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Preface

The purpose of the book is to provide a glimpse into the dynamics and to present opinions and studies of 
some of the scientists engaged in the development of new ideas in the field from very different standpoints. 
This book will prove useful to students and researchers owing to its high content quality. 

Differential Equation is a mathematical equation which denotes the relationship between a function and its 
derivatives. The functions usually represent physical quantities in the applications and the derivatives are used 
to show the rate of change. The study of differential equations involves pure and applied mathematics, physics 
and engineering. There are various types of differential equations such as ordinary differential equations, 
partial differential equations, linear differential equations and non - linear differential equations. Ordinary 
differential equation is an equation that contains unknown function of one real or complex variable. Partial 
differential equations are the differential equations that involve unknown multivariable functions and their 
partial derivatives. Linear differential equations are linear in the unknown function and its derivatives, whereas 
non - linear differential equations are formed by the products of the unknown function. This book unravels 
the recent studies in the field of differential equations. It elucidates new concepts and their applications in 
a multidisciplinary manner. It will serve as a valuable source of reference for graduate and post graduate 
students.

At the end, I would like to appreciate all the efforts made by the authors in completing their chapters 
professionally. I express my deepest gratitude to all of them for contributing to this book by sharing their 
valuable works. A special thanks to my family and friends for their constant support in this journey.

Editor
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In this paper, we study the dynamics of a viral infectionmodel formulated by five fractional differential equations (FDEs) to describe
the interactions between host cells, virus, and humoral immunity presented by antibodies. The infection transmission process is
modeled by Hattaf-Yousfi functional response which covers several forms of incidence rate existing in the literature.We first show
that the model is mathematically and biologically well-posed. By constructing suitable Lyapunov functionals, the global stability
of equilibria is established and characterized by two threshold parameters. Finally, some numerical simulations are presented to
illustrate our theoretical analysis.

1. Introduction

The immune response plays an important role to control the
dynamics of viral infections such as human immunodefi-
ciency virus (HIV), hepatitis B virus (HBV), hepatitis C virus
(HCV), and human T-cell leukemia virus (HTLV).Therefore,
many mathematical models have been developed to incorpo-
rate the role of immune response in viral infections. Some
of these models considered the cellular immune response
mediated by cytotoxic T lymphocytes (CTL) cells that attack
and kill the infected cells [1–5] and the others considered the
humoral immune response based on the antibodies which are
produced by the B-cells and are programmed to neutralize
the viruses [6–11]. However, all these models have been
formulated by using ordinary differential equations (ODEs)
in which the memory effect is neglected while the immune
response involves memory [12, 13].

Fractional derivative is a generalization of integer deriva-
tive and it is a suitable tool to model real phenomena with
memory which exists in most biological systems [14–16].The
fractional derivative is a nonlocal operator in contrast to
integer derivative. This means that if we want to compute
the fractional derivative at some point 𝑡 = 𝑡1, it is necessary

to take into account the entire history from the starting
point 𝑡 = 𝑡0 up to the point 𝑡 = 𝑡1. For these reasons,
modeling some real process by using fractional derivative has
drawn attention of several authors in various fields [17–22].
In biology, it has been shown that the fractional derivative
is useful to analyse the rheological proprieties of cells [23].
Furthermore, it has been deduced that the membranes of
cells of biological organism have fractional order electrical
conductance [24]. Recently, much works have been done on
modeling the dynamics of viral infections with FDEs [25–31].
These works ignored the impact of the immune response and
the majority of them deal only with the local stability.

In some viral infections, the humoral immune response
is more effective than cellular immune response [32]. For
this reason, we improve the above ODE and FDE models by
proposing a new fractional order model that describes the
interactions between susceptible host cells, viral particles, and
the humoral immune response mediated by the antibodies;
that is,

𝐷𝛼𝑥 (𝑡) = 𝜆 − 𝑑𝑥 − 𝑓 (𝑥, V) V + 𝜌𝑙,𝐷𝛼𝑙 (𝑡) = 𝑓 (𝑥, V) V − (𝑚 + 𝜌 + 𝛾) 𝑙,
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𝐷𝛼𝑦 (𝑡) = 𝛾𝑙 − 𝑎𝑦,𝐷𝛼V (𝑡) = 𝑘𝑦 − 𝜇V − 𝑞V𝑤,𝐷𝛼𝑤 (𝑡) = 𝑔V𝑤 − ℎ𝑤,
(1)

where 𝑥(𝑡), 𝑙(𝑡), 𝑦(𝑡), V(𝑡), and 𝑤(𝑡) are the concentrations
of susceptible host cells, latently infected cells (infected
cells which are not yet able to produce virions), productive
infected cells, free virus particles, and antibodies at time𝑡, respectively. Susceptible host cells are assumed to be
produced at a constant rate 𝜆, die at the rate 𝑑𝑥, and become
infected by virus at the rate 𝑓(𝑥, V)V. Latently infected cells
die at the rate 𝑚𝑙 and return to the uninfected state by loss
of all covalently closed circular DNA (cccDNA) from their
nucleus at the rate 𝜌𝑙. Productive infected cells are produced
from latently infected cells at the rate 𝛾𝑙 and die at the rate 𝑎𝑦.
Free virus particles are produced from productive infected
cells at the rate 𝑘𝑦, cleared at the rate 𝜇V, and are neutralized
by antibodies at the rate 𝑞V𝑤. Antibodies are activated against
virus at the rate 𝑔V𝑤 and die at the rate ℎ𝑤.

In system (1),𝐷𝛼 represents the Caputo fractional deriva-
tive of order 𝛼 defined for an arbitrary function 𝜑 by

𝐷𝛼𝜑 (𝑡) = 1Γ (1 − 𝛼) ∫𝑡0 𝜑󸀠 (𝑢)(𝑡 − 𝑢)𝛼 𝑑𝑢, (2)

with 0 < 𝛼 ≤ 1 [33]. Further, the infection transmission
process in (1) ismodeled byHattaf-Yousfi functional response
[34] which was recently used in [35, 36] and has the form𝑓(𝑥, V) = 𝛽𝑥/(𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V), where 𝛼0, 𝛼1, 𝛼2, 𝛼3 ≥0 are the saturation factors measuring the psychological
or inhibitory effect and 𝛽 > 0 is the infection rate. In
addition, this functional response generalizes many common
types existing in the literature such as the specific functional
response proposed by Hattaf et al. in [37] and used in [2,
31] when 𝛼0 = 1; the Crowley-Martin functional response
introduced in [38] and used in [39] when 𝛼0 = 1 and 𝛼3 =𝛼1𝛼2; and the Beddington-DeAngelis functional response
proposed in [40, 41] and used in [3, 4, 10] when 𝛼0 = 1 and𝛼3 = 0. Also, theHattaf-Yousfi functional response is reduced
to the saturated incidence rate used in [9] when 𝛼0 = 1 and𝛼1 = 𝛼3 = 0 and the standard incidence function used in [27]
when 𝛼0 = 𝛼3 = 0 and 𝛼1 = 𝛼2 = 1, and it was simplified
to the bilinear incidence rate used in [5, 6] when 𝛼0 = 1 and𝛼1 = 𝛼2 = 𝛼3 = 0.

On the other hand, system (1) becomes a model with
ODEs when 𝛼 = 1, which improves and generalizes the
ODEmodel with bilinear incidence rate [42], the ODEmodel
with saturated incidence rate [43], and the ODE model with
specific functional response [44].

The rest of the paper is organized as follows. The next
section deals with some basic proprieties of the solutions and
the existence of equilibria. The global stability of equilibria
is established in Section 3. To verify our theoretical results,
we provide some numerical simulations in Section 4, and we
conclude in Section 5.

2. Basic Properties and Equilibria

In this section, we will show that ourmodel is well-posed and
we discuss the existence of equilibria.

Since system (1) describes the evolution of cells, then
we need to prove that the cell numbers should remain
nonnegative and bounded. For biological considerations, we
assume that the initial conditions of (1) satisfy

𝑥 (0) ≥ 0,
𝑙 (0) ≥ 0,
𝑦 (0) ≥ 0,
V (0) ≥ 0,
𝑤 (0) ≥ 0.

(3)

Then we have the following result.

Theorem 1. Assume that the initial conditions satisfy (3).Then
there exists a unique solution of system (1) defined on [0, +∞).
Moreover, this solution remains nonnegative and bounded for
all 𝑡 ≥ 0.
Proof. First, system (1) can be written as follows:

𝐷𝛼𝑋(𝑡) = 𝐹 (𝑋) , (4)

where

𝑋(𝑡) =(((
(

𝑥(𝑡)𝑙 (𝑡)𝑦 (𝑡)
V (𝑡)𝑤 (𝑡)

)))
)

and 𝐹 (𝑋) =(((
(

𝜆− 𝑑𝑥 − 𝑓 (𝑥, V) V + 𝜌𝑙𝑓 (𝑥, V) V − (𝑚 + 𝜌 + 𝛾) 𝑙𝛾𝑙 − 𝑎𝑦𝑘𝑦 − 𝜇V − 𝑞V𝑤𝑔V𝑤 − ℎ𝑤
)))
)

.
(5)

It is important to note that when 𝛼 = 1, (4) becomes a
system with ODEs. In this case, we refer the reader to [45] for
the existence of solutions and to the works [46–50] for the
stability of equilibria. In the case of FDEs, we will use Lemma
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2.4 in [31] to prove the existence and uniqueness of solutions.
Hence, we put

𝜁 =((
(

𝜆0000
))
)

,

𝐴 =((
(

−𝑑 𝜌 0 0 00 − (𝑚 + 𝜌 + 𝛾) 0 0 00 𝛾 −𝑎 0 00 0 𝑘 −𝜇 00 0 0 0 −ℎ
))
)

and 𝐶 =((
(

0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 −𝑞0 0 0 0 𝑔
))
)

.

(6)

We discuss four cases:

(i) If 𝛼0 ̸= 0, 𝐹(𝑋) can be formulated as follows:

𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼0𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥VV𝐵0𝑋+ V𝐶𝑋, (7)

where

𝐵0 =((((
(

− 𝛽𝛼0 0 0 0 0𝛽𝛼0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0
))))
)

. (8)

Hence,

‖𝐹 (𝑋)‖ ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (‖𝐴‖ + ‖V‖ (󵄩󵄩󵄩󵄩𝐵0󵄩󵄩󵄩󵄩 + ‖𝐶‖)) ‖𝑋‖ . (9)

(ii) If 𝛼1 ̸= 0, we can write 𝐹(𝑋) in the form

𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼1𝑥𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V𝐵1𝑋+ V𝐶𝑋, (10)

where

𝐵1 =((((
(

0 0 0 − 𝛽𝛼1 0
0 0 0 𝛽𝛼1 00 0 0 0 00 0 0 0 00 0 0 0 0

))))
)

. (11)

Moreover, we get

‖𝐹 (𝑋)‖ ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (‖𝐴‖ + 󵄩󵄩󵄩󵄩𝐵1󵄩󵄩󵄩󵄩 + ‖V‖ ‖𝐶‖) ‖𝑋‖ . (12)

(iii) If 𝛼2 ̸= 0, we have
𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼2V𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V𝐵2𝑋+ V𝐶𝑋, (13)

where

𝐵2 =((((
(

− 𝛽𝛼2 0 0 0 0𝛽𝛼2 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0
))))
)

. (14)

Further, we obtain

‖𝐹 (𝑋)‖ ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (‖𝐴‖ + 󵄩󵄩󵄩󵄩𝐵2󵄩󵄩󵄩󵄩 + ‖V‖ ‖𝐶‖) ‖𝑋‖ . (15)

(iv) If 𝛼3 ̸= 0, we have
𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼3𝑥V𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V𝐵3 + V𝐶𝑋, (16)

where

𝐵3 =((((
(

− 𝛽𝛼3𝛽𝛼3000
))))
)

. (17)

Then

‖𝐹 (𝑋)‖ ≤ (󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵3󵄩󵄩󵄩󵄩) + (‖𝐴‖ + ‖V‖ ‖𝐶‖) ‖𝑋‖ . (18)
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Hence, the conditions of Lemma 2.4 in [31] are verified. Then
system (1) has a unique solution on [0, +∞). Now, we show
the nonnegativity of solutions. By (1), we have𝐷𝛼𝑥 (𝑡)󵄨󵄨󵄨󵄨𝑥=0 = 𝜆 + 𝜌𝑙 ≥ 0,𝐷𝛼𝑙 (𝑡)󵄨󵄨󵄨󵄨𝑙=0 = 𝑓 (𝑥, V) V ≥ 0,𝐷𝛼𝑦 (𝑡)󵄨󵄨󵄨󵄨𝑦=0 = 𝛾𝑙 ≥ 0,𝐷𝛼V (𝑡)󵄨󵄨󵄨󵄨V=0 = 𝑘𝑦 ≥ 0,𝐷𝛼𝑤 (𝑡)󵄨󵄨󵄨󵄨𝑤=0 = 0 ≥ 0.

(19)

As in [31, Theorem 2.7], we deduce that the solution of (1) is
nonnegative.

Finally, we prove the boundedness of solutions. We define
the function𝑇 (𝑡) = 𝑥 (𝑡) + 𝑙 (𝑡) + 𝑦 (𝑡) + 𝑎2𝑘V (𝑡) + 𝑎𝑞2𝑘𝑔𝑤 (𝑡) . (20)

Then, we have𝐷𝛼𝑇 (𝑡) = 𝐷𝛼𝑥 (𝑡) + 𝐷𝛼𝑙 (𝑡) + 𝐷𝛼𝑦 (𝑡) + 𝑎2𝑘𝐷𝛼V (𝑡)+ 𝑎𝑞2𝑘𝑔𝐷𝛼𝑤 (𝑡)
= 𝜆 − 𝑑𝑥 (𝑡) − 𝑚𝑙 (𝑡) − 𝑎2𝑦 (𝑡) − 𝑎𝜇2𝑘 V (𝑡)
− 𝑎𝑞ℎ2𝑘𝑔𝑤 (𝑡) ≤ 𝜆 − 𝛿𝑇 (𝑡) ,

(21)

where 𝛿 = min{𝑑,𝑚, 𝑎/2, 𝜇, ℎ}. Thus, we obtain

𝑇 (𝑡) ≤ 𝑇 (0) 𝐸𝛼 (−𝛿𝑡𝛼) + 𝜆𝛿 [1 − 𝐸𝛼 (−𝛿𝑡𝛼)] . (22)

Since 0 ≤ 𝐸𝛼(−𝛿𝑡𝛼) ≤ 1, we get𝑇 (𝑡) ≤ 𝑇 (0) + 𝜆𝛿 . (23)

This completes the proof.

Now, we discuss the existence of equilibria. It is clear
that system (1) has always an infection-free equilibrium𝐸0(𝜆/𝑑, 0, 0, 0, 0). Then the basic reproduction number of (1)
is as follows:

𝑅0 = 𝑘𝛽𝜆𝛾𝑎𝜇 (𝑚 + 𝜌 + 𝛾) (𝑑𝛼0 + 𝜆𝛼1) . (24)

To find the other equilibria, we solve the following system:𝜆 − 𝑑𝑥 − 𝑓 (𝑥, V) V + 𝜌𝑙 = 0, (25)𝑓 (𝑥, V) V − (𝑚 + 𝜌 + 𝛾) 𝑙 = 0, (26)𝛾𝑙 − 𝑎𝑦 = 0, (27)𝑘𝑦 − 𝜇V − 𝑞V𝑤 = 0, (28)𝑔V𝑤 − ℎ𝑤 = 0. (29)

From (29), we get 𝑤 = 0 or V = ℎ/𝑔. Then we discuss two
cases.

If 𝑤 = 0, by (25)-(28), we have 𝑙 = (𝜆 − 𝑑𝑥)/(𝑚 + 𝛾),𝑦 = 𝛾(𝜆 − 𝑑𝑥)/𝑎(𝑚 + 𝛾), V = 𝑘𝛾(𝜆 − 𝑑𝑥)/𝑎𝜇(𝑚 + 𝛾), and
𝑓(𝑥, 𝑘𝛾 (𝜆 − 𝑑𝑥)𝑎𝜇 (𝑚 + 𝛾) ) = 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 . (30)

Since 𝑙 ≥ 0, 𝑦 ≥ 0, and V ≥ 0, then 𝑥 ≤ 𝜆/𝑑. Consequently,
there is no equilibrium when 𝑥 > 𝜆/𝑑.

We define the function ℎ1 on [0, 𝜆/𝑑] by
ℎ1 (𝑥) = 𝑓(𝑥, 𝑘𝛾 (𝜆 − 𝑑𝑥)𝑎𝜇 (𝑚 + 𝛾) ) − 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 . (31)

We have ℎ1(0) = −𝑎𝜇(𝑚 + 𝜌 + 𝛾)/𝑘𝛾 < 0, ℎ󸀠1(𝑥) = 𝜕𝑓/𝜕𝑥 −(𝑘𝛾𝑑/𝑎𝜇(𝑚 + 𝛾))(𝜕𝑓/𝜕V) > 0, and ℎ1(𝜆/𝑑) = (𝑎𝜇(𝑚 + 𝜌 +𝛾)/𝑘𝛾)(𝑅0 − 1).
Hence if 𝑅0 > 1, (30) has a unique root 𝑥1 ∈ (0, 𝜆/𝑑).

As a result, when 𝑅0 > 1 there exists an equilibrium𝐸1(𝑥1, 𝑙1, 𝑦1, V1, 0) satisfying 𝑥1 ∈ (0, 𝜆/𝑑), 𝑙1 = (𝜆−𝑑𝑥1)/(𝑚+𝛾),𝑦1 = 𝛾(𝜆−𝑑𝑥1)/𝑎(𝑚+𝛾), and V1 = 𝑘𝛾(𝜆−𝑑𝑥1)/𝑎𝜇(𝑚+𝛾).
If 𝑤 ̸= 0, then V = ℎ/𝑔. By (25)-(27), we obtain 𝑙 = (𝜆 −𝑑𝑥)/(𝑚+𝛾),𝑦 = 𝛾(𝜆−𝑑𝑥)/𝑎(𝑚+𝛾),𝑤 = 𝑘𝛾𝑔(𝜆−𝑑𝑥)/𝑎𝑞ℎ(𝑚+𝛾) − 𝜇/𝑞, and

𝑓(𝑥, ℎ𝑔) = 𝑔 (𝑚 + 𝜌 + 𝛾)ℎ (𝑚 + 𝛾) (𝜆 − 𝑑𝑥) . (32)

Since 𝑙 ≥ 0, 𝑦 ≥ 0, and 𝑤 ≥ 0, we have 𝑥 ≤ 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾. Hence, there is no equilibrium if 𝑥 > 𝜆/𝑑−𝑎ℎ𝜇(𝑚+𝛾)/𝑑𝑘𝑔𝛾.
We define the function ℎ2 on [0, 𝜆/𝑑− 𝑎ℎ𝜇(𝑚+𝛾)/𝑑𝑘𝑔𝛾]

by

ℎ2 (𝑥) = 𝑓(𝑥, ℎ𝑔) − 𝑔 (𝑚 + 𝜌 + 𝛾)ℎ (𝑚 + 𝛾) (𝜆 − 𝑑𝑥) . (33)

We have ℎ2(0) = −𝑔𝜆(𝑚 + 𝜌 + 𝛾)/ℎ(𝑚 + 𝛾) < 0, ℎ󸀠2(𝑥) =𝜕𝑓/𝜕𝑥 + 𝑔𝑑(𝑚 + 𝜌 + 𝛾)/ℎ(𝑚 + 𝛾) > 0, and ℎ2(𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾) = ℎ1(𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 + 𝛾)/𝑑𝑘𝑔𝛾).
Let us introduce the reproduction number for humoral

immunity as follows:

𝑅1 = 𝑔V1ℎ , (34)

which 1/ℎ denotes the average life expectancy of antibodies
and V1 is the number of free viruses at 𝐸1. For the biological
significance, 𝑅1 represents the average number of the anti-
bodies activated by virus.

If 𝑅1 < 1, we have 𝑥1 > 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 + 𝛾)/𝑑𝑘𝑔𝛾 and
ℎ2 (𝜆𝑑 − 𝑎ℎ𝜇 (𝑚 + 𝛾)𝑑𝑘𝑔𝛾 ) < ℎ1 (𝑥1) = 0. (35)

Therefore, there is no equilibrium when 𝑅1 < 1.
If 𝑅1 > 1, then 𝑥1 < 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 + 𝛾)/𝑑𝑘𝑔𝛾 and

ℎ2 (𝜆𝑑 − 𝑎ℎ𝜇 (𝑚 + 𝛾)𝑑𝑘𝑔𝛾 ) > ℎ1 (𝑥1) = 0. (36)
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In this case, (32) has one root𝑥2 ∈ (0, 𝜆/𝑑−𝑎ℎ𝜇(𝑚+𝛾)/𝑑𝑘𝑔𝛾).
Consequently, when 𝑅1 > 1, there exists an equilibrium𝐸2(𝑥2, 𝑙2, 𝑦2, V2, 𝑤2) satisfying 𝑥2 ∈ (0, 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾), 𝑙2 = (𝜆 − 𝑑𝑥2)/(𝑚 + 𝛾), 𝑦2 = 𝛾(𝜆 − 𝑑𝑥2)/𝑎(𝑚 + 𝛾),
V2 = ℎ/𝑔, and 𝑤2 = 𝑘𝛾𝑔(𝜆 − 𝑑𝑥2)/𝑎𝑞ℎ(𝑚 + 𝛾) − 𝜇/𝑞. When𝑅1 = 1, 𝐸1 = 𝐸2.

We summarize the above discussions in the following
theorem.

Theorem 2.

(i) If 𝑅0 ≤ 1, then system (1) has one infection-free
equilibrium of the form 𝐸0(𝑥0, 0, 0, 0, 0), where 𝑥0 =𝜆/𝑑.

(ii) If 𝑅0 > 1, then system (1) has an infection
equilibrium without humoral immunity of the form𝐸1(𝑥1, 𝑙1, 𝑦1, V1, 0), where 𝑥1 ∈ (0, 𝜆/𝑑), 𝑙1 = (𝜆 −𝑑𝑥1)/(𝑚 + 𝛾), 𝑦1 = 𝛾(𝜆 − 𝑑𝑥1)/𝑎(𝑚 + 𝛾), and V1 =𝑘𝛾(𝜆 − 𝑑𝑥1)/𝑎𝜇(𝑚 + 𝛾).

(iii) If 𝑅1 > 1, then system (1) has an infection
equilibrium with humoral immunity of the form𝐸2(𝑥2, 𝑙2, 𝑦2, V2, 𝑤2), where 𝑥2 ∈ (0, 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾), 𝑙2 = (𝜆−𝑑𝑥2)/(𝑚+𝛾),𝑦2 = 𝛾(𝜆−𝑑𝑥2)/𝑎(𝑚+𝛾), V2 = ℎ/𝑔, and𝑤2 = 𝑘𝛾𝑔(𝜆−𝑑𝑥1)/𝑎𝑞ℎ(𝑚+𝛾)−𝜇/𝑞.

3. Global Stability of Equilibria

In this section, we focus on the global stability of equilibria.

Theorem 3. If𝑅0 ≤ 1, then the infection-free equilibrium𝐸0 is
globally asymptotically stable and it becomes unstable if𝑅0 > 1.
Proof. The proof of the first part of this theorem is based
on the construction of a suitable Lyapunov functional that
satisfies the conditions given in [51, Lemma 4.6]. Hence, we
define a Lyapunov functional as follows:

𝐿0 (𝑡)
= 𝛼0𝛼0 + 𝛼1𝑥0 𝑥0Φ( 𝑥𝑥0)
+ 𝜌𝛼02 (𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 (𝑥 − 𝑥0 + 𝑙)2
+ 𝑙 + 𝑚 + 𝜌 + 𝛾𝛾 𝑦 + 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V

+ 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤,

(37)

where Φ(𝑥) = 𝑥 − 1 − ln(𝑥) for 𝑥 > 0. It is not hard to show
that the functional 𝐿0 is nonnegative. In fact, the function Φ
has a global minimum at 𝑥 = 1. Consequently, Φ(𝑥) ≥ 0 for
all 𝑥 > 0.

Calculating the fractional derivative of 𝐿0(𝑡) along solu-
tions of system (1) and using the results in [52], we get

𝐷𝛼𝐿0 (𝑡) ≤ 𝛼0𝛼0 + 𝛼1𝑥0 (1 − 𝑥0𝑥 )𝐷𝛼𝑥
+ 𝜌𝛼0(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 (𝑥 − 𝑥0 + 𝑙)⋅ (𝐷𝛼𝑥 + 𝐷𝛼𝑙) + 𝐷𝛼𝑙 + 𝑚 + 𝜌 + 𝛾𝛾 𝐷𝛼𝑦
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 𝐷𝛼V + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝐷𝛼𝑤.

(38)

Using 𝜆 = 𝑑𝑥0, we obtain
𝐷𝛼𝐿0 (𝑡) ≤ −𝑑𝛼0 (𝑥 − 𝑥0)2(𝛼0 + 𝛼1𝑥0) 𝑥 − 𝛼0𝛼0 + 𝛼1𝑥0 (1 − 𝑥0𝑥 )

⋅ 𝑓 (𝑥, V) V + 𝜌𝛼0𝛼0 + 𝛼1𝑥0 (1 − 𝑥0𝑥 ) 𝑙
⋅ 𝜌𝛼0 (𝑥 − 𝑥0 + 𝑙)(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 (𝑑 (𝑥0 − 𝑥)
− (𝑚 + 𝛾) 𝑙) + 𝑓 (𝑥, V) V − 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V

− 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤
≤ −(1𝑥 + 𝜌(𝑑 + 𝑚 + 𝛾) 𝑥0) 𝑑𝛼0 (𝑥 − 𝑥0)2(𝛼0 + 𝛼1𝑥0)
− 𝜌𝛼0 (𝑚 + 𝛾) 𝑙2(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 − 𝜌𝛼0 (𝑥 − 𝑥0)2 𝑙(𝛼0 + 𝛼1𝑥0) 𝑥𝑥0
+ 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 (𝑅0 − 1) V − 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤.

(39)

Hence if 𝑅0 ≤ 1, then 𝐷𝛼𝐿0(𝑡) ≤ 0. In addition, the equality
holds if and only if 𝑥 = 𝑥0, 𝑙 = 0, 𝑦 = 0,𝑤 = 0, and (𝑅0−1)V =0. If 𝑅0 < 1, then V = 0. If 𝑅0 = 1, from (1), we get 𝑓(𝑥0, V)V =0which implies that V = 0. Consequently, the largest invariant
set of {(𝑥, 𝑙, 𝑦, V, 𝑤) ∈ R5+ : 𝐷𝛼𝐿0(𝑡) = 0} is the singleton{𝐸0}. Therefore, by the LaSalle’s invariance principle [51], 𝐸0
is globally asymptotically stable.

The proof of the instability of 𝐸0 is based on the
computation of the Jacobean matrix of system (1) and the
results presented in [53–55].The Jacobean matrix of (1) at any
equilibrium 𝐸(𝑥, 𝑙, 𝑦, V, 𝑤) is given by

((((
(

−𝑑 − 𝜕𝑓𝜕𝑥V 𝜌 0 −𝜕𝑓𝜕V V − 𝑓 (𝑥, V) 0𝜕𝑓𝜕𝑥V − (𝑚 + 𝜌 + 𝛾) 0 𝜕𝑓𝜕V V + 𝑓 (𝑥, V) 00 𝛾 −𝑎 0 00 0 𝑘 −𝜇 − 𝑞𝑤 −𝑞V0 0 0 𝑔𝑤 𝑔V − ℎ
))))
)

. (40)
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We recall that 𝐸 is locally asymptotically stable if the all
eigenvalues 𝜉𝑖 of (40) satisfy the following condition [53–55]:󵄨󵄨󵄨󵄨arg (𝜉𝑖)󵄨󵄨󵄨󵄨 > 𝛼𝜋2 . (41)

From (40), the characteristic equation at 𝐸0 is given as
follows: (𝑑 + 𝜉) (ℎ + 𝜉) 𝑔0 (𝜉) = 0, (42)

where 𝑔0 (𝜉) = ((𝑚 + 𝜌 + 𝛾) + 𝜉) (𝑎 + 𝜉) (𝜇 + 𝜉)
− 𝑘𝛾𝛽𝜆𝑑𝛼0 + 𝛼1𝜆 . (43)

Obviously, (42) has the roots 𝜉1 = −𝑑 and 𝜉2 = −ℎ. If𝑅0 > 1, we have 𝑔0(0) = 𝑎𝜇(𝑚 + 𝜌 + 𝛾)(1 − 𝑅0) < 0 and
lim𝜉󳨀→+∞𝑔0(𝜉) = +∞. Then, there exists 𝜉∗ > 0 satisfying𝑔0(𝜉∗) = 0. In addition, we have |arg(𝜉∗)| = 0 < 𝛼𝜋/2.
Consequently, when 𝑅0 > 1, 𝐸0 is unstable.
Theorem 4.

(i) The infection equilibrium without humoral immunity𝐸1 is globally asymptotically stable if 𝑅0 > 1, 𝑅1 ≤ 1,
and𝑅0 ≤ 1

+ (𝑚 + 𝜌 + 𝛾) [𝛼0𝑎𝑑𝜇 (𝑚 + 𝜌) + 𝑑𝑘𝜆𝛾𝛼2] + 𝑘𝜌𝛾𝛼3𝜆2𝑎𝜌𝜇 (𝑚 + 𝜌 + 𝛾) (𝛼0𝑑 + 𝜆𝛼1) . (44)

(ii) When 𝑅1 > 1, 𝐸1 is unstable.

Proof. Define a Lyapunov functional as follows:

𝐿1 (𝑡) = 𝛼0 + 𝛼2V1𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1 𝑥1Φ( 𝑥𝑥1)+ 𝑙1Φ( 𝑙𝑙1)
+ 𝜌 (𝛼0 + 𝛼2V1)2 (𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1 (𝑥
− 𝑥1 + 𝑙 − 𝑙1)2 + 𝑚 + 𝜌 + 𝛾𝛾 𝑦1Φ( 𝑦𝑦1)
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V1Φ( V

V1
) + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤.

(45)

Calculating the fractional derivative of 𝐿1(𝑡), we get
𝐷𝛼𝐿1 (𝑡) = 𝛼0 + 𝛼2V1𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1 (1 − 𝑥1𝑥 )𝐷𝛼𝑥

+ (1 − 𝑙1𝑙 )𝐷𝛼𝑙
+ 𝜌 (𝛼0 + 𝛼2V1) (𝑥 − 𝑥1 + 𝑙 − 𝑙1)(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1 (𝐷𝛼𝑥
+ 𝐷𝛼𝑙) + 𝑚 + 𝜌 + 𝛾𝛾 (1 − 𝑦1𝑦 )𝐷𝛼𝑦
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 (1 − V1

V
)𝐷𝛼V + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤.

(46)

Using𝜆 = 𝑑𝑥1+(𝑚+𝛾)𝑙1,𝑓(𝑥1, V1)V1 = (𝑚+𝜌+𝛾)𝑙1, 𝛾𝑙1 = 𝑎𝑦1,𝑘𝑦1 = 𝜇V1, and 1−𝑓(𝑥𝑖, V𝑖)/𝑓(𝑥, V𝑖) = ((𝛼0+𝛼2V𝑖)/(𝛼0+𝛼1𝑥𝑖+𝛼2V𝑖 + 𝛼3𝑥𝑖V𝑖))(1 − 𝑥𝑖/𝑥)∀𝑖 ∈ {1, 2}, we obtain
𝐷𝛼𝐿1 (𝑡) ≤ 𝑑(1 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) ) (𝑥1 − 𝑥) + (𝑚 + 𝜌 + 𝛾) 𝑙1 (1 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) + V

V1

𝑓 (𝑥, V)𝑓 (𝑥, V1)) + (𝑚 + 𝜌 + 𝛾)
⋅ 𝑙1 (1 − 𝑙1𝑓 (𝑥, V) V𝑙𝑓 (𝑥1, V1) V1) + (𝑚 + 𝜌 + 𝛾) 𝑙1 (1 − 𝑙𝑦1𝑙1𝑦) + (𝑚 + 𝜌 + 𝛾) 𝑙1 (1 − V

V1
− 𝑦V1𝑦1V) + 𝜌 (𝑙 − 𝑙1)

⋅ (1 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) ) − 𝜌 (𝛼0 + 𝛼2V1) [𝑑 (𝑥 − 𝑥1)2 + (𝑚 + 𝛾) (𝑙 − 𝑙1)2 + (𝑑 + 𝑚 + 𝛾) (𝑥 − 𝑥1) (𝑙 − 𝑙1)](𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1
+ 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 (𝑔V1ℎ − 1)𝑤.

(47)

Hence,𝐷𝛼𝐿1 (𝑡)
≤ − (𝛼0 + 𝛼2V1) (𝑥 − 𝑥1)2𝑥𝑥1 (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) ((𝑑𝑥1 − 𝜌𝑙1) + 𝜌𝑙
+ 𝑑𝜌𝑥𝑑 + 𝑚 + 𝛾)

− 𝜌 (𝛼0 + 𝛼2V1) (𝑚 + 𝛾) (𝑙 − 𝑙1)2(𝑚 + 𝜌 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1 + (𝑚 + 𝜌
+ 𝛾) 𝑙1 (5 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) − 𝑙1𝑓 (𝑥, V) V𝑙𝑓 (𝑥1, V1) V1 − 𝑙𝑦1𝑙1𝑦 − 𝑦V1𝑦1V
− 𝑓 (𝑥, V1)𝑓 (𝑥, V) ) − (𝑚 + 𝜌 + 𝛾) 𝑙1
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⋅ (𝛼0 + 𝛼1𝑥) (𝛼2 + 𝛼3𝑥) (V − V1)2
V1 (𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V) (𝛼0 + 𝛼1𝑥 + 𝛼2V1 + 𝛼3𝑥V1)+ 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 (𝑅1 − 1)𝑤.

(48)

Using the arithmetic-geometric inequality, we have

5 − 𝑓 (𝑥𝑖, V𝑖)𝑓 (𝑥, V𝑖) − 𝑙𝑖𝑓 (𝑥, V) V𝑙𝑓 (𝑥𝑖, V𝑖) V𝑖 − 𝑙𝑦𝑖𝑙𝑖𝑦 − 𝑦V𝑖𝑦𝑖V − 𝑓 (𝑥, V𝑖)𝑓 (𝑥, V)≤ 0. (49)

Since 𝑅1 ≤ 1, we have 𝐷𝛼𝐿1(𝑡) ≤ 0 if 𝑑𝑥1 ≥ 𝜌𝑙1. It is easy
to see that this condition is equivalent to (44). Furthermore,

𝐷𝛼𝐿1(𝑡) = 0 if and only if 𝑥 = 𝑥1, 𝑙 = 𝑙1, 𝑦 = 𝑦1, V = V1, and(𝑅1 − 1)𝑤 = 0. We discuss two cases: If 𝑅1 < 1, then 𝑤 = 0. If𝑅1 = 1, from (1), we get𝐷𝛼V1 = 0 = 𝑘𝑦1−𝜇V1−𝑞V1𝑤, and then𝑤 = 0. Hence, the largest invariant set of {(𝑥, 𝑙, 𝑦, V, 𝑤) ∈ R5+ :𝐷𝛼𝐿1(𝑡) = 0} is the singleton {𝐸1}. By the LaSalle’s invariance
principle, 𝐸1 is globally asymptotically stable.

At 𝐸1, the characteristic equation of (40) is given as
follows:

(𝑔V1 − ℎ − 𝜉) 𝑔1 (𝜉) = 0, (50)

where

𝑔1 (𝜉) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑑 − 𝜕𝑓𝜕𝑥 (𝑥1, V1) V1 − 𝜉 𝜌 0 −𝜕𝑓𝜕V (𝑥1, V1) V1 − 𝑓 (𝑥1, V1)𝜕𝑓𝜕𝑥 (𝑥1, V1) V1 − (𝑚 + 𝜌 + 𝛾) − 𝜉 0 𝜕𝑓𝜕V (𝑥1, V1) V1 + 𝑓 (𝑥1, V1)0 𝛾 −𝑎 − 𝜉 00 0 𝑘 −𝜇 − 𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (51)

We can easily see that (50) has the root 𝜉1 = 𝑔V1 − ℎ. Then,
when 𝑅1 > 1, we have 𝜉1 > 0. In this case, 𝐸1 is unstable.
Theorem 5. The infection equilibrium with humoral immu-
nity 𝐸2 is globally asymptotically stable if 𝑅1 > 1 and𝜌𝛽ℎ ≤ 𝑑 (𝑚 + 𝜌 + 𝛾) (𝛼0𝑔 + 𝛼2ℎ) + 𝜌𝜆 (𝛼1𝑔 + 𝛼3ℎ) . (52)

Proof. Consider the following Lyapunov functional:

𝐿2 (𝑡) = 𝛼0 + 𝛼2V2𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2 𝑥2Φ( 𝑥𝑥2)
+ 𝑙2Φ( 𝑙𝑙2)

+ 𝜌 (𝛼0 + 𝛼2V2)2 (𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) 𝑥2 (𝑥
− 𝑥2 + 𝑙 − 𝑙2)2 + 𝑚 + 𝜌 + 𝛾𝛾 𝑦2Φ( 𝑦𝑦2)
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V2Φ( V

V2
) + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾

⋅ 𝑤2Φ( 𝑤𝑤2) .
(53)

Computing the fractional derivative of 𝐿2(𝑡) and using 𝜆 =𝑑𝑥2 + (𝑚 + 𝛾)𝑙2, 𝑓(𝑥2, V2)V2 = (𝑚 + 𝜌 + 𝛾)𝑙2, 𝛾𝑙2 = 𝑎𝑦2, 𝑘𝑦2 =(𝜇 + 𝑞𝑤2)V2, and V2 = ℎ/𝑔, we get
𝐷𝛼𝐿2 (𝑡) ≤ 𝑑(1 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) ) (𝑥2 − 𝑥) + (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) + 𝑓 (𝑥, V) V𝑓 (𝑥, V2) V2)

+ (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − 𝑙2𝑓 (𝑥, V) V𝑙𝑓 (𝑥2, V2) V2) + (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − 𝑙𝑦2𝑙2𝑦) + (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − V
V2
− 𝑦V2𝑦2V)

+ 𝜌 (𝑙 − 𝑙2) (1 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) )
− 𝜌 (𝛼0 + 𝛼2V2) [𝑑 (𝑥 − 𝑥2)2 + (𝑚 + 𝛾) (𝑙 − 𝑙2)2 + (𝑑 + 𝑚 + 𝛾) (𝑥 − 𝑥2) (𝑙 − 𝑙2)](𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) 𝑥2
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≤ − (𝛼0 + 𝛼2V2) (𝑥 − 𝑥2)2𝑥𝑥2 (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) ((𝑑𝑥2 − 𝜌𝑙2) + 𝜌𝑙 + 𝑑𝜌𝑥𝑑 + 𝑚 + 𝛾)
− 𝜌 (𝛼0 + 𝛼2V2) (𝑚 + 𝛾) (𝑙 − 𝑙2)2(𝑚 + 𝜌 + 𝛾) (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) 𝑥2
+ (𝑚 + 𝜌 + 𝛾) 𝑙2 (5 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) − 𝑙2𝑓 (𝑥, V) V𝑙𝑓 (𝑥2, V2) V2 − 𝑙𝑦2𝑙2𝑦 − 𝑦V2𝑦2V − 𝑓 (𝑥, V2)𝑓 (𝑥, V) )
− (𝑚 + 𝜌 + 𝛾) 𝑙2 (𝛼0 + 𝛼1𝑥) (𝛼2 + 𝛼3𝑥) (V − V2)2

V2 (𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V) (𝛼0 + 𝛼1𝑥 + 𝛼2V2 + 𝛼3𝑥V2) .
(54)

From (49), we have 𝐷𝛼𝐿2(𝑡) ≤ 0 when 𝑑𝑥2 ≥ 𝜌𝑙2. This
condition is equivalent to (52). In addition, 𝐷𝛼𝐿2(𝑡) = 0
if 𝑥 = 𝑥2, 𝑙 = 𝑙2, 𝑦 = 𝑦2, and V = V2. Further, 𝐷𝛼V2 =0 = 𝑘𝑦2 − 𝜇V2 − 𝑞V2𝑤; then 𝑤 = 𝑤2. Consequently, the
largest invariant set of {(𝑥, 𝑙, 𝑦, V, 𝑤) ∈ R5+ : 𝐷𝛼𝐿2(𝑡) = 0}
is the singleton {𝐸2}. By the LaSalle’s invariance principle, 𝐸2
is globally asymptotically stable.

It is important to note that when 𝜌 is sufficiently small
or 𝛾 is sufficiently large, the two conditions (44) and (52) are
satisfied. Then, we have the following corollary.

Corollary 6. Assume that 𝑅0 > 1. When 𝜌 is sufficiently small
or 𝛾 is sufficiently large, then we have the following:

(i) The infection equilibrium without humoral immunity𝐸1 is globally asymptotically stable if 𝑅1 ≤ 1.
(ii) The infection equilibrium with humoral immunity 𝐸2

is globally asymptotically stable if 𝑅1 > 1.
4. Numerical Simulations

In this section, we validate our theoretical results to HIV
infection. Firstly, we take the parameter values as shown in
Table 1.

By calculation, we have 𝑅0 = 0.4274 ≤ 1. Then system (1)
has an infection-free equilibrium 𝐸0(719.4245, 0, 0, 0, 0). By
Theorem 3, the solution of (1) converges to 𝐸0 (see Figure 1).
Consequently, the virus is cleared and the infection dies out.

Now, we choose 𝛽 = 0.0012 and we keep the other
parameter values. Hence, we obtain 𝑅0 = 2.137, 𝑅1 = 0.8334,
and

1 + (𝑚 + 𝜌 + 𝛾) [𝛼0𝑎𝑑𝜇 (𝑚 + 𝜌) + 𝑑𝑘𝜆𝛾𝛼2] + 𝑘𝜌𝛾𝛼3𝜆2𝑎𝜌𝜇 (𝑚 + 𝜌 + 𝛾) (𝛼0𝑑 + 𝜆𝛼1)= 2.5934. (55)

Consequently, condition (44) is satisfied.Therefore, the infec-
tion equilibrium without humoral immunity 𝐸1(176.6853,168.7712, 6.2508, 1666.9, 0) is globally asymptotically stable.
Figure 2 demonstrates this result. In this case, the infection
becomes chronic.

Next, we take 𝑔 = 0.0004 and do not change the other
parameter values. In this case, we have 𝑅1 = 3.3338, 𝜌𝛽ℎ =0.0000024, and 𝑑(𝑚 + 𝜌 + 𝛾)(𝛼0𝑔 + 𝛼2ℎ) + 𝜌𝜆(𝛼1𝑔 + 𝛼3ℎ) =0.000006. Hence, condition (52) is satisfied. Consequently,
system (1) has an infection equilibrium with humoral immu-
nity 𝐸2(423.4261, 92.0442, 3.4090, 500, 245.4473) which is
globally asymptotically stable. Figure 3 illustrates this result.
We can observe that the activation of the humoral immune
response increases the healthy cells and decreases the produc-
tive infected cells and viral load to a lower levels but it is not
able to eradicate the infection.

5. Conclusion

In the present paper, we have studied the dynamics of a
viral infection model by taking into account the memory
effect represented by the Caputo fractional derivative and
the humoral immunity. We have proved that the solutions
of the model are nonnegative and bounded which assure the
well-posedness. We have shown that the proposed model
has three infection equilibriums, namely, the infection-free
equilibrium 𝐸0, the infection equilibrium without humoral
immunity 𝐸1, and the infection equilibrium with humoral
immunity 𝐸2. By constructing suitable Lyapunov functionals,
the global stability of these equilibria is fully determined by
two threshold parameters 𝑅0 and 𝑅1. More precisely, when𝑅0 ≤ 1, 𝐸0 is globally asymptotically stable, whereas if𝑅0 > 1, it becomes unstable and another equilibrium point
appears, that is, 𝐸1, which is globally asymptotically stable
whenever 𝑅1 ≤ 1 and condition (44) is satisfied. In the case
that 𝑅1 > 1, 𝐸1 becomes unstable and there exists another
equilibrium point 𝐸2 which is globally asymptotically stable
when condition (52) is satisfied. In addition, we remarked
that when 𝜌 is sufficiently small or 𝛾 is sufficiently large,
conditions (44) and (52) are verified, and then the global
stability of 𝐸1 and 𝐸2 is characterized only by 𝑅0 and 𝑅1.

From our theoretical and numerical results, we deduce
that the order of the fractional derivative 𝛼 has no effect
on the dynamics of the model. However, when the value
of 𝛼 decreases (long memory), the solutions of our model
converge rapidly to the steady states (see Figures 1–3). This
behavior can be explained by the memory term 1/Γ(1−𝛼)(𝑡−𝑢)𝛼 included in the fractional derivative which represents
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Table 1: Parameter values of system (1).

parameters values parameters values parameters values𝜆 10 𝑎 0.27 ℎ 0.2𝑑 0.0139 𝛾 0.01 𝑔 0.0001𝛽 0.00024 𝑘 800 𝛼0 1𝜌 0.01 𝜇 3 𝛼1 0.1𝑚 0.0347 𝑞 0.01 𝛼2 0.01𝛼3 0.00001
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Figure 1: Stability of the infection-free equilibrium 𝐸0.
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Figure 2: Stability of the infection equilibrium without humoral immunity 𝐸1.
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Figure 3: Stability of the infection equilibrium with humoral immunity 𝐸2.
the time needed for the interaction between cells and viral
particles and the time needed for the activation of humoral
immune response. In fact, the knowledge about the infection
and the activation of the humoral immune response in an
early stage can help us to control the infection.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] K. Hattaf, N. Yousfi, and A. Tridane, “Global stability analysis
of a generalized virus dynamics model with the immune
response,”CanadianAppliedMathematicsQuarterly, vol. 20, no.
4, pp. 499–518, 2012.

[2] M. Maziane, K. Hattaf, and N. Yousfi, “Global stability for a
class of HIV infection models with cure of infected cells in
eclipse stage and CTL immune response,” International Journal
of Dynamics and Control, 2016.

[3] X. Wang, Y. Tao, and X. Song, “Global stability of a virus
dynamics model with Beddington-DeAngelis incidence rate
and CTL immune response,” Nonlinear Dynamics, vol. 66, no.
4, pp. 825–830, 2011.

[4] C. Lv, L. Huang, and Z. Yuan, “Global stability for an HIV-1
infectionmodel with Beddington-DeAngelis incidence rate and
CTL immune response,” Communications in Nonlinear Science
and Numerical Simulation, vol. 19, no. 1, pp. 121–127, 2014.

[5] M. A. Nowak and C. R. M. Bangham, “Population dynamics of
immune responses to persistent viruses,” Science, vol. 272, no.
5258, pp. 74–79, 1996.

[6] A. Murase, T. Sasaki, and T. Kajiwara, “Stability analysis of
pathogen-immune interaction dynamics,” Journal ofMathemat-
ical Biology, vol. 51, no. 3, pp. 247–267, 2005.

[7] M. A. Obaid and A.M. Elaiw, “Stability of Virus InfectionMod-
els with Antibodies and Chronically Infected Cells,” Abstract
andAppliedAnalysis, vol. 2014, Article ID 650371, 12 pages, 2014.

[8] M. A. Obaid, “Dynamical behaviors of a nonlinear virus infec-
tion model with latently infected cells and immune response,”
Journal of Computational Analysis and Applications, vol. 21, no.
1, pp. 182–193, 2016.

[9] H. F. Huo, Y. L. Tang, and L. X. Feng, “AVirus Dynamics Model
with Saturation Infection and Humoral Immunity,” Int. Journal
of Math. Analysis, vol. 6, no. 40, 2012.

[10] A. M. Elaiw, “Global stability analysis of humoral immunity
virus dynamics model including latently infected cells,” Journal
of Biological Dynamics, vol. 9, no. 1, pp. 215–228, 2015.

[11] A. M. Elaiw and N. H. AlShamrani, “Global properties of non-
linear humoral immunity viral infection models,” International
Journal of Biomathematics, vol. 8, no. 5, 1550058, 53 pages, 2015.

[12] J. X. Velasco-Herna’ndez, J. A. Garci’a, and D. E. Kirschner,
“Remarks on modeling host-viral dynamics and treatment,
MathematicalApproaches for Emerging andReemerging Infec-
tiousDiseases,”An Introduction toModels,Methods, andTheory,
vol. 125, pp. 287–308, 2002.

[13] A. S. Perelson, “Modelling viral and immune system dynamics,”
Nature Reviews Immunology, vol. 2, no. 1, pp. 28–36, 2002.

[14] R. L. Magin, “Fractional calculus models of complex dynamics
in biological tissues,” Computers & Mathematics with Applica-
tions, vol. 59, no. 5, pp. 1586–1593, 2010.

[15] A. A. Stanislavsky, “Memory effects and macroscopic manifes-
tation of randomness,” Physical Review E: Statistical Physics,

10 Differential Equations: Concepts and Applications



Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 61, no.
5, pp. 4752–4759, 2000.

[16] M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, G. R. Jafari,
and M. Ausloos, “Memory effects on epidemic evolution:
The susceptible-infected-recovered epidemic model,” Physical
Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 95,
no. 2, Article ID 022409, 2017.

[17] Y. A. Rossikhin and M. V. Shitikova, “Applications of fractional
calculus to dynamic problems of linear and nonlinear heredi-
tary mechanics of solids,” Applied Mechanics Reviews, vol. 50,
no. 1, pp. 15–67, 1997.

[18] R. J. Marks and M. W. Hall, “Differintegral Interpolation from
a Bandlimited Signal’s Samples,” IEEE Transactions on Signal
Processing, vol. 29, no. 4, pp. 872–877, 1981.

[19] G. L. Jia and Y. X. Ming, “Study on the viscoelasticity of
cancellous bone based on higher-order fractional models,” in
Proceedings of the 2nd International Conference on Bioinfor-
matics and Biomedical Engineering (ICBBE ’08), pp. 1733–1736,
Shanghai, China, May 2008.

[20] R. Magin, “Fractional calculus in bioengineering,” Cretical
reviews in biomedical engineering, vol. 32, pp. 13–77, 2004.

[21] E. Scalas, R. Gorenflo, and F.Mainardi, “Fractional calculus and
continuous-time finance,” Physica A: Statistical Mechanics and
its Applications, vol. 284, no. 1–4, pp. 376–384, 2000.

[22] R. Capponetto, G. Dongola, L. Fortuna, and I. Petras, “Frac-
tional order systems: Modelling and control applications,”
World Scientific Series in Nonlinear Science, Series A, vol. 72,
2010.
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Correspondence should be addressed to Süleyman Cengizci; cengizci.suleyman@metu.edu.tr

Academic Editor: Patricia J. Y. Wong

In thiswork, approximations to the solutions of singularly perturbed second-order linear delay differential equations are studied.We
firstly use two-term Taylor series expansion for the delayed convection term and obtain a singularly perturbed ordinary differential
equation (ODE). Later, an efficient and simple asymptoticmethod so called Successive Complementary ExpansionMethod (SCEM)
is employed to obtain a uniformly valid approximation to this corresponding singularly perturbed ODE. As the final step, we
employ a numerical procedure to solve the resulting equations that come from SCEM procedure. In order to show efficiency of this
numerical-asymptotic hybrid method, we compare the results with exact solutions if possible; if not we compare with the results
that are obtained by other reported methods.

1. Introduction

Almost all physical phenomena in nature are modelled using
differential equations, and singularly perturbed problems are
vital class of these kinds of problems. In general, a singular
perturbation problem is defined as a differential equation
that is controlled by a positive small parameter 0 < 𝜀 ≪ 1
that exists as multiplier to the highest derivative term in the
differential equation. As 𝜀 tends to zero, the solution of
problem exhibits interesting behaviors (rapid changes) since
the order of the equation reduces. The region where these
rapid changes occur is called inner region and the region
in which the solution changes mildly is called outer region.
As mentioned in [1, 2], these kinds of problems arise in
almost all applied natural sciences. Some of these can be given
as mechanical and electrical systems, celestial mechanics,
fluid and solid mechanics, electromagnetics, particle and
quantum physics, chemical and biochemical reactions, and
economics and financial mathematics. Various methods are
employed to solve singular perturbation problems analyt-
ically, numerically, or asymptotically such as the method
of matched asymptotic expansions (MMAE), the method
of multiple scales, the method of WKB approximation,
Poincaré-Lindstedt method and periodic averaging method.

Rigorous analysis and applications of these methods can be
found in [3–8].

Modelling automatic systems often involve the idea of
control because feedback is necessary in order to maintain
a stable state. But much of this feedback require a finite
time to sense information and react to it. A general way for
describing this process is to formulate a delay differential
equation (difference-differential equation). Delay differential
equations (DDE) are widely used for modelling problems
in population dynamics, nonlinear optics, fluid mechan-
ics, mechanical engineering, evolutionary biology, and even
modelling of HIV infection and human pupil-light reflex.
One can refer to [10–14] for general theory and applications
of DDEs.

