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Preface

As I complete this book on the last day of 2017, the scope of ‘network science’
continues to expand throughout the social, biological, and physical sciences. Mean-
while, the focus of statistical network analysis remains tethered to a few standard
methods and a limited class of models. Community detection, asymptotic analysis,
and minimax estimation for networks assumed to follow the stochastic blockmodel,
exponential random graph model, and graphon model litter the statistical literature.
By now it should be clear that these results are mostly of an incremental nature, lack-
ing both the insight and the motivation necessary to address substantive questions in
network science. In Probabilistic Foundations of Statistical Network Analysis, I seek
to reverse these current trends by proposing to view ‘network analysis’ as the base
case of a new statistical theory for complex data analysis. As I emphasize in Chapter
1, the perspective needed to address this new class of complex data problems cannot
be achieved by recasting classical techniques and regurgitating old ideas. In this text,
I hope to first convince the reader of the need for such a new perspective, and then to
enlist the reader in fulfilling this vision.

Many of the ideas presented here are adapted from my prior work on network
analysis, exchangeability theory, and graph-valued stochastic processes [43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59]. Still others, e.g., the general formulation
of sampling consistency (Chapter 3), the principle of coherence (Chapter 5), and the
specification of random sampling contexts for network data (Sections 3.9, 9.8, 10.7,
and 11.2.2), are new additions which have not yet appeared in the published litera-
ture. Without question, the most important ideas in this book (Chapters 5, 9, and 10)
are either attributed to or have been greatly inspired by my ongoing conversations
with Walter Dempsey [52, 53, 54]. Walter first proposed the idea of edge exchange-
ability to me in December 2014 at Rutgers. Though at first I resisted—the idea was
too new—Walter’s ‘E2 mindset’ has profoundly influenced my thinking ever since.

Chapter synopses and reading guide

One of my primary goals in writing this book is to expose readers from a wide range
of disciplines to the core statistical ideas underlying network analysis. The book is
therefore intended for social scientists and psychologists just as much as it is for
professional statisticians and mathematical probabilists. Although understanding the
accompanying technical work in [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 58,
59] requires a high level of mathematical sophistication, appreciating the conceptual
ideas underlying this technical work does not. Because simple concepts too often

xiii



xiv PREFACE

get lost in mathematical formalism, I have tried to every extent possible to strike
the delicate balance between conceptual and technical, in hope that those with the
conceptual understanding will grow more accustomed to the technicalities and those
with the mathematical training will come to better appreciate the practical motiva-
tions. Whether I have succeeded in this mission is not for me to judge, and I welcome
the reader’s feedback on how I could have done better.

Realizing that readers might come to these pages with different motivations, I
give a brief synopsis of each chapter before beginning the main text. Readers inter-
ested in specific network model classes are referred to Chapters 2 and 6–11. Readers
interested in invariance principles and exchangeability are referred to Chapters 6–11.
Readers interested in time-varying networks and graph-valued stochastic processes
are referred to Chapter 11. Readers interested in the philosophical underpinnings of
this work are referred to Chapters 1 and 3–5. Together, the framework of Chapter 5
and the discussion in Chapters 1, 9, and 10 capture the essence of the book.

Chapter 1: Orientation

Though ‘network data’ presents a number of new challenges for statistical theory
and methods, ‘statistical network analysis’ remains focused on a limited number of
inference problems which have been adapted from classical statistics. Community
detection, asymptotic analysis, and minimax estimation for networks generated from
stochastic blockmodels, exponential random graph models, and graphon models have
been studied by extending well-established ideas in clustering, large sample theory,
and nonparametric regression. But those analyses, for all their rigor, tend to overlook
the big picture and broader implications motivating the study of networks in the first
place. In this opening chapter, I discuss the limitations of the conventional ‘networks-
as-graphs’ perspective of network analysis, and I emphasize network analysis not
merely as a new discipline within statistics, on par with high-dimensional statistics
or machine learning, but rather as a new statistical paradigm for complex data analy-
sis which ought to be viewed and developed in parallel to classical statistical theory.
As modern data grows more complex, not in terms of size but rather in terms of
dependence and heterogeneity, the usefulness of classical statistical thinking dimin-
ishes. Rather than strain the limits of classical theory to fit these problems, I argue in
favor of developing new theory and methods that can better handle the complexity of
modern data structures. Such a theory does not yet exist. In writing this book, I hope
to convince the reader of the need for such a theory, and to offer some ideas for how
to make progress in this new direction.

Chapter 2: Binary relational data

Though network science is seen as a modern field, the study of network-type data
dates at least to the early 1900s, with the initial sociometric studies of Moreno and
other quantitative social scientists. The classical network models, namely exponential
random graph models and stochastic blockmodels, originated in the early theoretical
developments of social network analysis. These models are still used today, but their
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adequacy for modern network data problems is limited by their inability to account
for observed heterogeneity (e.g., sparsity, power law) in network data or the sam-
pling scheme by which these networks are obtained. In this chapter, I review some
early social network models, namely the p1 model and exponential random graph
model, discuss their initial motivations, and explore their limitations for modern ap-
plications. A discussion of sampling issues in the p1 and exponential random graph
models sets the stage for the next chapter on network sampling.

Chapter 3: Network sampling

The large size of modern networks and the varied circumstances under which net-
work data arise necessitate a theory for network analysis in the presence of sampling.
Although a sampling theory for social network analysis had been developed in the
social networks literature by Frank and his coauthors, its relevance to modern net-
work analysis is unclear. Modern network data is often sampled, but rarely according
to any well-articulated or well-understood design mechanism. In such cases, classical
techniques, e.g., the Horvitz–Thompson estimator, which often assume a careful and
relatively straightforward sampling mechanism such as simple random vertex sam-
pling, may not be applicable. In many applications, it is known that the network has
been sampled, but it is not known how, thus adding additional uncertainty over and
above ordinary statistical variation. More realistic network sampling schemes, e.g.,
vertex, edge, path, snowball sampling, etc., introduce potential biases that should be
accounted for in the model. This chapter also discusses how other standard statisti-
cal considerations, such as the sample size, study design, and the basic observational
units, feature in network analysis.

Chapter 4: Generative models

Whereas sampled networks are obtained as part of a larger population structure,
evolving networks (e.g., the World Wide Web and some social networks) grow ac-
cording to a (possibly unknown) generating mechanism. For evolving network data,
the objective of analysis is to understand the mechanism by which the network is
evolving in order to better predict or anticipate future updates. The preferential at-
tachment model [14] is a well-known generative model for describing the emergence
of power law structure in real-world networks. In this brief chapter, I discuss some
basic properties of the preferential attachment and other generative models.

Chapter 5: Statistical modeling paradigm

Previous chapters highlight the two main considerations of statistical network mod-
eling: (i) describe variability and uncertainty in the observed network and (ii) artic-
ulate the context in which inferences are to be interpreted. Although conventional
approaches to statistical modeling only address consideration (i), contextual factors,
such as sampling design and other circumstances surrounding data collection, are es-
sential to sound network analysis. The modeling paradigm introduced in this chapter
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brings components (i) and (ii) together in the concept of model coherence. Along
with the coherence condition, the paradigm presented in this chapter provides a gen-
eral modeling framework which can serve as a foundation for future theoretical and
methodological developments in complex data analysis.

Chapter 6: Vertex exchangeable models

Invariance principles often play a central role in expressing how the observed data
is assumed to ‘represent’ the system from which it has been observed. This ‘repre-
sentativeness’ assumption establishes the logical link by which inferences about the
(observed) data can be extended to the (unobserved) population. But in many circum-
stances, the theoretical justification for extending inferences based on the assumed
invariance principle does not align with the context in which the inferences are being
made. Within the conventional networks-as-graphs paradigm of network analysis,
vertex exchangeability is a prominent invariance principle on which a great deal of
theoretical work has been based. In a vertex exchangeable model any two graphs
that are isomorphic up to relabeling of their vertices are assigned equal probability.
Implicit in this model property is the assumption that the observed network is that
of a representative sample of vertices from the population. In this chapter I discuss
some fundamental aspects of vertex exchangeability, including graphon models, the
Aldous–Hoover theorem, the theory of dense graph limits, and how the homogeneity
properties implied by vertex exchangeability raise doubts about the use of graphons
in modern network analysis.

Chapter 7: Getting beyond graphons

In Chapter 6 I highlighted several limitations of vertex exchangeability and graphon
models, especially when it comes to modeling networks that exhibit sparsity and
power law degree distributions. Although vertex exchangeability makes certain theo-
retical and computational aspects of network analysis tractable, the theory and com-
putations made possible by this assumption are of little practical value because they
fail to consider the data in a realistic context. Some initial attempts to move beyond
graphons include so-called ‘sparse graphon’ approaches and the Caron–Fox model
based on completely random measures. This chapter covers both approaches, with
additional discussion of the graphex representation and sampling interpretations of
the Caron–Fox model.

Chapter 8: Relatively exchangeable models

Relative exchangeability refines vertex exchangeability (Chapter 6) by defining the
invariance of a network in terms of the symmetries of some other (fixed, known)
structure on its vertices. Stochastic blockmodels (SBMs) are a canonical example
of a relatively exchangeable network model, with the underlying structure given by
a classification of vertices into distinct groups (or ‘blocks’). More generally, rela-
tively exchangeable models can account for heterogeneity caused by an underlying
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social network, covariate information (as in the latent space model), or generic com-
binatorial structure in the population. The theory for relatively exchangeable random
graphs mirrors that of Chapter 6, with the Ackerman–Crane–Towsner theorem refin-
ing the Aldous–Hoover theorem. Further extensions and applications of the theory
presented here are left as topics for future research.

Chapter 9: Edge exchangeable models

The Crane–Dempsey edge exchangeable framework posits a new model class for
networks constructed by repeated sampling of binary interactions. Edge exchange-
able models are defined analogously to vertex exchangeable models (Chapter 6) by
assigning equal probability to any two edge-labeled graphs that are isomorphic with
respect to relabeling of their edges. The major breakthrough of edge exchangeabil-
ity is its new perspective, which more faithfully captures the way in which many
interaction networks are observed (i.e., by sampling edges instead of vertices). The
canonical edge exchangeable model, called the Hollywood model, easily accounts
for a range of empirical behaviors commonly found in modern networks, including
sparse, power law structure. Edge exchangeability in general, and the Hollywood
model in particular, provides fertile ground for future methodological developments
in network analysis.

Chapter 10: Relationally exchangeable models

Relational exchangeability refines edge exchangeability (Chapter 9) by modeling
networks constructed by repeated sampling of generic interactions (e.g., email com-
munications, scientific coauthorships, and paths in the Internet). So whereas edge
exchangeable models are limited to networks constructed from binary interactions,
such as caller-receiver pairs in a phone call database, relationally exchangeable mod-
els allow for multiway interactions between email recipients, paths between routers
in the Internet, etc. With its inclusion of hyperedge exchangeable and path exchange-
able models, relational exchangeability is thus a general variant on the theme of edge
exchangeability, and leads to an analogous theory.

Chapter 11: Dynamic network models

Previous chapters focus mostly on data for a single network, such as networks formed
by friendships among high school students, social media interactions, professional
collaborations, and connectivity in the Internet. But many networks, in addition to
representing complex dependencies and interactions, change with respect to time.
Such dynamic networks introduce a temporal dimension into network analysis which,
on top of the considerations of exchangeability and other invariance principles from
previous chapters, must be incorporated into the model in a coherent way. At the
time of publication, statistical methods for dynamic network analysis are relatively
underdeveloped. To give a sense of some basic challenges and considerations in this
emerging area, I focus this chapter on one specific temporal invariance principle,
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called Markovian projectivity [44, 48, 57], which acts as a dynamic version of the
consistency under subsampling property discussed in earlier chapters (e.g., Section
3.9). I present Markovian projectivity in the context of two classes of dynamic net-
works, called rewiring processes and graph-valued Lévy processes, both of which
are ripe for future developments in theory, methodology, and applications.

Final comment

As the field of network science is quickly expanding, with thousands of articles pub-
lished in the short time since I started writing this book, the references cited are
far from complete. Although I have acknowledged any work relevant to the specific
topics discussed here, I could not possibly give comprehensive coverage to the entire
body of literature. For example, I do not discuss recent work at the interface of causal
inference and network analysis, see, e.g., [15, 142]. I apologize in advance for any
topics or references I may have overlooked.

Throughout the text, I highlight a number of open-ended questions as ‘Research
Problems’. These are suggestions for future inquiry by the curious reader. To the
best of my knowledge, none of these problems has a satisfactory answer as of yet, and
many of them are being posed here for the first time. Several of these problems would
make a good Ph.D. thesis topic. Researchers who make progress on any of these or
related open problems are encouraged to contact me so that I can document their
status on the book’s website http://www.harrycrane.com/networks.html. Another 30
or so ‘Exercises’ supplement the main text, with the solution to each exercise given
at the end of its respective chapter.

I welcome readers with questions, comments, criticisms, or suggestions, includ-
ing typos and overlooked citations, to contact me on Twitter (@HarryDCrane) or by
email (hcrane@stat.rutgers.edu).

Harry Crane
December 31, 2017
West New York, NJ

http://www.harrycrane.com/networks.html
mailto:hcrane@stat.rutgers.edu
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Chapter 1

Orientation

In recent years there has been an explosion of network data — that is, mea-
surements that are either of or from a system conceptualized as a network —
from seemingly all corners of science. (Kolaczyk [106])

Empirical studies and theoretical modeling of networks have been the subject
of a large body of recent research in statistical physics and applied mathemat-
ics. (Newman and Girvan [83])

Networks have in recent years emerged as an invaluable tool for describing
and quantifying complex systems in many branches of science. (Clauset, Moore
and Newman [38])

Prompted by the increasing interest in networks in many fields [...]. (Bickel
and Chen [19])

Networks are fast becoming part of the modern statistical landscape. (Wolfe
and Olhede [155])

The rapid increase in the availability and importance of network data [...].
(Caron and Fox [32])

Network analysis is becoming one of the most active research areas in statis-
tics. (Gao, Lu and Zhou [79])

Networks are ubiquitous in science. (Fienberg [74])

Networks are ubiquitous in science and have become a focal point for discus-
sion in everyday life. (Goldenberg, Zheng, Fienberg, and Airoldi [84])

“Networks are everywhere”

There is currently no shortage of interest in ‘network science’, ‘network data’, ‘com-
plex networks’, or just about anything else that invokes the term ‘network’; see, e.g.,
recent popular books on the topic [13, 151]. In writing this book, I have done my
part in furthering this trend; and in reading it, so have you. But as it was never my
intention to become part of the networks hype—a hype reflected in the quotes at the
top of this page—I do not set out here to celebrate the importance of network sci-
ence or its great ‘successes’ in better understanding the complexities of our world.
To the contrary, while I acknowledge the potential of network science for gaining

1
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better insights about complex data structures and the systems that produce them, I
also recognize that this potential has not yet been realized. Especially within statis-
tics, the study of ‘networks’ has been greatly limited by a lack of appreciation for
the complexity of ‘network data’ and a lack of creativity in developing new ways to
think about those complexities. By now these limitations are woven so deeply into
the fabric of statistical thinking that overcoming them is easier done by starting a
new fabric, rather than modifying the existing one. So, in addition to clarifying the
current limitations of statistical network analysis (in Chapters 1–4 and 6–7), I set
out here along a new path with the hope of catching a glimpse of what lies ahead.
And while certain parts of this book (e.g., Chapters 5, 8–11) do represent substantial
progress in this direction, I make no claim to overcome all of these limitations here.

With these objectives in mind, this book is not intended as a survey of existing
models or a catalog of currently available techniques for analyzing network data.
The book is instead a perspective on how to better represent, model, and think about
complex, heterogeneous data structures that arise in modern applications. The current
ways of doing things, and their various extensions, are insufficient for this purpose.
I discuss some early attempts at gaining such a new perspective throughout Chapters
7–11, but surely the future of statistical network analysis lies almost entirely beyond
these pages, in a yet-to-be-celebrated breakthrough.

In venturing beyond the conventional graph-theoretic representation of networks
and its associated random graph models, I am confident that the later chapters are
a step in the right direction. But just as it is wrongheaded to believe that the cur-
rent graph-theoretic convention is the ‘correct’, ‘best’, or ‘only’ way to think about
network data, it would be foolish to suggest that any of these new approaches is ab-
solutely superior to more conventional methods. To be sure, there are ways in which
these new approaches provide a better perspective on network data of a certain kind.
For example, the perspective of edge exchangeability (Chapter 9) allows us to ex-
press and extract properties from interaction data that standard vertex-centric ap-
proaches cannot. Such an expansion of the prevailing mindset, regardless of whether
it proves ‘useful’ in any practical domain, is necessary to broaden the scope of statis-
tical thinking beyond the traditional paradigm. Continued sharpening of perspective
and enrichment of mindset, far beyond what came before and what lies within these
pages, motivates everything that follows.

1.1 Analogy: Bernoulli trials

Network analysis is no more about studying Facebook, or Twitter, or the loyalties
of karate club members [161] than classical statistics is about tossing coins. And
yet, the theory of coin tossing, as formalized by infinite sequences of independent,
identically distributed (i.i.d.) Bernoulli trials, lays the groundwork for much of clas-
sical statistical theory; see, e.g., [71]. For an analogy, coin tossing is to the statistical
analysis of simple, unstructured data as networks are to the statistical analysis of
complex, dependent data:

coin tossing : unstructured data :: network analysis : complex, structured data.
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From this analogy, I make a few initial observations.
First, just as i.i.d. Bernoulli trials are an entry point into classical statistics,

through the law of large numbers, central limit theorem, etc., so too is network
modeling an entry point into modern complex data analysis. Much like the classi-
cal theory of statistical inference is erected on the scaffolding of the i.i.d. sequence,
the modern theory of inference from complex data will be built on the probabilistic
foundations of statistical network analysis.

Second, instead of heralding the ubiquity of ‘networks’, as in the opening quo-
tations, we would be better off recognizing the emergence of complexity in modern
data science, where ‘complexity’ is used here to mean dependence, structure, hetero-
geneity, and the like. At present, networks are the primary vehicle for representing
complex data structures and network analysis is the predominant method for under-
standing complexity, dependence, and heterogeneity.

Third, given the ubiquity of complexity and its many forms, statisticians can no
longer rely on a limited toolbox of classical techniques and old ideas. New founda-
tions for the statistical analysis of complex data must be forged; and these founda-
tions cannot be derivative on the classical theory of linear models, i.i.d. sequences,
etc. The newness of modern networks problems is paradigm-shifting, and thus war-
rants a shift in the paradigm within which we think about, discuss, and analyze such
data. I clarify this point of view in the coming several pages, with special focus on
the statistical foundations of network analysis, where they currently stand and where
they are headed.

Probabilistic Foundations of Statistical Network Analysis emphasizes modeling
(as a verb, the act of specifying a model), not models (the noun, those models which
already exist). The reasons are manifold:
• One, the act of modeling should be thought of as an act of imposing structure

on the data (and thus on the world). One does not simply choose a model from
an existing class of acceptable choices. One instead posits a model, and in doing
so declares how the data behaves and how that behavior fits into a bigger pic-
ture. Classical statistics, which deals primarily with data having little or no inter-
nal structure (i.e., sequences and sets), has conditioned the statistician to behave
rather lazily when choosing a model. Since there is little structure in many classi-
cal datasets, the act of modeling involves little more than identifying a family of
probability distributions to describe a (nearly) structureless collection of measure-
ments. (To be clear, I am not claiming that classical data sets lack structure; rather,
I am observing that their conventional representation, most often as sets of points
in Rd , and the models chosen to describe them, e.g., often i.i.d. or exchangeable
models, tend to minimize the impact of this structure on data analysis.) When
dealing with structured data—and in the case of network data, the structure is the
data—the act of imposing structure (via modeling) should be taken much more
seriously.
• Two, most of the network models that already exist are inadequate for modern

network data structures. They do not live up to their name as ‘models’ in the vast
majority of situations. We encounter several examples throughout Chapters 2 and
6–8.
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• Three, even though existing network models (i.e., stochastic blockmodels, expo-
nential random graph models, graphons) are known to suffer serious drawbacks
for modern applications, their appearance throughout the theoretical and applied
literature remains pronounced. I have no desire to continue this trend.
• Four, a major reason for the continued use of these limited models seems to be a

general lack of interest in positing new ones. The canonical statistics curriculum
focuses primarily on the analysis and application of standard models (Binomial,
Poisson, Gaussian, Exponential) but without emphasizing the principles that make
these models ‘good’ in any given situation. Rather than fret over the technicalities
and nuances of constructing better models, students and researchers are instead
indoctrinated with the Boxian trope, “All models are wrong, but some are useful”
[26], without any clarity as to why models are ‘wrong’ or what makes them ‘use-
ful’. With Box’s proverb comes the demotion of models and modeling, and the
elevation of estimation, prediction, approximation, and computation.
Perhaps the Boxian proverb does little harm in the classical paradigm, where laws

of large numbers, the central limit theorem, and asymptotic approximations abound.
But it is untenable within the emerging paradigm of network analysis, in which there
are few reliable asymptotic results; and those asymptotic results that do exist are hard
to make sense of, e.g., minimax rates for graphon models, consistency properties for
stochastic blockmodels and exponential random graph models, and asymptotic spar-
sity properties of so-called ‘sparse graphon’ models (Section 7.2). Bear in mind: the
model is what the researcher puts in. Everything else is either given (i.e., data) or de-
rived (i.e., inferred). The choices made while modeling—how one chooses to ‘look
at’ and ‘think about’ the data—are most critical to determining whether the resulting
inferences are ‘useful’, in Box’s parlance. As I emphasize with the statistical mod-
eling paradigm of Chapter 5, whether the result of an analysis ‘is useful’ or ‘makes
sense’ or ‘is valid’ cannot be assessed solely on whether the estimators are unbiased,
consistent, efficient, etc., as these diagnostics are meaningless unless grounded by an
internally coherent model. No matter how much statistical inference is presented as
an ‘objective’ approach to data analysis, modeling is undoubtedly a subjective and
personal activity. And so it ought to be taken personally.

With the discussion below, I hope more than anything else to restore modeling to
its role at the center of the statistical paradigm, bridging the divide between data col-
lection and inference. Along the way I will carefully consider Box’s admonition—to
employ models that are ‘useful’—along with other foundational topics (i.e., symme-
try and exchangeability) at the heart of statistical inference. For the most part, I have
chosen to deemphasize technical aspects of network analysis in favor of high-level
concepts, both in the remainder of this chapter and throughout the book. For the rest
of this opening chapter, I discuss the guiding principles of statistical network analysis
at a high level. Although the technical aspects of this chapter are light, the concepts
are subtle, and are essential in order to appreciate the core ideas motivating this book.
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1.2 What it is: Graphs vs. Networks

In these pages, the term ‘network’ refers to a specific instantiation of what can be
vaguely understood as ‘complex data’. But even in the specific case of ‘network
data’, it is important to distinguish between the fundamental objects of study (i.e.,
networks) and the conventional mathematical representation of those objects (i.e.,
graphs). The distinction between networks and graphs marks the initial divergence
between the perspective put forward here and the prevailing ‘networks-as-graphs’
perspective found throughout the literature.

To be clear: networks are not graphs. A graph is a mathematical object consisting
of a set of vertices V and a set of edges E ⊆V ×V . This mathematical concept can be
extended in several ways to allow for multiple edges, hyperedges, and multiple lay-
ers, but all of these objects, i.e., graphs, multigraphs, hypergraphs, multilayer graphs,
etc., are mathematical entities. They are also distilled entities, in that they can be
discussed independently of any presumed statistical or scientific context. From this
point of view, graphs can be regarded as a ‘syntax’ for communicating about network
data. But this graph-theoretic syntax is just one language with which to communi-
cate about networks. And like any language, it is limited in what it can express. In
becoming too attached to this one language for talking about networks, we limit the
nature of insights that can be gleaned from network data. A sure sign of progress in
the foundations of network analysis is the development of new ways to express and
understand network data. See Chapters 9 and 10 for one such new approach.

A network, on the other hand, is an abstract concept referring to a system of inter-
related entities. For us, the concept of ‘network’ is neither concrete nor well-defined,
but rather is vague and amorphous, emerging from an intuitive judgment about per-
ceived structure in an observed system. For example, import-export partnerships be-
tween countries, social relationships among high school students, patterns in phone
call activity, connectivity among Internet servers, and interactions among genes all
invoke the concept of a network of relationships or interactions in a particular con-
text. Although it is sometimes reasonable to represent these networks mathematically
as graphs, the systems are not graphs in themselves. For example, the Internet is a
physical structure consisting of wires, servers, and routers. A graph is a set V to-
gether with another set E ⊆ V ×V . The physical Internet invokes the concept of a
‘network’, and some aspects of it can be represented or modeled as a graph, but the
Internet is not a graph.

Moving beyond graphs

The reader who has read the word ‘network’ and every time envisioned a ‘graph’
faces a steep unlearning curve to appreciate the richness of structure encoded in the
concept of ‘network’. If there is to be progress in understanding complex, structured
data, then the conventional ways of thinking about ordinary, unstructured data—the
data sequences and arrays that fill statistics textbooks—must be purged from mem-
ory, or at least demoted from their default status in data analysis. To think about
networks properly, one must strongly resist any temptation to embed networks in Eu-
clidean space, or use the terms ‘network’ and ‘graph’ interchangeably, or any similar



6 ORIENTATION

such urge to impose the flat view of data taken by classical statistics on the volumi-
nous and rich structure which the concept of network calls into being.

Though I strongly advocate this point, it is with great regret that almost all of
the ‘networks’ discussed in this book are treated as ordinary ‘graphs’, an exception
being the important class of edge and relationally exchangeable network models in
Chapters 9 and 10. This antithetical presentation can be explained by the extraordi-
nary primitiveness in the current state of affairs. The concept of ‘network data’ is
itself a very special case—the base case—of what can be understood as ‘complex
data’. The mathematical language of graph theory studies the even more restricted
class of ‘networks’ which can be represented as pairs (V,E) consisting of a set V of
vertices and a set E ⊆V ×V of edges. The recent proposal of edge-labeled networks
(Chapter 9) breaks free of this traditional view and inspires hope for expanding the
scope of ‘network analysis’ beyond what is currently conceivable, but there is still a
long way to go.

1.3 How to look at it: Labeling and representation

Think of statistical analysis as the act of discerning the nature of some large, com-
plex object in a dark room. You only have a flashlight, which can illuminate just a
small piece of that object. In this analogy, the illuminated piece is the data on which
your inference about the large, unobservable object is to be based. Different angles
of shining the flashlight can be understood as different ways of looking at, or rep-
resenting, the data. For example, the representation of a network as a vertex-labeled
graph (Figure 1.1(b)) corresponds to the shadow cast by shining the light from one
angle; the edge-labeled graph (Figure 1.1(c)) is the shadow cast from a different an-
gle. Both are shadows of the same object, namely Figure 1.1(a), but the angle from
which the light is shone (i.e., the perspective from which the data is viewed) affects
which attributes are visible and which are obscured, and thus which inferences the
data supports and which it does not.

Because in many classical applications there is just one canonical angle from
which to look at the data, it is easy to overlook the role played by ‘perspective’ in
complex data analysis. In a sequence, for example, the measurements X1,X2, . . . con-
tain the primary information. Changing the ‘angle’ from which we shine our prover-
bial flashlight on this data (e.g., by converting pounds to kilograms, or feet to inches)
does not change the nature of the measurements X1,X2, . . .. But the significance of
this ‘angle’ cannot be overstated when handling networks and other complex data
structures. In these latter instances, the structure is the data, and different aspects of
this structure may be visible depending on the angle from which the light is shone.

In practice, this ‘angle’ is manifested first and foremost in how the network is
represented, for which the choice of labeling is a basic consideration. In Figure 1.1,
for example, the ‘unlabeled’ structure in Figure 1.1(a) is the object of interest. Ideally,
we would treat this ‘unlabeled’ structure as the data and analyze it directly, but this is
not possible. Unlabeled structures cannot be treated as data because unlabeled objects
cannot be represented. To analyze data one must be able to talk about it; and to be
able to talk about something, one must assign names to whatever parts of that thing
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Figure 1.1 Two perspectives on network data. (a) Represents the essential structure of ‘unla-
beled’ network data. (b) Represents the structure in (a) by assigning labels to its vertices (i.e.,
vertex-centric perspective). (c) Represents the structure in (a) by assigning labels to its edges
(i.e., edge-centric perspective).

are being discussed. For networks, this ‘naming’ comes in the form of labeling the
constituent parts of the data. Without such a labeling, we cannot even utter a word.

To make this point clear, realize that the object in Figure 1.1(a) merely represents
the abstract notion of an unlabeled network. But the object itself is labeled by the spa-
tial orientation of its edges and vertices on the page. This spatial orientation allows
one to speak (i.e., ‘utter’) about this network by referring to the relative positions
of vertices/edges, e.g., by pointing or describing the positions in words. Mathemati-
cally, such ‘unlabeled’ structures are typically represented by ‘removing the labels’
and working with a class of structures that are equivalent up to relabeling. But the
appropriate notion of equivalence itself depends on the perspective from which two
networks are to be treated as ‘equivalent’. For example, the equivalence class of
vertex-labeled networks (as in Figure 1.1(b)) differs from the equivalence class of
edge-labeled networks (as in Figure 1.1(c)), because the corresponding notions of
equivalence differ based on the chosen perspective. Which perspective is appropriate
for a given application depends on the context.

1.4 Where it comes from: Context

Given the diverse scenarios in which networks arise, there can be no single ‘cor-
rect’ approach to network analysis. Instead, what makes ‘network analysis’ relevant
to a given problem depends on the context. And this context should be accounted
for at every stage of the analysis, beginning with the way in which the data is rep-
resented, continuing through model specification, and culminating in inference. As
emphasized in the previous section: the representation of network data reflects the
perspective from which it is being analyzed, which in turn determines what infer-
ences can be drawn from the analysis. To elicit the best available insights from the
data, we want to shine our flashlight (i.e., represent and model the data) from the
optimal angle, and the optimal angle in any given application depends crucially on
the context.

Consider the structures in Figure 1.1. Do they represent the same network? Per-



8 ORIENTATION

haps. Assuming they do represent the same network, do they provide the same rep-
resentation of that network? Of course not. Figure 1.1(a) represents the ‘shape’ of
the network, without explicitly identifying any of its other components, e.g., ver-
tices or edges. Figure 1.1(b) identifies each vertex with a distinct label. Figure 1.1(c)
identifies each edge with a distinct label, leaving vertices unlabeled. But what’s the
difference? The difference, we will see throughout the coming chapters, is a matter of
perspective. In labeling the vertices, Figure 1.1(b) asserts a ‘vertex-centric’ view of
the shape in Figure 1.1(a), and this vertex-centric view differs from the ‘edge-centric’
point of view taken in Figure 1.1(c). Even though these may be different representa-
tions of the same network, the choice of representation reflects the perspective of the
data analyst and the context of the application, both of which affect inference.

1.5 Making sense of it all: Coherence

There are primarily two aspects to network modeling. The model first describes the
observed data from the perspective of the statistician. And then, to draw inferences
beyond the observed data, the model specifies a context in which to interpret the data.
With this, the model has two components:
• a descriptive component consisting of the family of candidate probability distri-

butions for describing variability in the observed data, and
• an inferential component explaining how the observed data fits into a larger con-

text.
Both components are essential to proper model specification and sound statistical
inference.

Returning to the Boxian proverb, “All models are wrong, but some are useful,”
I regard ‘making sense’ as the first step towards ‘being useful’. To make sense, the
inferences based on the model should be interpretable within a single (coherent)
context. This observation culminates in the formal concept of coherence, by which
the description of the model ‘fits coherently’ into its context in a sense made precise
in Definitions 5.2–5.3. (See Chapter 5 for a more formal discussion of coherence and
its significance for statistical inference.)

Beyond coherence, there are often practical considerations regarding whether or
not the presumed context is suitable, or whether the specified model can actually
be used (i.e., computed) in a given application. But such practical matters should
be considered only after minimal logical conditions, such as coherence, are met.
Without coherence, any computational or practical techniques which enhance the
analysis are of little use, precisely because the model which they will have enhanced
does not make sense.

1.6 What we’re talking about: Examples of network data

Throughout these pages, we will encounter a number of scenarios under which dif-
ferent modeling considerations are appropriate. Whenever possible, I try to motivate
these scenarios by real (or realistic) applications for which canonical examples al-
ready exist. I survey some of these common scenarios below. For the most part, these
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examples are not interesting on their own, and are offered here only to illustrate how
basic principles of network analysis arise in practice.

1.6.1 Internet

Several early developments in network science grew out of empirical observations
taken on the Internet, defined as the network of servers and systems connected by
physical wires. Of all the datasets discussed here, the Internet is one of the only ‘real’
networks in the sense that it corresponds to an actual physical object. Explaining the
observed power law structure in sampled data from the Internet and World Wide Web
was one of the primary motivations for Barabási and Albert’s preferential attachment
model (Section 4.2). The widespread empirical observations of power law degree
distribution, both in the Internet and other real-world networks, remains one of the
most evocative illustrations of the effects of sampling on network analysis, which
have been mostly overlooked until recently [52, 54, 112, 127, 154]. I discuss the role
of sampling further in Chapter 3.

Because of its physical nature, the Internet network invokes a notion of ‘ground
truth’ that is absent from other familiar applications in network science. For example,
community detection in social networks seeks an optimal clustering of vertices into
(disjoint) communities based on their network connectivity. As the concept of ‘social
network’ is itself a nebulous one, in many cases there is no ‘true’ division of vertices
against which to assess the inferred clustering. (A notable exception is the karate
club network of Zachary [161], see Section 1.6.3. But in modern network analysis,
the karate club network is treated more as a meme than as a serious dataset.1)

1.6.2 Social networks

In social network analysis, vertices represent individuals and edges represent social
ties between their adjacent vertices. The network does not correspond to anything
physical, as in the Internet, but rather represents invisible social forces driving in-
teractions within a population, e.g., shared recreational interests, common political
views, or professional relationships. I discuss some scenarios of social network mod-
eling in Chapters 2, 3, 6, 7, and 8.

1.6.3 Karate club

The karate club dataset [161] records social interactions among 34 members of a
university karate club for the three-year period spanning 1970–1972. Represented
as a network with multiple edges, each vertex corresponds to a different member of
the club and each edge corresponds to a different social interaction between the cor-
responding club members. Since all club members have been observed, the dataset

1Since 2013, the ‘Zachary Karate Club Club’ (ZFCC) trophy has been presented, as a joke, at various
conferences to the speaker who first mentions the karate club network in his or her presentation. See
http://networkkarate.tumblr.com/ for more information.

http://networkkarate.tumblr.com/
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exhibits no vertex sampling or growth. Zachary’s initial analysis highlighted the di-
vision of members into two factions, caused by a rift between the club’s two leaders.
This known separation of its vertices makes the karate club network a canonical
testbed for community detection methods. The standard analyses of the karate club
also demonstrate a common pitfall of network analysis, which I discuss further in
Section 9.10.

1.6.4 Enron email corpus

The Enron email corpus [104] consists of email activity for 150 employees at the
Enron corporation. The dataset contains not only information about the senders
and recipients of emails but also textual content, timestamps, etc.2 Most relevant
for our purposes is the network structure induced by the exchange of emails be-
tween employees, which we construct by letting each edge correspond to a different
email in the corpus. An important difference from the karate club network (Sec-
tion 1.6.3) is that a single edge (i.e., email) can involve more than two vertices (i.e.,
sender/recipient). For example, an email sent from employee A to employees B, C,
and D corresponds to a single (hyper)edge in the network representation. Interaction
networks such as this and the collaboration networks discussed next are the subject
of Chapters 9 and 10.

1.6.5 Collaboration networks

Collaboration networks between actors [104, 134], scientists, authors, and other com-
munities of professionals have much in common with the above Enron dataset. In an
actors network, for example, each actor corresponds to a different vertex and each
movie corresponds to a different edge consisting of the set of all vertices whose as-
sociated actors play a role in that movie. A common feature of the karate club, Enron,
and collaboration networks is their growth by sequential addition of new edges, in
the form of interactions, as opposed to sequential addition of new vertices, as in the
preferential attachment model (Section 4.2). This feature of interaction networks fig-
ures prominently in Crane and Dempsey’s framework of edge exchangeability (see
[54] and Chapters 9–10).

1.6.6 Blockchain and cryptocurrency networks

Cryptocurrencies, such as Bitcoin [10, 122], Ethereum [29], and RChain [40], com-
bine several innovative ideas in an effort to revolutionize economic activity through
the use of peer-to-peer networks, blockchain technology, and smart contracts. These
‘digital currencies’, e.g., Bitcoin, operate on a blockchain, which records all trans-
actions in a ‘ledger’ that stores the complete history of all Bitcoin transactions.
This ledger is maintained by a distributed peer-to-peer network, which updates the
blockchain by adding blocks according to a majority voting consensus protocol. Peer-
to-peer networks also play an important role in decentralizing control of the network

2See http://www.cs.cmu.edu/˜enron/ and [131] for some applications involving this dataset.

http://www.cs.cmu.edu/�enron/
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away from a centralized authority toward a distributed collection of nodes in the net-
work. All of these components come together to create a complex network of trans-
actions between addresses on the blockchain. As this revolutionary new technology
matures, blockchain data should serve as a fertile testbed for model development at
the frontiers of complex data analysis.

1.6.7 Other networks

In addition to the above examples, there are networks from social media platforms
such as Facebook and Twitter [18, 117], brain networks [82], gene regulatory net-
works, telecommunications networks, wireless sensor networks [100, 101], etc. All
of these are just a small selection of the many structures that are now referred to
as ‘network data’. Because I focus in this book on establishing the foundations of
network analysis, I do not undertake any detailed application of a particular network
dataset. These examples do, however, provide concrete modeling ‘scenarios’ within
which to discuss different modeling approaches. The ‘scenarios’ accompanying each
new class of models are meant to provide additional context for the more technical
aspects of network analysis covered throughout the text.

1.6.8 Some common scenarios

As the scope of networks expands to encompass problems in new disciplines, so too
must the mathematical and statistical techniques available to address these problems.
I conclude this section with a brief review of some of the basic contexts for network
modeling in social science, epidemiology, and national security. In the near future,
it seems inevitable that the relevance of networks will continue to expand to include
a wider range of disciplines as human behaviors and complex systems become ever
more entangled through the growth of the Internet, social media, and other emergent
technologies, such as blockchain.

Social science. Social network analysis was the primary domain of statistical net-
work analysis until the mid-1990s. By all known accounts, the study of social net-
works began with Moreno’s invention of the sociogram in 1930 [121]. Still today,
many common network models (e.g., stochastic blockmodels (SBMs) [89] and ex-
ponential random graph models (ERGMs) [78, 90]) were originally motivated by
sociological applications. With the growth of online communities and social media
as a way to consume and disseminate information, traditional social networks have
given way to networks with much more complex structure than traditional social
network models, namely SBMs and ERGMs, are equipped to handle.

Epidemiology. Stochastic process models for disease spread on networks garner
substantial interest in applied probability and statistical physics. The now classical SI
(susceptible-infected), SIS (susceptible-infected-susceptible), and SIR (susceptible-
infected-recovered) models describe how infections spread in a population whose
interactions are represented by a graph. In the SIR model, for example, each node
fluctuates among three states: susceptible to infection (S), infected (I), or recovered
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(R). As time evolves, infected individuals randomly transmit the disease to their sus-
ceptible neighbors. Infected individuals recover, and are henceforth immune from
infection, according to another random process. Basic questions center around how
the different combinations of network structure and disease dynamics affect disease
spread. For example, given certain initial conditions, what is the probability of an epi-
demic, i.e., the disease spreads to a non-negligible fraction of the population? One
can also imagine how such models could be useful for designing effective advertising
strategies or for modeling how information percolates through social networks.

National security. Networks arise in national security in at least two different ways.
There are physical networks, such as the Internet, the U.S. Power Grid, and the trans-
portation network of roads, bridges, and highways, all of which must be protected
against failure or targeted attack. In fact, many experts [37] now regard cyberspace
as the primary battlefield of modern warfare and national security, making resilience
to targeted network attacks critical to national security interests. These concerns over
cybersecurity, and the role of network science in resolving them, will continue to
grow as more economic and social activity transitions to cyberspace.

Non-physical networks also play a role in national security, as terrorist organi-
zations rely on complex webs of social, financial, and political interactions in order
to evade detection [135]. As long as critical national infrastructure is controlled by
a centralized, bureaucratic government, the governed society is vulnerable to both
external attacks (e.g., hacking) and internal attacks (e.g., leaks), both of which have
become increasingly prevalent and widely publicized in recent times. As a coun-
termeasure to the vulnerability and antiquity of centralized authority, blockchain
technology and cryptocurrencies (Section 1.6.6) distribute control of currency and
other critical information to a “trustless” peer-to-peer network [10, 122]. The use of
networks for this purpose is likely to have potential national security implications
moving forward.

1.7 Major open questions

The probabilistic foundations of statistical network analysis currently face a few ma-
jor open questions that are worth keeping in mind over the coming chapters.

1.7.1 Sparsity

Early interest in network science grew out of several concurrent empirical ob-
servations of sparsity and so-called ‘scale-free’ structure in real-world networks
[1, 5, 14, 70, 111, 113]. (Refer to Chapters 4, 7, and 9 for a more detailed discussion
of sparsity and power law, i.e., scale-free, properties.) For present purposes, it is suf-
ficient to interpret ‘sparsity’ to mean that the network has few connections relative
to its size. For example, when represented as a graph with n vertices, a network is
sparse if it has a negligible number of edges compared to the number n2 of all pos-
sible edges. In statistics, sparsity draws interest for two competing reasons, which
together capture the tension between empirical properties of network data and log-
ical principles of statistical modeling. First, many sparse networks are observed to



MAJOR OPEN QUESTIONS 13

be well-connected as a result of heterogeneous patterns of connectivity (e.g., ‘scale-
free’ structure). So while the network is in one sense poorly connected (because it
is sparse), it is at the same time well-connected (because of its complex patterns).
Second, the prevailing approaches to network modeling (e.g., stochastic blockmod-
els, graphons, and exponential random graph models) are unable to account for these
observed empirical behaviors. These competing elements of network modeling have
stalled progress in statistical network analysis for nearly a decade, primarily due to
unrecognized limitations of conventional approaches. Chapters 9–10 present one at-
tempt to address this challenge, which interested readers are encouraged to build
upon.

1.7.2 Modeling network complexity

In addition to sparsity, other heterogeneous features of real-world networks, such
as power law degree distributions, clustering, and the ‘small-world’ property [152],
confound attempts to analyze network data with standard models. In this opening
chapter, I have emphasized the need for new tools to conceptualize the complexity
of modern data structures. Above all, we seek to work with the complexity of net-
work data, rather than fight against it by reducing complexity to something with less
structure. This latter attitude of ‘flattening’ network structure is common through-
out statistical analysis, and especially in network community detection, where non-
overlapping subsets (i.e., communities) are sought to provide a ‘low resolution’ sum-
mary of much richer network structure. Community detection has become a cottage
industry among statisticians interested in network analysis, but it is mostly coun-
terproductive for understanding data complexity. I discuss models for community
detection in the context of relative exchangeability (Chapter 8).

1.7.3 Sampling issues

Understanding the impact of sampling is one of the longest standing challenges in
modern network science. Empirical observations of power law degree distribution in
the Internet and other real-world networks [1, 5, 14, 70, 111] raise the question of
whether these observed properties reflect the actual network structure or are merely
an artifact of sampling bias [27, 112, 154]. This question is of central importance to
statistical network analysis, for which the mode of sampling establishes the essential
link between observed and unobserved parts of the network needed for inference.
But even as interest in network analysis has grown among statisticians, there has not
been much effort to incorporate sampling into the theoretical foundations of the sub-
ject. Much of the work on network analysis promoted by flagship statistics journals
consists of asymptotic results and standard analyses under models that are known to
be inadequate for most serious applications (e.g., graphons, stochastic blockmodels,
and exponential random graph models). Remarkably few of these analyses acknowl-
edge the importance of sampling to network analysis; and those that do, e.g., [138],
assume a stylized form of sampling by vertex selection (Section 3.2) which does not



14 ORIENTATION

even remotely resemble the way in which real-world networks are sampled. I discuss
these issues at length throughout Chapters 3–5, and again in Chapters 6 and 9.

1.7.4 Modeling network dynamics

While much of this book is dedicated to modeling single instances of a network, there
is emerging interest in analyzing dynamic network data, such as temporal observa-
tions of brain activity and social media interactions. But so far statistical work on
dynamic networks is mostly confined to theory and applications for the temporal ex-
ponential random graph model or other ad hoc approaches. Because network dynam-
ics add another dimension to the already challenging problem of network modeling,
the foundations of dynamic network analysis are even more technically and concep-
tually challenging than their non-dynamic counterpart. Chapter 11, in which I give a
brief non-technical overview of some otherwise technical work from the stochastic
processes literature [44, 48, 57], offers a potential starting point for a more general
theory of dynamic network modeling. More in depth coverage of dynamic network
analysis is beyond the scope of this book and is left as a topic worthy of its own book
length treatment.

1.8 Toward a Probabilistic Foundation for Statistical Network Analysis

In this opening chapter I have laid out a vision for network analysis as the foundation
for what I am calling complex data analysis. As of yet, this vision has not been
realized, but it is my hope in this book to clarify the major tenets underlying this
vision and, if possible, to light the path toward its ultimate fulfillment. If nothing
else, I hope to convince readers that real progress in the analysis of complex data
will be limited as long as the field continues to seek incremental advances within
the networks-as-graphs orthodoxy. The ideas in Chapters 5 and 9–11 offer some first
attempts to get beyond these limitations, but many challenges still lie ahead.



Chapter 2

Binary relational data

We begin with network data that takes the form of a relation among individuals in a
well-defined population. For this we write R to denote a relation on the set of n ≥ 1
elements [n] = {1, . . . ,n}. Here each element 1, . . . ,n is assumed to uniquely label
one of the n individuals in a population. (We will have ample opportunity to discuss
the significance of labeling throughout Chapters 6–10. For now it is assumed that
the labels 1, . . . ,n carry no additional significance other than to distinguish between
individuals.)

In concrete applications, R is understood as the nature of relationship under con-
sideration, with (i, j) ∈ R indicating that (i, j) is an instance of relation R, i.e., i
exhibits relation R to j. For example, if 1, . . . ,n label students in a high school, then
(i, j) ∈ R might indicate that ‘i considers j as a friend’, or that ‘i voted in favor of j
for election to student government’, or that ‘i and j are friends on social media’. Or
if 1, . . . ,n label countries, then (i, j) ∈ R might indicate that ‘country i imports goods
from country j’, or that ‘country i is a military ally of country j’, or the like. Data
with this structure includes networks built from interactions on social media such as
Facebook and Twitter, the karate club dataset, and other sociometric datasets.

The instances of the relation R mentioned above are all binary, i.e., defined for
pairs of individuals, but networks can also be built from higher-order relations, as
when interactions involve more than two individuals. In a coauthorship network, for
example, each published article represents an interaction of ‘coauthorship’ among its
authors, in which case the labels 1, . . . ,n correspond to authors and (i1, . . . , ik) ∈ R
indicates an article coauthored by i1, . . . , ik. Additional examples include collabora-
tions among movie actors, as obtained from the Internet Movie Database1 (IMDb),
and email communications among employees in a company, as recorded in the Enron
email corpus [104, 134]. While there is little conceptual difference between binary
relations, i.e., each relationship involves exactly two elements, and higher-order rela-
tions, indicating coauthorship, professional collaboration, or email communication,
the two different cases raise important practical considerations in light of how they
are typically treated in the network science literature. In Chapter 10, we discuss some
subtleties of analyzing higher-order relations. But for now we specialize to binary re-
lations.

1http://www.imdb.com/
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Figure 2.1 Undirected graph corresponding to adjacency matrix in (2.2).

From any binary relation R, one can construct an adjacency matrix Y =
(Yi j)1≤i, j≤n with

Yi j =

{
1, (i, j) ∈ R,
0, otherwise. (2.1)

The matrix Y defined in (2.1) can be envisioned as a graph with vertex set [n] and
a (directed) edge from i to j if Yi j = 1. (The graph is undirected if Yi j = Yji for all
1≤ i, j ≤ n. We discuss both directed and undirected graphs throughout the text, of-
ten without distinguishing between the two cases.) Figure 2.1 depicts the undirected
graph with corresponding adjacency matrix

y =



0 0 0 0 0 0 1
0 0 1 0 0 1 0
0 1 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 0
0 1 1 1 0 0 1
1 0 0 0 0 1 0


. (2.2)

The representation of relational data as a binary array, in (2.1), and its visualization as
a graph, in Figure 2.1, facilitates the commonplace ‘networks-as-graphs’ perspective
of network data which I mentioned in Section 1.2 and will discuss again throughout
the coming chapters.

Throughout the text I use Y and y to denote networks, with Y being random
and y being generic or fixed. As emphasized in Chapter 1, these networks need not
always take the same form, e.g., as a {0,1}-valued array in (2.2) or as a graph in
Figure 2.1, but when working with arrays, as in (2.1), Y and y are understood to
represent {0,1}-valued arrays of arbitrary size. When wishing to emphasize that Y
or y is n×n, I write Yn or yn, as appropriate.

Notice that we allow the random array Y in (2.1) to be asymmetric (Yi j 6=Yji) and
to have loops (Yii = 1). In practice, the decision of whether to allow for directed edges
or loops depends on the nature of the relation under study. For example, directed
edges arise in the international trade scenario of Section 2.1, in which (i, j) ∈ R
indicates that country i imports goods from country j. Since this relation need not
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Table 2.1 Array Y describing binary import/export relationships between countries.
USA Russia China England · · ·

USA − 0 1 1 · · ·
Russia 1 − 1 0 · · ·
China 1 1 − 0 · · ·

England 1 0 0 − ·· ·
...

...
...

...
...

. . .

be reciprocated, i.e., j need not import from i even though i imports from j, the
relation R is asymmetric. On the other hand, if (i, j)∈R indicates that i is a ‘friend’ or
‘follower’ of j on a social media platform, then the relation is sometimes symmetric,
e.g., on Facebook i can only be a friend of j (i.e., (i, j) ∈ R) if j is a friend of i (i.e.,
( j, i) ∈ R), and sometimes asymmetric, e.g., on Twitter it is possible for i to ‘follow’
j without j following i. Loops occur when vertices bear the relation R relative to
themselves. For example, if (i, j) ∈ R indicates that ‘i voted for j’ in an election,
then (i, i) ∈ R indicates that vertex i voted for himself/herself. For the most part these
distinctions pose no technical difficulty, and so we allow both asymmetry and loops
in R as a default, unless stated otherwise.

Though not exclusive to social network analysis, relational datasets frequently
arise in classical sociometric studies, of which both the high school social network
and international relations network discussed above are specific examples. In the
sociometric context, statistical models serve primarily as a way to summarize the
structure in the observed data Y, rather than to infer patterns in a larger population
of individuals. Although it is possible in some cases to draw inferences beyond the
observed data, sociometric analysis is more often an exercise in descriptive statistics
and exploratory data analysis. And while exploratory data analysis has proven useful
in the study of social networks, it is not where the future of complex data analysis
lies, and thus is not the appropriate setting for this discussion on the foundations of
network analysis. Nevertheless, this context motivates the more in-depth treatment
of network sampling which begins in Chapter 3 and continues throughout the text.

2.1 Scenario: Patterns in international trade

Let [n] index a set of countries (e.g., USA, England, China, Russia, etc.) and let Y =
(Yi j)1≤i, j≤n represent binary relational data with ‘Yi j = 1’ indicating that ‘country i
imports from country j’ and Yi j = 0 otherwise. For the time being we assume that
Y is observed without any further information about the countries, such as GDP,
geographical location, etc. In this way the data consists only of the import-export
relation Y among the n observed countries. The goal of the analysis is to detect
patterns in the trade relationships among these countries.
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2.1.1 Summarizing network structure

In many sociometric studies, the number of vertices n is often small or moderate. In
the above international trade scenario, for example, the number of countries can be no
larger than a few hundred (i.e., the number of countries in the world), but in general
will be much less, such as the 20 countries with the largest economies. Even though
these datasets are small by modern standards, it may still be difficult to represent
the structure induced by Table 2.1 visually (e.g., as a graph with vertex set [n] and
edge i → j whenever Yi j = 1) in a way that makes interesting patterns apparent.
So while we do not seek to draw inferences beyond the sample in this scenario,
a network model may be useful for summarizing the observed network structure
in terms of a few sufficient statistics of interest. In this case a model with easily
interpretable parameters which capture the essence of the desired network properties
is most valuable. More sophisticated models that take into account aspects of network
sampling or network generation are important to other settings of network analysis
but add little or no value in the present scenario.

One common and straightforward approach to describing patterns in Y is to com-
pute certain summary statistics of interest, such as reciprocity between countries—
both i and j import from one another—and differential attractiveness—the attrac-
tiveness of j is measured as the number of countries that import goods from j. (The
term ‘differential’ here indicates that attractiveness is measured relative to the other
countries in the population. There is no absolute measure of attractiveness.) Other
measures include transitivity—if i imports from (or exports to) j and j imports from
(or exports to) k, then i also imports from (or exports to) k. The dyad independence
model (Section 2.2) was designed for the purpose of summarizing these, and similar,
aspects of network structure.

2.2 Dyad independence model

Holland and Leinhardt [90] introduced the so-called p1 model for the purpose of
describing patterns in sociometric data. The p1 model arises as a special case of the
dyad independence model for binary relational arrays in {0,1}n×n as follows.

For any Y = (Yi j)1≤i, j≤n, the dyad Di j is the pair (Yi j,Yji) for each 1≤ i 6= j ≤ n.
Thus, if Y is represented graphically, then each dyad Di j describes how vertices i and
j are related to one another, with

Di j = (0,0) indicating no relationship between i and j,

(1,0) indicating a relationship in the direction from i to j but not j to i,

(0,1) indicating a relationship in the direction from j to i but not i to j, and
(1,1) indicating a relationship both from i to j and from j to i.

In full generality, the dyad independence model assigns a probability distribution pi j
to each dyad, i.e.,

Pr(Di j = (z,z′)) = pi j(z,z′), z,z′ ∈ {0,1}, (2.3)
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and assumes that these dyads behave independently. With p = (pi j)1≤i6= j≤n and the
assumption that all pairs (Di j)1≤i< j≤n behave independently according to (2.3), Y
has distribution

Pr(Y = y;p) = ∏
1≤i< j≤n

pi j(yi j,y ji), y ∈ {0,1}n×n. (2.4)

Throughout the text, Pr denotes a generic probability operator and Pr(·;θ) denotes a
probability distribution parameterized by θ .

The dyad independence model in (2.4) can be alternatively expressed in terms of
parameters (ρi j)1≤i< j≤n and (θi j)1≤i6= j≤n by

Pr(Y = y;(ρi j)1≤i< j≤n,(θi j)1≤i6= j≤n) ∝ (2.5)

∝ exp

{
∑

1≤i< j≤n
ρi jyi jy ji + ∑

1≤i6= j≤n
θi jyi j

}

for each y = (yi j)1≤i, j≤n ∈ {0,1}n×n, where

ρi j = log
(

pi j(0,0)pi j(1,1)
pi j(0,1)pi j(1,0)

)
and

θi j = log(pi j(1,0)/pi j(0,0)).

Note that the distributions in (2.4) and (2.5) are equivalent, with (2.5) expressing the
dyad independence model as an exponential family model with natural parameters
(ρi j)1≤i< j≤n and (θi j)1≤i6= j≤n.

In their initial development of this model, Holland and Leinhardt focused specif-
ically on the properties of reciprocity and differential attractiveness, prompting them
to streamline the expression in (2.4) by specifying parameters θ ,ρ , α = (αi)1≤i≤n,
and β = (βi)1≤i≤n and setting

ρi j = ρ, 1≤ i < j ≤ n, and
θi j = θ +αi +β j, 1≤ i 6= j ≤ n.

With these parameters, the so-called p1 model with parameter (ρ,θ ,α,β ) on
{0,1}n×n assigns probability

Pr(Y = y;ρ,θ ,α,β ) =
exp
{

ρ ∑1≤i< j≤n yi jy ji +θy••+∑
n
i=1 αiyi•+∑

n
j=1 β jy• j

}
∏1≤i< j≤n ηi j

(2.6)
to each y ∈ {0,1}n×n, where yi•=∑

n
j=1 yi j is the out-degree of vertex i, y• j =∑

n
i=1 yi j

is the in-degree of vertex j, y•• = ∑
n
i, j=1 yi j is the total degree of y, and the product

over

ηi j = 1+ eρ+αi+β j + eρ+α j+βi + eρ+2θ+αi+α j+βi+β j , 1≤ i < j ≤ n, (2.7)

determines the normalizing constant. The reciprocity parameter ρ in (2.6) captures
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the relative probability that two generic vertices ‘reciprocate’ their relation to one
another in the observed network; and the differential attractiveness parameters αi
and βi of each vertex i capture how likely (relative to other vertices) i is to have
outgoing links (αi) and incoming links (βi).

For our purposes, the p1 model plays a limited but important role: first in moti-
vating the more general class of ERGMs (Section 2.3); and second in giving a non-
trivial example of a model that is consistent under selection (Section 2.5). Some rec-
ommended further reading about the p1 model and ERGMs can be found in Section
2.6.

2.3 Exponential random graph models (ERGMs)

For real-valued parameters θ1, . . . ,θk ∈R and statistics T1, . . . ,Tk : {0,1}n×n→R, the
exponential random graph model (ERGM) with (natural) parameter θ = (θ1, . . . ,θk)
and (canonical) sufficient statistic T = (T1, . . . ,Tk) assigns probability

Pr(Y = y;θ ,T ) ∝ exp{
k

∑
i=1

θiTi(y)} (2.8)

to each y ∈ {0,1}n×n. (The proportionality constant

∑
y∗∈{0,1}n×n

exp

{
k

∑
i=1

θiTi(y∗)

}
(2.9)

of the distribution in (2.8) cannot, in general, be expressed in closed form, and is
therefore omitted.) Under (2.8), T is a sufficient statistic for the distribution of Y in
the sense that (2.8) assigns equal probability to any two realizations y,y′ ∈ {0,1}n×n

with T (y) = T (y′), for any choice of θ .
The p1 model in (2.6) has the form of (2.8), as does the famed Erdős–Rényi–

Gilbert model [68, 81], under which each Yi j is an i.i.d. draw from the Bernoulli
distribution with success probability p ∈ (0,1). More specifically, the Erdős–Rényi–
Gilbert distribution with parameter p is expressed as

Pr(Y = y; p) = ∏
1≤i6= j≤n

pyi j(1− p)1−yi j , y ∈ {0,1}n×n. (2.10)

In the form of (2.8), the sufficient statistic of the Erdős–Rényi–Gilbert distribution
counts the number of edges in y,

T (y) = ∑
1≤i6= j≤n

yi j, y ∈ {0,1}n×n,

the natural parameter is the log-odds ratio θ = log(p/(1− p)), and the probability in
(2.10) is given by

Pr(Y = y;θ ,T ) ∝ exp{θT (y)}
= exp{T (y) log(p)−T (y) log(1− p)}
= pT (y)(1− p)−T (y),
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which is equivalent to (2.10) after computing the normalizing constant in (2.9).
For summarizing the structure in a relational data matrix Y, the ERGM in (2.8) is

quite a bit more general than the p1 model in (2.6). The sufficient statistics in (2.8) al-
low for a wider range of network properties to be incorporated into the model descrip-
tion, e.g., transitive closure as measured by the number of triangles ∑

n
i, j,k=1 yi jy jkyki.

The viability of ERGMs for statistical inference, however, is limited by computa-
tional as well as logical constraints. The potential computational issues should be
apparent by the presence of the unspecified normalizing constant in (2.8). If the nor-
malizing constant in (2.9) can be computed in closed form or the computational
burden can be otherwise resolved, then the class of ERGMs seems to be reasonably
flexible for summarizing patterns in the international trade data of Section 2.1 and
similar sociometric datasets. But in the grand scheme of modern network science,
sociometric studies are a niche topic, and are out of step with the vast majority of
situations for which statistical techniques are used to draw inferences based on a
partial observation or sample from a population. The modeling challenges brought
about by sampling considerations will occupy our attention for most of the chapters
that follow. As a precursor to Chapters 3–5, I now briefly discuss some limitations of
ERGMs for modeling sampled networks.

2.4 Scenario: Friendships in a high school

Consider a social network of friendships among N high school students, of which we
take a sample of n < N students and observe the friendships among them. Unlike in
Section 2.1, the observed relationships in this scenario comprise a partial sample of
the friendships in which we are interested. We wish to use the binary relational data
Yn for the n sampled students to draw inferences about the friendship patterns among
all N students in the high school. But doing so requires an assumption about how the
sampled students are related to the population of all students, raising the question:

In what way is the observation Yn representative of the population network
YN?

This question is at the center of much confusion and debate in the network science
literature, as well as Big Data and complex data analysis more broadly. Most of
this book is dedicated to clarifying the role of sampling in network analysis, with
special focus on how traditional modeling assumptions impose unspoken, and often
undesirable, sampling constraints on network analysis.

2.5 Network inference under sampling

The distinction between population and sample did not arise in the international trade
scenario of Section 2.1. In that scenario we were only interested in the patterns
among observed countries, regardless of whether or not those countries comprised
a sample of all countries in the world. But the issue of sampling does arise in Section
2.4.

To be clear when discussing situations like the one in Section 2.4, we index Y
by the number of individuals to which it pertains, so that YN is the adjacency matrix
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for all N students and Yn is the matrix for the sample of n ≤ N students. Since we
seek to draw inferences about YN based on Yn, whatever model we invoke must both
describe the behavior of Yn and articulate the logical link between Yn and YN (via
sampling).

To appreciate the non-trivial interplay between sampling and modeling, consider
how the observed friendships and the inferences they support would change under
the following scenarios:
1. n students are sampled uniformly among all freshmen, i.e., first-year students, in

the school;
2. n students are sampled uniformly among all seniors, i.e., final-year students, in

the school;
3. n students are sampled uniformly among all students in the school; or
4. all students who write for the school newspaper, of which there are n in total, are

sampled.
Under scenarios 1–3, the sampling mechanism is the same, i.e., students are chosen
uniformly at random, but the populations are different, i.e., freshmen, seniors, and all
students, respectively. Under scenario 4, the population is the same as in scenario 3
(i.e., all students in the school), but the sampling mechanism is such that the sampled
students are known to already have similar interests, i.e., writing for the newspaper,
and therefore would seem more likely to be friends than a random selection of stu-
dents from the school (as in scenario 3). We should not expect the friendship patterns
observed under scenario 4 to resemble the friendship patterns among students in the
entire school, and this distinction ought to be incorporated into our model. Notice
also that in scenario 4 the number of sampled individuals is determined by the num-
ber of students who write for the school newspaper; it is not specified a priori by
the data analyst, as in scenarios 1–3. This last point hints that the number of students
‘n’ observed in scenario 4 has a different significance than the number n in scenarios
1-3, and this difference may well affect how we specify the model and interpret any
subsequent inferences. (See Sections 3.7–3.8 for further discussion of this last point.)

Over the next several chapters, we will have ample opportunity to discuss the
nuances presented by these and other sampling scenarios. To conclude the present
chapter, I remark that although the observation/sampling mechanism must be in-
corporated into any well-specified statistical model (not just network models), it is
commonly overlooked when specifying models whose observation mechanism is ob-
vious. For example, the observation mechanism for i.i.d. sequence data establishes
an implicit relationship between observed data and the rest of the population—in
particular, the observations are independent and follow a common distribution. But
because the concept of i.i.d. models is well-trodden and standard, the meaning of this
specification is understood by convention.

A key takeaway from the next few chapters, especially Chapter 5, is that in net-
work analysis there is no prevailing convention, and therefore network models must
be specified more explicitly than is customary in more classical applications. While
there has been some progress recently toward accounting for sampling issues in net-
work modeling, most work has focused on modeling under selection sampling. As we



FURTHER READING 23

discuss beginning in the next chapter, ordinary selection sampling for graphs is just
one of many ways in which network datasets can be sampled, and in most situations
selection sampling is far from realistic. Just as time series and Markov models have
been developed to address the deficiency of i.i.d. models for many applications, new
network models are needed to address the deficiencies of stochastic blockmodels,
ERGMs, and graphon models. I cover a few such new network modeling frameworks
throughout Chapters 7–11.

2.6 Further reading

Readers familiar with the statistical networks literature may wonder why ERGMs
garner so much attention if they are of such limited use in modern applications. To
understand the disconnect, realize that exponential family distributions have long
been a fixture of statistical inference, and the apparent flexibility and familiarity of
exponential family distributions made them a natural choice in the early work on so-
cial network analysis by Holland and Leinhardt, Frank and Strauss, and others. So
while I focus here on the usefulness, or lack thereof, of ERGMs in modern applica-
tions, it is important to bear in mind that they were not originally intended for such
problems. Since the circumstances under which ERGMs are now being applied (e.g.,
social media, the Internet, World Wide Web) did not exist when ERGMs were first
conceived, any critique of ERGMs given here is directed toward their inappropriate
use in modern applications, not their initial conception or their, perhaps appropriate,
use in the applications for which they were originally designed.

When viewed from the perspective of modern network science applications, these
observations raise doubts about claims touting the importance of ERGMs in present-
day network analysis. For example, in [138, p. 509], ERGMs are described as “un-
doubtedly one of the most important and popular classes of statistical models of net-
work structure.” Popular, yes, but the importance of ERGMs is dubious given their
many practical and conceptual drawbacks highlighted above and in the coming chap-
ters. If one interprets the ‘importance’ of an idea based solely on how many articles
are published on it or how many researchers study it, then such claims quickly be-
come self-fulfilling: ERGMs are ‘important’ because a lot of articles have been writ-
ten about them, which in turn inspires even more articles on ERGMs, ad infinitum.
(This phenomenon is a real-life manifestation of the ‘rich get richer’ phenomenon
discussed in Section 4.2 below. For another instance of ‘rich get richer’, refer to the
widespread declarations of the ‘ubiquity’ and ‘importance’ of networks which have
been offered as justification for studying networks, as mentioned in the opening sec-
tion of Chapter 1.) This herd mentality is the antithesis of the viewpoint espoused
here, in which I emphasize repeatedly the importance of thinking independently of,
so as not to become blinded by, conventional perspectives of network analysis found
throughout the literature.

The orthodox mindset is epitomized in a recently proposed ‘foundational’ ap-
proach to network analysis [136] which, in contrast to the conceptual perspective
emphasized here, confines itself to exponential family models, seemingly unaware
and unconcerned by the incredibly narrow perspective offered by ERGMs in the con-
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text of modern network analysis. In light of the numerous concerns about ERGMs
voiced elsewhere and echoed here, the proposal in [136] gives a skewed treatment of
how ERGMs fit within the broader scope of network science.

Because of the excessive attention paid to ERGMs elsewhere, I shall discuss
ERGMs sparingly in the rest of this text. The reader interested in more about the p1
model and ERGMs can consult the original papers of Holland and Leinhardt [90],
Frank and Strauss [78], and Wasserman and Pattison [150], and the abundance of
followup work which has appeared in the decades since. Particularly, the works of
[17, 34, 138], and references therein, should give a well-rounded presentation of
ERGMs.



Chapter 3

Network sampling

The content of Section 2.5 and other observations about the impact of sampling on in-
ferred network properties [112, 154, 162] makes a sampling theory for statistical net-
work analysis one of the main priorities for developing the probabilistic foundations
of the field; see Section 1.7.3 for further discussion. Over the next three chapters, I
discuss network sampling and a number of related issues in some depth, culminating
in a two-stage formulation of a statistical model as a family of candidate distribu-
tions describing the uncertainty and variability in the data together with the context
in which to interpret inferences made under the assumed model. These two aspects
of modeling (uncertainty and context) come together in the concept of coherence. In-
corporating the context and articulating the condition of coherence are two novelties
of the framework presented below, cf. [52]. (See Chapter 5 for further discussion of
uncertainty, context, and coherence. Refer back to Sections 1.4–1.5 for a high-level
overview of these essential modeling components.) To streamline the presentation,
I tailor this framework to network models set either in a sampling context—called
sampling models—or in a generative context—called generative models. I begin in
this chapter with sampling models, and defer generative models to Chapter 4.

3.1 Opening example

Before delving into fundamental issues of network sampling it is instructive to con-
sider how sampling figures into more traditional data analysis. Let X1, . . . ,XN repre-
sent the sizes of N households in a population, so that each Xi counts the number of
residents of household i. In this population suppose that household sizes behave as
i.i.d. random variables from the 1-shifted Poisson distribution with parameter λ > 0:

Pr(Xi = k+1;λ ) = λ
ke−λ/k!, k = 0,1, . . . . (3.1)

(The ‘shift’ by 1 reflects the assumption that each household must be inhabited by at
least 1 person.) We would like to estimate the parameter λ on the basis of a sample
X∗1 , . . . ,X

∗
n of household sizes from X1, . . . ,XN . How should we model X∗1 , . . . ,X

∗
n ?

Consider how the sampling mechanism affects the choice of model for X∗1 , . . . ,X
∗
n

in the following two cases.
1. Suppose X∗1 , . . . ,X

∗
n , n ≤ N, have been sampled uniformly without replacement

from X1, . . . ,XN . Then since X1, . . . ,XN are i.i.d. and X∗1 , . . . ,X
∗
n have been chosen

25



26 SAMPLING

independently of the realized values of X1, . . . ,XN , it follows that X∗1 , . . . ,X
∗
n are

also i.i.d. from the 1-shifted Poisson distribution (3.1) with the same parameter
λ > 0.

