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Preface

Over the last 30 years, I have taught hundreds of courses 
showing engineers, scientists, and other professionals how to 
analyze data using Statgraphics and other statistical software 
programs. Many of these courses covered the fundamentals 
of statistical process control. While participants were usually 
familiar with the equations used to compute indices such as 
Cpk, they were often not familiar with how those indices fit 
into the larger picture of estimating process capability and 
performance, nor were they always comfortable with how 
to proceed when assumptions such as normality were not 
tenable or when multiple variables needed to be analyzed 
simultaneously.

This book considers the problem of estimating the prob-
ability of nonconformities in a process from the ground up. 
It examines methods based on both attribute data and vari-
able data, considering both classical and Bayesian approaches. 
For variable data, the book looks at the techniques that were 
initially developed for data from normal distributions and 
considers how they must be modified to deal with nonnormal 
data. The importance of capability indices and their relation-
ship to the percentage of nonconforming items is discussed, 
as is the use of statistical tolerance limits. Finally, univariate 
capability analysis is extended to the multivariate situation, 
which is too often ignored.
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I have tried to limit the formulas in this book to those that 
are necessary to understand the statistical basis for the proce-
dures. Formulas that are only necessary to perform calcula-
tions (such as methods for obtaining SPC constants) are not 
included, since it is assumed that readers will use a statistical 
software program to do the calculations.

It should also be noted that many statistics in this book 
are displayed using 6 significant figures. This is not because 
I believe that so many figures are useful. In fact, I would 
expect analysts to round off the results in most cases. 
However, statistics such as the sample mean and standard 
deviation are often used in subsequent calculations. Carrying 
too few decimal places into those calculations sometimes has 
a remarkably large effect on the final results. While this is not 
an issue for statistical software that carries many significant 
digits, it can be an issue for readers trying to reproduce the 
results by hand.

The output presented in this book was produced by 
Statgraphics Version 18. Appendix B details the steps that 
are necessary to use that program to generate the output 
displayed. Other statistical software can be used to perform 
many of the calculations in this book, although techniques 
that depend on bootstrapping and Monte Carlo simulation 
may be difficult to find in other programs.

As you read through this book, you will soon notice that it 
is not a textbook. Rather, it is a book designed for individuals 
who have the responsibility of demonstrating that a process 
is capable of producing goods or services that meet specific 
requirements. Whether the variable of interest is the diameter 
of a medical device or the ability of a mass transit system to 
convey passengers safely from one location to another, the 
central focus is on applying statistical methods in ways that 
generate valid estimates of process quality.
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1

Introduction

Process capability analysis refers to a set of statistical methods 
designed to estimate the capability of a manufacturing or 
service process to meet a set of requirements or specification 
limits. The output of the analysis is typically an estimate of 
the percentage of items or service opportunities that conform 
to those specifications. If the estimated percentage is large 
enough, the process is said to be “capable” of producing a 
satisfactory product or service.

It is customary when studying statistical process control 
(SPC) to distinguish between two types of data:

 1. Variable data—measurements made on a continuous 
scale, such as the dimensions of a manufactured item or 
the time required to perform a task

 2. Attribute data—observations made on a nonmeasurable 
characteristic, usually resulting in a binary decision (good 
or bad)

This chapter considers methods for summarizing both types 
of data.

Chapter 1
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Example 1.1 Medical Devices

Table 1.1 shows the measured diameter of 100 medical 
devices, randomly sampled from a production process. 
The diameter of the devices is required to fall within the 
range 2.0 ± 0.1 mm. Based on this data, we wish to esti-
mate the percentage of items being manufactured by that 
process that are likely to fall within the required interval.

Example 1.2 Airline Accidents

The U.S. National Highway Safety Administration reported 
that in 2014, there were 29,989 fatal motor vehicle accidents 
in the United States. This equates to a fatality rate of 1.07 
deaths per 100 million vehicle miles traveled. At the same 
time, the U.S. Bureau of Transportation Statistics reported 
the data shown in Table 1.2 for all U.S. air carriers (sched-
uled and unscheduled) operating under 14 CFR 121. In 
estimating the quality of service provided by the air carriers, 
it will be interesting to compare their performance to that of 
motor vehicles.

The remainder of this chapter examines methods for 
summarizing data, including both graphical and numerical 
methods.

1.1  Relative Frequency Histogram

The first step when analyzing any data is to plot it. For vari-
ables such as diameter, which are measured on a con-
tinuous scale, a relative frequency histogram is very useful. 
A histogram divides the range of the data into nonoverlapping 
intervals of equal width and displays bars with height pro-
portional to the number of observations that fall within each 
interval.
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Example 1.1 (Continued)

Figure 1.1 shows a histogram of the medical device 
diameters. The range covered by the specification limits, 
1.9–2.1, has been divided into 40 classes. The bars indi-
cate how many of the 100 sampled devices fall within 
each class. Notice first that all n = 100 devices fall within 
the specification limits. Second, notice that there are more 
bars to the right of the peak than there are to the left of 
the peak, suggesting a lack of symmetry in the distribution 
of diameter.

While the use of 40 classes for the histogram is some-
what arbitrary, a good rule of thumb is that there should be 
approximately 10 * log10(n) bars covering the range of the 
observed values. In this case, 10 * log10(100) = 20, which is 
close to the number of bars displayed in the figure.

1.2  Summary Statistics

Given a sample of n continuous measurements, it is helpful to 
calculate one or more numerical statistics to summarize the data. 
A numerical statistic is any number calculated from the data. 

18

15

12

9

Fr
eq

ue
nc

y

6

3

0
1.951.9 2

Diameter

Histogram

2.05 2.1

Figure 1.1 Frequency histogram for medical device diameters.
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Statistics are often used to indicate properties of the data such 
as central tendency, variability, and shape.

1.2.1  Measures of Central Tendency

The sample of observations will be represented using the 
notation {xi, i = 1,2,3,…,n}. The two most common statis-
tics used to describe the center of the data are the sample 
mean (also called the average) and the sample median. The 
sample mean, referred to as x , is calculated by summing the 
observations and dividing by n:

 
x

x

n
i

n

i

= =å 1

 
(1.1)

The median, often referred to as �x, is calculated by first 
sorting the observations from smallest to largest. If n is odd, 
the median is equal to the single observation in the middle. 
If n is even, the median is the value midway between the 
middle two observations. If the ith smallest observation is 
represented by x(i), called the ith order statistic, then, if n 
is odd

 
�x x n= +( )( )1 2/  (1.2)

If n is even

 
�x

x xn n=
+( ) +( )/ /2 1 2

2  
(1.3)

The mean and median quantify the “center” of the data in 
different ways. While the median is the value that divides the 
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data in half, the mean is equal to the “center of mass”. If the 
observations are plotted along the x-axis, the sample mean is 
the location where the data values would balance.

Example 1.1 (Continued)

Table 1.3 shows summary statistics for the medical device 
diameters. There are a total of n = 100 observations, result-
ing in a mean x  = 1.98757 and a median �x  = 1.9845. For 
data that are positively skewed, it is common for the mean 
to be somewhat larger than the median since the long right 
tail of the distribution has a relatively large impact on the 
calculation of the mean.

Table 1.3 Summary Statistics 
for 100 Medical Device Diameters

Statistic

Count 100

Average 1.98757

Median 1.9845

Standard deviation 0.0179749

Coeff. of variation 0.904364%

Minimum 1.956

Maximum 2.053

Range 0.097

Lower quartile 1.976

Upper quartile 1.996

Interquartile range 0.02

Std. skewness 5.03446

Std. kurtosis 4.59981
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1.2.2  Measures of Variability

To summarize the magnitude of the variability of the data 
around its center, three statistics are often calculated: the 
sample standard deviation, the range, and the interquartile 
range. The sample standard deviation, referred to as s, is 
based on the magnitude of the deviations of the observations 
from the sample mean:

 
s

x x

n
i

n

i

=
-( )

-
=å 1

2

1  
(1.4)

The greater the variability of the data around the mean, the 
larger the value of s. If the data come from a normal distri-
bution, x  and s are sufficient statistics that contain all of the 
relevant information in the data.

It is also common practice to calculate a coefficient of 
variation. This statistic measures the magnitude of the stan-
dard deviation relative to the mean:

 
CV

s
x

= 100 %
 

(1.5)

One advantage of the CV is that it has no dimensions, being 
a percentage ratio of 2 statistics that each have the dimen-
sions of the variable X. The CV is often used when quan-
tifying the amount of error introduced by a measurement 
process.

Another useful measure of variability is the range, calcu-
lated by subtracting the minimum value from the maximum 
value:

 R x xn= ( ) ( )– 1  (1.6)

The range is sometimes used to estimate the standard 
deviation of a normal distribution, as will be demonstrated 
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in later chapters. In general, the range is not as good an 
estimator of spread as the standard deviation, since it 
emphasizes only the 2 most extreme values. However, for 
small data sets (no more than 7 or 8 observations), the sample 
range is nearly as good or “efficient” as the sample standard 
deviation when estimating the variability of data from a 
normal distribution.

The interquartile range also measures the variability in the 
data by calculating the distance between the 25th and 75th 
percentiles. The 25th percentile, also called the lower quartile 
or Q1, is greater than or equal to 25% of the data values and 
less than or equal to 75% of the values. The 75th percentile, 
also called the upper quartile or Q3, is greater than or equal 
to 75% of the data values and less than or equal to 25% of the 
values. The interquartile range is

 IQR Q Q= 3 1–  (1.7)

The IQR can also be used to estimate the standard deviation 
of a normal distribution.

Example 1.1 (Continued)

As shown in Table 1.3, the medical device data have a 
sample deviation s = 0.0179749, a range R = 0.097, and 
an interquartile range IQR = 0.02. The coefficient of varia-
tion CV = 0.904364% shows that the standard deviation is 
approximately 0.9% of the mean.

1.2.3  Measures of Shape

Two additional statistics are often calculated to measure the 
shape of the data distribution. The first statistic, called skewness, 
gives an indication of how symmetric the data are. A symmet-
ric distribution has the same shape to the right of its peak as 
it does to the left. Distributions with longer upper tails than 
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lower tails are said to be positively skewed, while distribu-
tions with longer lower tails are said to be negatively skewed 
(Figure 1.2).

The second statistic is called kurtosis and measures how 
flat or peaked the data distribution is relative to a bell-shaped 
normal distribution. Larger values of kurtosis indicate a very 
peaked distribution, while smaller values indicate that the dis-
tribution is flatter than the normal (Figure 1.3).
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Figure 1.2 Distributions with positive and negative skewness.
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Figure 1.3 Distributions with positive and negative kurtosis.
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Widely used statistics for measuring skewness and 
kurtosis are
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for skewness, and
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for kurtosis. Unfortunately, the numerical values of g1 and g2 
are difficult to interpret. It is usually more helpful to divide 
each of those statistics by its asymptotic standard error, result-
ing in standardized skewness and standardized kurtosis val-
ues defined by
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and
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/  
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In large samples, these statistics will fall within the range 
−1.96 to 1.96 with 95% probability when the data are random 
samples from a normal distribution. They may therefore be 
used as a quick test for normality. Values outside that range 
are indications that the data probably do not come from a 
symmetric, bell-shaped, normal distribution.
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Example 1.1 (Continued)

The medical device data have a standardized skewness equal 
to 5.03446, which is well above the expected range for data 
from a normal distribution. As can be seen from the histogram 
shown earlier, the distribution has a noticeably longer tail in 
the positive direction. The standardized kurtosis is also outside 
the range expected for a normal distribution. Together, these 
two statistics provide strong evidence that the data are not a 
random sample from a normal distribution. Chapter 5 describes 
a formal test for normality called the Shapiro-Wilk test, which 
should be conducted whenever the standardized skewness and 
kurtosis are not within the expected range of −1.96 to 1.96.

1.3  Box-and-Whisker Plot

The famous statistician John Tukey developed a very useful 
graph for variable data called a box-and-whisker plot that 
displays a 5-number summary of the data. It consists of a box 
covering the distance between the lower and upper quartiles, 
a vertical line at the median, and whiskers extending out to 
the minimum and maximum values (excluding any unusual 
points). Any observations that appear to be unusually far 
removed from the majority of the data, which Tukey called 
outside points, are displayed using separate point symbols, 
in which case the whiskers extend out to the most extreme 
points that are not outside points.

Example 1.1 (Continued)

Figure 1.4 shows a box-and-whisker plot for the medical 
device diameters. Notice that the right whisker extends farther 
from the box than the left whisker, indicating positive skew-
ness. In addition to the vertical line at the sample median, a 
small + sign indicates the location of the sample mean. As with 
most positively skewed distributions, the sample mean is larger 
than the median. The graph also displays separate point sym-
bols for the five largest observations, which are outside points.
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Tukey defined two kinds of outside points: regular out-
side points, which are more than 1.5 times the IQR above 
or below the box, and far outside points, which are more 
than 3 times the IQR away from the box. His rule for iden-
tifying far outside points is one of the more commonly 
used tests to determine whether a data sample contains 
outliers, observations that do not come from the same pop-
ulation as the others in the sample. Dawson (2011) showed 
that, in practice, data sampled from a normal distribution 
will frequently give rise to ordinary outside points (30% 
of samples from a normal distribution will display at least 
1 outside point), but it would be very unusual to see any 
observations far enough from the central box to be classi-
fied as far outside, except in samples for which the sample 
size n < 10.

Note: Both types of outside points occur more frequently 
if the data are skewed. Outside points may therefore indicate 
either the presence of outliers or the fact that the data come 
from a nonnormal distribution.

Diameter
21.95 2.05

+

Box-and-whisker plot

2.11.9

Figure 1.4 Box-and-whisker plot for medical device diameters.
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Example 1.1 (Continued)

It is common practice to differentiate between ordinary 
outside points and far outside points. In Figure 1.5, an addi-
tional value has been added to the sample with a diameter 
of 2.07. It appears as a point symbol with a superimposed 
X, indicating that it is a far outside point.

Many analysts like to indicate uncertainty in the location of 
the sample mean or median by adding additional features to 
the box-and-whisker plot. McGill et al. (1978) suggested cut-
ting a notch in the edge of the box to indicate the width of a 
confidence interval for the median. Other authors have sug-
gested using a diamond shape to display a confidence interval 
for the median or mean.

Example 1.1 (Continued)

Figure 1.6 shows a modified box-and-whisker plot for the 
medical device diameters. The notch in the top and bottom 
of the box indicates the width of a 95% confidence interval 
for the median diameter.

Diameter
1.931.9 1.96 1.99

Box-and-whisker plot

2.02 2.05 2.08

+

Figure 1.5 Box-and-whisker plot showing far outside point.
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1.4  Plotting Attribute Data

When the data are not continuous, different methods need 
to be employed to summarize it. Consider, for example, the 
data on air traffic accidents shown in Table 1.2. This data will 
be used to determine whether the current air transportation 
system is capable of providing safe travel.

Example 1.2 (Continued)

There are several metrics that might be used to quantify the 
risk associated with air travel: the total number of accidents, 
the number of fatal accidents, or the number of fatalities. 
Furthermore, these quantities could be expressed in terms 
of miles traveled, hours flown, flight segments, or total 
trips. A metric often used by the International Civil Aviation 
Organization (ICAO) is

 X = Number of fatal accidents per million flying hours100

Box-and-whisker plot
95% confidence interval for median: [1.98087, 1.98813]

2

+

Diameter
2.051.951.9 2.1

Figure 1.6 Modified box-and-whisker plot showing 95% confidence 
interval for the median.
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Figure 1.7 shows this quantity for each year between 
1990 and 2014. Superimposed on the plot is a smoother 
calculated using the robust LOWESS method developed by 
Cleveland (1979). LOWESS estimates the smoothed value 
of Y at any given X by doing a weighted regression of the 
values closest to X. To make the smoother less sensitive 
to outliers, a second smoothing is performed after down-
weighting values that are far removed from the first smooth. 
It is clear from the figure that the rate of fatal accidents has 
been declining steadily over that period.

1.5  Estimating the Percentage 
of Nonconformities

As mentioned earlier, the primary purpose of performing a 
capability analysis is to estimate the percentage of items in 
a population that do not conform to the specifications for a 
product or service. Those specifications may take the form 
of an acceptable range, such as 2.0 ± 0.1, a single upper 
or lower bound, or a more subjective statement about the 
required attributes for the item.
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Figure 1.7 Fatal accidents per 100 million flying hours between 1990 
and 2014 with robust LOWESS.
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1.5.1  Proportion Nonconforming

Given a sample of n items from a large population, the critical 
task is to use those items to estimate the proportion of similar 
items in the entire population that do not satisfy the prod-
uct specifications or requirements. Such items are commonly 
referred to as nonconforming items. The proportion of such 
items will be denoted by

 q = Proportion of nonconforming items in the population.

Several types of estimates are desired:

 1. A point estimate q̂, which gives the best single estimate 
for that proportion

 2. A confidence interval ˆ ˆq qL U,éë ùû, which gives a range of 
estimates that will contain the true value θ in a stated 
percentage of similar analyses (often 95%)

 3. An upper confidence bound q̂U  that does not underesti-
mate the true value of θ in a stated percentage of similar 
analyses

1.5.2  Defects per Million

When the proportion of nonconforming items is very small, it is 
useful to express that proportion in terms of the number of items 
out of every million that do not conform to the specifications. 
This is commonly referred to as defects per million and is related 
to the proportion of nonconforming items by

 DPM = 1000 000, , q (1.12)

A related metric for measuring product quality is the percent 
yield given by

 % yield = -( )100 1 q  (1.13)
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The % yield is the percentage of items that do satisfy the 
specifications.

In this book, the word “item” will be interpreted broadly. 
It may represent a physical item such as a medical device, it 
may represent an encounter with a customer service repre-
sentative, or it may represent a span of time during which 
an event such as an aircraft accident could occur. The most 
important aspect of an “item” is that many exist and each can 
be classified as either conforming or nonconforming.

1.5.3  Six Sigma and World Class Quality

The acceptable proportion of nonconforming items depends 
strongly on the product or service being provided, the vari-
able being measured, and the costs associated with noncon-
formance. Nonconformance of products such as jet engines 
can be catastrophic. However, under-filling a bottle of soda 
does not have the same life-and-death consequences. At 
times, it may be reasonable to accept higher levels of non-
conformities for noncritical products if the cost of improving 
the process exceeds the cost associated with producing a 
nonconforming item.

A well-known methodology for improving product quality 
called Six Sigma was developed by Motorola in 1986 and 
has spread over subsequent years to many companies and 
organizations. As part of that methodology, the originators 
of Six Sigma extended the notion of “defects per million” 
to “defects per million opportunities” or DPMO. DPMO 
recognizes that for most products and services, there is 
more than one opportunity to fail. The formula for DPMO is 
usually expressed as

 
DPMO

number of defects
Number of units number of 

= ×
×

1 000 000, ,
oopportunities per unit

 (1.14)



20 ◾ Process Capability Analysis: Estimating Quality

Six Sigma practitioners reserve the term “world class quality” 
for processes that generate no more than 3.4 DPMO. They 
also associate a “Sigma Quality Level” with each possible 
value of DPMO. Processes achieving no more than 3.4 DPMO 
are said to be operating at the “Six Sigma” quality level, for 
reasons that will be explained later. Table 1.4 shows various 
sigma quality levels, their corresponding DPMO, and the cor-
responding % yield.

1.5.4  What’s Ahead

Subsequent chapters examine methods for estimating the 
capability of a process using the following techniques:

 ▪ Chapter 2 describes methods for estimating the 
proportion of nonconforming items by directly counting 
the number of nonconforming items in a sample. This 
approach is capable of dealing with either variable data 
or attribute data.

 ▪ Chapter 3 describes methods for estimating the rate at 
which nonconformities are being generated, rather than 
the proportion of nonconforming items. This applies to 

Table 1.4 Sigma Quality Levels with 
Associated DPMO and Percent Yield

Sigma Quality Level DPMO % Yield

1 691,462 30.9%

2 308,536 69.1%

3 66,807 93.32%

4 6,210 99.38%

5 233 99.977%

6 3.4 99.99966%

7 0.019 99.9999981%
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situations in which a single item may have more than 
one defect or in which unacceptable events occur over a 
continuous interval.

 ▪ Chapter 4 describes methods for analyzing measurements 
(variable data) that come from a normal distribution. 
It describes in depth the important concept of capability 
indices.

 ▪ Chapter 5 deals with methods for analyzing measurements 
that do not come from a normal distribution. It includes 
three approaches: transforming the measurements so that 
they do follow a normal distribution, fitting a distribution 
other than the normal and estimating capability indices 
based on the fitted distribution, and estimating specially 
constructed nonnormal capability indices.

 ▪ Chapter 6 describes an alternative approach for deal-
ing with variable data called statistical tolerance limits. 
Statistical tolerance limits bound a specified percentage 
of a population with a given level of confidence. These 
limits can be calculated using data from both normal and 
nonnormal distributions.

 ▪ Chapter 7 describes the concept of multivariate 
capability analysis, where the behavior of more than 
one variable is considered simultaneously. For processes 
characterized by multiple variables that are significantly 
correlated, a multivariate approach will give better 
estimates of overall process capability than analyzing 
each variable separately.

 ▪ Chapter 8 considers the important problem of 
determining how many samples should be obtained 
in order to provide adequate estimates of process 
quality. The sample size problem is addressed from the 
viewpoint of both precision and power.

 ▪ Chapter 9 concludes with a discussion of control charts 
applied to capability analysis. Once a process has been 
declared to be “capable”, these charts monitor continued 
conformance to the specifications.
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Capability Analysis 
Based on Proportion of 
Nonconforming Items

This chapter and the next examine methods for performing a 
capability analysis using attribute data. Given a sample of n 
items randomly sampled from a large population, each item is 
inspected and compared to the requirements for the product 
or service being rendered. Two situations are of interest:

 ▪ Situation 1: Each item is classified as either conforming
or nonconforming based on whether or not it meets the 
specifications for the item.

 ▪ Situation 2: The number of nonconformities for each item
is noted and the sum of all nonconformities in the sam-
ple is calculated. In this situation, more than one noncon-
formity may be identified on a single item.

This chapter deals with situation 1 and concentrates on esti-
mating the proportion of nonconforming items. The next 
chapter deals with situation 2 and concentrates on estimating 
the rate of nonconformities per item.

Chapter 2
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2.1  Estimating the Proportion 
of Nonconforming Items

Suppose a random sample of n items is obtained from a large 
population. Let

 X = Number of nonconforming items in the sample

The probability distribution associated with the random vari-
able X is the binomial distribution, which has a probability 
mass function equal to
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(2.1)

where θ is the probability that a randomly selected item does not 
conform to the specifications. Given that X out of the n items are 
found to be nonconforming, the maximum likelihood estimate of 
θ is given by the fraction of nonconforming items in the sample:

 
q̂ =

X
n  

(2.2)

Equation 2.2 provides the best point estimate for θ.

Example 2.1 Estimating the Proportion 
of Nonconforming Items

Chapter 1 described an example in which n = 100  medical 
devices were sampled from a production process and 
their diameters were measured. One way to estimate the 
 proportion of nonconforming items is simply to count how 
many items have diameters outside of the  specification 
limits. In the example, x = 0 items were beyond the 
 specification limits, resulting in an estimated proportion of 
nonconforming items q̂ = 0.
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2.1.1  Confidence Intervals and Bounds

While point estimates are useful, they are almost always 
wrong. Wrong in the sense that rarely, if ever, do they exactly 
match the quantity that they are trying to estimate. In the 
medical device example, it should be quite obvious that 
observing x = 0 defects in a sample of n = 100 items is hardly 
sufficient evidence to declare that no nonconforming items 
are being produced.

It is therefore important that whenever point estimates 
are provided, their margin of error is also stated. To quantify 
the margin of error associated with an estimated binomial 
proportion, a confidence interval for θ may be calculated. 
Confidence intervals are constructed in such a way that they 
contain the true value of the parameter being estimated a 
stated percentage of the time. Common practice uses α to 
represent the proportion of the time that the confidence 
interval does NOT contain the true value and is usually set to 
a value such as α = 0.05.

The following formula provides an approximate 100(1 − α)% 
confidence interval for the proportion of nonconforming 
items:
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(2.3)

where

 v X v n X v X v n X1 2 3 42 2 1 2 1 2= = - +( ) = +( ) = -( ), , ,

 (2.4)

Fp , v , w represents the value of Snedecor’s F distribution with v 
and w degrees of freedom that is exceeded with probability 
p. The two-sided confidence interval gives both a lower confi-
dence limit (LCL) and an upper confidence limit (UCL) for θ.
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Example 2.1 (Continued)

For the n = 100 medical devices where x = 0, the 95% confi-
dence interval for θ is
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It may thus be stated with 95% confidence that the average 
number of medical devices that are not within the specifica-
tion limits is somewhere between 0 and 36,217 devices per 
million.

When estimating a quantity such as the proportion of 
nonconforming items, it may be argued that the lower limit 
of the confidence interval is not particularly important. 
The real concern centers on the chance that q̂ might 
be underestimating the true proportion, which would 
lead in practice to more defects than expected. In such 
cases, a one-sided upper confidence bound would be 
more desirable than a two-sided confidence interval. For 
example, a one-sided 95% upper confidence bound is the 
value that underestimates the true proportion only 5% of 
the time.

A 100(1 − α)% upper confidence bound for θ is given by
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Notice that the percentage point of the F distribution changes 
from α/2 to α, resulting in a tighter upper bound than with a 
two-sided interval. Similarly, a 100(1 − α)% lower confidence 
bound for θ is given by
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Example 2.1 (Continued)

For the medical device example, the upper 95% confidence 
bound for θ is
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It may thus be stated with 95% confidence that the number 
of medical devices that are not within the specification limit 
is no more than 29,513 devices per million.

2.1.2  Plotting the Likelihood Function

When estimating a binomial proportion, the classical estimate 
of θ is obtained by maximizing the likelihood function:
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The likelihood function can be loosely interpreted as the rela-
tive chance of obtaining x nonconforming items as a function 
of the true proportion of nonconforming items. q̂ corresponds 
to the value of θ at which the likelihood function attains its 
maximum value.

Example 2.1 (Continued)

Figure 2.1 shows a plot of the binomial likelihood 
 function for the medical device data (n = 100, x = 0). 
The solid curve is the likelihood function. The  dotted line 
 corresponds to the location of the maximum likelihood 
 estimate (in this case 0). The dashed line is located at 
the 95% upper confidence bound (in this case 0.029513). 
Statistics are displayed at both the maximum  likelihood 
 estimate q̂ and at the upper confidence bound q̂U . 
Estimation of the quality statistics DPM, Yield, Z, Cpk, and 
SQL is discussed in the following section.
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2.2  Determining Quality Levels

As discussed in Chapter 1, there are several metrics commonly 
used to quantify the quality level at which a production pro-
cess is operating. Equations 1.12 and 1.13 define the DPM and 
% yield of a process as direct functions of the proportion of 
nonconforming items θ. Estimates for those quantities may be 
obtained by substituting the estimated proportion of noncon-
forming items into those equations:

 Estimated DPM = 1000000 q̂ (2.10)

 Estimated % %( )yield = -100 1 q̂  (2.11)

An upper bound for DPM is obtained by substituting the 
estimate of the upper bound q̂U  into Equation 2.10. A lower 
bound for % yield is obtained by substituting the estimate of 
the upper bound q̂U  into Equation 2.11.

Binomial likelihood function (X= 0, n= 100)
ML estimate = 0.0   95.0% upper confidence bound = 0.029513
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At upper limit:
DPM= 29,513.050
Yield= 97.049%
Z= 1.888
Cpk= 0.629
SQL= 3.388

At estimate:
DPM= 0.000
Yield= 100.000%
Z= Infinity
Cpk= Infinity
SQL= Infinity

Figure 2.1 Binomial likelihood function for medical device 
diameters.
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As will be seen in Chapter 4, several other quality indices 
are often defined when the sample data come from a normal 
distribution. One is a “Z” index, which indicates the value of a 
standard normal distribution that is exceeded with probability 
equal to θ. Specifically, if Φ(Z) is the cumulative standard nor-
mal distribution (tabulated in a Z-table in most statistics text-
books), then the Z index is the value of Z that satisfies

 F qZ( ) = -1  (2.12)

For a normal distribution, Z quantifies the number of standard 
deviations between the mean and the nearer specification 
limit. When considering attribute data as in this chapter, 
the standard deviation itself is not meaningful. However, 
Equation 2.12 maintains the relationship between Z and θ that 
exists for variable data and is still useful as an index. General 
rules of thumb may still be applied, such as those that state 
that values of Z > 4 are desirable.

Another frequently quoted statistic is the capability index 
Cpk, which in the case of a normal distribution divides the 
distance between the mean and the nearer specification limit 
by 3σ. Cpk is related to the Z index by

 
C

Z
pk =

3  
(2.13)

Many organizations strive for a Cpk = 1.33, which for variable 
data insures that the distance from the mean to the nearer 
specification limit is at least 4 standard deviations.

Finally, practitioners of Six Sigma define a “Sigma Quality 
Level”, which may be attached to any process. By their defi-
nition, a process that achieves an SQL of 6 or better is pro-
ducing product with “world class quality”. The SQL can be 
calculated from Z according to

 SQL Z= + 1 5.  (2.14)
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The addition of 1.5 to Z comes from the assertion that the 
mean of most processes is not completely stable but tends 
to vary around its long-term level by approximately ±1.5 
standard deviations.

Table 2.1 shows the relationship between these differ-
ent quality indices. Although the original meaning of Z and 
Cpk is uninterpretable for attribute data, each may be calcu-
lated from q̂ using Equations 2.12 and 2.13. In such cases, 
they are called equivalent capability indices. Practitioners 
who are used to interpreting such indices may then use the 
same rules for both attribute data and variable data and be 
assured that they correspond to the same level of noncon-
forming items.

Table 2.1 Relationship between Quality Indices

Z Cpk SQL θ DPM Yield (%)

0.0 0 1.5 0.500000 500,000 50.0

0.5 0.167 2.0 0.308536 308,536 69.1

1.0 0.333 2.5 0.158655 158,655 84.1

1.5 0.5 3.0 0.066807 66,807 99.32

2.0 0.667 3.5 0.022750 22,750 99.725

2.5 0.833 4.0 0.006210 6,210 99.379

3.0 1.0 4.5 0.001350 1,350 99.865

3.5 1.167 5.0 0.000233 233 99.977

4.0 1.333 5.5 0.000032 31.7 99.9968

4.5 1.5 6.0 0.000003 3.40 99.9997

5.0 1.67 6.5 0.000000 0.29 99.9999
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Example 2.1 (Continued)

Figure 2.1 displays the capability indices at both the 
 estimated proportion of defective items q̂ and at the upper 
 confidence bound ˆ .qU  Given the sample data, it has thus 
been demonstrated with 95% confidence that DPM ≤ 29,513, 
Yield ≥ 97.05%, Z ≥ 1.89, Cpk ≥ 0.63, and SQL ≥ 3.39.

In Example 2.1, note the upper confidence bound for θ 
corresponds to lower confidence bounds for Yield, Z, Cpk , 
and SQL, since large values of θ correspond to small values of 
those indices.

2.3  Information in Zero Defects

At first glance, it might seem that there is little informa-
tion available about the proportion of nonconforming items 
when a sample of size n results in x = 0 nonconformities. In 
fact, lack of nonconformities does provide useful informa-
tion about θ. Unfortunately, if the proportion of nonconfor-
mities is very small, the sample does not generate a very 
precise estimate. Of course, the idea that one can obtain 
a precise estimate of nonconforming proportions on the 
order of 3.4 defects per million by counting the number of 
nonconforming items in a sample of size n = 100 obviously 
makes little sense. Even in election polls where the propor-
tion of voters that will eventually choose each candidate is 
usually in excess of 40%, thousands of potential voters need 
to be surveyed to get a meaningful result. It is of consider-
able interest therefore to examine methods for determin-
ing what adequate sample sizes are for estimating process 
capability.

Chapter 8 considers in detail the general problem of 
determining how large a sample should be taken in order 
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to provide sufficient information about a proportion. 
Example 2.2 considers the special problem of determining 
how many samples are enough when the analyst expects to 
see no nonconformities.

Example 2.2 Sample Size Determination 
If No Defects Expected

Suppose it is believed that a process for manufacturing 
medical devices actually produces a very small proportion 
of nonconforming items. An interesting question to ask is as 
follows:

Assuming that no observed items will be beyond the 
specification limits, how big a sample size n needs to 
be examined in order to demonstrate with 95% confi-
dence that the proportion of nonconforming items is 
less than 1 out of 1000?

To solve this problem, the upper confidence bound in 
Equation 2.6 may be used. A simple algorithm to find n is as 
follows:

Step 1: Set X = 0 and n = 1.
Step 2: Solve for ˆ .qU  If ˆ . , .qU £ 0 001 stop
Step 3: Add 1 to n and repeat Step 2.

Most statistical software can easily solve this problem. As 
shown in Figure 2.2, the required sample size is n = 2,993.

Table 2.2 shows the minimum sample size required 
such that x = 0 nonconformities leads to an upper bound 
for θ less than various selected values. Proving that the 
proportion of defective items is small simply by counting 
the number of nonconforming items can require very large 
sample sizes.
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2.4  Incorporating Prior Information

So far, the methods presented in this chapter have relied 
solely on the sample of n observations to estimate the 
proportion of nonconforming items. Such an approach 
assumes that nothing is known about θ before examining 

Binomial likelihood function (X= 0, n= 2993)
ML estimate = 0.0   95.0% upper confidence bound = 0.000999912
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At upper limit:
DPM= 999.912
Yield= 99.900%
Z= 3.090
Cpk= 1.030
SQL= 4.590

At estimate:
DPM= 0.000
Yield= 100.000%
Z= Infinity
Cpk= Infinity
SQL= Infinity

Figure 2.2 Determination of sample size required to achieve upper 
CL ≤ 0.1% when observing x = 0 nonconformities.