In this paper, we study an important class of delay differ-
ential equations: singularly perturbed linear delay differential
equations. A singularly perturbed delay differential equation
is a differential equation inwhich the highest-order derivative
is multiplied by a positive small 𝜀 parameter and involving at
least one delay term. We restrict our attention to singularly
perturbed second-order ordinary delay differential equations
that contains the delay in convection term. Various methods
have been used to solve singularly perturbed DDEs such as
finite difference methods [9, 15, 16], finite element methods
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[17, 18], homotopy perturbationmethod [19, 20], reproducing
kernel method [21, 22], spline collocation methods [23, 24],
and asymptotic approaches [25, 26]. We use an asymptotic-
numerical hybrid method in order to find uniformly valid
approximations to singularly perturbed ODEs. At the first
step, two-term Taylor series expansion is used to vanish
delayed term. Secondly, to obtain a uniformly valid approxi-
mation an efficient and easily applicable asymptotic method
so called Successive Complementary Expansion Method
(SCEM) that was introduced in [27] is employed. Finally, a
numerical approach is used to solve resulting equations that
come from SCEM process.

2. Description of the Method

In this section, we first give a short overview of asymptotic
approximations and then explain Successive Complementary
Expansion Method by which we obtain highly accurate
approximations to solutions of singularly perturbed linear
DDEs.

Consider two continuous functions of real numbers 𝑔(𝜀)
and ℎ(𝜀) that depend on a positive small parameter 𝜀; then
𝑔(𝜀) = 𝑂(ℎ(𝜀)) for 𝜀 → 0 if there exist positive constants 𝐾
and 𝜀0 such that 𝐾 ∈ (0, 𝜀0] with |𝑔(𝜀)| ⩽ 𝐾|ℎ(𝜀)| for 𝜀 → 0,
and 𝑔(𝜀) = 𝑜(ℎ(𝜀)) for 𝜀 → 0 if lim𝜀→0(𝑔(𝜀)/ℎ(𝜀)) = 0. Let
𝐸 be a set of real functions that depend on 𝜀, strictly positive
and continuous in (0, 𝜀0], such that lim𝜀→0𝛿(𝜀) exists and
𝛿1(𝜀)𝛿2(𝜀) ∈ 𝐸 for each 𝛿1(𝜀), 𝛿2(𝜀) ∈ 𝐸. A function 𝛿𝑖(𝜀)
that satisfies these conditions is called order function. Given
two functions 𝜙(𝑥, 𝜀) and 𝜙𝑎(𝑥, 𝜀) defined in a domain Ω
are asymptotically identical to order 𝛿(𝜀) if their difference
is asymptotically smaller than 𝛿(𝜀), where 𝛿(𝜀) is an order
function; that is,

𝜙 (𝑥, 𝜀) − 𝜙𝑎 (𝑥, 𝜀) = 𝑜 (𝛿 (𝜀)) , (1)

where 𝜀 is a positive small parameter arising from the
physical problem under consideration. The function 𝜙𝑎(𝑥, 𝜀)
is named as asymptotic approximation of the function 𝜙(𝑥, 𝜀).
Asymptotic approximations in general form are defined by

𝜙𝑎 (𝑥, 𝜀) =
𝑛

∑
𝑖=1

𝛿𝑖 (𝜀) 𝜑𝑖 (𝑥, 𝜀) , (2)

where 𝛿𝑖+1(𝜀) = 𝑜(𝛿𝑖(𝜀)), as 𝜀 → 0. Under these conditions,
the approximation (2) is named as generalized asymptotic
expansion. If the expansion (2) is written in the form of

𝜙𝑎 (𝑥, 𝜀) = 𝐸0𝜙 =
𝑛

∑
𝑖=1

𝛿(0)𝑖 (𝜀) 𝜑(0)𝑖 (𝑥) , (3)

then it is called regular asymptotic expansionwhere the special
operator 𝐸0 is outer expansion operator of a given order 𝛿(𝜀).
Thus, 𝜙−𝐸0𝜙 = 𝑜(𝛿(𝜀)). Formore detailed information about
the asymptotic approximations, we refer the interested reader
to [3–8, 28, 29].

Interesting behaviors occur when the function 𝜙(𝑥, 𝜀) is
not regular in Ω so (2) or (3) is valid only in a restricted
region Ω0 ∈ Ω, called the outer region. We introduce an

inner domain which can be formally denoted as Ω1 = Ω − Ω0
and corresponding inner layer variable, located near the point
𝑥 = 𝑥0, as 𝑥 = (𝑥 − 𝑥0)/𝜂(𝜀), with 𝜂(𝜀) being the order
of thickness of the boundary layer (the region in which the
rapid changes-behaviors occur). If a regular expansion can be
constructed in Ω1, one can write down the approximation as

𝜙𝑎 (𝑥, 𝜀) = 𝐸1𝜙 =
𝑛

∑
𝑖=1

𝛿(1)𝑖 (𝜀) 𝜑(1)𝑖 (𝑥) , (4)

where the inner expansion operator 𝐸1, defined in Ω1, is of
the same order 𝛿(𝜀) as the outer expansion operator 𝐸0; that
is, 𝜙 − 𝐸1𝜙 = 𝑜(𝛿(𝜀)). Thus,

𝜙𝑎 = 𝐸0𝜙 + 𝐸1𝜙 − 𝐸1𝐸0𝜙 (5)

is clearly uniformly valid approximation (UVA) [28–30].
Now let us consider second-order singularly perturbed

DDE in its general form (delay in the convection term):

𝜀𝑦󸀠󸀠 (𝑥) + 𝑝 (𝑥) 𝑦󸀠 (𝑥 − 𝛿) + 𝑞 (𝑥) 𝑦 (𝑥) = 𝑟 (𝑥) , (6)

where 0 < 𝜀 ≪ 1 small parameter and 0 < 𝑥 < 1. Boundary
and interval conditions are given as

𝑦 (𝑥) = 𝜙 (𝑥) , − 𝛿 ≤ 𝑥 ≤ 0, 𝑦 (1) = 𝛾, (7)

where𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥), and 𝜙(𝑥) are smooth functions, 𝛾 ∈ R,
and 𝛿 is delay term.

As 𝜀 tends to zero, the order of the differential equation
reduces and so a layer occurs in the solution.The sign of 𝑝(𝑥)
on the interval [0, 1] determines the type of the layer. If the
sign changes on the interval, interior layer behavior occurs
in the solution. If the sign of 𝑝(𝑥) does not change, there are
two possibilities: if 𝑝(𝑥) < 0 on [0, 1], then a boundary layer
occurs at the right end (near the point 𝑥 = 1) and if 𝑝(𝑥) > 0
on [0, 1], then a boundary layer occurs at the left end (near
the point 𝑥 = 0).

Using Taylor series expansion we linearize the convection
term; that is, 𝑦󸀠(𝑥 − 𝛿) = 𝑦󸀠(𝑥) − 𝛿𝑦󸀠󸀠(𝑥) and substituting it
into (6) one can reach

(𝜀 − 𝛿𝑝 (𝑥)) 𝑦󸀠󸀠 (𝑥) + 𝑝 (𝑥) 𝑦󸀠 (𝑥) + 𝑞 (𝑥) 𝑦 (𝑥) = 𝑟 (𝑥) . (8)

Letting 𝛿 = 𝜅𝜀, where 𝜅 ∈ R

𝜀 (1 − 𝜅𝑝 (𝑥)) 𝑦󸀠󸀠 (𝑥) + 𝑝 (𝑥) 𝑦󸀠 (𝑥) + 𝑞 (𝑥) 𝑦 (𝑥)
= 𝑟 (𝑥)

(9)

is found and it is clear that (9) is a singularly perturbed ordi-
nary differential equation for 𝜀 → 0 with the same bound-
ary and interval conditions as given by (7). SCEM procedure
is applicable at this stage.

The uniformly valid SCEM approximation is in the
regular form given by

𝑦scem
𝑛 (𝑥, 𝑥, 𝜀) =

𝑛

∑
𝑖=1

𝛿𝑖 (𝜀) [𝑦𝑖 (𝑥) + Ψ𝑖 (𝑥)] , (10)

where {𝛿𝑖(𝜀)} is an asymptotic sequence and functions
Ψ𝑖(𝑥) are the complementary functions that depend on 𝑥.
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If the functions 𝑦𝑖(𝑥) and Ψ𝑖(𝑥) depend also on 𝜀, the
uniformly valid SCEM approximation is called generalized
SCEM approximation and given by

𝑦scem
𝑛𝑔 (𝑥, 𝑥, 𝜀) =

𝑛

∑
𝑖=1

𝛿𝑖 (𝜀) [𝑦𝑖 (𝑥, 𝜀) + Ψ𝑖 (𝑥, 𝜀)] . (11)

If only one-term SCEM approximation is desired, then one
seeks a uniformly valid SCEM approximation in the form of

𝑦scem
1 (𝑥, 𝑥, 𝜀) = 𝑦1 (𝑥, 𝜀) + Ψ1 (𝑥, 𝜀) . (12)

To improve the accuracy of approximation, (12) can be
iterated using (11). It means that successive complementary
termswill be added to the approximation. To this end, second
SCEM approximation will be in the form of

𝑦scem
2 (𝑥, 𝑥, 𝜀) = 𝑦1 (𝑥, 𝜀) + Ψ1 (𝑥, 𝜀)

+ 𝜀 (𝑦2 (𝑥, 𝜀) + Ψ2 (𝑥, 𝜀)) .
(13)

In this work, we seek an approximation in our calculations in
the form of (13).

Now, let us assume that problem (9) has a left boundary
layer (near the point 𝑥 = 0) and let 𝑦out(𝑥) be asymptotic
approximation to the outer solution and let Ψ(𝑥) be the
complementary solution, where 𝑥 = 𝑥/𝜀 is boundary layer
(stretching) variable. If approximations

𝑦out (𝑥, 𝜀) = 𝑦1 (𝑥) + 𝜀𝑦2 (𝑥) + 𝜀2𝑦3 (𝑥) + ⋅ ⋅ ⋅ ,
Ψ (𝑥, 𝜀) = Ψ1 (𝑥, 𝜀) + 𝜀Ψ2 (𝑥, 𝜀) + 𝜀2Ψ3 (𝑥, 𝜀) + ⋅ ⋅ ⋅

(14)

are substituted into (9) and if each term is balanced with
respect to the powers of 𝜀 (we balance just the terms 𝑂(1) and
𝑂(𝜀)),

𝑝 (𝑥) 𝑦󸀠1 (𝑥, 𝜀) + 𝑞 (𝑥) 𝑦1 (𝑥, 𝜀) = 𝑟 (𝑥) ,
𝑦1 (1, 𝜀) = 𝛾,

𝑦󸀠󸀠1 (𝑥, 𝜀) + 𝑝 (𝑥) 𝑦󸀠2 (𝑥, 𝜀) + 𝑞 (𝑥) 𝑦2 (𝑥, 𝜀) = 0,
𝑦2 (1, 𝜀) = 0

(15)

are found. If the same procedure is applied for equations that
involve complementary functions

Ψ󸀠󸀠1 (𝑥, 𝜀) + 𝑝 (𝑥) Ψ󸀠1 (𝑥, 𝜀) = 𝑟 (𝑥) (16)

with the boundary conditions

Ψ1 (0, 𝜀) = 𝜙 (0) − 𝛾,

Ψ1 ( 1
𝜀 , 𝜀) = 0,

Ψ󸀠󸀠2 (𝑥, 𝜀) − 𝜅
𝜀 𝑝 (𝑥) Ψ󸀠󸀠1 (𝑥, 𝜀) + 𝑝 (𝑥) Ψ󸀠2 (𝑥, 𝜀)

+ 𝑞 (𝑥) Ψ1 (𝑥, 𝜀) = 0

(17)

with the boundary conditions

Ψ1 (0, 𝜀) = −𝑦2 (0, 𝜀) ,

Ψ1 ( 1
𝜀 , 𝜀) = 0

(18)

being obtained and so (13) gives uniformly valid second
SCEM approximation.

3. Illustrative Examples

3.1. Left Boundary Layer Problem. Consider singularly per-
turbed DDE that exhibits a boundary layer at the left end of
the interval:

𝜀𝑦󸀠󸀠 (𝑥) + 𝑦󸀠 (𝑥 − 𝛿) − 𝑦 (𝑥) = 0, 0 ≤ 𝑥 ≤ 1, (19)

with the boundary conditions 𝑦(0) = 1 and 𝑦(1) = 1. The
exact solution of this problem is given by 𝑦(𝑥) = ((1 −
𝑒𝑚2)𝑒𝑚1𝑥 + (𝑒𝑚1 − 1)𝑒𝑚2𝑥)/(𝑒𝑚1 − 𝑒𝑚2), where 𝑚1,2 = (−1 ±
√1 + 4(𝜀 − 𝛿))/2(𝜀 − 𝛿). As the first step, we use two-term
Taylor expansion for 𝑦󸀠(𝑥 − 𝛿) = 𝑦󸀠(𝑥) − 𝛿𝑦󸀠󸀠(𝑥). If we
substitute it into (19), the problem turns into

(𝜀 − 𝛿) 𝑦󸀠󸀠 (𝑥) + 𝑦󸀠 (𝑥) − 𝑦 (𝑥) = 0, 0 ≤ 𝑥 ≤ 1. (20)

In order to obtain a uniformly valid approximation (UVA),
we first seek an outer solution which is valid far from the
boundary layer (the boundary layer is near the point𝑥 = 0 for
this problem) and then using SCEM we add complementary
solution to it. Later, using the same idea, we will get more
accurate approximations.

Outer Region Solutions. Let us take 𝜃 = 𝜀 − 𝛿, assuming that
𝛿 depends on 𝜀, and adopt a solution for the outer region in
the form of 𝑦out(𝑥) = 𝑦1(𝑥, 𝜃)+𝜃𝑦2(𝑥, 𝜃). Equation (20) turns
into

𝜃 (𝑦󸀠󸀠1 (𝑥, 𝜃) + 𝜃𝑦󸀠󸀠2 (𝑥, 𝜃)) + (𝑦󸀠1 (𝑥, 𝜃) + 𝜃𝑦󸀠2 (𝑥, 𝜃))
− (𝑦 (𝑥, 𝜃) + 𝜃𝑦2 (𝑥, 𝜃)) = 0

(21)

and balancing the terms of the order 𝑂(1) and 𝑂(𝜃), we
reach the equations

𝑦󸀠1 (𝑥, 𝜃) − 𝑦1 (𝑥, 𝜃) = 0, 𝑦1 (1, 𝜃) = 1,
𝑦󸀠󸀠1 (𝑥, 𝜃) + 𝑦󸀠2 (𝑥, 𝜃) − 𝑦2 (𝑥, 𝜃) = 0, 𝑦2 (1, 𝜃) = 0.

(22)

One can easily find the exact solutions of these equations as

𝑦1 (𝑥, 𝜃) = 𝑒𝑥−1,
𝑦2 (𝑥, 𝜃) = 𝑒𝑥−1 (1 − 𝑥) .

(23)

It means that the outer solution is of the form

𝑦out (𝑥, 𝜃) = 𝑒𝑥−1 + 𝜃𝑒𝑥−1 (𝑥 − 1) . (24)
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Complementary Solutions. Now applying the stretching trans-
formation𝑥 = 𝑥/𝜃 and adopting the complementary solution
as Ψ(𝑥, 𝜃) = Ψ1(𝑥, 𝜃) + 𝜃Ψ2(𝑥, 𝜃), one can reach

Ψ󸀠󸀠1 (𝑥) + 𝜃Ψ󸀠󸀠2 (𝑥, 𝜃) + Ψ󸀠1 (𝑥, 𝜃) + 𝜃Ψ󸀠2 (𝑥, 𝜃)
− 𝜃Ψ1 (𝑥, 𝜃) − 𝜃2Ψ2 (𝑥, 𝜃) = 0.

(25)

Balancing the terms of the order 𝑂(1) and 𝑂(𝜃), we obtain
Ψ󸀠󸀠1 (𝑥, 𝜃) + Ψ󸀠1 (𝑥, 𝜃) = 0,

Ψ1 (0, 𝜃) = 1, Ψ1 ( 1
𝜃 , 𝜃) = 0,

(26)

Ψ󸀠󸀠2 (𝑥, 𝜃) + Ψ󸀠2 (𝑥, 𝜃) − Ψ1 (𝑥, 𝜃) = 0,

Ψ2 (0, 𝜃) = −𝑒−1, Ψ2 ( 1
𝜃 , 𝜃) = 0.

(27)

Here we are able to solve Ψ1(𝑥, 𝜃) and Ψ2(𝑥, 𝜃) exactly, but
in many cases to obtain analytical solution to Ψ1(𝑥, 𝜃) and
Ψ2(𝑥, 𝜃) is really tedious process, even for many problems it
is impossible. The solutions may be given as

Ψ1 (𝑥, 𝜃) = 𝑒 − 1
𝑒 (1 − 𝑒−1/𝜃) (𝑒−𝑥 − 𝑒−1/𝜃) (28)

and Ψ2(𝑥, 𝜃) is given as the solution of (27). Since we
solve (27) numerically (MATLAB bvp4c routine) and the
others using an asymptotic scheme, our present method is
a hybrid method. As a result, we obtain first two SCEM
approximations to problem (19) as follows:

𝑦scem
1 (𝑥, 𝑥, 𝜃) = 𝑒𝑥−1 + 𝑒 − 1

𝑒 (1 − 𝑒−1/𝜃) (𝑒−𝑥 − 𝑒−1/𝜃) ,

𝑦scem
2 (𝑥, 𝑥, 𝜃) = 𝑦scem

1 (𝑥, 𝑥, 𝜃)
+ 𝜃 [𝑒𝑥−1 (1 − 𝑥) + Ψ2 (𝑥, 𝜃)] .

(29)

3.2. Right Boundary Layer Problem. Consider singularly per-
turbed DDE that exhibits a boundary layer at the right end of
the interval

𝜀𝑦󸀠󸀠 (𝑥) − 𝑦󸀠 (𝑥 − 𝛿) + 𝑦 (𝑥) = 0, (30)

with the boundary and interval conditions

𝑦 (𝑥) = 1, − 𝛿 ≤ 𝑥 ≤ 0,
𝑦 (1) = −1. (31)

Using two-termTaylor expansion for the convection term, we
reach 𝑦󸀠(𝑥 − 𝛿) = 𝑦󸀠(𝑥) − 𝛿𝑦󸀠󸀠(𝑥) and applying it to (30) one
can obtain

(𝜀 + 𝛿) 𝑦󸀠󸀠 (𝑥) − 𝑦󸀠 (𝑥) + 𝑦 (𝑥) = 0, 0 ≤ 𝑥 ≤ 1 (32)

with the boundary conditions 𝑦(0) = 1 and 𝑦(1) = −1.
In order to obtain a uniformly valid approximation, we

first seek an outer solution which is valid for far from the

boundary layer (the boundary layer is near the point𝑥 = 1 for
this problem) and then using SCEM we add complementary
solution to it. Later, using the same idea, we will get more
accurate approximations.

Outer Region Solutions. Let us take 𝜃 = 𝜀 + 𝛿 assuming that 𝛿
depends on 𝜀 and adopt an approximation for the outer region
in the form of 𝑦out(𝑥) = 𝑦1(𝑥, 𝜃) + 𝜃𝑦2(𝑥, 𝜃). Equation (32)
turns into

𝜃 (𝑦󸀠󸀠1 (𝑥, 𝜃) + 𝜃𝑦󸀠󸀠2 (𝑥, 𝜃)) − (𝑦󸀠1 (𝑥, 𝜃) + 𝜃𝑦󸀠2 (𝑥, 𝜃))
+ (𝑦 (𝑥, 𝜃) + 𝜃𝑦2 (𝑥, 𝜃)) = 0;

(33)

balancing the terms of the order𝑂(1) and 𝑂(𝜃), we reach the
equations

𝑦󸀠1 (𝑥, 𝜃) − 𝑦1 (𝑥, 𝜃) = 0, 𝑦1 (0, 𝜃) = 1,
𝑦󸀠󸀠1 (𝑥, 𝜃) − 𝑦󸀠2 (𝑥, 𝜃) + 𝑦2 (𝑥, 𝜃) = 0, 𝑦2 (0, 𝜃) = 0.

(34)

One can easily find the exact solutions of these equations as

𝑦1 (𝑥, 𝜃) = 𝑒𝑥,
𝑦2 (𝑥, 𝜃) = 𝑒𝑥𝑥.

(35)

It means that the outer solution is of the form

𝑦out (𝑥, 𝜃) = 𝑒𝑥 + 𝜃𝑒𝑥𝑥. (36)

Complementary Solutions. Now applying the stretching trans-
formation 𝑥 = (𝑥 − 1)/𝜃 and adopting the complementary
solution as Ψ(𝑥, 𝜃) = Ψ1(𝑥, 𝜃) + 𝜃Ψ2(𝑥, 𝜃) one can reach

Ψ󸀠󸀠1 (𝑥) + 𝜃Ψ󸀠󸀠2 (𝑥, 𝜃) − Ψ󸀠1 (𝑥, 𝜃) − 𝜃Ψ󸀠2 (𝑥, 𝜃)
+ 𝜃Ψ1 (𝑥, 𝜃) − 𝜃2Ψ2 (𝑥, 𝜃) = 0.

(37)

Balancing the terms of the order 𝑂(1) and 𝑂(𝜃) we obtain
Ψ󸀠󸀠1 (𝑥, 𝜃) − Ψ󸀠1 (𝑥, 𝜃) = 0,

Ψ1 (− 1
𝜃 , 𝜃) = 0, Ψ1 (0, 𝜃) = −1 − 𝑒,

(38)

Ψ󸀠󸀠2 (𝑥, 𝜃) − Ψ󸀠2 (𝑥, 𝜃) + Ψ1 (𝑥, 𝜃) = 0,

Ψ2 (− 1
𝜃 , 𝜃) = 0, Ψ2 (0, 𝜃) = −1 − 𝑒.

(39)

The solutions are given as

Ψ1 (𝑥, 𝜃) = 𝑒 + 1
𝑒−1/𝜃 (𝑒𝑥 − 1) − 𝑒 − 1 (40)

and Ψ2(𝑥, 𝜃) is given as the solution of (39). Thus, we reach
uniformly valid SCEM approximations as

𝑦scem
1 (𝑥, 𝑥, 𝜃) = 𝑒𝑥 + 𝑒 + 1

𝑒−1/𝜃 (𝑒𝑥 − 1) − 𝑒 − 1,

𝑦scem
2 (𝑥, 𝑥, 𝜃) = 𝑦scem

1 (𝑥, 𝑥, 𝜃) + 𝜃 [𝑒𝑥𝑥 + Ψ2 (𝑥, 𝜃)] .
(41)

16 Differential Equations: Concepts and Applications



Table 1: Results of left layer problem for 𝜀 = 10−3 and 𝛿 = 0.5𝜀.
𝑥 𝑦exact 𝑦scem

1
󵄨󵄨󵄨󵄨𝑦exac𝑡 − 𝑦scem

1
󵄨󵄨󵄨󵄨 𝑦scem

2
󵄨󵄨󵄨󵄨𝑦exact − 𝑦scem

2
󵄨󵄨󵄨󵄨 Method [9]

0.0000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000
0.0010 0.4538692 0.45379572 7.3488𝑒 − 05 0.4538692 9.2048𝑒 − 09 0.3171426
0.0020 0.3803509 0.38019363 1.5732𝑒 − 04 0.3803510 9.4728𝑒 − 08 0.3603879
0.0030 0.3707303 0.37055161 1.7865𝑒 − 04 0.3707303 1.2683𝑒 − 07 0.3666117
0.0040 0.3697488 0.36956596 1.8289𝑒 − 04 0.3697489 1.3552𝑒 − 07 0.3678324
0.0050 0.3699358 0.36975214 1.8364𝑒 − 04 0.3699359 1.3753𝑒 − 07 0.3683816
0.0100 0.3717605 0.37157669 1.8379𝑒 − 04 0.3717606 1.3821𝑒 − 07 0.3708603
0.0150 0.3736230 0.37343923 1.8378𝑒 − 04 0.3736231 1.3848𝑒 − 07 0.3733556
0.0200 0.3754949 0.37531110 1.8376𝑒 − 04 0.3754950 1.3869𝑒 − 07 0.3758674
0.1000 0.4067525 0.40656966 1.8281𝑒 − 04 0.4067526 1.4163𝑒 − 07 0.4071563
0.2000 0.4495085 0.44932896 1.7958𝑒 − 04 0.4495086 1.4362𝑒 − 07 0.4499552
0.4000 0.5489761 0.54881164 1.6450𝑒 − 04 0.5489762 1.3978𝑒 − 07 0.5495225
0.6000 0.6704540 0.67032005 1.3394𝑒 − 04 0.6704541 1.2051𝑒 − 07 0.6711221
0.8000 0.8188125 0.81873075 8.1795𝑒 − 05 0.8188126 7.7685𝑒 − 08 0.8196300
0.9000 0.9048826 0.90483742 4.5197𝑒 − 05 0.9048826 4.4056𝑒 − 08 0.9057869
1.0000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000

Table 2: Results of left layer problem for 𝜀 = 10−4 and 𝛿 = 0.5𝜀.
𝑥 Exact 𝑦scem

1
󵄨󵄨󵄨󵄨𝑦exact − 𝑦scem

1
󵄨󵄨󵄨󵄨 𝑦scem

2
󵄨󵄨󵄨󵄨𝑦exact − 𝑦scem

2
󵄨󵄨󵄨󵄨 Method [9]

0.0000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
0.0001 0.4534718 0.4534644 7.3497𝑒 − 06 0.4534717 1.7565𝑒 − 10 0.3181581
0.0002 0.3795465 0.3795307 1.5740𝑒 − 05 0.3795464 1.1979𝑒 − 09 0.3612116
0.0003 0.3695746 0.3695566 1.7877𝑒 − 05 0.3695745 1.2808𝑒 − 09 0.3670360
0.0004 0.3682570 0.3682386 1.8301𝑒 − 05 0.3682569 1.3520𝑒 − 09 0.3678237
0.0005 0.3681105 0.3680921 1.8377𝑒 − 05 0.3681105 1.3718𝑒 − 09 0.3679338
0.0010 0.3682659 0.3682475 1.8392𝑒 − 05 0.3682658 1.3794𝑒 − 09 0.3682020
0.0015 0.3684501 0.3684316 1.8392𝑒 − 05 0.3684500 1.3806𝑒 − 09 0.3684702
0.0020 0.3686343 0.3686159 1.8392𝑒 − 05 0.3686343 1.3794𝑒 − 09 0.3687384
0.1000 0.4065880 0.4065696 1.8294𝑒 − 05 0.4065879 1.4170𝑒 − 09 0.4066914
0.2000 0.4493469 0.4493289 1.7971𝑒 − 05 0.4493469 1.4373𝑒 − 09 0.4494485
0.4000 0.5488281 0.5488116 1.6462𝑒 − 05 0.5488281 1.3990𝑒 − 09 0.5489215
0.6000 0.6703334 0.6703200 1.3405𝑒 − 05 0.6703334 1.2061𝑒 − 09 0.6704094
0.8000 0.8187389 0.8187307 8.1865𝑒 − 06 0.8187389 7.7755𝑒 − 10 0.8187855
0.9000 0.9048420 0.9048374 4.5237𝑒 − 06 0.9048419 4.4095𝑒 − 10 0.9048674
1.0000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000

4. Conclusion

In this paper, singularly perturbed second-order linear delay
differential equations that have a delay in the convection
term are considered. Firstly, the delayed terms are linearized
using two-term Taylor series expansion. Later, an efficient
asymptotic method so called Successive Complementary
Expansion Method (SCEM) is employed so as to obtain a
uniformly valid approximation scheme. At the last stage,
the equations that come from the SCEM process are solved
by a numerical procedure and so the present method is an

asymptotic-numerical hybrid method. The method is easily
applicable since it does not require any matching principle
in contrast to the well-known method matched asymptotic
expansions (MMAE). Highly accurate approximations are
obtained in only few iterations and moreover boundary con-
ditions are not satisfied asymptotically, but exactly. In Tables
1 and 2, exact solution, present method approximations, and
approximations that are obtained by the method given in [9]
are compared and to show the efficiency of present method,
results are supported by Figures 1, 3, and 4. In Figures 2
and 5, the delay effects are compared and since the right
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Table 3: Results of right layer problem for 𝜀 = 10−3 and 𝛿 = 0.5𝜀.
𝑥 𝑦scem

1 𝑦scem
2

󵄨󵄨󵄨󵄨𝑦scem
2 − 𝑦scem

1
󵄨󵄨󵄨󵄨 Numerical method

0.0000 1.0000000 1.0000000 0.0000000 1.0000000
0.1000 1.1051709 1.1052261 5.5258𝑒 − 05 1.1052262
0.2000 1.2214027 1.2215248 1.2214𝑒 − 04 1.2215250
0.4000 1.4918246 1.4921230 2.9836𝑒 − 04 1.4921233
0.6000 1.8221188 1.8226654 5.4663𝑒 − 04 1.8226660
0.8000 2.2255409 2.2264311 8.9021𝑒 − 04 2.2264322
0.9000 2.4596031 2.4607099 0.0011068 2.4607112
0.9980 2.6447479 2.6460768 0.0013288 2.6458021
0.9985 2.5290851 2.5303725 0.0012873 2.5299480
0.9990 2.2123501 2.2135226 0.00117247 2.2128733
0.9995 1.3490435 1.3499013 8.5777𝑒 − 04 1.3488799
0.9996 1.0464630 1.0472103 7.4736𝑒 − 04 1.0456402
0.9997 0.6768301 0.6774425 6.1241𝑒 − 04 0.6780147
0.9998 0.2252993 0.2257469 4.4754𝑒 − 04 0.2279200
0.9999 −0.3262616 −0.3260155 2.4612𝑒 − 04 −0.3247246
1.0000 −1.0000000 −1.0000000 0.0000000 −1.0000000

Exact solution
SCEM1

SCEM2
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 (x
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Figure 1: Left layer problem for 𝜀 = 0.01 and 𝛿 = 0.1𝜀.
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SCEM1 (𝛿 = 0.9𝜀)
SCEM2 (𝛿 = 0.9𝜀)

Exact (𝛿 = 0.01𝜀)
SCEM1 (𝛿 = 0.01𝜀)
SCEM2 (𝛿 = 0.01𝜀)

Figure 2: Delay effect on left layer problem for 𝜀 = 0.01, 𝛿 = 0.01𝜀,
and 𝛿 = 0.9𝜀.

layer problem does not have an exact solution, the first two
SCEM approximations are compared in Table 3. As a result,
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Figure 3: Left layer problem for 𝜀 = 0.001 and 𝛿 = 0.9𝜀.
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Figure 4: Absolute errors in SCEM approximations for left layer
problem.

the present method is a simple and very efficient technique
for solving singularly perturbed linear DDEs.
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Figure 5: Delay effect on right layer problem for 𝜀 = 0.01, 𝛿 = 0.5𝜀,
and 𝛿 = 2𝜀.
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A family of boundary value methods (BVMs) with continuous coefficients is derived and used to obtain methods which are applied
via the block unification approach. The methods obtained from these continuous BVMs are weighted the same and are used to
simultaneously generate approximations to the exact solution of systems of second-order boundary value problems (BVPs) on
the entire interval of integration. The convergence of the methods is analyzed. Numerical experiments were performed to show
efficiency and accuracy advantages.

1. Introduction

In what follows, we consider the general system of second-
order boundary value problems:𝑦󸀠󸀠 = 𝑓 (𝑥, 𝑦, 𝑦󸀠) , 𝑥 ∈ [𝑎, 𝑏] ,𝑦 (𝑎) = 𝑦0,𝑦 (𝑏) = 𝑦𝑁,

(1)

where 𝑓 : R × R2𝑚 → R𝑚 are continuous functions, 𝑦, 𝑦󸀠,
and 𝑦󸀠󸀠 ∈ R𝑚, and 𝑚 is the dimension of the system. These
second-order boundary value problems are encountered in
several areas of engineering and applied sciences such as
celestial mechanics, circuit theory, astrophysics, chemical
kinetics, and biology. Most of these problems cannot be
solved analytically, thus the need for a numerical approach. In
practice, (1) is solved by the multiple shooting technique and
the finite difference methods. The construction and imple-
mentation of higher ordermethods for the latter approach are
difficult while the former approach suffers from numerical
instability if the BVP is stiff [1–3] and singularly perturbed.

In the past few decades, the boundary value methods
(BVMs) have been used to solve first-order initial and

boundary value problems [4–8]. Their stability and conver-
gence properties have been fully discussed in [5].TheseBVMs
are also used to solve higher order initial and boundary value
problems by first reducing the higher order differential equa-
tions into an equivalent first-order system. This approach
increases the computational costs and time and also does
not utilize additional information associated with specific
differential equations such as the oscillatory nature of some
solutions [9, 10].

Lambert and Watson [11] have derived symmetric
schemes for periodic initial value problems of the special
second-order 𝑦󸀠󸀠 = 𝑓(𝑥, 𝑦). Brugnano and Trigiante [4–
6] have also derived BVMs for the first-order initial and
boundary value problems. Amodio and Iavernaro [12] used
BVMs to solve the special second-order problem 𝑦󸀠󸀠 =𝑓(𝑥, 𝑦). Biala, Biala and Jator, Jator and Li [13–15] applied
the BVMs to solve the general second-order problem 𝑦󸀠󸀠 =𝑓(𝑥, 𝑦, 𝑦󸀠) and Aceto et al. [16] constructed symmetric linear
multistepmethods (LMMs)whichwere used as BVMs for the
special second-order problem 𝑦󸀠󸀠 = 𝑓(𝑥, 𝑦). In this paper, we
have derived a class of BVMs and given a general framework
via the block unification approach on how to use the BVMs
on systems of BVPs for the general second-order differential
equations (ODEs).
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The boundary value technique simultaneously generates
approximate solution (𝑦1, 𝑦2, . . . , 𝑦𝑁−1)𝑇 to the exact solution(𝑦(𝑥1), 𝑦(𝑥2), . . . , 𝑦(𝑥𝑁−1))𝑇 of (1) on the entire interval of
integration.The BVMs can only be successfully implemented
if used together with appropriate additional methods [5]. In
this regard, we have proposed methods which are obtained
from the same continuous scheme and are derived via the
interpolation and collocation approach [15, 17–19].

The paper is organised as follows. In Section 2, we derive
a continuous approximation 𝑈(𝑥) of the exact solution𝑦(𝑥). Section 3 gives the specification of the methods. The
convergence of the methods is discussed in Section 4. The
use and implementation of the methods on ODEs and
partial differential equations (PDEs) are detailed in Section 5.
Numerical tests and concluding remarks are given in Sections
6 and 7, respectively.

2. Derivation of Methods

In this section, we shall use the interpolation and colloca-
tion approach [17] to construct a 2]-step continuous LMM
(CLMM) which will be used to produce the main and
additional formulas for solving (1).

Our starting point is to construct the CLMM which has
the form

𝑈 (𝑥) = 𝛼] (𝑥) 𝑦𝑛+] + 𝛼0 (𝑥) 𝑦𝑛 + ℎ2 2]∑
𝑖=0

𝛽𝑖 (𝑥) 𝑓𝑛+𝑖, (2)

where 𝛼0(𝑥), 𝛼](𝑥), and 𝛽𝑖(𝑥) are continuous coefficients and
] is chosen to be half the step number so that each formula,
derived from (2), satisfies the root condition. The main and
additional methods are then obtained by evaluating (2) at𝑥𝑛+𝑗 (𝑗 = 1(1)2], 𝑗 ̸= ]) to obtain the formulas of the form

𝑦𝑛+𝑗 + 2𝑦𝑛+] − 𝑦𝑛 = ℎ2 2]∑
𝑖=0

𝛽𝑖𝑓𝑛+𝑖,
𝑗 = 1, . . . , ] − 1, ] + 1, . . . , 2], (3)

ℎ𝑦󸀠𝑛+𝑘 + 𝛼󸀠]𝑦𝑛+] + 𝛼󸀠0𝑦𝑛 = ℎ2 2]∑
𝑖=0

𝛽󸀠𝑖𝑓𝑛+𝑖, 𝑘 = 0 (1) (2]) (4)

obtained from the first derivative of (2).
Next, we discuss the construction of (2) in the theorem

that follows.

Theorem 1. Let (2) satisfy the following equations:𝑈 (𝑥𝑛+𝑟) = 𝑦𝑛+𝑟 𝑟 = 0, ],𝑈󸀠󸀠 (𝑥𝑛+𝑖) = 𝑓𝑛+𝑖 𝑖 = 0 (1) (2]) . (5)

Then, the continuous representation (2) is equivalent to

𝑈 (𝑥) = 2]+2∑
𝑗=0

det (𝑉𝑗)
det (𝑉) 𝑃𝑗 (𝑥) , (6)

where one defines the matrix V as

𝑉 =((((((
(

𝑃0 (𝑥𝑛) 𝑃1 (𝑥𝑛) ⋅ ⋅ ⋅ 𝑃2]+2 (𝑥𝑛)𝑃0 (𝑥𝑛+]) 𝑃1 (𝑥𝑛+]) ⋅ ⋅ ⋅ 𝑃2]+2 (𝑥𝑛+])𝑃󸀠󸀠0 (𝑥𝑛) 𝑃󸀠󸀠1 (𝑥𝑛) ⋅ ⋅ ⋅ 𝑃󸀠󸀠2]+2 (𝑥𝑛)𝑃󸀠󸀠0 (𝑥𝑛+1) 𝑃󸀠󸀠1 (𝑥𝑛+1) ⋅ ⋅ ⋅ 𝑃󸀠󸀠2]+2 (𝑥𝑛+1)... ... ... ...𝑃󸀠󸀠0 (𝑥𝑛+2]) 𝑃󸀠󸀠1 (𝑥𝑛+2]) ⋅ ⋅ ⋅ 𝑃󸀠󸀠2]+2 (𝑥𝑛+2])

))))))
)
, (7)

𝑉𝑗 is obtained by replacing the jth column of V by

𝑊 = (𝑦𝑛, 𝑦𝑛+], 𝑓𝑛, 𝑓𝑛+1, . . . , 𝑓𝑛+2])𝑇 , (8)

and 𝑃𝑗(𝑥) = 𝑥𝑗, 𝑗 = 0(1)(2] + 2) are basis functions.
Proof. We require that method (2) be defined by the assumed
polynomial basis functions

𝛼𝑗 (𝑥) = 2]+2∑
𝑖=0

𝛼𝑖+1,𝑗𝑃𝑖 (𝑥) , 𝑗 = 0, ]
ℎ2𝛽𝑗 (𝑥) = 2]+2∑

𝑖=0

ℎ2𝛽𝑖+1,𝑗𝑃𝑖 (𝑥) , 𝑗 = 0 (1) (2]) , (9)

where 𝛼𝑖+1,𝑗 and ℎ2𝛽𝑖+1,𝑗 are coefficients to be determined.
Substituting (9) into (2), we have

𝑈 (𝑥) = 2]+2∑
𝑖=0

𝛼𝑖+1,0𝑃𝑖 (𝑥) 𝑦𝑛 + 2]+2∑
𝑖=0

𝛼𝑖+1,]𝑃𝑖 (𝑥) 𝑦𝑛+]
+ 2]∑
𝑗=0

2]+2∑
𝑖=0

ℎ2𝛽𝑖+1,𝑗𝑃𝑖 (𝑥) 𝑓𝑛+𝑗 (10)

which is simplified to𝑈 (𝑥)
= 2]+2∑
𝑖=0

{{{𝛼𝑖+1,0𝑦𝑛 + 𝛼𝑖+1,]𝑦𝑛+] +
2]∑
𝑗=0

ℎ2𝛽𝑖+1,𝑗𝑓𝑛+𝑗}}}𝑃𝑖 (𝑥)
(11)

and expressed in the form

𝑈 (𝑥) = 2]+2∑
𝑖=0

𝜏𝑖𝑃𝑖 (𝑥) , (12)

where

𝜏𝑖 = 𝛼𝑖+1,0𝑦𝑛 + 𝛼𝑖+1,]𝑦𝑛+] + 2]∑
𝑗=0

ℎ2𝛽𝑖+1,𝑗𝑓𝑛+𝑗. (13)

Imposing conditions (5) on (12), we obtain a system of(2] + 3) equations which can be expressed as 𝑉𝐿 = 𝑊, where
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𝐿 = (𝜏0, 𝜏1, . . . , 𝜏2]+2)𝑇 is a vector of (2] + 3) undetermined
coefficients.

Using Crammer’s rule, the elements of 𝐿 are determined
and given as

𝜏𝑖 = det (𝑉𝑗)det (𝑉) , 𝑗 = 0 (1) (2] + 2) , (14)

where 𝑉𝑗 is obtained by replacing the 𝑗th column of 𝑉 by𝑊.
We rewrite (12) using the newly found elements of 𝐿 as in (6);
that is,

𝑈 (𝑥) = 2]+2∑
𝑗=0

det (𝑉𝑗)
det (𝑉) 𝑃𝑗 (𝑥) . (15)

3. Specification of Methods

In this section, we specify the family ofmethods by evaluating
the CLMM (2) at 𝑥𝑛+𝑖, 𝑖 = 𝑖, ] − 1, ] + 1, . . . , 2], which is also
used to obtain the derivative formula given by

𝑈󸀠 (𝑥)
= 1ℎ (𝛼󸀠] (𝑥) 𝑦𝑛+] + 𝛼󸀠0 (𝑥) 𝑦𝑛 + ℎ2 2]∑𝑖=0𝛽󸀠𝑖 (𝑥) 𝑓𝑛+𝑖) , (16)

which is effectively applied by imposing that

𝑈󸀠 (𝑎) = 𝑦󸀠0,𝑈󸀠 (𝑏) = 𝑦󸀠𝑁, (17)

to produce derivative formulas of the form (4).

3.1. BVM of Orders 4, 6, and 8. For ] = 1, the BVM of order
4 is given as follows (where we have denoted a BVM with 𝑘
step number as BVM𝑘):
BVM2

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 = ℎ212 (𝑓𝑛 + 10𝑓𝑛+1 + 𝑓𝑛+2) , (18)

with the derivative formulas

ℎ𝑦󸀠𝑛 − 𝑦𝑛+1 + 𝑦𝑛 = ℎ224 (−7𝑓𝑛 − 6𝑓𝑛+1 + 𝑓𝑛+2) ,
ℎ𝑦󸀠𝑛+1 − 𝑦𝑛+1 + 𝑦𝑛 = ℎ224 (3𝑓𝑛 + 10𝑓𝑛+1 − 𝑓𝑛+2) ,
ℎ𝑦󸀠𝑛+2 − 𝑦𝑛+1 + 𝑦𝑛 = ℎ224 (𝑓𝑛 + 26𝑓𝑛+1 + 9𝑓𝑛+2) .

(19)

For ] = 2, we obtain the BVM of order 6 given as follows:

BVM4

𝑦𝑛+1 − 12𝑦𝑛+2 − 12𝑦𝑛 = ℎ2480 (−19𝑓𝑛 − 204𝑓𝑛+1− 14𝑓𝑛+2 − 4𝑓𝑛+3 + 𝑓𝑛+4) ,
𝑦𝑛+3 − 32𝑦𝑛+2 + 12𝑦𝑛 = ℎ2480 (17𝑓𝑛 + 252𝑓𝑛+1+ 402𝑓𝑛+2 + 52𝑓𝑛+3 − 3𝑓𝑛+4) ,
𝑦𝑛+4 − 2𝑦𝑛+2 + 𝑦𝑛 = ℎ215 (𝑓𝑛 + 16𝑓𝑛+1 + 26𝑓𝑛+2+ 16𝑓𝑛+3 + 𝑓𝑛+4) , 𝑛 = 0 (4) (𝑁 − 4) ,

(20)

with the derivative formulas

ℎ𝑦󸀠𝑛 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2180 (−53𝑓𝑛 − 144𝑓𝑛+1+ 30𝑓𝑛+2 − 16𝑓𝑛+3 + 3𝑓𝑛+4) ,
ℎ𝑦󸀠𝑛+1 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2720 (39𝑓𝑛 + 70𝑓𝑛+1− 144𝑓𝑛+2 + 42𝑓𝑛+3 − 7𝑓𝑛+4) ,
ℎ𝑦󸀠𝑛+2 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2180 (5𝑓𝑛 + 104𝑓𝑛+1 + 78𝑓𝑛+2− 8𝑓𝑛+3 + 𝑓𝑛+4) ,
ℎ𝑦󸀠𝑛+3 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2720 (31𝑓𝑛 + 342𝑓𝑛+1+ 768𝑓𝑛+2 + 314𝑓𝑛+3 − 15𝑓𝑛+4) ,
ℎ𝑦󸀠𝑛+4 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2180 (3𝑓𝑛 + 112𝑓𝑛+1 + 56𝑓𝑛+2+ 240𝑓𝑛+3 + 59𝑓𝑛+4) .

(21)

For ] = 3, we obtain the BVM of order 8 given as follows:

BVM6

𝑦𝑛+1 − 13𝑦𝑛+3 − 23𝑦𝑛 = ℎ260480 (−2803𝑓𝑛 − 37950𝑓𝑛+1− 14913𝑓𝑛+2 − 7108𝑓𝑛+3 + 3147𝑓𝑛+4 −990𝑓𝑛+5+ 137𝑓𝑛+6) ,
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𝑦𝑛+2 − 23𝑦𝑛+3 − 13𝑦𝑛 = ℎ260480 (−1291𝑓𝑛 − 21906𝑓𝑛+1− 32133𝑓𝑛+2 − 6288𝑓𝑛+3 + 1467𝑓𝑛+4 −402𝑓𝑛+5+ 53𝑓𝑛+6) ,
𝑦𝑛+4 − 43𝑦𝑛+3 + 13𝑦𝑛 = ℎ230240 (661𝑓𝑛 + 10734𝑓𝑛+1+ 19323𝑓𝑛+2 + 27268𝑓𝑛+3 + 2523𝑓𝑛+4 −18𝑓𝑛+5− 11𝑓𝑛+6) ,
𝑦𝑛+5 − 53𝑦𝑛+3 + 23𝑦𝑛 = ℎ212096 (535𝑓𝑛 + 8550𝑓𝑛+1+ 15501𝑓𝑛+2 + 22900𝑓𝑛+3 + 11889𝑓𝑛+4 +1158𝑓𝑛+5− 53𝑓𝑛+6) ,
𝑦𝑛+6 − 2𝑦𝑛+3 + 𝑦𝑛 = ℎ22240 (141𝑓𝑛 + 2430𝑓𝑛+1+ 4131𝑓𝑛+2 + 6756𝑓𝑛+3 + 4131𝑓𝑛+4 +2430𝑓𝑛+5+ 141𝑓𝑛+6) , 𝑛 = 0 (6) (𝑁 − 6) ,

(22)

with the derivatives

ℎ𝑦󸀠𝑛 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ213440 (−3795𝑓𝑛 − 14850𝑓𝑛+1+ 2403𝑓𝑛+2 − 6300𝑓𝑛+3 + 3267𝑓𝑛+4 −1026𝑓𝑛+5+ 141𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+1 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (4019𝑓𝑛 − 3426𝑓𝑛+1− 7125𝑓𝑛+2 + 18308𝑓𝑛+3 − 11019𝑓𝑛+4 + 3390𝑓𝑛+5− 457𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+2 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (2293𝑓𝑛+ 46830𝑓𝑛+1 + 22683𝑓𝑛+2 − 14204𝑓𝑛+3+ 3579𝑓𝑛+4 − 786𝑓𝑛+5 + 85𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+3 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ213440 (315𝑓𝑛 + 4590𝑓𝑛+1+ 9369𝑓𝑛+2 + 6576𝑓𝑛+3 − 1107𝑓𝑛+4 + 270𝑓𝑛+5− 33𝑓𝑛+6) ,

ℎ𝑦󸀠𝑛+4 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (2453𝑓𝑛+ 44526𝑓𝑛+1 + 70779𝑓𝑛+2 + 135812𝑓𝑛+3+ 51675𝑓𝑛+4 − 3090𝑓𝑛+5 + 245𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+5 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (2995𝑓𝑛+ 40350𝑓𝑛+1 + 85377𝑓𝑛+2 + 103300𝑓𝑛+3+ 145653𝑓𝑛+4 + 47166𝑓𝑛+5 − 1481𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+6 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ213440 (141𝑓𝑛 + 5886𝑓𝑛+1+ 4995𝑓𝑛+2 + 19812𝑓𝑛+3 + 5859𝑓𝑛+4 + 19710𝑓𝑛+5+ 4077𝑓𝑛+6) , 𝑛 = 0 (6) (𝑁 − 6) .

(23)

4. Convergence of the Methods

In this section, we shall establish the convergence of the
BVMs derived in the previous section. We emphasize that
we evaluate (2) at 𝑥𝑛+1, 𝑥𝑛+2, . . . , 𝑥𝑛+]−1, 𝑥𝑛+]+1, . . . , 𝑥𝑛+2] to
obtain

𝑦𝑛+1 + 𝛼(1)] 𝑦𝑛+] + 𝛼(1)0 𝑦𝑛 = ℎ2 2]∑
𝑖=0

𝛽(1)𝑖 𝑓𝑛+𝑖
𝑦𝑛+2 + 𝛼(2)] 𝑦𝑛+] + 𝛼(2)0 𝑦𝑛 = ℎ2 2]∑

𝑖=0

𝛽(2)𝑖 𝑓𝑛+𝑖
...

𝑦𝑛+]−1 + 𝛼(]−1)] 𝑦𝑛+] + 𝛼(]−1)0 𝑦𝑛 = ℎ2 2]∑
𝑖=0

𝛽(]−1)𝑖 𝑓𝑛+𝑖
𝑦𝑛+]+1 + 𝛼(]+1)] 𝑦𝑛+] + 𝛼(]+1)0 𝑦𝑛 = ℎ2 2]∑

𝑖=0

𝛽(]+1)𝑖 𝑓𝑛+𝑖
...

𝑦𝑛+2] + 𝛼(2])] 𝑦𝑛+] + 𝛼(2])0 𝑦𝑛 = ℎ2 2]∑
𝑖=0

𝛽(2])𝑖 𝑓𝑛+𝑖

(24)

and also evaluate 𝑈󸀠(𝑥) at 𝑥𝑛+𝑖, 𝑖 = 0(1)(2]), to obtain
ℎ𝑦󸀠𝑛 + 𝛼󸀠(0)] 𝑦𝑛+] + 𝛼󸀠(0)0 𝑦𝑛 = ℎ2 2]∑

𝑖=0

𝛽󸀠(0)𝑖 𝑓𝑛+𝑖
ℎ𝑦󸀠𝑛+1 + 𝛼󸀠(1)] 𝑦𝑛+] + 𝛼󸀠(1)0 𝑦𝑛 = ℎ2 2]∑

𝑖=0

𝛽󸀠(1)𝑖 𝑓𝑛+𝑖
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...
ℎ𝑦󸀠𝑛+2] + 𝛼󸀠(2])] 𝑦𝑛+] + 𝛼󸀠(2])0 𝑦𝑛 = ℎ2 2]∑

𝑖=0

𝛽󸀠(2])𝑖 𝑓𝑛+𝑖.
(25)

We note that the formulas in (24) and 4 are 𝑂(ℎ2]+4).
We introduce thematrices𝑃 and𝑄 such that systems (24)

and 4 are given by 𝑃𝑌 − 𝑄𝐹 (𝑌) + 𝐶 = 0, (26)

and the exact form of the system is𝑃𝑌 − 𝑄𝐹 (𝑌) + 𝐶 + 𝐿 (ℎ) = 0, (27)

where 𝑃 = [ 𝑃11 O𝑃21 𝑃22 ] ,
𝑄 = [ 𝑄11 O𝑄21 O ] . (28)

𝑃𝑖𝑗 and 𝑄𝑖𝑗 are 𝑁 × 𝑁 matrices, O is the zero
matrix, 𝑌 = (ℎ𝑦󸀠0, 𝑦1, . . . , 𝑦𝑁−1, ℎ𝑦󸀠1, . . . , ℎ𝑦󸀠𝑁)𝑇, 𝐹 =(ℎ𝑓󸀠0 , 𝑓1, . . . , 𝑓𝑁−1, ℎ𝑓󸀠1 , . . . , ℎ𝑓󸀠𝑁)𝑇, 𝐶 is a vector of constants,
and 𝐿(ℎ) is the truncation error vector of the formulas in
(24) and 4.

Lemma 2. Let P be a 2×2 block lower triangular matrix given
by

𝑃 = [ 𝑃11 O𝑃21 𝑃22 ] , (29)

where each submatrix is of order N and O is the zero matrix.
Then, P is invertible if and only if 𝑃11 and 𝑃22 are invertible.
Moreover,

𝑃−1 = [ 𝑃−111 O−𝑃−122 𝑃21𝑃−111 𝑃−122 ] . (30)

𝑃22 is an identity matrix so that ‖𝑃−122 ‖ = 1.Thus, to obtain
an estimate for ‖𝑃−1‖, it suffices to show the existence of the
inverse of 𝑃11.

Now, we define 𝑃11 = 𝐷11 − 𝑃11, (31)

where𝐷11 = diag(𝑃11) so that𝐷−111𝑃11 = 𝐼 − 𝐷−111𝑃11 (32)

and consequently 𝑃11 is nonsingular provided 𝜌(𝐷−111𝑃11) < 1
([21]).

