is important for the non-mathematician because naive
and uneducated use of computing and visualization packages might
produce meaningless or erroneous results.

This book is written in an informal style and is accessible to some-
one who is not a mathematician. The book has over 180 illustrations
—and not only in the “visualization” part. The reader is led to un-
derstand many concepts through graphical examples. Practical sug-
gestions for using the tools of SCV are given, and applications are de-
scribed in the text and demonstrated with illustrations. Case studies,
real-world examples of how one or more tools are used, are included
for nearly all topics. Positive feedback on other book projects con-
vinced us that this style of book is of great use to practitioners and
people new to a field. (See http://www.farinhansford.com/books.
html for a complete list of books by the authors.)

Review of Contents

The book has two basic parts: scientific computing (Chapters 4–11)
and visualization (Chapters 12–16). The book is designed so that
the reader can begin with either part; however, cross references are
given when material is dependent on ideas discussed elsewhere. The
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first two chapters after the introduction, “Computational Basics”
and “Coordinate Systems,” introduce the reader to key concepts
that are used throughout the book.

The part of the book that focuses on scientific computing be-
gins with topics on numerical linear algebra with Chapters 4, 5, and
6: “Background: Numerical Linear Algebra,” “Solving Linear Sys-
tems,” and “Eigen-Problems.”

The second component of the scientific computing part, Chapters
7–11, deals with numerical calculus topics: “Background: Numerical
Calculus,” “Data Fitting,” “Computing Dynamic Processes,” “Find-
ing Roots,” and “Computing with Multivariate Functions.”

The visualization part of the book begins with the most ba-
sic tools, which are presented in Chapter 12: “Visualizing Empir-
ical Data.” In order to develop more advanced visualization tools,
“Facets” is the next chapter, and it focuses on triangle meshes.
Chapters 14 and 15, “Visualizing Scalar Values over 2D Data” and
“Volume Visualization,” present state-of-the-art visualization tech-
niques. For deeper knowledge of visualization, the last chapter,
“Background: Computer Graphics,” provides details on how objects
are rendered in the visualization process.

Each chapter concludes with a “Problems and Experiments” sec-
tion. The problems are not rote calculations, but rather require some
reflection on the topics presented. Experiments are designed to in-
corporate the use of a software package and thus give the reader
hands-on experience with the methods. Only through experimen-
tation does one realize the power and pitfalls of systems such as
Mathematica, Matlab, and Maple.

Classroom Use

In a classroom setting, Mathematical Principles for Scientific Com-
puting and Visualization targets junior or senior undergraduates. A
background in basic computing skills is desirable, as well as some
basic knowledge of calculus and linear algebra.

For a one-semester class (and for an audience of varying math-
ematics backgrounds), the first chapters on computing and coordi-
nates, Chapters 2 and 3, are essential for forming the necessary foun-
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dation. If the students have a good mathematical background, then
all chapters from Chapter 4 (linear algebra) to Chapter 11 (multi-
variate data) can be treated in depth, and those on visualization may
be given a lighter treatment. Conversely, if students are computa-
tionally oriented, there ought to be an emphasis on the visualization
part, Chapters 12–16, and a lighter treatment of the scientific com-
puting part.

Website

The book’s website is http://www.farinhansford.com/books/scv
/index.html. The website contains teaching materials, as well as
the figures and code used in the book. We used Mathematica for
computations and for generating many of the figures in the book.
Yet this is not a Mathematica-centered book: the text is designed
so that readers may equally well use other packages such as Matlab
or Maple. Reviews and errata will be posted on the site as well.

Acknowledgments
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1

Introduction

The goal of science is the creation of knowledge. The process typ-
ically starts with raw data, which are processed to extract infor-
mation. Interpretation of this information then leads to knowledge.
Roughly speaking, scientific computing aids in the first step, whereas
scientific visualization helps in the second one. Figure 1.1 illustrates
these steps.

data information knowledge

Figure 1.1. Steps in the scientific process.

Scientific computing and visualization are important elements of
the iterative process of scientific discovery. Both tools provide the
researcher with more information for refining a hypothesis, building
a better mathematical model for abstracting a phenomenon, test-
ing data acquisition methods, and evaluating observations. Visual-
ization, through transformation and rendering, provides additional
validation and verification of each process.

As an example, imagine the process for developing a new airplane
by an engineering team at a major aircraft company. Before a pro-
totype is built, extensive computer simulations take place, typically

1
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2 1. Introduction

Figure 1.2. Simulation of air flow around the space shuttle. (Image courtesy of
NASA.)

involving numerical solutions of partial differential equations. These
simulations yield large amounts of numerical data. To extract the
desired information, such as pressure around a wing, numerical data
sets have to be visualized, such as shown in Figure 1.2.

Another example involves magnetic resonance imaging (MRI)
brain scans. Such scans are obtained from physical measurements
(data) and the use of complex numerical algorithms (creating in-
formation). To interpret these scans, they must be visualized by
transforming them into images such as the one shown in Figure 1.3
(creating knowledge).

Therefore, visualization may be thought of as the graphical de-
piction of data and information. Instead of being one monolithic
discipline, visualization takes on several forms:

• Scientific visualization focuses on scientific data and mathe-
matical modeling techniques. Most often, this discipline rep-
resents spatial or natural geometric information with physical
attributes attached.
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1. Introduction 3

Figure 1.3. An MRI image of a human brain. (Image courtesy of Arizona
Alzheimer’s Disease Consortium.)

• Information visualization mostly focuses on nonspatial, ab-
stract data. This discipline receives credit for many human-
computer interface, cognitive, and perception advances in the
area of graphical representations.

• Visual analytics focuses on analytical reasoning supported by
visualization. This is a new area, formed to bring together tools
from scientific visualization and information visualization.

With each of these disciplines, the goal is to leverage the hu-
man brain’s strong dependency on sight to allow for a better under-
standing of a given problem or phenomenon. (In sighted individuals,
nearly one-third of the brain is devoted to processing visual informa-
tion.) The focus of this book is scientific visualization, recognizing
that the boundaries between the disciplines are not clearly defined.

Visualization is an interdisciplinary field, bringing together many
domain sciences: scientific computing, computer graphics, image
processing, human-computer interfaces, and cognitive science.

Scientific computing and visualization are effective tools for build-
ing links among data, information, and knowledge. Solving the big
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4 1. Introduction

problems of today and those of the future requires methods to deal
with the vast amounts of data being gathered with new data ac-
quisition devices, and transforming these data into a form that is
digestible by humans. Inexpensive computer memory, specialized
chips, and faster computers are allowing for larger-scale simulations
in the realm of high-performance computing.
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Computational Basics

Scientific computing (also referred to as computational science)
solves scientific problems by constructing good mathematical mod-
els for these problems and then using efficient computational tools
to find solutions. Within the field of computer science, these algo-
rithms are characterized by the fact that they are almost entirely
based on computing with floating point numbers. Here, we give
a brief overview of the concepts of algorithms and floating-point
numbers.

2.1 Algorithms

Scientific computing is about executing algorithms, typically encoun-
tered in the form of computer programs. An algorithm is a step-by-
step set of instructions for solving a particular problem, much like a
recipe tells how to prepare a meal.

An algorithm must be unambiguous. For example, “Execute ei-
ther instruction X or instruction Y” does not clearly specify which
instruction to execute. However, “If a > 0, execute X, and execute
Y otherwise” is unambiguous.

An algorithm must terminate. This means no infinite loops are
allowed. In reality, it is almost impossible to check ahead of time
whether a program (the computer implementation of an algorithm)
can avoid infinite loops.

5
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6 2. Computational Basics

An algorithm must be complete. All possible circumstances must
be covered. In practice, one overlooked circumstance can prove
deadly!

An important attribute of algorithms is their complexity. Some
algorithms may just be badly designed, making their execution time
horrendously long even if the problem to be solved is not very com-
plex. However, there are problems for which efficient algorithms do
not exist. Those problems are called hard. For instance, solving n lin-
ear equations with n unknowns roughly requires n3 computations—
this is considered not hard. But if the equations become nonlinear,
no bound on the number of computations can be given—hence solv-
ing systems of nonlinear equations is very hard.

2.2 Floating-Point Numbers

The TV news might report that tomorrow’s temperature is expected
to be 48 degrees. The news might also report that the Dow Jones
index is at 12,335.47 points. These two pieces of information come
at different levels of detail: one (temperature) gives two digits; the
other (stock prices) gives seven digits. It appears that the Dow Jones
number is inflated with superfluous information (or, taking an oppos-
ing point of view, the temperature information is lacking detail). At
a two-digit level of information, we might say the Dow Jones index
is at 12,000 points—with this approximation, we miss some detail
but we do get the overall picture. Conversely, we would not think of
a seven-digit forecast of 48.10482 degrees as meaningful—this would
be information overload.

The concept of keeping the essential digits and discarding “noise”
is key to understanding floating-point numbers. You may encounter
them in various forms, such as

3.14159, 0.314159 E 01, .314159 E 01, +.314159 E 01,
31.4159 E –01,

which all denote the same number. The first one is standard fare;
the remaining ones are variations on a common form xxx.yyy E
±zz. Here again the xxx.yyy part is a standard number; the E ±zz
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2.3. Errors 7

part indicates that xxx.yyy is multiplied by 10±zz .1 This notation
is particularly useful when dealing with very large or very small
numbers. The following two notations are equivalent:

0.000000001, 0.1 E –08,

and so are these:

7000000000, 0.7 E 10.

The exponent notation is much easier to comprehend!
There are infinitely many real numbers, but a computer can deal

only with finitely many. Thus, floating-point numbers only approx-
imate the much larger set of reals. Floating-point numbers are typ-
ically represented as

0.x1x2x3 · · · x16 E ±e1e2,

following the IEEE2 standard for 64-bit number representation. This
means a floating-point number is stored as 16 digits x1 · · · x16, fol-
lowed by a 2-digit exponent. The range for the exponent is about
−38 to 38. Numbers exceeding 1038 in absolute value are treated as
NaN (not-a-number).

2.3 Errors

When computing with floating-point numbers using digital comput-
ers, we cannot always expect 100% correct results. Mostly, we do
not care and are satisfied with results that are accurate to 10 digits
or so. But even those 10 digits cannot always be guaranteed to be
accurate! The different kinds of numerical errors and their effect
on computations are the topics of numerical analysis. We shall give
some examples.

Example 1. The quadratic equation

x2 − 2 = 0
1The “E” symbol stands for “exponent.”
2Institute of Electrical and Electronics Engineers; this organization is respon-

sible for creating many computer-related international standards.
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8 2. Computational Basics

is known to have two exact solutions,

x1,2 = ±
√

2.

However, there is no way a digital computer can exactly compute
√

2
in floating-point form. It may be computed to high accuracy (typi-
cally to 16 digits), but the exact value requires infinitely many digits
in its decimal expansion—a computer cannot handle that. Hence,
square roots have to be approximated within some tolerance, giving
rise to numerical errors.

Example 2. The sine function is defined as

sin(x) =
∞∑
i=1

(−1)i−1

(2i − 1)!
x2i−1.

For practical computations, this expression cannot be evaluated for
infinitely many terms. We have to terminate (truncate) for some
finite value n (instead of ∞), resulting in a numerical error that may
be considerable for large x; the truncated sum is a polynomial of
degree n in x. The sine function is bounded, whereas no polynomial
is! Errors arising this way are referred to as truncation errors.

Example 3. The number 1/10 is well-defined in a decimal context. A
digital computer, however, needs to convert it by using powers of 2:

1
10

= .0001100110011...

Realistically, this infinite expansion has to be truncated somewhere,
thus 1/10 cannot be accurately represented by a digital computer.
This leads to the surprising fact that 10 × 0.1 will not result in the
exact value 1.0; instead it will be missed by about 10 E −16. See
Section 2.4 for more on this.

Example 4. The function

f(x) =
1 − cos x

x2

is plotted in Figure 2.1.
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�10 �5 5 10

0.1

0.2

0.3

0.4

0.5

Figure 2.1. The function (1 − cos x)/x2 over the interval [−10, 10].

It can be shown that f(0) = 0.5; in the close vicinity of x = 0,
the function behaves like the constant y = 0.5. Yet when we plot
f over a very small interval [−5.0 E −8, 5.0 E −8] (Figure 2.2), the
plot looks fairly disturbing. The reason for the difference is the use of
floating-point numbers: near x = 0, the terms 1 and cos x are almost
identical. Their difference will yield only very few meaningful digits,
resulting in computations that use only two or three relevant digits.
This kind of error is referred to as cancellation error. It is responsible
for the erratic behavior of the second plot.

Example 5. Because of the possibility of numerical errors,
never check for equality of floating-point numbers! Even if equality is
expected, it typically is not met exactly. Thus, instead of checking

�4. � 10�8 �2. � 10�8 2. � 10�8 4. � 10�8

0.2

0.4

0.6

0.8

1.0

Figure 2.2. The function (1 − cos x)/x2 over the interval [−5 E −8, 5 E −8].
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x==y,3 check abs(x− y) < eps where eps is some small tolerance,
such as 10 E −10.

Several packages, such as Maple or Mathematica, allow symbolic
computations. In symbolic mode, 1/10 will not be converted to ap-
proximate binary;

√
2 will be carried through a computation without

conversion to a numerical value. In this book, we concentrate on nu-
merical computations, which are necessary when dealing with data
arising from scientific data.

2.4 Case Study: The 1991 Scud Attack

The 1991 Scud attack is a case in which human lives were lost due
to numerical error.

On February 25, 1991, during the first Iraq war, 28 American
soldiers were killed by an Iraqi Scud missile because the “Patriot”
defense system failed to intercept it—see Figure 2.3 for a view of a
Patriot unit.

The reason for this death toll was numerical error. The Patriot
unit kept its own internal clock, updating it every tenth of a second
starting from reboot. “One-tenth” was stored as a 24-bit binary
number which misses the true value 0.1 by about 0.000000095.

Figure 2.3. A Patriot anti-missile unit. (Image courtesy of NATO photos.)

3The == symbol is frequently used for an equality query.
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An incoming missile is first detected by a radar system—and
this system worked using the correct time, stored as a floating-point
number. If the detected object were indeed a missile, following the
laws of ballistic flight, then its path would be predictable. In partic-
ular, a fraction of a second after initial detection, it must appear at a
location that is quickly computed by using elementary physics. The
Patriot software checks whether the detected object does in fact ap-
pear at the predicted location at the predicted time. If it does not, it
is interpreted as not being a ballistic missile and no action is taken.
The reason for this safeguard is that a Patriot missile had a price
tag of about $600,000, so firing one should not happen without a
confirmed threat at hand.

At the time of the Scud attack, the Patriot system was up for
about 100 hours, and due to the accumulated time error, it was 0.34
seconds off actual time. A Scud travels about 600 meters during
that time span. So when the Patriot software checked whether the
detected object was in fact a ballistic missile, it miscalculated the
predicted location by 600 meters and detected no object at that lo-
cation. A nonballistic object was assumed, no Patriot was launched,
and 28 people died.

2.5 Problems and Experiments

1. Define two floating-point numbers by

x = 1.0 E 20 and y = 1.0 E −20.

Neither x nor y equals zero, and thus we would expect x− y �=
x+y. However, when executed in software, you will most likely
obtain equality. Experiment yourself! Explain why.

2. Find three floating-point numbers x, y, z such that

x + (y + z) �= (x + y) + z.

Hint: these numbers should vary considerably in magnitude.

3. Using the IEEE conventions outlined in Section 2.2, how many
floating-point numbers are there?
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4. How many floating-point numbers are in the interval [−10−10,
10−10] and how many are in the interval [1010 − 10−10, 1010 +
10−10]?

5. Experiment with the two functions

f(x) = sin
1
x

and g(x) = x sin
1
x

.

They behave very differently near x = 0. Plot the functions
and describe their behavior.
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Coordinate Systems

When dealing with objects in space in a computational setting, we
need to know where the objects are. This means that, relative
to a known reference system, they are identifiable by coordinates.
Many types of coordinate systems exist; which one to use depends
on the particular application. In some cases, we need to transi-
tion from one coordinate system to another, resulting in coordinate
transformations.

3.1 Cartesian Coordinate Systems

The Cartesian coordinate system forms the foundation for all the
topics of this book. It has been said that René Descartes (1596–
1650), who is credited with inventing this system, did so as he lay ill
in bed. Looking up, he noticed a fly moving around on the ceiling
which was made of tiles. Descartes realized that he could describe
the position of the fly with respect to the tiling. Thus was born the
Cartesian coordinate system.

Illustrated in Figure 3.1 is a two-dimensional (2D) Cartesian co-
ordinate system, which provides a reference frame by defining an
origin and perpendicular coordinate axes called the x- and y-axes.
The axes are marked with chosen units of length, which may or may
not be the same for both axes. These elements together are called a
coordinate plane. Nearly everyone follows the right-hand rule conven-
tion for axes orientation. First, establish the positive x-axis. Next,

13
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14 3. Coordinate Systems

p1

p2

x

y

III

III IV

Figure 3.1. The 2D Cartesian coordinate system. Point p1 has (x, y)-coordinates
(1, 2). Point p2 has (x, y)-coordinates (1,−2). The four quadrants are labeled
I–IV.

align your right hand so your fingers point in the direction of the
+x-axis with your thumb pointing up. Then the +y-axis will be in
the direction that your fingers curl.

Coordinate systems are important tools for mathematics because
they allow a unique determination of a location (point) by its coordi-
nates. Three points are illustrated in Figure 3.1: the origin, p1, and
p2. Furthermore, coordinate systems are important because they
lend themselves to algebraic equations for geometric entities such as
the circle x2 + y2 = 1, which is also illustrated in the figure.

A convenient convention for referring to groups of geometric en-
tities or measurements with the same pair of x- and y-coordinate
signs is to use the quadrant notation. Labeled in Figure 3.1 by Ro-
man numerals I–IV are the four quadrants of the 2D system.

In this book, as we develop more tools for representing geometry
and scientific measurements, we’ll find it convenient to have a more
general notation for coordinate systems, so let’s refer to the origin
as o and the axes as e1 and e2. Using this notation, we to define the
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x

y

e 1

e 2

o

p

Figure 3.2. A more flexible notation for the 2D Cartesian coordinate system.
This allows us to define geometry with respect to the frame anywhere in the
plane.

2D Cartesian coordinate system as

o =
[
0
0

]
, e1 =

[
1
0

]
, e2 =

[
0
1

]
. (3.1)

A position p in the plane is defined by its coordinates (p1, p2) in this
frame, thus

p = o + p1e1 + p2e2.

We use this more flexible o, ei notation so we can place our ref-
erence frame anywhere, as illustrated in Figure 3.2. Notice that we
have expressed the coordinate frame and position p in the figure as a
column vector; more information on this is given in Section 4.1. Ex-
actly how to construct the transformation in the figure is explained
in Section 4.3.

The three-dimensional (3D) Cartesian coordinate system is cre-
ated from the 2D system by adding a z-axis. Thus a point is defined
by three coordinates, (x, y, z). As with the 2D system, we will fol-
low the right-hand rule for orientation of the axes. The direction
of your thumb indicates the positive z-axis direction, as Figure 3.3
illustrates. Again, to allow for more flexibility, we use the o, ei
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x

y

z

e 1

e 2
e 3

o

Figure 3.3. The 3D Cartesian coordinate system.

notation. To represent the Cartesian coordinate frame, we let

o =

⎡
⎣0

0
0

⎤
⎦ , e1 =

⎡
⎣1

0
0

⎤
⎦ , e2 =

⎡
⎣01
0

⎤
⎦ , e3 =

⎡
⎣0

0
1

⎤
⎦ . (3.2)

A position p in the plane is defined by its coordinates (p1, p2, p3) in
this frame; thus,

p = o + p1e1 + p2e2 + p3e3.

3.2 Polar, Spherical, and Cylindrical Coordinate Systems

Let’s look at some other commonly used coordinate systems and
examine why we need them.

The polar coordinate system is a 2D coordinate system that de-
fines a point with two coordinates (r, θ), where r is a radial coordinate
and θ is an angular or azimuthal coordinate. As illustrated in Fig-
ure 3.4, it is standard practice to align the polar coordinate system
with the Cartesian frame by associating the +x-axis with 0◦. As we
travel counterclockwise, through quadrants I–IV, the angular coor-
dinate increases to 360◦. The angular coordinate can be expressed
in degrees or radians.
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θ

r

p

x

y

Figure 3.4. The polar coordinate system. The point p has polar coordinates
(2, 45◦).

Negative angular coordinates are formed by traveling clockwise
about the origin. Normally the radial coordinate is positive; however,
it is possible to define a negative radial coordinate; it is interpreted
as representing a point in the quadrant opposite that of the point
with the same positive radial coordinate. To avoid redundancy, a
good practice is to constrain the coordinates as follows:

r ≥ 0 and 0◦ ≤ θ < 360◦.

However, if important information is contained in the number of
rotations, then this constraint on θ should not be implemented.

One way in which polar coordinates differ from Cartesian coor-
dinates is that one point can have many coordinates. For example,
the following polar coordinates represent the same point: (2, 45◦),
(2, 405◦), (2,−315◦).

Obviously, polar coordinates are suited to modeling phenomena
having a rotational element or a center point with a radial defini-
tion. Cam profiles are a good example. Also, gravitational or flow
problems can be simpler to formulate in polar coordinates.

The 3D version of polar coordinates is called spherical coordi-
nates. These coordinates allow us to identify a point in 3D with
three coordinates (r, θ, φ), where r is a radial coordinate, θ is an
azimuthal (angular) coordinate, and φ is a zenith (angular) coordi-
nate. As illustrated in Figure 3.5, spherical coordinates identify a
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y
x

z

r

p

θ

φ

Figure 3.5. The spherical coordinate system.

point on the equator of a sphere with radius r, and φ identifies a
latitude (north-south) measured from the +z-axis. The domains for
the coordinates are defined as

r ≤ 0, 0◦ ≤ θ < 360◦, 0◦ ≤ φ ≤ 180◦.

To remain on one sphere, say Earth, we hold r constant and let
the azimuth and zenith vary. Spherical coordinates are then easily
converted to the familiar latitude and longitude. Recall that latitude,
commonly abbreviated as Lat, has a domain of +90◦ at the north
pole, 0◦ at the equator, and −90◦ at the south pole. Points on the
sphere with constant latitude are called parallels. Longitude, com-
monly abbreviated as Long, has a domain of 0◦ at Greenwich (near
London, UK); traveling east, the coordinate increases to +180◦; trav-
eling west, the coordinate decreases to −180◦. Points on the sphere
with constant longitude are called meridians. The meridian of ±180◦

longitude is called the prime meridian (and it passes through the Fiji
Islands). If we assume that the +x-axis runs through the Greenwich
meridian, then the conversion from spherical coordinates to Lat and
Long is as follows:

Lat = 90◦ − φ and Long =

{
θ if θ ∈ [0◦, 180◦],
θ − 360◦ if θ ∈ (180◦, 360◦].
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Conversions from spherical coordinates to Cartesian coordinates
are

x = r cos θ sinφ, y = r sin θ sinφ, z = rcosφ.

Conversions from Cartesian coordinates to spherical coordinates
are

r =
√

x2 + y2 + z2, θ = arctan y/x, φ = arccos z/
√

x2 + y2 + z2.

The cylindrical coordinate system is a 3D system that is simply an
extrusion of polar coordinates. In this system, a point is identified
by three coordinates (r, θ, z). If we consider polar coordinates to
live in the xy-plane, then the third coordinate is simply the point’s
z-value.

A well-known conversion from spherical to cylindrical coordinates
is the Mercator projection. For a given sphere (such as Earth, ap-
proximately), circumscribe a cylinder touching the sphere’s equator.
Now assign a point pc on the cylinder to every point ps on the sphere
by intersecting the line through the sphere center and ps with the
cylinder, resulting in pc. Finally, cut the cylinder by a vertical line so
it can be flattened out into a 2D map. Note that great circles on the
sphere are mapped to straight lines on the 2D map. Furthermore,
the Mercator projection has one big advantage: any angle formed
by two great circles on the sphere is preserved by the correspond-
ing straight lines of the 2D map. Such angle-preserving maps are
called conformal. See Figure 3.6 for a 2D version of the Mercator
projection.

Clearly, the Mercator projection does not work for the north and
south poles. Another drawback is the severe distortion near the
poles. In a Mercator projection, Greenland looks similar in size to
Africa, whereas Greenland really has only 1/10 the area of Africa.

3.3 Case Study: UTM Coordinates

Any map converted from a sphere to a 2D plane will distort either
angles, areas, or both. The Universal Transverse Mercator (UTM)
coordinate system was designed to combat this problem in an empiri-
cally optimal way. First, ignore regions very close to the poles. Then,
divide Earth into 60 longitudinal wedges, each spanning 6 degrees.
Each wedge has a longitudinal center line at 3 degrees between its
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Figure 3.6. Result of the Mercator projection.

borders. Now, take a transversal cylinder touching this center great
circle,1 and map the wedge to a 2D map using the Mercator pro-
jection principle. Repeat for all 60 wedges. Divide each wedge into
20 longitudinal pieces. The spherical wedge pieces map to their 2D
counterparts with a tolerable distortion. Figure 3.7 shows how Earth
is divided up into small pieces using UTM.

1All these cylinders are perpendicular to the one used in the Mercator projec-
tion, hence the name “transversal.”
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Figure 3.7. Geometry of the UTM coordinate system. One transversal cylinder
and circle of contact are shown.

3.4 Local and Global Coordinates

How do we map points from one Cartesian coordinate system to
another? The coordinate systems here are parallel to the 2D o, ei

system defined in (3.1).
Suppose you have received an illustration of a bee from a graphics

designer to use in your manuscript on the communication habits of
bees. As illustrated on the left of Figure 3.8, the designer has created
the artwork in the 2D Cartesian coordinate system, and its extents
are [0, 1] on both axes.2 You would like to place several bees in an
illustration. This repeated placement of the bee is illustrated in the
right of the figure.

Let’s introduce some terminology and notation first. We call
the coordinate system that the designer used the local coordinate
system. As we know from Section 3.1, a coordinate system is defined
by an origin and axes. The local system in this case is simply the
o, e1, e2 system as defined in (3.1). Another way of thinking about a
coordinate system is that it is defined by a rectangle called a minmax
box: one corner corresponds to the origin, and the adjacent edges
correspond to the coordinate axes. It is aligned with the coordinate

2Square brackets are used to indicate an interval.
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Figure 3.8. The bee design in a local coordinate system (left) and placement of
several bees in global coordinate systems (right).

axes, and normally it encloses the extents of the geometry (the bee).
The minmax box for the bee example is illustrated in Figure 3.8
(left): the lower-left point has coordinates (0, 0) and the upper-right
point has coordinates (1, 1). Let (u1, u2) be a point in the local
system. The local coordinates are also known as parameters.

The area on the page where you will place a copy of the bee
will define a global coordinate system. Let’s define this system by
the minmax box with extents (min1,min2) and (max1,max2). Let
(x1, x2) be a point in the global system. This rectangle is also called
a target box.

Now we want to determine how to map a point (u1, u2) on the
bee in the local system to a point (x1, x2) in the target box. Cor-
responding corners of the minmax boxes should map to each other.
We want to preserve the ratio of a given coordinate with respect to
its extents. If u1 = 1/2 in the local system, then it should result in
x1 = (1/2)min1 + (1/2)max1 in the global system. To achieve this,
we equate the following ratios:

u1 − 0
1 − 0

=
x1 − min1

max1 − min1
(3.3)

u2 − 0
1 − 0

=
x2 − min2

max2 − min2
. (3.4)
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Thus, the corresponding formulas for x1 and x2 are quite simple:

x1 = (1 − u1)min1 + u1max1, (3.5)
x2 = (1 − u2)min2 + u2max2. (3.6)

We say that the coordinates (u1, u2) are mapped to the coordinates
(x1, x2). Let’s check this for the corners that define the extents. For
(u1, u2) = (0, 0) we map to

x1 = (1 − 0) · min1 + 0 · max1 = min1,

x2 = (1 − 0) · min2 + 0 · max2 = min2.

Similarly, the coordinates (u1, u2) = (1, 1) in the local system must
go to the coordinates (x1, x2) = (max1,max2) in the global system.
We obtain

x1 = (1 − 1) · min1 + 1 · max1 = max1,

x2 = (1 − 1) · min2 + 1 · max2 = max2.

A different way of writing (3.5) and (3.6) is as follows: Define
Δ1 = max1 − min1 and Δ2 = max2 − min2. Now we have

x1 = min1 + u1Δ1, (3.7)
x2 = min2 + u2Δ2. (3.8)

A note of caution: if the target box is not a square, then the
object from the local system will be distorted. We see this in two of
the four bees on the right side of Figure 3.8. In general, if Δ1 > 1,
then the object will be stretched in the e1-direction, and if 0 <
Δ1 < 1 it will be shrunk. The case of max1 smaller than min1 is
not often encountered: it would result in a reversal of the object in
the e1-direction. The same applies, of course, to the e2-direction.
This change of shape of the object is characterized by the aspect
ratio, which is the ratio of the width to the height, or Δ1/Δ2 for the
target box. The aspect ratio in the local system is one.

We experience this “unit square to target box” mapping when-
ever we use a computer. Suppose we open a window to view an im-
age. The image is stored in a local coordinate system; if it is stored
with extents (0, 0) and (1, 1), then it utilizes normalized coordinates.
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The target box is now given by the extents of the window, which
are given in terms of screen coordinates and the image is mapped
to it by using relationships (3.5) and (3.6). Screen coordinates are
typically given in terms of pixels.3

How about the inverse problem: given coordinates (x1, x2) in the
global system, what are its local (u1, u2) coordinates? The answer is
relatively easy: compute u1 from (3.7), and u2 from (3.8), resulting
in

u1 =
x1 − min1

Δ1
, (3.9)

u2 =
x2 − min2

Δ2
. (3.10)

It isn’t necessary for the local minmax box to be a unit square.
Simply modify (3.3) and (3.4) to reflect the desired ratios, and then
reformulate (3.7) and (3.8).

This section has concentrated on 2D; however, 3D works just the
same! We simply apply the same technique to the z-coordinate as
well.

The mapping (scale and translation) from local to global coor-
dinates is a special case of an affine map. An affine map is a com-
bination of a linear map (e.g., scale or rotation) and a translation.
Linear maps are investigated in more detail in Section 4.3. Affine
maps allow us to rotate and move the bee, as illustrated in Figure 3.9.

Figure 3.9. The bee design in a local coordinate system (left) and placement of
several bees in general global coordinate systems (right).

3The term pixel is short for “picture element.”
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3.5 Homogeneous Coordinates

Most 2D and 3D geometry concepts are based on affine geometry.
The maps ruling this kind of geometry, the affine maps, map parallel
lines to parallel lines. This may sound appealing, but not all maps
that we encounter are of this nature. A standard example is provided
by looking at physical structures containing parallel lines (such as a
straight railroad track). These lines do not appear parallel, however,
when looking at the structure! This is due to the fact that our visual
perception is based on 3D-to-2D perspective projections—and they
do not behave like affine maps. We use projective geometry when
dealing with this kind of phenomenon.

Let’s consider Figure 3.10. The 3D point x is projected into the
plane z = 1 by a ray through the origin—think of your as eye being
at the origin and projecting into an image plane represented by the
z = 1 plane. The projected point is y; some simple math shows that

x =

⎡
⎣x

y
z

⎤
⎦ −→

⎡
⎣x/z

y/z
1

⎤
⎦ = y.

Not just x is projected to y, however—any multiple αx projects
to y as well. For this reason, we say that the 2D point y4 is

x

y

αx

z=1

Figure 3.10. Geometry of homogeneous coordinates.

4This point does have a third coordinate, but this can easily be omitted.
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represented by any point of the form αx. The collection of points
αx are the homogeneous coordinates of y.

Using homogeneous coordinates simplifies many geometric com-
putations. An extension leads to the concept of a Clifford algebra,
an emerging field in computing and visualization.

3.6 Problems and Experiments

1. Given a 2D point p, how does one find its polar coordinates?

2. Describe (in terms of spherical coordinates) how to find the
shortest path between two locations.

3. An experiment with polar coordinates: Go to Google Earth.
Find the North Pole and zoom in. You will see strange things
happening.5 Explain.

4. What type of projection does your favorite map application,
such as Google Maps, use?

5. What is the aspect ratio a of a rectangle with a lower-left
corner of [1, 2]T and an upper-right corner of [7, 4]T?6 Sketch
this rectangle and a rectangle with aspect ratio 1/a.

6. Suppose you are computing with homogeneous coordinates.
(An application will be described in Chapter 16.) What hap-
pens if a point [a, b, 0]T is the result of a computation? What
would be a good course of action?

5This is as of the time of writing this book: Fall 2007.
6The superscript T indicates the transpose of the matrix, in which the rows

are now columns, so [1, 2]T =

[
1
2

]
. This notation is used commonly to save space

in the text.
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Background: Numerical
Linear Algebra

A matrix is a rectangular array of numbers. Matrices appear as the
following.

• Digital images. A computer screen consists of an array of pixels
(about 1000 × 1000); each pixel is assigned a color.

• The Google matrix. The information about which webpage
points to which other webpage is stored in a matrix of size 10
billion × 10 billion.

• Transformation matrices. The information about a 3D object’s
orientation is stored in a 3 × 3 matrix.

Matrices are important tools in scientific computing. They are
dealt with in linear algebra; next, we give a brief review.

4.1 Linear Spaces and Vectors

First, we review the basic concepts of linear algebra. The most basic
concept is that of a linear space, meaning a set in which certain
simple (linear) operations are defined. A simple example is given by
all 2D vectors. We denote vectors by boldface characters, such as u

27
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u

v

u+2v

u

v

0.5u+0.5v

Figure 4.1. Linear combinations for 2D vectors.

or v. Two-dimensional vectors have two components:1

u =
[
u1

u2

]
, v =

[
v1

v2

]
.

The basic operation defined for vectors is the linear combination:
given two vectors u and v, we may combine them to obtain a third
vector w:

w = su + tv, (4.1)

where s and t are some real numbers. The vector w is computed
component by component:[

w1

w2

]
=
[
s · u1 + t · v1

s · u2 + t · v2

]
.

Two examples of linear combinations are shown in Figure 4.1.
An important vector for the special case in which s = t = 0 is

the zero vector, denoted by a boldface zero, 0, which has zeroes for
both components.

A 2D linear space exhibits the basic properties of all linear spaces:
a linear space is a set in which any two elements can be linearly
combined and the result is again in the space. Examples of linear
spaces:

• The set of all digital images of the same size.

• The set of all differentiable functions.
1In the 2D case, we sometimes refer to these components as the x-component

and the y-component.
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• The set of all quadrilaterals in the plane.

It may be illuminating to consider an example that is not a linear
space. Take the set of all 2D vectors u = [u1, u2] in which u1 ≥ 0.
This is not a linear space. As an example, we take

u =
[
1
0

]
and v =

[
0
1

]
.

Now, picking s = −1 and t = 1 gives

w =
[
−1
1

]
,

which has a negative first component and hence is not in the space.

4.2 Linear Independence and Subspaces

We also consider vectors with more than two components; they are
given by

u =

⎡
⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎦ .

All vectors of this form then constitute a linear space in which the
basic linear operation is again given by (4.1), except that now it is
involves n equations, not just two. The number n is referred to as
the dimension of the space, and the space itself is denoted by R

n.
There is more to be said about the concept of a dimension. It is

closely linked to another basic concept, that of linear independence.
Let’s start with the 3D case, and consider three vectors,

u =

⎡
⎣1

1
1

⎤
⎦ , v =

⎡
⎣0

1
0

⎤
⎦ , w =

⎡
⎣2

1
2

⎤
⎦ ,

for which w = 2u−v. Thus, there exists a linear relationship among
the vectors u,v,w. We call such vectors linearly dependent.
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Now, let’s consider three other vectors,

u =

⎡
⎣1

0
0

⎤
⎦ , v =

⎡
⎣0

1
0

⎤
⎦ , w =

⎡
⎣0

0
1

⎤
⎦ .

It should be clear that we cannot write w as a linear combination of
u and v simply by looking at the third components. We define a set
of vectors as linearly independent if no linear relation exists among
them. Stated differently: in a set of linearly independent vectors, no
vector can be written as a linear combination of the remaining ones.
How do we know whether a given set of vectors is linearly dependent
or independent? This question is dealt with in the context of linear
systems in Chapter 5.

The dimension of a linear space is defined as the largest number
of linearly independent vectors in it. This sounds abstract, but an
example clarifies the definition: the dimension of R

2 is 2, just as the
name suggests. Why? Consider the two linearly independent vectors

u =
[
1
0

]
, v =

[
0
1

]
.

Any vector w may be linearly expressed in terms of these two:

w =
[
w1

w2

]
= w1u + w2v.

Thus, although the two vectors u,v are linearly independent, vectors
u,v,w are linearly dependent.

This works for higher dimensions as well. The vectors⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
...
0

⎤
⎥⎥⎥⎥⎥⎦ , · · · ,

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤
⎥⎥⎥⎥⎥⎦

form an independent set in R
n.

If a linear space has dimension n and we have a set of n linearly
independent vectors, then this set is referred to as a basis of the
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space. The reason for this term is that every element of the space can
be expressed uniquely as a linear combination of the basis vectors.
Finding that linear combination leads to linear systems of equations,
which will be covered in Chapter 5.

To prepare for the next topic, consider the two linearly indepen-
dent vectors

u =

⎡
⎣0

1
0

⎤
⎦ and v =

⎡
⎣1

0
0

⎤
⎦ .

They do not form a basis of R
3, since, for example,

w =

⎡
⎣00
1

⎤
⎦

cannot be expressed as a linear combination of u and v. However,
they do generate a linear space: the set of all vectors r of the form

r = s · u + t · v (4.2)

has the required linear structure. Combining two vectors of the form
(4.2), after some regrouping, again yields a linear combination of u
and v.

In general, assume we have a set of m linearly independent vec-
tors u1,u2, . . . ,um in a linear space S of dimension n. Then all
linear combinations that can be formed by the vectors ui form a
linear space U of dimension m. It is called a subspace of S, and U is
spanned by the ui.

4.3 Linear Maps and Matrices

Finally, we need the concept of a linear map. We start with an
example. In R

2, let’s stretch every vector u by a factor of 2 in the
x-direction, and by a factor of 0.5 in the y-direction, obtaining image
vectors u′. We describe this operation—a linear map—as follows:[

u′
1

u′
2

]
=
[

2u1

0.5u2

]
.
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If we give the linear map a name, say A, then we can write

u′ = Au. (4.3)

Just as vectors may have components or coordinates, map A
may be given coordinates. It can then be written in matrix form. A
matrix is a rectangular array A of real numbers ai,j. Relation (4.3)
involves the multiplication of a matrix A and a vector u, which is
defined as

A · u =
[
a1,1 a1,2

a2,1 a2,2

] [
u1

u2

]
=
[
a1,1u1 + a1,2u2

a2,1u1 + a2,2u2

]
.

For our specific scaling example, we have

A · u =
[
2 0
0 0.5

] [
u1

u2

]
=
[

2u1

0.5u2

]
.

Reflections may be obtained by scaling with negative factors. Lin-
ear maps can do more than just scale, however. Other linear maps
involve rotations and shears. An example of a shear is given by

A · u =
[
1 1
0 1

] [
u1

u2

]
=
[
u1 + u2

u2

]
.

Its action is shown in Figure 4.2.
In general, linear maps take the form v = Au, where v ∈ R

m,
u ∈ R

n, and A is a matrix with m rows and n columns. The ith
element of v, vi, is

vi = ai,1u1 + ai,2u2 + . . . + ai,nun; i = 1, . . . ,m. (4.4)

The ith element of v is obtained by using all elements of u, but
only the ith row of A. Expressions of the form (4.4) are called dot
products. Thus, vi is the dot product of A’s ith row with u.