Table 2.2 Required Sample Sizes to Achieve 
Selected Upper Confidence Bounds when 
Observing 0 Nonconformities in a Sample of Size n

Upper Bound α = 0.10 α = 0.05 α = 0.01

θ = 0.10 n = 22 n = 29 n = 44

θ = 0.05 n = 45 n = 59 n = 90

θ = 0.01 n = 230 n = 299 n = 459

θ = 0.005 n = 460 n = 598 n = 919

θ = 0.001 n = 2,302 n = 2,993 n = 4,601

θ = 0.0005 n = 4,603 n = 5,989 n = 9,206

θ = 0.0001 n = 23,024 n = 29,955 n = 46,048
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the data. It can be argued in many cases that prior 
information exists about the proportion of nonconforming 
items. Rarely does one believe a priori that θ is equally likely 
to be anywhere between 0 and 1. Any prior knowledge about 
the likely value of θ could be combined with the information 
obtained from the data to give a potentially more precise 
estimate.

Bayesian methods let analysts combine prior information 
with information from the data by quantifying the “degree of 
belief” concerning possible values of θ. To apply such meth-
ods, the analyst begins by expressing his or her knowledge 
about θ before the data are collected using a prior distribution 
p0(θ). For the binomial distribution, the most common prior 
distribution is the beta distribution given by
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The mean of the beta distribution is
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where v and w are parameters that affect the shape of the 
density function. If v = 1 and w = 1, the prior distribution is 
uniform between 0 and 1. If v > w, the distribution assigns 
more probability to large values of θ than to small values. 
If v < w, the distribution assigns more probability to small 
values of θ than to large values. Figure 2.3 shows beta density 
functions for various combinations of v and w.

After collecting the data, the prior belief is combined with 
the likelihood function to obtain a posterior density function 
p1(θ) using

 p p l x1 0q q q( ) µ ( ) ( )|  (2.17)
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If the prior distribution is of the beta form, the posterior 
density function will also be of the beta form. The two shape 
parameters of the posterior beta distribution are v + x and 
w + n – x. The mean of the posterior density function provides 
a Bayes estimator for θ according to

 
q̂ = +

+ +
v x

v w n  
(2.18)

2.4.1  Uniform Prior

The prior distribution for θ represents the analyst’s degree 
of knowledge or belief about the true proportion of 
nonconforming items. If one truly knows nothing about θ, 
it might be reasonable to select a flat or uniform prior 
where v = 1 and w = 1. This implies that according to prior 
knowledge, all values of θ between 0 and 1 are equally likely. 
After combining the observed data with the prior, this results 
in a beta posterior distribution with parameters v = 1 + X and 
w = 1 + n – X.
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Figure 2.3 Beta density function for different sets of parameters.
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Example 2.3 Using a Uniform Prior

Returning to the medical device diameters, combining a 
uniform prior distribution with the binomial likelihood 
function for x = 0 and n = 100 results in the posterior dis-
tribution displayed in Figure 2.4. The mean of the poste-
rior distribution can be used to estimate θ while the upper 
95% confidence bound q̂U  is found by calculating the 95th 
percentile of the posterior distribution. Note that the Bayes 
estimator ˆ .q = 0 009804 is quite a bit larger than that calcu-
lated earlier using the maximum likelihood approach, but 
the upper 95% confidence bound ˆ .qU = 0 0292252 is slightly 
smaller.

2.4.2  Nonuniform Prior

Using a uniform prior will invariably lead to a larger esti-
mate of the proportion of nonconforming items if θ is small 
and may thus be unattractive in many capability studies. 
Where the Bayesian approach is most advantageous is when 
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Posterior probability density function (X= 0, n= 100, v0= 1.0, w0= 1.0)
Bayes estimate = 0.00980392    95.0% upper bound = 0.0292252

At upper limit:
DPM= 29,225.154
Yield= 97.077%
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SQL= 3.392
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Figure 2.4 Posterior distribution for θ based on uniform prior.



Capability Analysis of Proportion Nonconforming ◾ 39

a nonuniform prior is constructed based on the analyst’s 
knowledge of the process. There are two common methods 
for selecting such a prior distribution:

 1. Specifying the mean and standard deviation of the 
analyst’s knowledge about the proportion of non-
conforming items and solving for the combination 
of v and w that yields a beta distribution with those 
characteristics.

 2. Specifying two percentiles of the prior distribution and find-
ing the beta distribution that matches those percentiles.

In the first case, the analyst might indicate that the best guess 
for θ prior to collecting any data equals 0.01 and that the 
standard deviation of that prior knowledge is 0.005. In the 
second case, the analyst might indicate that he or she is 50% 
certain that θ ≤ 0.005 and 90% certain that it is ≤0.01. In both 
cases, the beta shape parameters v and w can be determined 
to match that prior knowledge.

Example 2.4 Using an Informative Prior

It is a simple matter for statistical software to find a prior 
distribution that matches the analyst’s knowledge. For 
example, a dialog box similar to that in Figure 2.5 may be 
used to let the analyst specify either the mean and standard 
deviation or two percentiles. In Figure 2.5, the analyst has 
indicated that based on prior knowledge he or she feels that 
there is a 50% chance that the proportion of nonconform-
ing items is no more than 0.5% and 90% certain that it is no 
more than 1%. Combining this information with the medical 
device data results in the posterior distribution shown in 
Figure 2.6.

After combining the analyst’s prior with the data, the 
posterior distribution has shape parameters v = 2.93 
and w = 619.1. The mean of the posterior distribu-
tion provides the Bayes estimate for the proportion of 



40 ◾ Process Capability Analysis: Estimating Quality

nonconforming items, ˆ . .q = 0 00471448  The 95% upper 
bound is provided by the 95th percentile of the posterior 
distribution and equals ˆ . .qU = 0 00994061  Table 2.3 com-
pares these results with those of the maximum likelihood 
approach. The most noticeable result in that table is the 
dramatic reduction in the upper bound when specifying 
an informative prior distribution for θ.

The conclusion reached by the Bayesian analysis depends 
of course on the choice of the prior distribution. If such 
analyses are conducted frequently, prior history may give the 
analyst a good idea of what the likely values of θ are before 
new data is collected. The data in the current sample may be 
thought of as providing additional information that enhances 
the previous knowledge. If used properly, the Bayesian 
approach can provide more precise estimates than relying 
solely on the current sample.

Figure 2.5 Dialog box for determining prior distribution.
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Figure 2.6 Posterior distribution for proportion of nonconforming 
medical devices.

Table 2.3 Comparison of MLE and Informative Bayesian Approaches

MLE Approach Bayesian Approach

Estimated proportion q̂ 0.000000 0.004714

Upper 95% bound for θ 0.029513 0.009941

DPM at upper bound 29,513 9,941
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Capability Analysis 
Based on Rate of 
Nonconformities

This chapter considers the situation in which an analyst 
obtains a sample of size n and observes X nonconformi-
ties. The sample may represent n discrete items, each of 
which may have multiple nonconformities (such as bub-
bles in a sheet of glass), or it may represent the size of 
a continuous sample, such as n days. In either case, the 
primary parameter of interest is λ, the mean rate of non-

conformities per unit.

Example 3.1 Estimating Aircraft Accident Rates

Table 1.2 shows data pertaining to accidents involving U.S. 
air carriers operating under 14 CFR 121. The U.S. Bureau 
of Transportation Statistics reported that during the years 
2010–2014, such carriers flew 46,882,484 scheduled flight 
segments lasting 88,727,934 flight hours. Among all of those 

Chapter 3
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flights, there were 3 fatal accidents. This chapter considers 
methods for determining how capable those U.S. carriers are 
of delivering safe transportation.

3.1  Estimating the Mean Nonconformities 
per Unit

When a single item can have more than one nonconfor-
mity or when the parameter of interest is the occurrence of 
unacceptable events over a continuous interval, it is nec-
essary to revise the fundamental parameter for measuring 
quality. In this chapter, the primary parameter of interest 
will be

 l = Rate of nonconformities per unit

If a sample of n items is collected and inspected, then the 
random variable of interest is

 X = Number of nonconformities in the sample

If a continuous process is observed over a sampling inter-
val of size n, then X represents the number of unacceptable 
events observed during that interval. Theoretically, X can 
range from 0 to infinity.

If the nonconformities occur randomly, then the probabil-
ity distribution associated with the random variable X is the 
Poisson distribution, which has a probability mass function 
equal to
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If the total number of nonconformities observed in the sample 
equals X, the maximum likelihood estimate of λ is the number 
of nonconformities divided by the sample size

 
l̂ = X

n  
(3.2)

An approximate 100(1 – α)% confidence interval for λ is 
given by
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where c p v,
2  is the value of the chi-square distribution with 

v degrees of freedom that is exceeded with probability p. 
A 100(1 – α)% upper confidence bound for λ is given by
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As in Chapter 2, the upper confidence bound is especially 
useful, since it provides the largest rate of nonconformities 
per unit that is likely to be true given the observed data.

Example 3.1 (Continued)

To assess the quality of commercial air transportation, there 
are several measures that could be constructed. On-time 
performance, baggage handling, and cost are all impor-
tant. In the end, however, it is the ability of the airlines to 
get passengers safely from one point to another that really 
matters.

From 2010 to 2014, U.S. commercial air carriers flew 
a total of n = 88,727,934 flight hours. There were x = 3 
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fatal accidents. Using Equation 3.2, the estimated rate of 
fatal accidents per flying hour is

 
ˆ

, ,
.l = =3

88 727 934
0 0000000338

 
(3.5)

or slightly less than 3.4 fatal accidents per 100 million flying 
hours.

Equation 3.4 may be used to calculate an upper confi-
dence bound for the fatal accident rate:
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or approximately 8.74 fatal accidents per 100 million flying 
hours.

Figure 3.1 shows the likelihood function of the Poisson 
distribution that describes the observed rate of fatal aircraft 
accidents, defined by

 
p x

n e

x

x n

l
l l

|( ) = ( ) -

!  
(3.7)

The dashed line located at the peak indicates the loca-
tion of the maximum likelihood estimate, in this case 
3.38 × 10–8 or 3.38e–8. The dotted line further to the right 
corresponds to the upper confidence bound l̂U , in this 
case 8.74e–8.

3.2  Determining Quality Levels

Measurements of quality based on rates present a unique 
p roblem, since the numerical value of the rate is subject to 
scale. In the aircraft accident example, where the rate measures 
the occurrence of events per unit time, the choice of units for 
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time is arbitrary. Rather than expressing the rate as events per 
hour, it could just as easily have been expressed as events per 
minute. The numerical value of λ obviously depends on the 
unit of time selected. In such cases, it makes little sense to 
attempt to compute equivalent quality metrics such as Z or Cpk, 
since they would depend on the time unit selected.

In other cases, the unit of measurement is not arbitrary, as 
when estimating the rate of warranty repairs on dishwashers. 
In such a case, more than one event might be observed involv-
ing the same machine. For such situations, the rate estimate 
can be converted to meaningful quality indices.

To begin, let θ be the proportion of items in which one or 
more nonconformities are observed. θ can be calculated from 
λ by equating it to the probability that X > 0 in the Poisson 
distribution:

 q l= - -1 e  (3.8)

or

 l q= - -( )ln 1  (3.9)

Poisson likelihood function (X= 3, n= 88,727,934)
ML estimate = 3.38112E–8    95.0% upper confidence bound = 8.73869E–8

Mean rate of nonconformities
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At upper limit:
DPM= 0.087
Yield= 100.000%
Z= 5.224
Cpk= 1.741
SQL= 6.724

At estimate:
DPM= 0.034
Yield= 100.000%
Z= 5.397
Cpk= 1.799
SQL= 6.897

Figure 3.1 Poisson likelihood function for aircraft accidents.
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If λ is small, θ will be approximately equal to λ since it is very 
unlikely that two or more events would be observed for the 
same item.

Example 3.2 Estimating Warranty Repair Rates

Suppose that a study of 1000 dishwashers showed a total of 
65 warranty repairs. That results in the estimate ˆ .l = 0 0650 
repairs per dishwasher. Using Equation 3.4, the 95% upper 
bound on repairs per dishwasher is ˆ .lU = 0 0799. Substituting 
both point estimate and upper bound into Equation 3.8 
gives ˆ .q = 0 0629 and q̂U = 0.0768, shown as DPM in the sta-
tistics box in Figure 3.2.

The estimated values q̂ and q̂U  can then be substituted into 
the equations presented in Section 2.2 to calculate equivalent 
values for DPM, % Yield, Z, and SQL.

Poisson likelihood function (X= 65, n= 1000)
ML estimate = 0.065    95.0% upper confidence bound = 0.0799058
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At upper limit:
DPM= 76,796.669
Yield= 92.320%
Z= 1.427
Cpk= 0.476
SQL= 2.927

At estimate:
DPM= 62,932.537
Yield= 93.707%
Z= 1.514
Cpk= 0.505
SQL= 3.014

Figure 3.2 Poisson likelihood function for X = 65 and n = 1000.



Capability Analysis of Rate of Nonconformities ◾ 49

Example 3.2 (Continued)

Figure 3.2 shows the Poisson likelihood function for the 
dishwasher example, the ML estimate, the upper 95% 
confidence bound for λ, and the calculated quality statis-
tics. Note that the process has a Sigma Quality Level of 
approximately 3, which most companies would consider 
unacceptable.

3.3  Sample Size Determination

Chapter 8 discusses in detail the problem of determin-
ing an adequate sample size for estimating the rate of 
n onconformities. As will be seen there, a sample size 
capable of estimating λ to within any given precision may 
be found by

 1. Picking a level of confidence such as 95%
 2. Specifying the expected value of λ
 3. Selecting the value of the desired upper bound
 4. Using Equation 3.3 or 3.4, solving for n

Again, this is a very simple task for most statistical software.

Example 3.3 Sample Size Determination

Returning to the example of warranty repairs for dish-
washers, suppose the records for additional machines 
will be examined to improve the estimate of the rate of 
warranty repairs. Assuming that the estimated rate will 
remain the same, a sample size is desired that will be 
large enough to reduce the upper bound to under 0.07. 
Keeping the ratio x/n fixed as close as possible to 0.065, 
this will require a sample of n = 8003 dishwashers as 
shown in Figure 3.3.
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3.4  Incorporating Prior Information

Suppose now that prior knowledge exists about the prob-
able value of λ. Paralleling the development in Chapter 2, this 
knowledge may be incorporated in the rate estimation pro-
cess by specifying a prior distribution p0(λ). For the Poisson 
case, the most commonly used prior distribution is the gamma 
distribution given by
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The mean of the gamma distribution is
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where α is called the shape parameter and β is called the 
scale parameter.

Poisson likelihood function (X= 521, n= 8003)
ML estimate = 0.0651006   95.0% upper confidence bound = 0.0699913
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Figure 3.3 Sample size required to achieve 95% upper confidence 
bound equal to 0.07.
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Figure 3.4 shows gamma density functions for various combi-
nations of these parameters.

Selecting a prior distribution of the gamma form and com-
bining it with the data results in a posterior density function 
p1(λ) which is also of the gamma form. The shape parameter 
of the posterior gamma distribution is α + x while the scale 
parameter is β + n. The mean of the posterior distribution 
provides a Bayes estimator for λ according to
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The posterior gamma distribution can be used to provide an 
upper bound on the true value of λ by calculating the desired 
percentile.

As with the estimation of proportions in Chapter 2, there 
are two ways of selecting a prior distribution for λ:

 1. Specifying the mean and standard deviation of the ana-
lyst’s knowledge about the rate of nonconformities and 
solving for the combination of α and β that yields a 
gamma distribution with those characteristics
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Figure 3.4 Gamma density function for different sets of parameters.
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 2. Specifying two percentiles of the prior distribution and find-
ing the gamma distribution that matches those percentiles

Example 3.4 Bayesian Estimation 
of Fatal Accident Rate

Returning to the aircraft accident data, suppose that the 
analyst is 50% certain that the fatal accident rate per 100 
million flying hours is no more than 3 and 90% certain 
that it is less than 5. Entering that information in the  dialog 
box displayed in Figure 3.5 generates a gamma prior with 
α = 5.554 and β = 1.742e8. The posterior probability dis-
tribution shown in Figure 3.6 is also a gamma distribution 
with parameters α = 8.554 and β = 2.629e8. The Bayes esti-
mate of the accident rate is ˆ .l = 3 25 accidents per 100 mil-
lion flying hours and the upper 95% confidence bound is 
ˆ .lU = 5 27 accidents per 100 million flying hours. The Bayes 
estimate is slightly smaller than the estimate obtained using 
maximum likelihood, while the upper bound is substan-
tially smaller.

Figure 3.5 Dialog box for determining prior distribution.
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Capability Analysis 
of Normally 
Distributed Data

Earlier chapters concentrated on estimating the capability of a 
process by inspecting samples from that process and counting 
the number of nonconformities. This direct estimation of θ, 
the proportion of nonconforming items, requires relatively 
few assumptions about the distribution of any variables that 
might be measured to help determine conformity. However, it 
throws away important information about how close or far the 
samples are from the specification limits. Hence the sample 
sizes required to get precise estimates of θ using such a direct 
approach are usually quite large.

If the specifications for a product or service are based on 
a continuous variable X, such as the diameter of a medical 
device, precise estimates may be obtained from much smaller 
samples by first modeling the probability distribution of X. 
Often, it is reasonable to assume that X follows a normal or 
Gaussian distribution. This chapter discusses methods for esti-
mating process capability when the assumption of normality 

Chapter 4
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holds. Chapter 5 discusses modifications that must be made 
when the data cannot be assumed to come from a normal 
distribution.

4.1  Normal Distribution

A common model for the probability distribution of a continu-
ous random variable X is that it follows a normal distribution, 
defined by a probability density function f(x) that resembles a 
bell-shaped curve:
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The normal distribution is defined by two parameters: the 
mean μ, which indicates the center of mass of the distribution, 
and the standard deviation σ, which indicates the spread or 
dispersion. Figure 4.1 shows the normal density function for 
several values of μ and σ.
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Figure 4.1 Normal distribution with different means and standard 
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4.2  Parameter Estimation

Given a random sample of n measurements taken from a 
normal distribution, the maximum likelihood estimate of the 
mean is given by x , the sample mean:
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The most common estimate of the standard deviation is 
given by s, the sample standard deviation, which is calcu-
lated from the deviations of the observations around the 
sample mean:
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Example 4.1 Fitting a Normal Distribution

The medical device data introduced in Chapter 1 consist 
of the measured diameter of n = 100 items. Figure 4.2 
shows a frequency histogram of the data together with 
the normal density function with mean μ = 1.98757 and 
standard deviation σ = 0.0179749. These parameters match 
the sample estimates calculated from the data. This normal 
distribution will be referred to as the fitted distribution. 
Tall vertical lines are drawn at the target value T = 2.0 
and at the specification limits. Shorter vertical lines are 
plotted at the mean plus and minus 3 standard deviations, 
which covers 99.73% of the area under the normal density 
function.

Confidence intervals can also be obtained for the mean and 
standard deviation. Confidence intervals quantify the sampling 
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error associated with the estimates of μ and σ. Any values 
within the confidence intervals may be considered plausible 
values for the parameters of the population from which the 
data were sampled.

A 100(1 − α)% confidence interval for the population mean 
is given by
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where tα/2,n−1 represents the value of Student’s t distribution 
with n − 1 degrees of freedom that is exceeded with prob-
ability α/2. A 100(1 − α)% confidence interval for the standard 
deviation is given by
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where ca/ ,2 1
2

n-  represents the value of the chi-square distribu-
tion with n − 1 degrees of freedom that is exceeded with 
probability α/2.
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Figure 4.2 Normal distribution fit to medical device diameters.
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Example 4.1 (Continued)

Table 4.1 shows 95% confidence intervals for the mean and 
standard deviation of the medical device diameters. With 
95% confidence, it may be stated that the true mean μ is 
between 1.984 and 1.991 while the standard deviation σ is 
between 0.0158 and 0.0209.

4.3  Individuals versus Subgroup Data

When performing a process capability analysis, data are usu-
ally collected in one of two ways:

 1. Individuals data: Items are selected and examined one 
at a time, where each item is assumed to be indepen-
dent of the others. For example, imagine a manufactur-
ing process in which a single item is randomly selected 
from each shift’s production. For a continuous pro-
cess, samples might be taken at periodic intervals such 
as once an hour.

 2. Subgroup data: When items are naturally segmented 
into batches or lots, a selected number of items might 
be randomly selected from each segment. Samples taken 
from the same segment or at the same time are com-
monly referred to as belonging to the same subgroup. 

Table 4.1 Confidence Intervals for Mean and Standard 
Deviation of Medical Device Diameters

Confidence Intervals for Diameter

95.0% confidence interval for mean: 1.98757 ± 0.00356661 
[1.984, 1.99114]

95.0% confidence interval for standard deviation: 
[0.0157821, 0.020881]
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For example, if the medical devices are produced in lots, 
5 devices might be obtained from each lot. When creat-
ing subgroups, it is important that the items be selected 
randomly so that they are representative of the entire 
segment.

Example 4.2  Analysis of Subgroup Data

Suppose the 100 medical devices described in Chapter 1 
consist of 5 items randomly sampled from each of 20 lots. 
It would then be useful to plot the data using a Tolerance 
Chart as shown in Figure 4.3. A tolerance chart plots 
the data in each subgroup at a separate location along 
the X-axis, displaying the range of the data within each 
subgroup using a vertical line. Horizontal lines are added 
at the target value and the upper and lower specification 
limits.

If the subgroup sizes are large or the data are heavily 
rounded, many of the individual points may be hidden by 
other points. One solution to such an overplotting problem 
is to jitter the points, which adds a small amount of random 
offset to each point in the horizontal direction. Figure 4.4 
shows the subgroup data with jittering.
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Figure 4.3 Plot of medical device diameters by subgroup with target 
and specification limits.
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Alternatively, box-and-whisker plots could be 
displayed for each subgroup as shown in Figure 4.5. 
Such a plot is very good at visualizing any changes 
in the level or within-group variability of the data 
over time.
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Figure 4.4 Plot of medical device diameters by subgroup with hori-
zontal jittering.
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Figure 4.5 Plot of medical device diameters with box-and-whisker 
plots for each subgroup.
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4.3.1  Levels of Variability

It is common practice when estimating the ability of a pro-
cess to meet specification limits to estimate two levels of 
variability: short-term variability and long-term variability. 
For subgroup data, short-term variability refers to differ-
ences among items within the same subgroup. For individu-
als data, short-term variability refers to differences between 
observations collected close together in time. For both types 
of data, long-term variability refers to differences among 
items produced during the entire period over which data are 
collected.

Consider for a moment the case where data are selected 
in subgroups. If the production process is in a perfect state 
of statistical control, then all segment means will be identical 
and the variability within each segment will be the same. In 
such cases, long-term and short-term variability will be iden-
tical. However, if the process mean is not perfectly constant 
but fluctuates over time, then the segment means will not 
all be the same. Consequently, the variability of items within 
the same segment will be less than that of the process as a 
whole. For individuals data, the effect of a fluctuating process 
mean causes items produced close together in time to show 
less variability than those produced over a longer time frame.

To be specific, let Xt,j be the observation obtained from the 
jth item sampled at time period t. The index t refers to the 
subgroup number. A useful statistical model for the data is

 Xt j t t j, ,= + +m e e  (4.6)

where
μ is the process mean
εt is a random between-subgroup error or deviation that has 

a standard deviation equal to σbetween

εt,j is a random within-subgroup error that has a standard 
deviation equal to σwithin
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Assuming that the between-subgroup and within-subgroup 
errors are independent, the overall standard deviation of the 
process is then

 s s soverall between within= +2 2
 (4.7)

4.3.2  Capability versus Performance

If a process is in a strict state of statistical control, the vari-
ability among items from the same subgroup will be the same 
as the variability among items from different subgroups. In 
such cases, σbetween = 0. Since strict statistical control is rare, 
statistics calculated from estimates of σwithin are said to express 
the capability of the process rather than what is actually 
being achieved. In contrast, statistics calculated from esti-
mates of σoverall are said to express the performance of the 
process.

4.3.3  Estimating Long-Term Variability

The long-term or overall variability in the process is usually 
estimated by calculating the sample standard deviation of all 
observations in the data set. If s is the sample standard devia-
tion of the n observations, then

 ŝlong term s- =  (4.8)

Occasionally, especially when the total number of observa-
tions n is small, a bias correction is applied to s, since the 
expected value of s is less than the true value of σ. The bias-
corrected estimate is given by
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where c4(n) is a constant that is tabulated in most books on 
statistical process control, such as Montgomery (2013). Since 
c4(n) is less than 1, the bias correction results in a larger 
estimate.

4.3.4  Estimating Short-Term Variability 
from Subgroup Data

Assume that observations have been collected from m sub-
groups. Let nj be the number of observations in the jth sub-
group. Let x j be the sample mean of the observations within 
subgroup j. Let sj be the sample standard deviation of the 
observations in that subgroup and let Rj be their range. The 
overall process mean is estimated by calculating a weighted 
average of the subgroup means:
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The short-term variability (the variability within the sub-
groups) can be estimated in several ways. Five estimates are 
used in common practice:

 1. An estimate based on the pooled within-group standard 
deviation

 2. An estimate based on the weighted average of the sub-
group ranges

 3. An estimate based on the weighted average of the sub-
group standard deviations

 4. A bias-corrected version of estimate 1
 5. A bias-corrected version of estimate 3
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Approach 1 is based on a standard one-way analysis of 
variance. It pools the standard deviations within each of 
the subgroups to estimate the within-subgroup standard 
deviation:
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If the data within each subgroup come from a normal 
distribution, then the above estimate follows a chi-square 

distribution with degrees of freedom u = -( )
=å nj
j

m
1

1
. A bias 

correction can be applied if desired:
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Despite the attractive statistical properties of the above esti-
mates, other estimators are more commonly used. Since 
much of the methodology for calculating process capability 
was developed prior to the widespread availability of digital 
computers, alternative methods were sought that reduced the 
amount of calculation required. In addition, since process 
capability studies are often done in conjunction with statisti-
cal process control charts, estimates were developed that used 
the calculated values needed to create those charts.

Since the easiest subgroup control charts to construct by 
hand are X-bar and R charts, which plot the subgroup means 
and ranges, a widely used estimate of the short-term sigma is 
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based on the average subgroup range. Given m subgroups, 
the estimated short-term sigma is
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and d2 and d3 are SPC constants similar to c4.
Another potential estimate of the short-term sigma is based 

on the average of the subgroup standard deviations. Given m 
subgroups, the short-term sigma may be estimated using
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A bias correction may also be applied to this estimate as 
follows:
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Example 4.3 Estimating Short-Term and Long-Term 
Variability from Subgroups

Table 4.2 shows the different estimates obtained if the medi-
cal device data are divided into m = 20 subgroups, each 
containing nj = 5 consecutive observations. There are two 
conclusions that can be made from the estimates displayed 
in that table:

 1. Both long-term estimates are greater than all of the 
short-term estimates, indicating that there might an 
additional contribution to the process variance caused 
by variability between the subgroup means. In fact, a 
one-way ANOVA performed on the data shows signifi-
cant differences between the subgroup means at the 
5% significance level.

 2. The short-term estimates based on the pooled standard 
deviation are larger than those based on weighted aver-
ages of the subgroup ranges or standard deviations. 
This is not unexpected, since Equation 4.11 is based on 
a weighted average of the squared standard deviations.

Table 4.2 Estimates of Long-Term and Short-Term Variability 
Using Subgrouped Medical Device Diameters

Method Equation Estimated Sigma

Long-term (4.8) 0.0179749

Long-term (bias corrected) (4.9) 0.0180203

Short-term, pooled std. deviation (4.11) 0.0168006

Short-term, pooled std. deviation 
(bias corrected)

(4.12) 0.0168532

Short-term, average subgroup range (4.13) 0.0159071

Short-term, average subgroup std. 
deviation

(4.15) 0.0151362

Short-term, average subgroup std. 
deviation (bias corrected)

(4.16) 0.0161027
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Most statistical software lets you select the estimation  methods 
that you want to use. Note that it is very important to estab-
lish a protocol that specifies which methods will be used 
for estimating the long-term and short-term standard devia-
tions and stick with them, regardless of whether the conclu-
sions work out as desired. As John Tukey cautioned, one 
should avoid data snooping, which is deciding which 
method to apply after having already looked at the results.

4.3.5  Estimating Short-Term Variability 
from Individuals Data

If the data to be analyzed are obtained one at a time rather 
than in subgroups, other methods for estimating short-term 
variability must be applied. Three methods are in common 
practice: estimating sigma based on the average moving 
range, estimating sigma based on the median moving range, 
and estimating sigma using the mean squared successive dif-
ference (MSSD). Each method involves looking at successive 
data points Xt−1 and Xt and first calculating the differences 
between them:

 D X X t nt t t= = ¼-– , , , ,1 2 3  (4.17)

Although the observations will not have been obtained at 
exactly the same time, or necessarily from the same batch or 
lot, they will be close enough together in time that the differ-
ences Dt will exhibit primarily short-term variability.

The absolute values |Dt| are often referred to as the mov-
ing range of 2 or MR(2), since they equal the range of each 
pair of successive observations. A popular estimate of the 
short-term variability based on the moving range is
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The numerator of (4.18) is the average moving range. The 
constant in the denominator, which converts the moving 
range to an estimate of sigma, equals d2(2) since the estimate 
is based on the average range of groups of 2 consecutive 
observations.

The short-term standard deviation can also be estimated 
from the median of the moving ranges according to
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The constant in the denominator is referred to as d4(2).
Finally, the short-term sigma can be estimated from the 

mean of the squared successive differences using
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A bias correction may also be applied to the above estimate:
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using an additional SPC constant known as c4 prime.

Example 4.4 Estimating Short-Term Variability 
from Individuals Data

The absolute values of the successive differences are often 
plotted on a moving range chart. Figure 4.6 displays an 
MR(2) chart for the medical device diameters. The centerline 
of the chart is the average moving range, while the upper 
limit is located at the average plus 3 times the estimated 
 standard error.
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Table 4.3 shows the different estimates of the short-term 
variability that would be obtained for the medical device data 
using the different estimation methods. The estimates based 
on the mean squared successive difference are the largest, 
while that based on the median moving range is the smallest.

4.4  Estimating the Percentage 
of Nonconforming Items

Under the assumption that the observations are random 
samples from a fitted normal distribution, the mean and 
standard deviation are sufficient statistics for representing 
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Figure 4.6 Moving range chart for medical device diameters.

Table 4.3 Estimates of Short-Term Variability Using Individual 
Medical Device Diameters

Method Equation Estimated Sigma

Short-term, average moving range (4.18) 0.0162350

Short-term, median moving range (4.19) 0.0146751

Short-term, squared successive 
differences (SSD)

(4.20) 0.0169415

Short-term, SSD (bias corrected) (4.21) 0.0170071
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their probability distribution. Given estimates of these two 
parameters, it is possible to estimate the proportion of 
nonconforming items θ by calculating the probability that 
a random variable that follows such a distribution will be 
outside of the specification limits. This involves using F̂ x( ), 
the fitted cumulative normal distribution, which estimates 
the probability of selecting an item that has a diameter less 
than or equal to x.

The proportion of nonconforming items is estimated by 
summing the estimated proportion of items below the lower 
specification limit and the estimated proportion above the 
upper specification limit:

 
ˆ ˆ ˆq = ( ) + - ( )éë ùûF LSL F USL1

 
(4.22)

If there is no lower specification limit, then F̂ LSL( ) = 0. 
If there is no upper specification limit, then F̂ USL( ) = 1.

Example 4.5 Capability Analysis 
of Medical Device Diameters

Table 4.4 shows the output of a capability analysis applied 
to the medical device diameters, treating the n = 100 
observations as individuals. The column labeled Estimated 
Beyond Spec gives the estimated tail areas as percentages. 
The overall estimated proportion beyond the specification 
limits is q̂ = 0.00000055. If in fact the medical device diam-
eters come from a normal distribution, this provides a best 
estimate for the proportion of devices being produced that 
will not be within the specification limits.

Table 4.4 bases its calculations on the estimated long-term 
standard deviation calculated using Equation 4.8, which uses 
the sample standard deviation of all n observations. It thus 
estimates the proportion of nonconforming items produced 
over a period comparable to that in which the sample was 
taken. If this period is representative of the entire produc-
tion, then it also estimates overall performance.
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4.5  Estimating Quality Indices

Chapter 1 introduced two quality indices that can be 
 calculated directly from θ. The first index, DPM, expresses 
the proportion of nonconforming items as defects per 
million:

 DPM = *1 000 000, , q (4.23)

The second, percent yield, is the percentage of items that fall 
within the specification limits:

 % yield = -( )100 1 q  (4.24)

Table 4.4 Capability Analysis of Individual Medical Device 
Diameters

Data variable: Diameter

Transformation: None

Distribution: 
Normal

Sample size = 100

Mean = 1.98757

Std. dev. = 0.0179749

6.0 sigma limits +3.0 sigma = 2.04149

–3.0 sigma = 1.93365

Specifications
Observed 

Beyond Spec Z-Score

Estimated 
Beyond 

Spec

Defects 
Per 

Million

USL = 2.1 0.000000% 6.25 0.000000% 0.00

Nominal = 2.0 0.69

LSL = 1.9 0.000000% −4.87 0.000055% 0.55

Total 0.000000% 0.000055% 0.55
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Many other capability indices have been developed over the 
years, as described in this section.