2. Suppose X∗1 , . . . ,X
∗
n , n ≤ N, have been observed by sampling individuals in the

population uniformly at random and recording the size of the household in which
each sampled individual lives. Since a household of size k can be chosen in k
different ways, one for each of the k individuals in the household, the probabil-
ity of choosing a household of size k is proportional to k Pr(Xi = k;λ ). Each of
the sampled household sizes X∗1 , . . . ,X

∗
n is marginally distributed according to the

size-biased distribution associated to (3.1), as given by

Pr(X∗i = k+1;λ ) =
(k+1)λ ke−λ

(λ +1)k!
, k = 0,1, . . . . (3.2)

Comparing these two scenarios makes clear that the distribution of the data
X∗1 , . . . ,X

∗
n is affected by not only the distribution of household sizes in the pop-

ulation X1, . . . ,XN but also the sampling mechanism used in obtaining X∗1 , . . . ,X
∗
n

from X1, . . . ,XN . Under either scenario, the parameter ‘λ ’ governing the population
translates into a parameter, also denoted ‘λ ’, governing the sample. But the use of
the same Greek letter ‘λ ’ in the parameterization of both models does not imply that
the parameters in these models can be regarded as ‘the same’ in the sense of being
literally identical or having the same meaning.

To illustrate this last point, let us denote by Mpop the set of candidate distributions
governing the population of household sizes, as given by the family of distributions
parameterized by λ > 0 in (3.1). Further, let us denote by Msb the set of candidate
distributions induced by Mpop under size-biased sampling in scenario 2. With this
notation, Mpop is the set of all distributions in (3.1) and Msb is the set of all distribu-
tions in (3.2). But even though Mpop 6=Msb, the relationship between population and
sample, as described by the sampling operation in scenario 2, still permits inference
about Mpop based on inferences for Msb.

For a simple demonstration, suppose the sample consists of a single data point
X∗1 = x, for some x= 1,2, . . .. Then under the model in (3.2), the maximum likelihood
estimate for λ can be computed by

λ̂MLE =
(x−3)+

√
(x−1)2 +4

2
, (3.3)

giving an estimate for λ in both the population and sample models.1 The key point
here is that the estimate for λ in (3.3) is obtained by fitting the data to Msb. Fitting
X∗1 = x instead to the model Mpop would lead to the erroneous estimate λ̂MLE = x,
which fails to account for the size-biased sampling in scenario 2.

The plot thickens when one considers possible reparameterizations of the model

1This estimate is obtained by maximizing the log-likelihood for the observation X∗1 = x:

logL(λ ;x) = k log(λ )−λ − log(λ +1)+ log(k+1)− log(k!).
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for X∗1 , . . . ,X
∗
n . For example, by taking the transformation θ ↔ λ + 1, one could

equivalently express the set of distributions in (3.2) by

Pr(X∗i = k;θ) =
k(θ −1)k−1e1−θ

θ(k−1)!
, k = 1,2, . . . , (3.4)

for θ > 1. And since the parameter θ in (3.4) is merely a scalar ranging over (1,∞),
we can express the same family of distributions in terms of a parameter λ by

Pr(X∗i = k;λ ) =
k(λ −1)k−1e1−λ

λ (k−1)!
, k = 1,2, . . . , (3.5)

for λ > 1. With Msb-2(θ) and Msb-2(λ ) denoting the sets of distributions parame-
terized by θ and λ in (3.4) and (3.5), respectively, we see that

Msb-2(θ) = Msb-2(λ ) = Msb

as sets of probability distributions. As we have already argued that inferences about
Msb can be extended to inferences about Mpop, it should follow that inferences based
on either of Msb-2(θ) or Msb-2(λ ) can be extended to inferences about Mpop. But
the relationship between the models for X∗1 , . . . ,X

∗
n and X1, . . . ,XN must be carefully

articulated by taking account of the context within which the two are related, and in
particular the way in which the respective models are parameterized.

Following up on the discussion surrounding (3.3), we can estimate λ from the
model in (3.5). But the relationship between the parameter ‘λ ’ governing this model
and the ‘λ ’ in the population model must be kept straight. In particular, ‘λ ’ in the
population model (3.1) is not the “same λ” as in (3.4): the MLE λ̂MLE obtained under
(3.5) translates to an estimate λ̂MLE +1 for the model in (3.1).

Though the data and context of a typical network application are far more com-
plex than the example given here, the same principles apply. One difference between
the above case and a typical scenario of network analysis is that in network analysis
the relationship between population and sample can rarely be expressed as precisely
as through the size-biased sampling relationship that links (3.1) and (3.2).

Though network sampling has been previously studied in the quantitative social
science literature [75, 76, 77, 85, 143, 144], many more far-reaching issues have
not yet been recognized or even formulated. The reader is especially urged to study
Lee, Kim, and Jeong’s empirical analysis of the effects of sampling on network in-
ference [112]. From the example in this section and the empirical analysis in [112],
it should be clear that sampling plays a pivotal role in modeling and inference. But
it is one thing to recognize that sampling affects observed network properties, and
something else entirely to incorporate these effects into a workable network model-
ing framework. It is toward this latter objective that this and the coming two chapters
are directed.

3.2 Consistency under selection

Consistency under selection is a specific kind of consistency under subsampling
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(Section 3.9) which is relevant for modeling network data obtained by selection sam-
pling.2 For an example, consider the scenario of Section 2.4 with N high school stu-
dents labeled uniquely 1, . . . ,N in a way that does not depend on their social relation-
ships given in YN . (One way is to imagine that each student is randomly assigned a
unique identifier 1, . . . ,N, with all possible assignments being equally likely.) Given
such a labeling, the sampled network of n < N students can be obtained by observ-
ing the social relationships among those students assigned labels 1, . . . ,n. This way
of sampling is called selection (of [n] from [N]), indicating that the sampled elements
were chosen merely by selecting a predefined set of elements.

With YN = (Yi j)1≤i, j≤N denoting the relational array for all N students, the ob-
servation Yn obtained by selection sampling corresponds to the restriction of YN to
its first n rows and columns, written YN |[n] = (Yi j)1≤i, j≤n. In general, for an array
A = (Ai j)i, j≥1 and any subset S ⊆ N, we write A|S = (Ai j)i, j∈S to denote the restric-
tion of A to the rows and columns indexed by S.3 For example, for A = (Ai j)1≤i, j≤N
given by 

A11 A12 · · · A1n · · · A1N
A21 A22 · · · A2n · · · A2N

...
...

. . .
...

. . .
...

An1 An2 · · · Ann · · · AnN
...

...
. . .

...
. . .

...
AN1 AN2 · · · ANn · · · ANN


,

the restriction A|[n] is the upper n×n submatrix
A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

 .

We denote the operation of selecting [n] from [N] as a function Sn,N between the
population and sample spaces, i.e.,

Sn,N :{0,1}N×N →{0,1}n×n

y 7→ Sn,N(y) = y |[n]. (3.6)

To emphasize that (3.6) is intended as a sampling operation, we refer to the action
y 7→ Sn,N(y) as selection sampling. The action in (3.6) is sometimes called projection
or restriction by other authors. (It is sometimes convenient, e.g., in (3.7) below, to

2Statistically-minded readers should not confuse ‘sampling consistency’ with the statistical term ‘con-
sistency’, i.e., asymptotic convergence of a statistical estimator toward its true parameter value. This latter
notion of consistency does not appear anywhere in this book.

3When network data takes a form other than an array, as it does in later chapters, the restriction oper-
ation ·|S is defined analogously by restricting the network to the structure induced on units labeled by S.
This operation will be defined precisely in whatever context it appears.
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write Sn,N y instead of Sn,N(y), and I will often do so whenever it causes no confu-
sion.)

As we saw in Section 3.1, the relationship between sample and population plays
an essential role in population-level inference from sampled data. In the context of
binary arrays, the population network YN is assumed to follow some distribution on
{0,1}N×N and the observed data Yn is assumed to have been obtained from YN via
a sampling scheme. Under selection sampling, the observation Yn corresponds to
Sn,N YN and the distribution of YN induces a distribution on {0,1}n×n by

Pr(Sn,N YN = y) = Pr(YN ∈ S−1
n,N(y)), y ∈ {0,1}n×n, (3.7)

where
S−1

n,N(y) = {y
∗ ∈ {0,1}N×N : Sn,N(y∗) = y}

is the set of all arrays in {0,1}N×N which could have given rise to the observation y
under selection sampling. (In words, S−1

n,N(y) is the set of all possible realizations of
YN which would have resulted in the observation Yn = y under the assumed selection
sampling scheme.) On the one hand, the distribution of the observed data Sn,N YN is
implicitly specified by the assumed population model and sampling scheme through
(3.7). On the other hand, it is also common to specify a distribution Pr(Yn = ·)
explicitly for every possible observation Yn, 1 ≤ n ≤ N. This explicitly specified
distribution Pr(Yn = ·) is consistent with the induced distribution (3.7) only if the
two coincide.

Definition 3.1 (Consistency under selection) Let Yn and YN , n ≤ N, be random
{0,1}-valued arrays, and let Sn,N be the selection sampling operation defined in
(3.6). Then Yn and YN are consistent under selection if they satisfy the distributional
identity

Sn,N YN =D Yn, (3.8)

where =D denotes equality in distribution. More explicitly, Yn and YN are consistent
under selection if

Pr(Sn,N YN = y) = Pr(Yn = y) for all y ∈ {0,1}n×n. (3.9)

3.2.1 Consistency of the p1 model

Suppose that both YN and Yn are assumed to follow the p1 model (2.6) on {0,1}N×N

and {0,1}n×n, respectively, with the distribution of YN parameterized by ρ,θ ,α =
(α1, . . . ,αN), and β = (β1, . . . ,βN) and the distribution of Yn parameterized by
ρ,θ ,α|[n] = (α1, . . . ,αn), and β |[n] = (β1, . . . ,βn). (The notation α|[n] indicates the
projection of α = (α1, . . . ,αN) to the components labeled by [n], and similarly for
β |[n].) With the same notation as in Section 2.2, this explicit description gives

Pr(YN = y;ρ,θ ,α,β ) =
exp
{

ρ ∑1≤i< j≤N yi jy ji +θy••+∑
N
i=1 αiyi•+∑

N
j=1 β jy• j

}
∏1≤i< j≤N ηi j

,
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for each y ∈ {0,1}N×N , and

Pr(Yn = y;ρ,θ ,α|[n],β |[n]) =

=
exp
{

ρ ∑1≤i< j≤n yi jy ji +θy••+∑
n
i=1 αiyi•+∑

n
j=1 β jy• j

}
∏1≤i< j≤n ηi j

,

for each y ∈ {0,1}n×n, where ηi j is defined in (2.7). Under the further assumption
that the data is sampled from YN by selection Sn,N , the implicit model for Yn is given
by the induced distribution of Sn,N YN as in (3.7),

Pr(Sn,N YN = y) = Pr(YN ∈ S−1
n,N(y))

= ∑
y∗∈{0,1}N×N :y∗ |[n]=y

Pr(YN = y∗).

To prove consistency, we must establish (3.9) for the p1 model on {0,1}n×n and the
distribution induced by selection sampling from the p1 model on {0,1}N×N . We can
see this for n = N−1 and y ∈ {0,1}(N−1)×(N−1) by computing

Pr(SN−1,NYN = y;ρ,θ ,α,β ) =

= ∑
y∗∈{0,1}N×N :y∗|[N−1]=y

exp
{

ρ ∑1≤i< j≤N y∗i jy
∗
ji +θy∗••+∑

N
i=1 αiy∗i•+∑

N
j=1 β jy∗• j

}
∏1≤i< j≤N ηi j

= ∑
(y∗iN ,y

∗
Ni)∈{0,1}×{0,1},i=1,...,N−1

(
Pr(YN−1 = y;ρ,θ ,α|[N−1],β |[N−1])×

×exp

{
ρ

N−1

∑
i=1

y∗iNy∗Ni +θ(
N−1

∑
i=1

(y∗iN + y∗Ni))+
N−1

∑
i=1

αiy∗iN +αNy∗N•+

+
N−1

∑
j=1

β jy∗N j +βNy∗•N

}/
N−1

∏
i=1

ηiN

)
= ∑

(y∗iN ,y
∗
Ni)∈{0,1}×{0,1},i=1,...,N−1

(
Pr(YN−1 = y;ρ,θ ,α|[N−1],β |[N−1])×

×
N−1

∏
i=1

eρy∗iN y∗Ni+θ(y∗iN+y∗Ni)+(αi+βN)y∗iN+(βi+αN)y∗Ni

/
N−1

∏
i=1

ηiN

)
= Pr(YN−1 = y;ρ,θ ,α|[N−1],β |[N−1])×

×

N−1

∏
i=1

∑
y∗iN ,y

∗
Ni∈{0,1}

eρy∗iN y∗Ni+θ(y∗iN+y∗Ni)+(αi+βN)y∗iN+(βi+αN)y∗Ni

/N−1

∏
i=1

ηiN

= Pr(YN−1 = y;ρ,θ ,α|[N−1],β |[N−1])×

×

(
N−1

∏
i=1

(1+ eθ+αi+βN + eθ+αN+βi + eρ+2θ+αi+αN+βi+βN )

)/
N−1

∏
i=1

ηiN

= Pr(YN−1 = y;ρ,θ ,α|[N−1],β |[N−1]), (3.10)
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establishing that

Pr(SN−1,N YN = y;ρ,θ ,α,β ) = Pr(YN−1 = y;ρ,θ ,α|[N−1],β |[N−1])

for all y ∈ {0,1}(N−1)×(N−1), where α|[N−1] = (α1, . . . ,αN−1) is the restriction of
α to its first N− 1 elements, and similarly for β |[N−1], as defined above. Thus, YN
from the p1 model with parameter (ρ,θ ,α,β ) and YN−1 from the p1 model with
parameter (ρ,θ ,α|[N−1],β |[N−1]) are consistent under selection (Definition 3.1) for
all N ≥ 2. For arbitrary n ≤ N, we deduce that YN and Yn are consistent under
selection by noticing that the composition of selection maps is again a selection map:
since [m]⊆ [n]⊆ [N] for all m≤ n≤ N, the composition Sm,n ◦Sn,N corresponding to
first selecting [n] from [N] and then selecting [m] from [n] is equivalent to selecting
[m] from [N], i.e.,

Sm,n ◦Sn,N = Sm,N for all m≤ n≤ N.

In particular, each Sn,N decomposes as

Sn,N = Sn,n+1 ◦Sn+1,n+2 ◦ · · · ◦SN−1,N ,

and the calculation for N and N− 1 in (3.10) is enough to establish consistency of
the p1 model for all N ≥ n≥ 1.

Exercise 3.1 Prove consistency under selection of the p1 model ‘without calcula-
tion’. (Hint: Use independence.)

3.3 Significance of sampling consistency

The role of sampling consistency in statistical inference is closely related to the dis-
cussion of Section 3.1, in which the relationship between the candidate distributions
for the population and those for the sampled data proved critical when extending
inferences about the observed data to the population. In Section 3.2.1, the popu-
lation structure YN obeys the p1 model with parameter (ρ,θ ,α,β ) ranging over all
permissible values. If we want to infer the population parameter ρ based on an obser-
vation Yn obtained from YN by selection sampling, then for each possible choice of
(ρ,θ ,α,β ) the calculation in (3.10) shows that Yn = Sn,N YN follows the p1 model
with parameter (ρ,θ ,α|[n],β |[n]). This calculation establishes the relationship be-
tween the parameter ρ governing the data Yn and the parameter ρ governing the
population YN . The consistency under selection property of the p1 model ensures
that the parameters marked ‘ρ’ in the models for Yn and YN have a common mean-
ing. Since the meaning of ρ , as a reciprocity parameter, is maintained under selection
sampling from YN , an estimate ρ̂n for ρ based on Yn can also be used to estimate the
population parameter ρ in the distribution of YN .

This same logic cannot be applied for inferences from models that lack consis-
tency. By now it is well known, for example, that the class of ERGMs with natural
parameter θ and canonical sufficient statistic T as in (2.8) is consistent under selec-
tion only if T has separable increments. In essence, the separable increments prop-
erty limits the subclass of ERGMs that are consistent under selection to those models



32 SAMPLING

whose sufficient statistics only account for local (i.e., pairwise) or global structure.
Sufficient statistics that account for intermediate-range properties, such as clustering,
do not have separable increments and, therefore, cannot be incorporated into a con-
sistent family of ERGMs. (See [138, p. 513] for further details about ERGMs and the
separable increments property.) For example, suppose YN is modeled by the ERGM
on {0,1}N×N given by

Pr(YN = y;θ) ∝ exp{θ∆N(y)} , y ∈ {0,1}N×N , (3.11)

for θ ∈ (−∞,∞) and sufficient statistic

∆N(y) = ∑
1≤i6= j 6=k≤N

yi jy jky jk, y ∈ {0,1}N×N , (3.12)

which counts the number of triangles in y. Suppose also that Yn, n < N, is modeled
by the ERGM having the same form on {0,1}n×n, so that

Pr(Yn = y;θ) ∝ exp{θ∆n(y)} , y ∈ {0,1}n×n. (3.13)

And further assume that the data Yn is obtained from YN by selection sampling, as
defined in (3.6). Since the subsampled observation Sn,N YN is obtained by sampling
from YN , whose distribution is parameterized by θ , it follows that the distribution of
Sn,N YN is also parameterized by θ . But since the sufficient statistic in (3.12) does
not satisfy the separable increments condition, the main theorems in [138] imply that
Sn,N YN 6=D Yn. Without a clearly articulated connection between the parameter θ

governing YN and that governing Yn, there is no logical way to relate inferences
about θ based on the sample Yn to inferences about θ for the population YN .

This lack of sampling consistency is not unique to the ERGM. It arises often in
network modeling, but has rarely been given much attention, especially in mathemat-
ical statistics, where there is a tendency to conflate sampling scheme (as a descrip-
tion of the way in which the observed data relates to the population) with asymptotic
regime (as a description of the theoretical growth rate as a function of sample size).
The distinction is important, both when formulating an appropriate model for a given
application and when interpreting theoretical results in the context of such an appli-
cation. This lack of clarity in the relationship between asymptotic regimes studied
in theoretical work and sampling schemes that arise in practice inhibits the use of
the theory for gaining reliable practical insights. In defense of ERGMs, one may ar-
gue that the sociometric setting in which ERGMs were initially introduced and have
historically been used is not primarily concerned with inferences from subsampled
networks. From this perspective, the lack of sampling consistency is not a poignant
criticism of the ERGM, but is rather grounds to criticize the use of the ERGM in
applications to which it is not well-suited.

3.3.1 Toward a coherent framework for network modeling

Though I have spoken in some depth here about selection sampling, I do not mean
to suggest that consistency under selection is the be all and end all of sound network
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analysis. In many applications, selection sampling is far from a realistic description
of the sampling mechanism, and thus the logical relationship between population and
sample established through the selection map, though theoretically precise, may not
accurately reflect the relationship between population and sample in the real world.
In such cases, the assumed logical connection between population and sample may
not be useful for gleaning insights about the intended application, precisely because
such inferences will have been drawn under the false premise that selection sampling
accurately models the sampling mechanism.

As we see below, selection is just one of many possible ways to subsample net-
work data, and rarely is it the best sampling description for any given context. Be-
cause selection sampling of vertices is untenable for most networks applications, the
study of sampling properties for ERGMs, as in [138], and the discussion of selec-
tion sampling or projectivity properties found elsewhere in the literature have little
bearing on the most pressing practical and theoretical matters facing present-day sta-
tistical network analysis. Such results provide little if any guide for how to analyze
network data, design network models that properly account for sampling, or glean
worthwhile insights in the bulk of situations to which network analysis is now appli-
cable.

The remainder of this and the coming two chapters is dedicated to developing a
coherent framework for network analysis with the following three essential observa-
tions in mind:
(i) sampling is an indispensible part of network modeling,

(ii) the relationship between observed and unobserved data established by the sam-
pling mechanism is crucial for statistical inference, and

(iii) the nature of this relationship and the reason why it is important have not been
properly emphasized in the developments of network analysis to date.

The next two sections describe two specific scenarios in which selection sampling is
inadequate.

3.4 Selection from sparse networks

For N very large, assume that YN = (Yi j)1≤i, j≤N represents a network with N ver-
tices and ∑1≤i, j≤N Yi j ≈ εN edges, for some constant ε > 0 that does not depend
on N. Suppose that the N vertices are labeled 1, . . . ,N according to a uniform ran-
dom assignment and Yn is obtained by selecting a relatively small number of n� N
vertices from YN . (For this example, we assume that the diagonal is 0, i.e., Yii ≡ 0.)

Since the vertices are labeled uniformly, the distribution of YN = (Yi j)1≤i, j≤N is
exchangeable with respect to rearranging its rows and columns, i.e.,

Yσ
N = (Yσ(i)σ( j))1≤i, j≤N =D YN for all permutations σ : [N]→ [N],

and, moreover, the sample Yn = Sn,N YN = (Yi j)1≤i, j≤n is exchangeable with respect
to all permutations σ : [n]→ [n].4 (A thorough treatment of such exchangeable net-
work models can be found in Chapter 6.) By this symmetry, we can compute the

4For any n ≥ 1, a permutation of [n] is a one-to-one and onto (i.e., bijective) map σ : [n]→ [n]. For
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marginal probability that there is an edge between the vertices labeled 1 and 2 as

Pr(Y12 = 1)≈ εN/(N(N−1))≈ ε/N. (3.14)

(Uniform labeling of vertices makes Y12 a uniformly chosen off-diagonal entry of
YN . There are N(N− 1) total off-diagonal entries, of which approximately εN are
nonzero.) Also by exchangeability, Yi j =D Y12 (marginally) for all 1 ≤ i 6= j ≤ n,
meaning that the same calculation in (3.14) applies to each Yi j. Putting these calcula-
tions together allows us to bound the probability that Yn has at least 1 nonzero entry
by

Pr

( ⋃
1≤i6= j≤n

{Yi j = 1}

)
≤ ∑

1≤i6= j≤n
Pr(Yi j = 1)≈ n2

ε/N. (3.15)

Under the assumption that n�
√

N, so that n2� N, the probability that Yn is non-
empty must be close to 0, giving high probability to an empty (and therefore unin-
formative) observation.

Exercise 3.2 Before moving on, the reader is encouraged to ponder the practical
implications of the calculation in (3.15). (Hint: I discuss one possible issue in the
next paragraph.)

From a practical point of view, the trouble with calculation (3.15) is that many
networks observed in the real world are ‘sparse’5 in the sense of having few edges
relative to the number of vertices (i.e., ∑1≤i, j≤N Yi j ≈ εN for small ε > 0) but are
nevertheless well-connected by some complex arrangement of their edges. In such
situations, the observed network is ‘sparse’ but non-empty—had we observed an
empty network, we would have no data to model in the first place. We are tasked
with modeling the sparse structure in Yn for the purpose of drawing inferences about
YN . But in the setting assumed above, the network obtained by selection sampling is
empty with high probability, making any observation ‘Yn = y’, for y non-empty, an
event with negligible probability under any assumed model.

This analysis can be carried out prior to seeing the data: we know a priori that
any network we analyze will be non-empty—for otherwise there would be nothing
to analyze—and we know (in many cases) that the population network from which
the data will be sampled is ‘sparse’ (in the above sense of having on the order of
εN edges). Thus, without even looking at the data, we can determine that any model
for Yn induced by selection sampling will assign almost all of its probability to the
nonsense event that the observed network is empty. Under the conventional logic of
hypothesis testing, this observation would be enough to reject the hypothesis that the

our purposes, any permutation σ represents a relabeling of the units. In this section, the units are vertices.
Later, they will be edges, hyperedges, paths, etc. See Section 3.7 for further discussion about statistical
units in network analysis.

5The term ‘sparse’ is being used in a loose, imprecise sense in this section. This heuristic notion of
‘sparse’, which is commonly used in applications of network analysis, interprets the asymptotic property
of sparsity as meaning that a (large) finite network has ‘few’ edges relative to the number of vertices.
The technical definition of sparse involves a limiting statement based on a network with infinitely many
vertices and/or edges. See Chapter 4.2 for further discussion of sparsity.
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data Yn follows the assumed model. But since the above calculation holds for any as-
sumed distribution of the sparse population network YN—even a distribution which
assigns probability 1 to the ‘true network’ YN—the assumption that Yn has been
obtained by selection sampling must be called into question, and a theory of network
modeling that accounts for more realistic sampling schemes must be developed.

3.5 Scenario: Ego networks in high school friendships

Staying in the context of the high school friendship network from Section 2.4, sup-
pose that the population network YN is modeled by the Erdős–Rényi–Gilbert distri-
bution with parameter 0≤ θ ≤ 1 on {0,1}N×N and 0 diagonal:

Pr(YN = y;θ) = ∏
1≤i6= j≤N

θ
yi j(1−θ)1−yi j , y ∈ {0,1}N×N .6 (3.16)

Suppose that the observed data Y∗ is obtained by first sampling 1 student v∗ uni-
formly at random and then observing Y∗ = YN |S for a set S ⊆ [N] containing v∗

along with all other students v such that Yv∗v = 1 or Yvv∗ = 1. (Foreshadowing Section
3.6.2, we call this the one-step snowball sampling operation.) In this case, the number
of observed vertices is a random quantity which depends on the number of friends of
a randomly chosen vertex v∗. As it is immediately clear that this sampling operation
differs from selection, we should therefore expect the model for Y∗ to differ from
that for Sn,N YN .

For any θ ∈ [0,1], the distribution of Y∗ is induced by applying the one-step
snowball sampling operation to YN distributed according to (3.16). In this case, Y∗
is a random graph with a random number of vertices V = 1+B, where B is a Binomial
random variable with N−1 trials and success probability θ , i.e.,

Pr(B = k;θ) =

(
N−1

k

)
θ

k(1−θ)N−1−k, k = 0, . . . ,N−1.

We represent the observed network Y∗ by labeling the distinguished vertex v∗ by 0
and, on the event ‘B≥ 1’, labeling the other B vertices arbitrarily 1, . . . ,B. In this way,
the observation Y∗ is given by the symmetric array (Yi j)0≤i, j≤B with Yi0 =Y0i = 1 for
i = 1, . . . ,B and each Yi j, 1 ≤ i 6= j ≤ B, given by an i.i.d. draw from the Bernoulli
distribution with parameter θ .

Exercise 3.3 Formally derive the distribution of Y∗.
The straightforward description of this sampling mechanism, with v∗ chosen uni-

formly at random and all edges determined by i.i.d. draws from the Bernoulli distri-
bution, permits the explicit description of the model for Y∗ given above. But if the

6The Erdős–Rényi–Gilbert model is so classical in the study of random graphs that it is sometimes
referred to simply as the ‘random graph model’. The distribution in (3.16) describes a random graph for
which the edge between each pair of vertices 1 ≤ i 6= j ≤ N is determined by the toss of an independent
coin flip with heads probability θ . This model was initially introduced in the late 1950s [68, 81] and has
since been studied in some detail, see, e.g., [21]. For our purposes, its simple description is sufficient for
demonstrating the most salient aspects of network modeling. This same simplicity, however, makes the
model poorly suited to modeling most networks encountered in practice.
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Figure 3.1 Depiction of one-step snowball sampling operation in Section 3.5. The solid filled
vertex (bottom right) corresponds to the randomly chosen vertex v∗ and those partially filled
with dots are its one-step neighborhood. Only the solidly filled and dotted vertices together
with their corresponding edges are observed under this scheme.

observation mechanism were even slightly more complicated, e.g., if v∗ were cho-
sen from a degree-biased distribution or if Y∗ were obtained by two-step snowball
sampling from v∗, then such a straightforward description of Y∗ may not be possible.

Research Problem 3.1 Let Y∗r be the graph obtained by applying the r-step snow-
ball sampling operation to a randomly chosen vertex in YN . (See Section 3.6.2 for a
formal definition of snowball sampling.) First compute the distribution of Y∗r under
the assumption that v∗ is chosen uniformly at random from YN following the Erdős–
Rényi–Gilbert distribution in (3.16). After warming up with this preliminary case,
assume a different model for YN , e.g., the graphon model from Chapter 6 or the Hol-
lywood model from Chapter 9, and let v∗ be chosen from a non-uniform distribution
on the vertices, e.g., degree-biased. Once again compute the distribution of Y∗r for
r≥ 1. If computing the distribution of Y∗r is intractable, then describe the distribution
of Y∗r in any way possible, e.g., by computing the moments or distribution of certain
network statistics.

3.6 Network sampling schemes

We have already seen that some models, namely the Erdős–Rényi–Gilbert and p1
models, are consistent under selection sampling, while others, e.g., ERGMs whose
sufficient statistics lack separable increments, are not. But since selection sampling
is rarely an adequate description of the actual sampling mechanism in most networks
applications, the question arises: how can inferences be drawn from network data
obtained under other, more realistic, sampling schemes? I treat this question in depth
in Chapter 5. For the remainder of this chapter, I survey some common network
sampling schemes, all of which can be handled within the paradigm of Chapter 5.

As I mentioned in Section 1.7.3, understanding the impact of sampling on net-
work analysis is a topic of great importance to future developments in the field. The
sampling schemes surveyed here are just a few of the many network sampling mech-
anisms that arise in practical applications. But for the sake of highlighting the main
challenges and laying down the foundational principles of statistical network model-
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ing, the sampling methods given below should suffice. See Section 3.10 for additional
references on network sampling.

3.6.1 Relational sampling

Many network datasets are constructed by sampling relationships and interactions
among individuals in a population. In such cases, the primary unit of observation
is the interaction/relation (i.e., edge) and the main object of interest is the structure
induced by the observed interactions or relations. It is important to note that the char-
acteristics of networks observed by such relational sampling can differ substantially
from networks obtained by vertex sampling, as in Section 2.4. If, for example, a net-
work is sampled by intercepting phone calls that pass through a switchboard, then
the resulting network structure will be biased toward individuals who interact more
frequently than others (because they are more likely to appear in the sample). This
example is just one special case of relational sampling, which I use here as a generic
term for network data obtained by directly sampling relations among individuals in-
stead of sampling the individuals first and then observing the relations between them
(as in selection sampling). We have previously observed several other examples of
networks sampled in this way, e.g., in Sections 1.6.4–1.6.5.

Our observation here that in many networks applications the relations are prim-
itive and the vertices are derivative (i.e., a byproduct of the relational sampling
scheme) goes against conventional wisdom in the statistical networks literature. As
Handcock and Gile [85, p. 7] write, “Note that in most network samples, the unit of
sampling is the actor or node, while the unit of analysis is typically the dyad.” To
the contrary, in the applications mentioned above, the ‘dyads’ are the primary units
of sampling while the entire structure determined by the dyads is the unit of analy-
sis. In addition to phone call networks, relational sampling is the natural observation
mechanism for networks constructed from email or social media communications,
professional collaborations, and paths between Internet servers. A basic theory for
modeling such networks has been developed in [53, 54] and will be summarized
further in Chapters 9 and 10.

3.6.1.1 Edge sampling

Consider a database of telephone calls in which each entry contains a unique iden-
tifier (say, a phone number) for the caller and receiver along with other informa-
tion about the interaction, such as time of call, topic discussed, etc. An illustra-
tion of such a database is given in Table 3.1. By ignoring all information except
caller and receiver, a sample of n calls from this database results in a sequence
(C1,R1), . . . ,(Cn,Rn), with Ci identifying the caller of the ith sampled call and Ri
the receiver. In a typical network representation of this data, the set of sampled el-
ements {C1,R1, . . . ,Cn,Rn} determines the vertices and each (Ci,Ri) determines a
directed edge from the vertex corresponding to Ci to that corresponding to Ri. (Fig-
ure 3.2 illustrates the network constructed by sampling the first four rows from Table
3.1, with vertices labeled a-e as indicated in the table.)
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Table 3.1 Database of phone calls. Each row contains information about a single phone call:
caller and receiver (identified by phone number), time of call, topic discussed, etc.

Caller Receiver Time of Call Topic Discussed . . .
555-7892 (a) 555-1243 (b) 15:34 Business . . .
550-9999 (c) 555-7892 (a) 15:38 Birthday . . .
555-1200 (d) 445-1234 (e) 16:01 School . . .
555-7892 (a) 550-9999 (c) 15:38 Sports . . .
555-1243 (b) 555-1200 (d) 16:17 Business . . .
...

...
...

...
. . .

Figure 3.2 Network depiction of phone call sequence of caller-receiver pairs (a,b), (c,a),
(d,e), (a,c) as in the first four rows of Table 3.1. Edges are labeled in correspondence with
the order in which the corresponding calls were observed.

The network in Figure 3.2 differs from the binary arrays discussed so far in sev-
eral important respects.
• Whereas the high school social network in Section 2.4 was obtained by observing

all relationships among n ≥ 1 selected students (i.e., vertices), the network in
Figure 3.2 corresponds to a sample of 4 phone calls (i.e., edges) and the vertices
involved in those sampled calls. In the former scenario, the sample size is the
number of vertices; in the latter, it is the number of edges.
• In the high school network, it is assumed that the presence or absence of all pos-

sible edges between sampled vertices is observed. In this way, the observation of
two vertices i and j without an edge between them indicates that students i and
j are not friends. But in the phone call dataset, the lack of an edge between two
observed vertices does not mean that the two have not communicated or that they
do not appear in the database together; it only indicates that any such interactions
have not been sampled. In Table 3.1, for example, the fifth row contains a phone
call between vertices b and d. But even though there is an edge between b and d
in the population database, e.g., in row 5 of Table 3.1, no such call was among
the four entries sampled, and thus no such interaction is reflected in the observed
network structure of Figure 3.2.
• Since the phone call database can, and likely does, contain multiple entries of

different calls between the same caller-receiver pairs, multiple observations of the
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Table 3.2 Database of movies and actors. Each row contains the set of actors in the corre-
sponding movie.

Movie title Starring cast
Rocky Sylvester Stallone, Bert Young, Carl Weathers, . . .
Rounders Matt Damon, Ed Norton, John Malkovich, John Turturro, . . .
Groundhog Day Bill Murray, Andie McDowell, Chris Elliott, . . .
A Bronx Tale Robert DeNiro, Chazz Palminteri, Joe Pesci, . . .
Over the Top Sylvester Stallone, Robert Loggia, . . .
...

...

same interaction are possible, as we see in the appearance of two edges between
vertices a and c in Figure 3.2.
Since each phone call (i.e., edge) involves exactly two individuals (i.e., vertices),

this example does not seem to stray too far from the prominent ‘networks-as-graphs’
mindset that pervades the networks literature (see Section 1.2). Nevertheless, the
change in observation mechanism brought about by edge sampling makes a substan-
tial difference in the observed network characteristics and proper modeling approach.
This scenario and the change of perspective it demands of network analysis motivates
the framework of edge exchangeability discussed in Chapter 9.

3.6.1.2 Hyperedge sampling

The phone call database of the previous section is a specific kind of interaction data.
Many other interaction datasets, which record, e.g., email communications and pro-
fessional collaborations, arise similarly, and thus exhibit many of the same essential
characteristics as the network shown in Figure 3.2. But unlike the database of phone
calls, these other interactions need not be restricted to pairs of individuals. Consider,
for example, the Internet Movie Database (IMDb),7 for which each entry contains
information about a different movie. For the time being we disregard all information
about each movie except its cast of actors, as shown in Table 3.2. Sampling from this
database results in a sequence of movie casts M1, . . . ,Mn, where each Mi is the set of
actors who appear in the ith movie sampled. For each i, Mi may be either an ordered
or unordered set: ordered (Mi,1, . . . ,Mi,Ri) if actors are listed, say, according to the
standing of their role (lead role, second role, etc.) and unordered {Mi,1, . . . ,Mi,Ri}
otherwise. In either case, Ri is the (random) number of roles in movie i.

Sampling academic articles from a research repository, such as arXiv,8 bioRxiv,9

Social Science Research Network (SSRN),10 or the Philosophy of Science Archive
(PhilSci-Archive),11 results in a similar data structure to the one constructed by sam-
pling from the IMDb. (See Table 3.3 for illustration.) In this case, each article is

7http://www.imdb.com/
8http://www.arxiv.org/
9http://www.biorxiv.org/

10http://www.ssrn.com/
11http://philsci-archive.pitt.edu/

http://www.imdb.com/
http://www.arxiv.org/
http://www.biorxiv.org/
http://www.ssrn.com/
http://philsci-archive.pitt.edu/
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Table 3.3 Database of statistics articles. Each row contains the set of authors of the corre-
sponding article.

Article title Authors
A nonparametric view of network models . . . Bickel, Chen
Edge exchangeable models for interaction networks Crane, Dempsey
Snowball sampling Goodman
Latent space approaches to social network analysis Hoff, Raftery, Handcock
...

...

identified by its set of authors A1, . . . ,An. Note that the authors of any given article
may be listed in a meaningful order, as in those scientific fields for which the relative
order of authors reflects their contribution to the project, or in alphabetical order, as
is the norm in mathematics and law. These conventions result in a dataset consisting
of ordered or unordered sets of authors, respectively.

In an email database, each email has a unique sender Si and a set of recipients
Ri. Recipients may also be classified further according to whether they were cc’d or
bcc’d, so that each sampled email (Si,Ri,Ci,Bi) consists of sender Si, set of recipients
Ri, set of cc’d recipients Ci, and set of bcc’d recipients Bi.

Each of the above examples describes a specific instance of hyperedge sampling.
Though not as amenable to visualization, the sample of movie collaborations (or
coauthorships or email exchanges) can be conceptualized as an edge-labeled hyper-
graph (akin to Figure 3.2) with each sampled movie (or article or email) represented
as a labeled hyperedge. This representation is directly analogous to the edge-labeled
graph representation of phone calls in Figure 3.2, and therefore can be treated within
the same conceptual framework. See Section 10.3 for further discussion of networks
constructed in this way.

I mention here, and stress again in Chapters 9 and 10, that the structural integrity
of network data ought to be maintained to every extent possible, meaning that each
hyperedge corresponding to a movie, article, or email should be treated as a single
entity by the postulated statistical model. In particular, a hyperedge consisting of
three vertices, say {a,b,c}, ought to be treated in the analysis as a single hyperedge
with three vertices. Without a compelling reason to do so, such an interaction should
not be decomposed into three binary edges {a,b}, {b,c}, and {a,c}. This basic point
is violated far and wide in conventional network analysis. See Sections 9.10 and 10.2
for further discussion.

3.6.1.3 Path sampling

For the purpose of this discussion, the (physical) Internet consists of servers (i.e., ver-
tices) and connections between servers along which messages are transmitted (i.e.,
edges). A guiding motivation in the earliest days of network science was to determine
what the Internet network ‘looks like’ by analyzing the paths traversed when send-
ing information from one part of the Internet to another. Traceroute is one specific
sampling method used for this purpose.
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Figure 3.3 Example of traceroute path between IP addresses 192.653.22.69 and
128.135.10.17.

Given a source s and target t, each identified uniquely by its Internet Protocol
(IP) address, traceroute returns the path (i.e., “traces the route”) of servers visited
in accessing t from s. Thus, for each pair (s, t), traceroute returns an ordered tuple
path(s, t) = (s,v1, . . . ,vk, t), which indicates a path from s to v1, then to v2, and so
on until reaching t. Traceroute also includes other information, such as the time re-
quired to traverse the path, which we ignore for this discussion; see Figure 3.3 for
an illustration of traceroute output between two IP addresses, or consult [2] for more
details on traceroute sampling.

If interested in the structure of the Internet network based on traceroute out-
put, we can imagine seeding the algorithm with a collection of sources and targets
(s1, t1), . . . ,(sn, tn) and then sampling n paths path(s1, t1), . . . ,path(sn, tn) by tracer-
oute, where path(si, ti) denotes the path traced from si to ti. Assuming that path(s, t)
is deterministic for any given source s and target t reduces any randomness in the
sample to the randomness in how the sources and targets have been chosen. This
in turn raises conceptual questions regarding the nature of the information con-
tained in the observed network. For example, if given two sources s,s′ and a ran-
dom sample of targets T1, . . . ,Tn, how does the structure determined by the sample
of paths {path(s,Ti)}1≤i≤n compare to that determined by {path(s′,Ti)}1≤i≤n? An-
swers to these questions depend on how the respective vertices s and s′ are situated
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Figure 3.4 Path-labeled network constructed from sequence path(a,c) = (a,b,c),
path(a, f ) = (a,b,e, f ), path(a,h) = (a,g,h), and path(a,d) = (a,d). Edges are labeled ac-
cording to which path they belong. For example, the three edges labeled ‘2’ should be regarded
as comprising a single path, namely path(a, f ) = (a,b,e, f ), and not as three distinct edges
(a,b),(b,e),(e, f ).

within the network, which by the nature of the investigation is likely to be poorly
understood. Another question might be: How does the manner in which the targets
T1, . . . ,Tn are ‘randomly’ chosen affect the structure determined by the sampled paths
{path(s,Ti)}1≤i≤n?

These basic questions about networks built from path sampling motivate some of
the most fundamental considerations in network science [154]. Several critical ques-
tions arise from the tendency to overlook the ways in which sampling can distort
observed network properties and other unintended consequences of the conventional
‘networks-as-graphs’ representation. The collection of paths {path(s,Ti)}1≤i≤n ob-
tained by traceroute sampling from a vertex s to a sample of target vertices T1, . . . ,Tn
can be represented as a network with edges labeled according to which path they
belong, as in Figure 3.4. As mentioned in Section 3.6.1.2 in connection to hyper-
edges, it is important to treat each path as a single entity, so that the collection of all
edges with a given label comprise a single path in the network representation. For
example, the path (a,b,e, f ) labeled ‘2’ in Figure 3.4 should not be decomposed into
its constituent edges (a,b), (b,e), and (e, f ). In particular, the structure of the path
a→ b→ e→ f cannot be properly analyzed without taking into account that the first
traversal a→ b depends on the target vertex f . I discuss other aspects of modeling
path-sampled networks in Chapter 10.

3.6.2 Snowball sampling

Returning to the high school friendship example in Section 2.4, consider now the
sampling procedure which first chooses a student s at random and then observes that
student’s ego network of radius r, for some fixed r = 1,2, . . .. (Figure 3.1 illustrates
this sampling scheme for r = 1.) More formally, we observe a network of friendships
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by initializing N(s,0)= {s} and first sampling the set of students N(s,1)= {s′ :Yss′ =
1}, i.e., those students whom s identifies as a friend. If r > 1, then we sample friends
of friends to obtain

N(s,2) =
⋃

s′∈N(s,1)

{s′′ : Ys′s′′ = 1}−N(s,1),

and in general

N(s,k) =
⋃

s′∈N(s,k−1)

{s′′ : Ys′s′′ = 1}−
k−1⋃
j=0

N(s, j).12

We define snow(s,r) as the set of neighborhoods {N(s,k)}1≤k≤r, so that s′ ∈ N(s,k)
implies that the shortest friendship path between s and s′ has length k.

Similar to path sampling, snowball sampling proceeds by seeding an initial
source vertex s along with a radius r = 1,2, . . . describing the width of the neigh-
borhood to be sampled. A snapshot of the network can be obtained by piec-
ing together snow(S1,R1), . . . ,snow(Sn,Rn) for a sample of sources and radii
(S1,R1), . . . ,(Sn,Rn). In this sense, snowball sampling can be regarded as yet another
special case of relational sampling.

3.7 Units of observation

In statistical analysis, the sampling scheme is closely related to the observational
units, a concept which arises often in the experimental design literature. In a designed
experiment, the units are defined as the smallest entity to which different treatments
can be assigned. (To capture this idea of ‘indivisibility’ with respect to the treatment,
some authors use the term ‘atom’ instead of ‘unit’.) In network analysis, we regard
the units as the basic entities of observation, i.e., the ‘atomic elements’ from which
the network structure is constructed. For example, in the scenario of Section 2.4, a
social network of high school students is obtained by observing friendships among
n selected students. In that case, the units are the vertices, and the observation asso-
ciated to each unit is its friendships with other units (as represented by the edges of
a graph). But a moment’s reflection on the different ways that real-world networks
arise should make clear that the vertices are not the units in many applications of
contemporary interest. In the scenario of Section 3.6.1.1, for example, the observed
network is constructed from a sample of binary interactions, i.e., edges, and thus the
basic units of observation are the edges. In hyperedge sampling, each observation is
a hyperedge, i.e., a multi-way interaction among vertices, and thus the hyperedges
are the units. In path sampling, the paths are the units. And so on.

12For two sets A and B, B−A denotes the set containing all elements of B which are not in A. This is
sometimes written as B\A and is defined by

B−A = B\A = B∩Ac,

where Ac is the complement of A.
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The network sampling schemes described in Section 3.6 highlight the many ways
in which entities other than the vertices can serve as the units, thus contradicting
the aforementioned claim of Handcock and Gile that “in most network samples, the
unit of sampling is the actor or node” [85, p. 7]. This misconception is perpetuated
by the rote application of vertex-centric models (i.e., random graph models) found
throughout the networks literature. (See Sections 1.2–1.5 for further elaboration on
this point.) But while identifying the units is an important starting point for any appli-
cation, it is not enough to simply acknowledge what the units are. The units must also
be properly integrated into the model specification. If, for instance, the observational
units are the edges (as in Section 3.6.1.1) but the formal model setup and subsequent
analysis implicitly treats the vertices as the units, then any ensuing inferences will
have been conducted under an (unspoken) false assumption and subsequent conclu-
sions are prone to be interpreted in the wrong context.

Implicit and explicit units

The fact that the units specified (implicitly) by the model may be different from the
units identified (explicitly) by the observation mechanism marks a subtle distinction
between explicit and implicit units which warrants careful consideration in network
analysis. The explicit units are the ‘real’ or ‘actual’ units of a given application, in
the sense of being the basic entities of the (real-world) observation process. Because
the explicit units are determined by the scenario under which the data is actually
observed, and thus are not affected by the model setup or subsequent analysis, I of-
ten refer to the explicit units simply as ‘the units’. For example, the explicit units in
Section 2.4 are vertices, in the phone call scenario of Section 3.6.1.1 are edges, in
the coauthorship scenario of Section 3.6.1.2 are hyperedges, in the traceroute sam-
pling scenario of Section 3.6.1.3 are paths, and in the snowball sampling scenario of
Section 3.6.2 are neighborhoods of radius r.

On the other hand, there is a notion of units that is implicit in any formulation of
a network model. Most often, when a network is represented as a graph with vertex
set V and edge set E ⊆V ×V , or equivalently as a {0,1}-valued array with vertices
corresponding to the rows and columns, the vertices are the implicit units, in the sense
that the resulting ‘random graph model’ implicitly treats the vertices as the basic unit
of observation. (I discuss this further in Chapter 6.) Just as the real-world context
under which the data is observed determines the explicit units, the theoretical context
in which the model is specified determines the implicit units. Because the objective
of modeling is to describe the real world in such a way that inferences based on the
model are as meaningful as possible, it is a basic requirement of sound statistical
modeling that the implicit and explicit units should align. This observation motivates
the paradigm of Chapter 5 and the modeling frameworks in Chapters 7–11.

3.8 What is the sample size?

The question of sample size is one of the oldest in statistical network analysis, and
yet it remains poorly understood. It was once common to think of an observation
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of network data as ‘a sample of size 1’. (In fact, this point of view is still held by
some networks researchers.) The inevitable next question arises: how is one to con-
duct reliable statistical inference based on a sample of size one? It is clear from the
numerous successful applications of statistical methods to network data that such in-
ferences are possible. Just as clear, after reflection on the contents of this chapter, and
in particular the preceding section, is that the sample size of network data is not the
number of networks which have been observed (most often 1), but rather the number
of units which have been observed in constructing the network. So while the sample
size is 1 in certain situations, it is not 1 across the board. As I have emphasized in
previous sections (e.g., Section 1.4), context plays a major role.

To appreciate the absurdity of the ‘sample size 1’ viewpoint in many applica-
tions, it is helpful to consider the more standard setup involving an i.i.d. sequence
X = (X1,X2, . . .), from which the initial segment Xn = (X1, . . . ,Xn) is observed. Here
it seems uncontroversial that the sample size of Xn is the number of observed mea-
surements, namely n. But if applying the same rationale which takes network data
as a ‘sample of size 1’ (because only one network is observed), then Xn could also
be viewed as a sample of size 1, since only one sequence (X1, . . . ,Xn) has been ob-
served. Of course, the reason why (X1, . . . ,Xn) is a sample of size n is that each Xi,
i = 1, . . . ,n, is an independent draw from a common distribution, and the observation
Xn = (X1, . . . ,Xn) consists of n such observations.

Conversely, suppose that Xn = (X1, . . . ,Xn) instead represents the result of a sin-
gle draw from an urn with balls labeled 1, . . . ,n. If the chosen ball has label i, then
the components of Xn are given by Xi = 1 and X j = 0 for all j 6= i. In particular, if
the chosen ball is labeled 1, then Xn = (1,0,0, . . . ,0); if the chosen ball is labeled
2, then Xn = (0,1,0, . . . ,0); and so on. As in the previous example, the sequence
Xn has length n. But since Xn reflects just a single draw from the urn, this length n
sequence represents a sample of size 1.

As these two examples make clear, the sample size is intrinsic to the application.
It cannot be manipulated or altered by arbitrary choices of how the data is repre-
sented. In the previous paragraph, a single draw from the urn could be represented
either as a length n sequence, as described above, or as a single observation, say,
Y = i if the chosen ball has label i. Each represents the same observation, and thus
both correspond to a sample of size 1. In the earlier sample of n i.i.d. observations
X1, . . . ,Xn, both a sequence Xn = (X1, . . . ,Xn) and an array Yn = (Yi j)1≤i, j≤n, with
Yii = Xi and Yi j = 0 for i 6= j, represent the same observation, and thus both corre-
spond to a sample of size n.

Stated most simply:
the sample size is the number of observed units.

So while it is true in many cases that the data consists of one network, this single net-
work is most often the result of repeated draws from the observation process. And it
is this repetition which makes reliable inferences possible. To parallel the discussion
of units from the previous section, the sample size in the scenario of Section 2.4 is
the number of sampled vertices, in the phone call scenario of Section 3.6.1.1 is the
number of sampled phone calls (or edges), in the coauthorship scenario of Section
3.6.1.2 is the number of sampled articles (or hyperedges), in the traceroute scenario
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of Section 3.6.1.3 is the number of sampled paths, and in the snowball sampling
scenario of Section 3.6.2 is the number of sampled neighborhoods.

Exercise 3.4 Describe a scenario under which a non-trivial network (i.e., non-empty
with n≥ 5 vertices) can be rightly regarded as a sample of size 1.

3.9 Consistency under subsampling

The above discussion of units and sample size, especially in light of the different
sampling schemes of Section 3.6, suggests the following refinement to the concept
of consistency under selection (Definition 3.1). Specializing again to networks repre-
sented as {0,1}-valued arrays, we interpret any injection ψ : [n]→ [N], 1≤ n≤N, as
a vertex sampling scheme described by subsampling vertices ψ(1), . . . ,ψ(n) along
with their incident edges as follows. Given ψ : [n]→ [N], define the operation of
ψ-selection from {0,1}N×N by the action

Sψ

n,N :{0,1}N×N →{0,1}n×n

y 7→ yψ = (yψ(i)ψ( j))1≤i, j≤n. (3.17)

Notice that the selection map Sn,N defined in (3.6) coincides with ψ-selection for
ψ : [n]→ [N] given by the inclusion map ψ(i) = i for i = 1, . . . ,n. For example, with
n = 3, N = 4, and y given by

y =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

 ,

ψ : [3]→ [4] with ψ(1) = 2, ψ(2) = 4, and ψ(3) = 1 acts on y by

yψ =


ψ(1) ψ(2) ψ(3)

ψ(1) 0 1 1
ψ(2) 1 0 1
ψ(3) 1 1 0

.

With Sψ

n,N as in (3.17), define

Sn,N = {Sψ

n,N | ψ : [n]→ [N] an injection}

as the set of all ψ-selection maps, which we interpret as the set consisting of all ways
to sample n units from [N] according to the above mechanism. A random sampling
scheme Σn,N is a ψ-selection map chosen randomly from Sn,N . To reflect that real-
world networks are often sampled in a way that depends on the population network
(e.g., in relational sampling), we allow the distribution of Σn,N to depend on YN .
Thus, for any YN in {0,1}N×N and a random sampling scheme Σn,N , Σn,N YN de-
notes an array obtained by applying a randomly chosen ψ-selection map to YN . The
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distribution induced on {0,1}n×n is computed by

Pr(Σn,N YN = y) =
= ∑

y∗∈{0,1}N×N
∑

ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N | YN = y∗)Pr(YN = y∗)1(y∗ψ = y)

= ∑
ψ:[n]→[N]

∑
y∗∈{0,1}N×N :y∗ψ=y

Pr(Σn,N = Sψ

n,N | YN = y∗)Pr(YN = y∗), (3.18)

where

1(y∗ψ = y) =
{

1, y∗ψ = y,
0, otherwise,

denotes the indicator function.

Definition 3.2 (Consistency under subsampling) Let Yn and YN , n ≤ N, be ran-
dom {0,1}-valued arrays and let Σn,N be a random sampling operation in Sn,N . Then
Yn and YN are consistent under subsampling from Σn,N , or alternatively consistent
with respect to Σn,N or Σn,N-consistent, if

Σn,N YN =D Yn, (3.19)

for Σn,N YN as distributed in (3.18).

Notice that consistency under selection (Definition 3.1) is a special case of Defi-
nition 3.2 for a random sampling operation Σn,N with degenerate distribution at Sn,N ,
i.e., Pr(Σn,N = Sn,N) = 1. When surveying the literature, however, the reader should
note that the terms consistency under selection and consistency under subsampling
are often used interchangeably, and treated as synonymous with the term projectivity.
Here I reserve the more general term consistency under subsampling for the property
in Definition 3.2.

With few exceptions, e.g., [52], the networks literature is mostly confined to the
more limited definition of consistency under selection from Section 3.2. As the above
discussion emphasizes the relevance of sampling schemes other than selection, the
implications of more generic sampling mechanisms for network analysis is an im-
portant topic for future research. To my knowledge, Definition 3.2 has not appeared
previously in the networks literature or otherwise. The mere statement of this def-
inition opens a number of possible avenues of research which curious readers are
encouraged to explore.

Subsampling in arbitrary networks

Here I have defined consistency under subsampling only in the special case of net-
works represented as {0,1}-valued arrays. The variety of sampling schemes dis-
cussed in Section 3.6 emphasizes the need to expand this definition even further
to handle networks represented, for example, as edge-labeled, hyperedge-labeled, or
path-labeled graphs. But until we encounter these specific cases in Chapters 9 and
10, it is safe to proceed with the following generic, albeit vague, understanding of
ψ-selection for arbitrary networks.
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Let the units of observation be well-defined and let Nn denote the set of all net-
works with n units labeled 1, . . . ,n. Except in pathological cases, there should be a
well-defined notion of restriction to Nm (analogous to the operation in (3.6) when
the vertices are units) which acts on y ∈ Nn by projecting to the network labeled
by units 1, . . . ,m. If this action is well-defined, then so is ψ-selection: for any injec-
tion ψ : [m]→ [n], relabel units ψ(1), . . . ,ψ(m) as 1, . . . ,m, respectively, and then
apply the restriction map. If this exposition was too quick, the reader need not worry.
Further details on generic sampling schemes are given as needed.

3.10 Further reading

Statistical investigations into network sampling have mostly been confined to the lit-
erature on social network analysis, for which the works of Frank [75, 76, 77] are good
references. To the best of my knowledge, there has been little discussion of statistical
units and sample size in more general treatments of network analysis, with one no-
table exception being Krivitsky and Kolaczyk’s early work on effective sample size
in networks [110]. Kolaczyk [106, Chapter 5] also discusses sampling in his broader
coverage of network analysis. As this book was nearing completion, a more recent
study of network sampling and invariance principles from an algorithmic perspective
appeared in [127]. Comparing the results of [127] to the forthcoming discussion in
Chapters 5–10 could prove worthwhile for the reader interested in these foundational
issues.

Although sampling issues in network analysis have received increasing atten-
tion in the relevant conferences and workshops of late, the topic remains marginal-
ized or ignored in the broader literature. There have been some efforts by com-
puter scientists and physicists, e.g., [4, 112, 154], to understand the impact of sam-
pling on observed network structure. But aside from a few recent efforts to bet-
ter understand the effects of sampling and missing data on network analysis, e.g.,
[52, 85, 102, 105, 114, 138, 162], the implications of network sampling have been
mostly overlooked by statisticians. I especially highlight [102, 114], and references
therein, for relevant recent work on network-driven and respondent-driven sampling.
I single out [112, 154] as essential reading about the potentially substantial effects of
sampling on observed network attributes.

3.11 Solutions to exercises

3.11.1 Exercise 3.1

Consistency under selection for the p1 model can be proven ‘without calculation’
by noting that the p1 model is a special case of the dyad independence model (Sec-
tion 2.2). In the dyad independence model, the pairs (Yi j,Yji), 1 ≤ i < j ≤ N, in
YN are independent, and thus the dyads (Yi j,Yji), 1 ≤ i < j ≤ N − 1, that deter-
mine the distribution of the sampled array SN−1,N YN are independent of (YiN ,YNi),
1≤ i≤ N−1. It follows that the distribution of YN−1 constructed from the indepen-
dent dyads (Yi j,Yji), 1≤ i < j ≤ N−1, coincides with the distribution of SN−1,N YN
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obtained by first taking independent dyads (Yi j,Yji), 1 ≤ i < j ≤ N, and then disre-
garding (YiN ,YNi), for all 1≤ i≤ N−1. This proves the more general result that the
dyad independence model is consistent under selection. Consistency of the p1 model
follows by noting that it is a special case of the dyad independence model.

3.11.2 Exercise 3.2

This exercise is open-ended. The observation that selection sampling from a sparse
graph produces an empty graph with high probability has a number of practical impli-
cations. An immediate, and very serious, implication is discussed in the text follow-
ing the statement of this exercise. The reader is encouraged to identify other issues
by thinking more deeply about this question.

3.11.3 Exercise 3.3

The network Y∗ in this exercise is obtained by first generating YN according to the
Erdős–Rényi–Gilbert distribution with parameter θ on N vertices, as in (3.16), and
then sampling one vertex v∗ uniformly at random along with the subgraph consisting
of all vertices adjacent to v∗ in YN . To express the distribution of Y∗ formally, we
condition first on the random number B of vertices in the one-step neighborhood of
v∗. Since v∗ is chosen independently of YN , B is equal in distribution to the number of
edges adjacent to any given vertex in the Erdős–Rényi–Gilbert distribution, and thus
follows the binomial distribution with success probability θ on N−1 trials. Suppose
B= k≥ 1 and label the vertices adjacent to v∗ by i1, . . . , ik. Then, by the independence
assumption of the Erdős–Rényi–Gilbert distribution, each edge Yir is between vertices
ir and is, 1 ≤ r,s ≤ k, is an independent draw from the Bernoulli distribution with
parameter θ . Combining these observations together by conditioning on the value of
B and using the law of total probability gives the distribution of Y∗ by

Pr(Y∗ = y) =
N−1

∑
k=0

Pr(B = k)×Pr(Y∗ = y | B = k)

=
N−1

∑
k=0

(
N−1

k

)
θ

k(1−θ)N−1−k×Pr(Y∗ = y | B = k),

for

Pr(Y∗ = y | B = k) = ∏
1≤i6= j≤k

θ
yi j(1−θ)1−yi j ×

k

∏
i=1

y0iyi0, y = (yi j)0≤i, j≤k,

where the product
∏

1≤i6= j≤k
θ

yi j(1−θ)1−yi j

is the usual Erdős–Rényi–Gilbert probability governing the connections of the ver-
tices adjacent to v∗ and

k

∏
i=1

y0iyi0
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evaluates to 1 only if all of the vertices 1, . . . ,k are adjacent to 0 in y (i.e., yi0 = y0i =
1), as is required by the one-step snowball sampling scheme with v∗ assigned label
0. In the above expression, we adopt the convention ∏1≤i6= j≤0 θ yi j(1− θ)1−yi j = 1
and ∏

0
i=1 yi0y0i = 1 in the event that B = 0.

3.11.4 Exercise 3.4

There are a number of possible answers to this exercise. One possible solution is
below. The reader is encouraged to come up with other examples.

Consider a network obtained by sampling a high school uniformly at random
from among all U.S. high schools with more than 5 students. Having chosen a spe-
cific high school, let Y = (Yi j)1≤i, j≤N be the binary array representing all friendships
among the N students in that school. Then Y is a binary N ×N array reflecting a
single observation from the sampling process, which chooses 1 high school and ob-
serves the social network among students within that high school. The sampling unit
in this case is the high school, and Y is a sample of size 1 from this process.



Chapter 4

Generative models

The sampling schemes of the previous chapter arise most naturally when modeling
a partially observed network, i.e., for Yn obtained by sampling from a population
network YN . Generative models are relevant in the complementary context in which
the observation Yn is assumed to be evolving according to some generating process.
Thus, instead of specifying the model by describing how observations of smaller
size are obtained by sampling from one of larger size, generative models describe
how networks evolve (i.e., grow larger) according to a random mechanism.

4.1 Specification of generative models

In parallel to the formulation of sampling models, which we specified in Chapter
3 by describing the sampling mechanism according to which an observation Yn is
obtained from a population network YN , a generative model is specified by a gener-
ating mechanism that describes network evolution. For n ≤ N, call P : {0,1}n×n →
{0,1}N×N an evolution map if

P(y)|[n] = y for all y ∈ {0,1}n×n. (4.1)

In words, an evolution map is an operation by which y ∈ {0,1}n×n ‘evolves’ into
P(y) ∈ {0,1}N×N by holding fixed that part of the network which already exists,
namely y. For n≤N, let Pn,N be the set of all evolution maps {0,1}n×n→{0,1}N×N

and define a generating scheme as a random map Πn,N chosen randomly according to
some probability distribution on Pn,N . We allow the distribution of Πn,N to depend
on the input Yn.

Given a random array Yn and a generating scheme Πn,N , we write Πn,N Yn to
denote the random element of {0,1}N×N obtained by applying the generating scheme
Πn,N to a realization of Yn. More precisely, Πn,N Yn is the network with N vertices
obtained by first generating Yn and, given Yn = y, putting Πn,N Yn = P(y), for P ∈
Pn,N chosen according to the conditional distribution of Πn,N given Yn = y. The
distribution of Πn,N Yn is computed by

Pr(Πn,N Yn = y) = ∑
P∈Pn,N

Pr(Πn,N = P | Yn = y |[n])Pr(Yn = y |[n])1(P(y |[n]) = y),

(4.2)
where 1(·) is the indicator function.

51
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Definition 4.1 (Generative consistency) Let Yn and YN be random {0,1}-valued
arrays and let Πn,N be a generating scheme. Then Yn and YN are consistent with
respect to Πn,N if

Πn,N Yn=D YN , (4.3)

for Πn,N Yn defined by the distribution in (4.2).
Among the most attractive features of generative models is that they allow for the

distributions of all finite sample networks (Yn)n≥1 to be defined inductively in a way
that guarantees generative consistency. For example, if given a generating scheme
Πn,N and a network Yn, then YN can be constructed so that it automatically satisfies
(4.3) by defining its distribution as in (4.2). This built-in consistency property at least
partially explains the popularity of generative models in Bayesian nonparametrics
and machine learning. But, like sampling models, a generative model is only as useful
as its assumed generating mechanism is a realistic description of network evolution.

For any Yn and generating mechanism Πn,N , define YN by YN = Πn,N Yn. Then
by the defining property (4.1) of an evolution map, Yn and YN enjoy the relationship

Sn,N YN = Sn,N Πn,N Yn = Yn with probability 1; (4.4)

that is, Yn and Πn,N Yn are consistent under selection by default. (Note that (4.4) fol-
lows from (i) (Πn,N Yn)|[n] = Yn with probability 1 by the definition of an evolution
map (4.1) and (ii) Sn,N y = y |[n] by definition of the selection map in (3.6).) Thus,
when a generative model is treated instead as a sampling model, it is automatically
consistent under selection. But it is important not to misconstrue this mathematical
consequence as a generic endorsement or justification of selection as a way to model
how real networks are sampled. The choice to use a generative model in place of a
sampling model reflects the perspective from which the network is being analyzed.
Generative models treat the observed network as evolving, while sampling models
treat the observed network as having been sampled from a population network. In the
former case, the nature of network evolution must be incorporated into the inference;
in the latter case, interest lies in drawing inferences about the population based on a
sample.

4.2 Generative model 1: Preferential attachment model

The Barabási–Albert preferential attachment model [14], abbreviated here as the
BA model, was proposed to explain the prevalence of specific empirical properties,
namely sparsity and power law degree distribution, which have been found in real-
world networks from a range of disciplines. Its generating dynamics are based on Si-
mon’s preferential attachment scheme [139] for producing heavy tailed (i.e., power
law) distributions. In a nutshell, under the dynamics of the BA model, a network
evolves by adding one new vertex at each step, with each new vertex attaching to
existing vertices preferentially according to their degree. In this way, high-degree
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vertices tend to attract more connections, in a phenomenon sometimes called the
‘rich get richer’ or the ‘Matthew effect’.1

The formal description of the BA model takes m≥ 1 (integer) and δ >−m (real
number) so that at each step a new vertex appears and attaches randomly to m ex-
isting vertices with probability proportional to the degree of the vertex offset by the
parameter δ . The process is initiated at a graph y0 with n0 ≥ 1 vertices, which then
evolves successively into y1,y2, . . . by, at each step, connecting a new vertex to the
existing graph according to the following rule. For any symmetric {0,1}-valued ad-
jacency matrix y = (yi j)1≤i, j≤n and for every i = 1, . . . ,n, define the degree of i in y
to be the number of edges incident to i,

degy(i) = ∑
j 6=i

yi j.

At step n≥ 1, a new vertex vn attaches to m≥ 1 vertices in yn−1, with each of the m
vertices v′ chosen independently without replacement with probability proportional
to degyn−1

(v′)+δ/m, where degyn−1
(v′) is the degree of v′ in yn−1, i.e., the number

of edges involving v′ in yn−1.2 In keeping with the notation of Section 4.1, let Π
δ ,m
k,n ,

k≤ n, denote the generating mechanism for the process parameterized by m≥ 1 and
δ >−m.

By letting the parameters n0 ≥ 1, m ≥ 1, and δ > −m vary over all permissible
values and treating the initial conditions y0 and n0 as fixed, the above generating
mechanism determines a family of distributions for each finite sample size n ≥ 1,
where n is the number of vertices that have been added to y0. (In particular, an ob-
servation y with n vertices corresponds to a sample of size n−n0, since the n0 initial
vertices are not assumed to be part of the observation process.)3 For each n≥ 1, this
process gives a collection of distributions Mn indexed by (m,δ ), and each distribu-
tion in Mk indexed by (m,δ ) is related to a distribution in Mn, n≥ k, with the same
parameters through the preferential attachment scheme Π

δ ,m
k,n associated to the model.

For any choice of parameter (δ ,m), we express the relationship between Yk and Yn,
n≥ k, by

Yn=D Π
δ ,m
k,n Yk .

1The Matthew effect is so named because its behavior coincides with a principle from the Gospel of
Matthew: “For to everyone who has will more be given, and he will have an abundance. But from the one
who has not, even what he has will be taken away.” (Matthew 25:29, The Bible, English Standard Version,
2001.)

2For simplicity, I have described a version of the model by which all m ≥ 1 edges involving vn are
chosen independently according to the same distribution, and therefore the resulting graph can, and with
high probability will, have multiple edges. There are several variants of this scheme, e.g., whereby the m
edges are chosen sequentially so that the vertex degrees in the sampling distribution are updated within
each step and the m vertices connected to vn are sampled without replacement to avoid multiple edges.
For discussion of these variations see [36, 146].

3To be more precise, the n0 initial vertices are observed, but we do not assume that they reflect prop-
erties of the generating mechanism, and therefore we do not regard them as observational units.
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Empirical properties

A major selling point of the BA model is its ability to replicate sparsity and power
law degree distributions through its easily interpretable preferential attachment gen-
erating mechanism. Sparsity and power law are properties of the degree distribution
of an infinitely large or growing sequence of networks defined as follows. For each
n ≥ 1, let y(n) = (y(n)i j )1≤i, j≤n be a graph with n vertices, and consider a sequence
y = (y(n))n≥1 of graphs that are growing in size. The collection y is called sparse if

lim
n→∞

1
n(n−1) ∑

1≤i6= j≤n
y(n)i j = 0. (4.5)

By the generating dynamics of the BA model, there are exactly m ≥ 1 new edges
added at each step, so that after n steps there are exactly mn+ k0 edges in Yn, where
k0 is the fixed number of edges in the initial graph y0. From this we easily see that
the rescaled edge density satisfies

1
n(n−1)

(mn+n0)→ 0 as n→ ∞

and the sequence of graphs (Yn)n≥1 generated from the BA model is sparse with
probability 1.

The degree distribution of y counts the relative proportion of vertices with each
integer degree:

py(k) =
n

∑
i=1

1(degy(i) = k), k = 0,1, . . . .