SCIVIZ SCIVIZ
Figure 4.2. A shear applied to the left text yields the slanted text on the right.
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u

v

0.5u+0.5v

Au

Av

0.5Au+0.5Av

Figure 4.3. Three vectors (left) and their images under a linear map (right).

For example, a map from R
3 to R

2 might be

[
1 0 −1
1 2 1

]⎡⎣ 1
−1

0

⎤
⎦ =

[
1

−1

]
.

For any matrix A and vectors u, v, we have the relation

A(su + tv) = sAu + tAv. (4.5)

This linearity property is extremely important: it states that linear
maps preserve linear relationships. For example, the average 0.5u +
0.5v will be mapped to the average of Au and Av, as shown in
Figure 4.3.

Other, so-called nonlinear maps, do not enjoy the linearity prop-
erty. For example, let’s take the map[

u1

u2

]
→
[
u1

u2
2

]
.

Then

u1 =
[
1
2

]
→
[
1
4

]
and u2 =

[
2
4

]
→
[

2
16

]
but the average of u1 and u2: [

1.5
3

]

is not mapped to the average of the images, which is given by[
1.5
10

]
.

Instead it is mapped to [1.5, 9]T.
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Matrices have another linearity property. Suppose we map u to
Au and also to Bu. We add the matrices element by element, thus
obtaining a matrix A + B. Then

[A + B]u = Au + Bu.

Similarly, we may multiply A by a scalar s, obtaining sA, by multi-
plying every element of A by s.

An important special matrix is the identity matrix, typically de-
noted by I. Its diagonal elements (those having two identical sub-
scripts) are 1, and all of the other elements are 0. The 3× 3 identity
matrix is

I =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

The reason for the term “identity” is simple: for every vector u,
Iu = u.

Further, actions of linear maps may be combined. Let

v = Au and w = Bv.

Then
w = B · A · u

and the matrix product C = BA is defined as follows. Each element
ci,j is defined as the dot product of the ith row of B and the jth
column of A. For that to work, B needs to have as many columns as
A has rows. Figure 4.4 shows an easy way to arrange the matrices for
hand computation. An equation for ci,j thus has exactly the same
structure as (4.4):

ci,j = bi,1a1,j + bi,2a2,j + . . . + bi,nan,j.

Let’s look at a numerical example:

[
1 0 −1
1 2 1

]⎡⎣ 1 2
2 −3

−1 1

⎤
⎦ =

[
2 1
4 −3

]
.
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B

A

C

n

n

i

j

Figure 4.4. Matrix multiplication.

The product of two matrices may be written as the sum of very
simple matrices. Let br be the rth column of B and let aT

r the rth
row of A. Then,

BA = b1aT
1 + . . . + bnaT

n . (4.6)

For the preceding example, we have

BA =
[
2 1
4 −3

]
=
[
1
1

] [
1 2
]
+
[
0
2

] [
2 −3

]
+
[
−1

1

] [
−1 1

]
=
[
1 2
1 2

]
+
[
0 0
4 −6

]
+
[

1 −1
−1 1

]
=
[
2 1
4 −3

]
.

Each of the matrices biaT
i is called a dyadic matrix. This unusual

way of writing matrix multiplication will be used for a method called
principal components analysis (PCA) in Section 6.9.

When multiplying matrices, order matters. That is to say, in
general

AB �= BA.

In the above example, the matrix dimensions would not match if we
switched the order, but even if they match, order does matter.

We next discuss the concept of the rank of a matrix. Instead
of striving for full generality, we will restrict ourselves to square
matrices, mapping R

n to R
n. Let u1, . . . ,un be a set of n linearly

independent vectors. Let their images under some linear map A
be Au1, . . . , Aun. These image vectors span a subspace of R

n. The
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dimension of this subspace is called the rank of the matrix. The rank
can be computed by using methods from Chapter 5. The matrix has
full rank if the subspace is again all of R

n.
Let A be a full rank square matrix. The image of a vector u

is Au. We want a map that takes us back from Au to u. Such a
map B is defined by BAu = u. For example, a 2D rotation matrix,
rotating by α degrees, is given by

A =
[
cos α − sin α
sin α cos α

]
.

Then matrix B would be a matrix that rotates by −α degrees:

B =
[

cos α sinα
− sin α cos α

]
.

Thus, for any u, BAu = u. We can also verify that BA = I.
In general, the matrix that “undoes” the action of a matrix A is

called A’s inverse and denoted by A−1. Clearly,

A−1A = I. (4.7)

Further, we have the obvious identity

A−1−1 = A

and the not-so-obvious identity

(AB)−1 = B−1A−1.

The computation of the inverse is discussed in Chapter 5. It is
important to note here that not all square matrices have an inverse:
this is true only if they are of full rank. Non-full-rank matrices are
called singular. They can map different vectors to the same image
vectors as the following example illustrates. Let

A =

⎡
⎣1 2 3

2 4 6
3 6 9

⎤
⎦
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be a 3× 3 matrix of rank one. (Observe that the last row is the sum
of the first and second rows and the second row is a multiple of the
first one.) We can map two different vectors using A:⎡

⎣1 2 3
2 4 6
3 6 9

⎤
⎦
⎡
⎣−4

2
2

⎤
⎦ =

⎡
⎣ 6

12
18

⎤
⎦ and

⎡
⎣1 2 3

2 4 6
3 6 9

⎤
⎦
⎡
⎣03
0

⎤
⎦ =

⎡
⎣ 6
12
18

⎤
⎦ .

Two different vectors, same result! Clearly, one cannot say that
[6, 12, 18]T is the image of one vector. Hence, A is singular.

4.4 Lengths and Volumes

What is the length of a vector? In 2D, this is simple: a vector u
with components u1 and u2 has length

√
u2

1 + u2
2. We denote this

length by ‖u‖. In general, an n-dimensional vector u has length

‖u‖ =
√

u2
1 + . . . + u2

n.

The term under the square root may be written more elegantly. We
can use the dot product of uT and u to find the length:

‖u‖ =
√

uTu.

A vector is called a unit vector if ‖u‖ = 1. In R
n, all unit vectors

form the n-dimensional unit sphere.
As mentioned previously, the general definition of a dot product

involves two vectors u and v and is defined as

u · v = u1v1 + . . . + unvn. (4.8)

Dot products (also called scalar products) are important because
they describe the geometry of the two vectors. Two vectors (in any
dimension) form an angle. The cosine of this angle is computed by
using the dot product u · v:

cos(u,v) =
u · v

‖u‖‖v‖ . (4.9)

Since two perpendicular vectors enclose an angle of 90o (or π/2),
we have a simple condition: two vectors u,v are perpendicular if
u · v = 0.
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For example, let

u =
[
1
3

]
and v =

[
−6

2

]
.

Check for yourself that u · v = 0 and sketch the vectors!
Perpendicular vectors turn out to have many desirable properties.

Generally speaking, they make computations more stable.
Let us consider n unit vectors u1, . . . ,un in R

n. They are mu-
tually orthogonal if any two distinct ones are orthogonal (which is
another word for perpendicular):

ui · uj =

{
1 if i = j,

0 if i �= j.
(4.10)

Many times, this is abbreviated to

ui · vj = δi,j,

where δi,j is the Kronecker delta.
We recall that for a matrix A, the transpose is denoted by AT;

its elements a′i,j are defined by

a′i,j = aj,i,

or row i of AT is column i of A. We immediately have

ATT
= A.

Now we let U be the matrix whose columns are n unit vectors
u1, . . . ,un. If the ui are mutually orthogonal, then U is called or-
thonormal. Its defining property is

UTU = I. (4.11)

Notice that this equation is just a matrix formulation of (4.10). Be-
cause of (4.7), we also have

U−1 = UT. (4.12)

The most obvious example of an orthonormal matrix is the iden-
tity matrix I. Another example is given by 2D rotation matrices.
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Whereas the inverse of a general matrix is not easy to compute, it
is highly trivial for orthonormal matrices!

There is another type of matrix for which we can compute the
inverse without any problem. That is the diagonal matrix D, which
is given by

D =

⎡
⎢⎢⎢⎣
d1 0 · · · 0
0 d2
...

. . .
0 dn

⎤
⎥⎥⎥⎦ . (4.13)

It has (nonzero) entries only on the diagonal and zero entries every-
where else. Its inverse is

D−1 =

⎡
⎢⎢⎢⎣

1/d1 0 · · · 0
0 1/d2
...

. . .
0 1/dn

⎤
⎥⎥⎥⎦ , (4.14)

and we see that DD−1 = I.
Let us now turn to the volume formed by a set of vectors. As

an example, the two unit vectors [1, 0]T, [0, 1]T form a square whose
area (or 2D volume) is 1. We generalize this to say that the volume
generated by all column vectors of I (for an arbitrary dimension n)
is 1.

If we scaled the above 2D vectors so they become [r, 0]T, [0, s]T,
then they form a rectangle with area r · s. Again, we generalize to
R

n and consider the volume generated by the column vectors of the
diagonal matrix D in (4.13). It is given by d1 ·d2 · . . . ·dn. We denote
this volume by |D|:

|D| = d1 · d2 · . . . · dn.

The volume |D| is also referred to as the determinant of D, or det(D).
If U is an orthonormal matrix, then its column vectors can be

mapped to those of I by a rotation. Since rotations do not change
volumes, we have |U | = 1.

If a matrix A is singular, then |A| = 0. A simple example is a
diagonal matrix of the form (4.13) where one of the di is zero.

For a general square matrix A, the computation of |A| will be
discussed in Sections 5.3 and 6.6.
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4.5 Summary of Matrix Rules

For the following rules, it is expected that the involved matrices have
compatible formats.

Commutative law for addition A + B = B + A

No commutative law for multiplication AB �= BA

Distributive laws A(B + C) = AB + AC

(B + C)A = BA + CA

Rules for transpose matrices (A + B)T = AT + BT

(AB)T = BTAT

A−1T = AT−1

Rules for inverse matrices: (AB)−1 = B−1A−1

(A + B)−1 �= A−1 + B−1

4.6 Problems and Experiments

1. In Section 4.1 we stated that the set of all digital images of
the same size form a linear space. In order for this set to
be a linear space, it needs to be equipped with the concept
of linear combinations. Provide an appropriate definition of
linear combinations.

2. Let a square matrix be populated by random real numbers.
What is its chance of being singular? (Before considering a
general discussion, concentrate on the 2 × 2 case.)

3. Find two 2 × 2 matrices A and B for which AB �= BA.

4. Equation (4.6) makes use of dyadic matrices. What is the rank
of a dyadic matrix?
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Solving Linear Systems

This chapter introduces basic methods for solving a linear system of
equations. Gauss elimination is the most fundamental method; how-
ever, it is not appropriate for all problems. Iterative methods, such
as Gauss-Jacobi and Gauss-Seidel, are introduced as well. Stability
and convergence concepts are an important part of these iterative
methods. If more information (data points) for a problem is given
than is needed for a solution, this leads to an overdetermined sys-
tem of equations. Many solutions are possible; an optimal solution,
called least squares, is described here. Three case studies motivate
the ideas in this chapter.

5.1 Case Study: Mixing Chemicals

A chemist has, from a past experiment, three containers, each con-
taining a mixture of three substances A, B, and C. For concreteness,
let’s assume the following amounts:

Container 1 Container 2 Container 3
A 40 g 40 g 70 g
B 30 g 80 g 60 g
C 60 g 10 g 30 g

The chemist wants to obtain another mixture by properly com-
bining parts of the contents of each container. She wants this new

41
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42 5. Solving Linear Systems

mixture to consist of 50 grams each of A, B, and C. The question
thus is, what fractions f1, f2, f3 does she need to take from each con-
tainer? By writing this down in the form of a system of equations,
we get:

40f1 + 40f2 + 70f3 = 50,
30f1 + 80f2 + 60f3 = 50,
60f1 + 10f2 + 30f3 = 50.

These are three equations for three unknowns, f1, f2, f3. In ma-
trix form, they become⎡

⎢⎣
40 40 70
30 80 60
60 10 30

⎤
⎥⎦
⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ =

⎡
⎢⎣
50
50
50

⎤
⎥⎦

By using a software package, we can quickly solve this for the
required fractions: ⎡

⎢⎣
f1

f2

f3

⎤
⎥⎦ =

⎡
⎢⎣
0.70
0.22
0.19

⎤
⎥⎦ ,

meaning we take 70% of the contents of container 1, 22% of container
2, and 19% of container 3.

5.2 Linear System Basics

A linear system of equations for unknowns u1, . . . , un is given by⎡
⎢⎢⎣

a1,1 · · · a1,n

...
...

an,1 · · · an,n

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u1

...
un

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b1

...
bn

⎤
⎥⎥⎦ . (5.1)

If convenient, it may be abbreviated to

Au = b.

If a solution u exists (which is not always the case), it may be
written as

u = A−1b,
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with A−1 being A’s inverse. However, computing the inverse (using
some package) as a means for solving a linear system is highly inef-
ficient, which does not matter for 3 × 3 linear systems, but it does
for 30, 000× 30, 000 ones! The methods below are far more efficient.

If you took an elementary linear algebra class, you probably saw
a method, known as Cramer’s rule, for explicitly writing down the
solution. We will not discuss this method here—although it has
theoretical value, it is horribly inefficient for practical computing.

5.3 Gauss Elimination

The oldest systematic method for solving a linear system goes back
to C. F. Gauss, who developed the following tool for finding the
exact location of a newly discovered comet. The main “trick” is to
cleverly multiply equations by factors and to then add them to each
other. For example, of the two equations

2u1 − 2u2 = 10,
6u1 + 4u2 = 10,

we may multiply both the left- and right-hand sides of the first one
by −3 and then add the result to the second one (remembering that
this is a valid operation for handling equations):

2u1 − 2u2 = 10
10u2 = −20.

This linear system is equivalent to the first one, but now the second
equation does not contain a u1-term anymore, and we readily find
u2 = −2. Inserting this value into the original first equation gives
u1 = 3.

In matrix notation, we transformed the system[
2 −2
6 4

][
u1

u2

]
=

[
10
10

]

into the equivalent one[
2 −2
0 10

][
u1

u2

]
=

[
10

−20

]
.
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In general, Gauss elimination transforms a given linear system
into an equivalent one that can easily be solved, starting from the
last unknown. We schematically show the transformation process for
a 4 × 4 system—stars stand for entries that are nonzero in general:⎡
⎢⎢⎢⎢⎣
� � � �

� � � �

� � � �

� � � �

⎤
⎥⎥⎥⎥⎦⇒

⎡
⎢⎢⎢⎢⎣

� � � �

0 � � �

0 � � �

0 � � �

⎤
⎥⎥⎥⎥⎦⇒

⎡
⎢⎢⎢⎢⎣
� � � �

0 � � �

0 0 � �

0 0 � �

⎤
⎥⎥⎥⎥⎦⇒

⎡
⎢⎢⎢⎢⎣

� � � �

0 � � �

0 0 � �

0 0 0 �

⎤
⎥⎥⎥⎥⎦ .

In actual implementations, care must be taken not to have zero
entries on the diagonal—this would corrupt the process!1 If we can-
not avoid ending up with a bottom diagonal element equal to zero,
then the system has no solution. This is demonstrated in the follow-
ing example.

The system ⎡
⎢⎣
2 −2 0
6 4 −1
8 2 −1

⎤
⎥⎦
⎡
⎢⎣
u1

u2

u3

⎤
⎥⎦ =

⎡
⎢⎣

10
10

−10

⎤
⎥⎦

is transformed (by multiplying row 1 by −3 and adding the result
to row 2; then by multiplying row 1 by −4 and adding the result to
row 3) to ⎡

⎢⎣
2 −2 0
0 10 −1
0 10 −1

⎤
⎥⎦
⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦ =

⎡
⎢⎣

10
−20
−50

⎤
⎥⎦ .

Without performing the last elimination step, we can see that the
last two equations contradict each other—there is no solution to this
linear system.

Gauss elimination transforms a linear system Au = b into an
equivalent one

Tu = c

in which T is an upper triangular matrix. The linear system has a
solution if the bottom right element tn,n of T is not zero.

1The process of avoiding this is called pivoting and involves interchanging
columns of the coefficient matrix.
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The product
|A| = t1,1 · t2,2 . . . · tn,n

is known as A’s determinant. Hence a linear system has a solution
only if |A| �= 0.

If |A| is small (10−10, say), then the solution to the linear system
is likely to be afflicted by numerical error. See Section 6.6 on a
method called singular value decomposition (SVD) for more details.

5.4 Stability

Consider the linear system⎡
⎢⎣
0.8 0.1 0.1
0.7 0.24 0.06
0.6 0.4 0

⎤
⎥⎦
⎡
⎢⎣
u1

u2

u3

⎤
⎥⎦ =

⎡
⎢⎣

9.49
8.856
8.16

⎤
⎥⎦ , (5.2)

which has the solution

u =

⎡
⎢⎣

10.2
5.1
8.2

⎤
⎥⎦ .

Now consider the linear system
⎡
⎢⎣
0.8 0.1 0.1
0.7 0.24 0.06
0.6 0.4 0

⎤
⎥⎦
⎡
⎢⎣
u1

u2

u3

⎤
⎥⎦ =

⎡
⎢⎣

9.69
8.856
8.16

⎤
⎥⎦ , (5.3)

which has the solution

u =

⎡
⎢⎣

12.6
1.5

−5.4

⎤
⎥⎦ .

We need to look a little closer to see why there is a surprise here.
The two linear systems are almost identical—the only difference is a
change by 2% in the first entry of the right-hand side of the second
system. But surprisingly, the resulting solution is not even close to
the original one!
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We observe that a tiny change to the input data (the right-hand
side) to a linear system may result in drastic changes in the solution.
Such problems are called unstable or ill-conditioned.

The reason for such behavior will be discussed in Section 6.6 on
SVD; it is related to the so-called condition number of a matrix. The
lesson to be learned from this is that blindly using a linear system
solver may lead to unreliable results.

Unstable behavior of a problem has nothing to do with the per-
formance of a particular algorithm for its solution. No matter what
algorithm we pick, slight changes, such as roundoff, to input data
may result in large changes to output data.

5.5 Vector Norms and Sequences

We are all familiar with sequences of real numbers such as

1,
1
2
,
1
4
,
1
8
, . . .

or
1, 2, 4, 8, . . . .

The first of these has the limit 0, whereas the second one does not
have a limit. One way of saying a sequence of real numbers ai has a
limit a is that beyond some index i, all ai differ from the limit a by
an arbitrarily small amount ε.

Vector sequences
v(0),v(1),v(2), . . .

are not all that different. Here we say the sequence has a limit v if
from some index i on, the distance of any v(i) from v is smaller than
an arbitrarily small amount ε. By “distance” of two vectors, we are
referring to the usual Euclidean norm: if w = v(i+1) −v(i), then the
length or magnitude of w is given by

‖w‖ =
√

w · w.

Figure 5.1 presents an example. The Euclidean norm is also
known as the L2 norm, and sometimes it is written as ‖w‖2.
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v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

v ( 0 )

v ( 1 )

Figure 5.1. Vector sequences: a sequence that converges.

Different measures for vectors exist; for example, the Manhattan
norm or L1 norm is

‖w‖1 = |w1| + . . . + |wn|.

We could define other norms as well; (nonnegative) vector norms
must satisfy the following criteria:

• ‖w‖ > 0 when w �= 0,

• ‖w‖ = 0 when w = 0,

• ‖cw‖ = |c|‖w‖ for any scalar c,

• ‖v + w‖ ≤ ‖v‖ + ‖w‖ (known as the triangle inequality).

For our purposes, the Euclidean norm will do, so unless otherwise
noted, this the norm of choice and the 2 subscript will be omitted.

Let’s take a vector sequence given by

v(i) =

⎡
⎢⎣

1/i
1/i2

1/i3

⎤
⎥⎦ .

This sequence has the limit

v =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ .
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Now we take the sequence

v(i) =

⎡
⎢⎣

i

1/i2

1/i3

⎤
⎥⎦ .

It does not have a limit: even though the last two components each
have a limit, the first component diverges.

5.6 Iterative System Solvers

In applications such as finite element methods (FEMs) in the context
of the solution of fluid flow problems, scientists are faced with linear
systems with many thousands of equations. Gauss elimination would
work, but would be far too slow. Typically, huge linear systems
have one advantage: the coefficient matrix is sparse, meaning it has
only a few (such as ten) nonzero entries per row. Thus a 100,000 ×
100,000 system would only have 1,000,000 nonzero entries, compared
to 10,000,000,000 matrix elements! In these cases, one does not
store the whole matrix, but only its nonzero entries, together with
their i, j locations. Sections 5.7 and 11.6 give instances in which
sparse matrices naturally arise in the solution of partial differential
equations. The solution to such systems is typically obtained by
iterative methods, which we discuss next.

We start with a simple (nonsparse) example. Let the system2 be
given by ⎡

⎢⎣
4 1 0
2 5 1

−1 2 4

⎤
⎥⎦
⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦ =

⎡
⎢⎣

1
0
3

⎤
⎥⎦ .

By using an iterative method, we start from a guess for the solution
and then refine it until we find the solution. Let’s take

u(1) =

⎡
⎢⎣

u
(1)
1

u
(1)
2

u
(1)
3

⎤
⎥⎦ =

⎡
⎢⎣

1
1
1

⎤
⎥⎦

2This example is taken from Johnson and Riess [10].
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for our first guess. We note that it clearly is not the solution to our
system: Au(1) �= b.

A better guess ought to be obtained by using the current guess
and solving the first equation for a new u

(2)
1 , the second for a new

u
(2)
2 , and so on. This gives us

4u(2)
1 + 1 = 1,

2 + 5u(2)
2 + 1 = 0,

−1 + 2 + 4u(2)
3 = 3,

and thus

u(2) =

⎡
⎢⎣

0
−0.6

0.5

⎤
⎥⎦ .

The next iteration becomes

4u(3)
1 − 0.6 = 1,

5u(3)
2 + 0.5 = 0,

−1.2 + 4u(3)
3 = 3,

and thus

u(3) =

⎡
⎢⎣

0.4
−0.1
1.05

⎤
⎥⎦ .

After a few more iterations, we will be close enough to the true
solution

u =

⎡
⎢⎣

0.333
−0.333

1.0

⎤
⎥⎦ .

Try one more iteration for yourself.
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This iterative method is known as the Gauss-Jacobi iteration. In
the general case, we are given a linear system with n equations and
n unknowns ui; i = 1, . . . , n, written in matrix form as

Au = b.

Let us also assume that we have an initial guess u(1) for the solution
vector u.

We now define two matrices D and R as follows: D is the diagonal
matrix whose diagonal elements are those of A, and R is the matrix
obtained from A by setting all its diagonal elements to zero. Clearly
then,

A = D + R

and our linear system becomes

Du + Ru = b

or
u = D−1[b − Ru].

In the spirit of our previous development, we now write this as

u(k+1) = D−1[b − Ru(k)],

meaning that we attempt to compute a new estimate u(k+1) from
an existing one u(k). Note that D must not contain zeroes on the
diagonal; this can be achieved by row or column interchanges.

With this new framework, let us reconsider our last example. We
have

A =

⎡
⎢⎣

4 1 0
2 5 1
−1 2 4

⎤
⎥⎦ , R =

⎡
⎢⎣

0 1 0
2 0 1
−1 2 0

⎤
⎥⎦ , D−1 =

⎡
⎢⎣
0.25 0 0
0 0.2 0
0 0 0.25

⎤
⎥⎦ .

Then

u(2) =

⎡
⎢⎣
0.25 0 0
0 0.2 0
0 0 0.25

⎤
⎥⎦
⎛
⎜⎝
⎡
⎢⎣

1
0
3

⎤
⎥⎦−

⎡
⎢⎣

0 1 0
2 0 1

−1 2 0

⎤
⎥⎦
⎡
⎢⎣

1
1
1

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎣

0
−0.6

0.5

⎤
⎥⎦ .
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Will the Gauss-Jacobi method succeed? This is, will the sequence
of vectors u(k) converge? The answer is sometimes yes and sometimes
no. It will always succeed if A is diagonally dominant,3 and then
it will succeed no matter what our initial guess u(1) was. Many
practical problems result in diagonally dominant systems.

In a practical setting, how do we determine if convergence is
taking place? Ideally, we would like u(k) = u, the true solution,
after a number of iterations. Equality will most likely not happen,
but the length of the residual vector

‖Au(k) − b‖

should become small (i.e., less than some preset tolerance). Thus we
check the size of the residual vector after each iteration, and stop
once it is smaller than some preset tolerance.

A modification of the Gauss-Jacobi method is known as Gauss-
Seidel iteration. When we compute u(k+1) in the Gauss-Jacobi
method, we can observe the following: the second element, u

(k+1)
2 , is

computed by using u
(k)
1 , u

(k)
3 , . . . , u

(k)
n . We had just computed u

(k+1)
1 .

It stands to reason that using it instead of u
(k)
1 would be advanta-

geous. This idea gives rise to the Gauss-Seidel method: as soon
as a new element u

(k+1)
i is computed, the estimate vector u(k+1) is

updated.
In summary, the Gauss-Jacobi method updates the new estimate

vector once all of its elements are computed and Gauss-Seidel up-
dates as soon as a new element is computed. Typically, Gauss-Seidel
iteration converges faster than Gauss-Jacobi iteration.

5.7 Case Study: Fluid Flow

Before a submarine is built, its design is tested by a battery of com-
puter simulations. These include stability tests, depth range tests,
fuel efficiency tests, among others. Many of these simulations—from

3A matrix is diagonally dominant if for every row, the absolute value of its
diagonal element is larger than the sum of the absolute values of its remaining
elements.
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Figure 5.2. Grids for use in submarine fluid flow computation. (Courtesy of
R. Loehner, George Mason University.)

the field of computational fluid dynamics (CFD)—employ finite ele-
ment methods for solving the corresponding partial differential equa-
tions (PDEs). Figure 5.2 shows three meshes; each is a triangle
mesh (see Section 13.5 for more on triangle meshes).

Let xi be a vertex in the mesh, and let y1, . . . ,yN denote its N
neighbors (the points connected to xi). Modeling flow around the
submarine quickly leads to solving PDEs. Then equations of the
form

xi = α1y1 + . . . + αNyN

arise from discretizations4 of those PDEs. For each vertex xi, we
will thus have one equation, each involving six neighbors (on aver-
age). Given that the grid typically has several thousand vertices, this
means that each row of the resulting matrix has about six nonzero
entries and several thousand zero entries. Such matrices are called
sparse.

The sparse matrix M is stored by using a pointer system. If
matrix entry mi,j is nonzero, then this value will be stored together
with the integer pair i, j. Assuming around ten nonzero entries per
row, and a size of 10, 000 × 10, 000 for M , we have to store 10 ×
10, 000 = 105 reals and 2 × 105 integers. Compare to storing the
whole array with 108 reals!

4A discretization replaces a continuous model by one that is broken down into
many (discrete) pieces.
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5.8 Overdetermined Systems

If we want to determine the values of n parameters from some linear
model, then typically we try to obtain n data in order to solve a
linear system. Sometimes there are more data than unknowns—this
leads to overdetermined systems.

An overdetermined linear system has n equations in m unknowns,
where m > n. It looks like this:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,n

...
...

...
...

...
...

am,1 · · · am,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u1

...
un

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

...

...

...
bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.4)

This also has the matrix form

Au = b. (5.5)

However, A is not square. An overdetermined system, as the name
implies, will in general not have a solution. Yet an approximate
solution may be found as follows. If we multiply both sides of (5.5)
by A’s transpose, AT, we obtain

ATAu = ATb. (5.6)

The matrix ATA is square and typically also nonsingular. The linear
system (5.6) is known as the normal equations, which form a stan-
dard linear system that may be solved by Gauss elimination. The
exact solution u of this system is only an approximate solution to
the original system (5.5). It can be shown, though, that it is in fact
the best possible one with respect to the L2 norm; that is, ||Au−b||2
will be minimized, and this is called the least squares solution. We
revisit this topic in several sections of Chapter 8 on data fitting. A
different solution strategy is via SVD, as discussed in Section 6.8.
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Figure 5.3. A femoral head. (Courtesy of Biological and Life Sciences, University
of Glascow.)

5.9 Case Study: Femoral Head Reconstruction

Physical anthropologists studying human evolution have to work
with bones or bone fragments and determine their origin and func-
tionality. To determine whether parts of a skeleton belonged to a
bipedal specimen, calls for careful analysis of the pelvic bones, among
them the exact shape of the femoral head, which is the spherical bone
on top of the femur, as shown in Figure 5.3.

When working with bones, it is imperative that modern anthro-
pologists know the shape of the bones in an exact way. To this end,
they employ digitizers which produce a series of coordinates of points
on a bone.

In the case of a femur, an important question is how spherical it
is. Thus, let us say we have digitized5 n coordinate triples xi and
we want to find a best-fitting sphere. That sphere would have an
implicit equation of the form

x2 + y2 + z2 + bx + cy + dz + e = 0.

Ideally there are parameters b, c, d, e such that all xi satisfy this
equation. Then we would have the system

5With mechanical digitizers, n would range in the low hundreds, and for laser
digitizers, in the thousands.
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x2
1 + y2

1 + z2
1 + bx1 + cy1 + dz1 + e = 0

...

...
x2

n + y2
n + z2

n + bxn + cyn + dzn + e = 0.

The squared terms are nothing to worry about—they are all known.
In fact, if we move those terms over to the right-hand side, get

bx1 + cy1 + dz1 + e = −x2
1 − y2

1 − z2
1

...

...
bxn + cyn + dzn + e = −x2

n − y2
n − z2

n.

In matrix form:⎡
⎢⎢⎢⎢⎢⎣

x1 y1 z1 1
...

...
...

...
xn yn zn 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b

c

d

e

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−x2
1 − y2

1 − z2
1

...

...
−x2

n − y2
n − z2

n

⎤
⎥⎥⎥⎥⎥⎦

or, even shorter:
Xa = s.

We have an overdetermined linear system with n equations for
the unknowns b, c, d, e. It is readily solved by using the normal equa-
tion approach.

The parameters b, c, d, e fix a sphere. It is now trivial to compute
the sphere’s center c and radius r. Then we can easily determine how
well the xi fit the sphere by inspecting the deviations ‖xi − c‖2 − r2.

5.10 Problems and Experiments

1. Design an unstable 2 × 2 linear system in the sense of
Section 5.4.
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2. An n × n Hilbert matrix Hn is defined by its elements hi,j ,

hi,j =
1

i + j − 1
, 1 ≤ i, j ≤ n.

Using your favorite package, compute the determinants |Hn|
for n = 1, 20. (Based upon those numbers, you should be
worried about the idea of having to work with these matrices!)

3. A plane may be expressed as

ax + by + cz = d.

Suppose you are given three planes aix + biy + ciz = di; i =
1, 2, 3. Finding the intersection point of these planes leads to
solving a linear system. Discuss under what condition there
is no solution to this system. Some hints may be found in
Section 13.3.3.

4. Let aix = bi; i = 1, . . . , 100 be an overdetermined linear system
for just one unknown x. Find an explicit solution for x.



�

�

�

�

�

�

�

�

6

Eigen-Problems

This chapter introduces the world of eigenvalues and eigenvectors. In
German, the term eigen means characteristic or special. As we see in
this chapter, eigenvalues and eigenvectors reveal key characteristics
of the action of a square matrix. Eigen-analysis is very important
in science and engineering. For example, eigenvalues are related to
frequencies, and as an application, the stability of a bridge can be
predicted by an eigenvalue analysis of a system modeling it. Figure
6.1 illustrates the collapse of the Tacoma Narrows bridge in 1940 due
to wind-induced vibrations.

Several methods for computing solutions to eigen-problems are
introduced. The power method is a means for computing the largest

Figure 6.1. The collapse of the Tacoma Narrows bridge. (Courtesy of Doug
Smith, Carleton University.)

57
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58 6. Eigen-Problems

eigenvalue and its corresponding eigenvector. Jacobi iteration is a
means for computing all eigenvalues and eigenvectors. For nonsquare
matrices, a generalization of eigenvalues are singular values. The
singular value decomposition is a useful tool for analyzing matrices
and for solving linear systems. Many applications utilize the singular
value decomposition as part of a principal components analysis. This
type of analysis reduces a problem size by distilling a large set of
vectors down to a smaller, manageable set.

6.1 Eigenvalues

On the left of Figure 6.2 a star image appears with arrows; the ones
parallel to the coordinate axes are highlighted in gray. We then
applied the matrix

A =

[
2 0.5
0 1

]

to all arrows; the result is on the right of Figure 6.2.
Visual inspection shows that A maps horizontal vectors to hori-

zontal vectors, that is, to multiples of themselves. A matrix A having
a special vector u such that

Au = λu (6.1)

is said to have an eigenvector u. The scaling factor λ is called A’s
eigenvalue for u. Matrices of size n × n have up to n linearly inde-

Figure 6.2. All arrows on the left are mapped by a shear to the arrows on the
right. Only the two horizontal arrows are mapped to multiples of themselves.
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pendent eigenvectors. Not all matrices have eigenvectors however;
for example, a 2D rotation does not map any vector to itself nor to
a multiple of itself.

Eigenvalues are at the core of computing with matrices. In most
cases, scientists are confronted with eigenvalue problems for symmet-
ric matrices1 having the property AT = A. For these matrices, all
eigenvalues λi are real; for nonsymmetric matrices, eigenvalues may
be complex numbers (this will become clear in Section 6.5). Further-
more, all eigenvectors ui of a symmetric matrix are orthogonal. If
we normalize all ui and consider them as column vectors in a matrix
U , then U will be orthonormal: U−1 = UT.

For example, let

A =

[
2 1
1 2

]
.

Using a package such as Mathematica, we find two eigenvalues, λ1 =
3 and λ2 = 1, and eigenvectors u1 = [1,−1]T and u2 = [1, 1]T.
We form U by normalizing the eigenvectors and making them the
column vectors:

U =

[
0.707 0.707

−0.707 0.707

]
.

Defining a matrix Λ as2

Λ =

[
3 0
0 1

]
,

we see that
AU = UΛ, (6.2)

capturing all eigenvalue equations in one matrix equation.
Equation (6.2) holds not only for our example: it is the defining
equation for all eigenvalues and eigenvectors of symmetric matrices
for any dimension n. As a consequence, we also have

A = UΛUT. (6.3)

Here, you have to recall that U−1 = UT for orthonormal matrices.
1Symmetric matrices are formed in least squares problems, for instance. In

these situations, we are given more data than needed for a solution.
2Λ is the capital Greek letter “Lambda.”
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6.2 The Power Method

The definition of eigenvalues is easy—but how does one compute
them? In many cases, only the eigenvalue λ1 with the largest abso-
lute value (called the dominant eigenvalue) is desired (see
Section 6.3). The corresponding eigenvector is called the dominant
eigenvector. Both, the dominant eigenvalue and the dominant eigen-
vector, are found by using the power method.

Starting with an example, we reuse the matrix

A =

[
2 1
1 2

]
.

Let’s apply it repeatedly to the vector v(1) = [1, 2]T. We obtain the
vector sequence v(i) = Aiv:[

1
2

]
,

[
4
5

]
,

[
13
14

]
, . . . ,

[
29524
29525

]
,

[
88573
88574

]
, . . . .

If we take ratios of successive x-components, we obtain 4/1, 13/4,
. . . , 88573/29524, . . ., or in terms of real numbers: 4, 3.25, . . . , 3.0003,
. . .. Repeating for the y-components gives 2.5, 2.8, . . . , 2.99997, . . . .
Thus, for sufficiently large i, we have v(i) = 3v(i−1). You might
recall that A’s largest eigenvalue is 3.

To understand this better, recall that a symmetric matrix has
n orthonormal eigenvectors u1, . . . ,un and corresponding eigenval-
ues λ1, . . . λn. The ui form a basis for R

n, and any vector may be
expressed in terms of it. Let us express the vector v(1) in terms of
the ui:

v(1) = c1u1 + c2u2 + . . . + cnun.

The vector v(2) then is

v(2) = Av(1) = c1λ1u1 + c2λ2u2 + . . . + cnλnun.

If we repeat the process:

v(i) = Av(i−1) = c1λ
i−1
1 u1 + c2λ

i−1
2 u2 + . . . + cnλi−1

n un.

Since we assumed that λ1 is the largest eigenvalue (in absolute value),
the term c1λ

i−1
1 u1 will dominate the expression for v(i), thus essen-

tially making v(i) parallel to u1.
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Given: A symmetric n × n matrix A.
Wanted : A’s largest eigenvalue (in absolute value).

Step 1: Pick an arbitrary nonzero n-vector v(0).

Step 2: Create a sequence v(i) = Av(i−1).

Step 3: Once the ratios of analogous components converge to a
limit λ1, that limit is the desired eigenvalue.

Step 4: The final vector of the sequence should be normalized and
then this is the eigenvector corresponding to λ1.

Here, then, is the power method algorithm:
Figure 6.3 illustrates the sequence of normalized 2D vectors of

our example.

Figure 6.3. A converging sequence of unit vectors.

The speed of convergence depends on the size of the second
largest eigenvalue λ2. If λ2 were identical to λ1, the above conver-
gence argument would not work. If both eigenvalues were close, con-
vergence would be slow. Thus convergence is a function of |λ1|/|λ2|:
the larger this ratio, the speedier the convergence process.

6.3 Case Study: PageRank

The World Wide Web, at some frozen point in time, consists of N
webpages, many of them pointing to (having links to) other web-
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2

1

3

4

Figure 6.4. A micro-web.

pages.3 A page that is pointed to very often would be considered
important, whereas a page with very few other pages pointing to it
would be considered not important. How can we rank all webpages
according to how important they are? In the sequel, we assume that
all webpages are ordered in some fashion, such as lexicographic, so we
can assign a number i to every page. An example of a “micro-web”
is shown in Figure 6.4.

We may transcribe this graph into a connectivity matrix C:

C =

⎡
⎢⎢⎢⎢⎣

0 1 1 1
0 0 1 0
0 1 0 0
1 0 1 0

⎤
⎥⎥⎥⎥⎦ .

In this example, page 3 links to page 1, hence c1,3 = 1. Page 2 does
not link to page 4, hence c4,2 = 0.

The connectivity matrix is a concept that has been known since
before the World Wide Web. However, it was Google that for the
first time exploited its underlying structure to create PageRank, the
page ranking system that is the root of Google’s claim to fame.

Let lj be the total number of pages that page j links to. This
is the sum of all elements of the jth column of C. The more links
page j has, the lower will be its contribution to those pages. Thus,
we scale every element of column j by 1/lj . The resulting matrix D

3Currently, N = 30 billion.
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is given by
di,j =

ci,j

lj
.

Note that all columns of D have nonnegative entries and sum to
one. Matrices with that property are called stochastic.

In the example above, we get

D =

⎡
⎢⎢⎢⎢⎣

0 1/2 1/3 1
0 0 1/3 0
0 1/2 0 0
1 0 1/3 0

⎤
⎥⎥⎥⎥⎦ .

The ranking rj of page j thus depends on all pages linking to it.
Let’s call the set of those pages Lj.

rj =
∑
i∈Lj

ri

li
.

Using the vector r = [r1, . . . , rN ]T, we get

r = Dr. (6.4)

This states that we are looking for the eigenvector of D corresponding
to the eigenvalue 1. All stochastic matrices have 1 as their largest
eigenvalue. In order to find r, we employ the power method from
Section 6.2. This method needs an initial guess for r, and setting
all ri = 1 is not too bad for that. As the iterations converge, the
solution is found.

The vector r now contains the ranking—called PageRank by
Google—of every page. In our example, r = [0.71, 0, 0, 0.71]T , thus
pages 1 and 4 are ranked highest.