4.5.1  Z Indices

Many of the most popular capability indices are based on 
the mean and standard deviation of the normal distribution. 
One such index is Z. Z measures how close the process mean 
is to the specification limits in multiples of the process stan-
dard deviation. If a lower spec exists, then the Z index for the 
lower specification limit is defined by

 
Z

LSL
lower =

-m
s  

(4.25)

If an upper spec exists, then the Z index for the upper specifi-
cation limit is defined by

 
Z

USL
upper =

- m
s  

(4.26)

The distance to the nearer specification limit is the smaller of 
the two one-sided Z indices:

 Z Z Zlower uppermin min= ( ),  (4.27)

A value of Zmin = 4 would indicate that the nearer speci-
fication limit is 4 standard deviations from the process 
mean.

If the values of Z are known, the probability of being 
beyond the specification limits may be calculated using the 
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standard normal distribution. In particular, if Φ(z) is the 
cumulative standard normal distribution, then the proportion 
of nonconforming items θ is given by

 q F F= -( ) + - ( )éë ùûZ Zlower upper1  (4.28)

Example 4.5 (Continued)

Table 4.4 contains a column labeled Z-Score. This col-
umn measures the distance between a particular loca-
tion (such as the USL, target value, or LSL) and the 
process mean by subtracting the mean from that location 
and dividing the result by the standard deviation. The 
results in that table indicate that the USL is 6.25 standard 
d eviations above the estimated process mean, the target 
value is 0.69 standard deviations above the estimated 
process mean, and the LSL is 4.87 standard deviations 
below the estimated process mean. Note that the Z-score 
for the USL equals Zupper, while the Z-score for the LSL 
equals –Zlower.

Both the lower and upper Z-scores are in excess of 4.8 
in absolute value, meaning that the distance between the 
sample mean x  and the specification limits is at least 4.8 
times the sample standard deviation s. This corresponds to 
less than 1 item per million (DPM) outside of the specifica-
tion limits.

The Z-scores displayed in Table 4.4 are based on an esti-
mate of long-term variability. If a short-term estimate of sigma 
is substituted into Equations 4.25 and 4.26, different results 
will be obtained. Whereas the long-term sigma quantifies 
performance over the entire sampling period, the short-term 
sigma quantifies the capability of producing a quality product 
once any long-term changes in the process parameters have 
been eliminated.
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Example 4.5 (Continued)

Table 4.5 compares the Z indices for the medical device 
diameters based on short-term and long-term estimates of 
sigma. The short-term standard deviation was obtained using 
the average moving range. Notice that the estimated short-
term standard deviation is about 10% less than the long-term 
estimate, resulting in a lower estimated value for DPM. This 
is not surprising, since consistent product is usually easier to 
produce over a short period of time than over a longer period.

4.5.2  Cp and Pp

Another index commonly used to measure process capability 
is the index Cp, defined by

 
C

USL LSL
P = -

6s  
(4.29)

Cp divides the distance between the specification limits by 6 
times the standard deviation. As shown in Figure 4.7, this index 
can be thought of as the “design tolerance” divided by the 
“natural tolerance”, measuring how much wider the allowable 
design tolerance is relative to the natural process variation. Cp 
can only be calculated when there is both an upper specifica-
tion limit USL and a lower specification limit LSL.

Table 4.5 Comparison of Capability and 
Performance for Medical Device Diameters

Short-Term
Capability

Long-Term
Performance

Sigma 0.016235 0.0179749

Zupper 6.92514 6.25484

Zlower 5.39389 4.8718

Zmin 5.39389 4.8718

DPM 0.0345548 0.553897
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A necessary but not sufficient condition for a process to 
be capable of satisfying the specification limits is that the 
design tolerance be greater than the natural tolerance of the 
process, that is, Cp be greater than 1. As will be demonstrated, 
such a requirement is not however a sufficient condition to 
guarantee conformance, since it assumes that the mean of the 
process is near the center of the design tolerance limits. If the 
process is not properly centered, the value of Cp may appear 
to be acceptable even though too much product is beyond 
the specification limits.

When estimating capability, it is common practice to label the 
index Cp when σ is replaced by its short-term estimate and Pp 
when σ is replaced by its long-term estimate. Such notation dis-
tinguishes well between capability and performance, but it is not 
universal. One must be careful when examining capability indices 
to be certain exactly what estimate of sigma they are based on.

Approximate confidence intervals and bounds may be con-
structed for Cp or Pp when the data are assumed to come from 
a normal distribution. The 100(1 − α)% confidence interval is
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(4.30)

Design tolerance

K= 0
Cp= 2.0
Cpk= 2.0

LSL USL

μ – 6σ μ – 3σ μ + 3σ μ + 6σμ

Natural tolerance

Figure 4.7 Capability indices for centered process.
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where c up,
2  is the value of the chi-square distribution with ν 

degrees of freedom that is exceeded with probability p. ν is 
the degrees of freedom associated with the estimate of sigma 
used to compute the capability index. A one-sided lower 
bound for Cp is given by
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a n1

2
- £

 
(4.31)

Table 4.6 shows the degrees of freedom associated with vari-
ous estimates of sigma.

Table 4.6 Degrees of Freedom Associated with Various Estimates 
of Sigma

Estimate Equations Degrees of Freedom ν

Long-term (4.8) and (4.9) n − 1

Short-term using 
pooled standard 
deviation

(4.11) and 
(4.12)

j

m

jn
=
å -( )

1

1

Short-term using 
average subgroup 
range

(4.13)
0 9 1

1

.
j

m

jn
=
å -( )

Short-term using 
average subgroup 
standard deviation

(4.15) and 
(4.16) 0 88 1

1

.
j

m

jn
=
å -( ) to 

j

m

jn
=
å -( )

1

1

 
depending on n

Short-term using 
average moving range

(4.18) n − 1

Short-term using 
median moving range

(4.19) n − 1

Short-term using 
squared successive 
differences

(4.20) and 
(4.21)

n − 1
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Different rules of thumb exist for how large Cp and Pp need 
to be in order for process quality to be acceptable; in other 
words, how much wider than the natural tolerance should the 
design tolerance be? Commonly quoted minimum values are 
1.33, 1.5, and 2.0, depending on whether you are qualifying 
a new process or monitoring an existing process. Clearly, the 
acceptable level depends on the corresponding proportion 
of nonconforming items. That proportion in turn depends 
on how far the process mean is from the specification limits, 
which is not accounted for by Cp.

The developers of Six Sigma observed many real-life pro-
cesses and noted that, in most of them, the short-term mean 
was not constant. In fact, it was common for the short-term 
mean to fluctuate around the long-term mean by as much 
as 1.5σ. To examine the effect of such fluctuations on the 
proportion of nonconforming items, let K equal the offset 
between the process mean and the target value T as a mul-
tiple of the standard deviation:

 
K

T= -m
s  

(4.32)

Assuming that the specification limits are symmetrically 
spaced about the target value, Table 4.7 shows the number 
of nonconforming items per million for selected values of 
Cp and K.

Six Sigma practitioners suggest that Cp should be ≥2.0, 
that is, the process sigma be small enough that the specifica-
tion limits are at least 12 standard deviations apart. In other 
words, the design tolerance should be at least twice as wide 
as the natural tolerance. If the process is properly centered 
and the process mean does not vary around its long-term 
value by more than 1.5σ, the DPM associated with such a 
“6-sigma” process will equal no more than 3.4 defects per 
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million, corresponding to the tabled value for Cp = 2.0 and 
K = 1.5. If the mean remains closer to the target than 1.5 
times the standard deviation or if a DPM of greater than 3.4 
is acceptable, then Cp could be less than 2.0 and still yield 
acceptable product.

Example 4.5 (Continued)

Table 4.8 displays the calculated values of Cp and Pp for the 
medical device diameters using the estimated sigma values 
in Table 4.5, together with lower 95% confidence bounds. 
It may be stated with 95% confidence that the capability 
indices of the medical device production process satisfy 
Cp ≥ 1.811 and Pp ≥ 1.636, assuming that the data come 
from a normal distribution.

4.5.3  Cr and Pr

An alternative to Cp, which is also used when both upper and 
lower specification limits are present, is the capability ratio 
defined by

 
C

USL LSL
r =

-
6s

 
(4.33)

Table 4.7 DPM for Different Combinations of Cp and K

Cp K = 0 K = 0.5 K = 1.0 K = 1.5 K = 2.0

0.333 317,309 375,343 522,753 697,674 842,695

0.667 45,500 73,017 160,005 308,769 500,035

1.000 2,700 6,442 22,782 66,810 158,655

1.333 63.37 236.1 1,350 6,210 22,750

1.667 0.57 3.42 31.69 232.7 1,350

2.000 0.00 0.02 0.29 3.40 31.69
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Cr represents the proportion of the design tolerance 
that is covered by the natural tolerance of the process. 
Since Cr is just the reciprocal of Cp, the equivalent require-
ment to Cp ≥ 2.0 is Cr ≤ 0.5. Likewise, the confidence 
 limits for Cp may be inverted to give confidence limits 
for Cr.

4.5.4  Cpk and Ppk

Cp and Cr have two major drawbacks:

 1. They require both upper and lower specification limits 
and so cannot be calculated when dealing with one-sided 
specifications.

Table 4.8 Estimated Capability and Performance Indices 
for Medical Device Diameters

Capability Indices for Diameter

Specifications: LSL = 1.9, Nom = 2.0, USL = 2.1

Short-Term
Capability

Long-Term
Performance

Sigma 0.016235 0.0179749

Cp and Pp 2.05317 1.85444

Cpk and Ppk 1.79796 1.62393

Based on 6.0 sigma limits. Short-term sigma estimated from average 
moving range.

95.0% Confidence Bounds

Index Lower Limit Index Lower Limit

Cp 1.81127 Pp 1.63595

Cpk 1.58076 Ppk 1.42634
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 2. They do not include the process mean. If the mean is 
far from the target value, it is possible to get acceptable 
values for the two-sided Cp and Cr indices even though 
much of the product is out of spec.

For these reasons, an increasingly popular capability index is 
Cpk. To calculate Cpk, two one-sided indices are first calculated 
to measure the distance from the process mean to whichever 
specification limits are present:

 
C

LSL
pk lower( ) =

-m
s3  

(4.34)

 
C

USL
pk upper( ) =

- m
s3  

(4.35)

The combined index Cpk is then the smaller of the two indices 
(assuming both are calculated):

 C C Cpk pk lower pk upper= éë ùû( ) ( )min ,  (4.36)

Cpk will always be less than or equal to Cp. The two indi-
ces are equal only if the sample mean is exactly halfway 
between the upper and lower specification limits. As with 
Cp, the index will be labeled either Cpk or Ppk depending 
on whether a short-term or long-term estimate of sigma is 
used to calculate it.

Figure 4.8 shows a normal distribution that is not centered 
between the specification limits. Instead, the mean has been 
shifted a distance of 1.5σ in the positive direction. While the 
value of Cp is the same as in Figure 4.7, Cpk has been reduced 
from 2.0 to 1.5.

Because it incorporates estimates of both the process 
mean and the standard deviation, Cpk is closely related to the 
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percentage of the product that is beyond the specification lim-
its. In fact, it is related to the Z index according to

 
C

Z
C

Z
pk lower

lower
pk upper

upper
( ) ( )= =

3 3
and

 
(4.37)

The proportion of items beyond the specification limits can 
thus be calculated from the Cpk values using

 q = -éë ùû + - éë ùû( ) ( )F F3 1 3C Cpk lower pk upper  (4.38)

given both upper and lower specification limits. If either limit 
does not exist, the corresponding term is omitted. In many 
cases, either Cpk(upper) or Cpk(lower) will be very large because the 
process mean is far from the corresponding specification limit. 
In such cases, a good approximation for the estimated pro-
portion beyond the specification limits is

 q = - [ ]1 3F C pk  (4.39)

Design tolerance USLLSL

μ + 3σμ – 6σ μ – 3σ μ + 6σμ

K= 1.5
Cp= 2.0
Cpk= 1.5

Natural tolerance

Figure 4.8 Capability indices for process with 1.5σ shift in mean.
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If the data come from a normal distribution, confidence limits 
can be calculated for Cpk. An approximate two-sided 100(1 − α)% 
confidence interval is given by
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where
n is the total number of observations
ν is the degrees of freedom corresponding to the estimator 

used for sigma

A 100(1 − α)% lower confidence bound is given by
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(4.41)

Example 4.5 (Continued)

Table 4.8 includes estimates for both Cpk and Ppk using the 
medical device diameters. It may be stated with 95% confi-
dence that Cpk ≥ 1.581 and Ppk ≥ 1.426.

4.5.5  Cm and Pm

Cm, the machine capability index, is very similar to Cp, except 
that the denominator is 8 times sigma rather than 6 times 
sigma:

 
C

USL LSL
m = -

8s  
(4.42)

For this index, the “natural tolerance” is defined as μ ± 4σ 
rather than μ ± 3σ. All of the results given for Cp apply 
to Cm with the appropriate correction for the different 
denominator.
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4.5.6  Cpm

Recall that one of the criticisms of Cp is that it does not 
account for the location of the process mean. Consequently, 
it can dramatically overestimate the quality of a process 
if the process mean is not close to the nominal or target 
value T. Cpm is a modified version of Cp that reduces its value 
using the difference between the process mean and T. It is 
defined by
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(4.43)

As the process mean diverges from the target value, Cpm 
becomes smaller.

An approximate 100(1 − α)% confidence interval for Cpm is 
given by
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Although labeled Cpm, this index is a performance measure 
and is always calculated using a long-term estimate of σ.
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A 100(1 − α)% lower confidence bound for Cpm is given by
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4.5.7  CCpk

CCpk is a modified version of Cpk, which replaces the popula-
tion mean μ with the target value T:
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(4.48)

It measures how capable the process is of meeting the speci-
fication if the sample mean was exactly at the target value. 
It is a capability measure only, calculated using a short-term 
estimate of σ.

4.5.8  K

Another popular capability index is K, which measures 
how much the population mean differs from the target 
value T. If the population mean is greater than or equal to 
the target, then

 
K

T
USL T

= -
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m
 

(4.49)

If the population mean is less than the target, then

 
K

T
T LSL

= -
-
m

 
(4.50)

A value of K equal to 0.1 indicates that the population mean 
is located 10% of the way from the target to the upper speci-
fication limit. K is negative when the mean is less than the 
target value.
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4.5.9  SQL: The Sigma Quality Level

Six Sigma practitioners quantify the quality level associated 
with a process by calculating

 SQL Z= + 1 5.  (4.51)

They refer to processes with an SQL of 6 or greater as hav-
ing achieved “world class quality”. Recall that Z refers to the 
number of standard deviations between the process mean 
and the nearer specification limit. Processes for which Z is 
never less than 4.5 have no more than 3.4 defects per million 
opportunities, since the tail area of the normal curve beyond 
4.5 standard deviations equals 0.0000034. The additional 
1.5 is added to Z based on the assertion that the short-term 
mean of most processes varies around its long-term value by 
no more than ±1.5 standard deviations. If this is true and the 
short-term Z is never less than 4.5, then the long-term mean 
must be at least 6 sigma removed from all specification limits. 
Hence the name “Six Sigma”. Table 2.1 in Chapter 2 shows 
how SQL relates to other measurements of quality, assuming 
a 1.5 sigma shift.

Example 4.5 (Continued)

Table 4.9 shows a complete list of capability indices cal-
culated from the medical device diameter data. The medi-
cal device production process is performing at a long-term 
sigma level equal to 6.37, which Six Sigma practitioners refer 
to as “world class quality”. The rate of nonconforming items 
is less than 1 out of every million devices produced.

Table 4.10 shows confidence bounds for the quality indi-
ces, assuming that the data come from a normal distribution. 
For indices such as Cpk where larger values are better, one 
can state with 95% confidence that the true index is greater 
than or equal to the value shown. For indices such as Cr and 
K where smaller values are better, one can state with 95% 
confidence that the true index is less than or equal to the 
value shown.
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Table 4.9 Capability and Performance Indices 
for Medical Device Diameters

Capability Indices for Diameter

Specifications: LSL = 1.9, Nom = 2.0, USL = 2.1

Short-Term
Capability

Long-Term
Performance

Sigma 0.016235 0.0179749

Cp/Pp 2.05317 1.85444

Cr/Pr 48.7051 53.9246

Cm/Pm 1.53988 1.39083

Zupper 6.92514 6.25484

Zlower 5.39389 4.8718

Zmin 5.39389 4.8718

Cpk/Ppk 1.79796 1.62393

Cpk/Ppk(upper) 2.30838 2.08495

Cpk/Ppk(lower) 1.79796 1.62393

CCpk 2.05317

Cpm 1.52278

K −0.1243

% beyond spec 0.00000345548 0.0000553897

DPM 0.0345548 0.553897

Sigma Quality Level 6.89 6.37

Note: Based on 6.0 sigma limits. Short-term sigma esti-
mated from average moving range. The Sigma 
Quality Level includes a 1.5 sigma shift in the mean.
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4.6  Confidence Bounds for Proportion 
of Nonconforming Items

The primary question posed in Chapter 1 was how to use a 
sample of data to estimate the proportion of items θ that do not 
conform to a set of specification limits. Having fit a normal 

Table 4.10 Confidence Bounds for the Medical Device Quality 
Indices

95.0% Confidence Bounds

Index
Lower Quality 

Bound Index
Lower Quality 

Bound

Cp 1.81127 Pp 1.63595

Cr
a 55.2098 Pr

a 61.1264

Cm 1.35845 Pm 1.22697

Zupper 6.09909 Zupper 5.50541

Zlower 4.74227 Zlower 4.27903

Zmin 4.74227 Zmin 4.27903

Cpk 1.58076 Ppk 1.42634

Cpk(upper) 2.03303 Ppk(upper) 1.83514

Cpk(lower) 1.58076 Ppk(lower) 1.42634

CCpk 1.81127

Cpm 1.35393

Ka −0.0944546

% beyond speca 0.000105851 % beyond speca 0.000941031

DPMa 1.05851 DPMa 9.41031

Sigma Quality 
Level

6.24227 Sigma Quality 
Level

5.77903

a Lower quality bound corresponds to upper confidence bound for this 
index.
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distribution to a set of data and calculated q̂, it is important to 
consider methods for obtaining confidence limits for θ.

4.6.1  Confidence Limits for One-Sided 
Specifications

It has been shown that θ is related to the capability index 
Cpk according to Equations 4.38 and 4.39. To obtain an upper 
confidence bound for θ when there is only one specification 
limit, the lower confidence bound for Cpk may be substituted 
directly into Equation 4.39.

Example 4.6 Confidence Limits 
for One-Sided Specifications

For the medical device diameters, the upper specification 
limit has little effect since Ppk(lower) is much smaller than 
Ppk(upper) and dominates the calculation of the proportion 
beyond the specification limits. Using Equation 4.41, the 
95% lower confidence bound for Ppk equals

1 62393 1 1 645
1

900 1 62393

1

198
1 426342. .
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(4.52)

Equation 4.39 may then be used to create a 95% upper con-
fidence bound for θ as

 
ˆ . .q FU = - *( ) =1 3 1 42634 0 00000939 (4.53)

The 95% upper bound on the proportion of nonconforming 
items is thus approximately 9.4 items per million.

4.6.2  Confidence Limits for Two-Sided Specifications

The problem is more difficult when there are two specifica-
tion limits. One approach is to obtain a 95% upper bound 
for the proportion of items that exceed the upper spec and 
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add that to the 95% upper bound for the proportion of items 
that are below the lower spec. Adding the two upper bounds 
gives a conservative estimate of the 95% upper bound for the 
overall proportion of defective items.

The approach outlined above tends to overestimate the 
upper bound for θ, since the estimated upper bounds of the 
two proportions are not independent. In particular, errors in 
the estimate of the process mean will cause a simultaneous 
underestimation of one proportion and overestimation of the 
other. Monte Carlo studies have shown that this overestima-
tion is particularly significant when the mean is close to the 
target value (K is small) and sigma is large compared to the 
distance between the specification limits (Cp is small). In cases 
where the predominance of defects occur on one side of the 
mean rather than both, the overestimation effect is small.

Example 4.7 Confidence Limits for 
Two-Sided Specifications

For the medical device data, Ppk(lower) = 1.62393 and 
Ppk(upper) = 2.08495. The 95% lower confidence bounds for 
each of the one-sided Ppk values, calculated using Equation 
4.41, are shown as follows:

Specification
Lower 95% 

Bound for Ppk

Upper 95% 
Bound for θ

Lower 1.42634 0.00000939

Upper 1.83514 0.00000002

Total 0.00000941

Also shown here are the corresponding upper 95% bounds 
for the proportion of items beyond each specification limit, 
calculated by substituting the lower bounds into Equation 
4.39. The final 95% upper bound for the total θ equals the 
sum of the two bounds: ˆ .qUCL = 0 00000941. It may thus be 
claimed with 95% confidence that no more than 9.41 devices 
per million will be out of spec. Provided, of course, that the 
data are a random sample from a normal distribution.
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An alternative approach for estimating an upper bound on 
θ when there are both upper and lower specification limits is 
to use bootstrapping. Bootstrap confidence limits are created 
by generating many subsamples from the available data and 
examining the distribution of the calculated indices among 
those subsamples.

4.6.2.1  Bootstrap Confidence Limits 
for Individuals Data

To generate bootstrap confidence limits when the data have 
been obtained as n individual observations, proceed as 
follows:

Step 1: Select a random sample of n observations from the 
data, sampling WITH REPLACEMENT. This implies that 
each time an observation is selected, all n observations 
have an equal probability of being selected, even those 
that have been selected previously.

Step 2: Calculate the sample mean x  and estimate the long-
term sigma.

Step 3: Select a random sample of n − 1 successive differ-
ences between consecutive observations in the original 
data, again sampling with replacement.

Step 4: Estimate the short-term sigma from the successive 
differences using the average moving range or another 
suitable method.

Step 5: Use the results from Steps 2 and 4 to estimate the 
quality indices and save them.

Step 6: Repeat Steps 2 through 5 a large number of times 
(50,000 times is common).

Step 7: Create a 95% upper or lower bound for each quality 
index by finding the 95th or 5th percentile of the values 
saved in Step 5. To create two-sided 95% confidence lim-
its, find the 2.5th and 97.5th percentiles.
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Example 4.7 (Continued)

Table 4.11 shows bootstrap estimates of the 95% confidence 
bounds for the proportion of nonconforming medical devices 
and for other quality indices. Note that the estimated upper 
bound for the long-term DPM is 9.00, which is slightly smaller 
than that obtained previously by summing the two upper 
bounds. A larger difference between the estimation methods 
would be expected if nonconforming items were not predom-
inantly located beyond only one of the specification limits.

Table 4.11 Confidence Bounds for Capability Indices of Medical 
Device Diameters Obtained Using Bootstrapping

95.0% Confidence Bounds: Bootstrap Method (50,000 Subsamples)

Index
Lower 

Quality Limit Index
Lower 

Quality Limit

Cp 1.79826 Pp 1.60527

Cr
a 55.6093 Pr

a 62.2946

Cm 1.3487 Pm 1.20396

Zusl 6.05081 Zusl 5.32353

Zlsl 4.70271 Zlsl 4.28984

Zmin 4.70271 Zmin 4.28984

Cpk 1.56757 Ppk 1.42995

Cpk(upper) 2.01694 Ppk(upper) 1.77451

Cpk(lower) 1.56757 Ppk(lower) 1.42995

Cpm 1.39957

Ka −0.0945

% beyond speca 0.000128413 % beyond speca 0.000900381

DPMa 1.28413 DPMa 9.00381

Sigma Quality 
Level

6.20271 Sigma Quality 
Level

5.78984

a Lower quality bound corresponds to upper confidence bound for 
this index.



Capability Analysis of Normally Distributed Data ◾ 93

4.6.2.2  Bootstrap Confidence Limits 
for Subgroup Data

If the n observations are divided into m subgroups, each 
having size nj, the approach described may still be used to 
estimate the mean and the long-term sigma. To estimate the 
short-term or within-group sigma, subsamples must be cre-
ated that have the same structure as the original data. The jth 
subgroup of each bootstrap subsample should thus contain 
nj deviations randomly sampled from the n deviations of 
the observations from their respective subgroup means. The 
within-group sigma may then be estimated using the desired 
method (such as the average subgroup range or standard 
deviation).

4.7  Summary

Given the assumption that data come from a normal dis-
tribution, estimates can be obtained of the proportion of 
nonconforming items using the methods described in this 
chapter. Bounds on that proportion may also be calculated. 
Related indices such as Cpk and Ppk may also be calculated to 
summarize the short-term capability and long-term perfor-
mance of the process.

When the data do not come from a normal distribution, the 
calculated values can be misleading. As discussed in the next 
chapter, tests for normality should be performed before the 
methods described in this chapter are used. If the assumption 
of normality is not tenable, one of the methods described in 
Chapter 5 should be used instead.

Reference
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Capability Analysis 
of Nonnormal Data

The development of capability indices described in Chapter 4 
assumes that the measured data values are a random sample 
from a normal distribution. Although the indices can still be 
calculated as defined there for data from other distributions, 
their meaning is not the same. In particular, the correspon-
dence between specific values of indices such as Cpk and the 
proportion of nonconforming items does not hold if the dis-
tribution is not normal. Likewise, the confidence intervals do 
not provide the stated level of confidence.

To perform a capability analysis when the assumption of 
normality does not hold, the analyst has four choices:

 1. Use the methods based on counting the number of non-
conformities described in Chapters 2 and 3. However, 
since this approach tabulates only whether items are in 
spec or out of spec, it throws away a lot of information 
by not accounting for how close or far from the specifi-
cation limits the measurements are. Consequently, large 

Chapter 5
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sample sizes are needed to obtain a reliable estimate of 
the proportion of nonconforming items.

 2. Seek a transformation of the data such that after the 
transformation, the normal distribution is appropri-
ate. This approach allows all of the results presented in 
Chapter 4 to be applied to the transformed data.

 3. Find an alternative distribution that fits the data well. This 
requires modifying the indices so that they maintain the 
same relationship to DPM as when the normal distribu-
tion is appropriate.

 4. Select a Johnson curve that matches the first four 
moments of the observed data and calculate nonnormal 
capability indices based on that curve.

This chapter describes the latter three approaches, after first 
describing tests designed to indicate whether or not the 
assumption of normality is tenable.

5.1  Tests for Normality

In order to decide whether the results of Chapter 4 can rea-
sonably be applied to a data sample, it is necessary to deter-
mine whether or not the data could reasonably have come 
from a normal distribution. This requires conducting a statisti-
cal test of the following hypotheses:

Null hypothesis H0: data come from a normal distribution
Alternative hypothesis HA: data do not come from a nor-

mal distribution

Since in statistical tests the benefit of the doubt is given to the 
null hypothesis, such a test determines whether or not there 
is sufficient evidence to reject the hypothesis of normality. 
Passing the test is not proof of normality, but failing it indi-
cates that another approach should be used.
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The first step in testing normality is the creation of a 
quantile-quantile or Q-Q plot. A Q-Q plot compares the order 
statistics of the data sample to the equivalent quantiles of 
a normal distribution having the same mean and standard 
deviation as the data. A line is superimposed on the plot to 
help determine whether or not the quantiles of the data corre-
spond closely enough to the expected values for observations 
from a normal distribution.

Example 5.1 Tests of Normality

Figure 5.1 shows a Q-Q plot for the medical device data. 
The sorted values of diameter x(i) are plotted on the vertical 
axis. The corresponding positions on the horizontal axis are 
the percentiles of a normal distribution with the same mean 
and standard deviation as the data, evaluated at
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Figure 5.1 Normal quantile-quantile (Q-Q) plot for untransformed 
medical device diameters.
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95% probability limits for the percentiles of the fitted normal 
distribution are plotted on either side of the diagonal line 
to help judge whether or not the data are close enough to 
have come from a normal distribution. The medical device 
data show pronounced curvature, typical of data with a 
shorter lower tail and longer upper tail than data sampled 
from a normal distribution.

There are many tests that may be used to determine 
whether data come from a normal distribution. For sample 
sizes n ≤ 5000, there is evidence that the most powerful test 
is one developed by Shapiro and Wilk (1965). Their test con-
structs a statistic W , which is roughly based on how close 
the points lie to a straight line on the quantile-quantile plot. 
Associated with W is a P-value that may be used to test the 
hypotheses stated earlier. A P-value less than α, the signifi-
cance level of the test, leads to rejection of the null hypothesis.

Example 5.1 (Continued)

The quantile-quantile plot for the medical device data in 
Figure 5.1 displays the P-value of the Shapiro-Wilk test. The 
P-value is well below α = 0.01, leading to rejection of the 
hypothesis of normality at the 1% significance level.

For data sets in which n > 5000, an alternative test such 
as the Anderson-Darling goodness-of-fit test may be used. 
The Anderson-Darling test measures the area between the 
empirical and fitted cumulative distribution functions. As 
originally derived, P-values used to test goodness-of-fit using 
the A-D test assume that the parameters of the distribution are 
known (not a likely assumption when fitting a distribution to 
data). Thankfully, special modifications of the test have been 
derived, which allow it to be used when the parameters of 
the normal distribution have been estimated from the data, as 
discussed in D’Agostino and Stephens (1986). The Anderson-
Darling test is discussed further in Section 5.3.2.
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5.2  Power Transformations

When the data are such that the hypothesis of normality is 
rejected, it is often possible to find a transformation of the 
data such that the normal distribution is appropriate in the 
transformed metric. If such a transformation can be found, 
then the calculations presented in Chapter 4 can be applied to 
the transformed data.

A widely used class of transformations transforms the ran-
dom variable X according to

 X X p
p¢ = +( ) ¹D for 0 (5.2)

In this transformation, the variable X is raised to the power p, 
after adding an addend equal to Δ. To make the transforma-
tion a continuous function of p, the natural logarithm is used 
when p = 0:

 X X p¢ = +( ) =ln D for 0 (5.3)

Since these power transformations are nonlinear, the distribu-
tion of the transformed data has a different shape than the 
distribution of the original values. If p < 1, the lower tail of 
the distribution is lengthened while the upper tail is short-
ened. If p > 1, the reverse is true. The addend Δ is often set 
equal to 0. However, it must be large enough that all values of 
(X + Δ) are positive.

The general class of power transformations defined by 
(5.2) and (5.3) includes several special cases, as listed in 
Table 5.1. The farther p is from 1 in either direction, the 
stronger the effect of the transformation on the shape of the 
distribution.



100 ◾ Process Capability Analysis: Estimating Quality

5.2.1  Box-Cox Transformations

When a transformation such as that defined earlier is applied 
to X, it changes not only the shape of the distribution but also 
the magnitude of the data values. This makes it hard to com-
pare directly the effect of applying different powers. To avoid 
that problem, Box and Cox (1964) suggested a modification 
of the transformation that preserves the magnitude of the data 
while changing only the shape. They proposed the following 
transformation:
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(5.4)

 X g X¢ = +( ) =ln l l2 1 0if  (5.5)

In their transformation, λ1 is the power, λ2 is the addend, 
and g is the geometric mean of (X + λ2). The effect of the 

Table 5.1 Common Power Transformations

Power Interpretation

p = −2 Reciprocal square

p = −1 Reciprocal

p = −0.5 Reciprocal square root

p = −1/3 Reciprocal cube root

p = 0 Logarithm

p = 1/3 Cube root

p = 0.5 Square root

p = 1 Original data

p = 2 Square

p = 3 Cube



Capability Analysis of Nonnormal Data ◾ 101

Box-Cox transformation on the shape of the distribution is 
equivalent to that proposed in the previous section if λ1 = p 
and λ2 = Δ.

To find the optimal values of λ1 and λ2, Box and Cox pro-
posed minimizing the mean squared error of the transformed 
data:
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(5.6)

Numerical methods are commonly used to find the optimal 
values of λ1 and λ2.

Example 5.2 Power Transformations

When applying the Box-Cox procedure to data in which all 
of the values are positive, it is common practice to start by 
setting Δ = 0. For the medical device diameters, the value 
of p that minimizes the MSE when the range of powers is 
restricted to p = −5 to +5 is p = −5. As may be seen from 
Figure 5.2, the transformation has little effect on the shape 
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Figure 5.2 Q-Q plot after optimizing only the power.
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of the distribution. The fact that the best value of p is at 
one end of the allowable range is an indication that the 
power transformation does not work well with an addend 
equal to 0. This is often the case when the coefficient of 
variation of the data is small.

Figure 5.3 shows the results obtained when both the 
power and the addend are optimized. The resulting power 
transformation is

 X diameter¢ = -( )-1 78688
3 15

.
.

 (5.7)

The Shapiro-Wilk P-value is now well above 0.1, indicating 
that there is no reason to reject the hypothesis of normal-
ity for the transformed data. The points also lie much closer 
to the diagonal line on the Q-Q plot. The reason that the 
transformation works well once the addend is allowed to be 
nonzero is that it shifts the origin of the transformed data to 
a positive value 1.78688, thereby increasing the coefficient 
of variation and allowing the power to have a greater impact 
on the shape of the distribution.