A sequence of networks y = (y(n))n≥1 exhibits power law degree distribution with
exponent γ if its degree distributions satisfy

py(n)(k)∼ k−γ for all large k as n→ ∞, (4.6)

for some γ > 1, where a(k) ∼ b(k) indicates that a(k)/b(k)→ 1 as k→ ∞. More
precisely, (y(n))n≥1 has power law with exponent γ if

lim
k→∞

lim
n→∞

py(n)(k)

k−γ
= 1.

With a little more work, one can also see that the generating mechanism Π
δ ,m
k,n gives

rise to a sequence of networks (Yn)n≥1 whose degree distributions satisfy (4.6) with
exponent 3−δ/m. See [146] for a formal derivation.

Both sparsity and power law are asymptotic properties defined for an infinite
collection of networks (y(n))n≥1. Although the components of (y(n))n≥1 need not
be related to one another in any obvious way (e.g., ym = Sm,n yn need not hold for
m ≤ n), these properties are best understood by envisioning (y(n))n≥1 as the finite
components of an ‘infinite size’ population network y = (yi j)i, j≥1. From this popula-
tion network, we define each y(n) as the restriction of y to its first n labeled vertices,
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Figure 4.1 Dotted line shows log-log plot of the Yule–Simon distribution in (4.8) for γ = 3.
Solid line shows the linear approximation of (4.8) by approximating Γ(γ)/Γ(k + γ) ∼ γ−k,
which holds asymptotically for large values of k.

so that y(n) = y |[n] for each n≥ 1. In this way, the sparsity and power law conditions
in (4.5) and (4.6), respectively, can be interpreted as empirical properties of a limiting
population network.

Also, since sparsity and power law are asymptotic properties, neither can be veri-
fied from any finite observation of a network. In practice, however, the limiting state-
ments in (4.5) and (4.6) are often interpreted to hold for networks that are ‘large’ (as
opposed to infinite). A ‘large’ network y = (yi j)1≤i, j≤n is often called sparse if its
edge density is judged to be ‘small’ relative to its size, i.e.,

n−2
∑

1≤i, j≤n
yi j ≈ 0.

Note that ‘large’ and ‘small’ have no precise meaning here. They must instead be
interpreted heuristically. Similarly, the power law property (4.6) is often judged by
comparing the empirical degree distribution of a network y = (yi j)1≤i, j≤n to a plot
of its degree distribution on the log-log scale. From the expression in (4.6), a power
law degree distribution satisfies

log py(k)∼−γ log(k) for all large k, (4.7)
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giving an immediate heuristic check of the power law property (i.e., whether the
log-log plot shows a negative linear relationship for large values).

For a concrete illustration of this last point, the Yule–Simon distribution on the
positive integers assigns probabilities

Pr(K = k;γ) =
(γ−1)Γ(k)Γ(γ)

Γ(k+ γ)
, k ≥ 1, (4.8)

for γ > 1, where Γ(t) =
∫

∞

0 ut−1e−udu is the gamma function. The Yule–Simon dis-
tribution satisfies the power law property with exponent γ > 1 for large k≥ 1. Figure
4.1 shows the log-log plot for the Yule–Simon distribution and its linear approxima-
tion by (4.7). Notice, in particular, that a power law distribution can deviate from
the line −γ log(k) for small values of k, as the condition in (4.6) only requires the
relationship to hold for all large k ≥ 1. See [27, 39] for further discussion on power
law distributions, including some caveats about using the relationship in (4.7) as a
heuristic check for power law distributions from finite samples.

4.3 Generative model 2: Random walk models

Random walk (RW) models evolve by adding a new edge at each step, instead of a
new vertex as in the BA model. Let y0 be an initial graph and n0 ≥ 1 be an initial
number of edges. The network y1,y2, . . . evolves as follows. At step n ≥ 1, select
a vertex vn in yn−1 randomly according to a probability distribution Fn (which can
depend on yn−1). Next draw a random nonnegative integer Ln from a probability
distribution (which is also allowed to depend on yn−1). Given vn and Ln = `, perform
a simple random walk on yn−1 for ` steps starting at vertex vn.4 If after the `th step the
random walk is at a vertex v∗ 6= vn, then add an edge between v∗ and vn; otherwise,
add a new vertex v∗∗ to the network and insert an edge between v∗∗ and vn.

The random walk dynamics of this model refine several properties of the BA
model. Let y = (yi j)1≤i, j≤n be any undirected, connected graph5 and generate a ran-
dom sequence of states (Xt)t=0,1,... taking values in the vertex set of y with distribu-
tion

X0 ∼ G for any distribution G on 1, . . . ,n and

Pr(Xt+1 = v′ | Xt = v) =
{

1/degy(v), yvv′ = 1,
0, otherwise.

The process X is called a simple random walk on y with initial distribution G. The
marginal distribution of Xt converges to the degree-biased distribution on y as t→∞:

lim
t→∞

Pr(Xt = i) =
degy(i)

∑1≤ j≤n degy( j)
, i = 1, . . . ,n. (4.9)

4A simple random walk on a graph is one that moves along the edges of y = (yi j)1≤i, j≤n as follows:
given that the walk is at vertex v, the next state is chosen uniformly from among all v′ for which yvv′ = 1.

5A connected graph is one for which there is a path (i.e., sequence of edges) connecting any two of its
vertices. More precisely, y = (yi j)1≤i, j≤n is connected if for any i, j = 1, . . . ,n there exists a sequence of
vertices i = i0, i1, . . . , ik = j such that yir ,ir+1 = 1 for r = 0,1, . . . ,k−1.
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Returning to the RW model, we see that the edge added between vn and v∗ at step
n features a vertex vn chosen according to a distribution F and v∗ chosen by tak-
ing Ln steps in a simple random walk on yn−1. The analysis in (4.9) shows that if
the number of steps Ln is large, then v∗ is approximately chosen from the degree-
biased distribution, as in the BA model. Because its generating dynamics are more
complicated than the BA model, inference from the RW model tends to be more
challenging. For example, if the order in which edges arrive is not observed, then it
must be imputed during inference. See [20] for many more details about this model.
In addition to the model in [20], a number of variations on the preferential attach-
ment model have been proposed and studied, including preferential attachment-type
models for networks that grow by sequential addition of edges instead of vertices.
See [22, 80, 133, 149] and references therein for further details.

4.4 Generative model 3: Erdős–Rényi–Gilbert model

In addition to its description in terms of selection sampling, the Erdős–Rényi–Gilbert
model in (3.16) admits the following generative description. For any θ ∈ [0,1], define
Πθ

n,N as the generating scheme which acts on {0,1}n×n by

y 7→ Πn,N(y)

y 7→



B1,n+1 · · · B1,N

y
...

. . .
...

Bn,n+1 · · · Bn,N
Bn+1,1 · · · Bn+1,n 0 · · · Bn+1,N

...
. . .

...
...

. . .
...

BN,1 · · · BN,n BN,n+1 · · · 0


,

which fixes the upper n×n submatrix to be y and fills in the rest of the off-diagonal
entries with i.i.d. Bernoulli random variables (Bi j)1≤i6= j≤N with success probability
θ . From this description, Πθ

n,N Yn is distributed according to (3.16) with parameter
θ as long as Yn is distributed according to (3.16) with parameter θ on {0,1}n×n.
This example illustrates the duality between sampling under selection and generative
consistency, as expressed in (4.4).

4.5 Generative model 4: General sequential construction

Each of the above examples begins with a base case Y0, from which a family of
networks Y1,Y2, . . . is constructed inductively according to a random scheme. Thus,
a generic way to specify a generative network model is to specify, for every n ≥ 1,
a conditional distribution for Yn given Yn−1 such that Yn |[n−1] = Yn−1 with prob-
ability 1. In this way, the conditional distribution Pr(Yn = · | Yn−1) determines the
distribution of a random generating mechanism Πn−1,n in Pn−1,n and Yn can be
expressed as Yn = Πn−1,n Yn−1 for every n≥ 1.
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Composing these actions for successive values of n determines the generating
mechanism Πn,N , n≤ N, by the law of iterated conditioning. In particular, for n≤ N,
let Πn,n+1, . . . ,ΠN−1,N be the generating mechanisms determined by the conditional
distributions of Ym given Ym−1 for m= n+1, . . . ,N. Then, given Yn, construct YN =
Πn,N Yn by

YN = ΠN−1,N(ΠN−2,N−1(· · ·(Πn,n+1 Yn)));

that is, YN is constructed by iterated application of the random functions
Πn,n+1, . . . ,ΠN−1,N , each with distribution determined by the conditional distribu-
tion of Ym+1 given Ym, for m = n, . . . ,N − 1. The conditional distribution of YN
given Yn can be computed as

Pr(YN = y∗ | Yn = y∗ |[n]) =
= Pr(YN = y∗ | YN−1 = y∗ |[N−1])×Pr(YN−1 = y∗ |[N−1] | Yn = y∗ |[n])

=
N−n

∏
i=1

Pr(ΠN−i,N−i+1(y∗ |[N−i]) = y∗ |[N−i+1] | YN−i = y∗ |[N−i]).

4.6 Further reading

In Section 4.1, I discussed the automatic consistency properties of generative models,
both in terms of generative consistency and consistency under selection. Because
of this connection (shown explicitly in (4.4)), the language of generative models is
often invoked when modeling real-world networks, even in the absence of any natural
interpretation for the generating mechanism in the given context. So even though the
connection between generative and sampling models may be helpful for developing
mathematical theory or computational tools in network analysis, one should exercise
caution when interpreting results from models whose initial specification (in terms
of the generating process) lacks a meaningful interpretation vis-à-vis the application
at hand.

The discussion of generative models in this chapter has been brief compared to
the more in-depth discussion of sampling models in Chapter 3. With this abbreviated
presentation, I do not mean to downplay the importance of generative models in
network analysis. But by comparison to generative models, network modeling in the
presence of sampling is poorly understood and has received limited attention from
statisticians. Thus, although generative models are of interest for predictive modeling
and machine learning applications, my emphasis on sampling models reflects the
intention to focus here on those essential elements of network analysis which have
not been given due attention elsewhere. The reader looking for additional discussion
of generative network models will have no trouble finding it. See [7, 18, 36, 64, 67,
123, 146] and references therein for further details.



Chapter 5

Statistical modeling paradigm

Chapters 3 and 4 highlight two primary contexts of statistical network analysis:
• Chapter 3 focuses on network data that is assumed to have been sampled from a

larger population network, with the goal of drawing inferences about the popula-
tion based on whatever information can be extracted from the sample; and
• Chapter 4 focuses on evolving networks, with the goal of better understanding the

generating process.
From these two cases, we have the following immediate observations:
• The concept of ‘network’ should not be conflated with the mathematical notion of

‘graph’ (Section 1.2).
• For networks obtained by sampling, the sampling mechanism plays a crucial role

in model specification and statistical inference (Chapter 3).
• The statistical units for a given application are determined by the way in which

the data is observed (Section 3.7).
• The explicit and implicit units should be aligned so that model-based inferences

are compatible with their intended interpretation (Section 3.7).
Throughout this chapter, we write Y to generically denote ‘network data’, with

Yn indicating ‘network data of size n’. Although the discussion so far has focused on
the case in which Yn is a {0,1}-valued array, the framework is meant to include net-
works which may be better represented as something other than a {0,1}-valued array.
Chapters 9 and 10 discuss a class of models for networks with such an alternative rep-
resentation, but unfortunately most of the discussion throughout this book remains
confined to the conventional networks-as-graphs setting. As discussed in Chapter 1,
the limited scope of the book reflects the current limitations of the field. I neverthe-
less attempt to lay down principles that will transfer to alternative approaches, as
they arise in the future.

In order to speak as generally as possible, we write Nn to denote the set of
all networks of size n, where the concepts of ‘network’ and ‘size’ are understood
based on context. In general, the ‘size’ refers to the number of observed units, with
each element of Nn corresponding to a mathematical representation of a network
of size n within the prevailing context; refer back to Sections 3.7–3.8 for further
discussion about sample size and units. For example, in the setting of Section 2.4,
Nn = {0,1}n×n, a ‘network’ is a graph (or binary relation), and the ‘size’ is the num-

59
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ber of sampled students (i.e., vertices). For interaction networks, such as the network
representation of phone call activity in Section 3.6.1.1, the ‘network’ is the structure
induced by the interactions, as in Figure 3.2, and the ‘size’ is the number of inter-
actions. For networks obtained by sampling paths (Section 3.6.1.3), the ‘network’ is
the structure induced by those paths, as in Figure 3.4, and the ‘size’ is the number of
sampled paths.

5.1 The quest for coherence

Keeping with the scenario of Section 2.4, suppose we are interested in reciprocity
and differential attractiveness based on the observed friendships among a sample of
high school students. We opt to model the population network YN by the p1 model in
(2.6), for which the parameterization by (ρ,θ ,α,β ) affords the natural interpretation
of ρ and β as the main parameters of interest for inferring reciprocity and differential
attractiveness, respectively. How should the partially observed data Yn be modeled
so that valid inferences can be drawn about YN?

A common, seemingly intuitive, approach is to estimate ρ and β by first fitting
(2.6) to the observation Yn = y ∈ {0,1}n×n and then using the estimates for ρ and β

based on Yn as the estimates for ρ and β governing the population YN . To be more
explicit, assume that Yn is distributed according to (2.6) for some unknown param-
eters ρ,θ ∈ (−∞,∞), α = (α1, . . . ,αn), and β = (β1, . . . ,βn). Given an observation
Yn = y, we obtain estimates ρ̂n, θ̂n, α̂n, β̂n for ρ,θ ,α,β , respectively, by maximizing
the likelihood function

L(ρ,θ ,α,β ;y) = Pr(Yn = y;ρ,θ ,α,β )

jointly with respect to ρ,θ ,α,β , for Pr(·;ρ,θ ,α,β ) as given in (2.6).1 In what way
are ρ̂n and β̂n informative about reciprocity and differential attractiveness in the pop-
ulation?

This ‘intuitive’ approach to inference is so standard in classical statistics that it
may seem unnecessary to discuss in much detail here. For example, in a standard
statistical application with X1,X2, . . . assumed to be i.i.d. from a distribution Pθ , for
θ ∈ Θ, it is taken for granted that an estimator θ̂n for θ based on X1, . . . ,Xn also
serves as an estimator for the parameter θ governing the entire sequence X1,X2, . . ..
However, the opening example of Section 3.1 and followup discussion throughout
Chapter 3 advises caution about blindly using θ̂n as an estimator for θ in the popu-
lation model. In a nutshell, the parameter ‘θ ’ estimated by θ̂n may be related to the
parameter ‘θ ’ governing the population X1,X2, . . . without having the same meaning
or interpretation. In essence, the ‘θ ’ parameterizing the distribution of the sample
X1, . . . ,Xn and the ‘θ ’ parameterizing the distribution of the population X1,X2, . . .

1Since estimation techniques are not the focus of the book, we often default to the most standard
methods, e.g., maximum likelihood (frequentist) or maximum posterior (Bayesian) inference. Here I have
chosen maximum likelihood estimation for illustration only. The modeling principles discussed here do
not discriminate between these or any other inferential approaches one might prefer, such as Martin–Liu
inferential models [118].
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may not be the ‘same θ ’, as in the example from Section 3.1. And while it is com-
monly assumed in standard applications that the observed data is representative of
the population in a straightforward way, such situations are the exception, rather than
the rule, in many networks applications.

In many complex data problems, there is no clearly specified logical relationship
between the parameters governing the data Yn and those governing the population
YN ; or, in cases where this relationship is clearly specified, the logical relationship
between Yn and YN established by the model may not be compatible with the actual
relationship between data and population, as determined by the real-world observa-
tion process. In the former case, when Yn and YN have no logical relationship, it
is meaningless to use parameter estimates for Yn to draw conclusions about YN . In
the latter case, when the model implies a relationship between Yn and YN in a way
that contradicts their actual relationship, conclusions about YN based on parameter
estimates for Yn are bound to be spurious. This latter situation happens, for example,
when a network obtained by degree-biased sampling is modeled as if obtained by
selection sampling. These considerations underlie the condition of model coherence,
which avoids potential ambiguity in statistical inferences by making sure that the
models specified for the population and sample are compatible with their assumed
sampling/generative relationship.

Rationale behind coherence

For an imperfect analogy, suppose you are deciding on whether to eat dinner at a new
restaurant that has just opened in your neighborhood. Let θ represent your utility (on
the scale [0,1]) of dining at this restaurant, with 0 being the lowest and 1 being the
highest. Since you haven’t yet eaten at this restaurant, θ is unknown, and so you
try to estimate it by sampling the opinion of a friend who has eaten there. Supposing
your friend reports to you his utility of θ̃ , how would you use θ̃ as a proxy to estimate
your own utility θ if
• the restaurant serves Chinese food?
• the restaurant is expensive?

As these questions suggest, the relationship between θ̃ and θ depends on the
context, which differs under the two scenarios described above. For example, if your
friend has poor taste in Chinese food, then you might discount his high rating θ̃ and
estimate your utility θ to be much lower or much more uncertain. Or, if your friend
is cheap, then you might choose to disregard a low rating θ̃ given on the grounds
that the restaurant is too expensive. Or, if you and your friend have similar taste in
restaurants, then you might take θ̃ as a good proxy for your own utility θ .

Just as we regularly engage in such contextual reasoning when making everyday
decisions, such as our expected utility of eating at a certain restaurant, we ought to
do the same in formal statistical inference. The upcoming framework is intended
to formalize this logic by accounting for context in the specification of a statistical
model. In this example about rating a new restaurant, the context is given by the
eating preferences of your friend and how those preferences relate to your own. More
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generally, the context is given by all of the relevant circumstances under which the
data has been observed, including a description of the sampling and/or generating
mechanism, if applicable.

5.2 An incoherent model

Before formally defining coherence, we first discuss some potentially adverse con-
sequences of incoherence. Assume a hypothetically infinite population network rep-
resented as a {0,1}-valued array Y = (Yi j)i, j≥1 with 0 on the diagonal. For each
n≥ 1, assume that a network of size n is obtained by selection, so that Yn = Y |[n] =
(Yi j)1≤i, j≤n. In this way, all finite observations Ym and Yn, m≤ n, are related to one
another by Ym = Sm,n Yn, for Sm,n : {0,1}n×n→{0,1}m×m defined as in (3.6).

As I alluded in Section 3.4 and will discuss again in later chapters, much of
modern network science is geared towards analyzing networks that are ‘sparse’. In
the setting assumed here, the population network Y is said to be sparse if the edge
density of its finite components vanishes as the sample size grows. More precisely,
the edge density of Yn = (Yi j)1≤i, j≤n is the ratio n−1(n−1)−1

∑1≤i6= j≤n Yi j of edges
to the total number of possible edges in Yn. The population network Y is sparse if
these edge densities converge to 0 as n→ ∞, i.e.,

lim
n→∞

1
n(n−1) ∑

1≤i6= j≤n
Yi j = 0. (5.1)

For now, let us take for granted that (5.1) is a known property of the population
network Y. How might we draw inferences about the sparse population network Y
based on data Yn = Y |[n] obtained by selection?

One preliminary approach to modeling sparse Y is to assume that it evolves under
a sparse regime, meaning that Y results from the evolution of finite sample networks
(Yn)n≥1, each of which is described by a family of distributions such that the sparsity
condition (5.1) holds with probability 1. To this end, let us assume that each Yn is
modeled by a set of candidate distributions Mn consisting of the n-scaled Erdős–
Rényi–Gilbert distributions, i.e., for 0≤ θ ≤ 1,

Pr(Yn = y;θ) = ∏
1≤i6= j≤n

(θ/n)yi j(1−θ/n)1−yi j , y ∈ {0,1}n×n. (5.2)

With this specification, each Yn is assumed to follow one of the Erdős–Rényi–Gilbert
distributions in (3.16) with parameter in the range [0,1/n]. Since θ is bounded in the
range [0,1] and the edges of Yn from (5.2) are i.i.d. Bernoulli, the strong law of large
numbers implies that

1
n(n−1) ∑

1≤i6= j≤n
Yi j ≈ θ/n→ 0 as n→ ∞.

We see at once that a sequence (Yn)n≥1 with each Yn distributed according to (5.2)
satisfies (5.1).
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But under the assumed selection sampling scheme, the family of models
{Mn}n≥1 is incoherent in the following sense. Let Yn be modeled by (5.2) and
let Sm,n Yn be the network obtained by selection sampling. By independence of the
edges, the induced distribution of Sm,n Yn is again Erdős–Rényi–Gilbert with param-
eter θ/n on {0,1}m×m. In this specification, the set of candidate distributions for
Ym = Sm,n Yn is given by the subset of distributions

Pr(Sm,n Yn = y;θ) = ∏
1≤i6= j≤m

θ
yi j(1−θ)1−yi j , y ∈ {0,1}m×m, (5.3)

for all θ ∈ [0,1/n]. But the model Mm specified in (5.2) consists of distributions in
(5.3) with θ ∈ [0,1/m].

Here we see that the explicitly specified model, i.e., the model explicitly defined
for Ym by

Mm = {Pr(Ym = ·;θ) : θ ∈ [0,1/m]},
and the implicitly induced model, i.e., the model induced by the assumed sampling
scheme and the model for Yn by

Sm,n Mn = {Pr(Ym = ·;θ) : θ ∈ [0,1/n]}, (5.4)

differ for all n > m. Fixing m ≥ 1 and letting n > m vary over all possible finite
sample sizes results in infinitely many distinct sets of candidate distributions for Ym,
i.e.,

Mm 6= Sm,m+1Mm+1 6= · · · 6= Sm,n Mn 6= · · · , (5.5)

raising the question about which of these inequivalent models ought to be used as
the set of candidate distributions for an observation Ym. We would observe a simi-
lar incompatibility to that in (5.5) if we instead specified the model in terms of the
Erdős–Rényi–Gilbert generating scheme from Section 4.4.

We call a model incoherent whenever it fails to give a single (coherent) descrip-
tion of the circumstances under which the data has been observed. Specifically, the
model is incoherent if the set of candidate distributions Mm for a given observation
Ym (as in (5.2)) differs from the set of candidate distributions for Ym that is induced
by the assumed context of the model (as in (5.4)). I formalize this notion below.

5.3 What is a statistical model?

Under the traditional textbook definition, a statistical model is merely
“a set of probability distributions on the sample space” [120, p. 1225].

But we have seen in Chapters 3 and 4 that many networks applications involve more
than a set of distributions and more than one space. In the scenario of Section 2.4,
for example, we are interested in a population network for N students from which
we observe only a sample of size n < N. The population network of interest thus
occupies a different space than the observed network, and the model entails not only
sets of candidate distributions for population and sample but also a description of
the sampling mechanism relating the two. In this case, the spaces occupied by the
population and sampled networks seem to be related to one another, but how can



64 STATISTICAL MODELING PARADIGM

we specify a model in a way that makes this precise? As alluded earlier, the precise
relationship between different sample spaces depends on the context of application,
as determined by the manner in which the network for n students has been sampled.
We consider two possible ways to specify this model.

5.3.1 Population model

Assuming that there is a well-defined sample space NN for the population network,
the standard textbook definition implies that a statistical model can be specified as a
set of distributions on NN . In the above example, NN = {0,1}N×N is the set of all
adjacency arrays representing binary relations among N high school students. The
model for the population network is a set of candidate distributions MN , and it is our
objective to identify which candidate distribution best explains the friendship pat-
terns among all students in the school based on a partial observation of friendships
Yn. Since the data consists only of friendships among n < N sampled students, Yn
occupies a different space, namely Nn = {0,1}n×n, and thus the candidate distribu-
tions in Mn differ from those in MN . If Yn is to be of any use for inference, the
statistical model cannot be just the set of distributions MN . It must also account for
the context in which the data and population are related to one another. In particular,
the context relates the distributions in Mn to those in MN so that inferences based
on Mn are compatible with inferences about the population.

In the scenario of Section 2.4, we assume that Yn is the friendship network of n
students chosen uniformly at random without replacement. In the notation of Section
3.9, we define Σn,N , for 1≤ n≤ N, as the sampling mechanism corresponding to this
action, i.e.,

Pr(Σn,N = Sψ

n,N) = 1/N↓n, ψ : [n]→ [N],

for N↓n =N(N−1) · · ·(N−n+1) and notation Sψ

n,N as defined in (3.17). (Since there
are N↓n total injections ψ : [n]→ [N], uniform random vertex sampling corresponds
to choosing each such injection with equal probability and observing Yn = Sψ

m,n YN .)
Given Σn,N and any probability distribution P∈MN , we can compute the distribution
of Σn,N YN for YN ∼ P by

(Σn,NP)(Yn = y) = Pr(Σn,N YN = y), y ∈ {0,1}n×n,

as in (3.18). Together the set MN and the sampling mechanism Σn,N induce a model
Mn for Yn by

Mn = Σn,NMN = {Σn,NP : P ∈MN}. (5.6)

We call Σn,NMN the Σn,N-induced model for Yn. In this case, it is enough to specify
the statistical model by (MN ,{Σn,N}1≤n≤N), from which each of the finite sample
models Mn, n≤ N, can be deduced via (5.6).

5.3.2 Finite sample models

In many practical situations, the population space is unknown or undefined, or it may
be technically difficult or impossible to specify MN directly on NN , as we assumed
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in Section 5.3.1. For example, if the population size is unknown or unbounded, then it
is common to take N = ∞ and define the population model on the space of networks
for a countable population. In this case, the population sample space tends to be
infinite (or even uncountable), making it most natural to specify the finite sample
models Mn explicitly for each possible finite sample size 1 ≤ n ≤ N. Thus, instead
of defining one set of distributions MN on a population space and deducing the finite
sample models Mn as in (5.6), the model is specified at the outset as the set of finite
sample models {Mn}n≥1 for all finite sample sizes n ≥ 1. Defined in this way, it is
immediate that the statistical model is not a set of probability distributions on the
population space, but rather involves a set of sets of probability distributions defined
on a family of sample spaces, with Mn regarded as the set of candidate distributions
for data Yn residing in Nn. But, as in Section 5.3.1, the collection {Mn}n≥1 of finite
sample models alone does not constitute a statistical model unless these models can
be interpreted in a common statistical context.

With this observation in mind, I define here a statistical model as a family
{Mn}n≥1 of finite sample models, where each Mn is the set of candidate distribu-
tions on the sample space of observations of size n, along with a context C in which
the candidate distributions are to be interpreted. We will later see how the context C
can be described by a system of sampling mechanisms {Σn,N}1≤n≤N or generating
mechanisms {Πn,N}1≤n≤N , from Chapters 3 and 4, respectively.

Definition 5.1 (Statistical model) A statistical model is a pair ({Mn}n≥1,C ),
where

Mn is a set of candidate distributions for observations of size n and

C is the context in which these models are interpreted.

Referring back to Section 1.5, {Mn}n≥1 is the descriptive component of the statis-
tical model, with each Mn describing a sample of size n in terms of its candidate
distributions, and C is the inferential component of the statistical model, which pro-
vides the necessary link for interpreting inferences about Mn within the broader
context of all finite sample models {Mn}n≥1.

Table 5.1 partly explains the need for context C in addition to the candidate dis-
tributions {Mn}n≥1 in network modeling. In the table, MN = {Pθ : θ ∈ Θ} models
the population network YN , and Yn is obtained by sampling from YN in an unspeci-
fied manner. Without knowing the relationship between population and sample (i.e.,
the context) we cannot specify a model for Yn in a way that is compatible with the
model for YN . The incomplete specification of the model in Table 5.1 is reflected
by the expression ‘???’ in place of the model for Yn. Furthermore, as each set of
candidate models Mn pertains only to data of size n, the set Mn alone treats data out
of context. Coherent inference from a model requires that the data can be analyzed
and conclusions stated in the appropriate context, necessitating the additional com-
ponent C in the model specification. Definition 5.1 thus affords the interpretation of
a statistical model ({Mn}n≥1,C ) as ‘candidate models + context’, decomposing a
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Table 5.1 Illustration of population network (left) and sampled network (right), along with
population model {Pθ : θ ∈Θ} for YN . As presented, the sampling mechanism by which Yn is
obtained from YN is unspecified, leaving the model for the sampled network Yn unspecified,
as represented by ‘???’ in the above graphic.

Population Observed network (sample)
YN Yn

Model {Pθ : θ ∈Θ} ???

statistical model into a descriptive component {Mn}n≥1 and an inference component
C , as foreshadowed in Section 1.5.

Note that a population model (MN ,{Σn,N}1≤n≤N), as defined in the previous
section, can be reformulated as a statistical model ({Mn}1≤n≤N ,C ) as in Definition
5.1 by setting

Mn = Σn,NMN for each n = 1, . . . ,N and

Pr(Σm,n = Sψ
m,n) = 1/n↓m, Sψ

m,n : [m]→ [n], for all 1≤ m≤ n≤ N,

and defining the context by C = {Σm,n}1≤m≤n≤N .

Remark 5.1 (Dependence on context) I note the following deficiency of Definition
5.1 with respect to specifying models whose inferential component (i.e., context) de-
pends on its descriptive component (i.e., finite sample models). For example, in the
Barabási–Albert model ({Mn}n≥1,{Πm,n}n≥m≥1) parameterized by (m,δ ) as in Sec-
tion 4.2, the generating mechanism Πm,n is implicitly assumed to depend on the dis-
tribution of Ym on which it acts, in the sense that the generating mechanism Πm,n
that acts on Ym from the BA model with parameter (m,δ ) is also parameterized by
(m,δ ), denoted Πm,n Ym = Π

δ ,m
m,n Ym in the notation of Section 4.2. For the most part

this dependence does not affect the specific cases discussed below, and so I often
suppress it in Definition 5.1 and throughout the rest of this and subsequent chapters.
The reader should nevertheless be aware of this possibility when studying network
models that are not covered in this text.

5.4 Coherence

On their own, the components {Mn}n≥1 and C in Definition 5.1 are necessary but
not sufficient to ensure that inferences based on ({Mn}n≥1,C ) make logical sense.
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I introduce here the condition of coherence, which captures the additional logical
requirement that ({Mn}n≥1,C ) be self-consistent in the sense that the descriptions
Mn, n ≥ 1, make sense (i.e., are ‘coherent’) within a single context C . Incoher-
ent models, as in Section 5.2, may give rise to incoherent inferences, i.e., infer-
ences which cannot be interpreted within the same context. Referring back to the
Boxian trope from Section 1.1—“all models are wrong, but some are useful”—it
is this conception of ‘making sense’ (via coherence) that I posit here as the first
necessary step for a model to be ‘useful’. I first introduce the concept of coher-
ence for sampling models, with context given by a system of sampling mechanisms
(C = {Σm,n}n≥m≥1). The definition for generative models, in which the context is
given by a system of generating mechanisms (C = {Πm,n}n≥m≥1), follows in an anal-
ogous way and is mentioned briefly in Section 5.4.2.

5.4.1 Coherence in sampling models

For a sampling model ({Mn}1≤n≤N ,{Σm,n}1≤m≤n≤N) with each Mn specifying a set
of candidate distributions on Nn and Σm,n describing a (possibly random) sampling
mechanism Nn →Nm, we write Σm,nMn to denote the set of distributions induced
on Nm by Mn through Σm,n as in (5.6). In particular, for any candidate distribution
P ∈Mn, Σm,nP denotes the distribution of Ym obtained according to the scheme:

Yn ∼ P

Ym = Σm,n Yn .

Thus, Σm,nP is the distribution of a random network Σm,n Yn of size m. (An explicit
calculation of Σm,nP in the special case of Nn = {0,1}n×n is shown in (3.18).) The set
of all possible distributions obtained in this way determines the Σm,n-induced model

Σm,nMn = {Σm,nP : P ∈Mn} (5.7)

as in (5.6).
To illustrate this action further, let each Mn be the set of Erdős–Rényi–Gilbert

distributions (3.16) parameterized by θ ∈ [0,1] on {0,1}n×n. For n ≥ m ≥ 1, define
Σm,n as the uniform random sampling mechanism given by

Pr(Σm,n = Sψ
m,n) = 1/n↓m, ψ : [m]→ [n].

For fixed θ ∈ [0,1], notice that the distribution of Σm,n Yn, for Yn distributed as in
(3.16) with parameter θ , is again Erdős–Rényi–Gilbert with parameter θ ; whence,
for every θ , the distribution of Σm,n Yn is given by (3.16) on {0,1}m×m and

Σm,nMn = {Pr(Ym = ·;θ) : θ ∈ [0,1]}, (5.8)

i.e., the Erdős–Rényi–Gilbert model defined on {0,1}m×m. In this case, the model
for Ym as specified by Mm agrees with (i.e., is coherent with) the model for
Σm,n Yn induced by Mn through the sampling scheme Σm,n. We call such a model
({Mn}1≤n≤N ,{Σm,n}1≤m≤n≤N) coherent.
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Definition 5.2 (Coherence (Sampling Model)) A statistical model with finite sam-
ple models {Mn}1≤n≤N and sampling context C = {Σm,n}1≤m≤n≤N is coherent if

(C) Σm,nMn = Mm for all 1≤ m≤ n≤ N.

Remark 5.2 In principle, a model can be specified to automatically satisfy coher-
ence by defining ({Mn}n≥1,{Σm,n}n≥m≥1) as the models induced by sampling from
a population model M on a hypothetical population space for an infinite popula-
tion, as in Section 5.3.1 and equation (5.6). But in practice, deductive definitions of
coherent models are hard to describe since they depend on the initial specification of
M on a sample space for a potentially infinite population network.

The concept of model coherence is not widespread in the statistical literature, but
it is a critical component to statistical modeling and inference of all kinds. According
to Definition 5.2, a model is coherent as long as the candidate distributions for any
observation Ym of size m does not depend on the manner in which Ym may have
been obtained by subsampling from a larger sample or population. The rationale
underlying this definition is that the assumed behavior of observations of all sizes,
i.e., Yn for all possible sample sizes 1 ≤ n ≤ N, ought to ‘fit together’ in the sense
of determining a single ‘coherent model’ within the context of the given application.
We saw in Section 5.2 that finite sample models need not fit together as in (5.5),
and that such incoherence could have adverse implications for statistical inference.
In Section 5.5, I discuss the significance of this ‘fitting together’, or lack thereof.

5.4.2 Coherence in generative models

Coherence for generative models follows the same recipe as in Definition 5.2. As
before we let Mn be a set of finite sample models for each n ≥ 1, but now we write
Πm,n, m≤ n, to denote the family of generating mechanisms. (Refer to Chapter 4 for
an explanation of this notation and terminology.) For any P ∈Mm, Πm,nP denotes
the distribution of a random network Yn obtained by applying Πm,n to Ym ∼ P, i.e.,

Ym ∼ P

Yn = Πm,n Ym .

Aggregating over all candidate distributions P ∈Mm gives the Πm,n-induced model
on Nn,

Πm,nMm = {Πm,nP : P ∈Mm}.

Definition 5.3 (Coherence (Generative Model)) A generative statistical model
with finite sample models {Mn}1≤n≤N and generative context C = {Πm,n}1≤m≤n≤N
is coherent if
(C′) Πm,nMm = Mn for all 1≤ m≤ n≤ N.

Remark 5.3 For the precise interpretation of (C′) for context-dependent generating
schemes, see Remark 5.1.

Though it is often difficult to specify a coherent sampling model deductively from
a population model M —see the discussion following Definition 5.2—generative
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models often admit a straightforward inductive definition from a base model M0
on a hypothetical population of size 0 and a system of generating mechanisms
{Πn−1,n}n≥1 by putting

Mn = Πn−1,nMn−1, n≥ 1, and (5.9)
Πm,n = Πn−1,n ◦ · · · ◦Πm,m+1, m≤ n, (5.10)

where Πm,n ◦Π`,m denotes the composition of independent random operators Πm,n
and Π`,m. All of the generative models discussed in Chapter 4 were defined in this
way. We can easily verify that a model ({Mn}n≥1,{Πm,n}n≥m≥1) defined by (5.9)
and (5.10) is coherent in the sense of Definition 5.3.

Exercise 5.1 Prove that any generative model ({Mn}n≥1,{Πm,n}n≥m≥1) defined as
in (5.9) and (5.10) is coherent in the sense of Definition 5.3.

In addition to coherence, generative models offer other practical and computa-
tional benefits, such as
• facilitating numerical analysis by simulation,
• providing intuition and heuristic justification for the model by relating the pre-

sumed generating mechanism to the way in which the network is actually ob-
served, and
• allowing for predictive inferences by computing how the observed network is ex-

pected to evolve if more units were observed according to the inferred generating
mechanism.
The main conceptual difference between the sampling and generative cases is that

coherence in sampling models requires compatibility between Mm and the model
Σm,nMn induced by sampling from a model for a larger population or sample, while
coherence for generative models requires compatibility between Mn and the model
Πm,nMm induced by evolving from a smaller network. It is in this sense that (C) and
(C′) can be seen as dual notions of coherence.

Notice also the subtle distinction between coherence (Definitions 5.2 and 5.3)
and consistency under subsampling (Definitions 3.1 and 3.2). Whereas coherence is a
property of a model ({Mn}n≥1,C ), consistency is a property of distributions Pm and
Pn. Moreover, while consistency establishes an exact equality of two distributions as
in (3.19), coherence is a condition for two sets of distributions, as in (C) and (C′). Put
another way, we can regard consistency as a probabilistic condition and coherence as
a statistical condition.

For the rest of this chapter, I mostly specialize to coherence for sampling models,
as in Definition 5.2, but many of the same observations also hold for generative
models, as in Definition 5.3.

5.5 Statistical implications of coherence

To understand why coherence is a logical requirement for model-based statistical
inference, consider how sampling models ({Mn}1≤n≤N ,{Σm,n}1≤m≤n≤N) figure into
two basic kinds of inference.
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(I) Out of sample/predictive inference: Given data Ym of size m≥ 1, let P̂m ⊆Mm
be an inference for the optimal candidate distribution(s) describing Ym and
infer the optimal distribution(s) for a larger sample/population of size n > m
by

P̂n =
⋃

P̃∈P̂m

{P ∈Mn : Σm,nP = P̃}.2 (5.11)

The inference P̂n is the set of all candidate distributions in Mn which are com-
patible with the optimal P̂m through the assumed sampling description Σm,n.
If each Mn = {Pθ : θ ∈ Θ} is parameterized by Θ, then an inference θ̂m ⊆ Θ

based on Ym gives rise to

θ̂n =
⋃

θ̃∈θ̂m

{θ ∈Θ : Σm,nPθ = P
θ̃
} (5.12)

for the model of Yn. If the model is identifiable then P̂n (respectively, θ̂n) are
singleton sets whenever P̂m (resp., θ̂m) are singletons. (I allow the inference
P̂m (resp., θ̂m) to be a set in order to allow for inferences, such as confidence
regions, which may not correspond to a unique point estimate. The case in
which P̂m (resp., θ̂m) is a singleton set corresponds to a point estimate.)

(II) Within sample inference: Given data Yn of size n ≥ 1, infer the optimal can-
didate distribution(s) P̂n ⊆Mn and deduce the optimal distribution(s) for a
subsample of size m < n from Yn by

P̂m = Σm,nP̂n, (5.13)

where the action of Σm,n on the set P̂n is as defined in (5.6),

Σm,nP̂n = {Σm,nP̃ : P̃ ∈ P̂n}.

Notice how these two kinds of inference match up with the two fundamental implica-
tions of condition (C), namely Mm = Σm,nMn (as sets) if and only if Mm ⊆ Σm,nMn
and Mm ⊇ Σm,nMn:

(I′) Mm ⊆ Σm,nMn: every distribution in Mm can be described as the distribution
induced by sampling from Yn ∼ P via Σm,n, for some P∈Mn. Related to point
(I) above, the inference P̂n (resp., θ̂n) in (5.11) (resp., (5.12)) is guaranteed to
be non-empty since every P̃ ∈ P̂m (resp., θ̃ ∈ θ̂m) corresponds to at least one
candidate distribution in Mn through Σm,n.

(II′) Mm ⊇ Σm,nMn: every distribution in Mn corresponds to a distribution in Mm
through Σm,n. This relates to the inference in (II) since it guarantees that P̂m in
(5.13) is a subset of the candidate distributions in Mm.

These observations clarify how coherence makes it possible to extend inferences
for Mm to inferences about Mn through the relationship established by the sampling

2As noted before, we do not assume a preferred way of estimating the optimal distribution(s) P̂m. We
are instead concerned about what can be done with this estimate once it has been obtained.
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context {Σm,n}1≤m≤n≤N . If (C) is not satisfied, then there are ‘rogue’ distributions
with no logical relationship to some candidate distribution of a different sample size.
If such a rogue distribution were inferred from Ym, then there would be no logical
way to extend the inference to Mn. For instance, consider the incoherent family of
models from Section 5.2 (i.e., each Mn consists of Erdős–Rényi–Gilbert distributions
with parameter 0 ≤ θ ≤ 1/n) and suppose that inference based on Ym modeled by
(5.2) gives a point estimate in the range 1/n < θ̂m ≤ 1/m. Since such parameter
values are not in the model Sm,n Mn induced by selection sampling, how should one
extend θ̂m to an inference about a network of size n?

For an estimate θ̂m based on Ym, the inference rule in (5.12) gives

θ̂n = {θ ′ : Sm,n Pr(Yn = ·;θ
′) = Pr(Ym = ·; θ̂m)}= {(n/m)θ̂m}∩ [0,1].

Since θ̂m can take values in the range [0,1], the estimate θ̂n = (n/m)θ̂m derived from
θ̂m can take values in the range [0,n/m]. Since n ≥ m, there are estimates θ̂m which
put θ̂n outside the parameter space [0,1] of Mn, making it unclear how to extend θ̂m >
1/n to an inference for Mn. Such uncertainty about what to do about some parameter
values might also cause confusion about how to justify the extension of estimates θ̂m
lying within [0,1/n]. In light of Definition 5.2, this example demonstrates the precise
sense in which the model of Section 5.2 is incoherent.

5.6 Examples

By Definition 5.1, a statistical model has two key components:
(M1) a set Mn of candidate distributions for every possible sample size n and
(M2) a context C within which observations of different sample sizes are to be

interpreted.
The first requirement (M1) is fulfilled by defining, for each possible sample size
n = 1,2, . . . ,N,3 a set of probability distributions Mn on the observation space Nn.
The constituents of Mn are the candidate distributions for data Yn observed on n
units. The second step (M2) is achieved by articulating the relationship between ob-
servations of size n ≤ N and size m ≤ n. Most commonly the context is described
by a sampling scheme or generating mechanism, and we shall restrict attention to
those cases here. The further consideration of coherence (Definitions 5.2 and 5.3) is
necessary to make sure that inferences drawn from the model are sound, as discussed
in Section 5.5. The next few examples demonstrate the specification of a network
model and the determination of coherence, or lack thereof, when the vertices are the
units and Nn = {0,1}n×n.

5.6.1 Example 1: Erdős–Rényi–Gilbert model under selection sampling

Suppose that the population is of known finite size N < ∞ and each Mn is given by

Mn = {Prn(Yn = ·;θ) : θ ∈ [0,1]}, 1≤ n≤ N,

3If there is no well-defined upper bound on sample size, we can take N = ∞ and define Mn for all
finite sample sizes n = 1,2, . . ..
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with
Prn(Yn = y;θ) = ∏

1≤i6= j≤n
θ

yi j(1−θ)1−yi j , (5.14)

for all y = (yi j)1≤i, j≤n ∈ {0,1}n×n with 0 along the diagonal. For 1 ≤ m ≤ n ≤ N,
define Σm,n = Sm,n as the selection map

Sm,n : {0,1}n×n→{0,1}m×m

y 7→ Sm,n y = (yi j)1≤i, j≤m, (5.15)

as given previously in (3.6). The sampling maps {Σm,n}n≥m≥1 describe the context for
network data modeled by {Mn}n≥1. Together the pair ({Mn}1≤n≤N ,{Σm,n}1≤m≤n≤N)
is a completely specified statistical model. Since the Erdős–Rényi–Gilbert model is
consistent under selection, i.e., Yn distributed in (5.14) with parameter θ implies that
Sm,n Yn is distributed according to (5.14) on {0,1}m×m with the same parameter θ , it
follows that Sm,n Mn = Mm for all 1≤ m≤ n≤ N and the model is coherent.

5.6.2 Example 2: ERGM under selection sampling

Let N < ∞ be finite and for each n = 1, . . . ,N define Mn as the set of distributions
given by the ERGM in (2.8) with sufficient statistic ∆n(y) = ∑1≤i< j<k≤n yi jy jkyki
that counts the number of triangles in an undirected graph y ∈Nn. For m ≤ n, de-
fine Σm,n = Sm,n as in (5.15) above. With this specification, the Sm,n-induced model
Sm,n Mn on {0,1}m×m is given by the distribution of Sm,n Yn obtained by selection
sampling from the ERGM with some parameter θ and sufficient statistic ∆n(·). Ac-
cording to the main theorem of [138], Sm,n Yn does not follow the ERGM with pa-
rameter θ and sufficient statistic ∆m(·) on {0,1}m×m. It follows that Sm,n Yn 6=D Ym
for non-degenerate choices of θ . Some further calculation shows that Sm,n Mn 6=Mm,
and therefore the model is incoherent.

5.6.3 Example 3: Erdős–Rényi–Gilbert model under edge sampling

Suppose N is unknown and let Mn be just as in Section 5.6.1, except now Mn is
defined for all n≥ 1. Instead of selection sampling, define each Σm,n as the operation
which samples m edges uniformly at random from y ∈{0,1}n×n and discards the rest.
If y has fewer than m edges, then we put Σm,n y = y. By specifying each Mn as a set
of candidate distributions on the space of graphs, the vertices are (implicitly) treated
as the units under {Mn}n≥1. (See Section 3.7 for further discussion on implicit and
explicit units.) On the other hand, Σm,n describes a procedure for sampling m edges
from Yn, suggesting that the edges are the units. Thus, the distributions in Mm are
defined on the space {0,1}m×m of graphs with m vertices, but the outcome Σm,n Yn
by sampling m edges from Yn will generally reside in a different space. This model
is incoherent.
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5.7 Invariance principles

Section 5.5 explains why the definitions of statistical model (Definition 5.1) and co-
herence (Definitions 5.2–5.3) are necessary to ensure that inferences in the schematic
of (5.11) can be interpreted within a well-articulated context. The reader might have
noticed that network models, and statistical models more generally, are almost never
specified according to Definition 5.1, i.e., as a collection of probability distributions
together with (a family of) sampling or generating mechanisms. More often, the con-
nection between observed (data) and unobserved (population) is either undetermined
or defined implicitly by a symmetry or invariance principle. The former case occurs,
for example, when the finite sample models are given by a family of ERGMs whose
sufficient statistics lack the separable increments property, cf. [138]. The latter case is
common in classical statistics where, for example, the i.i.d. assumption serves as the
ultimate symmetry condition linking sample and population. In time series analysis,
stationarity is often assumed to relate observations across time. And when modeling
discrete structures, such as networks, the principle of exchangeability plays a central
role, and is the focus of the next several chapters.

In any statistical analysis, there is always a tradeoff between principle and prac-
tice. The model must strike a balance between computational tractability, empirical
properties, and theoretical considerations, and all the while maintain the integrity of
the intended application and uphold the principles of statistical inference. Among the
sacrifices that might be made in the course of striking this balance, coherence cannot
be among them. Exchangeability is often cited as a way to achieve coherence without
sacrificing tractability. But exchangeability often imposes more symmetry than may
be warranted.

Speaking generally, a network model is exchangeable if it assigns equal proba-
bility to any two networks that are equivalent up to relabeling of the units (in some
well-defined sense). For network data represented as a graph with labeled vertices,
exchangeability is a distributional invariance with respect to arbitrary relabeling of
vertices. This condition together with the conventional networks-as-graphs perspec-
tive (Section 1.2) explains why the most common form of exchangeability studied in
the networks literature to date has been vertex exchangeability (Chapter 6). (Because
vertex exchangeability was, until recently, the only kind of exchangeability studied in
the networks literature, many authors refer to these models simply as exchangeable.)

As a general principle, exchangeability assumes that the observed network struc-
ture is homogeneous with respect to its context. For vertex exchangeability, this ho-
mogeneity reflects a probabilistic symmetry with respect to vertex properties, im-
plying that the observed vertices are representative of the population of all vertices.
Because this assumption is plainly violated in many modern networks applications,
vertex exchangeability often takes a backseat to newly developed invariance princi-
ples, such as relative exchangeability, edge exchangeability, and relational exchange-
ability.

Relative exchangeability (Chapter 8) expresses the probabilistic symmetries of a
network in terms of the symmetries of some underlying structure on the population
of vertices. Canonical examples include stochastic blockmodels, latent space models,
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and random graphs whose symmetries are determined by another graph. I discuss
these further in Chapter 8.

The vertex-centric point of view assumed by vertex exchangeable and relatively
exchangeable models is incongruous with applications for which the vertices are not
the units or the observed vertices are not a representative sample of the population.
Edge exchangeability (Chapter 9) takes an initial step beyond the networks-as-graphs
perspective by instead representing network data as an edge-labeled graph and as-
suming a model which assigns equal probability to any two edge-labeled graphs that
are isomorphic up to relabeling of their edges. Edge exchangeable models make up a
canonical class of statistical models for interaction networks, such as those discussed
in Sections 1.6.4–1.6.5 and 3.6.1. See Chapter 9 and [54] for further discussion of
these models.

Out of edge exchangeability, and the change in perspective it inspires, emerges
the more general principle of relational exchangeability (Chapter 10), which is bet-
ter suited to networks constructed from a sample of higher-order relations, such as
descriptions of the Internet network by repeated path sampling. Relational exchange-
ability was introduced by Crane and Dempsey [53] shortly after their development
of edge exchangeability [54]. An immediate upshot of edge and relational exchange-
ability is its ability to model sparse, scale-free structure within a sound statistical
framework. I discuss several additional consequences of this approach in Chapters 9
and 10.

5.8 Further reading

The concept of model coherence introduced in this chapter is a novelty of the network
modeling framework proposed in [52]. Though naturally arising by consideration of
how networks and other complex data structures are modeled, coherence is a staple
of any statistical analysis. The closest known discussion to the present one on coher-
ence can be found in McCullagh’s treatment of statistical modeling [120], though the
connection may be hard to see for readers unfamiliar with basic category theory.

I have focused mostly on coherence in sampling models ({Mn}n≥1,{Σm,n}n≥m≥1)
for which each Σm,n is a (random) sampling mechanism. In general, however, the
sampling mechanism may not be known precisely, raising the possibility that the
sampling mechanism should also be described by a set of candidate sampling
schemes Gm,n. In this case, the model is specified by ({Mn}n≥1,{Gm,n}n≥m≥1) for
sets of candidate distributions Mn and sets of sampling mechanisms Gm,n. The Σm,n-
induced model defined in (5.7) can be refined to the Gm,n-induced model defined by

Gm,nMn =
⋃

Σm,n∈Gm,n

Σm,nMn = {Σm,nPn : Σm,n ∈ Gm,n and Pn ∈Mn},

where Σm,nMn is as defined in (5.7). Coherence (C) is modified accordingly by re-
placing the singleton Σm,n by the set Gm,n, i.e., (C) Gm,nMn = Mm for all n≥ m≥ 1.
From such a model, the inferred P̂m ⊆Mm based on Ym produces an inference of
sampling scheme-distribution pairs (Σ̂, P̂) for Σ̂ ∈ Gm,n and P̂n ∈Mn satisfying

Σ̂P̂n ∈ P̂m.
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This extra generality adds no conceptual difficulty, but we streamline the presentation
above and below by restricting to singleton sampling schemes Gm,n = {Σm,n}. An
analogous extension is possible for generative models.

Given the varied circumstances under which network data arise, there are a num-
ber of other practical matters which one must take into account when specifying a
model in a specific application. Considerations such as computational feasibility and
interpretability of estimates bear on the usefulness of a statistical model, and such
aspects are important when applying a model to data. If, for example, the candidate
models Mn provide a poor description of the variation in and uncertainty about the
actual network, or the assumed sampling scheme Σm,n or generating mechanism Πm,n
is artificial or inaccurate, then a coherent model will be of limited practical use. Be-
cause these kinds of judgments are application-specific, such matters lie far beyond
the scope of the ‘Probabilistic Foundations of Statistical Network Analysis’ covered
here. Practical considerations about goodness of fit and model validation in network
analysis remain underdeveloped, but the reader can consult [93, 107] for discussion
and further references.

5.9 Solutions to exercises

5.9.1 Exercise 5.1

From Definition 5.3, we need to show that

(C′) Πm,nMm = Mn for all n≥ m≥ 1,

for any ({Mn}n≥1,{Πm,n}n≥m≥1) defined as in (5.9) and (5.10). By (5.9), (C′) holds
by definition for all m = n−1 and n≥ 2. For arbitrary n≥ 1 and m < n, we have

Πm,nMm = Πm+1,n ◦Πm,m+1Mm = Πm+1,n(Πm,m+1Mm) = Πm+1,nMm+1,

by (5.10). This is enough to set up a double induction on m and n which establishes
(C′).
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Chapter 6

Vertex exchangeable models

Over the next several chapters I will discuss the implications of the exchangeability
assumption for statistical network analysis, with special emphasis on the connection
between exchangeability, sampling, and statistical inference. I begin here with vertex
exchangeable random graph models, which are specifically tailored to network data
represented as a graph (V,E) with vertices labeled in a set V and edges E ⊆ V ×V .
Such networks are expressed mathematically as an adjacency array y = (yi j)i, j∈V
with

yi j =

{
1, (i, j) ∈ E,
0, otherwise,

as in (2.1). When edges are undirected (i.e., (i, j) ∈ E if and only if ( j, i) ∈ E for all
i, j ∈V ) I often write i j ∈ E (instead of (i, j) ∈ E or ( j, i) ∈ E) to indicate that there
is an edge between i and j. See Figure 6.1 for illustration.

6.1 Preliminaries: Formal definition of exchangeability

Exchangeability can be understood informally as a probabilistic invariance with re-
spect to arbitrary relabeling of the statistical units. Throughout this chapter, the units
are assumed to be the vertices of a graph represented as an array y = (yi j)i, j∈V . For
any such array, the relabeling of y by permutation σ : V →V is defined as the graph
yσ obtained by relabeling the vertices of y according to σ , i.e.,

yσ = (yσ(i)σ( j))i, j∈V , (6.1)

where a permutation σ is a bijective function V →V . Figure 6.2 illustrates the action
in (6.1).

Definition 6.1 (Vertex exchangeability) A random array Y = (Yi j)i, j∈V is (vertex)
exchangeable if

Yσ =D Y for all permutations σ : V →V. (6.2)

In terms of the probability operator Pr, exchangeability (6.2) is equivalent to

Pr(Y ∈ A) = Pr(Y ∈ Aσ ), for all permutations σ : V →V and A⊆ {0,1}V×V ,
(6.3)

77
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Figure 6.1 An undirected graph with vertex set V = {1,2,3,4,5,6,7} and (undirected) edge
set E = {17,23,26,34,35,36,46,67}.

where Aσ = {yσ : y ∈A} is the set obtained by relabeling all elements of A according
to σ . In particular, for any y ∈ {0,1}V×V , (6.3) implies

Pr(Y = y) = Pr(Y = yσ ) for all permutations σ : V →V.

Without loss of generality we restrict to arrays Y indexed by either [n] = {1, . . . ,n},
if V is a finite set of size n, or N = {1,2, . . .}, if V is countably infinite. When the
context is clear, we refer to any Y satisfying (6.2) simply as exchangeable.

Exchangeable distributions vs. exchangeable models

Before moving on to more technical aspects of vertex exchangeability, note the dis-
tinction between exchangeable distributions and exchangeable models. Since we fo-
cus in this book on statistical analysis, it makes sense that we are primarily interested
in network models, as formalized by ({Mn}n≥1,C ) with each Mn being a set of
distributions on {0,1}n×n interpreted in the context C as in Chapter 5. In this frame-
work, the condition of exchangeability in (6.3) easily extends to a definition of an
exchangeable model as any ({Mn}n≥1,C ) satisfying
(Ex) every P ∈Mn is exchangeable in the sense of (6.3), for every n≥ 1.
Since exchangeable models consist entirely of exchangeable distributions, we can
restrict our attention throughout most of this and the following chapters to exchange-
able distributions, from which the salient properties of exchangeable models follow.
We need only speak of exchangeable models when considering how exchangeability
behaves in a certain context C . (As in previous chapters, I specialize here to the case
in which Y is {0,1}-valued, but note that the discussion applies just as well to multi-
graphs and weighted graphs, in which case Yi j can take values in the non-negative
integers or real numbers, respectively.)

6.2 Implications of exchangeability

In Chapter 3, I discussed how the sampling scheme is a necessary component for
converting partial observations of a network into inferences about the unobserved
population. In much of statistical work, exchangeability plays this same role, serving
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Figure 6.2 Two isomorphic graphs. The graph on the right can be obtained by relabeling the
graph on the left by the permutation σ : [7]→ [7] with σ(1) = 3, σ(2) = 2, σ(3) = 5, σ(4) = 1,
σ(5) = 6, σ(6) = 7, and σ(7) = 4. Both graphs are assigned equal probability by any vertex
exchangeable model.

primarily to tie together the observed and unobserved by (implicitly) asserting that
the observed units are ‘representative’ of the unobserved, in a sense made precise
by (6.2). Over the course of this and the next several chapters, we examine how
exchangeability accomplishes this task on the basis of two implicit assumptions:

(i) the population is homogeneous and
(ii) the sampled units are representative of the population.

With the vertices serving as the units, (i) and (ii) speak of homogeneity and represen-
tativeness as viewed from the perspective of the vertices. Subsequent chapters will
explore the implications of (i) and (ii) for networks viewed from the perspective of
edges (Chapter 9), more general relations (Chapter 10), and edge patterns observed
over a fixed duration of time (Section 7.3).

(i) Homogeneous population

Assuming for the moment a population of finite size N, exchangeability of the popu-
lation network motivates the interpretation of a network which “looks the same” (in
distribution) from the perspective of every vertex. To describe this formally, com-
pare the expected behavior of any network statistic g : {0,1}N×N →X between YN
and Yσ

N , where σ : [N]→ [N] is any permutation of [N]. (Here X is a generic space
which we tacitly assume to be equipped with a σ -field with respect to which g is
measurable.) By the definition of exchangeability in (6.2), we readily deduce

YN =D Yσ
N =⇒ g(YN)=D g(Yσ

N) (6.4)

for all permutations σ : [N]→ [N]. From this, the distribution of any network statistic
is unaffected by the perspective from which the data is viewed, whether as YN or
Yσ

N , and thus inferences based on any statistic are invariant with respect to any such
change in perspective. It is in this sense that a vertex exchangeable model views the
network as “looking the same” from the viewpoint of every vertex.

Exercise 6.1 Formally derive the implication in (6.4).
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(ii) Representative sampling

When fitting an exchangeable model to sampled network data, the homogeneity im-
plied by (6.4) suggests further that the sampled network is “representative” of other
networks which could have been observed under the same circumstances. To see
this directly, let Sn,N be the selection map {0,1}N×N → {0,1}n×n defined in (3.6).
Observe first that any permutation σ : [n]→ [n] of the sampled vertices [n] can be
extended to a permutation σ∗ : [N]→ [N] of the population [N] by putting

σ
∗(i) =

{
σ(i), 1≤ i≤ n,

i, n < i≤ N.
(6.5)

For YN = (Yi j)1≤i, j≤N satisfying (6.2), Yn = YN |[n] = (Yi j)1≤i, j≤n, and any permuta-
tion σ : [n]→ [n], we have

Yσ
n = (Sn,N YN)

σ = Sn,N(Yσ∗
N )=D Sn,N YN = Yn,

where the first equality is by definition of Yn = Sn,N YN , the second is by definition
of σ∗ in (6.5), and the equality in distribution Sn,N(Yσ∗

N )=D Sn,N YN follows from
exchangeability of YN and (6.4).1 We see immediately that exchangeability is pre-
served by selection sampling, and in particular that exchangeability of YN implies
exchangeability of each of its finite restrictions YN |[n] = (Yi j)1≤i, j≤n, n≥ 1.

More generally, if Σn,N is any (possibly random) sampling scheme for which n
vertices are chosen from [N] in a way that does not depend on YN , then Σn,N YN
is exchangeable. To see this explicitly, let Σn,N be a random sampling scheme with
distribution satisfying

Pr(Σn,N = Sψ

n,N |YN = y) = Pr(Σn,N = Sψ

n,N) for all y ∈ {0,1}N×N , ψ : [n]→ [N],

that is, Σn,N is independent of YN . By the law of total probability, the distribution of
Σn,N YN can be computed by

Pr(Σn,N YN = y) =
= ∑

y ′∈{0,1}N×N

Pr(YN = y′) ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N | YN = y′)1(Sψ

n,N y′ = y)

= ∑
y ′∈{0,1}N×N

Pr(YN = y′) ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)1(S
ψ

n,N y′ = y)

= ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N) ∑
y ′∈{0,1}N×N

Pr(YN = y′)1(Sψ

n,N y′ = y)

= ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)Pr(Sψ

n,N YN = y), (6.6)

where the third line follows by independence of Σn,N and YN and the last line follows

1Note that since the expression Sn,N(Yσ∗
N ) only makes sense if σ∗ is applied first to YN and then Sn,N

is applied to the relabeled structure Yσ∗
N , then we could have omitted the parentheses and written Sn,N Yσ∗

N
without any potential for confusion. Moving forward, I often adopt this more economical notation.
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since
∑

y ′∈{0,1}N×N

Pr(YN = y′)1(Sψ

n,N y′ = y) = Pr(Sψ

n,N YN = y) (6.7)

for any fixed ψ : [n]→ [N]. By (6.7), the following holds for every permutation σ :
[n]→ [n] and σ∗ : [N]→ [N] defined as in (6.5):

Pr((Σn,N YN)
σ = y) = ∑

ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)Pr((Sψ

n,N YN)
σ = y)

= ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)Pr(Sψ

n,N Yσ∗
N = y)

= ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)Pr(Sψ

n,N YN = y)

= Pr(Σn,N YN = y), (6.8)

whence Σn,N YN is exchangeable. A similar calculation allows us to conclude the
precise sense in which Yn = (Yi j)1≤i, j≤n can be regarded as “representative” of any
sampled network Σn,N YN of size n. By the homogeneity of YN (i.e., (6.4)) and the
independence of Σn,N and Y, we compute, for any permutation σ : [N]→ [N],

Pr(Σn,N Yσ
N = y) = ∑

ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)Pr(Sψ

n,N Yσ
N = y)

= ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)Pr(Sψ

n,N YN = y)

= Pr(Σn,N YN = y), (6.9)

indicating that the distribution of the sampled network is the same regardless of the
initial perspective from which the population network YN is viewed, i.e., either as
YN or Yσ

N for any permutation σ : [N]→ [N].

Exercise 6.2 Suppose YN is exchangeable and Σn,N is independent of YN , for 1 ≤
n≤ N. Prove that Σn,N YN =D Sn,N YN , i.e.,

Pr(Σn,N YN = y) = Pr(Sn,N YN = y) for all y ∈ {0,1}n×n.

Remark 6.1 Notice that (Σn,N YN)
σ in (6.8) and Σn,N Yσ

N in (6.9) differ in the or-
der in which the sampling and relabeling operations are applied, with (6.8) giving
the distribution of the network obtained by first sampling and then relabeling (i.e.,
(Σn,N YN)

σ ) and (6.9) giving the distribution of the network obtained by first rela-
beling according to σ : [N]→ [N] and then sampling (i.e., Σn,N Yσ

N). By comparing
(6.8) and (6.9) we see that the relabeling and sampling operations commute for ex-
changeable models, provided the sampling scheme is independent of the network
being sampled from.

To close this section, I stress that the assumption of vertex exchangeability does
not correspond to observing a network by simple random vertex sampling. It instead
implies that the distribution of the network restricted to every subset of vertices is
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Figure 6.3 The set U3 of unlabeled graphs with exactly 3 vertices.

representative of every other subset of the same size, as shown in the above calcu-
lations and Exercise 6.2. As long as the sampling scheme is independent of YN , the
resulting observation is exchangeable. Observing a network by simple random vertex
sampling is one of many such sampling schemes. Selection sampling is another.

Implications of exchangeability

Implications (i) and (ii) are worth keeping in mind when considering whether a ver-
tex exchangeable model is appropriate for a given application. Regarding (i), it seems
rare in practice to encounter a network for which such a strong homogeneity prop-
erty is realistic. In fact, modern network analysis is almost exclusively focused on
networks that are heterogeneous and complex in how the vertices interact with one
another, hence the term ‘complex networks’. Regarding (ii), the prevalence of het-
erogeneity in real networks nullifies the practical use of any representative vertex
sampling scheme. Under a representative sampling scheme, inferences apply to any
‘typical’ part of the network. But if understanding heterogeneity is the goal, then it
is precisely the ‘atypical’ parts of the network that are of primary interest. Represen-
tative sampling is of little use for detecting such atypicality. A specific illustration of
this is shown in Section 3.4. The further assumption that Σn,N and YN are indepen-
dent is also unrealistic in most cases. In later chapters we discuss how some of the
relational sampling schemes surveyed in Section 3.6 may be more useful.

6.3 Finite exchangeable random graphs

Although the definition of vertex exchangeability in (6.2) applies to both finite and
countably infinite arrays, the theory differs between the two cases. Before studying
the theory of countable exchangeable models in detail (Sections 6.4–6.6), I briefly
discuss exchangeable models for finite networks.

Let N < ∞ and assume YN is vertex exchangeable in the sense of (6.2). For the
generic description of such finite exchangeable random graph models, we let UN
denote the set of all unlabeled graphs with N vertices. Intuitively, such ‘unlabeled
graphs’ are understood as the abstract ‘shapes’ obtained by removing the vertex la-
bels from ordinary vertex-labeled graphs. The shapes corresponding to unlabeled
graphs with 3 vertices are drawn in Figure 6.3.

Formally, the elements of UN are the equivalence classes of {0,1}N×N up to rela-
beling. For y,y′ ∈ {0,1}N×N , write y ∼= y′ to indicate that there exists a permutation
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Figure 6.4 The set of unlabeled graphs U3 from Figure 6.3 along with their associated equiv-
alence class of labeled graphs as defined in (6.10). Notice how the unlabeled graphs on the
left describe the ‘shape’ of the labeled graphs on the right.

σ : [N]→ [N] such that yσ = y′, i.e., y′ can be obtained from y by some relabeling σ

of its vertices. This relation associates each y ∈ {0,1}N×N with the equivalence class

〈y〉∼= = {y′ ∈ {0,1}N×N : y′ ∼= y} (6.10)

consisting of all y′ ∈ {0,1}N×N with the same ‘shape’ as y. It follows that

〈y〉∼= = 〈y′〉∼= if and only if y ∼= y′,

putting these equivalence classes in correspondence with the elements of UN . The
grouping of elements according to their equivalence under relabeling makes precise
our interpretation of the elements in UN as abstract ‘shapes’ of graphs with vertices
labeled in {1, . . . ,N}. Figure 6.4 shows this correspondence, with each of the four
unlabeled graphs in U3 associated to its equivalence class via (6.10).

By the definition of exchangeability in (6.3), the distribution of any exchangeable
random graph YN satisfies

Pr(YN = y) = Pr(YN = y′) for all y ∼= y′ .

From this definition we should expect the probability of the event ‘YN = y’ to depend
only on the equivalence class 〈y〉∼=. We make this observation precise as follows.
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Given any probability distribution p on UN , let Pr(Y∗N = ·;p) denote the distri-
bution of Y∗N generated by first drawing a random unlabeled graph U∼ p and, given
U = u, choosing Y∗N uniformly from the equivalence class of all y′ ∈ {0,1}N×N for
which 〈y′〉∼= = u. By this description, the distribution of Y∗N can be expressed as

Pr(Y∗N = y;p) = p(〈y〉∼=)/|〈y〉∼=|, y ∈ {0,1}N×N , (6.11)

where p(〈y〉∼=) is the probability assigned to 〈y〉∼= by p and |〈y〉∼=| is the cardinality
of the equivalence class 〈y〉∼=.

Theorem 6.1 Let YN be an exchangeable random graph on {0,1}N×N . Then there
exists a unique probability distribution p on UN such that YN =D Y∗N , for Y∗N with
distribution Pr(Y∗N = ·;p) given in (6.11).

Exercise 6.3 Prove Theorem 6.1.

In many practical situations, the formulation in (6.11) is neither computationally
nor theoretically feasible. In particular, the space UN is elusive both conceptually and
computationally, making the act of defining or inferring a probability distribution on
UN practically impossible without imposing further constraints. In such cases, we
may sometimes assume a more tractable parametric form which preserves exchange-
ability while expressing the model structure in terms of a small number of parameters
and network statistics. Exchangeable ERGMs from Section 2.3 make up one such
class of models.