The actual Google computation is more involved than our out-
line, but it already shows how the page rank problem can be attacked
by using the power method.

6.4 Jacobi Iteration

The power method was useful for finding the largest eigenvalue and
the corresponding eigenvector. There are problems, however, that
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require all eigenvalues and eigenvectors; an example is the singular
value decomposition, addressed in Section 6.6. Here, we describe the
Jacobi method, which iteratively transforms the matrix such that the
diagonal elements converge to its eigenvalues and the off-diagonal
elements converge to zero.

Let us start with a 2 × 2 matrix A. From (6.2), we know that
A’s eigenvalues reside in the matrix Λ, which is given by

Λ = UTAU.

U is a rotation matrix and UT is the inverse rotation. If we knew
the rotation angle α, then we could simply build U from

[
cos α − sin α

sin α cos α

]
.

It turns out that α can be computed from

tan 2α =
2a1,2

a1,1 − a2,2
.

Let’s try this for our matrix

A =

[
2 1
1 2

]
.

We find tan 2α = 4/0 = ∞; hence α = 45◦. Then

U =

[
0.707 −0.707
0.707 −0.707

]
.

We compute

UTAU =

[
2.999 0

0 0.999

]
,

which tells us the eigenvalues are 2.999 and 0.999. Since we used
only four digits, this is close enough to the correct values 3 and 1.
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This method can be applied to a larger symmetric matrix A as
follows. We first note that a matrix of the form

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

cos α · · · − sin α
...

. . .
...

sin α · · · cos α
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is orthonormal. (Check for a small example!) Furthermore, if ui,j =
− sin α, then the matrix A′ = UTAU has zero elements a′i,j = aj,i =
0. The idea now is to successively zero out elements of A. Unfor-
tunately, elements that had been zero may be nonzero in the next
step. However, the algorithm is guaranteed to converge.

We summarize by stating the Jacobi iteration method.

Given: a symmetric matrix A(1). Wanted : its eigenvalues λ1, . . . , λn.

Step 1: Pick the largest off-diagonal element ai,j.

Step 2: Compute an angle α from tan 2α =
2ai,j

ai,i − aj,j

and form the matrix U (1).

Step 3: Set A(2) = U (1)TA(1)U (1).

Step 4: Repeat, creating a sequence A(r), and stop once all off-
diagonal elements are below a given threshold, say r = N .

Then A(N) has A(1)’s eigenvalues on its diagonal and the product
matrix U (1) · · ·U (N) holds A(1)’s eigenvectors.

For example, we let

A(1) =

⎡
⎢⎣

3 −1 1
−1 4 2

1 2 −3

⎤
⎥⎦ .
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We select to zero out a
(1)
2,3:

A(2) =

⎡
⎢⎣

3 −0.709 1.22
−0.709 4.53 0

1.22 0 −3.53

⎤
⎥⎦ .

Note the two zeroes in the right places! Next:

A(3) =

⎡
⎢⎣

3.22 −0.698 −0.
−0.698 −4.5 −0.126
−0. −0.126 −3.75

⎤
⎥⎦ .

Continuing:

A(4) =

⎡
⎢⎣
2.92 0. 0.05
0. 4.83 0.116

0.05 0.116 −3.75

⎤
⎥⎦ .

We could continue, but we are already very close to the correct
eigenvalues of 4.835,−3.755, 2.919.

6.5 Eigenvalues and Determinants

In classical linear algebra books, eigenvalues are typically introduced
as follows. The defining equation, using an n × n matrix A, is

Av = λv

where v is not the zero vector and λ is a nonzero number. We
immediately obtain

[A − λI]v = 0.

Thus the matrix A − λI maps a nonzero vector v to the zero vec-
tor 0; it therefore must be singular. Singular matrices have zero
determinants:

|A − λI| = 0.

Clearly, |A − λI| is a function of the unknown λ. In fact it is a
polynomial of degree n with the variable λ. Thus, we have reduced
the eigenvalue problem to finding the zeroes of a polynomial. If A is
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symmetric, these zeroes will be real; otherwise, they may be complex
numbers. If A is n×n and n is odd, then we are guaranteed to have
at least one real eigenvalue because any odd-degree polynomial has
at least one real root.

A quick example reuses A from Section 6.4:

A =

⎡
⎢⎣

3 −1 1
−1 4 2

1 2 −3

⎤
⎥⎦ .

Then

|A − λI| =

∣∣∣∣∣∣∣
3 − λ −1 1
−1 4 − λ 2

1 2 −3 − λ

∣∣∣∣∣∣∣ = −λ3 + 2λ2 + 17λ − 21.

This cubic polynomial in λ has the three zeroes, 4.835,−3.755, 2.919,
which we already had found as A’s eigenvalues.

Although this approach is theoretically feasible, we have traded
a manageable problem (eigenvalues) for a much more difficult one
(zeroes of polynomials). The zeroes of low degree polynomials pose
no serious threat, but matrices of size 1, 000 × 1, 000 would require
finding the zeroes of a degree 1,000 polynomial—an impossible task
numerically. See Section 10.5 for an example.

6.6 Singular Value Decomposition

One of the central methods in applied numerical linear algebra is
singular value decomposition. A surprisingly simple question will be
the key to our investigation: What set of orthogonal vectors is taken
to another set of orthogonal vectors?

Let A be a rectangular matrix with m rows and n columns. This
means A maps vectors from R

n to vectors in R
m. Let u1, . . . ,un

be a set of orthonormal vectors in A’s domain R
n, meaning that the

matrix U = [u1, . . . ,un] is orthonormal: U−1 = UT (see Section 4.4).
In general, these vectors will not be mapped to n orthogonal vectors
w1, . . . ,wn in A’s range R

m.4 As it turns out, a special set of ui will
4Note that the ui each have n elements, whereas the wi each have m elements.



�

�

�

�

�

�

�

�

68 6. Eigen-Problems

be mapped to a set of orthogonal vectors wi, forming an orthogonal
matrix W . We express W as the product of an orthonormal matrix
V and a diagonal matrix Σ, that is, W = V Σ.

We thus have
AU = V Σ, (6.5)

where Σ is a (generalized) diagonal matrix with m rows and n
columns, having only nonzero elements, σi, on its diagonal. V is
m × m, and recall that U is n × n. Using (6.5), we obtain

A = V ΣU−1 = V ΣUT. (6.6)

This is the singular value decomposition (SVD) of the rectangular
matrix A. The σi are the singular values of A. The matrix dimen-
sions are illustrated in Figure 6.5.

Before showing how to obtain U,Σ, V , let’s look at an example.
Let A and ATA be given by

A =

⎡
⎢⎣

1 0
0 2
0 1

⎤
⎥⎦ , ATA =

[
1 0
0 5

]
. (6.7)

A = V Σ UT

A = V Σ UT

Figure 6.5. SVD matrix dimensions.
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Then (using a package such as Mathematica) we find

Σ =

⎡
⎢⎣
√

5 0
0 1
0 0

⎤
⎥⎦ , U =

[
0 1
1 0

]
, V =

⎡
⎢⎢⎣

0 1 0
2√
5

0 − 1√
5

1√
5

0 2√
5

⎤
⎥⎥⎦ .

It is now trivial to verify AU = V Σ.
So, how do we find U,Σ, V ? We multiply both sides of (6.5) by

their transposes:
(AU)TAU = (V Σ)TV Σ.

Hence,
UTATAU = ΣTV TV Σ,

and finally,
ATA = UΛUT, (6.8)

where Λ is the m × m matrix Λ = ΣTΣ. Equation (6.8) states the
following: The symmetric matrix ATA has eigenvalues, λi, which are
the diagonal entries of Λ, and eigenvectors, which are the columns of
U ; see (6.3). Jacobi iteration from Section 6.4 gives us the means to
compute U and Λ. The σi are given by σi =

√
λi, from which we can

build Σ. Finally, V = AUΣ+ where Σ+ denotes the pseudoinverse
of the generalized diagonal matrix Σ; see Section 6.8.

If ATA has full rank, then all the σi are strictly positive. One
typically arranges the singular values such that σ1 ≥ σ2 ≥ · · · ≥ σn.

The ratio σ1/σn (assuming σ1 ≥ σn) is called the condition num-
ber of A. The larger the condition number, the more A distorts.
If the condition number is 1, such as for the identity matrix, then
no distortion occurs. As an exercise, find out why 1 is the lowest
possible condition number for a nonsingular matrix.

To see why this makes sense, let’s look at two examples. First,
let

A =

[
cos α − sin α

sin α cos α

]
,

meaning that A is a rotation about α degrees. Clearly, ATA = I,
where I is the identity matrix. Thus, σ1 = σ2 = 1. Hence the
condition of a rotation matrix is 1. Since a rotation does not distort
at all, this is quite intuitive.
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Now let

A =

[
100 0
0 0.01

]
,

a matrix that scales by 100 in the x-direction and by 0.01 in the
y-direction. This matrix is severely distorting! We quickly find σ1 =
100, σ2 = 0.01, and thus the condition number is 100/0.01 = 10, 000.
The fact that A distorts is clearly mirrored by the magnitude of its
condition number. The topic of condition numbers is revisited in
Section 6.7.

6.7 The Condition Number

In Section 6.6, the condition number of a matrix was defined as the
ratio of the largest to smallest singular values. Some matrices, such
as orthonormal ones, are “well-behaved,” whereas others, close to
being singular, are known to cause numerical problems. A singular
matrix has at least one singular value of 0, resulting in a ratio of the
largest to smallest singular values of ∞. For an orthonormal matrix,
that ratio is 1. It stands to reason that a high ratio of largest to
smallest singular values is “bad.”

Let us now revisit our linear system from Section 5.4. We saw
that a small change in the right-hand side could lead to large changes
in the solution. The coefficient matrix was

A =

⎡
⎢⎣

0.8 0.1 0.1
0.7 0.24 0.06
0.6 0.4 0

⎤
⎥⎦ . (6.9)

Its singular values are 1.3, 0.26, 0.006. The largest and smallest sin-
gular values are very different in size. Their ratio is 215, a number
indicating that the matrix is close to being singular. Hence the un-
stable behavior!

6.8 The Pseudoinverse

The inverse of a matrix A is another matrix A−1 such that AA−1 = I,
the identity matrix. Not every matrix A has an inverse; in fact, A
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must be square and invertible. In this section, we explore how to
generalize the concept of an inverse matrix.

Singular value decomposition will allow us to define an “inverse”
of a nonsquare matrix. In preparation, let’s consider inverses of di-
agonal matrices. A square diagonal matrix is inverted by computing
the reciprocals of its nonzero elements; see (4.14). A nonsquare di-
agonal matrix D is not invertible, but a similar process yields the
pseudoinverse designated by D+. Specifically, we take the recipro-
cals of the transpose matrix. This results in DD+ = I. For example:

D =

[
4 0 0
0 2 0

]
, D+ =

⎡
⎢⎣
0.25 0
0 0.5
0 0

⎤
⎥⎦ , DD+

[
1 0
0 1

]
.

If we repeat the inversion process, the initial matrix D is recovered:

D++ = D.

Check for the above example! For an invertible diagonal matrix D,
we have D+ = D−1. If D contains very small5 nonzero elements,
then these need to be set to zero in order to avoid extremely large
entries in D+.

We are now ready to define a pseudoinverse for general matrices.
This pseudoinverse will have the property that it equals the inverse
for invertible matrices. Since any matrix A may be written as A =
UΣV T by using SVD, we define

A+ = V Σ+UT. (6.10)

For example, take

A =

[
2 0 0
0 0 −4

]
=

[
0 1

−1 0

][
4 0 0
0 2 0

]⎡⎢⎣
0 0 1
1 0 0
0 1 0

⎤
⎥⎦ .

Hence,

A+ =

⎡
⎢⎣
0.5 0
0 0
0 −0.25

⎤
⎥⎦ .

5“Small” is a function of the application at hand; without such knowledge,
10−6 is a decent guess.
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The pseudoinverse may be used to approximate solutions for lin-
ear systems. If the system

Au = b

does not have an invertible coefficient matrix A, then

u = A+b

is an optimal approximation to a solution.
For example, using the matrix A from Equation 6.7, we create a

linear system as follows:⎡
⎢⎣

1 0
0 2
0 1

⎤
⎥⎦
[
x1

x2

]
=

⎡
⎢⎣

0
1
0

⎤
⎥⎦ .

An approximate solution is given by

x = A+b =

[
1 0 0
0 2/5 1/5

]⎡⎢⎣
0
1
0

⎤
⎥⎦ =

[
0

2/5

]
.

Note that this approximate solution to the overdetermined linear
system is identical to that of the normal equations

ATAx = ATb.

See Section 5.8 for more information on normal equations.

6.9 The Principal Components Analysis

We may rewrite the SVD from (6.6) in the dyadic form of (4.6):

A =
r∑

i=1

σiviuT
i , (6.11)

where r is the rank of A and we have omitted zero terms (in case
A was not of full rank). Also, assume that we have ordered the
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summation terms in (6.11) so that σi > σi+1. Recall that viuT
i is

not a scalar but rather an m × n matrix. (The uT
i term is the ith

column of U written as a row vector.)
Let us now approximate A by a matrix Â:

Â =
k∑

i=1

σiviuT
i , (6.12)

where k < r. If k is much smaller than r, then we have approximated
A by a matrix Â, which is defined by a much smaller number of
data, namely the vectors u1, . . . ,uk; the vectors v1, . . . ,vk; and the
singular values σ1, . . . , σk. This approximation makes sense only if
the singular values σk+1, . . . , σr are small; however, this is the case
in many applications. This reduction in dimensionality in (6.12) is
called the principal components analysis (PCA). For examples, see
Sections 6.10 and 12.2.

6.10 Case Study: Eigenfaces

In computer vision, one discipline is face recognition. Suppose that
a set of about 1,000 frontal face images is given, and we want to
check whether a newly obtained image approximately matches one
of the given face images. Each face is represented with a resolution
of 100 × 100 pixels. Column by column, organize the pixels of an
image to form a vector; this vector has 10,000 entries. All images
thus reside in a 10,000-dimensional linear space F . Each face then
corresponds to a vector vi in F .

For any arbitrary vector v (the new face) in F , we would like to
know whether it is close to one of the vi. We could compare v to
each of the 1,000 vi:

‖vi − v‖ < ε; i = 1, . . . , 1, 000 (6.13)

for some tolerance ε, but that will be expensive. A little preprocess-
ing will speed the process up.

We perform the PCA of the vi and keep only the eigenvectors
ej, each with 10,000 components, corresponding to the 100 largest
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Figure 6.6. Eigenfaces: three example eigenvectors, re-organized into a three
images. (Courtesy of the Center for Ubiquitous Computing (CUbic), Arizona
State University.)

eigenvalues.6 This amounts to saying that each face can be described
by 100 features. The vectors ej—each corresponding to a 100× 100
image —are called eigenfaces. They do not necessarily look like real
faces, but any face in the collection may be approximated by linearly
combining them. See Figure 6.6 for an idea of the appearance of
eigenfaces.

Now we can approximate each vi by a linear combination of the
ej by solving an overdetermined linear system for each vi. Then each
vi is represented by 100 scalars si,1, . . . , si,100 (instead of 10,000):

vi ≈
100∑
j=1

si,jej .

We denote by si the vector formed by all si,1, . . . , si,100. Note that
each si has 100 components.

Now we bring in v. We then find the 100 coefficients sj such that

v ≈
100∑
j=1

sjej,

again by solving an overdetermined linear system. The vector s
denotes the vector formed by all sj.

6The number 100 is somewhat arbitrary and needs to be refined for a particular
data set.



�

�

�

�

�

�

�

�

6.11. Singular Values, Volumes, and Determinants 75

We then check whether s is close to one of the 1,000 si:

‖s − si‖ < ε; i = 1, . . . , 1, 000. (6.14)

If it is true for some i, then v is close to vi.
To compare the computational cost: (6.13) compares v against

1,000 vectors vi of length 10,000; (6.14) compares s against 1,000
vectors si of length 100. For real-time face recognition, this is the
way to go!

Similar concepts are employed in genomics research, where in-
stead of eigenfaces one computes eigengenes. In physics and me-
chanics, the term eigenfrequency is used for systems that will start
to vibrate wildly for certain frequencies.

6.11 Singular Values, Volumes, and Determinants

As a practical application, we will use SVD to compute the determi-
nant of a matrix A. We observe that the the matrices V and U in
(6.6), being orthonormal, have determinants equal to 1. Thus, the
determinant |A| is given by the product of A’s singular values:

|A| = σ1 · . . . · σn. (6.15)

Thus, if a 3D object has volume V , it will have volume σ1σ2σ3V
after being transformed by a linear map with singular values σ1,
σ2, σ3.

Similarly, a 2D triangle with area F will have area σ1σ2F after
being transformed by a 2D linear map with singular values σ1, σ2.

From the definition of the determinant in (6.15), some properties
of determinants follow easily:

|A−1| =
1
|A| , |AB| = |A||B|, |AT| = |A|, |cA| = cn|A|.

The last of these properties may not be obvious; check for yourself
how it follows from (6.15)!
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6.12 Problems and Experiments

1. Find a 3 × 3 matrix with no zero elements and having eigen-
values 3,2,1.

2. In the linear space of all differentiable functions, the derivative
operator D (assigning a function f ′ to a function f) is a linear
map. A (nonzero) function u is an eigenfunction of D if Du =
λu; stated differently, u′(x) = λu(x) for all x. Verify that
u(x) = eλx + c.

3. A Hilbert matrix H is an n × n matrix with elements

hi,j =
1

i + j − 1
; 1 ≤ i, j ≤ n.

The 5 × 5 Hilbert matrix has singular values

1.5670, 0.2085, 0.0114, 0.0003, 3.287E − 6.

It appears that this Hilbert matrix can be approximated rea-
sonably well by a 3× 3 matrix. Find this matrix, using (6.12).
Then experiment with larger Hilbert matrices.

4. What are examples of 2 × 2 matrices that have no real
eigenvalues?
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Background:
Numerical Calculus

Functions are invaluable tools for scientific computing. Examples
include:

• population size as a function of time,

• air pressure on an airplane wing as a function of speed,

• temperature of the atmosphere as a function of CO2 concen-
tration.

Functions are dealt with in calculus. This chapter presents a brief
review.

7.1 Functions

The basic entity in numerical calculus, a function, is any procedure
that assigns a function value f(x) to a variable, here called x. A
good example is the sine function:

f(x) = sin(x).

For any x, there can only be one function value f(x). We can plot
this function, thus visualizing its shape. When we plot a function,

77
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Figure 7.1. Graph of a function (left) and of a nonfunction (right).

technically speaking, we are plotting1 its graph—a set of points (x, y)
of the form (x, f(x)). Figure 7.1 shows (left) the graph of a viable
function and (right) the graph of a nonfunction. The right graph
cannot depict a function because both positive and negative y-values
are associated with some x-values.

Most functions that we will be dealing with are continuous; in
effect, this means the graph of the function can be drawn as an
uninterrupted line.2

Functions are typically not considered over the whole real line,
but over an interval [a, b]. Even within an interval, a function may
not be defined for every point. For example, functions may be defined
only over a set of integers. Such functions are called discrete.

Functions may have special properties; here we list a handful:

1. Symmetry. f(x) = f(−x) for all x. For example, f(x) = x2.

2. Boundedness. For all x, f(x) will not exceed a certain bound
c, meaning |f(x)| ≤ c. For example: f(x) = cos(x).

3. Monotonicity. For increasing values of x, the corresponding
function values f(x) are also increasing. For example, f(x) =
|x| for x ∈ [0, 1].

4. Convexity. No straight line intersects the graph of the function
more than twice. For example, f(x) = x4.

1More visualization tools are discussed in Chapter 12.
2The mathematically precise definition is more involved.
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a bx

y0

y1
l(x)

Figure 7.2. Linear interpolation.

We continue our overview of functions with some of the simplest
and yet most important ones: the linear functions, so called because
their graphs are straight lines. They give rise to one of the funda-
mental computational tools: linear interpolation. Suppose we have
two function values y0 and y1 given at the endpoints of an interval
[a, b]. Then for any x, its function value l(x) is given by

l(x) =
b − x

b − a
y0 +

x − a

b − a
y1. (7.1)

The function l(x) is linear in the variable x, and it also interpolates,
meaning

l(a) = y0 and l(b) = y1,

which can be quickly verified. Figure 7.2 illustrates such a function.
Notice that the coefficients in (7.1) sum to one.

Many applications deal with several functions that will need to
be combined. We present three ways for combining functions.

1. Linear combination. If f(x) and g(x) are two functions defined
over the same interval [a, b], then we may define a third function
h(x) as

h(x) = αf(x) + βg(x),

using two reals α and β that do not depend on x. The fact
that we can define h this way leads to the concept of function
spaces; see Section 7.5.

2. Product. Using the same f and g as above, we may define

h(x) = f(x) · g(x).
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3. Composition. The function g produces a real number g(x)
upon input x. We may use this number as input for f , thus
creating a function h as

h(x) = f(g(x)).

For example, if f(x) = x2 and g(x) = x + 1, then h(x) =
(x + 1)2.

7.2 Limits

A central theme in calculus is that of a limit. If we were to evaluate
a function, say f(x) = x2, for a particular value of x, we simply plug
x into f ’s definition, to get the answer. But life is not always that
easy. Consider, for example,

f(x) =
|x|
x

.

This function is rather benign, except at x = 0: there it evaluates to
0/0, which is not a “legal” expression. We therefore study how f be-
haves near (but not at) x = 0. That means, we have to look at small
positive values for x and, separately, at small negative ones. Let
a sequence of positive numbers x approach 0 without quite reach-
ing it, and evaluate f for these arguments. We consistently find
f(x) = 1. Doing the same for small negative values, we consistently
find f(x) = −1. More formally, we are taking limits:

lim
x→0+

f(x) = 1 and lim
x→0−

f(x) = −1.

The first expression—the right limit—lets x approach 0 for positive
x, the second one—the left limit—does the same for negative x.
Figure 7.3 shows a plot of f . We can clearly see the jump at x = 0.
Functions with different left and right limits are not continuous.

A function has a limit c at an x-value x0 if both left and right
limits agree. Then we write

lim
x→x0

f(x) = c.
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Figure 7.3. A function with different right and left limits.

The most famous limit in all of calculus is the derivative. If f is
a function, we consider this limit:

lim
h→0

f(x0 + h) − f(x0)
h

. (7.2)

At first sight, this yields the useless expression 0/0, but if f is suf-
ficiently smooth, then the limit exists and is called the derivative
f ′(x0). It is useful to remember this as “rise over run,” meaning
that f(x0 + h) − f(x0) measures the change in function value (rise)
and h measures the change in the x-direction (run). Figure 7.4 illus-
trates the derivative as a limit.

x0 x0+h

Figure 7.4. The derivative as a limit.

7.3 Integrals

One of the most fundamental tools for a scientist is the histogram,3

which in its simplest form is a block graph of a set of pairs (xi, yi).
A typical histogram is shown in Figure 7.5.

3Histograms are discussed again in Section 12.3
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xi

yi

Figure 7.5. A histogram.

It is easy to compute the area A of the histogram:

A =
N−1∑
i=0

Δxiyi+1. (7.3)

Here we assume we have x-values x0, . . . , xN , and that their spacing
is given by Δxi = xi+1−xi. Let us now assume the yi are computed
from a function f , or yi = f(xi).

We now introduce a new function F . This function is defined
recursively, meaning it has a recursion anchor, in our case given by

F (x0) = c,

and a recursive loop given by

F (xi+1) = F (xi) + Δxif(xi+1). (7.4)

That is, F keeps track of the incremental change in area as we in-
crease x-values. Then our desired area is given by F (xN ) − F (x0),
independent of our recursion anchor F (x0) = c. Note that f(x0)
does not enter the computation.

Let’s do an example to understand this better. Set x0 = 0 and
all Δxi = 1. Let f(x) = x + 1. With N = 3, our function values are
1, 2, 3, 4. Let’s compute the area over x0, x3, i.e., F (x3)−F (x0). We
have

F (x3) = F (x2) + f(x3)
= F (x1) + f(x2) + f(x3)
= F (x0) + f(x1) + f(x2) + f(x3)
= c + 2 + 3 + 4
= c + 9.
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Figure 7.6. Histograms for f (bold) and F (light).

Hence the area is given by F (x3) − F (x0) = 9. As predicted, it is
independent of c! Figure 7.6 shows histograms for the above f and
the resulting F , with N = 7.

We are next going to increase our sampling rates. More precisely,
we will be looking at several histograms, all starting at x0 = a and
ending at xN = b. By increasing the sampling rate we add more
xi into the interval [a, b], or in other words, increase N . As we
keep doing this, the histograms for f and for F will more closely
approximate these functions. In the limit, as N approaches infinity,
we can write (7.3) as the definite integral

A =
∫ b

a
f(x)dx.

7.4 Derivatives

Let us take a second look the main (recursive) part (7.4) of the
definition of F , and solve for f(xi+1):

f(xi+1) =
ΔF (xi)

Δxi

where ΔF (xi) = F (xi+1) − F (xi). As the Δxi become smaller and
smaller, this expression approaches 0/0, and is at first sight an un-
defined expression. But since we know f exists (we started out with
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Figure 7.7. A function (gray) and its derivative (black).

it!), the expression does make sense. We write it as

f(x) =
dF (x)

dx
,

and we say that f is the derivative of F . Since dF (x)
dx exists, we call

F differentiable. Note that f may not be differentiable itself.
The derivative g′(x) of a function g indicates how much g changes

in the vicinity of x. Consider Figure 7.7 for an example. The top
function has two local maxima and two local minima. At those
points, the function does not change—this is reflected by the deriva-
tive being zero at those four locations.

The derivative g′ of a function g may be calculated symbolically
if an exact equation for the function g is known.4 We give some
simple examples here.

1. A constant function. The function g(x) = c does not change
at all; it has the same function value c everywhere. Thus its
derivative (the rate-of-change indicator) is the zero function:
g′(x) = 0.

2. A linear function. The function g(x) = ax + b has the same
rate of change everywhere; it is given by the factor a. The
larger a, the larger the slope of the line given by g. We have
g′(x) = a. This derivative is independent of b, implying that

4Sometimes all one has is a procedure for computing g—then numerical meth-
ods are called for.
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changing b to a different value, thereby translating g along the
y−axis, will not affect g′.

3. The power function. The function g(x) = xn has the derivative
g′(x) = nxn−1.

The derivative of a linear combination of two functions g and h
is computed as

[αg(x) + βh(x)]′ = αg′(x) + βh′(x). (7.5)

This means that the derivative behaves in a linear fashion (in the

sense of linear algebra). For example, we compute the derivative of
g(x) = 3 + 3x5 as g′(x) = 15x4.

More complicated combinations of functions require more com-
plex rules. For instance, the the product rule,

[g(x)h(x)]′ = g′(x)h(x) + g(x)h′(x),

applies for the product of two functions. Let’s try this out on g(x) =
x3. We can use the product rule if we consider x3 = x2 · x. Then

g′(x) = 2x · x + x2 · 1 = 3x2

which agrees with the derivative of g(x) using the rule for the power
function.

Differentiating a composition of functions g(h(x)) calls for the
chain rule:

g(h(x))′ = g′(h(x))h′(x).

Let’s try this out on g(h(x)) = (x2)3. Here, h(x) = x2. The chain
rule gives

g(h(x))′ = 3(x2)2 · 2x = 6x5,

again confirming the power function rule.
So we see that the derivative of a function g is another function

g′; we may then take the derivative of the new function g′. This is
g’s second derivative, denoted by g′′. This process may be repeated
several times (assuming the needed derivative functions do indeed
exist). We denote the rth derivative of a function g(x) by g(r)(x);
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Figure 7.8. A function (gray) and its derivative (black).

for example, g′′(x) = g(2)(x). Higher derivatives are important in-
gredients to methods such as the Taylor expansion; see Section 8.1.

From a practical perspective, we should mention that the process
of taking derivatives is a roughing process. In Figure 7.8, a function
is shown in gray, and its derivative is in black. You clearly see how
the derivative accentuates even very slight features in the function.
Thus derivatives may be used to detect features in a function.

7.5 Function Spaces

There is a connection between functions and linear spaces. For a
simple example, consider the set of all cubic polynomials (called
cubics for short). Cubics are of the form

p(x) = a0 + a1x + a2x
2 + a3x

3

for some real numbers a0, a1, a2, a3. If we take two cubics

p(x) = a0 + a1x + a2x
2 + a3x

3 and q(x) = b0 + b1x + b2x
2 + b3x

3,

we may construct another function αp(x) + βq(x), where α and β
are real numbers that do not depend on x. This function is given by

αp(x) + βq(x) = (αa0 + βb0) + (αa1 + βb1)x + (αa2 + βb2)x2

+ (αa3 + βb3)x3;

hence this is another cubic. We just demonstrated that linearly com-
bining cubics yields another cubic; thus, the set of cubics, together
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Figure 7.9. Combining cubics: the black cubic is the average of the two gray
ones.

with this kind of linear combination, forms a linear space! The el-
ements are not vectors in R

n anymore, but functions. The zero
“vector” is the zero function, obtained by setting all ai = 0. We call
this space P

3.
A simple example of combining two cubics with α = β = 0.5 is

shown in Figure 7.9.
What is the dimension of P

3? We solve this problem by explicitly
naming a basis. One basis is given by the set of functions

{1, x, x2, x3}.

Clearly, every cubic may be written as a linear combination of these
basis functions, called monomials. In addition, the monomials are
linearly independent: it is impossible to write one monomial as a
linear combination of the others.

This concept generalizes in a fairly obvious way to polynomials
of arbitrary degree n, leading to function spaces P

n.
More general function spaces exist. An important one is that

of all continuous functions, denoted C
0. If f and g are continuous

functions, then also h = αf + βg,5 thus establishing the linear space
condition. Clearly, for any n, P

n is a subspace of C
0: every polyno-

mial is a continuous function but not vice versa! Other subspaces of
C

0 are the spaces of r times differentiable functions, denoted by C
r.

Linear spaces are equipped with linear maps. For function spaces,
the most important linear map is the derivative: it maps one space

5The shorthand notation h = αf + βg means h(x) = αf(x) + βg(x) for all x.
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Figure 7.10. Graph of a function.

of functions into another one; namely, that of all of its derivative
functions. The map is linear because of (7.5).

7.6 Problems and Experiments

1. Figure 7.10 shows the graph of a function f . Manually sketch
its derivative function f ′.

2. Again referring to the function f of Figure 7.10, manually
sketch its integral function

g(x) =
∫ x

−2
f(t)dt; g(−2) = 0.

3. Replace f from Figure 7.10 by f(x) = f(x)+ 2. How will your
graphs from problems 1 and 2 change?

4. A process f(t) (for example measuring concentrations of a sub-
stance during an experiment) is said to reach equilibrium if

|f(t) − c| < ε

for large values of t and some tolerance ε. A simulated pro-
cess is shown in Figure 7.11. Experiment with plotting several
functions until you find one that looks like Figure 7.11.

5. Define a set F of continuous functions by

F = {f |f(x) ≥ 0}.

Is this set also a linear space of functions? Explain.



�

�

�

�

�

�

�

�

7.6. Problems and Experiments 89

Figure 7.11. Graph of a function.

6. Define three functions f, g, h by f(x) = sin2(x), g(x) = 1, h(x)
= cos2(x). Are these three functions linearly independent?
Explain.
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Data Fitting

Suppose a scientist measures how the volume of an object changes.
She records volumes vi at times ti. She would then like to plot
a graph showing the process—this would be more illustrative than
just a table of numbers. Thus, she needs a function that represents
the data. There are many ways to find this function; among the
available methods are interpolation and approximation. When we
interpolate, we want a function that matches the data exactly; when
we approximate, we just want to capture the behavior of the data.

8.1 Taylor Approximation

A famous theorem in calculus states: in the vicinity of an x-value x0,
a function f may be approximated by a polynomial p(x) of degree n
by setting

p(x) = f(x0)+(x−x0)f ′(x0)+
1
2
(x−x0)2f ′′(x0)+. . .+

1
n!

(x−x0)nf (n)(x0),

(8.1)
where f (n)(x0) denotes the nth derivative of f at x0. This theorem
(called Taylor’s theorem) is true, but its applicability is restricted to
x-values close to x0. Figure 8.1 illustrates two approximations for
the case of f(x) = sin(x) and x0 = 0, one for n = 10 (the “shorter”
one) and one for n = 20 (the “longer” one). As we increase the
degree, we capture more of the function.

91
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2 4 6 8 10 12 14

�1.0

�0.5

0.5

1.0

Figure 8.1. Two examples of Taylor approximations (gray) to the sine function
(black).

The main value of Taylor’s theorem is not for constructing useful
approximations, but rather for the design of algorithms that involve
derivatives.

8.2 Piecewise Linear Interpolation

Suppose we have a procedure to compute a function f(t) over an
interval a ≤ t ≤ b. This may be a function that is very expensive
to compute (say, several hours of computer time per function value).
Then one way to represent the function is to sample it at some
number of arguments a = t0 ≤ t1 ≤ · · · ≤ tn = b and to construct
the polygon (t0, f(t0)), . . . , (tn, f(tn)); an example of which is shown
in Figure 8.2. Depending on the sampling rate, this may be a decent
representation of f . In the (theoretical) limit n → ∞, the piecewise
linear function will be identical with f .

8.3 Polynomial Interpolation

A different approach is to use polynomials to build an interpolating
function. This means we would like to find a polynomial p(t) that
interpolates to the data. That is, we would like

p(t0) = v0,

p(t1) = v1,

p(t2) = v2,

p(t3) = v3.
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Figure 8.2. Piecewise linear approximation.

Here, we assume measurements are taken at four time steps t0, t1, t2,
t3. These time steps are also referred to as knots, a term most com-
monly used in the context of B-spline methods (introduced in Section
8.6). We now have to be a bit more specific about our polynomial.
It should be cubic because then we will have four (unknown) coeffi-
cients, which matches the numbers of given data vi. Thus

p(t) = a0 + a1t + a2t
2 + a3t

3,

and we have to find the ai. For this, we use our given data and write

v0 = a0 + a1t0 + a2t
2
0 + a3t

3
0,

v1 = a0 + a1t1 + a2t
2
1 + a3t

3
1,

v2 = a0 + a1t2 + a2t
2
2 + a3t

3
2,

v3 = a0 + a1t3 + a2t
2
3 + a3t

3
3.

These are four equations in as many unknowns. This is begging for
matrix notation! We then have⎡

⎢⎢⎢⎢⎣
v0

v1

v2

v3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 t0 t20 t30
1 t1 t21 t31
1 t2 t22 t32
1 t3 t23 t33

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎥⎥⎦ , (8.2)

which abbreviates as
v = Ta. (8.3)
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t0 t1 t2 t3

v0

v3

Figure 8.3. An interpolating cubic.

The coefficient matrix T of this linear system is called a Vander-
monde matrix. But is our linear system solvable, in other words, is
T of full rank? If two of the ti are identical it is not, but that is not
likely to happen in any realistic scenario. If all ti are distinct, then
T is indeed of full rank and our linear system has a unique solution.
Any of the methods in Chapter 5 will find it. Figure 8.3 shows an
example of an interpolating cubic.

Polynomial interpolation is not restricted to the cubic case, how-
ever. If we had n pairs (ti, vi); i = 0, . . . , n, then we would find an
interpolating polynomial

p(t) = a0 + a1t + . . . + antn

simply by solving a system with n + 1 equations for the n + 1 un-
knowns ai, in complete analogy to the cubic case.

A word of caution: polynomial interpolation is simple, but it
is dangerous. Figure 8.4 shows the result of interpolating to (0, 0),
(1, 1), (4, 2), (9, 3), (16, 4) with a fourth-degree polynomial. The
given data come from the function

√
t, plotted in gray. The inter-

polating polynomial is shown in black. The result is correct, but
for all practical purposes it is disastrous! So if you use polynomial
interpolation in some package, be aware that the results may not be
what you intended.

8.4 Polynomial Least Squares Approximation

We have seen that using polynomials for interpolation can be tricky,
but using polynomials for approximation is very reliable. The sce-
nario is now slightly different from that in Section 8.3. We are given
a relatively large number of data (ti, vi); i = 0, . . . , L, and we would
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Figure 8.4. An interpolating degree 4 polynomial (black).

like to approximate it by a polynomial p(t) of degree less than L,
typically much less.

Without elaborating on what we mean by “to approximate,” we
would most likely want the data points to be close to the approxi-
mating polynomial p. Ideally, p would pass through the data points:

p(t0) = v0,

...
p(tL) = vL.

Assuming the polynomial to be

p(t) = a0 + a1t + . . . + antn,

this becomes

p(t0) = a0 + a1t0 + . . . + antn0 ,

...
p(tL) = a0 + a1tL + . . . + antnL,

which can be written matrix form as

v = Ta. (8.4)

At first sight, this looks exactly like (8.3), but there is a difference:
here, we have an overdetermined linear system with more equations
than unknowns. In (8.3), we had the same number of knowns and
unknowns.
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T

a

L+1

n+1

n+1

1

v

Figure 8.5. The matrices involved in (8.4).

The matrix T (sometimes referred to as the design matrix) has
more rows than columns; a sketch of the dimensions is given in Figure
8.5. We multiply both sides of (8.4) by TT and obtain

TTv = TTTa. (8.5)

This linear system, known as the normal equations, has a square
and symmetric coefficient matrix TTT . The coefficient matrix is
invertible, and we may solve (8.5) by using Gauss elimination (see
Section 5.3) or any other method. (We encountered overdetermined
systems in Section 5.8 as well.) However, if L is large, TTT can be
ill-conditioned (i.e., close to being singular), and then singular value
decomposition (see Section 6.6) is more reliable.

The polynomial p is known as the least squares polynomial ap-
proximating the given data. It is optimal in the following sense. One
measure for the error E between p and the data values is given by

E =
L∑

i=0

[vi − p(ti)]2.

This is the least squares error.1 Among all polynomials, p is the
one for which E is the smallest. In many cases, the data values vi

will be afflicted by “noise”; the least squares approach is designed to
deal with this efficiently. But sometimes it is known that some data
values have larger noise levels than others. In that case, it is feasible
to weight the equations; we replace the equation

p(ti) = a0 + a1ti + . . . + antni
1This error essentially measures the average deviation of p from the data.
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Figure 8.6. Least squares approximations. For various values of n: n = 3 (top
left); n = 6 (top right); n = 10 (bottom left); n = 11 (bottom right). The
function is shown in gray, and the approximation is black.

by
wip(ti) = wia0 + wia1ti + . . . + wiantni ,

where wi is given a large value if our confidence in the value vi is
high, and low otherwise. Although multiplying the left- and the
right-hand sides of an equation by the same value does not seem to
achieve much, it will affect the least squares solution. In particular,
giving a huge value to only few of the wi will force p(ti) to come
arbitrarily close to the corresponding vi.

We finish this discussion with some examples. Let’s pick the
function

f(t) =
√

t + 0.1 sin t

to approximate. The sine function here uses radians for its argument.
Let’s also pick 20 values t0 = 1, . . . , t19 = 20. Figure 8.6 shows
approximants of degrees 3, 6, and 10; the original function f is in
gray, the approximants are in black. As expected, the quality of the
approximations improves with higher degrees.

But now something ugly happens. If we increase the degree to
n = 11, we get the bottom right result of Figure 8.6! What hap-
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Figure 8.7. Least squares approximation with n = 8 and outlier at t = 5: stan-
dard least squares approximation (left), and approximation inversely weighted
by errors in the left plot (right).

pened? The reason for the erratic behavior of the approximant can
be traced to the fact that we used the monomials as our basis func-
tions. These simply become difficult to evaluate for values as large
as t = 20. In more technical terms, we see that the monomial basis is
unstable away from t = 0. This is reflected by the condition numbers
of the matrices TTT . (See Section 6.7 for a definition of condition
number.) For n = 11, the condition number is 1033, making the
problem intractable. For a remedy, see Section 8.5.