Note: Many distributions that are useful for model-
ing continuous data such as the lognormal and gamma 

Quantile-quantile plot
Power: –3.15, addend: –1.78688, RMSE: 0.0161328, Shapiro-Wilk P-value: 0.8671
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Figure 5.3 Q-Q plot after optimizing both the power and addend.
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distributions are only defined for values of X > τ, where τ 
is called the “lower threshold” of the distribution. If τ = 0, 
as is often the case, then the distribution is defined for 
all positive values of X. When fitting a power transforma-
tion, the values of X are restricted such that X + Δ > 0. 
Consequently, the implied lower threshold of the distribution 
when  estimating a power transformation involving a nonzero 
addend is τ = −Δ.

5.2.2  Calculating Process Capability

After applying the power transformation, the transformed data 
usually have no direct interpretation. What the transforma-
tion does is provide a metric in which the variability among 
the data values is well approximately by a normal distribution 
and in which the results of procedures that assume normality 
can be applied. This includes all of the methods described in 
Chapter 4 for calculating capability indices and the proportion 
of nonconforming items.

Example 5.3 Calculating Process Capability 
for Transformed Data

To calculate process capability for the medical device data, 
the entire problem (both the data and the specification 
limits) must first be transformed using Equation 5.7. The 
transformed specification limits are given by

 LSL¢ = -( ) =-
1 9 1 78688 957 968

3 15
. . .

.

 (5.8)

and

 USL¢ = -( ) =-
2 1 1 78688 38 7714

3 15
. . .

.

 (5.9)

Because of the negative power, the limits have switched 
from lower to upper and vice versa. Performing a capabil-
ity analysis on the transformed data with the transformed 
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specification limits yields the results shown in Figure 5.4. 
Notice that the transformed data are much more symmetric 
than the original data and appear to be well-described by a 
normal distribution. The Shapiro-Wilk P-value is well above 
0.1, indicating that the transformed data are adequately 
characterized by a normal distribution.

Since there is no intrinsic meaning to the data when 
expressed in the transformed metric, it is often more 
appealing to apply an inverse transformation to the fitted 
normal distribution and plot everything in the original 
units. Figure 5.5 shows the same analysis as Figure 5.4, 
except that the normal distribution has been expressed in 
the original units of diameter. Note that the implied distri-
bution in the original metric is positively skewed, which 
matches the previously noted properties of the data.

To calculate capability indices, the equations presented 
in Chapter 4 may now be applied to the transformed 
values of diameter. For example, the value of Pp would 
be calculated by dividing the difference between the 
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Figure 5.4 Process capability analysis for the transformed medical 
device data.
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transformed specification limits by 6 times the standard 
deviation of the transformed data.

Example 5.3 (Continued)

The value of Pp based on the transformed data is

 
Pp =

-
×

=957 968 38 7714

6 40 6898
3 765

. .

.
.

 
(5.10)

Compared to the results given in Chapter 4, which assumed 
that the original data came from a normal distribution and 
gave an estimate of Pp = 1.85, this is a fairly dramatic increase. 
On the other hand, Ppk has decreased from 1.62 before the 
transformation to 1.03 after the transformation. This results 
in a corresponding increase in the long-term DPM from less 
than 1 to almost 982. The long upper tail that was visible in 
the data when drawn in the untransformed metric is now a 
much shorter lower tail in the transformed metric. However, 
the transformed mean is much closer to the transformed 
specification limit, resulting in a larger value of DPM.

Capability plot with equivalent 3.0 sigma limits
Normal distribution (mean = 164.735, std. dev. = 40.6898, addend: –1.78688, power: –3.15)
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Figure 5.5 Inverse transformation after fitting normal distribution in 
transformed metric.
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5.2.3  Confidence Limits for Capability Indices

To calculate confidence limits for the capability indices, the 
results of Chapter 4 are applied in the transformed metric. 
Any assumptions of normality apply in that metric, rather than 
in the original untransformed units.

Example 5.3 (Continued)

Table 5.2 shows the estimated values for various capability 
indices, all calculated using the transformed medical device 
diameters. Table 5.3 shows 95% lower confidence bounds 
for the indices. Based on the analysis, it may be stated with 
95% confidence that Ppk ≥ 0.899.

It should be noted that two methods have been suggested 
in the literature for calculating capability indices when trans-
forming data by a power transformation:

 1. Transforming both the data and the specifica-
tion limits and calculating the indices in the trans-
formed metric. This is the approach that has been 
used here.

 2. Transforming the data, finding percentiles of the normal 
distribution in the transformed metric that correspond to 
μ ± 3σ, inversely transforming the percentiles, and then 
calculating the indices using the distance between the 
percentiles instead of 6σ.

The major advantage of the first method is that it preserves 
the relationship between the indices and the proportion of 
nonconforming items. Using the first approach, Cpk = 1.5 
continues to imply that DPM = 3.4, which would not be true 
using the second approach.
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5.3  Fitting Alternative Distributions

Many probability distributions have been developed over the 
years for modeling data. When the normal distribution does 
not fit well, an alternative to transforming the data is to search 
for a different distribution that does a better job of describing 

Table 5.2 Capability Indices Calculated 
in the Transformed Metric

Short-Term
Capability

Long-Term
Performance

Sigma (after transformation) 38.1337 40.6898

Cp/Pp 4.01743 3.76506

Cr/Pr 24.8915 26.56

Cm/Pm 3.01307 2.8238

Zupper 3.30321 3.09571

Zlower 20.8014 19.4947

Zmin 3.30321 3.09571

Cpk/Ppk 1.10107 1.0319

Cpk/Ppk(upper) 1.10107 1.0319

Cpk/Ppk(lower) 6.93379 6.49822

CCpk −7.23508

Cpm 2.86682

K −0.0416431

% beyond spec 0.0477986 0.0981793

DPM 477.986 981.793

Sigma Quality Level 4.8 4.6

Note: Based on 6.0 sigma limits in the transformed metric. Short-
term sigma estimated from average moving range. The 
Sigma Quality Level includes a 1.5 sigma shift in the mean.
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the observed data. Often, a distribution can be found that has 
the same basic shape as the population from which the sam-
ple was taken.

Table 5.4 lists 27 distributions that may be used to model 
continuous data. Each distribution has between 1 and 3 
parameters. Note that some distributions have restrictions on 
the range of values for X. Further information about each dis-
tribution may be found in Appendix A.

Table 5.3 95% Confidence Bounds for Capability Indices 
Calculated in the Transformed Metric

Index

Lower 
Quality 

Limit Index

Lower 
Quality 

Limit

Cp 3.54411 Pp 3.32147

Cr
a 28.2159 Pr

a 30.1071

Cm 2.65808 Pm 2.4911

Zupper 2.8835 Zupper 2.6982

Zlower 18.3642 Zlower 17.2099

Zmin 2.8835 Zmin 2.6982

Cpk 0.961168 Ppk 0.899401

Cpk(upper) 0.961168 Ppk(upper) 0.899401

Cpk(lower) 6.12141 Ppk(lower) 5.73664

CCpk 0.0

Cpm 2.56168

Ka −0.302878

% beyond speca 0.253075 % beyond speca 0.437011

DPMa 1966.45 DPMa 3485.77

Sigma Quality 
Level

4.3835 Sigma Quality Level 4.1982

a Lower quality bound corresponds to upper confidence bound for this 
index.
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Table 5.4 Distributions for Continuous Data

Distribution Parameters Range of X

Birnbaum-Saunders Shape β, scale θ > 0 X > 0

Cauchy Mode θ, scale β > 0 All real X

Exponential Rate λ > 0 X ≥ 0

Exponential 
(2-parameter)

Threshold θ, scale λ > 0 X ≥ θ

Exponential power Mean μ, scale β ≥ −1, scale 
ϕ > 0

All real X

Folded normal Location μ > 0, scale σ ≥ 0 X ≥ 0

Gamma Shape α > 0, scale λ > 0 X ≥ 0

Gamma (3-parameter) Threshold θ, shape α > 0, 
scale λ > 0

X ≥ θ

Generalized gamma Location μ, scale σ > 0, 
shape λ > 0

X > 0

Generalized logistic Location μ, scale κ > 0, 
shape γ > 0

All real X

Half normal Threshold μ, scale σ > 0 X ≥ μ

Inverse Gaussian Mean θ > 0, scale β > 0 X > 0

Laplace Mean μ, scale λ > 0 All real X

Largest extreme value Mode γ > 0, scale β > 0 All real X

Logistic Mean μ, std. dev. σ > 0 All real X

Loglogistic Median exp(μ), shape σ > 0 X > 0

Loglogistic 
(3-parameter)

Threshold θ, median exp(μ), 
shape σ > 0

X > θ

Lognormal Location μ, scale σ > 0 X > 0

Lognormal 
(3-parameter)

Threshold θ, location μ, 
scale σ > 0

X > θ

(Continued)
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5.3.1  Selecting a Distribution

If no theory exists to explain why a random variable should 
follow a particular distribution, the data themselves must 
be used to suggest a reasonable model. A useful way to 
proceed is to fit all of the distributions and rank their good-
ness-of-fit from best to worst according to one of various 
measures:

 1. Log likelihood: calculates the natural logarithm of the like-
lihood function for each distribution
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where ˆ ˆf xi|q( ) is the probability density function fit-
ted to the data for that distribution. Larger values of the 
log likelihood function usually indicate better fitting 
distributions.

Distribution Parameters Range of X

Maxwell Threshold θ, scale β > 0 X > θ

Normal Mean μ, std. dev. σ > 0 All real X

Pareto Shape c > 0 X ≥ 1

Pareto (2-parameter) Threshold θ > 0, shape c > 0 X ≥ θ

Rayleigh Threshold θ, scale β > 0 X > θ

Smallest extreme value Mode γ > 0, scale β > 0 All real X

Weibull Shape α > 0, scale β > 0 X ≥ 0

Weibull (3-parameter) Threshold θ, shape α > 0, 
scale β > 0

X ≥ θ

Table 5.4 (Continued) Distributions for Continuous Data



Capability Analysis of Nonnormal Data ◾ 111

 2. Kolmogorov-Smirnov D: calculates the maximum distance 
between the cumulative distribution function (CDF) of 
the data and the CDF of the fitted distribution. Smaller 
values of D correspond to better fits.

 3. Anderson-Darling A2: calculates a weighted measure of 
the area between the empirical and fitted CDFs. Smaller 
values of A2 correspond to better fits.

Example 5.4 Fitting an Alternative Distribution

Table 5.5 shows statistics derived when each of the 27 
distributions is fit to the medical device diameters. The 
distributions have been sorted according to the value of 
the Anderson-Darling statistic. There is some disagreement 
among the goodness-of-fit statistics as to which distribu-
tion provides the best fit. The log likelihood statistic and the 
Anderson-Darling statistic give the best results when using 
the 3-parameter loglogistic distribution. The Kolmogorov-
Smirnov D statistic is smallest for the generalized logistic 
distribution. Among the distributions with no more than 2 
parameters, the largest extreme value distribution is the best 
according to all of the criteria.

In choosing between alternative distributions, it is impor-
tant to consider several factors:

 1. In general, simpler models (those with fewer param-
eters) are preferable to more complicated models. 
Adding a third parameter to a distribution will always 
allow it to conform more closely to an observed set of 
data. But a third parameter increases the risk of over-
fitting the sample data, which may in the long run give 
a poorer description of the population from which the 
data came. If two distributions perform similarly and 
one has less parameters than the other, the distribution 
with less parameters will usually be preferable.
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   2. Certain 3-parameter distributions such as the 
3-parameter loglogistic and the 3-parameter lognormal 
distribution add an additional threshold parameter 
to distributions that are normally defined for 
X > 0. This is similar to using a nonzero addend when 
transforming the data in the previous section. As will be 
seen in the following example, adding a lower threshold 
can cause problems when estimating the lower tail of 
the distribution.

Example 5.4 (Continued)

Figure 5.6 shows the 3 best-fitting distributions for the medi-
cal device data. The 2-parameter largest extreme value distri-
bution and the 3-parameter generalized logistic distribution 
are almost identical. The estimated parameters are shown in 
Table 5.6.

Consider for a moment the 3-parameter loglogistic dis-
tribution. Allowing for a third parameter shifts the lower 
limit of the distribution from X = 0 to X = 1.93928. Below 
that threshold, the distribution is not defined. In this case, 
it means that the distribution is not defined at the lower 
specification limit of 1.9, arbitrarily forcing the proportion 
of nonconforming items below that lower limit to be 0. 
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Figure 5.6 Best-fitting distributions for medical device diameters.
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Similar behavior occurs with the 3-parameter lognormal, 
gamma, and Weibull distributions. Selecting a distribution 
that is not defined at one of the specification limits is not 
good practice.

Given these considerations, the largest extreme value 
distribution appears to be the best alternative distribution 
for the medical device data. The fitted largest extreme value 
distribution is shown in Figure 5.7. Note that the distribution 
is characterized by its mode (the location at which the PDF 

Table 5.6 Estimated Parameters for Distributions Fit to Medical 
Device Diameters

Fitted Distributions

Generalized Logistic
Largest Extreme 

Value Loglogistic (3-Parameter)

Location = 1.94242 Mode = 1.97962 Median = 0.0453747

Scale = 0.013316 Scale = 0.0138082 Shape = 0.198385

Shape = 17.0816 Lower threshold = 1.93928

Capability plot with equivalent 3.0 sigma limits
Largest extreme value distribution (mode = 1.97962, scale = 0.0138082)
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Long-term indices
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DPM= 163.638

Figure 5.7 Largest extreme value distribution with equivalent 
“3-sigma” limits.
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is highest) and a scale parameter that determines its spread. 
The short vertical lines on the plot are located at the 0.135% 
and 99.865% percentiles, which are equivalent to μ ± 3σ 
when fitting a normal distribution.

5.3.2  Testing Goodness-of-Fit

The Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) 
statistics may be used to test the hypothesis that a selected 
distribution provides a satisfactory model for data that were 
randomly sampled from a population. A typical set of hypoth-
eses to be tested is

Null hypothesis H0: data come from a largest extreme 
value distribution

Alternative hypothesis HA: data do not come from a larg-
est extreme value distribution

The K-S and A-D statistics compare the fitted cumulative 
distribution F̂ X( ) to the empirical distribution function 
(EDF) of the data. To perform the tests, the fitted distribu-
tion is first evaluated at each of the order statistics in the 
sample:

 z F xi i( ) ( )= ( )ˆ
 (5.12)

To calculate the K-S statistic, the maximum distances of the 
EDF above and below the fitted cumulative distribution are 
then calculated:
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The overall K-S statistic is the larger of the 2 distances:

 D D D= ( )+ -max ,  (5.15)

The A-D statistic is based on the area between the fitted and 
empirical cumulative distribution functions. One formula for 
calculating it is

 
A n

i z n i z

n
i

n

i i
2 1

2 1 2 1 2 1
= - -

-( ) ( ) + + -( ) -( )( )
=

( ) ( )å ln ln

 (5.16)

Unfortunately, it is not possible to calculate exact P-values 
for testing the stated hypotheses when the parameters of the 
distribution have been estimated from the data. However, 
modifications of the K-S and A-D statistics have been derived 
for many popular distributions and may be compared to 
tabulated critical values in order to decide whether or not to 
reject the null hypothesis. These modifications are discussed 
in detail in D’Agostino and Stephens (1986). In particular, 
to test the goodness-of-fit of the largest extreme value or 
Weibull distribution using the K-S test when the distribution 
parameters have been estimated from the data, the statistic 
nD is compared to a table of critical values derived from 

Monte Carlo studies. For a sample of n = 100 observations, 
the null hypothesis is rejected at the 5% significance level 
if nD is greater than 0.865 and at the 10% level if nD is 
greater than 0.795. Using the A-D statistic, A2 is first con-
verted to a modified value according to

 
A A nmod .2 2 1 0 2= +( )/

 
(5.17)

If the modified value is greater than 0.757, the null hypoth-
esis is rejected at the 5% significance level. If it is greater 
than 0.637, the null hypothesis is rejected at the 10% 
significance level.
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Example 5.5 Testing Goodness-of-Fit 
of Nonnormal Distribution

Table 5.7 shows the results of performing the K-S and A-D 
tests on the medical device diameters after fitting a largest 
extreme value distribution. Both the original test statistics 
and the modified versions are shown. The P-values are 
both greater than or equal to 10%, implying that the largest 
extreme value distribution provides a reasonable model for 
the medical device data.

5.3.3  Calculating Capability Indices

When calculating capability indices for distributions 
other than the normal distribution, the formulas given in 
Chapter 4 cannot be used. Those formulas rely on model-
ing the data by a normal bell-shaped curve, which is com-
pletely specified by μ and σ. What must be done instead is 
as follows:

 1. Use the fitted distribution F̂ x( ) to calculate q̂LSL and q̂USL, 
the proportion of nonconforming items estimated to be 
beyond each specification limit.

 2. Use the relationship between θ and Z given in Equation 
4.28 to calculate equivalent Z-indices. An equivalent 
Z-index is the value of a standard normal random 

Table 5.7 Goodness-of-Fit Tests for the Medical Device 
Diameters

Distribution: Largest Extreme Value

Kolmogorov-Smirnov D Anderson-Darling A2

Statistic 0.0670121 0.309344

Modified form 0.670121 0.315531

P-value ≥0.10a ≥0.10a

a Indicates that the P-value has been compared to tables of critical 
values specially constructed for fitting the selected distribution.
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variable that corresponds to the same estimated propor-
tion of nonconforming items as the fitted distribution.

 3. Use the relationship between Z and Cpk, SQL and other indi-
ces to generate equivalent values of those indices.

Example 5.6 Calculating Capability Indices 
for Nonnormal Distribution

Table 5.8 shows the results of fitting a largest extreme value 
distribution to the medical device diameters. It shows the 
following:

Equivalent 6.0 Sigma Limits: Percentiles of the fitted larg-
est extreme value distribution located at the same per-
centages as μ ± 3σ when using a normal distribution. 
This equivalent “6-sigma” range, 1.95355 to 2.07085, 
contains 99.73% of the fitted distribution.

Observed Beyond Spec: The percentages of the sample 
data below the lower specification limit and above 
the upper specification limit. Note that all of the data 
values are within the specification limits.

Estimated Beyond Spec: The estimated probability of 
being below the lower specification limit and above 
the upper specification limit, based on the fitted largest 
extreme value distribution.

Z-Score: Quantiles of the standard normal distribution 
corresponding to the estimated percentages beyond 
the specification limits.

Defects per Million: The estimated percentages beyond 
the specification limits expressed as occurrences per 
million.

The fitted largest extreme value distribution has an esti-
mated area of 0.016364% above the upper specification 
limit, corresponding to a DPM = 163.64. In the case of 
a standard normal distribution, that same area is found 
above Z = 3.59, implying that the upper specification limit 
is the equivalent of 3.59 standard deviations above the 
mean for a normal population. The Z-Score for the lower 
specification limit is too large to display, but corresponds 
to an estimated DPM = 0. The Z-Score for the target value 
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is calculated by determining at what percentile of the 
fitted largest extreme value distribution that target value 
lies and converting it to a standard normal random vari-
able. The conclusion derived from this analysis is that 
approximately 164 devices out of every million produced 
will have a diameter outside of the specification limits. 
This estimate is substantially above the estimate obtained 
when assuming normality in Chapter 4 but less than that 
obtained using the transformation approach described 
in Section 5.2.

Having obtained equivalent Z-indices using the fitted dis-
tribution, it is now possible to compute equivalent capability 
indices. Since the lower specification limit is so far down in 

Table 5.8 Calculated DPM and Equivalent Z-Scores When Fitting a 
Largest Extreme Value Distribution to the Medical Device Diameters

Data variable: Diameter

Transformation: None

Distribution: 
Largest 
Extreme Value

Sample size = 100

Mean = 1.97962

Scale = 0.0138082

(Mean = 1.98759)

Std. dev. = 0.0177097

Equivalent 6.0 
Sigma Limits

99.865 percentile = 2.07085

Median = 1.98468

0.134996 percentile = 1.95355

Specifications
Observed 

Beyond Spec Z-Score

Estimated 
Beyond 

Spec

Defects 
Per 

Million

USL = 2.1 0.000000% 3.59 0.016364% 163.64

Nominal = 2.0 0.83

LSL = 1.9 0.000000% 0.000000% 0.00

Total 0.000000% 0.016364% 163.64
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the lower tail of the fitted distribution, the problem of esti-
mating process capability for the medical device diameters 
is essentially one sided. To compute Ppk, insert the value of 
Zmin = 3.59 into Equation 4.37, which yields Ppk = 3.59/3 = 
1.2. Similar calculations may be made for many of the other 
capability indices.

Table 5.9 shows a complete set of capability indices 
for the medical device diameters, based on the fitted larg-
est extreme value distribution. Only those indices that are 
directly related to θ are displayed. All of the indices are 
derived from the equivalent Z-indices.

It will be noticed in Table 5.9 that estimates are given 
for both short-term capability and long-term performance. 

Table 5.9 Calculated Capability Indices for the Medical Device 
Diameters Based on the Fitted Largest Extreme Value Distribution

Capability Indices for Diameter

Short-Term
Capability

Long-Term
Performance

Sigma (after normalization) 0.93374 1.0

Zupper 3.84765 3.5927

Zmin 3.84765 3.5927

Cpk/Ppk 1.28255 1.19757

Cpk/Ppk(upper) 1.28255 1.19757

Cpk/Ppk(lower)

CCpk 0.98763

K −0.298612

% beyond spec 0.00596507 0.0163638

DPM 59.6507 163.638

Sigma Quality Level 5.35 5.09

Note: Based on 6.0 sigma limits in the normalized metric. Short-term 
sigma estimated from average moving range. The Sigma Quality 
Level includes a 1.5 sigma shift in the mean.
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Fitting a distribution to the entire sample of n observations 
estimates the long-term performance of the process over 
the entire sampling period. When converted to equivalent 
Z-scores, the long-term sigma is standardized to a value of 1.

To calculate the equivalent short-term sigma, all observa-
tions are converted to Z-scores and the short-term and long-
term sigmas are calculated from those scores in the usual 
manner. The equivalent short-term sigma is then set equal to 
the ratio of the calculated short-term and long-term sigmas 
and used to calculate the short-term indices.

5.3.4  Confidence Limits for Capability Indices

While the relationship between θ and Z can be used to calcu-
late point estimates of equivalent capability indices, it cannot 
reliably be used to calculate confidence limits. This is because 
the properties of the estimated parameters of other distribu-
tions are not as well studied as for the normal distribution. 
One possible solution to this problem is to use bootstrapping. 
Bootstrapping is a method by which the sampling variability 
of a statistic can be determined by repeatedly sampling the 
available data.

In particular, suppose n observations have been sampled 
from an unknown population. To assess the sampling variabil-
ity of a statistic such as Ppk, bootstrapping would proceed as 
follows:

 1. Create another sample of size n by randomly selecting 
observations from the original sample with replacement. 
This means that after each observation is selected, it is 
returned to the original sample and may well be selected 
again.

 2. Fit the selected distribution to the new sample.
 3. Calculate an equivalent Ppk using the fitted distribution 

and store it somewhere.
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 4. Repeat Steps 1 through 3 a large number of times, per-
haps 50,000 times. Using this technique accumulates 
50,000 values for Ppk.

 5. Calculate confidence limits and bounds on Ppk from the 
percentiles of the 50,000 calculated values. For example, 
the 5th percentile of the 50,000 values provides a one-
sided lower 95% confidence bound for Ppk.

Example 5.6 (Continued)

Table 5.10 shows confidence bounds for several capability 
indices based on 50,000 subsets of the medical device data. 
With 95% confidence, it is estimated that the DPM is no 
greater than 455. Note: The “lower” quality bound displayed 
for DPM is actually its upper confidence bound, since high 
values of DPM are undesirable.

Table 5.10 Confidence Bounds for Quality 
Indices for the Largest Extreme Value Model 
Based on Bootstrapping

95.0% Confidence Bounds—Bootstrap 
Method (50,000 Subsamples)

Index Lower Quality Bound

Zupper 3.317

Zmin 3.317

Ppk 1.10567

Ppk(upper) 1.10567

Ppk(lower) 6.14978

Ka −0.0373924

% beyond speca 0.0454964

DPMa 454.964

Sigma Quality Level 4.817
a Lower quality bound corresponds to upper 

confidence bound for this index.
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5.4  Nonnormal Capability Indices 
and Johnson Curves

Another method that has been suggested for estimating capa-
bility indices when the data do not conform to a normal dis-
tribution involves approximating the distribution of the data 
using Johnson curves. In 1949, N.L. Johnson developed a fam-
ily of 4-parameter probability distributions that are capable of 
representing a population with any combination of skewness 
and kurtosis. The distributions are based on a set of normal-
izing transformations that convert the random variable X to a 
standard normal random variable Z according to

 
Z f

X= + -æ
è
ç

ö
ø
÷g d q

l  
(5.18)

where
θ is a location parameter
λ is a scale parameter
γ and δ are shape parameters
f (.) is a transformation function

In order to match all combinations of possible values for 
the first four moments, three basic types of Johnson distribu-
tions with different transformation functions were defined:

 1. Unbounded distributions SU: These distributions are used 
for situations in which the standardized third moment 
b1  is less than the standardized fourth moment β2. 

Letting y = (x – θ)/λ, the probability density function for 
the unbounded distributions is
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 2. Bounded distributions SB: These distributions are used for 
situations in which the standardized third moment b1  is 
greater than the standardized fourth moment β2. The prob-
ability density function for the bounded distributions is
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 3. Lognormal distributions SL: These distributions are used 
for situations in which the standardized third moment 
b1  is equal to the standardized fourth moment β2. The 

probability density function for the lognormal family of 
distributions is
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Several methods for fitting a Johnson distribution to a set 
of data have been proposed. Fitting involves two steps: (1) 
selecting the appropriate type of distribution from the three 
shown here and (2) estimating the parameters. Slifker and 
Shapiro (1980) suggested a method that uses four percentiles 
of the data to accomplish both steps. A value of the standard 
normal random variable 0 < Z < 1 is first selected. The inverse 
normal cdf is then evaluated at −3Z, −Z, Z, and 3Z, which 
gives four percentages. The percentiles of the data are then 
calculated at those percentages. Based on the relative dis-
tance between the inner and outer percentiles, a transforma-
tion function is selected and the parameters estimated. This 
method is said to be more reliable than matching moments, 
which tends to be quite variable and greatly influenced by 
outliers.
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Since the Johnson distributions are constructed by 
transforming the variable X to a standard normal distribu-
tion, capability indices may be estimated from the trans-
formed data using the formulas presented in Chapter 4. 
However, confidence limits for the indices can only be 
constructed using bootstrapping, since the methodology 
for selecting and fitting a Johnson curve is difficult to study 
analytically.

Example 5.7 Transformation using Johnson Curves

Figure 5.8 shows the result of selecting and estimating 
a Johnson curve for the medical device diameters. The 
selected distribution is part of the unbounded SU family. 
Along the top of the graph are estimates of γ, θ, δ, and λ. 
As expected, the fitted distribution is positively skewed. 
Table 5.11 shows confidence limits for several important 
capability indices obtained using bootstrapping with 50,000 
subsamples.

Capability plot with equivalent 3.0 sigma limits
Johnson SU distribution (shape 1= –2.04057, location = 1.96068, shape 2 = 2.02226,

scale = 0.0195745)
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Figure 5.8 Johnson distribution fitted to medical device diameters.
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Table 5.11 Capability Indices for Medical Device Diameters 
Estimated Using Fitted Johnson Distribution

Capability Indices for Diameter

Short-Term
Capability

Long-Term
Performance

Sigma (after normalization) 0.936381 1.0

Cp/Pp 1.62332 1.52005

Zupper 3.56664 3.33974

Zmin 3.56664 3.33974

Cpk/Ppk 1.18888 1.11325

DPM 180.831 419.301

Sigma Quality Level 5.07 4.84

Note: Based on 6.0 sigma limits in the normalized metric. 
Short-term sigma estimated from average moving range. 
The Sigma Quality Level includes a 1.5 sigma shift in the 
mean.

95.0% Confidence Bounds—Bootstrap Method (50,000 
Subsamples)

Index Lower Quality Bound

Pp 1.05563

Zupper 2.69506

Zmin 2.69348

Ppk 0.897825

DPMa 3776.34

Sigma Quality Level 4.19348
a Lower quality bound corresponds to upper confidence bound  

for this index.
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5.5  Comparison of Methods

The various approaches used in this chapter for dealing 
with nonnormal data give somewhat different results for 
the estimated proportion of nonconforming items, as sum-
marized in Table 5.12. The difference in the results is due 
primarily to differences in the estimated upper tail of the 
fitted probability distributions. The power transformation 
approach results in the heaviest upper tail and consequently 
the highest DPM.

One of the most interesting results is the magnitude of 
the confidence bounds for Ppk and DPM when using the 
Johnson curves compared to the other procedures. The esti-
mated Ppk for the Johnson curves is considerably larger than 
that obtained when using the power transformations, but 
the lower bound is the same. It may well be that the step 
involved in identifying the type of Johnson curve adds consid-
erable variability to the estimated capability indices.

In truth, the differences between the three methods for 
dealing with nonnormal data are not large given the relatively 

Table 5.12 Comparison of Results Obtained from Different 
Methods of Estimating Medical Device Diameter Capability

Method
Estimated 

DPM

Upper 95% 
Confidence 
Bound for 

DPM
Estimated 

Ppk

Lower 95% 
Confidence 
Bound for 

Ppk

Power 
transformation

982 3486 1.03 0.90

Largest extreme 
value 
distribution

164 455 1.20 1.11

Johnson curves 419 3776 1.11 0.90

Normal 
distribution

0.6 9 1.62 1.43
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small sample of 100 items. The task of estimating noncon-
formance probabilities in the range of several hundred per 
million from only 100 data values is not an easy one. It would 
normally be preferable to have at least 300–500 observations 
in order to choose the best model. Once a model has been 
established for a particular process variable, smaller samples 
can then be used to estimate process capability on a regular 
basis.
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Statistical Tolerance 
Limits

An increasingly popular method for demonstrating that a 
process is capable of satisfying established requirements or 
specifications involves the construction of statistical tolerance 
limits. Statistical tolerance limits use the information contained 
in n observations, randomly sampled from a population, to 
make a statement about a given proportion of that population 
at a stated level of confidence. For example, n = 100 medi-
cal devices might be selected from a manufacturing process 
that produces many such items and the diameter of each of 
the 100 items measured. A statistical tolerance interval could 
be constructed from those measurements that would indicate 
with 95% confidence the range within which the diameter of 
99% of all manufactured devices would fall. If this interval is 
completely within the specification limits, the analyst could 
state with 95% confidence that at least 99% of all devices would 
satisfy the specifications.

Chapter 6



132 ◾ Process Capability Analysis: Estimating Quality

There are two main types of statistical tolerance limits:

 1. Two-sided intervals that consist of both a lower limit and 
an upper limit

 2. One-sided bounds that consist of one limit only

Two-sided tolerance intervals are useful when the analyst 
needs to demonstrate that a product falls between two speci-
fication limits. One-sided bounds are useful when the analyst 
needs to demonstrate that a product is either above or below 
a single specification limit.

Example 6.1 Analysis of Medical Device Diameters

Consider the medical device data introduced in Chapter 1. 
The diameter of the devices is supposed to fall within the 
range 2.0 ± 0.1 mm. Suppose that a process engineer wishes 
to demonstrate with 95% confidence that at least 99% of all 
devices in the population from which the sample was taken 
fall within those specification limits.

There are two ways to approach this problem:

 1. A distribution could be fit to the data and  parametric 
 statistical tolerance limits calculated. This would 
 necessitate selecting a particular distributional form, 
such as a normal distribution (perhaps after trans-
forming the observations) or some other continuous 
distribution.

 2. Nonparametric statistical tolerance limits could be 
 calculated that do not assume any specific distribution.

Parametric intervals are usually tighter than the nonparametric 
intervals since they make assumptions about the shape of the 
population. However, nonparametric intervals will be correct 
whether or not those assumptions hold.
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6.1  Tolerance Limits for Normal Distributions

If the measurements to be analyzed follow a normal distribu-
tion, statistical tolerance limits may be calculated from the 
sample mean x  and the sample standard deviation s. Suppose 
that the engineer wishes to make a statement about 100P% 
of the population at a confidence level equal to 100(1 − α)%. 
A two-sided normal tolerance interval is calculated by

 x Ks±  (6.1)

where the factor K depends upon the sample size n, the level 
of confidence 100(1 − α)%, and the specified proportion of 
the population P. A one-sided upper bound is calculated from

 x K s+ 1  (6.2)

and a one-sided lower bound from

 x K s- 1  (6.3)

Note that the K1 factor for the one-sided bound is not the 
same as the K factor for the two-sided interval. Tables exist 
from which the K factors may be obtained for specific combi-
nations of n, P, and α, see for example Montgomery (2013), 
although most statistical software uses formulas to calculate 
the K factors.

Example 6.1 (Continued)

For the n = 100 medical devices, the sample mean 
 diameter x  = 1.98757 and the sample standard deviation 
s = 0.0179749. To construct a 95% normal tolerance interval 
for 99% of the population from which the sample was taken, 
a two-sided “95–99” interval is calculated using K = 2.93584:

 1 98757 2 93584 0 0179749 1 93480 2 04034. . . . .± = ( )* ,  (6.4)
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This results in an interval ranging from approximately 
1.935 to 2.040. Figure 6.1 shows the calculated  tolerance 
limits superimposed on a normal distribution with the 
same mean and standard deviation as the data. Notice 
that the tolerance limits fit comfortably within the 
specifications.