6.3.1 Exchangeable ERGMs

Recall the exponential random graph model (ERGM) from Section 2.3: for real-
valued parameters θ = (θ1, . . . ,θk) and sufficient statistics T = (T1, . . . ,Tk) :
{0,1}N×N → Rk, the class of ERGMs on {0,1}N×N with parameter θ and sufficient
statistic T assigns probability

Pr(YN = y;θ ,T ) =
exp
{

∑
k
i=1 θiTi(y)

}
∑y∗∈{0,1}N×N exp

{
∑

k
i=1 θiTi(y∗)

} (6.12)

to each y ∈ {0,1}N×N . The distribution in (6.12) assigns the same probability to
any y and y′ for which ∑

k
i=1 θiTi(y) = ∑

k
i=1 θiTi(y′). Thus, in order for (6.12) to be

exchangeable, the parameters and sufficient statistics must satisfy

k

∑
i=1

θiTi(y) =
k

∑
i=1

θiTi(yσ )

for all y ∈ {0,1}N×N and all permutations σ : [N]→ [N]. This condition is ensured
as long as every Ti is preserved under permutation, i.e., Ti(y) = Ti(yσ ) for all permu-
tations σ : [N]→ [N]. Under this requirement, the sufficient statistics must depend
on none or all of the entries of y, not on a subset as in the statistics yi• = ∑

N
j=1 yi j and

y• j = ∑
N
i=1 yi j of the p1 model.
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Because its parameters and sufficient statistics can favor one labeling of the ver-
tices over another, the ERGM need not be exchangeable. For example, if just a single
sufficient statistic T1(y) =∑

N
j=2 y1 j counts the out-degree of the vertex labeled 1, then

all arrays y with the same first row sum have equal probability; but the model is not
exchangeable since the distribution of YN is not preserved by any σ which permutes
the first row with another row. The p1 model (Chapter 2) fails to be exchangeable
since the vertex specific parameters α1, . . . ,αN and β1, . . . ,βN allow for skewness in
the distribution unless αi = α j and βi = β j for all i 6= j.

On the other hand, exchangeable ERGMs can account for some types of non-
local dependence, such as transitivity and cliques; but these ‘non-local’ characteris-
tics can only be captured on a ‘global’ scale, e.g., the number of triangles is invariant
under relabeling vertices and can be used to quantify the degree of transitivity in a
network. As alluded in Sections 2.3 and 2.5, the viability of ERGMs for modeling
sampled network data hinges on whether its sufficient statistics possess the separable
increments property; see Section 2.3 and [138] for more details.

Research Problem 6.1 Consider an ERGM with sufficient statistic T for a random
graph YN of size N ≥ 1. Let Yn = Σn,N YN for a sampling scheme Σn,N given by
(i) selection, (ii) snowball sampling, (iii) simple random edge sampling, or (iv) any
other reasonable sampling method. Derive the distribution of the statistic T (Yn).
(Hint: this problem is likely to be very difficult. If unable to derive the distribution of
T (Yn), then try to compute other distributional properties, such as moments. Though
I am not aware of prior attempts at this problem, some related work might be found
in the probability and statistical physics literature.)

Research Problem 6.2 Consider an ERGM for YN whose sufficient statistics do not
have separable increments. Is there a necessary and/or sufficient condition on the
sufficient statistics (weaker than separable increments) by which selection sampling
yields a random graph Sn,N YN still of ERGM-type? If so, can the natural parameter
and canonical sufficient statistics be expressed as a function of the parameters and
sufficient statistics in the model for YN? (Note the question is asking only if Sn,N YN
can be expressed in the form of (2.8) for some natural parameter and canonical
sufficient statistic, not necessarily the same parameter and statistic as in the model
for YN .)

Following up on our discussion from Chapter 3, if YN is distributed as an ERGM
with natural parameter θ and Σ is any (possibly random) sampling operation, then the
distribution of Y∗=ΣYN will also be parameterized by θ . But since the nature of this
parameterization is generally unknown, inference for θ based on Y∗ is unlikely to be
straightforward. With that said, the fact that selection sampling is rarely a relevant
sampling scheme in practical applications suggests that alternative approaches to
estimating network models ought to be explored.

Research Problem 6.3 Let YN be distributed as an ERGM with natural parameter
θ and canonical sufficient statistic T as in (6.12). Let Σ∗ be any (possibly random)
sampling operation, including perhaps Σ∗ = Sn,N for some fixed n≥ 1. How can the
parameter θ be estimated from an observation Y∗ = Σ∗YN? In the case when the
sufficient statistics have separable increments and Σ∗ = Sn,N , maximum likelihood
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estimation for θ should be sufficient based on the results in [138]. (Verify this.) But I
am otherwise aware of no theoretical or computational study of this question.

Problem 6.3 applies just as well whether YN is exchangeable or not. In partic-
ular, if YN is modeled by M on {0,1}N×N and Σ∗ is any sampling operation, how
can the optimal distribution of YN be estimated based on an observation of Σ∗YN?
In principle, the general approach in (5.11) remains valid, but in practice it is hard
to compute the estimator for arbitrary sampling operations Σ∗. Given the challenge
of modeling in the presence of arbitrary sampling Σ∗, I leave this as an important
problem for future research.

6.4 Countable exchangeable models

Since in many applications the population is known to be finite but of unknown size,
it is often natural to specify a network model by ({Mn}n≥1,C ), without declaring
any finite bound on the population size. Note well, however, that this specification
does not imply that the population is assumed to be infinite. It only means that the
model does not presume that the size of the population is limited by any given finite
upper bound. Leaving the population size unspecified imposes further limitations on
the class of coherent models due to the constraint of having to satisfy the coherence
condition (C) for all n≥ m≥ 1.

6.4.1 Graphon models

The term ‘graphon’ originated with the study of limits of graph sequences in the early
2000s; see [115]. These same ‘graphon models’ were originally introduced under a
different name in the late 1970s and early 1980s by Diaconis and Freedman [61],
cf. [9, 12, 62]. Below we use the notation φ to denote what is commonly called a
graphon in the current terminology. This notation follows the convention of Aldous
[9, pp. 124–125], whose ‘φ -processes’ correspond to ‘graphon processes directed by
φ ’ in the forthcoming discussion.

6.4.1.1 Generative model

Let Φ = {φ : [0,1]× [0,1]→ [0,1]} be the set of all functions [0,1]× [0,1]→ [0,1]
with 0 diagonal (i.e., φ(u,u)≡ 0 for all 0≤ u ≤ 1) and fix any φ ∈ Φ.2 Any such φ

parameterizes the distribution of a random array YN as follows. To construct YN , first
draw U1, . . . ,UN i.i.d. Uniform[0,1] and, given U1, . . . ,UN , assign Yi j conditionally
independently with probabilities

Pr(Yi j = 1 |U1, . . . ,UN ;φ) = φ(Ui,U j) and
Pr(Yi j = 0 |U1, . . . ,UN ;φ) = 1−φ(Ui,U j) (6.13)

2We allow φ to be asymmetric, i.e., φ(u,v) 6= φ(v,u), so that the resulting random graphs, e.g., in
(6.14), are directed. We can restrict the model to undirected graphs by forcing φ(u,v) = φ(v,u) and putting
Y ji = Yi j for i < j. Since these two cases are technically similar, we discuss only the directed case here.
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for all 1 ≤ i 6= j ≤ N. The random variables U1, . . . ,UN can be thought of as latent
random effects associated to each vertex so that, for example, all relations involving
vertex i share a common dependence on Ui.

From the construction in (6.13), we can express the distribution of YN =
(Yi j)1≤i, j≤N in closed form by

Pr(YN = y;φ) =
∫
[0,1]N

∏
1≤i6= j≤N

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·duN , (6.14)

for each y = (yi j)1≤i, j≤N . (The expression in (6.14) can be explained as follows. Con-
ditionally independently given U1 = u1, . . . ,UN = uN , each outcome yi j has probabil-
ity

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j .

The integral is obtained by averaging over the U1, . . . ,UN , which are independent and
uniformly distributed in [0,1].)

Definition 6.2 (Graphon distribution) For any φ : [0,1]× [0,1]→ [0,1], the con-
struction in (6.13) is called a graphon process directed by φ , or simply a φ -process,
and the distribution in (6.14) is called the graphon distribution with parameter φ .

Generative description

The construction in (6.13) suggests the following generative description of graphon
models. Given Yn = y, construct Yn+1 from Yn by using the same random vari-
ables U1, . . . ,Un as in the construction of Yn plus an additional Uniform[0,1] ran-
dom variable Un+1 that is independent of U1, . . . ,Un and of Yn. A fully generative
version of this model, expressed in the framework of Chapter 4, can be written as
({M Φ

n }n≥1,{Πm,n}n≥m≥1), with

M Φ
n = {Pr(Yn = ·;φ) : φ ∈Φ} (6.15)

for Pr(Yn = ·;φ) as defined in (6.14), and for each φ ∈Φ the generating mechanism
Πm,n = Π

φ
m,n defined as follows. Given y ∈ {0,1}m×m, let Π

φ
m,n y = (Yi j)1≤i, j≤n be a

random graph obtained by first generating U1, . . . ,Un i.i.d. Uniform[0,1] conditional
on the event ‘Ym = y’, and then putting

Yi j = yi j for 1≤ i, j ≤ m (6.16)

and otherwise drawing Yi j as in (6.13), for all i 6= j. This description has the net
effect of conditioning on (Yi j)1≤i, j≤m = y and generating the rest of Y according to
the φ -process.

Remark 6.2 The specification surrounding display (6.15) beckons Remark 5.1, in
which I noted the possible dependence between context and candidate distributions.
Perhaps a better way to state the generative graphon model above would be to ex-
press each element of M Φ

m as a pair consisting of Pr(Ym = ·;φ), for φ ∈Φ, together
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with the system {Πφ
m,n}n≥m of all generating mechanisms that go along with that can-

didate distribution. In this way, each candidate distribution in M Φ
m , for m≥ 1, has its

own context, e.g., {Πm,n}n≥m. The context C in the formal specification of the model
(Definition 5.1) would then state additional coherence conditions for these dependent
contexts, e.g., for `≤ m≤ n and φ ∈Φ, C expresses the identity Π

φ

`,m ◦Π
φ
m,n = Π

φ

`,n,
which would not be apparent otherwise. For present purposes, the concern expressed
in this remark is too technical and will be ignored moving forward.

Exercise 6.4 For any φ ∈ Φ, verify that if Ym is a φ -process on {0,1}m×m, then
Π

φ
m,n Yn is a φ -process on {0,1}n×n.

Sampling description

From the sequential construction in (6.13) we see that selection Sn,N YN from the
φ -process is again a φ -process on {0,1}n×n, cf. Section 4.1 and equation (4.4).
We can also show this directly by performing the same calculation used to show
consistency of the p1 model in (3.10). We first consider the case n = N − 1 and
y ∈ {0,1}(N−1)×(N−1) and compute

Pr(SN−1,N YN = y;φ) =

= ∑
y∗∈{0,1}N×N :SN−1,N y∗=y

Pr(YN = y∗;φ)

= ∑
y∗∈{0,1}N×N :SN−1,N y∗=y

∫
[0,1]N

∏
1≤i6= j≤N

φ(ui,u j)
y∗i j(1−φ(ui,u j))

1−y∗i j du1 · · ·duN

=
∫
[0,1]N

∑
y∗∈{0,1}N×N :SN−1,N y∗=y

∏
1≤i6= j≤N

φ(ui,u j)
y∗i j(1−φ(ui,u j))

1−y∗i j du1 · · ·duN

=
∫
[0,1]N

∏
1≤i6= j≤N−1

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j ×

×
N−1

∏
i=1

(φ(ui,uN)+(1−φ(ui,uN)))(φ(uN ,ui)+(1−φ(uN ,ui)))du1 · · ·duN

=
∫
[0,1]N−1 ∏

1≤i6= j≤N−1
φ(ui,u j)

yi j(1−φ(ui,u j))
1−yi j du1 · · ·duN−1

= Pr(YN−1 = y;φ), (6.17)

for Pr(YN−1 = y;φ) as in (6.14). Iterating this calculation for N−2,N−3, . . . shows
that Sn,N YN =D Yn for Yn obeying a φ -process on {0,1}n×n, for all 1≤ n≤ N.

Theorem 6.2 For any graphon φ : [0,1]× [0,1]→ [0,1], let Ym and Yn follow the
graphon distribution with parameter φ on {0,1}m×m and {0,1}n×n, respectively, as
in (6.14). Then Ym and Yn are consistent under selection.

By Theorem 6.2, the family of graphon processes is consistent under selection in
the sense that if Yn obeys the φ -process, then so does Sm,n Yn for all 1 ≤ m ≤ n. It
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follows that the subclass of models ({M Ψ
n }n≥1,{Sm,n}n≥m≥1) is coherent (Definition

5.2) for any subset of graphons Ψ⊆Φ, where

M Ψ
n = {Pr(Yn = ·;φ) : φ ∈Ψ}, n≥ 1.

Exercise 6.5 Let YN be distributed according to a φ -process on {0,1}N×N , as in
(6.14). Prove that YN is exchangeable.

6.4.2 Aldous–Hoover theorem

Exercises 6.4 and 6.5 establish that graphons are exchangeable and projective in the
sense of (4.4) from Chapter 4. In this section we see that graphons are canonical
among all vertex exchangeable generative models on {0,1}N×N , in the sense that
every such distribution can be expressed in terms of a graphon model.

From any function f : [0,1]4 → {0,1}, we construct a random array Y∗ =
(Y ∗i j)i, j≥1 by taking U0, (Ui)i≥1, and (Ui j)i, j≥1 to be i.i.d. Uniform[0,1] random vari-
ables and putting

Y ∗i j = f (U0,Ui,U j,Ui j), j 6= i≥ 1, (6.18)

and Y ∗ii = 0 for all i≥ 1. It should clear from the construction that Y∗ is exchangeable:
since for any permutation σ : N → N the relabeled uniform random variables U0,
(Uσ(i))i≥1, and (Uσ(i)σ( j))i, j≥1 remain i.i.d. and Uniform[0,1], relabeling the indices
of Y∗ in (6.18) does not affect its distribution. The Aldous–Hoover theorem states
the converse, namely that any countable exchangeable random array admits such a
construction.

Theorem 6.3 (Aldous–Hoover theorem [8, 92]) Let Y =(Yi j)i, j≥1 be an exchange-
able {0,1}-valued array. Then there exists a measurable function f : [0,1]4→{0,1}
such that Y=D Y∗, for Y∗ as constructed in (6.18).3

Translated into the language of graphons, the Aldous–Hoover theorem says that
to every infinite exchangeable random array Y there is a probability distribution ϕ

on the space of graphons Φ such that Y can be constructed from a graphon process
directed by φ chosen randomly according to ϕ . To see this connection explicitly, first
suppose that Y = (Yi j)i, j≥1 is constructed as in (6.18) for some function f that is
constant in its first argument, i.e., f (a, ·, ·, ·) = f (b, ·, ·, ·) for all a,b ∈ [0,1]. Writ-
ing f (−, ·, ·, ·) to indicate this function with an arbitrary first argument, we define a
graphon φ f : [0,1]× [0,1]→ [0,1] by

φ f (u,v) =
∫ 1

0
f (−,u,v,w) dw, u,v ∈ [0,1]. (6.19)

As written, the defining integral for φ f (u,v) in (6.19) accumulates the mass asso-
ciated to the event that f (−,u,v,w) = 1, and thus φ f (u,v) equals the conditional

3The version of this theorem for undirected graphs, i.e., symmetric arrays Y = (Yi j)i, j≥1, has the
additional constraint that f is symmetric in its middle two arguments, i.e., f (·,u,v, ·) = f (·,v,u, ·) for all
0≤ u,v≤ 1. See [9, Chapter 14].
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probability of the event ‘Yi j = 1’ given Ui = u and U j = v. Conversely, from any
graphon φ : [0,1]2→ [0,1], we define fφ : [0,1]4→{0,1} by

fφ (−,u,v,w) =
{

1, 0≤ w≤ φ(u,v),
0, otherwise, (6.20)

to recover (6.18).

Exercise 6.6 Verify that Y∗ constructed from the φ f -process, for φ f defined in (6.19),
is equal in distribution to Y∗ constructed from f as in (6.18).

If f is not constant in its first argument, then each f (a, ·, ·, ·) determines a function
indexed by a ∈ [0,1],

φ f ,a(u,v) =
∫ 1

0
f (a,u,v,w) dw, u,v ∈ [0,1]. (6.21)

In this case, the random argument U0 in (6.18) is accounted for by choosing φ ran-
domly from {φ f ,a : a∈ [0,1]} ⊆Φ by taking U0 ∼Uniform[0,1] and putting φ = φ f ,a
on the event ‘U0 = a’. We define ϕ as the probability distribution on Φ induced by
this protocol.

The outcome of the Aldous–Hoover theorem can thus be translated as
every exchangeable random array in {0,1}N×N is distributed as a mixture of
graphon processes.

With this interpretation, the distribution of every vertex exchangeable family (Yn)n≥1
that is consistent under selection can be expressed for each n≥ 1 by

Pr(Yn = y;ϕ) =
∫

Φ

(∫
[0,1]n

∏
1≤i, j≤n

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·dun

)
ϕ(dφ)

(6.22)
for some probability distribution ϕ on Φ. (Note that this distribution ϕ is not unique.
See Section 6.6.2 below.)

6.4.3 Graphons and vertex exchangeability

The back and forth between graphons φ and the function f in the Aldous–Hoover the-
orem points to an important relationship between graphons and vertex exchangeable
models. In particular, graphon models characterize the subclass of vertex exchange-
able arrays Y that are dissociated, meaning that Y |S and Y |T are independent for all
S,T ⊆ N such that S∩T = /0. In words, a dissociated random graph is one for which
any two nonoverlapping subgraphs are independent. Consulting the Aldous–Hoover
representation in (6.18) and the subsequent connection between the Aldous–Hoover
theorem and graphons reveals the following relationship between graphons and dis-
sociated random graphs.

Under what conditions is the random array Y∗ constructed in (6.18) dissociated?
To answer this, take any S,T ⊆ N with S∩T = /0 and consider what is necessary for
the arrays

( f (U0,Ui,U j,Ui j))i, j∈S and ( f (U0,Ui′ ,U j′ ,Ui′ j′))i′, j′∈T



COUNTABLE EXCHANGEABLE MODELS 91

to be independent. By assumption, the sets S and T indexing the independent uniform
random variables in either subgraph are disjoint, and so the only common source of
randomness between ( f (U0,Ui,U j,Ui j))i, j∈S and ( f (U0,Ui′ ,U j′ ,Ui′ j′))i′, j′∈T comes
from the first argument U0. It follows that these arrays can be independent if and
only if f does not depend on its first argument, and we have already seen in (6.20)
that such functions correspond precisely to graphons.

Dissociated exchangeable arrays make up the subclass of infinite exchangeable
models which are ergodic with respect to the action of relabeling on {0,1}N×N . In
statistical inference, ergodic measures correspond to the class of submodels whose
finite sample statistics converge to a deterministic limit as the sample size grows. In
Section 6.6.1, we further discuss the significance of ergodicity in network analysis
and draw a connection between graphons and more familiar statistical applications
involving sequences of random variables.

6.4.4 Subsampling description

The Aldous–Hoover theorem makes explicit how every infinite exchangeable model
can be interpreted as a generative model; see the discussion surrounding (6.16) above.
We have also seen how the graphon description translates easily into a coherent sam-
pling model under selection sampling via (4.4). We now observe a more direct inter-
pretation of vertex exchangeable models, and hence also graphon models, in terms
of the distribution of subgraphs induced by simple random vertex sampling.

For n ≥ m ≥ 1, let ψ : [m] → [n] be any one-to-one function and recall the
definition of the ψ-induced selection function Sψ

m,n from (3.17). (The action Sψ
m,n

first selects an m×m submatrix by removing all rows and columns not indexed by
ψ(1), . . . ,ψ(m) and then relabels the vertices ψ(1), . . . ,ψ(m) by 1, . . . ,m, respec-
tively, i.e.,

Sψ
m,n y = yψ = (yψ(i)ψ( j))1≤i, j≤m.)

For n ≥ m ≥ 1, let y ∈ {0,1}n×n and x ∈ {0,1}m×m. The statistic ind(x : y) counts
the number of induced copies of x in y, defined formally as

ind(x : y) = ∑
injections ψ:[m]→[n]

1(yψ = x).

In other words, ind(x : y) is the number of different ways that one could observe x
by performing ψ-selection on y, for some ψ : [m]→ [n]. From this, the density of x
in y is given by

δ (x : y) =
1

n↓m
ind(x : y), (6.23)

where n↓m = n(n− 1) · · ·(n−m + 1) is the total number of injections ψ : [m] →
[n]. (To count all injections [m]→ [n], note that a unique value ψ( j) = i j must be
assigned for each j = 1, . . . ,m. There are n options when assigning ψ(1); once ψ(1)
is assigned, there are n−1 options left to assign ψ(2); and so on until we assign ψ(m)
from one of the remaining n−m+1 elements, for a total of n↓m possible choices.)
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For a straightforward example, let n = 3 and m = 2 with

y =

0 1 1
1 0 0
0 1 0

 and x =

(
0 1
0 0

)
. (6.24)

There are 3↓2 = 6 total injections ψ : [2]→ [3], with (ψ(1),ψ(2)) given respectively
by

(1,2), (1,3), (2,1), (2,3), (3,1), (3,2).

Of these injections only (1,3) and (3,2) give yψ = x for y and x as in (6.24), and
thus δ (x : y) = 2/6 in this case.

Since every injection ψ : [m]→ [n] extracts a unique array (yψ(i),ψ( j))1≤i, j≤m ∈
{0,1}m×m, the densities δ (x : y) for fixed y always satisfy

(i) 0≤ δ (x : y)≤ 1 for all x ∈ {0,1}m×m and
(ii) ∑x∈{0,1}m×m δ (x : y) = 1,

and therefore determine a probability distribution on {0,1}m×m, denoted

Pr(Ym = x;y) = δ (x : y), x ∈ {0,1}m×m. (6.25)

The distribution in (6.25) can be interpreted as that of a random graph Ym sampled
uniformly from among all size m subgraphs of y. To make this precise, we let Σm,n
be a uniform random sampling map with distribution

Pr(Σm,n = Sψ
m,n) = 1/n↓m, ψ : [m]→ [n], (6.26)

and let Yn = y be fixed (i.e., Pr(Yn = y) = 1). Then

Pr(Σm,n Yn = x) = δ (x : y), x ∈ {0,1}m×m,

for δ (x : y) as in (6.23). The distribution in (6.25) is therefore the proper distribution
one would assign to Ym obtained by simple random sampling from a fixed, known
graph y.

Notice that to every permutation σ : [m]→ [m] and every injection ψ : [m]→ [n]
for which yψ = x the composite ψ ◦σ : [m]→ [n] is an injection such that yψ◦σ = xσ .
It follows that ind(x : y) = ind(xσ : y) for all x ∈ {0,1}m×m and all permutations
σ : [m]→ [m], and in particular δ (x : y) = δ (xσ : y). Thus, the distribution defined
in (6.25) is exchangeable by virtue of the simple random vertex sampling mechanism
in (6.26).

Now, let Y = (Yi j)i, j≥1 be a random {0,1}-valued array generated by a graphon
process directed by φ : [0,1]× [0,1]→ [0,1]. From the calculation in (6.17), the re-
striction Yn = Y |[n] = (Yi j)1≤i, j≤n is also distributed according to the graphon dis-
tribution (6.14) with parameter φ . For n ≥ m ≥ 1 and x ∈ {0,1}m×m, the (random)
number of copies of x in Yn is given by

ind(x : Yn) = ∑
injections ψ:[m]→[n]

1(Yψ
n = x). (6.27)
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By linearity of the expectation operator E,4 we have

E(ind(x : Yn)) = E

(
∑

injections ψ:[m]→[n]
1(Yψ

n = x)

)
= ∑

injections ψ:[m]→[n]
E(1(Yψ

n = x))

= ∑
injections ψ:[m]→[n]

Pr(Yψ
n = x;φ)

= ∑
injections ψ:[m]→[n]

Pr(Yn |[m] = x;φ)

= n↓m Pr(Ym = x;φ),

where the second-to-last equality follows by exchangeability and consistency under
selection of graphon models (Exercises 6.4 and 6.5). It follows that E(δ (x : Yn)) =
Pr(Ym = x;φ) for every n≥ 1 and x ∈ {0,1}m×m, allowing us to define

δ (x : φ)=
∫
[0,1]m

∏
1≤i6= j≤m

φ(ui,u j)
xi j(1−φ(ui,u j))

1−xi j du1 · · ·dum, x ∈{0,1}m×m,

(6.28)
as the expected density of x in a random graph distributed according to the φ -process.
Thus, δ (x : φ) gives the distribution of a random subgraph obtained by sampling m
vertices uniformly at random without replacement from a (finite) population graph
distributed according to the φ -process.

Research Problem 6.4 Let M Φ
n be the class of all graphon distributions on

{0,1}n×n. Is it true that ({Mn}n≥1,{Σm,n}n≥m≥1) is coherent only if the (random)
sampling mechanism Σm,n does not depend on Yn, for all n≥m≥ 1? Articulate why
this outcome is significant for the field of network analysis, particularly as it relates
to the viability of graphon models for statistical applications.

The exposition above shows how the homomorphism density in (6.23) corre-
sponds to uniform random vertex sampling from a fixed y. The expression in (6.28)
extends this interpretation to mixtures over y generated from the φ -process. This
can be further generalized by defining a probability distribution µ on the sampling
operation Σm,n and setting

δ (x : y; µ) = ∑
injections ψ:[m]→[n]

1(yψ = x)µ(ψ).

Putting these two together (with µ possibly depending on y) results in a general
family of distributions for Σm,n Yn = Ym on {0,1}m×m, with Yn ∼ F on {0,1}n×n

4The expectation of a random variable Z with probability density fZ on (−∞,∞) is defined as E(Z) =∫
∞

−∞
z fZ(z) dz. In general, for a random variable Z distributed according to a probability measure µ , the

expectation is given by the Lebesgue integral E(Z) =
∫

∞

−∞
z µ(dz). For any measurable set A ⊆ R, the

expectation of the indicator at A equals the probability that Z lies in A, i.e., E(1(Z ∈ A)) = Pr(Z ∈ A).
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and Σm,n ∼ µ:

Pr(Ym = x;F,µ) = ∑
y∈{0,1}n×n

∑
injections ψ:[m]→[n]

1(yψ = x)F(y)µ(ψ | y),

for each x ∈ {0,1}m×m. It is left as an open problem to study the implications of this
general setup.

6.5 Viability of graphon models

Having established the basic structure of graphon models, we can now revisit the
implications of vertex exchangeability from Section 6.2, focusing especially on the
viability of graphon models for statistical applications.

Statistical implications of the Aldous–Hoover theorem

The representation of exchangeable arrays as a mixture of dissociated arrays, as in
(6.22), lays bare some limitations of graphon models for statistical analysis. No-
tice first that the Erdős–Rényi–Gilbert distribution with parameter θ ∈ (0,1), as de-
fined in (2.10), corresponds to a graphon process directed by the constant function
φθ (−,−) ≡ θ . Going hand-in-hand with its simple structure, Erdős–Rényi–Gilbert
random graphs do not exhibit the heterogeneous features that are commonly ob-
served in real-world networks, such as sparsity, clustering, and heavy-tailed degree
distributions.

The representation in (6.22) also makes clear why more general vertex exchange-
able population models offer little or no improvement over Erdős–Rényi–Gilbert for
modeling heterogeneous networks. Compare the Erdős–Rényi–Gilbert distribution
(2.10) with parameter θ , for which

Pr(Yn = y;θ) = ∏
1≤i6= j≤n

θ
yi j(1−θ)1−yi j , y ∈ {0,1}n×n,

with the generic representation of the finite-dimensional distributions of countable
vertex exchangeable models in (6.22), having

Pr(Yn = y;ϕ) =

=
∫

Φ

(∫
[0,1]n

∏
1≤i6= j≤n

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·dun

)
ϕ(dφ).

Notice first in the inside integral that each vertex is independently assigned a latent
feature Ui distributed uniformly in [0,1]. Given the latent features U1, . . . ,Un, Yn
behaves as a generalized Erdős–Rényi–Gilbert-type network with each edge (i, j)
present conditionally independently with probability φ(Ui,U j). Thus, although φ is
able to encode some local heterogeneities in the network structure—for example,
φ(u,v) = |u− v| implies that a vertex i with Ui ≈ 0 will have degree approximately
n/2 for large n whereas i with Ui ≈ 1/2 will have degree approximately n/4 for
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large n—any such heterogeneities result from the random assignment of the latent
vertex effects U1,U2, . . ., and not any inherent, observable features of the population.
Thus, φ -processes, and coherent vertex exchangeable models in general, are in ef-
fect glorified Erdős–Rényi–Gilbert models. The formulation, as in (6.13), which at
first appears rather general turns out to be quite bland and not very useful for many
statistical applications.

6.5.1 Implication 1: Dense structure

Let Y = (Yi j)i, j≥1 be an exchangeable random array taking values in {0,1}N×N . By
the Aldous–Hoover theorem (Theorem 6.3), there exists a probability distribution ϕ

on Φ such that Y obeys a φ -process for φ drawn randomly from ϕ . Define the edge
density of Y by

ε(Y) = lim
n→∞

1
n(n−1) ∑

1≤i6= j≤n
1(Yi j = 1). (6.29)

For fixed n≥ 1, we compute the expectation

E

(
1

n(n−1) ∑
1≤i6= j≤n

1(Yi j = 1)

)
=

1
n(n−1) ∑

1≤i6= j≤n
E(1(Yi j = 1))

by calculating

E(1(Yi j = 1)) = Pr(Yi j = 1) =
∫
[0,1]×[0,1]

φ(u,v) du dv

for every 1≤ i 6= j ≤ n. Writing

ε(φ) =
∫
[0,1]×[0,1]

φ(u,v) du dv

and noting that the limit (6.29) exists with probability 1 and is deterministic (equal
to ε(φ)) for any Y generated by the φ -process,5 we see that in general ε(Y) exists
with probability 1 and is random with distribution

Pr(ε(Y) ∈ ·;ϕ) =
∫

Φ

1(ε(φ) ∈ ·) ϕ(dφ)

for any countable exchangeable random array Y. Therefore, to study the edge density
of any vertex exchangeable array Y, it is sufficient to study the edge density of arrays
distributed according to the φ -process, for fixed φ ∈Φ.

The limit in (6.29) is either strictly positive or equal to 0. Any Y with ε(Y)> 0
is called a ‘dense graph sequence’, or simply a ‘dense graph’. The theory of dense
graph sequences has been studied in depth in the work of Lovász and coauthors; see
[115, 116] for more details and references. For our interest in network modeling, the
sparse case (i.e., ε(Y) = 0) is of greater interest.

5The fact that this limit is deterministic is related to the ergodicity property of graphons. See Section
6.4.3 and [9, Chapter 14].
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‘Sparse’ case

In many applications, the observed relational array Yn for a sample [n] ⊆ N has
empirical density (6.29) that is judged to be ‘small’ relative to n.6 When modeling
a network with unbounded population size, the assessment that the edge density is
‘small’ is most often translated into an assumption that the edge density of the hy-
pothetical population network Y satisfies ε(Y) = 0 in the limit as n→ ∞. Under the
φ -process construction, however, the limiting density satisfies ε(Y) = ε(φ) = 0 only
if φ(u,v) ≡ 0 for almost all u,v ∈ [0,1], and any Y generated from such a φ will be
empty, i.e., Yi j = 0 for all i 6= j, with probability 1.
Exercise 6.7 Prove the above assertion in one line: For any Y constructed from the
φ -process, the limiting density ε(Y) = ε(φ) = 0 only if φ(u,v) ≡ 0 for almost all
u,v ∈ [0,1].
This observation yields the first major implication of the Aldous–Hoover theorem:

A countable vertex exchangeable random graph is dense or empty with proba-
bility 1.

6.5.2 Implication 2: Representative sampling

In the networks literature, the incompatibility between vertex exchangeability and
sparsity is often cited in arguments against the use of graphon models. But in light
of the modeling paradigm of Chapter 5 and an intuitive understanding of how most
real-world networks are observed, the inability of vertex exchangeable models to
replicate sparsity may instead be seen as a byproduct of the inherent infeasibility
of graphons for modeling real-world networks. Indeed, the inability of vertex ex-
changeable models to replicate common empirical properties signals that something
is awry with graphons, but pointing to the failure of vertex exchangeable models to
reproduce a single empirical property misses a much greater flaw in applying these
models to modern networks problems.

Since neither the sampling behavior nor the distributional properties of graphon
models reflect the behaviors found in many modern network datasets, it should not
be surprising that the empirical properties of graphons are also misaligned with those
of observed networks. As the edge density is just one of many network statistics, it
should not be the lone factor for assessing the goodness of fit of a network model.
A model’s usefulness should instead be assessed within the context of the analysis,
and the network statistics used for such an assessment ought to be chosen with the
context in mind. Chapter 3 highlights different ways in which real-world networks
are observed and how rare it is for the observed vertices to be representative of the
population of all vertices, as is implicitly assumed in the graphon framework. (The il-
lustration in Section 3.4 all but rules out this possibility when the population network

6In practice, this density will either equal 0, which is certainly ‘small’, or will be strictly positive.
The justification for ‘smallness’ in the latter case is usually based on (i) a qualitative assessment about
the structure of the observed network relative to what would otherwise be expected in a network with the
given edge density and/or (ii) an assumption about how the network is growing. See Sections 1.7.1, 3.4,
and 4.2 for more on this point.
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is sparse.) Thus, by considering the implicit sampling context of graphon models,
e.g., Section 6.4.4, we can immediately dismiss graphons as viable statistical models
for most applications of interest.

6.5.3 The emergence of graphons

In statistical analysis, graphon models arise most naturally from the line of thinking
presented above: posit a natural invariance principle, i.e., vertex exchangeability, and
derive graphons as the characteristic set of (ergodic) models in that class. In the com-
binatorics literature, where the term ‘graphon’ was first introduced, graphons emerge
from a vastly different line of thought. In this case, a sequence of finite graphs is taken
as primitive, and the graphon is derived as a summary of all limiting properties of
that sequence.

For n≥ 1, let yn be a {0,1}-valued array of arbitrary finite size V (yn) (i.e., V (yn)
is the number of vertices in yn). The sequence (yn)n≥1 is said to converge if the limit
δ (x : (yn)n≥1) = limn→∞ δ (x : yn) exists for all x ∈ {0,1}m×m, for all m ∈ N, where

δ (x : yn) = lim
n→∞

1
V (yn)

↓m ∑
injections ψ:[m]→[V (yn)]

1(yψ
n = x). (6.30)

Note that (6.30) is consistent with the definition of the homomorphism density in
(6.23), with the main difference being that the components of (yn)n≥1 need not be
related to one another (i.e., we do not require ym = yn |[m] for all m ≤ n) and the
number of vertices V (yn) is arbitrary (i.e., we do not require V (yn) = n for each
n ≥ 1). The limit (6.30), if it exists, is the limit of the densities of x in the sequence
(yn)n≥1, which cannot in general be interpreted as the limiting density of x in any
particular infinite graph unless (yn)n≥1 satisfies an additional compatibility condition
for all large n.7

When the limit δ (x : (yn)n≥1) exists for every x ∈
⋃

m≥1{0,1}m×m, the sequence
(yn)n≥1 determines a probability distribution γm on {0,1}m×m, for every m≥ 1, by

γm(x) = δ (x : (yn)n≥1), x ∈ {0,1}m×m. (6.31)

Every such γm is exchangeable: for any permutation σ : [m]→ [m],

γm(xσ ) = δ (xσ ,(yn)n≥1)

= lim
n→∞

1
V (yn)

↓m ∑
injections ψ:[m]→[V (yn)]

1(yψ
n = xσ )

= lim
n→∞

1
V (yn)

↓m ∑
injections ψ:[m]→[V (yn)]

1(yψ◦σ
n = x)

= lim
n→∞

1
V (yn)

↓m ∑
injections ψ:[m]→[V (yn)]

1(yψ
n = x)

= γm(x),

7Unless (yn)n≥1 is compatible for all large n, i.e., there exists N ≥ 1 such that ym |[k] = yk for all m≥
k ≥ N, we cannot associate the limiting density δ (x : (yn)n≥1) of the sequence (yn)n≥1 to any particular
element of {0,1}N×N .
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since averaging of all injections ψ : [m]→ [V (yn)] is the same as averaging over
all injections ψ ◦σ . And moreover, the collection of measures (γn)n≥1 is consistent
under selection sampling,

γm(x) = γn({x∗ ∈ {0,1}n×n : x∗ |[m] = x}), x ∈ {0,1}m×m, (6.32)

for all n≥ m≥ 1.
Exercise 6.8 Prove (6.32) for γm and γn defined as in (6.31).
In words, condition (6.32) says that a random graph Ym drawn from γm has the
same distribution as the restriction Yn |[m] of Yn drawn from γn for all n ≥ m ≥ 1.
By Carathéodory’s theorem from measure theory (the details of which we do not
cover here), (γm)m≥1 determines a unique exchangeable probability distribution γ on
{0,1}N×N such that

γ({x∗ ∈ {0,1}N×N : x∗ |[m] = x}) = γm(x) for all x ∈ {0,1}m×m, m ∈ N .8

(6.33)
By the Aldous–Hoover theorem (Theorem 6.3), any such γ corresponds to a prob-

ability measure ϕ on the space Φ of all functions φ : [0,1]× [0,1]→ [0,1], and γ is
the distribution of an exchangeable random array Y constructed from a φ -process
for φ ∼ ϕ . But since the limiting densities are deterministic, ϕ must be concentrated
on the subset of φ ′ ∈ Φ for which δ (x : φ ′) = δ (x : (yn)n≥1) for all finite arrays x.
Any such φ ′ corresponds to the same probability measure γ on {0,1}N×N , implying
that the limit of (yn)n≥1 is only determined up to equivalence of the distribution de-
termined by its limiting densities. There is thus no unique graphon φ corresponding
to the sequence (yn)n≥1 but there is a unique probability distribution γ , as defined
through (6.33) and Carathéodory’s theorem. In this sense, we can rightly call γ in
(6.33) the graph limit of (yn)n≥1, but we should not conflate γ with any particular
graphon associated to this limit. Having said that, I caution the reader that many
authors do use the term graphon and graph limit interchangeably.

Ergodicity

I conclude this section by connecting the combinatorial interpretation of graphons,
as limits of graph sequences, to the statistical interpretation of graphons, as the class
of ergodic measures for vertex exchangeable random graphs. Let φ be any graphon,
let x ∈ {0,1}m×m be any finite graph, and let Yn, n ≥ 1, be constructed from the
φ -process as in (6.13). Two aspects of the above discussion figure into the coming
remark:

(i) By consistency under selection of the φ -process, (Yn)n≥1 can be treated as the
finite restrictions Yn = Y |[n] of some infinite exchangeable random array Y
distributed according to a φ -process on {0,1}N×N .

8Readers unfamiliar with measure-theoretic probability will likely find that I have moved through this
argument too quickly. Indeed I have, but the technical details are too much to discuss here. Readers inter-
ested to learn more are encouraged to consult a textbook on measure-theoretic probability. It is otherwise
safe to continue reading without this technical detail.
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(ii) Statistical intuition (e.g., the strong law of large numbers) suggests that the
densities δ (x : Yn) should satisfy

lim
n→∞

δ (x : Yn) = δ (x : φ) with probability 1, (6.34)

for δ (x : φ) as defined in (6.28).
Under (i), the distribution of each Yn is given by (6.14), so that

Pr(Yn = x;φ) = δ (x : φ), x ∈ {0,1}n×n.

Under (ii), the limiting densities δ (x : Yn) should converge to δ (x : φ) as the sample
size grows large.

If all terms in the sum (6.27) were independent, then (6.34) would be an imme-
diate consequence of the strong law of large numbers (SLLN), as intuition suggests.
In this case, however, there may be dependence among observations Yi j and Yi′ j′ for
which {i, j}∩ {i′, j′} 6= /0. (If {i, j} and {i′, j′} overlap in an index, say, r = i = i′,
then the Aldous–Hoover construction in (6.18) allows for the possible dependence
between Yr j and Yr j′ as a result of their common dependence on Ur.) Nevertheless,
the effect of such overlap on the distribution of Yn is negligible as n increases, and
the limit (6.34) does in fact hold for φ -processes. (Aldous [9] gives an explicit calcu-
lation of this fact.) It follows that the subgraph statistics (6.23) are deterministic (i.e.,
ergodic) for any Y generated from a graphon process.

6.6 Potential benefits of graphon models

The foregoing discussion speaks to the need for network modeling to move beyond
the limitations of graphon models and vertex exchangeability. I take up this charge
throughout Chapters 7–10. But before moving on, I identify some potentially re-
deeming qualities of graphon models. I first highlight a connection between the
theory of vertex exchangeable random graphs (through graphons and the Aldous–
Hoover theorem) and exchangeable random sequences (through de Finetti’s theo-
rem), which in turn suggests how graphons might be useful for identifying depar-
tures from exchangeability by detecting differences between the empirical graphon
and its expected ‘shape’. Admittedly, the content of Section 6.6.2 is speculative, but
I mention it here as a topic worthy of some consideration.

6.6.1 Connection to de Finetti’s theorem

For this section only, we divert away from our main discussion of networks,
graphs, and {0,1}-valued arrays and instead discuss exchangeable sequences X =
(X1,X2, . . .) of {0,1}-valued random variables. By comparison to exchangeable se-
quences, which have a long history in probability and statistics, the theory of ex-
changeable arrays is lesser known and not as well understood. There are, however,
several analogous concepts linking exchangeable arrays and the Aldous–Hoover the-
orem on the one hand to exchangeable sequences and de Finetti’s theorem on the
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other. It is through these similarities that some more technical aspects of graphon
models can perhaps be better understood.

Call a sequence X = (Xi)i∈V exchangeable if Xσ = (Xσ(i))i∈V =D X for all per-
mutations σ : V →V . As for arrays, this definition applies for V both finite and count-
ably infinite, but we restrict to the countably infinite case here. In this 1-dimensional
setting, the role of the Aldous–Hoover theorem is played by its predecessor, de
Finetti’s theorem, according to which every infinite, exchangeable {0,1}-valued se-
quence X1,X2, . . . corresponds to a unique probability measure µ on [0,1] such that
X1,X2, . . . is distributed as a conditionally i.i.d. sequence of Bernoulli random vari-
ables with random success probability P ∼ µ . This formulation is sometimes also
expressed as

P∼ µ

X1,X2, . . . | P∼i.i.d. Bernoulli(P).

To parallel the above presentation of φ -processes and graphons as closely as pos-
sible, let φ : [0,1]→ [0,1] be a function on the unit interval. (Note here that φ is
a function of one argument, instead of two as in the 2-dimensional setting of Sec-
tion 6.4.1.) To generate a sequence of random variables X1,X2, . . . in {0,1}, first
draw U1,U2, . . . i.i.d. Uniform[0,1] and, given U1,U2, . . ., assign the value of each Xi,
i = 1,2, . . ., conditionally independently according to

Pr(Xi = 1 |U1,U2, . . . ;φ) = φ(Ui) and Pr(Xi = 0 |U1,U2, . . . ;φ) = 1−φ(Ui).
(6.35)

Call any sequence (X1,X2, . . .) generated in this way a 1-dimensional φ -process.
Since U1,U2, . . . are i.i.d., it follows immediately that (X1,X2, . . .) is exchange-

able. In fact, (X1,X2, . . .) are i.i.d. and, thus, must follow the Bernoulli distribution
with success probability

Pr(Xi = 1;φ) =
∫
[0,1]

φ(u) du.

The characterization of exchangeable {0,1}-valued sequences can thus be stated in
parallel form to Theorem 6.3.

Theorem 6.4 (de Finetti’s theorem [60]) Let X = (X1,X2, . . .) be an infinite, ex-
changeable sequence in {0,1}. Then there exists a function f : [0,1]2→ {0,1} such
that X=D X∗, with X∗ = (X∗1 ,X

∗
2 , . . .) given by

X∗i = f (U0,Ui), i≥ 1,

for U0,U1, . . . i.i.d. Uniform[0,1].

In parallel to our interpretation of the Aldous–Hoover theorem in Section 6.4.1,
we translate Theorem 6.4 as

every infinite, exchangeable {0,1}-valued sequence is distributed as a mixture
of i.i.d. sequences.
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Remark 6.3 Theorem 6.4 immediately implies that the outcome of a 1-dimensional
φ -process is equivalent in distribution to an i.i.d. Bernoulli sequence with success
probability

∫ 1
0 φ(u)du. But since the distribution of the sequence depends on φ only

through the integral
∫ 1

0 φ(u)du, φ and φ ◦T both determine the same distribution for
any T : [0,1]→ [0,1] that preserves Lebesgue measure, as defined in (6.38) below.
In particular, any X1,X2, . . . from the 1-dimensional φ -process can also be described
as a draw from a 1-dimensional φp-process, with φp defined as the constant function

φp : [0,1]→ [0,1]

φp(u)≡ p =
∫ 1

0
φ(u)du. (6.36)

Induced subsequence densities

The connection between vertex exchangeable random graphs, the Aldous–Hoover
theorem, and graphons is paralleled by a connection between exchangeable random
sequences, de Finetti’s theorem, and limits associated to finite induced subsequences.
When speaking of {0,1}-valued sequences, the analogs to the induced subgraph den-
sities δ (x : y) in (6.23) are induced subsequence densities defined as follows. In
parallel to (6.23), let x ∈ {0,1}n, w ∈ {0,1}m, and define

δ (w : x) = lim
n→∞

1
n↓m ∑

injections ψ:[m]→[n]
1(xψ = w), (6.37)

where xψ = (xψ(i))1≤i≤m is the subsequence of x induced by ψ . By the strong law of
large numbers, the limiting fraction of 1s in an i.i.d. sequence X, i.e.,

P(X) = lim
n→∞

n−1
n

∑
i=1

Xi,

exists with probability 1, and in fact determines the limiting density δ (w : X) of any
w ∈ {0,1}m in x by

lim
n→∞

δ (w : X |[n]) = Pr(Xψ = w | P(X) = p) = p∑
m
j=1 w j(1− p)m−∑

m
j=1 w j

with probability 1. Thus, P(X) = δ ((1) : X) (i.e., the frequency of 1s in X) alone
determines the distribution of an i.i.d. sequence of Bernoulli random variables with
success probability P(X).

Conversely, taking the analog to the ‘graph convergence’ perspective from the
combinatorics literature (Section 6.5.3), let (wn)n≥1 be an infinite sequence of finite-
length {0,1}-valued sequences, so that each wn is a sequence (wn(1), . . . ,wn(`n))
of finite length `n ≥ 1. For each n ≥ 1, let |wn | = `n denote the length of wn and
write pn = |wn |−1

∑
|wn |
i=1 wn(i) to denote the empirical frequency of 1s in wn. We say

that (wn)n≥1 converges if limn→∞ pn = p exists. In this case, p ∈ [0,1] corresponds
to the limit of an i.i.d. sequence of Bernoulli(p) random variables, which can be
represented trivially by the constant function φp in (6.36) or, alternatively, by any
function φ : [0,1]→ [0,1] which integrates to p over [0,1], cf. Remark 6.3.
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6.6.2 Graphon estimation

Let X = (X1,X2, . . .) be a random {0,1}-valued sequence, from which we observe
an initial segment Xn = (X1, . . . ,Xn). Assuming X has been generated from a 1-
dimensional φ -process, as in (6.35), we know that the distribution of X is deter-
mined solely by the integral

∫ 1
0 φ(u)du. We have already noted in Remark 6.3 that

the graphon φ is not identifiable for X: for any Lebesgue measure-preserving trans-
formation T : [0,1]→ [0,1], i.e., T : [0,1]→ [0,1] satisfying∫

T−1(a,b)
dx = b−a (6.38)

for all 0≤ a≤ b≤ 1, and any φ : [0,1]→ [0,1], the function φ ′(u) = φ(T (u)) deter-
mines the same distribution as φ . Therefore, even if given the complete realization
of the infinite sequence X from the 1-dimensional φ -process, and thus also the exact
limiting density P(X), we cannot recover the function φ . We can, at best, determine
the equivalence class of functions φ ′ that determine the same distribution on {0,1}N .
We might then wonder what additional information about X, beyond the integral∫ 1

0 φ(u)du, is encoded by the function φ?
If X is only suspected, but not known, to be i.i.d., then perhaps the additional

structure encoded by φ could be valuable in assessing departures of X from ex-
changeability. With this in mind, define the empirical graphon induced by Xn as

φ̂n(u) = Xi, for u ∈ [(i−1)/n, i/n).9 (6.39)

This function is piecewise constant, taking values 0 and 1 over a partition of [0,1]
into equally spaced intervals of length 1/n. Under the assumption that X is i.i.d.,
the conditional distribution of Xn, given the empirical frequency Pn = n−1

∑
n
i=1 Xi, is

i.i.d. Bernoulli with success probability Pn, for which each possible outcome wn =
(wi)1≤i≤n with nPn 1s and n(1−Pn) 0s is equally probable given Pn. It follows that
every empirical graphon φ̂n that is compatible with Pn is equally probable given Pn.

For an extreme example, let n be a large even integer and suppose we observe

Xn = (1,1, . . . ,1︸ ︷︷ ︸
n/2 times

,0,0, . . . ,0︸ ︷︷ ︸
n/2 times

), (6.40)

which under the hypothesis that Xn is i.i.d. is just as likely as any of the other
( n

n/2

)
outcomes with empirical frequency Pn = 1/2. But if n is large and Xn were truly
behaving as i.i.d. Bernoulli, then we would expect the mass of 1s and 0s in Xn to
be relatively evenly dispersed over [0,1]. To address this, we can specify a kernel
K : [0,1]→ [0,∞) and instead estimate the K-smoothed graphon by

φ̂
K
n (u) =

∫ 1

0
K(‖u−u′‖)φ̂n(u′)du′,

9We can define φ̂n(1) arbitrarily, since this is a set of measure 0. Putting φ̂n(1) = Xn will suffice.
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where φ̂n is as in (6.39) and ‖ · ‖ is a norm on [0,1]. If K is sufficiently well-behaved
and Xn follows the 1-dimensional φ -process, then we expect

φ̂
K
n (u)→

∫ 1

0
φ(u′) du′ as n→ ∞ for all u ∈ [0,1] with probability 1.

But for an observation Xn as in (6.40), we see that

φ̂
K
n (0) =

∫ 1/2

0
K(u′) du′ and

φ̂
K
n (1) =

∫ 1/2

0
K(1−u′) du′ =

∫ 1

1/2
K(u′) du′,

so that unless K(·) is a constant function there in general exists an ε > 0 and 0≤ u 6=
v≤ 1 such that

|φ̂ K
n (u)− φ̂

K
n (v)| ≥ ε,

preventing φ̂ K
n from converging to a constant function. One can then consider a hy-

pothesis test for exchangeability by comparing the empirical smoothed graphons φ̂ K
n

and φ̃ K
n , for φ̃n defined as the empirical graphon in (6.39) for a sequence X ′1, . . . ,X

′
n

from the 1-dimensional φ̂n-process.
The connection between de Finetti’s theorem and the Aldous–Hoover theorem

suggests how graphon estimation could be useful for detecting departures from vertex
exchangeability in networks that are observed sequentially. Generalizing from the
above discussion for sequences, consider what information a graphon φ : [0,1]×
[0,1]→ [0,1] conveys about a sequence (yn)n≥1 of {0,1}-valued arrays as n→ ∞.
For the sake of illustration, suppose that |V (yn)|= n for each n = 1,2, . . . and define
the empirical graphon φ̂n : [0,1]× [0,1]→ [0,1] to be

φ̂n(u,v) = yn(bnxc,bnyc), 0≤ u,v≤ 1, (6.41)

where here I write yn(i, j) to denote the (i, j) entry of yn and bzc to denote the
largest integer smaller than z, for z ∈ (−∞,∞). (In words, φ̂n “squeezes” the ad-
jacency matrix of yn into [0,1] by splitting [0,1] into n equally spaced regions
[0,1/n), [1/n,2/n), . . . , [(n−1)/n,1] corresponding to the vertices 1,2, . . . ,n, respec-
tively. The value of φ̂n is constant and equals yn(i, j) on the region [(i−1)/n, i/n)×
[( j−1)/n, j/n).)

Following the discussion for sequences above, we specify a kernel K : [0,1]→
[0,∞) and define the K-smoothed empirical graphon by

φ̂
K
n (u,v) =

∫ 1

0

∫ 1

0
K(d((u,v),(u′,v′)))φ̂n(u′,v′) du′ dv′,

where d : [0,1]× [0,1]→ R is any distance metric, e.g.,

d((u,v),(u′,v′)) = |u−u′|+ |v− v′|.

The same rationale applies as for testing exchangeability in sequences. The details
of this approach have not yet been worked out, and it is unclear whether it amounts
to anything fruitful. I leave the details as an open research problem.
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Research Problem 6.5 Can graphons be useful for testing departures from ex-
changeability? In particular, if Yn = (Yi j)1≤i, j≤n is a realization from a probability
distribution on graphs, can we test for exchangeability by comparing the empirical
graphon φ̂n based on Yn to the empirical graphon φ̃n obtained from a realization of
a φ̂n-process? If we detect a departure from exchangeability, can we characterize the
nature of this departure? See [158] for some related work on this question.

6.7 Further reading

By now the exchangeability literature is extensive, admitting a number of refinements
and generalizations which have been developed in the eighty-plus years since de
Finetti [60]. Some recent extensions relevant to network analysis will be discussed
over the next several chapters. For a broader discussion of exchangeability, the reader
will find Aldous’s lecture notes [9] and Kallenberg’s book on probabilistic symmetry
[98] the most thorough references. A more recent survey of exchangeability from
a Bayesian nonparametrics perspective is given in [128]. Still other extensions to
so-called Markov exchangeability can be found in the earlier work of Diaconis and
Freedman [61].

Before moving on from the Aldous–Hoover theorem and its numerous impli-
cations, I conclude by commenting that the above discussion of exchangeability for
1-dimensional sequences (Theorem 6.4) and 2-dimensional arrays (Theorem 6.3) ex-
tends in a natural way to exchangeable d-dimensional arrays Y = (Yi1···id )i1,...,id≥1 for
any 1 ≤ d < ∞. Such models are the natural extension of vertex exchangeability to
network data taking the form of a hypergraph. For example, if Y represents relations
formed by email interactions, then each relation can in general involve more than two
vertices, e.g., an email exchanged among a group of people i1, . . . , id is expressed as
a single relation Yi1···id = 1 in the associated array. In this setting, the definition of
exchangeability in (6.2) generalizes to

Yσ = (Yσ(i1)···σ(id))i1,...,id≥1=D Y for all permutations σ : N→ N .

The Aldous–Hoover–Kallenberg theorem gives the analog to Theorem 6.3 for such
exchangeable higher-order arrays. There is an associated construction from i.i.d.
Uniform[0,1] random variables, akin to that in (6.13) in the 2-dimensional case. The
reader is referred to [98] for details.

6.8 Solutions to exercises

6.8.1 Exercise 6.1

Let YN be an exchangeable random array in {0,1}N×N and g : {0,1}N×N →X be
any statistic. Then to prove

YN =D Yσ
N =⇒ g(YN)=D g(Yσ

N)

for all permutations σ : [N]→ [N], we must show

Pr(g(YN) ∈ A) = Pr(g(Yσ
N) ∈ A) for all measurable A⊆X .
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We see this immediately by

Pr(g(YN) ∈ A) = Pr(YN ∈ g−1(A)) = Pr(Yσ
N ∈ g−1(A)) = Pr(g(Yσ

N) ∈ A),

where the first and third equalities follow by definition of the induced distribution of
g(YN) and g(Yσ

N), respectively, and the second equality follows by exchangeability
of YN .

6.8.2 Exercise 6.2

By assumption that Σn,N is independent of YN , the distribution of Σn,N YN is given
by

Pr(Σn,N YN = y) = ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N)Pr(Sψ

n,N YN = y)

as in (6.7). By exchangeability of YN and a corollary to Exercise 6.1,
Sψ

n,N YN =D Sn,N YN for all ψ : [n]→ [N], giving

Pr(Σn,N YN = y) = Pr(Sn,N YN = y) ∑
ψ:[n]→[N]

Pr(Σn,N = Sψ

n,N) = Pr(Sn,N YN = y),

since the probabilities of events ‘Σn,N = Sψ

n,N’ sum to 1.

6.8.3 Exercise 6.3

Let YN be an exchangeable random graph on {0,1}N×N . By the law of total proba-
bility, we can express the distribution of YN by conditioning on its ‘shape’ 〈YN〉∼=:

Pr(YN = y) = ∑
u∈UN

Pr(YN = y | 〈YN〉∼= = u)Pr(〈YN〉∼= = u).

For every y ∈ {0,1}N×N and u ∈UN , we have

Pr(YN = y | 〈YN〉∼= = u) =
{

1/|u|, 〈y〉∼= = u,
0, otherwise. (6.42)

And for any y and y′ with 〈y〉∼= = 〈y′〉∼=, we have

Pr(YN = y | 〈YN〉∼==u)=Pr(YN = y′ | 〈YN〉∼==u)=
{

1/|u|, 〈y〉∼= = 〈y′〉∼= = u,
0, otherwise,

where |u| is the cardinality of u. Finally, since (6.42) is non-zero only for u = 〈y〉∼=,
we can express

Pr(YN = y) = Pr(〈YN〉∼= = 〈y〉∼=)/|〈y〉∼=|.
Defining p on UN by

p(u) = Pr(〈YN〉∼= = u) = ∑
y∈{0,1}N×N

Pr(YN = y)1(〈y〉∼= = u)

completes the proof of Theorem 6.1.
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6.8.4 Exercise 6.4

Fix any φ : [0,1]× [0,1]→ [0,1] and let Ym have the distribution in (6.14),

Pr(Ym = y;φ) =
∫
[0,1]m

∏
1≤i6= j≤m

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·dum.

By definition Π
φ
m,n Ym is a random array in {0,1}n×n obtained by a φ -process with

U1, . . . ,Un drawn conditionally i.i.d. Uniform[0,1] given Ym. By the law of total
probability, we have

Pr(Πφ
m,n Ym = y;φ) = Pr(Ym = y |[m];φ)Pr(Πφ

m,n Ym = y | Ym = y |[m];φ).

Given ‘Ym = y’, the conditional density of U1, . . . ,Un is

h(u1, . . . ,un | Ym = y;φ) =

=
∏1≤i6= j≤m φ(ui,u j)

yi j(1−φ(ui,u j))
1−yi j∫

[0,1]m ∏1≤i6= j≤m φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·dum
.

By construction of Π
φ
m,n Ym, we have

Pr(Πφ
m,n Ym = y;φ) =

= Pr(Ym = y |[m];φ)Pr(Πφ
m,n Ym = y | Ym = y |[m];φ)

=
∫
[0,1]m

∏
1≤i6= j≤m

φ(u′i,u
′
j)

yi j(1−φ(u′i,u
′
j))

1−yi j du′1 · · ·du′m×

×Pr(Πφ
m,n Ym = y | Ym = y |[m];φ)

=

(∫
[0,1]m

∏
1≤i6= j≤m

φ(u′i,u
′
j)

yi j(1−φ(u′i,u
′
j))

1−yi j du′1 · · ·du′m

)
×

×
∫
[0,1]n

[(
∏

m+1≤i≤n
∏

1≤ j≤n
φ(ui,u j)

yi j(1−φ(ui,u j))
1−yi j

)
×

×

(
∏

1≤i≤n
∏

m+1≤ j≤n
φ(ui,u j)

yi j(1−φ(ui,u j))
1−yi j

)
×

× h(u1, . . . ,un | Ym = y |[m];φ) du1 · · ·dun
]

=

(∫
[0,1]m

∏
1≤i6= j≤m

φ(u′i,u
′
j)

yi j(1−φ(u′i,u
′
j))

1−yi j du′1 · · ·du′m

)
×

×
∫
[0,1]n

[(
∏

m+1≤i≤n
∏

1≤ j≤n
φ(ui,u j)

yi j(1−φ(ui,u j))
1−yi j

)
×

×

(
∏

1≤i≤n
∏

m+1≤ j≤n
φ(ui,u j)

yi j(1−φ(ui,u j))
1−yi j

)
×

×
∏1≤i6= j≤m φ(ui,u j)

yi j(1−φ(ui,u j))
1−yi j du1 · · ·dun∫

[0,1]m ∏1≤i6= j≤m φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·dum

]
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=
∫
[0,1]n

∏
1≤i6= j≤n

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·dun

= Pr(Yn = y;φ),

as claimed.

6.8.5 Exercise 6.5

Recall the definition of relabeling y 7→ yσ in (6.1) and let YN be distributed as in
(6.14) for some φ : [0,1]× [0,1]→ [0,1]. From the expression in (6.14), we see that

Pr(YN = yσ ;φ) =

=
∫
[0,1]N

∏
1≤i6= j≤N

φ(ui,u j)
yσ(i)σ( j)(1−φ(ui,u j))

1−yσ(i)σ( j) du1 · · ·duN

=
∫
[0,1]N

∏
1≤i6= j≤N

φ(uσ−1(i),uσ−1( j))
yi j(1−φ(uσ−1(i),uσ−1( j)))

1−yi j ×

×duσ−1(1) · · ·duσ−1(N)

=
∫
[0,1]N

∏
1≤i6= j≤N

φ(ui,u j)
yi j(1−φ(ui,u j))

1−yi j du1 · · ·duN

= Pr(YN = y;φ),

for any permutation σ : [N] → [N], and therefore every graphon distribution on
{0,1}N×N is exchangeable, for every N ≥ 1.

6.8.6 Exercise 6.6

Let Y∗ be constructed as in (6.18) for f satisfying f (a, ·, ·, ·) = f (b, ·, ·, ·) for all
0≤ a,b≤ 1. Then compute the finite-dimensional distributions of Y∗ by

Pr(Y∗ |[n] = y; f ) =

=
∫
[0,1]n

∏
1≤i6= j≤n

(∫ 1

0
f (−,ui,u j,ui j) dui j

)yi j

×

×
(∫ 1

0
(1− f (−,ui,u j,ui j)) dui j

)1−yi j

du1 · · ·dun

=
∫
[0,1]n

∏
1≤i6= j≤n

(∫ 1

0
f (−,ui,u j,ui j) dui j

)yi j

×

×
(

1−
∫ 1

0
f (−,ui,u j,ui j) dui j

)1−yi j

du1 · · ·dun

=
∫
[0,1]n

∏
1≤i6= j≤n

φ f (ui,u j)
yi j(1−φ f (ui,u j))

1−yi j du1 · · ·dun,
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for φ f as defined in (6.19). The last line coincides with the finite-dimensional distri-
butions of a φ f -process, as defined in (6.14), thus proving the equivalence between
(6.18) and the φ f -process, as claimed.

6.8.7 Exercise 6.7

Ergodicity of the φ -process implies that

ε(Y) =
∫
[0,1]×[0,1]

φ(u,v) du dv≥ δ

∫
{(u,v):φ(u,v)≥δ}

du dv = δ Pr(φ(U,V )≥ δ )

for every δ > 0, for U and V i.i.d. Uniform[0,1]; thus, ε(Y) = 0 if and only if
Pr(φ(U,V )≥ δ ) = 0 for all δ > 0, and Pr(φ(U,V ) = 0) = 1, as claimed.

6.8.8 Exercise 6.8

Let γm and γn be as defined in (6.31). Without loss of generality, assume V (yk) = k
for every k ≥ 1, so that we can express γm and γn by

γm(x) = δ (x : (yk)k≥1) = lim
k→∞

1
k↓m ∑

ψ:[m]→[k]
1(yψ

k = x), x ∈ {0,1}m×m

γn(x∗) = δ (x∗ : (yk)k≥1) = lim
k→∞

1
k↓n ∑

ψ:[n]→[k]
1(yψ

k = x∗), x∗ ∈ {0,1}n×n. (6.43)

For every x ∈ {0,1}m×m, we want to show

γm(x) = γn({x∗ ∈ {0,1}n×n : x∗ |[m] = x}) = ∑
{x∗∈{0,1}n×n:x∗ |[m]=x}

γn(x∗).

By (6.43), we have

γn({x∗ ∈ {0,1}n×n : x∗ |[m] = x}) =

= ∑
{x∗∈{0,1}n×n:x∗ |[m]=x}

lim
k→∞

1
k↓n ∑

ψ:[n]→[k]
1(yψ

k = x∗)

= ∑
{x∗∈{0,1}n×n:x∗ |[m]=x}

lim
k→∞

1
k↓m

1
(k−m)↓(n−m)

×

× ∑
ψ:[m]→[k]

∑
ψ∗:[n]→[k] s.t. ψ∗|[m]=ψ

1(yψ∗

k = x∗)

= lim
k→∞

1
k↓m ∑

ψ:[m]→[k]

1
(k−m)↓(n−m)

×

×

 ∑
ψ∗:[n]→[k] s.t. ψ∗|[m]=ψ

∑
{x∗∈{0,1}n×n:x∗ |[m]=x}

1(yψ∗

k = x∗)





SOLUTIONS TO EXERCISES 109

= lim
k→∞

1
k↓m ∑

ψ:[m]→[k]

1
(k−m)↓(n−m)

× (k−m)↓(n−m)1(yψ

k = x)

= lim
k→∞

1
k↓m ∑

ψ:[m]→[k]
1(yψ

k = x)

= γm(x),

where beginning in the fourth line above I write ψ∗|[m] for the domain restriction of
ψ∗ to [m] (i.e., ψ∗|[m] : [m]→ [k] defined by ψ∗|[m](i) = ψ∗(i) for 1≤ i≤ m) and the
identity

∑
ψ∗:[n]→[k] s.t. ψ∗|[m]=ψ

∑
{x∗∈{0,1}n×n:x∗ |[m]=x}

1(yψ∗

k = x∗) = (k−m)↓(n−m)1(yψ

k = x)

follows since there are exactly (k−m)↓(n−m) ways to extend ψ : [m]→ [k] to ψ∗ :
[n]→ [k], and for any such extension

∑
{x∗∈{0,1}n×n:x∗ |[m]=x}

1(yψ∗

k = x∗) = 1(yψ

k = x).
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Chapter 7

Getting beyond graphons

As the preceding chapters indicate, modern network analysis is challenged by the
apparent incompatibility between the basic model properties of

(i) vertex exchangeability and
(ii) coherence

and the empirical properties of
(iii) sparsity and
(iv) power law degree distribution.

Whereas (iii) and (iv) are believed to be widely observed in real-world networks, (i)
and (ii) are relevant, and in some cases necessary, to elicit meaningful model-based
statistical inferences from network data.

Viewed in this light, the preceding chapter paints a rather bleak picture. By the
Aldous–Hoover theorem (Theorem 6.3), the only random graph models satisfying
(i) and (ii) are mixtures of graphons. The connection between graphons and dense
graph sequences points to the trivial 0-graphon, φ(−,−) ≡ 0, as the lone model in
the intersection of (i), (ii), and (iii) (see, e.g., Section 6.5). Adding (iv) to the mix
reduces the number of models satisfying (i)–(iv) to zero. Plainly, if statistical thinking
is to provide any insights into this highly relevant class of networks problems, then it
must move beyond vertex exchangeability, or else give up on at least one of criteria
(ii)–(iv). The move away from exchangeable models can easily be accomplished—
e.g., the Barabási–Albert preferential attachment model [14] satisfies (ii)–(iv) but not
(i) (see Section 4.2)—but the challenge remains to justify such a move on statistical
grounds. Before describing some initial approaches to this issue in Sections 7.2 and
7.3, I first consider which of (i)–(iv), if any, are up for discussion and which should
be held sacred in the quest of complex network analysis.

Remark 7.1 (Disclaimer) I highlight items (i)–(iv), in particular vertex exchange-
ability, sparsity, and power law, to illustrate the difficulties facing modern network
analysis, and the inadequacy of standard approaches for handling these difficulties.
I do not wish to give the impression that sparsity and power law are the only, or even
the most important, network attributes to study. Whereas sparsity/power law are es-
pecially apt in some applications, they are not in others. I discuss them here merely
as a test case for the potential of statistical tools to model complex data structures.

111
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7.1 Exchangeability, coherence, sparsity, or power law: Something must go

Items (i)–(iv) above spell out four generally desired properties of statistical network
models. It is known that there is no model satisfying all four, raising the conundrum:
if all four properties are indeed essential, then the enterprise of statistical network
modeling is a non-starter. But before declaring the mission hopeless, let’s consider
each property in turn, deferring exchangeability until last.

Coherence

In a widely discussed article from the early 2000s, McCullagh [120] examined the
fundamental structure of statistical models using concepts from category theory. Cen-
tral to McCullagh’s treatment is functoriality, a concept from category theory which
seems closely aligned with the condition of coherence from Chapter 5. Although its
category-theoretic presentation is obscure to most statisticians, the rationale under-
lying McCullagh’s framework and its connection to coherence can be easily detected
in statements such as

The sense of the model and the meaning of the parameter [...] may not be af-
fected by accidental or capricious choices such as sample size or experimental
design. [120, p. 1237]

Indeed, for network sampling models, condition (C) in Definition 5.2 parallels Mc-
Cullagh’s criterion: A model is coherent precisely when inferences from it are robust
to artificial and arbitrary choices.

I mention McCullagh’s viewpoint here not as validation of my own, but rather
to highlight that coherence, though perhaps not articulated in the same way, already
appears in other forms throughout the statistics literature. By and large, the idea of
coherence is intuitively understood by practitioners of statistics, who know very well
the importance of accounting for context in statistical inference. But understanding
seems to be lacking among theoreticians, whose predilection for mathematics of-
ten overshadows the context for which their theory was initially intended. For our
purposes of establishing the probabilistic foundations of statistical network analysis,
coherence is the glue that binds theory and practice, and shall not be sacrificed at any
cost.