The weighted least squares approach is useful for dealing with
outliers, any data values that are in crass disagreement with the
general trend. We first compute the standard least squares fit p, and
then compute weights

wi =
1

|p(ti) − vi| + 0.1
. (8.6)

These are then used in a weighted least squares computation. The
constant 0.1 is heuristic; it simply ensures that no division by 0 will
happen. See Figure 8.7 for an example. If desired, this method may
be repeated.

8.5 General Least Squares Approximation

Basis functions other than monomials may be used. Then our least
squares problem becomes: given a set {ti, vi}, i = 0, . . . , L, find a
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function
f(t) = c0B0(t) + . . . + cnBn(t)

that best approximates the given data in the least squares sense.
The functions Bi could be polynomials, trigonometric functions, or
exponential functions, as long as they are linearly independent.

Proceeding exactly as in Section 8.4, we obtain an overdeter-
mined linear system of equations:

v = Tc. (8.7)

Here, the matrix T is obtained by evaluating the basis functions Bj

at the ti:

T =

⎡
⎢⎢⎢⎢⎢⎣

B0(t0) · · · Bn(t0)
...

...
...

...
B0(tL) · · · Bn(tL)

⎤
⎥⎥⎥⎥⎥⎦ .

The solution is again via the normal equations, or, in tricky cases,
via singular value decomposition.

We now show how to fix the problem with the monomial degree
11 fit of Figure 8.6. As our new basis functions, we pick the Bernstein
polynomials Bn

j :

Bn
j (t) =

(
n

j

)
(tL − t)n−j(t − t0)j

(tL − t0)n
; j = 0, . . . , n. (8.8)

Using this basis, the matrix TTT has, for n = 11, the condition
number 106. Compare this to 1033 for the monomial basis! Needless
to say, the degree 11 fit is no longer a problem anymore.

8.6 B-Spline Interpolation

In addition to polynomials, another class of functions is widely used
for data fitting problems: these are spline functions in B-spline form.
B-splines are functions that consist of polynomial segments instead
of just one polynomial. Assume our data are given over an inter-
val [a, b]. A partition of this interval is an increasing set of values
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a = u0,≤ u1, . . . ,≤ uK = b. The partition is also referred to as a
knot sequence and the ui are referred to as knots. A spline function
consists of cubic polynomial segments that are different for each in-
terval [ui, ui+1] in such a way that they agree in all derivatives up to
order 2.2 For a fixed partition, the set of all splines forms a linear
space.

A spline s(t) may be written as a linear combination of basis
functions N3

i (t):

s(t) =
K+2∑
i=0

N3
i (t)di. (8.9)

The basis functions are defined recursively:

Nn
i (t) =

t − ui−1

ui+n−1 − ui−1
Nn−1

i (t) +
ui+n − t

ui+n − ui
Nn−1

i+1 (t). (8.10)

This recursion is anchored by the definition

N0
i (t) =

{
1 if ui−1 ≤ t < ui,

0 otherwise.
(8.11)

In order for this to work, we need to add several “phantom knots”
such that our knot sequence becomes u0, u0, u0, u0, u1,
. . . , uK−1, uK , uK , uK , uK . This is strictly a technicality and shall
not concern us here. We should note that the N3

i do depend on the
knot sequence {ui}.

Figure 8.8 shows six B-splines over a uniform knot sequence,
meaning the ui are equally spaced. Figure 8.9 shows the effect of a
different knot sequence.

B-splines have many valuable properties; we list several here:

1. Partition of unity. For every t, all B-splines add to 1:

K+2∑
i=0

N3
i (t) ≡ 1.

2More general definitions are possible, but we will keep things simple here.
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Figure 8.8. The cubic B-splines N3
0 , . . . N3

5 over the knot sequence 0, 0.66, 1.33, 2.

2. Local support. The B-spline N3
i (t) is nonzero only over the

interval [ui−3, ui+1]. Over that interval, it is also nonnegative.

3. Polynomial inclusion. For the special case K = 1, the B-splines
are polynomials—in particular, they are the cubic Bernstein
polynomials (8.8).

4. Linear precision. The linear function y = t may be written as
a spline curve:

t =
K+2∑
i=0

ui + ui+1 + ui+2

3
N3

i (t).

5. Linear independence. Every spline has a unique representation
in terms of B-splines.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.2

0.4

0.6

0.8

1

Figure 8.9. The cubic B-splines N3
0 , . . . N3

5 over the knot sequence 0, 1.33, 1.7, 2.



�

�

�

�

�

�

�

�

102 8. Data Fitting
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Figure 8.10. Spline interpolation over knot sequence 0, 2, 4, 8, 12, 16, 18, 20
(left), and after adding one more data value at t = 13.5 (right).

The typical spline interpolation problem is posed as follows:

Given: A set of data points (ui, vi); i = 0, . . . ,K

Wanted: Coefficients di such that the resulting spline s(t)
interpolates:

s(ui) = vi; i = 0, . . . ,K. (8.12)

Our spline is of the form (8.9), and we see that we have a prob-
lem: there are 0, . . . ,K + 2 unknowns but only 0, . . . ,K interpola-
tion conditions (8.12); we are short two conditions! The standard
way to combat this problem is to supply two extra conditions, such
as requiring interpolation at two more locations (u0 + u1)/2 and
(uK−1 + uK)/2. The corresponding function values can (with some
luck) be estimated from the other data. We now relabel our data to
(u′

0, v
′
0), . . . , (u

′
K+2, v

′
K+2).

As usual, we set up a linear system of equations:⎡
⎢⎢⎣

N3
0 (u′

0) · · · N3
K+2(u

′
0)

...
...

N3
0 (u′

K+2) · · · N3
K+2(u

′
K+2)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d0

...
dK+2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v′0
...

v′K+2

⎤
⎥⎥⎦ (8.13)

This linear system has mostly zero entries—only near the diagonal
are there nonzero entries. Such systems typically behave in a very
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5 10 15 20

0.25

0.5

0.75

1

1.25

1.5

Figure 8.11. Spline interpolation: unwanted oscillations.

stable way. If we compare the condition number of this interpolation
approach to that of polynomial interpolation, the difference is strik-
ing. For example, the coefficient matrix corresponding to the data
from Figure 8.10 has condition number 5.0!

The left graph of Figure 8.10 shows an example of a cubic spline
interpolant with knot sequence 0, 2, 4, 8, 12, 16, 18, 20. As you can
see, the interpolant is too far from the data around t = 13. Adding
another function value at t = 13.5 resolves the problem; see the right
graph of Figure 8.10.

But even spline interpolation has its problems: Figure 8.11, the
data suggest a convex curve, but the spline exhibits some oscilla-
tions, which are most likely unwanted. Even adding more data
is no safe cure for situations like this. More specialized methods
exist to handle such cases, but they are beyond the scope of this
book.

Finally, we must include a word on the “trick” of adding data at
u′

1 = (u0 + u1)/2 and u′
K+1 = (uK−1 + uK)/2. What are the corre-

sponding function values v′1 and v′K+1? One way to estimate them is
by fitting a quadratic to the three data pairs (u0, v0), (u1, v1), (u2, v2)
and to evaluate that quadratic at u′

1. This gives the desired v′1. The
value v′K+1 is found analogously.

Many algorithms do not estimate additional function values at
the two ends, but instead estimate slopes at u0 and uK . Those slopes
are then entered into the linear system—we do not pursue this kind
of end condition here.
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8.7 B-Spline Least Squares Approximation

B-splines may also be used in the context of least squares approxi-
mation. Our set of B-splines is fixed once we pick a knot sequence
u0, . . . , uK . We are given data (ti, vi); i = 0, . . . , L (with L > K) and
obtain an overdetermined linear system:

⎡
⎢⎢⎢⎢⎢⎣

N3
0 (t0) · · · N3

K+2(t0)
...

...
...

...
N3

0 (tL) · · · N3
K+2(tL)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

d0

...
dK+2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

v0

...

...
vL

⎤
⎥⎥⎥⎥⎥⎦ . (8.14)

We solve this for the unknown d0, . . . , dK+2 exactly as we did in the
polynomial least squares setting. B-splines are a particularly nice
choice for basis functions for the following reason: the coefficient
matrix in (8.14) is sparse, meaning that most entries are 0. To see
why, simply take any row i of the matrix. Its entries are the values

5 10 15 20
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5 10 15 20
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Figure 8.12. B-spline least squares approximations with ui = 0, 4, 8, 12, 16, 20
(top left); ui = 0, 2, 4, 6, 8, 12, 14, 16, 18, 20 (top right); and the addition of knot
u1 = 1 (bottom).
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for all B-splines at ti. But at ti, most of these B-splines will be zero!
In fact, at most four (cubic) B-splines will be nonzero at any ti.

Now let’s look at some examples. Again, we use the function

f(t) =
√

t + 0.1 sin t,

where the sine function uses radians for its argument. We pick 20
uniform values t0 = 1, . . . , t19 = 20. We first try the uniform knot
sequence 0, 4, 8, 12, 16, 20. The resulting least squares fit is shown
in Figure 8.12 (top left). We improve our result by increasing the
elements in the knot sequence to 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
which produces Figure 8.12 (top right). This fit is much improved,
but is still not perfect near t = 0. (You’ll have to look hard to spot
this!) We add one more knot at t = 1, and now we obtain an even
better result, shown in Figure 8.12 (bottom).

Typically, the more knots in the knot sequence, the better the
fit. But how many knots? As a rule, if we have about 2 to 5 knots
in each interval [ui, ui+1], then we should get a decent fit without
using too many knots.

8.8 Integrals and Derivatives

Integrals and derivatives were introduced in Sections 7.3 and 7.4,
respectively. In most practical cases, integrals and derivatives are
not computed symbolically because many times this is impossible or
too tedious; rather, a numerical approach is taken. For both cases,
a standard approach is to use some data fitting technique and then
to perform the desired operation based on it.

Let’s start with integration, the more benign process of the two
that we cover in this section. We saw how to approximate a function
f by a piecewise linear function in Section 8.2. The approximating
polygon consists of points (xi, yi); i = 0, . . . , N , where yi = f(xi).
We may form a trapezoid Ti for any two subsequent xi, xi+1, given
by the four points

(xi, 0), (xi, yi), (xi+i, yi+1), (xi+1, 0).

The area Ai of Ti is given by

Ai = (xi+1 − xi)
yi + yi+1

2
.
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The sum of all these areas is an approximation of the area formed by
f over the interval [x0, xN ] (see Figure 8.13). This is a fairly robust
method, and much more efficient than the histogram approach of
Section 7.3.

Figure 8.13. The trapezoid rule for integration.

Simpson’s rule uses piecewise quadratic interpolation instead of
piecewise linear interpolation. Consider three consecutive values
xi−1, xi, xi+1 with equal spacing h and their corresponding function
values. These three data points may be fitted by a quadratic polyno-
mial as shown in Section 8.3 and Figure 8.14. Explicitly integrating
that polynomial gives

Si =
h

3
[yi−1 + 4yi + yi+1]

for the area under the polynomial from xi−1 to xi+1. If N is even,
then there are N/2 areas Si. Their sum is the desired integral.

Simpson’s rule is more costly to compute than the trapezoidal
rule, but the benefit is higher accuracy.

xi-1 xi xi+1

yi-1

yi+1

h h

Figure 8.14. Simpson’s rule.
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2 1 1 2

2

1

1

2

Figure 8.15. Graph of function f(x) = 1
10

x + 1
7

cos(3x3) + 1
4
x3; − 2 ≤ x ≤ 2.

Let us now turn to derivatives, which pose more numerical diffi-
culties. Suppose we have function values yi−1, yi, yi+1 at xi−1, xi, xi+1,
respectively. How can we use these to estimate a derivative at xi?
Let us assume the x-values are equally spaced with distance h, and
furthermore that h is small. A decent approximation for the slope
at xi is then given by

y′i =
yi+1 − yi−1

2h
.

In theory, the smaller the h, the better the estimate. But for very
small h, we are close to y′i = 0/0, and that needs to be avoided!

Sometimes second derivatives y′′i are needed. We reuse Figure
8.14. We compute the quadratic polynomial through yi−1, yi, yi+1.
This time, we differentiate it twice and find

y′′i =
yi+1 − 2yi + yi−1

h2
.

8.9 Problems and Experiments

For several of the following problems, we will use the function

f(x) =
1
10

x +
1
7

cos(3x3) +
1
4
x3; −2 ≤ x ≤ 2,

which is graphed in Figure 8.15.

1. Experiment with interpolating polynomials to recapture f . Use
various degrees and knots. Comment on your efforts. In par-
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ticular tell how you can or cannot capture f ’s shape details
versus its global shape.

2. Repeat with polynomial least squares approximation.

3. Repeat with B-spline interpolation.

4. Repeat with B-spline least squares approximation.

5. Equation (8.6) uses the somewhat arbitrary constant 0.1. Ex-
periment with different choices.

6. Experiment with combatting outliers using B-spline least
squares.
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Computing Dynamic
Processes

A dynamic process is a phenomenon that changes its attributes over
time. Most dynamic processes are modeled by using ordinary differ-
ential equations (ODEs), which were invented to model the rate of
change of a phenomenon. There are two ways to attack ODEs: sym-
bolically or numerically. For most real-life problems, there are no
symbolic solutions, and thus we concentrate on numerical methods.

9.1 Background

We start with a simple example. One of the oldest models to study
population growth goes back to T. Malthus around 1800. Malthus
was interested in predicting human population size over many years.
He invented a simple model, which states that population grows
at a rate proportional to the existing population.1 If p(t) denotes
population at a given time t, then p′(t) is the rate of change at that
time—for example, if p′(t) = 0, then population does not change at
time t. Thus

p′(t) = c · p(t), (9.1)

where some constant c depends on the population at hand (since
some grow faster than others). If we know the population at some

1This is not terribly realistic, and much more sophisticated and complicated
models exist now.

109
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Figure 9.1. Slope fields and ODEs, for which the initial value is a filled circle.
A slope field (top left) is shown with a solution defined by an initial value (top
right) and two different solutions defined by two different initial values (bottom
left). For a different slope field, two very close initial values may result in very
different solutions (bottom right).

time t0 (called the initial value), then (9.1) allows us to compute
the population at any other time t—we’ll soon see how. Because we
start from a known value p0, this type of ODE is also known as an
initial value problem.

Now consider a coordinate system with horizontal axis t and
vertical axis p. For every pair (t, p), (9.1) gives a slope p′(t). This
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slope (recall: slope=rise/run) may be plotted as a short line segment
having slope p′(t). Higher slopes result in steeper line segments. To
visualize what is going on here, let us plot our short line segments at
a finite array of points (ti, pj). We get an image similar to the one
in Figure 9.1 (top left). There, we picked c = 1 in (9.1). Note that
for constant p, all slopes are identical!2

How is this slope field related to solving (9.1)? Figure 9.1 (top
right) illustrates that if we pick any starting point, such as (0, 1) in
the figure, there is a unique function through that point having slopes
determined by the slope field. If we pick another starting point, then
that same slope field will give us another function. Figure 9.1 (bot-
tom left) shows two different starting points and the corresponding
functions.

Intuitively, then, if we have a slope field generated by an ODE
and if we have a starting point, there is a function through it with
the required slopes. Next, we turn this observation into algorithms.

In (9.1), only the first-order derivative p′ is used; thus, this is
called a first-order ODE. If derivatives of order r are involved, we
speak of rth-order ODEs.

Of course, most ODEs will not be as simple as (9.1). Let’s look
at another example: p′(t) = p − 0.4t2. Figure 9.1 (bottom right)
shows the corresponding slope field and two solutions corresponding
to different initial values. Note here how close the initial values are
and how different the corresponding solutions are!

9.2 Euler’s Method

Let us now label our coordinate system by using the standard x, y
notation. An ODE associates a slope y′(x) with every point (x, y),
just as we saw in Figure 9.1. This slope (in general) is described by
a function f of x and y:

y′(x) = f(x, y). (9.2)

In our example (9.1), we had

y′(x) = c · y(x);
2This is true for this example, but not in general.
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xi xi+1h

yi
yi+1

Figure 9.2. Euler’s method: starting from (xi, yi), we move in the tangent direc-
tion to find (xi+1, yi+1). Note how the true value (solid circle) is missed by the
approximation (hollow circle).

thus, f(x, y) = c · y(x). We also have one function value: y(x0). The
idea is to trace the solution in the slope field by stepping along the
x-axis and computing appropriate approximations to y(x). We step
using a step length h; this generates a sequence x0, x1, x2, . . ., with

xi = x0 + ih. (9.3)

We then have to compute the corresponding y-values, yi = y(xi).
At the starting point (x0, y0), we know the function value y0 and

also the derivative y′(x0) = f(x0, y0) from (9.2). We approximate
y(x) by its tangent at x0 and use this approximation to compute
y(x1). The tangent at x0 is a linear function of x and is given by

t(x) = y(x0) + f(x0, y0) · (x − x0).

Choosing a “reasonably small” value for h, we step to x1 = x0 + h
from the relationship in (9.3). Next, evaluate at x1 and use the result
as an approximation for y(x1):

y(x1) = y(x0) + hf(x0, y0).

Continuing on, we have

yi+1 = yi + hfi, (9.4)

where we set fi = f(xi, yi). We have generated a sequence of points
(xi, yi), which ideally are samples from our unknown function y(x).
Figure 9.2 shows the geometry behind the construction.

Now it’s time for an example! Let’s take the ODE y′ = y with
initial value y(0) = 1.3 We are interested in finding values for y over

3Of course, we have an exact solution y = ex for this simple ODE, but we will
not make use of that fact.
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Figure 9.3. Euler’s method, using 10 steps (left), and using 30 steps (right). The
exact solution is shown in gray.

the interval [0, 2]. Figure 9.3 shows what happens if we run Euler’s
method with 10 and 30 steps, respectively. The ten-step result is
very poor; increasing the number of steps from 10 to 30 (thus using
a smaller h) significantly improves the solution, although it is clearly
not perfect.

It turns out that Euler’s method is simply too crude to be of
practical value. However, it does nicely illustrate the principle of
approximating a solution to an initial-value problem.

9.3 Heun’s Method

Euler’s method is a predictor method: at each xi, it predicts a new
value yi+1, uses it, and then proceeds from there. We have seen
that the prediction is not always wonderful, and some more caution
might be called for. That is what predictor-corrector methods do:
they inspect the newly found yi+1 and use that information to rerun
the prediction step.

A simple example is Heun’s method. It computes yi+1 from the
Euler step (9.4). It then computes the slope fi+1 at (xi+1, yi+1)—
but not to carry out the next Euler step! Instead, it readjusts the
slope fi by averaging it with fi+1. Thus a Heun step is given by

yi+1 = yi +
1
2
h(fi + fi+1). (9.5)

We test for our simple example y′ = y, using 10 points in the
interval [0, 2] and an initial value y(0) = 1. The result is shown in
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Figure 9.4. Heun’s method with 10 steps. Exact solution: gray.

Figure 9.4. It is nearly perfect compared to that shown in Figure
9.3 using Euler’s method.

For another comparison, we use the function f(x, y) = y− 0.4x2.
Figure 9.1 (bottom right) shows two solutions corresponding to ini-
tial values (−2, 0.7) and (−2, 0.76). Let’s use the second one and see
how Heun’s and Euler’s solutions compare with 50 sampled points.
As Figure 9.5 shows, Heun’s method (top) generates a set of points
very close to the solution, but Euler’s method (bottom) gets lost in
the slope field!
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2

Figure 9.5. Heun’s method (top) versus Euler’s method (bottom). The exact
solution is shown in gray.
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9.4 Boundary Values

We have so far been concerned with ODEs of the form

y′(x) = f(x, y).

More general ODEs exist that involve higher derivatives. The next
level up thus looks like this:

y′′(x) = g(x, y, y′),

with an example being

y′′(x) = y + y′ − x2.

We concentrate here on linear ODE’s having the form

y′′(x) = p(x)y′(x) + q(x)y(x) + r(x). (9.6)

Instead of prescribing an initial value y′(x0), we now prescribe two
values:

y(a) = y0 and y(b) = yn

for some integer n. The result of the finite difference method is a
sequence of points (x0, y0), (x1, y1), . . . , (xn, yn). As usual, we space
our x-values uniformly: xi+1 − xi = h.

We utilize the following two approximations for first and second
derivatives:

y′(xi) ≈
yi+1 − yi−1

2h
, y′′(xi) ≈

yi−1 − 2yi + yi+1

h2
. (9.7)

Inserting these approximations into (9.6) gives

yi−1 − 2yi + yi+1

h2
= pi

yi+1 − yi−1

2h
+ qiyi + ri. (9.8)

As usual, subscripts i denote evaluation at xi.
We multiply through by h2:

yi−1 − 2yi + yi+1 = hpi
yi+1 − yi−1

2
+ h2qiyi + h2ri
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Figure 9.6. A boundary value problem. The given boundary data points are
shown in black.

and rearrange to get

(1+
h

2
pi)yi−1−(2+h2qi)yi+(1−h

2
pi)yi+1 = h2ri; i = 1, . . . , n−1.

(9.9)
For the first (i = 1) and last (i = n − 1) equations, y0 and yn

are known and will be moved to the right-hand side. We then have
n− 1 unknowns y1, . . . , yn−1, and there are n− 1 equations in (9.9);
thus, we have a linear system for the yi. Using the abbreviations

ai = 1 +
h

2
pi, bi = −(2 + h2qi), ci = 1 − h

2
pi,

we have the matrix form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1

a2 b2 c2

a3 b3 c3

. . .

an−2 bn−2 cn−2

an−1 bn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...

yn−2

yn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2r1 − a1y0

h2r2

h2r3

...

h2rn−2

h2rn−1 − cn−1yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We arrived at a linear system of equations because we started
out with a linear ODE. For nonlinear ODEs, we would have to solve
a nonlinear system of equations. Unfortunately, even in the linear
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case, a solution does not always exist; obviously, this depends on the
behavior of the functions p, q, r.

The basic geometry of a boundary value problem is illustrated in
Figure 9.6.

9.5 ODEs and Dynamical Systems

In Section 9.1, we looked at slope fields. Now, we will general-
ize that concept to vector fields. A vector field assigns a vector
[v(x, y), w(x, y)]T to every point [x, y]T in the x, y-plane. As an ex-
ample, we may use a vector field to describe the velocity vector of a
hurricane at any given point in its path. Figure 9.7 shows an image
of Hurricane Katrina. Velocity vectors follow the spiraling-inward
behavior of hurricanes.

Figure 9.8 shows a vector field. One way of interpreting it is as
an image of a fluid in motion.

In Section 9.1, we studied how a simplified population model
led to an ODE. We will now look at a much more sophisticated
model, one that models not one population, but two; this is the
so-called predator-prey model. To make things somewhat intuitive,

Figure 9.7. Hurricane Katrina. (Figure courtesy of NOAA.)
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Figure 9.8. A vector field.

we’ll consider one population of foxes and one of rabbits. The sizes of
these populations are interrelated in an intriguing way. For example,
many foxes will decimate the rabbits; on the other hand, a small
number of rabbits will result in fewer foxes due to lack of food.

The following system of ODEs (describing a dynamical system)
makes this more precise. At time t, we will have f(t) foxes and r(t)
rabbits. Here is a first model for how they interact:

r′(t) = r(t) − f(t)r(t), (9.10)
f ′(t) = −f(t) + f(t)r(t). (9.11)

Rabbits eat grass, and so as long as they do not fall victim to the
foxes, they multiply. Hence the r(t) term in (9.10). The −f(t)r(t)
models how the foxes diminish the rabbit population. Any time a
fox and a rabbit cross paths, the rabbit gets eaten. This may happen
in f(t) · r(t) ways.

As for (9.11), the −f(t) term reflects the fact the fox numbers
will decrease without rabbits around. However, if there are rabbits,
the f(t)r(t) term, while decreasing rabbit numbers, helps the fox
numbers.
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Figure 9.9. A solution to the predator-prey problem.

A more precise model, known as the Lotka-Volterra model, uses
additional constants; we selected suitable constants, resulting in

r′(t) = 2r(t) − 0.5f(t)r(t), (9.12)
f ′(t) = −f(t) + 0.9f(t)r(t). (9.13)

This is the vector field of Figure 9.8. A solution needs a starting
situation: for some time t = 0, the numbers f(0) of foxes and r(0) of
rabbits. Figure 9.9 shows a solution starting with r(0) = 5, f(0) = 2.
The horizontal axis shows the number of rabbits; the vertical one
shows the number of foxes.

Having a solution is important, but how do we interpret it? At
the beginning, we have more rabbits than foxes; that means plenty
of food for the foxes—their numbers grow. This is reflected in the
solution curve that grows in the f -direction as you follow the arrows
in the vector field. At some point, the number of foxes reaches a
peak, but now they have decimated the rabbits to an extent that
starvation triggers a steep decline in fox numbers. Consequently,
the number of rabbits increases, and we return to our initial state
and start all over again. If the solution exhibits this kind of stability,
it is known as a stable orbit.
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We are now ready to define a general dynamical system. It is
given by a vector equation⎡

⎢⎢⎣
x′

1(t)
...

x′
n(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f1(t, x1(t), . . . , xn(t))
...

fn(t, x1(t), . . . , xn(t))

⎤
⎥⎥⎦ , (9.14)

which we sometimes abbreviate to

x′(t) = f(t,x(t)). (9.15)

It is important to understand how the rabbit-fox equations fit this
mold!

Numerical solutions can be developed in much same way as for
ODEs. To illustrate the principle, we give the example of Euler’s
method. We have initial values x(t0) at t0 and plan to find a sequence
of points x(ti) (or for short, xi) that approximates the solution for
arguments ti. The derivative x′(t) of a vector function x(t) at ti may
be approximated by

x′
i =

xi+1 − xi

h

for some small value h. Recalling xi = f(t,xi) (or for short, fi), we
have

fi =
xi+1 − xi

h

and thus
xi+1 = xi + hfi.

Note the similarity of this equation with (9.4)! Although Euler’s
method is not the most accurate, it should show that “normal” ODEs
and systems of ODEs have similar numerical solution strategies.

9.6 Case Study: The Lorenz Attractor

In 1963, E. Lorenz set up a system of ODEs to model the behavior
of air over heated terrain. If x(t), y(t), z(t) describe the path of a
particle, then these functions satisfy a nonlinear, coupled system of
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Figure 9.10. The Lorenz attractor for y0 = 1.0 (left) and for y0 = 1.00001 (right).

ODEs:

x′(t) = a(y(t) − x(t)),
y′(t) = x(t)(b − z(t)) − y(t),
z′(t) = x(t)y(t) − cz(t).

The constants a, b, c are physical constants. A realistic choice is
a = 10, b = 28, c = 8/3. Figure 9.10 shows what happens for two
different initial conditions. Both examples in the figure start with
x0 = z0 = 0. Their initial y-values, however, are ever so slightly
different.

At first sight, the two resulting trajectories in Figure 9.10 look the
same, but upon closer inspection, we see they are not identical at all.
A tiny change in initial conditions caused very different trajectories—
a behavior that is typically referred to as chaotic.4 Neither trajectory
is stable: the particle moves from one orbit to the other but never
settles in. The Lorenz attractor can look stunningly beautiful—check
out the Internet for images, including applets!

4This is related to the “butterfly effect”: a butterfly flapping its wings could
(in theory) cause a tornado in another part of the world.
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9.7 Problems and Experiments

1. Experiment with different parameters in the Malthus equation
and comment on the results.

2. What type of ODE will produce the same results with Euler’s
and Heun’s methods?

3. Experiment with different Lotka-Volterra models in the context
of the rabbit-fox model. Can you design a model and choose
initial conditions so that one of the species takes over? In terms
of the ODEs, why or why not?

4. Frame the rabbit-fox model in terms of the general dynamical
system vector equation (9.14).

5. Experiment with the coefficients in the Lorenz attractor ODEs.
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Finding Roots

A simulation of a chemical process might involve a substance f in-
creasing during a process, and a substance g decreasing during the
same process. The process should be terminated once both sub-
stances have reached the same level. Both substance concentrations
are time dependent, so f = f(t) and g = g(t). Equilibrium is reached
at the time t when f(t) = g(t). Setting

y(t) = f(t) − g(t),

we are now looking for the root of y(t). The term “root” refers to
the zero-crossing of the function y, that is, to finding the value t for
which

y(t) = 0.

Of course, there could be more than one of those! For most “real-
life” situations, y’s zeroes will have to be found approximately, that
is to say, to the precision required.

10.1 The Piecewise Linear Approach

Here is a “quick-and-dirty” way for finding the roots of a function
y(x). Simply replace (approximate) y by a polygon {xi, yi}, i.e., by
a piecewise linear approximation, as shown in Figure 10.1.

Typically, an interval [a, b] for a likely zero is known, and an easy
choice for the xi is to distribute them evenly within the interval [a, b].

123
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Figure 10.1. A piecewise linear approximation of a function.

Then we check each polygon leg to see whether it crosses the x-axis:
this happens if yi · yi+1 < 0, meaning there is a sign change in the
function values. Then the zero x̂i is easily found from

−yi

x̂i − xi
=

yi+1 − yi

xi+1 − xi
.

This simple identity expresses the slope (rise/run) of the line segment
(xi, yi), (xi+1, yi+1) in two different ways; see Figure 10.2.

While simple, this method is also dangerous: it may require a
large number of function evaluations.1 It may also miss a zero, as
shown in Figure 10.3.

In many practical situations data are obtained from measure-
ments (ti, yi). If the piecewise linear data of Figure 10.3 are given
and zeroes need to be found, it is up to the skills of a user to make
an educated decision.

yi

yi+1
xi
^xi

Figure 10.2. Finding the zero of a line segment.

1Keep in mind that “function evaluation” might mean running a simulation
of a complex process, which can be extremely costly!
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Figure 10.3. Missing a zero.

10.2 The Newton-Raphson Method

Let’s suppose we have an educated guess about where a function
y(x) crosses the x-axis. If the guess is indeed good, then the Newton-
Raphson technique will produce a highly accurate solution
iteratively.

Let the guess x-value be x0. Typically, y(x0) �= 0, and an im-
provement is called for. The solution involves locally replacing y by
its tangent. The slope y′0 of this tangent is given by

y′0 =
y0

x0 − x1
, (10.1)

y0

x0 x1

Figure 10.4. A Newton-Raphson step.
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x0x1

y0

y1

Figure 10.5. Some iterations of the Newton-Raphson method.

where x1 denotes the tangent’s zero crossing. The value x1 should
be closer to y’s true zero than x0. We find it from (10.1):

x1 = x0 −
y0

y′0
. (10.2)

Figure 10.4 illustrates this step.
Having found x1, we continue this process, producing x-values of

x2, x3, . . . until we are close enough to the desired zero. Figure 10.5
illustrates some iterations.

We do have to discuss a big caveat in our approach, though: x0 is
supposed to be “close” to the desired zero. This is not guaranteed, so
we may find ourselves in situations such as that shown in Figure 10.6.
You might want to trace the individual steps!

As a rule, x0 should be close enough to the desired zero z such
that y is monotone between z and x0. If this is the case, convergence
is extremely fast, although, again it is not guaranteed!

x0

Figure 10.6. A failure of the Newton-Raphson method.
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y0

y1

x0 x1 x2

Figure 10.7. The secant method.

Derivatives are not always available. In such cases, the Newton-
Raphson method is changed to the secant method. We now assume
that we have two function values y0 and y1 at x0 and x1, respectively;
see Figure 10.7. We approximate the function y(x) by the secant
through the two given points and compute the zero x2 from

y0 − y1

x0 − x1
=

y0

x0 − x2
,

thus obtaining

x2 = x0 − y0
x0 − x1

y0 − y1
. (10.3)

The process is repeated until a solution is found. Note that
(x0 − x1)/(y0 − y1) in (10.3) is an approximation to the factor 1/y′0
in (10.2).

10.3 Case Study: Computing the Square Root

In most math classes, you will find that the quadratic equation

ax2 + bx + c = 0

has the exact solution

x =
−b ±

√
b2 − 4ac

2a
.

The problem is, there is no exact way to find the square root of a
number. Instead, one has to resort to approximations, and the most
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popular one for the square root problem is the Newton-Raphson
iteration. Suppose we want to find the (positive) square root of
some number a:

x =
√

a.

We square both sides to get x2 = a and realize that we are now
attempting to find the positive zero of the function

f(x) = x2 − a.

Next, let’s pick a starting value x0. We observe f ′(x) = 2x and
obtain the iterative procedure

xi+1 = xi −
x2

i − a

2xi
.

This will converge for any positive choice of x0. For a concrete
example, let’s take a = 2 and x0 = 1. We obtain the sequence

1
1.5
1.41667
1.41422
1.41421
1.41421,

thus quickly approaching the correct value for
√

2.

10.4 Bisection

In a situation where we know that f(a) and f(b) have different signs,
we know that there must be at least one zero of f in the interval [a, b].
We will create a sequence of intervals that eventually will converge to
a root of f . Take the midpoint c of [a, b]: it is given by c = (a+b)/2.
Then f(c) either is zero (within a tolerance) and we have found a
zero, or it will have a sign change with either f(a) or with f(b). We
take as our new interval [a, c] or [c, b] (the one with the sign change)
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and continue. At each step, the interval length is halved. After n
steps, we have an interval of length (b − a)/2n. If this is less than a
preassigned tolerance εx and the function values differ by less than
a tolerance εy, then the midpoint of the interval is taken to be the
root.

This method is very simple and robust. Although it is not very
fast, it is guaranteed to find a solution.

10.5 Case Study: Wilkinson Polynomials

During the 1950s and 1960s, computer-based numerical algorithms
started to appear. For many of them, scientists encountered prob-
lems, which we now understand in terms of roundoff errors and the
condition of an algorithm. A famous example of a simple problem
that is intractable numerically is due to J. Wilkinson.

Let
w(t) = (t − 1) · (t − 2) · . . . · (t − n)

be a polynomial of degree n with n real zeroes 1, 2, . . . , n. It is called
Wilkinson’s polynomial.

For our case study, we presented Mathematica with high-degree
(n = 100) versions of this polynomial and asked for the zeroes—they
were flawlessly found from the factored form. We then expanded
w(t) into the monomial form, and again asked to find the zeroes.
This time, however, from n = 23 on, incorrect complex zeroes were
found!

10.6 Problems and Experiments

1. Modify the algorithm in Section 10.3 to find cube roots; that
is, for a given x, find x1/3.

2. Experiment with the given square root algorithm. Check how
many new correct digits you obtain per step. Then implement
bisection. How many new correct digits do you get per step?

3. Repeat Problem 2 for the root of y = x4. You should notice a
much slower behavior of the Newton-Raphson method, caused
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�0.6 �0.4 �0.2 0.2 0.4 0.6
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0.2

Figure 10.8. A function with several roots.

by the presence of a multiple root at x = 0. What can you say
about the performance of the bisection method?

4. Figure 10.8 shows the function

f(x) = x4 + cos(40x)/40

over the interval [−0.7, 0.7]. Use any method you like to find
all roots in that interval.
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Computing with Multivariate
Functions

In this chapter, we focus on functions of more than one variable. Pri-
marily, the focus is on functions of two and three variables, called bi-
variate and trivariate functions, respectively. We look at derivatives
and integration over these functions, which are useful for volume cal-
culations. Also presented in this chapter are quadratic forms, which
are simple but special bivariate functions that appear frequently in
science and engineering applications. Continuing the discussion from
Section 10.2, we introduce a bivariate Newton-Raphson method for
finding intersections. We continue the discussion of PDEs as well,
and look at some special bivariate functions defined by them.

11.1 Bivariate Functions

A function assigns a value f(x) to the variable x; it maps an interval
of the real axis to the reals. More general types of functions solve
more general tasks: they assign function values to 2D points (x, y).
An example is a weather map displaying temperature as a function
of location (x, y). A more formal example is

f(x, y) = sin(x2 + y2).

131
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Figure 11.1. Plot of the function sin(x2 + y2) over −π/2 ≤ x ≤ π/2 and −π/2 ≤
y ≤ π/2. (left), and over 0 ≤ x ≤ π/2 and 0 ≤ y ≤ π/2 (right).

This type of function is known as a bivariate function because it
has two variables. A display of this function is shown in Figure 11.1,
plotted over two different domains.

One of the simplest bivariate functions is a linear one of the form

l(x, y) = ax + by + c.

This kind of function describes a plane. For any point (x, y), the
plane has its largest slope in the direction (a, b). Figure 11.2 shows

0.0

0.5

1.0 0.0

0.5

1.0�1.0
�0.5
0.0

0.5

1.0

Figure 11.2. The plane l(x, y) = 1 − x − y.
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the plane l(x, y) = 1 − x − y. Its largest slope is in the
direction (−1,−1).

We next discuss the concept of derivatives. For simplicity, we
assume our function f is defined over the unit square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. Let y = c be a straight line parallel to the x-axis. If we
restrict f to this line, we obtain a univariate function f(x, c), which
we can differentiate with respect to x. This gives the tangent to the
curve at (x, c), which is shown in Figure 11.3. The slope of f(x, c)
is written as

∂f(x, c)
∂x

or fx(x, c),

which is called a partial derivative of f(x, y). In the same manner,
we can obtain slopes in the y-direction.

In the univariate case, the tangent vector at (x, f(x)) is given by
(1, f ′(x)). In the bivariate case, it makes sense to speak of a tangent
plane at the point (x0, y0, f(x0, y0)). The tangent plane is a linear
function l(x, y) of x and y such that

l(x, y) = f(x0, y0) + (x − x0)fx(x0, y0) + (y − y0)fy(x0, y0). (11.1)

This plane has its steepest slope in the direction (fx(x0, y0),
fy(x0, y0)). Since the tangent plane locally approximates the func-
tion f , it follows that f also has its steepest slope in that direction.
This leads to the definition of the gradient ∇f :

∇f = (fx, fy). (11.2)

z

x

Figure 11.3. Geometry of a partial derivative.
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Figure 11.4. A function (upper) and a tangent plane (lower). The point of
contact is marked.

We can thus shorten (using x = (x, y)) the tangent plane equation
(11.1) to

l(x) = f(x0) + ∇f(x0) · (x − x0). (11.3)

Figure 11.4 shows an example of a function and a tangent plane.
The function is f(x, y) = x2 + y2. The tangent plane at (x0, y0) =
(1, 1) is given by

l(x, y) = f(1, 1) + ∇f(1, 1) ·
[
x − 1
y − 1

]
= −2 + 2x + 2y.

A function has a minimum at some point (x0, y0) if its gradient
is the zero vector: ∇f(x0, y0) = (0, 0). This states that the tangent
plane at (x0, y0) is parallel to the x, y-plane and thus agrees with our
intuitive concept of a minimum.

Figure 11.5 shows the gradients associated with a bivariate func-
tion. Note the vanishing gradient in the center, corresponding to a
horizontal tangent plane of f .

Integrals are also defined for bivariate functions. We restrict
ourselves to functions that are defined over a rectangle R : a ≤
x ≤ b, c ≤ y ≤ d. Let us assume we have x-values x0, . . . , xM with
spacing given by Δxi = xi+1 − xi, and that x0 = a and xM = b.
Similarly, assume we have values y0, . . . , yN on the interval [b, c].
These two partitions generate a rectangular grid on the rectangle
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Figure 11.5. The function f(x, y) = sin(x−y) (left) and its gradient field (right).