Alternatively, if the specification consisted of a single 
upper specification limit, a 95% upper tolerance bound 
for 99% of the population could be constructed using 
K = 2.68396:

 1 98757 2 68396 0 0179749 2 03581. . . .+ =*  (6.5)

The tolerance bound implies that the engineer may be 
95% confident that at least 99% of the medical devices 
in the population are at or below 2.036. As may be seen 
in Figure 6.2, this bound is closer to the mean of the 
 population than is the upper limit of the two-sided tolerance 
interval.

Capability plot with 95.0–99.0 tolerance limits
Normal distribution (Mean = 1.98757, Std. dev. = 0.0179749)
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Figure 6.1 95–99 normal tolerance limits for medical device 
diameters.
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It is interesting to note that the central 99% of the fitted 
distribution of the medical device diameters ranges between 
1.94127 and 2.03387 (the 0.5% quantile and the 99.5% 
 quantile), as shown by the shaded area in Figure 6.3. This 
is tighter than the 95–99 tolerance interval, since the shaded 

Capability plot with 95.0–99.0 tolerance limits
Normal distribution (Mean = 1.98757, Std. dev. = 0.0179749)
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Figure 6.2 95–99 upper tolerance bound for medical device 
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area does not allow for estimation error. The 95–99 statistical 
tolerance interval allows for potential error in estimating the 
two quantiles and thus covers more than 99% of the fitted 
distribution.

6.2  Tolerance Limits for Nonnormal 
Distributions

The statistical tolerance limits calculated in Section 6.1 are 
only correct if the data come from a normal distribution. 
Section 5.1 described the Shapiro-Wilk test, which may be 
used to determine whether or not the data to be analyzed 
could reasonably have come from a normal distribution.

If the assumption of normality does not hold, the process 
engineer has three choices:

 1. Seek a transformation of the data such that after the 
transformation, the normal distribution is appropriate.

 2. Find an alternative distribution that fits the data well 
and construct statistical tolerance limits based on that 
distribution.

 3. Calculate nonparametric tolerance limits.

6.2.1  Tolerance Limits Based on 
Power Transformations

Section 5.2 described a method by which a transformation of 
the data could be sought based on a power p according to

 X X p
p¢ = +( ) ¹D for 0 (6.6)

and

 X X p¢ = +( ) =ln D for 0 (6.7)
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This transformation first adds the quantity Δ (called the 
addend) to each observation and then raises the sum to the 
power p. Optimal values of p and Δ can often be obtained 
using the Box-Cox approach. If the transformation is success-
ful, the transformed values should pass the Shapiro-Wilk test 
for normality.

If a transformation is obtained that yields transformed 
values that are normally distributed, then statistical tolerance 
intervals or bounds may be obtained in the transformed met-
ric using the methods of the previous section. The tolerance 
limits can then be inversely transformed into the original met-
ric, where they will still bound the stated population percent-
age at the desired confidence level.

Example 6.2 Use of Power Transformations

In Section 5.2, the Box-Cox procedure was used to find an 
optimal transformation of the medical device diameters. 
This resulted in values for p = −3.15 and Δ = −1.78688. The 
Shapiro-Wilk test was then applied to

 X X¢ -= -( )1 78688
3 15

.
.

 (6.8)

which did not reject the hypothesis that the X′ values 
came from a normal distribution. 95% statistical tolerance 
 limits for 99% of the medical device diameters may thus be 
obtained by

 1. Calculating the sample mean and sample standard 
 deviation of the transformed values, x  = 164.735 and 
s = 40.6898

 2. Constructing tolerance limits in the transformed metric 
from

 164 735 2 93584 40 6898 45 2763 284 194. . * . . .± = ( ),  (6.9)
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 3. Applying the inverse transformation to the values in (6.9)

 LTL = + =284 194 1 78688 1 953251 3 15. . ./ .-  (6.10)

 UTL = + =45 2763 1 78688 2 084961 3 15. . ./ .-  (6.11)

Figure 6.4 shows the inverted statistical tolerance  limits 
together with the specification limits and the implied 
 distribution of the medical device diameters. Note that the 
implied distribution, which is the fitted normal distribution 
subjected to the inverse transformation, is skewed to the 
right in the same manner as the data. Compared with the 
statistical tolerance limits calculated under the assumption 
that the original measurements come from a normal dis-
tribution, the tolerance limits based on the transformation 

approach are both shifted to the right.

Capability plot with 95.0–99.0 tolerance limits
Normal distribution (mean = 164.735, Std. dev. = 40.6898, addend: –178,688, power: –3.15)
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6.2.2  Tolerance Limits Based on Alternative 
Distributions

If a transformation cannot be found that makes the trans-
formed data normally distributed, an alternative distribution 
can be sought. Methods exist for obtaining statistical toler-
ance limits based on various other distributions, including 
the Cauchy, exponential, 2-parameter exponential, gamma, 
Laplace, largest extreme value, lognormal, Pareto, small-
est extreme value, and Weibull distributions. If one of these 
distributions fits the data, then it may be used to calcu-
late the intervals. Patel (1986) gives a useful review of the 
methodologies.

As an example, suppose the data values are well mod-
eled by a largest extreme value distribution. Let ĝ be the 
estimated mode and b̂ be the estimated scale parameter 
when that distribution is fit to a sample of n observations. 
Single lower and upper one-sided tolerance limits are 
given by

 
LTL

t n P

n

n
= +

- - -( )( )( )
-

-
*

ˆ
ˆ ln ln,

g
b a1 1

1  
(6.12)

 
UTL

t n P

n

n
= +

- - ( )( )( )
-

- -
*

ˆ
ˆ ln ln,

g
b a11

1  
(6.13)

where tn-
* ( )1,a D  is the αth quantile of a noncentral t dis-

tribution with n  – 1 degrees of freedom and noncentrality 
parameter Δ. Two-sided tolerance limits are calculated by 
replacing α with α/2 in these formulas and by replacing 
P with (P + 1)/2.
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Example 6.3 Tolerance Limits Based on 
Largest Extreme Value Distribution

In Section 5.3, it was found that the medical device diam-
eters were well modeled by a largest extreme value distribu-
tion with ĝ = 1.97962 and b̂ = 0.0138082. Setting n = 100, 
α = 0.025, and P = 0.995 in Equations 6.12 and 6.13 gives 
the values LTL = 1.952 and UTL = 2.065. The tolerance limits 
and fitted distribution are shown in Figure 6.5.

Table 6.1 compares the estimated tolerance limits 
obtained by the three methodologies described so far in 
this chapter. The power transformation and fitted largest 
extreme value distribution give very similar values for the 
lower tolerance limit, both well above that obtained using 
the normal distribution. This is clearly due to the much 
shorter lower tail. There is a larger difference between the 
estimated upper tolerance limits. The power transformation 
approach is based on an implied distribution that is heavier 
in the upper tail than the largest extreme value distribution, 
resulting in a larger upper tolerance limit. This is consistent 
with the smaller value of Ppk found when using the power 
transformation in Chapter 5.

Note that all three approaches give intervals that are well 
inside of the specification limits.

Capability plot with 95.0–99.0 tolerance limits
Largest extreme value distribution (mode = 1.97962, scale = 0.0138082)
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6.3  Nonparametric Statistical Tolerance Limits

It is also possible to construct statistical tolerance limits with-
out making any assumption about the shape of the distribu-
tion from which the observations were obtained. Given n 
observations randomly sampled from some unknown popu-
lation, the data are first sorted to obtain the order statistics 
X(1), X(2), …, X(n). A tolerance interval is then constructed from

 X Xd n d( ) - +( )éë ùû, 1  (6.14)

where d is a number such as 1, 2, or 3, called the “depth”. If 
d = 1, the tolerance interval is created from the smallest and 
largest observations. If d = 2, it is created from the second 
smallest and second largest observations, and so on.

For any given value of d, the internal in (6.14) contains at 
least 100P % of the population with 100(1 − α)% confidence 
where

 P q q= -( ) +( )1 1/  (6.15)

 
q

n d

X d

=
- +( )4 5

4
2

.

,a  
(6.16)

Table 6.1 95–99 Statistical Tolerance Limits for the Medical 
Device Diameters Using Three Different Methods

Method
Lower 

Tolerance Limit
Upper 

Tolerance Limit

Fitted normal distribution 1.935 2.040

Optimized power 
transformation

1.953 2.085

Fitted largest extreme value 
distribution

1.952 2.065
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The analyst can choose to set either P or α, but not both. 
For example, if P = 0.99 then α is determined by the equa-
tions. Likewise, if α = 0.05 then P is determined by the 
equations.

Example 6.4 Nonparametric Tolerance Limits

Suppose that nonparametric tolerance limits are desired 
for the medical device data. For that data, n = 100. Setting 
the depth d = 1 and letting α = 0.05, the interval formed 
by the largest and smallest observations [1.956, 2.053] 
turns out to be a 95% tolerance interval for 95.3433% of 
the population, as shown in Figure 6.6. Setting P = 0.99 
instead, that same  interval turns out to be a 26.4% tol-
erance interval for 99% of the  population, as shown in 
Figure 6.7. The only way to obtain a 95–99  nonparametric 
tolerance interval would be to increase the sample size 
n substantially. Sample size determination for statistical 
tolerance limits is discussed in Chapter 8.

Nonparametric tolerance limits
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Figure 6.6 Nonparametric tolerance interval for medical device 
diameters formed by setting α = 0.05.
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Multivariate Capability 
Analysis

All of the material in the previous chapters deals with 
the estimation of process capability for a single variable. 
For many processes, acceptable performance requires 
that multiple variables be within spec. If the variables are 
independent and the occurrence of nonconforming items is 
very low, the joint probability of an item being out of spec 
with respect to one or more of the variables will be very close 
to the sum of the individual nonconformance probabilities for 
each of the variables. However, if the variables are strongly 
correlated, adding the separate probabilities may not give a 
good estimate of the combined nonconformance probability. 
Also, if the specifications contain requirements for the joint 
behavior of two or more variables, those variables must be 
considered together.

This chapter deals with the simultaneous estimation of 
process capability with respect to more than one variable. 
Given m variables, θ will represent the probability that a 
randomly selected item from a process is out of spec with 

Chapter 7
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respect to one or more of the variables. Estimation of θ 
requires constructing a multivariate distribution to describe 
the joint behavior of those variables.

Example 7.1 Bivariate Data Visualization

Consider a process for manufacturing a medical device. As 
in earlier chapters, one of the variables of concern in that 
process is the diameter of the devices X1, which must be 
between 1.9 and 2.1. A second variable of interest is the 
strength of the devices X2, which must not be less than 
200 psi. To estimate the probability of not conforming to the 
 specifications with respect to either or both of the variables, 
a sample of n = 200 items has been obtained.

Figure 7.1 plots the measured diameter and strength 
of the 200 devices. It shows that there is a strong positive 
correlation between the 2 variables. The acceptable region 
in the space of diameter and strength is an unbounded 
 rectangle with sides at X1 = 1.9 and X1 = 2.1 and a lower 
bound at X2 = 200. In the discussion that follows, this data 
will be used to estimate the probability of producing a 
device that is outside of the acceptable region.
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Figure 7.1 Scatterplot of strength and diameter for sample of 200 
medical devices.
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7.1  Visualizing Bivariate Data

To visualize the joint distribution of 2 variables, it is useful 
to plot a bivariate histogram. A bivariate histogram divides 
the range of values for each variable into classes and then 
displays the number of observations that fall within each 
combination of classes.

Example 7.1 (Continued)

Figure 7.2 shows a bivariate histogram for the medical 
device data. The range of the variables has been divided 
into a 20 by 20 grid. The height of the bars is propor-
tional to the number of devices with diameter and strength 
 corresponding to each cell of the grid.

Given data on m variables, a probability density function 
fX(X1, X2,  … , Xm) may be defined from which probabilities may 
be calculated for joint values of those variables. In particular, 
the probability that the m variables fall within some region is 
the multiple integral of the density function over that region. 
The next section considers the use of a multivariate normal 
distribution for modeling the density function.
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Figure 7.2 Bivariate histogram for the medical device data.
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Prior to estimation of a parametric model, it is instructive 
to display a nonparametric estimate of the density function. 
A popular method for estimating the density function is to 
pick multiple locations throughout the range of the data 
and calculate a weighted count of the nearby observations. 
A widely used estimate of a bivariate density function at 
location (X1, X2) is given by
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where
S is the sample covariance matrix of the 2 variables
h is the bandwidth
W(u) is a weighting function defined by

 
W u u( ) = -( )1

2
2

p
exp /

 
(7.2)

The bandwidth h determines how quickly the weighting func-
tion decays, with larger values giving more weight to points 
far from the position at which the density is being estimated. 
A bandwidth of 0.5 is not unreasonable for a small sample 
but may not give as much detail as a smaller bandwidth in 
larger samples.

Example 7.1 (Continued)

Figure 7.3 shows a nonparametric estimate of the bivariate 
density function for diameter and strength obtained from 
the medical device data, using a bandwidth of h = 0.3. The 
estimated density function has a well-defined peak and is 
elongated in a direction corresponding to positive correla-
tion between the variables.
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7.2  Multivariate Normal Distribution

The most widely used model for multivariate data is the mul-
tivariate normal distribution. Given a vector of random vari-
ables X = (X1, X2, …, Xm), the multivariate normal probability 
density function is 
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where
μ is a vector of means
Σ is an m by m covariance matrix

For the bivariate case, the vector of means is
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Figure 7.3 Nonparametric estimate of density function for medical 
device diameter and strength.
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and the covariance matrix is
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where
σ1 is the standard deviation of variable 1
σ2 is the standard deviation of variable 2
ρ is the correlation between the two variables

The marginal distribution of each individual variable Xj is 
a univariate normal distribution with mean μj and standard 
deviation σj.

Fitting a multivariate normal distribution to n multivariate 
observations requires estimating m means, m variances, and 
m(m − 1) covariances. Letting Xi,j represent the value of the 
ith observation for variable j, unbiased estimates of the means 
are given by the sample means:
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Unbiased estimates of the variances are given by the sample 
variances:
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An unbiased estimate of the covariance between variables j 
and k is given by the sample covariance:
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Example 7.2 Fitting a Multivariate 
Normal Distribution

Figure 7.4 shows a multivariate normal distribution fit to 
the n = 200 observations of diameter and strength for the 
medical devices. It has a well-defined peak at the centroid 
ˆ ˆ . .m m1 2 1 99958 249 300, ,( ) = ( ). The standard deviations are 
ˆ ˆ . .s s, ,2 0 0208047 10 4658( ) = ( ) and the sample covariance 

ˆ ,s1 2 = 0.199052.
It is also instructive to calculate the correlation between 

the 2 variables defined by

 
ˆ

ˆ

ˆ ˆ,
,r

s
s s

j k
j k

i j

=
 

(7.9)

By definition, the correlation ranges between −1 and +1, 
with values close to −1 indicating a strong negative 
 correlation between the variables and values close to +1 
indicating a strong positive correlation. For the diameter 
and strength of the medical device data, ˆ ,r1 2 = 0.9142. 
This strong positive correlation accounts for the elonga-
tion of the major axis of the ellipses in Figure 7.5, which 
contain 25%, 50%, 75%, 90%, 95%, and 99% of the fitted 
distribution.
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Figure 7.4 Bivariate normal density function fitted to diameter and 
strength of medical devices.
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7.3  Multivariate Tests for Normality

Before calculating statistics that rely on the assumption that 
data come from a multivariate normal distribution, it is a good 
idea to test the assumption of multivariate normality. In par-
ticular, given a random sample of n observations in m dimen-
sions, the following hypotheses should be tested:

Null hypothesis: Data are a random sample from a multivari-
ate normal distribution.

Alternative hypothesis: Data are not a random sample from 
a multivariate normal distribution.

One of the best tests for multivariate normality is due to 
Royston (1983). He derived a test statistic H that combines the 
Shapiro-Wilk W statistics calculated for each of the m vari-
ables separately. H is referred to a chi-square distribution with 
degrees of freedom that depend on the correlations among 
the original variables.
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Figure 7.5 Contour plot of bivariate normal density function for 
medical device data.
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Example 7.3 Tests for Multivariate Normality

Table 7.1 shows the results obtained when Roysten’s 
test is run on the medical device data. The table 
includes the Shapiro-Wilk W test for each of the 
 variables and Roysten’s H statistic. Since the P-value of 
Roysten’s H is well above 0.05, there is no evidence that a 
bivariate normal distribution would not be a good model 
for the data.

A second way to test the hypothesis of multivariate normal-
ity is by creating a chi-square plot. Let Xi = (Xi,1, Xi,2, …, xi,m) 
be a column vector with the observed values of each variable 

Table 7.1 Results of Roysten’s Test of Multivariate 
Normality for Medical Device Diameter and Strength

Multivariate Normality Test

Number of observations = 200

Mean Standard Deviation

Diameter 1.99958 0.0208047

Strength 249.3 10.4658

Sample Correlations

Diameter Strength

Diameter 1.0 0.914186

Strength 0.914186 1.0

Normality Tests

Test Statistic P-Value

Shapiro-Wilk W—diameter 0.997 0.9378

Shapiro-Wilk W—strength 0.993 0.5058

Royston’s H 0.315 0.7178
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for the ith observation. Let X  be a vector containing the m 
sample means and let S represent the m by m sample covari-
ance matrix. Then if the data come from a multivariate normal 
distribution, the squared generalized distances

 d i ni
T2 1 1 2= -( ) -( ) = ¼-X X S X Xi i , , , ,  (7.10)

should behave like a random sample from a chi-square 
distribution with m degrees of freedom. A simple approach 
to testing for multivariate normality is to construct the 
squared distances, fit a chi-square distribution to them, and 
use a standard univariate goodness-of-fit test to determine 
whether or not they could reasonably have come from that 
distribution.

Example 7.3 (Continued)

Figure 7.6 shows a chi-square plot constructed for the 
bivariate medical device data. The CDF of the fitted 
chi-square distribution is plotted, together with 95% 
Kolmogorov-Smirnov limits. The empirical CDF of the 
generalized distances is shown by the point symbols, 
calculated from the 200 observations. The points fall well 
inside the K-S limits, as they should if they come from the 
hypothesized chi-square distribution.

Also included on the graph is the result of an Anderson-
Darling test comparing the squared distances to a chi-square 
distribution with 2 degrees of freedom. The P-value is well 
above 0.05, indicating that the distances are well modeled 
by the chi-square distribution. This result leads in turn to the 
conclusion that the original data could well have come from 
a bivariate normal distribution.
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7.4  Multivariate Capability Indices

Estimating process capability based on the multivariate 
normal distribution requires estimating θ, the probability 
of being out of spec with respect to one or more of the 
variables. Given estimates of the variable means and cova-
riance matrix as calculated earlier, this probability may be 
estimated by setting q̂ equal to 1 minus the integral of the 
fitted multivariate density function f̂ X X XX m1 2, , ,¼( ) over the 
acceptable region as defined by the specification limits. This 
integration must be done numerically, which is straightfor-
ward but may be time-consuming in high dimensions. For 
variables that are not highly correlated, the result is likely to 
be quite close to the sum of the individual nonconformance 
probabilities. For highly correlated variables, however, it may 
be much different.

Chi-square plot with 95% K-S limits
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Figure 7.6 Chi-square plot of squared generalized distances for bivar-
iate medical device data.
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Example 7.4 Multivariate Capability Indices

It will be recalled that the specifications for the 
 medical devices call for the diameter to be between 
1.9 and 2.1 and the strength to be greater than or 
equal to 200. Table 7.2 shows the results of fitting a 
 multivariate  normal  distribution to the n = 200 sam-
ple devices. The estimated defects per million based 
on a bivariate analysis of  diameter and strength is 
 approximately 2.22. Note that this number is only about 
80% of the sum of the estimated DPMs for the two vari-
ables when analyzed  separately. This is due to a strong 
positive correlation between the  variables (r̂ = 0.914), 
which means that there is a  significant probabil-
ity of defects occurring with respect to both variables 
simultaneously.

Table 7.2 Estimated Defects per Million Based on 
Fitted Multivariate Normal Distribution for Medical 
Device Data

Multivariate Capability Analysis

Number of complete cases: 200

Variable
Sample
Mean

Sample
Std. Dev. LSL Nominal USL

Diameter 1.99958 0.0208047 1.9 2.0 2.1

Strength 249.3 10.4658 200.0

Variable
Observed

Beyond Spec
Estimated

Beyond Spec
Estimated

DPM

Diameter 0.0% 0.000154463% 1.54463

Strength 0.0% 0.000123616% 1.23616

Joint 0.0% 0.000221754% 2.21754
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A good way to illustrate the result of a multivariate capa-
bility analysis based on two variables is to draw an ellipse 
in the space of those variables that contains 99.73% of the 
bivariate normal distribution. This is the same percent-
age as is bound by μ ± 3σ when analyzing a single vari-
able. If the entire region bound by the ellipse is within 
the specification region, the capability of the bivariate 
process to meet the specification limits will be at least as 
good as that of a univariate process with a capability index 
Ppk = 1.0. If desired, the percentage bound by the ellipse 
may be increased so that it corresponds to a larger capabil-
ity index.

The equation for determining the ellipse that contains 
100(1 − α)% of a fitted bivariate normal distribution is 
given by

 c m ma2
2 1
, = -( ) -( )-X X� �

T
S  (7.11)

where c a2
2
,  is the value of a chi-square distribution with 

2 degrees of freedom that is exceeded with probability 
equal to α.

Example 7.4 (Continued)

Figure 7.7 shows a 99.73% capability ellipse, drawn using 
the fitted bivariate normal distribution for the medical device 
data. The rectangular region represents the acceptable 
region as defined by the specification limits. The ellipse fits 
comfortably within the boundaries of that region.

Several multivariate capability indices may be constructed 
in a way that allows them to be treated in the same manner 
as for a single variable. The first is an equivalent Z index. 
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Having estimated the proportion of nonconforming items q̂, 
an equivalent Z index may be calculated from

 
Z = -( )-F 1 1 q̂

 
(7.12)

where Φ−1 is the inverse standard normal cumulative distribu-
tion function. Simply stated, Z is the value of a standard nor-
mal random variable, which is exceeded with  probability q̂. 
Interpretation of Z is similar to the univariate case, with a 
typical target value being Z ≥ 4.

The sigma quality level may also be calculated in the usual 
manner from

 SQL Z= + 1 5.  (7.13)

As in the univariate case, Six Sigma practitioners would define 
a process as producing a product or service with “world class 
quality” if SQL ≥ 6.

A multivariate version of Cpk may also be calculated from 

 
MC

Z
pk =

3  
(7.14)
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Figure 7.7 Capability ellipse containing 99.73% of the fitted bivari-
ate normal distribution for medical device data.
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This index retains the same relationship with the estimated 
proportion of nonconforming items as does the univariate Ppk. 
Consequently, MCpk should normally be at least 1.33.

Example 7.4 (Continued)

Table 7.3 displays multivariate capability indices for the 
medical device data based on both diameter and strength. 
The process is estimated to be operating at slightly over a 6 
sigma level.

7.5  Confidence Intervals

To estimate confidence intervals for the proportion of non-
conforming items and for capability indices, the only choice 
available is to use bootstrapping. As will be recalled from 
Chapter 5, this requires

 1. Selecting subsamples of n observations from the sample 
data at random with replacement

Table 7.3 Estimated Multivariate 
Capability Indices for the Medical 
Device Diameters and Strength

Capability Indices

Index Estimate

MCpk 1.53

DPM 2.21754

Z 4.58989

SQL 6.08989

Note: Based on 6.0 sigma limits. The 
Sigma Quality Level includes 
a 1.5 sigma shift in the means.
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 2. Fitting the multivariate normal distribution and calculat-
ing the capability indices

 3. Repeating steps 1 and 2 many times in order to create a 
sampling distribution for the indices

 4. Calculating the desired percentiles using the boot-
strapped sampling distributions

Example 7.4 (Continued)

Table 7.4 displays lower 95% confidence bounds for the 
multivariate capability indices based on the fitted  bivariate 
normal distribution for diameter and strength. They are 
based on the creation of 5000 random subsamples of 
the original 200 observations. Based on the intervals in 
that table, it may be stated with 95% confidence that the 
 proportion of devices that do not meet the specifica-
tions on one or both variables is no greater than 12.9 per 
million.

Table 7.4 Confidence Bounds for 
Multivariate Capability Indices for Medical 
Device Data Calculated Using Bootstrapping

95.0% Confidence Bounds: Bootstrap Method 
(5000 Subsamples)

Lower Limit

MCpk 1.40278

DPMa 12.8636

Z 4.20833

SQL 5.70833
a Lower quality bound corresponds to upper 

confidence bound for this index.
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7.6  Multivariate Normal Statistical 
Tolerance Limits

Rather than calculating multivariate capability indices, it is 
possible instead to create statistical tolerance limits based 
on the multivariate normal distribution and compare those 
tolerance limits to the joint specifications for the m vari-
ables. This is particularly useful when the specifications 
for the variables are more complicated than just upper and 
lower bounds for each of the variables. For example, there 
could be a specification based on the ratio of 2 variables or 
on some linear or nonlinear combination of more than one 
variable. Given statistical tolerance limits, it is possible to 
determine whether or not the entire joint tolerance region 
meets the specifications.

Two primary approaches to the construction of tolerance 
limits for multivariate data will be considered:

 1. Construction of a joint tolerance region for the m variables. 
This is a region in m dimensions that contains a proportion 
P of the joint distribution of the variables with 100(1 − α)% 
confidence. Construction of the region will involve using a 
Monte Carlo simulation to obtain a critical parameter.

 2. Construction of simultaneous tolerance limits for each 
of the m variables individually, adjusting the confidence 
level using a Bonferroni approach. This is a somewhat 
conservative approach but easy to implement and 
interpret.

7.6.1  Multivariate Tolerance Regions

Consider a random sample of n observations from an 
m-dimensional multivariate normal distribution. Let X  be an 
m by 1 column vector containing the sample means of each 
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variable and let S be the m by m sample covariance matrix. 
A joint tolerance region for the m variables is given by

 X X X X-( ) -( ) £-T
S c1

 (7.15)

where c is a constant that depends on m, n, P and α. For 
m = 2, the region is an ellipse. For m > 2, the region is an 
ellipsoid or a hyperellipse.

Unfortunately, there is no exact method for obtaining 
c, nor are the available approximations adequate for all 
combinations of m, n, P, and α. Krishnamoorthy and 
Mathew (2009) suggest that the best way to obtain a value 
for c is to use Monte Carlo simulation. In particular, their 
Algorithm 9.2 uses an approach that involves the generation 
of  random variables from chi-square and Wishart probability 
distributions.

Example 7.5 Multivariate Normal 
Tolerance Region

Returning to the sample data, suppose a 95% statistical 
tolerance region is desired for the diameter and strength 
of 99.9% of the medical devices being produced. In the 
space of the two response variables, the region is an ellipse 
defined by Equation 7.15 where c is determined from m = 2, 
n = 200, P = 99.9%, and (1 − α) = 95%.

Table 7.5 displays the estimated 95% tolerance region 
for 99.9% of all medical devices in the population. The 
output indicates that c = 16.0526, based on a Monte Carlo 
simulation using 100,000 subsamples. Figure 7.8 displays 
the tolerance region graphically as an ellipse. All of the 
200 bivariate observations are within the tolerance region. 
In summary, it may be stated with 95% confidence that at 
least 99.9% of all medical devices being manufactured fall 
within the elliptical region. Since the elliptical region is 
completely within the specification limits, it may also be 
stated with 95% confidence that at least 99.9% of all the 
devices will be within the specification limits.
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7.6.2  Simultaneous Tolerance Limits

A second way to create tolerance limits for multiple variables 
is to calculate univariate tolerance limits for each variable sepa-
rately, adjusting the confidence level of each tolerance limit such 

Table 7.5 Multivariate Tolerance Limits for the 
Diameter and Strength of the Medical Devices

Multivariate Tolerance Limits

Number of observations = 200

95% Elliptical Tolerance Region for 99.9% of the 
Population: Squared distance ≤ 16.0526

Observations outside elliptical region: 0

95% Simultaneous Bonferroni Tolerance Limits for 
99.9% of the Population

Lower Limit Upper Limit

Diameter 1.92346 2.0757

Strength 213.12

Observations beyond Bonferroni limits: 0

Multivariate tolerance region 95% confidence; 99.9% coverage
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Figure 7.8 95–99.9 tolerance region for the medical devices.
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that all of the limits will be correct simultaneously with at least 
the stated level of confidence. Recall that the tolerance limit for 
variable j is calculated using the sample mean and sample stan-
dard deviation of that variable as discussed in Section 6.1:

 x Ksj j±  (7.16)

If limits are calculated for each of the m variables with confi-
dence level set to 100(1 – α/m)%, all limits will be correct at 
least 100(1 – α)% of the time. Although this approach is some-
what conservative (the true confidence level may be higher 
than that stated), it makes it very simple to compare the toler-
ance limits to the specifications.

Example 7.5 (Continued)

Figure 7.9 shows a shaded region corresponding to 95% 
simultaneous tolerance limits for 99.9% of the distribution 
of diameter and strength for the medical devices, based on 
separate 97.5% tolerance limits for each of the two variables. 
As displayed in Table 7.5, the limits are

1.92346 ≤ diameter ≤ 2.0757
213.12 ≤ strength

As with the elliptical tolerance region, all 200 sample points 
are within the tolerance limits and the tolerance limits are 
completely within the specification limits.

Figure 7.10 shows the tolerance regions calculated using 
both approaches. Note that the elliptical tolerance region, 
which accounts for the correlation between diameter and 
strength, has a smaller area than the Bonferroni limits. It is 
also interesting to note that some area within the ellipse 
is not contained within the shaded area, and vice versa. 
Clearly, the two methods are allocating the 0.1% beyond 
the tolerance limits to different regions within the space of 
diameter and strength.
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7.7  Analysis of Nonnormal Multivariate Data

If the multivariate data to be analyzed do not come from a nor-
mal distribution, transformations may be sought that normalize 
the data. Often, either a Box-Cox power transformation or a 
Johnson transformation applied to each variable separately will 
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Figure 7.9 Simultaneous tolerance limits for the diameter and 
strength of the medical devices using the Bonferroni method.
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Figure 7.10 Elliptical and Bonferroni tolerance regions for the diam-
eter and strength of the medical devices.
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make the multivariate normal distribution a reasonable model 
for the data. For example, one widely used alternative to the 
multivariate normal distribution is the multivariate lognormal 
distribution. For such a distribution, the logarithms of the vari-
ables jointly follow a multivariate normal distribution.

Individually transforming each variable has some draw-
backs, however. This is due to the fact that multivariate nor-
mality implies three basic properties:

 1. The marginal distribution of each variable is normal.
 2. The expectation of any subvector X1 given any other sub-

vector X2 is linear. For example, in the bivariate case
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 3. The conditional variance of X1 given X2 is constant. This 
is similar to the assumption of homoscedasticity (constant 
variance) that applies in the univariate case.

There is no guarantee that individually transforming the vari-
ables to achieve property (1) will also result in properties (2) 
and (3) being satisfied.

Andrews et al. (1971) proposed a multivariate transforma-
tion that attempts to find powers that maximize the likelihood 
of the multivariate normal distribution for the transformed 
variables when considered simultaneously. It assumes that 
there is a vector of powers λ = (λ1, λ2, …, λm) that when 
applied to the m variables transforms them to a multivari-
ate normal distribution. Maximum likelihood estimates of the 
powers may be obtained by maximizing the profile likelihood 
given by
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where S(λ) is the estimated covariance matrix of the trans-
formed variables. Studies have shown that maximization of 
(7.18) results in more efficient estimation of the powers than 
determining each transformation separately.

Maximization of (7.18) requires a numerical solution, 
which is easily performed by most statistical software. If nec-
essary, each variable can be shifted to a new origin using a 
2-parameter transformation with an addend Δj, in which case 
Xi,j is replaced by Xi,j + Δj in Equation 7.18.

Example 7.6 Analysis of Bivariate 
Lognormal Data

Figure 7.11 shows a bivariate histogram for 2 variables that 
were randomly sampled from a multivariate  lognormal 
 distribution. There is a noticeably longer tail toward the 
upper right corner than toward the lower left corner. 
Table 7.6 shows the results of applying Roysten’s test for 
multivariate normality. The P-value is very small, rejecting 
the hypothesis that the data come from a multivariate nor-

mal distribution.
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Figure 7.11 Bivariate histogram for simulated multivariate lognormal 
data.
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Example 7.6 (Continued)

Applying a power transformation to each variable 
 separately using the Box-Cox procedure gives the 
 estimates ˆ .l1 0 075= -  and ˆ .l2 0 076= . Table 7.7 shows that 
 determining the powers simultaneously by maximizing the 
profile likelihood in (7.18) gives the estimates ˆ .l1 0 080= -  
and ˆ .l2 0 073= . The estimated values of both λ1 and λ2 are 
close to 0, which corresponds to a power transformation 
involving logarithms as discussed in Section 5.2.

Table 7.7 also shows the tests for multivariate  normality 
after applying the simultaneous transformation. Note 
that the P-value for Roysten’s test is now quite large, 
 suggesting that the procedure has produced transformed 
variables which are adequately modeled by a multivariate 
normal distribution. Figure 7.12 shows the nonparametric 

Table 7.6 Multivariate Test for Normality for Simulated 
Lognormal Data

Multivariate Normality Test

Mean Standard Deviation

X1 2.78161 0.543724

X2 8.05924 3.21711

Sample Correlations

X1 X2

X1 1.0 0.874526

X2 0.874526 1.0

Normality Tests

Test Statistic P-Value

Shapiro-Wilk W—X1 0.970 0.0003

Shapiro-Wilk W—X2 0.939 0.0000

Royston’s H 31.212 0.0000



Multivariate Capability Analysis ◾ 169

estimate of the density of the transformed variables, which 
looks much like that expected for data from a multivariate 
normal distribution.