Thus, 𝑃−1 exists provided 𝜌(𝐷−111𝑃11) < 1.
Lemma 3. If 𝐻 < 1/ℎ2‖𝑃−1‖‖𝑄‖, then the matrix 𝐴 =𝑃 − ℎ2𝑄𝐽 is monotone, that is 𝐴−1 > 0, where 𝐽 is also
a 2 × 2 block matrix of first partial derivatives and 𝐻 =
max{|𝜕𝑓𝑖/𝜕𝑦𝑖|, |𝜕𝑓𝑖/𝜕𝑦󸀠𝑖 |, 𝑖 = 1(1)𝑁}.

Proof.

𝐴 = 𝑃 − ℎ2𝑄𝐽𝐴𝑃−1 = 𝐼 − ℎ2𝑄𝐽𝑃−1
𝑃𝐴−1 = (𝐼 − ℎ2𝑄𝐽𝑃−1)−1 = 𝐼 + (ℎ2𝑄𝐽𝑃−1)
+ (ℎ2𝑄𝐽𝑃−1)2 + (ℎ2𝑄𝐽𝑃−1)3 + ⋅ ⋅ ⋅= [𝐼 + ℎ2𝑄𝐽𝑃−1]
⋅ [𝐼 + (ℎ2𝑄𝐽𝑃−1)2 + (ℎ2𝑄𝐽𝑃−1)4 + ⋅ ⋅ ⋅] .

(33)

The two series converge provided the spectral radius𝜌(ℎ2𝑄𝐽𝑃−1) < 1:
𝐴−1 = [𝑃−1 + ℎ2𝑃−1𝑄𝐽𝑃−1]
⋅ [𝐼 + (ℎ2𝑄𝐽𝑃−1)2 + (ℎ2𝑄𝐽𝑃−1)4 + ⋅ ⋅ ⋅] . (34)

The infinite series is nonnegative. Thus, to show that 𝐴 is
monotone, it suffices to show that

𝑃−1 + ℎ2𝑃−1𝑄𝐽𝑃−1 > 0𝑃−1 > ℎ2𝑃−1𝑄𝐽𝑃−1𝐼 > ℎ2𝑃−1𝑄𝐽󵄩󵄩󵄩󵄩󵄩ℎ2𝑃−1𝑄𝐽󵄩󵄩󵄩󵄩󵄩 ≤ ℎ2 󵄩󵄩󵄩󵄩󵄩𝑃−1󵄩󵄩󵄩󵄩󵄩 ‖𝑄‖ ‖𝐽‖ < 1
(35)

for ‖𝐽‖ = 𝐻 < 1/ℎ2‖𝑃−1‖‖𝑄‖.
Theorem 4. Let 𝑌 be an approximation of the solution vector𝑌 for the system obtained on a partition 𝜋𝑁 fl {𝑎 = 𝑥0 <𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑚−1 < 𝑥𝑚 = 𝑏} from systems (24) and 4. If𝑒𝑖 = |𝑦𝑖 −𝑦(𝑥𝑖)| and 𝑒󸀠𝑖 = |𝑦󸀠𝑖 −𝑦󸀠(𝑥𝑖)|, where the exact solution𝑦(𝑥) is assumed to be several times differentiable on [𝑎, 𝑏], and
if ‖𝐸‖ = ‖𝑌−𝑌‖, then, for sufficiently small ℎ, ‖𝐸‖ = 𝑂(ℎ2]+2).
Proof. Subtracting (27) from (26), we obtain

𝐴𝐸 = 𝐿 (ℎ) . (36)

Under the conditions of Lemma 3, 𝐴−1 exists and is nonneg-
ative. Therefore,

𝐸 = (𝑃 − ℎ2𝑄𝐽)−1 𝐿 (ℎ)
= (𝐼 − ℎ2𝑃−1𝑄𝐽)−1 𝑃−1𝐿 (ℎ)

‖𝐸‖ ≤ 󵄩󵄩󵄩󵄩󵄩󵄩(𝐼 − ℎ2𝑃−1𝑄𝐽)−1󵄩󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑃−1󵄩󵄩󵄩󵄩󵄩 ‖𝐿 (ℎ)‖
≤ 󵄩󵄩󵄩󵄩󵄩𝑃−1󵄩󵄩󵄩󵄩󵄩 ‖𝐿 (ℎ)‖1 − ℎ2 󵄩󵄩󵄩󵄩𝑃−1󵄩󵄩󵄩󵄩 ‖𝑄‖ ‖𝐽‖

(37)
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provided ℎ2‖𝑃−1‖‖𝑄‖‖𝐽‖ < 1. Hence,
‖𝐸‖ ≤ 󵄩󵄩󵄩󵄩󵄩𝑃−1󵄩󵄩󵄩󵄩󵄩𝑂 (ℎ2]+4)1 − ℎ2𝐻󵄩󵄩󵄩󵄩𝑃−1󵄩󵄩󵄩󵄩 ‖𝑄‖ = 𝑂 (ℎ2]+2) . (38)

5. Use of Methods

In this section, we discuss the use of methods in (16) and
(17) for 𝑛 = 0(2])(𝑁 − 2]), where 𝑁 is a multiple of 2].
We emphasize that the methods in (16) and (17) are all main
methods since they are weighted the same and their use
leads to a single matrix equation which can be solved for the
unknowns. For example, for BVM6, we make use of each of
the methods above in steps of 6; that is, 𝑛 = 0, 6, . . . , 𝑁 − 6.
This results in a system of 2𝑁 equations in 2𝑁 unknowns
which can be easily solved for the unknowns. Below is an
algorithm for the use of the methods.

The methods are implemented as BVMs by efficiently
using the following steps.

Step 1. Use the methods in (16) and (17) for 𝑛 = 0 to obtain
Y1 in the interval [𝑦0, 𝑦2]] and for 𝑛 = 1 Y2 is obtained
in the interval [𝑦2], 𝑦4V]. Similarly, for 𝑛 = 2, 3, . . . , (Γ − 1),
we obtain Y3, . . . ,YΓ, where 𝑁 = 2] × Γ in the intervals,[𝑦4V, 𝑦6V], [𝑦6V, 𝑦8V], . . . , [𝑦𝑁−2], 𝑦𝑁], respectively.
Step 2. The unified block given by the system
Y1⋃Y2⋃ ⋅ ⋅ ⋅ ⋃YΓ−1⋃YΓ obtained in Step 1 results in
a system of 2𝑁 equations in 2𝑁 unknowns which can be
easily solved.

Step 3. The values of the solution and the first derivatives of
(1) are generated by the sequence {𝑦𝑛}, {𝑦󸀠𝑛}, 𝑛 = 0, . . . , 𝑁,
obtained as the solution in Step 2.

We note that all computations were carried out in Math-
ematica 10.0 enhanced by the feature FindRoot[ ].
6. Numerical Examples

In this section, we consider seven numerical examples.
Examples 1 to 5 were solved using the BVMs 𝑘 = 4, 𝑘 =6, and 𝑘 = 8 (derived in this paper) of orders 6, 8, and
10, respectively. Also, these examples were solved using the
Extended Trapezoidal Methods of the second kind (ETRs)
and the Top Order Methods (TOMs) given in [5] of orders
6 and 10, respectively. Comparisons are made between the
BVM 𝑘 = 4 and the ETRs [5] as well as between the BVM𝑘 = 8 and the TOMs [5] by obtaining the maximum errors𝐸𝑦 in the interval of integration. We also compared our
methods with the Sinc-Collocation method [20]. Examples
6 and 7 were solved using the BVMs of order 6. We note
that the number of function evaluations (NFEs) involved in
implementing the BVMs is 𝑁 × 2] in the entire range of
integration. The code was based on Newton’s method which
uses the feature FindRoot[ ] or NSolve[ ] for linear problems
in Mathematica. The efficiency curves show the plot of the

logarithm of 𝐸𝑦 against the number of function evaluations
for each method.

Example 1. We consider the linear system of second-order
boundary value problems given in [20]𝑑2𝑦1𝑑𝑥2 + (2𝑥 − 1) 𝑑𝑦1𝑑𝑥 + cos (𝜋𝑥) 𝑑𝑦2𝑑𝑥 = 𝑓1 (𝑥) ,0 < 𝑥 < 1𝑑2𝑦2𝑑𝑥2 + 𝑥𝑦1 = 𝑓2 (𝑥)𝑦1 (0) = 𝑦2 (0) = 𝑦1 (1) = 𝑦2 (1) = 0,

(39)

where 𝑓1 (𝑥) = −𝜋2 sin (𝜋𝑥)+ (2𝑥 − 1) (𝜋 + 1) cos (𝜋𝑥) ,𝑓2 (𝑥) = 2 + 𝑥 sin (𝜋𝑥)
Exact: 𝑦1 (𝑥) = sin (𝜋𝑥) ,𝑦2 (𝑥) = 𝑥2 − 𝑥.

(40)

This problem was solved using the ETRs and BVM of
order 6 as well as the TOMs and BVM of order 10. The maxi-
mum Euclidean norm of the absolute errors in 𝑦1 and 𝑦2 was
obtained in the entire interval of integration. In Table 1, we
compared the Sinc-Collocation method [20] with the BVM
of order 8. Table 2 shows the comparison between the ETRs,
BVM4,TOMs, andBVM8.While the results of thesemethods
are of approximate accuracy, we emphasize that the TOMs
and ETRs use 20 function evaluations per step while the
BVM4 and BVM8 use 8𝑁 and 16𝑁 function evaluations for
this system. Hence, the BVMs are quite accurate and efficient.
We also calculated the Rate of Convergence (ROC) using the
formula log2(𝐸2ℎ/𝐸ℎ), where 𝐸ℎ is the error obtained using
step size ℎ.The ROC of the BVM4 and ETRs shows that these
methods are consistent with the theoretical order (order 6)
behavior of the methods. We omit the ROC of the TOMs
and BVM8 because their errors are mainly due to round-off
errors rather than to truncation errors. Figure 1 also shows
the efficiency curves of these methods.

Example 2. Consider the nonlinear BVP given in [22]𝑑2𝑦1𝑑𝑥2 + 𝑥𝑦1 + 2𝑥𝑦2 + 𝑥𝑦21 = 𝑓1 (𝑥) , 0 < 𝑥 < 1𝑑2𝑦2𝑑𝑥2 + 𝑦2 + 𝑥2𝑦1 + sin (𝑥) 𝑦22 = 𝑓2 (𝑥)𝑦1 (0) = 𝑦2 (0) = 𝑦1 (1) = 𝑦2 (1) = 0,
(41)

where 𝑓1 (𝑥) = −2 + 𝑥 (𝑥 − 𝑥2) + 𝑥 (𝑥 − 𝑥2)2− 2𝑥 sin (𝜋𝑥)
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Table 1: Maximum errors for Example 1.

Sinc-Coll. [20] BVM6𝑁 𝐸𝑦1 𝐸𝑦2 𝑁 𝐸𝑦1 𝐸𝑦220 3.128𝑒 − 05 1.175𝑒 − 06 18 5.309𝑒 − 09 2.853𝑒 − 1040 1.829𝑒 − 07 5.095𝑒 − 09 36 2.332𝑒 − 11 1.154𝑒 − 1260 3.573𝑒 − 09 7.696𝑒 − 11 54 8.883𝑒 − 13 4.535𝑒 − 1480 1.287𝑒 − 10 2.267𝑒 − 11 78 4.763𝑒 − 14 1.915𝑒 − 15100 6.389𝑒 − 12 1.026𝑒 − 13 96 9.326𝑒 − 15 1.388𝑒 − 16
Table 2: Maximum Errors for different stepsizes for Example 1.𝑁 ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 7.281𝑒 − 8 1.391𝑒 − 7 5.736𝑒 − 11 6.952𝑒 − 1240 1.165𝑒 − 9 5.96 2.267𝑒 − 9 5.94 1.958𝑒 − 14 4.514𝑒 − 1480 2.023𝑒 − 11 5.86 3.530𝑒 − 11 6.01 3.818𝑒 − 16 3.856𝑒 − 16160 3.325𝑒 − 13 5.93 5.476𝑒 − 13 6.01 4.578𝑒 − 16 6.621𝑒 − 16
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Figure 1: Efficiency curve for Example 1.

𝑓2 (𝑥) = 𝑥3 (1 − 𝑥)+ sin (𝜋𝑥) (1 + sin (𝑥) sin (𝜋𝑥))− 𝜋2 sin (𝜋𝑥)
Exact: 𝑦1 (𝑥) = 𝑥 − 𝑥2,𝑦2 (𝑥) = sin (𝜋𝑥) .

(42)

The maximum Euclidean norm of the absolute errors in𝑦1 and 𝑦2 was obtained in the range of integration. Table 3
shows the comparison between the ETRs, BVM4, TOMs, and
BVM8.While the results of thesemethods are of approximate
accuracy, we emphasize that the TOMs and ETRs use 20
function evaluations per step while the BVM4 and BVM8 use8𝑁 and 16𝑁 function evaluations for this system. We also
calculated the ROC of the BVM4 and ETRs which shows that
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Figure 2: Efficiency curve for Example 2.

thesemethods are consistent with the theoretical order (order
6) behavior of the methods. We do not calculate the ROC
of the TOMs and BVM8 because their errors are mainly due
to round-off errors rather than to truncation errors. Figure 2
shows the efficiency curves of these methods.

Example 3. We consider the nonlinear BVP with mixed
boundary conditions given in [23]

𝑦󸀠󸀠 = (𝑦󸀠)2 + 𝑦22𝑒𝑥 , 0 < 𝑥 < 1𝑦 (0) − 𝑦󸀠 (0) = 0,𝑦 (1) + 𝑦󸀠 (1) = 2𝑒
Exact: 𝑦 (𝑥) = 𝑒𝑥.

(43)

This problem was chosen to demonstrate the perfor-
mance of the BVMs on nonlinear BVPswithmixed boundary
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Table 3: Maximum Errors for different stepsizes for Example 2.𝑁 ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 7.448𝑒 − 08 1.895𝑒 − 07 3.189𝑒 − 11 9.489𝑒 − 1240 1.480𝑒 − 09 5.65 3.061𝑒 − 09 5.95 1.972𝑒 − 14 6.021𝑒 − 1480 2.576𝑒 − 11 5.84 4.772𝑒 − 11 6.00 5.722𝑒 − 16 1.450𝑒 − 15160 4.234𝑒 − 13 5.93 7.538𝑒 − 13 5.98 6.732𝑒 − 14 2.229𝑒 − 15
Table 4: Maximum errors for different step sizes for Example 3.𝑁 ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 2.476𝑒 − 10 1.505𝑒 − 10 8.882𝑒 − 16 4.441𝑒 − 1640 6.019𝑒 − 12 5.36 2.347𝑒 − 12 6.00 4.441𝑒 − 16 4.441𝑒 − 1680 6.402𝑒 − 14 6.55 3.642𝑒 − 14 6.01 4.441𝑒 − 16 4.441𝑒 − 16160 1.010𝑒 − 15 5.99 6.661𝑒 − 16 5.77 4.441𝑒 − 16 4.441𝑒 − 16
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Figure 3: Efficiency curve for Example 3.

conditions. The maximum absolute errors were obtained
in the range of integration. Table 4 shows the comparison
between the ETRs, BVM4, TOMs, and BVM8. Figure 3 shows
the efficiency curves of these methods.

Example 4. Consider the second-order BVP given in [24]
(bvpT17) 𝑑2𝑦𝑑𝑥2 = −3𝜆𝑦(𝜆 + 𝑥2)2 , − 0.1 < 𝑥 < 0.1

𝑦 (−0.1) = −0.1√𝜆 + 0.001 ,𝑦 (0.1) = 0.1√𝜆 + 0.001
Exact: 𝑦 (𝑥) = 𝑥√𝜆 + 𝑥2 .

(44)

In order to assess the efficiency of our methods, we solve
the boundary layer problem given in [24] (bvpT17). The
maximum absolute errors were obtained in the range of
integration. Tables 5 and 6 show the comparison between

the ETRs, BVM4, TOMs, and BVM8 with 𝜆 = 1 and 0.1,
respectively. Figure 4 shows the plot of the solution for values
of𝜆 = 1, 0.1, 0.01, 0.001 and the solution has a boundary layer
at 𝑥 = 0.
Example 5. Consider the second-order BVP given in [24]
(bvpT20)

𝜆𝑑2𝑦𝑑𝑥2 = −(𝑑𝑦𝑑𝑥)2 + 1, 0 < 𝑥 < 1
𝑦 (0) = 1 + 𝜆 log(cosh (−0.745𝜆 )) ,𝑦 (1) = 1 + 𝜆 log(cosh (0.255𝜆 ))

Exact: 𝑦 (𝑥) = 1 + 𝜆 log(cosh (𝑥 − 0.745𝜆 )) .
(45)

Also, the efficiency of the scheme is shown by solving the
problem given in [24] (bvpT20). The maximum absolute
errors were obtained in the range of integration. Tables 7 and
8 show the comparison between the ETRs, BVM4, TOMs,
and BVM8 with 𝜆 = 1 and 0.1, respectively. Figure 5 shows
the plot of the solution for values of 𝜆 = 1, 0.1, 0.01. From the
figure, we see that the solution of the problem has a corner
layer at 𝑥 = 0.745.
Example 6. We consider the Poisson equation given in [25]𝑢𝑥𝑥 (𝑥, 𝑦) + 𝑢𝑦𝑦 (𝑥, 𝑦) = 𝑔 (𝑥, 𝑦) on 𝑅,𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) ,𝑢 (𝑥, 2) = 𝑒−2𝜋 sin (𝜋𝑥) ,0 ≤ 𝑥 ≤ 1𝑢 (0, 𝑦) = sin (𝜋𝑦) ,𝑢 (1, 𝑦) = 𝑒𝜋 sin (𝜋𝑦) , 0 ≤ 𝑦 ≤ 2,

(46)

28 Differential Equations: Concepts and Applications



Table 5: Maximum Errors for different stepsizes for Example 4 for 𝜆 = 1.𝑁 ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 2.178𝑒 − 12 8.635𝑒 − 14 1.804𝑒 − 16 4.163𝑒 − 1740 3.782𝑒 − 14 5.85 1.200𝑒 − 15 6.17 1.457𝑒 − 16 4.857𝑒 − 1780 6.245𝑒 − 16 5.92 1.110𝑒 − 16 3.43 3.469𝑒 − 17 1.749𝑒 − 16160 5.551𝑒 − 17 3.49 3.747𝑒 − 16 1.76 7.633𝑒 − 17 4.163𝑒 − 17
Table 6: Maximum Errors for different stepsizes for Example 4 for 𝜆 = 0.1.𝑁 ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 3.559𝑒 − 09 1.201𝑒 − 09 5.038𝑒 − 12 5.201𝑒 − 1440 5.279𝑒 − 11 6.07 1.820𝑒 − 11 6.04 2.498𝑒 − 13 4.663𝑒 − 1580 7.931𝑒 − 13 6.06 2.902𝑒 − 13 5.97 1.110𝑒 − 16 1.110𝑒 − 16160 1.221𝑒 − 14 6.02 6.106 − 15 5.57 1.665𝑒 − 16 4.163𝑒 − 16
Table 7: Maximum Errors for different stepsizes for Example 5 for 𝜆 = 1.𝑁 ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 2.235𝑒 − 09 1.664𝑒 − 09 1.998𝑒 − 14 4.452𝑒 − 1440 3.570𝑒 − 11 5.96 2.823𝑒 − 11 5.88 1.776𝑒 − 15 4.441𝑒 − 1580 5.607𝑒 − 13 5.99 4.370𝑒 − 13 6.01 6.661𝑒 − 16 6.661𝑒 − 16160 9.104𝑒 − 15 5.94 6.883𝑒 − 15 5.99 6.661𝑒 − 16 8.882𝑒 − 16
Table 8: Maximum Errors for different stepsizes for Example 5 for 𝜆 = 0.1.𝑁 ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 7.808𝑒 − 05 2.000𝑒 − 04 6.950𝑒 − 08 8.527𝑒 − 0640 1.838𝑒 − 06 5.41 4.090𝑒 − 06 5.61 6.612𝑒 − 09 4.707𝑒 − 0680 3.163𝑒 − 08 5.86 5.784𝑒 − 08 6.14 4.674𝑒 − 12 8.212𝑒 − 09160 5.176𝑒 − 10 5.93 7.066𝑒 − 10 6.36 2.665𝑒 − 15 6.771𝑒 − 12
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Figure 4: Plot of solution for Example 4.

where 𝑅 = {(𝑥, 𝑦) : 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 2} and 𝑔(𝑥, 𝑦) =2𝜋(2𝜋𝑦2 − 2𝜋𝑦 − 1)𝑒𝜋𝑦(1−𝑦) sin(𝜋𝑦):
Exact: 𝑢 (𝑥, 𝑦) = 𝑒𝜋𝑦 sin (𝜋𝑦) + 𝑒𝜋𝑦(1−𝑦) sin (𝜋𝑥) . (47)
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Figure 5: Plot of solution for Example 5.

This example shows the performance of the BVMs on
the Poisson equation. In order to solve the equation using
the BVMs, we carry out the semidiscretization of the spatial
variable 𝑥 using the second-order finite difference method
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Figure 6: Plot of solution for the Poisson equation.

to obtain the following second-order system in the second
variable 𝑦:
𝜕2𝑢𝑚𝜕𝑦2 + 𝑢𝑚+1 (𝑦) − 2𝑢𝑚 (𝑦) + 𝑢𝑚−1 (𝑦)(Δ𝑥)2 = 𝑔𝑚 (𝑦) ,

𝑚 = 1, . . . ,𝑀 − 1,𝑢 (𝑥𝑚, 0) = 𝑢 (𝑥𝑚, 1) ,𝑢 (𝑥𝑚, 2) = 𝑒−2𝜋 sin (𝜋𝑥𝑚) ,
(48)

whereΔ𝑥 = (𝑏−𝑎)/𝑀, 𝑥𝑚 = 𝑎+𝑚Δ𝑥, 𝑚 = 0, 1, . . . ,𝑀, u =[𝑢1(𝑦), . . . , 𝑢𝑀(𝑦)]𝑇, g = [𝑔1(𝑦), . . . , 𝑔𝑀(𝑦)]𝑇, 𝑢𝑚(𝑦) ≈𝑢(𝑥𝑚, 𝑦), and 𝑔𝑚(𝑦) ≈ 𝑔(𝑥𝑚, 𝑦) which can be written in the
form

u󸀠󸀠 = f (𝑦, u) , (49)

subject to the boundary conditionsu(𝑦0) = u(𝑦𝑀/2), u(𝑦𝑀) =
u𝑀, where f(𝑦, u) = Au+ g andA is an𝑀−1×𝑀−1matrix
arising from the semidiscretized system and g is a vector of
constants. Table 9 shows the comparison between the BVM

Table 9: Maximum error for the Poisson equation on 𝑦 = 1.ℎ Method in [20] BVM4116 3.266𝑒 − 02 2.605𝑒 − 03132 8.210𝑒 − 03 3.141𝑒 − 04164 2.053𝑒 − 03 3.947𝑒 − 051128 5.128𝑒 − 04 4.952𝑒 − 061256 — 6.199𝑒 − 07
and the method in [25]. Figure 6 shows the plot of the exact,
approximate, and error function of the problem.

Example 7. Lastly, we consider the Sine-Gordon nonlinear
hyperbolic equation given in [26]

𝑢𝑦𝑦 (𝑥, 𝑦) = 𝑢𝑥𝑥 (𝑥, 𝑦) + sin (𝑢) on 𝑅, (50)
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Figure 7: Plot of solution for the Sine-Gordon equation.

subject to the initial conditions𝑢 (𝑥, 0) = 0,𝑢𝑦 (𝑥, 0) = 4 sech (𝜋𝑥) , − 1 ≤ 𝑥 ≤ 1 (51)

and the boundary conditions

𝑢 (0, 𝑦) = 4 tan−1 (𝑦) ,𝑢 (1, 𝑦) = 4 tan−1 (sech (1) 𝑦) , − 1 ≤ 𝑥 ≤ 1, (52)

where 𝑅 = {(𝑥, 𝑦) : −1 ≤ 𝑥 ≤ 1, −1 ≤ 𝑦 ≤ 1}.Hence,
Exact: 𝑢 (𝑥, 𝑦) = 4 tan−1 (sech (𝑥) 𝑦) . (53)

This example shows the performance of the BVMs on the
hyperbolic problem. We discretize the 𝑥 variable using finite
difference schemes to obtain the system

𝜕2𝑢𝑚𝜕𝑦2 = 𝑢𝑚+1 (𝑦) − 2𝑢𝑚 (𝑦) + 𝑢𝑚−1 (𝑦)(Δ𝑥)2+ sin (𝑢𝑚 (𝑦)) , 𝑚 = 1, . . . ,𝑀 − 1,𝑢 (𝑥𝑚, 0) = 0,𝑢󸀠 (𝑥𝑚, 0) = 4 sech (𝜋𝑥𝑚) ,
(54)

whereΔ𝑥 = (𝑏−𝑎)/𝑀, 𝑥𝑚 = 𝑎+𝑚Δ𝑥, 𝑚 = 0, 1, . . . ,𝑀, u =[𝑢1(𝑦), . . . , 𝑢𝑀(𝑦)]𝑇, g = [𝑔1(𝑦), . . . , 𝑔𝑀(𝑦)]𝑇, 𝑢𝑚(𝑦) ≈𝑢(𝑥𝑚, 𝑦), and 𝑔𝑚(𝑦) ≈ 𝑔(𝑥𝑚, 𝑦) which can be written in the
form

u󸀠󸀠 = f (𝑦, u) , (55)

subject to the initial conditions u(𝑦0) = u0, u󸀠(𝑦0) = u󸀠0,
where f(𝑦, u) = Au + g and A is an𝑀 − 1 × 𝑀 − 1 matrix
arising from the semidiscretized system and g is a vector of
constants. Table 10 shows the computational results for this
example using the BVM of order 6. Figure 7 shows the plot of
the exact, approximate, and the error function of the problem.
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Table 10: Maximum errors for the Sine-Gordon equation.

ℎ 116 132 164 1128 125633.6𝑒 − 04 4.7𝑒 − 06 6.0𝑒 − 07 7.6𝑒 − 08 9.6𝑒 − 09
7. Conclusions

This paper is concerned with the solution of systems
of second-order boundary value problems. This has been
achieved by the construction and implementation of a family
of BVMs. The methods are applied as a block unification
method to obtain the solution on the entire interval of
integration. We established the convergence of the methods.
We have also shown that the methods are competitive with
existing methods cited in the literature.

In the future, we would like to develop a variable step size
version of the BVMs with an automatic error estimation.
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We consider the standard affine discontinuous Galerkin method approximation of the second-order linear elliptic equation in
divergence formwith coefficients in 𝐿∞(Ω) and the right-hand side belongs to 𝐿1(Ω); we extend the results where the case of linear
finite elements approximation is considered. We prove that the unique solution of the discrete problem converges in𝑊1,𝑞

0 (Ω) for
every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1) (𝑑 = 2 or 𝑑 = 3) to the unique renormalized solution of the problem. Statements and proofs remain
valid in our case, which permits obtaining a weaker result when the right-hand side is a bounded Radon measure and, when the
coefficients are smooth, an error estimate in𝑊1,𝑞

0 (Ω) when the right-hand side 𝑓 belongs to 𝐿𝑟(Ω) verifying 𝑇𝑘(𝑓) ∈ 𝐻1(Ω) for
every 𝑘 > 0, for some 𝑟 > 1.

1. Introduction

In this work we consider, in dimension 𝑑 = 2 or 3, the P1

discontinuous Galerkin (dG) method approximation of the
Dirichlet problem−div (𝐴∇𝑢) = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω, (1)

whereΩ is an open bounded set ofR𝑑, 𝐴 is a coercive matrix
with coefficients in 𝐿∞(Ω), and 𝑓 belongs to 𝐿1(Ω).

The solution of (1) does not belong to𝐻1
0 (Ω) for a general

right-hand side in 𝐿1(Ω). Actually, in order to correctly
define the solution of (1), one has to consider a specific
framework, the concept of renormalized (or equivalently
entropy) solution (see for example [1, 2]). These definitions
allow one to prove that in this new sense problem (1) is well-
posed in the terminology of Hadamard.

For this problem the standard P1-nonconforming finite
elements approximation, related to a triangulation Tℎ of Ω,
namely,

Find 𝑢ℎ ∈ 𝑉ℎ,∀Vℎ ∈ 𝑉ℎ,
𝑎𝑠𝑤𝑖𝑝ℎ (𝑢ℎ, Vℎ) = ∫

Ω
𝑓Vℎ 𝑑𝑥, (2)

where𝑉ℎ = {Vℎ ∈ 𝐿2 (Ω) : ∀𝑇 ∈ Tℎ, Vℎ|𝑇 ∈ P1 [𝑇] , ∀𝐹
∈ Fℎ, ∫

𝐹
[Vℎ] = 0} (3)

with the discrete bilinear form 𝑎𝑠𝑤𝑖𝑝ℎ yet to be designed, has
a unique solution, since the right-hand side (2) ∫

Ω
𝑓Vℎd𝑥 is
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correctly defined for 𝑓 ∈ 𝐿1(Ω) and the bilinear form 𝑎𝑠𝑤𝑖𝑝ℎ is
consistent.

Using the ideas which are at the root of the SWIP
(Symmetric Weighted Interior Penalty) method, in the case𝑓 ∈ 𝐿2(Ω), D. A.Di Pietro andA. Ern have proved, in [3], that
the unique solution 𝑢ℎ of (2) converges to the unique solution𝑢 of (1) in the following sense:𝑢ℎ 󳨀→ 𝑢 strongly in 𝐿2 (Ω) ,

∇ℎ𝑢ℎ 󳨀→ ∇𝑢 strongly in [𝐿2 (Ω)]𝑑 ,󵄨󵄨󵄨󵄨𝑢ℎ󵄨󵄨󵄨󵄨𝐽 󳨀→ 0, 𝑤ℎ𝑒𝑛 ℎ 󳨀→ 0,
(4)

with the broken gradient ∇ℎ and the jump seminorm | ⋅ |𝐽 yet
to be designed.

To do that, the authors in [3] assume that the family of
triangulationsTℎ belong to an admissible mesh sequence in
the sense of 17 and is compatible with the partition PΩ (see
Assumption 3).

The framework in this paper is the same as in [3]. The
unique difference here is that𝑓 ∈ 𝐿1(Ω) is considered instead
of 𝑓 ∈ 𝐿2(Ω); and we ourselves focus on the two cases 𝑑 = 2
and 𝑑 = 3.The same convergence results are proved.

Notations. In the present work, Ω denotes an open bounded
subset of R𝑑 with 𝑑 = 2 or 𝑑 = 3. A particular case is the
case where Ω is an open bounded polyhedron. We use the
notation 𝐴V𝑤 for the scalar product of the vector 𝐴V by the
vector𝑤 (which is oftendenoted by 𝑡𝑤⋅𝐴V). For ameasurable
set 𝑆 ⊂ Ω, we denote by |𝑆| the measure of 𝑆 and by 𝑆𝑐 the
complementΩ \ 𝑆 of 𝑆.

For 1 < 𝑝 < +∞ and𝑚 ≥ 0, we have𝐻𝑚 (Tℎ) fl {V ∈ 𝐿2 (Ω) /∀𝑇 ∈ Tℎ, V|
𝑇

∈ 𝐻𝑚 (𝑇)} ,𝑊𝑚,𝑝 (Tℎ)
fl {V ∈ 𝐿𝑝 (Ω) /∀𝑇 ∈ Tℎ, V|

𝑇

∈ 𝑊𝑚,𝑝 (𝑇)} . (5)

We define also the following function spaces:

𝐻(div, Ω) fl {𝜏 ∈ [𝐿2 (Ω)]𝑑 /∇ ⋅ 𝜏 ∈ 𝐿2 (Ω)} ,
𝐻 (div,Tℎ)

fl {𝜏 ∈ [𝐿2 (Ω)]𝑑 /∀𝑇 ∈ Tℎ, 𝜏|
𝑇

∈ 𝐻 (div, 𝑇)} .
(6)

For 𝑘 ≥ 0, we define the broken polynomial space

P
𝑘
𝑑 (Tℎ) fl {V ∈ 𝐿2 (Ω) /∀𝑇 ∈ Tℎ, V|

𝑇

∈ P𝑘
𝑑 (𝑇)} , (7)

with polynomial degree k ≥ 1.
In that case, P1

𝑑(Tℎ) ⊂ 𝐻1(Tℎ), which leads us to define
the broken gradient ∇ℎ : 𝐻1(Tℎ) → [𝐿2(Ω)]𝑑 such that, ∀V ∈𝐻1(Tℎ), ∀𝑇 ∈ Tℎ: (∇ℎV)󵄨󵄨󵄨󵄨𝑇 fl ∇ (V|

𝑇

) , (8)

and the broken divergence operator ∇ℎ : 𝐻(div,Tℎ) →[𝐿2(Ω)]𝑑 such that, ∀V ∈ 𝐻(div,Tℎ),∀𝑇 ∈ Tℎ: (∇ℎ ⋅ V)󵄨󵄨󵄨󵄨𝑇 fl ∇ ⋅ (V|
𝑇

) . (9)

Moreover, for any mesh element 𝑇 ∈ Tℎ, we denote∀𝑇 ∈ Tℎ, F𝑇 fl {𝐹 ∈ Fℎ/𝐹 ∈ 𝜕𝑇} ,∀𝐹 ∈ Fℎ, T𝐹 fl {𝑇 ∈ Tℎ/𝐹 ∈ 𝜕𝑇} . (10)

And for a scalar-valued function v defined on Ω (which
can admit two possible traces) the average of v is defined as

{V}𝐹 (𝑥) fl 12 (V| 𝑇1 (𝑥) + V| 𝑇2 (𝑥)) ;𝑖𝑓 𝐹 ∈ F𝑖
ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 ⊂ 𝜕𝑇1 ∩ 𝜕𝑇2,{V}𝐹 (𝑥) fl V|

𝑇

(𝑥) ,𝑖𝑓 𝐹 ∈ F𝑏
ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 ⊂ 𝜕𝑇 ∩ 𝜕Ω,

(11)

and the jump of v as[V]𝐹 (𝑥) fl V|
𝑇1

(𝑥) − V|
𝑇2

(𝑥) ,
𝑖𝑓 𝐹 ∈ F𝑖

ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 ⊂ 𝜕𝑇1 ∩ 𝜕𝑇2,[V]𝐹 (𝑥) fl V|
𝑇

(𝑥) ,𝑖𝑓 𝐹 ∈ F𝑏
ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 ⊂ 𝜕𝑇 ∩ 𝜕Ω.

(12)

For any face F ∈ Fℎ and for any integer 𝑙 ≥ 0, we define
the (local) lifting operator 𝑟𝑙𝐹,𝐴 : 𝐿2(𝐹) → P𝑙

𝑑(Tℎ) as follows.
For all 𝜑 ∈ 𝐿2(𝐹),
∫
Ω
𝐴𝑟𝑙𝐹,𝐴 (𝜑) ⋅ 𝜏ℎ = ∫

𝐹
{𝐴𝜏ℎ} ⋅ 𝑛𝐹 𝜑

∀𝜏ℎ ∈ [P𝑙
𝑑 (Tℎ)]𝑑 , (13)

and for any function V ∈ 𝐻1(Tℎ), we define the (global)
lifting of its interface and boundary jumps as

𝑅𝑙ℎ,𝐴 ([V]) = ∑
𝐹∈F
ℎ

𝑟𝑙𝐹,𝐴 ([V]) ∈ [P𝑙
𝑑 (Tℎ)]𝑑 . (14)

We also introduce the normal diffusion coefficient to one
face F as ∀𝐹 ∈ F𝑖

ℎ, 𝐹 = 𝜕𝑇1 ∩ 𝜕𝑇2:𝐴 𝑖 fl (𝐴 |
𝑇
𝑖

𝑛𝐹) ⋅ 𝑛𝐹, 𝑖 ∈ {1, 2} , (15)

the diffusion-dependent penalty parameter (harmonic aver-
age of normal diffusion) as

𝛾𝐴,𝐹 fl
{{{
2𝐴1𝐴2𝐴1 + 𝐴2

𝑖𝑓 𝐹 ⊂ 𝜕𝑇1 ∩ 𝜕𝑇2,(𝐴 |
𝑇

𝑛) ⋅ 𝑛 𝑖𝑓 𝐹 ⊂ 𝜕𝑇 ∩ 𝜕Ω, (16)
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the weighted average operator for all 𝐹 ∈ F𝑖
ℎ such that 𝐹 ⊂𝜕𝑇1 ∩ 𝜕𝑇2 as

𝜔𝑇
1
,𝐹 fl

𝐴2𝐴1 + 𝐴2

,
𝜔𝑇
2
,𝐹 fl

𝐴1𝐴1 + 𝐴2

, (17)

the weighted average operator for all 𝐹 ∈ F𝑖
ℎ and for a.e. 𝑥 ∈𝐹 as {V}𝜔,𝐹 (𝑥) fl 𝜔𝑇

1
,𝐹V|
𝑇1

(𝑥) + 𝜔𝑇
2
,𝐹V|
𝑇2

(𝑥) , (18)

on boundary faces F ∈ F𝑏
ℎ such that F ⊂ 𝜕𝑇 ∩ 𝜕Ω, we set

{V}𝜔,𝐹 (𝑥) fl V|
𝑇

(𝑥) , (19)

and the skew-weighted average operator for all 𝐹 ∈ F𝑖
ℎ and

for a.e. 𝑥 ∈ 𝐹, as{V}𝜔,𝐹 (𝑥) fl 𝜔𝑇
2
,𝐹V|
𝑇1

(𝑥) + 𝜔𝑇
1
,𝐹V|
𝑇2

(𝑥) . (20)

The SWIP bilinear form is defined by (see Lemma 4.47 in
[3])

a𝑠𝑤𝑖𝑝ℎ (V, 𝑤) fl ∫
Ω
𝐴∇ℎV∇ℎ𝑤𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑡𝑒𝑟𝑚

+ ∑
𝐹∈F
ℎ

𝜂𝛾𝐴,𝐹ℎ𝐹 ∫𝐹 [V, 𝑤]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑡𝑒𝑟𝑚

− ∑
𝐹∈F
ℎ

∫
𝐹
({𝐴∇ℎV}𝜔 ⋅ 𝑛𝐹 [𝑤] + {𝐴∇ℎ𝑤}𝜔 ⋅ 𝑛𝐹 [V])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑡𝑒𝑟𝑚

, (21)

where the quantity 𝜂 > 0 denotes a user-dependent penalty
parameter which is independent of the diffusion coefficient.

And the SWIP norms are defined by

‖V‖𝑠𝑤𝑖𝑝 fl (󵄩󵄩󵄩󵄩󵄩𝐴1/2∇ℎV󵄩󵄩󵄩󵄩󵄩2[𝐿2(Ω)]𝑑 + |V|2𝐴,𝐽)1/2 ,∀𝑞 ≥ 1:
‖V‖𝑠𝑤𝑖𝑝,𝑞 fl (󵄩󵄩󵄩󵄩󵄩𝐴1/2∇ℎV󵄩󵄩󵄩󵄩󵄩𝑞[𝐿𝑞(Ω)]𝑑 + |V|𝑞𝐽,𝐴,𝑞)1/𝑞 ,

(22)

with the diffusion-dependent jump seminorms

|V|2𝐽,𝐴 fl ∑
𝐹∈F
ℎ

𝛾𝐴,𝐹ℎ𝐹 ‖[V]‖2𝐿2(𝐹) ,
∀𝑞 ≥ 1: |V|𝑞𝐽,𝐴,𝑞 fl ∑

𝐹∈F
ℎ

𝛾𝐴,𝐹ℎ𝑞−1𝐹

‖[V]‖𝑞𝐿𝑞(𝐹) . (23)

The discrete Galerkin norm is defined by

‖V‖𝑑𝐺 fl (󵄩󵄩󵄩󵄩∇ℎV󵄩󵄩󵄩󵄩2[𝐿2(Ω)]𝑑 + |V|2𝐽)1/2 , (24)

with the jump seminorm

|V|2𝐽 fl ∑
𝐹∈F
ℎ

1ℎ𝐹 ‖[V]‖2𝐿2(𝐹) . (25)

For every 𝑟 with 1 < 𝑟 < +∞, we denote by 𝐿𝑟,∞(Ω) the
Marcinkiewicz space whose norm is defined by

‖V‖𝐿𝑟,∞(Ω) = sup
𝜆>0

𝜆 |{𝑥 ∈ Ω : |V (𝑥)| ≥ 𝜆}|1/𝑟 . (26)

For every real number 𝑘 > 0 we define the truncation𝑇𝑘 : R→ R by

𝑇𝑘 (𝑠) = max (−𝑘,min (𝑘, 𝑠)) = {{{{{
𝑠 if |𝑠| ≤ 𝑘,𝑘 𝑠|𝑠| if |𝑠| ≥ 𝑘. (27)

For every 𝑑 − simplex 𝑇 in R𝑑, we adopt the following
notations:

(i) 𝑎𝑖,𝑇, 𝑖 = 0, . . . , 𝑑, denote the vertices of 𝑇.
(ii) 𝑚𝑖,𝑇, 𝑖 = 0, . . . , 𝑑, denote the centers of the faces 𝐹𝑖 ∈𝑇.
(iii) 𝜆𝑖,𝑇, 𝑖 = 0, . . . , 𝑑, designate the barycentric coordi-

nates with respect to the 𝑎𝑖,𝑇’s.
(iv) for every 𝑥 ∈ R𝑑 we put

𝜑𝑖,𝑇 (𝑥) fl 1 − 𝑑𝜆𝑖,𝑇 (𝑥) 𝑓𝑜𝑟 𝑖 = 0, . . . , 𝑑, (28)

where (𝜑𝑖,𝑇)0≤𝑖
≤
𝑑 are the P1 shape functions related to𝑇; it is known that

𝜑𝑖 ∈ 𝐿2 (Ωℎ) ,𝜑𝑖|
𝑇

∈ P1 [𝑇] , ∀𝑖 ∈ {0, 1, . . . , 𝑑} , ∀𝑇 ∈ Tℎ,𝜑𝑖|
𝐹
𝑖

= 1,
𝜑𝑖 (𝑎𝑖) = 1 − 𝑑,𝜑𝑖 (𝑎𝑗) = 1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 ̸= 𝑖,1󵄨󵄨󵄨󵄨󵄨𝐹𝑗󵄨󵄨󵄨󵄨󵄨 ∫𝐹𝑗 𝜑𝑖 = 𝜑𝑖 (𝑚𝑗) = 𝛿𝑖,𝑗,

𝑑∑
𝑖=0

𝜑𝑖,𝑇 (𝑥) = 1, 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 x ∈ R𝑑,

(29)

withΩℎ fl ∪{𝑇, 𝑇 ∈ Tℎ} ⊂ Ω.
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(v) If N designate the number of all interior centers𝑚𝑖 of
faces F inTℎ we define the interpolation operatorΠℎ
and the truncated interpolation operator 𝐼𝑘ℎ by∀V ∈ 𝐿2 (Ω) avec∫

𝐹
[Vℎ] = 0,

Πℎ (V) ∈ 𝑉ℎ,Πℎ (V) fl ∑
1≤𝑖≤𝑁

𝛼V𝑖 𝜑𝑖,
𝐼𝑘ℎ (V) fl ∑

1≤𝑖≤𝑁

𝑇𝑘 (𝛼V𝑖 ) 𝜑𝑖,
(30)

with 𝛼V𝑖 = Πℎ(V)(𝑚𝑖) = (1/|𝐹𝑖|) ∫𝐹
𝑖

Πℎ(V) fl(1/|𝐹𝑖|) ∫𝐹
𝑖

V.

(vi) Finally, we define the𝑁×𝑁 stiffnessmatrix𝑄 = (𝑄𝑖𝑗);
namely,𝑄𝑖,𝑗 = 𝑎𝑠𝑤𝑖𝑝ℎ (𝜑𝑖, 𝜑𝑗) for 𝑖, 𝑗 in {1, 2, . . . , 𝑁} . (31)

As in [4], the main assumption of the present paper is
that 𝑄 is a diagonally dominant matrix; namely,∀𝑖 ∈ {1, 2, . . . , 𝑁} : 𝑄𝑖𝑖 − ∑

1≤𝑗≤𝑁
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝑄𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ≥ 0. (32)

2. Statement of the Main Result

We consider a matrix 𝐴 such that𝐴 ∈ 𝐿∞ (Ω)𝑑×𝑑 , (33)

a.e 𝑥 ∈ Ω : ∀𝜉 ∈ R𝑑 : 𝐴 (𝑥) 𝜉𝜉 ≥ 𝛼 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 , (34)
for some 𝛼 > 0, and a right-hand side 𝑓 such that𝑓 ∈ 𝐿1 (Ω) . (35)

A function 𝑢 is the renormalized solution of the problem
(1) if 𝑢 satisfies𝑢 ∈ 𝐿1 (Ω) , (36)

∀𝑘 > 0, 𝑇𝑘 (𝑢) ∈ 𝐻1
0 (Ω) , (37)

lim
𝑘→∞

1𝑘 ∫Ω 󵄨󵄨󵄨󵄨∇𝑇𝑘 (𝑢)󵄨󵄨󵄨󵄨2 d𝑥 = 0, (38)

∀𝑘 > 0, ∀𝑆 ∈ C1
𝑐 (R) with supp (𝑆) ⊂ [−𝑘, 𝑘] ,

∀V ∈ 𝐻1
0 (Ω) ∩ 𝐿∞ (Ω) ,

∫
Ω
𝐴∇𝑇𝑘 (𝑢) ∇V𝑆 (𝑢) d𝑥
+ ∫

Ω
𝐴∇𝑇𝑘 (𝑢) ∇𝑇𝑘 (𝑢) 𝑆󸀠 (𝑢) V d𝑥

= ∫
Ω
𝑓𝑆 (𝑢) V d𝑥.

(39)

It is known (see [1, 5]) that when 𝑓 belongs to 𝐿1(Ω) ∩𝐻−1(Ω), the usual weak solution of (1), namely,

𝑢 ∈ 𝐻1
0 (Ω) ,∀V ∈ 𝐻1
0 (Ω) ,

∫
Ω
𝐴∇V∇𝑢 d𝑥 = ∫

Ω
𝑓V d𝑥,

(40)

is a renormalized solution of (1) and conversely the main
interest of definition of renormalized solution is the following
existence, uniqueness, and continuity theorem (see [1, 4]).

Theorem 1. Assume that 𝐴 and 𝑓 satisfy (33), (34), and (35).
Then there exists a renormalized solution of (1).This solution is
unique. Moreover this unique solution belongs to𝑊1,𝑞

0 (Ω) for
every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1). It depends continuously on
the right-hand side 𝑓 in the following sense: if 𝑓𝜀 is a sequence
which satisfies

𝑓𝜀 󳨀→ 𝑓 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿1 (Ω) , (41)

when 𝜀 tends to zero, then the sequence 𝑢𝜀 of the renormalized
solutions of (1) for the right-hand sides𝑓𝜀 satisfies for every 𝑘 >0 and for every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1)

𝑇𝑘 (𝑢𝜀) 󳨀→ 𝑇𝑘 (𝑢) 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐻1
0 (Ω) ,

𝑢𝜀 󳨀→ 𝑢 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝑊1,𝑞
0 (Ω) , (42)

when 𝜀 tends to zero, where 𝑢 is the renormalized solution of (1)
for the right-hand side 𝑓. Finally, if 𝑓1 and 𝑓2 belong to 𝐿1(Ω),
and if 𝑢1 and 𝑢2 are the renormalized solutions of (1) for the
right-hand sides 𝑓1 and 𝑓2, then, for every 𝑘 > 0, the function𝑇𝑘(𝑢1 − 𝑢2) belongs to 𝐻1

0 (Ω) and for every 𝑞 with 1 ≤ 𝑞 <𝑑/(𝑑 − 1) one has
𝛼 󵄩󵄩󵄩󵄩𝑇𝑘 (𝑢1 − 𝑢2)󵄩󵄩󵄩󵄩2𝐻1

0
(Ω) ≤ 𝑘 󵄩󵄩󵄩󵄩𝑓1 − 𝑓2󵄩󵄩󵄩󵄩𝐿1(Ω) ,𝛼 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩𝑊1,𝑞
0
(Ω) ≤ 𝐶 (𝑑, |Ω| , 𝑞) 󵄩󵄩󵄩󵄩𝑓1 − 𝑓2󵄩󵄩󵄩󵄩𝐿1(Ω) , (43)

Where the constant 𝐶(𝑑, |Ω|, 𝑞) only depends on 𝑑, |Ω|, and 𝑞.
Remark 2. Throughout all this paper, we denote by𝐶(𝑝1, 𝑝2, 𝑝3, ..) any real constant which only depends
on the parameters 𝑝1, 𝑝2, and 𝑝3 . . .. We can use the same
notation for different constants.
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Now we consider a family of triangulationsTℎ satisfying
for each ℎ > 0 the following assumption:

the triangulation Tℎ is made of a finite number of closed𝑑-simplices 𝑇(namely triangles when 𝑑 = 2 and tetrahedra

when 𝑑 = 3) such that :(i) Ωℎ = ⋃{𝑇 : 𝑇 ∈ Tℎ} ⊂ Ω,(ii) for every compact set 𝐾 with 𝐾 ⊂ Ω, there existsℎ0 (𝐾) > 0 such that 𝐾 ⊂ Ωℎ for every ℎ with ℎ < ℎ0 (𝐾) ,(iii) for (𝑇1, 𝑇2) ∈ T2
ℎ with 𝑇1 ̸= 𝑇2, one has 󵄨󵄨󵄨󵄨𝑇1 ∩ 𝑇2󵄨󵄨󵄨󵄨 = 0,(iv) every face of every 𝑇 of Tℎ is either a subset of 𝜕Ωℎ,

or a face of another 𝑇󸀠 of Tℎ.

(44)

Note that because of (iv) the triangulations are conform-
ing. A particular case is the case where Ω is a polyhedron of
R𝑑, and whereΩℎ coincides withΩ for every ℎ.

In practice, the diffusion coefficient (i.e., matrix A) has
more regularity than just belonging to 𝐿∞(Ω). Henceforth,
we make the following assumption (assumption 4.43 [3]):

there is a partition 𝑃Ω
fl {Ω𝑖}1≤𝑖≤𝑁

Ω

of Ω such that :(i)Each Ω𝑖, 1 ≤ 𝑖 ≤ 𝑁Ω, is apolyhedron;(ii)The restriction of A to each Ω𝑖, 1 ≤ 𝑖≤ 𝑁Ω, is constant.
(45)

An important assumption on the mesh sequence Tℎ fl(TH)ℎ∈H is its compatibility with the partition 𝑃Ω in the
following sense (assumption 4.45 [3]).

Assumption 3 (mesh compatibility). We suppose that the
admissible mesh sequenceTH is such that, for each ℎ ∈ H,
each 𝑇 ∈ Tℎ is a subset of only one setΩ𝑖 of the partition 𝑃Ω.
In this situation, the meshes are said to be compatible with
the partition 𝑃Ω.

For every 𝑇 ∈ Tℎ, we denote by ℎ𝑇 the diameter of 𝑇 and
by 𝜌𝑇 the diameter of the ball inscribed in 𝑇.We set

ℎ = sup
𝑇∈T
ℎ

ℎ𝑇 (46)

and we assume that ℎ tends to zero.
We also assume that the family of triangulations Tℎ is

regular in the sense of P. G. Ciarlet [6]; namely, there exists
a constant 𝜎 such that

∀ℎ, ∀𝑇 ∈ Tℎ, ℎ𝑇𝜌𝑇 ≤ 𝜎. (47)

For every triangulation Tℎ, we consider the discrete
problem: 𝐹𝑖𝑛𝑑 𝑢ℎ ∈ 𝑉ℎ,∀Vℎ ∈ 𝑉ℎ,

𝑎𝑠𝑤𝑖𝑝ℎ (𝑢ℎ, Vℎ) = ∫
Ω
𝑓Vℎ 𝑑𝑥. (48)

Note that the right-hand side of (48) makes sense since𝑓 ∈ 𝐿1(Ω) and 𝑉ℎ ⊂ 𝐿∞(Ω). The discrete bilinear forme𝑎𝑠𝑤𝑖𝑝ℎ is consistent and coercive (see (128)) on 𝑉ℎ, so a
straightforward consequence of the Lax-Milgram Lemma is
that the discrete problem (48) is well-posed. The solution 𝑢ℎ
of (48) exists and is unique.

As in [4], the main result of this paper is the following.

Theorem 4. Assume that𝐴, 𝑓, andTℎ satisfy (33), (34), (35),
(44), (46), (47), and (32). Then the unique solution 𝑢ℎ of (48)
satisfies for every 𝑘 > 0 and for every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1)𝑢ℎ 󳨀→ 𝑢 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿𝑞 (Ω) ,

∇ℎ𝑢ℎ 󳨀→ ∇𝑢 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 [𝐿𝑞 (Ω)]𝑑 ,󵄨󵄨󵄨󵄨𝑢ℎ󵄨󵄨󵄨󵄨𝐽,𝐴,𝑞 󳨀→ 0,𝐼𝑘ℎ (𝑢ℎ) 󳨀→ 𝑇𝑘 (𝑢) 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿2 (Ω) ,
∇ℎ𝐼𝑘ℎ (𝑢ℎ) 󳨀→ ∇𝑇𝑘 (𝑢) 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 [𝐿2 (Ω)]𝑑 ,󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (𝑢ℎ)󵄨󵄨󵄨󵄨󵄨𝐽,𝐴 󳨀→ 0,

(49)

when ℎ tends to zero, where 𝑢 is the unique renormalized
solution of (1).