R. We associate f(xi+1, yj+1) with the grid cell whose side lengths
are Δxi and Δyj. The volume over this cell is given by area times
height: ΔxiΔyjf(xi+1, yj+1). If we sum over all these volumes, we
get an approximation for the volume under the surface:

V =
M−1∑
i=0

N−1∑
j=0

ΔxiΔyjf(xi+1, yj+1) (11.4)

in complete analogy to the area calculation using (7.3).
Again, taking the limit M,N → ∞, the double sum converges to

a double integral

V =
∫ b

a

∫ d

c
f(x, y)dxdy. (11.5)

11.2 Bilinear Interpolation

In the field of Geographic Information Systems (GIS), satellite data
are frequently acquired on a rectangular grid. For a small area (say,
the size of most US states), we may safely ignore Earth’s curvature
and work with a planar rectangular grid. At each 2D grid vertex
xi,j, we are given an altitude zi,j . For some applications, it may be
necessary to find altitudes for points other than the given xi,j. This
problem is solved by bilinear interpolation.
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a b

c

d
y

x

Figure 11.6. Bilinear interpolation: 2D configuration (left) and 3D graph for a
given set of z-values (right).

In Section 7.1, we encountered linear interpolation for functions
of one variable. Now we need the analogue for functions of two
variables. As illustrated in Figure 11.6, we are given four 2D points[

(a, c) (b, c)
(a, d) (b, d)

]
and function values

[
za,c zb,c

za,d zb,d

]
,

and we ask, for a given 2D point (x, y), what is a reasonable estimate
for its function value z? The answer is

z =
[

b−x
b−a

x−a
b−a

] [za,c za,d

zb,c zb,d

][
d−y
d−c
y−c
d−c

]
. (11.6)

In order to make sense of this, check that (x, y) = (a, b) yields za,b,
and continue for the three remaining points. As a requirement of
linear interpolation, the coefficients for interpolation in the x- and
y-directions must sum to one. Breaking down (11.6), we see it is
equivalent to three linear interpolation steps. For instance, multi-
plying the first and second matrix results in

z1 =
b − x

b − a
zac +

x − a

b − a
zbc and z2 =

b − x

b − a
zad +

x − a

b − a
zbd.

Then the final function value is computed as

z =
d − y

d − c
z1 +

y − c

d − c
z2.

Alternatively, we could compute two function values in the
y-direction first.



�

�

�

�

�

�

�

�

11.3. Quadratic Forms 137

Figure 11.7. Three quadratic functions (top), defined (from left to right) by the
matrices A1, A2, and A3, respectively, and their contours (bottom).

11.3 Quadratic Forms

An important yet simple class of bivariate functions are the quadratic
forms. They are of the form

q(x) = xTAx + c (11.7)

where xT = [x, y] and A is a symmetric matrix. We quickly see that
(11.7) indeed is a quadratic function of two variables x and y by
rewriting:

q(x) = a1,1x
2 + 2a1,2xy + a2,2y

2 + c.

We already encountered such a function in Figure 11.4.
The constant c affects the z-elevation of the function; it does not

influence its shape. Shape is determined by the matrix A. Figure
11.7 shows three quadratic functions defined by the matrices

A1 =

[
3 0.5

0.5 1

]
, A2 =

[
1 −2
−2 1

]
, A3 =

[
2 0
0 0

]
.

The eigenvalues of the matrices are 3.1, 0.89 for A1; 3,−1 for A2;
and 2, 0 for A3. For A1, we also note that its dominant eigenvector
is [0.97, 0.23]T . It is in this direction that the highest rate of change
takes place.

The eigenvalues of the matrices are key to understanding the
shape of the functions. If all eigenvalues are positive, then A is
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called positive definite. Quadratic forms generated by positive defi-
nite matrices always have exactly one minimum. Thus the quadratic
form corresponding to A1 has one minimum, the one corresponding
to A2 has none, and the one corresponding to A3 has infinitely many
minima.

Another important aspect of quadratic forms is the shape of
the surface defined by (11.7). We see that A1 produces an elliptic
paraboloid, A2 produces a hyperbolic paraboloid, and A3 produces
a cylindrical paraboloid.

Quadratic forms are not limited to 2 × 2 matrices, however. In-
deed, (11.7) defines a quadratic form for any number of variables1 if
A is a symmetric n × n matrix. If A has positive eigenvalues, then
the quadratic form has exactly one minimum.

11.4 Contouring

Bivariate functions have zeroes just as univariate functions do. The
difference is that the zeroes of univariate functions are distinct points,
whereas bivariate functions have curves as their zero sets. These
curves are the intersections with the plane z = 0 and the graph
z = f(x, y) of the function f . Often one is interested in the inter-
sections with other planes z = c as well, resulting in curves that are
called isolines or contours. More precisely, if we have a bivariate
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Figure 11.8. Contour plot styles: contours (left), shaded contours (middle), and
density plot (right).

1That is, x = [x1, . . . , xn]T.
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function f(x, y), then an isoline is the set of all points (x, y) that
satisfy the equation

f(x, y) = c (11.8)

where the constant c defines the desired isolevel. This equation does
not necessarily describe just one curve; there can be many!

Figure 11.8 shows a set of different contours of the function of
Figure 11.1. The middle and right contours contain shading infor-
mation: white corresponds to large function values, and black cor-
responds to low function values. The plots were generated with
Mathematica’s ContourPlot function. Looking carefully near the
borders, we see that the contours appear to be wrong—they all
should be exact circles! For now, let’s accept this; we explore this
problem further and just how bivariate contours are computed in
Section 14.3.

The contours of two bivariate functions f(x, y) and g(x, y) are
shown in Figure 11.9. In the x, y-plane, the intersection of the func-
tions is given by all points (x, y) with f(x, y) − g(x, y) = 0, as illus-
trated in the right part of the figure.

We will continue to explore this valuable tool. A case study
for contouring is provided in Section 14.4. Contours of trivariate
functions are explored briefly in Section 11.7, and then in more detail
in Section 15.2.

�2 �1 0 1 2
�2

�1

0

1

2

Figure 11.9. Two intersecting bivariate functions (left) and the zero contour of
the difference between these functions (right).
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11.5 The Newton-Raphson Method

Let’s consider two functions f1(x, y) and f2(x, y). The zero (c = 0)
contour of f1(x, y) is a curve in the x, y-plane, and the zero contour
of f2(x, y) is also a curve in the x, y-plane. At points (xi, yi) where
both curves intersect, both f1 and f2 are zero. Finding these common
zeroes of two functions is typically formulated as[

f1(x, y)
f2(x, y)

]
=

[
0
0

]

or, more concisely, by
f(x) = 0.

For example, let’s consider

f(x) =

[
x2 + y2 − 1
xy − 0.5

]
=

[
0
0

]
= 0.

The first equation, f1(x, y) = x2+y2−1, describes a paraboloid. The
second equation, f2(x, y) = x+ y, describes a hyperboloid. The zero
contour of f1 is a circle, the zero contour of f2 is a hyperbola. Where
do these two curves intersect? This problem is solved by the bivari-
ate Newton-Raphson method. (The univariate Newton-Raphson was
discussed in Section 10.2.) Suppose we have a guess of x0 for such
an intersection point. This point will give us two function values,
namely f1(x0) and f2(x0). In the spirit of the Newton-Raphson
method, we will replace the functions f1 and f2 by linear approxi-
mations, the tangent planes. Each of the tangent planes intersects
the x, y-plane in a line, and the intersection of these lines will be our
next guess, x1.

The tangent plane of f1 at x0 is given by the equation

l1(x) = f1(x0) + ∇f1(x0) · (x − x0),

and the tangent plane of f2 at x0 is given by the equation

l2(x) = f2(x0) + ∇f2(x0) · (x − x0).

The tangent plane of f1 intersects the x, y-plane in the straight line
l1(x) = 0, and that of f2 in the straight line l2(x) = 0. The in-
tersection of these two straight lines yields our next point, x1. By
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combining the two equations above into a more concise notation, we
get

0 = f(x0) +

[
∇f1(x0)
∇f2(x0)

]
· (x1 − x0),

and striving for even more conciseness, we define

J(x0) =

[
∇f1(x0)
∇f2(x0)

]
=

[
∂f1(x0)

∂x
∂f1(x0)

∂y
∂f2(x0)

∂x
∂f2(x0)

∂y

]
. (11.9)

The 2 × 2 matrix J(x0) is the Jacobian matrix of f at x0. We now
have

0 = f(x0) + J(x0) · (x1 − x0),

and solve for x1:

x1 = x0 − J−1(x0) · f(x0). (11.10)

We must keep in mind that this “solution” may not exist: as
an example, we consider the case of both tangent lines l1(x0) and
l2(x0) being parallel. This would mean that the two gradient vectors
∇f1(x0) and ∇f2(x0) are parallel. Then there is no intersection. But
as long as an intersection exists, and if x0 is close to the final solution,
we may repeat (11.10) as

xi+1 = xi − J−1(xi) · f(xi) (11.11)

until we converge to a solution x. This process is illustrated in Figure
11.10.

x0
x1

x2

x

Figure 11.10. An example of a few Newton-Raphson steps.
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11.6 Partial Differential Equations

Let’s consider the following scenario. We have four metal wires form-
ing four curves, as shown in Figure 11.11 (left). We are trying to
model a soap bubble that would be created by immersing the wires in
a soap solution and pulling them out. A reasonable outcome would
look like the surface shown in Figure 11.11 (right). Let us investigate
that figure a little, trying to find the method to produce it. The sur-
face in Figure 11.11 represents a bivariate function f(x, y). At any
point, it is convex up in one direction and convex down in the other.
This means that at every point, fxx and fyy have opposite signs. In
fact, for our problem, they need to be equal in magnitude, leading
to

fxx(x, y) + fyy(x, y) = 0. (11.12)

This is a partial differential equation—partial because it involves
partial derivatives—and it is called Laplace’s equation.

Let’s assume our function is defined over the unit square 0 ≤
x, y ≤ 1. Our input data are the four boundary curves; they are

f(0, y), f(x, 0), f(1, y), f(x, 1).

These input functions are called boundary conditions.
In order to solve the Laplace problem, we put an (n+1)×(n+1)

grid of points (xi, yj) on the unit square. The number n is referred
to as the resolution of the grid. We assume uniform spacing h in
both the x- and the y-direction. We abbreviate fi,j = f(xi, yj).

We now need to discretize (11.12). For this you should recall
that second derivatives are approximated by second differences (see
Section 8.8), and thus we have

fxx(xi, yj) ≈
1
h2

[fi+1,j − 2fi,j + fi−1,j],

fyy(xi, yj) ≈
1
h2

[fi,j+1 − 2fi,j + fi,j−1].

The first of these equations is a second difference in the x-direction,
the second one is in the y-direction.

Using these discretizations, Laplace’s equation becomes

fi+1,j − 2fi,j + fi−1,j + fi,j+1 − 2fi,j + fi,j−1 = 0.
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Figure 11.11. Solving Laplace’s equation: input data (left), solution after 20
iterations (middle), and solution after 150 iterations (right).

Solving for fi,j yields

fi,j = [fi+1,j + fi−1,j + fi,j+1 + fi,j−1]/4. (11.13)

This is more conveniently written using an update mask:

fi,j =
0 0.25 0

0.25 • 0.25
0 0.25 0

. (11.14)

We now have a way to solve the discrete Laplace problem. Start
by assigning values fi,j = 0 except for those on the four boundaries—
this is the situation depicted in Figure 11.11 (left). Then, looping
over all 1 ≤ i, j ≤ n− 1, we use (11.13) as an update for fi,j. Having
finished one update cycle, we continue with more. An intermediate
result of this iterative process is also shown in Figure 11.11 (middle).
Repeating sufficiently many times will converge to the final solution,
again in Figure 11.11 (right).

Some discussion seems in order here. Our update process was
really nothing other than solving a linear system of equations by
using the Gauss-Seidel iteration, which was introduced in Section
5.6. There are (n−2)× (n−2) equations of the form (11.13). These
equations linearly involve the (n − 2) × (n − 2) unknowns as well
as the known boundary values. Thus we have a linear system with
(n− 2)× (n− 2) equations in as many unknowns. Instead of solving
it by using Gauss elimination, the iterative Gauss-Seidel method is
a more natural choice.



�

�

�

�

�

�

�

�

144 11. Computing with Multivariate Functions

Figure 11.12. A different Laplace problem.

We have not touched upon some practical issues: What should
the grid spacing h be? How many update cycles do we need?2 These
are questions that often depend on the application at hand and will
not be covered here.

Let’s consider another example of the discrete Laplace problem.
The boundary curves in our examples so far have all all been identi-
cal; however, this is not generally so. Figure 11.12 gives a different
example.

PDEs are not limited to the case of Laplace’s equation. Any
relationship between partial derivatives of a bivariate function plus
some known data of the function qualifies as a PDE. We give one
more example, the Euler-Lagrange PDE, given by

fxxyy = 0 (11.15)

together with boundary conditions just as for Laplace’s equation.
Again, an iterative solution is obtained by discretizing (11.15). For
each 3 × 3 subgrid, we take second differences for all three rows
and then the second differences of the resulting three values. This
leads to the following update mask; the solution is again obtained
iteratively:

fi,j =
−0.25 0.50 −0.25
0.50 • 0.50
−0.25 0.50 −0.25

. (11.16)

2For the example in Figure 11.11, we used h = 0.03 and 150 iterations for the
final answer.
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Figure 11.13. Solving the Euler-Lagrange equation: a very close approxima-
tion to the true solution after 600 iterations over a 10 × 10 grid (left), and the
approximation after 600 iterations using a 30 × 30 grid (right).

Figure 11.13 gives an example. The boundary conditions are
the same as in Figure 11.11. Figure 11.13 illustrates that speed of
convergence is an issue. In the left part of the figure, we used 600
iterations over a 10×10 grid and obtained a very good approximation
to the true solution. In the right part, we see that 600 iterations are
totally inadequate for a 30 × 30 grid! As a rule, a preset number of
iterations is not a good idea. We should instead employ a stopping
criterion, such as stopping when the change between two successive
iterations is below a preset tolerance. This applies to all iterative
methods, not just this specific example.

11.7 Trivariate Functions

A trivariate function is of the form

w = f(x, y, z). (11.17)

Trivariate functions cannot easily be visualized with plots such as
in Figure 11.1 since their graphs “live” in four dimensions (4D).
To better understand the nature of these functions, let’s look at an
example. A room in a building can be equipped with a coordinate
system such that each point in it is assigned a coordinate triple
(x, y, z). Let’s further assume we can measure the temperature t at
each point. Then t(x, y, z) is the trivariate function describing the
temperature distribution in the room.
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Figure 11.14. Example of a contour plot of a trivariate function.

Finding all points in the room where the temperature has a con-
stant value c leads to the problem of contouring. A contour of a
trivariate function is a set of bivariate surfaces, given by f(x, y, z) =
c. For example, w = x2 + y2 + z2 describes a 4D paraboloid. Its
contour x2 + y2 + z2 = c describes a sphere, centered at the origin.
Finding contours of general trivariate functions is a tricky problem;
see Section 15.2 for a solution.

A contouring example is shown in Figure 11.14. The trivariate
function is

w = sin 8x sin 8y sin 8z.

The contour value is w = 0.45. Try to make sense of the complex
pattern!

Trivariate functions are differentiated in total analogy to bivari-
ate ones. For example, the gradient ∇ is given by

∇f(x, y, z) = (fx, fy, fz).

For any point (x, y, z), it represents the vector pointing in the direc-
tion in which f changes the most. For the example w = x2 +y2 +z2,
we have

∇w = (2x, 2y, 2z).
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An important trivariate function is the trilinear interpolant. It
takes eight scalar values, given at the vertices of a cube, and finds a
scalar value at any location inside the cube. Denote the cube vertices
by v0,0,0 = (a, b, c), v1,0,0 = (a, b, d), . . . ,v1,1,1 = (d, e, f), and the
corresponding scalar values by wi,j,k. Then a point x = (x, y, z)
inside the cube is assigned a function value in the following way.
This is a straightforward generalization of the bilinear case (11.6),
but let’s simplify the notation by assigning

r =
x − a

b − a
1 − r =

b − x

b − a

s =
y − c

d − c
1 − s =

d − y

d − c

t =
z − e

f − e
1 − t =

f − z

f − e
.

Then

w(x) =
1∑

i=0

1∑
j=0

1∑
k=0

wi,j,k

(
ri(1 − r)1−i

)(
sj(1 − s)1−j

)(
tk(1 − t)1−k

)
.

(11.18)

11.8 Problems and Experiments

Several problems will use this function:

f(x, y) = 2 sin(6xy) + x2y2 + 2x3.

It is plotted in Figure 11.15.

1. What range for x and y is used in Figure 11.15? What view-
point was used?

2. Experiment with plotting f for various x- and y-ranges.

3. Experiment with changes to f . Try to produce interesting
examples.

4. Find the contour f(x, y) = 0.
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Figure 11.15. A bivariate function.

5. Produce four boundary curves by restricting f to the edges of
the square −2 ≤ x, y ≤ 2. Solve Laplace’s equation for these
boundary curves. Compare your solution to the graph of f .

6. Graphically explore the function

g(x, y) =
x

x + y
; −1 ≤ x, y ≤ 1.

Take care near the origin; the function has a singularity there.
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Visualizing Empirical Data

In this chapter, we look at methods for the visualization of one- and
two-dimensional empirical data. Here we only scratch the surface
of the many variations of visualization tools available. Within a
particular scientific discipline, one or more software packages exist
that offer widely used methods for that discipline.

12.1 Scatter Plots, Correlations, and Regression

Suppose we are given n values xi, arising from some observations,
and also a set of n values yi. For example, the xi may come from
measuring the weights of n women and the yi might measure their
heights. A different scenario would be that xi and yi are observations
from time-dependent experiments; then the sequences (ti, xi) and
(ti, yi) are called time series. For example, the xi might be wind
speed and the yi might be temperature at given times during the
course of a day. Clearly it makes most sense to order the data in a
times series in the order in which they occurred. In many scientific
areas, one likes to know whether there is a linear relationship between
the two sets of data. In addition, a visual display of the relation is
often desired.

Let’s use the following example to demonstrate the concepts to
come. Suppose that we have gathered height and weight data from
a group of eight women.

149
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1 2 3 4 5 6 7 8
weight (kg) 65 60 50 52 75 52 72 63
height (cm) 172 170 150 156 172 160 161 160

We set x = [x1, . . . , xn]T and y = [y1, . . . , yn]T, thus creating two
n-dimensional vectors x and y. We further assume that both vectors
have their centroid (mean) at the origin:

1
n

n∑
i=1

xi = 0 and
1
n

n∑
i=1

yi = 0. (12.1)

For our example, for which n = 8, we find that the mean weight
is 61.125 kg and the mean height is 162.625 cm. Translating the
data by their respective means, the weight vector, x, and the height
vector, y, become

x = [3.875,−1.125,−11.125,−9.125, 13.875,−9.125, 10.875, 1.875]T ,

y = [9.375, 7.375,−12.625,−6.625, 9.375,−2.625,−1.625,−2.625]T .

These vectors are illustrated as data plots in Figure 12.1.
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Figure 12.1. Data plots: for weights (i, xi) (left) and heights (i, yi) (right)

Another way to visualize the n-dimensional vectors x and y is
to plot corresponding pairs ri = [xi, yi]T, resulting in a scatter plot.
An example is given in Figure 12.2.

The lengths ‖x‖ and ‖y‖ of our vectors tell us how much they
deviate from being the zero vector. The corresponding statistical
quantity is called the standard deviation σ:

σ(x) =

√
1
n

(x2
1 + . . . + x2

n). (12.2)
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Figure 12.2. The scatter plot of ri = [xi, yi]
T corresponding to the weight and

height data. The line of regression is also shown.

Recall from (12.1) that the origin is the mean of the data, and
therefore (12.2) measures the spread of the data about the mean.
For y, we compute σ(y) in complete analogy. The standard devia-
tion for the weight data set is 9.41 and for the height data set it is
8.01.

We now say the two vectors correlate if they point in the same (or
in a similar) direction. This is measured by the cosine of the angle
between them, which is bounded between −1 and 1. If the cosine is 1,
they point in the same direction. If it is zero, they are perpendicular
to each other. If it is −1, they point in opposite directions; see Figure
12.3. Hence we use the term correlation coefficient ρ for this cosine:

ρ = cos(x,y) =
xTy

‖x‖‖y‖ . (12.3)

Figure 12.3. Examples of complete correlation (ρ = 1) (left), no correlation
(ρ = 0) (middle), and inverse correlation (ρ = −1) (right).
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Figure 12.4. Scatter plots and correlation coefficients. From left to right: ρ = 0.7,
ρ = −0.8, ρ = 0.

Figure 12.4 shows the three basic types of correlations for some
generic data sets. The correlation coefficient for our example is com-
puted as ρ = 0.68, indicating that the weights and heights are fairly
correlated.

An important property of the correlation coefficient is its scale
invariance: if both the xi and the yi are scaled by the same factor
s, then ρ remains the same since both numerator and denominator
in (12.3) are scaled the same way.

If the correlation coefficient of the two vectors is large1 (in abso-
lute value), then we can expect the points ri to exhibit a dominant
direction. Since the ri are centered around the origin, this direction
may be described by a straight line of the form y = ax. This line is
known as the regression line. To find a, we create an overdetermined
linear system for the unknown a:

y1 = ax1

...
yn = axn.

In matrix form, this becomes y = x · a. The solution is via the
normal equations from Section 5.8:

xTx · a = xTy.

1No one definition of a “large” correlation exists, but some practitioners would
categorize large as |ρ| > 0.5.
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Since the matrix xTx is simply a scalar, the solution is obtained
directly, without solving a linear system:

a =
xTy
xTx

. (12.4)

Note that a always has the same sign as ρ, but not the same magni-
tude. Also, just as ρ, a is invariant under scalings.

The line of regression for our example is shown in Figure 12.2.
Recall that the correlation coefficient, ρ = 0.68, indicated that the
weights and heights are fairly correlated. This is visually reflected
by the positive slope of the line of regression, having slope a = 0.58.

We already encountered the regression line in Section 8.4, just
not by that name. In the context of that section, we are looking for
a linear (n = 1) polynomial least squares approximation to the data
values. The linear polynomial y = ax is both the regression line and
the linear least squares fit.

12.2 PCA Revisited

As in the previous section, assume we are given a point set de-
scribed by x-coordinates x = [x1, . . . , xn]T and y-coordinates y =
[y1, . . . , yn]T. Again, assume the average of each is 0. Both (column)
vectors x and y may be combined into one matrix R, having n rows
and two columns. Being interested in the “shape” of R, we employ
the PCA from Section 6.9. That method finds the eigenvalues and
eigenvectors of the symmetric 2 × 2 matrix RTR. The eigenvector
corresponding to the largest eigenvalue represents the dominant line
in our data set.

Let us revisit the example from Section 12.1. The matrix RT is
given by

RT =

[
3.875 −1.125 −11.125 −9.125 13.875 −9.125 10.875 1.875
9.375 7.375 −12.625 −6.625 9.375 −2.625 −1.625 −2.625

]
.

We next determine that

RTR =

[
620.875 360.375
360.375 449.875

]
,
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Figure 12.5. The scatter plot corresponding to the weight and height data. The
line of regression is black and the dominant line is gray.

has eigenvalues 905.75 and 164.99. The eigenvector corresponding
to 905.75 has components 0.78 and 0.62. Thus the dominant line is
given by

y =
0.62
0.78

x = 0.79x.

The regression line for this example, however, was y = 0.58x.
Figure 12.5 illustrates both lines. This difference cannot be explained
by numerical error—so what is happening? In fact, the regression
line and the dominant line solve two different tasks. Take a look at
Figure 12.6. On the left, you see a regression line fit. The regression

Figure 12.6. Regression line (left) and PCA result (right) for the same data
points.
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line is computed such that the vertical distances from the data points
to the regression line are minimized. On the right, you see the PCA
result. Here, the perpendicular distances to the dominant line are
minimized.

An additional way to see the difference between the two methods
is by considering a data set in which all xi = 0. The PCA has no
problem with this, but the regression line is undefined since it would
have infinite slope: the denominator in (12.4) would be zero.

12.3 Histograms, Bar Charts, and Pie Charts

Scientists have to deal with images on a regular basis from sources as
diverse as positron emission tomography (PET), GIS, or microscopy.
To compare two images with similar content, it is often important
to extract salient features and compare them. A standard tool for
doing this is the histogram, which is a graphical method to visualize
frequency distribution; see Section 7.3.

An image is an array of pixels, typically in the range of 500×500
to 2000× 2000. Each pixel has three color values for red, green, and
blue. For simplicity, here, though, we will deal only with gray-scale
images; then each pixel has just one value, ranging from 0 (black) to
1 (white). See Section 16.1 for converting color to gray.

Let us now divide the gray range 0–1 into a number of bins or
intervals, say, 1000, such that for example, the gray level 0.5511
would reside in bin 551. We now ask: for any bin, how many pixels

Figure 12.7. A properly exposed image (left) and its corresponding histogram
(right). The histogram is scaled to a maximum bin size of 14,585 pixels.
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Figure 12.8. An overexposed image (left) and its corresponding histogram (right).
The histogram is scaled to a maximum bin size of 31,499 pixels.

have a gray value that places it in this bin? If we answer this question
for every bin, we have a histogram. This is the plot for which the
bins are places along the horizontal axis and the number of elements
(or frequency) of each bin is plotted on the vertical axis.

Figure 12.7 shows an image on the left and the corresponding
gray-scale histogram on the right. The exposure is fairly good, re-
sulting in a somewhat even distribution of gray values. In contrast,
Figure 12.8 shows an overexposed image on the left, and the corre-
sponding histogram on the right. Overexposure means more pixels
will have higher (lighter) gray values, resulting in a clear shift of the
histogram values to the right. Similarly, Figure 12.9 shows an un-
derexposed image on the left, and the corresponding histogram on
the right. Now the histogram is shifted to the left, meaning more
pixels have low (dark) gray values.

Figure 12.9. An underexposed image (left) and its corresponding histogram
(right). The histogram is scaled to a maximum bin size of 85,837 pixels.
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1 2 3 4 5

0�9
10�19
20�29
30�39
40�49
50�59
60�69
70�79
80�89

90�

2001 UK Population in Millions

Figure 12.10. Histogram of age distribution of men (black) and women (gray) in
the United Kingdom in 2001.

A flaw in the histogram visualization in Figures 12.7 through
12.9 deserves comment. Each histogram has been scaled in the ver-
tical direction based on the maximum bin size of that particular
histogram. (These values are given in the captions.) This makes
a detailed comparison of the histograms difficult, although we can
still see tendencies to lightness or darkness. A better choice would
have been to illustrate the histograms over the same scale, which
would be determined by the picture with the overall maximum bin
size.

Histograms are not limited to images. Figure 12.10 shows a
histogram displaying the age distribution of the male and female
United Kingdom population in 2001. There are only ten bins, and
the frequencies (how many men and women fall into a bin’s age
group) are plotted horizontally. The choice of the number of in-
tervals can greatly influence the information communicated. This
histogram illustrates that more than one data set can be visualized
simultaneously, given that the same set of intervals is relevant for
both.

A bar chart is a visualization tool for categorical (nominal or
ordinal) data. Figure 12.11 illustrates an example in which the
categories are months. Visually, a bar chart appears identical to
a histogram. The difference between the two is that histograms
work with interval data which can be discrete or continuous, as
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2008 Tourist Season Projected Profits in Millions

Figure 12.11. Bar chart of projected profits during the tourist season months.

opposed to the categorical data of bar charts. The intervals for
a histogram must be created, whereas they are given for a bar
chart.

A pie chart is a visualization tool for categorical data for which it
is important to compare the parts of a whole. This idea is illustrated
in Figure 12.12 which depicts the breakdown of the population by
ethnic group.

2005 Population in Southern California

Hispanic 45.4%

White 35.7% African American 9.3%

Asian�Pacific 8.9%

Other 0.7%

Figure 12.12. Pie chart of the southern California population by ethnic group.
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Histograms, bar charts, and pie charts are visualization tools
that are found in nearly every field of study; however, there are
many other tools. A software package in a particular field of work is
the best place to look for examples.

Each of the visualization methods in this section can be extended
to 3D.

12.4 Box Plots

Let’s suppose a particular scientist runs a number of experiments,
each time measuring the same quantity (with slightly changed con-
ditions). A popular way for visualizing such data is the use of box
plots, also known as box-and-whiskers-plots, which summarize the
data from each experiment with five numbers. To produce the box

0.40

0.45

0.50

0.55

0.60

0.65

0.70

��

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Figure 12.13. Box plot examples for regular data (top row) and biased data
(bottom row).
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plot for the data, m1, . . . ,mK , corresponding to one experiment, we
use the following steps:

1. Compute the median m of all mj. This point divides the data
into a lower half and an upper half of the mj.

2. Without using the median, compute the median ql of the lower
half of the mj . The value ql is referred to as the lower quartile.

3. Again without using the median, compute the median qu of
the upper half of the mj . The value qu is referred to as the
upper quartile.

4. Compute Δ = qu − ql, the interquartile range.

The box part of the box plot is now a vertical box with horizontal
edges at qu and ql. Typically, the median m (guaranteed to be within
these limits) is marked by a horizontal line segment.

Any data values mj with mj > qu + 1.5Δ or mj < ql − 1.5Δ are
considered outliers. These values are individually plotted as dots.
The “whiskers” are now added as horizontal line segments at the
largest and smallest mj that are not outliers.

The more variation in the mj, the taller the boxes and the greater
distance between the whiskers. For perfect measurements (all mj

being equal), the whiskers and the three medians all collapse to one
value; the corresponding box has no vertical extension.

data set 1 data set 2 data set 3
0.0

0.2

0.4

0.6

0.8

Figure 12.14. Box plots for data sets from three experiments.
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Figure 12.13 illustrates two data samples and their box plots.
In the top row of the figure the data are rather regular and dense
within its interval, and therefore the whiskers are nearly equal in
length and there are no outliers identified. In the bottom row, the
data are biased to the lower end of the interval, which is reflected
by the long whisker extending past the upper quartile. One outlier
is identified.

As illustrated in Figure 12.14, box plots for several experiments
displayed together concisely describe variations in the data sets.

12.5 Log Plots

Let’s investigate a plotting technique that will be very helpful for
visualizing empirical data that cover a very wide range of values.
Normally we visualize data over the vertical and horizontal axes with
a linear spacing. This is called quadrille ruling. In some situations,
a better plotting method is a log plot where one or both axes are
given a logarithmic scale.

Suppose we are conducting an experiment that requires noise to
be measured at various locations. We measure sound pressure (in
Pascals, or Pa), and record the following readings:

Source of sound Sound pressure (Pa)
1 Auditory threshold 0.00002
2 Calm breathing 0.00006
3 Very calm room 0.0002
4 Normal talking 0.002
5 Passenger car, 10 m distance 0.02
6 Jackhammer, 1 m distance 2
7 Jet engine, 100 m distance 6

Using a quadrille ruling, a plot of the data appears as illustrated
in Figure 12.15 (left). This visualization does not communicate the
difference between the first four sounds. Instead, if we plot the pres-
sures as in Figure 12.15 (right), with respect to a base 10 logarithm
(log10) scale,2 we can see the difference between the data points

2Recall that log10(x) = 10x.
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2 3 4 5 6 7 8
Sources

1

2

3

4

5

6

Pa

2 3 4 5 6 7 8
Sources

0.0001

0.001

0.01

0.1

1

Pa

Figure 12.15. Visualization of sampled sound pressure levels. Sound pressures
plotted on a quadrille ruling (left) and sound pressures in a log-lin plot (right).

more clearly. This figure is called a log-lin plot because the y-axis
is marked with a logarithmic scale and the x-axis is marked with a
linear scale. Notice that the spacing of the y-axis markings increases
as a power of 10 is approached. Each power of 10 that spans the
given range of data is given the same partition in the graph. The
log-lin plot and similarly the lin-log plot are called semi-log plots. A
log-log plot will scale both axes logarithmically.

Figure 12.15 (right), the log-lin plot, is similar to Figure 12.16
in which the sound pressure values have been converted to decibels,
which is a (unitless) log10 scale,

xdB = 10 log10(xPa/tPa),

where xdB is the decibel value, xPa is the Pascal pressure value, and
tPa is a threshold (minimum) measurable sound pressure. In fact,

2 3 4 5 6 7 8
Sources

20

40

60

80

100

dB

Figure 12.16. Visualization of sound pressure levels sampled which have been
converted to decibels.
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0

2 � 109

4 � 109

6 � 109

8 � 109

1 � 1010

0 2 4 6 8 10
1

100

10000

1. � 106

1. � 108
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Figure 12.17. Plots of the functions y = x, y = 10x, and y = x2 with increas-
ing line thickness, respectively: In the quadrille plot, the exponential function
dominates (left), and in the log-lin plot, all three functions are visible (right).

decibles are used for sound partly because the log scale imitates the
human perception of loudness. Other fields, in which measured data
can span a very large range, also employ logarithmic scales; exam-
ples include the Richter magnitude scale for measuring earthquake
intensity and the pH (acidity) of a chemical solution.

Figure 12.17 illustrates the effect of the log-lin plot on several
representative curves, namely y = x, y = 10x, and y = x2. In the
log-lin plot (right), the exponential function appears linear and the
linear function appears logarithmic. Thus we see that logarithms are
very useful for analyzing exponential phenomena such as population
growth or decay of isotopes.

Other logarithmic functions, such as the natural log, can be used
for log plots as well. Historically, log10 has been use in mathematics
and engineering because conveniently the mantissa remains constant
and the characteristic increments by one with each power of ten.
For example,

log(12) = 1.079, log(120) = 2.079, log(1200) = 3.079,

with truncation.
Log plots should not be used to accommodate outliers in a data

set. The box plots from Section 12.4, for example, provided a method
for detecting outliers.

12.6 Problems and Experiments

1. Experiment with the relationship between correlation coeffi-
cient and slope of the regression line.
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2. Suppose the given data lie on a circle. What would be the
regression line, dominant line, and correlation coefficient?

3. Experiment with the plotting tools provided by Microsoft Ex-
cel.

4. Experiment with detecting outliers with box-and-whiskers
plots.

5. Find an application and a data set that needs log-log plots.
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Increasingly, 3D data acquisition techniques, such as laser scanners,
are used to bring the physical world into a digital form. Power-
ful computers that are equipped with large amounts of memory can
be credited for this increase in use. Laser scanners produce point
clouds—unorganized 3D points. Analysis and rendering of these
point clouds are most efficiently done when the points are connected
to form facets—planar entities.

13.1 Triangles

The subject of triangles as taught in high school constructed them
from angles, edge lengths, and trigonometric functions. Typically,
we dealt with one triangle. In computing and visualization, we also
encounter triangles; however now they exist in rather large numbers.
Some objects consist of up to 1,000,000,000 triangles.

We present a brief review of triangle facts. Everything in this
review holds for both 2D and 3D triangles.

Triangle. A triangle is a 2D or 3D object defined by three vertices
v1,v2,v3, where the vi are points in 2D or 3D.

Triangle edges. The edge opposing vertex i is denoted by Ei; its
length is denoted by ei.

165
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Centroid. The centroid c (center of mass) of a triangle is given by

c =
1
3
(v1 + v2 + v3). (13.1)

Incenter. The incircle is the unique circle touching all three triangle
edges. Its center, the incenter i, is given by

i =
e1v1 + e2v2 + e3v3

e1 + e2 + e3
.

Circumcenter. There is a unique circle, the circumcircle, passing
through all three vi. Its circumcenter cc is given by

cc =
(α1(α2 + α3 − α1))

S
v1

+
(α2(α3 + α1 − α2))

S
v2

+
(α3(α1 + α2 − α3))

S
v3,

where α1 = e2
1, α2 = e2

2, α1 = e2
3, and S is the sum of the

coefficient numerators, namely,

S = 2α1α2 + 2α1α3 + 2α2α3 − α2
1 − α2

2 − α2
3.

The circumcenter is at the intersection of the perpendicular
bisectors of the triangle edges.

Normal. The vector n perpendicular to a triangle, given by

n =
(v2 − v1) ∧ (v3 − v1)
‖(v2 − v1) ∧ (v3 − v1)‖

, (13.2)

is referred to as the normal. If the vertices are 2D, then a
z = 0 coordinate should be added to the vertices so a cross
product is possible. The normal is normalized, meaning it is
scaled to be of unit length. If two vertices are exchanged in the
definition of a triangle—say, for example, the triangle is defined
as v1,v3,v2—then the normal will flip. Thus, the order implies
an orientation for the triangle due to the normal’s definition
by a cross product, which follows the right-hand rule.1

1The right-hand rule is described in Section 3.1.
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Area. The area A of a triangle can be given by

A =
√

(v2 − v1)2(v3 − v1)2 − [(v2 − v1)(v3 − v1)]2. (13.3)

This expression has the nice feature of working for 2D or 3D
without modification of the vertices. Another method for cal-
culating the area is

A = 1/2‖(v2 − v1) ∧ (v3 − v1)‖ (13.4)

This method is convenient to use if the normal to the triangle is
needed as well. If the vertices are 2D, then a z = 0 coordinate
should be added to each vertex.

Shape. A triangle is considered to have good shape if it is close to
being equilateral. Shape may be measured in many ways;
one is the distance of the circumcenter to the incenter, which
is zero for equilateral triangles.

13.2 Barycentric Coordinates

Let’s assume we have a triangle T with (2D or 3D) vertices v1,v2,v3

as well as another point p in the plane formed by the triangle. A
common task is to write p as a linear combination of the vi:

p = u1v1 + u2v2 + u3v3, (13.5)

meaning that we have to produce the three scalars u1, u2, u3. They
are given by

u1 = area[p,v2,v3]/A, (13.6)
u2 = area[p,v3,v1]/A, (13.7)
u3 = area[p,v1,v2]/A, (13.8)

where A is the area of the triangle. Figure 13.1 provides an illustra-
tion.

The area calculations must produce a signed area. Assume that
the area of T is positive. The sign of each of the areas in equations
(13.6) to (13.8) is determined by comparing the normal vector of
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v1

v2

v3

p

area3

Figure 13.1. Barycentric coordinates form a coordinate frame with respect to a
triangle. The label area3 corresponds to the area for u3 in (13.8).

these oriented triangles against T ’s normal vector of the given tri-
angle. If the normal vectors share the same direction, then the area
is positive; otherwise, the area is negative.

In the 2D case, we naturally have

u1 + u2 + u3 = 1.

In the 3D case, this only holds if, in fact, p is in the plane formed
by the three vi.

Notice that if p = v1, then the barycentric coordinates [u1, u2, u3]
= [1, 0, 0]. Similarly, if p = v2, then the barycentric coordinates
are [0, 1, 0], and if p = v3, then the barycentric coordinates are
[0, 0, 1]. The centroid of the triangle has barycentric coordinates
[1/3, 1/3, 1/3]; this fact was given in (13.1). In fact, the barycentric
coordinates for the incenter and circumcenter were given as well. If
p is inside the triangle formed by v1,v2,v3, then we have ui ≥ 0 for
all three ui. Otherwise, we conclude that p is outside of the triangle.
This is typically used as a quick inside/outside test. All points on
the edge formed by v2 and v3 have barycentric coordinates [0, u2, u3],
which correspond to the parameters in linear interpolation.
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13.3 Planes

The facets of an object are parts of 3D planes. Let’s look at two
representations of a plane: the implicit and parametric forms. We
next examine the best use of each form.

13.3.1 Implicit Equation of a Plane

Suppose we are given a point p and a vector n bound to p. The
locus of all points x that satisfy the equation

n · (x − p) = 0 (13.9)

defines the implicit form of a plane. The vector n is called the normal
to the plane if ‖n‖ = 1. If this is the case, then (13.9) is called the
point normal plane equation.