Sparsity and power law degree distributions

If one or both of sparsity and/or power law degree distribution is known to be absent
from a given application, then the missing property should not be incorporated into
the model. But if these properties are known or strongly believed to be present, then
they ought to be accounted for. The principle is basic: if data is known to exhibit a
specific property, then any model for that data ought to replicate that property. After
all, it is only in replicating real-world behaviors that a model lives up to its name. If
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a model does not replicate a property which is known to be present, then how can it
be trusted to describe properties about which little is known?1

In the early pages of their book on theoretical statistics, Cox and Hinkley [42, p.
5] echo this principle, stating that a model should exhibit “consistency with known
limiting behaviour.” Though the principle extends beyond asymptotic analyses, Cox
and Hinkley’s focus on “known limiting behaviour” is especially apt in the present
discussion of sparsity and power law, both of which are asymptotic properties. Since
sparsity and power law figure prominently in many modern networks applications,
both are non-negotiable for models aiming at a realistic account of networks with
those properties. And since we are primarily interested here in laying down the
foundations of network modeling for modern applications, we insist that models for
sparse, power law networks exhibit such properties themselves.

But before moving on to discuss exchangeability, we should address those critics
who disagree with Cox and Hinkley, and therefore do not believe that a model for a
sparse, power law network must necessarily replicate those properties of the network
which it purports to model. Box and Draper’s (tired) cliché is often cited to defend
this point of view:

All models are wrong but some are useful. [26]
The rationale of the criticism goes: since all models are wrong, but some are useful, it
is therefore possible that our model is wrong in how it handles sparsity and/or power
law but nevertheless remains useful, especially if neither sparsity nor power law are
of primary interest in the given application.

To such critics, I ask how a model can be assessed as ‘useful’ when it is faulty for
describing known behaviors? In other words, if it is bad at modeling known proper-
ties, then how can it be trusted to be ‘useful’ for modeling properties for which less
is known? One criterion for usefulness is coherence: a ‘statistical model’ is useful
only insofar as it can be used to perform inference, and such inferences are possible
only if the model is coherent (i.e., inferences from it ‘make sense’); see Section 5.4
for further discussion on this point. An additional practical criterion is the replication
of known properties, e.g.,

(P) If the data is known to exhibit a given property ‘P’ prior to any observation,
then the model ought to contain candidate distributions under which ‘P’ occurs
with strictly positive probability.

As an immediate application of this principle, recall from the opening discussion
of this chapter that the collection of all graphon models (Section 6.4.1.1) does not
contain a single candidate distribution that replicates the properties of sparsity and
power law degree distribution. By principle (P), the class of graphon models does not
make sense, and is therefore not useful, for modeling networks with those properties.

1Misspecified models in one metric can still perform well in other metrics. It is conceivable, for exam-
ple, that specifying a non-sparse model for a network which is known to be sparse could perform well in
fitting the degree of clustering, community structure, etc. But evidence of such robustness to model mis-
specification, either in the form of mathematical proof or empirical evidence, should be given in support
of such a claim.
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Exchangeability

Finally, exchangeability. Is it essential? Nothing in the framework of Chapter 5 says
that it is. In fact, the major considerations of Chapters 3–6 indicate that exchange-
ability may be inappropriate for most networks applications. As the previous chapter
makes clear, vertex exchangeability entails an implicit assumption of a homogeneous
population and representative vertex sampling, neither of which is accurate for many
networks of current interest. And yet, exchangeability is a prominent theme through-
out the rest of this chapter and the next four.

Exchangeability is not necessary for coherent network modeling. But as a practi-
cal matter the symmetry induced by exchangeability, or any other suitable invariance
principle, is often needed to make statistical inference tractable and/or interpretable.
As mentioned earlier, exchangeability establishes the link between observed and un-
observed parts of the network being studied, in effect articulating how the data is
representative of the population and, thus, on what grounds inferences beyond the
sample can be justified. So rather than contemplating whether exchangeability is
essential to statistical modeling, we are better served by recalling the purpose of ex-
changeability for statistical inference, and whether the notion of exchangeability as-
sociated to graphon models serves this purpose. When dealing with networks that are
known to be sparse and/or have power law degree distribution, vertex exchangeabil-
ity clearly does not serve its intended purpose, and therefore must not be essential.
But since the observation mechanism for most network data is such that the observed
vertices are non-representative of the population of all vertices, the implicit context
of vertex exchangeable models can be ruled out even without consideration of any
known empirical properties.

If we dispense with vertex exchangeability, then what will replace it? The next
several chapters present some possibilities, and establish that exchangeability is com-
patible with criteria (ii)–(iv), if thought about from the right perspective.

7.2 Sparse graphon models

One of the earliest attempts to get beyond the aforementioned limitations of graphons
appeared in the work of Bickel and Chen [19]. Recall that a compatible family of
finite graphs (Yn)n≥1 (i.e., Yn |[m] = Ym for all m ≤ n) can be regarded as the finite
restrictions of a single process for an infinite graph Y = (Yi j)i, j≥1 by defining Yn =
Y |[n] for each n ≥ 1. With this representation, the edge density of (Yn)n≥1 from the
graphon construction in (6.13) satisfies

lim
n→∞

1
n(n−1) ∑

1≤i6= j≤n
Yi j =

∫ 1

0

∫ 1

0
φ(u,v) du dv with probability 1. (7.1)

This limit equals 0 and (Yn)n≥1 is sparse if and only if each Yn is empty (i.e., has no
edges) with probability 1, and any such ‘sparse’ network corresponds to the vertex
exchangeable model parameterized by the trivial 0-graphon; see Exercise 6.7.

With this observation, Bickel and Chen [19, p. 21069] proposed to decompose
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φ(−,−) into the product of its expected edge density

ε(φ) = Pr(Y12 = 1;φ) =
∫ 1

0

∫ 1

0
φ(u,v) du dv

and the conditional density w(u,v) = φ(u,v)/ε(φ) of the latent variables (U1,U2)
given that there is an edge between vertices 1 and 2. Bickel and Chen suggested that
the decomposition

φ(u,v) = ε(φ)w(u,v), 0≤ u,v≤ 1,

be interpreted as a “decoupling” of the expected degree of each vertex in Yn =
(Yi j)1≤i, j≤n,

E(degYn
(i)) = E

(
∑
j 6=i

Yi j

)
= (n−1)ε(φ) ∝ ε(φ),

and the so-called “inhomogeneity structure” captured by the conditional density
w(u,v). The rationale underlying Bickel and Chen’s approach is summarized in a
single sentence,

“It is natural to let ε(φ) depend on n but w(·, ·) to be fixed” [19].2

In allowing ε(φ) to depend on n while holding w(u,v) fixed, Bickel and Chen in
effect propose to construct each finite graph Yn according to a φn-process, for a
family of graphons (φn)n≥1 defined by

φn(u,v) = ρ
−1
n w(u,v), 0≤ u,v≤ 1, (7.2)

where ρ−1
n = ε(φn) is the expected edge density. The most direct way to accomplish

this is by fixing a graphon φ : [0,1]× [0,1]→ [0,1] and letting (ρn)n≥1 be a sequence
for which ρn→ ∞ and

lim
n→∞

ρ
−1
n

∫ 1

0

∫ 1

0
φ(u,v) du dv = 0. (7.3)

Now, for Yn = (Y (n)
i j )1≤i, j≤n distributed according to a φn-process, for each n ≥ 1,

the analog to (7.1) is given by

lim
n→∞

1
n(n−1) ∑

1≤i6= j≤n
Y (n)

i j = lim
n→∞

∫ 1

0

∫ 1

0
φn(u,v) du dv with probability 1

= lim
n→∞

ρ
−1
n

∫ 1

0

∫ 1

0
φ(u,v) du dv

= 0,

implying that the sequence of φn-processes (Yn)n≥1 generated under these condi-
tions is sparse. Notice that the incoherent model in Section 5.2 has this form with
φ(−,−)≡ θ and ρn = n.

2I write ‘ε(φ)’ in place of Bickel and Chen’s notation ‘ρ’ for consistency with the rest of this text.
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Exercise 7.1 Take a moment to think about what exactly this model describes, how
the ‘decoupling’ in (7.2) can be seen as ‘natural’, and how the resulting sparsity
property might be interpreted in light of a real application.

In the paradigm of Chapter 5, the Bickel–Chen model takes

Mn = {ρ−1
n φ | φ : [0,1]× [0,1]→ [0,1], ρn→ ∞ and satisfies (7.3)}, (7.4)

for each n≥ 1. If each Yn is modeled by Mn, it is apparent that the sequence (Yn)n≥1
will be sparse with probability 1, in the sense of Lovász–Szegedy convergence of
graph sequences (Section 6.5.3). But for the purpose of inference this model con-
veys no relationship among observations of different sizes. In particular, the Bickel–
Chen model does not specify a context within which the family {Mn}n≥1 is to be
interpreted. Furthermore, the models Mn for different n cannot be interpreted coher-
ently under the standard selection sampling context. So while the statement about the
limit of edge densities for (Yn)n≥1 is valid mathematically, the construction of each
Yn from separate φn-processes, without any logical connection between them as n
varies, raises questions as to what is actually being modeled and, furthermore, how
inferences from such a model are to be interpreted. Thus, overall the Bickel–Chen
and related sparse graphon approaches achieve sparsity but at the expense of other
properties necessary to make the resulting models useful for statistical inference.

It is also notable that while Bickel and Chen’s approach does, in some limited
sense, provide a remedy for the fact that φ -processes produce dense graphs, the ho-
mogeneity inherent to φ -processes leaves many more ‘complex’ features of network
data, such as heavy-tailed degree distributions, beyond its reach. The same coherence
issues and homogeneity properties are present in the general family of Lp graphon
models, e.g., [25], which came about after Bickel and Chen’s initial proposal.

As this discussion indicates, the importance of consistency under subsampling,
even the special case of consistency under selection, has been downplayed in
the mathematical statistics literature on networks, and still coherence seems to be
poorly understood. This trend has begun to change more recently, as several authors
[52, 54, 128, 138] have emphasized the need for compatibility between sample and
population in statistical network models. This renewed emphasis has led to a couple
of new ideas. One of these is Caron and Fox’s proposal to model networks using com-
pletely random measures and exchangeable point processes. The other is Crane and
Dempsey’s edge exchangeable framework for modeling interaction networks. Both
approaches get beyond previous limitations of graphons and vertex exchangeability
by representing networks as something other than a graph with labeled vertices, in
the spirit of Section 1.2. I discuss the Caron–Fox approach in the next section and
the Crane–Dempsey framework in Chapters 9 and 10.

7.3 Completely random measures and graphex models

Caron and Fox [31, 32] propose to expand the graphon framework in a way that
overcomes the limitations highlighted in Sections 6.5 and 7.1. Instead of modeling
network data as a random graph whose distribution is parameterized by a graphon
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φ : [0,1]× [0,1]→ [0,1] (as in Section 6.4.2), they propose to represent a network
as an exchangeable point process in the plane [0,∞)× [0,∞) whose distribution is
parameterized by a so-called graphex [147]. Because it draws on ideas from the the-
ory of point processes and completely random measures, Caron and Fox’s approach
takes us outside the usual realm of network modeling. As such a departure from con-
vention is needed in order to surmount the limitations of the standard paradigm, it is
worth describing their construction in some detail.

Before beginning, I note that the authors have promoted their model’s ability to
replicate sparsity and power law degree distribution as its main selling point [31, 32].
But while accounting for sparsity and power law is a positive feature, especially in
light of the concerns voiced throughout Section 7.1, the value of the Caron–Fox
approach to the foundations of network analysis will ultimately be determined by
whether and how it allows us to ‘see’ things that we couldn’t see before; refer to
Sections 1.2–1.3 for more on this point. With this in mind, I focus here on the new
perspective provided by this approach and refer the reader to [31, 32] and related
work for more details on empirical properties of the model.

Among the main questions to ponder while digesting the upcoming model con-
struction are:
1. Is the representation of networks as point processes a natural way to think about

network data or is it an artificial mathematical abstraction? Under what circum-
stances is it the former? Under what circumstances is it the latter?

2. What implications (good or bad) does this representation have for practical appli-
cations?

3. How are the generating dynamics of this family of processes related to the way
in which real networks form? In particular, does the interpretation in terms of ‘p-
sampling’ (Section 7.3.7) align with the context in which real-world networks are
observed?

These questions point to one drawback of the Caron–Fox model: there is currently
no clearcut motivating example for the exchangeable point process representation of
network data. To date, the primary focus of study, e.g., [23, 24, 31, 32, 33, 147, 148],
has been on theory, without much attention to any realistic context in which the
theory could be applied. To better motivate this model class, I first describe a practical
scenario for which it could be natural. See [47] for further discussion of the above
questions about the Caron–Fox model.

7.3.1 Scenario: Formation of Facebook friendships

Consider a social media platform, e.g., Facebook, on which users are related to one
another through their ‘friendships’ (i.e., two users who agree to be ‘friends’ are able
to access each others’ posts on the site, post content on each others’ profile, etc.). In
addition to observing whether two users are friends, suppose we also observe the time
t at which each user joined the social media site. One way to summarize this data is
as a pair (x,y), where x = (xi)1≤i≤n records the times at which each of the observed
vertices (labeled 1, . . . ,n) joined the site and y = (yi j)1≤i, j≤n records the presence
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(yi j = 1) or absence (yi j = 0) of a friendship between vertices labeled i and j. The
data can be alternatively represented as a subset Y ⊆ [0,∞)× [0,∞), where (t, t ′)∈Y
indicates a friendship between two users, one who opened an account at time t and
another at time t ′. The following model class is geared toward data represented in
this latter form.

7.3.2 Network representation

The discussion of vertex exchangeable models throughout Chapter 6 and Section 7.2
reveals a few limitations of the networks-as-graphs mindset (Section 1.2). A first
step toward overcoming these limitations is to represent the data in such a way that
vertex exchangeability is no longer the predominant or default invariance principle
for network analysis. Caron and Fox achieve this by representing a network as a point
pattern in R2

+ = [0,∞)× [0,∞) instead of as a {0,1}-valued array.
A point pattern in R2

+ is a (symmetric) subset y ⊆ [0,∞)× [0,∞).3 Sometimes it
is convenient to represent y equivalently as a measure which assigns a positive real
number to every (measurable) subset of [0,∞)× [0,∞) by

y(A) = |{a ∈ A : a ∈ y}|, A⊆ [0,∞)× [0,∞), (7.5)

where |S| denotes the cardinality of S ⊆ [0,∞)× [0,∞). Defined in this way, y(A)
counts the number of points in y that are also in A. Since the point pattern y⊆ [0,∞)×
[0,∞) and the associated measure (7.5) are equivalent, we use the same notation y to
refer to both, often without explicit mention of which interpretation we prefer.

Exercise 7.2 Show that the representation of y as a subset of [0,∞)× [0,∞) and as
a measure y(·) in (7.5) are equivalent.

Note a key distinction between the point process representation and the more
conventional representation of a network as a {0,1}-valued array (yi j)i, j≥1. In the
traditional representation, every index i= 1,2, . . . corresponds to a vertex. As a result,
the network representation (yi j)i, j≥1 records the presence/absence of every possible
edge in the network through yi j. In the point process representation, however, [0,∞)
is a set of potential vertex labels, in the sense that if

{(t,s) ∈ y : 0≤ s < ∞}= /0

for some t ≥ 0, i.e., there is no edge in y involving a vertex labeled by t, then there
might as well be no vertex corresponding to t. In other words, the set y contains
only those edges that are present, without any record of absent edges or vertices.
In the scenario of Section 7.3.1, for example, a Facebook account that is created at
time t but which never interacts with another account via ‘friendship’ is not treated

3Symmetry, i.e., (x,x′) ∈ y if and only if (x′,x) ∈ y, is not required, but we assume it here to most
closely mirror the presentation in [32, 147] and elsewhere. The asymmetric case, for representing di-
rected networks, is analogous and can be treated without issue. The setup also allows for multigraphs and
weighted graphs, by associating each point (x,x′) ∈ y to a positive weight. I defer to [31, Section 3] for a
discussion of these alternatives.
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as part of the ‘Facebook network’ in the point process representation. Similar to the
forthcoming discussion of edge exchangeable models (Chapter 9), this aspect of the
point process representation seems to better align with the concept of ‘network’,
which naturally invokes the notion of interaction/connectivity in a way that is not
captured by more traditional graphical representations.

7.3.3 Interpretation of vertex labels

For representing network data, the point pattern y ⊆ [0,∞)× [0,∞) is interpreted as
a set of edges with vertices corresponding to points in [0,∞) and the occurrence of
(t, t ′) ∈ y interpreted to mean that there is an edge between the vertices labeled t and
t ′. Caron and Fox [31, Section 3.5] suggest to interpret the vertex labels as the “time
at which a potential node enters the network and has the opportunity to link with
other existing nodes.” In concrete scenarios, e.g., Section 7.3.1, it seems difficult to
articulate the concept of a ‘potential node’, and so we instead interpret the label t > 0
assigned to a vertex as the time at which that vertex first enters the system.

When adopting this interpretation, the reader must be careful not to interpret the
vertex labels as the ‘times’ at which each vertex first appears in the observed net-
work. Instead, the label t assigned to a vertex is better understood as the time at
which that vertex is ‘born’ into the system, and thus the first time at which the ver-
tex could appear in the network. A vertex does not appear in the network until it
interacts with another vertex. Note well the distinction between the ‘network’, i.e.,
interactions/relationships among vertices, and the ‘system’, i.e., the platform/setting
in which the network is formed. In the scenario of Section 7.3.1, for example, the
‘Facebook network’ is comprised of ‘friendships’ between users on the social me-
dia platform called ‘Facebook’. Each vertex label is the time at which a Facebook
account was created, regardless of whether the user initiated any friendships at that
time. This distinction is important when interpreting the forthcoming sampling oper-
ation associated to the Caron–Fox model.

Following the discussion about statistical units in Section 3.7, ‘time’ is the im-
plicit unit of observation for networks represented as point processes. In this case, a
sample of size t is an observation of the process for t units of time, and we can think
of Y ⊆ [0,∞)× [0,∞) as the result of a temporally evolving sequence (Yt)t≥0 with
each Yt determined by edges between vertices that arrive before time t,

Yt = Y∩[0, t]2, t ≥ 0.

The restriction Y∩[s, t)2, for s ≤ t, is the set of edges between only those vertices
which arrived between times s and t.

Although many real-world networks evolve over time, it is rare in practice to
observe the complete temporal evolution of the network, as we have assumed in
Section 7.3.1. More often, the temporal structure in Y is observed only as a {0,1}-
valued array X = (Xi j)i, j≥1 with

Xi j =

{
1, (θi,θ j) ∈ Y,
0, otherwise, (7.6)
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for θ1,θ2, . . . ∈ [0,∞) denoting the arrival times of vertices in the point process. In
particular, even if the time t and the relative ordering of vertex arrivals are known,
it is rare to also observe the times 0 < θ1 < · · ·< θnt < t at which observed vertices
first appeared in the system. So while the representation as a point process Y gives
the clearest interpretation of the forthcoming model, with ‘time’ as the natural unit
of observation and exchangeability interpreted as invariance with respect to observa-
tions over a given length of time, this interpretation becomes muddled when passing
to the coarser structure X in (7.6).

Another intermediate possibility occurs if the time t is observed, but the arrival
times of specific vertices are not. In this case, the data could be represented by the
equivalence class of all point processes Y′ ⊆ [0, t]× [0, t] that are compatible with
the observed edge pattern. In particular, for any y ⊆ [0, t]× [0, t], let X(y) denote
its induced {0,1}-valued array as in (7.6). For a time t > 0 and a pattern of edges
represented as a {0,1}-valued array x, define its equivalence class of point processes
by

x̃ = {y ⊆ [0, t]× [0, t] | X(y) = x}. (7.7)

For any point process Yt ⊆ [0, t]× [0, t], the distribution of its associated equivalence
class X̃t , for Xt as in (7.6) and X̃t as in (7.7), is induced by the distribution of Yt , as
in

Pr(X̃t = x̃) = Pr(Yt ∈ {y ⊆ [0, t]× [0, t] | X(y) = x}).

I do not consider this intermediate case any further below. See [147, 148] for fur-
ther discussion about how to make sense of the real-valued sample size t > 0 for the
{0,1}-valued representation Xt associated to Yt = Y∩[0, t]2 via (7.6). The distinc-
tion between the point process Y and the associated ‘graphical representation’ X is
especially important when interpreting exchangeability of the point process Y in the
context of X.

7.3.4 Exchangeable point process models

Following the terminology of Kallenberg [98, Chapter 9], a point process Y ⊆
[0,∞)× [0,∞) is called exchangeable if its distribution is invariant under the joint
action on [0,∞)× [0,∞) by Lebesgue measure-preserving transformations of [0,∞).
To be precise, a function T : [0,∞)→ [0,∞) is called a Lebesgue measure-preserving
transformation of [0,∞) if ∫

A
dx =

∫
T−1(A)

dx (7.8)

for all Borel measurable subsets A ⊆ [0,∞). For any such T : [0,∞)→ [0,∞), we
write T ◦Y ≡ YT for the transformation of Y under T given by

(T (x),T (x′)) ∈ YT if and only if (x,x′) ∈ Y . (7.9)

(In words, YT is the point process obtained from Y by transforming [0,∞) according
to T .) Then Y is exchangeable if and only if

YT =D Y for all T : [0,∞)→ [0,∞) satisfying (7.8). (7.10)
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With the interpretation of the vertex labels as ‘arrival times’ from Section 7.3.3,
the ‘exchangeability’ condition in (7.10) means that every observation of the net-
work over a time period of length t ≥ 0 is representative of every other observation
of the network over a period of length t; in particular, Yt is representative of any
other observation Y∩(S×S), for S ⊆ [0,∞) with Lebesgue measure t. With this un-
derstanding of exchangeability, it is important to realize that the ‘graph structure’
associated to an exchangeable point process Y through (7.6) is not exchangeable in
the sense of Chapter 6. In particular, let Y ⊆ [0,∞)× [0,∞) be an exchangeable point
process with vertices labeled 0 < θ1 < θ2 < · · · . Then X defined in (7.6) does not
satisfy

Xσ =D X for all permutations σ : N→ N .

Exercise 7.3 Explain the intuition for why X is not exchangeable. (Hint: Think of
the interpretation of vertex labels as arrival times.)

7.3.5 Oxymoron: ‘Sparse exchangeable graphs’

The definition of exchangeability (for point processes) in (7.10) should not be con-
flated with the conventional definition of exchangeability (for graphs) in (6.2). And
yet that is exactly what results from the use of ‘exchangeable’ to describe point pro-
cesses, as in (7.10), and the oxymoronic term ‘sparse exchangeable graphs’ employed
by some authors, e.g., in the titles of [23, 24]. Whereas exchangeability of a graph
facilitates an intuitive interpretation as ‘invariance under relabeling’, exchangeability
of a point process does not. In the point process representation, the set [0,∞) does
not merely label distinct vertices; it also corresponds to the ‘times’ at which ver-
tices arrive. In this way, the labeling set not only contains points but also possesses
topological structure, and the ‘exchangeability’ condition in (7.10) is defined as an
invariance with respect to only those transformations which preserve this structure
(by preserving Lebesgue measure).

This distinction does not come across clearly in [32, Section 5.1], where ex-
changeability of Y is described as “invariance to the time of arrival of the nodes.”
(Recall that ‘time’ not only labels the vertices but also quantifies the duration over
which the process has been observed.) Even more confusion results from the term
“sparse exchangeable graphs,” which conflates exchangeability of the point process
in (7.10) with sparsity of the graph induced by the point process through (7.6). The
trouble with this overloaded terminology is that graphs invoke their own notion of
exchangeability, as in (6.2), which is distinct from exchangeability of the point pro-
cess (7.10). It is both more accurate and more honest to instead regard the graphex
model as the “class of random graphs arising from exchangeable random measures,”
as in the title of [147].

Instead of using ‘exchangeability’ to describe point processes satisfying (7.10), a
better term would have been ‘stationarity’ with respect to time since, from condition
(7.10), the process is not invariant with respect to rearrangements of arrival times (as
the term ‘exchangeability’ suggests) but rather is ‘stationary’ with respect to observ-
ing the network over equal durations of time. The distinction should be clear from
Exercise 7.3. I discuss this interpretation further in Section 7.3.7.
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7.3.6 Graphex representation

Since the connection between the point process Y and {0,1}-valued array X in (7.6)
is valid irrespective of exchangeability, we are left asking what statistical signifi-
cance, if any, the condition (7.10) adds beyond the potential computational benefits
mentioned in [32]? In particular, what additional assumptions does exchangeabil-
ity (condition (7.10)) impose on the structure of Y, and thus also on the array X it
induces? On this latter point, Veitch and Roy [147] adapt a theorem of Kallenberg
[97] to obtain a generic graphex representation for random graphs associated to ex-
changeable random measures via (7.6). Because this connection is a bit technical,
and not essential to our broader discussion, I discuss it only briefly here, and leave
the details to [147].

Following [147], we define a graphex as a triple (I,S,W ) with I ∈ [0,∞), S :
[0,∞)→ [0,∞) an integrable function, and W : [0,∞)× [0,∞)→ [0,1] a symmet-
ric measurable function satisfying some integrability conditions.4 Let Θ ⊆ [0,∞)2,
Ξi ⊆ [0,∞)2 for each i ≥ 1, and R ⊆ [0,∞)3 be independent unit rate Poisson point
processes on their respective spaces. Writing Θ = {(θ j,ϑ j)} j≥1, Ξi = {(σi j,χi j)} j≥1
for each i ≥ 1, and R = {(ρk,ρ

′
k,ηk)}k≥1, we construct a random measure Y∗(·) on

[0,∞)× [0,∞) by choosing a graphex (I,S,W ) at random and, given (I,S,W ), Θ,
{Ξi}i≥1, and R, putting

Y∗(·) = ∑
i, j

1(W (ϑi,ϑ j)≤ ζ{i, j})δθi,θ j(·)+ (7.11)

+∑
j,k

1(χ jk ≤ S(ϑ j))(δθ j ,σ jk(·)+δσ jk,θ j(·))+ (7.12)

+∑
k

1(ηk ≤ I)(δρk,ρ
′
k
(·)+δρ ′k,ρk

(·)), (7.13)

where {ζ{i, j}} is an independent family of Uniform[0,1] random variables and δx,x′(·)
is the Dirac point mass at (x,x′) for each x,x′ ∈ [0,∞),

δx,x′(A) =
{

1, (x,x′) ∈ A,
0, otherwise.

The three components of the graphex representation (7.11), (7.12), and (7.13)
decompose the structure of networks distributed according to these models according
to three edge types:
1. The component in (7.11) is closely related to the graphon representation in (6.13).

For random W and (θi,ϑi),(θ j,ϑ j) ∈ Θ, the edge (θi,θ j) appears in Y∗ with
probability

Pr(W (ϑi,ϑ j)≤ ζ{i, j}).

2. The component in (7.12) describes isolated ‘stars’ in Y∗. For random S and
(θ j,ϑ j) ∈ Θ for each j ≥ 1, the Poisson point process {σ jk}k≥1 ⊆ [0,∞) cor-
responds to a family of vertices for which each edge (θ j,σ jk), for k ≥ 1, appears

4See [147] for a complete statement of the required technical conditions.
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with probability
Pr(χ jk ≤ S(ϑ j)).

Since the Poisson processes Θ and Ξ j are independent for all j ≥ 1, the sets
{θ j} j≥1 and {σ jk}k≥1, j ≥ 1, are non-overlapping with probability 1, and thus
the vertices corresponding to {θ j} are distinct from those in each {σ jk} with
probability 1. As a result, each σ jk can appear in at most one edge of Y∗, namely
(θ j,σ jk) (and (σ jk,θ j) by the enforced symmetry in (7.12)). Altogether, these
potential edges (θ j,σ jk) and (σ jk,θ j), k ≥ 1, result in a ‘star’ between θ j and
infinitely many (otherwise isolated) vertices.

3. Finally, component (7.13) describes isolated edges, i.e., edges between two ver-
tices which are otherwise isolated in Y∗. For random I, there is an edge between
the pair (ρk,ρ

′
k), k ≥ 1, from the point process R with probability

Pr(ηk ≤ I).

Once again, because the point processes are independent, the points {ρk}∪{ρ ′k}
are disjoint from both {θ j} and {σ jk}, j ≥ 1, with probability 1. Therefore, each
ρk and ρ ′k has exactly one opportunity to appear in Y∗, through the edge (ρk,ρ

′
k)

(and (ρ ′k,ρk) by symmetry), forcing any such edge to be isolated whenever it
appears.

This decomposition of edge types for graphex models mirrors a common structure of
exchangeability. In Section 9.5, we observe similar behavior for edge exchangeable
models.

7.3.7 Sampling context

The distinction between the point process Y and its associated array X in (7.6) is
especially relevant for understanding the sampling context of Caron–Fox models.
When treated as a point process, the role of ordinary vertex selection for graphs, as
in (3.6), is played by t-selection St , which I define here as the action in (7.9) induced
by the inclusion map it : [0, t]→ [0,∞), u 7→ u, i.e.,

St Y = it ◦Y = Y∩[0, t]2, t ≥ 0. (7.14)

For s ≤ t, the inclusion is,t : [0,s]→ [0, t], u 7→ u, induces the projection Ss,t from
point processes on [0, t]2 to point processes on [0,s]2 by

Ss,t Yt = is,t ◦Yt = Yt ∩[0,s]2. (7.15)

With each Mt defined as the set of all distributions of point processes St Y ⊆
[0, t]2 obtained by t-selection from an exchangeable point process Y on [0,∞)×
[0,∞), and with Ss,t defined as the selection map in (7.15), I define the projective
Caron–Fox model by ({Mt}t≥0,{Ss,t}t≥s≥0); see (7.16) for a more general definition
of what I mean here by Caron–Fox model.5 The generating mechanism determined

5Here I define the projective Caron–Fox model as ({Mt}t≥0,{Ss,t}t≥s≥0), where each Mt consists of
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by the exchangeable point process construction via the graphex characterization in
(7.11)–(7.13) automatically makes the projective Caron–Fox model coherent in the
sense of Definition 5.2.

To generalize the above setup, we define a t-sampling map for any t ≥ 0 as a
Lebesgue measure-preserving injection Tt : [0, t]→ [0,∞) and let Tt denote the set
of all such t-sampling maps. By analogy to Section 3.9, recall the definition of ψ-
selection Sψ

m,n : {0,1}n×n→ {0,1}m×m as the sampling operation induced by an in-
jection ψ : [m]→ [n]. With a network represented as a {0,1}-valued array of size
n, ψ-selection corresponds to sampling a network by selecting m units from n ac-
cording to ψ . In the present setting with a network represented as a point process
in [0,∞)× [0,∞) and the sampling unit given by ‘time’, t-sampling corresponds to
observing a network for a sample of size t, where the ‘sample size’ of t is ensured
by the fact that Tt preserves the Lebesgue measure of [0, t]. Exchangeability (7.10)
implies that all observations of Y over a time period of length t are representative
of one another. In particular, what is representative for the network determined by Y
is not the sample of ‘vertices’ in a given observed network but rather the pattern of
edges that is observed among the vertices that appear within any time span of length
t.

For the remainder of this chapter, I define a Caron–Fox model as a network model
({Mt}t≥0,{Σs,t}t≥s≥0) for which {Σs,t}t≥s≥0 is any (random) sampling context and
each Mt , t ≥ 0, is the set of distributions induced by t-selection from an exchange-
able point process on [0,∞)× [0,∞). To be precise, we define Ts,t as the set of all
Lebesgue measure-preserving injections [0,s]→ [0, t], and regard Σs,t as the sampling
operation induced by putting Σs,t = Ts,t ◦Yt for Yt ⊆ [0, t]× [0, t] and Ts,t chosen ran-
domly from Ts,t . The candidate distributions {Mt}t≥0 in any Caron–Fox model can
be defined deductively by letting M consist of all distributions for exchangeable
point processes on [0,∞)× [0,∞) and for each t ≥ 0 defining Mt as the St -induced
model as in (5.6), i.e.,

Mt = {St P : P ∈M }, t ≥ 0, (7.16)

where St P is the distribution of St Y for Y∼P. The ‘projective’ version of this model
studied in [31, 32] corresponds to the sampling context with each Σs,t deterministic
at Ss,t . The next exercise and following two problems concern Caron–Fox models
under more general sampling contexts.

Exercise 7.4 By construction, it is immediate that the projective Caron–Fox
model is coherent in the sense of Definition 5.2. Prove that a Caron–Fox model
({Mt}t≥0,{Σs,t}t≥s≥0) is coherent under any sampling context {Σs,t}t≥s≥0 such that
Σs,t is independent of Yt for each t ≥ s≥ 0.

Exercise 7.4 suggests that the main results of [32] can be expanded to any sam-
pling context {Σs,t}t≥s≥0 for which the random sampling operation Σs,t is indepen-
dent of the underlying point process for every t ≥ s ≥ 0. But just as we considered

all point processes on [0, t]× [0, t] obtained by restriction of an exchangeable point process on [0,∞)×
[0,∞) via t-selection. Though the Caron–Fox model was not formally defined in this way by the original
authors [32], I believe that my interpretation, with the assumed selection sampling context {Ss,t}t≥s≥0, is
consistent with the implicit context adopted in [32] and in follow-up work by other authors, e.g., [23, 147].
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the possibility that a random sampling mechanism Σm,n for {0,1}-valued arrays can
depend on the structure of the network being sampled, e.g., by edge sampling, path
sampling, or snowball sampling as in Sections 3.6 and 3.9, we can consider the pos-
sibility that a random t-sampling map is chosen in a way that depends on the point
pattern Y ⊆ [0,∞)× [0,∞).

Research Problem 7.1 Relating back to Problem 6.4, is it true that a Caron–Fox
model ({Mt}t≥0,{Σs,t}t≥s≥0) is coherent, in the sense of Definition 5.2, only if its
sampling context is independent of the underlying point process?

Research Problem 7.2 Extend the above discussion of the Caron–Fox model to
sampling contexts {Σs,t}t≥s≥0 for which each Σs,t is allowed to depend on the un-
derlying point process. For example, what can be said about the empirical properties
of Σs,t Yt , s ≤ t, when Yt = St Y for an exchangeable point process Y and Σs,t is
some random sampling operation that depends on Yt? For this problem, it is best to
start with a specific choice of Σs,t , though as of now it is not clear what a natural
choice would be. For a given choice of Σs,t , how do the distributional properties of
Σs,t Yt compare to those of Ss,t Yt?

p-sampling

To see how exchangeability of Y and its associated sampling interpretation affects
the model for the induced array X given in (7.6), we appeal to the construction of
exchangeable random measures by independent unit rate Poisson point processes Θ,
{Ξi}i≥1, for i ≥ 1, and R. (See the discussion surrounding (7.11), (7.12), and (7.13)
and associated definition of Θ, Ξ, and R.) The superposition and thinning properties
of Poisson processes permits the forthcoming p-sampling interpretation.
• The superposition property of Poisson processes says that independent Poisson

point processes can be combined (i.e., ‘superimposed’ on one another) to form
a new Poisson point process whose intensity measure is the sum of the previous
two. More precisely, let Λ and Λ′ be independent Poisson point processes with
respective intensity measures λ and λ ′ on a common space X . With Λ and Λ′

represented as random measures as in (7.5), the process Λ∗ defined by

Λ
∗(A) = Λ(A)+Λ

′(A), A⊆X ,

is also a Poisson point process on X with intensity measure λ +λ ′.
• The thinning property of Poisson processes says that a Poisson process Λ with

intensity λ can be ‘thinned out’ according to an independent process of Bernoulli
coin flips with success probability p, resulting in a Poisson process with intensity
pλ . More precisely, let Λ⊆X be a Poisson point process with intensity λ and let
p ∈ [0,1]. Given Λ, construct Λp ⊆X by tossing a p-coin (i.e., a weighted coin
with probability p of heads and 1− p of tails) independently for each x ∈ Λ. If
the coin toss associated to x lands heads, then include x in Λp; otherwise, exclude
x from Λp. The resulting point pattern Λp ⊆ Λ is a subset of Λ (i.e., a ‘thinned
out version’ of Λ according to the coin toss process). This thinned process is a
Poisson process with intensity measure pλ .
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In light of the above two properties and the construction of Y from indepen-
dent Poisson processes Θ, {Ξi}i≥1, and R, Veitch and Roy [148] derive the fol-
lowing ‘p-sampling’ interpretation for the array X associated to Y. First, for any
probability measure τ on Tt and Xt corresponding to the array (7.6) obtained from
Yt = Y∩[0, t]2, let Xτ

t = (Xτ
i j) denote the array given by

Xτ
i j =

{
1, (θi,θ j) ∈ Tt ◦Y,
0, otherwise,

for Tt ∼ τ . By the exchangeability condition for Y in (7.10), Tt ◦Y=D Yt for any
(fixed) measure preserving transformation Tt : [0, t]→ [0,∞). Thus, for s≤ t we also
have Ts,t ◦Yt =D Ys for any (fixed) measure preserving Ts,t : [0,s]→ [0, t]. Given that
there are nt vertices in Xt , their associated locations θ1, . . . ,θnt in Yt are conditionally
uniformly distributed in the interval [0, t] (by standard theory of Poisson processes);
whence, by the graphex representation (7.11)–(7.13), there is conditional probability
s/t that each vertex represented in Xt also appears in Xs. This suggests the following
notion of p-sampling for the induced process (Xt)t≥0 of edge sets.

Given the projective Caron–Fox model ({Mt}t≥0,{Ss,t}t≥s≥0) for Y = (Yt)t≥0,
each Mt induces a model M ′

t for Xt through the relationship in (7.6). Since the ver-
tices of Y are labeled by the atoms of independent unit rate Poisson processes on
[0,∞), the selection sampling operations Ss,t in ({Mt}t≥0,{Ss,t}t≥s≥0) translate for
{M ′

t }t≥0 to a sampling context Σ′s,t defined by thinning by a Bernoulli process with
success probability s/t, for each t ≥ s ≥ 0. Specifically, let Xt be the {0,1}-valued
array associated to Yt through (7.6) and write 1, . . . ,nt to denote the vertex labels of
Xt . Then for t ≥ s ≥ 0, define Σ′s,t by sampling a random subset A ⊆ {1, . . . ,nt}
which includes each i = 1, . . . ,nt in A independently with probability s/t. Given
A= {a1 < · · ·< ak}, define ψ : [k]→ [nt ] by ψ(i) = ai and put Σ′s,t Xt = Sψ

k,nt
Xt =Xψ

t
as defined in (3.17). By the thinning property of Poisson processes and the graphex
construction of the projective Caron–Fox model, Σ′s,t Xt =D Xs for all t ≥ s≥ 0, prov-
ing that the induced model ({M ′

t }t≥0,{Σ′s,t}t≥s≥0) is coherent in the p-sampling con-
text. The above p-sampling interpretation was first observed and studied in [148],
to which the reader is referred for further details. The interpretation in terms of p-
sampling, however, raises concerns over the practical viability of graphex models, cf.
the discussion in Section 6.2 and [47].

7.3.8 Further discussion

The construction of graphex models in [31, 147] suggests a number of extensions
and modifications. I refer the reader to [23, 33, 129, 145, 148] for some ongoing
work in this direction. As these references suggest, most of the present interest in
graphex models is confined to a segment of the Bayesian nonparametrics literature
and seems to be focused primarily on mathematical theory. The lack of a clearly
articulated motivating example for the point process representation and implicit p-
sampling context remains a major conceptual obstacle to the implementation of this
model in applications. For some other pressing questions about this class of models,



VARIANTS OF INVARIANCE 127

the reader is referred to [47]. In Section 8.7 I suggest an extension of the Caron–
Fox model to account for ‘relative invariance’ with respect to a non-uniform base
measure on [0,∞).

Research Problem 7.3 So far the Caron–Fox model has been defined for point pro-
cesses in [0,∞)2. But in light of upcoming discussions about multiway interactions, as
in Chapter 10, it seems worthwhile to consider extensions of this approach for mod-
eling networks in which more than two vertices can participate in any given edge.
Directly analogous to the representation by point processes in [0,∞)2 in the preced-
ing section, such hypergraphs could be represented by a point process in∪d≥1[0,∞)d ,
with a d-ary interaction represented as a point in [0,∞)d . Many aspects of this ex-
tension, including its associated graphex representation, are likely to be a straight-
forward generalization of the 2-dimensional case, but this extension has not yet been
studied in any detail.

7.4 Variants of invariance

Each of the next three chapters covers a different invariance principle for network
analysis: relative exchangeability (Chapter 8), edge exchangeability (Chapter 9), and
relational exchangeability (Chapter 10). I provide a brief synopsis of each concept
here.

7.4.1 Relatively exchangeable models (Chapter 8)

Even before noticing the coherence issues of the sparse graphon proposal in Sec-
tion 7.2, we notice that in many applications the population is known to be het-
erogeneous in a way that cannot be immediately accounted for by the graphon or
graphex approach. The most straightforward instance of such heterogeneity occurs
when the vertices cluster into disjoint communities. In the stochastic blockmodel
(SBM) [89], for example, the vertices partition into nonoverlapping communities (or
blocks) B1,B2, . . ., so that two vertices v,v′, one in block Bi and the other in block
B j, interact with block-dependent probability pi j. The SBM is a special case of the
more general class of relatively exchangeable network models, which emerges from
work by Crane [48] and Crane and Towsner [59] but has not yet been integrated into
statistical network analysis.

7.4.2 Edge exchangeable models (Chapter 9)

From the discussion of network sampling schemes in Chapter 3, it is apparent that
many network datasets are constructed by sampling interactions among a popula-
tion of individuals, e.g., by sampling phone calls from a database. In such a con-
text, the edges are the statistical units and the network data is naturally represented
by an edge-labeled graph instead of as a vertex-labeled graph or its correspond-
ing adjacency array. Edge exchangeable models are suitable for modeling networks
whose sampled edges are representative of a population of interactions. By contrast
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to the vertex exchangeable networks discussed above, the distribution of any edge ex-
changeable network is invariant with respect to relabeling of its edges. In addition to
its straightforward interpretation for modeling interaction networks, edge exchange-
ability can also account for sparsity and power law degree distributions. See Chapter
9 and [54] for more details.

7.4.3 Relationally exchangeable models (Chapter 10)

Relational exchangeability extends edge exchangeability to networks constructed
from a representative sample of arbitrary relations among individuals in a popula-
tion. In the case of edge exchangeability, the relations are pairwise interactions, e.g.,
each phone call is an interaction between a caller-receiver pair. More generally, we
can consider networks constructed by sampling academic articles or emails, in which
case edge exchangeability gives way to hyperedge exchangeability. Or, if studying
the topology of the Internet by sampling the paths traversed when transmitting a mes-
sage between different servers, then the observed network might be exchangeable
with respect to the sampling of these paths, invoking the concept of path exchange-
ability. In the language of Chapter 10, edge, hyperedge, and path exchangeability all
arise as special cases of relational exchangeability.

7.5 Solutions to exercises

7.5.1 Exercise 7.1

Based on Chapters 3–5, I cannot think any application for which this ‘decoupling’
approach would be natural. As stated, the model defines a set of candidate distri-
butions, as in (7.4), for every finite sample size n ≥ 1. These finite sample models
are not coherent with respect to the canonical selection sampling scheme, and the
specification in [19] provides no alternative context in which to interpret this model.
Consequently, it is hard to elicit any realistic scenario in which this model is useful
for statistical inference (in the Boxian sense, Sections 1.1 and 5.4). The reader is
encouraged, however, to suggest a possible justification.

7.5.2 Exercise 7.2

The equivalence between the representation of y as a subset of [0,∞)× [0,∞) and as
a measure y(·) in (7.5) can be seen as follows. Given a subset y ⊆ [0,∞)× [0,∞),
define a measure y(·) just as in (7.5). Conversely, given a point measure y(·) on
[0,∞)× [0,∞), construct a subset y′ ⊆ [0,∞)× [0,∞) by

(x,x′) ∈ y′ if and only if y({(x,x′)}) = 1.

It is clear by construction that the measure y′(·) defined from this subset, as in (7.5),
coincides with the original measure y(·) used to define the set y′, thus proving that
the two representations are equivalent.
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7.5.3 Exercise 7.3

First, since X is constructed in (7.6) from a point process Y that is invariant with
respect to measure-preserving transformations (not permutations), there is no a priori
reason to expect that X is exchangeable in the sense of Chapter 6. Second, by the
interpretation of Y as the point pattern formed by the edges of a network, the vertices
that appear in any given sample from Y, and thus the vertices that index the rows and
columns of the induced adjacency array X in (7.6), consists only of those vertices
which have had at least one interaction within the sampling timeframe. The vertices
represented in X are, therefore, not exchangeable with the vertices that do not appear
in X, and thus we should not expect X to be exchangeable. Finally, by comparing
the theory of vertex exchangeable models and dense graphs (Section 6.5.1) with the
fact that the Caron–Fox model can replicate the properties of sparsity and power law
degree distribution [32], it is immediate that X cannot be exchangeable (in general).
From the opening discussion of Chapter 7 there are zero vertex exchangeable random
graph models for sparse, power law networks.

7.5.4 Exercise 7.4

Let Y ⊆ [0,∞)× [0,∞) be an exchangeable point process with distribution P and, for
t ≥ s > 0, let Yt = St Y and let Σs,t be a random sampling map that is independent of
Yt . By definition, Σs,t Yt = Ts,t ◦Yt for Ts,t chosen randomly from the set Ts,t of all
Lebesgue measure-preserving injections [0,s]→ [0, t]. Thus, for any y ⊆ [0,s]2 and
St P ∈Mt ,

Pr(Σs,t Yt ∈ d y) =
= Pr(Σs,t(St Y) ∈ d y)

=
∫
{y ′⊆[0,t]×[0,t]}

Pr(Σs,t y′ ∈ d y | St Y ∈ d y′)(St P)(d y′)

=
∫
{y ′⊆[0,t]×[0,t]}

Pr(Σs,t y′ ∈ d y)(St P)(d y′)

=
∫
{y ′⊆[0,t]×[0,t]}

∫
Ts,t

1(Ts,t ◦y′ ∈ d y)Σs,t(dTs,t)(St P)(d y′)

=
∫

Ts,t

(∫
{y ′⊆[0,t]×[0,t]}

1(Ts,t ◦y′ ∈ d y)(St P)(d y′)
)

Σs,t(dTs,t)

=
∫

Ts,t

Pr(Ts,t ◦Yt ∈ d y) Σs,t(dTs,t)

=
∫

Ts,t

Pr(Ss,t Yt ∈ d y) Σs,t(dTs,t)

= Pr(Ss,t Yt ∈ d y)
= (Ss P)(d y).
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It follows that the Σs,t -induced model satisfies Σs,tMt = Ss,t Mt for all t ≥ s ≥ 0.
Coherence follows by observing that Ss = Ss,t ◦St and

Ss,t Mt = Ss,t(St M ) = (Ss,t ◦St)M = Ss M = Ms

for all t ≥ s≥ 0.



Chapter 8

Relatively exchangeable models

Few real-world networks are fully homogeneous in the way that vertex exchangeabil-
ity implies. With this in mind, relative exchangeability refines vertex exchangeability
by expressing the distributional symmetries of a network in terms of the symmetries
of another (fixed) structure that is meant to capture the heterogeneity in the pop-
ulation. Here I discuss a generic class of relatively exchangeable network models
which incorporates population heterogeneity into the graphon framework from Chap-
ter 6. The stochastic blockmodel (Section 8.2) is a canonical subclass of relatively
exchangeable models.

In the formal definition of relative exchangeability, Y is a random network (e.g.,
a {0,1}-valued array) and X is a fixed structure encoding the symmetries of Y (e.g.,
a classification of elements, another network, etc.). Y is relatively exchangeable with
respect to X , or X-exchangeable, if

Yσ =D Y for all permutations σ : N→ N for which Xσ = X ,

where Yσ and Xσ are understood as the ‘relabeling’ of Y and X , respectively, accord-
ing to σ . This preliminary definition of relative exchangeability clarifies the sense in
which the exchangeability of Y (i.e., distributional symmetry) can be interpreted as
relative to the underlying population structure X (i.e., automorphisms/symmetries
of the population). (Note well, the version of relative exchangeability specified in
Definitions 8.1 and 8.2 is stronger than the one mentioned above.)

When Y (respectively, X) is a {0,1}-valued array, the relabeling Yσ (resp., Xσ )
is defined as in (6.1). Otherwise, I leave the general definition of relabeling undefined
until it is needed later on. But while I have been imprecise in reference to X here,
it is best to proceed with a vague interpretation of X as ‘generic structure’ on the
population. As the chapter progresses, the various forms that X can take will become
more clear, ultimately resulting in the general formulation of relative exchangeability
given in Section 8.5. The full mathematical details of relative exchangeability are
quite technical and far beyond the scope of this chapter. A more complete treatment
can be found in [3, 58, 59].
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8.1 Scenario: Heterogeneity in social networks

Consider a social network of high school students YN = (Yi j)1≤i, j≤N , with each Yi j
indicating the friendship status of students i and j,

Yi j =

{
1, i regards j as a friend,
0, otherwise.

Along with YN , suppose that each student is classified according to year C : [N]→
{1,2,3,4}, with

C(i) =


1, i is a freshman (first year),
2, i is a sophomore (second year),
3, i is a junior (third year),
4, i is a senior (fourth year).

From this network, suppose that an observation Yn = (Yi j)1≤i, j≤n is obtained by se-
lection sampling, i.e., Yn = Sn,N YN for Sn,N : {0,1}N×N → {0,1}n×n as defined
in (3.6). With C|[n] denoting the domain restriction of C to [n], i.e., C|[n] : [n] →
{1,2,3,4} is a function i 7→C(i) which classifies students 1, . . . ,n according to their
class year, the observed data for a sample of n students includes their class years
C|[n] = (C(i))1≤i≤n together with their friendship network Yn = Sn,N YN .

We might expect that inhomogeneities in friendship patterns can be explained
(at least partially) by inhomogeneities in C: freshmen are more likely to be friends
with other freshmen, sophomores with other sophomores, etc. When specifying a
model for YN subject to the classification C, it makes sense to regard students of
the same class (i.e., 2 freshmen, 2 sophomores, etc.) as indistinguishable and, there-
fore, as interchangeable (or ‘exchangeable’) but to distinguish between students in
different classes (e.g., a freshman and a senior). For example, for three students i, j,k
with C(i) = C( j) and C(i) 6= C(k), we generally expect the marginal distribution of
Yi j to differ from that of Yik: in the absence of further information, the probability
that two students (i and j) in the same class are friends is likely to be higher than
the probability that two students (i and k) in different classes are friends. We, there-
fore, do not expect the pair (Yi j,Yik) to be exchangeable; that is, we do not assume
(Yi j,Yik)=D (Yik,Yi j). On the other hand, if C(i) = C( j) = C(k) and the labels i, j,k
are assumed to have been arbitrarily assigned, then C does not distinguish between
Yi j and Yik. It seems reasonable to treat (Yi j,Yik) as exchangeable since in this case the
friendship status of students i and j is a priori indistinguishable from the friendship
status of students i and k.

8.2 Stochastic blockmodels

The stochastic blockmodel (SBM) is a default model for networks YN whose het-
erogeneity is encoded by a classification factor C as in Section 8.1. For K ≥ 1, let
w : [K]× [K]→ [0,1] be a symmetric weight function and let C : [N]→ [K] assign each
individual to a class 1, . . . ,K. (For example, K = 4 in Section 8.1.) Under the stochas-
tic blockmodel with block structure C and weight function w, each Yi j, 1≤ i 6= j≤ N,
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Figure 8.1 Under the SBM with classification factor C : [7]→ {1,2} such that C(i) = 1 for
i = 2,4,6 (even) and C(i) = 2 for i = 1,3,5,7 (odd), the graphs in (a) and (b) are assigned the
same probability, but the graph in (c) may be assigned a different probability. Between (a) and
(b) there is a permutation of vertices which preserves the structure of C (i.e., permutes evens
with evens and odds with odds). There is no such permutation for relating (a) to (c) or (b) to
(c).

is distributed independently according to

Pr(Yi j = 1;w,C) = w(C(i),C( j)) and Pr(Yi j = 0;w,C) = 1−w(C(i),C( j)),
(8.1)

and altogether the distribution of YN = (Yi j)1≤i, j≤N is given by

Pr(YN = y;w,C) = ∏
1≤i6= j≤N

w(C(i),C( j))yi j(1−w(C(i),C( j)))1−yi j , y ∈ {0,1}N×N .

(8.2)
By (8.1), vertices interact according to a distribution that depends only on their
class membership C; that is, the distribution of Yi j for any pair (i, j) for which
(C(i),C( j)) = (c,c′) is a Bernoulli random variable with success probability w(c,c′).
If K = 1, then w(C(i),C( j)) is constant for all i and j and (8.2) coincides with the
Erdős–Rényi–Gilbert distribution in (3.16). For K ≥ 2, the distribution in (8.2) is not
exchangeable, since in general any permutation σ : [N]→ [N] for which C ◦σ 6= C
does not preserve the distribution in (8.2). (If two vertices i and j with C(i) 6= C( j)
are interchanged by σ , then the distribution of YN in (8.2) may change.) But (8.2)
is invariant with respect to permutations that preserve C, that is, σ : [N]→ [N] for
which C(σ(i)) = C(i) for all i = 1, . . . ,N. The family of distributions in (8.2) also
satisfies Pr(YN = y;w,C) = Pr(YN = yσ ;w,Cσ ) for all permutations σ : [N]→ [N];
see Section 8.3.4 for related discussion. Thus, in the context of Section 8.1, the SBM
would regard freshmen as interchangeable with other freshmen, sophomores with
other sophomores, etc., but freshmen would not be interchangeable with seniors, for
example. Figure 8.1 illustrates this property of the SBM.

Exercise 8.1 Let ya denote the adjacency array of the graph in Figure 8.1(a) and
yb denote the adjacency array of the graph in Figure 8.1(b). Give a permutation
σ : [7]→ [7] such that yσ

a = yb and C ◦σ = C, for C as defined in the caption of
Figure 8.1. Deduce that ya and yb have the same probability assignment under the
SBM with block structure C and arbitrary weight function w, as defined in (8.2).
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Furthermore, since each Yi j is drawn independently according to (8.1) and in a
way that depends on C only through the pair (C(i),C( j)), the marginal distribution
of any restriction YN |S = (Yi j)i, j∈S, S ⊆ [N], depends on C only through its domain
restriction to S, i.e., C|S : S → [K], i 7→ C(i). In this case, we call YN relatively
exchangeable with respect to C if for all S⊆ [N] the marginal distribution of YN |S is
invariant with respect to all permutations σ : S→ S for which C|S ◦σ =C|S, i.e.,

YN |σS =D YN |S for all permutations σ : S→ S such that (C(σ(i)))i∈S = (C(i))i∈S.
1

If a permutation σ leaves C invariant, then the distribution in (8.2) cannot distinguish
between YN and Yσ

N . Under this condition, relative exchangeability is equivalent to

Pr(YN |S = y) = Pr(YN |S = yσ ), y ∈ {0,1}S×S, (8.3)

for all permutations σ : S→ S such that C ◦σ =C.

Theorem 8.1 A random array YN distributed according to the stochastic block-
model with block structure C and any weight function w, as defined in (8.2), is rela-
tively exchangeable with respect to C.

Exercise 8.2 Prove Theorem 8.1.

Remark 8.1 (Dependence on sampling scheme) I have so far suppressed the de-
pendence of relative exchangeability (8.3) on the assumed sampling scheme, which
is implicitly taken to be selection in the above case. But while most of this chap-
ter follows the developments in [59], which takes selection sampling as the default,
the behavior of relatively exchangeable models under different sampling schemes
remains unexamined, and is left as an open class of problems. In Section 8.6 I dis-
cuss how the concept of relative exchangeability could possibly be extended to more
general sampling contexts.

8.2.1 Generalized blockmodels

The connection between the SBM in (8.1) and the Erdős–Rényi–Gilbert distri-
bution together with the relationship between the Erdős–Rényi–Gilbert distribu-
tion and graphon models (see Section 6.4.1) suggest the following extension to a
larger class of relatively exchangeable φ -processes. For K ≥ 1, specify a function
φ : [K]2× [0,1]× [0,1]→ [0,1], let C : N→ [K] be a classification of the vertices, and
let U1,U2, . . . be i.i.d. Uniform[0,1] random variables.2 Given φ , C, and U1,U2, . . .,
construct Y∗ = (Y ∗i j)i, j≥1 by choosing each Y ∗i j conditionally independently according
to

Pr(Y ∗i j = 1 |U1,U2, . . . ;φ ,C) = φ(C|(i, j),Ui,U j) and (8.4)

Pr(Y ∗i j = 0 |U1,U2, . . . ;φ ,C) = 1−φ(C|(i, j),Ui,U j),

1Note well the order of operations in the above expression YN |σS : the restriction to S always occurs
before the relabeling by σ . YN |σS could be written more pedantically as (YN |S)σ .

2If K = 1, then the classification factor C and the role of the first argument [K]2 in φ are moot, reducing
φ to a graphon as in Chapter 6.
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where C|(i, j) : {i, j} → [K] is determined by the pair (C(i),C( j)). The finite-
dimensional distributions of Y∗ are thus given by

Pr(Y∗ |[N] = y;φ ,C) = (8.5)

=
∫
[0,1]N

∏
1≤i6= j≤N

φ(C|(i, j),ui,u j)
yi j(1−φ(C|(i, j),ui,u j))

1−yi j du1 · · ·duN ,

for y ∈ {0,1}N×N , for all N ≥ 1.
Comparing (6.14) with (8.5) clarifies how the relatively exchangeable SBM re-

fines vertex exchangeable graphon models. Because all entries of Y∗ = (Y ∗i j)i, j≥1 are
conditionally independent given U1,U2, . . ., the distribution of each restriction Y∗ |S
depends only on C|S and is invariant with respect to permutations that fix C|S. In
particular, we immediately see that the restriction Y∗ |[n] of any Y∗ distributed ac-
cording to (8.5) also satisfies (8.5) with parameter φ and classification factor C|[n] on
{0,1}n×n.

As in Chapter 6, the class of distributions in (8.5) enjoys special status among
infinite random arrays Y = (Yi j)i, j≥1 that are relatively exchangeable with respect to
C :N→ [K] satisfying a technical regularity condition.3 In particular, if Y is relatively
exchangeable with respect to C, then there is a probability measure ϕ on the space of
functions [K]2× [0,1]2→ [0,1] such that the construction in (8.4) holds.

Theorem 8.2 (Crane–Towsner [59]) Fix K = 1,2, . . . ,∞ and C : N → [K], and let
Y = (Yi j)i, j≥1 be relatively exchangeable with respect to C. Assume further that
each set {i ≥ 1 : C(i) = j}, j = 1, . . . ,K, is infinite and has positive limiting fre-
quency. Then there exists a probability measure ϕ on the space ΦK of functions
φ : [K]2× [0,1]× [0,1]→ [0,1] such that Y=D Y∗, for Y∗ constructed as in (8.4) for
φ distributed according to ϕ .

To parallel the Aldous–Hoover theorem (Theorem 6.3) more closely, Theorem
8.2 can be restated in terms of a function f : [K]2× [0,1]4 → {0,1} by taking U0,
(Ui)i≥1, and (Ui j)i, j≥1 to be i.i.d. Uniform[0,1] random variables and putting

Y ∗i j = f (C|(i, j),U0,Ui,U j,Ui j), i, j ≥ 1. (8.6)

The reader can confirm that (8.6) is equivalent to the description in Theorem 8.2
by drawing parallels with our previous discussion about the relationship between
graphon models and the Aldous–Hoover representation in Section 6.4.2.

3The regularity condition requires that each set {i≥ 1 : C(i) = j}, j = 1, . . . ,K, is infinite with positive
limiting frequency, i.e.,

lim
n→∞

#{1≤ i≤ n : C(i) = j}
n

> 0 for all j = 1, . . . ,K.

This condition is needed in order for the representation in Theorem 8.2 to hold, where #{1 ≤ i ≤ n :
C(i) = j} denotes the cardinality (i.e., number of elements) of {1 ≤ i ≤ n : C(i) = j}. To see how the
representation might fail, note that if one of the sets S j = {i ≥ 1 : C(i) = j} were finite and nonempty,
then the restriction Y |S j is marginally distributed as a finite exchangeable array, which need not have a
φ -process representation; see Section 6.3 and also [43, 59] for a more detailed technical account.
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8.2.2 Community detection and Bayesian versions of SBM

Whereas the original blockmodel of Holland, Laskey, and Leinhardt [89] takes C to
be fixed, and perhaps known, the SBM more commonly appears in statistical appli-
cations for community detection, in which C is regarded as the unknown parameter
of interest. In this context, the class of finite sample models {Mn}n≥1 is parameter-
ized by classification factors C : [n]→ [K] and weight functions w, with the selection
sampling context {Sn,N}N≥n≥1 taken for granted. In applied work, the classifica-
tion of vertices according to C is often called ‘community structure’ and the sets
C−1(`) = {i : C(i) = `} corresponding to each class label ` are called ‘communities’.

Assume that YN = (Yi j)1≤i, j≤N is relatively exchangeable with respect to some
C : [N]→ [K] and consider the problem of inferring the community structure C|[n]
based on an observation Sn,N Yn obtained by selection sampling. A common ap-
proach, popularized in work by Snijders and Nowicki [141], is to formulate the prob-
lem in a Bayesian setup by assigning a prior distribution to C. The most direct way to
define a Bayesian version of the SBM is to specify an exchangeable prior distribution
on C and, given C, model Y as relatively exchangeable with respect to C.

As a special case, we can parameterize the model by (t,a), where t = {0 =
t0 < t1 < · · · < tK−1 < tK = 1} is a sequence that partitions (0,1] into the K subin-
tervals (ti, ti+1], i = 0,1, . . . ,K − 1, and a = (ai j)1≤i, j≤K is an array taking values
in [0,1].4 From (t,a), we define a probability distribution p = (p1, . . . , pK) on the
classes 1, . . . ,K by

pi = ti− ti−1, i = 1, . . . ,K,

and define φa : [K]2× [0,1]× [0,1]→ [0,1] by

φa((i, j),u,v) = ai j, 1≤ i, j ≤ K, u,v ∈ [0,1]. (8.7)

We then define the distribution of Y as that of an array generated by first drawing
C : N→ [K] i.i.d. according to p, i.e., Pr(C(i) = j;p) = p j for each j = 1, . . . ,K, and
then, given C, taking Y to be relatively exchangeable according to the φa -process as
in (8.4). We call Y generated this way a (t,a)-graphon process.

In the (t,a)-graphon process description, p acts as a prior distribution for an
i.i.d. assignment of classes C. Given C, the model is relatively exchangeable and
inference for C proceeds as usual, e.g., by Bayesian posterior inference. But in many
treatments of the SBM, the combination of exchangeable prior p for C and relatively
exchangeable conditional distribution for Y given C often leads to an assumption that
Y is distributed according to a piecewise constant graphon model with φ : [0,1]×
[0,1]→ [0,1] defined as follows.

Given t and a as in the (t,a)-graphon process (8.7), let φa,t : (0,1]×(0,1]→ (0,1]
be defined by

φa,t(u,v) = ai j for all (u,v) ∈ (ti−1, ti]× (t j−1, t j], 1≤ i, j ≤ K. (8.8)

4Notice here that I partition (0,1], instead of [0,1], into subintervals. Below, when I define the (t,a)-
graphon process, I define the graphon as a function (0,1]× (0,1]→ [0,1], instead of [0,1]× [0,1]→ [0,1]
as in Chapter 6. These choices are a matter of notational convenience. Because the event ‘Ui = 0’ has
probability 0 for any uniform random variable on [0,1], this choice has no effect on any of the claims
made in this section.
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Call any such φ a blockwise constant graphon with parameter (t,a), or simply a
(t,a)-graphon. To see the connection with (8.7), note that the occurrence of ui in the
subinterval (t`−1, t`] can be interpreted as the random block assignment C(i) = ` with
probability p` = p(`), since each of the events ‘Ui ∈ (t`−1, t`]’ occurs independently
with probability t` − t`−1 as in the distribution p. This way, the occurrence of ui
and u j in the same subinterval is interpreted as C(i) = C( j), and the description of
Y as being relatively exchangeable with respect to C follows from its conditional
construction according to the φa-process.

The relatively exchangeable conditional distributions in (8.7) and the fully ex-
changeable distributions induced by the (t,a)-graphon in (8.8) are a special case of
the following more general class of Bayesian SBMs. First, let C : N → [K] be an
exchangeable [K]-valued sequence with full support. Then, given C, take Y to be
relatively exchangeable with respect to C. This setup can be summarized by

C ∼ µ (exchangeable)
Y |C ∼ Pr(Y ∈ ·;C,ϕ) (relatively exchangeable),

where the distribution of Y is determined by its finite-dimensional distributions

Pr(Y |[n] = ·;C,ϕ) = (8.9)

=
∫

ΦK

(∫
[0,1]n

φ(C|(i, j),ui,u j)
yi j(1−φ(C|(i, j),ui,u j))

1−yi j du1 · · ·dun

)
ϕ(dφ),

for ϕ a probability distribution on the space of functions φ : [K]× [K]× [0,1]2 →
[0,1].

Note the difference between conditioning on C and averaging over it. Since we
have modeled C as an exchangeable [K]-valued sequence, the marginal distribution
of Y, after integrating over the distribution of C, is exchangeable. (See Exercise 8.3.)
But if interested in inferring the latent structure C and interpreting its meaning inde-
pendently of the observed network structure Y, then we should not average over C
when specifying the model for Y. Conditionally on C, Y is relatively exchangeable,
while marginally Y is vertex exchangeable. Since the marginal distribution of Y is
exchangeable, it falls under the class of vertex exchangeable models from Chapter
6, but the conditional distribution of Y given C is relatively exchangeable. If the
distribution of Y is specified as relatively exchangeable with respect to C, then the
posterior distribution of C given Y = y can, in principle, be computed by Bayes rule.

So although the block structure inherent in φa,t may induce block structure in any
realization of a φa,t-process, the model specification in (8.8) (in terms of a vertex ex-
changeable graphon) alters the interpretation of this induced block structure vis-à-vis
any perceived ‘real’ community structure in the observed network. By contrast to the
SBM defined in (8.5), any community structure exhibited by Y from a φa,t -process
cannot be interpreted as an inherent feature of the population. Since the community
structure C is generated along with the network Y, and therefore does not exist prior
to constructing the data, any ‘community-like’ structure exhibited by Y is the re-
sult of random variation, not of any features of the population that can be explained
independently and a priori to the observed network data.
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Exercise 8.3 Let YN be a random array in {0,1}N×N whose distribution is defined
by first choosing C according to an exchangeable prior distribution and, given C,
taking YN to be relatively exchangeable with respect to C. Show that the marginal
distribution of YN , after integrating over the prior distribution of C, is exchangeable.

Research Problem 8.1 Does the above distinction between the blockwise constant
graphon, which averages over community structures, and the Bayesian SBM, which
conditions on an unknown C, have any practical or conceptual implications for sta-
tistical inference?

8.2.3 Beyond SBMs and community detection

Community detection has been one of the most widely studied areas of network sci-
ence for the past decade. The popularity of this subfield has inspired in-depth study
of the SBM and its extensions. The reader looking for more information about com-
munity detection, stochastic blockmodels, and the like should have no trouble finding
it elsewhere in the literature. But within the bigger picture of statistical network anal-
ysis, it is important to realize that networks exhibit far more intricate and interesting
structure than can be captured by a simple classification of vertices into communi-
ties. And thus most of the research currently being conducted in this realm, including
recent extensions to allow for vertices with multiple and possibly overlapping com-
munity memberships, is of an incremental nature, and is unlikely to have a noticeable
impact on the future of network analysis. See, e.g., [6, 35] and references therein for
extensions to mixed membership stochastic blockmodels and stochastic blockmod-
els with a growing number of classes. Refer to Chapter 1 for further discussion about
how the probabilistic foundations laid down in this book fit into the bigger picture of
network analysis.

The degree-corrected stochastic blockmodel (DC-SBM) [99] is an especially
popular extension of the SBM which assigns to each vertex i an attribute θi ≥ 0.
These attributes are intended to account for heterogeneous edge patterns found in ob-
served networks. Given a classification C : [N]→ [K], attributes (θi)i≥1, and a weight
assignment w : [K]2 → (0,1], each Yi j, 1 ≤ i 6= j ≤ N, is conditionally independent
with distribution

Pr(Yi j = 0;w,C,θ) = exp
{

θiθ j log(w(C(i),C( j)))
}

and
Pr(Yi j = 1;w,C,θ) = 1−Pr(Yi j = 0;w,C,θ).

This could be generalized further, as in (8.4), by associating each vertex to i.i.d.
Uniform[0,1] random effects U1,U2, . . ., specifying a generalized graphon φ : [K]2×
[0,1]2 → (0,1] and, given U1,U2, . . ., assigning each edge conditionally indepen-
dently with probability

Pr(Yi j = 0 |U1,U2, . . . ;φ ,C,θ) = exp
{

θiθ j log(φ(C|(i, j),Ui,U j))
}

and

Pr(Yi j = 1 |U1,U2, . . . ;φ ,C,θ) = 1−Pr(Yi j = 0 |U1,U2, . . . ;φ ,C,θ).

In the next section, I begin to expand upon the SBM in order to account for
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more complex heterogeneity in network data. To avoid ambiguity, throughout the
rest of this chapter I treat C and any other heterogeneity structures as fixed, and work
with the relatively exchangeable (i.e., ‘frequentist’) version of these models. The
‘Bayesian’ version of any of these models can be recovered by simply putting a prior
on C.