This theorem will be proved in Section 4, using the tools
that we will prepare in Section 3. In Section 5, we will explain
why the results of [4] when 𝑓 is a bounded Radon measure
remain valid in our case. In Section 6 we also show that if we
assume in addition that 𝑇𝑘(𝑓) ∈ 𝐻1(Ω) for every 𝑘 > 0, we
obtain for smooth solutions an 𝑂(ℎ4(1−1/𝑟)) error estimate in‖ ‖𝑠𝑤𝑖𝑝,𝑞-norm (Section 6.1), and for Low-Regularity solutions
an𝑂(ℎ4𝛼𝑝(1−1/𝑟)) error estimate in ‖ ‖𝑠𝑤𝑖𝑝,𝑞-norm (Section 6.2).
Finally, in Section 7 we show that in the case where A is the
identity matrix, condition (32) remains satisfied when every
inner angle of every d-simplex ofTℎ is acute.

3. Tools

Weare going to proveTheorem4 in several steps.We begin by
proving the following result which is a piecewise P1 variant
of a result of L. Boccardo & T. Gallouët [2, 5].

Theorem 5. Assume that Vℎ ∈ 𝑉ℎ satisfies
∀𝑘 > 0, ∫

Ω

󵄨󵄨󵄨󵄨󵄨∇ℎ𝐼𝑘ℎ (Vℎ)󵄨󵄨󵄨󵄨󵄨2 d𝑥 ≤ 𝑘𝑀 (50)
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for some𝑀 > 0. Then, for every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1),
󵄩󵄩󵄩󵄩Vℎ󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 ≤ 𝐶2 (𝑑, |Ω| , 𝑞, 𝜎, ‖𝐴‖𝐿∞(Ω)𝑑×𝑑)𝑀 (51)

where the constant 𝐶2(𝑑, |Ω|, 𝑞) only depends on 𝑑, |Ω| , and𝑞.
As in [4], to prove Theorem 5, we use the following

lemmas.

Lemma 6. Under assumption (47), for all T ∈ Tℎ and all 𝐹 ∈
F𝑇, one has

ℎ𝐹 |𝐹| ≤ 2𝜎𝑑 |𝑇| (52)

Proof. Indeed, let 𝑇 ∈ Tℎ and 𝐹 ∈ F𝑇, so

ℎ𝐹 |𝐹| ≤ ℎ𝑑𝑇 (53)

and by (47) one has

ℎ𝐹 |𝐹| ≤ 𝜎𝑑𝜌𝑑𝑇 (54)

which combined with the fact that

|𝑇| ≥ 𝑐𝜌𝑑𝑇, (55)

where 𝑐 = Π/4 in 2D, and 𝑐 = Π/6 in 3D, implies (52).

Lemma 7. Under assumption (47), for every q such that 1 ≤ q,
the following bound holds for any Vℎ ∈ 𝑉ℎ:

|V|𝑞𝐽,𝐴,𝑞 ≤ 𝐶 (𝑞, 𝜎, 𝑑, ‖𝐴‖𝐿∞(Ω)𝑑×𝑑) 󵄩󵄩󵄩󵄩∇ℎV󵄩󵄩󵄩󵄩𝐿𝑞(Ω) . (56)

Proof. For every 𝑇 ∈ Tℎ, we denote by (∇ℎV)𝑇 the (constant)
gradient of the restriction of V to 𝑇. With this notation, using
the continuity of V across any 𝐹 in F𝑇 at the mass center 𝑥𝐹
of any internal 𝐹, the fact that V vanishes at the mass center𝑥𝐹 of any external 𝐹, and the known inequality

∀𝑞 ≥ 1, (|𝑎| + |𝑏|)𝑞 ≤ 2𝑞−1 (|𝑎|𝑞 + |𝑏|𝑞) (57)

and using (52) we get|V|𝑞𝐽,𝐴,𝑞 = ∑
𝐹∈F𝑖
ℎ

𝛾𝐴,𝐹ℎ𝑞−1𝐹

∫
𝐹
[V]𝑞 𝑑𝑥 + ∑

𝐹∈F𝑏
ℎ

𝛾𝐴,𝐹ℎ𝑞−1𝐹

∫
𝐹
[V]𝑞 𝑑𝑥

≤ ∑
𝐹∈F𝑖
ℎ

𝐹=𝑇
1
∩𝑇
2

𝛾𝐴,𝐹ℎ𝑞−1𝐹

⋅ ∫
𝐹
(((∇ℎV)𝑇

1

− (∇ℎV)𝑇
2

) ⋅ (𝑥 − 𝑥𝐹))𝑞 𝑑𝑥
+ ∑

𝐹∈F𝑏
ℎ

𝐹∈F
𝑇

∫
𝐹

𝛾𝐴,𝐹ℎ𝑞−1𝐹

((∇ℎV)𝑇 ⋅ (𝑥 − 𝑥𝐹))𝑞 𝑑𝑥
≤ ∑

𝐹∈F𝑖
ℎ

𝐹=𝑇
1
∩𝑇
2

2𝑞min (𝜆𝑇
1
,𝐹, 𝜆𝑇

2
,𝐹) ℎ𝐹 |𝐹|

⋅ (󵄨󵄨󵄨󵄨󵄨(∇ℎV)𝑇1 󵄨󵄨󵄨󵄨󵄨𝑞 + 󵄨󵄨󵄨󵄨󵄨(∇ℎV)𝑇2 󵄨󵄨󵄨󵄨󵄨𝑞) + ∑
𝐹∈F𝑏
ℎ

𝐹∈F
𝑇

𝜆𝑇,𝐹ℎ𝐹 |𝐹|
⋅ 󵄨󵄨󵄨󵄨(∇ℎV)𝑇󵄨󵄨󵄨󵄨𝑞 ≤ 2𝜎𝑑 ‖𝐴‖𝐿∞(Ω)𝑑×𝑑 ∑

𝐹∈F𝑖
ℎ

𝐹=𝑇
1
∩𝑇
2

2𝑞
⋅ (󵄨󵄨󵄨󵄨𝑇1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨(∇ℎV)𝑇1 󵄨󵄨󵄨󵄨󵄨𝑞 + 󵄨󵄨󵄨󵄨𝑇2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨(∇ℎV)𝑇2 󵄨󵄨󵄨󵄨󵄨𝑞)+ 2𝜎𝑑 ‖𝐴‖𝐿∞(Ω)𝑑×𝑑 ∑

𝐹∈F𝑏
ℎ

𝐹∈F
𝑇

|𝑇| 󵄨󵄨󵄨󵄨(∇ℎV)𝑇󵄨󵄨󵄨󵄨𝑞
≤ 2𝑞+3𝜎𝑑 ‖𝐴‖𝐿∞(Ω) ∑

𝑇∈T
ℎ

|𝑇| 󵄨󵄨󵄨󵄨(∇ℎV)𝑇󵄨󵄨󵄨󵄨𝑞 ,

(58)

which is (56)with𝐶(𝑞, 𝜎, 𝑑, ‖𝐴‖𝐿∞(Ω)𝑑×𝑑) = 2𝑞+3𝜎𝑑‖𝐴‖𝐿∞(Ω)𝑑×𝑑 .
Lemma 8. Let Vℎ ∈ 𝑉ℎ and let 𝑘 > 0. If for some 𝑇 ∈ Tℎ there
exists 𝑦 ∈ 𝑇 with |Vℎ(𝑦)| ≥ 𝑘, then there exists a 𝑑-simplex𝑆 ⊂ 𝑇 with |𝑆| = 𝑐(𝑑)|𝑇| such that∀𝑥 ∈ 𝑆: 󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨 ≥ 𝑘2 , (59)

and the strictly positive constant 𝑐(𝑑) only depends on 𝑑.
Proof. Let 𝑇 be a 𝑑−simplex from the triangulationTℎ, Vℎ ∈𝑉ℎ, and 𝑘 > 0, such that sup𝑇|Vℎ| ≥ 𝑘.Consider𝑤ℎ = 𝐼𝑘ℎ(Vℎ) ∈
P1(𝑇).

(i) If max𝑚
𝑖
∈𝑇|Vℎ| < 𝑘, thus∀𝑖 ∈ {0, 1, . . . , 𝑑} ,𝑇𝑘 (𝛼Vℎ𝑖 ) = 𝑇𝑘 (Vℎ (𝑚𝑖)) = Vℎ (𝑚𝑖) = 𝛼Vℎ𝑖 (60)

so 𝑤ℎ = Vℎ, and ∃𝑦 ∈ 𝑇 such that |𝑤ℎ(𝑦)| ≥ 𝑘.
(ii) If max𝑚

𝑖
∈𝑇|Vℎ| ≥ 𝑘, thus ∃𝑚𝑖 ∈ 𝑇, such that |Vℎ(𝑚𝑖)| ≥𝑘

so |𝑇𝑘(Vℎ(𝑚𝑖))| = 𝑘, and |𝑤ℎ(𝑚𝑖)| = 𝑇𝑘(𝛼Vℎ𝑖 ) = 𝑘.
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In both cases, there exists an element 𝑦 in 𝑇 such that|𝑤ℎ(𝑦)| ≥ 𝑘.
But 𝑤ℎ ∈ P1(𝑇), so𝑤ℎ (𝑦) − 𝑤ℎ (𝑥) = ∇𝑤ℎ (𝑦 − 𝑥) , (61)

In other words ∀𝑖 ̸= 𝑗 ̸= 𝑘 𝑑𝑎𝑛𝑠 {0, 1, . . . , 𝑑} ,∇𝜆𝑖 (𝑎𝑖 − 𝑎𝑘) = 1,∇𝜆𝑖 (𝑎𝑗 − 𝑎𝑘) = 0.
(62)

and since

𝑦 − 𝑥 = 𝑑∑
𝑘=1

(𝜆𝑘 (𝑦) − 𝜆𝑘 (𝑥)) (𝑎𝑘 − 𝑎0) , (63)

one obtains

∇𝑤ℎ = −𝑑 𝑑∑
𝑖=0

𝑇𝑘 (𝛼Vℎ𝑖 ) ∇𝜆𝑖,
∇𝑤ℎ (𝑎𝑘 − 𝑎𝑜) = −𝑑 (𝑇𝑘 (𝛼Vℎ𝑘 ) − 𝑇𝑘 (𝛼Vℎ0 )) , (64)

so 󵄨󵄨󵄨󵄨∇𝑤ℎ (𝑎𝑘 − 𝑎𝑜)󵄨󵄨󵄨󵄨 ≤ 2𝑘𝑑, (65)

and 󵄨󵄨󵄨󵄨𝑤ℎ (𝑦) − 𝑤ℎ (𝑥)󵄨󵄨󵄨󵄨 ≤ 2𝑑 𝑑∑
𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘 (𝑦) − 𝜆𝑘 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑘2 , (66)

as soon as
𝑑∑
𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘 (𝑦) − 𝜆𝑘 (𝑥)󵄨󵄨󵄨󵄨 ≤ 14𝑑 . (67)

For this purpose we define the 𝑑-simplex 𝑆 = (𝑦 − 𝑎0) + 𝑆0
such that 𝑆0 = {𝑥, 𝜆0 ≥ 1 − 14𝑑 = 4𝑑 − 14𝑑 } , (68)

so 󵄨󵄨󵄨󵄨𝑤ℎ (𝑥)󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨𝑤ℎ (𝑦)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑤ℎ (𝑦) − 𝑤ℎ (𝑥)󵄨󵄨󵄨󵄨 ≥ 𝑘 − 𝑘2 = 𝑘2 , (69)

and to estimate the measure of 𝑆, it is clear to verify first that|𝑆| = |𝑆0|. Let 𝑇̂ be the reference unit 𝑑-simplex with vertices𝑎0 = 0, 𝑎1 = 𝑒1, . . . , 𝑎𝑑 = 𝑒𝑑, where {𝑒𝑖, 𝑖 = 1, . . . , 𝑑} is the
canonical basis ofR𝑑. Let 𝐹𝑇 be the invertible affine mapping
that maps 𝐹𝑇(𝑇̂) = 𝑇 onto 𝑇 and set 𝑆 = 𝐹−𝑇1(𝑆).

Since 𝐹𝑇 is affine, it is easy to check that 𝜆̂𝑖 = 𝐹−1𝑇 ∘𝜆𝑖,𝑇 for𝑖 = 0, 1, . . . , 𝑑 are the barycentric coordinates with respect to
the 𝑎𝑖’s and that

𝑆 = {𝑥 ∈ 𝑇̂ : 𝜆0 (𝑥) ≥ 4𝑑 − 14𝑑 } ,
|𝑆| = 󵄨󵄨󵄨󵄨󵄨𝑆󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇̂󵄨󵄨󵄨󵄨󵄨 |𝑇| = 𝐶 (𝑑) |𝑇| ,

(70)

where 𝑐(𝑑) = |𝑆|/|𝑇̂| is a constant that depends only on 𝑑.
This proves the result.

Lemma 9. Assume that Vℎ ∈ 𝑉ℎ satisfies (50), then
󵄨󵄨󵄨󵄨𝐵𝑘 (Vℎ)󵄨󵄨󵄨󵄨 ≤ 𝐶 (𝑑, |Ω| , 2∗) (𝑀𝑘 )2∗/2 , (71)

for every 𝑘 > 0, where 2∗ = 2𝑑/(𝑑 − 2) = 6 if 𝑑 = 3 and 2∗ is
any real number with 2∗ ≥ 1 if 𝑑 = 2; 𝐵𝑘(Vℎ) is defined by

𝐵𝑘 (Vℎ) = ⋃{𝑇 ∈ Tℎ : max
𝑇

󵄨󵄨󵄨󵄨Vℎ󵄨󵄨󵄨󵄨 ≥ 𝑘} , (72)

and𝐶(𝑑, |Ω|, 2∗) is a constant depending only on 𝑑, 2∗, 𝜃0, and|Ω|.
Proof. Discrete Sobolev’s theorem (see theorem 5.3 in [3])
asserts that

∀V ∈ 𝑉ℎ, ‖V‖𝐿2∗ (Ω) ≤ 𝜎2,2∗ (𝑑, |Ω|) ‖V‖𝑑𝐺 , (73)

and we will also need (56) with 𝑞 = 2
∀V ∈ 𝑉ℎ, |V|2𝐽 ≤ 𝐶 (𝜎, 𝑑) 󵄩󵄩󵄩󵄩∇ℎV󵄩󵄩󵄩󵄩𝐿2(Ω) . (74)

Here 𝑑 = 2 or 𝑑 = 3 so 2∗ = 2𝑑/(𝑑 − 2) = 6 if 𝑑 = 3 and2∗ can be any real number with 1 ≤ 2∗.
Fix 𝑘 > 0. If 𝑇 ⊂ 𝐵𝑘(Vℎ), from Lemma 8, we know that

there exists 𝑆 ⊂ 𝑇, with |𝑆| = 𝑐(𝑑)|𝑇| and
∀𝑥 ∈ 𝑆, 󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨 ≥ 𝑘2 . (75)

Therefore

∫
𝑇

󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨2∗ d𝑥 ≥ ∫
𝑆

󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨2∗ d𝑥
≥ (𝑘2)2∗ |𝑆| = 𝑐 (𝑑) |𝑇| (𝑘2)2∗ .

(76)

Hence

󵄨󵄨󵄨󵄨𝐵𝑘 (Vℎ)󵄨󵄨󵄨󵄨 = ∑
𝑇⊂𝐵
𝑘
(V
ℎ
)

|𝑇|
≤ ∑

𝑇⊂𝐵
𝑘
(V
ℎ
)

1𝑐 (𝑑) (2𝑘)2∗ ∫𝑇 󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨2∗ d𝑥
≤ 1𝑐 (𝑑) (2𝑘)2∗ ∫Ω 󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨2∗ d𝑥.

(77)

Combining with (73) and (74) one has
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󵄨󵄨󵄨󵄨𝐵𝑘 (Vℎ)󵄨󵄨󵄨󵄨 ≤ (2𝜎2,2∗ (𝑑, |Ω|))2∗ (1 + 𝐶 (𝜎, 𝑑))2∗/2𝑐 (𝑑) 𝑘2∗ (∫
Ω

󵄨󵄨󵄨󵄨󵄨∇ℎ𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨2 d𝑥)2∗/2 . (78)

Finally using (50), we obtain󵄨󵄨󵄨󵄨𝐵𝑘 (Vℎ)󵄨󵄨󵄨󵄨
≤ (2𝜎2,2∗ (𝑑, |Ω|))2∗ (1 + 𝐶 (𝜎, 𝑑))2∗/2𝑐 (𝑑) (𝑀𝑘 )2∗/2 , (79)

which is (71) with

𝐶 (𝑑, |Ω| , 2∗, 𝜎, ‖𝐴‖𝐿∞(Ω)𝑑×𝑑)
= (2𝜎2,2∗ (𝑑, |Ω|))2∗𝐶 (𝑑) (1 + 𝐶 (𝜎, 𝑑))2∗/2 . (80)

Proof (proof of Theorem 5; see [4]). Fix 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 −1). Take 𝑟 = (2 × 2∗)/(2 + 2∗) = 3/2 in the case 𝑑 = 3, and
verify (2 × 2∗)/(2 + 2∗) > 𝑞, in the case 𝑑 = 2.

The embedding inequality (𝐿𝑞(Ω) 󳨅→ 𝐿𝑟,∞(Ω)) writes󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝐿𝑞(Ω) ≤ 𝐶 (𝑞, 𝑟, |Ω|) 󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨∇Vℎ󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝐿𝑟,∞(Ω) , (81)

and by (56) one can have

∀V ∈ 𝑊1,𝑞
0 (Tℎ) ,|V|𝑞𝐽,𝐴,𝑞 ≤ 𝐶 (𝑞, 𝜎, 𝑑, ‖𝐴‖𝐿∞(Ω)𝑑×𝑑) 󵄩󵄩󵄩󵄩∇ℎV󵄩󵄩󵄩󵄩𝐿𝑞(Ω) . (82)

So to proveTheorem 5, it suffices to estimate

󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨∇Vℎ󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝐿𝑟,∞(Ω) = sup
𝜆>0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1/𝑟 . (83)

So let 𝜆 > 0. For every 𝑘 > 0, we can write󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆} ∩ 𝐵𝑘 (Vℎ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆} ∩ [𝐵𝑘 (Vℎ)]𝑐
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨𝐵𝑘 (Vℎ)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆} ∩ [𝐵𝑘 (Vℎ)]𝑐
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(84)

But {𝑥 ∈ Ω : |∇Vℎ(𝑥)| ≥ 𝜆} ∩ [𝐵𝑘(Vℎ)]𝑐 coincides, up to a set
of measure zero, with

⋃
𝑇∈𝑇
ℎ

({𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆}
∩ {𝑇 ∈ Tℎ : max

𝑇

󵄨󵄨󵄨󵄨Vℎ󵄨󵄨󵄨󵄨 < 𝑘}) . (85)

On the other hand, if max𝑇|Vℎ| < 𝑘, then 𝐼𝑘ℎ(Vℎ)|𝑇 = Vℎ|
𝑇

, so󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆} ∩ [𝐵𝑘 (Vℎ)]𝑐
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇Πℎ𝑇𝑘 (Vℎ)󵄨󵄨󵄨󵄨 ≥ 𝜆}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 1𝜆2 ∫Ω 󵄨󵄨󵄨󵄨∇ℎΠℎ (𝑇𝑘 (Vℎ))󵄨󵄨󵄨󵄨2 𝑑𝑥.

(86)

By the use of (50), one has󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆} ∩ [𝐵𝑘 (Vℎ)]𝑐
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘𝑀𝜆2 . (87)

We fix 𝑘 = 𝜆2−𝑟𝑀𝑟−1 to have 𝑘𝑀/𝜆2 = (𝑀/𝜆)𝑟; using (71) we
obtain 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 (𝑑, |Ω| , 2∗) (𝑀𝑘 )2∗/2 + (𝑀𝜆 )𝑟 ,

(88)

so, for 𝑟 = (2 × 2∗)/(2 + 2∗) to have (𝑀/𝑘)2∗/2 = (𝑀/𝜆)𝑟, in
both cases 𝑑 = 2 or 𝑑 = 3, one has󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (𝐶 (𝑑, |Ω| , 2∗) + 1) (𝑀𝜆 )𝑟 ,

(89)

and then

𝜆 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋃𝑇∈𝑇ℎ {𝑥 ∈ 𝑇 : 󵄨󵄨󵄨󵄨∇ℎVℎ󵄨󵄨󵄨󵄨 ≥ 𝜆}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1/𝑟 ≤ 𝐶 (𝑑, |Ω| , 𝑞)𝑀, (90)

for every 𝜆 > 0, which finishes the proof.
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Lemma 10. Let V ∈ 𝑉ℎ. For every 𝑠, 𝑘 with 0 ≤ 𝑠 < 𝑘, the set𝐵𝑘,𝑠(V), defined by𝐵𝑘,𝑠 (V) = ⋃
𝑇∈𝑇
ℎ

{𝑇 ∈ Tℎ : min
𝑇
|V| ≤ 𝑠,max

𝑇
|V| ≥ 𝑘} , (91)

satisfies 󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (V)󵄨󵄨󵄨󵄨 ≤ ℎ2(𝑘 − 𝑠)2 ∫Ω 󵄨󵄨󵄨󵄨∇ℎ (V)󵄨󵄨󵄨󵄨2 d𝑥. (92)

Proof. If 𝑇 ∈ 𝐵𝑘,𝑠(V), max𝑇|V| = |V(𝑎)| ≥ 𝑘, and min𝑇|V| =|V(𝑏)| ≤ 𝑠, so𝑘 − 𝑠 ≤ |V (𝑎)| − |V (𝑏)| ≤ |V (𝑎) − V (𝑏)|≤ |∇ (V)| |𝑎 − 𝑏| . (93)

Therefore 1 ≤ |∇ (V)|2 |𝑎 − 𝑏|2(𝑘 − 𝑠)2 (94)

Hence 󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (V)󵄨󵄨󵄨󵄨 = ∑
𝑇∈𝐵
𝑘,𝑠
(V)
|𝑇| = ∑

𝑇∈𝐵
𝑘,𝑠
(V)
∫
𝑇
1𝑑𝑥

≤ ∑
𝑇∈𝐵
𝑘,𝑠
(V)
∫
𝑇
|∇ (V)|2 |𝑎 − 𝑏|2(𝑘 − 𝑠)2 𝑑𝑥

≤ ℎ2(𝑘 − 𝑠)2 ∫Ω 󵄨󵄨󵄨󵄨∇ℎ (V)󵄨󵄨󵄨󵄨2 𝑑𝑥.
(95)

The estimate (92) follows.

Lemma 11. Let Vℎ ∈ 𝑉ℎ and 0 ≤ 𝑠 < 𝑘, then the set 𝐵𝑘,𝑠(Vℎ),
defined by𝐵𝑘,𝑠 (Vℎ)

= ⋃{𝑇 ∈ Tℎ : min
𝑚
𝑖
∈𝑇

󵄨󵄨󵄨󵄨Vℎ󵄨󵄨󵄨󵄨 ≤ 𝑠,max
𝑇

󵄨󵄨󵄨󵄨Vℎ󵄨󵄨󵄨󵄨 ≥ 𝑘} , (96)

satisfies 󵄨󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (Vℎ)󵄨󵄨󵄨󵄨󵄨 ≤ ℎ2(𝑘 − 𝑠)2 ∫Ω 󵄨󵄨󵄨󵄨󵄨∇ℎ𝐼𝑘ℎ (Vℎ)󵄨󵄨󵄨󵄨󵄨2 d𝑥. (97)

Proof. Indeed, if 𝑇 ⊂ 𝐵𝑘,𝑠(Vℎ) then there are two possibilities:
(i) If max𝑚

𝑖
∈𝑇|Vℎ| ≤ 𝑘 so 𝐼𝑘ℎ(Vℎ)|𝑇 = Vℎ|

𝑇

.

(ii) If max𝑚
𝑖
∈𝑇|Vℎ| ≥ 𝑘 so max𝑇|𝐼𝑘ℎ(Vℎ)| ≥ 𝑘 and obviously

min𝑇|𝐼𝑘ℎ(Vℎ)| ≤ 𝑠.
In the two cases 𝑇 ⊂ 𝐵𝑘,𝑠(𝐼𝑘ℎ(Vℎ)).The estimate (97) follows.

Remark 12. It is then clear that, under hypothesis (50),󵄨󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (Vℎ)󵄨󵄨󵄨󵄨󵄨 󳨀→ℎ→0
0,󵄨󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (𝐼𝑘ℎ (Vℎ))󵄨󵄨󵄨󵄨󵄨 󳨀→ℎ→0
0. (98)

In addition, one has the following.

Proposition 13. Let Vℎ ∈ 𝑉ℎ and 0 ≤ 𝑠 < 𝑘. If Vℎ satisfies (50),
then 󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (Vℎ)󵄨󵄨󵄨󵄨 󳨀→ℎ→0

0. (99)

Proof. Fix 𝑘 > 0 and 𝑠 > 0, 𝑠 < 𝑘. For ℎ > 0 such that 1/ℎ ≥ 𝑘,
we can write𝐵𝑘,𝑠 (Vℎ) = (𝐵𝑘,𝑠 (Vℎ) ∩ 𝐵1/ℎ (Vℎ))∪ (𝐵𝑘,𝑠 (Vℎ) ∩ [𝐵1/ℎ (Vℎ)]𝑐) . (100)

On the one hand, with 2∗ = 6 in (71), one has󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (Vℎ) ∩ 𝐵1/ℎ (Vℎ)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝐵1/ℎ (Vℎ)󵄨󵄨󵄨󵄨 ≤ 𝐶 (|Ω|) ℎ3. (101)

On the other hand,𝐵𝑘,𝑠 (Vℎ) ∩ [𝐵1/ℎ (Vℎ)]𝑐 ⊂ 𝐵𝑘,𝑠 (𝐼1/ℎℎ (Vℎ)) . (102)

Indeed, if 𝑥 ∈ 𝐵𝑘,𝑠(Vℎ) ∩ [𝐵1/ℎ(Vℎ)]𝑐 and 𝑇 ∈ Tℎ such that𝑥 ∈ 𝑇, then max𝑇|Vℎ| ≥ 𝑘, min𝑇|Vℎ| ≤ 𝑠, and, for every 𝑦
in 𝑇, |Vℎ(𝑦)| ≤ 1/ℎ, which means 𝐼1/ℎℎ (Vℎ)|𝑇 = Vℎ|𝑇, and 𝑇 ∈𝐵𝑘,𝑠(𝐼1/ℎℎ (Vℎ)).

Therefore, with Lemma 10, and (50), one has󵄨󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (Vℎ) ∩ 𝐵𝑐1/ℎ (Vℎ)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝐵𝑘,𝑠 (𝐼1/ℎℎ (Vℎ))󵄨󵄨󵄨󵄨󵄨
≤ ℎ2(𝑘 − 𝑠)2 ∫Ω 󵄨󵄨󵄨󵄨󵄨∇ℎ𝐼1/ℎℎ (Vℎ)󵄨󵄨󵄨󵄨󵄨2 d𝑥
≤ ℎ(𝑘 − 𝑠)2𝑀.

(103)

The convergence (99) is then a consequence of (101) and
(103).

Lemma 14. Let Vℎ ∈ 𝑉ℎ. For every 𝑠 and every 𝑘 with 0 < 𝑠 <𝑘, one has {𝑥 ∈ Ω : 𝑇𝑠 (𝐼𝑘ℎ (Vℎ)) ̸= 𝑇𝑠 (Vℎ (𝑥))}⊂ 𝐵𝑘,𝑠 (Vℎ) ∪ 𝐵𝑘,𝑠 (𝐼𝑘ℎ (Vℎ)) . (104)

Proof. Let 𝑥 ∈ Ω such that 𝑇𝑠(𝐼𝑘ℎ(Vℎ(𝑥))) ̸= 𝑇𝑠(Vℎ(𝑥)), and𝑇 ∈ Tℎ with 𝑥 ∈ 𝑇. It is easily checked that 𝐼𝑘ℎ(Vℎ)|𝑇 ̸=
Vℎ|𝑇, max𝑇̃|Vℎ| ≥ 𝑘, and max𝑇̃|𝐼𝑘ℎ(Vℎ)| ≥ 𝑘. So there are three
possibilities.

(i) |𝐼𝑘ℎ(Vℎ(𝑥))| ≥ 𝑠 and |Vℎ(𝑥)| < 𝑠, and then 𝑇 ⊂ 𝐵𝑘,𝑠(Vℎ),
(ii) |𝐼𝑘ℎ(Vℎ(𝑥))| < 𝑠 and |Vℎ(𝑥)| ≥ 𝑠, and then 𝑇 ⊂𝐵𝑘,𝑠(𝐼𝑘ℎ(Vℎ)),
(iii) |𝐼𝑘ℎ(Vℎ(𝑥))| < 𝑠 and |Vℎ(𝑥)| < 𝑠, and then

𝑇 ⊂ 𝐵𝑘,𝑠 (𝐼𝑘ℎ (Vℎ)) ∩ 𝐵𝑘,𝑠 (Vℎ) . (105)

In all cases 𝑥 ∈ 𝑇 ⊂ 𝐵𝑘,𝑠(𝐼𝑘ℎ(Vℎ)) ∪ 𝐵𝑘,𝑠(Vℎ), and (104) follows.
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Proposition 15. Assume that Vℎ ∈ 𝑉ℎ satisfies (50). Then, for
every 𝑘 > 0, one has

𝐼𝑘ℎ (Vℎ) − 𝑇𝑘 (Vℎ) 󳨀→ 0 𝑖𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒, (106)

when ℎ tends to zero.
Proof. Fix 𝑘 > 0 and 𝜀 > 0 such that 𝜀 < 𝑘 and consider

𝐼𝜀 = {𝑥 ∈ Ω : 󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥)) − 𝑇𝑘 (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨 ≥ 𝜀} . (107)

Let 𝑥 ∈ 𝐼𝜀 and 𝑇 ∈ Tℎ with 𝑥 ∈ 𝑇. It is easily checked that

𝐼𝑘ℎ (Vℎ)|
𝑇

̸= 𝑇𝑘 (Vℎ)|
𝑇

, (108)

which implies that max𝑇|Vℎ| > 𝑘. So there are four
possibilities.

(i) Vℎ changes sign in 𝑇; then, by continuity,𝑇 ⊂ 𝐵𝑘,𝑠 (Vℎ) for every 𝑠 ∈ ]0, 𝑘[ . (109)

(ii) 𝐼𝑘ℎ(Vℎ) changes sign in 𝑇; then
𝑇 ⊂ 𝐵𝑘,𝑠 (𝐼𝑘ℎ (Vℎ)) for every 𝑠 ∈ ]0, 𝑘[ . (110)

(iii) max𝑚
𝑖
∈𝑇|Vℎ| ≤ 𝑘 and Vℎ|

𝑇

≥ 0 (or Vℎ|
𝑇

≤ 0) so𝐼𝑘ℎ(Vℎ)|𝑇 = Vℎ|𝑇.
(a) If Vℎ|

𝑇

≥ 0, then Vℎ(𝑥) ≥ 𝑘 + 𝜀 and 𝑇 ⊂𝐵𝑘+𝜀,𝑘(𝐼𝑘ℎ(Vℎ)).
(b) If Vℎ|

𝑇

≤ 0, then Vℎ(𝑥) ≤ −𝑘 − 𝜀 and 𝑇 ⊂𝐵𝑘+𝜀,𝑘(𝐼𝑘ℎ(Vℎ)).
(iv) max𝑚

𝑖
∈𝑇|Vℎ| > 𝑘 and Vℎ|

𝑇

≥ 0 (or Vℎ|
𝑇

≤ 0). So󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥)) − 𝑇𝑘 (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑇𝑘 (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (111)

(a) If |𝐼𝑘ℎ(Vℎ(𝑥))| − |𝑇𝑘(Vℎ(𝑥))| ≥ 𝜀. There are three
possibilities:

case 1: |Vℎ(𝑥)| ≥ 𝑘, so |𝐼𝑘ℎ(Vℎ(𝑥))| ≥ 𝑘 + 𝜀 and𝑇 ⊂ 𝐵𝑘+𝜀,𝑘 (𝐼𝑘ℎ (Vℎ)) ; (112)

case 2: |Vℎ(𝑥)| < 𝑘 − 𝜀/2, so 𝑇 ⊂ 𝐵𝑘,𝑘−𝜀/2(Vℎ);
case 3: 𝑘 − 𝜀/2 ≤ |Vℎ(𝑥)| < 𝑘, so |𝐼𝑘ℎ(Vℎ(𝑥))| ≥𝑘 + 𝜀/2 and𝑇 ⊂ 𝐵𝑘+𝜀/2,𝑘 (𝐼𝑘ℎ (Vℎ)) . (113)

(b) If |𝑇𝑘(Vℎ(𝑥))| − |𝐼𝑘ℎ(Vℎ(𝑥))| ≥ 𝜀, then󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (Vℎ (𝑥))󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑇𝑘 (Vℎ (𝑥))󵄨󵄨󵄨󵄨 − 𝜀, (114)

so

𝑇 ⊂ 𝐵𝑘,𝑘−𝜀 (𝐼𝑘ℎ (Vℎ)) . (115)

We can then conclude that𝐼𝜀 ⊂ 𝐵𝑘+𝜀/2,𝑘 (Πℎ𝑇𝑘 (Vℎ)) ∪ 𝐵𝑘,𝑘−𝜀 (Πℎ𝑇𝑘 (Vℎ))∪ 𝐵𝑘,𝑘−𝜀/2 (Vℎ) . (116)

Convergence (106) is then consequence of (98) and (99).

The result and the proof of the Proposition (2.7) in [4] can
be conserved without changes.

Proposition 16. Under assumption (32), one has for every Vℎ ∈𝑉ℎ and every 𝑘 > 0
𝑎𝑠𝑤𝑖𝑝ℎ (Vℎ − 𝐼𝑘ℎ (Vℎ) , 𝐼𝑘ℎ (Vℎ)) ≥ 0. (117)

Proof (proof of Proposition 2.7 in [4]). Since

Vℎ = 𝑑∑
𝑖=0

𝛼Vℎ𝑖 𝜑𝑖,
𝐼𝑘ℎ (Vℎ) = 𝑑∑

𝑖=0

𝑇𝑘 (𝛼Vℎ𝑖 ) 𝜑𝑖, (118)

one has

𝑎𝑠𝑤𝑖𝑝ℎ (Vℎ − 𝐼𝑘ℎ (Vℎ) , 𝐼𝑘ℎ (Vℎ)) = ∫
Ω
𝐴∇ℎ (Vℎ − 𝐼𝑘ℎ (Vℎ))

⋅ ∇ℎ𝐼𝑘ℎ (Vℎ) 𝑑𝑥− ∑
𝐹∈F𝑖
ℎ

∫
𝐹
{𝐴∇ℎ (Vℎ − 𝐼𝑘ℎ (Vℎ))}𝜔 ⋅ 𝑛𝐹 [𝐼𝑘ℎ (Vℎ)] 𝑑𝑥

− ∑
𝐹∈F𝑖
ℎ

∫
𝐹
{𝐴∇ℎ𝐼𝑘ℎ (Vℎ)}𝜔 ⋅ 𝑛𝐹 [Vℎ − 𝐼𝑘ℎ (Vℎ)] 𝑑𝑥

+ ∑
𝐹∈F𝑖
ℎ

∫
𝐹

𝛾𝐴,𝐹ℎ𝐹 𝜂 [Vℎ − 𝐼𝑘ℎ (Vℎ)] [𝐼𝑘ℎ (Vℎ)] 𝑑𝑥
= ∫

Ω
( 𝑑∑
𝑖=0

(𝛼Vℎ𝑖 + 𝑇𝑘 (𝛼Vℎ𝑖 )) 𝐴∇ℎ𝜑𝑖)( 𝑑∑
𝑗=0

𝑇𝑘 (𝛼Vℎ𝑗 )
⋅ 𝐴∇ℎ𝜑𝑗)𝑑𝑥
− ∑
𝐹∈F𝑖
ℎ

∫
𝐹
( 𝑑∑
𝑖=0

(𝛼Vℎ𝑖 + 𝑇𝑘 (𝛼Vℎ𝑖 )) {𝐴∇ℎ𝜑𝑖}𝜔)
⋅ 𝑛𝐹( 𝑑∑

𝑗=0

𝑇𝑘 (𝛼Vℎ𝑗 ) [𝜑𝑗])𝑑𝑥
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− ∑
𝐹∈F𝑖
ℎ

∫
𝐹
( 𝑑∑
𝑖=0

𝑇𝑘 (𝛼Vℎ𝑖 ) {𝜑𝑖}𝜔)
⋅ 𝑛𝐹( 𝑑∑

𝑗=0

(𝛼Vℎ𝑗 + 𝑇𝑘 (𝛼Vℎ𝑗 )) [𝐴∇ℎ𝜑𝑗])𝑑𝑥
+ ∑
𝐹∈F𝑖
ℎ

∫
𝐹
( 𝑑∑
𝑖=0

(𝛼Vℎ𝑖 + 𝑇𝑘 (𝛼Vℎ𝑖 )) [𝐴∇ℎ𝜑𝑖])
⋅ ( 𝑑∑

𝑗=0

𝑇𝑘 (𝛼Vℎ𝑗 ) [𝜑𝑗])𝑑𝑥 = 𝑑∑
𝑖=0

(𝛼Vℎ𝑖 − 𝑇𝑘 (𝛼Vℎ𝑖 ))
⋅ 𝑑∑
𝑗=0

𝑇𝑘 (𝛼Vℎ𝑗 ) 𝑎𝑠𝑤𝑖𝑝ℎ (𝜑𝑖, 𝜑𝑗) = 𝑑∑
𝑖=0

(𝛼Vℎ𝑖 + 𝑇𝑘 (𝛼Vℎ𝑖 ))
⋅ 𝑑∑
𝑗=0

𝑇𝑘 (𝛼Vℎ𝑗 )𝑄𝑖,𝑗 = 𝑑∑
𝑖=0

𝑆𝑖,
(119)

where 𝑆𝑖 = (𝛼Vℎ𝑖 − 𝑇𝑘 (𝛼Vℎ𝑖 )) 𝑇𝑘 (𝛼Vℎ𝑖 ) 𝑄𝑖,𝑖+ (𝛼Vℎ𝑖 − 𝑇𝑘 (𝛼Vℎ𝑖 )) ∑
0≤𝑗≤𝑑
𝑗 ̸=𝑖

𝛼𝑇𝑘(Vℎ)𝑗 𝑄𝑖,𝑗. (120)

Fix ∈ {0, 1, . . . , 𝑑};
(i) if |𝑇𝑘(Vℎ(𝑚𝑖))| < 𝑘, then𝑇𝑘(Vℎ(𝑚𝑖)) = Vℎ(𝑚𝑖) et𝛼Vℎ𝑖 −𝑇𝑘(𝛼Vℎ𝑖 ) = 0 and 𝑆𝑖 = 0,
(ii) if |𝑇𝑘(Vℎ(𝑚𝑖))| = 𝑘,

then(𝛼Vℎ𝑖 − 𝑇𝑘 (𝛼Vℎ𝑖 )) 𝑇𝑘 (𝛼Vℎ𝑖 )= (Vℎ (𝑚𝑖) − 𝑇𝑘 (Vℎ (𝑚𝑖))) 𝑇𝑘 (Vℎ (𝑚𝑖))= 𝑘 󵄨󵄨󵄨󵄨Vℎ (𝑚𝑖) − 𝑇𝑘 (Vℎ (𝑚𝑖))󵄨󵄨󵄨󵄨 ,
(121)

and therefore

𝑆𝑖 ≥ 𝑘 󵄨󵄨󵄨󵄨Vℎ (𝑚𝑖) − 𝑇𝑘 (Vℎ (𝑚𝑖))󵄨󵄨󵄨󵄨(𝑄𝑖,𝑖 − ∑
0≤𝑗≤𝑑
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝑄𝑖,𝑗󵄨󵄨󵄨󵄨󵄨) (122)

in the light of the assumption (32). This proves that 𝑆𝑖 ≥ 0 for
every 𝑖 in {1, 2, . . . , 𝑁}; and so (117).

4. Proof of the Main Theorem

We first show an a priori estimate (compared with (50)) on
the solution 𝑢ℎ of (48).
Lemma 17. Let Vℎ ∈ 𝑉ℎ, 𝑇 ∈ Tℎ, and 𝑘 > 0 such that
max𝑚

𝑖
∈𝑇|Vℎ| ≤ 𝑘.Then

max
𝑇

󵄨󵄨󵄨󵄨Vℎ󵄨󵄨󵄨󵄨 ≤ 𝑘 (2𝑑2 − 1) . (123)

Proof. Let Vℎ ∈ 𝑉ℎ, 𝑇 ∈ Tℎ, and 𝑘 > 0 such that
max𝑚

𝑖
∈𝑇|Vℎ| ≤ 𝑘. For every 𝑥 ∈ 𝑇,

󵄨󵄨󵄨󵄨Vℎ (𝑥)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑∑𝑖=0𝛼Vℎ𝑖 𝜑𝑖 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑∑

𝑖=0

󵄨󵄨󵄨󵄨𝛼Vℎ𝑖 𝜑𝑖 (𝑥)󵄨󵄨󵄨󵄨
≤ 𝑑∑

𝑖=0

󵄨󵄨󵄨󵄨Vℎ (𝑚𝑖)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜑𝑖 (𝑥)󵄨󵄨󵄨󵄨
≤ −𝑘( 𝑑∑

𝑖=0
𝜆
𝑖
<1/𝑑

𝜑𝑖 (𝑥)) + 𝑘( 𝑑∑
𝑖=0

𝜆
𝑖
≥1/𝑑

𝜑𝑖 (𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=1−∑𝑑 𝑖=0

𝜆
𝑖
<1/𝑑

𝜑
𝑖
(𝑥)

≤ 𝑘(1 + 2 𝑑∑
𝑖=0

(𝑑 − 1)) ≤ 𝑘 (2𝑑2 − 1) ,

(124)

the inequality (123) is then proved.

Proposition 18. Under the assumption of Theorem 4, the
solution 𝑢ℎ of (48) satisfies for every 𝑘 > 0 and every ℎ > 0𝑎𝑠𝑤𝑖𝑝ℎ (𝐼𝑘ℎ (𝑢ℎ) , 𝐼𝑘ℎ (𝑢ℎ)) ≤ ∫

Ω
𝑓𝐼𝑘ℎ (𝑢ℎ) 𝑑𝑥, (125)

and, in particular, 𝑢ℎ satisfies
∫
Ω

󵄨󵄨󵄨󵄨󵄨∇ℎ𝐼𝑘ℎ (𝑢ℎ)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 𝑘2𝑑2 − 1𝛼𝐶𝜂 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿1(Ω) , (126)

where the constant 𝐶𝜂 only depends on 𝜂, 𝜎, and d.
The proof makes use of results appearing in [3] that we

reproduce as follows.

Lemma 19 (Lemma 1.46 in [3], discrete trace inequality).
Under assumption (47), one has for all Vℎ ∈ P1

𝑑(Tℎ), all T∈ Tℎ, and all F ∈ F𝑇ℎ1/2𝑇
󵄩󵄩󵄩󵄩Vℎ󵄩󵄩󵄩󵄩𝐿2(𝐹) ≤ 𝐶𝑡𝑟 󵄩󵄩󵄩󵄩Vℎ󵄩󵄩󵄩󵄩𝐿2(𝑇) (127)

where 𝐶𝑡𝑟 only depends on 𝜎 and d.
Lemma 20 (Lemma 4.51 in [3], discrete coercivity). For all𝜂 > 𝜂 fl (𝑑 + 1)𝐶2𝑡𝑟, the SWIP bilinear form 𝑎𝑠𝑤𝑖𝑝ℎ is coercive
on 𝑉ℎ with respect to the ‖ ⋅ ‖𝑠𝑤𝑖𝑝 − 𝑛𝑜𝑟𝑚; i.e.,∀Vℎ ∈ 𝑉ℎ, 𝑎𝑠𝑤𝑖𝑝ℎ (Vℎ, Vℎ) ≥ 𝐶𝜂 󵄩󵄩󵄩󵄩Vℎ󵄩󵄩󵄩󵄩2𝑠𝑤𝑖𝑝 (128)

where 𝐶𝜂 = (𝜂 − (𝑑 + 1)𝐶2𝑡𝑟)/(1 + 𝜂).
Proof (of Proposition 18). Using 𝐼𝑘ℎ(𝑢ℎ) as a test function in
(48) one has

𝑎𝑠𝑤𝑖𝑝ℎ (𝑢ℎ, 𝐼𝑘ℎ (𝑢ℎ)) = ∫
Ω
𝑓𝐼𝑘ℎ (𝑢ℎ) 𝑑𝑥, (129)

and from (117) we obtain (125).
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On the other hand, by combining (125) with coercivities
(34) and (128) one obtains successively

𝛼𝐶𝜂 ∫
Ω

󵄨󵄨󵄨󵄨󵄨∇ℎ (𝐼𝑘ℎ (𝑢ℎ))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ 𝐶𝜂 ∫

Ω

󵄨󵄨󵄨󵄨󵄨𝐴∇ℎ (𝐼𝑘ℎ (𝑢ℎ)) ∇ℎ (𝐼𝑘ℎ (𝑢ℎ))󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝐶𝜂 󵄩󵄩󵄩󵄩󵄩𝐼𝑘ℎ (𝑢ℎ)󵄩󵄩󵄩󵄩󵄩2𝑠𝑤𝑖𝑝 ≤ 𝑎𝑠𝑤𝑖𝑝ℎ (𝐼𝑘ℎ (𝑢ℎ) , 𝐼𝑘ℎ (𝑢ℎ))
≤ ∫

Ω
𝑓𝐼𝑘ℎ (𝑢ℎ) 𝑑𝑥 ≤ max

Ω

󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (𝑢ℎ)󵄨󵄨󵄨󵄨󵄨 ∫
Ω

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝑘 (2𝑑2 − 1) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿1(Ω) ,

(130)

and by (123) the estimation (126) is then proved.

Theorem 21. Under the assumptions of Theorem 4, the solu-
tion 𝑢ℎ of (48) satisfies for every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1)𝑢ℎ 󳨀→ 𝑢 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿𝑞 (Ω) ,

∇ℎ𝑢ℎ 󳨀→ ∇𝑢 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 [𝐿𝑞 (Ω)]𝑑 ,󵄨󵄨󵄨󵄨𝑢ℎ󵄨󵄨󵄨󵄨𝐽,𝐴,𝑞 󳨀→ 0,
(131)

when ℎ tends to zero, where 𝑢 is the unique renormalized
solution of (1).

Proof (proof ofTheorem 3.2 in [4]). Consider a sequence𝑓𝜀 in𝐿2(Ω), converging strongly in 𝐿1(Ω) to 𝑓 (for example, 𝑓𝜀 =𝑇1/𝜀(𝑓)). Let 𝑢𝜀ℎ to be the unique solution of (48) for the right-
hand side 𝑓𝜀.Then 𝑢ℎ − 𝑢𝜀ℎ satisfies𝑢ℎ − 𝑢𝜀ℎ ∈ 𝑉ℎ,∀Vℎ ∈ 𝑉ℎ,

𝑎𝑠𝑤𝑖𝑝ℎ (𝑢ℎ − 𝑢𝜖ℎ, Vℎ) = ∫
Ω
(𝑓 − 𝑓𝜖) Vℎ 𝑑𝑥. (132)

Applying estimate (126) to this problem, we obtain for
every 𝑘 > 0, every ℎ > 0, and every 𝜀 > 0

∫
Ω

󵄨󵄨󵄨󵄨󵄨∇ℎ (𝐼𝑘ℎ (𝑢ℎ − 𝑢𝜖ℎ))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ 𝑘2𝑑2 − 1𝛼𝐶𝜂 󵄩󵄩󵄩󵄩𝑓 − 𝑓𝜖󵄩󵄩󵄩󵄩𝐿1(Ω) , (133)

Which implies byTheorem 5 that for every 𝑞with 1 ≤ 𝑞 <𝑑/(𝑑 − 1), every ℎ > 0, and every 𝜀 > 0󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢𝜖ℎ󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞
≤ 𝐶2 (𝑑, |Ω| , 𝑞, 𝜎, ‖𝐴‖𝐿∞(Ω)𝑑×𝑑)𝛼𝐶𝜂 󵄩󵄩󵄩󵄩𝑓 − 𝑓𝜖󵄩󵄩󵄩󵄩𝐿1(Ω) . (134)

On the other hand, since 𝑓𝜀 ∈ 𝐿2(Ω) and Tℎ satisfies
(44), (46), and (47), it is known (see [3]) that for every fixed𝜀 𝑢𝜀ℎ 󳨀→ 𝑢𝜀 strongly in 𝐿2 (Ω) , (135)

∇ℎ𝑢𝜀ℎ 󳨀→ ∇𝑢𝜀 strongly in [𝐿2 (Ω)]𝑑 , (136)󵄨󵄨󵄨󵄨𝑢𝜀ℎ󵄨󵄨󵄨󵄨𝐽,𝐴 󳨀→ 0, (137)
when ℎ tends to zero, where 𝑢𝜀 is the unique solution of𝑢𝜀 ∈ 𝐻1

0 (Ω) ,−div (𝐴∇𝑢𝜀) = 𝑓𝜀 𝑖𝑛 D󸀠 (Ω) . (138)

Finally, the function 𝑢𝜀 is also the unique renormalized
solution of the problem−div (𝐴∇𝑢𝜀) = 𝑓𝜀 𝑖𝑛 Ω,𝑢𝜀 = 0 𝑜𝑛 𝜕Ω. (139)

The estimate (43) combined with the inequality󵄩󵄩󵄩󵄩𝑢𝜖 − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 ≤ ‖𝐴‖𝐿∞(Ω)𝑑×𝑑 󵄩󵄩󵄩󵄩𝑢𝜖 − 𝑢󵄩󵄩󵄩󵄩𝑊1,𝑞
0
(Ω) (140)

allows one to have󵄩󵄩󵄩󵄩𝑢𝜖 − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞
≤ ‖𝐴‖𝐿∞(Ω)𝑑×𝑑 𝐶1 (𝑑, |Ω| , 𝑞)𝛼 󵄩󵄩󵄩󵄩𝑓 − 𝑓𝜖󵄩󵄩󵄩󵄩𝐿1(Ω) , (141)

for every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1), where 𝑢 is the unique
renormalized solution of (1).

Writing now󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 ≤ 󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢𝜖ℎ󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 + 󵄩󵄩󵄩󵄩𝑢𝜖 − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞+ 󵄩󵄩󵄩󵄩𝑢𝜖ℎ − 𝑢𝜖󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 , (142)

Using (134), (136), (137), and (141), one has for every 𝜀 > 0 and
every 𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1)

lim sup
ℎ→0

󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞
≤ 𝐶3 (𝑑, |Ω| , 𝑞, 𝜎, ‖𝐴‖𝐿∞(Ω)𝑑×𝑑)𝛼𝐶𝜂 󵄩󵄩󵄩󵄩𝑓 − 𝑓𝜖󵄩󵄩󵄩󵄩𝐿1(Ω) , (143)

and passing to the limit when 𝜀 tends to zero proves
Theorem 21.

To complete the proof of Theorem 4, it remains to prove
the following proposition.