Expanding (13.9), we have

Ax1 + Bx2 + Cx3 + D = 0, (13.10)

where

A = n1

B = n2

C = n3

D = −(n1p1 + n2p2 + n3p3).

Let’s try an example. Compute the implicit form of the plane
through the point p with normal n, where

p =

⎡
⎢⎣
4
0
0

⎤
⎥⎦ n =

⎡
⎢⎣
1
1
1

⎤
⎥⎦ .

All we need to compute is D = −4. Thus, the plane equation is

x1 + x2 + x3 − 4 = 0.

Similar to a 2D implicit line, if the coefficients A,B,C correspond
to the (unit length) normal to the plane, then |D| describes the
distance of the plane to the origin. This is the perpendicular distance.
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In addition, the point normal form reflects the (perpendicular)
distance of a point from a plane. The distance d of an arbitrary
point x̂ from the point normal form of the plane is

d = Ax̂1 + Bx̂2 + Cx̂3 + D.

Suppose we would like to find the distance of many points to a given
plane. Then it is computationally more efficient to have the plane
in the form of (13.10), corresponding to the point normal form. If
we need to know only on which side of the plane a point lies, then it
is not necessary to have the implicit form in point normal form; the
sign of the result is not changed by the normalization. But keep in
mind that the sign of the result is dependent upon the direction of
the vector defined by the coefficients A,B,C.

13.3.2 Parametric Equation of a Plane

The implicit plane equation is wonderful for determining whether a
point is in a plane; however, it is not so useful for creating points in
a plane. For this, we have the parametric form of a plane.

The given information for defining a parametric representation
of a plane usually comes in one of two ways:

• three points, or

• a point and two vectors.

If we start with the first scenario, we choose three points p,q, r, then
choose one of these points and form two vectors v and w bound to
that point:

v = q− p and w = r− p. (13.11)

Why not just specify one point and a vector in the plane, analo-
gous to the implicit form of a plane? This is not enough information
to uniquely define a plane. Many planes fit that data.

Two vectors bound to a point are the data we’ll use to define a
plane P in parametric form as

P(s, t) = p + sv + tw. (13.12)
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The two independent parameters, s and t, determine a point P(s, t)
in the plane.2 Notice that (13.12) can be rewritten as

P(s, t) = p + s(q− p) + t(r− p)
= (1 − s − t)p + sq + tr.

(13.13)

The coordinates (1 − s − t, s, t) are the barycentric coordinates of a
point P(s, t) with respect to the triangle with vertices p,q, and r.
See Section 13.2 for a complete discussion of barycentric coordinates.

Another method for specifying a plane is as the bisector of two
points. This is how a plane is defined in Euclidean geometry—the
locus of points equidistant from two points. The line between two
given points defines the normal to the plane, and the midpoint of
this line segment defines a point in the plane. With this information
it is most natural to express the plane in implicit form.

13.3.3 Intersecting Three Planes

Suppose we are given three planes with implicit equations

n1 · x + c1 = 0,
n2 · x + c2 = 0,
n3 · x + c3 = 0.

Where do they intersect? The answer is at some point x, which lies
on each of the planes.

The solution is surprisingly simple; just condense the three plane
equations into matrix form:⎡

⎢⎣
nT

1

nT
2

nT
3

⎤
⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣
−c1

−c2

−c3

⎤
⎥⎦ . (13.14)

We have three equations in the three unknowns x1, x2, x3! Chapter
5 identifies methods to solve such linear systems.

Let’s find the intersection of the following three planes,

x1 + x3 = 1, x3 = 1, x2 = 2.
2This is a slight deviation in notation: an uppercase boldface letter rather

than a lowercase one denoting a point.
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The linear system is

⎡
⎢⎣

1 0 1
0 0 1
0 1 0

⎤
⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣
1
1
2

⎤
⎥⎦ .

Solving by Gauss elimination, we obtain

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣

0
2
1

⎤
⎥⎦ .

While simple to solve, the three-planes problem does not always
have a solution. If the normal vectors n1,n2,n3 are linearly de-
pendent, then there is no solution to the intersection problem. An
example will illustrate.

The normal vectors are

n1 =

⎡
⎢⎣

1
0
0

⎤
⎥⎦ , n2 =

⎡
⎢⎣
1
0
1

⎤
⎥⎦ , n3 =

⎡
⎢⎣
0
0
1

⎤
⎥⎦ .

Since n2 = n1 + n3, they are indeed linearly dependent, and thus
the planes defined by them do not intersect in one point.

13.4 Polygons and Polyhedra

A triangle is a planar object (in 2D or 3D) having three vertices. If
we allow for more vertices, then we have a polygon. A collection of
more than three 3D points need not be planar, but for them to form
a polygon, we do require coplanarity, meaning all points lie in one
plane, having a normal n. Polygons may self-intersect. If they do
not, they are called simple.

Among the simple polygons, convex ones play an important role
(see e.g. Voronoi diagrams in Section 13.8). A polygon is convex
if no straight line intersects it more than twice. Figure 13.2 shows
some examples.
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Figure 13.2. Examples of polygons: non-simple (left), simple (middle), and con-
vex (right).

The area A of a 2D simple polygon with p vertices x1, . . . ,xp is
given by

A =
1
2
[x1y2 − y1x2 + . . . + xpy1 − ypx1].

The area of a 3D simple polygon with 3D vertices x1, . . . ,xp and
normal vector n is given by

A =
1
2
n[x1 ∧ x2 + . . . + xp ∧ x1]

where ∧ is the 3D cross product. Note that we form a dot product
with n such that the result is a real number! If we flip the normal
and use −n instead, then the area changes sign.

Figure 13.3. Examples of polyhedra: tetrahedron (left), dodecahedron (middle),
and icosahedron (right).
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Figure 13.4. A buckyball.

A 3D object whose faces are convex polygons is known as a
polyhedron. Classic examples are tetrahedra and cubes. Figure
13.3 shows some examples. Polyhedra play an important role in
crystallography: a crystal has the internal atomic packing structure
of polyhedra and often exhibits polygonal facets in larger physical
specimens.

Another famous polyhedron, illustrated in Figure 13.4, derives
from chemistry: the buckyball. The buckyball is the complex carbon
molecule C60, consisting of 60 carbon atoms arranged in the shape
of a soccer ball. The name derives from Buckminster Fuller, an
architect whose claim to fame was the geodesic dome reminiscent of
the buckyball shape.

All polyhedra obey Euler’s law: if there are v vertices, e edges,
and f faces, then

v + f − e = 2.

Instead of proving Euler’s law, let’s test it for the example of a
tetrahedron. Here,

v = 4, e = 6, f = 4.

Check that Euler’s law holds!

13.5 Triangle Meshes

A triangle mesh or triangulation is an object formed by triangular
facets; these could all be in the xy-plane or they could be in 3D.
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An example of a 2D triangle mesh is a square with one diagonal
added; a 3D example is given by the four triangles on the outside of
a tetrahedron.

Triangle meshes became popular with the widespread use of 3D
data acquisition techniques, such as laser scanners, stereo photo-
grammetry, touch probes, 3D satellite images, confocal scanning
laser microscopes, and more. All of these techniques extract a collec-
tion of 3D points from an object (from a mountain range for satellites
to a blood cell for microscopes). These point collections are then or-
ganized into triangle meshes.

The other major source of triangle meshes is from finite element
computations. Here, an object (2D or 3D) is broken down into trian-
gles and a PDE is solved discretely, similar to the method presented
in Section 11.6.

In general, a triangle mesh is given by a collection of trian-
gles Tj such that any two triangles either have no points in com-
mon or they share exactly one common edge or exactly one com-
mon vertex. Figure 13.5 shows a valid and invalid 2D triangle
mesh.

Triangle meshes are collections of triangles, each consisting of
three vertices and three edges. This trivial fact leads the way to
defining a data structure, which is used by most standard formats.
A triangle mesh is defined by its geometry (i.e., by the set of its
vertices) and by its connectivity (i.e., a list of triangles). For a simple

Figure 13.5. A valid 2D triangle mesh (left), in contrast to an invalid one (right).
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example, let’s take a tetrahedron-like mesh with vertices

v1 =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , v2 =

⎡
⎢⎣

0
0
1

⎤
⎥⎦ , v3 =

⎡
⎢⎣
1
0
0

⎤
⎥⎦ , v4 =

⎡
⎢⎣

0
1
0

⎤
⎥⎦ .

The corresponding data structure would start with a floating-point
vertex list as follows.

v1: 0.0, 0.0, 0.0
v2: 0.0, 0.0, 1.0
v3: 1.0, 0.0, 0.0
v4: 0.0, 1.0, 0.0

Following this list will be information about which vertices form a
triangle. For this example, we have the following integer triangle
list, pointing to the vertex list.

T1: 1,4,3
T2: 2,3,4
T3: 2,1,3
T4: 2,4,1

This means, for example, that triangle T1 is formed by vertices
v1,v4,v3. All triangles are defined consistently so that outward
normals are produced. A third list would give information about the
neighbors of a triangle. In our example, we would have the following
integer neighbor list, pointing to the integer triangle list.

N1: 2, 3, 4
N2: 1, 4, 3
N3: 1, 2, 4
N4: 1, 3, 2

This means, for example, that for triangle 1, the neighbors are T2,
T3, T4, where T2 is connected to the edge opposite v1, T3 is con-
nected to the edge opposite v4, and T4 is connected to the edge
opposite v3.

The connectivity information adds to the amount of storage
needed, but not by very much: it consists only of integers that do
not need much space. The benefit of this additional information can
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be huge when computing with meshes. A typical operation involves
finding all neighbors of a given triangle. This is trivial when using
the data structure above, but would amount to searching the whole
mesh without it!

Most edges in a mesh are shared by two triangles, but some are
not. A triangle edge that is only part of one triangle—it is not shared
by two triangles—is called a boundary edge. In a data structure, if
the edge across from a vertex is a boundary edge, then a −1 (or other
nonvalid triangle index) is stored as the pointer to a (nonexistent)
neighbor triangle. A mesh without boundary edges is called closed.

Closed meshes could have the shape of a sphere, a tooth, or a
pebble. Examples of more complex shapes are a torus (or doughnut)
or a human skull. If covered by 3D meshes, there will not be any
boundary edges, and yet a torus as well as a skull have holes. The
number of holes is called the genus of the mesh. A sphere has genus
zero; a torus has genus one.

At any vertex vi of a triangle mesh, we may define a normal
vector, which is sometimes called a vertex normal. This is a unit
vector roughly perpendicular to the mesh at vi, and is important
in applications such as rendering; see Section 16.3. Let each of the
j = 1, N triangles with vi as a vertex have a normal vector ni,j .
Then a reasonable guess for the normal ni at vi is the average of all
ni,j:

ni,j =
[ni,1 + . . . + ni,N ]

‖[ni,1 + . . . + ni,N ]‖ . (13.15)

Figure 13.6. A normal for a vertex in a 3D mesh.
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Because the vertex normal is normalized to be of unit length, the
factor 1/N can be ignored. An example is shown in Figure 13.6.

See Sections 14.1 and 15.1 for visualization techniques for meshes
and more applications.

13.6 Case Study: 3D Archiving

In 1999, a group of Stanford researchers, led by M. Levoy, set out to
digitally archive some of Italy’s most prized art treasures: statues of
Michelangelo.3 Their tools were 3D laser digitizers that, by shooting
laser rays at an object, collect x, y, z-coordinates of points on the
object. Once collected, this information can be used as a digital
record of the statue. This record is meant to preserve an object’s
geometry even if the original should be damaged or destroyed.

The laser digitizer simply reads off points from an object. In
order to work with that information, structure has to be given to
those points. That structure is the triangle mesh. In the case of the
David, over a billion triangles were needed, the results of more than
40 scans of different parts of the statue. One such scan in action is
shown in Figure 13.7. Figure 13.8 shows part of David’s face on the
left and part of the triangle mesh for his right eye on the right.

Figure 13.7. Scanning Michelangelo’s David. (Courtesy of M. Levoy, Stanford
University.)

3See the Digital Michelangelo site http://graphics.stanford.edu/projects/
mich/ for more details.
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Figure 13.8. Details of Michelangelo’s David. (Courtesy of M. Levoy, Stanford
University.)

Having the 3D mesh description of an object allows more than
just archiving. In the case of the David, art historians had wondered
whether Michelangelo had followed the rule that says the statue’s
center of gravity, when projected downward, needs to be exactly
between the two feet. Some simple calculations showed that this is
indeed the case here! This fact was impossible to prove before the
creation of the digital model.

13.7 Analyzing Triangle Meshes

Suppose a scientist has a 3D mesh of a fossil bone, obtained from
scanning the original by using a laser scanner. It would be of interest
to extract shape properties and answer questions such as: Are there
flat regions? Where do we see highly curved regions?

The key to analyses such as those is our ability to explore local
shape measures for a mesh. For that, we define the star v�

i of a
vertex vi to be the set of all triangles having vi as a vertex. All
three examples in Figure 13.9 show the star of the center vertex. We
denote by |v�

i | the area formed by all triangles in v�
i .

What can we say about the shape at vi? In Figure 13.9, the left
mesh is completely flat; as we move right, it becomes increasingly
pointy. How can we quantify this? Let Si be the sum of the angles
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Figure 13.9. The local curvature at the center vertex in the three meshes increases
from left to right.

at vi. In the left case, Si = 2π. For the middle and right meshes,
Si decreases. Thus the deviation of Si from 2π could serve as an
indicator of how curved the mesh is at vi. However, this is not what
we intuitively expect from a curvature. When we scale an object up,
its curvatures should become smaller (think of circles), but so far
we are using only angles, and they do not change under scalings. A
solution is given by

Ki =
2π − Si

3|v�
i |

. (13.16)

We denote this shape as the discrete Gauss curvature. Since we
divide by an area, this curvature will decrease as we scale up a mesh.

Curvatures may also be negative, namely, if 2π − Si < 0. That
this can happen is demonstrated in Figure 13.10. Vertices with neg-
ative curvatures are called saddle-shaped, a notion easily supported
by Figure 13.10.

We may use curvatures to segment triangle meshes: a segment
or region would be characterized by having all of its curvatures in
a similar range. One algorithm to achieve this is known as region

Figure 13.10. Negative curvature at the center vertex.
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growing, in which a random vertex (the seed) is selected and its
curvature is computed. If its neighbors have similar curvatures, add
them to form a region. Continue adding neighbors in this fashion
until no more points of similar curvature can be found. Once a
region is finished, randomly select another seed and repeat until
the whole mesh is covered. The term “similar” involves a threshold
tolerance—it will be application dependent. See also the related 2D
version presented in Section 14.3.

13.8 Delaunay Meshes and Voronoi Diagrams

Suppose we have a set of 2D points v1, . . . ,vL. Can we make them
the vertices of a triangle mesh? The answer is yes—in fact there
are many ways to connect points to form triangle meshes. The most
popular mesh is known as the Delaunay triangulation, or Delaunay
mesh. It is defined by the empty circumcircle property: for any
triangle Ti in a Delaunay mesh, no point is inside Ti’s circumcircle. In
general, only Ti’s vertices will be on its circumcircle; however, more
than three points can be cocircular. In this case, any triangulation
of the cocircular points is allowed.

Why is this good? Let’s consider the mesh on the left of Figure
13.5. Four of its points, forming two triangles, are repeated in the
left part of Figure 13.11. For each, the circumcircle is shown. (One
circumcircle is only partly drawn because it is huge). Each circum-
circle contains one other vertex—these two triangles cannot appear

Figure 13.11. Triangle configurations with circumcircles: a non-Delaunay con-
figuration (left), and a Delaunay configuration (right) for the same four points.
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Figure 13.12. A 2D point set (left)and its Delaunay mesh (right).

in a Delaunay mesh. In the right part of Figure 13.11, the same
four points are assembled into two different triangles. Their triangle
circumcircles do not contain a nontriangle vertex; hence, this is a
Delaunay configuration. Intuitively, the shape of the two triangles
on the right is superior to that on the left. Thus, the empty cir-
cumcircle criterion seems to agree with our sense of “good triangle
shape.”

Most algorithms construct a Delaunay mesh that covers the con-
vex hull of the 2D data set. To understand the concept, think of the
points vi as nails in a board. We loosely enclose this set of nails by
a string, and pull the string tight. What is inside it is the convex
hull of the vi. In practice, badly shaped triangles often appear near
the boundary of the convex hull. Figure 13.12 shows a 2D point set
(left) and its Delaunay triangulation (right).

Related to Delaunay meshes are Voronoi diagrams, constructed
as follows. For any vertex vi in the Delaunay mesh, we construct
the perpendicular bisectors between it and all of its neighbors. Each
of these bisectors may be used to define a half-plane4 containing vi.
The intersection of these half-planes yields a convex polygon (see
Section 13.4). This is called vi’s Voronoi tile. The collection of all
these tiles is the Voronoi diagram of the points v1, . . . ,vL. Points
inside the convex hull have finite Voronoi tiles; those on the boundary
of the convex hull have infinite tiles. Figure 13.13 gives an example
of the Voronoi diagram for the point set of Figure 13.12.

4The bisector separates the point set’s plane into two parts; a half-plane is
one of these parts.



�

�

�

�

�

�

�

�

13.8. Delaunay Meshes and Voronoi Diagrams 183

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17 18

19

20

Figure 13.13. The Voronoi diagram of the point set of Figure 13.12.

By the definition of a circumcircle (its center being the intersec-
tion of the three edge bisectors), the vertices of the Voronoi tiles are
the circumcenters of the triangles in the Delaunay mesh.

The Voronoi tile of a point vi consists of parts of the bisectors
between vi and its neighbors. It follows that all points inside vi’s
tile are closer to vi than to any other of the points vk for k = 1, L
and k �= i.

This fact accounts for the versatility of Voronoi diagrams in many
applications. As an early example, A. Thiessen used them in the
field of climatology. In a given region, weather stations measure
daily rainfall data. Each measurement is exact only for the corre-
sponding weather station. To approximate rainfall at any given lo-
cation, it makes sense to assign to it the measurement of the closest
weather station. Hence for each weather station, its area of validity
is its Voronoi tile.5

Another application involves cell phone usage. A person traveling
in a car and using a cell phone will automatically be switched from
one transmitter to another when necessary. Where will this happen?
At the boundaries of the transmitters’ Voronoi cells! Thus, in the
layout of cell phone networks, Voronoi diagrams are an indispensable
staple.

5Also known by the term Thiessen polygon.
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Figure 13.14. Bark beetle bore holes on a log (left) and the resulting bore hole
Voronoi diagram (right). (Courtesy of J. A. Byers, US Department of Agricul-
ture.)

13.9 Case Study: Bark Beetles

The forests of the American West as well as those of southern Europe
have recently seen a rapid increase in wildfires. This increase is partly
due to drought and overall temperature increases. Both of these
conditions are amenable to fire conditions, but another important
one is the spread of the bark beetle. This beetle attacks the barks of
pine trees, resulting in the death or weakening of the trees, in turn
resulting in unusually high losses due to fires.

Scientists are researching the patterns of bark beetle infestation.
It turns out that they do not randomly attack a tree—this would
result in a very uneven beetle distribution on a typical bark. In-
stead, once one beetle has bored a hole into the bark, it releases a
pheromone component that lets other beetles know not to attack in
the vicinity. As a result, the beetle distribution on a bark is gov-
erned by pheromone influence areas, naturally modeled by Voronoi
diagrams. Figure 13.14 shows a Voronoi diagram computed from a
sample of bark beetle bore holes. A careful analysis (omitted here)
shows that the variation in size of the Voronoi tiles is much less than
expected from a totally random beetle infestation, showing that the
beetles’ pheromone distribution tactic is maximizing their damage
to the tree.

13.10 Other Meshes

Triangle meshes are not the only types of meshes. For bivariate
function representation and contouring of these functions, rectan-
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Figure 13.15. Rectangle mesh used to realize a glass train station design.
(Courtesy of Geometric Modeling and Industrial Geometry, Technical University
Vienna.)

gle and quadrilateral meshes6 are widely used. In the domain of
the function, say the xy-plane, a rectangular mesh is constructed.
Each rectangle is planar. A function value is defined at each ver-
tex in the mesh. The graph of this function over the rectangle
mesh forms a quadrilateral mesh since the faces of this mesh are
not planar in general. Section 11.4 explores bivariate functions and
contouring. Visualization aspects of these topics are continued in
Chapter 14.

It is possible to have rectangle meshes in 3D. This would be a
restricted mesh, which can occur, for example, in architecture when
working with special materials. Figure 13.15 illustrates a train sta-
tion that is to be built of rectangular glass pieces, which are planar
and cannot be deformed. More information on this type of problem
may be found in [14].

6Quadrilateral meshes often go by the name quad meshes.
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Figure 13.16. 3D meshes: rectilinear grid (left) and tetrahedral mesh (right).

Types of 3D meshes include rectilinear grids and
tetrahedral meshes, illustrated in Figure 13.16. At the vertices of
these meshes, function values are often defined. These values might
be measured data or a known trivariate function. Chapter 15
presents several motivations for visualizing data over rectilinear or
tetrahedral grids are given. A mathematical motivation with respect
to trivariate functions is given in Section 11.7.

13.11 Problems and Experiments

1. What are the barycentric coordinates of the incenter of a tri-
angle?

2. Section 13.1 presented one measure for the shape of a triangle.
There are many more. Try to find some and compare.

3. Find out how many faces, edges, and vertices a buckyball has.
Then confirm Euler’s law for the buckyball.

4. The right image in Figure 13.5 is an invalid mesh. Why?

5. Section 13.6 mentioned computing the center of gravity of a
triangulated object. An easy solution appears to be to simply
take the average of all vertices. Why does that not work? Hint:
experiment with points sampled from a sphere, and then put
many more points near the north pole.
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6. Every set of 2D points defines a Voronoi diagram consisting of a
collection of convex polygons. Conversely, does every collection
of convex 2D polygons define a set of points of which it is the
Voronoi diagram?
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Visualizing Scalar Values over
2D Data

The following sections look at visualization of scalar values over
points forming a rectilinear grid (gridded) and scattered 2D point
sets, as illustrated in Figure 14.1. These data could represent loca-
tions over which elevations are known. Or, the data could represent
the number of units sold for two toy products over which the profit
will be plotted. Perhaps we have a function such as f(x, y) = sin(xy),
that we want to visualize.

In each of these examples, we will be visualizing a scalar function
of two variables. This is also called 21

2D data because every scalar
value is associated with a 2D point. We differentiate this type of data

Figure 14.1. 2D gridded data (left) in contrast to 2D irregular data (right).

189
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Figure 14.2. Examples of a 2D rectangle mesh (left) and a 2D triangle mesh
(right).

from true 3D meshes as discussed in Section 13.5; however, in some
fields this distinction is lost. To simplify the following discussion,
let’s assume the 2D point set lives in the xy-plane. This can always
be achieved by an affine map.

A computed tomography (CT) scan returns a picture of a slice
through the body. This picture is discretized into pixels, and at
each vertex in the pixel array, a radiodensity is reported that will
indicate the type of tissue there. This is an example of empiri-
cal data on a grid. Another example of gridded data are digi-
tal elevation models (DEMs), which are output from remote sens-
ing technologies, such as light detection and ranging (LiDAR), for
mapping terrains. And yet another example of gridded data oc-
curs when we evaluate a bivariate surface (see Section 11.1) over
a grid.

A scattered 2D data set might come from weather stations lo-
cated in a metropolitan area for the purpose of recording rainfall
and other weather-related events. Also, tactile digitizing methods
will result in scattered data sets.

The visualization techniques we discuss in the sections to fol-
low require a connectivity to be associated with the 2D point set.
Chapter 13 discusses some details of meshes. Figure 14.2 illustrates
the two types of meshes of interest here: rectangle and triangle
meshes.

Visualization of vector fields over 2D data is an important topic
as well. For bivariate data, this topic is introduced in Section 11.1 in
the context of gradient fields. Vector field visualization is introduced
in Section 15.9
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Figure 14.3. Various display modes for visualization of f(x, y) = sin(xy) over
[−π, π] × [−π, π] with 35 evaluations in each axis-direction. Clockwise from the
top left: shaded with wireframe, shaded, wireframe, wireframe with hidden sur-
face removal.
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Figure 14.4. Various display modes for visualization of f(x, y) = sin(xy) over
[−π, π]× [−π, π] with 35 evaluations in each axis-direction, viewed from the +z-
axis, looking into the xy-plane. Each rendering corresponds to the respective
display mode in Figure 14.3.
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14.1 Height Maps

Figure 14.3 illustrates various ways to display a height map with
a mesh. Here a function has been evaluated over gridded (x, y)
locations (the rectangle mesh) to form a quadrilateral mesh. Two of
the methods in this figure, shading and hidden surface removal, are
introduced in Section 16.3.1. Each method of rendering has its own
advantages. We must decide what method is best to communicate
the information in the plot.

In addition to the rendering technique, we must determine the
optimal viewpoint if a presentation is limited to static views. It can
be difficult to interpret 3D from just one view. Figure 14.4 is a “top”
view, or view from the +z-axis, of the four display modes in Figure
14.3. Alone, this figure would not communicate the shape of the
function well.

Meshes allow us to clearly communicate function values at the 2D
point set. Figure 14.5 demonstrates that it is very difficult to make
sense of the plot without a mesh structure. The data displayed is
called a point cloud.

With advances in data acquisition methods, terrain maps have
become very common. Terrain maps are not limited to planet Earth.
Figure 14.6 illustrates the Tithonium Chasma on the surface of Mars.
What is important to note is that the elevations in this figure have
been scaled by three in order to exaggerate the detail of the sur-
face. The choice of scale can greatly influence the visualization, so
appropriately documenting scale should be given attention. The ef-
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Figure 14.5. The function f(x, y) = sin(xy) rendered as a point cloud.
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Figure 14.6. MTM-05/277 E: Tithonium Chasma on the surface of Mars with
three times vertical exaggeration. (Courtesy of US Geological Survey.)

fects of scale were discussed in Chapter 12 as well, with regard to
histograms, bar charts, and log plots.

Some visualization packages give the choice of constant or smooth
shading. Figure 14.7 illustrates a pseudo-smooth version of Figure
14.3; by increasing the number of evaluations, the rendering simu-
lates smooth shading.1 If the phenomenon to be visualized is not
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Figure 14.7. A pseudo-smooth rendering of f(x, y) = sin(xy) over [−π, π] ×
[−π, π] with 200 evaluations in each axis-direction.

1Mathematica 5.2, used here, does not have smooth shading.
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a smooth function, then smooth shading might not be appropriate.
In particular, triangle meshes that represent empirical data can be
difficult to interpret or misleading when smooth shading is applied.

14.2 Color Maps

Often, shades of colors that we associate with water and terrain are
applied to digital terrain maps to accentuate elevation information.
Water depths are given shades of blue, varying terrain elevations are
given characteristic greens, and elevations where it might snow are
white. This is called a shaded relief map in geographical applications,
and an example is illustrated in Figure 14.8. This is a very common
form of a color map. This technique is also called false color or

Figure 14.8. A USGS DEM of Arizona and New Mexico plotted in ArcGIS by
draping a color map for elevations over a shaded relief. (Courtesy of Ramon
Arrowsmith, Arizona State University.)
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pseudocolor. For each vertex in the mesh, we look up the appropriate
color in a “color look-up table.”2 Alternatively, a photograph of the
terrain can be texture mapped onto the surface. (See Section 16.4
for a description of this method.) However, cloud cover can make a
clear image of the terrain difficult to obtain, and color maps allow
particular features to be accentuated.

Instead of using color to accentuate elevation information, we
could use it to communicate precipitation data or landslide risk, as
shown in Figure 14.9.3 This increases the amount of information we
can communicate and applies not only apply to meshes, but also to
curves and volumes (which are discussed in Section 15.1). Section
13.7 describes how a color map can be constructed for a surface
curvature measure and then applied to a 3D mesh.

The simplest form of a color map is a discrete one, which works
as follows. First we identify the categories that we would like to
differentiate with color. For instance, for Figure 14.8, every 200
meters is given a place in the table as follows.

Color index 0 1 2 . . . 22 23
Elevation (m) ≤ sea level 1–200 201–400 . . . 4751–5000 5001+
Color blue sea green yellow-green . . . off-white white

For each vertex in the mesh, we use its elevation to find the
appropriate color in the table. For example, a vertex at 150 m will
be assigned sea green. This color has color index 1. Elevations are
rounded to the nearest meter for use with this table.

Color maps do not have to be constructed as look-up tables;
instead, we can construct a function, called a transfer function, that
continuously maps (transfers) values (e.g., elevation) to a color. In
Figure 14.10, we demonstrate this for reflection lines. We are given
a set of light strips in a plane above the mesh and our eye position.
Looking at a vertex v on the mesh, we compute the reflection of this
incidence vector about the normal at v. We find the intersection
point, p, of the reflection vector and the light plane. Then we find

2The graphics hardware will take care of filling in the (triangle or rectangle)
mesh element.

3Note that full color figures can be viewed at the book’s website.
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Figure 14.9. A color map that communicates precipitation levels in California
(left) and one that classifies areas based on landslide risk (right). (Courtesy of
US Geological Survey, Digital Library for Earth Science Education.)

the closest point, q, on a light line to p. The angle α at v, formed
by p,v,q, is the input of the transfer function, illustrated in the
right of Figure 14.10. One can create a different transfer function
for each red-green-blue (RGB) color component (see Section 16.1),
or a transfer function can be created for transparency. We explore
this in Section 15.5.

Commonly, when dealing with categories such as elevation, we
construct the color table with linear segmentation. This makes find-
ing the appropriate color index as simple as truncating a linear map.
However, the categories don’t have to be a linear partitioning; we
have seen the benefits of logarithmic scales in Section 12.5.
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There are many strategies for choosing and constructing a color
map. Depending on the scientific field, certain colors are associ-
ated with measurements such as high/low or hot/cold. The color
map should speak to the visualization’s audience. In the example
above, we used the RGB color model to express the elevation cate-
gories. More so, though, the hue-saturation-lightness (HSL) model
lends itself to creating shades of color. See Section 16.1 for more
discussion of these models. An information visualization text is a
good place to look for the psychological and cognitive impact of
color.

14.3 Contours

An important feature of a terrain map used by hikers is the display
of isolines of elevation. Isoline is short for isovalue or isopleth line.
An isoline indicates where elevation is constant. Another word for
isoline is contour line, and the process of finding it is referred to as
contouring.

Figure 14.11 shows isolines are drawn on a map of the area around
the south rim of the Grand Canyon. We all know it is wise to stay
away from areas where the isolines are very close together because
the terrain will be very steep there. We’ll revisit the terrain map as
a case study in Section 14.4, but first, let’s look at contours in more
detail.

�1.5 �1 �0.5 0.5 1 1.5
Angle

0.2

0.4

0.6

0.8

1

Gray Value

Figure 14.10. Computation of reflection lines (left); reflection lines on a surface
with respect to the strip lights above it (middle); and the transfer function c(α) =
cos500(α) for mapping the angle in the reflection line computation to a color
(right).



�

�

�

�

�

�

�

�

198 14. Visualizing Scalar Vectors over 2D Data

Figure 14.11. Contours on a map of the Grand Canyon. (Courtesy of US Geo-
logical Survey.)

The computation of contours is discussed in Section 11.4 for a
bivariate function, f(x, y), as the set of all points (x, y) that satisfy
the equation

f(x, y) = c, (14.1)

where the constant c defines the desired isolevel or contour level.
Let’s continue with the example from Section 11.4, namely f(x, y) =
sin(x2 + y2). Figure 14.13 illustrates this function and 15 contours.
Mathematica has computed the minimum and maximum function
values over the specified domain, which is −π/2 ≤ x ≤ π/2 and
−π/2 ≤ y ≤ π/2 in this example, and then selected 15 evenly spaced
z-values in this range.

Figure 14.12 shows that one way to think about a contour is
as the intersection of the function f with the plane z = c. Also
illustrated in the figure is that one (planar) intersection does not in
general result in just one curve; there can be many curves. In the
two examples shown in this figure, there are two curves, an inner
circle and an outer circle.

Looking carefully at the contour in Figure 14.13, we see that
near the borders, the contours are not correct—they all need to be
parts of exact circles! Also, the center-most contour circle appears
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Figure 14.12. Intersection of the plane z = 0.25 with sin(x2 + y2) (left). The
sine function is plotted on a coarse grid to accentuate the contour’s appearance.
Intersection with the plane z = 0.9 (right). In both examples, two contours are
produced.

to be a diamond. Let’s look at these problems by first studying how
contours are computed.

Consider Figure 14.14, a so-called density plot. It shows a 2D ar-
ray with vertices (xi, yj); these vertices correspond to the evaluation
points illustrated in Figure 14.13. Four evaluation vertices form a
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Figure 14.13. Plot of the function sin(x2 + y2) over [−π/2, π/2] × [−π/2, π/2]
evaluated on a 25 × 25 grid (left) and contour levels at 15 z-values (right).
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Figure 14.14. Density plot of sin(x2 + y2).

cell. A color map is created that maps the range of function values
onto gray values in the range [0, 1]. Black (gray value 0) corresponds
to the minimum z-value,and white (gray value 1) corresponds to the
maximum z-value. Each cell is colored according to the function
value at its center.4

The cells are used to compute a contour line as follows. For each
cell, we check if its four vertices have function values larger or smaller
than c. If all four are smaller than c, then the cell is assumed to be
below the contour level, and no output is generated. If all four are
larger than c, again there will be no output. In cases where some cell
vertices exceed c and some do not, the situations of Figure 14.15 are
encountered. There are more cases, at a total of 16, but they differ
from those shown only by rotations or by reversing all signs. A “+”
indicates a function value larger than c and a “–” indicates one that
is smaller.

+

- -

- +

+ -

- +

- +

- +

- +

-

Figure 14.15. Some contouring configurations.

4If our given data at the cell vertices are not from a known function, but rather
from discrete data, then we would use bilinear interpolation to approximate an
average value for the cell. See Section 11.2 for details.
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Figure 14.16. A simple contour example of the function f(x, y) = x2 + y2 over
[−2, 2] × [−2, 2] for contour level z = 3.

Suppose there is a sign change on the (“horizontal”) edge (xi, yj),
(xi+1, yj), as depicted on the bottom edge in the left-most diagram of
Figure 14.15. Using a root finding method such as Newton-Ralphson
from Sections 10.2 and 11.5, we could find the “exact” point on this
edge where f(x̂, yj) = c; however, if the grid is dense, the calculation
would be very slow.5 Instead, we assume that the grid density is
sufficiently dense, and we make the simplifying assumption that on
each cell edge, the function f behaves linearly. By finding where in
the domain the linear interpolant (see Section 3.4) satisfies f = c,

t =
c − fi,j

fi+1,j − fi,j
,

the value x̂ can be quickly found to be

x̂ = xi,j + t(xi+1,j − xi,j).

A small example of a computed contour is shown in Figure 14.16.
Of the configurations in Figure 14.15, the first two are trivial: we

connect the shown vertices and move on to another cell. The last
two configurations are trickier; either of the shown solutions (or even
a third) might be correct, as illustrated in Figure 14.17. These are

5Root-finding methods find the point where the function intersects the z = 0
plane. We can simply translate our function by −c to modify our problem for
these methods.
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Figure 14.17. Three different contour levels can result in the same cell case but
different connectivities. (See Figure 14.15 for the cases.) The cell, represented
as a plane, is intersecting the function f(x, y) = xy. The three contour levels are
z = −0.2 (left); z = 0 (middle); z = 0.2 (right).

called ambiguous cases. Without knowing the underlying function,
there is no way of knowing the correct connectivity; one approach to
making a better decision is to look at neighboring cells, although this
is not foolproof. Figure 14.18 illustrates how this choice can influence
the final contour. If the function is known, as in the example above,
then the function can be sampled within the cell to resolve ambiguous
cases.

In the visualization community, this method of constructing a
contour is called marching squares because the algorithm moves
through all the cells and calculates the contour elements. The 16
cases, derived from the registration of a sign at the four vertices of
a cell, can be encoded with four bits. This allows for fast access to
the connectivity rules. The marching squares paradigm works well
for rendering; however, for some applications, the connectivity of the
entire contour is required. In such a case, it is necessary to track the

Figure 14.18. Ambiguous cases for connectivity in one cell can lead to incorrect
contour results.
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Figure 14.19. An improvement over the contour from Figure 14.13 by computing
the contour over a denser grid. The function is evaluated on a 90 × 90 grid.

contour. We look at marching cubes for scalar data over volumetric
(3D) data in Section 15.2.

Looking at the marching squares method for contouring, we can
see that the accuracy of a contour requires a sufficiently dense mesh
so that the piecewise linear approximation over each cell is reason-
ably accurate. Thus, we can improve on the contour of Figure 14.13
by increasing the cell density, as illustrated in Figure 14.19.

Figure 14.20 illustrates a combination of the contour plot in Fig-
ure 14.19 and the density plot in Figure 14.14. This is called a shaded
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Figure 14.20. Contour lines of sin(x2 + y2) combined with a density plot.
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contour plot. Multiple contours (at uniform increments of z) give us
an idea of how fast a function is changing; more closely spaced con-
tour lines indicate steep function shape because the gradient of the
underlying function is perpendicular to the contour line. In contrast,
the density plot indicates where minimum and maximum values are.
Together, the two plots are very good indicators of the behavior of
the data.

When we are dealing with empirical data acquired from a scan-
ning device, we are given discrete measurements at the vertices rather
than an underlying function. The basic marching squares algorithm
works similarly; however, we no longer can sample the function ar-
bitrarily to resolve ambiguous cases. One possibility is to locally
fit (piecewise) polynomials to the given data and then contour the
approximating function.

Some phenomena, such as weather, are impossible to measure
on a regular grid. Instead, measuring stations are scattered. As dis-
cussed in Section 13.5 a triangle mesh is a tool for creating connectiv-
ity between scattered data. From watching the nightly news, we are
all familiar with isotherm (constant temperature), isobar (constant
pressure), and isotach (constant windspeed) maps. Contours help
us track changes in weather conditions, and in turn predict special
weather events such as hurricanes.

14.4 Case Study: GIS

Geographic Information Systems (GIS) is informatics applied to geo-
graphic data. These systems allow a user to collect, manage, analyze,
and visualize spatial data and associated (geographically referenced)
attribute data such as roads, agriculture categories, or rainfall statis-
tics. Thus GIS is important not just for geographers, but for anyone
working with data spatially referenced to Earth.

Contouring is an important staple in the area of GIS. Terrain
data are typically obtained from satellite measurements and are
made available on rectangular grids, called DEMs for digital eleva-
tion models. Grid spacing can vary significantly, from several meters
to one kilometer, depending on the agency doing the measuring, the
area being measured, and what is being measured. In this method,
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Figure 14.21. Contour maps and 3D models of Mount St. Helens: After the
1980 eruption (top) and before the eruption (bottom). (Courtesy of J. Schneider,
Technical University Munich, Germany.)

an elevation fi,j is given at each vertex of a cell. Two such con-
tour maps are shown in Figure 14.21 together with 3D models of the
corresponding terrains.

When computing with terrain models, DEMs are often converted
to triangle meshes. This is simply done by splitting each quadri-
lateral cell into two triangles by adding a diagonal. The result-
ing triangle mesh is contoured very easily since the intersection
of a triangle and a plane is a trivial task. However, the ambigu-
ous cases from the marching squares algorithm above are not re-
solved by using a triangulation process because the choice of diago-
nals in a quadrilateral is arbitrary. Thus contouring errors are still
possible.

Today’s widespread use of GIS has been made possible by the
Global Positioning System (GPS), which is a system of satellites
and computational systems. Two companies, ESRI and MapInfo,
dominate the commercial GIS market, although several open source
packages, such as GRASS GIS, are available. Google Earth is a tool
that allows everyone to work with GIS.
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Figure 14.22. Brain image segmentation process: slice of the original MRI data
set (left), after contours are formed by using edge detection (middle), and after
segmentation into gray and white matter (right). (Courtesy of A. Lundervold,
University of Bergen, Norway.)