8.3 Exchangeability relative to another network

8.3.1 Scenario: High school social network revisited

Instead of classifying students according to their year in school, as in Section 8.1,
suppose that the population network YN is accompanied by a social network G =
(Gi j)1≤i, j≤N which records social media (e.g., Facebook) friendships among all N
students in the school. We assume that Yn is obtained from YN by selection sampling,
so that Yn = Sn,N YN = (Yi j)1≤i, j≤n, with

Yi j =

{
1, i regards j as a friend,
0, otherwise,

is observed along with the social media friendships Gn = Sn,N G = (Gi j)1≤i, j≤n of
the n sampled individuals,

Gi j =

{
1, i and j are friends on Facebook,
0, otherwise.

The goal is to understand whether and how the known relationships in Gn are in-
formative about the structure of Yn. We might expect, for example, that Facebook
friendship (Gi j = 1) corresponds to a higher probability that i and j are actually
friends (Yi j = 1 and Yji = 1). We should also expect, however, that some students
i and j who are Facebook friends may not consider each other friends in the ordi-
nary sense of the term; and it is possible that i and j are not Facebook friends even
though both i and j regard each other as friends otherwise. The reason for any dif-
ferences between G and YN could possibly be explained by the fact that interactions
on social media reflect a different kind of relationship than what might ordinarily be
considered ‘friendship’.5

8.3.2 Exchangeability relative to a social network

In the above scenario, Sn,N YN = (Yi j)1≤i, j≤n is observed along with the Face-
book friendship network Sn,N G = (Gi j)1≤i, j≤n. There is no baseline information
about students aside from their relationships through G. Based on (Gn,Yn) =
(Sn,N G,Sn,N YN), we want to understand the extent to which the structure observed
in Sn,N YN can be explained by the relationships in G.

5The reader is encouraged to use his/her imagination when interpreting this example in the grander
scheme of network analysis. One could imagine a number of applications in which a (more or less) known
network G acts as a proxy for some other network of interest.
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If only the Facebook relationships G|[n] = (Gi j)1≤i, j≤n for the sample [n] ⊆ [N]
are available, the data does not distinguish between observations (Yi j)1≤i, j≤n and
(Yσ(i)σ( j))1≤i, j≤n for any permutation σ : [n]→ [n] that fixes G|[n]. Thus, even though
Yn could be affected by unobserved relationships between sampled students and un-
sampled students, we cannot identify such relationships from the data and, therefore,
cannot account for such information in the model. This presents an obvious con-
straint in that inferences based on Yn only account for G|[n]. For modeling Yn based
on G|[n], we assume that the unobserved interactions in G do not ‘interfere’ with the
observed interactions in Yn.

8.3.3 Lack of interference

We borrow terminology from the experimental design literature and say that a model
for Yn parameterized by G = (Gi j)1≤i, j≤N exhibits non-interference with respect to
selection, or lack of interference with respect to Sn,N , if the distribution of Yn depends
on G only through Sn,N G = (Gi j)1≤i, j≤n. In words, the relationships of unsampled
individuals [N]\ [n] do not ‘interfere’ with the relationships of sampled individuals.
For example, stochastic blockmodels exhibit non-interference since the distribution
of each edge Yi j in (8.4) depends only on the class status C|(i, j) of i and j. Note that
this definition of non-interference tacitly assumes a selection sampling context. In
Section 8.6, I briefly discuss the implications of non-interference and relative ex-
changeability in more general sampling contexts. Taken together, non-interference
and invariance under relabeling combine to give relative exchangeability.

Definition 8.1 (Relative exchangeability, first version) For N = 1,2, . . . ,∞, let
YN = (Yi j)1≤i, j≤N be a random array and G = (Gi j)1≤i, j≤N be a {0,1}-valued ad-
jacency array for a population of individuals labeled in [N]. We say that YN is rela-
tively exchangeable with respect to G (in sampling context {Sn,N}N≥n≥1) if for every
S ⊆ [N] the marginal distribution of YN |S = (Yi j)i, j∈S is invariant under relabeling
by any permutation σ : S→ S that fixes G|S = (Gi j)i, j∈S. In other words, if σ : S→ S
is such that G|σS = (Gσ(i)σ( j))i, j∈S = G|S, then YN |σS = (Yσ(i)σ( j))i, j∈S=D YN |S.

Remark 8.2 Since for any given S⊆ [N] there can be many permutations σ : S→ S
that fix G|S but which do not extend to a symmetry of the population structure G, the
definition of relative exchangeability in Definition 8.1 is stronger than the require-
ment that (Yi j)1≤i, j≤N is invariant with respect to the symmetries of the population
structure (Gi j)1≤i, j≤N . See Figure 8.2 for illustration.

The forthcoming representation theorem for relatively exchangeable networks
with respect to G (Definition 8.1) holds as long as G is ultrahomogeneous and has
the n-disjoint amalgamation property (n-DAP) for all n ≥ 1. Ultrahomogeneity im-
plies that every induced subgraph G|S, for S⊆ N, is ‘representative’ of G, i.e., every
permutation σ : S→ S that fixes G|S extends to a permutation σ̄ : N→ N that fixes
all of G. Disjoint amalgamation is a further algebraic condition for which the reader
is referred to [59, Section 2.2]. Both of these conditions stem from the requirement
in Definition 8.1 that the distribution of Y |S depends only on the symmetries of G|S.
In order for the distribution of Y |S to be ‘coherent’ with the rest of Y, the marginal
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Figure 8.2 Under the assumption that Y is relatively exchangeable with respect to G, Defini-
tion 8.1 implies that the marginal distribution of every subgraph of Y is invariant with respect
to the symmetries of the corresponding subgraph in G. The figure highlights the subgraph
induced by the restriction to vertices labeled 3, 5, and 6. Under relative exchangeability, the
marginal distribution of Y |{3,5,6} is exchangeable (assigning equal probability to all three
graphs in the bottom of (b)) because the corresponding subgraph of G (shown at the bottom
of part (a)) is fully symmetric.

distributions of Y |S and Y |T must coincide for any S,T ⊆ N with G|S = G|T . In
other words, the induced subgraphs G|S and G|T must be sufficient for determining
the distributional symmetries of Y |S and Y |T , respectively. I do not discuss these
technical conditions any further here. The motivated reader is encouraged to con-
sult [48, 59] for more details. The next theorem extends the Aldous–Hoover theorem
(Section 6.4.2 and Theorem 6.3) to the relatively exchangeable setting.

Theorem 8.3 (Crane–Towsner [48, 59]) Let G = (Gi j)i, j≥1 be ultrahomogeneous
and have n-DAP for all n≥ 1 and suppose Y = (Yi j)i, j≥1 is relatively exchangeable
with respect to G. Then there exists a probability measure ϕ on the space of functions
φ : {0,1}2×2× [0,1]2→ [0,1] such that Y=D Y∗, for Y∗ constructed by first taking
φ ∼ ϕ and U1,U2, . . . i.i.d. Uniform[0,1] and, given φ ,U1,U2, . . ., generating each Y ∗i j
conditionally independently according to

Pr(Y ∗i j = 1 | φ ,U1,U2, . . . ;G) = φ(G|{i, j},Ui,U j) (8.10)

Pr(Y ∗i j = 0 | φ ,U1,U2, . . . ;G) = 1−φ(G|{i, j},Ui,U j).

According to (8.10), Y can be constructed so that each entry Yi j depends on G
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only through

G|{i, j} =
(

Gii Gi j
G ji G j j

)
.

Without any restrictions on the entries of G, there are 24 = 16 possibilities for each
G|{i, j}, and if G is undirected (i.e., symmetric) and irreflexive (i.e., no self-loops)
then there are only four possibilities. So while the dependence on G allows for some
heterogeneity in the distribution of Y, the heterogeneity is limited by the local depen-
dence of each Yi j on G|{i, j}. Since I am glossing over technical aspects of the above
theorem, it is worth noting that the localized dependence property in (8.10) mirrors
the requirements put on G by ultrahomogeneity and the disjoint amalgamation prop-
erty. One could perhaps refine this theorem by relaxing these conditions, but proving
such a result seems to require more sophisticated techniques than those in [59].

Research Problem 8.2 According to [138], a family of ERGMs is consistent under
selection if and only if its sufficient statistics have separable increments; see Section
2.3 for further discussion. By Theorem 8.3 and its more general version in Theorem
8.4 below, a relatively exchangeable model (with respect to an ultrahomogeneous
population structure having an additional amalgamation property) depends on the
underlying structure only through its local components. There seems to be a con-
nection between separable increments (as defined in [138]), the non-interference
property of relatively exchangeable models, and the dyad independence property of
the p1 model (Chapter 2), but the connection is not immediately clear.

8.3.4 Label equivariance

Even when handling data which is not exchangeable, the model ought to be invariant
with respect to relevant transformations of the data. For network data, the relevant
transformations are most often permutations of the labels, e.g., the relabeling of ver-
tices given by the action Yn 7→ Yσ

n above. In such cases, even though the data need
not be exchangeable, inferences based on Yn ought to be transferrable to inferences
based on Yσ

n , and vice versa. This is the concept of label equivariance.
Let Yn be modeled by Mn consisting of all distributions described by (8.10),

with G = (Gi j)i, j≥1 and ϕ a probability distribution on the space of functions
{0,1}2×2× [0,1]2 → [0,1]. Each candidate distribution in Mn is parameterized by
a pair (ϕ,G), and every such distribution is relatively exchangeable with respect to
G. For any (ϕ,G), relative exchangeability implies that the distribution of Yσ

n is also
parameterized by (ϕ,G) for any permutation σ : [n]→ [n] for which Gσ = G. But
if σ is left unrestricted, then Yσ

n = (Yσ(i)σ( j))1≤i, j≤n=D Y∗n for Y∗n distributed as in
(8.10) with parameter (ϕ,Gσ ). So while the distribution of Yn is not invariant under
relabeling by an arbitrary permutation, the model for both Yn and its relabeling Yσ

n
are parameterized by all combinations of (ϕ,G) (because the distribution of Yσ

n is
also a candidate model in Mn for every permutation σ ). Such a model is called label
equivariant.

An important distinction to keep in mind is that exchangeability, as a property
of a distribution, affects the interpretation of the generating and/or sampling scheme
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and the manner in which the data is observed (i.e., context). Label equivariance is
a property of the set of distributions Mn, and thus marks a robustness of the model
to arbitrary labeling of the units. Most models used in practice are label equivariant,
but there are exceptions. For a simple counterexample, suppose Mn = {P} consists
of a single non-exchangeable distribution P. Since P is not exchangeable, there is a
permutation σ : [n]→ [n] such that Yσ

n 6=D Yn when Yn ∼ P. In this case, Yσ
n is not

distributed according to P and, therefore, Yσ
n is not modeled by Mn. The Barabási–

Albert models parameterized over the full range m≥ 1 and δ >−m also fail to satisfy
label equivariance. Refer to Section 4.2 for more discussion on the Barabási–Albert
model.

8.4 Latent space models

The relatively exchangeable models discussed so far account for discrete structure
in a population, either through the classification factor C in Section 8.1 or the so-
cial network G in Section 8.3. In many cases, however, network data is observed
along with quantitative or categorical information, e.g., vertex-level covariates Xi,
pairwise measurements such as the amount of time Ti j (in minutes) that i and j inter-
acted during the previous week, and so on. Keeping with the scenario of Section 8.1,
suppose that instead of the classification factor C, we observe covariate information
x = (xi j)1≤i, j≤N , where each xi j is the amount of time (in minutes) that students i
and j spent interacting via text message, phone, or social media during the previous
week. For modeling YN = (Yi j)1≤i, j≤N based on x, the latent space model (LSM)
[88] specifies a parameter θ along with latent (random) positions z = (zi)1≤i≤N for
each student, so that altogether YN is distributed as

Pr(YN = y | z;x,θ) = ∏
1≤i, j≤N

p(yi j;xi j,zi,z j,θ), y ∈ {0,1}N×N . (8.11)

In practice, it is convenient to assume that p(yi j;xi j,zi,z j,θ) has the form

log
(

Pr(Yi j = 1 | zi,z j;xi j,α,β )

Pr(Yi j = 0 | zi,z j;xi j,α,β )

)
= α +β

T xi j + f (zi,z j) (8.12)

for θ = (α,β ) and some function f : R×R→ R, where β T is the transpose of a
vector-valued parameter β (in the event that xi j is itself a vector). Often, f is chosen
to be a distance, e.g., f (z,z′) = |z− z′|, affording the interpretation of f (z,z′) as the
distance between the latent positions zi and z j of individuals i and j. The assumed
relationship (8.12) is sometimes also written as

logit(Pr(Yi j = 1 | zi,z j;xi j,α,β )) = α +β
T xi j + f (zi,z j),

where

logit(p) = log
(

p
1− p

)
is called the log-odds.
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We can fit the LSM in (8.11) into the relatively exchangeable framework by let-
ting X be the space in which the covariates x take values. (For the high school data,
xi j is the amount of time spent interacting, so that X = [0,∞).) Following (8.10), we
define φθ : X × [0,1]× [0,1]→ [0,1] for each θ = (α,β ) and let

p(yi j;xi j,zi,z j,θ) =

{
φθ (xi j,zi,z j), yi j = 1,

1−φθ (xi j,zi,z j), yi j = 0. (8.13)

Notice that the distribution determined by (8.13) is not exchangeable but does satisfy

Pr(YN = yσ ;xσ ,zσ ,θ) = Pr(YN = y;x,z,θ),

meaning that if σ is such that xσ = x and zσ = z then Yσ
N =D YN . From this we

easily see that LSMs are label equivariant, as defined in Section 8.3.4. For lack of
interference, we observe that conditional independence in (8.11) implies that the co-
variate values and latent position of any vertex i only affect the distribution of entries
Yi j or Yji for some j = 1, . . . ,N, and thus Yi j does not interfere with any Yi′ j′ not
involving i.

Latent space models can account for vertex-specific covariate information in ad-
dition to the pairwise covariates x above. Supposing that there are elementwise mea-
surements x′ = (x′i)1≤i≤N , with each x′i recording the academic performance (e.g.,
GPA) of student i, we augment the LSM by adding extra parameter vectors γ and γ ′

and a distance function g so that

log

(
Pr(Yi j = 1 | zi,z j;x′i,x

′
j,xi j,α,β ,γ,γ ′)

Pr(Yi j = 0 | zi,z j;x′i,x
′
j,xi j,α,β ,γ,γ ′)

)
= (8.14)

= α + γ
T x′i + γ

′T x′j +β
T xi j +g(x′i,x

′
j)+ f (zi,z j).

By slight modification, the expression in (8.14) can still be written in the form of
(8.13) by letting x record both pairwise and elementwise information. Note well,
however, that the conditional independence structure of LSMs, and relatively ex-
changeable random graphs more generally, prevents the model from accounting for
higher-order structure, such as relationships among three or more vertices. This ob-
servation ties in with Problem 8.2 above, again raising the question about the rela-
tionship between relative exchangeability, non-interference, and the separable incre-
ments property for ERGMs.

Here I have only introduced the basic idea behind latent space models in order
to draw a clear connection to the more general concept of relative exchangeability.
Readers interested in specific aspects and applications of LSMs are encouraged to
consult [88] and more recent related work on random dot product graphs [11, 160].

8.5 Relatively exchangeable random graphs

Stochastic blockmodels, latent space models, and the models in Section 8.3 are all
special kinds of relatively exchangeable network models. Because in each of these
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cases the structure of the population encodes only elementwise or pairwise infor-
mation, the model can be described in a straightforward way, as in (8.2), (8.10),
and (8.13). But is there an analog to these representations if the population structure
records more than elementwise or pairwise information?

Consider the following mild extension of the SBM. Let C : N → N be a clas-
sification factor (with possibly infinitely many classes) and with the usual notation
C|S : S → N denoting the domain restriction of C to S ⊂ N. For each pair of la-
bels k, ` ∈ N, define φk,` : [0,1]× [0,1]→ [0,1] to be one of the graphon functions
from Chapter 6. Given C and (φk,`)k 6=`≥1, define the generalized φ -process with block
structure C and parameter (φk,`)k 6=`≥1 as the distribution of Y = (Yi j)i, j≥1 constructed
as follows. Let U1,U2, . . . be i.i.d. Uniform[0,1] and, given U1,U2, . . ., construct Y
according to

Pr(Yi j = 1 |U1,U2, . . . ;C,(φk,`)k 6=`≥1) = φC(i),C( j)(Ui,U j) (8.15)

Pr(Yi j = 0 |U1,U2, . . . ;C,(φk,`)k 6=`≥1) = 1−φC(i),C( j)(Ui,U j),

conditionally independently for all j 6= i ≥ 1. By this construction, Y is relatively
exchangeable with respect to C. Subject to the regularity condition in Theorem 8.2,
the distribution in (8.15) can be expressed in terms of a single function φ : (N×N)×
[0,1]× [0,1]→ [0,1] defined by

φ((k, `),u,v) = φk,`(u,v), k, ` ∈ N, u,v ∈ [0,1]. (8.16)

With this, we see that relatively exchangeable models can be further extended by first
choosing a collection (φk,`)k 6=`≥1 at random and then proceeding with the construc-
tion as in (8.15). This observation is a precursor to Theorem 8.4 below.

8.5.1 Relatively exchangeable φ -processes

The construction in (8.16) generalizes to any relatively exchangeable random graph
model by replacing C : N → N with an arbitrary relational structure X expressed
in terms of a finite number of relations X1, . . . ,Xr, where X j : Na j → X j assigns
each tuple of length a j ≥ 1 a covariate value X j(a j) ∈X j. We call (a1, . . . ,ar) the
signature of X . For example, the signature consisting only of a1 = 1 and X1 = [K]
corresponds to the classification factor from Section 8.2; the signature consisting
only of a1 = 2 and X1 = {0,1} corresponds to a binary relation, as in Section 8.3;
their combination (a1,a2) with a1 = 1, X1 = [K], a2 = 2, and X2 = {0,1} gives a
structure for which there is a binary relation on vertices in different communities, as
would be the case if the scenarios of Sections 8.1 and 8.3.2 were combined to include
a classification into class year (a1 = 1) along with a social network of Facebook
friendships (a2 = 2); and the signature consisting of a1 = 1 and X = Rd , for d ≥ 1,
corresponds to the latent space model with vertex-specific covariates X(i) ∈Rd as in
Section 8.4.

Any X = (X1, . . . ,Xr) can be relabeled and restricted in the usual way. For any in-
jection ψ : [n]→N, the image of X under ψ-selection is given by Xψ =(Xψ

1 , . . . ,Xψ
r ),
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where

Xψ

j (x1, . . . ,xa j) = X j(ψ(x1), . . . ,ψ(xa j)), (x1, . . . ,xa j) ∈ Na j . (8.17)

In particular, the insertion map ψ : [n]→N, i 7→ψ(i) = i, gives the domain restriction
of X to [n], written X |[n], and any permutation σ : N→ N gives a relabeling of X by
σ .

Definition 8.2 (Relative exchangeability [59]) Let X = (X1, . . . ,Xr) have signature
(a1, . . . ,ar). A random binary array Y taking values in {0,1}N×N is relatively ex-
changeable with respect to X (in sampling context {Sm,n}n≥m≥1) if Y |S=D Y |σS for
all permutations σ : S→ S such that X |σS = X |S, for all S⊂ N.

For any a ≥ 1 and X , write F(a,X ) for the space of partial functions [a]→
X . Define a φ -process of signature (a1, . . . ,ar) by taking φ : F(a1,X1)× ·· · ×
F(ar,Xr)× [0,1]2→ [0,1] and constructing Y∗ = (Y ∗i j)i, j≥1 according to

Pr(Y ∗i j = 1 |U1,U2, . . . ;X ,φ) = φ(X1|{i, j}, . . . ,Xr|{i, j},Ui,U j), i, j ≥ 1, (8.18)

conditionally independently for all i, j≥ 1, for (Ui)i≥1 i.i.d. Uniform[0,1], where here
we encode Xk|{i, j} as the partial function Na j →Xk with domain Nak ∩{i, j}ak .6

Exercise 8.4 Show that the distribution of Y∗ defined in (8.18) is relatively ex-
changeable with respect to X.

For a concrete example of such a relatively exchangeable model, combine the
scenarios of Sections 8.1 and 8.3.1 and suppose that the friendship relation Y =
(Yi j)i, j≥1, with Yi j = 1 indicating that i considers j to be a friend, is observed along
with the social media (e.g., Facebook) friendships G and the classification C : N→
[K] of students according to class year. The composite structure described by G and C
can be interpreted as a single graph structure G with vertices ‘colored’ according to C,
i.e., the classes 1, . . . ,K are interpreted as different colors. Relative exchangeability
with respect to (G,C) requires invariance with respect to permutations that preserve
(G,C), i.e., Y |σS =D Y |S for all permutations σ : S→ S such that both G|σS = G|S and
C|S ◦σ =C|S. In the notation for X presented above, the composite structure (G,C)
is expressed as X = (X1,X2) with X1 : N×N→ {0,1} and X2 : N→ [K]. We arrive
at the following analog to Theorem 8.3.

Theorem 8.4 (Crane–Towsner [59]) Let G satisfy the same regularity condition as
in Theorem 8.3, C : N→ [K] be such that {i≥ 1 : C(i) = j} is infinite and has strictly
positive limiting frequency for every j ∈ [K], and Y be relatively exchangeable with
respect to (G,C). Then there exists a probability distribution ϕ on the space of func-
tions F(2,{0,1})×F(1, [K])× [0,1]2→ [0,1] such that Y=D Y∗, for Y∗ constructed
from a randomly chosen φ ∼ ϕ as in (8.18).

6The description here in terms of partial functions is somewhat unfortunate, but should not obscure the
main point. For readers interested in the basic idea of these models, without the full technical details, it
is enough to interpret (8.18) as a model which constructs each edge conditionally independently in a way
that depends only on the local restriction X |{i, j}. Readers interested in the technical details are referred to
[59].
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Theorem 8.4 is but a special case of the more general Ackerman–Crane–Towsner
theorem for relatively exchangeable structures [3, 59]. This general theorem requires
several technical ideas from mathematical logic and is deferred to [59]. The reader
not wishing to explore these technicalities can be reassured that the general represen-
tation obtained in [59] has the same form as (8.18). Even if its formal developments
are somewhat technical, the core idea behind relative exchangeability is straightfor-
ward, reflecting the assumption that the structure of the population is sufficient for
describing the heterogeneity in the data. By comparing (8.4), (8.10), and (8.18), we
see that the probabilistic structure of relatively exchangeable networks Y (subject to
regularity assumptions on the underlying structure) has the generic form

Pr(Yi j = 1 |U1,U2, . . . ;φ ,X) = φ(X |(i, j),Ui,U j) and (8.19)

Pr(Yi j = 0 |U1,U2, . . . ;φ ,X) = 1−φ(X |(i, j),Ui,U j)

conditionally independently for all i, j≥ 1, regardless of what structure X represents.

8.6 Relative exchangeability under arbitrary sampling

So far we have taken selection as the default sampling context for relatively ex-
changeable models. In particular, Definitions 8.1 and 8.2 both state relative ex-
changeability as the invariance of each Y |S with respect to the symmetries of X |S.
The discussion in Chapters 3–5 suggests that Definition 8.2 should be expanded to
account for the wider range of sampling contexts that are relevant in network analy-
sis.

For N ≥ n≥ 1, let Σn,N be a random sampling operation (possibly depending on
Y) with distribution

Pr(Σn,N = Sψ

n,N), ψ : [n]→ [N],

where Sψ

n,N is the ψ-selection map defined in (3.17). This random sampling operation
also induces an action Σn,N on XN = (XN,1, . . . ,XN,r) with signature (a1, . . . ,ar) by
defining Σn,NXN = Xψ

N on the event ‘Σn,N = Sψ

n,N’, for Xψ

N defined in (8.17). In the
more general sampling context {Σn,N}1≤n≤N , we refine the discussion of Section
8.3.3 to define non-interference with respect to {Σn,N}1≤n≤N as follows. Let XN =
(X1, . . . ,Xr) be a fixed relational structure with signature (a1, . . . ,ar), as defined in
Section 8.5. Under (deterministic) selection sampling, Sn,N XN = XN |[n] is a fixed
structure, but under the (possibly random) sampling by Σn,N , Σn,NXN corresponding
to Sψ

n,N XN on the event ‘Σn,N = Sψ

n,N’ is a (possibly random) structure. We say that Yn
parameterized by XN exhibits non-interference with respect to sampling from Σn,N if
the distribution of Yn with parameter XN coincides with the conditional distribution
of Yn given Σn,NXN , i.e.,

Pr(Yn = ·;XN) = Pr(Yn = · | Σn,NXN).

Notice that the distribution on the left is parameterized by a fixed structure XN
whereas the distribution on the right is conditioned on a random structure Σn,NXN . It
remains to explore the implications of this definition and the following extension to
relative exchangeability that it motivates.
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Definition 8.3 Given XN = (XN,1, . . . ,XN,r) with signature (a1, . . . ,ar) and XN, j :
[N]a j →X j for each j = 1, . . . ,r, we call YN relatively exchangeable with respect to
XN in sampling context {Σn,N}N≥n≥1 if

(Σn,N YN)
σ =D Σn,N YN (8.20)

for all permutations σ : [n]→ [n] such that (Σn,NXN)
σ =D Σn,NXN , for all 1≤ n≤ N.

Note that in general Definition 8.3 is defined in terms of a distributional identity
for Σn,NXN . For example, suppose that Σn,N is the random sampling map obtained by
putting Σn,N = Sψ

n,N (as defined in (3.17)) for ψ chosen uniformly at random among
all injections [n]→ [N]. Then Σn,NXN is exchangeable, i.e., (Σn,NXN)

σ =D Σn,NXN for
all permutations σ : [n]→ [n], and thus so is YN . At the outset, it remains unclear
whether or not Definition 8.3 is a substantive extension to the definition of relative
exchangeability under selection sampling.

Research Problem 8.3 Give an example of a relatively exchangeable network in the
sense of Definition 8.3 which has non-trivial symmetries (i.e., there is a non-identity
permutation σ for which (Σn,NXN)

σ =D Σn,NXN) and which is not fully exchangeable.
If Definition 8.3 does not admit non-trivial models, propose another definition for
relative exchangeability in arbitrary sampling contexts, and study the class of models
it determines.

Research Problem 8.4 Assuming it admits non-trivial models (cf. Problem 8.3),
study the more general version of relative exchangeability in Definition 8.3 by (i)
extending the main theorems from [58, 59] to this setting, (ii) exploring its implica-
tions for statistical analysis, (iii) analyzing how to perform inference in this setting,
and/or (iv) applying it on a real network data problem.

For relatively exchangeable network models, it might also be natural for the ran-
dom sampling scheme Σn,N to be parameterized by the underlying population struc-
ture XN . In particular, we might suppose that the distribution of Σn,N is relatively
exchangeable with respect to XN , in the sense that

Pr(Σn,N = Sψ

n,N ;XN) = Pr(Σn,N = Sψ ′

n,N ;XN)

for all ψ,ψ ′ : [n]→ [N] such that Sψ

n,N XN = Sψ ′

n,NXN .

Call any such Σn,N an XN-exchangeable sampling scheme. A few natural questions
emerge, which I leave as a topic for future exploration.

Research Problem 8.5 Let XN be any structure. For 1 ≤ n ≤ N let Σn,N and YN
be independent and suppose both are XN-exchangeable. Does the distribution of
Σn,N YN satisfy any invariance properties? How do these invariance properties de-
pend on the algebraic structure of XN? Otherwise, let YN be generic and let Σn,N be
an XN-exchangeable sampling scheme that is independent of YN . What can be said
of the distributional symmetries of Σn,N YN in this case?
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8.7 Relatively invariant graphex models

In view of the preceding discussion about relative exchangeability, I propose here
the following refinement of the Caron–Fox model (Section 7.3). Under the Caron–
Fox model, a network is represented as an ‘exchangeable’ point process Y ⊂ [0,∞)×
[0,∞), with exchangeability defined as the distributional invariance of Y with respect
to Lebesgue measure-preserving transformations of [0,∞), as expressed in (7.10). To
see how (7.10) fits in with the rest of this chapter, notice first that relative exchange-
ability (Definition 8.3) refines vertex exchangeability (Definition 6.1) by allowing
the distributional symmetries of an array Y = (Yi j)i, j≥1 to be expressed in terms of
the symmetries of a generic combinatorial structure X . Vertex exchangeability can
then be recovered as a special case of relative exchangeability by taking X to be a
fully symmetric structure, i.e., Xσ = X for all permutations σ : N→ N.

Appealing to the same rationale, we extend the class of models in Section 7.3 by
relaxing condition (7.10) so that the invariance of Y is instead defined with respect
µ-preserving transformations, for an arbitrary measure µ on [0,∞). More precisely,
we let µ be a σ -finite measure on [0,∞) and let Y ⊆ [0,∞)× [0,∞) be a random point
process. A (measurable) transformation T : [0,∞)→ [0,∞) is called µ-preserving if

µ(T−1(A)) = µ(A) for all measurable A⊆ [0,∞).

With T ◦Y as defined in (7.9), we call Y relatively invariant with respect to µ , or
simply µ-invariant, if

T ◦Y=D Y for all µ-preserving transformations T : [0,∞)→ [0,∞). (8.21)

Note that (8.21) coincides with (7.10) when µ is taken to be Lebesgue measure on
[0,∞), and thus we recover the ‘exchangeable’ point process models of Section 7.3
as a special case of (8.21). To my knowledge, the definition of µ-invariance for point
processes Y is defined here for the first time. If such a definition or related work has
appeared before, then I suspect it could be found in [98].

I present relatively invariant point process models as a wide open topic for fu-
ture applied and theoretical research. Building off of the sampling interpretation of
the Caron–Fox model (Section 7.3.7), the more general invariance in (8.21) should
suggest a related sampling interpretation in terms of observing edge patterns over
‘equivalent’ durations of time, where ‘equivalence’ here is subject to ‘warping time’
according to µ . I conclude this section with a conjecture and open problem about
relatively invariant point process models.

Conjecture 8.1 Let µ be a σ -finite measure on [0,∞), perhaps satisfying an addi-
tional regularity condition, and let Y ⊆ [0,∞)× [0,∞) be a µ-invariant point process
representing a network. Then Y admits an analogous representation to the graphex
characterization of exchangeable point process models in (7.11)–(7.13), but with
the modification that the unit rate Poisson processes Θ ⊆ [0,∞)2, Ξi ⊆ [0,∞)2, and
R⊆ [0,∞)3 are instead independent Poisson point processes with intensities µ⊗dt,
µ ⊗ dt, and µ ⊗ µ ⊗ dt, where dt denotes Lebesgue measure on [0,∞) and µ ⊗ dt
denotes the product measure of µ and dt on [0,∞)× [0,∞).
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The conditions of this conjecture may need to be modified or strengthened in
order for the representation to hold, but I leave it to the interested reader to work out
those details.

Research Problem 8.6 The above specification of relatively invariant point process
models incorporates an additional measure-valued parameter µ into the model class
from Section 7.3. The extra parameter seems to make the model more flexible, but it is
unclear how this flexibility might manifest itself in practice. If µ is unknown, then it
seems difficult to estimate it from data, but perhaps there is a reasonable parametric
assumption for which some estimation theory is possible. I leave these and other
related questions as future research directions.

8.8 Final remarks and further reading

While the formal study of relatively exchangeable structures is new as of [3, 58, 59],
the concept is implicit in the original stochastic blockmodel [89] and the latent space
model [88]. In this chapter, I have emphasized the basic ideas underlying relative
exchangeability, but as of now the available results involve obscure mathematical
notions and difficult techniques which lie beyond the scope of a typical discussion on
statistical network analysis. The core idea behind relative exchangeability, however,
seems to be straightforward and natural for statistical applications involving complex
structures, and there is ample room for future work on theory and applications of
relative exchangeability. For example, recent work on community detection in the
SBM for weighted graphs [157] is ripe for possible extensions to the more general
relatively exchangeable models discussed here.

I conclude this chapter by noting that the form in (8.18) is not necessary for Y
to be relatively exchangeable. There are relatively exchangeable structures Y which
depend on X in a more general way than in (8.18). For example, instead of a classi-
fication factor C : N → [K] suppose that the community structure is captured by an
equivalence relation b : N×N→{0,1} encoding

b(i, j) =
{

1, C(i) =C( j),
0, otherwise.

(The major difference between C and b is that b only records whether or not two
vertices are in the same class. It does not keep track of which class label is associated
to each vertex.) Any permutation σ : N→ N acts on b by

bσ (i, j) = b(σ−1(i),σ−1( j)),

meaning that

bσ (i, j) = 1 if and only if b(σ−1(i),σ−1( j)) = 1.

Relative exchangeability with respect to b is defined in the analogous way to Defi-
nition 8.1: Y |σS =D Y |S for all permutations σ : S→ S for which b|σS = b|S, where
b|S is the restriction of b : N×N → {0,1} to S× S→ {0,1}. But in this case, the
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marginal information b(i, j) may not fully determine the distribution of YN |S. Take,
for instance, the case S = {1,2,3,4} with C(1) = C(2) = 1 and C(3) = C(4) = 2.
Then b(1,2) = b(2,1) = 1, b(3,4) = b(4,3) = 1, and b(i, j) = 0 for all other com-
binations of i and j. But the marginal information b(1,2) = b(3,4) = 1 is not
enough to determine that 1 and 2 occupy a different block than 3 and 4. (Note that
b(1,2) = b(3,4) = 1 would also hold in the event that C(1) =C(2) =C(3) =C(4).)
Unlike the generic construction given in (8.19), in which the conditional distribution
of each edge depends on X only through X |{i, j}, the analogous construction of Y
that is relatively exchangeable with respect to b must be built up sequentially in a
way that takes the entire initial segment of b into account at each step. Specifically,
YN can be constructed by first determining Y |[1], then Y |[2] conditional on b|[2] and
Y |[1], then Y |[3] conditional on b|[3] and Y |[2], and in general Y |[m] conditional on
b|[m] and Y |[m−1]. In this way, the construction ‘keeps track’ of structure in b which
may not be reflected in the pairwise information used for the construction in (8.19).
Harkening back to the conditions of ultrahomogeneity and disjoint amalgamation in
Section 8.3.3, the construction in (8.19) fails in this case because b does not have
the n-DAP property for all n ≥ 1. For further details on the general case I defer to
[58, 59].

8.9 Solutions to exercises

8.9.1 Exercise 8.1

The adjacency arrays corresponding to the graphs in Figures 8.1(a) and 8.1(b), re-
spectively, are

ya =



0 0 0 0 0 0 1
0 0 1 1 0 0 0
0 1 0 1 1 1 0
0 1 1 0 0 1 1
0 0 1 0 0 0 0
0 0 1 1 0 0 0
1 0 0 1 0 0 0


and yb =



0 1 0 0 1 0 0
1 0 1 1 0 1 0
0 1 0 1 0 1 1
0 1 1 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0


,

and C is defined by

C : [7]→{1,2}
1 7→ 2
2 7→ 1
3 7→ 2
4 7→ 1
5 7→ 2
6 7→ 1
7 7→ 2.
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Define σ : [7]→ [7] by

σ : [7]→ [7]
1 7→ 7
2 7→ 4
3 7→ 3
4 7→ 6
5 7→ 1
6 7→ 2
7 7→ 5.

By the definition of relabeling in (6.1), we have

yσ
a =



0 1 0 0 1 0 0
1 0 1 1 0 1 0
0 1 0 1 0 1 1
0 1 1 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0


= yb

and C ◦σ =C. Let ya = (yi j)1≤i, j≤n. By definition of the SBM in (8.2), we have

Pr(Yn = yb;w,C) =

= Pr(Yn = yσ
a ;w,C)

= ∏
1≤i6= j≤n

w((C ◦σ)(i),(C ◦σ)( j))yσ(i)σ( j) ×

×(1−w((C ◦σ)(i),(C ◦σ)( j)))1−yσ(i)σ( j)

= ∏
1≤i6= j≤n

w((C ◦σ)(σ−1(i)),(C ◦σ)(σ−1( j)))yi j ×

×(1−w((C ◦σ)(σ−1(i)),(C ◦σ)(σ−1( j)))1−yi j

= ∏
1≤i6= j≤n

w(C(i),C( j))yi j(1−w(C(i),C( j)))1−yi j

= Pr(Yn = ya;w,C).

8.9.2 Exercise 8.2

Let YN be distributed according to the SBM with block structure C and weight func-
tion w as in (8.2),

Pr(YN = y;w,C) = ∏
1≤i6= j≤N

w(C(i),C( j))yi j(1−w(C(i),C( j)))1−yi j .

To see that YN is relatively exchangeable with respect to C, let S⊆ [N] be any subset
of vertices and let σ : S→ S be such that C|S ◦σ = C|S. By independence of the
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entries Yi j in YN , the marginal distribution of YN |S is

Pr(YN |S = y;w,C|S) = ∏
i, j∈S:i6= j

w(C(i),C( j))yi j(1−w(C(i),C( j)))1−yi j .

Thus, for any σ : S→ S such that C|S ◦σ =C|S, we have (writing C′ =C|S)

Pr(YN |S = yσ ;w,C′) =

= ∏
i, j∈S:i6= j

w(C′(i),C′( j))yσ(i)σ( j)(1−w(C′(i),C′( j)))1−yσ(i)σ( j)

= ∏
i, j∈S:i6= j

w((C′ ◦σ)(σ−1(i)),(C′ ◦σ)(σ−1( j)))yi j ×

×(1−w((C′ ◦σ)(σ−1(i)),(C′ ◦σ)(σ−1( j)))1−yi j

= ∏
i, j∈S:i6= j

w(C′(i),C′( j))yi j(1−w(C′(i),C′( j)))1−yi j

= Pr(YN |S = y;w,C′).

Since S and σ were chosen arbitrarily subject to the constraint C|S ◦σ = C|S, the
proof is complete by the definition of relative exchangeability in (8.3).

8.9.3 Exercise 8.3

For any permutation σ : [N]→ [N] and y ∈ {0,1}N×N , we compute

Pr(YN = yσ ;φ) =

= ∑
c:[N]→[K]

Pr(C = c)Pr(YN = yσ ;φ ,c)

= ∑
c:[N]→[K]

Pr(C = cσ )Pr(YN = yσ ;φ ,cσ )

= ∑
c:[N]→[K]

Pr(C = c)Pr(YN = y;φ ,c)

= Pr(YN = y;φ),

since the orbit of cσ over all c : [N]→ [K] coincides with the set c : [N]→ [K]. It
follows that YN is exchangeable.
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8.9.4 Exercise 8.4

To see that Y∗ is relatively exchangeable, let S ⊂ N with |S| = n and take any per-
mutation σ : S→ S that fixes X |S. Writing X |S = (X1|S, . . . ,Xr|S), we have

Pr(Y |S = yσ ;X) =

=
∫
[0,1]S

∏
i, j∈S

φ(X |{i, j},ui,u j)
yσ(i),σ( j)(1−φ(X |{i, j},ui,u j))

1−yσ(i),σ( j) ∏
k∈S

duk

=
∫
[0,1]S

∏
i, j∈S

φ(X |{σ−1(i),σ−1( j)},uσ−1(i),uσ−1( j))
yi j ×

×(1−φ(X |{σ−1(i),σ−1( j)},uσ−1(i),uσ−1( j)))
1−yi j ∏

k∈S
duk

=
∫
[0,1]S

∏
i, j∈S

φ(X |{i, j},ui,u j)
yi j(1−φ(X |{i, j},ui,u j))

1−yi j ∏
k∈S

duσ(k)

=
∫
[0,1]S

∏
i, j∈S

φ(X |{i, j},ui,u j)
yi j(1−φ(X |{i, j},ui,u j))

1−yi j ∏
k∈S

duk

= Pr(Y |S = y;X),

as required.



Chapter 9

Edge exchangeable models

With the exception of the Caron–Fox model (Section 7.3), all of the models dis-
cussed so far are tailored to contexts in which the vertices are the units. Even the
Caron–Fox model, though not defined explicitly in terms of vertex selection, is most
naturally interpreted in terms of t-selection for the point process Y, as in (7.14), or
p-sampling of the induced array defined in (7.6); see Section 7.3.7 and [148]. An
important distinction between vertex selection, simple random vertex sampling, t-
selection, and p-sampling and the alternative sampling schemes presented in Section
3.6 is that the latter depend on the network structure while the former do not. Ver-
tex selection, simple random vertex sampling, t-selection, and p-sampling can all be
performed without referring to the network, but the edges in a network cannot be
sampled independently of the network, nor can paths. The network must exist, and
have edges or paths between its vertices, in order for edge or path sampling to be
possible. A vertex that does not participate in any edges or paths cannot appear in a
network obtained by edge or path sampling. With this observation, it is no surprise
that the correct approach to modeling network data obtained by edge, hyperedge,
or more generic ‘relational’ sampling differs from what is appropriate in more con-
ventionally assumed vertex sampling contexts. We explore some of these differences
over the next two chapters. For further details see [53, 54].

9.1 Scenario: Monitoring phone calls

Consider a network constructed by sampling entries from a phone call database, as
in Section 3.6.1.1. Associated to each call is the ordered pair (s,r) indicating the
sender s and receiver r. As shown in Table 9.1, database entries also contain infor-
mation about the time of the call, topic discussed, etc., but we disregard this extra
information here. We focus only on the structure induced by regarding each phone
call (s,r) as a directed edge s→ r and representing a sequence of calls, e.g.,

X1 = (a,b), X2 = (c,a), X3 = (d,e), X4 = (a,c),

as the network-like structure shown in Figure 9.1. In this representation, the ver-
tex labels a,b,c,d,e identify the phone numbers involved in each call, while the
edge labels 1,2,3,4 identify each phone call (a,b),(c,a),(d,e),(a,c), respectively,
according to when in the sequence it was observed.

155
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Table 9.1 Database of phone calls. Each row contains information about a single phone call:
caller and receiver (identified by phone number), time of call, topic discussed, etc.

Caller Receiver Time of Call Topic Discussed . . .
555-7892 (a) 555-1243 (b) 15:34 Business . . .
550-9999 (c) 555-7892 (a) 15:38 Birthday . . .
555-1200 (d) 445-1234 (e) 16:01 School . . .
555-7892 (a) 550-9999 (c) 15:38 Sports . . .
555-1243 (b) 555-1200 (d) 16:17 Business . . .
...

...
...

...
. . .

Figure 9.1 Network depiction of phone call sequence X1 =(a,b), X2 =(c,a), X3 =(d,e), X4 =
(a,c) obtained from the first 4 rows of Table 9.1, with label i assigned to edge representing Xi
for each i = 1,2,3,4.

9.2 Edge-centric view

Imagine sampling 4 phone calls uniformly at random from the database in Table 9.1.
Then the observed calls X1,X2,X3,X4 form an exchangeable sequence of ordered
pairs. In the network representation of Figure 9.1, exchangeability of the sequence
X1,X2,X3,X4 induces exchangeability on the network, in the sense that any two real-
izations that are isomorphic up to edge relabeling have equal probability; see Figure
9.2 for illustration. Because there is a one-to-one correspondence between edge se-
quences X1, . . . ,Xn and their vertex-edge labeled network representation, as in Figure
9.1, the class of models for such data is determined by de Finetti’s theorem [60] for
exchangeable sequences. (See Section 6.6.1 for a connection between de Finetti’s
theorem and the Aldous–Hoover theorem for vertex exchangeable models.) The key
observation at this stage is that exchangeability is defined with respect to relabeling
of the edges, not the vertices as was assumed in Chapter 6, and that this shift toward
exchangeability of edges arises naturally by considering how the network is observed
via edge sampling. This immediately suggests a different way to analyze networks
than the conventional networks-as-graphs perspective (Section 1.2). It is also clear
at this point why the common practice of delabeling the edges and viewing the net-
work as the graph in Figure 9.3 imposes an expressly vertex-centric, and therefore
misleading, perspective on network data observed under the conditions of Section
9.1.

The above scenario, in which a network is observed by sampling phone calls (i.e.,
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Figure 9.2 (Left) Network representation of phone call sequence X1 = (a,b), X2 = (c,a), X3 =
(d,e), X4 = (a,c). (Right) Representation of the network on left after reordering of its edges
X2,X3,X4,X1. Any such reordering has equal probability under an exchangeable model.

Figure 9.3 Graphical representation of phone call sequence X1 = (a,b), X2 = (c,a), X3 =
(d,e), X4 = (a,c) in Figure 9.1 after delabeling edges.

interactions/edges) instead of callers (i.e., vertices), fits into Crane and Dempsey’s
[54] edge-centric perspective for modeling interaction networks. As we see through-
out this chapter and the next, the edge-centric perspective is best suited to network
data for which the relations or interactions are the units of observation, as in net-
works built from phone calls, email correspondence, scientific coauthorship, movie
actor collaborations, path sampling of Internet topology, and many other kinds of
interaction data.

Harkening back to Chapter 6, there is a tendency to regard the vertex labels
a,b,c,d,e in Figure 9.3 as arbitrary ‘names’ which serve no additional purpose ex-
cept to uniquely identify different vertices in the network. Regarded this way, it may
seem natural to choose a model for the vertex-labeled representation in Figure 9.3
that is invariant under renaming the vertices, as shown in Figure 9.4. This line of
reasoning is sometimes given in favor of vertex exchangeable network models: since
the vertex names are arbitrary, the distribution of the data should be invariant to
arbitrary renaming of the vertices. But such reasoning is flawed. Remember, ver-
tex exchangeability is more than distributional invariance with respect to arbitrary
relabeling of the sampled vertices. It is invariance with respect to arbitrary relabel-
ing of all vertices, sampled and unsampled. In particular, it implies that those vertices
which have been sampled can be ‘exchanged’ with vertices which have not been sam-
pled. So while it is true that the vertex labels (i.e., the ‘names’) in Figure 9.1 serve
only to identify individual vertices, vertex exchangeability implies that the vertices
themselves (regardless of their ‘names’) can be interchanged, i.e., are representative
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Figure 9.4 Network representation of phone call sequence X1 = (a,b), X2 = (c,a), X3 = (d,e),
X4 =(a,c) from Figure 9.3 and its transformation under renaming vertices. A vertex exchange-
able model assigns equal probability to both realizations.

copies of one another. This latter implication of representative vertex sampling does
not hold in Section 9.1 and many other scenarios involving interaction data.

In Section 9.1, the identity of each vertex is determined not by its ‘name’ but
rather by how it relates to other vertices through its phone call activity. It follows that
the identity of each sampled vertex is embedded in the data, so that once the identi-
ties are given—by articulating how different vertices interact with one another—they
cannot be changed arbitrarily. So even though the vertex ‘names’ a,b,c,d,e are in-
consequential, the fact remains that each vertex has a unique identity; and while their
names may be arbitrary, their identities are not. To see this explicitly, note that the
two networks shown in Figure 9.4 represent two different sequences of calls. On
the left are the calls (a,b),(c,a),(d,e),(a,c) from Figure 9.3 and on the right are
(c,b),(e,c),(a,d),(c,e). With respect to observing phone calls from the database,
the left-hand side and right-hand side of Figure 9.4 are different observations, and
we have no reason to assume that both have the same probability of being chosen
by sampling from the database. Given that the calls are sampled uniformly without
replacement from the database, however, it is reasonable to assume that the sequence
of calls determining, e.g., the right-hand network of Figure 9.4, is exchangeable.
Thus, for example, the sequence X ′1 = (c,b),X ′2 = (e,c),X ′3 = (a,d),X ′4 = (c,e) lead-
ing to the network on the right-hand side of Figure 9.4 has the same probability as
the reordering of calls by, say, X ′2,X

′
3,X

′
4,X

′
1.

In summary, once the structure of the data is accounted for, as in Figure 9.1, the
vertex names are inconsequential, but the vertex identities are not. In other words,
the names can be disregarded, not reassigned, but only after the essential network
structure (i.e., pattern of edges) has been recorded. Even though individually the
two observations X1,X2,X3,X4 and X ′1,X

′
2,X

′
3,X

′
4 may occur with different probabil-

ities, for the purposes of inference they both convey the same information about the
database of calls, because they both produce the same pattern of edges, as shown in
Figure 9.5. This viewpoint leads naturally to the concept of edge exchangeability.

Remark 9.1 Along with Section 1.2, the previous section is the most important of
the whole book. Some of the points are subtle and warrant reflection, especially by
readers predisposed to the networks-as-graphs mindset. The reader is urged to reread
Sections 1.2 and 9.2. Can you think of another context (outside of network analysis)
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Figure 9.5 Phone call networks (on left) containing the same sufficient information upon re-
moving vertex labels, as shown in the edge-labeled graph on the right.

in which a change in perspective provides substantial insight and greatly simplifies
an otherwise difficult or intractable problem?

9.3 Edge exchangeability

In Section 9.1 each phone call is represented as a caller-receiver pair (s,r) ∈P×P
in some (at most countable) set P representing the population of all phone numbers
in a database. Sampling uniformly (with or without replacement) from the database
gives an exchangeable sequence X1,X2, . . . in P ×P , so that each finite segment
(X1, . . . ,Xn) satisfies

(X1, . . . ,Xn)=D (Xσ(1), . . . ,Xσ(n)) for all permutations σ : [n]→ [n]. (9.1)

In particular, for any specific realization (s1, t1), . . . ,(sn, tn) in P×P , the distribu-
tion of (Xi)1≤i≤n satisfies

Pr(Xi = (si, ti), i = 1, . . . ,n) = Pr(Xi = (sσ(i), tσ(i)), i = 1, . . . ,n) (9.2)

for all permutations σ : [n]→ [n], for all n ≥ 1. This condition is reflected in Figure
9.2, which shows two vertex-edge labeled networks whose probabilities are equal
under an exchangeable model.
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The distribution of the edge-labeled graph obtained by disregarding the names of
the vertices, as on the right-hand side of Figure 9.5, is determined by the sequence of
calls X1,X2, . . . as follows. First, note that the edge-labeled graph on the right-hand
side of Figure 9.5 corresponds to the set (i.e., equivalence class) of all call sequences
X1,X2, . . . whose induced network structures are the same after disregarding vertex
labels. (The three vertex-edge labeled graphs on the left-hand side of Figure 9.5 are
members of this equivalence class, as are many other graphs that are not listed.) In
particular, the sufficient information in any realization x = (x1,x2, . . .) of X1,X2, . . .
is given by the equivalence class

Ex = {(ρ(x1),ρ(x2), . . .) | ρ : P →P is a bijection}, (9.3)

where ρ(x) = (ρ(s),ρ(t)) is the image of x = (s, t) under ρ . The operation in (9.3)
has the effect of disregarding the observed vertex names by taking the data to be the
set of all caller-receiver sequences which give rise to the same edge-labeled graph,
as in Figure 9.5. The notation ‘Ex ’ in (9.3) is to be understood as the ‘edge-labeled
network’ (E ) ‘induced by x’ (subscript x).1

Let Yn denote the random edge-labeled network induced by an exchangeable
sequence Xn = (Xi)1≤i≤n, i.e., Yn = EXn . Then the distribution of Yn is given by
aggregating the probabilities of all sequences that produce the same edge-labeled
graph through (9.3), i.e.,

Pr(Yn = Ex) = ∑
x ′∈Ex

Pr(Xn = x′).

Now, for any sequence x = (xi)1≤i≤n (with each xi consisting of a pair (si, ti)) and
any permutation σ : [n]→ [n], let xσ = (xσ(i))1≤i≤n be the reordering of x according
to σ . Exchangeability of (Xi)1≤i≤n implies

Pr((Xi)1≤i≤n = x) = Pr((Xi)1≤i≤n = xσ ), x = (x1, . . . ,xn) ∈P×P,

for all permutations σ : [n]→ [n]. Since reordering Xn by σ has the effect of relabel-
ing the edges of the induced edge-labeled network Yn, it follows that

Pr(Yn = Exσ ) = ∑
x ′∈Exσ

Pr(Xn = x′)

= ∑
x ′∈Ex

Pr(Xn = x′σ
−1
)

= ∑
x ′∈Ex

Pr(Xn = x′)

= Pr(Yn = Ex).

This relation gives rise to edge exchangeability, whereby the distribution of a random
edge-labeled graph is invariant under arbitrary relabeling of its edges, as illustrated

1I use the terms ‘edge-labeled graph’ and ‘edge-labeled network’ interchangeably throughout this
chapter.
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Figure 9.6 Relabeling of two edge-labeled graphs. An edge exchangeable model assigns equal
probability to both outcomes.

in Figure 9.6. Interaction propensity processes make up an important family of edge
exchangeable models that are analogous to graphons in the vertex exchangeable set-
ting.

9.4 Interaction propensity processes

For a set P , assume data is collected as a (P ×P)-valued sequence x1,x2, . . ., or
equivalently as a function x : N→P ×P , i 7→ xi. For any bijection ρ : P →P ,
we write ρ x to denote the composition of x and the map (a,b) 7→ (ρ(a),ρ(b)).
Thus, ρ x : N →P ×P corresponds to the sequence i 7→ ρ(xi) which ‘renames’
the vertices of x according to ρ . With this convention, the edge-labeled network
induced by x : N→P×P (as defined in (9.3) and illustrated in Figure 9.5) can be
re-expressed as

Ex = {x′ : N→P×P | ρ x′ = x for some bijection ρ : P →P}, (9.4)

i.e., the equivalence class of all edge sequences that are isomorphic up to their in-
duced edge structure. For example, each of the vertex-edge labeled graphs on the
left-hand side of Figure 9.5 corresponds to a sequence x′ as follows. Referring to
their relative position in Figure 9.5:

(Top Left) x′1 = (a,b),(c,a),(d,e),(a,c)

(Middle Left) x′2 = (c,b),(e,c),(a,d),(c,e)

(Bottom Left) x′3 = ( f ,k),(a, f ),(h,g),( f ,a).

For population P = {a,b,c, . . .}, we define ρ : P →P by

ρ :P →P

a 7→ c

b 7→ b

c 7→ e

d 7→ a

e 7→ d,
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from which we obtain ρ x′1 = x′2, showing that both x′1 and x′2 are associated to the
same edge-labeled graph according to (9.4). By a similar argument, we can show that
x′2 and x′3 are equivalent in the sense of (9.4), as are x′1 and x′3. Together, the set of
all such x′ determines the ‘shape’ given by the edge-labeled graph on the right-hand
side of Figure 9.5.

Exercise 9.1 Show that the definitions of Ex in (9.3) and (9.4) are equivalent.

For S ⊆ N, we write ES to denote the set of all edge-labeled networks with
edges labeled in S. (Every y ∈ ES is an edge-labeled network with each edge la-
beled uniquely by an element in S. For example, the structure Ex corresponding to
(9.4) is labeled by N.) Notice that the set labeling the population P plays a dimin-
ished role in Ex because it is quotiented out by the equivalences ρ . Without loss of
generality, we assume P = N wherever it appears.

For any permutation σ : N → N, we write xσ : N →P ×P as the reordering
of x according to σ , so that xσ (i) = x(σ(i)). To avoid confusion, it is important to
distinguish the notations:

ρ x : vertices renamed according to bijection ρ

xσ : edges relabeled according to permutation σ .

The composition by ρ on the left in ρ x renames the vertices according to ρ . The
superscript σ in xσ relabels the edges by σ . An edge-labeled graph Ex is obtained in
(9.4) by aggregating all x′ that are equivalent to x up to renaming by some ρ . An edge
exchangeable model (Definition 9.1 below) is defined as a distributional invariance
with respect to relabeling edges by arbitrary σ .

As defined here, every edge-labeled graph y ∈ EN corresponds to an equivalence
class as in (9.4) for some x : N→P×P . For any edge-labeled graph y ∈ EN , let
yσ be the structure obtained by relabeling the edges of y according to σ . Since y
corresponds to an equivalence class, we formally define yσ by taking any x such that
y = Ex and putting yσ = Exσ , where xσ = (xσ(i))i≥1 is as defined above. A random
edge-labeled graph Y is edge exchangeable if its distribution is invariant under this
relabeling operation.

Exercise 9.2 Verify that the above definition of yσ does not depend on the choice of
representative x for y.

Definition 9.1 (Edge exchangeability [54]) A random edge-labeled graph Y on ES
is edge exchangeable if Yσ =D Y for all permutations σ : S→ S.

For countable set P , we define the (P×P)-simplex as the set of all probability
distributions on P×P , i.e.,

FP×P =

{
( f(s,t))s,t∈P×P : f(s,t) ≥ 0 and ∑

s,t∈P
f(s,t) = 1

}
. (9.5)

Given any f ∈ FP×P , we define ε f as the probability distribution of a random
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edge-labeled graph Y induced by an i.i.d. sequence X = (X1,X2, . . .), with each Xi
distributed as

Pr(Xi = (s, t); f ) = f(s,t), (s, t) ∈P×P. (9.6)

In particular, Y ∼ ε f is a random edge-labeled graph obtained by putting Y = EX ,
for EX defined in (9.4) and X i.i.d. according to (9.6). We call Y ∼ ε f the interaction
propensity process directed by f . The following is immediate by the construction.
Theorem 9.1 For any f ∈FP×P , Y ∼ ε f is edge exchangeable.

Exercise 9.3 Prove Theorem 9.1.

In the next section we see that interaction propensity processes play an analogous
role for edge exchangeable models as the φ -process does for vertex exchangeable
models. In particular, the interaction propensity processes comprise the ergodic dis-
tributions for edge exchangeable networks labeled by N. This analogy should not,
however, suggest that interaction propensity processes exhibit the same behavior as
φ -processes. There are a couple of important differences.
1. Interaction propensity processes allow for the occurrence of multiple edges. In

fact, multiple edges between two vertices will occur with probability 1 in any
large enough sample of edges from (9.6). This is a consequence of the strong law
of large numbers for i.i.d. sequences: assuming f(s,t) > 0 for some (s, t)∈P×P ,
the limiting relative frequency of (s, t) in X1,X2, . . . satisfies

n−1
n

∑
i=1

1(Xi = (s, t))≈ f(s,t) > 0 for large n with probability 1.

In particular, the number of occurrences of (s, t) satisfies ∑
n
i=1 1(Xi = (s, t)) ≈

n f(s,t) → ∞ as n→ ∞. So whereas each edge appears at most once in a vertex
exchangeable network, each edge appears either 0 or infinitely many times, with
probability 1, in an outcome of the interaction propensity process.

2. New vertices appear in EX ∼ ε f in size-biased order according to their overall fre-
quency of occurrence in the network. Specifically, for any s ∈P , the probability
that s is the sender of a given call equals ∑t∈P f(s,t), and the probability that s is
the receiver of a given call equals ∑t∈P f(t,s). Thus, although the identities of the
vertices are disregarded in the edge-labeled representation EX , whichever vertices
have been observed are known to be atypical (in the sense of being a size-biased
pick from P).
In the context of Section 9.1, uniform sampling of calls makes it more likely to

observe callers who appear more often in the database. For example, a caller who
appears 2,000 times in the database is twice as likely to be chosen as another caller
who only appears 1,000 times, explaining why the observed vertices in edge ex-
changeable networks are a size-biased sample of the population of all vertices. This
last point demonstrates why vertex exchangeability is incompatible with the way in
which the data in Section 9.1 and other interaction networks are typically observed.
Whereas vertex exchangeability treats observed vertices as representative of the pop-
ulation of all vertices, edge exchangeability treats the observed edges as representa-
tive of the population of all edges. And when the observed edges are representative
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Figure 9.7 Edge-labeled network obtained from sequence X1 = (0,0), X2 = (0,0), X3 = (0,0),
X4 = (0,0), . . . in the modified interaction propensity process construction of Section 9.5.

of the population of edges, the observed vertices are not representative of the pop-
ulation of vertices: they are instead a size-biased sample. This observation is made
formal with the following characterization of edge exchangeable random graphs.

9.5 Characterizing edge exchangeable random graphs

The Aldous–Hoover theorem (Theorem 6.3) states that the distribution of any ver-
tex exchangeable random graph with infinitely many vertices can be expressed as
a mixture of graphon processes. Except for a minor technical modification, interac-
tion propensity processes stand in relation to edge exchangeable random graphs in
the same way that graphon models stand in relation to vertex exchangeable random
graphs. The need for this technical modification (described below) arises because the
vertices in an edge-labeled graph cannot be identified independently of the edges in
which they participate. The identity of each vertex is determined by how it relates
to other vertices through the observed edge relations. (Contrast this with a vertex-
labeled graph, in which each vertex can be identified by reference to its label 1,2, . . .
without any mention of its edge relations to other vertices.)

This observation features into the forthcoming characterization of edge ex-
changeable network models because ordinarily when sampling an infinite i.i.d. se-
quence from a countable set S, each element s ∈ S will appear either 0 times or
infinitely many times with probability 1 by the strong law of large numbers. But in
edge exchangeable networks, the countable set of edges S× S (as pairs of vertices)
become de-identified once the network is represented as the edge-labeled structure
associated to the equivalence class in (9.4). This additional step allows for the infi-
nite occurrence of certain edge types, which manifest themselves in the edge-labeled
representation through the singular occurrence of vertices called blips. Thus, in an
edge exchangeable graph, vertices appear 1 or infinitely many times with probability
1, and the following modification is intended to address this possibility.2

To set the stage, consider the edge-labeled graph in Figure 9.7, which has in-
finitely many loops at otherwise isolated vertices. Since relabeling the edges by any
permutation changes nothing, a distribution which assigns probability 1 to the out-
come in Figure 9.7 is edge exchangeable, but such a distribution cannot be expressed
in terms of the interaction propensity process of Section 9.4 because each of the

2Notice that I do not write that a vertex can appear 0 times because in the edge-labeled representa-
tion such vertices cannot be assumed to ‘exist’ independently of any edge in which they appear. This
philosophical point should not distract from the main results of this section.
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edges would have to be encoded by a loop with positive probability assignment (i.e.,
a pair (s,s) for some s with f(s,s) > 0); and by the strong law of large numbers any
such loop appears infinitely often with probability 1.

Exercise 9.4 Prove or explain why the edge exchangeable distribution that assigns
probability 1 to the network consisting of infinitely many isolated loops (as in Figure
9.7) cannot be described by the interaction propensity process in Section 9.4.

Evidently, there are edge exchangeable distributions on EN which cannot be de-
scribed by the interaction propensity processes of the preceding section. We account
for these additional cases by putting P = N and defining the ranked N×N-simplex
as

F
∼=
N×N = FN≥−1×N≥−1/

∼=, (9.7)

where

FN≥−1×N≥−1 = {( f(i, j))i, j≥−1 : f(i, j) ≥ 0 and ∑
i, j≥−1

f(i, j) = 1}

and ∼= is an equivalence relation on FN≥−1×N≥−1 defined below. We can think of
FN≥−1×N≥−1 in the same way that we thought of FP×P in the interaction propen-
sity process—for any f ∈ FN≥−1×N≥−1 and i, j ≥ −1, f(i, j) is the probability of
observing an edge from i to j—but with the understanding that FN≥−1×N≥−1 is aug-
mented by the additional possibilities of f(0,i), f(i,0), f(−1,i), and f(i,−1) for i≥ 1, and
f(0,0), f(−1,−1), f(0,−1), and f(−1,0). In this modified presentation, the labels 0 and −1
serve as placeholders for special edge ‘types’, such as the isolated loops in Figure
9.7. In general, when a 0 or −1 occurs in the interaction propensity process associ-
ated to f ∈FN≥−1×N≥−1 , the edge-labeled graph representation maps those elements
to a new vertex which has never appeared before and will never appear again in the
network. This is explained further in (I)–(III) and Figure 9.8 below.

Given f = ( f(i, j))i, j≥−1 ∈ FN≥−1×N≥−1 we define ε f as the distribution of Y
obtained by first taking X = (X1,X2, . . .) i.i.d. from f as in (9.6), next converting X
into a new sequence X∗ = (X∗1 ,X

∗
2 , . . .) by relabeling each instance of 0 and −1 with

a unique non-positive integer, and finally defining Y = EX∗ , for EX∗ just as in (9.4).
In the following special case the mapping X 7→ X∗ gives

X : X1 = (3,1), X2 = (1,0), X3 = (2,3), X4 = (0,−1), X5 = (0,2)
↓ ↓ ↓ ↓ ↓ ↓
X∗ : X∗1 = (3,1), X∗2 = (1,0), X∗3 = (2,3), X∗4 = (−1,−2), X∗5 = (−3,2).

(9.8)
Notice that each occurrence of a positive integer 1,2,3 is unchanged in passing from
X to X∗, but each occurrence of a non-positive integer 0 or −1 is replaced by the
largest non-positive integer which has not previously appeared in the updated se-
quence. It is through this process that the vertices corresponding to 0 and−1 become
isolated in the edge-labeled graph determined by X∗1 , . . . ,X

∗
5 . Since it is possible that

different f , f ′ ∈ FN≥−1×N≥−1 produce the same distribution on EN , we define the
equivalence relation f ∼= f ′ to mean that ε f = ε f ′ under the above operation. (Specif-
ically, f ∼= f ′ indicates that for X i.i.d. according to Pr(Xi = ·; f ) in (9.6) and X′
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i.i.d. according to Pr(X ′i = ·; f ′) in (9.6) satisfy EX∗=D EX ′∗ .) We write F
∼=
N×N for

the set of all equivalence classes of FN≥−1×N≥−1 under ∼=, expressed symbolically
as F

∼=
N×N = FN≥−1×N≥−1/

∼= in (9.7).
The constituents of any f ∈F

∼=
N×N play the following roles:

(I) i, j ≥ 1: since positive labels are unaffected by the operation X 7→ X∗, each
f(i, j), i, j ≥ 1, is the probability that a particular interaction (i, j) occurs
in sequence X. Each occurrence of such an interaction is associated to a
distinct edge between the corresponding vertices in EX∗ .

(II) i≥ 1, j ∈ {0,−1} or i ∈ {0,−1}, j ≥ 1: each occurrence of (i,0) in X will
be replaced in X∗ by (i,z) for a unique non-positive label z = 0,−1, . . .. For
example, f ∈F

∼=
N×N corresponding to f(i,0) = 1 gives the sequence

X : (i,0), (i,0), (i,0), . . .
↓ ↓ ↓ ↓ . . .
X∗ : (i,0), (i,−1), (i,−2), . . .

with probability 1. In this way, each instance of (i,0) or (i,−1) corresponds
to an edge from i to a unique vertex, i.e., a ‘blip’ which appears only once in
X∗ and thus only once in EX∗ . If f(i,0) > 0, then (i,0) will appear infinitely
often in X with probability 1, meaning that in EX∗ there will be an infinite,
isolated ‘star’ emerging from the vertex corresponding to i. (The same de-
scription holds for (0, j) and (−1, j), with the only change being that each
occurrence of (0, j) and (−1, j) produces an edge from an isolated vertex
toward the vertex corresponding to j.)

(III)(a) i= j = 0 or i= j =−1: since each non-positive entry is replaced by a unique
non-positive entry in X∗, each occurrence of (0,0) or (−1,−1) produces an
isolated loop at an otherwise isolated vertex in EX∗ . For example, f ∈F

∼=
N×N

corresponding to f(0,0) = 1 produces the sequence

X : (0,0), (0,0), (0,0), . . .
↓ ↓ ↓ ↓ . . .
X∗ : (0,0), (−1,−1), (−2,−2), . . .

with probability 1. Its network representation EX∗ is shown in Figure 9.7.
(III)(b) (i, j) = (0,−1) or (i, j) = (−1,0): since both labels are non-positive, each

occurrence of (0,−1) corresponds to an edge between two distinct, other-
wise isolated vertices in EX∗ . In particular, each occurrence of (0,−1) is
replaced by (z,z′) for z 6= z′ and z,z′ not appearing anywhere else in the
sequence. For example, f ∈F

∼=
N×N corresponding to f(0,−1) = 1 produces

X : (0,−1), (0,−1), (0,−1), . . .
↓ ↓ ↓ ↓ . . .
X∗ : (0,−1), (−2,−3), (−4,−5), . . .

with probability 1.
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Figure 9.8 Illustration of different edge types (I)–(III) from the construction in Section 9.5
based on sequence X1 = (4,2), X2 = (2,0), X3 = (0,−1), X4 = (2,4), X5 = (2,0), X6 =
(0,−1). (a) The vertex-edge labeled graph structure with original labels X1, . . . ,X6. (b) The
vertex-edge labeled network structure in (a) with vertex labels transformed according to the
operation X 7→ X∗ in (9.8). (c) The edge-labeled graph obtained by removing vertex labels
from the vertex-edge labeled graph in (b). In the sequence, X1 and X4 are of type (I), X2 and
X5 are of type (II), X3 and X6 are of type (III)(b). There are no edges of type (III)(a) in this
example. See Figure 9.7 for a network with edges of type (III)(a).

To better understand why cases (II) and (III) must be treated differently from case
(I) by the passage from X to X∗, consider the extreme case of f ∈F

∼=
N×N correspond-

ing to f(0,0) = 1, so that X i.i.d. from (9.6) has Xi = (0,0) for all i≥ 1 with probability
1. The edge-labeled network resulting from this process is shown in Figure 9.7. The
distribution of EX∗ obtained in this way is clearly edge exchangeable, but this distri-
bution cannot be represented as one of the interaction propensity processes in Section
9.4; see Exercise 9.4 above.

The same argument that applies in Exercise 9.4 also applies to networks com-
prised entirely of edge types (II) and (III)(b). In particular, for an edge to appear
in the interaction propensity process, there must be some (s, t), s, t ≥ 1, for which
f(s,t) > 0. But if f(s,t) > 0, then (s, t) will appear infinitely often in X with probability
1 by the strong law of large numbers. Thus, if an edge appears once in EX it must
appear infinitely many times with probability 1, meaning that the isolated loops of
Figure 9.7 or edges of type (II) and (III)(b) cannot occur in a realization of the inter-
action propensity process from Section 9.4. Thus, exchangeability implies that edges
of type (II) and (III) will occur infinitely often (if they occur at all), but each instance
of that type occurs only once.