Having found a transformation of the variables that 
achieves multivariate normality, the acceptable region defined 
by the specification limits is then transformed in a simi-
lar manner. Quality indices and statistical tolerance limits are 
calculated in the transformed metric.

Table 7.7 Multivariate Test for Normality 
after Multivariate Box-Cox Transformation

Multivariate Normality Test

Power transformations: estimated simultaneously

Variable Power

X1 −0.080127

X2 0.0733825

Mean Standard Deviation

X1 0.922769 0.0142053

X2 1.15951 0.0333334

Sample Correlations

X1 X2

X1 1.0 −0.880659

X2 −0.880659 1.0

Normality Tests

Test Statistic P-Value

Shapiro-Wilk W—X1 0.996 0.9192

Shapiro-Wilk W—X2 0.997 0.9764

Royston’s H 0.009 0.9834
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Sample Size 
Determination

The ability to calculate precise estimates of process capability 
depends on collecting a sufficiently large, representative sam-
ple from the population. All of the measures of quality, from 
the percentage of nonconforming items through indices such 
as Cpk, become more precise as the sample size n increases. 
This chapter considers the important question of determining 
how large n should be to be sure that an acceptably precise 
estimate of process capability will be obtained.

Suppose that an analyst wishes to estimate a quality 
parameter such as θ, the proportion of nonconforming items 
or events in a process. It is decided to collect a random 
sample of n items in such a way as to be representative of 
that process. Through some mechanism, an estimate q̂ will be 
obtained. In determining how large n should be, two general 
approaches may be taken:

 1. The analyst may consider the variability of the estimate 
and in particular the size of the confidence interval or 
confidence bound associated with that estimate. n may 
then be selected such that the error bounds on the 

Chapter 8
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estimate are acceptably tight. For example, n might be 
selected such that a 95% confidence interval for θ is no 
wider than ±10% of its true value.

 2. Two values of θ may be selected, one indicative of good 
quality and the other of bad quality. A hypothesis test 
may then be constructed, using one of the values as the 
null hypothesis and the second value as the alternative 
hypothesis. n would then be selected such that the prob-
ability of choosing correctly between the 2 hypotheses is 
acceptably large.

This chapter examines methods for determining adequate 
sample sizes for estimating several important quality 
measures.

8.1  Sample Size Determination 
for Attribute Data

Chapters 2 and 3 discussed methods for estimating quality 
based on examining items or events and characterizing them 
as conforming or nonconforming. In Chapter 2, n items were 
collected and each one classified as good or bad. Quality 
was then estimated by assuming that the number of noncon-
forming items followed a binomial distribution. In Chapter 3, 
data were collected over a sampling interval and the number 
of nonconforming events during that interval was tabulated. 
Quality was then estimated based on the assumption that the 
number of events followed a Poisson distribution.

8.1.1  Sample Size Determination for Proportion 
of Nonconforming Items

Chapter 2 considered the situation in which a random sample 
of n items was collected from a large population. If X equals 
the number of nonconforming items in the sample, then 
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X follows a binomial distribution characterized by a single 
parameter θ, the probability that an individual item will be 
nonconforming. The point estimate for θ is given by

 
q̂ = X

n  
(8.1)

and a 100(1 − α)% confidence interval for θ is given by
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where

 v X v n X v X v n X1 2 3 42 2 1 2 1 2= = - +( ) = +( ) = -( ), , ,  
(8.3)

Fp , v , w represents the value of Snedecor’s F distribution with v 
and w degrees of freedom that is exceeded with probability p. 
Note that the degrees of freedom of the F distribution depend 
on the sample size n. As n increases, the interval becomes 
tighter.

8.1.1.1  Specification of Error Bounds

One method for determining an acceptable sample size begins 
by postulating a likely value for θ, such as θ = 0.001. If a 
sample of size n is collected, then the expected value of X is

 E X n( ) = q (8.4)

To estimate θ to within ±20%, it is necessary to find the 
s mallest n such that the interval in Equation 8.2 is no wider 
than (0.0008, 0.0012). Although no simple formula exists to 
solve this problem, it is a simple matter for statistical software 
to find the value of n by a direct search.
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Example 8.1 Sample Size Determination 
for Proportion Nonconforming

Suppose an analyst wishes to estimate the proportion of 
nonconforming items in a population by taking a sample of 
n items and counting the number of defectives. It is expected 
that the percentage of defective items will be around 0.1%, 
or 1 in 1000. Further, the analyst is willing to accept an 
 estimate with 95% error bounds of ±20%. Table 8.1 shows 
that the smallest sample capable of achieving those bounds is 
n = 115,125. Unfortunately, very large samples are required to 
obtain precise estimates of small proportions.

8.1.1.2  Specification of Alpha and Beta Risks

A second commonly used method of determining sample size 
for estimating a binomial proportion is to specify null and 
alternative hypotheses, such as

H0: θ = 0.001
HA: θ = 0.002

The alpha and beta risks are then specified, where

α = Prob(reject H0 when H0 is true)
β = Prob(do not reject H0 when HA is true)

Table 8.1 Sample Size Required to Estimate 
a Binomial Proportion Near θ = 0.001 to within 
20% with 95% Confidence

Sample Size Determination

Parameter to be estimated: Binomial parameter

Desired tolerance: ±20.0% when proportion = 0.001

Confidence level: 95.0%

The required sample size is n = 115,125 observations.
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For any given sample size, α and β can be calculated using 
the binomial distribution. Statistical software can easily cal-
culate the minimum value of n for which both risks are less 
than any specified values.

Example 8.1 (Continued)

Suppose an analyst wishes to test the null hypothesis that 
the number of nonconforming items in a population is no 
greater than 0.001. A sufficiently large sample is desired 
such that the probability of rejecting the hypothesis that 
θ = 0.001 is no greater than 5% when it is true and such 
that the probability of rejecting that hypothesis when 
θ = 0.002 is at least 90%. Table 8.2 shows that n = 13,017 
items are required to achieve such performance. Note that 
a one-sided test has been used, since the analyst is not 
concerned about not rejecting H0 when the proportion of 
nonconforming items is less than that specified by the null 
hypothesis.

The probability of rejecting a null hypothesis when it is false 
equals 1 – β and is called the power of the test. The power of 
a hypothesis test for a binomial proportion may be expressed 

Table 8.2 Sample Size Required to Test H0: θ = 0.001 
versus HA: θ = 0.002 with α = 5% and β = 10%

Sample Size Determination

Parameter to be estimated: Binomial parameter

Desired power: 90.0% for proportion = 0.001 versus 
proportion = 0.002

Type of alternative: Greater than

Alpha risk: 5.0%

The required sample size is n = 13,017 observations.
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as a function of the true proportion of nonconforming items 
in the population.

Example 8.1 (Continued)

The power curve, shown in Figure 8.1, passes through the 
points (0.001, 0.05) and (0.002, 0.90). The chance of reject-
ing the hypothesis that θ = 0.001 clearly depends on how 
far the true proportion is from the null hypothesis.

8.1.2  Sample Size Determination for Rate 
of Nonconformities

Chapter 3 considered the problem of estimating the rate of 
nonconformities in a process when a sample of size n was 
collected. In that case, n could take either of two forms:

 1. n could represent the number of discrete units examined, 
where each unit could have multiple nonconformities. 
A typical example is a sheet of glass, where the noncon-
formities are bubbles in the glass.

Power curve
Alpha = 0.05, n= 13,017
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Figure 8.1 Power curve for test of H0: θ = 0.001 versus HA: θ = 0.002 
with α = 5% and β = 10%.
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 2. n could represent the size of a sampling interval during 
which unwanted events occurred. A typical example is 
a span of time in which unwanted events such as fatal 
aircraft accidents occurred.

The main parameter of interest in such cases is

 l = Rate of nonconformities per unit

If a sample of size n contains X nonconformities, then the 
rate of nonconformities is estimated by

 
l̂ = X

n  
(8.5)

A 100(1 − α)% confidence interval for λ is given by
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In this case, X follows a Poisson distribution. As in the pre-
vious section, a sample size may be determined that either 
makes the interval in (8.6) acceptably tight or achieves the 
desired power for a set of hypotheses.

Example 8.2 Sample Size Determination 
for Rate of Nonconformities

Suppose an analyst wants to estimate the rate of  intrusions 
into a computer network by monitoring that system. It is 
thought that the rate of intrusions is approximately λ = 3 
intrusions per day. Management wishes to know how long 
they need to monitor the network so that the 95% upper 
bound on the estimated rate is no more than 120% of its 
true value.

To solve this problem, statistical software can easily search 
for the smallest n such that the upper confidence bound for 
λ is less than or equal to 3 * 1.2 = 3.6 when l̂ = 3. Table 8.3 
shows that n = 28 days would be required to insure that the 
one-sided estimation error in λ is not more than 20% when 
the rate equals 3 per day.
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8.2  Sample Size Determination 
for Capability Indices

When the data available to assess quality consists of measure-
ments rather than counts, quality indices such as Cpk are used 
to summarize process capability. This section considers the 
problem of determining adequate sample sizes for obtaining 
precise estimates of those indices.

8.2.1  Sample Size Determination for Cp and Pp

A commonly used index for measuring whether a process is 
capable of satisfying a specification consisting of both a lower 
specification limit (LSL) and an upper specification limit (USL) 
is the capability index defined by

 
C

USL LSL
p =

-
6s  

(8.7)

If the index is greater than or equal to 1.0, it means that the 
standard deviation σ is small enough that a range of μ ± 3σ 
can fit completely within the specification limits. If the esti-
mate of σ comes from a moving range or variation within sub-
groups, the index is usually referred to as Cp. If the estimate 

Table 8.3 Sample Size Required to Achieve Upper 
Tolerance Bound of 20% When Rate Equals 3

Sample Size Determination

Parameter to be estimated: Poisson rate

Desired tolerance: 20.0% when rate = 3.0

Confidence level: 95.0%

The required sample size is n = 28 observations.
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of σ includes all of the variation over the sampling period, the 
index is usually referred to as Pp, with the initial “P” standing 
for “Performance” rather than “Capability”.

In Section 4.5.2, the 100(1 − α)% confidence interval for Cp 
was given as
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where ν is the degrees of freedom associated with the esti-
mate of sigma used to compute the capability index. Table 4.6 
lists the number of degrees of freedom associated with vari-
ous estimates of σ. In each case, the degrees of freedom 
increases as the total number of observations increases.

Likewise, a one-sided lower bound for Cp may be 
expressed as
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Modifying Equation 8.9 by dividing each side by ĈP gives
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which converts the confidence bound from an absolute error 
to a bound for the relative error.

The most common method for selecting a sample size 
when estimating Cp or Pp is to specify the desired precision 
of the estimate. This requires specifying the desired level of 
confidence, such as 95%. Given this information, Equation 8.8 
or 8.9 may be used to find the smallest degrees of freedom 
ν that will give the desired relative error, which may then be 
substituted into the equations in Table 4.6 to give a desired 
sample size n.
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Example 8.3 Sample Size Determination for Cp

Suppose an analyst wishes to estimate the short-
term  capability index Cp by collecting n individual 
 observations. After collecting the data, a 95% lower 
 confidence bound for Cp will be calculated. The  analyst 
wants to collect enough data so that the true index is 
no smaller than 90% of the calculated index with 95% 
confidence.

Table 8.4 shows that the smallest sample size that gives 
the desired precision is n = 139. The degrees of freedom 
v = n − 1, meaning that the ratio of the true index to the 
 estimated index will be
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Since the value of the chi-square distribution with 138 
degrees of freedom that is exceeded with probability 
0.95 equals 111.875,
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Figure 8.2 displays the minimum sample sizes needed to 
be 90%, 95%, and 99% confident that the ratio of the true 
capability index Cp to the estimated capability index Ĉ p equals 

Table 8.4 Sample Size Required to Be 95% Confident 
That Cp Is at Least 90% of That Estimated

Sample Size Determination (Capability Indices)

Capability index: Cp

Relative error: 10.0%

Confidence level: 95.0%

The required sample size is 139.
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or exceeds various values. It may be seen that the required 
sample size increases quite dramatically for ratios in excess 
of 0.9. For example, to reduce the relative error of a 95% lower 
bound from 10% to 5% (corresponding to an increase of the 
ratio plotted on the horizontal axis from 0.9 to 0.95) increases 
the required sample size from 139 to approximately 550.

8.2.2  Sample Size Determination for Cpk and Ppk

A second common index that is used to estimate process 
capability, given either one- or two-sided specification limits, 
is Cpk. Cpk measures the distance from the process mean to the 
nearer specification limit divided by 3σ:
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As with Cp, the index is labeled either Cpk or Ppk depending 
upon whether the estimate of σ measures short-term capabil-
ity or long-term performance.
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Figure 8.2 Required sample sizes for achieving various relative errors 
when constructing a lower confidence bound for Cp.
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Section 4.5.4 gives equations for calculating 95% confi-
dence intervals and bounds for Cpk. As in the previous section, 
the one-sided bound may be rewritten in terms of relative 
error as
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Since the right-hand side of Equation 8.14 becomes closer 
and closer to 1 as the sample size increases, the ratio may be 
made as close to 1 as desired by increasing n.

Example 8.4 Sample Size Determination for Cpk

Suppose an analyst wishes to estimate Cpk so that the rela-
tive error is no more than 10% when Ĉ pk = 1.33. Table 8.5 
shows that this may be achieved by selecting a sample of 
154 observations.

Figure 8.3 displays the minimum sample sizes needed to be 
90%, 95%, and 99% confident that the ratio of the true capa-
bility index Cpk to the estimated capability index Ĉ pk equals or 
exceeds various values.

Table 8.5 Sample Size Required to Be 95% Confident 
That Cpk Is at Least 90% of That Estimated

Sample Size Determination (Capability Indices)

Capability index: Cpk

Estimate: 1.33

Relative error: 10.0%

Confidence level: 95.0%

The required sample size is 154.



Sample Size Determination ◾ 185

8.3  Sample Size Determination 
for Statistical Tolerance Limits

Chapter 6 described the calculation of statistical tolerance lim-
its. Given a set of measurements on n items randomly sampled 
from a population, statistical tolerance limits bound a speci-
fied proportion of the population from which the sample was 
taken at a given level of confidence. One of the best known 
methods for determining an adequate sample size for esti-
mating statistical tolerance limits is due to Faulkenberry and 
Daly (1970). If the goal is to create tolerance limits for P% of 
the population, they suggest selecting a value of P * > P and 
choosing n so that the probability that the tolerance limits 
contain P *% or more of the population is small. In the context 
of process capability analysis, their approach suffers from two 
drawbacks:

 1. It assumes that the population from which the measure-
ments are drawn is normal.

 2. It is not connected in any way to the specification limits.
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Figure 8.3 Required sample sizes for achieving various relative errors 
when constructing a lower confidence bound for Cpk.
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A criteria for selecting n that is more closely tied to the speci-
fication limits and does not require that the sample come 
from a normal distribution is as follows:

For two-sided specification limits: Given a probability dis-
tribution for X, select n such that the probability of 
obtaining a 100(1 − α)% tolerance interval for P% of the 
population that lies completely within the specification 
limits is greater than or equal to q.

For a one-sided upper specification limit: Given a probabil-
ity distribution for X, select n such that the probability of 
obtaining a 100(1 − α)% upper tolerance bound for P% of 
the population that lies completely at or below the speci-
fication limit is greater than or equal to q.

For a one-sided lower specification limit: Given a probabil-
ity distribution for X, select n such that the probability of 
obtaining a 100(1 − α)% lower tolerance bound for P% of 
the population that lies completely at or above the speci-
fication limit is greater than or equal to q.

To determine n, the analyst must specify

 ▪ The probability distribution for X, with values for each 
parameter

 ▪ The percentage of the population P for which the toler-
ance limits apply

 ▪ The level of confidence 100(1 − α)%
 ▪ The desired probability q that the tolerance limits 
obtained from the data satisfy the specification limits

Solving this problem is best accomplished using a Monte 
Carlo simulation. The simulation proceeds as follows:

Step 1: Set n = 4.
Step 2: Generate m random samples of size n from the 

assumed distribution. For each random sample, calculate 
the statistical tolerance interval or bound. Tabulate the 
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proportion of tolerance intervals or bounds that satisfy 
the specification limits.

Step 3: If the proportion of randomly generated tolerance 
limits that satisfy the specs in Step 2 is greater than or 
equal to q, set the required sample size to n and stop.

Step 4: If the proportion of randomly generated tolerance 
limits that satisfy the specs is less than q, add 1 to n and 
return to Step 2.

It has been found that for practical problems, a value of m = 
50,000 yields a sample size that does not vary much from one 
simulation to the next.

Example 8.5 Sample Size Determination 
for Statistical Tolerance Limits

Throughout this book, a sample of n = 100 medical device 
diameters has been used to illustrate methods for  estimating 
process capability. In Chapter 5, it was shown that the data 
could be well-modeled by a largest extreme value  distribution 
with mode = 1.97962 and scale parameter = 0.0138082. In 
Chapter 6, a 95% tolerance interval was obtained for 99% of 
the population from which the data were taken.

Now consider the following problem: Suppose that the 
medical device diameters come from a largest extreme value 
distribution with mode = 2.0 (the target value) and scale 
parameter = 0.015 (slightly larger than the estimate from the 
sample). If it is decided to take another sample from the 
population and estimate a 95% statistical tolerance  interval 
for 99% of the medical devices, how large a sample is 
needed to have a 90% chance that the tolerance interval will 
be completely within the specification limits of [1.9,2.1]?

Figure 8.4 shows a typical dialog box used to control 
such a simulation. The fields specify the following:

Distribution: The assumed probability distribution for X.
Mode and Scale: Specified values for the distribution 

parameters.
Type of Limits: Whether a two-sided tolerance interval or 

a one-sided tolerance bound is desired.
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Confidence Level: Level of confidence for the tolerance limits.
Population Proportion: Percentage of the population to 

be bound by the tolerance limits.
Lower and Upper Spec Limits: The specification limits.
Inclusion Percentage: Desired percentage of time that the 

tolerance limits are to be completely within the specifi-
cation limits.

Number of Trials: Number of random samples of size n 
used in each iteration of the simulation.

Maximum n: Maximum sample size considered. If the 
inclusion percentage is not met when n reaches this 
value, the simulation fails.

Table 8.6 shows that the required sample size is n = 124. 
For such a sample size, the tolerance interval for data with 
the exact parameters specified in Figure 8.4 would range 
from 1.97031 to 2.0915. This is tighter than the specification 

Figure 8.4 Specification of parameters for determining sample size 
needed such that 90% of all 95–99 tolerance limits for the medical 
device data will be completely within spec.
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limits, which allows for random variability in the estimated 
mode and scale parameters. Note also that for samples of 
size n = 124, 90.15% of all simulated tolerance intervals 
were within the specification limits.

Note: It is not always possible to achieve the inclusion per-
centage specified, particularly if the distribution is very wide 
compared to the specification limits.
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Table 8.6 Required Sample Size for Estimating Statistical Tolerance 
Limits for Medical Device Data Given Specifications in Figure 8.4

Sample Size Determination (Statistical Tolerance Intervals)

Conf. 
Level

Pop. 
Percentage

Distri
bution Mode Scale

Lower 
Spec

Upper 
Spec

95.0% 99.0% Largest 
extreme 
value

2.0 0.015 1.9 2.1

Inclusion Percentage: 90%

The required sample size is 124.

Lower Tolerance Limit Upper Tolerance Limit

1.97031 2.0915

Percentage of intervals within specification limits: 90.15%
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Control Charts for 
Process Capability

The previous chapters of this book have concentrated on 
estimating process quality. The amount of data required to 
get a precise estimate of quantities such as the proportion of 
defective items or an index such as Cpk can be quite large. 
When the analyst needs to demonstrate that a process is 
capable of meeting specification limits or other requirements, 
there may be no way around taking a large sample.

Once a process has been shown to be capable, contin-
ued sampling of the process is necessary to demonstrate that 
the quality of the process has not changed significantly. For 
example, a medical device manufacturer might decide to 
sample each lot of devices produced. For economic reasons, 
the samples taken from each lot may need to be much smaller 
than the sample used to demonstrate initial compliance with 
the specifications. Taking smaller samples also makes logical 
sense, since the analyst begins with the belief that the process 
is capable and is most concerned with detecting any shifts 
from established quality levels.

Chapter 9
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This chapter considers two types of control charts that are 
useful for monitoring conformance with specification limits:

 1. Capability control charts: These charts plot indices such 
as Cpk against established standard values with the goal of 
generating alerts whenever new data is inconsistent with 
those standards.

 2. Acceptance control charts: These charts may be used to 
monitor processes with a very high Cpk, where it is not 
necessary to achieve a perfectly stable process. On such 
a chart, the control limits are placed far enough inside 
the specification limits to insure that a signal is generated 
whenever the short-term process mean comes too close 
to the specs, but otherwise the process is allowed to vary 
as it pleases around the long-term process mean.

9.1  Capability Control Charts

Capability control charts are used to monitor performance of 
a process after it has been deemed to be capable of meeting 
a set of requirements or specifications. The primary goal of 
such charts is to alert those in charge when a process appears 
to be moving away from its established levels. The charts are 
a type of Phase II statistical process control chart, commonly 
used to monitor processes in real time.

Figure 9.1 shows an example of a capability control chart. 
It consists of the following elements:

 1. Point symbols showing the value of a capability index 
obtained from consecutive samples.

 2. A centerline at the target value of the index, established 
from previous analyses.

 3. Upper and lower control limits positioned above and 
below the centerline.
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 4. Warning limits positioned 1/3rd and 2/3rds of the 
distance between the centerline and the control limits. 
The warning limits closest to the centerline are called 
the inner warning limits, while the warning limits far-
thest from the centerline are called the outer warning 
limits.

Alerts are generated whenever an individual index is either 
below the lower control limit or above the upper control limit. 
If desired, one or the other of the control limits may be omit-
ted, usually the one corresponding to better than expected 
quality, since the main purpose of the chart is to detect situa-
tions in which quality is worse than expected.

The control limits are located at a distance from the cen-
terline such that the probability of an estimated index fall-
ing beyond those limits when the process is operating at its 
expected level is small. The probability of such an alarm α 
is referred to as the alpha risk or false alarm rate. α is often 
set to the value associated with “3-sigma” control charts, for 
which α = 0.0027 for a two-sided chart and α = 0.00135 for a 
one-sided control chart.
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Figure 9.1 Capability control chart with control and warning limits.
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Alerts may also be generated based on unusual patterns 
in the chart. The well-known Western Electric (WECO) runs 
rules may be applied, which generate alerts whenever

 1. Any single point falls outside of the control limits
 2. 2 out of 3 consecutive points fall beyond the outer warn-

ing limits, on the same side of the centerline
 3. 4 out of 5 consecutive points fall beyond the inner warn-

ing limits, on the same side of the centerline
 4. K consecutive points fall on the same side of the center-

line, where K usually takes a value between 7 and 9

There are also a set of supplemental rules that are sometimes 
used to generate alerts:

 1. K points in a row increasing or decreasing, where K usu-
ally takes a value between 6 and 8. Violation of this rule 
would indicate a possible trend.

 2. 15 points in a row within the inner warning limits. Such a 
pattern would indicate better than expected performance.

 3. 14 points in a row alternating direction (up and down). Such 
a pattern could indicate that the process is being constantly 
tweaked, which can add additional unwanted variability.

 4. 8 points in a row beyond the inner warning limits, but 
not necessarily on the same side of the centerline.

Adding runs rules increases the chance that a change in the 
process will be detected quickly. However, it also increases 
the overall false alarm rate of the chart.

When implementing a capability control chart, it is impor-
tant to examine the operating characteristic or OC curve 
associated with the chart. The OC curve plots the probability 
of not generating an alert when plotting any given sample as 
a function of the true value of the index. Figure 9.2 shows a 
typical OC curve for a two-sided control chart. It may be seen 
that the probability of not generating an alert is very large 
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at the target value but decreases as the true capability index 
moves above or below the target value.

A third curve of interest is called the ARL or Average Run 
Length curve. This curve plots the average number of samples 
before an alert is generated if the true capability index 
suddenly shifts from its assumed value to some other value. 
Small shifts take a long time to detect. Large shifts, on the 
other hand, will be detected much more quickly on average 
(Figure 9.3).
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The rest of this section examines in detail capability control 
charts for various quality indices.

9.1.1  Control Chart for Proportion 
of Nonconforming Items

Chapter 2 considered the situation in which a random sample 
of n items was collected from a large population. If X equals 
the number of nonconforming items in the sample, then 
X follows a binomial distribution characterized by a single 
parameter θ, the probability that an individual item will be 
nonconforming. The point estimate for θ is given by

 
q̂ = X

n  
(9.1)

Given an assumed value for the proportion of nonconforming 
items θ0, X follows the binomial distribution
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Example 9.1 Capability Control Chart 
for Proportion of Nonconforming Items

Table 9.1 displays a set of counts of nonconforming items, 
obtained from 30 samples of n = 300 items each. A lengthy 
study of the process has shown that it tends to produce 
approximately 1% defective items. A capability control chart 
is desired that has a false alarm probability of α = 0.0027.

To create a capability control chart for θ, the centerline is 
placed at the expected value of q̂:
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The upper control limit is located at the smallest value of X/n 
for which

 j

X

p j
=
å ( ) ³ -

0

0 1
2

|q a

 

(9.4)

where α is the false alarm probability of the chart, assuming 
a two-sided chart with no runs rules. For charts with only 1 
control limit, the right-hand side of (9.4) is set equal to 1 – α. 
Likewise, the lower control limit is located at the smallest 
value of X/n for which

 j

X
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=
å ( ) >

0

0
2
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(9.5)

These equations assume that the consecutive estimates of q̂ 
all come from samples of common size n. If the sizes of the 
samples vary, two choices are possible:

 1. If the sample sizes do not vary much, then Equations 9.4 
and 9.5 may be solved using the average sample size n.

 2. Control limits may be plotted for each sample using the 
separate sample sizes ni, in which case the control limits 
look like step functions.

Table 9.1 Counts of Nonconforming Items 
from 30 Consecutive Samples of 300 Items Each

1 1 4 2 2 4

10 4 2 5 2 4

0 3 3 3 1 3

4 3 4 5 5 4

2 2 2 3 1 5
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Example 9.1 (Continued)

To create a control chart for the sample data, the center 
line is set at CL = 0.01. To construct an upper control limit, 
Equation 9.4 is used to evaluate cumulative probabilities for 
the binomial distribution. The cumulative probabilities for 
a binomial distribution with θ = 0.01 and n = 300 are given 
in Table 9.2. If the upper control limit is set at X = 9, then 
the false alarm probability of exceeding the UCL will equal 
1 – 0.998977 = 0.001023, which is less than α/2. The upper 
control limit for the proportion of nonconforming items will 
therefore be set at

 
UCL = =9

300
0 03. .

 
(9.6)

To construct the lower control limit using Equation 9.5, 
note from Table 9.2 that the cumulative probability 

Table 9.2 Binomial Distribution 
with θ = 0.01 and n = 300

X p(X) F(X)

0 0.049041 0.049041

1 0.148609 0.197650

2 0.224414 0.422904

3 0.225170 0.647234

4 0.168877 0.816111

5 0.100985 0.917097

6 0.050153 0.967249

7 0.021277 0.988526

8 0.007871 0.996398

9 0.002580 0.998977

10 0.000758 0.999735
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F(X = 0|θ = 0.01, n = 300) = 0.049, which is greater than 
α/2. Thus the lower control limit must be set at LCL = 0, 
effectively making the chart one-sided on the upper side. 
Since the purpose of the chart is to detect situations that are 
worse than expected, a  one-sided chart is acceptable.

Example 9.1 (Continued)

Figure 9.4 shows a capability control chart for the  sample 
data. The seventh plotted value exceeds the upper limit 
of the chart, indicating an unusually large number of 
 nonconformities in that sample. If created in real-time, 
the chart would have alerted process managers that 
an unusual event had just occurred at that point, quite 
 possibly causing them to take action or perhaps to 
take a larger sample to determine whether or not a real 
 problem existed.

Figure 9.5 shows the OC curve associated with the 
 capability control chart for this data. The OC curve plots the 
probability of not generating an alert as a function of the 
true proportion of nonconforming items. Since the chart is 
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items.
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one-sided, the probability of no alert decreases with increas-
ing values of θ. Note that the probability of no alert equals 
approximately 59% near θ = 0.03. Higher alert probabilities 
could be obtained if necessary by increasing the sample size 
above n = 300. Sample size selection for control charts is 
discussed later in this chapter.

Example 9.1 (Continued)

The ARL at any given value of θ is related to the probability 
of not getting an alert when a sample is taken. In particular,

 
ARL

Prob alert
q

q
( ) = ( )

1

|  
(9.7)

Consequently, the ARL at θ = 0.03 is approximately equal 
to 1/(1 − 0.59) = 2.44. This implies that if the propor-
tion of nonconforming items in the process shifts sud-
denly from 1% to 3%, it will take on average about 2 and 
one-half sampling periods until an alert is generated by 
the chart. Increasing the sample size would reduce this 
response time.
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Figure 9.5 Operating characteristic curve for capability control chart 
for proportion of nonconforming items.
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9.1.2  Control Chart for Rate of Nonconformities

Chapter 3 considered the problem of estimating the rate of 
nonconformities in a process. If a sample of size n is collected 
and X nonconformities are observed, then the rate of noncon-
formities is estimated by

 
l̂ = X

n  
(9.8)

Given an assumed value for the rate of nonconformities λ0, X 
follows the Poisson distribution:
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To create a capability control chart for λ, the centerline is 
placed at the expected value of l̂:
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As with the proportion of defective items, the upper con-
trol limit is set to the smallest value of X/n for which the 
cumulative probability equals or exceeds 1 – α/2, while 
the lower control limit is set to the smallest value that 
exceeds α/2.

Example 9.2 Control Chart for Rate 
of Nonconformities

Table 1.2 contains data on the total number of accidents 
involving U.S. air carriers for each year between 1990 
and 2014. Assuming a target level of λ = 3.5 accidents 
per million departures and setting α = 0.0027 as before, 
Figure 9.6 shows a two-sided capability control chart for 
the accident rates on a yearly basis. The control limits are 
drawn using the actual number of departures each year, 
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so they are not perfectly horizontal. Looking at the pat-
tern of the points, it appears that the accident rate was 
relatively low until 1995. It is then relatively high between 
1995 and 2003, after which it drops again. However, none 
of the values are far enough from 3.5 to be beyond the 
control limits.

Example 9.2 (Continued)

In order to generate alerts for small but persistent shifts 
away from target, it is useful to add the Western Electric 
rules. In Figure 9.7, alerts were generated for the following 
patterns:

 1. 7 or more consecutive points on the same side of the 
centerline. This rule generated alerts in each year dur-
ing the intervals 2001–2003 and 2012–2014.

 2. Runs of 7 or more increasing or decreasing. This rule 
did not generate any alerts.

 3. 4 out of 5 consecutive observations beyond the inner 
warning limits. This rule generated alerts each year 
during the  interval 1998–2001 and again in 2003.

 4. 2 out of 3 consecutive observations beyond the outer 
warning limits. This rule did not generate any alerts.
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Figure 9.6 Capability control chart for U.S. air carrier accidents.
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The runs rules provide a strong signal that the accident 
rate has changed significantly over the years.

Addition of runs rules can dramatically reduce the ARL 
of the control charts when the change in the parameter is 
not large enough to generate individual points beyond the 
control limits.

9.1.3  Control Charts for Cp and Pp

The capability indices Cp and Pp are used to measure the 
capability of a process based on variable rather than attri-
bute data. The indices compare the distance between a set of 
upper and lower specification limits to the variability in that 
process through the ratio

 
C
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-
6s  

(9.11)

Depending on the method used to estimate σ, the index may 
measure either short-term capability, in which case it is usu-
ally called Cp, or long-term performance, in which case it is 
called Pp.
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Figure 9.7 Capability control chart for U.S. air carrier accidents with 
runs rules violations marked.
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Regardless of how σ is estimated, the distribution of its 
estimate follows that of a chi-square distribution, at least 
approximately. The difference among the estimates is in the 
degrees of freedom ν associated with the chi-square reference 
distribution. Table 4.6 summarizes the degrees of freedom 
associated with various estimates.

To create a capability control chart for Cp or Pp, the ana-
lyst begins by specifying a target value Cp,0. This target value 
becomes the centerline of the chart. The upper control limit is 
then placed at
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while the lower control limit is located at
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Example 9.3 Control Chart for Cp

Suppose a process has been shown to be capable of 
 performing at a level where Cp = 2.0. The process man-
ager wishes to monitor the process to be sure that it con-
tinues to operate at that level. Consequently, at the end of 
each day a sample of n = 30 items is collected and used 
to calculate Cp. Table 9.3 shows a sequence of 25 such 
estimates.