Proposition 22. Under the assumptions of Theorem 4, the
solution 𝑢ℎ of (48) satisfies𝐼𝑘ℎ (𝑢ℎ) 󳨀→

ℎ→0
𝑇𝑘 (𝑢) 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿2 (Ω) , (144)

∇ℎ (𝐼𝑘ℎ (𝑢ℎ)) 󳨀→
ℎ→0
∇𝑇𝑘 (𝑢) 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 [𝐿2 (Ω)]𝑑 , (145)󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (𝑢ℎ)󵄨󵄨󵄨󵄨󵄨𝐽,𝐴 󳨀→ℎ→0
0, (146)

for every 𝑘 > 0.
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Proof (proof of Proposition 3.3 in [4]). First by result of
Proposition 15 and the estimate (126) one can have (see
theorem 5.7 in [3]) the two following convergences:

𝐼𝑘ℎ (𝑢ℎ) 󳨀→
ℎ→0
𝑇𝑘 (𝑢) strongly in 𝐿2 (Ω) , (147)

𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ)) ⇁
ℎ→0
∇𝑇𝑘 (𝑢) weakly in [𝐿2 (Ω)]𝑑 , (148)

for every 𝑘 > 0.
On the other hand, using (123) one has󵄨󵄨󵄨󵄨󵄨𝑓𝐼𝑘ℎ (𝑢ℎ)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘 (2𝑑2 − 1) 󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨 ∈ 𝐿1 (Ω) , (149)

so, by Lebesgue’s dominated convergence theorem combined
with discrete Rellich-Kondrachov’s compactness theorem
(see theorem 5.6 in [3]) one has

∫
Ω
𝑓𝐼𝑘ℎ (𝑢ℎ) d𝑥 󳨀→

ℎ→0
∫
Ω
𝑓𝑇𝑘 (𝑢) d𝑥. (150)

Therefore passing to the limit with respect to ℎ in (125)
yields

lim sup
ℎ→0

𝑎𝑠𝑤𝑖𝑝ℎ (𝐼𝑘ℎ (𝑢ℎ) , 𝐼𝑘ℎ (𝑢ℎ)) ≤ ∫
Ω
𝑓𝑇𝑘 (𝑢) 𝑑𝑥. (151)

Consequently

lim sup
ℎ→0

∫
Ω
𝐴𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ)) 𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ))

≤ ∫
Ω
𝑓𝑇𝑘 (𝑢) 𝑑𝑥. (152)

By the fact that

∫
Ω
𝐴𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ)) 𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ))
≤ 𝑎𝑠𝑤𝑖𝑝ℎ (𝐼𝑘ℎ (𝑢ℎ) , 𝐼𝑘ℎ (𝑢ℎ)) , (153)

and since 𝑢 is the renormalized solution of (1), it is known
that (see [4])

∫
Ω
𝐴∇𝑇𝑘 (𝑢) ∇𝑇𝑘 (𝑢) = ∫

Ω
𝑓𝑇𝑘 (𝑢) 𝑑𝑥. (154)

Finally, from (152) and (154), we deduce that

lim sup
ℎ→0

∫
Ω
𝐴𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ)) 𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ))

≤ ∫
Ω
𝐴∇𝑇𝑘 (𝑢) ∇𝑇𝑘 (𝑢) , (155)

which combined with the weak convergence (148) implies

𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ)) 󳨀→
ℎ→0
∇𝑇𝑘 (𝑢) strongly in [𝐿2 (Ω)]𝑑 . (156)

Owing to Proposition 4.36 in [3], for all Vℎ ∈ 𝑉ℎ and all𝜂 > (𝑑 + 1)𝐶2𝑡𝑟, one can have󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (𝑢ℎ)󵄨󵄨󵄨󵄨󵄨𝐽,𝐴
≤ 𝑎𝑠𝑤𝑖𝑝ℎ (𝐼𝑘ℎ (𝑢ℎ) , 𝐼𝑘ℎ (𝑢ℎ)) − 󵄩󵄩󵄩󵄩󵄩𝐴1/2𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ))󵄩󵄩󵄩󵄩󵄩[𝐿2(Ω)]𝑑𝜂 − (𝑑 + 1) 𝐶2𝑡𝑟

(157)

and, since the right-hand side tends to zero, the result (146)
holds.

Finally, using the result of Proposition 4.34 in [3]󵄩󵄩󵄩󵄩󵄩𝑅𝑙ℎ ([𝐼𝑘ℎ (𝑢ℎ)])󵄩󵄩󵄩󵄩󵄩[𝐿2(Ω)]𝑑 ≤ √𝑑 + 1𝐶𝑡𝑟 󵄨󵄨󵄨󵄨󵄨𝐼𝑘ℎ (𝑢ℎ)󵄨󵄨󵄨󵄨󵄨𝐽,𝐴 (158)

with the triangle inequality that yields󵄩󵄩󵄩󵄩󵄩∇ℎ𝐼𝑘ℎ (𝑢ℎ) − ∇𝑇𝑘 (𝑢)󵄩󵄩󵄩󵄩󵄩[𝐿2(Ω)]𝑑≤ 󵄩󵄩󵄩󵄩󵄩𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ)) − ∇𝑇𝑘 (𝑢)󵄩󵄩󵄩󵄩󵄩[𝐿2(Ω)]𝑑+ 󵄩󵄩󵄩󵄩󵄩𝑅𝑙ℎ ([𝐼𝑘ℎ (𝑢ℎ)])󵄩󵄩󵄩󵄩󵄩[𝐿2(Ω)]𝑑
(159)

concluding the proof of (145).

5. The Case Where f Is a Bounded
Radon Measure

The materials used in [4], to handle the case where f belongs
to M𝑏(Ω), are not specific to the case of P1 finite elements
approximation; only the weak convergence (148) requires
clarification; in our approach it is based on the result of
Proposition 15 whose proof involves only properties of Vℎ not𝑓. So we can also state the following convergence result.

Theorem 23 (Theorem 4.1 in [4]). Assume that f belongs to
M𝑏(Ω) and A and Tℎ satisfy (46), (33), (35), (44), and (47)
and (32).Then there exist a subsequence, still denoted by h, and
a function u such that for every 𝑘 > 0 and for every q with 1≤ 𝑞 < 𝑑/(𝑑 − 1) one has
𝐺𝑙ℎ (𝐼𝑘ℎ (𝑢ℎ)) ⇁ ∇𝑇𝑘 (𝑢) 𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 [𝐿2 (Ω)]𝑑 ,

∇ℎ𝑢ℎ ⇁ ∇𝑢 𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 [𝐿𝑞 (Ω)]𝑑 , (160)

when ℎ tends to zero along this subsequence, where 𝑢 satisfies∀𝑘 > 0, 𝑇𝑘 (𝑢) ∈ 𝐻1
0 (Ω) ,

∀𝑞 𝑤𝑖𝑡ℎ 1 ≤ 𝑞 < 𝑑𝑑 − 1 , 𝑢 ∈ 𝑊1,𝑞
0 (Ω) ,

∀V ∈ C∞
𝑐 (Ω) , ∫

Ω
𝐴∇𝑢∇V 𝑑𝑥 = ∫

Ω
V 𝑑𝑓.

(161)

6. Convergence Rate Estimation

6.1. Error Estimates for Smooth Solutions

Assumption 24 (regularity of exact solution and space𝑉∗). As
in [3], we assume thatTℎ is compatible with the partition 𝑃Ω
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in the sense of Assumption 3, and the unique solution V is
such that

V ∈ 𝑉∗ fl 𝐻1
0 (Ω) ∩ 𝐻2 (Tℎ) . (162)

And we set

𝑉∗ℎ fl 𝑉∗ + 𝑉ℎ. (163)

The convergence analysis is performed in the spirit of
(Theorem 1.35 [3]) by establishing discrete coercivity, consis-
tency, and boundedness for 𝑎𝑠𝑤𝑖𝑝ℎ . The discrete bilinear form𝑎𝑠𝑤𝑖𝑝ℎ is extended to 𝑉∗ℎ × 𝑉ℎ.

Without further knowledge on the exact solution v apart
from the domainΩ and the datum 𝑔 ∈ 𝐿2(Ω), Assumption 24
can be asserted for instance if the domain Ω is convex; see
Grisvard [7].

A straightforward consequence of the Lax-Milgram
Lemma is that the discrete problem (48) is well-posed.

Theorem 25. Under the assumptions of Theorem 4 (𝑑 = 2 or𝑑 = 3), if f belongs to 𝐿𝑟,∞(Ω) for some r such that 1 < 𝑟 <2, Ω a convex polyhedron (Ωℎ = Ω), and 𝐴 ∈ [𝑊1,∞(Ω)]𝑑×𝑑,
then ∀𝑞 with 1 ≤ 𝑞 < 𝑑/(𝑑 − 1)
󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 ≤ 𝐶 (𝑑, |Ω| , 𝑞, 𝑟, 𝛼, ‖𝐴‖𝑊1,∞(Ω)𝑑×𝑑 , 𝜎)⋅ ℎ2(1−1/𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑟,∞(Ω) . (164)

Proof (proof of Theorem 5.1 in [4]). From [3] the unique
solution 𝑢𝜖 of (48) with right-hand side 𝑓𝜖 = 𝑇1/𝜖(𝑓) ∈𝐿∞(Ω) ⊂ 𝐿2(Ω) verifies

󵄩󵄩󵄩󵄩𝑢𝜖ℎ − 𝑢𝜖󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝 ≤ 𝐶 (‖𝐴‖𝑊1,∞(Ω)𝑑×𝑑) ℎ 󵄩󵄩󵄩󵄩𝑓𝜖󵄩󵄩󵄩󵄩𝐿2(Ω) (165)

so 󵄩󵄩󵄩󵄩𝑢𝜖ℎ − 𝑢𝜖󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞≤ 𝐶 (𝑞, 𝑑, 𝜂, |Ω| , ‖𝐴‖𝑊1,∞(Ω)𝑑×𝑑) ℎ 󵄩󵄩󵄩󵄩𝑓𝜖󵄩󵄩󵄩󵄩𝐿2(Ω) (166)

Combined with (142), (134), and (141) allows one to have

󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 ≤ 𝐶 (𝑞, 𝑑, 𝜂, |Ω| , ‖𝐴‖𝑊1,∞(Ω)𝑑×𝑑)⋅ (󵄩󵄩󵄩󵄩𝑓 − 𝑓𝜖󵄩󵄩󵄩󵄩𝐿1(Ω) + ℎ 󵄩󵄩󵄩󵄩𝑓𝜖󵄩󵄩󵄩󵄩𝐿2(Ω)) , (167)

and by proceeding as in [4], we obtain (173).

Remark 26. If 𝑓 ∈ 𝐿𝑟,∞(Ω) for some 𝑟 with 1 < 𝑟 < 2 and
∀𝑘 > 0: 𝑇𝑘 (𝑓) ∈ 𝐻1 (Ω) , (168)

then a small adaptation of the proof given in [4] provides an𝑂(ℎ4(1−1/𝑟)) error estimate in ‖ ‖𝑠𝑤𝑖𝑝,𝑞-norm, with 1 ≤ 𝑞 <𝑑/(𝑑 − 1), since, with (168), it is known that󵄩󵄩󵄩󵄩𝑢𝜖ℎ − 𝑢𝜖󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞≤ 𝐶 (𝑑, |Ω| , 𝑞, 𝑟, 𝛼, ‖𝐴‖𝑊1,∞(Ω)𝑑×𝑑 , 𝜎) ℎ2 󵄩󵄩󵄩󵄩𝑓𝜖󵄩󵄩󵄩󵄩𝐿2(Ω) . (169)

6.2. Error Estimates for Low-Regularity Solutions

Assumption 27 (regularity of exact solution and space𝑉∗). As
in [3], we assume that the mesh Tℎ is compatible with the
partition 𝑃Ω in the sense of Assumption 3, 𝑑 ≥ 2, and that
there is 𝑝 such that 2𝑑/(𝑑 + 2) < 𝑝 ≤ 2; the unique solution V
is such that

V ∈ 𝑉∗ fl 𝐻1
0 (Ω) ∩𝑊2,𝑝 (Tℎ) , (170)

where 𝑊2,𝑝(𝑃Ω) = 𝑊2,𝑝(T) designate that the mesh T is
compatible with the partition 𝑃Ω, and we set

𝑉∗ℎ fl 𝑉∗ + 𝑉ℎ. (171)

We also assume 𝑝 < 2 since, in the case 𝑝 = 2, Assumption 27
amounts to Assumption 24.

Assumption 27 requires p > 1 for d = 2 and p > 6/5 for d =
3. In particular, we observe that, in two space dimensions, V ∈𝑊2,𝑝(𝑃Ω)with p> 1 holds true in polygonal domains; see, e.g.,
Dauge [8]. Moreover, using Sobolev embeddings (see [Evans
[9], Sect. 5.6] or [Brézis [10], Sect. IX.3]), Assumption 27
implies

V ∈ 𝐻1+𝛼
𝑝 (Ω) , 𝑤𝑖𝑡ℎ 𝛼𝑝 = 𝑑 + 22 − 𝑑𝑝 > 0. (172)

Theorem 28. Under the assumptions of Theorem 4 (𝑑 = 2 or𝑑 = 3), if f belongs to 𝐿𝑟,∞(Ω) for some r such that 1 < 𝑟 < 2,Ω a convex polyhedron (Ωℎ = Ω), and A ∈ [𝑊1,∞(Ω)]𝑑×𝑑,
then ∀𝑞 with 1 ≤ 𝑞 < 𝑝
󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢󵄩󵄩󵄩󵄩𝑠𝑤𝑖𝑝,𝑞 ≤ 𝐶 (𝑑, |Ω| , 𝑞, 𝑟, 𝛼, ‖𝐴‖𝑊1,∞(Ω)𝑑×𝑑 , 𝜎)⋅ ℎ2𝛼𝑝(1−1/𝑟) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑟,∞(Ω) . (173)

Remark 29. Moreover, under the assumption in Remark 26
one can have an𝑂(ℎ4𝛼𝑝(1−1/𝑟)) error estimate in ‖ ‖𝑠𝑤𝑖𝑝,𝑞-norm,
with 1 ≤ 𝑞 < 𝑝.
7. The Case Where A Is the Identity Matrix

Returning to the definition (31) of mass matrix 𝑄 where 𝐴 =𝐼, one has
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for 𝑖, 𝑗 in {1, 2, . . . , 𝑁}
𝑄𝑖,𝑗 = 𝑎𝑠𝑤𝑖𝑝ℎ (𝜑𝑖, 𝜑𝑗)
= ∫

Ω
∇ℎ𝜑𝑖∇ℎ𝜑𝑗𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐼
1

+ ∑
𝐹∈F𝑖
ℎ

1ℎ𝐹 𝜂 [𝜑𝑖] [𝜑𝑗] 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐼
2

− ( ∑
𝐹∈F𝑖
ℎ

∫
𝐹
{∇ℎ𝜑𝑖}𝜔 ⋅ 𝑛𝐹 [𝜑𝑗] 𝑑𝑥 + ∑

𝐹∈F𝑖
ℎ

∫
𝐹
{∇ℎ𝜑𝑗}𝜔 ⋅ 𝑛𝐹 [𝜑𝑖] 𝑑𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐼
3

. (174)

If 𝑖 = 𝑗, so
𝐼1 = ∫

Ω
∇ℎ𝜑2𝑖 𝑑𝑥 ≥ 0,

𝐼2 = ∑
𝐹∈F𝑖
ℎ

∫
𝐹

𝜂ℎ𝐹 [𝜑𝑖]2 𝑑𝑥 ≥ 0,
𝐼3 = 2(∫

𝐹
𝑖

{∇ℎ𝜑𝑖}𝜔 ⋅ 𝑛𝐹 [𝜑𝑖] 𝑑𝑥
+ ∑
𝐹∈F𝑖
ℎ

𝐹 ̸=𝐹
𝑖

{∇ℎ𝜑𝑖}𝜔 ⋅ 𝑛𝐹 [𝜑𝑖] 𝑑𝑥) = 0,

(175)

since [𝜑𝑖]𝐹
𝑖

= 0, {∇ℎ𝜑𝑖}𝜔 ⋅ 𝑛𝐹 = −(𝑑/ℎ𝐹
𝑖

)𝑛𝑖 ⋅ 𝑛𝐹, and∫
𝐹 ̸=𝐹
𝑖

𝜑𝑖𝑑𝑥 = 0.
If 𝑖 ̸= 𝑗, so
𝐼1 = ∫

Ω
∇ℎ𝜑𝑖∇ℎ𝜑𝑗𝑑𝑥 = 1𝑑2 󵄨󵄨󵄨󵄨𝐹𝑖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐹𝑗󵄨󵄨󵄨󵄨󵄨 𝑛𝑖 ⋅ 𝑛𝑗 ≤ 0 (176)

(see Proposition 6.1 in [4]),

𝐼2 = ∫
𝐹∈𝐹
𝑖
∪𝐹
𝑗

𝜂ℎ𝐹 [𝜑𝑖] [𝜑𝑗] 𝑑𝑥 + ∑𝐹∈F𝑖
ℎ

𝐹 ̸=𝐹
𝑖
̸=𝐹
𝑗

𝜂ℎ𝐹 [𝜑𝑖] [𝜑𝑗] 𝑑𝑥
= − 𝜂𝑑 + 1 ∑

𝐹∈F𝑖
ℎ

𝐹 ̸=𝐹
𝑖
̸=𝐹
𝑗

|𝐹|ℎ𝐹 ≤ 0,
𝐼3 = −𝑑 ∑

𝐹∈F𝑖
ℎ

𝐹 ̸=𝐹
𝑖
̸=𝐹
𝑗

( 1ℎ𝐹
𝑖

𝑛𝑖 ⋅ 𝑛𝐹𝜑𝑗 + 1ℎ𝐹
𝑗

𝑛𝑗 ⋅ 𝑛𝐹𝜑𝑖)𝑑𝑥 = 0.
(177)

It is therefore concluded that, under the condition 𝑛𝑙 ⋅𝑛𝑘 ≤0 (𝑙 ̸= 𝑘), one can have 𝑄𝑙𝑘 ≤ 0. Thus, the matrix 𝑄 verifies
(32).
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We compute explicitly the oscillation constant for Euler type half-linear second-order differential equation having multi-different
periodic coefficients.

1. Introduction

In literature, half-linear second-order differential equations
are given by

(𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 𝑐 (𝑡) Φ (𝑥) = 0,Φ (𝑠) = |𝑠|𝑝−2 𝑠, 𝑝 > 1, (1)

where 𝑟, 𝑐 are continuous functions and 𝑟(𝑡) > 0. It is well
known that oscillation theory of (1) is very similar to that of
the linear Sturm-Liouville differential equation, which is the
special case of 𝑝 = 2 in (1); see [1].

In particular, (1) with 𝜆𝑐(𝑡) instead of 𝑐(𝑡) is said to be
conditionally oscillatory if there exists a constant 𝜆0 such that
this equation is oscillatory for 𝜆 > 𝜆0 and nonoscillatory for𝜆 < 𝜆0. 𝜆0 is called the critical oscillation constant of this
equation; see [2].

The half-linear Euler differential equation

(Φ (𝑥󸀠))󸀠 + 𝛾𝑝𝑡𝑝Φ (𝑥) = 0, (2)

with the so-called critical oscillation constant 𝛾𝑝 = ((𝑝 −1)/𝑝)𝑝, plays an important role in the conditionally oscilla-
tory half-linear differential equation.

Equation (2) can be regarded as a good comparative
equation in the sense that (2) with 𝛾 instead of 𝛾𝑝 is oscillatory

if and only if 𝛾 > 𝛾𝑝 (see [3]) and if 𝑟(𝑡) = 1 in (1), then this
equation is oscillatory provided

lim
𝑡→∞

inf 𝑡𝑝𝑐 (𝑡) > 𝛾𝑝 (3)

and nonoscillatory if

lim
𝑡→∞

sup 𝑡𝑝𝑐 (𝑡) < 𝛾𝑝; (4)

see [4].
In [5], perturbations of (2) being of the form

(Φ (𝑥󸀠))󸀠 + 1𝑡𝑝 (𝛾𝑝 + 𝑛∑
𝑙=1

𝛽𝑗
Log2𝑗𝑡)Φ (𝑥) = 0 (5)

are investigated when lim𝑡→∞𝑡𝑝𝑐(𝑡) = 𝛾𝑝 for constant 𝛽𝑗 (𝑗 =1, 2, . . . , 𝑛).Here the notation
Log𝑘𝑡 = 𝑘∏

𝑗=1

log𝑗𝑡,
Log𝑘𝑡 = log𝑘−1 (log 𝑡) ,
Log1𝑡 = log 𝑡

(6)

is used. It is shown that the constant 𝜇𝑝 fl (1/2)((𝑝−1)/𝑝)𝑝−1
plays a crucial role in (5). In particular, if 𝑛 = 1 in (5) this
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equation reduces to the so-called Riemann-Weber half-linear
differential equation, and this equation is oscillatory if 𝛽1 >𝜇𝑝 and nonoscillatory otherwise. In general, if 𝛽𝑗 = 𝜇𝑝 for𝑗 = 1, 2, . . . , 𝑛−1, then (5) is oscillatory if and only if 𝛽𝑛 > 𝜇𝑝.

One of the typical problems in the qualitative theory
of various differential equations is to study what happens
when constants in an equation are replaced by periodic
functions which have same periods and different periods.
Our investigation follows this line and it is mainly motivated
by the paper [6].

In [7], the half-linear differential equation being of the
form

((1 + 𝑛∑
𝑗=1

𝛼𝑗
Log2𝑗𝑡)

1−𝑝Φ(𝑥󸀠))󸀠

+ 1𝑡𝑝 (𝛾𝑝 + 𝑛∑
𝑗=1

𝛽𝑗
Log2𝑗𝑡)Φ (𝑥) = 0 (7)

is investigated for 𝛼𝑗 and 𝛽𝑗 are constants and the following
result is obtained.

Theorem 1. Suppose that there exists 𝑘 ∈ {2, . . . , 𝑛} such that𝛽𝑗 + (𝑝 − 1) 𝛾𝑝𝛼𝑗 = 𝜇𝑝, 𝑗 = 1, . . . , 𝑘 − 1 (8)

and 𝛽𝑘 + (𝑝 − 1)𝛾𝑝𝛼𝑘 ̸= 𝜇𝑝.Then (7) is oscillatory if 𝛽𝑘 + (𝑝 −1)𝛾𝑝𝛼𝑘 > 𝜇𝑝 and nonoscillatory if 𝛽𝑘 + (𝑝 − 1)𝛾𝑝𝛼𝑘 < 𝜇𝑝.
In [8], the half-linear differential equation being of the

form (𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 𝛾𝑐 (𝑡)𝑡𝑝 Φ (𝑥) = 0 (9)

is considered for 𝛼-periodic positive functions 𝑟 and 𝑐 and it
is shown that (9) is oscillatory if 𝛾 > 𝐾 and nonoscillatory if𝛾 < 𝐾, where𝐾 is given by

𝐾 = 𝑞−𝑝 (1𝛼 ∫𝛼
0

𝑑𝜏𝑟𝑞−1)1−𝑝 (1𝛼 ∫𝛼
0
𝑐 (𝜏) 𝑑𝜏)−1 (10)

for 𝑝 and 𝑞 are conjugate numbers; that is, 1/𝑝 + 1/𝑞 = 1.
In [9], (9) and the half-linear differential equation being

of the form

(𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 1𝑡𝑝 (𝛾𝑐 (𝑡) + 𝜇𝑑 (𝑡)
log2𝑡 )Φ (𝑥) = 0 (11)

are considered for 𝑟, 𝑐, and 𝑑 are 𝛼-periodic, positive func-
tions defined on [0,∞) and it is shown that (9) is nonoscilla-
tory if and only if 𝛾 ≤ 𝛾𝑟𝑐, where 𝛾𝑟𝑐 is given by

𝛾𝑟𝑐 fl 𝛼𝑝𝛾𝑝(∫𝛼
0
𝑟1−𝑞 (𝑡) 𝑑𝑡)𝑝−1 ∫𝛼

0
𝑐 (𝑡) 𝑑𝑡 . (12)

In the limiting case 𝛾 = 𝛾𝑟𝑐 (11) is nonoscillatory if 𝜇 < 𝜇𝑟𝑑
and it is oscillatory if 𝜇 > 𝜇𝑟𝑑, where 𝜇𝑟𝑑 is given by

𝜇𝑟𝑑 = 𝛼𝑝𝜇𝑝(∫𝛼
0
𝑟1−𝑞 (𝑡) 𝑑𝑡)𝑝−1 ∫𝛼

0
𝑑 (𝑡) 𝑑𝑡 . (13)

In [10], the half-linear differential equation being of the
form

(𝑟 (𝑡) Φ (𝑥󸀠))󸀠 + 𝑐 (𝑡)𝑡𝑝 Φ (𝑥) = 0 (14)

is considered for 𝑟 : [𝑎,∞) → R, (𝑎 > 0), is a continuous
function for which mean value𝑀(𝑟1−𝑞) exists and for which0 < inf

𝑡∈[𝑎,∞)
𝑟 (𝑡) ≤ sup

𝑡∈[𝑎,∞)

𝑟 (𝑡) < ∞ (15)

holds and 𝑐 : [𝑎,∞) → R, (𝑎 > 0), is a continuous
function having mean value𝑀(𝑐) and it was shown that (14)
is oscillatory if 𝑀(𝑐) > Γ and nonoscillatory if 𝑀(𝑐) < Γ,
where Γ is given by

Γ = 𝑞−𝑝 [𝑀(𝑟1−𝑞)]1−𝑝 . (16)

In [6], the half-linear differential equation being of the
form

((𝑟 (𝑡) + 𝑛∑
𝑗=1

𝛼𝑗 (𝑡)
Log2𝑗𝑡)

1−𝑝Φ(𝑥󸀠))󸀠

+ 1𝑡𝑝 (𝑐 (𝑡) + 𝑛∑
𝑗=1

𝛽𝑗 (𝑡)
Log2𝑗𝑡)Φ (𝑥) = 0 (17)

is considered for 𝑇-periodic functions 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗, 𝑗 =1, 2, . . . , 𝑛, and 𝑟(𝑡) > 0 and the following result was obtained.
Theorem 2. Let 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗 (𝑗 = 1, 2, . . . , 𝑛) be 𝑇-periodic
continuous functions, 𝑟(𝑡) > 0, and their mean values over the
period 𝑇 are denoted by 𝑟, 𝑐, 𝛼̃𝑗, and 𝛽𝑗 (𝑗 = 1, 2, . . . , 𝑛).(i) If 𝑐 𝑟𝑝−1 > 𝛾𝑝, then (17) is oscillatory and if 𝑐 𝑟𝑝−1 < 𝛾𝑝,

then it is nonoscillatory.(ii) Let 𝑐 𝑟𝑝−1 = 𝛾𝑝. If there exists 𝑘 ∈ {1, . . . , 𝑛} such that
𝛽𝑗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝𝛼̃𝑗𝑟−1 = 𝜇𝑝, 𝑗 = 1, 2, . . . , 𝑘 − 1 (18)

(if 𝑘 ̸= 1), and 𝛽𝑘𝑟𝑝−1 + (𝑝 − 1)𝛾𝑝𝛼𝑘𝑟−1 ̸= 𝜇𝑝, then (17)
is oscillatory if𝛽𝑘𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝𝛼̃𝑘𝑟−1 > 𝜇𝑝 (19)

and nonoscillatory if𝛽𝑘𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝𝛼̃𝑘𝑟−1 < 𝜇𝑝. (20)

Our research is motivated by the paper [6], where the
oscillation constant is computed for (17) with the periodic
coefficients having same𝑇-period. However, if these periodic
functions have different periodswhatwould be the oscillation
constant is not investigated.Thus, in this paper we investigate
the oscillation constant for (17) with periodic coefficients
having different periods. In this paper we consider two
types of periodic coefficients which have different periods
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for (17). In the first type we consider these periodic coefficient
functions having the least common multiple and in the
second type, we consider these periodic coefficient functions
which do not have least common multiple. We give some
corollarieswhich illustrate the first type’s cases that our results
compile the known results in [6] but in the second type only
our results can be applied.

In Section 2, we recall the concept of half-linear-trigo-
nometric functions and their properties. In Section 3we com-
pute the oscillation constant for (17)with periodic coefficients
which have different periods. Additionally we show that if the
different periods coincide, then our results compile with the
known results in [6]. Thus, our results extend and improve
the results of [6].

2. Preliminaries

We start this section with recalling the concept of half-linear-
trigonometric functions; see [1] or [4]. Consider the following
special half-linear equation being of the form

(Φ (𝑥󸀠))󸀠 + (𝑝 − 1)Φ (𝑥) = 0 (21)

and denote its solution by 𝑥 = 𝑥(𝑡) given by the initial con-
ditions 𝑥(0) = 0, 𝑥󸀠(0) = 1. We see that the behavior of
this solution is very similar to that of the classical sine func-
tion. We denote this solution by sin𝑝𝑡 and its derivative by(sin𝑝𝑡)󸀠 = cos𝑝𝑡. These functions are 2𝜋𝑝-periodic, where𝜋𝑝 fl 2𝜋/𝑝 sin(𝜋/𝑝), and satisfy the half-linear Pythagorean
identity 󵄨󵄨󵄨󵄨󵄨sin𝑝𝑡󵄨󵄨󵄨󵄨󵄨𝑝 + 󵄨󵄨󵄨󵄨󵄨cos𝑝𝑡󵄨󵄨󵄨󵄨󵄨𝑝 = 1, 𝑡 ∈ R. (22)

Every solution of (21) is of the form𝑥(𝑡) = 𝐶 sin𝑝(𝑡+𝜑), where𝐶 and 𝜑 are real constants; that is, it is bounded together with
its derivative and periodic with the period 2𝜋𝑝. The function𝑢 = Φ(cos𝑝𝑡) is a solution to the reciprocal equation of (21);

(Φ−1 (𝑢󸀠))󸀠 + (𝑝 − 1)𝑞−1Φ−1 (𝑢) = 0,
Φ−1 (𝑢) = |𝑢|𝑞−2 𝑢, 𝑞 = 𝑝𝑝 − 1 , (23)

which is an equation of the form as in (21), so the functions 𝑢
and 𝑢󸀠 are also bounded.

Let 𝑥(𝑡) be a nontrivial solution of (1) and we consider the
half-linear Prüfer transformation which is introduced using
the half-linear-trigonometric functions

𝑥 (𝑡) = 𝜌 (𝑡) sin𝑝𝜑 (𝑡) ,
𝑥󸀠 (𝑡) = 𝑟1−𝑞 (𝑡) 𝜌 (𝑡)𝑡 cos𝑝𝜑 (𝑡) , (24)

where 𝜌(𝑡) = √|𝑥(𝑡)|𝑝 + 𝑟𝑞(𝑡)|𝑥󸀠(𝑡)|𝑝 and Prüfer angle 𝜑(𝑡) is
a continuous function defined at all points where 𝑥(𝑡) ̸= 0.

Then 𝜑(𝑡) satisfies the following differential equation:
𝜑󸀠 (𝑡) = 1𝑡 [𝑟1−𝑞 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝

− Φ(cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) + 𝑡𝑝𝑐 (𝑡)𝑝 − 1 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝] ; (25)

see [9].

3. Main Results

We need the following lemma in order to prove our main
Theorem 4.

Lemma 3. Let 𝜑(𝑡) = 𝜑1(𝑡) + ∑𝑛𝑗=1 𝜑2𝑗(𝑡) + 𝜑3(𝑡) + 𝜑4(𝑡) +∑𝑛𝑗=1 𝜑5𝑗(𝑡) + 𝑀 (𝑀 is a suitable constant) be a solution of the
equation

𝜑󸀠 (𝑡) = 𝜑󸀠1 (𝑡) + 𝑛∑
𝑗=1

𝜑󸀠2
𝑗

(𝑡) + 𝜑󸀠3 (𝑡) + 𝜑󸀠4 (𝑡)
+ 𝑛∑
𝑗=1

𝜑󸀠5
𝑗

(𝑡) , (26)

where

𝜑󸀠1 (𝑡) = 1𝑡 𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠2
𝑗

(𝑡) = 𝛼𝑗 (𝑡)𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 (𝑗 = 1, . . . , 𝑛) ,
𝜑󸀠3 (𝑡) = −1𝑡 Φ (cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) ,
𝜑󸀠4 (𝑡) = 𝑐 (𝑡)(𝑝 − 1) 𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠5
𝑗

(𝑡) = 𝛽𝑗 (𝑡)(𝑝 − 1) 𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 (𝑗 = 1, . . . , 𝑛) ,

(27)

with 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗 (𝑗 = 1, 2, . . . , 𝑛) are periodic functions
having different 𝑇1, 𝑇2, 𝑃𝑗, and 𝑄𝑗 (𝑗 = 1, 2, . . . , 𝑛) periods,
respectively, and 𝑟(𝑡) > 0 and

𝜃 (𝑡) = 1𝑇1 ∫𝑡+𝑇1𝑡 𝜑1 (𝑠) 𝑑𝑠 + 𝑛∑
𝑗=1

1𝑃𝑗 ∫𝑡+𝑃𝑗𝑡 𝜑2
𝑗

(𝑠) 𝑑𝑠
+ 1𝜉 ∫𝑡+𝜉
𝑡

𝜑3 (𝑠) 𝑑𝑠 + 1𝑇2 ∫𝑡+𝑇2𝑡 𝜑4 (𝑠) 𝑑𝑠
+ 𝑛∑
𝑗=1

1𝑄𝑗 ∫𝑡+𝑄𝑗𝑡 𝜑5
𝑗

(𝑠) 𝑑𝑠,
(28)
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where 𝜉 is one of the following 𝑇1, 𝑇2, 𝑃𝑗, and 𝑄𝑗 (𝑗 =1, 2, . . . , 𝑛) periods. Then 𝜃(𝑡) is a solution of𝜃󸀠 (𝑡)
= 1𝑡 [[∗𝑟 +

𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡]] 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
+ 1(𝑝 − 1) 𝑡 [[∗𝑐 +

𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡]] 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
− 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) ,

(29)

where

∗𝑟 = 1𝑇1 ∫𝑇10 𝑟 (𝑠) 𝑑𝑠,
∗𝑐 = 1𝑇2 ∫𝑇20 𝑐 (𝑠) 𝑑𝑠,
∗𝛼𝑗 = 1𝑃𝑗 ∫𝑃𝑗0 𝛼𝑗 (𝑠) 𝑑𝑠,
∗𝛽𝑗 = 1𝑄𝑗 ∫𝑄𝑗0 𝛽𝑗 (𝑠) 𝑑𝑠

for 𝑗 = 1, 2, . . . , 𝑛

(30)

and 𝜑(𝜏) − 𝜃(𝑡) = ∘(1) as 𝑡 → ∞.

Proof. Taking derivative of 𝜃(𝑡), we have
𝜃󸀠 (𝑡) = 1𝑇1 ∫𝑡+𝑇1𝑡 𝜑󸀠1 (𝑠) 𝑑𝑠 + 𝑛∑

𝑗=1

1𝑃𝑗 ∫𝑡+𝑃𝑗𝑡 𝜑󸀠2
𝑗

(𝑠) 𝑑𝑠
+ 1𝜉 ∫𝑡+𝜉
𝑡

𝜑󸀠3 (𝑠) 𝑑𝑠 + 1𝑇2 ∫𝑡+𝑇2𝑡 𝜑󸀠4 (𝑠) 𝑑𝑠
+ 𝑛∑
𝑗=1

1𝑄𝑗 ∫𝑡+𝑄𝑗𝑡 𝜑󸀠5
𝑗

(𝑠) 𝑑𝑠
= 1𝑇1 ∫𝑡+𝑇1𝑡 1𝑠 𝑟 (𝑠) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠

+ 𝑛∑
𝑗=1

1𝑃𝑗 ∫𝑡+𝑃𝑗𝑡 𝛼𝑗 (𝑠)𝑠Log2𝑗𝑠 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠
− 1𝜉 ∫𝑡+𝜉
𝑡

1𝑠Φ (cos𝑝𝜑 (𝑠)) sin𝑝𝜑 (𝑠) 𝑑𝑠
+ 1𝑇2 ∫𝑡+𝑇2𝑡 𝑐 (𝑠)(𝑝 − 1) 𝑠 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠
+ 𝑛∑
𝑗=1

1𝑄𝑗 ∫𝑡+𝑄𝑗𝑡 𝛽𝑗 (𝑠)𝑠 (𝑝 − 1) Log2𝑗𝑠 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑠.

(31)

Using integration by parts, we get

𝜃󸀠 (𝑡) = 1𝑇1𝑡 ∫𝑡+𝑇1𝑡 𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡 𝑛∑𝑗=1 1𝑃𝑗
⋅ ∫𝑡+𝑃𝑗
𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 − 1𝜉𝑡

⋅ ∫𝑡+𝜉
𝑡

Φ(cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) 𝑑𝜏 + 1𝑇2𝑡
⋅ ∫𝑡+𝑇2
𝑡

𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡 𝑛∑𝑗=1 1𝑄𝑗
⋅ ∫𝑡+𝑄𝑗
𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 − 1𝑇1
⋅ ∫𝑡+𝑇1
𝑡

1𝑠2 ∫𝑡+𝑇1𝑠 𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠 − 𝑛∑
𝑗=1

1𝑃𝑗
⋅ ∫𝑡+𝑃𝑗
𝑡

1𝑠2 ∫𝑡+𝑃𝑗𝑡 𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠 + 1𝜉

⋅ ∫𝑡+𝜉
𝑡

1𝑠2 ∫𝑡+𝜉𝑠 Φ(cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) 𝑑𝜏 𝑑𝑠 − 1𝑇2
⋅ ∫𝑡+𝑇2
𝑡

1𝑠2 ∫𝑡+𝑇2𝑠 𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠
− 𝑛∑
𝑗=1

1𝑄𝑗
⋅ ∫𝑡+𝑄𝑗
𝑡

1𝑠2 ∫𝑡+𝑄𝑗𝑡 𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 𝑑𝑠.

(32)

Let 𝑓 be a continuous 𝑇-periodic function and
∗𝑓 =(1/𝑇) ∫𝑇

0
𝑓(𝑠)𝑑𝑠; then integration by parts yields

1𝑇 ∫𝑡+𝑇
𝑡

𝑓 (𝑠)
log2𝑗𝑠𝑑𝑠 =

∗𝑓
log2𝑗𝑡 [1 + 𝑂( 1𝑡 log 𝑡)] . (33)

By using (33) and ∫𝑡+𝑇
𝑡

𝑓(𝑠)𝑑𝑠 = ∫𝑇
0
𝑓(𝑠)𝑑𝑠 for any𝑇-periodic

function and Pythagorean identity, the expressions𝑟1−𝑞 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,−Φ (cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) ,𝑐 (𝑡)𝑝 − 1 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
(34)

are bounded. Thus we get𝜃󸀠 (𝑡)
= 1𝑇1𝑡 ∫𝑡+𝑇𝑡 𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
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+ 1𝑡 𝑛∑𝑗=1 1𝑃𝑗 ∫𝑡+𝑃𝑗𝑡 𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏

− 1𝜉𝑡 ∫𝑡+𝜉𝑡 Φ(cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) 𝑑𝜏
+ 1𝑇2𝑡 ∫𝑡+𝑇2𝑡 𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
+ 1𝑡 𝑛∑𝑗=1 1𝑄𝑗 ∫𝑡+𝑄𝑗𝑡 𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
+ 𝑂(1𝑡 ) .

(35)

If we add and subtract the below terms in the right side of
this equation

1𝑇1𝑡 ∫𝑡+𝑇1𝑡 𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
+ 1𝑡 𝑛∑𝑗=1 1𝑃𝑗 ∫𝑡+𝑃𝑗𝑡 𝛼𝑗 (𝜏)

Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
− 1𝜉𝑡 ∫𝑡+𝜉𝑡 Φ(cos𝑝𝜃 (𝑡)) sin𝑝𝜑 (𝜏) 𝑑𝜏
+ 1𝑇2𝑡 ∫𝑡+𝑇2𝑡 𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏
+ 1𝑡 𝑛∑𝑗=1 1𝑄𝑗 ∫𝑡+𝑄𝑗𝑡 𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏

(36)

we can rewrite this equation as

𝜃󸀠 (𝑡) = 1𝑇1𝑡 ∫𝑡+𝑇1𝑡 𝑟 (𝜏) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡 𝑛∑𝑗=1 1𝑃𝑗
⋅ ∫𝑡+𝑃𝑗
𝑡

𝛼𝑗 (𝜏)
Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 − 1𝜉𝑡

⋅ ∫𝑡+𝜉
𝑡

Φ(cos𝑝𝜃 (𝑡)) sin𝑝𝜑 (𝜏) 𝑑𝜏 + 1𝑇2𝑡
⋅ ∫𝑡+𝑇
𝑡

𝑐 (𝜏)(𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑡 𝑛∑𝑗=1 1𝑄𝑗
⋅ ∫𝑡+𝑄𝑗
𝑡

𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝜏 + 1𝑇1𝑡
⋅ ∫𝑡+𝑇1
𝑡

𝑟 (𝜏) {󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏
+ 1𝑡 𝑛∑𝑗=1 1𝑃𝑗 ∫𝑡+𝑃𝑗𝑡 𝛼𝑗 (𝜏)

Log2𝑗𝜏 {󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝

− 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏 − 1𝜉𝑡
⋅ ∫𝑡+𝜉
𝑡

{Φ (cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏)
− Φ (cos𝑝𝜃 (𝑡)) sin 𝜃 (𝑡)} 𝑑𝜏 + 1𝑇2𝑡
⋅ ∫𝑡+𝑇2
𝑡

𝑐 (𝜏)(𝑝 − 1) {󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏
+ 1𝑡 𝑛∑𝑗=1 1𝑄𝑗 ∫𝑡+𝑄𝑗𝑡 𝛽𝑗 (𝜏)(𝑝 − 1) Log2𝑗𝜏 {󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
− 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝} 𝑑𝜏 + 𝑂(1𝑡 ) .

(37)

And using the half-linear-trigonometric functions, we
have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝜏)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝜑(𝜏)𝜃(𝑡) 󵄨󵄨󵄨󵄨󵄨󵄨Φ (cos𝑝𝑠) (cos𝑝𝑠)󸀠󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ const 󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨Φ (cos𝑝𝜑 (𝜏)) sin𝑝𝜑 (𝜏) − Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝜑(𝜏)𝜃(𝑡) 󵄨󵄨󵄨󵄨󵄨󵄨(Φ (cos𝑝𝑠) sin𝑝𝑠)󸀠󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ const 󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨󵄨󵄨 ≤ const 󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 .

(38)

By the Mean ValueTheorem we can write

𝜃 (𝑡) = 𝜑1 (𝑡1) + 𝑛∑
𝑗=1

𝜑2
𝑗

(𝑡2
𝑗

) + 𝜑3 (𝑡3) + 𝜑4 (𝑡4)
+ 𝑛∑
𝑗=1

𝜑5
𝑗

(𝑡5
𝑗

) (39)

for 𝑡1 ∈ [𝑡, 𝑡+𝑇1], 𝑡2
𝑗

∈ [𝑡, 𝑡+𝑃𝑗], 𝑗 = 1, 2, . . . , 𝑛, 𝑡3 ∈ [𝑡, 𝑡+𝜉],𝑡4 ∈ [𝑡, 𝑡 + 𝑇2], and 𝑡5
𝑗

∈ [𝑡, 𝑡 + 𝑄𝑗], 𝑗 = 1, 2, . . . , 𝑛; thus󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝜑1 (𝜏) − 𝜑1 (𝑡1)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

(𝜑2
𝑗

(𝜏) − 𝜑2𝑗 (𝑡2
𝑗

))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨𝜑3 (𝜏) − 𝜑3 (𝑡3)󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨𝜑4 (𝜏) − 𝜑4 (𝑡4)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

(𝜑5
𝑗

(𝜏) − 𝜑5𝑗 (𝑡5
𝑗

))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(40)
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This implies that󵄨󵄨󵄨󵄨𝜑 (𝜏) − 𝜃 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑜 (1𝑡 ) ,𝜑 (𝜏) − 𝜃 (𝑡) = 𝑜 (1) as 𝑡 󳨀→ ∞. (41)

And using ∗𝑟, ∗𝑐, ∗𝛼𝑗, ∗𝛽𝑗, and (33), we get

𝜃󸀠 (𝑡) = 1𝑡 [[∗𝑟 + {1 + 𝑂( 1𝑡 log 𝑡)} 𝑛∑𝑗=1
∗𝛼𝑗

Log2𝑗𝑡]]⋅ 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
+ 1(𝑝 − 1) 𝑡 [[∗𝑐 + {1 + 𝑂( 1𝑡 log 𝑡)} 𝑛∑𝑗=1

∗𝛽𝑗
Log2𝑗𝑡]]⋅ 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) + 𝑂(1𝑡 ) .

(42)

The term𝑂(1/𝑡) can be written as (|cos𝑝𝜃|𝑝+|sin𝑝𝜃|𝑝)𝑂(1/𝑡);
hence we get

𝜃󸀠 (𝑡) = 1𝑡 [[∗𝑟 + [1 + 𝑂( 1𝑡 log 𝑡)] 𝑛∑𝑗=1
∗𝛼𝑗

Log2𝑗𝑡
+ 𝑂(1𝑡 )]] 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 + 1(𝑝 − 1) 𝑡 [[∗𝑐
+ {1 + 𝑂( 1𝑡 log 𝑡)} 𝑛∑𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 + 𝑂(1𝑡 )]]⋅ 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 − 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) .

(43)

Now since all the terms of𝑂(1/𝑡 log 𝑡)/log2𝑗𝑡 are𝑂(1/𝑡) as𝑡 → ∞ for 𝑗 = 1, 2, . . . , 𝑛, then all these terms are asympto-
tically less than 𝑜(1)/log2𝑛𝑡. Hence we get𝜃󸀠 (𝑡)

= 1𝑡 [[∗𝑟 +
𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡]] 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
+ 1(𝑝 − 1) 𝑡 [[∗𝑐 +

𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡]] 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
− 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) .

(44)

The main result of this paper is as follows.

Theorem 4. Let 𝑟, 𝑐, 𝛼𝑗, and 𝛽𝑗, 𝑗 = 1, 2, . . . , 𝑛, are peri-
odic functions which have different 𝑇1, 𝑇2, 𝑃𝑗, and 𝑄𝑗, 𝑗 =1, 2, . . . , 𝑛, periods, respectively, and 𝑟(𝑡) > 0 in (17).

(i) (17) is oscillatory if ∗𝑐∗𝑟𝑝−1 > 𝛾𝑝 and nonoscillatory if
∗𝑐∗𝑟𝑝−1 < 𝛾𝑝, where ∗𝑟 and ∗𝑐 are defined in Lemma 3.(ii) Let ∗𝑐∗𝑟𝑝−1 = 𝛾𝑝. If there exists 𝑘 ∈ {2, . . . , 𝑛} such that

∗𝛽𝑗 ∗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝 ∗𝛼𝑗 ∗𝑟−1 = 𝜇𝑝, 𝑗 = 1, . . . , 𝑘 − 1 (45)

and
∗𝛽𝑘 ∗𝑟𝑝−1 + (𝑝 − 1)𝛾𝑝 ∗𝛼𝑘 ∗𝑟−1 ̸= 𝜇𝑝, then (17) is

oscillatory if

∗𝛽𝑘 ∗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝 ∗𝛼𝑘 ∗𝑟−1 > 𝜇𝑝 (46)

and nonoscillatory if

∗𝛽𝑘 ∗𝑟𝑝−1 + (𝑝 − 1) 𝛾𝑝 ∗𝛼𝑘 ∗𝑟−1 < 𝜇𝑝, (47)

where ∗𝛼𝑗 and ∗𝛽𝑗, 𝑗 = 1, 2, . . . , 𝑛, are defined in
Lemma 3.

Proof. The statement (i) is proved in [10]. It remains to prove
the statement (ii) in full generality.

We consider (17); let 𝑥(𝑡) be the nontrivial solution of (17)
and 𝜑(𝑡) is the Prüfer angle of (17) given in (24). Then

𝜑 (𝑡) = 𝜑1 (𝑡) + 𝑛∑
𝑗=1

𝜑2
𝑗

(𝑡) + 𝜑3 (𝑡) + 𝜑4 (𝑡) + 𝑛∑
𝑗=1

𝜑5
𝑗

(𝑡)
+ 𝑀 (48)

is a solution of

𝜑󸀠 (𝑡) = 𝜑󸀠1 (𝑡) + 𝑛∑
𝑗=1

𝜑󸀠2
𝑗

(𝑡) + 𝜑󸀠3 (𝑡) + 𝜑󸀠4 (𝑡)
+ 𝑛∑
𝑗=1

𝜑󸀠5
𝑗

(𝑡) , (49)

where

𝜑󸀠1 (𝑡) = 1𝑡 𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠2
𝑗

(𝑡) = 𝛼𝑗 (𝑡)𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 (𝑗 = 1, 2, . . . , 𝑛) ,
𝜑󸀠3 (𝑡) = −1𝑡 Φ (cos𝑝𝜑 (𝑡)) sin𝑝𝜑 (𝑡) ,
𝜑󸀠4 (𝑡) = 𝑐 (𝑡)(𝑝 − 1) 𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝 ,
𝜑󸀠5
𝑗

(𝑡) = 𝛽𝑗 (𝑡)(𝑝 − 1) 𝑡Log2𝑗𝑡 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜑 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
(𝑗 = 1, 2, . . . , 𝑛) .

(50)
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By the help of Lemma 3, 𝜃(𝑡) is a solution of𝜃󸀠 (𝑡)
= 1𝑡 [[∗𝑟 +

𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡]] 󵄨󵄨󵄨󵄨󵄨cos𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
+ 1(𝑝 − 1) 𝑡 [[∗𝑐 +

𝑛∑
𝑗=1

∗𝛽𝑗
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡]] 󵄨󵄨󵄨󵄨󵄨sin𝑝𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑝
− 1𝑡 Φ (cos𝑝𝜃 (𝑡)) sin𝑝𝜃 (𝑡) ,

(51)

where ∗𝑟, ∗𝑐, ∗𝛼𝑗, and ∗𝛽𝑗, 𝑗 = 1, 2, . . . , 𝑛, are given in Lemma 3.
This equation is a “Prüfer angle” equation for the follow-

ing second-order half-linear differential equation

((∗𝑟 + 𝑛∑
𝑗=1

∗𝛼𝑗
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡)
1−𝑝Φ(𝑥󸀠))󸀠

+ 1𝑡𝑝 (∗𝑐+𝑛𝑗=1 𝑛∑𝑗=1
∗𝛽𝑗

Log2𝑗𝑡 + 𝑜 (1)
Log2𝑛𝑡)Φ (𝑥) = 0,

(52)

which is the same as the following equation:

(𝑅 (𝑡)Φ (𝑥󸀠))󸀠
+ 1𝑡𝑝 (∗𝑐∗𝑟𝑝−1 + 𝑛∑𝑗=1

∗𝛽𝑗 ∗𝑟𝑝−1
Log2𝑗𝑡 + 𝑜 (1)

Log2𝑛𝑡)Φ (𝑥) = 0. (53)

Suppose that assumption (ii) ofTheorem4 is satisfied and that
(46) holds for 𝑘 ∈ {1, 2, . . . , 𝑛 − 1}. Then (53) is oscillatory as
a direct consequence ofTheorem 1. If (46) holds for 𝑘 = 𝑛, let𝜀 > 0 be so small that still

∗𝛽𝑛 ∗𝑟𝑝−1 − 𝜀 + (𝑝 − 1) 𝛾𝑝 (∗𝑟−1 ∗𝛼𝑗 − 𝜀) > 𝜇𝑝 (54)

and consider the following equation:

(𝑅1 (𝑡) Φ (𝑥󸀠))󸀠
+ 1𝑡𝑝 (∗𝑐∗𝑟𝑝−1 + 𝑛∑𝑗=1

∗𝛽𝑗 ∗𝑟𝑝−1
Log2𝑗𝑡 + ∗𝛽𝑛 ∗𝑟𝑝−1 − 𝜀

Log2𝑛𝑡 )Φ (𝑥)
= 0,

(55)

where 𝑅1(𝑡) = (1 + ∑𝑛𝑗=1(( ∗𝛼𝑗/∗𝑟)/log2𝑗𝑡) + ( ∗𝛼𝑛/∗𝑟 − 𝜀)/log2𝑛𝑡)1−𝑝.
This equation is a Sturmian minorant for sufficiently large 𝑡
in (53) and (54) and Theorem 1 implies that this minorant
equation is oscillatory and hence (53) is oscillatory as well.
This means that the Prüfer angle 𝜃(𝑡) of the solution of
(52) is unbounded and by Lemma 3 the Prüfer angle 𝜑(𝑡)
of the solution of (17) is unbounded as well. Thus, (17) is
oscillatory. A slightly modified argument implies that (17) is
nonoscillatory provided that (47) holds.

Corollary 5. If the periods of the functions 𝑟, 𝑐, 𝛼𝑗, and𝛽𝑗, 𝑗 =1, 2, . . . , 𝑛, in (17) coincide with 𝑇-period, which is given in [6],
then our oscillation constants overlap to their oscillation con-
stants and our main result compiles with the result given in [6].

Corollary 6. If there exists a lcm(𝑇1, 𝑇2, 𝑃𝑗, 𝑄𝑗), 𝑗 =1, 2, . . . , 𝑛, and the period 𝑇 which is given in [6] is chosen as
lcm(𝑇1, 𝑇2, 𝑃𝑗, 𝑄𝑗), 𝑗 = 1, 2, . . . , 𝑛, then our oscillation con-
stants overlap to their oscillation constants and our main result
compiles with the result given in [6].

Remark 7. If for 𝑗 = 1, 2, . . . , 𝑛 lcm(𝑇1, 𝑇2, 𝑃𝑗, 𝑄𝑗) is not
defined, then only our result can be appliedwhereas the result
given in [6] can not.

Example 8. Consider the nonlinear equation (17) for 𝑝 = 3,𝑟(𝑡) = 2+cos(𝑎𝑥+𝑏), (𝑎, 𝑏 ∈ R),𝛼1(𝑡) = cos 3𝑡,𝛼2(𝑡) = sin 8𝑡,𝛽1(𝑡) = sin 4𝑡, 𝛽2(𝑡) = sin 2𝑡, and 𝑐(𝑡) = 2+ sin 6𝑡. In this case𝑇1 = 2𝜋/|𝑎|, 𝑃1 = 2𝜋/3, 𝑃2 = 𝜋/4, 𝑄1 = 𝜋/2, 𝑄2 = 𝜋, and𝑇2 = 𝜋/3 are periods of these functions, respectively. Because
of these functions being periodic functions and 𝑟(𝑡) positive
defined we can use Theorem 4 for all 𝑎 ̸= 0 and we obtain

∗𝑐∗𝑟𝑝−1 = ( |𝑎|2𝜋 ∫2𝜋/|𝑎|
0

(2 + cos (𝑎𝑠 + 𝑏)) 𝑑𝑠)
⋅ ( 3𝜋 ∫𝜋/3

0
(2 + sin 6𝑠) 𝑑𝑠)3−1 = 8,

𝛾3 = (3 − 13 )3 = 827 .
(56)

Thuswe get ∗𝑐∗𝑟𝑝−1 > 𝛾3 for all 𝑎 ̸= 0 and considered equation is
oscillatory. Here the important point to note is that while we
cannot applyTheorem 2which is given in [6] for this example
if we choose 𝑎 = √5, then lcm(2𝜋/|𝑎|, 2𝜋/3, 𝜋/4, 𝜋/2, 𝜋, 𝜋/3)
is not defined, we can apply our Theorem 4.
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The paper is concerned with the development and numerical analysis of mathematical models used to describe complex biological
systems in the framework of Integrated Pest Management (IPM). Established in the late 1950s, IPM is a pest management paradigm
that involves the combination of different pest control methods in ways that complement one another, so as to reduce excessive use
of pesticides andminimize environmental impact. Since the introduction of the IPM concept, a rich set ofmathematical models has
emerged, and the present work discusses the development in this area in recent years. Furthermore, a comprehensive parametric
study of an IPM-based impulsive control scheme is carried out via path-following techniques. The analysis addresses practical
questions, such as how to determine the parameter values of the system yielding an optimal pest control, in terms of operation
costs and environmental damage. The numerical study concludes with an exploration of the dynamical features of the impulsive
model, which reveals the presence of codimension-1 bifurcations of limit cycles, hysteretic effects, and period-doubling cascades,
which is a precursor to the onset of chaos.