14.5 Image Segmentation

Another application of data generated on a rectangular mesh is that
of medical imaging. Techniques such as MRI, PET, or ultrasound
yield volumetric data6 sets that are typically analyzed slice by slice.

We may view an image as a discrete bivariate function, f(xi, yj),
in which the function value for each pixel (xi, yj) is a gray value.
If we contour at a certain value, we find all pixels with the desired
value. Edge detection aims at finding contours in the image, which
flag rapid changes in gray values; this task is more difficult because
the contour level itself is not known.

Figure 14.22 shows an example of the segmentation process show-
ing the original MRI data set, after contours are found using edge
detection, and after segmentation of the data into gray and white
matter. Cerebrospinal fluid (CSF) is shown at the center of the right
image.

A rapid transition in pixel intensities is characterized by a high
gradient ∇f(xi, yj). This is somewhat costly to compute, and hence
a typical edge detector employs a filter. An example is the Prewitt
filter, which finds large intensity changes in the x- or y-directions.
At a pixel (xi, yj), the partial derivative of f in the x-direction is

6We look at volume data sets in detail in Chapter 15.
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approximated by7

fx(xi, yj) = f(xi+1, yi) − f(xi−1, yi).

In the same way, we may compute the x-partials at (xi, yj+1) and
(xi, yj−1). Taken together, we may express the averaged x-partial,
Px(xi, yj), by the mask:

−1 0 1
−1 0 1
−1 0 1

.

This is pictorial for

Px(xi, yj) = f(xi+1, yj+1) + f(xi+1, yj) + f(xi+1, yj−1)
− f(xi−1, yj+1) − f(xi−1, yj) − f(xi−1, yj−1).

In regions where there is no change in the x-direction, this filter
will return 0, and it will return high values where rapid changes take
place. Similarly, we define Py(xi, yj) by the mask

1 1 1
0 0 0
−1 −1 −1

.

Figure 14.23. Edge detection. A filter is applied to detect a high gradient in the
discrete bivariate function (the image). Zooming in on the capital D, we see that
the gradient is mapped to a color map with shades of gray.

7There should be a division by the pixel spacing, but since that is the same
for all pixels, it is safely ignored.
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The gradient at (xi, yj) may now be approximated by (Px, Py)—
its magnitude will flag rapid intensity changes in an image. Thus, in
Figure 14.23, only the pixels with a gradient higher than a certain
threshold are left after application of the filter. To achieve smooth
edges, the color map has shades of gray rather than just black and
white.

More involved filters exist as well as other kinds of edge detection
methods known by names such as active contours or snakes; we will
not cover those here.

14.6 Problems and Experiments

1. Experiment with the effects of scaling a height map.

2. Experiment with color maps that are based on a function’s
gradient. What other properties of a function might be asso-
ciated with a color map so that more information about it is
revealed?

3. Choosing a reasonable number of contours is an important
step in revealing shape information. But choosing too many
contours can be confusing. Experiment with algorithms for a
function-dependent method for estimating the number of con-
tours.

4. More difficult than determining the number of contours is de-
termining the grid density. Experiment with algorithms for
determining this automatically.

5. Image segmentation: Using software such as Mathematica,
compute the gradient over a function of your choice. (You
will need to choose a domain and evaluation partition.) Use a
color map to identify points where the gradient’s magnitude is
large.
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Volume Visualization

Volume visualization refers to the visualization of functional phe-
nomena in 3D space. At positions in 3D, we are given scalar values,
vectors, or tensors (higher dimensional data). The primary focus
of this chapter is on two techniques, contouring and direct volume
rendering, for visualizing a scalar-valued function defined over a vol-
ume. Some attention is given to visualizing vector fields and tensors
(higher dimensional phenomena). Finally, we bring attention to the
relatively new field of haptic visualization.

15.1 Scalar Data over a Volume

When the given data are scalar values over a volume, the domain
typically falls into one of the following three categories:

• a rectilinear grid of voxels,1

• a rectilinear grid of cells, or

• a set of scattered 3D points with a connectivity formed by
tetrahedra.

Figure 15.1 illustrates these three domains.

1The term is short for “volume element.”

209
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Figure 15.1. Domains for the given data for volume visualization: a rectilinear
grid of voxels where each cube has one value associated with it (top left); a
rectilinear grid of cells where each vertex has a value (top right); a cell defined
from eight voxels (bottom left); and scattered 3D data and their tetrahedra
(bottom right).

A voxel is said to be the 3D version of a pixel.2 If we parti-
tion the space over which discrete samples are given on a rectilinear
grid, then volumes in the shape of cubes, or voxels, are the result.
Analogous to the pixel, and as illustrated in Figure 15.1, a voxel has
its center sample value defined over it. However, algorithms based
on voxels rarely use them this way; it is assumed that the value is
changing throughout the voxel, and it is approximated by examining
neighboring voxels.

A cell is a cube as well, but at each of its eight vertices, a value is
defined. Thus the values within a cell can vary. As we will see in the
sections to follow, in some applications, the cells are created from
the voxels. This idea is illustrated in Figure 15.1 as well. However,
a rectilinar grid of cells can be generated without voxels, such as in
a simulation where we sample (evaluate) a function.

Tetrahedral meshes to scattered 3D data points are the 3D anal-
ogy of 2D triangle meshes (in the plane), which were discussed in

2This generalization is not really very accurate, however. A pixel is an image
space element that can take one value only, but a voxel is an object space element
with (possibly) varying value.
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Section 13.5. A tetrahedron is formed from four noncoplanar points.
Issues with respect to creating tetrahedral meshes, data structures,
and neighbor information are very similar to those of triangle meshes.

As Figure 15.1 illustrates, we assume that the rectilinear do-
mains are isotropic, which means the same spacing occurs in each
axis direction. Further, we assume they are axis aligned. The do-
main could be anisotropic (arbitrary spacings), curvilinear, or—for
scattered data—use elements other than tetrahedra. These other
choices tend to complicate the algorithms, so here we stay with the
basic and more commonly encountered situations. If the data are
not given on the partition needed for a particular algorithm, sam-
pling and interpolation might take place to create a new partition.
This topic is discussed in Section 16.5.

Let’s look at three examples of applications in which we are given
scalar values over voxels, over cells, and over scattered data points.

Example 1. Voxels from an imaging application. Medical applica-
tions certainly have been a driving force behind research in volume
visualization. CT scans produce approximately 64 slices of data,
from one to five millimeters apart. Typically, each slice will have a
resolution of 512 × 512 × 12 bits.3 The 12 bits hold radiodensities,
which are assigned according to the materials encountered, such as
bone, tissue, or organ. It is also possible to assign multiple mate-
rial types and their percentages to a voxel. Figure 15.2 illustrates a
rendering of slices. Section 14.5 on image segmentation showed that
thresholds for radiodensities are selected and paired with a transfer
function. (We revisit this transfer function in Section 15.5 below.)

Figure 15.2. Tomograms: 2D slices produced by a CT scan. Bone, corresponding
to high radiodensity, is mapped to white. Blood vessels are visible due to a
contrast agent injected into the patient.

3Of course, the resolution figures will change with technology.



�

�

�

�

�

�

�

�

212 15. Volume Visualization

Figure 15.3. Volume visualization of bone and blood vessels.

If we consider the slices as part of a whole, we obtain the rectilinear
voxel structure. Figure 15.3 illustrates two volume visualizations of
the same data set.

Example 2. Cells from a computational science application. Fluid
flow analysis is extremely important for many applications in engi-
neering and the natural sciences. For example, analysis of gaseous
and liquid flow allows us to build more efficient cars, spacecraft,
turbine engines, and ships. Because of its complexity, visualization
of flow is a necessity for a meaningful analysis and verification of
theories.

Before the 1960’s, the only way to “visualize” flow was to build
models and physically observe flow behavior. Once computers be-
came powerful enough to handle the large and complex calculations
needed to simulate flow, the field of computational fluid dynamics
(CFD) emerged. Numerical flow simulation consists of three phases:
grid generation, flow calculation, and visualization. A grid structure
is built around an object. Figure 15.4 illustrates this idea. Here we
are discussing volume visualization, so we assume it is a 3D object,
such as a spacecraft. Many types of grid structures can be used,
such as rectilinear or curvilinear.4 For the flow simulation, a system
of equations based on the Navier-Stokes or Euler equations is solved.
The solution will result in quantities such as momentum, density, or

4Rectilinear and curvilinear grids are examples of structured grids whose ele-
ments are topologically equivalent to a cube. Curvilinear grids have straight lines
for edges. Unstructured grids are formed by tetrahedral meshes. The difficulty
in computing over these elements increases with the order they are given. Many
hybrid grid structures exist as well.
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Figure 15.4. Flow phenomena about a delta wing. Flow behavior is studied using
streakline particle traces (gray) and vortex cores (white), which were computed
by the Unsteady Flow Analysis Toolkit (UFAT) developed by NASA. (Courtesy
of David Kao (NASA); Delta Wing courtesy of Neal Chaderjian (NASA).)

stagnation energy. From these quantities, velocity can be derived.
Finite element methods are used to solve the equations at either the
grid vertices or cell centers. Finally, the cells and scalar or vector
values are ready to be visualized. Figure 15.4 illustrates flow phe-
nomena computed from a curvilinear grid due to the complexity of
the geometry.5

Computationally, real-life CFD problems are a huge challenge.
Lane [13] gives an example of computation for a Harrier jet. The
jet’s grid might take 45 MB of disk space, the solution data might
take 56 MB, resulting in 101 MB of disk space for one time step.
Scientists need to analyze many time steps—for example—90,000
steps to study descent and landing. Interactive visualization is also
a challenge, and visualization researchers are working on ways han-
dle these massive amounts of data. Computational scientists are
always pushing the limits of computing power, memory, and novel
algorithms for managing the data.

5We encounter some elements of this figure in Section 15.9.



�

�

�

�

�

�

�

�

214 15. Volume Visualization

Example 3. Tetrahedral meshes from data acquisition technology. Many
fields in engineering and science have developed data acquisition
methods for capturing data in a volume. For instance, seismic imag-
ing technologies are used to allow geoscientists to build subsurface
models for predicting oil and gas reservoir size and shape. Acoustic
engineers take sound readings in a room for the purpose of model-
ing and visualizing the propagation of sound caused by the walls,
furniture, and other artifacts.

These three examples are representative only of volume data
sources and applications. We could name many more; for instance,
the following are common:

• Additional medical scanning techniques: MRI, fMRI, and PET.

• Nondestructive inspection of composite materials or mechani-
cal parts using CT.

• Exploring biological structure and function with confocal mi-
croscopy.

• Observing ribosomes with electron microscopy.

• Bringing to life the dust and gas found throughout the galaxy
from data acquired by the Hubble telescope. (See wonderful
visualizations at http://vis.sdsc.edu/research/orion.html)

A fascinating observation is the variation of scale for which vol-
ume visualization takes place. We see problems at the micro- and
macro-level. Simultaneous visualization of phenomena at these scales
is an open research problem. Additionally, some data sets are “large
volume data sets”; this term is relative and, of course, will change
as computing power and memory change. In 2007, a very large data
set is considered to be greater than 100 GB.

In this chapter, we assume that the data are ready to use. In
many real-world applications this is not the case, and data process-
ing in the form of resizing, sampling (interpolation), rezoning, re-
structuring, and editing of unwanted data is necessary. These issues
are addressed in Section 16.5.
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15.2 Contouring

In this section, we look at the visualization of scalar values over a
rectilinear grid of cells with contouring. Contouring is a type in-
terrogation. It provides a means of visualizing lower-dimensional
representations for the purpose of understanding the more complex,
whole form. In Section 14.3, we looked at the computation of piece-
wise linear approximations to contours of bivariate functions with
the “marching squares” method. Here we increase the dimension,
and thus look at contours for functions f(x, y, z), as the set of all
points (x, y, z) that satisfy the equation

f(x, y, z) = c, (15.1)

where the constant c defines the desired isosurface. The algorithm
we use here to approximate the contours is called marching cubes.
The cubes are the cells from Section 15.1. The cells might be derived
from voxels, as illustrated in the bottom left of Figure 15.1, or the
cells might be generated for evaluating an empirical model.

Let’s mirror the discussion from Section 14.3 and first work with a
function with which we are familiar, namely, f(x, y, z) = x2+y2+z2.
Figure 15.5 illustrates two contours

f(x, y, z) = 0.5 and f(x, y, z) = 1.5.

In this figure, the contour level f = 1.5 is clipped by the viewing
volume so we can see the sphere f = 0.5 inside; the outer sphere
is really a complete sphere. Mathematica has added 2D contours of
constant x-, y-, and z-values to the surface to help the eye see the
shape. This is a contour of the 3D contour! With this figure, we see
that contouring is a method for surface extraction. Once the surface
is extracted, it can be rendered with the normal graphics pipeline.

Let’s look at some details of the marching cubes method. First,
we are given a rectilinear grid of cells. In Figure 15.5, we have a
10 × 10 rectilinear grid defined over [−1, 1] in each dimension. The
function f is then defined at each vertex of the rectilinear grid. For
a given contour level, we “march” through each cell, and check the
function values at the eight vertices. If all eight are above or all
eight are below the contour level, then no more processing of this
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Figure 15.5. Contours of the function f(x, y, z) = x2 + y2 + z2. The contour
f = 0.5 is the inner sphere, and f = 1.5 is the outer sphere, clipped by the
viewing volume.

cell is necessary. If only some vertices are on or above the contour
level, then we process this cell. Figure 15.6 illustrates construc-
tions for four different cases; piecewise planar (triangle) elements
are constructed to approximate the contour. We make the simpli-
fying assumption that the function behaves linearly over the cell’s
edges.

Considering all configurations of vertices and contour level, we
find there are 28 = 256 cases. However, if we exclude those that are
identical through reflection or symmetry, then there are 15 entries

Figure 15.6. Some marching cubes cases. The black dot at a cell vertex indicates
the function value there is on or above the contour value.
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Figure 15.7. Several contours of the trilinear function f(x, y, z) = xyz over [0, 1].
The cube vertex with the black dot has value one; the remaining seven vertices
have value zero.

in the case table that documents the topological states. Figure 15.7
illustrates some contours of a trilinear function, and it illustrates that
the triangle elements are, most certainly, just a rough approximation
of the true shape within the cell. (This figure corresponds to the
left-most case in Figure 15.6.) Except for special cases, contours
are closed. By simply “marching” from cell to cell, holes in the
contour can be created. To avoid this, in some cases it is necessary
to consider neighboring cells. One remedy is to add some additional
“complementary cases,” which are simply different configurations of
triangles over a cell. These have been designed to knit together a
closed contour. If the function over the rectilinear grid is known, as
it is in our case, then the function can be sampled within the cell to
clarify any ambiguities.

Instead of dealing with the problems of marching cubes, it is also
possible to create two tetrahedra from each cube. This solution im-
plicitly resolves ambiguities, correctly or not. Tetrahedra will result
in many more triangles defining the contour. (Decimation methods,
discussed in Section 16.5 can be used to reduce the number of trian-
gles.) If the given data were scattered to begin with, then we have
no choice but to work with this structure.
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Choosing the correct (or interesting) contour level can be a trial-
and-error process. This is also called a threshold value. For instance,
to extract a surface that represents bone, we must choose a range
of radiodensities that qualify as bone. The idea that we contour
precisely for one function value is not realistic in a computing envi-
ronment. A threshold range, [c − ε, c + ε], must be specified.

Because the contour process results in a mesh, it can be rendered
with the normal graphics pipeline. Thus, viewing can easily be either
orthographic or perspective. Of course, scientific value can be
distorted by perspective; see Section 16.3 for other ways to achieve a
3D effect without perspective. Animation is a good solution as well
and is easily implemented—again, because we simply have a mesh.

There are other algorithms for contouring volumes. For instance,
we could compute the 2D contour of each “row” in the rectilinear
grid, and then connect the planar contours. This method, called
multiplanar reconstruction, was used frequently before memory and
computing power could handle the large real-life volumes produced.
It is still used for some special visualizations.

15.3 Case Study: Health Care

K. Frenkel [5] tells a riveting story from the 1980s of a young man
who suffered a crushed pelvis in a car accident. His orthopedist
determined that the fracture was too complicated to operate on and
elected to treat him with a few months of traction. This would have
left the patient permanently crippled. Luckily, this young man’s
father knew of research in CT scan volume rendering. He sent his
son’s scans to researchers in this area, and they were able to create
the shattered pelvis from any angle. With this new information,
the surgeon could see the extent of the fracture and locate the key
fragments. The pelvis was operable after all, and the surgeon was
able to plan and execute the surgery. Three months later, the young
man had a full-range of hip motion.

This story is some years old, but the scenario is still repeated
today as volume rendering is just gathering momentum in the med-
ical community. Approximately 3–5% of US hospitals and radiol-
ogy practices use volume rendering. University-level medical centers
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are the largest practitioners. For many years, medical practitioners
were concerned about misdiagnosis due to computer-generated arti-
facts and pseudo-color. Another hinderance to the growth of volume
visualization has been competing scanning vendors and their propri-
etary data formats.

For many years, radiologists have looked at films, called tomo-
grams, which depict the individual slices from a scan. Radiologists
then mentally put the slices together and identified irregularities. A
growing problem has been the availability of radiologists. In 2002,
the American Journal of Radiology reported that the deficit of radiol-
ogists was at 5% and could grow to as high as 50% by 2020. Volume
visualization will reduce the time a radiologist needs to analyze a
patient’s scan. Additionally, the information in the images can be
easily communicated to nonradiology physicians and laymen (such
as in a courtroom). To satisfy the growing need for automatic di-
agnostics, efforts have been under way for automatically identifying
irregularities.

15.4 Direct Volume Rendering

In this section we look at visualization of scalar values over a recti-
linear grid of voxels with direct volume rendering (DVR). This class
of method maps (3D) voxel data onto a 2D image (screen) space.
No geometry is created, just a 2D image. DVR methods are partic-
ularly useful for amorphous features such as gas, clouds, or fluids.
The negative aspect, however, is that the entire voxel space must be
traversed for a new view.

There are many approaches to DVR, and new approaches are
still being developed. To understand the general idea behind DVR,
let’s look at a simplified version of one of the most basic approaches,
called volume ray casting.

With four diagrams, Figure 15.8 illustrates the basics of volume
ray casting. In diagram 1, a ray is cast from a pixel in the image
through the volume. This ray traverses several voxels; the task at
hand is to accumulate the scalar values encountered along the way,
as only one value can be recorded at the pixel.

Diagram 2 illustrates that sampling is the next step. Here we
have five uniformly sampled points. We must determine function
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1 2

3 4

Figure 15.8. Ray casting depicted as four steps. Diagram 1: Cast a ray from a
pixel. Diagram 2: Sample along the ray and interpolate to voxel values. Diagram
3: Using gradients at the sample locations, apply lighting. Diagram 4: Composite
the sample results and color the pixel. (Figure concept from Wikipedia’s volume
ray-casting page.)

values at these samples. It is unlikely that a sample point will be
precisely at the center of a voxel. To find a good value, some sort
of interpolation is in order. A nearest-neighbor function is one pos-
sibility: choose the function value of the voxel in which the sample
resides. A better solution, and also quite simple, is trilinear interpo-
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Figure 15.9. Schematic of interpolation in a cell created from voxels neighboring
the sample.

lation (Section 11.7). Figure 15.9 illustrates that the interpolation
takes place over a cell defined by the voxels neighboring the sam-
ple. Many other, higher-order, interpolation solutions are possible
as well. The scalar value obtained from interpolation defines the
material at this sample. By using a transfer function, we can map
scalar values to color (RGB) and opacity (A, for alpha blending),
which are called optical properties. More detail on transfer functions
is presented in Section 15.5.

Diagram 3 illustrates that lighting takes place next for each sam-
ple on the ray. As is discussed in Section 16.3.1, a gradient is needed
defining the orientation at this volume point in order to compute
the lighting with respect to the light sources. Gradients may be
computed several ways. One simple method would be to compute
gradients at the voxel centers, perhaps using a divided difference
method (as discussed in Section 9.4). Then the gradients can be in-
terpolated in the same fashion as the function values. Another part
of the lighting equation involves the material properties, which were
obtained from the transfer function in the previous step. As dis-
cussed in Section 16.3, lighting means computing one or more of the
following: reflection, refraction, emission, transmission, and absorp-
tion. By adding this extra step of illumination, the volume render-
ing will have better depth perception and greater surface structure
contrast.
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Diagram 4 illustrates the final compositing step whereby the
lighting computed at the samples along the ray are combined to
define one color for the pixel. Here the compositing takes place in
a front-to-back (pixel to back of volume) order; therefore, at some
intermediate point along the ray, it might be that the opacity of the
pixel has reached 100%—in this case, there is no need to continue
processing the samples along the ray in the volume.

The rendering method described above is called full volume ren-
dering because, in addition to interpolating function values, we have
included an approximation to the light transport equations. Isosur-
faces can be achieved with this method by identifying boundaries
between sample types. A simpler DVR method is maximum in-
tensity projection (MIP) in which only the maximum value of all
samples is written to the pixel. No emission or absorption values are
calculated; rather, the sample values are scaled to a gray scale [0, 1].
This method has been a favorite for small feature identification, such
as in CT angiography and evaluating vasculature; however, a disad-
vantage is poor depth information. Between full volume and MIP is
x-ray rendering; for this method, all sample values are summed. This
is typical (today) for diagnostic medical imaging, and the final result
looks like a traditional x-ray. MIP and x-ray are faster to compute
than full volume rendering, but lack its robustness. For instance,
MIP images make the task of identifying relative depths difficult.

The methods described above are called image-order techniques
because the computation is driven by the image (pixels) rather than
the objects in the data set. But there are also object-order tech-
niques. One such technique is called splatting. This method works
by decomposing the volume into basis functions (see Section 8.6),
and then using a weighting scheme—the result is that the functions
are pushed (i.e., “splatted”) onto the image plane.

15.5 Transfer Functions

The transfer function pairs materials, specified by scalar values, with
color (emission) and opacity (absorption). For DVR, this pairing is
key to identifying important features and differentiating materials
through the assignment of correct optical properties. This process of
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CT Values

Frequency � Color Value

CT Values

Frequency � Color Value

Figure 15.10. The transfer function to isolate blood in a CT scan is superimposed
over the scan’s histogram, the gray area. Values that correlate to blood are a
darker shade of gray. The black polygon corresponds to red; the transfer function
will return red for values in the “blood” range. Blue and green share the same
graph with the light gray polygon. Opacity, denoted by the dashed line, is set as
a piecewise constant over the scan. Bone values are to the right; therefore, the
transfer function returns 100% opaque there.

mapping data acquisition readings, such as radiodensities, to a trans-
fer function is called material classification. Figure 15.10 presents
an example of a transfer function that is intended to highlight blood
in a CT scan.6 As the figure shows, the transfer function is actually
made up of four functions: one each for red, green, blue, and opacity
(transparency). Generally, the practice is to design the transfer
function in conjunction with the histogram that records frequency
of values in the scan. Some specialists have the experience to isolate
materials by looking at these histograms.

Figure 15.11 illustrates that the transfer function can be used
to display some materials but not others. An understanding of the
properties of the materials in the volume is important. All mate-
rials present need to be assigned color and opacity ranges. Bone,
for instance is white and rather dense so it is made 100% opaque.
Tissue is typically colored pink to red, and it might take on a range
of opacities, say 80–90%. If we want to ignore a material (and not
render it), it can be given opacity 0%, and it will be invisible. Last,
the space outside the volume should be given a color. Also con-
sidered is the position of the material in the volume. For exam-
ple, is the material on the outside layer? This is called material
occupancy.

6The histogram in this example is a simplified version of a real scan.
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Figure 15.11. Two different transfer functions are used for the visualizations
in order to illustrate different features of the data set. (Courtesy of Andrew
Winter.)

The transfer functions is typically fine-tuned to highlight the phe-
nomena of interest. If the transfer functions are not designed prop-
erly, however, an important but unknown feature in the data might
be missed. Transfer function design is currently a field of research in
its own right. Computer scientists, working with domain scientists,
research the best sets of functions for various phenomena. Often,
transfer functions are created by examining sample slices within a
software tool specially designed to create transfer functions—a trial-
and-error process. Much research is being done, however, on finding
methods for semiautomatic and automatic transfer function defini-
tion. The example in Figure 15.10 is a 1D transfer function. Re-
search is taking place on multidimensional transfer functions that
can better handle values that represent variable amounts of overlap-
ping or mixed materials.

15.6 Comparison of Contouring and DVR

Figure 15.12 illustrates the difference between volume visualization
with contours and DVR. The perceived sharpness in the contoured
image is misleading because the fine structures, revealed in the DVR
image, are missing. Marching cubes creates structures that are hang-
ing in space; those are clearly not desirable. Small features and
branches are generally difficult to detect properly by using marching
cubes. Also, amorphous phenomena cannot be adequately repre-
sented by isosurfaces.



�

�

�

�

�

�

�

�

15.7. Case Study: Visible Human Project 225

Figure 15.12. A comparison of contouring (top) and DVR (bottom). (Courtesy
of Andrew Winter.)

However, contouring has the advantage of computing geometry
that can be rendered with the standard graphics pipeline, and thus
rotated for observation from any viewpoint. Additionally, contouring
typically is faster than DVR; particularly if we take into account that
there is no need to reprocess for a new image. On the downside, a
large number triangles might be required to represent a data set.

DVR viewing is typically orthographic because perspective is
more difficult to compute and can introduce problems. (Ortho-
graphic tends to be better for many applications due to its con-
sistency in lengths.)

15.7 Case Study: Visible Human Project

The Visible Human Project is a National Institutes of Health (NIH)
initiative to create a complete, anatomically detailed, 3D represen-
tation of a normal male and female human body. Data sets have
been acquired for a male, sectioned at one millimeter intervals, and
a female, sectioned at one-third millimeter intervals, by using CT,
MRI, and cryosection images.7 The female data set, for instance,
is about 40 GB in size. Figure 15.13 illustrates three renderings of
data from the Visible Human Project.

7Cryosection means that the body was frozen, sliced, and then imaged!
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Figure 15.13. Three renderings of data from the Visible Human Project. (Cour-
tesy of Scientific Computing and Imaging Institute, University of Utah)

These data sets have spawned numerous research projects, in-
cluding projects in health care education, training applications for
health care and disaster management, virtual reality and surgical
simulation, and testbeds for biomedical research. Links to these
projects and others may be found on the project’s website, http:
//www.nlm.nih.gov/research/visible/visible human.html. Nontriv-
ial data sets such as these provide benchmarks for researchers de-
veloping algorithms.

15.8 Data Cutting

Data cutting refers to the process of cutting through a volume with
a surface and displaying the function values defined on the surface.
In Figure 15.14, the cutting surface is a plane; this is typical but
not necessary. A reasonably effective method for simulating full vol-

Figure 15.14. Examples of planar cutting surfaces: three planes on the faces
of the volume with one plane at an arbitrary angle (left) and multiple planes,
stacked (right). (Courtesy of MATLAB from MathWorks.)
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ume rendering is to use many cutting surfaces displayed with some
amount of transparency, and then to render the surfaces back to
front. Data cutting is a form of probing or resampling the data set
to find regions of interest.

The left example of Figure 15.14 displays planar faces of a vol-
ume. This gives a sort of frame of reference for the behavior of
the function in the volume. In Section 15.9, we look at methods to
visualize vector data; these methods marry well with such cutting
visualizations.

15.9 Vector Fields

In Section 11.1, we looked at computing a special type of vector
field over bivariate functions, called a gradient field. We visualize
these vector fields with small arrows drawn at discrete grid points,
sometimes called arrow plots. A vector is defined by a direction and
magnitude. Communicating both pieces of information effectively
typically involves variation in vector length, color, or line width.
This method can be extended to trivariate functions as well, but the
visualizations can quickly become difficult to interpret.

A hedgehog plot, as illustrated in Figure 15.15, is a special case
of a 3D vector field plot. In this figure, triangle (unit) normals are

Figure 15.15. Hedgehog plot: triangle normals are drawn at the centroid of each
triangle.
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drawn at the centroid of each triangle in a triangle mesh.8 The
normals are drawn simply as straight lines, but an arrow could have
been used instead. Also noteworthy is the fact that the normals have
been scaled to somehow match the dimension of the object. If they
were too short, they would not be visible; if they were too long, the
plot would be a dark mess. These sticks, or arrows, are an example
of oriented glyphs, which are symbolic figures or shapes that encode
more than one dimension. The type and dimension of data to be
visualized determines the appropriate type of glyph—the possibilities
are endless. Glyphs are commonly used in information visualization;
more information may be found on the dangers of using them in the
literature of that field. For instance, inappropriate scaling of a glyph
can unintentionally miscommunicate.

The methods above could be called point-based visualization be-
cause the vector field is considered at a point and translated to a
glyph. Another class of methods is particle tracing, which works
with characteristic curves. One type of particle tracing method is
called streamlines, which is a method of tracing trajectories in a
vector field. Streamlines were generated from 3D vector data, for
example, in the tornado visualizations in Figure 15.16.

Many variations of streamlines have been developed, and each
is designed to highlight a particular feature in a flow. For instance,
streamribbons show particle trajectory and rotation through the use
of a ribbon that represents the streamline. The list goes on: stream-
tubes, streamballs, stream surfaces, and so on!

Warping is different type of vector field visualization method.
Suppose we have a vector field defined over geometry defined by
a triangle mesh. At each vertex, we are given a vector defining a
displacement. By rendering the original geometry and the displaced
or warped geometry, we can understand the vector field.

A displacement plot is a means of converting the vector field
defined over geometry into a scalar field that can be mapped to a
color map. Suppose that at a vertex v of a triangle mesh, a normal
n is given and the vector field there evaluates to f . Then s = n · f

8Hedgehog plots, or normal plots, are useful for checking whether the orien-
tation of triangles in the triangle mesh are consistently defined; this is a recom-
mended exercise if the shading appears incorrect.
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Figure 15.16. Tornado visualization demonstrating 3D vector fields. (Courtesy
of Scientific Computing and Imaging Institute, University of Utah.)

can be used to determine whether the motion of the vector field at
v is in the direction of the surface normal.

Often, the purpose of vector field visualization methods is to
see the general behavior of the flow. Sometimes, additional scalar
values will need to be visualized along with the vector field. For
example, temperature might accompany a vector field defining air
flow in which the vectors define flow direction and speed.

Vector field analysis and visualization is a very important and
challenging area. The visualization community is still developing the
tools scientists and engineers need to gain insight into the massive
amounts of experimental measurements and numerical simulations.
We cannot attempt to cover this topic here. The examples above
should open the door, though, to imagining the possibilities.

15.10 Tensor Fields

Informally, a tensor field, or tensor, is a multidimensional array de-
scribing some quantity that varies from point to point. In visualiza-
tion, the current focus is on 3 × 3 tensors.9 This type of tensor is
important in physics and engineering. Two commonly analyzed ten-
sors are the stress and strain tensors. There is much more to know
about tensor fields, but that is beyond the scope of this text. Let’s

9These are called rank 2 tensors. Rank 0 and rank 1 tensors correspond to
scalar and vector fields, respectively.
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Figure 15.17. Tensor ellipsoids. (Courtesy of Scientific Computing and Imaging
Institute, University of Utah.)

look at the stress tensor, however, to get a glimpse of the visualiza-
tion challenges.

The stress tensor measures force per unit area. The distribution
of force is broken down into its shear and normal components. The
normal component, σii, acts perpendicularly to the surface, and the
shear component, τij, acts tangentially to the surface. Together they
form the stress tensor,

S =

⎡
⎢⎣
σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎤
⎥⎦ .

How do we visualize a matrix at points on a surface or in a vol-
ume? A first solution is to simplify the problem. An eigenvector
and eigenvalue analysis of S can be helpful when they are of physi-
cal significance, which is the case for stress tensors. (See Section 6.1
for a discussion on eigenvectors.) Recall that the eigenvectors are
mutually perpendicular. This opens the door to visualization of ten-
sor ellipsoids (see Figure 15.17). An ellipsoid’s minor, medium, and
major axes are in the directions of the eigenvectors, and the lengths
are determined by the eigenvalues. These are a form of a glyph.

15.11 Haptic Visualization

The word “haptic” refers to the sense of touch. The field of haptic
technology, or haptics, refers to the technology that allows a user to
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Figure 15.18. Virtual colonoscopy: haptic visualization of polyps in the walls
of the intestine. Virtual interactions are done with a Phantom Desktop device
attached to a laproscopic device. (Courtesy of A. Sridaran and K. Kahol, CUbiC,
Arizona State University.)

touch virtual (haptic) objects. These objects are defined by their
geometry and forces. A haptic device is held by a user, and with
this device the user can explore an object through its forces. The
user may not necessarily be able to see the object on the screen. As
the haptic device touches the virtual object, tactile or force feed-
back is returned through the device. This might be a vibration or
resistance. The computation of these forces is called haptic render-
ing. Haptics has applications in many fields, some of which include
visualization for the blind, enhanced gaming experiences, or as an
aid to medical training via virtual surgeries. Figure 15.18 illustrates
the latter. Haptic visualization allows for an additional modality for
exploring data sets. It is known that sight allows us to most quickly
absorb information; however, haptics can enhance a visualization or
experience. Coupled with visualization, haptics can increase realism,
and for some applications it can improve operator performance. The
technology is still a limiting factor, but as advances are made, new
applications will arise.
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15.12 Problems and Experiments

1. Using a software product such as Mathematica, experiment
with contours f(x, y, z) = c for the following functions.

f(x, y, z) = sin(x) + sin(y) + sin(z) and

f(x, y, z) = x2 − y2 + z2

Try to guess what the contours will look like before plotting.

2. Figure 15.9 illustrates bilinear interpolation. Write down an
expression for the point of interpolation given gray values at
the vertices of the cell. Experiment with a method that uses
more information.

3. See equation (16.7) for a compositing equation. Experiment
with the compositing step in direct volume rendering by pro-
viding colors and alpha-values. (See Section 16.1 for more in-
formation on color models.)

4. Figure 15.9 illustrates bilinear interpolation for determining
the color at a point. Experiment with this method and com-
pare it to biquadratic interpolation.

5. Experiment with automatically determining a reasonable length
for the vectors in a hedgehog plot.

6. Create a figure illustrating warping and displacement plots.
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Background:
Computer Graphics

This chapter is designed to be a tutorial on computer graphics tech-
niques, which are the core building blocks for scientific visualization.

First we give an introduction to color models because they are
key to a robust visualization. Next is a section describing key el-
ements of the graphics pipeline. This section describes the trans-
formations needed to convert a 3D triangle mesh to 2D pixels on
the screen, resulting in the desired orientation and giving a 3D ap-
pearance. To give the mesh more realism, we apply an illumination
model. Three techniques are described: local illumination, which can
be computed in real time; global illumination, which generally is not
computed in real time but results in more realistic rendering than lo-
cal methods; and nonphotorealistic rendering (illumination), which
simulates methods such as cartoon or hand-drawn renderings. Tex-
ture mapping is introduced next as a method to create complexity
in an image without the expense of geometric complexity. Under-
lying the entire visualization process are the methods of sampling,
smoothing, and reduction. These concepts are introduced in the last
section.

More information on the material in this chapter is available in
the OpenGL Programming Guide [17] or Shirley et al. [16].

233
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black

red

green

blue

white

yellow

cyan

magenta

cyan

green yellow

red

magentablue

black S
H

L

Figure 16.1. The RGB color model has primary colors red, green, and blue
represented by the three axes of the unit cube; gray scales are on the line from
black to white (left). The HSL color model represents hue in terms of an angle,
saturation is a radius, and lightness moves up through the hexcone (right).

16.1 Color Models

Entire texts are written on the theory of color. Here we present only
the basic concepts likely to be encountered when working in scientific
visualization.

We perceive color through three cones in each receptor cell of our
retinas. To each cone belongs a function that defines the amount of
absorbtion of each wavelength of light. This trichromatic theory has
motivated the design of several color models that represent visible
light through three components. A key development turned out to
be the use of the RGB color model by color TV, in which three phos-
phors: red, green, and blue, are combined to create colors. The RGB
model carried over to computer screens, and it is the predominant
model in computer graphics and scientific visualization. Figure 16.1
(left) illustrates that a color in this model can be thought of as a
point in a unit cube with R,G,B axes. The RGBA model is the
RGB model with the addition of transparency, or alpha value. See
Section 15.5 for the use of transparency (opacity) in volume render-
ing. Examples of some colors expressed by R,G,B triples are given
in Table 16.1.

In some software, the RGB components are specified as above,
where each is a floating-point number in [0, 1]. In other software,
each component is an integer in [0, 255]. In the hardware, each “color
gun” is allocated eight bits, and thus has 28, or 256, intensity settings
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red: 1, 0, 0 yellow: 1, 1, 0
green: 0, 1, 0 dark gray: 0.2, 0.2, 0.2
blue: 0, 0, 1 light gray: 0.8, 0.8, 0.8
white: 1, 1, 1 black: 0, 0, 0

Table 16.1. Colors expressed by RGB triples.

for illuminating the phosphor. Therefore, when you specify color as
a floating-point number in [0, 1], it is actually mapped to an integer
in [0, 255]. This really is not a limitation, though; 24-bit color, as it
is called, can represent more than 16 million colors (256×256×256).
The number of bits used is called color depth. A 32-bit color system
is normally referring to 24-bit color with an alpha channel.

Except for the most basic colors, it is difficult to specify color
with the RGB model. Varying between shades of color takes some
attention. The HSL model (hue, saturation, luminance) is better
suited for intuitive color specifications. This model, illustrated in
Figure 16.1 (right), lives in a cone. Colors such as red, green, or
yellow are of different hue, H, and are placed around the circle;
therefore, we assign H ∈ [0, 360◦]. The dilution of a hue by white,
such as the difference between blue and sky blue, is its saturation,
S ∈ [0, 1]. And a color’s achromatic brightness or intensity is called
lightness, L ∈ [0, 1]. This model is well suited for a color-selection
user interface.

Mirroring the RGB examples, a sample of HSL colors is given in
Table 16.2.

Since graphics hardware requires RGB, a formula converting HSL
to RGB must be used [3]. Interestingly, the top of the hexcone

red: 0◦, 1, 1 yellow: 60◦, 1, 1
green: 120◦, 1, 1 dark gray: 0◦, 0, 0.2
blue: 240◦, 1, 1 light gray: 0◦, 0, 0.8
white: 0◦, 0, 0 black: 0◦, 0, 0

Table 16.2. Colors expressed by HSL triples.
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corresponds to the hexagon seen from a vantage point on the white-
to-black diagonal of the RGB model. Subcubes of the RGB model
are cubes with one corner at black and the opposing corner at gray
[c, c, c]. Views of the subcubes from the same vantage point results
in hexagons of varying lightness in the HSL model.

For printing and volume rendering, it might not be possible to
work with color, and therefore it is necessary to be able to convert
color to gray scales. This means that color c = [R,G,B] is converted
to gray, y = [Y, Y, Y ]. Notice that y is a point on the “gray” line, l,
from black [0, 0, 0] to white [1, 1, 1]. A simple but reasonable method
for assigning a gray value is to let Y = (R+G+B)/3. The resulting y
is the closest point on l to c. A method that weights the RGB values
based on our eye’s response to constant luminance as wavelength
(color) is varied sets

Y = 0.3R + 0.59G + 0.11B.

Our eyes are most sensitive to yellow-green light and least sensitive
to blue-violet light. The value Y is part of the so-called YIQ model
which is used for efficient transmission of RGB, and it is downward
compatible with black and white TV.