Since each estimate of Cp is based on a sample of 30 
 measurements, the estimates Ĉ p will follow a chi-square 
distribution with ν = 29 degrees of freedom. Setting the 
false alarm rate α = 0.0027, the upper control limit is thus 
given by

 
UCL = = =2 0
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(9.14)
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while the lower control limit is given by

 
LCL = = =2 0

29
2 0

29

57 225
1 424

00135 29
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. ,c  
(9.15)

These are not very tight limits since there is a large amount 
of variability in a statistic such as Cp when it is calculated 
from only 30 measurements. However, Figure 9.8 shows 
that sample #24, which yielded a value Cp = 1.41, is below 
the lower control limit. An unusually low value of Cp 

Table 9.3 25 Consecutive Estimate of Cp, 
Each Based on n = 30 Observations

2.27 2.13 1.99 2.23 2.34

1.83 1.84 2.39 1.64 1.64

2.48 2.15 1.95 1.84 1.92

1.82 1.74 1.75 2.22 2.18

2.12 2.63 2.19 1.41 2.75

1.97 2.41 2.26 2.45 1.97

Sample
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3.198
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Figure 9.8 Capability control chart for 25 Cp estimates, each based 
on n = 30 observations.



206 ◾ Process Capability Analysis: Estimating Quality

 indicates an unusually large estimate of σ. When such a 
 signal occurs, it is good practice to take a larger sample from 
that period’s production to determine whether the vari-
ability had actually increased or whether this value was a 
false alarm.

Note that the control limits for Cp are not symmetrically 
placed around the centerline, due to the skewed nature of the 
chi-square distribution.

The OC curve for a Cp or Pp control chart is calculated 
using the chi-square distribution.

Example 9.3 (Continued)

Figure 9.9 shows the OC curve for the capability 
 control chart in Figure 9.8. Note that the probability of 
generating an alert is close to 50% when the true value of Cp 
is close to either of the control limits and drops quickly 
outside of the limits. An ARL chart can also be  created 
as described earlier. Also, note that the OC curve is not 
symmetric due to the skewed nature of the chi-square 
distribution.
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Figure 9.9 Operating characteristic curve for Cp control chart.
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9.1.4  Control Charts for Cpk and Ppk

Capability control charts can also be generated for Cpk and 
Ppk, which measure the distance from the mean to the nearer 
specification limit in multiples of 3 times the process sigma. 
If both upper and lower specification limits are present, an 
index may be defined for each limit according to
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The combined index Cpk is then the smaller of the two indices 
(assuming both are calculated):

 C C Cpk pk lower pk upper= éë ùû( ) ( )min ,  (9.18)

To create a capability control chart for Cpk or Ppk, the 
 analyst begins by specifying a target value Cpk,0. This 
t arget value becomes the centerline of the chart. To find 
the upper control limit, the following equation is solved 
for UCL:
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where n is the total number of observations and ν is 
the degrees of freedom used to estimate sigma. To find 
the lower control limit, the following equation is solved 
for LCL:
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Both equations are easy to solve numerically.
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Example 9.4 Control Chart for Cpk

Suppose estimates of Cpk are generated from consecutive 
batches of a medical device manufacturing process, each 
based on a sample of n = 30 items. Let the target value 
Cpk,0 = 1.5 and let the false alarm probability α = 0.0027. 
Solving Equations 9.19 and 9.20 gives control limits of 
UCL = 2.503 and LCL = 1.048. Figure 9.10 shows the result-
ing capability control chart.

9.1.5  Sample Size Determination 
for Capability Control Charts

The OC curve may be used to select a sample size that is 
appropriate when creating a capability control chart for 
monitoring process capability. To select a sample size, the 
analyst must specify:

 1. The parameter or index being monitored, such as the 
proportion of nonconforming items or the capability 
index Cpk

 2. A target value for the parameter or index

2.503

Capability control chart for Cpk

1.500

1.048
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C p
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Figure 9.10 Capability control chart for 25 Cpk estimates, each based 
on n = 30 samples.
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 3. Whether the control chart has both upper and lower lim-
its or just one limit

 4. A false alarm rate for the chart
 5. An alternative value of the parameter or index
 6. The desired power or ARL if the parameter being moni-

tored suddenly shifts to the alternative value

Statistical software programs can easily search for the smallest 
number of observations n that yields a capability control chart 
with the desired characteristics.

Example 9.5 Sample Size Determination 
for Cpk Control Chart

Figure 9.11 shows the OC curve created while determin-
ing an adequate sample size for monitoring Cpk. The target 
value is set to Cpk = 1.5, while the  alternative value is set 
to 1.0. The false alarm rate ( probability of  getting an alert 
when the target value is true) is set at α = 0.5%. The desired 
power (probability of getting an alert when the alterna-
tive is true) is set at 1 – β = 90%. The resulting OC curve 
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Figure 9.11 Operating characteristic curve for Cpk control chart with 
90% power at Cpk = 1.0 and 0.5% false alarm rate at Cpk = 1.5, requir-
ing samples of n = 48 observations.



210 ◾ Process Capability Analysis: Estimating Quality

shows that if n = 48 observations are collected each time 
a  sample is taken, the probability of not getting an alert 
when the true Cpk = 1.0 is about 9.97%, which gives the 
desired power.

9.2  Acceptance Control Charts

For processes that operate at a high level of Cpk, strict control 
over the process may not be necessary. In particular, some 
variation in the process mean may be acceptable, provided 
the mean does not come too close to the specification limits. 
Montgomery (2013) describes how a standard X-bar chart, 
typically used to detect changes in a process mean, may be 
modified to control the proportion of nonconforming items. 
When used together with an R chart or S chart, the result-
ing acceptance control chart will detect changes in the pro-
cess that correspond to unacceptable reductions in process 
capability.

Acceptance control charts are based on repeated sampling 
of the process. At any given time t, a sample of n items is 
collected. From each sample, statistics are calculated includ-
ing the sample mean xt and either the sample standard devia-
tion st or the sample range Rt. Given specification limits USL 
and LSL and assuming a known process σ, upper and lower 
control limits are constructed that generate alerts whenever a 
sample mean gets too close to either of the specification lim-
its. If only one specification limit is present, then a one-sided 
control chart is created instead.

There are two main approaches to constructing the control 
limits:

 1. Sigma multiple method: This method specifies the tar-
get mean μ, the process standard deviation σ, the larg-
est acceptable proportion of nonconforming items δ, 
and the desired false alarm probability α. The control 



Control Charts for Process Capability ◾ 211

limits are established so that the probability of generat-
ing an alert is no larger than α whenever the probability 
of being beyond the specification limits is less than or 
equal to δ.

 2. Beta risk method: This method specifies the target mean 
μ, the process standard deviation σ, an unacceptable 
proportion of nonconforming items γ, and the desired 
probability of getting an alert (1 – β) if the process 
mean shifts to a value for which the probability of being 
beyond the specification limits equals γ.

Note that the first method concentrates on controlling the 
false alarm probability, while the second method controls the 
power of the chart.

Example 9.6 Acceptance Control Charts

Suppose a process manager wants to monitor a  process 
that produces medical devices. The diameter of the 
devices is required to fall within the range 2.0 ± 0.1 mm. 
Extensive studies of the process have established an opera-
tional standard with μ = 2.0 and σ = 0.01, which would 
put the specification limits 10 standard deviations from the 
mean. For such a process, the capability index Cp would be 
in excess of 3.

To monitor this process and detect situations when the 
process is no longer in control at the established mean 
and standard deviation, samples could be collected from 
the process periodically and the average diameters could 
be plotted on an X-bar control chart with control limits 
based on the established parameters. Figure 9.12 shows 
such a chart with 25 averages, each calculated from n = 30 
values randomly generated from a normal distribution 
with μ = 2.0 and σ = 0.01. For this chart, the centerline is 
located at the assumed process mean. The upper control 
limit is located at
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and the lower control limit is at
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(9.22)

where Zα/2 is the value of the standard normal distribution 
that is exceeded with probability α/2. Following standard 
practice and setting α = 0.0027, then Zα/2 = 3 and the control 
limits are located at ± 3s/ n .

It can be seen from the chart in Figure 9.12 that, for 
high Cpk processes, the control limits are far inside of the 
specification limits. While a sample average xt  beyond 
the control limits may signal that the mean and stan-
dard  deviation of the process are not those assumed, it 
does not necessarily indicate that the process threatens 
to  produce many nonconforming items. An acceptance 
chart increases the distance between the control limits, 
allowing the process mean to fluctuate as long as it does 
not get too close to the specification limits.
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Figure 9.12 Phase II X-bar chart for medical device diameters.
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9.2.1  Sigma Multiple Method

To construct an acceptance chart using the sigma multiple 
method, the analyst begins by specifying the largest fraction 
of nonconforming items δ that is considered to be acceptable. 
Control limits are then established at positions that only rarely 
generate alerts unless the process mean moves close enough 
to the specification limits such that the fraction of noncon-
forming items is greater than δ. For the process to generate 
no more than δ nonconforming items, the lowest allowable 
value for the mean is

 m sdL LSL Z= +  (9.23)

and the highest allowable value for the mean is

 m sdU USL Z= -  (9.24)

The control limits are positioned far enough outside the 
means given above to give a false alarm rate equal to α if the 
mean moves to either μL or μU. Consequently, the limits for the 
chart of xt are
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and
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Example 9.6 (Continued)

Continuing the medical device example, suppose the 
 process manager decides that the maximum acceptable 
fraction of nonconforming items is δ = 0.0001. The value of 
the standard normal distribution exceeded with  probability 
0.0001 is Zδ = 3.719. This implies that the mean can be 
as great as μU = 2.0628 or as small as μL = 1.9372 without 
exceeding the specified proportion of nonconforming items. 
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The control limits are located at a distance (3.719 – 3/ 30)σ 
inside of the specification limits, as shown in Figure 9.13.

Figure 9.14 shows the operating characteristic curve for 
the resulting chart. Notice that the probability of acceptance 
(not getting an alert) is large at all values between μL and μU, 
while it falls off rapidly beyond those values.
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Figure 9.13 Acceptance control chart constructed using sigma 
 multiple method.
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9.2.2  Beta Risk Method

An alternative method for constructing an acceptance chart is 
to position the control limits such that the risk of not getting a 
signal equals β when the mean shifts to either μL or μU, where 
those upper and lower means correspond to a fraction of 
nonconforming items γ that is unacceptable. This places the 
control limits inside of μL and μU at
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and
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Of course, controlling the missed alarm rate β impacts the 
false alarm rate α.

Example 9.6 (Continued)

Suppose a process manager wishes to construct a control 
chart that will generate a signal 95% of the time if the mean 
shifts to a location corresponding to 0.1%  nonconforming 
items. Using the beta risk method with β = 0.05 and 
γ = 0.001, the control limits are located at a distance equal 
to (3.09024 + 1.64486/ 30)σ inside of the specification 
limits, as shown in Figure 9.15. These limits are tighter than 
using the sigma multiple method, but still much wider than 
using a standard X-bar chart.

The difference in performance between the two meth-
ods of constructing an acceptance chart may be seen by 
 comparing the OC curve in Figure 9.16 to that of Figure 9.14. 
The beta risk method insures that the  probability of getting a 
signal is large at γ, while the sigma multiple method insures 
that the false alarm probability at δ is small.
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Montgomery (2013) shows that the only way to control 
both the alpha and beta risks is to select the proper sample 
size n. In his example, two proportions are defined:

δ = fraction of nonconforming items that the manager is 
willing to accept with probability 1 – α

Acceptance chart for X-bar
LSL= 1.9, USL= 2.1

2.066

2.000

1.934

252015
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1050
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Figure 9.15 Acceptance control chart constructed using beta risk 
method.
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Figure 9.16 OC curve for acceptance control chart created using 
beta risk method.
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γ = fraction of nonconforming items that the manager 
wishes to reject with probability 1 – β

An acceptance chart that meets both these conditions requires 
plotting subgroup means, each of which is based on
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observations.

Example 9.7 Sample Size Determination 
for Acceptance Control Charts

Returning to Example 9.6, suppose the manager wished to 
adjust his sampling plan so that an acceptance control chart 
would have a 95% chance of generating an alert when the 
process was producing 0.1% or more nonconforming items, 
yet have only a 0.27% chance of generating an alert when 
the process was producing 0.01% defective items. Using 
Equation 9.29:
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Each time a sample is taken, 50 devices should be measured 
and the mean diameter plotted on the chart.
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Conclusion

This book has examined methods for estimating how capable 
a process is of meeting the specifications established for it. 
In all cases, primary interest has centered on estimating θ, 
the proportion of time that a product or service does 
not satisfy the specifications. Estimating capability has 
been accomplished by taking a sample of size n from the 
population and then using one of three methods:

 1. Directly counting the number of nonconformities
 2. Fitting a normal or nonnormal distribution to measure-

ments made on each item and estimating the proportion 
of that distribution that is beyond the specification limits

 3. Calculating statistical tolerance limits for the 
measurements

Considerable emphasis has been given to obtaining 
confidence limits for θ and other estimates of quality. In some 
cases, these limits may be obtained analytically. In other 
cases, bootstrapping and Monte Carlo methods must be used. 
As in all statistical analyses, providing measures of precision 
for the numbers that are calculated is critical for their proper 
interpretation.

Throughout the book, the problem of determining an 
adequate sample size has also been considered. One of the 
most frequently asked questions of statisticians is “How much 
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data do I need?” The statistician’s usual response is “How well 
do you want to know the answer?” This book has framed the 
sample size problem in terms that should be easy to use in 
practice. By specifying either the precision of the estimated 
quality index or the power of a test against a specific 
alternative, the required sample size may be calculated.

Much attention has also been given to being sure that 
the data used to estimate quality satisfy the assumptions of 
the methods applied. While much data follows a normal 
distribution, much does not. Assuming normality when it 
does not exist may yield attractive numerical results, but they 
mean nothing in reality. Selecting alternative distributions and 
finding normalizing transformations are important tools for 
making proper use of the methods described in this book.

Since quality rarely depends on a single characteristic, 
consideration has also been given to the analysis of 
multivariate capability. Considering multiple variables 
simultaneously is important, particularly when those variables 
are correlated. Unfortunately, current practice usually 
concentrates on only one variable at a time.

Finally, the methods presented in this book have illustrated 
the results of the capability analyses using graphical output 
wherever possible. Visualizing how well or poorly a process 
is performing helps bring capability statistics to life.
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Appendix A: Probability 
Distributions

This appendix lists distributions that are useful for modeling 
discrete and continuous variables. Distributions for discrete 
variables are listed first.

Bernoulli Distribution
Range of X: 0 or 1
Common use: Representation of an event with two possible 

outcomes. In the distributions below, the primary out-
come will be referred to as a “success”.

PMF: p(x) = px(1 − p)1 − x

Parameters: Event probability 0 ≤ p ≤1
Mean: p
Variance: p(1 − p)

Binomial Distribution
Range of X: 0, 1, 2, …, n
Common use: Distribution of number of successes in a 

sample of n independent Bernoulli trials. Commonly 
used for number of defects in a sample of size n.

PMF: p x
n

x
p px n x( ) = æ

è
ç
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ø
÷ -( ) -

1
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Parameters: Event probability 0 ≤ p ≤ 1, number of trials 
n ≥ 1

Mean: np
Variance: np(1 − p)

Discrete Uniform Distribution
Range of X: a, a + 1, a + 2, …, b
Common use: Distribution of an integer-valued variable 

with both lower bound and upper bound.

PMF: p x
b a

( ) =
- +

1
1

Parameters: Lower limit a, upper limit b ≥ a

Mean: 
a b+

2

Variance: 

b a- +( ) -1 1

12

2

Geometric Distribution
Range of X: 0, 1, 2, …
Common use: Waiting time until the occurrence of the first 

success in a sequence of independent Bernoulli tri-
als. Number of items inspected before the first defect is 
found.

PMF: p(x) = p(1 − p)x

Parameters: Event probability 0 ≤ p ≤1

Mean: 
1 - p

p

Variance: 
1

2

- p
p

Hypergeometric Distribution
Range of X: max(0,n − m), 1, 2, …, min(m,n)
Common use: Number of items of a given type selected 

from a finite population with two types of items, such 
as good and bad. Acceptance sampling from lots of 
fixed size.
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Parameters: Population size N, number of items 0 ≤ m ≤ N, 
sample size n
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Negative Binomial (Pascal) Distribution
Range of X: 0, 1, 2, …
Common use: Waiting time until the occurrence of k suc-

cesses in a sequence of independent Bernoulli trials. 
Number of good items inspected before the kth defect is 
found.

PMF: p x
x k

x
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Parameters: Event probability p, number of successes k

Mean: k
p

p
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Variance: 
k p

p

1
2
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Poisson Distribution
Range of X: 0, 1, 2, …
Common use: Number of events in an interval of fixed size 

when events occur independently. Common model for 
number of defects per unit.

PMF: p x
e
x

x

( ) =
-l l

!
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Parameters: Mean λ > 0
Mean: λ
Variance: λ

Beta Distribution
Range of X: 0 ≤ X ≤ 1
Common use: Distribution of a random proportion.
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Beta Distribution (4-Parameter)
Range of X: a ≤ X ≤ b
Common use: Model for variable with both lower and 

upper limits. Often used as a prior distribution for 
Bayesian analysis.
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Birnbaum-Saunders Distribution
Range of X: X > 0
Common use: Model for the number of cycles needed to 

cause a crack to grow to a size that would cause a frac-
ture to occur.
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Cauchy Distribution
Range of X: All real X
Common use: Model for measurement data with longer and 

flatter tails than the normal distribution.
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Parameters: Mode θ, scale β > 0
Mean: Not defined
Variance: Not defined

Chi-Square Distribution
Range of X: X ≥ 0
Common use: Distribution of the sample variance s2 from a 

normal population.
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Erlang Distribution
Range of X: X ≥ 0
Common use: Length of time before α arrivals in a Poisson 

process.
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Parameters: Integer shape α ≥ 1, scale λ > 0

Mean: 
a
l

Variance: 
a
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Exponential Distribution
Range of X: X ≥ 0
Common use: Time between consecutive arrivals in a 

Poisson process. Lifetime of items with a constant hazard 
rate.

PDF: f (x) = λe−λx

Parameters: Rate λ > 0

Mean: 
1
l

Variance: 
1
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Exponential Distribution (2-Parameter)
Range of X: X ≥ θ
Common use: Model for lifetimes with a lower limit.
PDF: f (x) = λe−λ(x − θ)

Parameters: Threshold θ, scale λ > 0

Mean: q
l

+ 1

Variance: 
1
2l
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Exponential Power Distribution
Range of X: All real X
Common use: Symmetric distribution with parameter con-

trolling the kurtosis. Special cases include normal and 
Laplace distributions.
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F Distribution
Range of X: X ≥ 0
Common use: Distribution of the ratio of two independent 

variance estimates from a normal population.
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Folded Normal Distribution
Range of X: X ≥ 0
Common use: Absolute values of data that follow a normal 

distribution.
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Gamma Distribution
Range of X: X ≥ 0
Common use: Model for positively skewed measurements. 

Time to complete a task, such as a repair.
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Gamma Distribution (3-Parameter)
Range of X: X ≥ θ
Common use: Model for positively skewed data with a fixed 

lower bound.
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Generalized Gamma Distribution
Range of X: X > 0
Common use: General distribution containing the expo-

nential, gamma, Weibull, and lognormal distributions as 
special cases.
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Generalized Logistic Distribution
Range of X: All real x
Common use: Used for the analysis of extreme values. May 

be either left-skewed or right-skewed, depending on the 
shape parameter.
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Half Normal Distribution
Range of X: X ≥ μ
Common use: Normal distribution folded about its mean.
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Inverse Gaussian Distribution
Range of X: X > 0
Common use: First passage time in Brownian motion.
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Johnson SB Distribution
Range of X: θ < X < θ + λ
Common use: Bounded part of Johnson family, used for 

modeling nonnormal data.
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Parameters: Location θ, scale λ > 0, shape γ shape δ > 0

Johnson SL Distribution
Range of X: X > θ
Common use: Unbounded part of Johnson family, used for 

modeling nonnormal data.
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Parameters: Location θ, shape γ shape δ > 0
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Johnson SU Distribution
Range of X: All real X
Common use: Bounded part of Johnson family, used for 

modeling nonnormal data.
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Laplace (Double Exponential) Distribution
Range of X: All real X
Common use: Symmetric distribution with a very pro-

nounced peak and long tails.
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Largest Extreme Value Distribution
Range of X: All real X
Common use: Distribution of the largest value in a sample 

from many distributions. Also used for positively skewed 
measurement data.
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Logistic Distribution
Range of X: All real X
Common use: Used as a model for growth and as an alter-

native to the normal distribution.
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Variance: σ2

Loglogistic Distribution
Range of X: X > 0
Common use: Used for data where the logarithms follow a 

logistic distribution.
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Mean: exp(μ)Γ(1 + σ)Γ(1 − σ)
Variance: exp(2μ)[Γ(1 + 2σ)Γ(1 − 2σ) − Γ2(1 + σ)Γ2(1 − σ)]

Loglogistic Distribution (3-Parameter)
Range of X: X > θ
Common use: Used for data where the logarithms 

 follow a logistic distribution after subtracting a threshold 
value.
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Parameters: Median exp(μ), shape σ > 0, threshold θ
Mean: θ + exp(μ)Γ(1 + σ)Γ(1 − σ)
Variance: exp(2μ)[Γ(1 + 2σ)Γ(1 − 2σ) − Γ2(1 + σ)Γ2(1 − σ)]

Lognormal Distribution
Range of X: X > 0
Common use: Used for data where the logarithms follow a 

normal distribution.
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Lognormal Distribution (3-Parameter)
Range of X: X > θ
Common use: Used for data where the logarithms 

 follow a normal distribution after subtracting a threshold 
value.
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Maxwell Distribution
Range of X: X > θ
Common use: The speed of a molecule in an ideal gas.

PDF: f x
x x( ) = -( )

- -æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

2 1
2

2

3

2

p
q

b
q

b
exp

Parameters: Scale β > 0, threshold θ
Mean: q b p+ 8/
Variance: β2(3 − 8/π)



234 ◾ Appendix A: Probability Distributions

Noncentral Chi-square Distribution
Range of X: X ≥ 0
Common use: Used to calculate the power of chi-square 

tests.
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Appendix B: Guide 
to Capability 
Analysis Procedures 
in Statgraphics

This appendix indicates the procedures in Statgraphics 
Version 18 that may be used to calculate the various statistics 
described in this book. To reproduce each example, follow 
the step-by-step instructions given for that example. In some 
cases, you may need to use the Graphics Options dialog box 
to adjust the axis scaling to match that shown in the text. 
The sample data sets and other information may be found at 
www.statgraphics.com/process-capability-analysis-book.

Chapter 1: Introduction

Example 1.1 Medical Devices

Load sample data file meddevices.sgd. Select Describe – 
Numeric Data – One Variable Analysis. On the data input 
dialog box, enter “diameter” in the Data field. On the list 
of tables and graphs, select Analysis Summary, Summary 
Statistics, Box-and-Whisker Plot, and Frequency Histogram. 

http://www.statgraphics.com


240 ◾ Appendix B: Guide to Capability Analysis Using Statgraphics 

On the Pane Options dialog box for Summary Statistics, select 
Average, Median, Standard Deviation, Coeff. of Variation, 
Minimum, Maximum, Range, Lower Quartile, Upper Quartile, 
Interquartile Range, Stnd. Skewness, and Stnd. Kurtosis. On the 
Pane Options dialog box for Frequency Histogram, set Number 
of Classes to “40”, Lower Limit to “1.9”, and Upper Limit to “2.1”.

Example 1.2 Airline Accidents

Load sample data file accidents.sgd. Select Plot – Scatterplots – 
X-Y Plot. On the data input dialog box, enter “Fatal Accidents/
(Flight Hours/100000)” in the Y field and “Year” in the X field. 
Once the graph is displayed, double-click to maximize it, 
push the Smooth/Rotate button on the analysis toolbar, set 
Type to “Robust Lowess”, and set Smoothing Fraction to “50”%.

Chapter 2: Capability Analysis Based on 
Proportion of Nonconforming Items

Example 2.1 Estimating the Proportion 
of Nonconforming Items

Select Describe – Numeric Data – Hypothesis Tests. On the first 
dialog box, set the Parameter field to “Binomial Proportion”. 
Set the Sample Proportion to “0.0” and the Sample Size 
field to “100”. On the second dialog box, set the Alternative 
Hypothesis to “Not Equal” and Alpha to “5”% to create a 
two-sided confidence interval. To create an upper one-
sided bound, select Analysis Options and set the Alternative 
Hypothesis to “Less Than”.

To plot the likelihood function, select Statlets – Statistical 
Modeling – Process Capability Analysis – Attributes. Set 
Parameter to “proportion of nonconforming items”, Method to 
“classical”, Number of nonconforming items to “0”, Sample size 
to “100”, and Confidence limits to “Upper” at “95%”.
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Example 2.2 Sample Size Determination 
If No Defects Expected

Select Statlets – Statistical Modeling – Process Capability Analysis 
– Attributes. Set Parameter to “proportion of nonconforming 
items”, Method to “classical”, Number of nonconforming items to 
“0”, and Confidence limits to “Upper” at “95%”. Push the Solve 
for n button. Enter “0.001” in the Target upper bound field and 
select “Number of nonconformities (x)” for Hold unchanged.

Example 2.3 Using a Uniform Prior

Select Statlets – Statistical Modeling – Process Capability 
Analysis – Attributes. Set Parameter to “proportion of noncon-
forming items”, Method to “Bayesian”, Number of nonconform-
ing items to “0”, Sample size to “100”, and set both Beta prior 
parameters to “1.0”.

Example 2.4 Using an Informative Prior

Select Statlets – Statistical Modeling – Process Capability 
Analysis – Attributes. Set Parameter to “proportion of noncon-
forming items”, Method to “Bayesian”, Number of nonconform-
ing items to “0”, and Sample size to “100”. Press the Set prior 
button. Set Input to “Two percentiles”, the Percentage fields to 
“50” and “90”, and the Percentile fields to “0.005” and “0.01”.

Chapter 3: Capability Analysis Based 
on Rate of Nonconformities

Example 3.1 Estimating Aircraft Accident Rates

Select Statlets – Statistical Modeling – Process Capability 
Analysis – Attributes. Set Parameter to “mean rate of noncon-
formities”, Method to “classical”, Number of nonconformities 
to “3”, Sample size to “88727934”, and Confidence limits to 
“Upper”. Push the Update button.
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Example 3.2 Estimating Warranty Repair Rates

Select Statlets – Statistical Modeling – Process Capability 
Analysis – Attributes. Set Parameter to “mean rate of noncon-
formities”, Method to “classical”, Number of nonconformities to 
“65”, Sample size to “1000”, and Confidence limits to “Upper”. 
Push the Update button.

Example 3.3 Sample Size Determination

Select Statlets – Statistical Modeling – Process Capability 
Analysis – Attributes. Set Parameter to “mean rate of noncon-
formities”, Method to “classical”, Number of nonconformities to 
“65”, Sample size to “1000”, and Confidence limits to “Upper”. 
Press the Solve for n button. Set Target upper bound to “0.07” 
and Hold unchanged to “Point estimate (x/n)”.

Example 3.4 Bayesian Estimation 
of Fatal Accident Rate

Select Statlets – Statistical Modeling – Process Capability 
Analysis – Attributes. Set Parameter to “mean rate of non-
conformities”, Method to “Bayesian”, Number of nonconfor-
mities to “3”, Sample size to “88727934”, and Bayesian limits 
to “Upper”. Press the Set prior button. Set Input to “Two 
 percentiles”, the Percentage fields to “50” and “90”, and the 
Percentile fields to “3e-8” and “5e-8”.

Chapter 4: Capability Analysis 
of Normally Distributed Data

Example 4.1 Fitting a Normal Distribution

Load sample data file meddevices.sgd. Select SPC – Capability 
Analysis – Variables – Individuals. On the data input dialog 
box, enter “diameter” into the Data field. Enter “1.9” in the LSL 
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field, “2.0” in the Nominal field, and “2.1” in the USL field. On 
the Analysis Options dialog box, set Distribution to “Normal”. 
Maximize the Capability Plot by double-clicking on it. Select 
Pane Options. Set the Number of Classes to “40”, the Lower 
Limit to “1.9”, the Upper Limit to “2.1”, and check Hold.

To calculate confidence limits, select Describe – Numeric 
Data – One Variable Analysis. On the data input dialog box, 
enter “diameter” into the Data field. On the list of tables and 
graphs, select Confidence Intervals.

Example 4.2 Analysis of Subgroup Data

Load sample data file meddevices.sgd. Select SPC – Capability 
Analysis – Variables – Grouped Data. On the data input dialog 
box, enter “diameter” into the Data field and “5” in the Date/
Time/Labels or Size field. Enter “1.9” in the LSL field, “2.0” in 
the Nominal field, and “2.1” in the USL field. On the Analysis 
Options dialog box, set Distribution to “Normal”. On the list 
of tables and graphs, select Tolerance Chart. Maximize the 
tolerance chart by double-clicking on it. To jitter the data, 
push the Jitter button on the analysis toolbar and add a small 
amount of Horizontal jitter.

To create the box-and-whisker plot, select Plot – Exploratory 
Plots – Box-and-Whisker Plots – Multiple Samples. On the data 
input dialog box, enter “diameter” into the Data field and 
“REP(COUNT(1,20,1),5)” in the Level codes field. Use Pane 
Options to set Direction to “Vertical” and uncheck Outlier 
Symbols. Use Graphics Options to rescale the Y-axis so that 
it ranges from “1.85” to “2.15” by “0.05” and check the Hold 
Sealing Constant box. Use the Add Object button on the analy-
sis toolbar to add Horizontal lines at “1.9”, “2.0”, and “2.1”.

Example 4.3 Estimating Short-Term and 
Long-Term Variability from Subgroups

Load sample data file meddevices.sgd. Select Edit – 
Preferences. On the Capability tab, set the Short-term 
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sigma – grouped data field to the desired setting. Check Apply 
bias correction for s if desired. Then select SPC – Capability 
Analysis – Variables – Grouped Data. On the data input dialog 
box, enter “diameter” into the Data field and “5” in the Date/
Time/Labels or Size field. Enter “1.9” in the LSL field, “2.0” in 
the Nominal field, and “2.1” in the USL field. Select Capability 
Indices from the list of tables and graphs.

Example 4.4 Estimating Short-Term 
Variability from Individuals Data

Load sample data file meddevices.sgd. Select Edit – 
Preferences. On the Capability tab, set the Short-term 
sigma – individuals field to the desired setting. Check Apply 
bias correction for s if desired. Then select SPC – Capability 
Analysis – Variables – Individuals. On the data input dialog 
box, enter “diameter” into the Data field. Enter “1.9” in the 
LSL field, “2.0” in the Nominal field, and “2.1” in the USL field. 
Select Capability Indices from the list of tables and graphs.

To create the MR(2) chart, select SPC – Control Charts – 
Basic Variables Charts – Individuals. On the data input dialog 
box, enter “diameter” in the Observations field. Select MR(2) 
Chart from the list of tables and graphs. Use Pane Options to 
set Decimal Places for Limits to “4”.

Example 4.5 Capability Analysis 
of Medical Device Diameters

Load sample data file meddevices.sgd. Select SPC – Capability 
Analysis – Variables – Individuals. On the data input dialog 
box, enter “diameter” into the Data field. Enter “1.9” in the LSL 
field, “2.0” in the Nominal field, and “2.1” in the USL field. Select 
Analysis Summary, Capability Indices, and Capability Plot from 
the list of tables and graphs. On the Pane Options dialog box 
for Capability Indices, select the desired capability indices and 
set Confidence Limits to “Lower Confidence Bounds”.
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Example 4.6 Confidence Limits 
for One-Sided Specifications

Load sample data file meddevices.sgd. Select SPC – Capability 
Analysis – Variables – Individuals. On the data input dia-
log box, enter “diameter” into the Data field. Enter “1.9” in 
the LSL field but leave the USL field blank. Select Analysis 
Summary, Capability Indices, and Capability Plot from the 
list of tables and graphs. On the Pane Options dialog box for 
Capability Indices, select the desired capability indices and set 
Confidence Limits to “Lower Confidence Bounds”.

Example 4.7 Confidence Limits 
for Two-Sided Specifications

Load sample data file meddevices.sgd. Select SPC – Capability 
Analysis – Variables – Individuals. On the data input dialog 
box, enter “diameter” into the Data field. Enter “1.9” in the LSL 
field, “2.0” in the Nominal field, and “2.1” in the USL field. Select 
Analysis Summary, Capability Indices, and Capability Plot from 
the list of tables and graphs. On the Pane Options dialog box 
for Capability Indices, select all of the indices to Display and 
set Confidence Limits to “Lower Confidence Bounds”. Check 
Include Bootstrap and set the Number of Subsamples to “10000”. 
Because at the random element involved in bootstrapping, the 
results, may not match exactly those shown in the text.

Chapter 5: Capability Analysis 
of Nonnormal Data

Example 5.1 Tests of Normality

Load sample data file meddevices.sgd. Select Statlets – 
Statistical Modeling – Power Transformations. On the data 
input dialog box, enter “diameter” into the Data field.
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Example 5.2 Power Transformations

Repeat Example 5.1. To optimize the power only, push 
the Optimize button. To optimize both the power and the 
addend, check Optimize addend and then push the Optimize 
button.

Example 5.3 Calculating Process Capability 
for Transformed Data

Load sample data file meddevices.sgd. Select Statlets – 
Statistical Modeling – Process Capability Analysis – Variables. 
On the data input dialog box, enter “diameter” into the Data 
field. Enter “1.9” in the LSL field, “2.0” in the Nominal field, 
and “2.1” in the USL field. Once the Statlet window opens, set 
the Addend field to “-1.78688” and Power to “-3.15”.