1. Introduction

Food losses due to pests and plant diseases are nowadays one
of the major threats to food security, particularly in large
parts of the developing world. As reported by the United
Nations [1], the world’s population in 2014 was estimated at
7.2 billion, with an approximate yearly growth of 82 million, a
quarter of which occurs in the least developed countries.This
unprecedented amount of people in the world poses serious
challenges for food producers and policy-makers, especially
regarding the minimization of crop losses due to pests and
plant diseases, which have been estimated to be as high as
40% of the world production [2].This issue has been a matter
of active research formany decades, where themain challenge
lies in the unavoidable trade-off between pest reduction,
financial costs, effects on human health, and environmental
impact.Therefore, the problem of pest control has necessarily
to be addressed in an integratedmanner, which hasmotivated

the development of various integrated approaches, such as
Integrated Pest Management (IPM) [2, 3]. IPM’s basic princi-
ple consists in the judicious and coordinated use of multiple
pest control mechanisms (e.g., biological control, cultural
practices, and selected chemical methods) in ways that
complement one another, maintaining pest damage below
acceptable economic levels, while minimizing hazards to
humans, animals, plants, and the environment.The literature
on Integrated Pest Management is vast, and Section 2 will
present a discussion of the historical development of the IPM
concept over the past decades, which will serve as motivation
for the mathematical description of the underlying pest
control methods (see below).

One of the critical factors of success in the implementa-
tion of IPM programmes is the fundamental understanding
of the interplay between the different elements of the asso-
ciated agricultural ecosystems, such as crops, pests, natural
enemies, and biopesticides, which quite often can only be
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achieved via a certain degree of mathematical abstraction.
The mathematical description of ecological processes is one
of the main subjects of study in the field of Ecological
Modeling, which can be considered to a great extent as a
nonlinear science, since almost all ecological interactions,
both trophic and competitive, are nonlinear. In this respect,
one of the main challenges in this area is the construction
of mathematical models that provide reliable predictions and
understanding of field observations in real ecosystems, in
such a way that these models can be used as decision support
tools.The possible approaches that can be employed to tackle
this issue have been a matter of extensive debate among
scientists for at least four decades [4, 5], and discussions on
this topic are still going on [6–11]. In the particular case of
agricultural pest control, the challenge consists in developing
robust mathematical models able to at least qualitatively
describe different pest control methods, so as to make
the development of pest control strategies and policies less
intuitive or empirical.

Since the origins of the IPM concept in the late 1950s
[12, 13], a rich set of mathematical models has emerged
in the literature focusing on different features of IPM-
based applications, and in the present work we will briefly
discuss several aspects of the recent development in this area
(Section 3). One of the first systematic reviews of IPM-related
mathematicalmodels was published by Shoemaker [5], which
was based upon her doctoral dissertation submitted in 1971.
She considered suitable combinations of chemical and biolog-
ical pest control applied to simplified ecosystems consisting of
crops, pests, and parasites. The parasites are able to naturally
control the pest population to a certain extent, but this effect
is compromised by the pesticides applications, as Shoemaker
assumed that the parasites are also killed by the chemical. As
a practical example, she developed charts that the growers
can use to determine whether pesticides should be sprayed,
given in terms of the time until harvest and pest and parasite
densities. Subsequent surveys of mathematical models for
controlling pest populations have been carried out by Jaquette
[4], Wickwire [14], Beddington et al. [15], and Barclay [16],
and Section 3 will discuss some representative models that
have been further introduced since then.

Despite the vast literature onmodeling pest control strate-
gies in agricultural ecosystems, comprehensive parametric
studies of the mathematical models are rather scarce, with
numerical investigations conducted mainly at the simulation
level. This fact motivates the main part of the present work
(Section 4), which will be devoted to the utilization of
specialized numerical techniques in order to address practical
questions relevant to IPMapplications. Specifically, an impul-
sive pest control model will be chosen and reformulated as a
hybrid dynamical system [17], thus allowing the parametric
study of the periodic response of the system by means of
numerical continuation (path-following) methods [18]. In
this way, we will be able to tackle questions as to the optimal
implementation of the impulsive pest control, in terms of
minimizing operation costs and environmental damage. The
paper will end with further numerical investigations of the
dynamic response of the impulsive model, which will reveal
the presence of codimension-1 bifurcations of limit cycles,

hysteretic phenomena, and period-doubling cascades, which
is a precursor to the onset of chaos.

2. A Brief Overview of Integrated
Pest Management

An apparently promising approach to reduce crop losses due
to pests appeared during the 1940s, with the discovery of syn-
thetic pesticides such asDDT,whichmarked a new era in pest
control. Pesticides became soon popular in the agricultural
industry, as they were easy to apply and effectively killed a
significant amount of the targeted pest, due to which their
use spread rapidly worldwide. However, the overreliance on
synthetic pesticides was proven to be unsustainable already
by the end of the 1950s. Just a few years after the first use of
DDT, resistance to the chemical was observed in a variety of
insect pests [2], which meant more frequent applications and
higher dosages of pesticides in order to keep acceptable pest
population levels. Another negative effect was the reduction
of beneficial species (such as natural enemies), which inten-
sified the problem of pest resurgence and allowed nonpest
species to increase in number and become pests themselves.
In addition to these on-site crop problems produced by the
overuse of pesticides, their negative impact extended beyond
the agricultural framework, causing damage to water sources
and further ecosystems, as well as posing serious human
health hazards due to, for example, pesticide residuals in food
and pesticide exposition [19, 20].

Recognition of the problems associated with the indis-
criminate use of synthetic pesticides encouraged the devel-
opment of alternative pest control paradigms, such as the
concept of Integrated Pest Management (IPM) [2, 3, 12,
13]. Having its origins in the seminal work by Stern et
al. [21], IPM is an interdisciplinary pest control approach
that relies heavily upon natural mortality factors, such as
natural predators and environmental conditions, combined
with further control mechanisms. These include biological
control, selected chemical methods, and cultural practices.
The basic idea is that, instead of employing a single control
method, efforts are directed to the judicious and coordinated
use of multiple tactics in ways that complement one another,
maintaining pest damage below acceptable levels, while
minimizing hazards to humans, animals, plants, and the
environment.

Integrated Pest Management (IPM) has been recognized
as one of the most robust constructs in agricultural sciences
to deal with the challenges related to the excessive use of
pesticides [12], already outlined above (see also [22–25]).
The key concept for the implementation of a pest control
programme in an IPM framework is that of economic injury
level. This term was introduced for the first time by Stern et
al. [21] (see also [3]) and means the lowest pest population
density that will cause economic damage. The latter term
can be defined as the amount of injury that justifies the
application of controlmeasures, and it can vary depending on
the area, season, and other economic or ecological factors.

In general, it is assumed that a number of pest control
mechanisms are available, for instance, biological methods,
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cultural practices, natural enemies, habitat management,
and synthetic pesticides. The basic decision rules rely on a
predefined economic injury level and an economic thresh-
old, which gives the pest population density above which
control actions must be taken so as to prevent the pest
population from reaching the economic injury level. An
IPM-based pest control scheme, in its simplest form, will
then require that whenever the amount of pests is less than
the economic threshold only ecologically benign control
measures are applied, that is, those that enhance natural
control. If natural control is not capable of preventing the pest
population from reaching the economic injury level, then
synthetic pesticides come into play, nevertheless, in adequate
combination with environmentally friendly control measures
so as to minimize the amount of pesticides released into
the underlying ecosystem. In practice, however, the task of
developing and implementing an IPM-based pest control
programme sustainable in both ecological and economic
terms is by no means a trivial one.

As has been recognized in the past [2, 12, 16], the
implementation of IPM-based control strategies requires a
profound knowledge of the interactions between the different
components of the underlying agricultural ecosystem, for
instance, crops, pests, natural enemies, and habitat condi-
tions. Given the remarkable complexity of such ecosystems,
the required fundamental understanding of the involved
biological interactions can quite often only be obtained via
a certain degree of mathematical abstraction. Ideally, the
final result should be a mathematical model tailored for
a specific application, which provides reliable predictions
and understanding of field observations, in such a way
that the model can be used as a decision support tool
for devising effective pest control schemes [26]. Neverthe-
less, the main challenge lies in the sheer complexity of
the involved biological processes, which often hinders the
search for appropriate mathematical representations of the
laws governing the ecosystem. In the next section we will
discuss in detail some representative mathematical models
used for describing various pest control methods, including
synthetic (pesticides), biological (natural enemy predation,
biopesticides), and cultural (roguing, replanting), which are
precisely some of the most common control mechanisms
used in combination in IPM-based control programmes.

3. Mathematical Models for Pest Control

In this section we will present a short overview on the avail-
able mathematical models used to describe the ecological
interactions in pest control. The discussion will be mainly
guided by two criteria: model type, in a mathematical sense,
and the underlying ecological phenomena in the framework
of agricultural pest control. Special attention will be paid to
those models related to Integrated Pest Management (IPM),
where the main purpose is to minimize damage to nontarget
organisms and harmful environmental effects, by combining
classical chemical strategies with alternative controlmethods,
such as biological control, host-plant resistance breeding,
crop rotation, harvest management, and cultural techniques
(see Section 2).

Before starting our discussion, let us give some remarks
regarding notation. As is well known, biological pest control
is characterized by the reduction of pest population as a
result of the introduction of a natural enemy [15]. The
interaction between a pest and its natural enemies can be
understood in terms of the dynamics observed in prey-
predator models. Therefore, most of the models presented
in our discussion will have in their core a certain type of
prey-predator system. In this context, state variables related
to pest (prey) and natural enemies (predator) populations
will be denoted by scalar, nonnegative variables 𝑥 and 𝑦,
respectively. Furthermore, all system parameters are assumed
to be positive numbers, unless otherwise stated, and they will
be used throughout themanuscript in a consistentmanner, in
such a way that, whenever possible, they will have the same
meaning in different models. Finally, the prime symbol will
denote time differentiation.

3.1. Pest Control as a Time-Continuous Process

Pest Diseases and Natural Enemies as Control Measures. In
the context of Integrated Pest Management, one of the most
representative control strategies is that of an artificial spread
of an infection among a pest population combined with
a different control method, such as continuous pesticide
spraying or natural enemy predation. Typically, the pest pop-
ulation is divided into two classes: susceptible and infective.
The infective population is used to spread a certain disease
or virus created in a laboratory. At the beginning, a small
amount of infected pest is introduced into the ecosystem
with the purpose of generating an epidemic. The susceptible
population becomes infected through direct contact with the
infective pest, thereby causing a significant reduction of the
pest population as a direct consequence of the disease, or due
to a decrease in its reproductive ability. A model describing
this control mechanism has been recently proposed by Jana
and Kar [27], based on the classical susceptible-infective (SI)
paradigm [28]:𝑥󸀠𝑆 (𝑡) = 𝑟𝑥𝑆 (𝑡) (1 − 𝑥𝑆 (𝑡) + 𝜂𝑥𝐼 (𝑡)𝐾 ) − 𝛼𝑥𝑆 (𝑡) 𝑥𝐼 (𝑡)

− 𝛽𝑥𝑆 (𝑡) 𝑦 (𝑡)𝑎 + 𝑥𝑆 (𝑡) ,𝑥󸀠𝐼 (𝑡) = 𝛼𝑥𝑆 (𝑡) 𝑥𝐼 (𝑡) − 𝛾𝑥𝐼 (𝑡) 𝑦 (𝑡) − 𝜎𝑥𝐼 (𝑡) ,𝑦󸀠 (𝑡) = 𝐶𝛽𝑥𝑆 (𝑡) 𝑦 (𝑡)𝑎 + 𝑥𝑆 (𝑡) + 𝛾 (𝑝 − 𝑞) 𝑥𝐼 (𝑡) 𝑦 (𝑡)
+ 𝑑𝑦 (𝑡) (1 − 𝑥𝑆 (𝑡) + 𝜂𝑥𝐼 (𝑡)𝐾 ) − 𝜇𝑦 (𝑡)− 𝛿𝑦 (𝑡)2 .

(1)

The subscripts 𝑆 and 𝐼 denote the susceptible and infective
pest population, respectively, while 𝑦 represents the natu-
ral enemy (predator) population. From the two classes of
pest, only the susceptible population is able to reproduce,
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according to a logistic law with intrinsic growth rate 𝑟 and
environmental carrying capacity 𝐾. The infective pest is
assumed to also contribute towards the carrying capacity of
the ecosystem; however, the significance of this environmen-
tal impact can differ from that of the susceptible population,
which is reflected by the parameter 𝜂. The disease spreads
within the susceptible pest through direct contact with the
infected population, whose effect can be seen in the second
term of the first equation of system (1), where the coefficient𝛼 represents the force of infection. A second control action
in this ecosystem is given by the presence of a natural
enemy (predator). The predator population feeds on the pest
according to aHolling type II trophic function [29–31], where𝛽 is the maximum predator’s capturing rate and 𝑎 stands for
the susceptible pest population density at which the capturing
rate is half the maximum value.

As already mentioned above, the infective population is
not able to reproduce; hence its survival relies heavily upon
the ability of the disease to turn the susceptible population
into infected pest, which depends on the force of infection𝛼. On the other hand, the infective pest is assumed to have
a natural death rate 𝜎. This produces an exponential decay of
the infective population in the absence of natural enemies and
susceptible pest. The infective population is attacked by the
natural enemy following a Holling type I functional response
with capturing rate 𝛾; see the second equation of the model
(1).

The third equation in (1) describes the evolution of
the natural enemy population. Here, 𝐶 and 𝑝 represent
the conversion factors from susceptible and infective pest,
respectively, into predators. A negative effect of the infection
on the predator population is accounted for by the parameter𝑞. In addition,𝜇denotes themortality rate and 𝛿measures the
intensity of competition among the natural enemies for space,
food, and so on. At low pest population densities, the natural
enemies are able to find alternative food sources, leading to
an additional growth rate 𝑑. As the pest population grows,
the predators make less use of the alternative food, and when
the pest approaches the environmental carrying capacity, the
natural enemy feeds almost on the pest only.

A systematic study of the dynamics of system (1) has
been carried out by Jana and Kar [27]. They analyze in
great detail the effect of the relevant parameters on the
proposed ecosystem, and the theoretical results are illustrated
by representative numerical simulations. As has been already
explained above, the pest population is controlled by two
methods: infection release and natural enemy predation,
which fall into the class of biological pest control. From
a practical point of view, the role of the alternative food
source for the natural enemy has been shown to be crucial.
If the predator growth rate due to the alternative food is
greater than its mortality rate (i.e., 𝑑 > 𝜇), a nontrivial
pest-free equilibrium is feasible, where the natural enemy is
the only species present in the ecosystem. Furthermore, if 𝑑
exceeds a certain threshold, the equilibrium is asymptotically
stable, which means that small (pest) perturbations in the
ecosystem will be controlled entirely by the natural enemies.
Jana and Kar conclude their investigation by considering a
third control measure in the system consisting in chemical

methods (pesticides), and they discuss how to combine these
three control techniques so as to minimize the deadly effects
on the natural enemies and environmental damage, while
effectively reducing the pest population.

Plant Disease Control via Cultural Methods. Another non-
chemical mechanism to deal with plant diseases can be
implemented via cultural practices, which fall into the cat-
egory of biological control. They are carried out by means
of human actions only, such as roguing (removing) infected
plants, replantation of disease-free plants, crop rotation,
intercropping, and strip farming [20]. The main purpose is
to reduce the negative consequences of a disease to levels
that are acceptable in economic terms, while causingminimal
damage to the environment. However, there are certain
limitations for the application of such control methods,
since they typically involve high labor costs and a complete
eradication of plant diseases through cultural practices is
generally not possible.

A low-dimensional model considering cultural practices
as the only disease control action is proposed by van den
Bosch et al. [32]:𝑧󸀠𝑆 (𝑡) = 𝑟𝜙 + 𝑟 (1 − 𝜙) 𝑞 (1 − 𝑝) 𝑧𝐼 (𝑡) + 𝑧𝑆 (𝑡)(1 − 𝑝) 𝑧𝐼 (𝑡) + 𝑧𝑆 (𝑡)− 𝜇𝑧𝑆 (𝑡) − 𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) ,𝑧󸀠𝐼 (𝑡) = 𝑟 (1 − 𝜙) (1 − 𝑞) (1 − 𝑝) 𝑧𝐼 (𝑡)(1 − 𝑝) 𝑧𝐼 (𝑡) + 𝑧𝑆 (𝑡) − (𝜇 + 𝜎) 𝑧𝐼 (𝑡)+ 𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) ,

(2)

with 0 < 𝜙, 𝑝, 𝑞 < 1. Here, 𝑧𝑆 and 𝑧𝐼 denote the population of
susceptible and infected plants, respectively, in an agricultural
crop field contaminated with a certain viral disease. New
plants are introduced in the ecosystem at a constant rate 𝑟,
from which 𝑟𝜙 corresponds to in vitro-germinated healthy
plants and 𝑟(1 − 𝜙) to cuttings taken from the crop (suscep-
tible and infected). By visual inspection or other diagnostic
methods, infected plants from the cuttings are discarded with
probability 𝑝. Furthermore, it is assumed that the infected
plants are able to recover due to reversion with probability𝑞. Consequently, the introduction of new plants contribute
to both the susceptible and infected populations (see, e.g.,
the first term in the second equation of (2), which gives the
proportion of infected plants that enter the crop as a result
of the introduction of 𝑟(1 − 𝜙) cuttings). In addition to the
usual death rate 𝜇, the infected plants are removed from the
system (roguing) at a rate 𝜎. As can be seen, only cultural
actions are considered as ameasure of disease control. On the
other hand, another parameter considered in the ecosystem
is the within-plant virus titre (denoted hereafter by 𝑤). As
pointed out in [32], this parameter deeply influences both the
viral transmission in the crops and the corresponding disease
symptoms,which in turn affect the roguing rates and recovery
and detection probabilities. Therefore, van den Bosch et al.
assume the parameters 𝛼, 𝜎, 𝑝, and 𝑞 to be 𝑤-dependent,
and they suggest certain functional relations to quantify these
interactions, motivated by some previous field studies.
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A remarkable feature of model (2) is the fact that
it illustrates two well-known disease transmission modes:
horizontal and vertical.The first one typically occurs through
herbivorous insects that ingest spores on host-plant leaves
and carry the disease from one plant to another.The intensity
of this transmission mode is quantified by the transmission
coefficient 𝛼. On the other hand, the vertical transmission is
caused by the use of cuttings to establish new crops. In this
respect, van den Bosch et al. focused special attention on the
effects of a trade-off between horizontal and vertical trans-
mission modes operating in plant pathogens. Specifically, the
authors analyze in detail the underlying cultural practices and
how they are reflected in the proposed ecosystem (2). Their
results then suggest that the considered control mechanisms
should be carefully adapted and combined in order to
minimize the risks of failure, which to a great extent depends
on how effectively the vertical and horizontal transmission
modes are adequately dealt with. Analogous models consid-
ering disease control based on cultural practices have been
proposed and investigated in the past and can be found in,
for example, [33–38].

3.2. Pest Control Strategies via Impulsive Perturbations. As
already explained before, pest control strategies based on
an Integrated Pest Management approach involve a suitable
combination of biological, cultural, and chemical control
techniques, including pesticide spraying, pest harvesting
or trapping, plant roguing, and acceleration of the pest
mortality through the introduction of natural enemies or pest
diseases. Some of these controlmethodsweremathematically
described in the models presented in Section 3.1, in terms
of smooth ordinary differential equations. In doing so, the
pest control strategies were conceived as a time-continuous
process of autonomous type, where the system parameters
have to be chosen in such a way that the underlying control
mechanisms effectively reduce the negative pest effects on
agricultural crop fields, without any external perturbation.
However, this approach neglects the fact that pest control
methods are in reality implemented in a discontinuous man-
ner, which is a consequence of the discrete nature of human
activities. Furthermore, there can be exogenous factors in the
ecosystems (e.g., temperature, air composition, and further
human actions) that may lead to pest population densities
changing very rapidly in a short period of time, which can
be modeled via impulsive perturbations.

In our case, the above-outlined sudden changes in the
ecosystems will be described in the framework of impulsive
differential equations. This class of models is particularly
suited for the representation of dynamical phenomena sub-
ject to short-term perturbations whose duration is negligible
in comparison to the duration of the system evolution.
Therefore, these perturbations can be assumed to act instan-
taneously in the form of impulses, which generally leads to
jumps in the state space (discontinuous evolution). Processes
of this nature can be found in numerous applications, for
instance, in mechanics, population dynamics, ecology, biol-
ogy, and economy, and the theoretical foundations have been
developed to a great extent [39–42].

Susceptible-Infective Control Scheme with Impulsive Roguing
and Replanting. A straightforward mathematical description
of a pest control strategy based on impulsive perturbations is
given by Tang et al. [43]:𝑧󸀠𝑆 (𝑡) = −𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) − 𝜇𝑧𝑆 (𝑡) ,𝑧󸀠𝐼 (𝑡) = 𝛼𝑧𝑆 (𝑡) 𝑧𝐼 (𝑡) − 𝜇𝑧𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,𝑧𝑆 (𝑡+) = 𝑧𝑆 (𝑡−) + 𝑟𝜙,𝑧𝐼 (𝑡+) = (1 − 𝜎) 𝑧𝐼 (𝑡−) + 𝑟 (1 − 𝜙) ,𝑡 = 𝑛𝑇, 𝑛 ∈ N (replanting and roguing) .

(3)

Here, cultural practices (roguing and replanting) are
considered for pest control, and the state variables and
parameters are of the same nature as those of system (2), with0 ≤ 𝜎 < 1. The actions of planting and roguing are assumed
to be carried out in a periodic and impulsive manner, with
period 𝑇 > 0, which differs from the approach employed in
themodel (2), where those actions are continuously executed.
As can be seen, the key parameters in this control scheme are
the roguing coefficient 𝜎 and the impulse period𝑇, that is, the
parameters that are directly influenced by human decisions.
Consequently, the main question here is how to choose those
parameters so as to keep the number of infected plants below
a certain predefined critical level. In this respect, Tang et al.
identify a lower bound for the impulse period that guarantees
the extinction of the infected plants, for the special case 𝜙 = 1
(i.e., replanted plants contribute only to the healthy class).
Specifically, they prove the existence of a periodic solution of
system (3) of the form (𝑧̃S(𝑡), 0), 𝑡 > 0, which is asymptotically
stable provided 𝑇 is large enough.

Periodic Impulsive Control at Different Fixed Times. When
different controlmeasures are combined, for example, natural
enemy release and pesticide spraying, it can be beneficial
to carry out those actions at different moments within a
period of control. This is particularly convenient when the
chemicals used to control the pest population also have the
collateral effect of killing the natural enemies. Therefore,
a suitable amount of natural enemies has to be regularly
introduced into the ecosystemat an appropriate time, in order
to compensate for the undesired pesticide-induced predator
mortality. Another reason forwhich controlmeasures applied
at different times can be advantageous is that some natural
enemies are effective only at certain life stages of the pest
population. For instance, some predators are able to attack the
adult population only, hence leaving larval or other previous
stages of the pests unaffected. In such cases, the natural
enemy releases and pesticide spraying have to be carried out
according to the life cycle of the pest population at different
times, so as to effectively cover all possible life stages of the
pest.
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Zhang and coworkers have proposed several pest control
models based on the scheme described above, for example
[44],𝑥󸀠 (𝑡) = 𝑥 (𝑡) (1 − 𝑥 (𝑡)𝐾 ) − 𝛽𝑥 (𝑡) 𝑦 (𝑡)𝑎 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) ,𝑦󸀠 (𝑡) = 𝐶𝛽𝑥 (𝑡) 𝑦 (𝑡)𝑎 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) − 𝜇𝑦 (𝑡) ,𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,𝑥 (𝑡+) = (1 − 𝜎𝑥) 𝑥 (𝑡−) ,𝑦 (𝑡+) = (1 − 𝜎𝑦) 𝑦 (𝑡−) ,𝑡 = (𝑛 + 𝑙 − 1) 𝑇 (pesticide spraying) ,𝑥 (𝑡+) = 𝑥 (𝑡−) ,𝑦 (𝑡+) = 𝑦 (𝑡−) + 𝑑,𝑡 = 𝑛𝑇, 𝑛 ∈ N (natural enemy release) ,

(4)

where 𝑥 and 𝑦 stand for the densities of the pest and natural
enemy population, respectively, and the parameters have the
usual meaning as in the previous models, with 0 ≤ 𝜎𝑥,𝑦 ≤1 and 0 < 𝑙 < 1. As can be seen, two control actions
applied at different times are considered in model (4). The
first one consists in spraying pesticides into the ecosystem,
which has not only the effect of killing pest individuals but
also of reducing the predator population, by proportions 𝜎𝑥
and 𝜎𝑦, respectively. In order to compensate for the undesired
effect of the applied pesticide, a fixed amount of 𝑑 natural
enemies is periodically introduced into the ecosystem, which
corresponds to the second control action in system (4).

The trophic interaction between the pest and its natural
enemy is characterized by a Beddington–DeAngelis func-
tional [31, 45, 46] (see the second term in the first equation
of model (4)), and it has some similarities with the Holling
type II trophic function described before. The coefficient 𝑘𝑥
is a weighting factor that determines how fast the predator’s
capturing rate approaches its saturation value as the pest pop-
ulation increases. In addition, the Beddington–DeAngelis
functional considers mutual interference between the natural
enemies, and the intensity of this effect is regulated by the
parameter 𝑘𝑦. Furthermore, the constant 𝑎 gives a measure
of the abundance of pests and natural enemies relative to the
ecosystem in which they interact, and it can be interpreted as
a protection provided to the pest by the environment.

In the study presented in [44], the authors established a
critical value of the impulse period that separates the system
behavior into two cases. In the first one, model (4) admits a
stable periodic solution of the form (0, 𝑦(𝑡)), 𝑡 > 0; that is,
the pest population can be completely eradicated by means
of the control measures. To prove this, the authors give an
explicit construction of the fundamental solution matrix of
the linear variational equation around the pest-free periodic
orbit, along with the corresponding transition (also referred
to as saltation [47]) matrix. Based on the resulting explicit

forms, an integral condition is derived so as to guarantee that
the Floquet multipliers of the periodic orbit lie within the
unit circle, thus ensuring the local stability of the pest-free
solution. If the so obtained integral stability condition is not
satisfied, then a second type of system response takes place in
which the pest-free trajectory is not stable anymore. Instead,
the system possesses a periodic solution corresponding to the
case when the pest and its natural enemies coexist, and the
stability of this system response is shown to strongly depend
on the value of the impulse period 𝑇 and the proportion of
pest population killed by the pesticide 𝜎𝑥.

Apart from the preliminary results mentioned above,
there is little information on how the remaining system
parameters actually affect the behavior ofmodel (4), although
various studies related to this class of pest control are available
[48–54]. For instance, a crucial feature of this model is that
the control actions of natural enemy release and pesticide
spraying are carried out at different times, and this effect
is controlled by the parameter 𝑙, whose influence on the
underlying pest control strategy has not been systematically
discussed in the past. Therefore, in Section 4 we will use
system (4) as a toy model to show how specialized numerical
methods (based on path-following algorithms for nonsmooth
dynamical systems) can be used to study in detail the behavior
of such models under parameter variations.

4. Numerical Analysis of a Pest Control
Scheme with Impulsive Effects

In the previous section, various existingmathematicalmodels
were presented and discussed in detail, with special attention
given to those describing agricultural pest control methods
in the framework of Integrated Pest Management.Themodel
types ranged from smooth ordinary differential equations to
differential equations with impulsive perturbations. As was
pointed out, several authors have contributed to the theoreti-
cal analysis of those systems, with particular emphasis on the
existence and stability of pest-free solutions, as well as finding
explicit thresholds for control parameters at which stability is
lost (bifurcations). While this is generally a straightforward
task for models belonging to the class of smooth ordinary
differential equations, the situation can be more involved for
other types of systems, for example, impulsive differential
equations; see [43, 44, 48, 55, 56]. Although impulsive systems
describing pest control methods have received a good deal of
attention in the past, numerical investigations of suchmodels
are rather scarce in the literature and are mostly carried out
at the simulation level. This is the main motivation of the
present section, in which we will present a comprehensive
numerical analysis of one of the impulsivemodels introduced
before, namely, system (4), with particular emphasis on how
specialized numerical techniques can be employed to study
the model behavior and gain insight into the underlying pest
control methods.

In order to investigate the dynamics of the impulsive
system (4), we will employ two different kinds of numerical
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approaches, namely, direct numerical integration and path-
following methods. As is well known [57–59], impulsive
models of the type of (4) can be formulated in the framework
of hybrid dynamical systems, which are characterized by
a continuous-time behavior interrupted by discrete-time
events [17]. In our case, these interruptions are defined by the
impulse times at which the pest control actions are carried
out. In order to get reliable numerical simulations of the
model behavior, the impulse times need to be accurately
detected, which can be achieved by means of the standard
MATLAB ODE solvers together with their built-in event
location routines [60, 61], as suggested in [62]. In this way,
direct numerical integration will be implemented in the
present work.

As will be seen later, our investigation will primarily
focus on the periodic behavior of system (4), with special
attention given to the pest population and its response to
the control actions. Since the impulsive model is parameter-
dependent, a family of periodic solutions can generically
be tracked by varying one (control) parameter, which can
be numerically realized via path-following (continuation)
methods. These are well-established techniques in applied
mathematics [18] that enable a systematic study of system
solutions subject to parameter variations, without having
to make recourse to direct numerical integration, which
sometimes can be time-demanding and inefficient. For the
analysis of periodic solutions of hybrid dynamical systems,
various specialized computational tools are available, such as
COCO [63], SlideCont [64], and TC-HAT [17], and the latter
will be employed in the current work for the numerical study
of the impulsive model. In the next section we will formulate
system (4) as a hybrid dynamical system, which will allow the
implementation of the model in TC-HAT.

4.1. Impulsive Pest Control Model as a Hybrid Dynamical
System. Before starting the numerical investigation of model
(4), it is convenient to introduce a rescaling of the system as
follows: 𝑥 = 𝑥𝐾,𝑦 = 𝑦𝐾,𝛽 = 𝛽𝐾𝑎 ,𝑘̃𝑥 = 𝑘x𝐾𝑎 ,𝑘̃𝑦 = 𝑘𝑦𝐾𝑎 ,𝑑 = 𝑑𝐾.

(5)

According to these transformations, we obtain the following
scaled version of the impulsive system (4):𝑥󸀠 (𝑡) = 𝑥 (𝑡) (1 − 𝑥 (𝑡)) − 𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) ,𝑦󸀠 (𝑡) = 𝐶𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) − 𝜇𝑦 (𝑡) ,𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

𝑥 (𝑡+) = (1 − 𝜎𝑥) 𝑥 (𝑡−) ,𝑦 (𝑡+) = (1 − 𝜎𝑦) 𝑦 (𝑡−) ,𝑡 = (𝑛 + 𝑙 − 1) 𝑇 (pesticide spraying) ,𝑥 (𝑡+) = 𝑥 (𝑡−) ,𝑦 (𝑡+) = 𝑦 (𝑡−) + 𝑑,𝑡 = 𝑛𝑇, 𝑛 ∈ N (natural enemy release) ,
(6)

where the tildes have been dropped for the sake of simplicity.
As mentioned earlier, this impulsive model can be for-

mulated as a hybrid dynamical system. For this purpose, the
trajectories are divided into smooth segments consisting of
the following components: a smooth vector field that governs
the systembehavior during the segment; a smooth event func-
tion whose zeroes define the terminal point of the segment;
and a smooth jump function, which maps the terminal point
of the current segment to the initial point of the next one.
Each segment is labeled with an index 𝐼𝑖, 𝑖 ∈ N, so that any
solution of the hybrid dynamical system is fully characterized
by its solution signature {𝐼𝑖}𝑀𝑖=1, where 𝑀 ∈ N defines the
length of the signature.Thismathematical framework enables
the application of path-following algorithms by means of the
software package TC-HAT [17], a driver of AUTO 97 [65] for
numerical continuation and bifurcation detection of periodic
solutions of hybrid dynamical systems. Recent applications of
TC-HAT can be found in [66–70], where the continuation
package is employed to study the bifurcation scenario of
various engineering applications.

Denote by 𝛼 fl (𝛽, 𝑘𝑥, 𝑘𝑦, 𝐶, 𝜇, 𝑑, 𝑇, 𝜎𝑥, 𝜎𝑦, 𝑙) ∈ (R+)7 ×[0, 1]×[0, 1]×(0, 1) and 𝑢 fl (𝑥, 𝑦, 𝑠)𝑇 ∈ (R+0 )3 the parameters
and state variables of the system, respectively, with R+0 being
the set of nonnegative numbers. The auxiliary variable 𝑠 will
be used to embed the time into the state space, in such a way
that each impulsive period [(𝑛 − 1)𝑇, 𝑛𝑇], 𝑛 ∈ N, will be
mapped to the interval [0, 𝑇]. In this setting, a solution of the
impulsive model (6) will be divided into smooth segments, as
defined as follows.

Pesticide Spraying (𝐼1, P-Spr). This segment occurs for 0 ≤𝑠 ≤ 𝑙𝑇, and the dynamics of the system during this regime
is governed by (cf. (6))𝑢󸀠 (𝑡) = 𝑓 (𝑢 (𝑡) , 𝛼)

fl (𝑥(𝑡) (1 − 𝑥 (𝑡)) − 𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡)𝐶𝛽𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑘𝑥𝑥 (𝑡) + 𝑘𝑦𝑦 (𝑡) − 𝜇𝑦 (𝑡)1 ) . (7)
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This segment terminates when a crossing with the disconti-
nuity boundaryΣP-Spr

fl {(𝑥, 𝑦, 𝑠) ∈ (R+0 )3 : ℎP-Spr (𝑢, 𝛼) fl 𝑠 − 𝑙𝑇 = 0} (8)

is detected. According to the pest control scheme, pesticide is
sprayed at this terminal point, and this is implemented in the
hybrid dynamical system via the jump function

𝑔P-Spr (𝑢, 𝛼) fl ((1 − 𝜎𝑥) 𝑥(1 − 𝜎𝑦) 𝑦𝑠 ) , (9)

which gives the initial point for the next segment.

Predator Release (𝐼2, Pr-Re). In this segment we have that 𝑙𝑇 <𝑠 ≤ 𝑇, and the system behavior is determined by the ODE (7).
The segment ends when the solution hits the discontinuity
boundaryΣPr-Re

fl {(𝑥, 𝑦, 𝑠) ∈ (R+0 )3 : ℎPr-Re (𝑢, 𝛼) fl 𝑠 − 𝑇 = 0} , (10)

with the initial point for the next segment given by the jump
function

𝑔Pr-Re (𝑢, 𝛼) fl ( 𝑥𝑦 + 𝑑𝑠 − 𝑇) . (11)

The second component of this function represents the control
action of introducing natural enemies into the ecosystem (cf.
(6)), while the third one has the purpose of resetting the
variable 𝑠, so that it is always kept within the interval [0, 𝑇].

Moreover, throughout our numerical investigations the
following solution measures will be used:𝑀𝑃 fl max

0≤𝑡≤𝑇
𝑥 (𝑡) ,𝑀𝐸 fl max

0≤𝑡≤𝑇
𝑦 (𝑡) , (12)

where (𝑥(𝑡), 𝑦(𝑡)) is assumed to be a 𝑇-periodic solution of
the impulsive model (6). The quantities𝑀𝑃 and𝑀𝐸 give the
maximum amount of pest and natural enemy populations
attained in a period, respectively, and can be used to investi-
gate the impact of the system parameters on the pest control
scheme from a practical point of view. For instance, if we
consider the auxiliary boundary conditionℎ (𝑢, 𝛼) fl 𝑥 − 𝑥ET = 0, (13)

it is possible to trace a curve in a two-parameter space (see
Section 4.2.2) for which the pest population achieves a max-
imum, fixed critical value𝑀𝑃 = 𝑥ET > 0 corresponding to,
for example, a predefined economic threshold (see Section 2).

According to the mathematical framework presented
above, the pest control model (6) can be written in compact
form as follows:𝑢󸀠 (𝑡) = 𝑓 (𝑢 (𝑡) , 𝛼) , 𝑠 ̸= 𝑙𝑇, 𝑠 ̸= 𝑇,𝑢 (𝑡+) = 𝑔P-Spr (𝑢 (𝑡−) , 𝛼) ,𝑠 = 𝑙𝑇 (pesticide spraying) ,𝑢 (𝑡+) = 𝑔Pr-Re (𝑢 (𝑡−) , 𝛼) ,𝑠 = 𝑇 (natural enemy release) .

(14)

In Figure 1 we present a periodic orbit of this system illus-
trating the solution segmentation introduced above. With
this mathematical framework we are now ready to carry out
specialized numerical investigations of this type of periodic
response, via the numerical package TC-HAT.

4.2. Numerical Results. This section will be devoted to a
detailed numerical study of the impulsive pest control scheme
introduced in Section 3.2 and modeled by system (14). The
focus will be on the effect of the system parameters on 𝑀𝑃
(see (12)), which can be used to monitor the amount of pest
population in the ecosystem. One of the main questions here
will be how the control parameters should be chosen so as to
keep the pest population below certain admissible levels. In
addition, various dynamical phenomena will be investigated,
such as fold and period-doubling bifurcations, as well as
chaotic responses. Unless otherwise indicated, the parameter
values used in the numerical results reported here are given
in Table 1.

4.2.1. Behavior of the Pest Control Method under One-
Parameter Perturbations. As was already mentioned in Sec-
tion 3.2, Zhang et al. [44] studied the stability of pest-free
(also referred to as pest-eradication) periodic solutions of
system (14), as the impulse period 𝑇 is varied. They deter-
mined a threshold 𝑇0, depending on some of the remaining
system parameters, so that for 𝑇 < 𝑇0 the pest-free solution
is asymptotically stable, while for 𝑇 > 𝑇0 the system response
is dominated by periodic solutions for which the pest and
its natural enemies coexist. Specifically, Zhang et al. showed
that the pest-free solution undergoes a change of stability
(bifurcation) at 𝑇 = 𝑇0; however, they did not determine
the actual type of bifurcation that produces this qualitative
change, and this is precisely the first question that will be
addressed numerically in this section.

Let us then begin our study with the numerical contin-
uation of a pest-free solution with respect to 𝑇, as shown
in Figure 2(a). In this picture, the solid black line denotes
stable pest-free solutions as displayed in Figure 2(d). If the
impulse period is increased, a critical value 𝑇0 ≈ 2.2736
is found, at which the pest-free response loses stability. As
was confirmed numerically, this bifurcation corresponds to
a branching point [71], wherefrom two branches of periodic
solutions emanate (black dashed and solid green lines). The
dashed curve represents unstable pest-free trajectories, while
the green one corresponds to stable periodic solutions with
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Figure 1: Periodic solution of the impulsive system (14) computed for the parameter values given in Table 1. (a) and (b) show the time histories
of the pest and predator populations, respectively, while (c) presents the corresponding phase plot with the solution segments 𝐼1 (pesticide
spraying, blue) and 𝐼2 (predator release, red). Hence, the displayed periodic trajectory has a cyclic solution signature {𝐼1, 𝐼2}. In what follows,
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Table 1: Parameter values used for the numerical investigation of the impulsive model (14).

Parameter Symbol Value
Maximum predator’s capturing rate 𝛽 5.25
Weighting factor for saturation of predator’s capturing rate 𝑘𝑥 1.5
Weighting factor for interference among predators 𝑘𝑦 1.125
Pest-to-predator conversion coefficient 𝐶 0.5
Predator’s mortality rate 𝜇 0.8
Impulse period 𝑇 41
Tuning coefficient for pesticide spraying time 𝑙 0.7
Amount of predators introduced per impulse period 𝑑 0.2
Proportion of pest population killed by pesticides 𝜎𝑥 0.7
Proportion of predator population killed by pesticides 𝜎𝑦 0.2
pests and predators coexisting in the ecosystem. The green
branch has a critical point 𝑇𝑐 ≈ 10.4465 where the curve
loses smoothness. This singularity is produced by a change
in the position of the peak value of the pest population. For𝑇 < 𝑇𝑐, the maximum amount of pest is attained exactly
at the end of the segment 𝐼1 (Figure 2(b)), while for 𝑇 >𝑇𝑐 the maximum value occurs at the end of the segment 𝐼2
(Figure 2(c)). Another feature of this curve is that the amount
of pest population, measured by 𝑀𝑃, increases as 𝑇 grows.
From a practical point of view, this means that, in order
to keep low levels of pest population in the ecosystem, the
impulse period should be chosen as small as possible, ideally
below 𝑇0. Nevertheless, having small impulse periods may
amount to high operation costs, since the control actions are
carried out more frequently if 𝑇 is reduced, and therefore a
compromise should be made.

The next step in our numerical investigation is to study
the model response when further system parameters are
varied, one at a time. The result can be seen in Figure 3. Fig-
ures 3(a) and 3(b) correspond to the numerical continuation
of the periodic response of the impulsive model (14) with
respect to 𝛽 and 𝑘𝑦, respectively. In both diagrams, it can
be observed that the predator population is not significantly
affected by those parameters. On the other hand, the pest
population shows a decreasing tendency when 𝛽 is increased,
whereas the effect of 𝑘𝑦 on the pest population is exactly the
opposite. This is consistent with the biological meaning of
those parameters: an increment in 𝛽 means that the natural
enemy enhances its ability to catch pest individuals, while a
larger 𝑘𝑦 impliesmore competition between predators, which
has a detrimental effect on their capturing rate. Although
the numerical results indicate that both 𝛽 and 𝑘𝑦 can be
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effectively used to reduce the pest population, this may be in
practice difficult or too expensive to implement, as it would
require a certainmechanism tomodify biological attributes of
the natural enemy (via, e.g., genetic engineering or selective
breeding).

From a practical perspective, variations in the control
parameters 𝜎𝑥, 𝜎𝑦, 𝑑, and 𝑙 may be more accessible for the
users. As can be seen in Figure 3(d), the influence of 𝜎𝑦
(proportion of natural enemies killed by pesticides) on the
system response is rather marginal. Even if one compares the
extreme cases 𝜎𝑦 ≈ 0 and 𝜎𝑦 ≈ 1, no significant difference
can be observed. This is due to the fact that the pest control
scheme introduces periodically a certain amount of natural
enemies into the ecosystem, which compensates for the
mortality of the predators due to the pesticide. On the other
hand, the proportion of pest individuals killed by pesticides

𝜎𝑥 affects significantly the presence of pests in the ecosystem;
see Figure 3(c). As this parameter approaches the upper
boundary 𝜎𝑥 = 1, the pest population suffers a significant
reduction, which suggests that the pesticide mortality should
bemaximized in order to eradicate the pest.However, this can
havewell-knownnegative consequences for the environment;
hence the effectiveness of the pest control method cannot be
based upon such a strategy. Alternatively, one can try to find
an environmentally acceptable, yet optimal, pest mortality𝜎𝑥. For instance, the local minimum 𝜎𝑥 ≈ 0.4345 shown in
Figure 3(c).

The next parameter to be discussed is the number of
predators introduced periodically into the ecosystem 𝑑,
whose impact on the model response is presented in Fig-
ure 3(e). The result is biologically consistent in that the larger𝑑, the larger the amount of predators in the ecosystem and
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the smaller the size of the pest population. This provides us
with another effective way to control the pest; however, an
increment in 𝑑may imply higher operation costs or negative
consequences for other species present in the ecosystem, and
therefore this parameter must also be chosen with certain
precaution.

From the system parameters considered in Figure 3, 𝑙 is
probably the one that can be varied without causing major
ecological damage. This parameter determines the instant
at which pesticide is sprayed in each impulsive period, and
its effect on the pest and predator populations is shown in
Figure 3(f). The picture reveals an optimal point 𝑙 ≈ 0.5464
where the peak size of pest population in the ecosystem
achieves a minimum value 𝑀𝑃 ≈ 0.5021. Practically
speaking, this indicates that the performance of the pest
control method can be improved by just changing the time at
which pesticide is sprayed, keeping all remaining parameters
fixed. This represents another avenue that can be explored
in order to apply the impulsive control scheme in the most
effective way, with acceptable levels of environmental impact.

4.2.2. Optimal Implementation of the Impulsive Control
Method. In the previous section, we presented a systematic
parametric study of the pest control scheme modeled by
system (14). Special emphasis was put on trying to find
optimal operation points when one parameter is changed at a
time.This process can be further refined by defining objective
functions and constraints and letting two ormore parameters
vary simultaneously. Let us assume that, for a certain appli-
cation, we have to minimize the utilization of pesticides and
introduction of natural enemies in the framework of the pest
control scheme studied in the preceding section. This can be
motivated by the associated operation costs or environmental
damage, as discussed earlier. Nevertheless, a reduction in the
usage of pesticides and natural enemies evidently increases
the risk of high levels of pest population in the ecosystem.
Hence, we need to introduce a restriction for the optimization
problem, which can be defined in terms of the size of the pest
population not exceeding a predefined economic threshold𝑥ET > 0. Mathematically speaking, we will consider the
following optimization problem:

Minimize 𝐹 (𝑑, 𝜎𝑥) fl √𝑑2 + 𝜎2𝑥,
under the constraint𝑀𝑃 = 𝑥ET. (15)

Here, the objective function 𝐹 is nothing but the Euclidean
norm of the vector (𝑑, 𝜎𝑥), which gives a measure of the
amount of pesticides and natural enemies used in the control
scheme (control effort). Depending on the specific applica-
tion, this functional can be further refined by, for example,
introducing weighting coefficients, but for the sake of clarity
we will carry out the numerical implementation with the
simple objective function defined above.

The optimization problem (15) will be solved numerically
via path-following techniques, as shown in Figure 4. Fig-
ure 4(a) presents a curve in the 𝑑-𝜎𝑥 plane corresponding
to the combination of pesticide and introduced predators
yielding a constant peak pest population 𝑀𝑃 = 𝑥ET = 0.6.

A trajectory along this curve is presented in Figure 4(c),
where it can be verified that the pest population indeed
does not exceed the predefined economic threshold 𝑥ET.
Figures 4(e) and 4(f) display solutions corresponding to
parameter values above and below the point considered in
Figure 4(c), respectively.These three panels demonstrate how𝑀𝑃moves away from the imposed economic threshold when
the operation point is perturbed around the computed curve.

As was confirmed numerically, the curve shown in
Figure 4(a) divides the 𝑑-𝜎𝑥 plane locally into two parts. The
one to the left corresponds to parameter values for which
the peak pest population𝑀𝑃 exceeds the economic threshold𝑥ET, while in the region to the right we have that𝑀𝑃 < 𝑥ET.
Therefore, the optimal operation point must lie on the right
part of the 𝑑-𝜎𝑥 plane, including the computed boundary
curve. This point can be located numerically by monitoring
the values of the objective function on the boundary and
is found to be (𝑑, 𝜎𝑥) ≈ (0.1807, 0.1411); see Figure 4(b).
The system response corresponding to this operation point
is displayed in Figure 4(d). In comparison to the solution
shown in Figure 4(c), it can be observed that the reduction of
the pest population due to pesticide spraying is significantly
smaller, meaning that less pesticide is being used in the
optimal case. This is nonetheless compensated with a slight
increment of the amount of predators introduced periodically
into the ecosystem (from 𝑑 = 0.15 to 𝑑 = 0.1807). In
both cases the condition 𝑀𝑃 = 𝑥ET = 0.6 is satisfied;
however, the environmental damage, measured in terms of
the objective function defined above, is minimized for the
optimal parameter values found.

4.2.3. Further Dynamical Analysis of the Pest Control Scheme.
So far the main tool in our numerical study has been path-
following algorithms, which enabled a detailed parametric
study of the periodic response of the pest control scheme
described by the impulsive model (14). In this way, we were
able to tackle practical questions such as how to find the
most suitable operation conditions in terms of pest reduction
and minimization of harmful environmental effects. Nev-
ertheless, the dynamic behavior of impulsive systems is a
subject of scientific interest in its own right, and the present
section will be devoted to this matter. Specifically, we will
employ both path-following methods and direct numerical
integration in order to gain a deeper understanding of the
dynamics of the impulsive pest control scheme considered in
our investigation.

The theoretical foundations for a numerical study of
the impulsive system (14) have been established by Zhang
et al. [44]. They addressed the question of existence and
uniqueness of nontrivial periodic solutions in terms of a fixed
point problem of a suitably defined operator. Following this
approach, they also determined a threshold for the impulse
period afterwhich pest-free solutions lose stability.Moreover,
in the conclusion part of [44] the authors raised the question
whether chaotic behavior may be present in the system, and
this will be precisely one of the main motivations for the
numerical study presented in this section. Unless otherwise
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indicated, the parameter values used in the discussion below
are those given in Table 1.

We begin our numerical study with the continuation
of the periodic solution shown in Figure 1 with respect
to the predator’s mortality rate 𝜇, see Figure 5(a). As the
parameter is varied from larger to lower values, a first
qualitative change is observed at 𝜇 ≈ 0.1323 (PD1). Here,
one real Floquet multiplier of the periodic orbit crosses the
complex unit circle from the inside, passing through −1.
This phenomenon is referred to as a period-doubling (flip)
bifurcation of limit cycles [71] and is characterized, in the
supercritical case, by the birth of a stable periodic solution
with twice the period of the original limit cycle, which in
turn loses stability (schematically represented by the dashed
line in Figure 5(a)).This unstable solution regains stability via
another flip bifurcation at 𝜇 ≈ 0.1001 (PD2), where the crit-
ical Floquet multiplier comes back inside the unit circle and

the stable periodic solution with double period disappears.
If 𝜇 is further decreased, a turning point (also known as fold
bifurcation) is found at𝜇 ≈ 0.0722 (F1), inwhich case a pair of
stable and unstable periodic orbits collide and then disappear
for lower parameter values. From this point a branch (dashed
segment) of unstable solutions is born, which finishes at F2
(𝜇 ≈ 0.0951), where the system undergoes another fold
bifurcation of limit cycles, and hence stability is regained.
The last stability change is found at 𝜇 ≈ 0.0792 (PD3),
corresponding to a supercritical flip bifurcation, from which
a branch of unstable periodic solutions emanates. Another
feature of the bifurcation diagram shown in Figure 5(a) is
the presence of a parameter window 0.0792 < 𝜇 < 0.0951
for which the impulsive system possesses two stable periodic
solutions that coexist (coexisting attractors [72]). This is
produced by the interplay between the fold bifurcations F1
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Figure 5: Dynamical behavior of the pest control method modeled by system (14), computed for the parameter values shown in Table 1.
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(e) Enlargement of a portion of the attractor displayed in (d).

and F2, typically giving rise to hysteretic effects, as will be
discussed below.

In order to gain further insight into the long-time
dynamics of the pest control model, we will carry out a
parametric study of the impulsive system (14) via direct
numerical integration, when the predator’s mortality rate 𝜇
is varied. For this purpose, we fix a starting value for 𝜇 and

then integrate the system over 300 impulse periods to allow
for the decay of transients. After this, we extend the numerical
integration for another interval of 100 periods and store
samples of the extended solution at the times 𝑡 = (𝑖 + 𝜖 − 1)𝑇,𝑖 = 1, 2, . . . , 100, with 0 < 𝜖 < 𝑙 being a fixed shift coefficient.
This parameter is introduced so as to avoid sampling the
solution at the impulse times 𝑡 = (𝑛+𝑙−1)𝑇 and 𝑡 = 𝑛𝑇, 𝑛 ∈ N.
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Next, 𝜇 is increased (or decreased, depending on the sweep
direction) by a small amount and then the same procedure
is repeated, now using the last sample of the previous step as
initial value. This process terminates when a predefined final
value for 𝜇 is reached.