Theorem 9.2 (Crane–Dempsey [54]) Let Y be an edge-exchangeable random
graph in EN . Then there exists a unique probability measure ϕ on F

∼=
N×N such that

Y=D EX∗ , for X∗ obtained by first taking f ∼ ϕ and, given f , generating X i.i.d. as
in (9.6) and applying the operation X 7→ X∗ in (9.8). We write Y ∼ εϕ to denote the
distribution of Y.

Although the representation in Theorem 9.2 could, on its own, be useful for mod-
eling edge exchangeable networks using ideas from Bayesian nonparametrics, it of-
fers an immediate conceptual insight into the sampling behavior of edge exchange-
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able networks. For each i ≥ 1, let f •i = ∑ j≥0 f(i, j)+ f( j,i) be the sum of the weights
over all edges incident to i. Then f •i is the probability that vertex i is contained in any
given edge X1,X2, . . ., leading to the following observation.

We call a vertex in y ∈ EN recurrent if it appears in more than one edge of y.

Theorem 9.3 ([54]) Recurrent vertices in an infinite edge exchangeable graph ap-
pear in size-biased order according to their expected relative degrees f •i .

Theorem 9.3 shows that the behavior of vertices in edge exchangeable networks,
in which vertices arrive in size-biased order, is incompatible with the behavior of
vertices in vertex exchangeable networks, in which the vertices can be interpreted
as arriving in exchangeable random order. This theorem thus clarifies why vertex
exchangeability is often expressly violated, and therefore untenable, in applications
for which the sampling scheme depends on the network, as in the edge sampling
scheme of Section 9.1 and a number of others from Section 3.6. Finally, I note that
the breakdown of edge types in (I)–(III) above, and the analogous characterization for
graphex models in Section 7.3, seems to reflect a universal property of exchangeable
processes. The interested reader can consult [9, 16, 98] for a general introduction to
exchangeable processes and further discussion of this phenomenon, another instance
of which arises in the characterization of jump types in exchangeable graph-valued
Markov processes [48, 49]. I discuss these latter processes in Chapter 11.

9.6 Vertex components models

The vertex components model is a subclass of interaction propensity processes whose
propensities f(s,t) are expressed as the product of vertex-specific propensities as fol-
lows. Let

∆1 =

{
( f1, f2, . . .) : fi ≥ 0 and ∑

i≥1
fi = 1

}
denote the infinite simplex and let ϕ be any joint probability distribution on ∆1×∆1.
In this way, ( f out, f in) = (( f out

i , f in
i ))i≥1 ∼ ϕ describes the relative frequency with

which each vertex makes outgoing calls f out
i and receives incoming calls f in

i . From
( f out, f in), we define f ∈F

∼=
N×N by first reordering f out in decreasing order so that

f out
1 ≥ f out

2 ≥ ·· · , then relabeling f in consistently with f out, and finally putting

f(i, j) = f out
i f in

j , i, j ≥ 1.3 (9.9)

(We relabel ( f out, f in) for the purpose of identifiability in the induced distributions.
Our choice to reorder f out instead of f in is a matter of convention and does not affect
the distribution ε f determined by f .)

Interaction propensity processes associated to f = ( f(i, j))i, j≥1 defined in (9.9)

3If for ( f out
i , f in

i ) and ( f out
i′ , f in

i′ ) there is a tie ( f out
i = f out

i′ ), then when reordering we assign the smaller
label to whichever has the larger second component. For example, if ( f out

i , f in
i ) and ( f out

i′ , f in
i′ ) are to appear

as the n and n+1 elements of the reordered sequence, then we assign label n to ( f out
i , f in

i ) if f in
i ≥ f in

i′ . If
both f out

i = f out
i′ and f in

i = f in
i′ then the labels n and n+1 can be assigned arbitrarily to either.
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offer a simple, if not simplistic, description of network formation. Conditional on
the random out- and in-degree propensities ( f out, f in), each edge in Y ∼ ε f is an in-
dependent choice of vertices, one from f out and one from f in. For modeling draws
from a phone call database, for example, the vertex components model assumes that
each observed call behaves as if the sender and receiver were chosen conditionally
independently from f out and f in, respectively. This assumption is very likely violated
in the scenario of Section 9.1 and in most conceivable networks applications involv-
ing interaction processes. Incorporating dependence between caller and receiver in a
meaningful and tractable way is a worthwhile open problem with potential implica-
tions beyond the specific scenario of Section 9.1.

Research Problem 9.1 Identify a natural parametric class of edge exchangeable
models, akin to the Hollywood model in Section 9.7 below, which incorporates de-
pendence between vertices on either end of an edge. For example, construct the in-
teraction propensities ( f(i, j))i, j≥1 from a collection of vertex components f = ( fi)i≥1
and conditional vertex components f·|i = ( f j|i) j≥1 for every i≥ 1 so that

f(i, j) = fi f j|i, i, j ≥ 1.

What properties does this model exhibit? If possible, compare its empirical properties
to those of the Hollywood model.

9.6.1 Stick-breaking constructions for vertex components

Since in general there need not be an upper bound on the total number of vertices that
can appear in a network, the vertex components f out and f in may be infinite in length.
(Recall from Section 6.4 that allowing for the possibility that the population network
has countably many vertices does not imply that the population is assumed to be
infinite, but rather that the population could be any finite size.) Since an infinite length
vector ( f out, f in) cannot be stored in a computer, the potentially infinite population
size poses practical issues for fitting such models.

Stick-breaking representations for random elements of ∆1, see, e.g., [94, 137],
offer a computationally tractable way to simulate from and estimate certain vertex
components models by constructing the sequences of interactions and the vertex
components simultaneously. In a nutshell, although the number of vertices in the
population is unbounded, only a finite number can appear in any sample of finitely
many edges. The behavior of any such finite sample can be described using only the
propensities of the (finitely many) sampled vertices.

Since the vertex labels in any realization of the interaction propensity process are
forgotten by the induced edge-labeled graph EX∗ , we can reconstruct a representative
of EX∗ , i.e., a member of its equivalence class (9.4), by labeling vertices in the order
that they arrive. And since the propensity of a vertex is irrelevant until it appears
in the network, the propensity of the vertex labeled i need not be generated until
the ith vertex appears. We describe this protocol by letting {gi}i≥1 be a collection
of probability densities on [0,1], putting S1 = 1, and sampling W1 ∼ g1. We then
continue inductively for each n= 1,2, . . . as follows. As above let Xn be the collection
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of all pairs X1 = (S1,T1), . . . ,Xn = (Sn,Tn) chosen up to and including stage n. Given
Xn and W1, . . . ,WVn , where Vn = max(Xn) is the largest vertex label appearing in Xn,
choose Sn+1 according to

Pr(Sn+1 = r | Xn,W1, . . . ,WVn) =

{
Wr, r = 1, . . . ,Vn,

1−∑
Vn
j=1 Wj, r =Vn +1. (9.10)

If Sn+1 = Vn + 1, then choose WVn+1 ∼ gVn+1(·/(1− ∑
Vn
j=1 Wj)). (In the ‘stick-

breaking’ interpretation, W1,W2, . . . are the sizes broken off of a stick of unit length.
The division by 1−∑

Vn
j=1 Wj is the normalization by the length of the ‘stick’ from

which the (n+ 1)st piece is to be broken off.) The process continues by drawing
Tn+1 given S1,T1, . . . ,Sn,Tn,Sn+1 as in (9.10), with Vn updated according to whether
or not Sn+1 was chosen as a previously unseen vertex or not.

In words, the construction in (9.10) chooses the next vertex to be one that already
exists with probability Wr, for r = 1, . . . ,Vn. Otherwise, with probability 1−∑

Vn
r=1 Wr,

a new (previously unseen) vertex is assigned the next available label Vn + 1. When
a new vertex is chosen, it is assigned a random weight WVn+1 as a fraction of the
remaining mass 1−∑

Vn
j=1 Wj drawn according to density gVn+1.

From the sequence (S1,T1),(S2,T2), . . . constructed above, Xn : [n]→ N×N is
the interaction process defined by Xn(i) = (Si,Ti), i = 1, . . . ,n, and EXn is the edge-
labeled network induced by Xn for each n ∈ N, as in (9.4). As computed in [54], the
joint density of EXn and W is given by

Pr(EXn = y,(W1, . . . ,Wv(y)) ∈ (dwi)1≤i≤v(y);{gi}i≥1) = (9.11)

=
v(y)

∏
j=1

(
1−

j−1

∑
i=1

wi

)
g j

(
w j

1−∑
j−1
i=1 wi

)
wDn( j)−1

j dw1 · · ·dwv(y),

where Dn( j) is the number of times the vertex with weight w j appears in y and
∑

0
i=1 wi = 0 by convention. The distribution of EXn can be recovered by integrating

over the vertex components Wi in (9.11).
Research Problem 9.2 The above stick-breaking formulation of edge exchangeable
models invites further study. Just about any question, statistical, mathematical, or
computational, about these models is currently open. A special case of this construc-
tion is described in the next section. Before tackling this problem, the reader should
be aware of the extensive work on stick-breaking constructions in the Bayesian non-
parametrics literature; for an overview, see Ishwaran and James [94] and followup
work by other authors.

9.7 Hollywood model

The Hollywood model is the canonical two-parameter family of edge exchangeable
network models. It corresponds to the vertex components model in (9.11) with W
generated from the Poisson–Dirichlet distribution [46, 72, 73, 130]. The definition
given below first invokes the Poisson–Dirichlet distribution, but the model’s alterna-
tive description by the Hollywood process (Section 9.7.1) is more easily digested.
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The reader interested in learning more about the Poisson–Dirichlet distribution and
its many appearances in probability, statistics, and science is referred to [46].

Remark 9.2 The upcoming description only allows edges with exactly two vertices,
as in our running phone call example. In the intended semantics of the Hollywood
model, as conceived in [54], each edge in Yn corresponds to a movie whose actors
are represented by the vertices incident to that edge. To bring this interpretation to
fruition, we must extend the model below to allow for edges of arbitrary finite size. I
discuss the extension to arbitrary edge sizes in Chapter 10.

Let ϕ be the distribution defined on the diagonal of ∆1 × ∆1 by taking f ∼
PD(α,θ) and putting ( f out, f in) = ( f , f ), where PD(α,θ) denotes the Poisson–
Dirichlet distribution with parameter (α,θ) satisfying either
• (finite population) α < 0 and θ =−κα for some positive integer κ = 1,2, . . . or
• (infinite population) 0≤ α ≤ 1 and θ >−α .
The significance of these parameters will become more apparent in Sections 9.7.1–
9.7.2. Until then, we observe that the split parameter space of the Hollywood model
accounts for both bounded and unbounded population sizes, with the region 0≤ α ≤
1 and θ >−α giving rise to sequences of edge-labeled networks (Yn)n≥1 for which
v(Yn)→ ∞ almost surely (a.s.) as n→ ∞, and the region α < 0 and θ = −κα for
some positive integer κ = 1,2, . . . giving rise to sequences of edge-labeled networks
(Yn)n≥1 for which v(Yn)→ κ a.s. as n→ ∞.

In the infinite population regime, the Hollywood model is a special case of
the vertex components model with W = (Wi)i≥1 chosen from the Griffiths–Engen–
McCloskey (GEM) distribution with parameter (α,θ) on ∆1. The GEM distribution
with parameter (α,θ) is the distribution of (W1,W2, . . .) obtained by a size-biased
reordering of (W ′1,W

′
2, . . .) from the Poisson–Dirichlet distribution with parameter

(α,θ). See [72] for further details on the GEM distribution and its relationship to the
Poisson–Dirichlet distribution.

In the finite population regime, the Hollywood model corresponds to the ver-
tex components model with W = (W1, . . . ,Wκ) chosen from the symmetric Dirichlet
distribution with parameter (α, . . . ,α) on the (κ−1)-dimensional simplex

∆κ−1 = {(s1, . . . ,sκ) : 0≤ si ≤ 1,s1 + · · ·+ sκ = 1}.

The symmetric Dirichlet distribution has density

f (w1, . . . ,wκ ;α) =
Γ(κα)

Γ(α)κ

κ

∏
i=1

wα−1
i dwi, (w1, . . . ,wκ) ∈ ∆κ−1,

where Γ(·) is the gamma function.
An important practical feature of edge exchangeability is its ability to account for

the empirical properties of sparsity and power law degree distribution, as can be seen
through the connection between the Hollywood process and the two-parameter Chi-
nese restaurant process, discussed in the next section. I now present a more explicit
sequential construction of the Hollywood model according to the (binary) Hollywood
process.
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9.7.1 The Hollywood process

Let (α,θ) be in the parameter space of the Hollywood model and initiate Y0 as the
empty edge-labeled graph with 0 edges and 0 vertices. We construct a sequence of
edge-labeled networks (Yn)n≥1 by sampling edges X = (S1,T1),(S2,T2), . . ., putting
Xn = ((S1,T1), . . . ,(Sn,Tn)), and defining Yn = EXn as in (9.4) for each n ≥ 1. As
above, we write v(Yn) to denote the number of vertices in Yn, which equals the
number of distinct labels observed among S1,T1, . . . ,Sn,Tn, and e(Yn) = n to denote
the number of edges in Yn. We initialize both v(·) and e(·) at v(Y0) = e(Y0) = 0.

Given Xn−1 = xn−1 = (s1, t1, . . . ,sn−1, tn−1), n≥ 1, we write D(i;xn−1) to denote
the number of times i appears in the sequence xn−1, i.e., D(i;xn−1) is the degree of
the vertex corresponding to i in yn−1 = Exn−1 , and we choose Sn,Tn successively as
follows.
1. Select Sn randomly according to

Pr(Sn = i | xn−1) ∝

{
D(i;xn−1)−α, i = 1, . . . ,v(yn−1),
θ +αv(yn−1), i = v(yn−1)+1. (9.12)

2. Update xn−1 7→ x∗n = (s1, t1, . . . ,sn−1, tn−1,sn) to include the newly chosen vertex
Sn = sn.

3. Choose Tn according to the distribution Pr(Tn = i | x∗n) in (9.12), with

v(y∗n) =
{

v(yn−1), sn = 1, . . . ,v(yn−1),
v(yn−1)+1, sn = v(yn−1)+1.

For any edge-labeled graph y ∈ E[n], let v(y) be the number of (non-isolated)
vertices in y and let Nk(y) be the number of vertices in y with total degree k.4 This
construction gives the following closed-form formula for the distribution of Yn =
EXn , for each n≥ 1:

Pr(Yn = y;α,θ) = α
v(y) (θ/α)↑v(y)

θ ↑(2n)

∞

∏
k=2

exp{Nk(y) log(1−α)↑(k−1)}, (9.13)

for y ∈ E[n], where x↑ j = x(x+ 1) · · ·(x+ j− 1) is the rising factorial. The reader
should verify that (9.13) is the correct distribution of Yn based on the above con-
struction. Note, in particular, that although the update probabilities in (9.12) depend
on the sequence of pairs Xn−1, the conditional distribution of Yn given Xn−1 depends
on Xn−1 only through Yn−1 = EXn−1 .

Exercise 9.5 Show that the Hollywood distribution in (9.13) is edge exchangeable.

Alternatively, the Hollywood model with 0 ≤ α < 1 and θ > −α can be con-
structed from the stick-breaking construction of the GEM distribution by taking g j
to be the density of the Beta distribution with parameter (1−α,θ + jα) for each
j ≥ 1. We recover (9.13) by marginalizing over W in (9.11). See [94] for more on
stick-breaking.

4By the construction in (9.12), all vertices appearing in the sequence (s1, t1), . . . ,(sn, tn) are ‘non-
isolated’.
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Example 9.1 Let (α,θ) be in the parameter space of the Hollywood model and
suppose n = 4. Then the sequence of edges (1,2), (3,1), (2,1), (2,4) occurs as a
realization of the Hollywood process description (9.12) as follows.

• First, choose (1,2) with probability

θ

θ
× θ +α

θ +1
.

Since both 1 and 2 are newly labeled vertices at the time of first arrival, the prob-
abilities of their selection are both given by the second line in (9.12). (Notice that
the first vertex to arrive is always new and is labeled ‘1’ with probability θ/θ = 1,
where we adopt the convention that 0/0 = 1 in case θ = 0.)

• Given x1 =(S1,T1)= (1,2), we have D(1;x1)=D(2;x1)= 1 and (S2,T2)= (3,1)
occurs with probability

θ +2α

θ +2
× 1−α

θ +3
,

with the left-hand piece giving the probability of choosing a new vertex labeled
3 and the right-hand piece giving the conditional probability of choosing T2 = 1
given S1,T1,S2, as in the top line of (9.12).
• Continuing in this way, we have x2 = ((S1,T1),(S2,T2)) = ((1,2),(3,1)) so that

D(1;x2) = 2 and D(2;x2) = D(3;x2) = 1. Thus, (S3,T3) = (2,1) occurs with
probability

1−α

θ +4
× 2−α

θ +5
,

since both labels ‘1’ and ‘2’ appear previously in x2, with label ‘2’ appearing 1
time (and receiving weight 1−α) and label ‘1’ appearing 2 times (and receiving
weight 2−α).

• Finally, with x3 = ((1,2),(3,1),(2,1)), we choose (S4,T4) = (2,4) with condi-
tional probability

2−α

θ +6
× θ +3α

θ +7
.

Multiplying these probabilities gives a total probability of

α
4 (θ/α)(θ/α +1)(θ/α +2)(θ/α +3)

θ(θ +1) · · ·(θ +7)
(1−α)2(1−α +1)2,

which simplifies to (9.13) with v(y4) = 4 and degree distribution (2,0,2), in agree-
ment with (9.13).

9.7.2 Role of parameters in the Hollywood model

By (9.12), α > 0 increases the probability of observing previously unseen vertices
but decreases the probability of observing a vertex again after its initial appearance.
Thus, α values near 1 make it more likely that new edges involve previously unseen
vertices, but less likely that previously seen vertices appear in subsequent edges. On
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the other hand, α < 0 corresponds to a finite population size, so that each newly ob-
served vertex decreases the number of unseen vertices and increases the probability
that subsequent edges involve previously seen vertices.

In the 0 < α < 1 regime, larger values of θ increase the probability of seeing
previously unobserved vertices in new edges, but the effect of θ diminishes as n→∞.
In Section 9.7.3, we see that 0 < α < 1 is directly related to the sparsity and power
law behavior of (Yn)n≥1 constructed from the Hollywood process.

9.7.3 Statistical properties of the Hollywood model

The update rule of the Hollywood process in (9.12) is related to that of the two-
parameter Chinese restaurant process (CRP); see [46, 54, 132] for a detailed descrip-
tion. The main difference between Hollywood process and CRP is that the former
process groups subsequent arrivals into pairs which form the edges of a network.
With this observation, the number of vertices v(Yn) in the Hollywood process with
n edges corresponds to the number of blocks in a random partition of [2n] generated
by the CRP. The distributional properties of the CRP and Ewens–Pitman distribution
[46, 69, 132] are well-known, allowing us to immediately deduce the following spar-
sity and power law properties of the Hollywood model. (Refer to Section 4.2 for the
initial discussion of sparsity and power law degree distribution. See [54] for a more
precise derivation of the forthcoming properties of the Hollywood model.)

When 0 < α < 1, v(Yn) satisfies

E(v(Yn))∼
Γ(θ +1)

αΓ(θ +α)
(2n)α as n→ ∞, (9.14)

where ‘an ∼ bn as n→ ∞’ indicates that limn→∞ an/bn = 1 and Γ(t) =
∫

∞

0 ut−1e−udu
is the gamma function; see [132, p. 69]. From this it follows that the sequence
(Yn)n≥1 obtained from the Hollywood model with parameter (α,θ) is sparse with
probability 1 provided that 1/2 < α < 1. Moreover, by [132, Lemma 3.11] the de-
gree distribution of Yn defined by deg(Yn) = (degk(Yn))k≥1, where degk(Yn) is the
number of vertices appearing exactly k times in Yn, satisfies

degk(Yn)∼
α(1−α)↑(k−1)

k!
(2n)α Sα a.s. for every k ≥ 1 as n→ ∞

for some strictly positive random variable Sα . By this relationship, the asymptotic
proportion of vertices with degree k ≥ 1 is seen to exhibit a power law degree distri-
bution with exponent α +1,

degk(Yn)

v(Yn)
→ α(1−α)↑(k−1)

k!
∼ k−(α+1) a.s. as n→ ∞. (9.15)

I summarize these properties here for completeness. See [54] for further details.

Theorem 9.4 (Sparsity and Power Law in the Hollywood model [54]) For Y =
(Yn)n≥1 be a realization of the Hollywood process with parameter (α,θ). Then
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• (Yn)n≥1 is sparse with probability 1, provided 1/2 < α < 1, and

• (Yn)n≥1 exhibits power law degree distribution with exponent α +1 with proba-
bility 1, provided 0 < α < 1.

Research Problem 9.3 Simulation results suggest that the power law degree distri-
bution might be preserved under thresholding multiple edges in the Hollywood model
to single edges, but so far this remains unproven. See [54, Section 4.5] and [95] for
further discussion of this and other unexplored technical aspects of the Hollywood
model.

9.7.4 Prediction from the Hollywood model

The sequential description of the Hollywood model in (9.12) allows for predictive in-
ferences about future interactions. For a concrete example, suppose we are interested
in whether the next pull from a phone call database involves at least one previously
unobserved caller. The probability of this outcome can be computed explicitly using
the update rule of the Hollywood process in (9.12):

Pr(new caller in (n+1)st call | yn) = 1−
(

2n− v(yn)α

θ +2n

)(
2n+1− v(yn)α

θ +2n+1

)
,

where the product on the right-hand side is the probability of choosing a previously
observed vertex for both Sn+1 and Tn+1. In practice, we can estimate this probability
by plugging in estimates for α and θ based on yn.

Depending on the objective of the analysis, the Hollywood model offers a num-
ber of other possibilities for statistical inference, many of which have not yet been
explored in detail. See [54, Sections 5 and 6] for a preliminary illustration of some
potential avenues of inquiry.

9.8 Contexts for edge sampling

The edge exchangeable models presented in this chapter mark our first ma-
jor departure from the standard ‘networks-as-graphs’ perspective of earlier chap-
ters. When edges are the units of observation, a statistical network model
({Mn}n≥1,{Σm,n}n≥m≥1) (in the sense of Chapter 5) is defined as a set Mn of can-
didate distributions on E[n] for every finite sample of n ≥ 1 edges and a system
{Σm,n}n≥m≥1 of (random) edge sampling schemes. Much like the vertex exchange-
able models of Chapter 6, the edge exchangeable models of this chapter are most
naturally set in the context of edge selection.

To make this notion precise, we define the edge selection map

Sm,n :E[n]→ E[m]

Ex 7→ Ex |[m]
(9.16)

as follows. For y ∈ E[n], let x = (x1, . . . ,xn) be a representative of the equivalence
class y, so that y = Ex as defined in (9.4). We define Sm,n y = Ex |[m]

, where x |[m] =
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(x1, . . . ,xm) is the projection of x onto its first m coordinates. (The reader should
verify that this definition of Sm,n is well-defined, i.e., does not depend on the choice
of representative x ∈ y.)

Exercise 9.6 Show that the projective Hollywood model ({Mn}n≥1,{Sm,n}n≥m≥1)
is coherent in the sense of Definition 5.2, for

Mn = {Pr(Yn = ·;α,θ) in (9.13)} for each n≥ 1 and (9.17)
Sm,n as defined in (9.16) for n≥ m≥ 1.

As in Section 3.9, for any injection ψ : [m]→ [n], we define the ψ-selection map
Sψ

m,n : E[n] → E[m] as follows. For y ∈ E[n], let x = (x1, . . . ,xn) be a representative
of the equivalence class y, so that y = Ex as defined in (9.4). For any injection ψ :
[m]→ [n], we define Sψ

m,n y = Exψ , where xψ = (xψ(1), . . . ,xψ(m)) is the subsequence
of x obtained by ψ-selection. With this definition of ψ-selection, we define a random
edge sampling scheme Σm,n as a ψ-selection map Sψ

m,n : E[n]→E[m] chosen randomly
in a way that possibly depends on Yn. To recapitulate the definition of consistency
under subsampling (Definition 3.2) in terms of network models defined on E[n], we
say that random edge-labeled graphs Yn and Ym on E[n] and E[m], respectively, are
consistent under subsampling from Σm,n, or Σm,n-consistent, if Σm,n Yn=D Ym.

Exercise 9.7 For any probability distribution ϕ on F
∼=
N×N, let Y ∼ εϕ , for εϕ defined

as the ϕ-mixture of interaction propensity processes in Theorem 9.2, and let Yn =
Y |[n] and Ym = Y |[m] for n ≥ m ≥ 1. Prove that Ym and Yn are Σm,n-consistent for
any random edge sampling scheme Σm,n that is independent of Yn.

I leave it as a relevant open problem to study how models for edge-labeled net-
works behave under more general edge sampling schemes {Σm,n}n≥m≥1.

Research Problem 9.4 Analyze (mathematically, empirically, or computationally)
the behavior of the Hollywood model and the interaction propensity process under
different edge sampling contexts.

9.9 Relative edge exchangeability

The concept of relative exchangeability from Chapter 8 extends to edge exchangeable
models by a straightforward modification of Definition 8.2. The resulting theory of
relative edge exchangeability then follows by the close association between edge
exchangeable networks Y and exchangeable sequences X through the interaction
propensity process (Theorem 9.2). For brevity, I sketch the main ideas here and leave
the details to the interested reader.

Definition 9.2 (Relative edge exchangeability) Let Y be a random edge-labeled
network in EN and let z ∈ EN be fixed. We say that Y is relatively edge exchangeable
with respect to z, or simply z-edge exchangeable, if Y |σS =D Y |S for all permutations
σ : S→ S such that z|σS = z|S, for all S⊆ N.

Fix x : N → N×N and, for each i, j ≥ 1 let f (i, j) = ( f (i, j)rs )r,s≥−1 ∈F
∼=
N×N. For
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f = ( f (i, j))i, j≥1, let X = (X1,X2, . . .) be a sequence of independent random variables
with distribution given by

Pr(Xk = (r,s); f ,x) = f x(k)
rs , r,s≥−1, (9.18)

for every k ≥ 1. (Notice that the superscript x(k) in f x(k)
rs records the dependence of

Xk on x(k). In particular, the distribution in (9.18) reads Pr(Xk = (r,s); f ,x) = f (i, j)rs
whenever x(k) = (i, j).) Given X, we put Y = EX∗ for X∗ defined by the operation
X 7→ X∗ in (9.8).

Exercise 9.8 Show that the distribution of Y = EX∗ constructed from X with distri-
bution (9.18) is relatively edge exchangeable with respect to z = Ex .

By the close connection between edge exchangeable networks and exchangeable
sequences of random variables through the interaction propensity process (Sections
9.4–9.5 and Theorem 9.2), the theory of relative edge exchangeability does not seem
to stray too far from the theory of relatively exchangeable sequences, as in [58, 59].
But even if the theory of relative edge exchangeability does not reveal anything es-
pecially surprising, it may still be worthwhile to work out the details for potential
use in applications. Questions remain, however, about the practical implications of
relative edge exchangeability; see Problem 9.5 below. I conclude this section with a
conjecture about the structure of relatively edge exchangeable networks. For the def-
inition of ultrahomogeneity in the following conjecture, refer to Section 8.3.3 and/or
[59].

Conjecture 9.1 Let z ∈ EN be an ultrahomogeneous edge-labeled network and let
Y be z-edge exchangeable. Then there exists a probability measure ϕ on the space
of collections ( f (i, j))i, j≥1, with f (i, j) ∈F

∼=
N×N for each i, j ≥ 1, such that Y=D Y∗,

for Y∗ = EX∗ constructed from X distributed according to the distribution in (9.18)
conditional on f ∼ ϕ and x : N → N×N chosen to be any representative of the
equivalence class associated to z through (9.4).

Research Problem 9.5 At the present time, it is unclear how relative edge exchange-
ability fits into the practice of network analysis. In particular, under what circum-
stances might the invariance condition in Definition 9.2 be natural for a statistical
network model?

9.10 Thresholding and its unintended consequences

Moving away from the specific context of this chapter for a moment, I call attention
here to the unrealized impact of rampant thresholding in network analysis. For ex-
ample, Figure 9.9(a) shows the complete karate club dataset [161], for which each
edge records a social interaction between 2 of the 34 members in a university karate
club. The karate club dataset is canonical in network community detection because
of the known separation of club members according to their allegiance to one of the
club’s two leaders.5 Many community detection techniques have been tested on the

5The karate club network has become so widely cited in the networks literature that it is now the
subject of parody; see Section 1.6.3 for further discussion. For our purposes here, however, we invoke the
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(a) (b)

Figure 9.9 (Left) Interaction network of Zachary karate club. (Right) Projection of the network
in (a) by removing edge multiplicities. In both pictures, the dashed line separates vertices into
the true communities, as identified by Zachary [161], with vertices left of the line correspond-
ing to one community and vertices right of the line corresponding to the other. The color of the
vertices, as black or white, shows the classification given by either a simple method that ac-
counts for multiple edges (in (a)) or more complicated approaches, such as degree-corrected
stochastic blockmodels, which ignore multiplicities (in (b)). The classification in (a) coincides
with Zachary’s analysis while the classification in (b) does not. (Notice the one incorrectly
specified black vertex on the right-hand side of the dashed line in (b).)

karate club network after projecting multiple occurrences of each edge to a single
occurrence, as shown in Figure 9.9(b). As a result of thresholding, it is common,
e.g., in [19, 99], for the leading community detection methods to correctly classify
all but one of the karate club members. Because it is so commonplace to misclassify
this one particular vertex, the incorrect classification shown in Figure 9.9(b) is often
taken as good enough for demonstrating the usefulness of a given method.

Easily lost amid the decision to threshold multiple edges is that the ‘real’ com-
munity structure among these karate club members is best understood in terms of
the multigraph in Figure 9.9(a), which reflects the frequency of social interactions
outside the club, and not the thresholded graph in Figure 9.9(b), which only records
whether or not two club members have interacted outside the club regardless of the
frequency of those interactions. Because there is no logical reason to expect the same
community structure to persist after arbitrarily projecting multiple edges to a single
edge, misclassification should be expected since the act of removing multiple edges
does not guarantee that the fundamental structure of the data is preserved. With this
observation, the fact that only one vertex is misclassified in Figure 9.9(b) should not
be interpreted as evidence that the community detection method producing this clas-
sification ‘works’. It should instead be seen as a matter of blind luck! It turns out
that all vertices can be correctly classified by applying a very simple method to the
complete network with multiple edges; see [51] for more discussion.

This example illustrates in a manageable and well-understood context how data
processing, and in particular thresholding, can have unintended consequences for
inferences from network data. Despite these drawbacks, the practice of thresholding
remains widespread in network analysis.

Research Problem 9.6 Needless data processing, such as thresholding multiple

karate club network as a base case for network community detection, which allows us to demonstrate the
main pitfalls of thresholding in network analysis.
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edges as in the above karate club example and the analysis in [96], can have adverse
consequences on statistical inference from network data. Figure 9.9 demonstrates
one specific pitfall of thresholding multiple edges in community detection. There are
likely many unknown consequences of this and other data processing techniques,
such as decomposing multi-way interactions into pairwise edges (to be discussed
further in Chapter 10). It is an important open problem to better understand the
practical, computational, and theoretical consequences of data processing on net-
work analysis.

Returning to the topic of edge exchangeability and the Hollywood model, I note
that the characterization of edge exchangeable models by the interaction propensity
process (Theorem 9.2) implies that any edge exchangeable network is guaranteed to
exhibit multiple edges between some of its vertices, unless its distribution is concen-
trated on edges involving ‘blips’. (Refer to Section 9.5 for the definition of ‘blip’.)
Theorem 5.4 in [54] demonstrates one immediate consequence of removing multi-
ple edges from an edge-labeled multigraph constructed by the Hollywood model:
whereas Theorem 9.4 shows that the Hollywood model (without thresholding) is
sparse if and only if 1/2 < α < 1, the projection of (Yn)n≥1 to a sequence of simple
graphs by removing multiple edges is sparse for all 0 < α < 1. Therefore, threshold-
ing not only throws away data but also alters the observed asymptotic behavior of the
network.

Under the paradigmatic ‘networks-as-graphs’ mindset, it is the convention, even
when dealing with interaction networks, to threshold multiple occurrences of edges
to obtain a {0,1}-valued adjacency matrix as in (2.1). A practical reason for project-
ing multiple edges seems to be that many network models are unable to accommodate
the natural occurrence of multiple edges. In other cases, it seems to arise out of the
faulty association between ‘networks’ and ‘graphs’ that has overtaken much of the
network science literature; see Chapter 1, in particular Section 1.2, for more discus-
sion on this point. In addition to handling multiple occurrences of edges in a natural
way, the relationally exchangeable models presented in Chapter 10 accommodate
networks formed from interactions involving more than two vertices, as in networks
of scientific coauthorships, movie collaborations, and Internet paths.

9.11 Comparison: Edge exchangeability v. graphex

The perspective presented in this chapter flows logically from the study of interac-
tion data, to its representation as an edge-labeled network, to the concept of edge
exchangeability. Edge exchangeability offers an alternative to more common net-
work models, such as graphons, exponential random graph models, and stochastic
blockmodels, which cannot account for the most basic properties observed in mod-
ern network data, namely sparsity and power law degree distribution. The fact that
edge exchangeable models easily replicate these basic features of network data is
merely empirical justification that the framework may be viable for a range of ap-
plications in network science and statistics. But the main argument in favor of edge
exchangeability, and the more general concept of relational exchangeability in the
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next chapter, is that it respects the role of the edges (i.e., interactions) as the units of
observation in many network datasets [54].

To conclude this chapter, I briefly discuss some similarities and differ-
ences between the Caron–Fox/graphex models from Section 7.3 and the Crane–
Dempsey/edge exchangeable models presented here. Since other authors have al-
ready highlighted some connections between the two frameworks, see, e.g., the dis-
cussion accompanying [32], I focus here on key differences between the two ap-
proaches, as I have previously emphasized in [47].

Sparsity and power law degree distribution

Both the Caron–Fox and Crane–Dempsey models are able to reproduce sparsity and
power law degree distributions. In fact, the range of power law distributions, with
exponents in the range (1,2), seems to be identical in both model classes. From this
point of view, both approaches successfully account for these two minimal empirical
properties that are believed to be found in many real-world networks, as highlighted
in Sections 1.7.1 and 7.1.

Probabilistic symmetry

The concept of edge exchangeability arises naturally in Crane and Dempsey’s frame-
work by considering network data that is constructed from a representative sample
of edges (i.e., interactions). The concept of exchangeability invoked in graphex mod-
els, however, is less clearly connected to the way in which real-world networks are
typically observed. As I discussed in Section 7.3.4, the ‘exchangeability’ in graphex
models refers to invariance under measure-preserving transformations of the asso-
ciated point process. If the entire point pattern (including the ‘arrival times’) is ob-
served, then exchangeability of the point process can be understood in terms of sam-
pling edge patterns over a fixed duration of time, as noted in Section 7.3.7. But more
often this temporal information is not available, forcing the data to be modeled as
the unlabeled structure induced by the edge patterns, as in (7.6). The distribution
induced on these unlabeled structures does not seem to be exchangeable in any rec-
ognizable sense of the term (Exercise 7.3). And even in the motivating scenario of
Section 7.3.1, the point process representation merely labels the vertices according
to the time at which they first arrived in the system. The exchangeability condition
of the point process does not allow these temporal labels to serve any additional pur-
pose. Edge exchangeability can also model such edge patterns but without the need
to associate labels to the vertices.

In [32], the authors present the Caron–Fox model as an answer to the question
posed in [128], “Is there a notion of probabilistic symmetry whose ergodic measures
[...] describe useful statistical models for sparse graphs with network properties?”
Given the roundabout way in which probabilistic symmetry arises in the Caron–Fox
model, through the invariance of a latent point process, and the lack of a clearcut
motivating context for this approach, the extent to which Caron and Fox’s proposal
addresses the misspecification issues highlighted in [128] remains unclear, as noted
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previously in [126]. Throughout Section 7.3, I have been as charitable as possible
to the Caron–Fox model, first by motivating the approach with a concrete scenario
(Section 7.3.1) and then by giving a natural sampling interpretation to the exchange-
able point process construction in terms of t-sampling (Section 7.3.7). The latter
gives a more direct interpretation of the proposed exchangeable point processes as
models for networks, and therefore improves upon the more stylized and artificial
p-sampling interpretation of the induced {0,1}-valued arrays.

Edge exchangeable models, on the other hand, do exhibit a novel probabilistic
symmetry (i.e., edge exchangeability) which seems to be natural for modeling in-
teraction networks under a presumed exchangeable edge sampling scheme, as illus-
trated in Section 9.1. Because of its straightforward description in terms of sampling
interaction networks, I believe that the edge exchangeable framework in [54] does
satisfactorily answer the question posed in [128], at least in its intended context of
modeling interaction data. The extent to which answering this question will have any
far-reaching implications in the practice of network analysis, however, remains to be
seen.

Sampling interpretation/projectivity

The sampling interpretation of edge exchangeable models is clear: the observed
edges are a representative sample of the population of all edges (i.e., interactions).
The sampling interpretation of graphex models is less clear, except when considered
in the full context of the associated point process, in which case the exchangeability
criterion for the point process can be interpreted in terms of representative sampling
of edge patterns over a given length of time (Section 7.3.7). This offers an uncontro-
versial interpretation of sampling from graphex models which is apparently distinct
from the sampling interpretation of edge exchangeable models. When considering in-
stead the discrete structure induced by the point process, as in (7.6), the natural sam-
pling interpretation for the point process invokes the interpretation of ‘p-sampling’
[148], which for most applications is as unrealistic as selection and simple random
vertex sampling. See Section 7.3.7 for further discussion.

9.12 Further reading

The class of edge exchangeable network models introduced by Crane and Dempsey
[52, 54] has since been studied in follow-up work by other authors [95, 124]. Janson
[95] examined some technical properties of edge exchangeable models, with specific
focus on the Crane–Dempsey Hollywood model from Section 9.7. Ng and Silva [124]
initiate a study of dynamic edge exchangeable models for time-varying networks. For
other related work on link prediction in interaction networks, see Williamson [153].
More recently, the Crane–Dempsey model has been recast as a model in physics
[41]. A translation of the main results of [52, 54] into the language of contemporary
Bayesian nonparametrics can be found in [30].
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9.13 Solutions to exercises

9.13.1 Exercise 9.1

Fix x : N→P×P and define

Ex = {ρ x | ρ : P →P is a bijection} and
E ′x = {x′ : N→P×P | ρ x′ = x for some bijection ρ : P →P}.

We need to show Ex = E ′x . First note that for every bijection ρ , there is an inverse
bijection ρ−1 so that ρ−1(ρ x) = x, and thus ρ x ∈ E ′x and Ex ⊆ E ′x . Conversely, let
x′ ∈ E ′x so that x′ = ρ−1 x, where ρ−1 is the inverse of ρ and is also a bijection. Thus
ρ−1 x ∈ Ex and E ′x ⊆ Ex . This completes the proof.

9.13.2 Exercise 9.2

Let y = Ex for some x : N→P×P . Let x′ be any representative of the equivalence
class Ex , so that by Exercise 9.1 there is a bijection ρ such that ρ x′ = x. Then, given
any permutation σ : N→ N, we must prove that Exσ = Ex ′σ . By the definition of Ex
in (9.3),

Ex ′σ = {ρ ′(x′σ ) | ρ ′ : P →P is a bijection}
= {(ρ ′(x′

σ(i)))i≥1 | ρ ′ : P →P is a bijection}.

Since ρ x′= x and ρ−1 is a bijection, we have x′= ρ−1 x and ρ(ρ−1 xσ )= xσ ∈ Ex ′σ .
And since Ex ′σ is an equivalence class containing xσ , we must have Ex ′σ = Exσ ,
completing the proof.

9.13.3 Exercise 9.3

Fix f ∈ FP×P , let X = (X1,X2, . . .) be i.i.d. according to (9.6), and put Y = EX
as defined in (9.4). Then by Exercise 9.2 we have Yσ = EXσ for every permutation
σ : N→ N, and X is exchangeable because it is i.i.d.; whence, Xσ =D X and

Yσ = EXσ =D EX = Y for all permutations σ : N→ N,

thus proving that Y ∼ ε f is edge exchangeable.

9.13.4 Exercise 9.4

Suppose that there is an edge exchangeable network Y whose distribution on EN
assigns probability 1 to the network y◦ in Figure 9.7 and such that the distribution
of Y can be expressed as one of the interaction propensity processes ε f in Section
9.4. Then by definition of ε f there must be some f = ( f(i, j))i, j≥1 ∈FN×N such that
Y=D EX for X = (X1,X2, . . .) drawn i.i.d. from (9.6). First notice that since all edges
in Y are loops, f must satisfy fi j ≡ 0 for all i 6= j. But now, if fii > 0 for any i ≥ 1,
then the limiting frequency of occurrences of the pair (i, i) in X will be fii > 0 with
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probability 1, and thus (i, i) will appear infinitely often in X with probability 1. But
since each loop appears exactly once in y◦, it follows that f(i,i) ≡ 0 for all i≥ 1. Thus,
any f for which Pr(Y = y◦; f ) = 1 must have fi j ≡ 0 for all i, j ≥ 1. There can be no
such f in FN×N because all f ′ ∈FN×N satisfy ∑i, j≥1 f ′(i, j) = 1, but ∑i, j≥1 f(i, j) = 0.
A contradiction.

9.13.5 Exercise 9.5

We can immediately deduce that the Hollywood model is edge exchangeable by
noticing that (9.13) depends on y only through its degree distribution, which is in-
variant to edge relabeling.

9.13.6 Exercise 9.6

To prove coherence, we must show that Sm,n Mn = Mm for all n ≥ m ≥ 1, with
{Mn}n≥1 defined in (9.17) and Sm,n Mn defined in (5.6). For this, it is enough to
show that the Hollywood model is consistent under selection, i.e., Yn and Ym dis-
tributed according to (9.13) satisfy Ym=D Sm,n Yn for any choice of (α,θ). This
can be proven the hard way, by calculating the marginal distribution of Sm,n Yn and
showing that it coincides with the distribution of Ym, as we did for the p1 model
in (3.10). An easier way is to leverage the generative description of the Hollywood
model through the Hollywood process in Section 9.7.1. From this, consistency under
selection is automatic by (4.4). Thus, for every (α,θ) in the parameter space of the
Hollywood model, Sm,n Yn is distributed according to the Hollywood model on E[m]

with parameter (α,θ). It follows that Mm = Sm,n Mn, as desired.

9.13.7 Exercise 9.7

The solution follows the same program as that of Exercise 6.2, without any change
in syntax and with the appropriate change of interpretation from vertex sampling to
edge sampling.

9.13.8 Exercise 9.8

By Definition 9.2, we need to show that Y |σS =D Y |S for all permutations σ : S→ S
for which z|σS = z|S, for all S ⊆ N. Without loss of generality, we take S = [n] for
arbitrary n≥ 1. By the definition of restriction and relabeling for edge-labeled graphs,
it is enough to establish

Y |σ[n]=D EX∗ |σ
[n]
=D EX∗ |[n] =D Y |[n]

for all σ : [n]→ [n] such that

z|σ[n] = Ex |σ
[n]
= Ex |[n] = z|[n].

The first and third equalities in both displays follow by definition. And by the con-
struction of X∗ from X in (9.8), it is enough to show that X is relatively exchangeable
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with respect to x, in which case the middle inequality would follow. But X is x-
exchangeable by its construction in (9.18). The proof is completed upon confirming
that this holds for arbitrary x ∈ z.

Alternatively, we could prove this by calculating the distribution of Y induced
by (9.18) and showing that it is relatively exchangeable with respect to Ex for every
x ∈ z.



Chapter 10

Relationally exchangeable models

In broadening the scope of network analysis beyond the conventional paradigm, the
framework of edge exchangeability put forward in Chapter 9 takes a small step to-
ward realizing the broader vision of complex data analysis laid out in Chapter 1. This
chapter expands upon the previous toward a theory for network data constructed from
a sample of arbitrary relations. In Section 9.1, for example, an edge-labeled network
is constructed out of pairwise interactions (i.e., phone calls) between callers and re-
ceivers sampled from a phone call database. More generally, networks can be built
from repeated observations of any relational structure, including pairwise interac-
tions (i.e., edges) as in Figure 9.5, multiway interactions (i.e., hyperedges), paths
(i.e., ordered multisets), or even networks (i.e., graphs) or arbitrary relational struc-
tures (X1, . . . ,Xr) as in Section 8.5. Networks constructed from an exchangeable se-
quence of such relations are called relationally exchangeable [53]. I focus here on a
few special cases of relationally exchangeable network models.

10.1 Sampling multiway interactions (hyperedges)

Many real-world networks are built from interactions that involve more than two
entities. In conventional approaches to network analysis, these multiway interactions
are often decomposed into their constituent pairwise edges. But as we have already
noted the potential pitfalls of thresholding in network analysis (Section 9.10), we
should seek to avoid needless data processing whenever possible. Both examples
discussed below and the subsequent theory for hyperedge-labeled networks (Section
10.2) fit within the emerging edge-centric paradigm of Section 9.2.

10.1.1 Collaboration networks

Consider a network that represents a sample of movie actor collaborations taken from
the Internet Movie Database (IMDb). Each IMDb entry corresponds to a different
movie and includes information such as title, year, cast of actors, description of plot,
etc. For each movie, we observe the set of actors {a1, . . . ,ak} starring in that movie
and ignore all other meta-data, such as genre, year, director, etc. Table 10.1 illustrates
such an observation.

In this scenario, we assume M1, . . . ,MN are sampled uniformly without re-
placement from among all movies in the database. Associated to each Mi is a set

185
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Table 10.1 Database of movies and actors. Each row contains the set of actors in the corre-
sponding movie.

Movie title Starring cast
Rocky (1976) Sylvester Stallone, Bert Young, Carl Weathers, . . .
Rounders (1998) Matt Damon, Ed Norton, John Turturro, . . .
Groundhog Day (1993) Bill Murray, Andie McDowell, Chris Elliott, . . .
A Bronx Tale (1993) Robert DeNiro, Chazz Palminteri, Joe Pesci, . . .
Over the Top (1987) Sylvester Stallone, Robert Loggia, . . .
...

...

Figure 10.1 (a) Hypergraph structure formed by the sequence of interactions in (10.1). A
binary interaction is represented by a line, as in the line labeled 2 connecting a and c, a
three-way interaction by a triangle, as in the triangles labeled 1 and 3 connecting a, c, d
and b, d, e, respectively, and four-way interactions are represented by a square/rectangle, as
in the rectangle labeled 4 connecting a, d, f , g. (b) The graph formed by decomposing each
hyperedge into its pairwise edges and disregarding the higher-order structure (e.g., triangle,
square, etc.) induced by each hyperedge. For example, in this representation the hyperedge
{a,b,c} labeled ‘1’ in (a) decomposes into three binary edges ab, ac, and bc, without any
indication that these three edges occurred as part of a single hyperedge in the generating
process.

{Mi(1), . . . ,Mi(Ki)}, where each Mi( j) identifies a different actor and Ki ≥ 1 is the
number of actors in the ith sampled movie. The structure induced by the sampled
movies M1, . . . ,MN can be represented as a network. For example, Figure 10.1(a)
shows the network structure associated to the sequence

M1 = {a,b,c}, M2 = {a,c}, M3 = {b,d,e}, M4 = {a,d, f ,g}. (10.1)

In Figure 10.1(a), each movie is represented by a hyperedge whose vertices corre-
spond to the actors in that movie, with line representing a movie with 2 actors, a
triangle a movie with 3 actors, a square a movie with 4 actors, and so on. To main-
tain the integrity of the data structure, the analysis should not decompose hyperedges
into their pairwise interactions, e.g., by breaking down {a,c,d} into its constituent
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Table 10.2 Database of statistics articles. Each row contains the list of authors of the corre-
sponding article. Note: this table is for illustration only. It was not obtained by sampling from
SSRN or arXiv.

Article title Authors
A nonparametric view of network models . . . Bickel, Chen
Edge exchangeable models for interaction networks Crane, Dempsey
Snowball sampling Goodman
Latent space approaches to social network analysis Hoff, Raftery, Handcock
...

...

pairs ac,ad,cd as in Figure 10.1(b). I discuss the implications of such decomposition
further in Section 10.2.

10.1.2 Coauthorship networks

Similar to movie collaboration networks are networks constructed from scientific
coauthorships. For example, the Social Science Research Network (SSRN) is a
repository of more than 700,000 academic articles written by more than 300,000
authors in 24 disciplines within social science. Suppose N articles are sampled uni-
formly without replacement from among all articles posted to SSRN in the year
2016. For each article the set of authors is recorded, so that each observation
Ai = {Ai(1), . . . ,Ai(Ki)} is a finite set consisting of the authors of the ith sampled
article. An example of articles about network analysis is shown in Table 10.2. The
structure induced by the sampled articles can be represented by a hypergraph as in
Figure 10.1(a).

10.2 Representing multiway interaction networks

Aside from models for random hypergraphs and multilayer networks, e.g., [103],
the vast majority of statistical network models (and all of the models discussed in the
preceding chapters) are tailored specifically to networks with binary edges.1 The lack
of models for hypergraph data goes hand-in-hand with the common practice of de-
composing multiway interactions into their pairwise components, so that a three-way
interaction abc decomposes as ab, ac, and bc, a four-way interaction abcd decom-
poses as ab, ac, ad, bc, bd, cd, and so on. For example, the graphical representation
of (10.1) shown in Figure 10.1(b) preserves the pairwise structure in the data, but not
its higher-order structure. And if the data is processed further by removing multiple
occurrences of the same interaction, as in Figure 9.9(b), then even more structure is
lost. As Chapter 9.10 already highlights the adverse consequences of thresholding,
the potential ramifications of decomposing hyperedges into their pairwise compo-

1As noted in Problem 7.3, it seems that the completely random measure approach of Section 7.3 could
be extended to account for multiway interactions, but I leave this as a topic of future study.
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Figure 10.2 Analogous illustration to Figure 9.5 from Chapter 9. (Left) On top is the structure
whose vertices and hyperedges are labeled according to the observation in (10.1). On the
bottom is the structure whose vertices and hyperedges are labeled according to the observation
in (10.2). Both of these observations induce the same hyperedge-labeled structure, as shown
on the right. (Right) Hyperedge-labeled structure (from (10.3)) induced by the equivalence
class of the sequence of hyperedges in (10.1) (and also (10.2)).

nents seem inevitable. Practical efforts in network analysis would benefit greatly
from a better understanding of these implications; see Problem 9.6.

The class of relationally exchangeable models presented in this chapter refine
the edge exchangeable models from Chapter 9, providing a straightforward way to
analyze the multiway interaction networks that arise in the scenarios of Section 10.1.
Building on the edge-centric perspective put forward in Section 9.2, the models in
this chapter facilitate network analysis from the point of view of the interactions
(or relations) rather than the vertices making up those interactions. As discussed in
Section 9.2, the names of actors convey no additional information beyond what is
already contained in the network structure induced by their interactions. Thus, for
example, the sequence

M′1 = {b,c,e}, M′2 = {b,e}, M′3 = {c, f ,g}, M′4 = {b, f ,h,k}, (10.2)

induces the same essential structure as (10.1), as can be seen by comparing their
induced hyperedge-labeled networks, e.g., on the right-hand side of Figure 10.2.

10.3 Hyperedge exchangeability

Sampling interactions uniformly from the IMDb as in Section 10.1.1 or from SSRN
as in Section 10.1.2 produces networks that are exchangeable with respect to relabel-
ing of their hyperedges. Whereas the pairwise interaction data in Section 9.1 takes
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the form of a sequence X1,X2, . . . of ordered pairs in P×P , the movie collaboration
and scientific coauthorship data in Section 10.1 take the form of a sequence X1,X2, . . .
in the set fin(P) of all finite multisets of an at most countable population P . (Each
a ∈ fin(P) has the form {a1, . . . ,ak} for some finite k ≥ 1.) Sampling uniformly
from the database results in an exchangeable fin(P)-valued sequence X1,X2, . . ., for
which each finite initial segment satisfies

(X1, . . . ,Xn)=D (Xσ(1), . . . ,Xσ(n)) for all permutations σ : [n]→ [n].

Any bijection ρ : P → P acts on fin(P) elementwise. Specifically, for
any x = {x1, . . . ,xk} ∈ fin(P) and any bijection ρ : P → P , we write ρx =
{ρ(x1), . . . ,ρ(xk)} ∈ fin(P) to denote the action of ‘renaming’ the population P ac-
cording to ρ . For any sequence x = (x1, . . . ,xn) in fin(P), with xi = {xi,1, . . . ,xi,ki}⊆
P for each i, the induced edge-labeled hypergraph is defined analogously to (9.3) by

Ex = {ρ x = (ρ(x1), . . . ,ρ(xn)) | ρ : P →P a bijection}, (10.3)

or equivalently by

Ex = {x′ : N→ fin(P) | ρ x′ = x for some bijection ρ : P →P}

as in (9.4); see Exercise 9.1. The equivalence class Ex in (10.3) corresponds to a
hyperedge-labeled graph. For example, the hyperedge-labeled graph on the right-
hand side of Figure 10.2 identifies the equivalence class Ex built from the sequence
in (10.1), of which the vertex-hyperedge labeled networks on the left-hand side of
Figure 10.2 are both members.

Following the same program as in Section 9.3, we derive the analogous notion of
hyperedge exchangeability for edge-labeled hypergraphs constructed from exchange-
able sequences X = (X1,X2, . . .) in fin(P). In this case, the random edge-labeled
hypergraph EX is hyperedge exchangeable if its distribution is invariant under re-
labeling of its hyperedges, as illustrated in Figure 10.3. The interaction propensity
processes from Section 9.4 extend in a straightforward way to the present setting.

10.3.1 Interaction propensity process

For a countable set P , we define the fin(P)-simplex by

Ffin(P) =

{
( fx)x∈fin(P) : fx ≥ 0 and ∑

x∈fin(P)

fx = 1

}
.

From any f ∈Ffin(P), the interaction propensity process directed by f is the dis-
tribution of a random edge-labeled hypergraph EX constructed from a sequence
X = (X1,X2, . . .) sampled i.i.d. according to

Pr(Xi = x; f ) = fx, x ∈ fin(P). (10.4)

Writing ε f to denote the distribution of EX , we define εϕ as the mixture of ε f with
respect to choosing f from a probability measure ϕ on Ffin(P) and sampling X
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Figure 10.3 Two edge-labeled hypergraphs equivalent up to relabeling of their hyperedges.
Both realizations are assigned equal probability by any hyperedge exchangeable network
model.

conditionally i.i.d. given f as in (10.4). In particular, εϕ is the distribution of Y
obtained by first taking f ∼ ϕ , then, given f , generating X to be conditionally i.i.d.
from (10.4), and finally putting Y = EX as in (10.3). The mixture distribution εϕ is
expressed formally as

εϕ(·) =
∫

Ffin(P)

ε f (·)ϕ(d f ).

The same basic observations for edge exchangeable models carry over to hyper-
edge exchangeable networks generated from the interaction propensity process. In
particular, vertices arrive in size-biased order according to their limiting average fre-
quency of occurrence in interactions: that is, for each s ∈P , the element s appears
with frequency f s

• = ∑x∈fin(P):s∈x fx. So again the sampled vertices are atypical in
that they tend to be more ‘active’ or ‘popular’ relative to the other vertices in the
population. In the movie collaboration example of Section 10.1.1, for example, pop-
ular actors appear in more movies than D-listers, and thus are more likely to appear
in any given uniformly sampled entry of the database. An actor who has been cast in
100 movies, for instance, is 10 times more likely to be observed in any given sampled
movie than an actor who has been cast in only 10 movies. Similarly for the SSRN
coauthorship network in Section 10.1.2: authors who write more papers are more
likely to be observed when sampling uniformly from among all articles.

Although the IMDb and SSRN datasets arise similarly as networks constructed
from sequences of multiway interactions, we might anticipate some differences in
their empirical properties based on the circumstances under which they are obtained.
The IMDb contains a wide range of movies, including many produced in Hollywood.
As many Hollywood movies have a few starring roles which tend to be filled by a
select group of famous actors, there are likely ‘hubs’ in these networks due to the
recurrence of a few lead actors in a substantial fraction of movies. On the other hand,
although academic articles do not customarily recruit famous researchers in the same
way that Hollywood movies recruit famous actors, there is plenty of evidence sug-
gesting that journals give preferential treatment to well-known authors, their own
editors and associate editors, and researchers at prestigious institutions [125]. Un-
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fortunately, the leading statistical journals, such as the Annals of Statistics, are not
immune to these biases.2 But since the SSRN is a repository, its articles are not sub-
ject to peer review and, therefore, the structure of the network of SSRN coauthorships
likely exhibits a wider variety of vertex configurations than articles published in the
academic literature. An empirical study of the differences between the network of
coauthorships associated to SSRN/arXiv articles and those in the published literature
would make for an interesting applied research project. These specific observations
lie beyond the scope of our discussion here, but all are important to keep in mind
when modeling data for a given application.

10.3.2 Characterization of hyperedge exchangeable network models

In much the same way that the interaction propensity processes are ergodic for edge
exchangeable networks, the interaction propensity processes of the preceding section
are ergodic for hyperedge exchangeable networks.3 Recall that the generic represen-
tation of edge exchangeable models (Section 9.5) required a technical modification
to account for the occurrence of ‘blips’. For edge exchangeable networks, each edge
consists of at most two distinct vertices, and the blips can be handled by the labels 0
and−1, which serve as placeholders in any interaction involving a vertex that appears
in exactly one edge of the network. Hyperedge exchangeable networks also admit
blips, but since hyperedges can be of any finite size the corresponding representation
includes all non-positive integers 0,−1,−2, . . ., subject to the identifiability restric-
tion that if −k appears in an interaction for some k ≥ 1 then −k+ 1,−k+ 2, . . . ,0
must also appear.

Toward the representation, we let F
∼=
fin(N)

= Ffin(Z)/ ∼= be the quotient space of
the simplex

Ffin(Z) = {( fx)x∈fin(Z) : fx ≥ 0, ∑
x∈fin(Z)

fx = 1, fx > 0, and

−k ∈ x implies − k+1, . . . ,0 ∈ x} ,

where f ∼= f ′ if and only if ε f = ε f ′ .4 Any f = ( fx) ∈ Ffin(Z) determines a dis-
tribution ε f on the space of hypergraphs with edges labeled in N by first tak-
ing X = (X1,X2, . . .) i.i.d. as in (10.4). From X, we construct a new sequence
X∗ = (X∗1 ,X

∗
2 , . . .) by replacing every occurrence of a non-positive integer with

a unique non-positive integer. (Two occurrences of the same non-positive integer
within a given interaction are assigned the same unique label for that hyperedge
only.) Finally, Y = EX∗ is defined as in (10.3), with Y ∼ ε f denoting the distribution
of Y obtained in this way.

2See http://www.harrycrane.com/AOS-publishing-stats.xlsx for recent publication data showing that a
disproportionate fraction of Annals of Statistics articles are either authored or co-authored by members of
its own editorial board.

3For our purposes here the term ‘ergodic’ essentially means that every edge exchangeable network
model can be expressed as a mixture of interaction propensity processes, as in Theorem 9.2. We observe
a similar outcome for hyperedge exchangeable networks.

4This definition of F
∼=
fin(N)

is exactly analogous to that of F
∼=
N×N in Section 9.5, to which the reader is

referred for more details.

http://www.harrycrane.com/AOS-publishing-stats.xlsx
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For example, suppose

X1 = {0,2,4}, X2 = {1,2}, X3 = {−1,0,4,5}, X4 = {−3,−2,−1,0}.

Then X∗ is constructed by relabeling each non-positive element with the largest non-
positive label which has not yet been assigned:

X : {0,2,4}, {1,2}, {−1,0,4,5}, {−3,−2,−1,0}, . . .
↓ ↓ ↓ ↓ ↓ . . .

X∗ : {0,2,4}, {1,2}, {−2,−1,4,5}, {−6,−5,−4,−3} . . . .

In this example, X∗4 represents a movie with four actors who have never acted before
and will never act again (in the IMDb setting), or an article with four authors who
have never published before and will never publish again (in the SSRN setting).
Dempsey and I call these vertices blips, as their appearance in the data is just a ‘blip
on the radar’. Blips certainly do occur in real-world interaction processes—many
academic papers, for example, are the sole publication of one or more authors—
but in practice the behavior of blips is hard to account for since one cannot determine
whether a given vertex is a blip based on only a finite sample. (Due to random chance,
an author who appears in the database numerous times might only be observed once,
even in a relatively large sample.)

Theorem 10.1 (Crane–Dempsey [53]) Let Y be an edge exchangeable hypergraph
with hyperedges labeled in N. Then there exists a unique probability distribution ϕ

on F
∼=
fin(N)

such that Y ∼ εϕ , for εϕ(·) defined by

Pr(Y ∈ ·;ϕ) = εϕ(·) =
∫

F
∼=
fin(N)

ε f (·)ϕ(d f ).

Remark 10.1 Our choice to allow for multisets in the above presentation allows us
to handle a wider range of interaction networks. In the setting of Section 10.1, mul-
tiple occurrences of the same actor in a given movie does happen from time to time.
(For example, Eddie Murphy plays multiple roles in The Nutty Professor, The Nutty
Professor II, and Coming to America.) In coauthorship networks, however, each au-
thor’s name appears at most once on each article, and so there is no multiplicity. In
this case, the probability distribution ϕ in Theorem 10.1 would assign all of its mass
to the subset of F

∼=
fin(N)

for which each vertex appears at most once in a hyperedge
with probability 1. The reader is referred to [53, 54] for more discussion of these
technical aspects of hyperedge exchangeable models.

10.4 Scenario: Traceroute sampling of Internet topology

Some of the earliest interest in network science arose from questions about the struc-
ture of paths sampled from the Internet. To avoid technicalities here, we think of the
Internet as the physical structure of routers (vertices) and wires connecting routers
(edges). Information is transmitted over the Internet by passing a message along this
physical structure of routers and wires. Given the size and complexity of the Internet,
it is natural to ask: What does the Internet look like?



SCENARIO: TRACEROUTE SAMPLING OF INTERNET TOPOLOGY 193

Figure 10.4 Output of traceroute path between IP addresses 192.653.22.69 and
128.135.10.17.

Research Problem 10.1 In light of the competing vertex-centric and edge-centric
points of view put forward in Chapters 6 and 9, respectively, ponder the meaning of
the question ‘What does the Internet look like?’ while keeping in mind that there is no
canonical or unique way to think about what it means to ‘look at’ the Internet. How
does this question relate to issues of sampling and network modeling? How does the
perspective from which the Internet (or any other network) is viewed affect judgments
about what that network ‘looks like’? See [112] for some early considerations of this
problem in the context of network sampling. Earlier discussion in Section 1.3 is also
relevant to these questions.

In keeping with our general theme, we note that what the Internet ‘looks like’
depends on the point of view from which it is ‘looked at’, i.e., the angle from which
we ‘shine our flashlight’ in the analogy of Section 1.3. Here we consider the im-
plications of analyzing the Internet network when paths are sampled via traceroute.
Given a source s (usually the IP address from which the search is initiated) and a
target t, traceroute returns the path (i.e., ‘traces the route’) of IP addresses visited in
accessing t from s. An example of the output from traceroute sampling is shown in
Figure 10.4.

Given the population P of all IP addresses and s, t ∈P , let trace(s, t) denote
the path from s to t obtained by traceroute sampling. Any such path is a finite ordered
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set (s,x1, . . . ,xk, t) in P , interpreted here as a message transmitted from s to x1, then
x1 to x2, and so on until finally transmitting xk to t. Writing path(P) to denote the
space of finite paths in P , which is in correspondence with ordered multisets of P ,
we can obtain a snapshot of the Internet topology by sampling sources and targets
(S1,T1), . . . ,(Sn,Tn) according to some protocol and then observing X = (X1, . . . ,Xn)
with each Xi = trace(Si,Ti) given by traceroute sampling of the path between Si and
Ti.5 From the collection of paths X1, . . . ,Xn, we assemble a ‘path-labeled network’
representation, just as we have constructed edge- and hyperedge-labeled networks
previously.

10.4.1 Representing the data

It is conventional to analyze the structure induced by the paths X1 = trace(S1,T1), . . .,
Xn = trace(Sn,Tn) by decomposing each path (s,x1, . . . ,xk, t) into its constituent
edges (s,x1),(x1,x2), . . . ,(xk, t), assembling a graph from these edges, and then
studying the features of that graph. But just as we observed in earlier discussions
about networks assembled from interaction sequences (in Chapter 9 and again in
Section 10.3), decomposing paths into binary edges neither respects the structure
of the data nor reflects the context in which the network was observed. Much like
decomposing a multiway interaction {a,b,c} into its pairwise components ab, ac,
and bc is unfaithful to the data structures of Section 10.1, so is decomposing a path
(s,a,b,c, t) into its four components sa, ab, bc, ct unfaithful in the context of path
sampling via traceroute. Decomposing the network by disassociating paths from their
constituent edges may give a misleading perspective on the network’s structure vis-
à-vis the prevailing sampling scheme; see Problem 9.6.

For a concrete illustration, consider the networks of paths shown in Figure 10.5.
The network in Figure 10.5(a) represents a single path (s,a,b,c, t) from s to t; the
network in Figure 10.5(b) represents two paths, (s,a) and (a,b,c, t); and the network
in Figure 10.5(c) represents three paths, (s,a), (a,b,c, t), and (s,d,e, t). Even though
the networks in Figures 10.5(a) and 10.5(b) involve the same edge traversals, as
shown in Figures 10.6(a) and 10.6(b), the two observations differ in that the path
from s to t in Figure 10.5(a) reflects a single observation (s,a,b,c, t), and thus permits
a direct interpretation of the relationship between s and t via traceroute, whereas the
two paths in Figure 10.5(b) compose to give a path from s to t which is forced to
pass through a. In particular, the fact that the link sa occurs in Figure 10.5(a) cannot
be thought of independently of the endpoint t in the path of which it is part, but
the occurrence of sa in Figure 10.5(b) does not depend on any relationship between
s and t. This distinction is not captured in the vertex-labeled networks of Figure
10.6, as disassociating the edges from the paths in which they occur removes this
relevant information about the observation mechanism that produces the network.
Figure 10.5(c) shows a third possibility in which the direct path from s to t passes

5Although an IP address will not appear more than once in a sample from traceroute, other kinds of
path sampling might include repeated occurrences of the same vertex and so we allow for repeated vertices
in the paths of path(P).
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Figure 10.5 Networks assembled from collections of paths obtained by traceroute sampling.
The label on each edge indicates the path to which each edge corresponds. For example, two
edges labeled ‘2’ should be interpreted as being part of the same path. (a) A single path from
s to t given by (s,a,b,c, t). (b) A network built from two paths, with the first path (s,a) from s
to a and the second path (a,b,c, t) from a to t. (c) A network built from three paths, with the
first two paths as in (b) and the third (s,d,e, t) from s to t going through d and e.

through d and e, and thus differs from the composite path (through a) suggested by
Figure 10.5(b).

To avoid the ambiguity caused by decomposing paths into their constituent edges,
we associate a sample of paths X1, . . . ,Xn to a path-labeled network, just as we have
previously for samples of pairwise and multiway interactions. As before, the passage
from vertex-path labeled structure (as in Figure 10.5(a)-(c)) to path-labeled network
(as in Figure 10.7(a)-(c)) reflects the representation of the data as the equivalence
class of all collections of paths that induce the same essential structure. The justifi-
cation for the path-labeled network representation follows the same rationale as in
the preceding section and in Chapter 9. Refer to Figures 9.5 and 10.2 for the anal-
ogous construction of edge- and hyperedge-labeled networks as equivalence classes
of vertex-edge labeled structures. The concept of path exchangeability arises by con-
sidering how such networks behave when the sources and targets are sampled in an
exchangeable way.

10.4.2 Path exchangeability

Given a bijection ρ : P →P and a path a = (a0,a1, . . . ,an) ∈ path(P), we write
ρa= (ρ(a0), . . . ,ρ(an)) to denote the action that ρ induces on path(P) by renaming
elements of P . Similarly to the definition of edge- and hyperedge-labeled networks
in Chapter 9 and Section 10.3, respectively, the path-labeled network associated to a
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Figure 10.6 Networks obtained by removing the edge labels (i.e., disassociating edges from
their paths) in Figure 10.5. Observe that the representations in (a) and (b), which correspond
to two different observations in Figures 10.5(a) and 10.5(b), coincide upon removing pathwise
information.