To calculate confidence bounds, select SPC – Capability 
Analysis – Variables – Individuals. On the data input dia-
log box, enter “diameter” into the Data field. Enter “1.9” in 
the LSL field, “2.0” in the Nominal field, and “2.1” in the USL 
field. On the Analysis Options dialog box, set Distribution 
to “Normal” and Data Transformation to “Power”. Set the 
Power to “-3.15” and Lower Threshold to “1.78688”. On the 
list of tables and graphs, select Capability Indices. On the 
Capability Indices Pane Options dialog box, select all of 
the capability indices and set Confidence Limits to “Lower 
Confidence Bounds”.

Example 5.4 Fitting an Alternative Distribution

Load sample data file meddevices.sgd. Select Describe – 
Distribution Fitting – Fitting Uncensored Data. On the data 
input dialog box, enter “diameter” into the Data field. On the 
list of tables and graphs, select Comparison of Alternative 
Distributions. Maximize the Comparison of Alternative 
Distributions pane. On the Pane Options dialog box, select 
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the distributions listed in Table 5.4. Also, press the Tests 
button. Under Include, select “Likelihood”, “Kolmogorov-
Smirnov D”, and “Anderson-Darling A^2”. Under Sort by, 
select “Anderson-Darling A^2”.

To plot the best-fitting distributions, display the Analysis 
Options dialog box and check “Generalized Logistic”, “Largest 
Extreme Value”, and “Loglogistic (3-parameter)”.

To perform the capability analysis, select SPC – Capability 
Analysis – Variables – Individuals. On the data input dialog 
box, enter “diameter” into the Data field. Enter “1.9” in the LSL 
field, “2.0” in the Nominal field, and “2.1” in the USL field. On 
the Analysis Options dialog box, set Distribution to “Largest 
Extreme Value”.

Example 5.5 Testing Goodness-of-Fit 
of Nonnormal Distribution

Load sample data file meddevices.sgd. Select Describe – 
Distribution Fitting – Fitting Uncensored Data. On the 
data input dialog box, enter “diameter” into the Data field. 
On the Analysis Options dialog box, set Distribution to 
“Largest Extreme Value”. On the list of tables and graphs, 
select Goodness-of-Fit Tests. On the Pane Options dialog 
box for Goodness-of-Fit Tests, check “Modified Kolmogorov-
Smirnov D” and “Anderson-Darling A^2”. Check “Calculate 
distribution-specific P-values”.

Example 5.6 Calculating Capability 
Indices for Nonnormal Distribution

Load sample data file meddevices.sgd. Select SPC – Capability 
Analysis – Variables – Individuals. On the data input dia-
log box, enter “diameter” into the Data field. Enter “1.9” in 
the LSL field, “2.0” in the Nominal field, and “2.1” in the USL 
field. On the Analysis Options dialog box, set Distribution 
to “Largest extreme value”. On the list of tables and graphs, 
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select Analysis Summary and Capability Indices. On the Pane 
Options dialog box for Capability Indices, select all of the 
capability indices, set Confidence Limits to “Lower Confidence 
Bounds”, and set the Number of Subsamples to “50000”.

Example 5.7 Transformation Using Johnson Curves

Load sample data file meddevices.sgd. Select Statlets – 
Statistical Modeling – Process Capability Analysis – Variables. 
On the data input dialog box, enter “diameter” into the 
Data field. Enter “1.9” in the LSL field, “2.0” in the Nominal 
field, and “2.1” in the USL field. On the Statlets toolbar, set 
Distribution to “Johnson”.

To calculate the capability indices, select SPC – Capability 
Analysis – Variables – Individuals. On the data input dialog 
box, enter “diameter” into the Data field. Enter “1.9” in the LSL 
field, “2.0” in the Nominal field, and “2.1” in the USL field. On 
the Analysis Options dialog box, set Distribution to “Johnson 
SB, SL, SU”. On the list of tables and graphs, select Analysis 
Summary and Capability Indices. On the Pane Options dialog 
box for Capability Indices, select all of the capability indices, 
set Confidence Limits to “Lower Confidence Bounds”, and set 
the Number of Subsamples to “50000”.

Chapter 6: Statistical Tolerance Limits

Example 6.1 Analysis of Medical Device Diameters

Load sample data file meddevices.sgd. Select Statlets – 
Statistical Modeling – Process Capability Analysis - Variables. 
On the data input dialog box, enter “diameter” into the 
Data field. Enter “1.9” in the LSL field, “2.0” in the Nominal 
field, and “2.1” in the USL field. On the Statlet toolbar, select 
Tolerance limits and enter “95% for 99%”. To create a one-
sided limit, change “Two-sided” to “Upper”.
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Example 6.2 Use of Power Transformations

Repeat instructions for Example 6.1. Then enter “−1.78688” in 
the Addend field and set Power to −3.15.

Example 6.3 Tolerance Limits Based on 
Largest Extreme Value Distribution

Repeat instructions for Example 6.1. Then set Distribution 
field to “Largest extreme value”.

Example 6.4 Nonparametric Tolerance Limits

Load sample data file meddevices.sgd. Select Describe – 
Numeric Data – Statistical Tolerance Limits – From 
Observations. On the data input dialog box, enter “diameter” 
into the Data field. Enter “1.9” in the LSL field and “2.1” 
in the USL field. On the Analysis Options dialog box, set 
Distribution to “Nonparametric (specified confidence)” with 
Interval Depth set to “1”. Set Confidence Level to “95”%.

To control the population proportion, use Analysis Options 
to change Distribution to “Nonparametric (specified propor-
tion)” with Interval Depth set to “1”. Set Population Proportion 
to “99”%.

Chapter 7: Multivariate Capability Analysis

Example 7.1 Bivariate Data Visualization

Load sample data file devices.sgd. To create the scatterplot, 
select Plot – Scatterplots – X-Y Plot. On the data input dia-
log box, enter “strength” for Y and “diameter” for X. Use 
Graphics Options to rescale the X-axis to range from 1.85 
to 2.15 by 0.05 and the Y-axis to range from 180 to 280 
by 10. Use the Add Object button to add line segments from 
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(1.9,200) to (1.9,280), from (2.1,200) to (2.1,280), and from 
(1.9,200) to (2.1,200).

To create the bivariate histogram, select Statlets – Data 
Exploration – Bivariate Density. On the data input dialog box, 
enter “diameter” for Sample 1 and “strength” for Sample 2. 
To switch to a nonparametric density estimate, select 
Nonparametric density estimate with width set equal to “30%” 
and then set the Resolution field to “201”.

Example 7.2 Fitting a Multivariate 
Normal Distribution

Load sample data file devices.sgd. Select Statlets – Data 
Exploration – Bivariate Density. On the data input dialog box, 
enter “diameter” for Sample 1 and “strength” for Sample 2. 
On the Statlet toolbar, select “Normal distribution” and set the 
Resolution field to “201”.

Example 7.3 Tests for Multivariate Normality

Load sample data file devices.sgd. Select Describe – 
Multivariate Methods – Multivariate Normality Test. On the 
data input dialog box, enter “diameter” and “strength” in the 
Data field.

Example 7.4 Multivariate Capability Indices

Load sample data file devices.sgd. Select SPC – Capability 
Analysis – Variables – Multivariate Capability Analysis. On 
the data input dialog box, enter “diameter” and “strength” 
in the Data field. Enter “USL” in the Upper Specification 
Limits field, “Nominal” in the Nominal Values field, and 
“LSL” in the Lower Specification Limits field. Select Analysis 
Summary, Capability Indices, Capability Plot, and Capability 
Ellipse from the list of tables and graphs. On the Pane 
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Options dialog box for the Capability Indices, set Bootstrap 
Confidence Limits to “Lower confidence bounds” and 
Number of Subsamples to “5000”.

Example 7.5 Multivariate Normal Tolerance Region

Load sample data file devices.sgd. Select Describe – Numeric 
Data – Statistical Tolerance Limits – Multivariate Tolerance 
Limits. On the data input dialog box, enter “diameter” and 
“strength” in the Data field. On the Analysis Options dialog 
box, set Confidence Level to “95”% and Population Proportion 
to “99.9”%. Move “strength” to the Lower bound only field. 
Use Graphics Options to rescale the X-axis to range from 
1.85 to 2.15 by 0.05 and the Y-axis to range from 180 to 300 
by 20. Use the Add Object button to add line segments from 
(1.9,200) to (1.9,300), from (1.9,200) to (2.1,200), and from 
(2.1,200) to (2.1,300). Add the text string “1.9” at position 
(1.9,300) and the text string “2.1” at position (2.1,300) after 
setting Properties – Reference Position to “Bottom center”.

Example 7.6 Analyzing Multivariate 
Lognormal Data

Load sample data file rmlognormal.sgd. Select Describe – 
Multivariate Methods – Multivariate Normality Test. On the 
data input dialog box, enter “X1” and “X2” in the Data field. 
On the Analysis Options dialog box, set Transformation to 
“Multivariate power transformation”.

To create the bivariate density estimate for the transformed 
data, select Statlets – Data Exploration – Bivariate Density. 
On the data input dialog box, enter “X1^-0.08127” for Sample 
1 and “X2^0.0733825” for Sample 2. Set the Resolution field 
to “201” and then select Nonparametric density estimate with 
width set equal to “50%”.
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Chapter 8: Sample Size Determination

Example 8.1 Sample Size Determination 
for Proportion Nonconforming

Select Tools – Sample Size Determination – One Sample. On 
the first dialog box, select Binomial Proportion and enter 
“0.001” in the Hypothesized Proportion field. On the second 
dialog box, set the Control field to “Absolute Error” and enter 
“0.0002”. Press OK.

To specify beta risk, return to the Analysis Options dialog 
box. Change the Control field to “Power”, set the power to 
“90%”, set the Difference to Detect field to “0.001”, and set the 
Alternative Hypothesis to “Greater Than”.

Example 8.2 Sample Size Determination 
for Rate of Nonconformities

Select Tools – Sample Size Determination – One Sample. On 
the first dialog box, select Poisson Rate and enter “3.0” in the 
Hypothesized Rate field. On the second dialog box, set the 
Control field to “Relative Error” and enter “20.0”%. Set the 
Alternative Hypothesis to “Greater Than” and press OK.

Example 8.3 Sample Size Determination for Cp

Select Tools – Sample Size Determination – Capability Indices. 
On the input dialog box, select Cp. Set the Relative error field 
to “10”% and the Confidence Level to “95”%.

Example 8.4 Sample Size Determination for Cpk

Select Tools – Sample Size Determination – Capability Indices. 
On the input dialog box, select Cpk. Set the Estimated index 
to “1.33”, the Relative error field to “10”%, and the Confidence 
Level to “95”%.
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Example 8.5 Sample Size Determination 
for Statistical Tolerance Limits

Select Tools – Sample Size Determination – Statistical Tolerance 
Limits. On the input dialog box, set Distribution to “Largest 
extreme value”, the Mode parameter to “2.0”, the Scale parame-
ter to “0.015”, the Type of Limits to “Two-sided”, the Confidence 
Level to “95”%, the Population Proportion to “99”%, the Lower 
Spec. Limit to “1.9”, and the Upper Spec. Limit to “2.1”. To con-
trol the Monte Carlo simulation, set the Inclusion Percentage to 
“90”%, the Number of Trials to “50000”, and the Maximum n to 
“1000”. Be patient waiting for the results.

Chapter 9: Control Charts 
for Process Capability

Example 9.1 Control Chart for Proportion 
of Nonconforming Items

Load sample data file capcontrol.sgd. Select SPC – Control 
Charts – Capability Control Charts – Attributes. On the data 
input dialog box, enter “Number nonconforming/sample size” 
in the Statistic field and “Sample size” in the Sample size or 
sizes field. On the Analysis Options dialog box, set Parameter 
to “Proportion”, Target mean to “0.01”, and Limits to “Upper 
only”. On the list of tables and graphs, select Analysis 
Summary, Capability Chart, and OC Curve.

Example 9.2 Control Chart for Rate 
of Nonconformities

Load sample data file capcontrol.sgd. Select SPC – Control 
Charts – Capability Control Charts – Attributes. On the data 
input dialog box, enter “Accidents/Departures” in the Statistic 
field, “Departures” in the Sample size or sizes field and “Year” 
in the Date/Time/Labels field. On the Analysis Options dialog 
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box, set Parameter to “Rate”, Target mean to “3.5”, and Limits 
to “Upper and Lower”. On the list of tables and graphs, 
select Analysis Summary and Capability Chart. On the Pane 
Options dialog box for Capability Chart, check Plot outer 
warning limits, Plot inner warning limits, and Mark runs 
rules violations, and set Decimal places for limits to “2”.

Example 9.3 Control Chart for Cp

Load sample data file capcontrol.sgd. Select SPC – Control 
Charts – Capability Control Charts – Variables. On the data 
input dialog box, enter “Cp” in the Capability index field and 
“30” in the Sample size or sizes field. On the Analysis Options 
dialog box, set Parameter to “Cp (short-term)”, Target index 
to “2.0” and Limits to “Upper and lower”. On the list of tables 
and graphs, select Analysis Summary and Capability Chart.

Example 9.4 Control Chart for Cpk

Load sample data file capcontrol.sgd. Select SPC – Control 
Charts – Capability Control Charts – Variables. On the data input 
dialog box, enter “Cpk” in the Capability index field and “30” in 
the Sample size or sizes field. On the Analysis Options dialog box, 
set Parameter to “Cpk (short-term)”, Target index to “1.5”, and 
Limits to “Upper and lower”. On the list of tables and graphs, 
select Analysis Summary, Capability Chart, and OC Curve.

Example 9.5 Sample Size Determination 
for Cpk Control Chart

Select Statlets – Sampling – Capability Control Chart Design. 
Set the Parameter to be estimated field to “Cpk (short-term)”. 
Set the Base sample size on field to “Power”. Set the Centerline 
field to “1.5” and the Alternative value field to “1.0”. Set the 
Alpha risk field to “0.5%” and the Power field to “90%”. Set the 
Chart type field to “One-sided”.
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Example 9.6 Acceptance Control Charts

Load sample data file diameterxbars.sgd. To create the X-bar 
chart, select SPC – Control Charts – Basic Variables Charts – 
Xbar and S. Select Subgroup statistics on the data input 
dialog box and enter “Xbar”, “s”, and “30” in the input fields. 
On the Analysis Options dialog box, set the Type of Study 
to “Control to Standard”, set Mean to “2.0”, and set Std. Dev. 
to “0.01”.

To create the acceptance control chart, select SPC – Control 
Charts – Special Purpose Control Charts – Acceptance Chart. 
Select Subgroup statistics on the data input dialog box and 
enter “Xbar”, “s”, and “30” in the input fields. Set LSL to “1.9” 
and USL to “2.1”. On the Analysis Options dialog box, set the 
Type of Study to “Control to Standard” and set the Mean and 
Std. Dev. equal to “2.0” and “0.01”, respectively. Set Specify to 
“Sigma Multiple”. Set Fraction Nonconforming to “0.0001” and 
Sigma multiple to “3.0”.

To change to the beta risk method, return to 
Analysis Options and set Specify to “Beta Risk”, Fraction 
Nonconforming to “0.001”, and Beta risk to “0.05”.

Note: When using the Acceptance Control Charts with sub-
group statistics, the data input dialog box will request either 
“Standard deviations” or “Ranges”, depending on how the 
system preference Preferred dispersion chart is set.

Example 9.7 Sample Size Determination 
for Acceptance Control Charts

Press the Evaluator button on the main toolbar. Enter the fol-
lowing expression:
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Default Preferences

Statgraphics Version 18 also maintains a set of user prefer-
ences that affect some of the calculations performed in this 
book. To reproduce the results, the reader should select Edit – 
Preferences from the main menu and set the preferences as 
indicated below.

General tab
Confidence Level: 95%
Significant Digits: 6

Dist. Fit tab
Tests for Normality: Shapiro-Wilk
General Goodness-of-Fit Tests: Anderson-Darling A^2
Calculate distribution-specific P-values: checked.

Figure B.1 Default preferences for calculation of capability indices.
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Control Charts tab
Preferred Dispersion Chart: Sigma
Sigma multiple: 3.0

Capability tab
The options selected on this tab affect which capability 

indices are displayed by default and what estimates of 
sigma are used to calculate them. The settings selected 
in Figure B.1 are consistent with common practice.
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A

Acceptance control charts, 192, 255
beta risk method, 211, 215–217
medical device diameter, phase II 

X-bar chart for, 211–212
sample size determination, 

217, 255
sigma multiple method, 210–211, 

213–214
Aircraft accident, 240

Bayesian estimation, 
52–53, 242

fatality statistics, 2, 4–5
posterior distribution, 53
rate of nonconformities, 43–44

capability control chart for, 
201–203

Poisson likelihood function, 
46–47

robust LOWESS method, 17
Alerts, capability control chart, 

193–194
Alpha risk, 176–178, 193
Alternative hypothesis, 96, 116, 

152, 176
Anderson-Darling test, 98, 111, 116, 

154–155

Attribute data
definition, 1
plotting, 16–17
sample size determination

proportion of nonconforming 
items, 174–178

rate of nonconformities, 
178–180

Average moving range, 68–70, 
77, 80

Average run length (ARL) curve, 
195, 200

B

Bayesian estimation, 52–53, 242
Bernoulli distribution, 221
Beta distribution, 36–37, 224
Beta risk method, 176–178, 211, 

215–217
Bias correction, 63, 65–66, 69
Binomial distribution, 26, 36, 175, 

177, 196, 198, 221–222
Binomial likelihood function, 

29–30, 38
Birnbaum-Saunders distribution, 

109, 113, 224–225
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Bivariate data visualization, 146–149
Bivariate density function

bivariate normal density 
function, 151–152

nonparametric estimate of, 
148–149

Bonferroni method, 161, 164–165
Bootstrap confidence limits

individuals data, 91–92
subgroup data, 93

Bootstrapping method, 122–123, 
126, 159–160, 219

Bounded distributions, 125
Box-and-whisker plot, 13–16, 

61, 243
Box-Cox transformation, 137

data values, magnitude of, 100
distribution shapes, 100
lognormal and gamma 

distributions, 102–103
numerical methods, 101
power transformations, 

101–102

C

Capability control charts
alerts, 193–194
average run length curve, 195
for Cp, 203–206, 254
for Cpk, 254

sample size determination, 
OC curve, 208–210

upper and lower control 
limits, 207–208

goal of, 192
inner and outer warning limits, 

193
operating characteristic curve for, 

194–195
phase II statistical process 

control chart, 192
for Pp, 203–204, 206

for Ppk, 207
proportion of nonconforming 

items, 253
ARL, 200
binomial distribution, 

196, 198
counts of nonconforming 

items, 196–197
false alarm probability, 

196–198
lower control limit, 197–198
operating characteristic curve, 

199–200
sample size, 197, 199
upper control limit, 

197–198
rate of nonconformities, 201–203, 

253–254
upper and lower control limits, 

192–193
Capability indices, 247

centered process, 76
default preferences, 256–257
for medical device diameters, 80, 

86–87
bootstrap method, 92, 123
confidence limits, 106–108
Johnson curve, 126–127
largest extreme value 

distribution, 119–122
sample size determination, 

180–185
Cauchy distribution, 225
Central tendency, measures 

of, 7–8
Chi-square distribution, 58, 65, 77, 

151, 162, 225
bivariate medical device data, 

squared generalized 
distances, 153–155

for Cp control chart, 204, 206
Coefficient of variation (CV), 

9–10, 102
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Confidence intervals, 76, 83
for median, 15–16
medical device diameters, mean 

and standard deviation, 
57–59

multivariate capability indices, 
159–160

proportion of nonconforming 
items, 27–29

Confidence limits
for capability indices, 106–107, 

122–123
proportion of nonconforming 

items
one-sided specifications, 89
percentage estimation, 

70–72
two-sided specifications, 

90–93
Control charts

acceptance control charts, 
192, 255

beta risk method, 211, 
215–217

medical device diameter, 
211–212

sample size determination, 
217, 255

sigma multiple method, 
210–211, 213–214

capability control charts
alerts, 193–194
average run length curve, 

195
for Cp, 203–206, 254
for Cpk, 207–210, 254
goal of, 192
inner and outer warning 

limits, 193
operating characteristic curve 

for, 194–195
phase II statistical process 

control chart, 192

for Pp, 203–204, 206
for Ppk, 207
proportion of nonconforming 

items, 196–200, 253
rate of nonconformities, 

201–203, 253–254
upper and lower control 

limits, 192–193
Cumulative distribution function 

(CDF), 98, 111, 117, 158
Cumulative normal 

distribution, 71

D

Data snooping, 68
Default preferences, 256–257
Defects per million (DPM), 18–19, 

78–79, 105, 119–120, 123, 
128

Defects per million opportunities 
(DPMO), 19–20, 86

Degrees of freedom, 77, 175, 
181–182, 204

Discrete uniform distribution, 222

E

Empirical distribution function 
(EDF), 116

Equivalent capability indices, 32, 
122

Erlang distribution, 226
Error bounds, 175–176
Exponential distribution, 226
Exponential power distribution, 227

F

Far outside points, 14–15
F distribution, 27–28, 175, 227
Folded normal distribution, 

227–228
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G

Gamma density functions, 50–51
Gamma distribution, 50–52, 102–

103, 228
Generalized gamma distribution, 

229
Generalized logistic distribution, 

111, 229
Geometric distribution, 222
Goodness-of-fit tests, 111–113, 

116–118, 247

H

Half normal distribution, 230
Hypergeometric distribution, 

222–223

I

Individuals and subgroup data, 
normal distribution

capability vs. performance, 63
definition, 59–60
fluctuating process, 62
long-term variability, 62–64, 

67–68
short-term variability, 62, 64–70
statistical model, 62
tolerance chart, 60

Informative prior distribution, 
39–40, 241

Interquartile range (IQR), 10
Inverse Gaussian distribution, 230

J

Johnson distribution
bounded distributions, 125, 230, 

248
lognormal distributions, 125, 

230–231, 248

medical device diameters, 
126–127

unbounded distributions, 124, 
231, 248

K

Kolmogorov-Smirnov (K-S) limits, 
154–155

Kurtosis, 11–13

L

Laplace (double exponential) 
distribution, 231

Largest extreme value distribution, 
111, 114–121, 123, 139–141, 
231–232, 249

Likelihood function
binomial likelihood function, 

29–30
log likelihood, 110
Poisson distribution, 46–49

Logistic distribution, 232
Log likelihood function, 110
Loglogistic distribution, 109, 112, 

232–233
Lognormal distribution, 102–103, 

125, 233
Lower quartile, 10, 13
LOWESS method, 17

M

Maximum likelihood estimation 
(MLE) approach, 26, 29, 38, 
40–41, 45, 57, 166

Maxwell distribution, 233
Mean squared successive difference 

(MSSD), 68, 70
Measures of central tendency, 7–8
Measures of shape, 10–13
Measures of variability, 9–10
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Median moving range, 68, 70, 77
Medical device diameters, 128–129, 

239–240
acceptance control charts

phase II X-bar chart for, 
211–212

sigma multiple method, 
213–214

binomial likelihood function, 
29–30, 38

box-and-whisker plot, 13–16
capability and performance 

indices, 79–80, 87
capability vs. performance, 75
confidence bounds, 86, 88, 92
frequency histogram, 6
generalized logistic distribution 

(3-parameter), 114–115
goodness-of-fit tests, 118
individual data

capability analysis, 71–72
short-term variability 

estimation, 70
Johnson distribution, 126–127
kurtosis, 13
largest extreme value 

distribution, 114–115, 121
loglogistic distribution 

(3-parameter), 114–115
mean and standard deviation, 

confidence intervals for, 59
moving range chart, 69–70
posterior distribution, 41
randomly sample data, 2–3
sample size determination, 

187–189
skewness, 13
statistical tolerance limits, 132, 

248
largest extreme value 

distribution, 140–141, 249
nonparametric tolerance 

limits, 142–143, 249

normal distribution, 133–136, 
141

power transformations, 
137–138, 140–141, 249

and strength
bivariate data visualization, 

146–149
confidence bounds, bootstrap 

method, 159–160
elliptical and Bonferroni 

tolerance regions, 164–165
multivariate capability indices, 

156–159
multivariate lognormal 

distribution, 166–168
multivariate normal 

distribution, 151–152, 
155–156

multivariate normality, 
152–155

multivariate tolerance regions, 
162–163

simultaneous tolerance limits, 
164–165

subgroup data
box-and-whisker plots, 61
horizontal jittering, 60–61
long-term and short-term 

variability, 67
target and specification 

limits, 60
summary statistics, 8
transformed metric

capability indices calculation, 
107–108

inverse transformation, 
105

process capability analysis 
for, 104

uniform prior distribution, 38
untransformed metric, Q-Q plot 

for, 97
variability, 10
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Monte Carlo method, 161–162, 
186–187, 219

Moving range of 2 (MR(2)), 68–69
Multivariate capability analysis

bivariate data visualization, 
146–149, 249–250

confidence bounds, 159–160
multivariate capability indices, 

156–159, 250–251
multivariate lognormal 

distribution, 166–168, 251
multivariate normal distribution, 

149–152, 155–156, 250
multivariate normality test, 

152–155, 168–169, 250
multivariate tolerance regions, 

161–163, 251
nonparametric estimate, bivariate 

density for transformed 
variables, 168–170

simultaneous tolerance limits, 
161, 163–165

N

Negative binomial (Pascal) 
distribution, 223

Noncentral chi-square distribution, 
234

Noncentral F distribution, 234
Noncentral t distribution, 139, 

234–235
Nonnormal data, 95–96, 128–129, 

219
alternative distribution, 

246–247
A-D statistic, 111
confidence limits, capability 

indices, 122–123
continuous data, distributions, 

108–110
equivalent Z-indices, 118
factors, 111, 114

goodness-of-fit tests, 111–113, 
116–118, 247

K-S statistic, 111
largest extreme value 

distribution, 119–121
log likelihood function, 110
loglogistic distribution 

(3-parameter), 114
short-term and long-term 

sigmas, 122
capability indices and Johnson 

curves, 247–248
bootstrapping, 126
bounded distributions, 125
lognormal distributions, 125
medical device diameters, 

126–127
transformed data, 126
unbounded distributions, 124

normality tests, 96–98, 245
power transformations, 246

Box-Cox transformations, 
100–103

confidence limits, capability 
indices, 106–107

distribution shapes, 99
process capability calculation, 

103–105
transformed metric, 99

statistical tolerance limits, 
136–141

transformed data, 96, 246
Nonparametric statistical tolerance 

limits, 132, 141–143, 249
Nonuniform prior distribution, 

38–40
Normal distribution, 219, 235, 

242–245
confidence limits, proportion of 

items
one-sided specifications, 89
two-sided specifications, 

89–93
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individuals vs. subgroup data
capability vs. performance, 63
definition, 59–60
fluctuating process, 62
long-term variability, 62–64, 

67–68
short-term variability, 62, 64–70
statistical model, 62
tolerance chart, 60

means and standard deviations, 
56

nonconforming items, proportion 
of, 70–72

parameter estimation, 57–59
probability density function, 56
quality indices estimation

CCpk, 85
Cm and Pm, 83
Cp and Pp, 75–79
Cpk and Ppk, 80–83
Cpm, 84–85
Cr and Pr, 79–80
DPM, 72
K, 85
percent yield, 72
SQL, 86
Z indices, 73–75

statistical tolerance limits
medical device diameters, 

133–136, 141
one-sided bound, 133
two-sided interval, 133

Normality tests, 96–98, 245
Null hypothesis, 96, 116–117, 152, 177

O

One-sided bounds, 132–133, 184
Operating characteristic (OC) curve, 

194–195
acceptance control charts

beta risk method, 215–216
sigma multiple method, 214

capability control charts
for Cp control chart, 206
for Cpk control chart, 209–210
proportion of nonconforming 

items, 199–200
Outside points, 13–15

P

Parametric statistical tolerance 
limits, 132

Pareto distribution, 110, 113, 
235–236

Percent yield, 18–20, 72
Poisson distribution, 44, 46–47, 179, 

201, 223–224
Poisson likelihood function, 46–49
Posterior density function, 36–37, 

51
Posterior distribution, 37–41, 51–53
Power curve, 178
Power transformations, 246

Box-Cox transformations, 
100–103

confidence limits, capability 
indices, 106–107

distribution shapes, 99
process capability calculation, 

103–105
statistical tolerance limits, 

136–138, 140–141, 249
transformed metric, 99

Prior distribution
nonuniform, 38–40
rate of nonconformities, 50–52
uniform, 37–38, 241

Probability distributions
Bernoulli distribution, 221
beta distribution, 224
binomial distribution, 221–222
Birnbaum-Saunders distribution, 

224–225
Cauchy distribution, 225
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chi-square distribution, 225
discrete uniform distribution, 222
Erlang distribution, 226
exponential distribution, 226
exponential power distribution, 

227
F distribution, 227
folded normal distribution, 

227–228
gamma distribution, 228
generalized gamma distribution, 

229
generalized logistic distribution, 

229
geometric distribution, 222
half normal distribution, 230
hypergeometric distribution, 

222–223
inverse Gaussian distribution, 

230
Johnson SB distribution, 230
Johnson SL distribution, 230–231
Johnson SU distribution, 231
Laplace (double exponential) 

distribution, 231
largest extreme value 

distribution, 231–232
logistic distribution, 232
loglogistic distribution, 232–233
lognormal distribution, 233
Maxwell distribution, 233
negative binomial (Pascal) 

distribution, 223
noncentral chi-square 

distribution, 234
noncentral F distribution, 234
noncentral t distribution, 234–235
normal distribution, 235
Pareto distribution, 235–236
Poisson distribution, 223–224
Rayleigh distribution, 236
smallest extreme value (Gembel) 

distribution, 236

student’s t distribution, 236–237
triangular distribution, 237
U distribution, 237
uniform distribution, 237–238
Weibull distribution, 238

Proportion of nonconforming items, 
240–241

capability control charts, 253
ARL, 200
binomial distribution, 196, 198
counts of nonconforming 

items, 196–197
false alarm probability, 

196–198
lower control limit, 197–198
operating characteristic curve, 

199–200
sample size, 197, 199
upper control limit, 197–198

confidence interval, 18, 27–28
DPM, 18–19
estimation, 26
likelihood function, 29–30
posterior density function, 36–41
prior distribution

beta distribution, 36–37
nonuniform prior, 38–40
uniform prior, 37–38

quality indices, 30–33
sample size determination, 252

alpha and beta risks, 
176–178

error bounds, 175–176
point estimate, 174–175

Six Sigma, 19–20
upper confidence bound, 18, 

28–29
zero defects, 33–35

Q

Quantile-quantile (Q-Q) plot, 
97–98, 102
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R

Range, 9–10
Rate of nonconformities, 241–242

capability control charts, 
201–203, 253–254

estimation, 44–46
posterior distribution, 51–53
prior distribution, 50–52
quality levels, 46–49
sample size determination, 

49–50, 178–180, 252
Rayleigh distribution, 236
Regular outside points, 14
Relative frequency histogram, 2, 6
Roysten’s test, 152–153, 167–168

S

Sample size determination
acceptance control charts, 217, 

255
capability control charts

for Cpk control chart, 209–210, 
254

sample size selection, 208–209
capability indices, 180–185, 252
general approaches, 173–174
proportion of nonconforming 

items, 252
alpha and beta risks, 176–178
error bounds, 175–176
point estimate, 174–175

rate of nonconformities, 49–50, 
178–180, 242, 252

statistical tolerance limits, 
185–189, 253

zero defects, 34–35, 241
Shape, measures of, 10–13
Shapiro-Wilk test, 13, 98, 136–137, 

152–153
Sigma multiple method, 210–211, 

213–214

Sigma quality level (SQL), 20, 
31–32, 86, 158

Six Sigma, 19–20, 31, 78, 86, 158
Skewness, 10–13, 124
Smallest extreme value (Gembel) 

distribution, 110, 113, 236
SQL, see Sigma quality level
Standard deviation, 9
Statistical process control (SPC), 1, 64
Statistical tolerance limits, 131, 219

for multivariate data
multivariate tolerance regions, 

161–163
simultaneous tolerance limits, 

161, 163–165
nonnormal distributions

largest extreme value 
distribution, 139–141, 249

power transformations, 
136–138, 140–141, 249

nonparametric intervals, 132, 
141–143, 249

for normal distribution, 133–136, 
141

one-sided bounds, 132
parametric intervals, 132
sample size determination, 

185–189, 253
two-sided intervals, 132

Student’s t distribution, 58, 236–237
Summary statistics

central tendency, 7–8
shape, 10–13
variability, 9–10

T

3-parameter distributions
gamma distribution, 228
loglogistic distribution, 114, 

232–233
lognormal distribution, 114, 233
Weibull distribution, 238
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Tolerance chart, 60
Triangular distribution, 237
2-parameter distribution

exponential distribution, 
226

Pareto distribution, 235–236

U

U distribution, 237
Unbounded distributions, 124
Uniform distribution, 237–238
Uniform prior distribution, 37–38, 

241
Upper quartile, 8, 10, 13
U.S. air carrier accidents, see Aircraft 

accident
U.S. Bureau of Transportation 

Statistics, 2, 43

V

Variability, measures of, 9–10
Variable data, 1, 20, 31–32

W

Warning limits, capability control 
chart, 193, 202

Warranty repair rates, 47–48, 242
Weibull distributions, 115, 117, 238
Western Electric (WECO) rules, 194, 

202–203
Wishart probability distribution, 162

Z

Zero defects, 33–35

Z index, 31, 73–75, 157–158
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