See an Information Visualization text such as Ware [19] for stud-
ies on the best color combinations for readability and to best com-
municate visualizations to color-blind people.

The CMY (cyan, magenta, yellow) color model is important for
printing. The primary colors in the CMY model are called subtrac-
tive because colors are specified by defining what is subtracted from
white light. Cyan, magenta, and yellow are the complements of red,
green, and blue, respectively. For example, when cyan ink is added
to paper, no red light is reflected. Therefore, cyan is green mixed
with blue.

16.2 The Graphics Pipeline

In this section, let’s look at the steps required to display 3D geome-
try on a screen made up of a rectangular array of pixels. Each pixel
is assigned one color. So how are these colors determined? This sec-
tion only partially answers this question by describing the mapping
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of 3D geometry to 2D pixels. Section 16.3 shows how the color is
determined.

For the trip down the pipeline, all geometry must be converted
to points, lines, or triangles. These are called primitives. Thus,
no matter how smooth an object looks on the screen, it consists of
primitives only!

The graphics pipeline involves several coordinate systems, namely

object → world → eye → clip → NDC → window,

where NDC means normalized device coordinates (see Section 16.2.2).
The arrows indicate transition from one system to the next. These
coordinate transformations have been designed to optimize the algo-
rithms applied to a primitive traveling down the pipeline. A defini-
tion of each coordinate system will be introduced in the sections to
follow.

Suppose we create one atom structure in a modeling package such
as Maya. The atom would be said to live in object coordinates. This
is typically a coordinate system that makes defining the geometry
easy. In most cases, the object will be centered about the origin. Now
suppose we want to orient many atoms in space to form a particular
pattern. The coordinates of the atoms are now in world coordinates.
Simple 2D or 3D affine transformations, such as translation, rotation,
or scaling, might be used to transform the coordinates from object
to world coordinates.

In Section 16.2.1, the discussion focuses on the transformation
from world to eye coordinates. This so-called viewing transforma-
tion is commonly described in terms of setting up a camera. Section
16.2.2 focuses on the transformations from eye to clip coordinates
and clip to NDC coordinates.1 These two transformations prepare
the vertices for the final projection into the window.2 The entire
drawable area for a graphics application is the window. A rect-
angular subwindow is called a viewport; sometimes these terms are
interchanged.

1We say “NDC coordinates,” which does repeat a word, but that’s just they
way it’s done!

2The stages from eye to NDC are called projection, but a projection as we
normally think of it—a flattening—doesn’t really occur until later in the pipeline.
We look at why this is so in Section 16.2.5.



�

�

�

�

�

�

�

�

238 16. Background: Computer Graphics

If we use a graphics application, such as Mathematica, we won’t
need to know all the details of the graphics pipeline. However, Sec-
tions 16.2.1 and 16.2.2 could be considered a “case study” for linear
algebra!

16.2.1 Setting up the Camera

Let’s assume that we have placed the geometry that we would like
to display in a world coordinate system. Soon we will want to define
the type of projection (orthographic or perspective) and the specifics
of the projection. Standard practice is to make the xy-plane the
projection plane. Thus to facilitate defining the projection step,
we move our geometry to sit “centered” on the −z-axis, and these
new coordinates are called eye coordinates. Just how we move and
orient our geometry into eye coordinates is conveniently defined by
parameters analogous to setting up a camera in the world coordinate
system.

Specifically, setting up a camera involves choosing its

• location, e (called the eye point),

• line of sight, defined by the line through the eye and a point a
(called the at point), and

• orientation, u (called the up vector).

These parameters are illustrated in Figure 16.2 (left). There are a
few restrictions on these camera parameters. The eye and at points
must not be identical. The up vector determines how the camera
is rotated. For instance, will the final image appear horizontally or
vertically? The up vector does not need to be orthogonal to the line
of sight, a − e. Obviously, the up vector also must not be the zero
vector.

Now we have the means for describing the orientation of our
geometry on the −z-axis. The viewing operation will take

• the eye point to the origin,

• the at point onto the −z-axis, and

• the up vector will lie in the +yz-plane.

This is illustrated in Figure 16.2 (right).
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Figure 16.2. Setting up a camera in world coordinates (left) and the camera’s
position in eye coordinates (right).

Viewing Transformation Matrix. Suppose a vertex of our geometry in world
coordinates is labeled pw, and the corresponding point in eye coordi-
nates is labeled pe. Using our knowledge of the connection between
linear maps and coordinate transformations, the world to eye trans-
formation is very easy to construct!

To review: recall that a matrix A =
[
a1 a2 a3

]
defines a linear

map that maps a vector v in the [e1, e2, e3]-coordinate system to a
vector v′ in the [a1,a2,a3]-coordinate system,

v′ = Av.

Our problem here is simply a coordinate transformation, so the goal
is to stage it in that context.

The first step is to form an orthonormal frame (a set of orthogonal
unit vectors) from the camera parameters:

l =
a − e

‖a − e‖ , r =
l ∧ u
‖l ∧ u‖ , s = r ∧ l,

where ∧ is the cross product. The vector l is called the line of sight
vector. Notice that r is on our right as we look down the line of
sight, and then s will correspond to the up direction. The vectors u
and l form a plane. In this plane, the side on which u lies determines
the resulting orientation: right-side-up or up-side-down. The angle
between u and l is inconsequential.

The mapping of the orthonormal frame that we want is

l → −e3 r → e1 s → e2.
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However, before we align our orthonormal frame with the coordinate
axes, we need to translate the geometry by −e, that is, we need to
form the point pw − e.

Bringing in the geometric interpretation of a linear map, we can
construct a matrix such that[

r s −l
]
pe = (pw − e)

Ape = (pw − e).

However, pe is unknown, so we need to find the matrix A−1 that
forms

pe = A−1(pw − e).

Now we can take advantage of having formed an orthonormal frame
because A−1 = AT. Hence,

pe = AT(pw − e) =

⎡
⎢⎣

rT

sT

−lT

⎤
⎥⎦ (pw − e), (16.1)

and we have our transformation to eye coordinates.

A Numerical Example. We now look at a simple example to keep the
calculations easy to follow. Suppose our modeling transformations
place our object on the −x-axis, as illustrated in Figure 16.3 (left).
Let’s set up our camera with the following parameters:

e =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , a =

⎡
⎢⎣
−1

0
0

⎤
⎥⎦ , u =

⎡
⎢⎣

0
0
1

⎤
⎥⎦ .

From this camera set-up, we form the following orthonormal
frame

l =

⎡
⎢⎣
−1

0
0

⎤
⎥⎦ , r =

⎡
⎢⎣

0
1
0

⎤
⎥⎦ , s =

⎡
⎢⎣

0
0
1

⎤
⎥⎦ ,

which is also illustrated in Figure 16.3 (middle).
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Figure 16.3. An example object and camera in world coordinates (left), eye
coordinates (middle), and the final display (right).

Since the camera is already located at the origin, a translation is
not necessary and

A =

⎡
⎢⎣
0 0 1
1 0 0
0 1 0

⎤
⎥⎦ .

Thus the eye coordinate points pe are calculated as

pe =

⎡
⎢⎣
0 1 0
0 0 1
1 0 0

⎤
⎥⎦pw.

Let’s check that our original goals—that the at point is mapped
to the −z-axis and the up vector is mapped to the +yz–plane—are
satisfied.

ATa =

⎡
⎢⎣

0
0

−1

⎤
⎥⎦ and ATu =

⎡
⎢⎣
0
1
0

⎤
⎥⎦ ,

so they do indeed.
The final view of the object is illustrated in Figure 16.3 (right).

16.2.2 Projections in the Graphics Pipeline

Now our object lives in eye coordinates: we are positioned at the
origin looking down at the object positioned on or near the −z-axis.

Orthographic and perspective projections are the methods most
commonly used in computer graphics. Figure 16.4 illustrates both



�

�

�

�

�

�

�

�

242 16. Background: Computer Graphics

Figure 16.4. An orthographic projection in which vertices are projected perpen-
dicular to the view plane (left), and the same view with a perspective projection
(right), in which vertices are projected into the view plane through the center of
projection, resulting in foreshortening (right).

methods. At the end of the pipeline, the vertices will be projected
into a view plane, which in turn is mapped to the window.

An orthographic projection projects all vertices in a direction
perpendicular to the view plane. Architects and engineers tend to
prefer orthographic images because distances and angles are pre-
served. However, these images can make it difficult to “see” an
object as 3D, and more than one view is commonly needed.

A perspective projection projects a vertex along a line defined by
that vertex and the eye, or center of projection (cop). This results
in a foreshortening effect: objects farther away appear smaller than
objects the same size that are closer to the eye. This foreshortening
makes perspective very good for creating realistic images. Ortho-
graphic projection can be thought of as a special case of perspective:
the center of projection is located infinitely far away.

In the graphics pipeline, specifying a projection answers two
questions:

1. How is the geometry projected?

2. What is displayed?

Part of specifying a projection includes defining the parameters of
a viewing volume. In Figure 16.4, observe that the orthographic
viewing volume is a (rectangular) box and the perspective viewing
volume is a frustum, or truncated pyramid. When we have our clip
coordinates, all vertices outside of the viewing volume will be clipped,
or eliminated from the list of vertices continuing down the pipeline.
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The transformation from eye to clip coordinates is controlled by
a matrix that is often called the projection matrix. The key idea
is that when we arrive in clip coordinates, regardless of whether we
want an orthographic or perspective projection, all our vertices live
in a normalized 4D cube. (We discuss how this works in the sections
to follow.) The transformation from clip to NDC coordinates is the
“perspective division” step (see Section 16.2.3) which maps the 4D
cube into the 3D cube with lower-left and upper-right vertices⎡

⎢⎣
−1
−1

1

⎤
⎥⎦ and

⎡
⎢⎣

1
1

−1

⎤
⎥⎦ ,

respectively.3 This process of bringing the geometry into this special
volume is called normalization. This special volume is often called
the canonoical viewing volume.

A parallel projection into the z = 0 plane is all that is needed
to create the 2D vertices for rasterization, which is the conversion of
2D primitives into pixels. (This amounts to ignoring the z-value.)
Importantly though, the z-values must be available at this stage in
the pipeline so we know what geometry is closest to the eye and thus
visible. This is called z-buffer hidden surface removal (more on this
in Section 16.2.5).

Let a homogeneous point in eye coordinates be p̄e, its correspond-
ing point in clip coordinates be p̄c, and its corresponding (affine)
point in NDC coordinates be pndc. (See Section 3.5 for an introduc-
tion to homogeneous coordinates.)

Orthographic Projections. An orthographic projection is defined by the
lower-left and upper-right vertices of the viewing volume, respec-
tively: ⎡

⎢⎣
l

b

−n

⎤
⎥⎦ and

⎡
⎢⎣

r

t

−f

⎤
⎥⎦ .

The orthographic projection matrix translates and scales this box
(actually the vertices within) to its normalized 4D box with lower-left

3The “lower-left” and “upper-right” are relative to our eye looking down the
−z-axis.
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and upper-right vertices, respectively:⎡
⎢⎢⎢⎢⎣
−1
−1
−1

1

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎥⎥⎦ .

The center of the box is

c =

⎡
⎢⎣

(1/2)(l + r)
(1/2)(b + t)
(1/2)(n + f)

⎤
⎥⎦ .

Thus, for an orthographic projection, the transformation from eye
coordinates to clip coordinates is

p̄c =

⎡
⎢⎢⎢⎢⎣

2/(r − l) 0 0 0
0 2/(t − b) 0 0
0 0 2/(n − f) 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 −cx

0 1 0 −cy

0 0 1 −cz

0 0 0 1

⎤
⎥⎥⎥⎥⎦ p̄e.

(16.2)
The product of the matrices in (16.2) is the orthographic projection
matrix

Mo =

⎡
⎢⎢⎢⎢⎣

2/(r − l) 0 0 −(r + l)/(r − l)
0 2/(t − b) 0 −(t + b)/(t − b)
0 0 2/(n − f) −(f + n)/(n − f)
0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Perspective Projections. The parameters used to describe the frustum
are illustrated in Figure 16.5. It is common practice to draw the
frustum in a 2D view in the yz-plane. The center of projection is
at the origin. The angle θ is called the field of view and n is the
distance from the eye to the near plane. This plane corresponds to
the view plane. Then f is the distance to the far plane. The height
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Figure 16.5. The perspective projection frustum, defined by the parameters
θ, n, f, h and the width of the view (near) plane.

of the near plane, is denoted by h. These parameters are dependent,
and they are related by

tan(θ/2) =
h/2
n

.

A human’s field of view is roughly 65◦. We can simulate a wide
angle lens by creating a field of view that is large, for example, 80◦.
And a telephoto lens can be simulated with a small field of view,
for example, 30◦. This isn’t an entirely correct analogy because the
focal length of a camera is actually more closely related to the near
distance. However, since our hypothetical camera has a variable film
size, relating the field of view to the lens is simpler.

The most common and easiest method for defining the frustum
is to define the parameters θ, a, n, f , where a is the aspect ratio
(width/height) of the near plane. From these parameters we can
calculate any of the others that define the frustum:

h = 2n tan(θ/2) and then w = ha.

Commonly, we choose the aspect ratio of the world coordinates to
equal the aspect ratio of the viewport. This relationship assumes
symmetry about the −z-axis.

The action of the perspective projection matrix is to map the
frustum to its normalized 4D box with lower-left and upper-right
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Mp Mo

Figure 16.6. The two steps of the perspective projection matrix: Mp maps the
frustum to a box and then Mo maps the box to a normalized box.

vertices ⎡
⎢⎢⎢⎢⎣
−n

−n

n

n

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

f

f

−f

f

⎤
⎥⎥⎥⎥⎦ , (16.3)

respectively. As illustrated in Figure 16.6, this takes place in two
steps: Mp is a matrix that maps the frustum to a box with the same
parameters as the frustum (l, r, b, t, n, f). Next, Mo is the ortho-
graphic mapping to take this general box to the normalized 4D box
in (16.3).

The mapping Mp is a projective map, which preserves the fol-
lowing properties.

• Lines map to lines. If three points are collinear in eye coordi-
nates, then they will be collinear in clip coordinates.

• Planes map to planes. If four points are coplanar in eye coor-
dinates, then they will be coplanar in clip coordinates.

• The inverse of the map exists. This helps with screen picks—
window coordinates can be transformed back through the pipe-
line to world coordinates.

• Relative z-depth is preserved. A point closer to your eye than
another point in eye coordinates will also be closer in clip co-
ordinates.
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This perspective projection matrix takes the form:

Mp =

⎡
⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 (n + f)/n −f

0 0 1/n 0

⎤
⎥⎥⎥⎥⎦ .

Let’s look at Mp’s action on a point x:

Mpx̄ =

⎡
⎢⎢⎢⎢⎣

x

y

z(n+f
n ) − f

z/n

⎤
⎥⎥⎥⎥⎦ . (16.4)

To understand the geometry, let’s divide by the homogeneous “w”
coordinate, and look at the corresponding affine point

q =

⎡
⎢⎣

x · n/z

y · n/z

n + f − fn/z

⎤
⎥⎦ . (16.5)

Let’s examine this transformation. If z = n then

q =

⎡
⎢⎣

x

y

n

⎤
⎥⎦ ,

illustrating that points in the near plane do not change. If z = f
then

q =

⎡
⎢⎣

x · n/f

y · n/f

f

⎤
⎥⎦ ,

and therefore points in the far plane stay in the far plane; however,
the x and y values do change. Just how they change is illustrated
in Figure 16.7. We join the point in the frustum’s far plane to the
eye and record the point of intersection q′ in the near plane (view
plane). Then we construct a line perpendicular to the near plane at
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Figure 16.7. The mapping Mp “squishes” the frustum into the box as a projective
map. A point is mapped to a line, which is the parallel projector through the
point’s image in the view plane. Except for at the near and far plane, points
move away from the eye.

q′, and intersect this line with the far plane. This is q’s position in
the box.

Further examination of this mapping reveals that points farther
from the eye are scaled more in x and y. The change in z is illustrated
in Figure 16.7, and this follows in the same manner as outlined above
for points in the far plane.

Summarizing, points in eye coordinates are mapped to points in
clip coordinates as follows:

p̄c = MoMpp̄e.

16.2.3 Perspective Division

Clipping is the process of removing all vertices (primatives) outside
of the viewing volume. The vertices that remain are then projected
into 3D by dividing by the homogeneous coordinate; thus,⎡

⎢⎢⎢⎢⎣
x

y

z

w

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎣
x/w

y/w

z/w

⎤
⎥⎦ .
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Figure 16.8. A graph of zndc as a function of ze with n = 0.1 and f = 4. The
change in z as a result of perspective division is most dramatic behind the near
distance.

This is called perspective division, and the points are now said to
reside in NDC coordinates.

One might ask why clipping takes place in 4D, since working in
affine spaces is much more intuitive. An interesting insight into the
reasoning behind clipping in 4D is presented by P. Shirley [16].

To simplify the discussion, assume that we are dealing with posi-
tive near and far distances and z-values. In (16.4) we observed that a
z-value, ze, in eye coordinates is mapped by Mp to a (homogeneous)
z-value, zc, in clip coordinates:

zc = ze
n + f

n
− f.

Perspective division of (16.4) resulted in (16.5), and thus

zndc = n + f − fn/ze, (16.6)

the z-value in NDC coordinates. Figure 16.8 illustrates this function.
Up to now, we have been interested in points with ze ∈ [n, f ].

But suppose some of the geometry lies outside the viewing volume.
(This isn’t uncommon, as we don’t always want the entire world to
be displayed.) The interesting aspect of Figure 16.8 is the mapping
of points with ze outside of the frustum (in z). Some points between
our eye and the near plane are mapped behind our eye. Points behind
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our eye are mapped to points in front of our eye, and the closer they
are to our eye, the farther away they are mapped. If a vertex is at
our eye, it gets mapped to infinity.

16.2.4 Rasterization

A raster is a grid, and in computer graphics it refers to the grid
of pixels. Rasterization is the process of converting a 2D prim-
itive into a set of colored pixels. It is also known as scan con-
version. Figure 16.9 illustrates rasterization. In most computer
graphics texts, many algorithms will be found for determining the
best selection of pixels with which to approximate a given prim-
itive. Special methods have been developed to deal with alias-
ing, which is the appearance of stair-steps edges. These are called
anti-aliasing methods.

Recall from Section 16.2.3 that after perspective division, we are
left with 3D primitives that simply need to be projected into the xy-
plane to be ready for rasterization. Thus at the rasterization step,
the z-values are available, and they are stored in memory called the
z-buffer, or depth buffer. Buffers are temporary storage areas for
data waiting to be directed toward a device. The z-buffer and the
color buffers match the raster partition. Section 16.2.5 looks at how
the z-buffer is used to ensure that primitives visible from the current
camera position are displayed.

Figure 16.9. Rasterization: converting a 2D primitive into pixels.
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Figure 16.10. A z-buffer hidden surface removal: rasterized primitives written
to a pixel are compared (left), and the rasterized primitive closer to eye is kept
(right).

16.2.5 Hidden Surface Removal

Hidden surface removal is the process of determining which prim-
itives are not visible from a given viewpoint and then removing
them from the display pipeline. Figure 16.10 illustrates this pro-
cess. A different perspective on this goal is called visible surface
determination.

In the context of the graphics pipeline described in the preced-
ing sections, the most important hidden surface removal method
is the z-buffer method. The primitives are sent down the pipeline
one at a time, but they are not sorted in any sense. As mentioned
in Section 16.2.4, rasterization saves the z-value from the originat-
ing primitive in the z-buffer. Suppose a point on a primitive is
currently stored at pixel pij with z-value za. Suppose further that
the next point that is to be written to pixel pij has z-value zb. If
zb is closer to the eye than za, it will replace the existing stored
value.

Several hidden surface removal sorting algorithms do not depend
on rasterization. Painter’s algorithm, for example, sorts primitives
from back to front. The name comes from the fact that we will
draw the primitives in this back-to-front order, working similarly to
a painter.

Ray tracing, which is discussed in Section 16.3.2, achieves hidden
surface removal by the nature of the algorithm.
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16.2.6 Compositing

Compositing is the process of bringing two or more images into a sin-
gle image. There are many types of compositing; however, we will
limit the discussion to alpha blending. This is the process of combin-
ing a partially translucent foreground color with a background color,
and thus creating a blended color.

Alpha blending takes place pixel by pixel. At one pixel, suppose
the background color is cb and the foreground (closer to the eye)
color is cf . If all primitives are opaque, then the pixel is colored
with cf . However, if some primitives are partially transparent, then
alpha blending is used. The new color for the pixel will be

c = αcf + (1 − α)cb, (16.7)

where α is the degree of transparency belonging to cf . Clearly α = 1
corresponds to opaque and α = 0 corresponds to completely translu-
cent. This is the basic idea behind alpha blending; however, the
blending process can take many other forms.

16.3 Illumination Models

The process of creating a 2D image from 3D geometry is called ren-
dering. The steps defined in Section 16.2 are an important element of
rendering, as are illumination models. It is common to interchange
the terms illumination and rendering even though their exact defi-
nitions are different.

Illumination models are derived from laws of physics. For ex-
ample, the so-called rendering equation is an integral equation that
describes the flow of light energy through a scene based on the law
of conservation of energy. This equation is in general too compli-
cated to compute, and the details of the equation are not important
here. However, the important idea is that rendering methods are
attempts at approximating this ideal. When evaluating a rendering
method, we must consider how well it models reflection, absorption,
refraction, emission, and transmission of light.

In the sections to follow, we look at three rendering paradigms:
real-time rendering with the local Phong illumination model, global
illumination with ray tracing, and nonphotorealistic rendering.
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Because of advances in processors, the boundaries of “real time”
are moving. Even though real-time methods do not produce the
same quality images as global methods, real-time rendering is effec-
tive for design before using valuable resources on high-end rendering
methods.

16.3.1 Local Illumination: Lighting and Shading

In this section, we will look at an example of a local illumination,
which involves a single interaction of light and objects. In contrast,
global illumination, such as ray tracing, involves multiple interac-
tions of light and objects. Because of its simplicity, local illumi-
nation can be computed in real time. OpenGL, for example, is an
implementation of local illumination.

Lighting refers to a method to provide artificial illumination.
Shading is the process of producing gradations of light or color. So
first we discuss a method to produce color at the vertices of trian-
gles based on a lighting model, and then we discuss how to shade
the interior of the triangle by using the colors at the vertices. It is
common to find these terms interchanged in some writings.

In this section, we assume that we are lighting and shading a
3D triangle mesh. We will need unit normal vectors at the vertices.
If we have tessellated a known function, then normals are easy to
obtain. If an underlying function is not given, then these normals
must be approximated. In Section 13.5, a method was given for this
purpose.

Phong Lighting Model. All lighting models are simply approximations of
real-world lighting. Global models tend to be better heuristics than
local models, and the price is computation time. The Phong lighting
model is the most common heuristic for local lighting models.

In the following, we examine three important elements of a light-
ing model.

1. Light sources. Number, type (desk lamp or sun), color;

2. Material properties. Reflection and absorption of light;

3. Reflections. The physics of reflection.
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These are the elements that give us the impression that an object
on the screen is really 3D; we perceive depth through variations in
color.

In order to illuminate objects, we must first invent light sources.
The Phong model breaks the light’s properties into three elements.

• Ambient light. This is scattered light with no detectable direc-
tion. Perception of this light is not dependent on the viewpoint.

• Diffuse light. This is directional light that scatters equally in all
directions upon hitting an object. This light is not dependent
on the viewpoint.

• Specular light. This light comes from a detectable direction,
and it bounces off an object in a particular direction. It plays
a role in shininess, and it is dependent on the viewpoint.

In addition, we must distinguish between light sources.

• Point source or spotlight. A point source emits light in all
directions; a spotlight emits light in the shape of a cone.

• Positional or directional. A positional light source acts as a
desk lamp; a directional light source acts like the sun, whereby
all rays are parallel when they reach an object.

It is standard practice to compute a color with the RGB color
model because that is what is used by the display hardware. There-
fore, we represent the ambient, diffuse, and specular light colors
by la, ld, ls, respectively, where the components of each represent
amounts of red, green, and blue light. Each color component can
take values between 0 (no intensity) and 1 (full intensity).

Next, we must give the 3D mesh material properties. This deter-
mines how the material reflects and interacts with light.

• Ambient reflectance. Specifies the amount of ambient light
reflected at a point on the object.

• Diffuse reflectance. Specifies the degree of scattering of light
at a point on the object. A matte or gloss paint finish on
the object will be the result of low or high diffuse reflectance
settings, respectively.
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• Specular reflectance. Specifies the degree of mirror-like quality

• Transparency. Specifies the degree of being transparent or
clear. This is also known as alpha value, and written as α
or A. An opaque surface will have α = 1, and a translucent
surface will have α = 0.

The ambient, diffuse, and specular reflectance of the material are
represented by ka,kd,ks, respectively. A component of a material
property vector represents the percentage of reflection of the light
source’s corresponding property, and therefore these values assume
values between 0 and 1.

Absorption and reflectance of light influence the perceived color
of an object. For instance, if a red box is illuminated with a white
light,4 it will appear red because the red light component is reflected
and green and blue light components are absorbed. However, if the
red box is illuminated by a green light, it will appear black because
there is no red component to be reflected.

For instance, to simulate brass we would assign the material prop-
erties as

ka =

⎡
⎢⎣

0.32
0.22
0.02

⎤
⎥⎦ , kd =

⎡
⎢⎣

0.78
0.56
0.94

⎤
⎥⎦ , ks =

⎡
⎢⎣
0.99
0.94
0.80

⎤
⎥⎦ .

We can observe that reddish-brown light will be reflected. There is
a fairly high amount of specular light reflected with a reddish tint,
and therefore the surface will be shiny.

The geometric elements of the lighting model are illustrated in
Figure 16.11. We are computing the color at a vertex p. The light
vector l is defined as the difference between the light location and
p. The normal n at the vertex must be computed. The reflection
vector r is easily computed using the fact that the angle of incidence,
θ, that is the angle between l and n, equals the angle of reflection,
or the angle between r and n. The view vector, v, is computed as
the difference between the eye location and p. The angle φ is the
angle between v and r. All vectors should be normalized.

4White light is composed of red, green, and blue light components (see Section
16.1).
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p

n
l r

v

θ
φ

Figure 16.11. Geometric elements for lighting calculation with the Phong model.

Diffuse light intensity Id at v is computed by using Lambert’s law,
which states that the light reflected is proportional to the cosine of
the angle θ between l and n,

Id = kd � ld cos(θ).

Note that this equation commits an abuse of notation! A dot product
is not to be taken; rather, each component (red, green, blue) should
be computed independently.5 If θ = 0, then the cosine function is
1, and this results in maximal diffusion (scattering) of light. As θ
approaches 90◦, the amount of scattering reduces. Notice that the
diffuse light intensity is independent of the viewer’s location.

If we consider only diffuse light, a vertex whose normal points
away from the light will be black. Ambient light allows us to illumi-
nate the entire model. Ambient light intensity, Ia at v is computed
as

Ia = ka � la.

Again, the material property attenuates the light’s ambient property.

5We will use the � notation to indicate that multiplication occurs component-
wise.
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Specular light intensity Is at v is computed based on the angle
between the viewpoint and reflection vector,

Is = ks � ls cosn(φ).

The power n adds control over the focus of the specular effect, or
radius of specular intensity. For n = 1, the specular effect is fairly
wide. For n = 100, the specular effect is rather focused, creating a
sharp specular highlight. Similar to the diffuse component, the closer
the viewpoint and reflectance vector become, the more accentuated
the specular effect becomes.

If the object (vertex) emits light, we add material emission, e. It
is also possible to add to the scene global ambient light, Ma, which is
independent of the light sources. Thus, the global ambient intensity
for an object is

Ig = ka � Ma

Putting it all together, the intensity, I, at a vertex is

I = e + Ig +
∑

light sources

(Ia + Id + Is).

Attenuation of light based on the distance of the light source from a
vertex or proximity to a spotlight is easy to add.

Shading. The Phong illumination model provides a method to calcu-
late the color at a vertex. Shading methods provide the means to fill
in a triangle. When the triangle is rasterized, colors must be assigned
inside the triangle. We’ll look at two methods that are frequently
used: flat shading and smooth shading. Figure 16.12 illustrates an
example of each. The top right figure displays the triangle edges;
this display mode is called wireframe.

Flat shading is very simple: the color from one vertex is used for
the entire triangle. Flat shading creates a very faceted look, but for
scientific data this might be appropriate. Smooth shading, described
next, creates an artificial smoothness that might mask phenomena
to be observed.

Smooth shading, as the name indicates, creates a smoother look-
ing surface because this method uses the colors computed at each
vertex to interpolate color across the triangle. Specifically, suppose
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Figure 16.12. Constrast among flat shading (top left), flat shading with wire-
frame display (top right), and smooth shading (bottom). (Courtesy of Kerstin
Müller and Christoph Fünfzig.)

the intensity (color) at the three vertices of a triangle have been
computed to be I1, I2, and I3. At point p, which has barycentric
coordinates (see Section 13.3.2) u, v, w with respect to the triangle
vertices, the color is computed as

I = uI1 + vI2 + wI3.

Smooth shading is also known as Gouraud shading.

16.3.2 Global Illumination: Ray Tracing

The Phong illumination model works well for creating real-time im-
ages, but it has its limitations because of the single interaction basis
and its lack of global illumination considerations. A straightforward
global illumination method is called ray tracing. In general, ray
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Figure 16.13. A ray-traced scene with multiple levels of reflection and shadows.

tracing is not considered to be real time; however, some special im-
plementation can achieve this. As illustrated in Figure 16.13, ray
tracing produces reflections and shadows.

Ray tracing is based on the idea that an image is formed by the
light entering each pixel. The color of this light is created by light
sources interacting with objects. Computing all interactions of light
in a scene would be too complex, so ray tracing works backward by
casting a ray from an imaginary eye through a pixel and comput-
ing interactions. This idea is illustrated in Figure 16.14. When the

Figure 16.14. Ray tracing: a ray from the eye, through a pixel, is cast into the
scene. At each intersection, lighting is computed, and the total light incident on
the eye is recorded at the current pixel.
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Figure 16.15. Ray tracing: This method is specialized to render implicit surfaces
in real time. (Courtesy of Aaron Knoll, Younis Hijazi, Chuck Hansen, Ingo Wald,
and Hans Hagen.)

cast ray intersects an object, the color at this point is computed by
using a model, such as the Phong model. Depending on the ma-
terial properties at this point, the ray is either reflected, absorbed,
or refracted. Taking each of these possible behaviors into account,
the ray continues to move through the scene. The number of in-
tersections (recursions) computed is an input parameter to the ray
tracer. Allowing only one intersection is called ray casting. Figure
16.15 illustrates more of the complexity that can be achieved with
ray tracing. Unlike the Phong model, ray tracing doesn’t necessitate
a triangle mesh, so more complex geometry can be rendered.

Other global illumination methods have been developed. For ex-
ample, photon mapping casts rays from the light sources. A favorite
of architects is radiosity. This method preprocesses the scene with
a type of finite element method that involves diffuse lighting calcu-
lations only. Volume visualization’s direct volume rendering is a
volumetric form of ray tracing, and it is described in Section 15.4.

16.3.3 Nonphotorealistic Rendering

It is difficult to concisely describe nonphotorealistic rendering (NPR)
because, just as with art, there is no one definition. Much of com-
puter graphics is consumed with reproducing the world as we see
it. NPR takes an artistic approach, as illustrated in Figure 16.16.
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Figure 16.16. Nonphotorealistic rendering of an engineering part. (Courtesy of
Amy Gooch and Bruce Gooch.)

Our interpretation of shape comes from outlines, silhouettes, creases,
and shading, and those are the primary tools of NPR. Outside of its
artistic value, NPR is useful, for example, in engineering manuals,
where unnecessary detail can be removed and relevant parts can be
rendered to highlight them. The tools of NPR mimic those of the
artworld: hatching, shading, emphasis on silhouettes. More infor-
mation can be found in a text by Gooch and Gooch [6].

16.4 Texture Mapping

Texture mapping is a method to create complexity in a model with-
out the overhead of building a large geometric model. This is done
by modifying the color of the model according to the color in a given
image, called the texture. A classic example of 2D texture mapping
is the creation of a brick wall by applying a brick wall image to a
single rectangular block. Figure 16.17 illustrates the result of tex-
ture mapping. Thousands of triangles would be needed to accurately
model the brick wall, wood roof, and grass.

In 2D texture mapping, we are given a triangle mesh and a texture
that is defined as an m × n array of texels,6 and each texel has one
color assigned to it. The texture is defined in a 2D (parameter)

6The term texel referes to “texture element.”
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Figure 16.17. 2D texture maps applied to the roof, walls, and ground of a
low polygon count scene (base geometry, left), result in a detailed scene (right).
(Courtesy of Kerstin Müller and Christoph Fünfzig.))

space (u, v), where a ≤ u ≤ b and c ≤ v ≤ d. A color is defined
for each (u, v). Each vertex in the triangle mesh is assigned a (u, v)
parameter value, or texture coordinate. There are many methods for
determining how to fill the triangles given the texture coordinates
at the vertices. Textures are frequently square and in sizes that are
powers of two to accommodate downsizing and filtering, which are
applied to produce the best texture based on the final image size.
Just how difficult it is to find texture coordinates depends on the
triangle mesh and the complexity of texture application desired.

Several methods are available for determining how the texture
interacts with the material properties of the triangle mesh. As an
example, the texture can be a decal and entirely replace the color of
the object.

Color maps (see Section 14.2) are one type of texture mapping
technique. This generalization of the technique uses a procedural
definition of the texture, producing textures without a parametriza-
tion of the mesh.

Texture mapping can be constructed from 1D or 3D mappings
as well. 1D texture mapping is useful for contouring or cartoon (cel)
shading. Cartoon shading, illustrated in Figure 16.18, is created
by modifying the color at a vertex based on the angle between the
normal and light source. 3D texture mapping creates voxel texture
elements. This type of texturing is really quite simple because one
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Figure 16.18. A 1D texture mapping can create cartoon or cel shading. (Courtesy
of Jason McCollum.)

must simply embed the geometry in the texture space to determine
the correspondence to the texture. This method is commonly used
in medical and geoscience applications.

Texture mapping has its drawbacks though. For example, the
brick wall in Figure 16.17 will not have a correct silhouette. Finding a
good mapping (or atlas) can be challenging. In addition, the applied
texture will not interact with the light sources correctly.

Other mapping techniques include displacement maps, in which
the mapping modifies the position of the vertices, and bump maps,
in which the mapping modifies the normals.

16.5 Sampling, Smoothing, Reduction

The goal of this section is to introduce terms and ideas that might be
encountered with respect to pre- and postprocessing of data. Math-
ematical details on the topics in this section are beyond the scope of
this text; however, an introduction to some terms in these areas is
appropriate.

Data acquisition technologies sample. For example, a laser scan-
ner records points and a CT scanner records average densities in
voxels. In this book, we have discussed modeling and rendering of
sampled data. The rendering process, by means of projecting the im-
age to pixels, is yet another sampling process. Our eyes take samples
as well!
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Resampling occurs frequently in scientific computing and visual-
ization. As we see with marching squares or marching cubes, often it
is convenient to have data on a regular structure. If a data acquisi-
tion tool does not return data in a regular form, then it is resampled.
With CT or MRI, data preparation can involve resampling to obtain
a regular grid, to correct for patient motion, to enhance contrast, or
to create additional slices. Aircraft LiDAR data provide an example
of this as well. Low-flying aircraft records high-resolution DEMs by
resampling measured data at regularly spaced intervals.

Aliasing is a distortion that can occur with sampling and recon-
struction. The reconstruction is an alias of the original data. A
simple example is the “jaggies” that can occur with a line drawn
on the computer. The discretization of a continuous line into pixels
can result in a stair-step appearance. Aliasing is also experienced by
looking through a screen door. In this case, the artistic patterns that
appear are called Moiré patterns. Antialiasing methods are designed
to diminish the appearance of artifacts.

Great amounts of literature in signal processing, image process-
ing, and computer graphics have been devoted to sampling theory for
the purpose of determining optimal sampling rates, optimal recon-
struction methods, and means to control aliasing. In 1949, Shannon
proved a theorem that is now commonly known as the Shannon sam-
pling theorem. This theorem states that a signal that is restricted to a
particular frequency range, called band-limited,7 and is sampled with
a frequency at least twice its highest frequency is completely deter-
mined by its samples. This frequency is called the Nyquist frequency.
In theory, the signal can be reconstructed by convolution (a type of
moving average) with the sinc function (sin(πx)/πx; the name is
short for sine cardinal). The sinc function reconstruction cannot be
used in practice, so many researchers work on practical reconstruc-
tion functions, or in other words, interpolating between sampling
points.

One negative aspect of marching cubes is the enormous number
of triangles produced and the long sliver-like shape that some take.
The former problem increases rendering time and increases file size,

7For example, a CD player is band-limited to 20 kHz by the reconstruction
filters built into the player.
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Figure 16.19. Mesh simplification by 56% with a decimation algorithm. (Cour-
tesy of 3D Compression Technologies (www.3dcompress.com)).

resulting in longer loading times. The latter problem can cause ren-
dering irregularities. The number of triangles produced has more
to do with the volume partition and less to do with the underlying
function’s complexity. Mesh simplification is a means to reduce the
number of triangles. Several strategies are possible; Figure 16.19
illustrates what is called decimation, in which edges are collapsed,
resulting in fewer vertices and triangles. Mesh simplification meth-
ods examine local behavior of the mesh to determine areas that can
be reduced without much loss in shape information. Additionally,
sliver triangles are candidates for removal. Several mesh simplifi-
cation methods take a different approach; they resample the mesh.
Mesh simplification is a form of lossy compression, which is compres-
sion with information loss.

Sharing large meshes over networks can be problematic. Stan-
dard compression techniques, such as JPEG, work well for text or
2D images because they are designed to recognize repeating patterns
of bytes. They are not designed, however, to optimally compress 3D
geometry. In the mid-1990s, IBM patented a 3D compression scheme
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that was put into MPEG-4. A nonpatented version of this method,
called edgebreaker, compresses triangle meshes. This type of com-
pression can achieve file size reduction of 95%. Several other types of
3D mesh compression have been developed as well. These methods
are considered to be lossless compression methods because the un-
compressed mesh is identical to the original within a (floating point
accuracy) tolerance.

16.6 Problems and Experiments

1. What color is the result of combining red and cyan?

2. If we set up our camera model with the following parameters:

e =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , a =

⎡
⎢⎣

1
1
1

⎤
⎥⎦ , u =

⎡
⎢⎣

0
0
1

⎤
⎥⎦ ,

what is the linear map that maps world coordinate points to
eye coordinates?

3. Experiment with the viewing, transformation, lighting, and
projection tutorials on Nate Robin’s OpenGL resources pages:
http://www.xmission.com/∼nate/tutors.html.

4. Give the 4 × 4 matrix M that scales by 2 in y, scales by 3 in
z, and translates by [4, 5, 6]T.

5. If a green light illuminates a red box, what color does the box
appear?

6. What type of light (ambient, diffuse, or specular) is indepen-
dent of the viewer’s position?

7. Sketch the cosine function between −180◦ and 180◦.

8. Contrast and compare local and global illumination methods.

9. Defining a texture map over a sphere can be tricky. See a real-
world example of this by experimenting with Google Earth and
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exploring the polar caps. Google Earth also provides a good
example of the challenge of stitching together texture maps.
Identify problem areas and mixed resolution areas.

10. Multiresolution methods consider the screen space an object
occupies to determine the detail of the model needed. How
might mesh simplification be used to support a multiresolution
method?
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