The result of the numerical procedure described above is
shown in Figure 5(b). The picture confirms the qualitative
changes (bifurcations) predicted in Figure 5(a), labeled PD𝑖
and F𝑖. In particular, the bifurcation diagram shown in Fig-
ure 5(b) allows us to visualize the creation and disappearance
of orbits with double period, observed at the flip bifurcations𝜇 ≈ 0.1001 and 𝜇 ≈ 0.1323 detected before. The increasing
(red) and decreasing (blue) parameter sweeps reveal the
presence of parameter hysteresis in the system, produced by
the coexistence of periodic attractors, as predicted above.The
blow-up of the red part of the bifurcation diagram, shown in
Figure 5(c), contains the bifurcation points PD3 and F2 found
in Figure 5(a). These two points define a parameter window
inwhich a stable orbit of period𝑇 survives.When𝜇 decreases
through PD3, the period-𝑇 solution becomes unstable and
a stable periodic orbit of twice the period appears. If 𝜇 is
further reduced, the period-2𝑇 trajectory loses stability via
another flip bifurcation (𝜇 ≈ 0.0755), giving rise to a stable
periodic solution of period 4𝑇. This phenomenon repeats
again and again as the parameter continues to decrease, until
a critical value is reached where the flip bifurcations accu-
mulate, leading to chaotic behavior. This infinite sequence
of period-doubling bifurcations caused by the variation of
a parameter over a finite interval is referred to as a period-
doubling cascade and is one of the classical routes to chaos in
dynamical systems [72]. Figure 5(d) shows the intersection
of a chaotic attractor of the impulsive system (14) with a
Poincaré section, for 𝜇 = 0.07206. This numerical study gives
a positive answer to one of the open questions outlined by
Zhang et al. [44] related to chaotic behavior, since we have
identified a parameter set and a mechanism through which
chaos can appear in the pest control model.

5. Concluding Remarks

The intrinsic premise in the present work is that pest control
is a dynamical process. As such, mathematical models are
essential for understanding and providing useful abstractions
of the underlying biological phenomena and ecological inter-
actions taking place in pest control applications. Since the
introduction of the notion of Integrated Pest Management
(IPM) in the late 1950s [20, 21], a rich set of mathematical
models has emerged focusing on various aspects of IPM-
based applications, and Section 3 was devoted to providing
the reader with an overview of the development in this
area. The discussion presented here was guided by two
criteria: model class (in mathematical sense) and type of pest
control method. As a result, the models considered in this
section ranged from classical smooth differential equations
to differential equations with impulses. Moreover, the types
of pest control methods considered in our discussion can
be briefly grouped in the following categories: chemical

(pesticides), biological (natural enemy predation, biopesti-
cides), and cultural (roguing, replanting), which are suitably
combined in the framework of IPM in ways that complement
one another.

Although the literature on modeling pest control strate-
gies in agricultural ecosystems is vast, comprehensive para-
metric studies of the underlying mathematical models have
received rather little attention in the past, with numerical
investigations carried out primarily at the simulation level.
This factmotivated themain contribution of the present work
(Section 4), which concerned the application of specialized
numerical techniques in order to address practical questions
relevant to IPM. For this purpose, an impulsive pest control
model was chosen (namely system (4)) and reformulated in
the framework of hybrid dynamical systems, thus enabling
the employment of path-following (continuation) methods
for the numerical study of the impulsive system under
parameter variations via the software package TC-HAT [17].
With the introduction of appropriate numerical indicators,
a comprehensive parametric study was carried out in Sec-
tions 4.2.1 and 4.2.2, where the main question was how
to determine the parameter values of the system so as to
control the pest population in an optimal way, in terms
of minimizing operation costs and environmental damage.
Further numerical investigations of the model (4) were
conducted in Section 4.2.3, with special attention focused on
the dynamical features of the system. This study revealed the
presence of fold and flip bifurcations of limit cycles, period-
doubling cascades leading to chaotic behavior, and hysteretic
effects.

As has been pointed out in the past [2, 12, 16], a decisive
factor of success in the application of IPM programmes is
the fundamental understanding of the interactions between
the different components of the underlying agricultural
ecosystem, such as crops, pests, natural enemies, and biopes-
ticides. Much of the challenge lies in the sheer complexity
of the involved biological processes, which often hinders
the search for appropriate mathematical representations of
the laws governing the ecosystem. The resulting models are
usually the product of a trade-off between model simplicity,
predictive capability and accuracy, biological consistency, and
amenability for experimental validation and calibration. It
is then reasonable to assume that the validity of a model
correlates with how well it satisfies the aforementioned
criteria, which makes model development by no means a
trivial task. Once a validmodel has been obtained, it is crucial
to tackle formal questions regarding the well-posedness of
the model in a mathematical sense, for instance, those
related to existence and uniqueness of solutions, degree of
smoothness, and dependence on initial values, which enable
a confident application of numerical methods in order to
explore the model behavior. Future progress in this area
will therefore require a multidisciplinary collaborative work
between agronomists, ecological modelers, mathematical
analysts, and numerical specialists, aimed at constructing
mathematical models that provide reliable predictions and
understanding of field observations in real ecosystems, in
such a way that these models can be used as support tools
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for the development of new pest control strategies and
paradigms.
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[26] E. Böckmann and R. Meyhöfer, “AEP – Eine automatische
Entscheidungshilfe-Software für den integrierten Pflanzen-
schutz,” Gesunde Pflanzen, vol. 67, no. 1, pp. 1–10, 2015.

[27] S. Jana and T. K. Kar, “A mathematical study of a prey-predator
model in relevance to pest control,”NonlinearDynamics, vol. 74,
no. 3, pp. 667–683, 2013.

[28] H. W. Hethcote, “Qualitative analyses of communicable disease
models,”Mathematical Biosciences, vol. 28, no. 3/4, pp. 335–356,
1976.

[29] C. S.Holling, “The functional response of predators to prey den-
sity and its role inmimicry and population regulation,”Memoirs
of the Entomological Society of Canada, vol. 97, supplement 45,
pp. 5–60, 1965.

[30] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations,
vol. 11 of World Scientific Series on Nonlinear Science, Series A,
World Scientific, River Edge, NJ, USA, 1998.

[31] R. K. Upadhyay, “Observability of chaos and cycles in ecological
systems: lessons from predator-prey models,” International
Journal of Bifurcation and Chaos, vol. 19, no. 10, pp. 3169–3234,
2009.

[32] F. van denBosch,M. J. Jeger, andC.A.Gilligan, “Disease control
and its selection for damaging plant virus strains in vegetatively
propagated staple food crops; a theoretical assessment,” Pro-
ceedings of the Royal Society B Biological Science, vol. 274, no.
1606, pp. 11–18, 2007.

71Modeling and Analysis of Integrated Pest Control Strategies via Impulsive Differential Equations



[33] C. A. Gilligan and F. Van Den Bosch, “Epidemiological models
for invasion and persistence of pathogens,” Annual Review of
Phytopathology, vol. 46, pp. 385–418, 2008.

[34] X. Meng and Z. Li, “The dynamics of plant disease models with
continuous and impulsive cultural control strategies,” Journal of
Theoretical Biology, vol. 266, no. 1, pp. 29–40, 2010.

[35] M. J. Jeger, “An analytical model of plant virus disease dynamics
with roguing and replanting,” Journal of Applied Ecology, vol. 31,
no. 3, pp. 413–427, 1994.

[36] M. J. Jeger, L. V. Madden, and F. van den Bosch, “The effect of
transmission route on plant virus epidemic development and
disease control,” Journal of Theoretical Biology, vol. 258, no. 2,
pp. 198–207, 2009.

[37] L. Xia, S. Gao, Q. Zou, and J. Wang, “Analysis of a nonau-
tonomous plant disease model with latent period,” Applied
Mathematics and Computation, vol. 223, pp. 147–159, 2013.

[38] Z. H. Zhang and Y. H. Suo, “Stability and sensitivity analysis of a
plant disease model with continuous cultural control strategy,”
Journal of Applied Mathematics, vol. 2014, Article ID 207959, 15
pages, 2014.

[39] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory
of Impulsive Differential Equations, World Scientific, Singapore,
1989.

[40] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equa-
tions, vol. 28 of Series on Advances in Mathematics for Applied
Sciences, World Scientific, Singapore, 1995.

[41] A. M. Samoilenko and N. A. Perestyuk, Impulsive differential
equations, vol. 14 of Series A: Monographs and Treatises, World
Scientific, New Jersey, 1995.

[42] N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V.
Skripnik,Differential equations with impulse effects.Multivalued
right-hand sides with discontinuities, vol. 40 of De Gruyter
Studies in Mathematics, de Gruyter, Berlin, Germany, 2011.

[43] S. Tang, Y. Xiao, and R. A. Cheke, “Dynamical analysis of plant
disease models with cultural control strategies and economic
thresholds,”Mathematics and Computers in Simulation, vol. 80,
no. 5, pp. 894–921, 2010.

[44] H. Zhang, P. Georgescu, and L. S. Chen, “On the impulsive
controllability and bifurcation of a predator-pestmodel of IPM,”
BioSystems, vol. 93, no. 3, pp. 151–171, 2008.

[45] D. L. DeAngelis, R. A. Goldstein, and R. V. O’Neill, “A model
for trophic interaction,” Ecology, vol. 56, pp. 881–892, 1975.

[46] J. R. Beddington, “Mutual interference between parasites or
predators and its effect on searching efficiency,” Journal of
Animal Ecology, vol. 44, pp. 331–340, 1975.

[47] M. di Bernardo, C. J. Budd, and A. R. Champneys, Piecewise-
Smooth Dynamical Systems: Theory and Applications, vol. 163 of
Applied Mathematical Sciences, Springer, London, UK, 2008.

[48] B. Liu, Y. Zhang, and L. Chen, “Dynamic complexities of a
Holling I predator-prey model concerning periodic biological
and chemical control,” Chaos, Solitons & Fractals, vol. 22, no. 1,
pp. 123–134, 2004.

[49] Z. Xiang, X. Song, and F. Zhang, “Bifurcation and complex
dynamics of a two-prey two-predator system concerning peri-
odic biological and chemical control,” Chaos, Solitons and
Fractals, vol. 37, no. 2, pp. 424–437, 2008.

[50] H. Zhang, L. S. Chen, and P. Georgescu, “Impulsive control
strategies for pest management,” Journal of Biological Systems,
vol. 15, no. 2, pp. 235–260, 2007.

[51] Y. Pei, S. Liu, and C. Li, “Complex dynamics of an impulsive
control system inwhich predator species share a common prey,”
Journal of Nonlinear Science, vol. 19, no. 3, pp. 249–266, 2009.

[52] B. Liu, Y.Wang, and B. Kang, “Dynamics on a pestmanagement
SI model with control strategies of different frequencies,”
Nonlinear Analysis: Hybrid Systems, vol. 12, pp. 66–78, 2014.

[53] H. Su, B. Dai, Y. Chen, and K. Li, “Dynamic complexities
of a predator-prey model with generalized Holling type III
functional response and impulsive effects,” Computers & Math-
ematics with Applications. An International Journal, vol. 56, no.
7, pp. 1715–1725, 2008.

[54] G. Pang and L. Chen, “Dynamic analysis of a pest-epidemic
model with impulsive control,” Mathematics and Computers in
Simulation, vol. 79, no. 1, pp. 72–84, 2008.

[55] S. Tang, Y. Xiao, L. Chen, and R. A. Cheke, “Integrated pest
management models and their dynamical behaviour,” Bulletin
of Mathematical Biology, vol. 67, no. 1, pp. 115–135, 2005.

[56] K. S. Jatav and J. Dhar, “Hybrid approach for pest control with
impulsive releasing of natural enemies and chemical pesticides:
a plant-pest-natural enemy model,” Nonlinear Analysis: Hybrid
Systems, vol. 12, pp. 79–92, 2014.

[57] A. Michel, K. Wang, and B. Hu, Qualitative theory of dynamical
systems, vol. 239 of Monographs and Textbooks in Pure and
Applied Mathematics, Basel: Marcel Dekker AG Publishers,
Second edition, 2001.

[58] R.Goebel, R.G. Sanfelice, andA. R. Teel,HybridDynamical Sys-
tems: Modeling, Stability, and Robustness, Princeton University
Press, 2012.

[59] M. Akhmet, “Principles of discontinuous dynamical systems,”
Principles of Discontinuous Dynamical Systems, pp. 1–176, 2010.

[60] L. F. Shampine, I. Gladwell, and R. W. Brankin, “Reliable
solution of special event location problems for ODEs,” ACM
Transactions on Mathematical Software, vol. 17, no. 1, pp. 11–25,
1991.

[61] L. F. Shampine and S. Thompson, “Event location for ordinary
differential equations,” Computers &Mathematics with Applica-
tions, vol. 39, no. 5-6, pp. 43–54, 2000.

[62] P. T. Piiroinen and Y. A. Kuznetsov, “An event-driven method
to simulate Filippov systems with accurate computing of sliding
motions,” ACMTransactions on Mathematical Software, vol. 34,
no. 3, article no. 13, 2008.

[63] H. Dankowicz and F. Schilder, Recipes for continuation, SIAM,
Computational Science and Engineering, Philadelphia, Penn-
sylvania, 2013.

[64] F. Dercole andY. A. Kuznetsov, “SlideCont: anAuto97 driver for
bifurcation analysis of Filippov systems,” ACM Transactions on
Mathematical Software, vol. 31, no. 1, pp. 95–119, 2005.

[65] E. J. Doedel, Champneys, T. F. A. R.Fairgrieve, Y. A. Kuznetsov,
andB. Sandstede,Auto97: Continuation and bifurcation software
for ordinary differential equations (with HomCont), Computer
Science, Concordia University, Montreal, Canada, 1997.
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The approximate analytical solution of the fractional Cahn-Hilliard and Gardner equations has been acquired successfully via
residual power series method (RPSM). The approximate solutions obtained by RPSM are compared with the exact solutions as
well as the solutions obtained by homotopy perturbation method (HPM) and q-homotopy analysis method (q-HAM). Numerical
results are known through different graphs and tables.The fractional derivatives are described in the Caputo sense.The results light
the power, efficiency, simplicity, and reliability of the proposed method.

1. Introduction

Fractional differential equations (FDEs) have found appli-
cations in many problems in physics and engineering [1,
2]. Since most of the nonlinear FDEs cannot be solved
exactly, approximate and numerical methods must be used.
Some of the recent analytical methods for solving nonlinear
problems include the Adomian decomposition method [3,
4], variational iteration method [5], homotopy perturbation
method [6, 7], homotopy analysis method [8, 9], spectral
collocation method [10], the tanh-coth method [11], exp-
function method [12], Mittag-Leffler function method [13],
differential quadrature method [14], and reproducing kernel
Hilbert space method [15, 16].

The Gardner equation [17] (combined KdV-mKdV equa-
tion) is a useful model for the description of internal solitary
waves in shallow water,

𝑢𝑡 + 6𝑢𝑢𝑥 ± 6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (1)

Those two models will be classified as positive Gardner
equation and negative Gardner equation depending on the
sign of the cubic nonlinear term [18, 19]. Gardner equation
is widely used in various branches of physics, such as plasma
physics, fluid physics, and quantum field theory [20, 21]. It

also describes a variety of wave phenomena in plasma and
solid state [22, 23].

The Cahn-Hilliard equation [24] is one type of partial
differential equations (PDEs) andwas first introduced in 1958
as a model for process of phase separation of a binary alloy
under the critical temperature [25],

𝑢𝑡 = 𝛾𝑢𝑥 + 6𝑢𝑢2𝑥 + (3𝑢2 − 1) 𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥, 𝛾 ≥ 0. (2)

This equation is related to a number of interesting physical
phenomena like the spinodal decomposition, phase separa-
tion, and phase ordering dynamics. On the other hand it
becomes important in material sciences [26, 27].

The aim of this paper is to study the time-fractional
Gardner equation [28–30] and time-fractional Cahn-Hilliard
equation [31–37] of this form,

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 6 (𝑢 − 𝜀2𝑢2) 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (3)

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥 − 6𝑢𝑢2𝑥 − (3𝑢2 − 1) 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0, (4)

where 0 < 𝛼 ≤ 1, −∞ < 𝑥 < ∞, and 0 ≤ 𝑡 < 𝑅. Numer-
ous methods have been used to solve this equations, for
example, q-Homotopy analysis method [28], the new version
of F-expansion method [29], reduced differential transform
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method [30], the generalized tanh-coth method [38], the
generalized Kudryashov method [39], extended fractional
Riccati expansion method [31], subequation method [32],
homotopy analysis method [33], the Adomian decompo-
sition method [34], improved (𝐺̀/𝐺)−expansion method
[35], homotopy perturbation method [36], and variational
iteration method [37]. We solve Cahn-Hilliard equation and
Gardner equation by RPSM.

The RPSM was first devised in 2013 by the Jordanian
mathematician Omar Abu Arqub as an efficient method for
determining values of coefficients of the power series solution
for first and the second-order fuzzy differential equations
[40]. The RPSM is an effective and easy to construct power
series solution for strongly linear and nonlinear equations
without linearization, perturbation, or discretization. In the
last few years, the RPSM has been applied to solve a growing
number of nonlinear ordinary and PDEs of different types,
classifications, and orders. It has been successfully applied
in the numerical solution of the generalized Lane-Emden
equation [41], which is a highly nonlinear singular differential
equation, in the numerical solution of higher-order regular
differential equations [42], in approximate solution of the
nonlinear fractional KdV-Burgers equation [43], in construct
and predict the solitary pattern solutions for nonlinear
time-fractional dispersive PDEs [44], and in predicting and
representing the multiplicity of solutions to boundary value
problems of fractional order [45]. The RPSM distinguishes
itself from various other analytical and numerical methods
in several important aspects [46]. Firstly, the RPSM does not
need to compare the coefficients of the corresponding terms
and a recursion relation is not required. Secondly, the RPSM
provides a simple way to ensure the convergence of the series
solution byminimizing the related residual error.Thirdly, the
RPSM is not affected by computational rounding errors and
does not require large computer memory and time. Fourthly,
the RPSM does not require any converting while switching
from the low-order to the higher-order and from simple
linearity to complex nonlinearity; as a result, the method
can be applied directly to the given problem by choosing an
appropriate initial guess approximation.

2. Fundamental Concepts

Definition 1 (see [43]). The Caputo time-fractional deriva-
tives of order 𝛼 > 0 of 𝑢(𝑥, 𝑡) is defined as

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡)

=
{{{{{{{

1
Γ (𝑛 − 𝛼) ∫𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝜕𝑛𝑢 (𝑥, 𝜏)

𝜕𝜏𝑛 𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,
𝜕𝑛𝑢 (𝑥, 𝑡)

𝜕𝑡𝑛 , 𝛼 = 𝑛 ∈ 𝑁.
(5)

Definition 2 (see [47, 48]). A power series representation of
the form
∞∑
𝑛=0

𝐶𝑛 (𝑡 − 𝑡0)𝑛𝛼 = 𝐶0 + 𝐶1 (𝑡 − 𝑡0)𝛼 + 𝐶2 (𝑡 − 𝑡0)2𝛼

+ . . .
(6)

where 0 ≤ 𝑛−1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁 𝑎𝑛𝑑 𝑡 ≥ 𝑡0 is called fractional
power series about 𝑡0.
Theorem 3 (see [47, 48]). Suppose that 𝑓 has a fractional
power series representation at 𝑡0 of the form
𝑓 (𝑡) = ∞∑

𝑛=0

𝐶𝑛 (𝑡 − 𝑡0)𝑛𝛼 ,
𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛 𝑎𝑛𝑑 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅.

(7)

If𝐷𝑛𝛼𝑓(𝑡) are continuous on (𝑡0, 𝑡0 +𝑅), 𝑛 = 0, 1, 2, 3, . . ., then
coefficients 𝐶𝑛 will take the form

𝐶𝑛 = 𝐷𝑛𝛼𝑓 (𝑡0)Γ (𝑛𝛼 + 1) . (8)

Definition 4 (see [43]). A power series representation of the
form

∞∑
𝑛=0

𝑓𝑛 (𝑥) (𝑡 − 𝑡0)𝑛𝛼 = 𝑓0 (𝑥) + 𝑓1 (𝑥) (𝑡 − 𝑡0)𝛼

+ 𝑓2 (𝑥) (𝑡 − 𝑡0)2𝛼 + . . .
(9)

is called a multiple fractional power series about 𝑡 = 𝑡0.
Theorem 5 (see [43, 44]). Suppose that 𝑢(𝑥, 𝑡) has a multiple
fractional Power series representation at 𝑡0 of the form
𝑢 (𝑥, 𝑡) = ∞∑

𝑛=0

𝑓𝑛 (𝑥) (𝑡 − 𝑡0)𝑛𝛼 ,
𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝐼, 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛 𝑎𝑛𝑑 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅.

(10)

If𝐷𝑛𝛼𝑡 𝑢(𝑥, 𝑡) are continuous on 𝐼×(𝑡0, 𝑡0+𝑅), 𝑛 = 0, 1, 2, 3, . . .,
then coefficients 𝑓𝑛(𝑥) will take the form

𝑓𝑛 (𝑥) = 𝐷𝑛𝛼𝑡 𝑢 (𝑥, 𝑡0)Γ (𝑛𝛼 + 1) . (11)

Corollary 6 (see [44]). Suppose that 𝑢(𝑥, 𝑦, 𝑡) has a multiple
fractional Power series representation at 𝑡0 of the form

𝑢 (𝑥, 𝑦, 𝑡) = ∞∑
𝑛=0

𝑓𝑛 (𝑥, 𝑦) (𝑡 − 𝑡0)𝑛𝛼 ,
(𝑥, 𝑦) ∈ 𝐼1 × 𝐼2, 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅.

(12)

If 𝐷𝑛𝛼𝑡 𝑢(𝑥, 𝑦, 𝑡) are continuous on 𝐼1 × 𝐼2 × (𝑡0, 𝑡0 + 𝑅), 𝑛 =0, 1, 2, 3, . . ., then 𝑓𝑛(𝑥, 𝑦) will take the form
𝑓𝑛 (𝑥, 𝑦) = 𝐷𝑛𝛼𝑡 𝑢 (𝑥, 𝑦, 𝑡0)Γ (𝑛𝛼 + 1) . (13)

3. Basic Idea of RPSM

To give the approximate solution of nonlinear fractional
order differential equations by means of the RPSM, we
consider a general nonlinear fractional differential equation:

𝐷𝛼𝑢 (𝑥, 𝑡) = 𝑁 (𝑢) + 𝑅 (𝑢) (14)
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where 𝑁(𝑢) is nonlinear term and 𝑅(𝑢) is a linear term.
Subject to the initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) . (15)

TheRPSMproposes the solution for (14) as a fractional power
series about the initial point 𝑡 = 0,
𝑢 (𝑥, 𝑡) = ∞∑

𝑛=0

𝑓𝑛 (𝑥) 𝑡𝑛𝛼
Γ (1 + 𝑛𝛼) ,

0 < 𝛼 ≤ 1, −∞ < 𝑥 < ∞, 0 ≤ 𝑡 < 𝑅.
(16)

Next we let 𝑢𝑘(𝑥, 𝑡) denote the kth truncated series of 𝑢(𝑥, 𝑡),
𝑢𝑘 (𝑥, 𝑡) = 𝑘∑

𝑛=0

𝑓𝑛 (𝑥) 𝑡𝑛𝛼
Γ (1 + 𝑛𝛼) . (17)

The 0th RPS approximate solution of 𝑢(𝑥, 𝑡) is
𝑢0 (𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑓 (𝑥) . (18)

Equation (17) can be written as

𝑢𝑘 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑘∑
𝑛=1

𝑓𝑛 (𝑥) 𝑡𝑛𝛼
Γ (1 + 𝑛𝛼) ,

𝑘 = 1, 2, 3, . . . .
(19)

We define the residual function for (14)

𝑅𝑒𝑠𝑢 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑁 (𝑢) − 𝑅 (𝑢) . (20)

Therefore, the kth residual function 𝑅𝑒𝑠𝑢,𝑘 is
𝑅𝑒𝑠𝑢,𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) − 𝑁 (𝑢𝑘) − 𝑅 (𝑢𝑘) . (21)

As in [40, 41], 𝑅𝑒𝑠𝑢(𝑥, 𝑡) = 0 𝑎𝑛𝑑 lim𝑘󳨀→∞𝑅𝑒𝑠𝑘(𝑥, 𝑡) =𝑅𝑒𝑠(𝑥, 𝑡).𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐷𝑛𝛼𝑡 𝑅𝑒𝑠(𝑥, 𝑡) = 0 since the fractional
derivative of a constant in the Caputo sense is zero and
the fractional derivatives 𝐷𝑛𝛼𝑡 of 𝑅𝑒𝑠(𝑥, 𝑡) and 𝑅𝑒𝑠𝑘(𝑥, 𝑡) are
matching at 𝑡 = 0 for each 𝑛 = 0, 1, 2, . . . ., 𝑘.; that is,𝐷𝑛𝛼𝑡 𝑅𝑒𝑠(𝑥, 0) = 𝐷𝑛𝛼𝑡 𝑅𝑒𝑠𝑘(𝑥, 0) = 0, 𝑛 = 0, 1, 2, . . . ., 𝑘.

To determine 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), . . . we consider 𝑘 =1, 2, 3, .. in (19) and substitute it into (21), applying the
fractional derivative 𝐷(𝑘−1)𝛼𝑡 in both sides, 𝑘 = 1, 2, 3, . . ., and
finally we solve

𝐷(𝑘−1)𝛼𝑡 𝑅𝑒𝑠𝑢,𝑘 (𝑥, 0) = 0, 𝑘 = 1, 2, 3, . . . . (22)

4. Applications

To illustrate the basic idea of RPSM,we consider the following
two time-fractional Gardner and Cahn-Hilliard equations.

4.1. Time-Fractional Gardner Equation. Consider the time-
fractional homogeneous Gardner equation

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 6 (𝑢 − 𝜀2𝑢2) 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (23)

Subject to the initial Condition

𝑢 (𝑥, 0) = 1
2 + 1

2 tanh [𝑥
2 ] . (24)

The exact solution when 𝜀 = 1, 𝛼 = 1 is

𝑢 (𝑥, 𝑡) = 1
2 + 1

2 tanh [𝑥 − 𝑡
2 ] . (25)

We define the residual function for (23) as

𝑅𝑒𝑠𝑢 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 6 (𝑢 − 𝜀2𝑢2) 𝑢𝑥 + 𝑢𝑥𝑥𝑥, (26)

therefore, for the kth residual function 𝑅𝑒𝑠𝑢,𝑘(𝑥, 𝑡),

𝑅𝑒𝑠𝑢,𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 + 6 (𝑢𝑘 − 𝜀2𝑢2𝑘) 𝑢𝑘𝑥 + 𝑢𝑘𝑥𝑥𝑥. (27)

To determine 𝑓1(𝑥), we consider (𝑘 = 1) in (27)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢1 + 6𝑢1𝑢1𝑥 − 6𝜀2𝑢21𝑢1𝑥 + 𝑢1𝑥𝑥𝑥. (28)

But from (19) at 𝑘 = 1,

𝑢1 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼) , (29)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝑓1 + 6𝑓𝑓𝑥 − 6𝜀2𝑓𝑥𝑓2 + 𝑓𝑥𝑥𝑥 + [6𝑓𝑓1𝑥
+ 6𝑓1𝑓𝑥 − 12𝜀2𝑓𝑥𝑓𝑓1 − 6𝜀2𝑓1𝑥𝑓2 + 𝑓1𝑥𝑥𝑥]
⋅ 𝑡𝛼
Γ (1 + 𝛼) + [6𝑓1𝑓1𝑥 − 6𝜀2𝑓𝑥𝑓21 − 12𝜀2𝑓1𝑥𝑓𝑓1]

⋅ 𝑡2𝛼
Γ (1 + 𝛼)2 − 6𝜀2𝑓1𝑥𝑓21 𝑡3𝛼

Γ (1 + 𝛼)3 .

(30)

Now depending on the result of (22) In the case of k=1,
we have 𝑅𝑒𝑠𝑢

1

(𝑥, 0) = 0,

𝑓1 = −6𝑓𝑓𝑥 + 6𝜀2𝑓𝑥𝑓2 − 𝑓𝑥𝑥𝑥, (31)

𝑓1 (𝑥) = 1
8 sech [𝑥

2 ]4 (−1 + (−4 + 3𝜀2) cosh [𝑥]
+ 3 (−1 + 𝜀2) sinh [𝑥]) .

(32)

To determine 𝑓2(𝑥), we consider (𝑘 = 2) in (27)

𝑅𝑒𝑠𝑢,2 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢2 + 6𝑢2𝑢2𝑥 − 6𝜀2𝑢22𝑢2𝑥 + 𝑢2𝑥𝑥𝑥. (33)
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But from (19) at 𝑘 = 2,
𝑢2 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼

Γ (1 + 𝛼) + 𝑓2 (𝑥)

⋅ 𝑡2𝛼
Γ (1 + 2𝛼) ,

(34)

𝑅𝑒𝑠𝑢,2 (𝑥, 𝑡) = 𝑓1 + 6𝑓𝑓𝑥 − 6𝜀2𝑓𝑥𝑓2 + 𝑓𝑥𝑥𝑥 + [𝑓2
+ 6𝑓𝑓1𝑥 + 6𝑓1𝑓𝑥 − 12𝜀2𝑓𝑥𝑓𝑓1 − 6𝜀2𝑓1𝑥𝑓2 + 𝑓1𝑥𝑥𝑥]
⋅ 𝑡𝛼
Γ (1 + 𝛼) + [6𝑓𝑓2𝑥 + 6𝑓2𝑓𝑥 − 12𝜀2𝑓𝑥𝑓𝑓2

− 6𝜀2𝑓2𝑥𝑓2 + 𝑓2𝑥𝑥𝑥] 𝑡2𝛼
Γ (1 + 2𝛼) + [6𝑓1𝑓1𝑥

− 6𝜀2𝑓𝑥𝑓21 − 12𝜀2𝑓1𝑥𝑓𝑓1] 𝑡2𝛼
Γ (1 + 𝛼)2 + [6𝑓1𝑓2𝑥

+ 6𝑓2𝑓1𝑥 − 12𝜀2𝑓𝑥𝑓1𝑓2 − 12𝜀2𝑓1𝑥𝑓𝑓2
− 12𝜀2𝑓2𝑥𝑓𝑓1] 𝑡3𝛼

Γ (1 + 𝛼) Γ (1 + 2𝛼) − 6𝜀2𝑓1𝑥𝑓21
⋅ 𝑡3𝛼
Γ (1 + 𝛼)3 + [6𝑓2𝑓2𝑥 − 6𝜀2𝑓𝑥𝑓22 − 12𝜀2𝑓2𝑥𝑓𝑓2]

⋅ 𝑡4𝛼
Γ (1 + 2𝛼)2 + [−12𝜀2𝑓1𝑥𝑓1𝑓2 − 6𝜀2𝑓2𝑥𝑓21 ]

⋅ 𝑡4𝛼
Γ (1 + 𝛼)2 Γ (1 + 2𝛼) + [−6𝜀2𝑓1𝑥𝑓22

− 12𝜀2𝑓2𝑥𝑓1𝑓2] 𝑡5𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼)2 − 6𝜀2𝑓2𝑥𝑓22

⋅ 𝑡6𝛼
Γ (1 + 2𝛼)3 .

(35)

Applying 𝐷𝛼𝑡 on both sides and solving the equation𝐷𝛼𝑡 𝑅𝑒𝑠𝑢,2(𝑥, 0) = 0, then we get

𝑓2 = −6𝑓𝑓1𝑥 − 6𝑓1𝑓𝑥 + 12𝜀2𝑓𝑥𝑓𝑓1 + 6𝜀2𝑓1𝑥𝑓2
− 𝑓1𝑥𝑥𝑥, (36)

𝑓2 (𝑥) = −1
64 sech [𝑥

2 ]7 (−24 (−1 + 𝜀2) cosh [𝑥
2 ]

− 6 (22 − 37𝜀2 + 15𝜀4) cosh [3𝑥
2 ] + 24 cosh [5𝑥

2 ]
− 42𝜀2 cosh [5𝑥

2 ] + 18𝜀4 cosh [5𝑥
2 ]

+ 206 sinh [𝑥
2 ] − 204𝜀2 sinh [𝑥

2 ]
− 129 sinh [3𝑥

2 ] + 222𝜀2 sinh [3𝑥
2 ]

− 90𝜀4 sinh [3𝑥
2 ] + 25 sinh [5𝑥

2 ]
− 42𝜀2 sinh [5𝑥

2 ] + 18𝜀4 sinh [5𝑥
2 ]) .

(37)

The solution in series form is given by

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼) + 𝑓2 (𝑥) 𝑡2𝛼

Γ (1 + 2𝛼)
+ . . .

(38)

4.2. Time-Fractional Cahn-Hilliard Equation. Consider the
time-fractional Cahn-Hilliard equation

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥 − 6𝑢𝑢2𝑥 − (3𝑢2 − 1) 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0. (39)

Subject to the initial condition

𝑢 (𝑥, 0) = tanh[√2
2 𝑥] . (40)

The exact solution when 𝛼 = 1 is
𝑢 (𝑥, 𝑡) = tanh[√2

2 (𝑥 + 𝑡)] . (41)

We define the residual function for (39) as

𝑅𝑒𝑠𝑢 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥 − 6𝑢𝑢2𝑥 − (3𝑢2 − 1) 𝑢𝑥𝑥
+ 𝑢𝑥𝑥𝑥𝑥,

(42)

therefore, for the kth residual function 𝑅𝑒𝑠𝑢,𝑘(𝑥, 𝑡),
𝑅𝑒𝑠𝑢,𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 − 𝑢𝑘𝑥 − 6𝑢𝑘𝑢2𝑘𝑥 − (3𝑢2𝑘 − 1) 𝑢𝑘𝑥𝑥

+ 𝑢𝑘𝑥𝑥𝑥𝑥.
(43)

To determine 𝑓1(𝑥), we consider (𝑘 = 1) in (43)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢1 − 𝑢1𝑥 − 6𝑢1𝑢21𝑥 − (3𝑢21 − 1) 𝑢1𝑥𝑥
+ 𝑢1𝑥x𝑥𝑥.

(44)

From (19) at 𝑘 = 1,
𝑢1 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼

Γ (1 + 𝛼) , (45)

𝑅𝑒𝑠𝑢,1 (𝑥, 𝑡) = 𝑓1 − 𝑓𝑥 − 6𝑓𝑓2𝑥 − 3𝑓2𝑓𝑥𝑥 + 𝑓𝑥𝑥
+ 𝑓𝑥𝑥𝑥𝑥 + [−𝑓1𝑥 − 6𝑓1𝑓2𝑥 − 12𝑓𝑓𝑥𝑓1𝑥 − 6𝑓𝑓1𝑓𝑥𝑥
− 3𝑓2𝑓1𝑥𝑥 + 𝑓1𝑥𝑥 + 𝑓1𝑥𝑥𝑥𝑥] 𝑡𝛼

Γ (1 + 𝛼) + [−6𝑓𝑓21𝑥
− 12𝑓1𝑓𝑥𝑓1𝑥 − 3𝑓21𝑓𝑥𝑥 − 6𝑓𝑓1𝑓1𝑥𝑥] 𝑡2𝛼

Γ (1 + 𝛼)2
+ [−6𝑓1𝑓21𝑥 − 3𝑓21𝑓1𝑥𝑥] 𝑡3𝛼

Γ (1 + 𝛼)3 .

(46)
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If we put 𝑅𝑒𝑠𝑢,1(𝑥, 0) = 0, then

𝑓1 (𝑥) = 𝑓𝑥 + 6𝑓 (𝑥) 𝑓2𝑥 + 3𝑓2𝑓𝑥𝑥 − 𝑓𝑥𝑥 − 𝑓𝑥𝑥𝑥𝑥, (47)

𝑓1 (𝑥) = sech [𝑥/√2]2
√2 . (48)

Similarity, to determine 𝑓2(𝑥), we substitute

𝑢2 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼)

+ 𝑓2 (𝑥) 𝑡2𝛼
Γ (1 + 2𝛼) ,

(49)

into (43) where 𝑘 = 2,

𝑅𝑒𝑠𝑢,2 (𝑥, 𝑡) = [𝑓1 − 𝑓𝑥 − 6𝑓𝑓2𝑥 − 3𝑓2𝑓𝑥𝑥 + 𝑓𝑥𝑥
+ 𝑓𝑥𝑥𝑥𝑥] + [𝑓2 − 𝑓1𝑥 − 6𝑓1𝑓2𝑥 − 12𝑓𝑓𝑥𝑓1𝑥
− 6𝑓𝑓1𝑓𝑥𝑥 − 3𝑓2𝑓1𝑥𝑥 + 𝑓1𝑥𝑥 + 𝑓1𝑥𝑥𝑥𝑥] 𝑡𝛼

Γ (1 + 𝛼)
+ [−𝑓2𝑥 − 12𝑓𝑓𝑥𝑓2𝑥 − 6𝑓2𝑓2𝑥 − 6𝑓𝑓2𝑓𝑥𝑥
− 3𝑓2𝑥𝑥𝑓2 + 𝑓2𝑥𝑥 + 𝑓2𝑥𝑥𝑥𝑥] 𝑡2𝛼

Γ (1 + 2𝛼) + [−6𝑓𝑓21𝑥
− 12𝑓1𝑓𝑥𝑓1𝑥 − 3𝑓21𝑓𝑥𝑥 − 6𝑓𝑓1𝑓1𝑥𝑥] 𝑡2𝛼

Γ (1 + 𝛼)2
+ [−12𝑓𝑓1𝑥𝑓2𝑥 − 12𝑓2𝑓𝑥𝑓1𝑥 − 6𝑓1𝑓2𝑓𝑥𝑥
− 6𝑓𝑓2𝑓1𝑥𝑥 − 12𝑓1𝑓𝑥𝑓2𝑥 − 6𝑓2𝑥𝑥𝑓𝑓1]
⋅ 𝑡3𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼) + [−6𝑓1𝑓21𝑥 − 3𝑓21𝑓1𝑥𝑥]

⋅ 𝑡3𝛼
Γ (1 + 𝛼)3 + [−6𝑓𝑓22𝑥 − 12𝑓2𝑓𝑥𝑓2𝑥 − 3𝑓22𝑓𝑥𝑥

− 6𝑓2𝑥𝑥𝑓𝑓2] 𝑡4𝛼
Γ (1 + 2𝛼)2 + [−12𝑓1𝑓1𝑥𝑓2𝑥 − 6𝑓2𝑓21𝑥

− 6𝑓1𝑓2𝑓1𝑥𝑥 − 3𝑓2𝑥𝑥𝑓21 ] 𝑡4𝛼
Γ (1 + 𝛼)2 Γ (1 + 2𝛼)

+ [−6𝑓1𝑓22𝑥 − 12𝑓2𝑓1𝑥f2𝑥 − 3𝑓22𝑓1𝑥𝑥 − 6𝑓2𝑥𝑥𝑓1𝑓2]
⋅ 𝑡5𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼)2 + [−6𝑓2𝑓22𝑥 − 3𝑓2𝑥𝑥𝑓22 ]

⋅ 𝑡6𝛼
Γ (1 + 2𝛼)3 .

(50)

Solving the equation 𝐷𝛼𝑡 𝑅𝑒𝑠𝑢,2(𝑥, 0) = 0, we find that

𝑓2 (𝑥) = 𝑓1𝑥 + 6𝑓1𝑓2𝑥 + 12𝑓𝑓𝑥𝑓1𝑥 + 6𝑓𝑓1𝑓𝑥𝑥
+ 3𝑓2𝑓1𝑥𝑥 − 𝑓1𝑥𝑥 − 𝑓1𝑥𝑥𝑥𝑥,

(51)

𝑓2 (𝑥) = − sech [ 𝑥
√2]2 tanh [ 𝑥

√2] . (52)

To determine 𝑓3(𝑥), we substitute
𝑢3 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼

Γ (1 + 𝛼)
+ 𝑓2 (𝑥) 𝑡2𝛼

Γ (1 + 2𝛼) + 𝑓3 (𝑥) 𝑡3𝛼
Γ (1 + 3𝛼) ,

(53)

into (43) where k=3,

𝑅𝑒𝑠𝑢,3 (𝑥, 𝑡) = 𝑓1 − 𝑓𝑥 − 6𝑓𝑓2𝑥 − 3𝑓2𝑓𝑥𝑥 + 𝑓𝑥𝑥
+ 𝑓𝑥𝑥𝑥𝑥 + [𝑓2 − 𝑓1𝑥 − 12𝑓𝑓𝑥𝑓1𝑥 − 6𝑓1𝑓2𝑥
− 6𝑓𝑓1𝑓𝑥𝑥 − 3𝑓2𝑓1𝑥𝑥 + 𝑓1𝑥𝑥 + 𝑓1𝑥𝑥𝑥𝑥] 𝑡𝛼

Γ (1 + 𝛼)
+ [𝑓3 − 𝑓2𝑥 − 12𝑓𝑓𝑥𝑓2𝑥 − 6𝑓2𝑓2𝑥 − 6𝑓𝑓2𝑓𝑥𝑥
− 3𝑓2𝑥𝑥𝑓2 + 𝑓2𝑥𝑥 + 𝑓2𝑥𝑥𝑥𝑥] 𝑡2𝛼

Γ (1 + 2𝛼) + [−6𝑓𝑓21𝑥
− 12𝑓1𝑓𝑥𝑓1𝑥 − 3𝑓21𝑓𝑥𝑥 − 6𝑓𝑓1𝑓1𝑥𝑥] 𝑡2𝛼

Γ (1 + 𝛼)2
+ [−12𝑓𝑓𝑥𝑓3𝑥 − 𝑓3𝑥 − 6𝑓3𝑓2𝑥 − 6𝑓𝑓3𝑓𝑥𝑥
− 3𝑓2𝑓3𝑥𝑥 + 𝑓3𝑥𝑥 + 𝑓3𝑥𝑥𝑥𝑥] 𝑡3𝛼

Γ (1 + 3𝛼)
+ [−12𝑓𝑓1𝑥𝑓2𝑥 − 12𝑓1𝑓𝑥𝑓2𝑥 − 12𝑓2𝑓𝑥𝑓1𝑥
− 6𝑓1𝑓2𝑓𝑥𝑥 − 6𝑓𝑓2𝑓1𝑥𝑥 − 6𝑓2𝑥𝑥𝑓𝑓1]
⋅ 𝑡3𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼) + [−6𝑓1𝑓21𝑥 − 3𝑓21𝑓1𝑥𝑥]

⋅ 𝑡3𝛼
Γ (1 + 𝛼)3 + [−12𝑓1𝑓1𝑥𝑓2𝑥 − 6𝑓2𝑓21𝑥

− 6𝑓1𝑓2𝑓1𝑥𝑥 − 3𝑓2𝑥𝑥𝑓21 ] 𝑡4𝛼
Γ (1 + 𝛼)2 Γ (1 + 2𝛼)

+ [−6𝑓𝑓22𝑥 − 12𝑓2𝑓𝑥𝑓2𝑥 − 3𝑓22𝑓𝑥𝑥 − 6𝑓2𝑥𝑥𝑓𝑓2]
⋅ 𝑡4𝛼
Γ (1 + 2𝛼)2 + [−12𝑓𝑓1𝑥𝑓3𝑥 − 12𝑓1𝑓𝑥𝑓3𝑥

− 12𝑓3𝑓𝑥𝑓1𝑥 − 6𝑓1𝑓3𝑓𝑥𝑥 − 6𝑓𝑓3𝑓1𝑥𝑥 − 6𝑓𝑓1𝑓3𝑥𝑥]
⋅ 𝑡4𝛼
Γ (1 + 𝛼) Γ (1 + 3𝛼) + [−6𝑓1𝑓22𝑥 − 12𝑓2𝑓1𝑥𝑓2𝑥
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Figure 1: (a) Absolute errors of fractional Gardner equation, at 𝑥 = 2, 𝜀 = 1. (b) Absolute errors of fractional Chan-Hilliard equation at 𝑥 = 2.

− 3𝑓22𝑓1𝑥𝑥 − 6𝑓2𝑥𝑥𝑓1𝑓2] 𝑡5𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼)2

+ [−12𝑓𝑓2𝑥𝑓3𝑥 − 12𝑓2𝑓𝑥𝑓3𝑥 − 12𝑓3𝑓𝑥𝑓2𝑥
− 6𝑓2𝑓3𝑓𝑥𝑥 − 6𝑓𝑓3𝑓2𝑥𝑥 − 6𝑓𝑓2𝑓3𝑥𝑥]
⋅ 𝑡5𝛼
Γ (1 + 2𝛼) Γ (1 + 3𝛼) + [−12𝑓1𝑓1𝑥𝑓3𝑥 − 6𝑓3𝑓21𝑥

− 3𝑓21𝑓3𝑥𝑥 − 6𝑓1𝑓3𝑓1𝑥𝑥] 𝑡5𝛼
Γ (1 + 𝛼)2 Γ (1 + 3𝛼)

+ [−12𝑓1𝑓2𝑥𝑓3𝑥 − 12𝑓2𝑓1𝑥𝑓3𝑥 − 12𝑓3𝑓1𝑥𝑓2𝑥
− 6𝑓2𝑓3𝑓1𝑥𝑥 − 6𝑓1𝑓3𝑓2𝑥𝑥 − 6𝑓1𝑓2𝑓3𝑥𝑥]
⋅ 𝑡6𝛼
Γ (1 + 𝛼) Γ (1 + 2𝛼) Γ (1 + 3𝛼) + [−6𝑓2𝑓22𝑥

− 3𝑓2𝑥𝑥𝑓22 ] 𝑡6𝛼
Γ (1 + 2𝛼)3 + [−6𝑓𝑓23𝑥 − 12𝑓3𝑓𝑥𝑓3𝑥

− 3𝑓23𝑓𝑥𝑥 − 6𝑓𝑓3𝑓3𝑥𝑥] 𝑡6𝛼
Γ (1 + 3𝛼)2 + [−6𝑓1𝑓23𝑥

− 12𝑓3𝑓1𝑥𝑓3𝑥 − 3𝑓23𝑓1𝑥𝑥 − 6𝑓1𝑓3𝑓3𝑥𝑥]
⋅ 𝑡7𝛼
Γ (1 + 𝛼) Γ (1 + 3𝛼)2 + [−12𝑓2𝑓2𝑥𝑓3𝑥 − 6𝑓3𝑓22𝑥

− 6𝑓2𝑓3𝑓2𝑥𝑥 − 3𝑓22𝑓3𝑥𝑥] 𝑡7𝛼
Γ (1 + 3𝛼) Γ (1 + 2𝛼)2

+ [−6𝑓2𝑓23𝑥 − 12𝑓3𝑓2𝑥𝑓3𝑥 − 3𝑓23𝑓2𝑥𝑥 − 6𝑓3𝑥𝑥𝑓3𝑓2]
⋅ 𝑡8𝛼
Γ (1 + 2𝛼) Γ (1 + 3𝛼)2 + [−6𝑓3𝑓23𝑥 − 3𝑓23𝑓3𝑥𝑥]

⋅ 𝑡9𝛼
Γ (1 + 3𝛼)3 .

(54)

Applying 𝐷2𝛼𝑡 on both sides and then solving the equation
𝐷2𝛼𝑡 𝑅𝑒𝑠𝑢,3(𝑥, 0) = 0, we get

𝑓3 (𝑥) = [𝑓2𝑥 + 12𝑓𝑓𝑥𝑓2𝑥 + 6𝑓2𝑓2𝑥 + 6𝑓𝑓2𝑓𝑥𝑥
+ 3𝑓2𝑥𝑥𝑓2 − 𝑓2𝑥𝑥 − 𝑓2𝑥𝑥𝑥𝑥] + [6𝑓𝑓21𝑥 + 12𝑓1𝑓𝑥𝑓1𝑥
+ 3𝑓21𝑓𝑥𝑥 + 6𝑓𝑓1𝑓1𝑥𝑥] Γ (1 + 2𝛼)

Γ (1 + 𝛼)2 ,
(55)

𝑓3 (𝑥) = 1
8 sech [ 𝑥

√2]6 (−4√2
+ (264 − 96 cosh [√2𝑥] + √2 sinh [2√2𝑥])
⋅ tanh [ 𝑥

√2]) + (−21
2 sech [ 𝑥

√2]6 tanh [ 𝑥
√2]

+ 12 sech [ 𝑥
√2]4 tanh [ 𝑥

√2]3) Γ (1 + 2𝛼)
Γ (1 + 𝛼)2 .

(56)

The solution in series form is given by

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑓1 (𝑥) 𝑡𝛼
Γ (1 + 𝛼) + 𝑓2 (𝑥) 𝑡2𝛼

Γ (1 + 2𝛼)
+ 𝑓3 (𝑥) 𝑡3𝛼

Γ (1 + 3𝛼) + . . .
(57)

5. Numerical Results

This section deals with the approximate analytical solu-
tions obtained by RPSM for Gardner and Cahn-Hilliard
equations. In classical case(𝛼 󳨀→ 1), Figure 1 and Tables
1 and 2 describe the comparison between RPSM with q-
HAM [28] and HPM [36]. In fractional case, Figures 2, 3,
and 4 describe the geometrical behavior of the solutions
obtained by RPSM for different fractional value 𝛼 of the two
equations.
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Figure 2: (a) Fractional Gardner equation at 𝑥 = 5, 𝜀 = 1. (b) Fractional Chan-Hilliard equation at 𝑥 = 5.
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Figure 3: The approximate solution for fractional Gardner equation at 𝜀 = 1: (a) 𝛼 = 1, (b) Exact solution, (c) 𝛼 = .99, and (d) 𝛼 = .95.

6. Conclusions

This work has used the RPSM for finding the solution of the
time-fractional Gardner andCahn-Hilliard equations. A very
good agreement between the results obtained by the RPSM
and q-HAM [28] was observed in Figure 1(a) and Table 1.
Figure 1(b) and Table 2 indicate that the mentioned method
achieves a higher level of accuracy than HPM [36]. Conse-
quently, the work emphasized that the method introduces a
significant improvement in this field over existing techniques.

Data Availability

[1] The [approximate solution obtained by q-homotopy
analysis method] data used to support the findings of
this study have been deposited in the [article] repository
([doi.org/10.1016/j.asej.2014.03.014]) [28]. [2] The [approxi-
mate solution obtained by homotopy perturbation method]
data used to support the findings of this study have
been deposited in the [article] repository ([doi.org/10.1080/
10288457.2013.867627]) [36].
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Figure 4: The approximate solution for fractional Chan-Hilliard equation: (a) 𝛼 = 1, (b) Exact solution, (c) 𝛼 = .99, and (d) 𝛼 = .95.

Table 1:The absolute errors |𝑢𝑒𝑥𝑎𝑐𝑡 −𝑢3| for Gardner equation when𝑡 = .2, 𝜀 = 1, 𝛼 󳨀→ 1.
x 󵄨󵄨󵄨󵄨𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑅𝑃𝑆󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑞𝐻𝐴𝑀󵄨󵄨󵄨󵄨󵄨
.1 166.002 × 10−6 166.002 × 10−6
.2 162.707 × 10−6 162.707 × 10−6
.3 156.257 × 10−6 156.257 × 10−6
.4 146.917 × 10−6 146.917 × 10−6
.5 135.064 × 10−6 135.064 × 10−6

Table 2: The absolute errors |𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢4| for Cahn-Hilliard when𝑡 = .2, 𝛼 󳨀→ 1.
x 󵄨󵄨󵄨󵄨𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑅𝑃𝑆󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐻𝑃𝑀󵄨󵄨󵄨󵄨
.1 25.5541 × 10−6 4.68338 × 10−3
.2 41.5291 × 10−6 7.28902 × 10−3
.3 54.2246 × 10−6 9.6162 × 10−3
.4 62.8898 × 10−6 11.5931 × 10−3
.5 67.2637 × 10−6 13.174 × 10−3

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. Debnath, “Recent applications of fractional calculus to
science and engineering,” International Journal of Mathematics
and Mathematical Sciences, no. 54, pp. 3413–3442, 2003.

[2] M. Rahimy, “Applications of fractional differential equations,”
Applied Mathematical Sciences, vol. 4, no. 49-52, pp. 2453–2461,
2010.

[3] A. A. Arafa and S. Z. Rida, “Numerical solutions for some gen-
eralized coupled nonlinear evolution equations,”Mathematical
and Computer Modelling, vol. 56, no. 11-12, pp. 268–277, 2012.

[4] A. A. Arafa, “Series solutions of time-fractional host-parasitoid
systems,” Journal of Statistical Physics, vol. 145, no. 5, pp. 1357–
1367, 2011.

[5] N. H. Sweilam, M. M. Khader, and R. F. Al-Bar, “Numeri-
cal studies for a multi-order fractional differential equation,”
Physics Letters A, vol. 371, no. 1-2, pp. 26–33, 2007.

[6] A. Golbabai and K. Sayevand, “Fractional calculus- a new
approach to the analysis of generalized fourth-order diffusion-
wave equations,” Computers & Mathematics with Applications.
An International Journal, vol. 61, no. 8, pp. 2227–2231, 2011.

[7] K. A. Gepreel, “The homotopy perturbation method applied
to the nonlinear fractional Kolmogorov-Petrovskii-PISkunov
equations,”AppliedMathematics Letters, vol. 24, no. 8, pp. 1428–
1434, 2011.

[8] A. A. Arafa, S. Z. Rida, and H. Mohamed, “Approximate
analytical solutions of Schnakenberg systems by homotopy

81Application of Residual Power Series Method to Fractional Coupled Physical Equations Arising in Fluids Flow



analysis method,” Applied Mathematical Modelling: Simulation
and Computation for Engineering and Environmental Systems,
vol. 36, no. 10, pp. 4789–4796, 2012.