Figure 10.7 Path-labeled networks associated to each of the observations in Figure 10.5
through the correspondence in display (10.5). Note that the path-labeled networks in (a) and
(b) are different, capturing the fact that Figures 10.5(a)–(b) represent different observations.
The vertex-labeled networks in Figures 10.6(a)–(b) do not make this distinction.
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sequence of paths x = (x1,x2, . . .) in path(P) is given by

Ex = {ρ x | ρ : P →P is a bijection}, (10.5)

where as usual we overload notation and write ρ x = (ρ(x1),ρ(x2), . . .) for the com-
ponentwise application of ρ to x. An exchangeable sequence of paths X1,X2, . . .
thus gives rise to a path exchangeable network in the same way that exchangeable
sequences of pairs and exchangeable sequences of multisets give rise to edge ex-
changeable and hyperedge exchangeable networks in those preceding discussions. If
X = (X1,X2, . . .) is exchangeable in path(P), then Y = EX is path exchangeable in
the sense that its distribution is invariant under arbitrary relabeling of its paths. At
this point, the analog to the interaction propensity processes in Sections 9.4 and 10.3
immediately suggests itself: Take any ( fx)x∈path(P) with fx ≥ 0 and ∑x∈path(P) fx = 1
and construct Y ∼ ε f by first taking X = (X1,X2, . . .) i.i.d. from

Pr(Xi = x; f ) = fx, x ∈ path(P), (10.6)

and then putting Y = EX as in (10.5).
Once again, the generic form of path exchangeable networks arises by modifying

the interaction propensity process to allow for blips. Let F
∼=
path(N)

= Fpath(Z)/ ∼= be
the equivalence class obtained by putting f ∼= f ′ whenever they both determine the
same distribution as follows. Let f = ( fx)x∈path(Z) be indexed by paths labeled by
both negative and positive integers and take X = (X1,X2, . . .) to be i.i.d. from the dis-
tribution in (10.6). From X, define X∗ = (X∗1 ,X

∗
2 , . . .) by replacing each occurrence

of a non-positive label with a unique non-positive label and then put Y = EX∗ . For
example,

X : (3,0,2), (3,1,4), (2,0), (2,0,1,−1), . . .
↓ ↓ ↓ ↓ ↓ . . .

X∗ : (3,0,2), (3,1,4), (2,−1), (2,−2,1,−3) . . . .

The representation theorem of path exchangeable networks has the same form as
Theorems 9.2 and 10.1.

Theorem 10.2 (Crane–Dempsey [53]) Let Y be an infinite path exchangeable ran-
dom network. Then there exists a unique probability distribution ϕ on F

∼=
path(N)

such
that Y ∼ εϕ , for εϕ defined as the ϕ-mixture of interaction propensity processes ε f ,

εϕ(·) =
∫

F
∼=
path(N)

ε f (·)ϕ(d f ).

10.4.3 Relational exchangeability

By now the basic structure of relationally exchangeable networks ought to be clear.
In general, one can take R to be any class of relations and let R(P) be the set of all
such relations indexed by the elements in a population P . In Chapter 9, R consists
of pairs (i.e., R(P) = P×P); in Section 10.3, R consists of finite multisets (i.e.,
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R(P) = fin(P)); and throughout Section 10.4, R consists of paths (i.e., R(P) =
path(P)). With the relevant set of relations specified, the definition of the interaction
propensity process follows without any change: let ( fx)x∈R(P) satisfy fx ≥ 0 and
∑x∈R(P) fx = 1 and draw relations X1,X2, . . . i.i.d. according to

Pr(Xi = x; f ) = fx, x ∈R(P).

Given X = (X1,X2, . . .), construct a relationally exchangeable network (in R) as the
equivalence relation EX determined by X, just as in (9.3), (10.3), and (10.5) above.
The representation of relationally exchangeable networks then follows similarly by
taking P = Z and replacing any occurrence of a non-positive vertex by a unique
‘blip’, as in the passage from X 7→ X∗ in previous special cases. The realization that
many networks are more naturally represented and analyzed as relationally-labeled
structures seems to have been first discovered and studied in [52, 53, 54], to which
the reader is referred for further details about the general case. I conclude this chapter
by discussing the general class of relationally exchangeable Hollywood models.

10.5 General Hollywood model

The Hollywood model introduced in Section 9.7 (cf. [54]) extends to a more general
class of models for random hyperedge- and path-labeled networks.6 For this exten-
sion, we let fink(N) be the set of all finite multisets of N with cardinality k ≥ 1 and
define fin(N) = ∪k≥1 fink(N) as the set of all finite multisets of N. For each k ≥ 1,
we define a distribution f (k) = ( f (k)s )s∈fink(N) on fink(N) and, given a distribution
ν = (νk)k≥1 on the positive integers, we define f = ( fs)s∈fin(N) by

fs = νk f (k)s , s ∈ fink(N), k ≥ 1, (10.7)

where k = |s| is the cardinality of s. By the law of total probability, any probability
distribution ( fs)s∈fin(N) on fin(N) can be uniquely expressed as in (10.7).

To generate a draw from the hyperedge-labeled interaction propensity process
directed by f , we first take an i.i.d. sequence X1,X2, . . . of finite subsets of N with
distribution

Pr(Xi = s; f ) = fs, s ∈ fin(N),

and then construct a hyperedge-labeled network EX , as in (10.3), by associating each
X j to a hyperedge with label j; see Figure 10.2 for illustration. The resulting network
EX is hyperedge exchangeable.

The Hollywood model with parameter (α,θ) on hyperedge-labeled networks is
defined by first drawing f (1) ∈ ∆1 according to the GEM distribution with parameter
(α,θ) (see Section 9.7) and then, given f (1) = ( fi)i≥1, putting

fs = νk

k

∏
i=1

fsi , s = (s1, . . . ,sk) ∈ fin(N). (10.8)

6The description of the Hollywood model presented in Chapters 9 and 10 first appeared, in whole or
in part, in an article published by the American Statistical Association [54].
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In the Hollywood model, edges correspond to ordered multisets, so that vertices can
appear multiple times in a single edge and the order in which vertices appear in an
edge matters. Neither property can be relaxed without some theoretical repercus-
sions, but I defer that discussion to [54].

Using the same notation as in Section 9.7, we let v(Yn) denote the number of
vertices in Yn and e(Yn) = n denote the number of hyperedges/paths in Yn. In the
intended semantic interpretation of the Hollywood process as a description of movie
formation, every edge in Yn corresponds to a movie, with the vertices incident to
edge i corresponding to the actors in movie i = 1, . . . ,n. The special case of network
data with binary edges in Chapter 9 is easily handled by setting ν2 = 1 in (10.8).

As an alternative to the above definition in terms of the GEM distribution, we
generalize the binary Hollywood process construction from Section 9.7.1 as follows.
Given Yn−1 = y, for n ≥ 1, choose the number of roles Kn in the next movie inde-
pendently according to ν . Now, given Yn−1 = y and Kn = k, choose the k actors in
order of their prominence, first filling the lead role, then the second role, and so on
until all k roles have been filled. Let Nn( j) be the number of unique actors observed
up to and including the ( j− 1)st role in movie n. (Thus, e.g., Nn(1) is the number
of unique actors observed up to and including the 0th role in movie n, i.e., those
actors appearing in movies 1, . . . ,n−1.) For j = 1, . . . ,k, label the actors arbitrarily
1, . . . ,Nn( j), with Dn(i, j) denoting the number of roles for which the actor labeled i
has been cast up to and including the ( j− 1)st role of movie n. (Remember that an
actor is allowed to play more than one role in a given movie.) The actor vn( j) cast
in the jth role of movie n is chosen randomly among the actors labeled 1, . . . ,Nn( j)
and a previously unseen actor, labeled Nn( j)+1, according to

Pr(vn( j) = i | Dn(i, j), i = 1, . . . ,Nn( j)) ∝

{
Dn(i, j)−α, i = 1, . . . ,Nn( j),
θ +αNn( j), i = Nn( j)+1.

(10.9)
Vertices continue to be chosen according to (10.9) until all k roles of movie n have
been filled.

Example 10.1 Let ν be a probability distribution on the positive integers, 0 <
α < 1, and θ > −α , and suppose K1,K2, . . . are i.i.d. from ν = {νk}k≥1. Then for
(K1,K2, . . .) = (3,2,4, . . .), suppose we observe X1,X2,X3 as
• X1 = (1,2,1) with probability

θ

θ
× θ +α

θ +1
× 1−α

θ +2
,

• X2 = (3,2) with probability

θ +2α

θ +3
× 1−α

θ +4
, and

• X3 = (1,4,3,5) with probability

2−α

θ +5
× θ +3α

θ +6
× 1−α

θ +7
× θ +4α

θ +8
.



200 RELATIONAL EXCHANGEABILITY

The Hollywood process (10.9) assigns the following probability to the hyperedge-
labeled graph EX associated to the observation X1 = (1,2,1), X2 = (3,2), and X3 =
(1,4,3,5):

ν3×ν2×ν4×α
5 (θ/α)(θ/α +1) · · ·(θ/α +4)

θ(θ +1) · · ·(θ +8)
(1−α)3(1−α +1).

The distribution of Yn constructed from the Hollywood process with parameter
(ν ,α,θ), as in (10.9), can be written in explicit form by

Pr(Yn = y;α,θ ,ν) = (10.10)[
∏
k≥1

ν
Mk(y)
k

]
α

v(y) (θ/α)↑v(y)

θ ↑m(y)

∞

∏
k=2

exp{Nk(y) log((1−α)↑(k−1))},

where y is any hyperedge-labeled network with n oriented (i.e., directed) hyperedges,
v(y) is the number of non-isolated vertices in y, Nk(y) is the number of vertices in y
with degree k ≥ 1, m(y) is the total degree of y, Mk(y) is the number of hyperedges
of size k in y, and x↑ j = x(x+1) · · ·(x+ j−1) is the ascending factorial function. By
putting ν2 = 1, νk = 0 for all k ≥ 2, and comparing (10.10) to the binary Hollywood
model in Section 9.7, we see that the two coincide. The distribution in (10.10) is
called the Hollywood model with parameter (ν ,α,θ) [54].

The Hollywood model was first introduced under the heading of the Poisson–
Dirichlet model in [55, Section 6.3]. I also noted the connection between the Holly-
wood model and the two parameter Poisson–Dirichlet distribution in [45]. From the
relationship between the Hollywood model and the Poisson–Dirichlet distribution
through the vertex components model (Section 9.6), one can deduce that networks
from the general Hollywood model in (10.10) exhibit power law degree distribution
with exponent γ = α + 1 when 0 < α < 1 and θ > −α; see [54, Section 5.3]. Fur-
thermore, (Yn)n≥1 is sparse provided 1/µ < α < 1, where µ = ∑k≥1 kνk is the mean
interaction size in the general Hollywood model with parameter (α,θ ,ν). This last
observation refines the analysis in Section 9.7.3, where we saw that the Hollywood
model restricted to pairwise interactions is sparse for 1/2 < α < 1. Since the binary
case corresponds to ν2 = 1, and thus µ = 2, these two analyses agree.

10.6 Markovian vertex components models

The vertex components models described in Sections 9.6 and 10.5 assume that ver-
tices occur in any given interaction independently of one another. As I have already
noted in Problem 9.1, it is unreasonable in the scenario of Section 9.1 to assume that
the conditional probability of observing a call with receiver r, given that the caller
is s, is fr independently of s. Similarly, when sampling from a movie database as in
Section 10.1.1, the occurrence of a certain actor in a sampled movie is likely to affect
the conditional probability of another actor’s occurrence in that same movie. For ex-
ample, there are many famous duos, such as Abbott and Costello, Dean Martin and
Jerry Lewis, etc., who tend to perform together. Similar synergies exist for scientific
coauthorships.
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With these observations in mind, it is natural to consider a more robust class of
models. In the binary case, Problem 9.1 suggests one possible extension by taking a
collection of vertex components ( fi)i≥1 and conditional probabilities ( f ′j|i)i, j≥1 and
defining the probability of a given pair by

f(i, j) = fi f ′j|i, i, j ≥ 1.

Here, ( f ′j|i)i, j≥1 describes the conditional probability that the second vertex is j given
that the first is i. See Problem 9.1 for more on this approach. To extend this idea to
hypergraphs, we let ν = {νk}k≥1 be a distribution on the positive integers and define

fs = νk fs1

k

∏
j=2

fs j |s j−1 , s = (s1, . . . ,sk) ∈ fin(N).

But even this offers just a minor improvement over the ordinary vertex components
model, since it only incorporates dependence between vertices that occur in adja-
cent positions of a directed hyperedge. Although such dependence could make sense
for modeling path exchangeable networks (Section 10.4), it seems overly simplis-
tic for modeling the actors and scientific collaboration networks in Section 10.1.
Readers are encouraged to explore this and other potential extensions of relationally
exchangeable models in future work.

10.7 Contexts for relational sampling

As for edge exchangeable models in Chapter 9, I have defined relationally exchange-
able models in terms of the generative interaction propensity process. By this gen-
erative description, (4.4) immediately implies consistency under selection as well as
coherence of relationally exchangeable models in a selection sampling context. The
more general edge sampling contexts discussed throughout Section 9.8 also transfer
wholesale to relationally-labeled networks, e.g., hyperedge- and path-labeled net-
works, without any change in notation. Any of the questions asked of edge sampling
in Section 9.8 can just as well be asked of relational sampling and relationally ex-
changeable networks here. Because of the close parallels to this earlier discussion, I
do not rehash the details here. Refer to Section 9.8 for the relevant coverage.

10.8 Concluding remarks and further reading

The mindset of edge and relational exchangeability put forward in Chapters 9 and 10
is an important step toward a complete theory for complex data structures. The signif-
icance of the insight afforded by representing interaction data as an equivalence class
of structures, as in (9.3), (10.3), and (10.5), has not yet been appreciated by the wider
community of statisticians, data scientists, mathematicians, and computer scientists.
Given the tendency to resist change, it is likely that the ‘networks-as-graphs’ point
of view, including its extensions to ‘networks-as-hypergraphs’ and ‘multilayer net-
works’, will persist for at least a while longer in network science. But if progress—in
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the form of clearer and more illuminating insights, not just more articles about the
same old models and methods—is to be attained, a change in perspective is not only
beneficial but necessary.

If we visualize data analysis as ‘shining a flashlight’ (as in Section 1.3), then
the different viewpoints offered by the vertex-centric ‘networks-as-graphs’ perspec-
tive (Section 1.2) and the alternative ‘edge-centric’ perspective presented throughout
Chapters 9 and 10 correspond to shining the light from different angles. It is ex-
pected that the shadow cast by shining the light from one angle will have a different
texture than that cast by shining it from a different angle. Evidently, this choice of
angle affects which aspects of the data are visible. Contrast, e.g., the inability of ver-
tex exchangeable models to ‘see’ sparsity and power law with the ease with which
edge and relationally exchangeable models are able to model these properties. Since
statistical inference takes place in these ‘shadows’, we ought to be mindful of how
we shine our flashlight, both through the models we specify and the data representa-
tions we choose. The Crane–Dempsey edge and relationally exchangeable perspec-
tive [53, 54] represents a first step out of the dark shadow cast by the ‘networks-
as-graphs’ perspective of network analysis. Future developments in both extending
edge and relational exchangeability as well as establishing new network modeling
frameworks will be essential to fulfilling the vision of Chapter 1, in which statistical
network analysis is viewed as the foundation for structured, complex data analysis.



Chapter 11

Dynamic network models

Social networks, whose edges represent friendships, often change over time due to
increased/decreased social activity, formation of new friendships, loss of old friend-
ships, etc. Brain networks, whose edges represent the transmission of an electrical
charge between neurons, also change depending on brain function and activity. These
are just two examples of networks with dynamic edge patterns. There are many more,
with each admitting its own behaviors depending on the domain of application. In
some scenarios, both vertex and edge sets change over time; in others, the edges
associated to different vertices evolve on different time scales. In this final chapter I
focus only on the most basic aspects of modeling dynamic networks whose vertex set
stays fixed while its edges vary over time. I leave more nuanced considerations (e.g.,
dynamic vertex and edge sets, different time scales, etc.) to future developments in
their respective fields of study. Because I only emphasize the most basic statistical
properties of dynamic network models, the contents of this chapter barely scratch the
surface of what is needed to lay a solid foundation for dynamic network analysis.
Plenty of questions remain open and invite future exploration.

Dynamic versus evolving networks

The dynamic networks studied here should not be confused with the evolving (or gen-
erative) networks from previous chapters. For example, the preferential attachment
model (Section 4.2) describes a network which evolves by the addition of one new
vertex at each step. The resulting system of networks (Yn)n≥1 grows in such a way
that its existing structure never changes: once the status of an edge Yi j between i and
j is determined to be present (or absent), it remains present (or absent) forevermore.
By contrast, a dynamic network is one whose entire structure varies with respect to
time, as shown in Figure 11.1. A dynamic network is thus a collection Y = (Y (t))t∈T
indexed by a set of times T , with each Y (t) representing a network for a (fixed) vertex
set. So whereas the components of an evolving network (Yn)n≥1 are related to one
another through how they evolve to form a single (limiting) network, the components
of a dynamic network are related to one another through their association over time.

Thus, in addition to the usual sampling issues discussed throughout Chapters 3
and 6–10, dynamic network models should also account for the temporal dimension
along which the dynamics take place. To streamline this chapter as much as possible,
I confine to the ‘networks-as-graphs’ context, so that each Y (t) in Y = (Y (t))t∈T is

203
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Figure 11.1 A dynamic network with 7 vertices observed at evenly spaced times t = 0,1,2.

regarded as a {0,1}-valued array indexed by a fixed set of vertices, either N (if infi-
nite) or [n] (if finite with cardinality n). Network dynamics for edge- and relationally-
labeled networks are a topic of active development, and so are not discussed here. See
[124] for some recent work in that direction.

Units of observation

In the setting assumed here, dynamic network data is obtained by sampling both a
subset of vertices S ⊆ V and a subset of times T ′ ⊆ T for Y = (Y (t))t∈T such that
each Y (t) is an array in {0,1}V×V . Described in this way, the units of observation
are determined both by the sample of vertices S and the set of times T ′ at which the
dynamics for that sample are observed, and therefore (by the discussion in Sections
3.7–3.8) the sample size of dynamic network data is jointly determined by both the
size of the observed network, i.e., the number of vertices, and the duration of time
over which its dynamics are observed. In general, one should bear in mind that the
sampled vertices and times of a dynamic network may depend on each other as well
as on the underlying network structure; but for the most part we only consider dy-
namic networks that are observed for a subsample of vertices at a finite collection
of times, both of which are selected independently of the network and of each other.
In particular, we assume throughout this chapter that a sample of size (t ′,m), for
t ′ ≤ t and m≤ n, from a dynamic network Y = (Y (s))s=0,1,...,t evolving on {0,1}n×n

is obtained by restriction of Y to times {0,1, . . . , t ′} and vertices [m], i.e., we ob-
serve (Sm,n Y (s))s=0,1,...,t ′ . In Section 11.2.2 I briefly discuss how this setup can be
extended to account for random sampling of vertices and times, as was done for
singular observations of network data in Sections 3.9, 7.3.7, 8.6, 9.8, and 10.7.

Outline

To convey the above ideas, I first canvass the main considerations of dynamic net-
work analysis (Section 11.2). I then go on to discuss two broad classes of dynamic
network models, called rewiring processes (Section 11.3) and Lévy processes (Sec-
tion 11.4). While their probabilistic foundation has mostly been established through a
series of articles in the mathematical probability literature [44, 48, 49, 50, 57, 58, 59],
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these models have not yet been developed into viable statistical methodologies for
dynamic network analysis. Because of their definition in terms of basic structural
assumptions (i.e., exchangeability, projective Markov property, stationary and inde-
pendent increments), rewiring and Lévy process models are a natural building block
for a larger theory of dynamic network analysis. The exposition in this chapter is
meant to clarify the main conceptual ideas that are needed in order to make progress
in developing such a theory. The reader interested in the technical details is referred
to the above series of papers.

11.1 Scenario: Dynamics in social media activity

Consider a network of interactions on a social media platform, such as Twitter, for
which each vertex is associated to a different user account and these vertices inter-
act by ‘retweeting’, ‘liking’, or ‘replying’ to content posted by other users.1 For
simplicity, we call any of these actions (i.e., retweet, like, or reply) an interac-
tion and construct a dynamic network of Twitter interactions as follows. Assum-
ing Twitter activity has been monitored for each of T +1 consecutive days, marked
t = 0,1, . . . ,T , we label users 1, . . . ,N and record their interactions on day t as an
array Y (t) = (Yi j(t))1≤i, j≤N , with

Yi j(t) =
{

1, i and j interacted on day t,
0, otherwise.

The totality of interactions gives a time-indexed collection of networks Y =
(Y (t))t=0,1,...,T .

Suppose we are interested in understanding certain attributes of this dynamic
Twitter network. For example, are users who interact on a given day (say, day t)
more or less likely to interact again on the next day (say, day t +1)? To what extent
can future activity be predicted from past activity? And so on. As for many mod-
ern social media sites, Twitter currently has a population of hundreds of millions of
users, making it practically impossible to analyze the complete dynamics of Twitter
interactions over time. We instead infer the dynamics of the population Y by observ-
ing the interaction dynamics for a sample of n� N users whose activity we monitor
up to some time T ′ ≤ T . Our objective is to gain insight into the dynamics of the
population of all Twitter accounts based on the dynamics of the sample.

11.2 Modeling considerations

The above scenario describes dynamic network data constructed from Twitter inter-
actions among a sample of individuals over some duration of time. When devising a
model for Y, the following questions are worth bearing in mind.

1The terms ‘retweet’, ‘like’, and ‘reply’ are used here in the same sense as on Twitter. In the modern
vernacular, the act of posting content on Twitter is called ‘tweeting’. Anytime a user posts a tweet, the
content is visible to his/her followers. Other users can broadcast content from any tweet to his/her follow-
ers by ‘retweeting’, can express interest/support for content by ‘liking’ the tweet, or can reply to a tweet
by ‘replying’.
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1. How does the network structure change with respect to time? To what extent
are past interactions (Y (s))s=0,1,...,t−1 useful for predicting future interactions
(Y (s))s=t,t+1,...?

2. If the data reflects a sample from the population, then how are the dynamics of
the sampled network related to those of the population network?

Below we consider both of these questions within the context of Markov chain mod-
els for Y.

11.2.1 Network dynamics: Markov property

Let Y = (Y (t))t=0,1,...,T record the dynamics of the population network, whose tran-
sition behavior is of primary interest. A preliminary null model for Y assumes
Y (0),Y (1), . . . ,Y (T ) are i.i.d. according to one of the previously discussed distri-
butions for {0,1}-valued arrays (see Chapters 6–8). If such an assumption were ap-
propriate, then the ‘dynamic’ aspect of Y adds no complexity beyond what we have
already discussed in previous chapters. But for the network of Twitter activity in Sec-
tion 11.1 it seems reasonable to expect that interactions exhibit non-trivial temporal
dependence which ought to be reflected in the model. For example, two users who
interact at time t seem more likely than two random users to have a follow-up inter-
action at some time in the near future. By the same logic, two users who have not
interacted for a long period of time would seem unlikely to interact in the near future.

For a venue as complex as Twitter, it is easy to imagine that the entire history of
interactions might be informative about future interactions. For example, two users
might regularly interact on weekends, but never on weekdays; or one user might
only check his account every few days, so that his interactions tend to lag behind the
response times of others. But these possibilities are far too application-specific and
complicated to discuss here. We instead focus on the basic theoretical implications
of time homogeneous Markov chain models for dynamic network data.

Let P(·, ·) be a transition probability on {0,1}N×N , i.e., P(y, ·) defines a prob-
ability distribution on {0,1}N×N for each y ∈ {0,1}N×N . The distribution of Y =
(Y (t))t=0,1,... is defined by first specifying a distribution for Y (0), called the initial
distribution, and then generating (Y (t))t=0,1,... sequentially according to the condi-
tional distribution,

Pr(Y (t +1) = y′ | Y (t) = y, (Y (s))s=0,1,...,t) = P(y,y′), y,y′ ∈ {0,1}N×N , t ≥ 0.
(11.1)

Thus, for any T ≥ 1, the distribution of (Y (t))t=0,1,...,T is given by

Pr((Y (t))t=0,...,T = (yt)t=0,...,T ) = Pr(Y (0) = y0)
T

∏
t=1

P(yt−1,yt). (11.2)

Any model for (Yt)t=0,...,T specified as in (11.2) is called a time homogeneous
Markov chain model. Under the Markov assumption, the conditional distribution of
Y (t) given all past states (Y (s))s<t depends only on the immediately preceding state
Y (t−1), as in (11.1). The model is called time homogeneous because the conditional
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distribution of Y (t) depends only on the previous state Y (t−1) and not on the time
t at which the transition from Y (t − 1) to Y (t) takes place. These assumptions can
be relaxed in several ways, e.g., by assuming the kth-order Markov property, by
which the conditional distribution of Y (t) depends on the previous k states Y (t −
1), . . . ,Y (t−k), or time inhomogeneity, by which the conditional distribution of Y (t)
depends on both the previous state Y (t − 1) and the time t at which the transition
takes place. We only consider the first-order, time homogeneous case below.

11.2.1.1 Modeling the initial state

Modeling (Y (t))t=0,1,...,T requires a description of both the initial state Y (0) and the
dynamics Y (t) 7→ Y (t +1) at each time t. Though we are primarily interested in the
dynamics, the choice of initial distribution also deserves attention. In principle, the
initial state can be described by any of the model classes for {0,1}-valued arrays dis-
cussed throughout Chapters 2, 6, 7, and 8. It is important to realize, however, that in
many situations the initial observation Y (0) does not reflect the state of the network
at the time it first came into existence; and thus the time at which the initial state Y (0)
is observed is itself part of the observation process. In the Twitter interactions of Sec-
tion 11.1, for example, we do not assume that the observed sequence (Y (t))t=0,1,...,T
goes back to the inception of Twitter. And so, when analyzing the data, we should
take into account that the process by which users interact on Twitter has been in force
since long before our first observation Y (0), and that those past interactions—indeed
the very process that we are trying to model—affect the observed network dynamics.

Assuming that no special circumstances distinguish the observed times from all
other times—in other words, the observed times have been chosen irrespective of the
network dynamics—it is prudent to proceed under the assumption that the population
network has been evolving for an indefinite (i.e., potentially infinite) amount of time
into the past. If the process has been changing according to the same dynamics for
such a period of time (i.e., homogeneous) and if the transition probability P is suffi-
ciently well-behaved so that it has a unique stationary distribution π (i.e., ergodic),
then the initial state of (Y (t))t=0,1,...,T is distributed according to π . Thus, without
a compelling reason to the contrary, we model the initial distribution of Y by the
stationary distribution π . Under this assumption, the marginal distribution of every
Y (t), for t = 0,1, . . . ,T , is π , and the marginal distribution of each observation Y (t)
is unaffected by the arbitrary time at which we started observing Y.

I expect that both the rewiring and Lévy process models presented in Sections
11.3 and 11.4 below possess a unique stationary distribution under non-restrictive
conditions on their transition behavior, but so far their convergence behavior has
not been explored in detail. Readers are referred to any graduate text on stochastic
processes for a review of basic Markov chain theory.

Research Problem 11.1 Study the convergence to stationary distribution for the
Lévy processes and exchangeable rewiring processes presented below. For both
classes give necessary and sufficient conditions under which a unique stationary
distribution exists for the process evolving on {0,1}N×N . If possible, give upper and
lower bounds on the rate of convergence to the stationary distribution, and find extra
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conditions under which these processes exhibit the cutoff phenomenon. See [56] for
a discussion of the cutoff phenomenon for a related class of partition-valued Markov
chains.

11.2.1.2 Is the Markov property a good assumption?

When faced with a specific application, the appropriateness of the Markov assump-
tion warrants careful consideration. In Section 11.1, Markovian dynamics seem rea-
sonable for describing many of the interactions that occur. For example, an active
user who ‘likes’ another user’s content at time t may be inclined to ‘like’ that same
user’s content again at time t + 1, especially if the content at times t and t + 1 are
related to one another. But as we have already noted above, the time scale on which
interactions occur is likely to vary from user to user. Interaction patterns for a user
who monitors social media several times per day are likely to differ from those of
someone who looks at social media only a few times a week or a few times a month.
A complete theory for modeling such networks is far beyond the reach of current
capabilities. But even without such a theory, practical methodologies which account
for such inhomogeneities in dynamic networks could be worthwhile for certain ap-
plications.

Research Problem 11.2 Extend any of the models presented below to account for
inhomogeneity in how individuals interact over time. An ideal extension should be
tailored to a specific application domain, but this is not a strict requirement.

Research Problem 11.3 In light of the rewiring processes discussed in Section 11.3,
bear in mind that a dynamic network model for which vertices exhibit inhomogeneous
behavior cannot be exchangeable in the sense defined below. Explore the possibility
of bringing relative exchangeability (Chapter 8) and/or relational exchangeability
(Chapters 9–10) to bear on this problem.

11.2.1.3 Temporal Exponential Random Graph Model (TERGM)

The temporal exponential random graph model (TERGM) [63, 87, 86, 109, 140] has
been the most widely studied statistical model for dynamic networks to date. Let
{0,1}n×n be the state space for binary relational data of size n, let Θ be a parameter
space, and define a joint sufficient statistic T : {0,1}n×n×{0,1}n×n → Rd , where
d ≥ 1 is the length of the sufficient statistic vector T = (T1, . . . ,Td). The transition
probabilities of the TERGM are given by

Pr(Y (t +1) = y′ | Y (t) = y;θ ,T ) ∝ exp{η(θ) ·T (y,y′)}, y,y′ ∈ {0,1}n×n,
(11.3)

where η(θ) is the natural parameter for the exponential family and η(θ) ·T (y,y′) =
∑

d
i=1 ηi(θ)Ti(y,y′). Note that the transition probabilities for the TERGM in (11.3)

incorporate temporal (i.e., Markovian) dependence into the ERGM defined in Section
2.3, with the main difference between the ERGM distribution (2.8) and the TERGM
(11.3) being the joint dependence of the sufficient statistic T on both y and y′ in the
latter.
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As in Chapter 2, the TERGM may be appropriate for modeling the network dy-
namics of a fully observed population, as in a small community of friends, a high
school, or a company. But, as we also observed in Chapter 2, exponential random
graph models struggle with sampled networks. In the Twitter scenario of Section
11.1, for example, the model should also account for the fact that the observed dy-
namics are sampled. Sampling issues in dynamic networks are among the most tech-
nically challenging topics covered in this book. Understanding the interplay between
selection sampling and the Markov assumption reflects a long line of technical work
in mathematical probability [43, 44, 48, 49, 50, 57], whose practical implications
remain poorly understood and are among of the primary topics discussed in this
chapter.

11.2.2 Projectivity and sampling

The population process in the scenario of Section 11.1 evolves {0,1}N×N , where
N is the number of all Twitter users worldwide. With N on the order of hundreds
of millions, it is computationally infeasible to analyze the complete evolution of
Twitter interactions, even over a short period of time. So while we are interested in
learning the dynamics of the population network, practical limitations require that
such inferences be based on the dynamics observed for a sample of n� N vertices
at a sample of times.

Since the sampled network is often much smaller than the population, and most
Twitter users interact with only a negligible fraction of the population, it is likely that
the sampled vertices are not representative of the population as a whole and that the
observed dynamics depend on interactions between unsampled vertices in a way that
is hard to incorporate into a tractable statistical model. Gaining a better understanding
of how dynamic networks are sampled, e.g., by extending the sampling schemes of
Chapter 3 to the dynamic network case, is an important problem for future study.

Research Problem 11.4 For a dynamic network Y = (Y (t))t=0,1,...,T on a popula-
tion of N vertices, consider observing Y∗ = (ΣY (t))t=0,1,...,T , where Σ is a generic
(possibly random) network sampling operation as in Section 3.9.
• What choices for Σ make sense in practical applications?

• How is the relationship between observed network dynamics and population level
dynamics affected by different distributions for Σ?

To formulate a precise sampling context for dynamic networks, we regard Y =
(Y (s))s=0,1,...,T as a map Y : {0,1, . . . ,T} → {0,1}N×N , i.e., Y (s) ∈ {0,1}N×N is the
state of the network at time s. We obtain a sample of size (T ′,n), for T ′ ≤ T and
n≤ N, from Y by specifying a pair (γ,ψ) such that γ : {0,1, . . . ,T ′}→ {0,1, . . . ,T}
and ψ : [n]→ [N] are injections and γ is order-preserving (i.e., s≤ s′ implies γ(s)≤
γ(s′)). We then define Sγ,ψ

(T ′,n),(T,N)
as the sampling operation that acts on Y by

Sγ,ψ
(T ′,n),(T,N)

Y = (Sψ

n,N Y (γ(s)))s=0,1,...,T ′ , (11.4)

where Sψ

n,N : {0,1}N×N → {0,1}n×n is the ψ-selection map defined in (3.17). In
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words, Sγ,ψ
(T ′,n),(T,N)

Y is the dynamic network obtained by sampling vertices accord-
ing to ψ and times according to γ . If instead time is indexed continuously in Y,
so that Y = (Y (s))s∈[0,T ), then we define a sampling mechanism (γ,ψ) by taking
γ : [0,T ′)→ [0,T ) to be a Lebesgue measure-preserving map as in Section 7.3.7
which also preserves the order of [0,T ′), and define Sγ,ψ

(T ′,n),(T,N)
just as in (11.4).

As we have in earlier chapters, in particular Section 3.9, we can consider dynamic
networks observed as in (11.4) for (γ,ψ) chosen randomly according to some joint
distribution possibly depending on the population process Y. Following suit with ear-
lier chapters, I highlight this general sampling context as interesting and important
for future research in network analysis, cf. the major open questions cited in Section
1.7.3, and proceed for the rest of this chapter under the assumption that the observed
network sequence is obtained by selection sampling jointly across all time points. To
be specific, for a population process Y = (Y (t))t=0,1,... on {0,1}N×N indexed over
an indefinite time horizon {0,1, . . .}, we assume that Yn = (Sn,N Y (t))t=0,1,...,T is ob-
served for some n < N.

Under the assumptions of Section 11.2.1, the population structure Y =
(Y (t))t=0,1,...,T is modeled by a time homogeneous Markov chain as in (11.2). The
observed network is obtained from Y by choosing vertices 1, . . . ,n via selection sam-
pling. Since the observed network is modeled as a sample from a Markov chain, and
not directly as a Markov chain itself, we must consider the possibility that the Markov
property assumed for Y may not be preserved in the sampled process. For example,
suppose that users i and k both retweet a post by j at time t, i.e., Yi j(t) = 1 and
Yk j(t) = 1, and that neither i nor k retweets j at time t +1. Further suppose that user
i is a follower of k and k is a follower of j, so that user i is exposed to the activity of
j only through k. In this case, the change from Yi j(t) = 1 to Yi j(t +1) = 0 is directly
correlated to the change from Yk j(t) = 1 to Yk j(t+1) = 0, but this information would
be unavailable in a sample that only includes i and j but not k.

To summarize, since a function of a Markov chain need not be a Markov chain,
see, e.g., [28], it is possible that the Markovian dynamics of the population network
are not preserved under sampling. In practice, however, when the population dynam-
ics are assumed to follow the Markov property, it is common to also assume that
the dynamics of the sampled network are Markovian. Before identifying which dy-
namic network models satisfy this property and what other practical implications this
assumption might have (Sections 11.3–11.4), I first show an example in which this
property fails.

11.2.2.1 Example: A TERGM for triangle counts

To illustrate the above point in the case of TERGMs, let the joint sufficient statistic
T (y,y′) in (11.3) be given by

T (y,y′) = log(1+T∆(y,y′)), (11.5)

where T∆(y,y′) is the number of triangles that y and y′ have in common, i.e.,

T∆(y,y′) = ∑
1≤i< j<k≤N

yi jyiky jky′i jy
′
iky′jk, y,y′ ∈ {0,1}N×N .
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Assume that the natural parameter η(θ) is set to 1 so that the transition probabilities
governing YN , with N = 4, are of the form

P(y,y′) ∝ exp{T (y,y′)}, y,y′ ∈ {0,1}4×4. (11.6)

Suppose further that Yn = (Yn(t))t=0,1,... is obtained by selecting the vertices labeled
1,2,3 from {1,2,3,4}. What is the probability of the transition from y to y′ in Yn
when

y = y′ =

0 1 1
1 0 0
1 0 0

?

First, note that if Yn were to evolve according to the TERGM with sufficient
statistic T in (11.5), then the transition probability from y to y′ must be 1/8 since
there are 8 undirected graphs in {0,1}3×3 and the current state y has 0 triangles to
start with; and therefore T∆(y,y′) = 0 for all y′. But since Yn was obtained from
YN by selection, it is possible that the transition from y to y′ in Yn depends on
the states in {0,1}4×4 from which y and y′ were sampled. Now, the observation y′
would have been obtained by selection sampling as long as the population process
YN transitioned into any of the following 8 extensions of y′:

0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

 ,


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 ,


0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

 ,


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 ,


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

 ,


0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 ,


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 ,


0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

 .

Notice that the upper 3× 3 submatrix of these 8 arrays all coincide with y′ and,
furthermore, that these 8 matrices list all of the possible states into which YN could
have transitioned at time t +1 to produce the event ‘Sn,N YN(t +1) = y′’.

We compute the induced transition probability from y to y′ in Yn by aggregating
the probabilities that YN transitioned into any one of the above 8 states. Since y is
fixed, the dynamics of Yn are Markovian only if the transition probability of YN into
the above 8 states does not depend on the choice of representative for y from which
to generate the population level transitions. (In other words, the transition y 7→ y′ in
Yn results from a Markovian transition YN(t) 7→ YN(t + 1) at the population level
followed by selection:

Sn,N YN(t) 7→ Sn,N YN(t +1)
y 7→ y′ .

The Markov property holds for Yn = (Sn,N YN(t))t=0,1,... only if the conditional dis-
tribution of Yn(t +1), given YN(t), is a measurable function of Sn,N YN(t) = y. This
condition does not hold for all Markov chains, as this example shows.)
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Suppose first that y = Sn,N y∗ for

y∗ =


0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

 .

Since y∗ has no triangles, it has no triangles in common with any of the 8 possible
states listed above. It follows that all transitions are uniformly distributed and that the
induced transition from y to y′ has probability 1/8, just as it does if the transitions
on {0,1}3×3 are modeled as in (11.5). If, on the other hand, y = Sn,N y∗ for

y∗ =


0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0


then the transition probabilities are no longer uniform. The induced transition prob-
ability from y to y′ is

12
8+10+8+10+10+12+10+12

=
12
80
6= 1

8
.

Since the sampled state y does not maintain all of the information about the
network from which it was sampled, the transition behavior in the sampled process
(Sn,N YN(t))t=0,1,... is not Markovian. In particular, by the Markov assumption, the
conditional probability of YN(t+1) depends only on YN(t), but here the conditional
probability of YN(t + 1)|[3] is not measurable with respect to YN(t)|[3] = y. This
example illustrates a failure of the projective Markov property [43, 44, 48].

11.2.2.2 Projective Markov property

A Markov chain Y = (Y (t))t=0,1,... on {0,1}N×N , for N = 1,2, . . . ,∞,2 has the pro-
jective Markov property if

Yn = (Sn,N Y (t))t=0,1,...is a Markov chain for every n = 1, . . . ,N. (11.7)

Equivalently, Y has the projective Markov property if its transition probabilities sat-
isfy

Pr(Sn,N Y (t +1) = y | Y (t) = y′) = Pr(Sn,N Y (t +1) = y | Y (t) = y′′)
for all y′,y′′ with Sn,N y′ = Sn,N y′′ . (11.8)

Exercise 11.1 Show that conditions (11.7) and (11.8) are equivalent.

2When N = ∞ the state space is taken to be {0,1}N×N .
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The projective Markov property can be extended by extrapolating from the dis-
cussion of Chapters 3 and 5 to define the notion of Markovian coherence with re-
spect to subsampling. For each n ≥ 1, let Mn be a family of Markovian transition
probabilities on {0,1}n×n and let {Σm,n}n≥m≥1 be a family of (possibly random)
sampling operations. Then the model ({Mn}n≥1,{Σm,n}n≥m≥1) is coherent if every
Yn = (Y (t))t=0,1,... with transition probabilities given by some Pn ∈Mn projects to
a Markov chain (Σm,n Yn(t))t=0,1,... with transition probability Pm ∈Mm, and con-
versely every Pm ∈Mm is the transition probability of (Σm,nYn(t))t=0,1,... sampled
from a Markov chain Yn = (Yn(t))t=0,1,... governed by some transition probability
Pn ∈Mn. At present there is no mathematical machinery available for studying sys-
tems of Markov chains in a sampling context other than selection, and so I leave this
general case as an open area of study.

11.3 Rewiring chains and Markovian graphons

In [44] I introduced rewiring processes as the class of Markov chains which evolve
by successive application of randomly chosen ‘rewiring maps’, defined as follows.
For n ≥ 1 and W ∈ ({0,1} × {0,1})n×n, write the i j entry of W as W (i, j) =
(W0(i, j),W1(i, j)) so that both W0(i, j) and W1(i, j) are elements of {0,1} and
W0 = (W0(i, j))1≤i, j≤n and W1 = (W1(i, j))1≤i, j≤n can each be regarded as {0,1}-
valued arrays in their own right. The rewiring map determined by W is a function

W :{0,1}n×n→{0,1}n×n

y 7→W (y) = y′,

defined by

y′i j =

{
W1(i, j), yi j = 1,
W0(i, j), yi j = 0. (11.9)

In words, W acts on y by replacing each yi j by W1(i, j) if there is an edge between i
and j in y and by W0(i, j) if there is not an edge between i and j in y. In [44], I called
y 7→W (y) a rewiring operation and W a rewiring map because it acts on {0,1}n×n by
‘rewiring’ each entry of the network represented by y according to the configuration
of 0s and 1s in W . For any n = 1,2, . . ., let Wn be the space of rewiring maps, each of
which corresponds to an n×n array taking values in {0,1}×{0,1}.
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For a concrete example, consider the operation y 7→W (y) given by

y W
0 1 1 0 1
1 0 0 0 1
1 0 0 1 0
0 0 1 0 0
1 1 0 0 0



(0,0) (1,0) (0,1) (0,0) (0,1)
(1,0) (0,0) (1,0) (1,1) (1,0)
(0,1) (1,0) (0,0) (0,1) (0,0)
(0,0) (1,1) (0,1) (0,0) (1,0)
(0,1) (1,0) (0,0) (1,0) (0,0)


y′ =W (y)

7→


0 0 1 0 1
0 0 1 1 0
1 1 0 1 0
0 1 1 0 1
1 0 0 1 0

 .

(11.10)

In this demonstration, the elements of W written in bold are those which have been
copied from W into the image y′ = W (y) in accordance with (11.9). For example,
since y12 = 1, the right-hand entry of W12 = (1,0) is chosen as the corresponding
entry in W (y); since y13 = 1, the right-hand entry of W13 = (0,1) is chosen as the
corresponding entry in W (y); since y14 = 0, the left-hand entry of W14 = (0,0) is
chosen as the corresponding entry in W (y); and so on.

From the rewiring operation in (11.9), we construct a time homogeneous projec-
tive Markov chain on {0,1}N×N as follows. Define any probability distribution ω on
WN and, for any initial state y ∈ {0,1}N×N , set Y (0) = y and put

Y (t +1) =Wt+1(Y (t)) = (Wt+1 ◦ · · · ◦W1)(y), t = 0,1, . . . , (11.11)

for W1,W2, . . . i.i.d. from ω and W (y) as defined in (11.9). For two rewiring maps
W,W ′, the operation W ◦W ′ denotes the usual composition of functions, so that (W ◦
W ′)(y) =W (W ′(y)). In general, we have

(Wt+1 ◦ · · · ◦W1)(y) =Wt+1(Wt(· · ·(W1(y)))),

as in (11.11). We call the process Y constructed in (11.11) a rewiring chain directed
by ω .

For W ∈ WN , we define the restriction W |[n] ∈ Wn in the usual way by W |[n] =
(W (i, j))1≤i, j≤n, so that any probability distribution ω on WN induces a distribution
ωn on Wn by

ωn(w) = ω({w∗ ∈WN : w∗ |[n] = w}), w ∈Wn . (11.12)

The transition behavior of the chain constructed in (11.11) is determined by an
i.i.d. sequence of random rewiring maps W1,W2, . . ., and the action of each W on
{0,1}N×N is such that the distribution of Y (m+1)|[n] given Wm+1 and Y (m) depends
only on the restrictions Wm+1|[n] and Y (m)|[n]. Rewiring chains thus satisfy the pro-
jective Markov property (11.8) by default.
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Theorem 11.1 (Crane [44]) The restriction of a rewiring chain YN directed by ω to
{0,1}n×n, i.e., Yn = (Sn,N Y (t))t=0,1,..., is a rewiring chain constructed as in (11.11)
with W ′1,W

′
2, . . . i.i.d. from ωn defined in (11.12).

11.3.1 Exchangeable rewiring processes (Markovian graphons)

In keeping with the general theme of exchangeability observed through the Aldous–
Hoover theorem in Chapter 6, the Ackerman–Crane–Towsner theorem in Chapter 8,
and the Crane–Dempsey theorem in Chapters 9 and 10, we here see that any pro-
jective Markov chain on {0,1}N×N that satisfies an additional exchangeability as-
sumption must also be a rewiring chain. In fact, under the additional exchangeability
assumption in (11.13) below, we observe a connection between rewiring chains and
a Markovian generalization of the graphon models from Chapter 6.

We call a Markov chain Yn = (Y (t))t=0,1,... on {0,1}n×n exchangeable if its tran-
sition probabilities satisfy

Pr(Y (t +1) = y′σ | Y (t) = yσ ) = Pr(Y (t +1) = y′ | Y (t) = y) (11.13)

for all y,y′ ∈ {0,1}n×n and all permutations σ : [n]→ [n]. In words, Yn is exchange-
able if the probability of a transition between two states depends only on the relative
structure of the states, and not on how the structure manifests itself through the ver-
tex labels. Notice that if Yn = (Y (t))t=0,1,... has an exchangeable initial state (i.e.,
Y (0)σ =D Y (0) for all permutations σ : [n]→ [n]) and exchangeable transition prob-
abilities, as in (11.13), then the process is exchangeable jointly at all times, in the
sense that Yσ

n = (Y (t)σ )t=0,1,...=D Yn for all permutations σ : [n]→ [n].
Theorem 11.2 below says that every exchangeable, projective Markov chain on

{0,1}N×N corresponds to a rewiring chain constructed as in (11.11) for some ex-
changeable distribution ω on ({0,1}×{0,1})N×N , where we call ω exchangeable
if W ∼ ω satisfies

W σ = (W (σ(i),σ( j)))i, j≥1=D W

for all permutations σ : N→N. Note that this characterization only holds for chains
on countable arrays, just as for the characterizations of vertex exchangeable, rela-
tively exchangeable, and relationally exchangeable structures in Chapters 6–10.

Theorem 11.2 (Crane [44, 48]) Let Y = (Y (t))t=0,1,... be an exchangeable, pro-
jective Markov chain on {0,1}N×N with initial state y ∈ {0,1}N×N . Then there
exists an exchangeable probability distribution ω on WN such that Y=D Y∗ =
(Y ∗(t))t=0,1,..., for Y∗ generated by putting Y ∗(0) = y and

Y ∗(t) =Wt(Y ∗(t−1)) = (Wt ◦ · · · ◦W1)(y), t = 1,2, . . . ,

for W1,W2, . . . i.i.d. from ω .

The correspondence between WN and infinite {0,1}×{0,1}-valued arrays allows
us to restate Theorem 11.2 as a temporal extension of the graphon models from
Section 6.4.1. Recall that any Y = (Yi j)1≤i, j≤N distributed according to a graphon
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model with parameter φ : [0,1]× [0,1]→ [0,1] can be generated by taking U1, . . . ,UN
i.i.d. Uniform[0,1] and putting

Pr(Yi j = 1 |U1, . . . ,UN) = φ(Ui,U j) and Pr(Yi j = 0 |U1, . . . ,UN) = 1−φ(Ui,U j)

conditionally independently for all 1 ≤ i, j ≤ N. In the present setting of dynamic
networks, we define a Markovian graphon as a function φ : [0,1]× [0,1]→ [0,1]×
[0,1] so that φ(u,v) = (φ0(u,v),φ1(u,v)) determines a transition probability matrix
{0,1}→ {0,1} given by

( 0 1
0 1−φ0(u,v) φ0(u,v)
1 1−φ1(u,v) φ1(u,v)

)
. (11.14)

To be specific, (11.14) determines the transition probabilities of a Markov chain Y =
(Y (t))t=0,1,... with transition probabilities

Pr(Yi j(t +1) = 1 | Y (t),Yi j(t) = y,U t
1, . . . ,U

t
N) = φy(U t

i ,U
t
j) and

Pr(Yi j(t +1) = 0 | Y (t),Yi j(t) = y,U t
1, . . . ,U

t
N) = 1−φy(U t

i ,U
t
j),

conditionally independently for all 1 ≤ i, j ≤ N and all t = 0,1, . . ., for
(U t

i )i≥1;t=1,2,... i.i.d. Uniform[0,1].
The representation in Theorem 11.2 and the connection to graphons just observed

have several consequences for the possible behaviors of exchangeable, projective
Markov chains on {0,1}N×N . Since rewiring processes allow for non-exchangeable
initial states Y (0), it is possible for the state of the chain to be sparse at any given
time; however, the exchangeable transitions are such that the sparsity will become
more and more homogeneous as time goes on. Consequently, the process converges
either to a dense or empty state. The effects of exchangeability are even more pro-
nounced for Markov processes indexed by continuous time. I discuss these briefly in
Section 11.5. The reader is referred to [44, 48] for many more details about discrete
and continuous time rewiring chains.

11.4 Graph-valued Lévy processes

By Theorem 11.2 every exchangeable, time homogeneous, projective Markov chain
on {0,1}N×N can be constructed from an i.i.d. sequence of randomly generated
rewiring maps as in (11.11). The explicit connection to graphon models discussed
after the statement of the theorem highlights potential limitations of such processes
as models for dynamic network data, cf. Section 6.5. Since the exchangeability con-
dition in (11.13) and/or infinite population size may not be suitable for any given
application, it behooves us to explore models that relax one or both of these assump-
tions. Graph-valued Lévy processes comprise one such model class.

As in Section 11.1, we assume the population process Y = (Y (t))t=0,1,... is a
sequence in {0,1}N×N . Whereas the rewiring chains of Section 11.3 are defined by
repeated composition of rewiring maps, as in (11.11), graph-valued Lévy processes
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are defined by how their increments behave. Informally, the increment between y
and y′ in {0,1}N×N is the ‘difference’ or ‘change’ necessary to convert y into y′.
Formally, the increment between y and y′ is defined as the symmetric difference
between the edge sets of y and y′, as expressed by the array y4 y′ = (∆i j)1≤i, j≤N
with i j-entry given by ∆i j = |yi j− y′i j| for each 1≤ i, j ≤ N. Thus, y4 y′ is a graph
whose edges record whether or not there is a difference between the i j-entries of y
and y′. For example, the increment between

y =



0 0 0 0 0 0 1
0 0 1 0 0 1 0
0 1 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 0
0 1 1 1 0 0 1
1 0 0 0 0 1 0


and

y′ =



0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 1 0
0 0 0 0 1 1 0
0 0 0 1 0 1 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0


is

∆ = y4 y =



0 1 0 0 0 0 1
1 0 0 0 0 1 0
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 1 0 0 1 0 1
1 0 0 0 0 1 0


. (11.15)

See Figure 11.2 for a visual illustration of the increment y4 y′ calculated in (11.15).

Definition 11.1 (Graph-valued Lévy process [50]) A collection Y = (Y (t))t=0,1,...
of random arrays indexed by t = 0,1, . . . is a graph-valued Lévy process if it has

• initial state Y (0) = 0N , i.e., Yi j(0) = 0 for all 1≤ i, j ≤ N,

• stationary increments, i.e.,

Y (t + s)4Y (t)=D Y (s) for all s, t = 0,1, . . . , and (11.16)

• independent increments, i.e.,

Y (t1)4Y (t0), . . . ,Y (tk)4Y (tk−1) are independent for all 0≤ t1 ≤ ·· · ≤ tk < ∞.
(11.17)
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Figure 11.2 Visual illustration of increment operation shown in (11.15).

By [50, Theorem 4.5], any discrete-time process Y∗ = (Y ∗(t))t=0,1,... satisfying Def-
inition 11.1 can be constructed from a probability distribution µ on {0,1}N×N by
taking Z1,Z2, . . . i.i.d. from µ and putting

Y ∗(0) = 0N and
Y ∗(t +1) = Y ∗(t)4Zt+1 for t = 0,1, . . . . (11.18)

Alternatively, Y∗ can be constructed as a rewiring process (11.11) with W1,W2, . . .
defined from Z1,Z2, . . . by

Wt(i, j) = (Zt(i, j),1−Zt(i, j)), 1≤ i, j ≤ N.

Since Lévy processes are a special case of rewiring chains from Section 11.3, they
automatically satisfy the projective Markov property.

Theorem 11.3 (Crane [50]) Let Y = (Y (t))t=0,1,... be a graph-valued Lévy process
on {0,1}N×N . Then there exists a unique probability distribution µ on {0,1}N×N

such that Y=D Y∗, for Y∗ constructed as in (11.18).

The requirement on the initial state (Y (0) = 0N) in Definition 11.1 is merely a
convention. Since the behavior of the process is determined by its increments, we
can consider Lévy processes with arbitrary initial states Y (0) = y by defining Yy =
(Y y(t))t=0,1,... by

Y y(t) = Y (t)4 y, t = 0,1, . . . ,

for Y = (Y (t))t=0,1,... a Lévy process with initial state Y (0) = 0N . See [50] for further
discussion of graph-valued Lévy processes.

11.4.1 Inference from graph-valued Lévy processes

On the one hand, Lévy processes are a special kind of rewiring chain, and thus can
only model local dynamics. On the other hand, the description of Lévy processes
in terms of a distribution on {0,1}-valued arrays, instead of {0,1}×{0,1}-valued
arrays as in Theorem 11.2, makes them more amenable to statistical inference. For
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instance, suppose Y is observed at times t = 0,1, . . . ,T . If Y is modeled as a graph-
valued Lévy process, then its increment distribution µ can be estimated by the em-
pirical distribution

µ̂T (x) =
1
T

T

∑
t=1

1(yt4 yt−1 = x), x ∈ {0,1}N×N , (11.19)

where (Y (t))t=0,1,...,T = (yt)t=0,1,...,T is the observed network data and

1(a = b) =
{

1, if a = b is true,
0, otherwise,

is the indicator function. The empirical distribution (11.19) counts the number of
times that each array x occurs as an increment of the observed process. Since these
increments are i.i.d., the strong law of large numbers immediately implies that µ̂T →
µ with probability 1 as T → ∞, under the assumption that Y behaves according to
some graph-valued Lévy process with increment distribution µ . In practice, however,
since Y evolves on a space with O(2N2

) states, this approximation is likely to be
reliable only if the process is observed at a large set of times.

The simple description of Lévy processes in terms of independent increments
also gives a straightforward way to test for exchangeability. In addition to (11.19),
one can compute the exchangeable empirical measure by averaging over equivalence
classes:

µ̂
ex
T (x) =

1
|{x′ ∈ {0,1}N×N : x′ ∼= x}| ∑

x ′∈{0,1}N×N :x ′∼=x
µ̂T (x′), x ∈ {0,1}N×N ,

(11.20)
where x′ ∼= x indicates that x′ and x are equivalent up to relabeling, i.e., there exists
a permutation σ : [N]→ [N] such that x′ = xσ .

Much more generally, since the dynamics of a Lévy process are determined by
a probability distribution on {0,1}N×N , these models can be fit using any existing
method for relational or network data. For example, covariates could possibly be
incorporated into dynamic network modeling by appealing to the latent space models
of Section 8.4. I leave these questions to future work.

Research Problem 11.5 Can the crude estimates in (11.19) and (11.20) be en-
hanced so as to not be so ‘discrete’. In particular, notice that the estimate in (11.19)
assigns a value to each of the O(2N2

) different elements of {0,1}N×N and (11.20)
involves an average over the equivalence class {x′ : x′ ∼= x}. Both of these calcu-
lations are likely to be inefficient for practical purposes. Is there a natural (non-
uniform) topology on {0,1}N×N under which these estimates can be ‘smoothed out’
in a manner similar to kernel density estimation?

11.5 Continuous time processes

The scenario of Section 11.1 and the models discussed in Sections 11.3 and 11.4
are tailored to discrete time network dynamics. In Section 11.1, for example, social
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media interactions are observed at evenly spaced time intervals of one day. For dy-
namic network data observed at unevenly spaced times, it may be better to model
the evolution of the underlying interactions by a continuous time process. In this
case, we assume that the population process is indexed by all times t ∈ [0,∞) but
that the data Y[S] = (Y (s))s∈S is observed only at a finite set of times S ⊂ [0,∞).3

As a general principle, the mechanism used in obtaining the observed set of times S
may depend on the process Y and should be accounted for when modeling the data,
but for the sake of our discussion here we assume that S is chosen independently of
Y. See Section 11.2.2 for prior discussion on general sampling contexts for dynamic
networks.

11.5.1 Poissonian construction

For n ≥ 1, let Wn be the space of rewiring maps acting on {0,1}n×n. To con-
struct a continuous time rewiring process Y = (Y (t))t≥0 on {0,1}n×n, we let ω be
a finite measure on Wn and write dt to denote Lebesgue measure on [0,∞).4 Let
W= {(t,Wt)}⊆ [0,∞)×ω be a Poisson point process with intensity measure dt⊗ω ,
where dt denotes Lebesgue measure on [0,∞) and dt⊗ω denotes the product mea-
sure of dt and ω . Given W, construct Y by fixing any initial state Y (0) and defining
Y (t) for each t > 0 by
• Y (t) =Wt(Y (t−)) if t is an atom time of W, i.e., if (t,Wt) ∈W for some Wt ∈Wn,

where Y (t−) = lims↑t Y (s) is the state of the process in the instant immediately
preceding time t, and
• Y (t) = Y (t−) otherwise.
By this description, the atoms of W determine the jumps of Y. Whenever an atom
(t,Wt) occurs in W, the process Y makes a transition according to the same procedure
as in (11.11). Otherwise, Y is constant between the atom times of W. This generic
construction in terms of the Poisson process W makes rewiring processes amenable
to simulation on a computer.

Just as in Section 11.3, the above construction characterizes all continuous time
projective Markov processes Y which are exchangeable and evolve on {0,1}N×N .

Theorem 11.4 (Crane [48]) Let Y be an exchangeable, projective Markov process
on {0,1}N×N . Then there exists an exchangeable measure ω on WN such that

ω({idN}) = 0 and (11.21)

ω({w ∈WN : w |[n] = w′})< ∞ for all w′ ∈ {0,1}n×n and all n≥ 1, (11.22)

for which Y=D Y∗, for Y∗ constructed from a Poisson point process W with intensity
dt⊗ω as given above.

3Y[S] = (Y (s))s∈S indicates the process observed at the subset of times S ⊂ [0,∞) and should not be
confused with Y |[n], which indicates the process restricted to vertices [n] over all times.

4In continuous time, ω need only be a finite, positive measure on Wn. When extending this construction
to rewiring processes on {0,1}N×N , ω must satisfy an additional σ -finiteness constraint, as given in
(11.22).
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Note that in (11.21), idN is the identity map {0,1}N×N → {0,1}N×N , which corre-
sponds to the {0,1}×{0,1}-valued array with all entries equal to (0,1). Conditions
(11.21) and (11.22) are necessary to ensure that Y is well behaved:
• Condition (11.21) forbids trivial atoms in W (i.e., atoms corresponding to the

identity rewiring map idN ), because the action of the identity does not affect the
state of the process.
• Condition (11.22) makes sure that each finite sample process Y |[n] jumps at most

finitely often in bounded time intervals. Since {0,1}n×n is a finite state space for
every n ≥ 1 and a Markov chain on a finite state space remains in each state it
visits for a strictly positive amount of time with probability 1, (11.22) is required
to avoid pathological behaviors.
Graph-valued Lévy processes on {0,1}N×N can be described in much the same

way as in Theorem 11.4 with the exception that the Poisson point process W on
[0,∞)×WN is replaced by a Poisson point process on [0,∞)×{0,1}N×N . Several
other properties of rewiring and Lévy processes have been proven rigorously in [44,
48, 49, 50].

11.6 Further reading

In this chapter I have focused primarily on two classes of processes (rewiring pro-
cesses and graph-valued Lévy processes) which are meant to provide the starting
point for a coherent foundation of dynamic network analysis. The statistician seek-
ing a well-established theory of dynamic network modeling is likely to have found
the above discussion lacking in the necessary technical detail. To date there has been
remarkably little effort in establishing a statistical theory for dynamic network anal-
ysis, and I cannot claim to have made up for such lacking in this short chapter. As
far as I know, my own study of dynamic networks [44, 48, 49, 50] is among the first
mathematical treatments of dynamic network modeling in the presence of sampling,
and it may be the only such treatment at the time of this writing. For the most part,
these ideas are little known in the statistical literature, due to both their technical na-
ture and the relative lack of interest in statistical modeling of dynamic networks until
recently.

By analogy to the discussion of consistency under subsampling for non-dynamic
networks (Chapter 3), I have focused exclusively here on models that exhibit the so-
called projective Markov property, by which the Markov property is preserved under
selection sampling [44, 48]. Many of the same questions about the validity of selec-
tion sampling (see Chapter 3) can also be leveled against the projective Markov prop-
erty. But given the underdevelopment of statistical analysis for dynamic networks, it
is important to start somewhere. Almost any statistical or probabilistic question one
could ask for these processes remains open and worthy of study.

Several open problems are stated throughout this chapter. Problem 11.4 poses
an open-ended challenge to dynamic network modeling which has not yet been ad-
dressed and which provides a good starting point for any readers interested in devel-
oping the theory of dynamic network models further.
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Despite recent interest in temporal networks among applied mathematicians,
physicists, and epidemiologists, e.g., [91, 119], most statistical efforts in analyzing
dynamic network data have been confined to applications of the temporal exponential
random graph model (see Section 11.2.1.3) and other ad hoc approaches. Kolaczyk
and Csárdi [108, Chapter 10] mention dynamic network modeling in their final chap-
ter, but do not go into detail. See also [65, 66, 156, 159] and references therein for
other recent work on dynamic network analysis.

11.7 Solutions to exercises

11.7.1 Exercise 11.1

To see why (11.7) and (11.8) are equivalent, suppose first that (11.8) holds. Then for
any n = 1, . . . ,N, define a transition probability Pn(·, ·) on {0,1}n×n by

Pn(y,y′) = Pr(Y (t +1) ∈ {y′′ ∈ {0,1}N×N : y′′ |[n] = y′} | Y (t) = y∗), (11.23)

for any y∗ ∈ {0,1}N×N such that y∗ |[n] = y, for each y,y′ ∈ {0,1}n×n. But since Pn
is a transition probability governing Yn, we have proven (11.7). Conversely, if (11.7)
holds then so must (11.8) by the necessary condition of Burke and Rosenblatt [28]
for determining whether a function of a Markov chain is a Markov chain.
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ψ-selection, see sampling, ψ-selection
p1 model, 18
“All models are wrong but some are
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‘sample of size 1’ viewpoint, 44

Ackerman–Crane–Towsner Theorem,
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Aldous–Hoover theorem, 89

Barabási–Albert model, 52
binary relational data, 15
blips, 164, 192
Boxian trope, see “All models are wrong

but some are useful”

Caron–Fox model, 116
Chinese restaurant process, 174
coherence, 61, 66, 67, 112

an incoherent model, 62
for generative models, 68
for sampling models, 68

combinatorial Lévy process, see
dynamic network, Lévy
process

community detection, 136
completely random measure, 116
consistency under selection, see

consistency under
subsampling, consistency
under selection

consistency under subsampling, 46
consistency under selection, 27, 29
generative consistency, 51
importance to statistical inference,

31

of the p1 model, 29
of the ERGM, 32

Crane–Dempsey model, see edge
exchangeability

Crane–Dempsey theorem
for edge exchangeable networks,

164
for relationally exchangeable

networks, 192

de Finetti’s theorem, 99, 100
degree distribution, 54
degree-corrected SBM, see stochastic

blockmodel
differential attractiveness, 18
Dirichlet distribution, 171
dissociated random graph, 90, see also

ergodicity
dyad independence model, 18
dynamic network, 203

continuous time, 219
Lévy process, 216, 217
Markov property, 206
Poissonian construction, 219
projectivity, 209
rewiring process, 213
sampling, 209

edge exchangeability, 2, 74, 127, 160
blips, 164
Crane–Dempsey theorem, 164
definition, 162
edge-centric viewpoint, 2, 156,

179, 202
edge-labeled graph, 160
Hollywood model, 170
interaction propensity process, 161
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edge-centric viewpoint, see edge
exchangeability

edge-labeled graph, 160
Erdős–Rényi–Gilbert distribution, see

Erdős–Rényi–Gilbert model
Erdős–Rényi–Gilbert model, 20, 35, 71,

94, 133
coherence, 71
sparse regime, 62

ERGM, 20, 72, 84
incoherence, 72
separable increments, 32

ergodicity, 90, 207
Ewens distribution, 170
exchangeability, see invariance

principles
exchangeable point process, 116
exponential random graph model, see

ERGM
temporal version, see TERGM

GEM distribution, 198
generative consistency, 51
generative models, 51
graph, 16
graph-valued Lévy process, see dynamic

network, Lévy process
graphex model, 116

p-sampling, 125
representation theorem, 122
sampling context, 123

graphon model, 86
(t,a)-graphon process, 136
as a glorified Erdős–Rényi–Gilbert

model, 94
Bickel–Chen model, 114
blockwise constant graphon, 137
dense structure, 96
estimation, 102
Markovian graphon, see rewiring

process
sparse graphons, 114

heavy-tailed distribution, see network
properties, power law degree
distribution

Hollywood model, 170, 198
for relational exchangeability, 198
power law, 174
sparsity, 174

homomorphism density, 91
hyperedge exchangeability, see

invariance principles,
hyperedge exchangeability

Internet Movie Database, see network
data, IMDb

invariance principles, 73
coherence, 62, 112
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consistency under subsampling, 46
countable exchangeability, 86
edge exchangeability, see edge

exchangeability
ergodicity, 89, 90, 98, 191

of a Markov chain, 207
exchangeability, 73, 114
finite exchangeability, 82
hyperedge exchangeability, 188
label equivariance, 142
lack of interference, 140
Markov property, 206
Markovian projectivity, 209, 212
path exchangeability, 195
relational exchangeability, see

relational exchangeability
relative exchangeability, see

relative exchangeability
ultrahomogeneity, 140
vertex exchangeability, 77, 86

definition, 77

Lévy process, see dynamic network,
Lévy process

label equivariance, see invariance
principles, label equivariance

lack of interference, see invariance
principles, lack of interference

latent space model, 143

Markovian graphon, see rewiring
process
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Matthew effect
see rich get richer, 53

Mittag-Lefler distribution, 174

network data
actor collaboration, 39
binary relational data, 15
coauthorship network, 39, 187
collaboration network, 185
ego network, 35
email communications, 40
high school friendships, 21
IMDb, 39
IMDb network, 185
international relations, 18
sociometric data, 15
Twitter, 205

network properties
degree distribution, 54
differential attractiveness, 18
disjoint amalgamation property,

141
homomorphism density, 91
power law degree distribution, 12,

54, 112, 174
Yule–Simon distribution, 56

reciprocity, 18
sparsity, 12, 33, 34, 54, 62, 112,

174
transitive closure, see network

properties, transitivity
transitivity, 18, 21
ultrahomogeneity, 140

network sampling, see sampling
networks-as-graphs perspective, 2, 5, 14,

16, 39, 59, 73, 74, 77, 118,
179, 202, 204

non-interference, see invariance
principles, lack of interference

path exchangeability, 195
path sampling, 192
path-labeled network, 194
Poisson point process

superposition property, 125

thinning property, 125
Poisson–Dirichlet distribution, 170, 198
power law, see network properties,

power law degree distribution
preferential attachment model, 52

reciprocity, 18
relational exchangeability, 74, 128, 185,

197
blips, 192
Crane–Dempsey theorem, 191, 192
ergodic distributions, 191
path exchangeability, 195
vertex components model, 200

relative exchangeability, 127, 131
Ackerman–Crane–Towsner

theorem, 146
of sampling scheme, 148
stochastic blockmodel, see

stochastic blockmodel
under arbitrary sampling, 147
with respect to classification factor,

134
rewiring process, 213

continuous time, 219
Markovian graphons, 215
Poisson point process construction,

219
rich get richer, 23, 53

sample size, see units, sample size
‘sample of size 1’ viewpoint, 44

sampling, 36
X-exchangeable sampling, 148
ψ-selection, 46
dynamic networks, 209
edge sampling, 37
from a sparse graph, 33
hyperedge sampling, 39, 185
path sampling, 40, 192
relational sampling, 37
relatively exchangeable sampling

scheme, 148
sample size, 44
selection map, 28
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simple random sampling, 26
size-biased sampling, 26
snowball sampling, 42
traceroute, 40
traceroute sampling, 192
units, 43
vertex selection, 14

sampling consistency, see consistency
under subsampling

scale-free network, see network
properties, power law degree
distribution

sparse network, see sparsity
sparsity, see network properties, sparsity
statistical model, 63
statistical modeling paradigm, 59
stochastic blockmodel, 132

Bayesian version, 136
degree-corrected SBM, 138

temporal exponential random graph
model, see TERGM

TERGM, 14, 208, 210
traceroute, see sampling, traceroute
transitivity, 18
Twitter, 205

units, 43, 204
explicit units, 44
implicit units, 44
sample size, 44, 204

vertex exchangeability, see invariance
principles, vertex
exchangeability

graphons, 86
vertex-centric viewpoint, 74

Yule–Simon distribution, 56
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