[9] A. A. Arafa, S. Z. Rida, and M. Khalil, “The effect of anti-viral
drug treatment of human immunodeficiency virus type 1 (HIV-
1) described by a fractional order model,”AppliedMathematical
Modelling: Simulation and Computation for Engineering and
Environmental Systems, vol. 37, no. 4, pp. 2189–2196, 2013.

[10] M. Javidi, “A numerical solution of the generalized Burgers-
Huxley equation by spectral collocation method,” Applied
Mathematics and Computation, vol. 178, no. 2, pp. 338–344,
2006.

[11] A.-M. Wazwaz, “Analytic study on Burgers, Fisher, Huxley
equations and combined forms of these equations,” Applied
Mathematics and Computation, vol. 195, no. 2, pp. 754–761,
2008.

[12] X.-W. Zhou, “Exp-function method for solving Huxley equa-
tion,” Mathematical Problems in Engineering, Art. ID 538489, 7
pages, 2008.

[13] A. A. Arafa, S. Z. Rida, A. A. Mohammadein, and H. M.
Ali, “Solving nonlinear fractional differential equation by gen-
eralized Mittag-Leffler function method,” Communications in
Theoretical Physics, vol. 59, no. 6, pp. 661–663, 2013.

[14] M. Sari and G. Gürarslan, “Numerical solutions of the gen-
eralized Burgers-Huxley equation by a differential quadra-
ture method,” Mathematical Problems in Engineering, Art. ID
370765, 11 pages, 2009.

[15] O. Abu Arqub, “An iterative method for solving fourth-order
boundary value problems of mixed type integro-differential
equations,” Journal of Computational Analysis and Applications,
vol. 18, no. 5, pp. 857–874, 2015.

[16] O.AbuArqub, “Fitted reproducing kernelHilbert spacemethod
for the solutions of some certain classes of time-fractional
partial differential equations subject to initial and Neumann
boundary conditions,” Computers &Mathematics with Applica-
tions, vol. 73, no. 6, pp. 1243–1261, 2017.

[17] A.-M.Wazwaz, “Solitons and singular solitons for the Gardner-
KP equation,” Applied Mathematics and Computation, vol. 204,
no. 1, pp. 162–169, 2008.

[18] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura,
“Method for solving the Korteweg-deVries equation,” Physical
Review Letters, vol. 19, no. 19, pp. 1095–1097, 1967.

[19] A.-M. Wazwaz, “New solitons and kink solutions for the
Gardner equation,” Communications in Nonlinear Science and
Numerical Simulation, vol. 12, no. 8, pp. 1395–1404, 2007.

[20] Z. Fu, S. Liu, and S. Liu, “New kinds of solutions to Gardner
equation,” Chaos, Solitons & Fractals, vol. 20, no. 2, pp. 301–309,
2004.

[21] G.-q. Xu, Z.-b. Li, and Y.-p. Liu, “Exact solutions to a large class
of nonlinear evolution equations,” Chinese Journal of Physics,
vol. 41, no. 3, pp. 232–241, 2003.

[22] D. Baldwin, Ü. Göktas, W. Hereman, L. Hong, R. S. Martino,
and J. C. Miller, “Symbolic computation of exact solutions
expressible in hyperbolic and elliptic functions for nonlinear
PDEs,” Journal of Symbolic Computation, vol. 37, no. 6, pp. 669–
705, 2004.

[23] W. Hereman and A. Nuseir, “Symbolic methods to construct
exact solutions of nonlinear partial differential equations,”
Mathematics and Computers in Simulation, vol. 43, no. 1, pp. 13–
27, 1997.

[24] Y. Ugurlu and D. g. Kaya, “Solutions of the Cahn-Hilliard
equation,” Computers & Mathematics with Applications. An
International Journal, vol. 56, no. 12, pp. 3038–3045, 2008.

[25] J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform
system. I. Interfacial free energy,” The Journal of Chemical
Physics, vol. 28, no. 2, pp. 258–267, 1958.

[26] S. M. Choo, S. K. Chung, and Y. J. Lee, “A conservative
difference scheme for the viscous Cahn-Hilliard equation with
a nonconstant gradient energy coefficient,” Applied Numerical
Mathematics, vol. 51, no. 2-3, pp. 207–219, 2004.

[27] M. E. Gurtin, “Generalized Ginzburg-Landau and Cahn-
Hilliard equations based on a microforce balance,” Physica D:
Nonlinear Phenomena, vol. 92, no. 3-4, pp. 178–192, 1996.

[28] O. S. Iyiola and O. G. Olayinka, “Analytical solutions of time-
fractionalmodels for homogeneousGardner equation and non-
homogeneous differential equations,” Ain Shams Engineering
Journal, vol. 5, no. 3, pp. 999–1004, 2014.

[29] Y. Pandir and H. H. Duzgun, “New Exact Solutions of Time
Fractional Gardner Equation by Using New Version of F-
Expansion Method,” Communications in Theoretical Physics,
vol. 67, no. 1, pp. 9–14, 2017.

[30] J. Ahmad and S. T. Mohyud-Din, “An efficient algorithm
for some highly nonlinear fractional PDEs in mathematical
physics,” PLoS ONE, vol. 9, no. 12, Article ID e109127, 2014.

[31] W. Li, H. Yang, and B. He, “Exact solutions of fractional Burgers
and Cahn-Hilliard equations using extended fractional Riccati
expansionmethod,”Mathematical Problems in Engineering, Art.
ID 104069, 9 pages, 2014.

[32] H. Jafari, H. Tajadodi, N. Kadkhoda, and D. Baleanu, “Frac-
tional subequation method for Cahn-Hilliard and Klein-
Gordon equations,” Abstract and Applied Analysis, vol. 2013,
Article ID 587179, 5 pages, 2013.

[33] M. S. Mohamed and K. S. Mekheimer, “Analytical approximate
solution for nonlinear space-time fractional Cahn-Hilliard
equation,” International Electronic Journal of Pure and Applied
Mathematics, vol. 7, no. 4, pp. 145–159, 2014.

[34] Z. Dahmani andM. Benbachir, “Solutions of the Cahn-Hilliard
equation with time- and space-fractional derivatives,” Interna-
tional Journal of Nonlinear Science, vol. 8, no. 1, pp. 19–26, 2009.

[35] D. Baleanu, Y. Ugurlu, M. Inc, and B. Kilic, “Improved ( G ’
/ G ) -Expansion Method for the Time-Fractional Biological
Population Model and Cahn–Hilliard Equation,” Journal of
Computational andNonlinear Dynamics, vol. 10, no. 5, p. 051016,
2015.

[36] A. Bouhassoun andM.Hamdi Cherif, “Homotopy Perturbation
Method For Solving The Fractional Cahn-Hilliard Equation,”
Journal of Interdisciplinary Mathematics, vol. 18, no. 5, pp. 513–
524, 2015.

[37] J. Ahmad and S. T. Mohyud-Din, “An efficient algorithm for
nonlinear fractional partial differential equations,” Proceedings
of the Pakistan Academy of Sciences, vol. 52, no. 4, pp. 381–388,
2015.

[38] J. Manafian and M. Lakestani, “A new analytical approach to
solve someof the fractional-order partial differential equations,”
Indian Journal of Physics, vol. 91, no. 3, pp. 243–258, 2017.

[39] S. Tuluce Demiray, Y. Pandir, and H. Bulut, “Generalized
Kudryashov method for time-fractional differential equations,”
Abstract and Applied Analysis, Art. ID 901540, 13 pages, 2014.

[40] O. Abu Arqub, “Series solution of fuzzy differential equa-
tions under strongly generalized differentiability,” Journal of
Advanced Research in Applied Mathematics, vol. 5, no. 1, pp. 31–
52, 2013.

82 Differential Equations: Concepts and Applications



[41] O. Abu Arqub, A. El-Ajou, A. S. Bataineh, and I. Hashim, “A
representation of the exact solution of generalized Lane-Emden
equations using a new analytical method,” Abstract and Applied
Analysis, Art. ID 378593, 10 pages, 2013.

[42] O. Abu Arqub, Z. Abo-Hammour, R. Al-Badarneh, and S.
Momani, “A reliable analytical method for solving higher-order
initial value problems,”DiscreteDynamics inNature and Society,
vol. 2013, Article ID 673829, 12 pages, 2013.

[43] A. El-Ajou, O. Abu Arqub, and S. Momani, “Approximate
analytical solution of the nonlinear fractional KdV-Burgers
equation: a new iterative algorithm,” Journal of Computational
Physics, vol. 293, pp. 81–95, 2015.

[44] O. A. Arqub, A. El-Ajou, and S. Momani, “Constructing
and predicting solitary pattern solutions for nonlinear time-
fractional dispersive partial differential equations,” Journal of
Computational Physics, vol. 293, pp. 385–399, 2015.

[45] O. A. Arqub, A. El-Ajou, Z. A. Zhour, and S. Momani, “Multiple
solutions of nonlinear boundary value problems of fractional
order: A new analytic iterative technique,” Entropy, vol. 16, no.
1, pp. 471–493, 2014.

[46] A. El-Ajou, O. Abu Arqub, S. Momani, D. Baleanu, and
A. Alsaedi, “A novel expansion iterative method for solving
linear partial differential equations of fractional order,” Applied
Mathematics and Computation, vol. 257, pp. 119–133, 2015.

[47] A. El-Ajou, O. Abu Arqub, Z. Al Zhour, and S. Momani,
“New results on fractional power series: theories and applica-
tions,” Entropy. An International and Interdisciplinary Journal of
Entropy and Information Studies, vol. 15, no. 12, pp. 5305–5323,
2013.

[48] A. El-Ajou, O. Abu Arqub, and M. Al-Smadi, “A general form
of the generalized Taylor’s formula with some applications,”
Applied Mathematics and Computation, vol. 256, pp. 851–859,
2015.

83Application of Residual Power Series Method to Fractional Coupled Physical Equations Arising in Fluids Flow



Linear Analysis of an Integro-Differential Delay 
Equation Model

Anael Verdugo 1,2

1Department of Mathematics, California State University, Fullerton, CA, USA
2Center for Computational and Applied Mathematics, California State University, Fullerton, CA, USA

Correspondence should be addressed to Anael Verdugo; averdugo@fullerton.edu

Academic Editor: Elena Braverman

This paper presents a computational study of the stability of the steady state solutions of a biological model with negative feedback
and time delay.Themotivation behind the construction of our system comes from biological gene networks and themodel takes the
form of an integro-delay differential equation (IDDE) coupled to a partial differential equation. Linear analysis shows the existence
of a critical delay where the stable steady state becomes unstable. Closed form expressions for the critical delay and associated
frequency are found and confirmed by approximating the IDDE model with a system of 𝑁 delay differential equations (DDEs)
coupled to 𝑁 ordinary differential equations. An example is then given that shows how the critical delay for the DDE system
approaches the results for the IDDE model as𝑁 becomes large.

1. Introduction

New genetic experiments [1–3] andmathematical approaches
[4–6] have been developed to help us better understand
how genes interact within a cell. Theoretically, the structure
of these interactions or networks are represented by the
various chemical reactions happening at a certain time. If
the reactions under consideration only involve a few genes,
then their dynamic behavior could be understood intuitively
and, most likely, confirmed with a biochemical experiment
[2, 3]. However, if the system is formed of dozens of reactions,
then developing an intuitive understanding of the system’s
dynamicswould be difficult. Nevertheless, current research in
the computational sciences [7, 8] shows that the study of these
large gene networks is an important step which will help us
unravel some of themysteries in the field of cell biology [5, 6].

An important and popular modeling technique in the
applied sciences is based on differential equations in all its
various forms: linear [9], nonlinear [6, 10], partial [11], sto-
chastic [12, 13], and delayed [3, 6, 14]. In this study we focus
our attention to a differential equation model with constant
delay, where the delay arises naturally as the time lag asso-
ciated with various intracellular processes, like movement
within the cell, synthesis of proteins, and transcription of
DNA, among many others. The model that motivated this

work was studied previously by [4–6] and is given by the
following set of delay differential equations (DDEs):𝑑𝑚𝑑𝑡 = −𝜇𝑚𝑚(𝑡) + 𝐻 (𝑝 (𝑡 − 𝑇)) ,

𝑑𝑝𝑑𝑡 = 𝑚 (𝑡) − 𝜇𝑝𝑝 (𝑡) , (1)

where the time dependent variables are the mRNA concen-
tration, 𝑚(𝑡), and its associated protein concentration, 𝑝(𝑡),
and the constants 𝜇𝑚 and 𝜇𝑝 are the decay rates of the mRNA
and proteinmolecules, respectively.The function𝐻(𝑝(𝑡−𝑇))
is generally a Hill equation representing the rate of 𝑑𝑒𝑙𝑎𝑦𝑒𝑑
production of mRNA, where the delay, 𝑇, is assumed to be a
positive constant. The associated biochemical representation
of the system is given in Figure 1(a) and the biological context
is the following: a gene is copied onto mRNA in the nucleus,
which is then translated into a protein in the cytoplasm of
the cell. The protein then returns to the nucleus and acts
as a negative feedback regulator by repressing production of
mRNA (see [4–6] for more biological background).

In this paper, we analyze the steady state stability of a
model motivated by (1) and previously studied by the author
in [15]. The model is given by an integro-delay differential
equation (IDDE) coupled to a partial differential equation
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Figure 1: (a) Biological circuit diagram of (1). Protein production, protein decay, and mRNA decay are assumed to be linear processes.
Production of mRNA is considered as a process affected by a delayed response of protein repression. Here the arrow (↑) represents activation
and the perpendicular symbol (⊥) represents repression. Solid and dashed lines represent direct chemical reactions and indirect regulatory
signals, respectively. Five small circles represent degradation byproducts. (b) Spatial distribution of protein production in the cytoplasm.
Protein synthesis happens at various locations from the nucleus. The distance from the nucleus is represented here by the variable 𝑥, where0 ≤ 𝑥 ≤ 1.
(PDE) and is characterized by an exponential “weighting”
function that regulates the net repression effect on mRNA
based on protein synthesis location. The model is given by𝑑𝑚𝑑𝑡 = −𝜇𝑚 + ∫1

0
𝑒−|𝑥−𝑥|𝐻(𝑝 (𝑥, 𝑡 − 𝑇)) 𝑑𝑥, (2)

𝑑𝑝𝑑𝑡 = 𝑚 − 𝜇𝑝, (3)

where 𝑚 = 𝑚(𝑥, 𝑡), 𝑝 = 𝑝(𝑥, 𝑡), and 𝑒−|𝑥−𝑥| is a weighting
function that accounts for a “stronger” mRNA repression for
proteins being synthesized closer to the nucleus than more
distant ones. The latter is due to the spatial distribution of
protein production within the cytoplasm, which occurs after
mRNA exits the nucleus and diffuses into the cytoplasm
where it is caught, read, and translated into a protein. The
exact location from the nucleus where this process occurs
is arbitrary and here we quantify it with a distance variable0 ≤ 𝑥 ≤ 1 as explained in Figure 1(b). The latter yields
the integral term in (2) which represents the total sum of
the repression effect that newly synthesized proteins have on
mRNA.

The current work extends our previous study [15] in two
different ways. First, the biological setup explained above
sets our model (2)-(3) on firmer modeling grounds from
our previous study [15]. Here we assume the variable 𝑥 is
“distance” from the nucleus, as opposed to 𝑥 being a variable
that represents gene sites in the DNA as argued in [15].
This is a crucial difference that yields a better understanding
of our computational results. Second, the results from the
analysis of the steady state and its associated stability are
now confirmed via MATLAB’s dde23.m, which provides
more accurate approximations and numerical simulations for

the associated 2𝑁-dimensional system. The latter was not
accomplished in [15] and thus presented here for the first
time.

The rest of the paper is organized as follows. In Section 2,
we present the associated linear stability analysis of (2)-(3)
and characterize the steady state solutions. Linear analysis
reveals the existence of a critical delay where the stable steady
state becomes unstable and thus closed form expressions for
the critical delay, 𝑇cr, and associated frequency 𝜔 are found.
In Section 3, we construct a system of 𝑁 DDEs coupled
to 𝑁 ordinary differential equations (ODEs) and use these
to confirm the results obtained in Section 2. A numerical
example is then given in Section 4, which shows how the
critical delay for the DDE system approaches the results for
the IDDEmodel as𝑁 becomes large. In Section 5, we discuss
our findings and conclusions.

2. Linear Stability Analysis

In this section, we consider the steady state behavior of (2)
and (3). Setting 𝑑𝑚/𝑑𝑡 = 𝑑𝑝/𝑑𝑡 = 0, we see from (3) that at
steady state 𝑚∗ = 𝜇𝑝∗, where (𝑚∗(𝑥), 𝑝∗(𝑥)) represents the
steady state solution. Substituting the latter into (2) gives

𝜇2𝑝∗ (𝑥) = ∫1
0
𝑒−|𝑥−𝑥|𝐻(𝑝∗ (𝑥)) 𝑑𝑥. (4)

Splitting the integration limits

𝜇2𝑝∗ (𝑥) = 𝑒−𝑥 ∫𝑥
0
𝑒𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥

+ 𝑒𝑥 ∫1
𝑥
𝑒−𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥, (5)
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and differentiating twice, we obtain an equivalent second-
order two-point boundary value problem (BVP) for the
equilibrium solution 𝑝∗ = 𝑝∗(𝑥)

𝑑2𝑝∗𝑑𝑥2 = 𝑝∗ − 2𝜇2𝐻(𝑝∗) , (6)

where the boundary conditions (BCs) are given by

𝑝∗ (0) = 1𝜇2 ∫10 𝑒−𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥,
𝑝∗ (1) = 1𝑒𝜇2 ∫10 𝑒𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥. (7)

The BVP (6)–(7) has a unique solution as long as the right
hand side (RHS) of (6) has bounded, positive, and continuous
partial derivatives with respect to𝑝∗. For the rest of this work,
we let

𝐻(𝑝 (𝑥, 𝑡)) = 1 − 𝑝 (𝑥, 𝑡) , (8)

which allows mathematical tractability for the stability anal-
ysis presented below. Notice that since (8) satisfies all three
aforementioned BVP conditions, then we are guaranteed the
existence of a unique solution, which can be approximated
using a numerical technique for BVPs, such as finite differ-
ences or a shooting method. See Section 4 for an example.

To study the stability of the steady state solution(𝑚∗(𝑥), 𝑝∗(𝑥)), we set 𝑝(𝑥, 𝑡) = 𝑝∗(𝑥) + 𝜂(𝑥, 𝑡) and𝑚(𝑥, 𝑡) =𝑚∗(𝑥) + 𝜉(𝑥, 𝑡), substitute these into (2)-(3), and linearize the
resulting equations in 𝜂(𝑥, 𝑡) and 𝜉(𝑥, 𝑡) to obtain

𝑑𝜉𝑑𝑡 = −𝜇𝜉 − ∫1
0
𝑒−|𝑥−𝑥|𝜂𝑑 (𝑥) 𝑑𝑥, (9)

𝑑𝜂𝑑𝑡 = 𝜉 − 𝜇𝜂. (10)

Setting 𝜉(𝑥, 𝑡) = 𝜙(𝑥)𝑒𝜆𝑡 and 𝜂(𝑥, 𝑡) = 𝜓(𝑥)𝑒𝜆𝑡 gives
−𝑒𝜆𝑇 (𝜆 + 𝜇) 𝜙 (𝑥) = ∫1

0
𝑒−|𝑥−𝑥|𝜓 (𝑥) 𝑑𝑥,

(𝜆 + 𝜇)𝜓 (𝑥) = 𝜙 (𝑥) , (11)

which yields

𝑟𝜓 (𝑥) = ∫1
0
𝑒−|𝑥−𝑥|𝜓 (𝑥) 𝑑𝑥, (12)

where the RHS has a symmetric integral kernel, 𝜓(𝑥) is an
eigenfunction, and 𝑟 is the associated eigenvalue given by

𝑟 = −𝑒𝜆𝑇 (𝜆 + 𝜇)2 . (13)

Since (12) is a self-adjoint operator of the form

𝐿 (⋅) = ∫1
0
𝐾 (𝑥, 𝑥) (⋅) 𝑑𝑥, (14)

then the eigenvalue problem (12) has real eigenvalues 𝑟 ∈ R.
To compute 𝑟, we transform the integral equation (12) to the
following equivalent second-order BVP:

𝑑2𝜓𝑑𝑥2 + 𝜌𝜓 = 0, (15)

with solutions

𝜓 (𝑥) = 𝑐1 sin (𝜌𝑥) + 𝑐2 cos (𝜌𝑥) , (16)

where 𝑐1 and 𝑐2 are constants and 𝜌 = √2/𝑟 − 1.The endpoint
BCs are obtained from (12) as follows:

𝜓 (0) = 𝜌2 + 12 ∫1
0
𝑒−𝑥𝜓 (𝑥) 𝑑𝑥,

𝜓 (1) = 𝜌2 + 12𝑒 ∫1
0
𝑒𝑥𝜓 (𝑥) 𝑑𝑥. (17)

Substituting the solution (16) into the BCs (17) gives the
system of equations

[ 𝜌 sin 𝜌 − cos 𝜌 − 𝑒 − sin 𝜌 − 𝜌 cos 𝜌 + 𝑒𝜌𝑒𝜌 sin 𝜌 − 𝑒 cos 𝜌 − 1 −𝑒 sin 𝜌 − 𝑒𝜌 cos 𝜌 + 𝜌][𝑐1𝑐2]= 0, (18)

which yields the condition on 𝜌 for nontrivial solutions

(𝜌2 − 1) sin 𝜌 − 2𝜌 cos 𝜌 = 0. (19)

Using a numerical root finding technique on (19), we obtain𝜌 = 1.30654, 3.67319, 6.58462, . . . which gives the corre-
sponding values for 𝑟 = 2/(1 + 𝜌2) = 0.73881, 0.13800,0.04509, . . .. Thus to determine 𝜆 from 𝑟 we have two cases:

(i) For 𝑇 = 0, (13) gives 𝜆 = −𝜇 ± √−𝑟 and since 𝑟 =2/(1 + 𝜌2) > 0 then Re(𝜆) = −𝜇 < 0 for 𝜇 > 0.
The latter shows that the equilibrium solution is stable
when there is no delay.

(ii) For 𝑇 = 𝑇cr and 𝜆 = 𝑖𝜔, (13) becomes 𝑟 = −𝑒𝑖𝜔𝑇cr(𝑖𝜔 +𝜇)2 which gives the two real equations

𝑟 = 2𝜇𝜔 sin (𝜔𝑇cr) + (𝜔2 − 𝜇2) cos (𝜔𝑇cr) ,
0 = (𝜔2 − 𝜇2) sin (𝜔𝑇cr) − 2𝜇𝜔 cos (𝜔𝑇cr) . (20)

Solving (20) for sin(𝜔𝑇cr) and cos(𝜔𝑇cr), and using the
identity sin2(𝜔𝑇cr) + cos2(𝜔𝑇cr) = 1, we obtain

𝜔 = √𝑟 − 𝜇2. (21)

Dividing the expressions for sin(𝜔𝑇cr) and cos(𝜔𝑇cr) and
solving for 𝑇cr, we obtain

𝑇cr = 1√𝑟 − 𝜇2 arctan(
2𝜇√𝑟 − 𝜇2𝑟 − 2𝜇2 ), (22)
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which gives the value of the delay where the equilibrium
solution loses stability. The smallest value for 𝑇cr is obtained
by setting 𝑟 = 0.73881 to obtain an expression in terms of the
decay rate 𝜇. In Section 4, we present a numerical example to
confirm these results.

3. Approximating the IDDE-PDE Equations
with a DDE-ODE System

To check our previous results, we “discretize” the variables𝜉(𝑥, 𝑡) and 𝜂(𝑥, 𝑡) in (9) and (10) with a set of 2𝑁 variables𝜉𝑖(𝑡) and 𝜂𝑖(𝑡) for 𝑖 = 1, 2, . . . , 𝑁. This replaces the original
model (9) and (10) with a 2𝑁-dimensional system of𝑁DDEs
coupled to𝑁ODEs and replaces the integral in (9)with a sum
of𝑁 terms as follows:

̇𝜉𝑖 = −𝜇𝜉𝑖 − 1𝑁 𝑁∑𝑗=1𝑒−|𝑖−𝑗|/𝑁𝜂𝑗 (𝑡 − 𝑇) ,
̇𝜂𝑖 = 𝜉𝑖 − 𝜇𝜂𝑖,

(23)

where 𝑖 = 1, 2, . . . , 𝑁. By assuming solutions of the form 𝜉𝑖 =𝜙𝑖𝑒𝜆𝑡 and 𝜂𝑖 = 𝜓𝑖𝑒𝜆𝑡 and substituting them into (23), we obtain

−𝑒𝜆𝑇 (𝜆 + 𝜇) 𝜙𝑖 = 1𝑁 𝑁∑𝑗=1𝑒−|𝑖−𝑗|/𝑁𝜓𝑗,
(𝜆 + 𝜇) 𝜓𝑖 = 𝜙𝑖,

(24)

which yields the following eigenvalue problem:

𝑐𝜓𝑖 = 𝑁∑
𝑗=1

𝑒−|𝑖−𝑗|/𝑁𝜓𝑗, (25)

where 𝑐 = 𝑁𝑟 and 𝑟 = −𝑒𝜆𝑇(𝜆 + 𝜇)2. For nontrivial solutions,
system (25) of 𝑁 equations must satisfy det(𝐾 − 𝑐𝐼) = 0,
where 𝐾 is the 𝑁 × 𝑁 matrix 𝐾 = [𝑒−|𝑖−𝑗|/𝑁] and 𝑐 is its
associated eigenvalue. Since𝐾 is a symmetric matrix, then all
of its eigenvalues are real. Furthermore,𝐾 is positive definite
because det(𝑀𝑖𝑖) > 0 for 𝑖 = 1, 2, . . . , 𝑁, where𝑀𝑖𝑖 is the 𝑖th
minor of𝐾 along the main diagonal. Hence𝐾 is a symmetric
positive definite matrix, which shows that 𝑐 is a positive real
number.The steady state stability results are thus summarized
as follows:

(i) For 𝑇 = 0, we have that 𝜆 = −𝜇 ± √−𝑐/𝑁, where𝜇,𝑁, 𝑐 > 0. This shows that Re(𝜆) < 0 and so the
equilibrium solution with no delay is stable.

(ii) For 𝑇 = 𝑇cr, we take the smallest value of 𝑐 for any
given 𝑁 and use (21) and (22) to obtain values for 𝜔
and 𝑇cr where we set 𝑟 = 𝑐/𝑁. A numerical example
of this case is presented in the following section.

4. Numerical Example

In this section, we present a numerical example to compare
and confirm our previous results. From (6) and (8), we obtain𝑑2𝑝∗𝑑𝑥2 − 𝛾𝑝∗ = 1 − 𝛾, (26)
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Figure 2: Numerical comparison between the steady state solutions
for (29) and the 44-dimensional system given by (30). Here we also
present a time course simulation for 𝑁 = 22, which shows the
short transient response to equilibrium. The asterisk marks (∗) are
the numerical values extracted from 𝑡 = 40 in the time course
simulation for the 22 variables 𝑝𝑖 for 𝑖 = 1, 2, . . . , 22.
where 𝛾 = 1 + 2/𝜇2 > 0 gives the following solution:

𝑝∗ (𝑥) = 𝑐1 sinh (√𝛾𝑥) + 𝑐2 cosh (√𝛾𝑥) + 2𝜇2𝛾 . (27)

Substituting (27) into the BCs (7), we obtain

𝑐1 = (1 − 𝑒√𝛾)
⋅ ( 1 − √𝛾 − (1 + √𝛾) 𝑒√𝛾𝛾 [(𝜇2√𝛾 + 𝜇2 + 1) 𝑒2√𝛾 + 𝜇2√𝛾 − 𝜇2 − 1]) ,

𝑐2 = (1 + 𝑒√𝛾)
⋅ ( 1 − √𝛾 − (1 + √𝛾) 𝑒√𝛾𝛾 [(𝜇2√𝛾 + 𝜇2 + 1) 𝑒2√𝛾 + 𝜇2√𝛾 − 𝜇2 − 1]) .

(28)

Letting 𝜇 = 0.2, we obtain
𝑝∗ (𝑥) = 0.12 sinh (7.14𝑥) − 0.12 cosh (7.14𝑥)+ 0.98, (29)

which we have plotted in Figure 2 (solid). To confirm and
compare this result, we numerically integrate the system

𝑚̇𝑖 = −𝜇𝑚𝑖 + 1𝑁 𝑁∑𝑗=1𝑒−|𝑖−𝑗|/𝑁 (1 − 𝑝𝑗 (𝑡 − 𝑇)) ,
𝑝̇𝑖 = 𝑚𝑖 − 𝜇𝑝𝑖,

(30)

for 𝑁 = 22, 𝜇 = 0.2, and 𝑇 = 0 using MATLAB’s
built-in function dde23.m. Figure 2 shows a summary of the
comparison between (29) and the 44-dimensional system
(30), where we can see that good agreement was found
between both systems as 𝑁 becomes large. In addition,
Figure 2 also presents a time course simulation for 𝑁 = 22,
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Table 1: Numerical results for 𝜇 = 0.2 and various𝑁.

𝑁 𝑐 𝜔 𝑇cr

2 1.6065 0.87365 0.51518
5 3.7453 0.84206 0.55386
10 7.4137 0.83748 0.55982
15 11.0992 0.83663 0.56094
22 16.2655 0.83627 0.56142
30 22.1729 0.83612 0.56161
50 36.9457 0.83601 0.56175
100 73.8836 0.83596 0.56181
200 147.7634 0.83595 0.56183
1000 738.8111 0.83595 0.56184
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Figure 3: Numerical simulations for 𝜇 = 0.2,𝑁 = 22, and different delay values. Here we plotted 𝑝1, which serves as a representative for the
other 21 𝑝𝑖’s, since they all exhibit the same time course simulations. We can see that the equilibrium solution is stable for 𝑇 = 0.55 < 𝑇cr and
unstable for 𝑇 = 0.57 > 𝑇cr. For 𝑇cr = 0.56142 the system exhibits oscillations with a frequency 𝜔 = 2𝜋/period = 2𝜋/(99.794 − 92.281) =
0.83628. These are the simulations associated with the𝑁 = 22 case in Table 1.

where we exhibit the short transients to equilibrium for the
22 variables 𝑝𝑖 for 𝑖 = 1, 2, . . . , 22.

Now we use (21) and (22) to compute the critical delay
and frequency where the steady state 𝑝∗(𝑥) loses its stability.
For the IDDE system, setting 𝜇 = 0.2 in (29) gives the values𝜔 = 0.83595 and 𝑇cr = 0.56184, which we show as the
limiting value for the DDE system when 𝑁 becomes large.
Table 1 shows the results for 𝜇 = 0.2 for various values of 𝑁
and Figure 3 presents the numerical simulations for 𝜇 = 0.2,

𝑁 = 22, and various delay values using MATLAB’s dde23.m.
For the case 𝑁 = 22, Figure 3 shows that the equilibrium
solution is stable for 𝑇 = 0.55 < 𝑇cr and unstable for𝑇 = 0.57 > 𝑇cr. For 𝑇cr = 0.56142, the system exhibits
oscillations with a frequency 𝜔 = 2𝜋/period = 2𝜋/(99.794 −92.281) = 0.83628 as predicted. Notice that in Figure 3 we
only plotted 𝑝1, which we use as one of the representatives
for the other 21𝑝𝑖’s, since they all exhibit the same time course
simulation. Table 1 also shows the approach to the limiting
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value 𝑇cr = 0.56184 which was approximately achieved in a
system of 2000 equations.

5. Conclusions

In this work, we investigated the equilibrium solutions and
their associated stability of a biological model with negative
feedback and time delay. The model is formed of an IDDE
coupled to a PDE having time, 𝑡, and distance, 𝑥, as inde-
pendent variables.The study considers linear production and
degradation rates of mRNA and protein and an exponential
weighting function that models the net repression of all
proteins due to spatial distribution in the cytoplasm. Our
steady state analysis was accomplished by transforming the
steady state integral equation into a second-order two-point
boundary value problem, and it showed that the equilibrium
solution, 𝑝∗, depends on the distance, 𝑥. Stability analysis
then revealed that the nondelayed system is stable and that
there exists a critical value for the delaywhere the equilibrium
loses its stability.

We confirmed our results by “discretizing” our original
model and approximating it with a system of 𝑁 DDEs
coupled to 𝑁 ODEs. This resulted in a 2𝑁-dimensional
system with delay where numerical evaluations for different𝑁 were performed and good agreement was found with
the “continuous” IDDE counterpart as 𝑁 became large. In
particular, Table 1 shows that𝑇discrete

cr → 𝑇continuous
cr = 0.56184

as 𝑁 → ∞, which was confirmed using MATLAB’s built-
in function dde23.m on the full DDE model in a system
of 2000 equations. Unfortunately, there are no numerical
routines available in MATLAB for the simulation of IDDEs,
but our results confirm that it is possible to dissect and
understand the dynamics of such complicated equations via
a discretization approach, as the one presented in Section 3.
The currentwork corrects and extends our previous study [15]
via MATLAB’s dde23.m and thus providing more accurate
and reliable approximations (and numerical simulations) for
the associated 2𝑁-dimensional system used to confirm our
results. Table 1 summarizes and corrects our previous results
[15] by showcasing the 𝑁 = 22 numerical simulations and
their transition from stable to unstable behavior as seen in
Figure 3. It is thus hoped that our approach will be useful
to researchers in the field of computational mathematics and
gene networks trying to model physical or biological systems
characterized by IDDEs and PDEs. Future possible directions
for this work include choosing 𝐻(𝑝) nonlinear, multiple
delays, or a detailed bifurcation study proving that the system
undergoes a Hopf bifurcation when 𝑇 = 𝑇cr.
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In this article the problemof existence and uniqueness of solutions of stochastic differential equationswith jumps and concentration
points are solved. The theoretical results are illustrated by one example.

1. Introduction

First, consider the works that are relevant to this subject. Note
that number of these works are very small, since the existence
of points of condensation is not very often encountered in real
processes. However, the relevant equations can significantly
enhance the understanding of the dynamics of real processes.
In addition, this mathematical model can be a very good
comparison for the classical model, the ordinary differential
equations, stochastic differential equations, functional differ-
ential equations, and impulse equations. On the other hand,
equations with concentration points cannot be considered as
equations with Poison integral, because for these equations
points of condensation do not exist with probability 1.

In paper [1] differential equations with delay in simplest
form

𝑥̇ (𝑡) + 𝑎𝑥 (𝑡 − 𝜏) = ∞∑
𝑗=1

𝑏𝑗𝑥 (𝑡𝑗−) 𝛿 (𝑡 − 𝑡𝑗) (1)

with infinity impulses are considered. However, in
Theorems 2.1 and 3.1 [1] it is supposed that impulses
satisfy the inequality 𝑡𝑗 − 𝑡𝑗−1 > 𝑇 = const; that is, 𝑡𝑗 →∞, if𝑗 → ∞. According toTheorem 2.1 [1], one of the exponential
stability conditions is

1 + 󵄨󵄨󵄨󵄨󵄨𝑏𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀 for 𝑗 = 1, 2, 3, . . . (2)

whence influence of impulses in determining case is obvious.
In Section 3 of this paper authors consider determining
differential-difference system with one delay and perturba-
tion 𝑥(𝑡𝑖+) − 𝑥(𝑡𝑖−) = 𝑏𝑖𝑥(𝑡𝑖−). Then one of the conditions of
oscillation is

lim
𝑖→∞

sup (1 + 𝑏𝑖)−1 ∫𝑡𝑖=min{𝜏,𝑇}

𝑡𝑖

𝑝 (𝑠) 𝑑𝑠 > 1. (3)

On the other hand, Theorem 3.3 [1] consists of sufficient
conditions about condition on the value of jumps 𝑏𝑖 > 0, 𝑖 =1, 2, 3, . . ., and ∑∞𝑖=1 𝑑𝑖 < ∞.

In [2] delay depends on the time for differential equations
with delay, and there is a condition on impulses lim𝑘→∞𝑡𝑘 =∞. Under the given conditions the boundedness of the solu-
tions by exponential functions 𝑘 ⋅ 𝑒𝛾𝑡 is proved (Theorems 3.1,
4.1 [2]). Differential equations with impulses are used in a
lot of application problems (however, besides delay effect,
impulsive effect likewise exists in a wide variety of evolution-
ary processes in which states are changed abruptly at certain
moments of time, involving such fields as medicine and
biology, economics, mechanics, electronics, and telecommu-
nications; artificial electronic systems, neural networks such
as Hopfield neural networks, bidirectional neural networks,
and recurrent neural networks often are subject to impulsive
perturbations which can affect dynamical behaviors of the
systems just as time delays). Authors note influence of the
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jumps on the capability analysis; namely, the condition on the
jump’s moments is (ln(𝛾𝑘)/(𝑡𝑘 −𝑡𝑘−1)) ≤ 𝛾, where 𝛾 and 𝛾𝑘 are
described in Section 3. Thus, authors use weaker condition
in comparison with 𝑡𝑘 − 𝑡𝑘−1 > const > 0, but existence of
concentration points is not considered.

A significant contribution to the study of impulse systems
of differential equations was made by Ukrainian academician
Samoilenko. The monograph [3] studies impulse systems of
ordinary differential equations; in themonograph [4] authors
consider counted systems of ordinary differential equation in
the next form 𝑑𝑥𝑑𝑡 = 𝐴 (𝑡) 𝑥 (4)

with impulse perturbations

Δ𝑥 (𝑡𝑗) = 𝐵𝑗𝑥 (𝑡𝑗 − 0) . (5)

For these systems problems of existence and uniqueness of
the solution, limited periodicity is considered. In paper [5]
the main problems of ordinary differential equations with
stochastic parameters and perturbations are considered. As
in papers [3, 4], authors suppose that 𝑡𝑖 − 𝑡𝑖−1 > 𝑇. In
papers [3–5] the focus is on the existence of periodic solutions
of the system and authors prove that existence of impulses
changes qualitative characteristic of solutions (stability and
periodicity). Beside this, in these papers there is a supposition
about continuity on (𝑡𝑖, 𝑡𝑖+1), as opposed to continuity on[𝑡𝑖, 𝑡𝑖+1), as in this paper and in [6–8].

In [9] authors consider the second-order system, which
describes behavior of [𝑦, ̇𝑦] for the solution of 2nd order
differential equation with impulse perturbations. By contrast,
in this paper the delay process is found such that solution is
non-Markov process in classic perception, but the condition
on impulses is the same: |𝑡𝑖 − 𝑡𝑖−1| > 𝑇. The feature of this
paper is transition of non-Markov process of perturbation
to Markov process using additional variables. Based on this
approach we can build finite-dimensional distributions.

Problem of existence and uniqueness of solution of
impulse systems without the concentration points is consid-
ered in [10]. Also the problem of stability of solution using
discontinuous impulses is considered.

All above-listed papers do not contain concentration
points and cannot be used for describing systems with
increase on the short time interval resonance.

The problem of existence and uniqueness of solution of
dynamic systems with concentration points for determinate
dynamic differential equations is solved in [11]. This paper
is one of the first papers where the concentration points
are considered. The examples of real processes, which are
described by impulse differential equations, for which the
condition 𝑡𝑘 − 𝑡𝑘−1 > const > 0 does not hold are
considered in the paper [12]. Existence and uniqueness of
random stochastic dynamic systems with permanent delay in
the absence of the concentration points are considered in [8].

The sufficient conditions of existence and uniqueness
of the solution of the systems of stochastic differential-
difference equations with Markov switching with concentra-
tion points are shown in this paper. Thus the paper is actual
and timely.

2. Problem Definition

Consider stochastic differential-difference equation

𝑑𝑥 (𝑡) = 𝑎 (𝑡, 𝜉 (𝑡) , 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟)) 𝑑𝑡
+ 𝑏 (𝑡, 𝜉 (𝑡) , 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟)) 𝑑𝑤 (𝑡) , (6)

for 𝑡 ∈ R+ \ T with Markov’s switching

Δ𝑥 (𝑡𝑘) = 𝑥 (𝑡𝑘) − 𝑥 (𝑡𝑘−)
= 𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥 (𝑡𝑘−)) ,

𝑡𝑘 ∈ T fl {𝑡𝑘 ↑, 𝑘 = 1, 2, . . .} ,
(7)

and the initial conditions𝑥 (𝑡) = 𝜑 (𝑡) ,
−𝑟 ≤ 𝑡 ≤ 0,
𝑟 > 0,
𝜑 ∈ D,

𝜉 (0) = 𝑦 ∈ Y,
𝜂0 = ℎ ∈ H.

(8)

Here 𝜉(𝑡) is the Markov process with values in the
measured space (Y,Y) with generator 𝑄; 𝜂𝑘, 𝑘 ≥ 0 is the
Markov chain with values in the measured space (H,H),
which is described by the matrix of transition probabilities𝑃(𝑦, 𝐴) = 𝑃{𝜂𝑘 ∈ 𝐴 | 𝜂𝑘−1 = 𝑦}, 𝑦 ∈ H, 𝐴 ∈ H; 𝑤(𝑡)
is one-dimensional Wiener process. It should be noted that𝑤(𝑡), 𝜉(𝑡), 𝑡 ≥ 0, and 𝜂𝑘, 𝑘 ≥ 0, are independent [13]; D ≡
D([−𝑟, 0],R𝑚) is the Skorokhod space of the right continuous
functions with left-hand limits [14] with the norm󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩 = sup

−𝑟≤𝜃≤0

󵄨󵄨󵄨󵄨𝜑 (𝜃)󵄨󵄨󵄨󵄨 . (9)

Let measured mapping 𝑎 : R+ × Y × R𝑚 × R𝑚 → R𝑚;𝑏 : R+ × Y × R𝑚 × R𝑚 → R𝑚; 𝑔 : R+ × Y × H × R𝑚 → R𝑚

satisfies the bounded condition and Lipschitz condition ∀𝑡 ∈[0, 𝑇], 𝑦 ∈ Y, ℎ ∈ H:󵄨󵄨󵄨󵄨𝑎 (𝑡, 𝑦, 𝜙1, 𝜙2)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑏 (𝑡, 𝑦, 𝜙1, 𝜙2)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑦, ℎ, 𝜙3)󵄨󵄨󵄨󵄨2
≤ 𝐶 (1 + 󵄨󵄨󵄨󵄨𝜙1󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜙2󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜙3󵄨󵄨󵄨󵄨2) ,

∀𝑡 ≥ 0, 𝑦 ∈ Y, ℎ ∈ H, 𝜑𝑖 ∈ R
𝑚, 𝑖 = 1, 2, 3;

󵄨󵄨󵄨󵄨𝑎 (𝑡, 𝑦, 𝜙1, 𝜙2) − 𝑎 (𝑡, 𝑦, 𝜓1, 𝜓2)󵄨󵄨󵄨󵄨2
+ 󵄨󵄨󵄨󵄨𝑏 (𝑡, 𝑦, 𝜙1, 𝜙2) − 𝑏 (𝑡, 𝑦, 𝜓1, 𝜓2)󵄨󵄨󵄨󵄨2
≤ 𝐿 (󵄨󵄨󵄨󵄨𝜙1 − 𝜓1󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜙2 − 𝜓2󵄨󵄨󵄨󵄨2)

∀𝑡 ≥ 0, 𝑦 ∈ Y, 𝜙𝑖, 𝜓𝑖 ∈ R
𝑚, 𝑖 = 1, 2;

󵄨󵄨󵄨󵄨𝑔 (𝑡𝑘, 𝑦, ℎ, 𝜙3) − 𝑔 (𝑡𝑘, 𝑦, ℎ, 𝜓3)󵄨󵄨󵄨󵄨2 ≤ 𝑙𝑘 󵄨󵄨󵄨󵄨𝜙3 − 𝜓3󵄨󵄨󵄨󵄨2 ,
𝜙3, 𝜓3 ∈ R

𝑚, ∞∑
𝑘=1

𝑙𝑘 < ∞.

(10)
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Consider the case when the concentration point

lim
𝑘→∞

𝑡𝑘 = 𝑡∗ ∈ [0, 𝑇] , (11)

presents on [0, 𝑇], where we learn existence and uniqueness
of Cauchy problem (6)–(8) solution.

2.1. The Main Result. In this part of the work consider the
problem of existence and uniqueness of solutions of stochas-
tic differential-difference equations with impulse perturba-
tions. Note that the conditions considered in this theorem are
not elementary, since they have a quite complicated form.

Theorem 1. Let

(1) the condition (10) hold;
(2) ∑∞𝑘=1 𝛾𝑘 < ∞, 𝛾𝑘 = sup𝑥∈R𝑚 ,𝑦∈Y,ℎ∈H|𝑔(𝑡𝑘, 𝑦, ℎ, 𝑥)|;
(3) the condition

lim
𝜀↓0

(ln 𝜀 + 𝑁𝜀 𝑁𝜀∑
𝑘=1

𝑙𝑘) = −∞, (12)

where

𝑁𝜀 fl inf {𝑘 ≥ 1 : ∞∑
𝑚=𝑘

𝛾𝑚 < 𝜀} , (13)

hold.

Then exists a unique solution of the Cauchy’s problems (6)–(8).

Proof.

(I) Existing. Let us determine the following process:

𝑥 (𝑡) = 𝑥 (𝑡𝑘) + ∫𝑡
𝑡𝑘

𝑎 (𝑠, 𝜉 (𝑠) , 𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟)) 𝑑𝑠
+ ∫𝑡
𝑡𝑘

𝑏 (𝑠, 𝜉 (𝑠) , 𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟)) 𝑑𝑤 (𝑠) ,
𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1) ,

𝑥 (𝑡𝑘) = 𝑥 (𝑡𝑘−) + 𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥 (𝑡𝑘−)) ,
𝑘 ≥ 0,

(14)

which determines the initial condition

𝑥 (𝜏) = 𝜑 (𝜏) ,
−𝑟 ≤ 𝜏 ≤ 0,

𝜉 (0) = 𝑦 ∈ Y,
𝜂0 = ℎ ∈ H.

(15)

Consider 𝑇󸀠 < 𝑡∗. Then, for interval [0, 𝑇󸀠], we can use
classical theorem of existence and uniqueness [8]. Besides

this, in the paper [15] it is proved that 𝑥 ∈ 𝐿2[0, 𝑇󸀠]. The next
inequality

E |𝑥 (𝑡)| ≤ E |𝑥 (0)|
+ ∫𝑇󸀠
0

E 󵄨󵄨󵄨󵄨𝑎 (𝑠, 𝜉 (𝑠) , 𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))󵄨󵄨󵄨󵄨 𝑑𝑠

+ √∫𝑇󸀠
0

E 󵄨󵄨󵄨󵄨𝑏 (𝑠, 𝜉 (𝑠) , 𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))󵄨󵄨󵄨󵄨2 𝑑𝑠

+ 𝑘󸀠∑
𝑘=1

E 󵄨󵄨󵄨󵄨𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥 (𝑡𝑘−))󵄨󵄨󵄨󵄨

(16)

also holds. Using condition (7), we get

lim
𝑇󸀠→𝑡∗

E |𝑥 (𝑡)| < ∞. (17)

This inequality proves the existence of the first moment for 𝑥;
it means 𝑥 ∈ 𝐿1[0, 𝑡∗] or 𝑥 ∈ 𝐿1[0, 𝑇]. Existence is proved.
(II) Uniqueness. Let two solutions 𝑥(1)(𝑡), 𝑥(2)(𝑡), 𝑡 ≥ 0 exist.
Consider estimation E|𝑥(1)(𝑡) − 𝑥(2)(𝑡)|2, 𝑡 ≥ 0, using its
integral form and Lipschitz condition

𝐼 (𝑡) = E 󵄨󵄨󵄨󵄨󵄨𝑥(1) (𝑡) − 𝑥(2) (𝑡)󵄨󵄨󵄨󵄨󵄨2 ≤ 𝐾∫𝑡
0
E 󵄨󵄨󵄨󵄨󵄨𝑥(1) (𝑠)

− 𝑥(2) (𝑠)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑠
+ E(𝑁(𝑡)∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥(1) (𝑡𝑘−))

− 𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥(2) (𝑡𝑘−))󵄨󵄨󵄨󵄨󵄨)
2

≤ 𝐾∫𝑡
0
E 󵄨󵄨󵄨󵄨󵄨𝑥(1) (𝑠) − 𝑥(2) (𝑠)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑠

+ 2E(𝑁𝜀(𝑡)∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥(1) (𝑡𝑘−))

− 𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥(2) (𝑡𝑘−))󵄨󵄨󵄨󵄨󵄨)
2

+ 2E( ∞∑
𝑘=𝑁𝜀(𝑡)+1

󵄨󵄨󵄨󵄨󵄨𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥(1) (𝑡𝑘−))

− 𝑔 (𝑡𝑘−, 𝜉 (𝑡𝑘−) , 𝜂𝑘, 𝑥(2) (𝑡𝑘−))󵄨󵄨󵄨󵄨󵄨)
2

,

(18)

where𝑁(𝑡) = sup{𝑘 ∈ N | 𝑡𝑘 < 𝑡} + 1,𝑁𝜀(𝑡) = 𝑁(𝑡) ∧𝑁𝜀, and𝐾 = 𝐾(𝑇, 𝐿). Let us use the Lipschitz condition for the second
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termof the last part of inequality and limited condition for the
third one. Then we get

𝐼 (𝑡) ≤ 𝐾∫𝑡
0
E 󵄨󵄨󵄨󵄨󵄨𝑥(1) (𝑠) − 𝑥(2) (𝑠)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑠

+ 2𝑁𝜀𝑁𝜀(𝑡)∑
𝑘=1

𝑙𝑘E 󵄨󵄨󵄨󵄨󵄨𝑥(1) (𝑡𝑘) − 𝑥(2) (𝑡𝑘)󵄨󵄨󵄨󵄨󵄨2 + 2𝜀.
(19)

According to [11]

𝐼 (𝑡) ≤ 2𝜀𝑁𝜀(𝑡)∏
𝑘=1

(1 + 2𝑁𝜀𝑙𝑘) 𝑒𝐾𝑇
≤ 𝑒𝐾𝑇+2𝑁𝜀 ∑𝑁𝜀(𝑡)𝑘=1 𝑙𝑘+ln 𝜀+ln 2.

(20)

Then, according to the theorem’s condition (3)
lim
𝜀↓0

(𝐾𝑇 + 2𝑁𝜀𝑁𝜀(𝑡)∑
𝑘=1

𝑙𝑘 + ln 𝜀 + ln 2) = −∞; (21)

that is, 𝐼(𝑡) = 0. This completes the proof of uniqueness.
Theorem is proved.

2.2. Model Example. Consider linear stochastic differential-
difference equation

𝑑𝑥 (𝑡) = −𝑎 (𝜉 (𝑡)) 𝑥 (𝑡) 𝑑𝑡 − 𝑏 (𝜉 (𝑡)) 𝑥 (𝑡 − 𝑟) 𝑑𝑡
+ 𝜎 (𝜉 (𝑡)) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0, 𝑟 > 0, (22)

with impulse contagion

Δ𝑥(2 − 1𝑘) = 𝑥(2 − 1𝑘−)
+ 𝑒−𝛼𝑘𝜂𝑘 (󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 (2 − 1𝑘−)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∧ 1) ,
𝑘 󳨀→ ∞,

(23)

and initial condition

𝑥 (𝜃) = 1,
−𝑟 ≤ 𝜃 ≤ 0,

𝜉 (0) = 𝑦0 ∈ Y,
𝜂0 = 1.

(24)

Here 𝑎, 𝑏, 𝜎 are constants that depend onMarkov process𝜉 with generator 𝑄 = ( −1 11 −1 ), where 𝜂𝑘, 𝑘 ≥ 0 is Markov
chain with two nonabsorbing states ℎ1 = 1 i ℎ2 = 2 and
transition matrix 𝑃 = ( 0.5 0.50.5 0.5 ).

Let us define the values of the parameter 𝛼 that the
solution of the systems (22)–(24) exists.

Define the value of𝑁𝜀 using equality
∞∑
𝑚=𝑘

𝛾𝑚 = ∞∑
𝑚=𝑘

𝑒−𝛼𝑚 = 𝑒−𝛼𝑘1 − 𝑒−𝛼 . (25)
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Figure 1

So,

𝑁𝜀 = [− ln 𝜀 (1 − 𝑒−𝛼)𝛼 + 1] , (26)

and the theorem’s condition (3) as 𝛼 > 1 is
lim
𝜀↓0

(ln 𝜀 + [− ln 𝜀 (1 − 𝑒−𝛼)𝛼 + 1] 𝑁𝜀∑
𝑘=1

𝑙𝑘)
= lim
𝜀↓0

(ln 𝜀 + [− ln 𝜀 (1 − 𝑒−𝛼)𝛼 + 1] 11 − 𝑒−𝛼)
= −∞,

(27)

as 𝛼(1 − 𝑒−𝛼) > 1.
Let us give the R-realization of the problems (22)–(24)

solution, using the following values:
If 𝜉 = 1: 𝑎 = −1, 𝑏 = −0.3, 𝜎 = 0.3;
If 𝜉 = 2: 𝑎 = 0.5, 𝑏 = 0.04, 𝜎 = 2.1;𝜂𝑘 ∈ {1, 2};𝛼 = 1.673, ℎ = 0.0001, 𝑟 = 0.2, 𝜑 ≡ 10.

As shown in Figure 1, concentration is in the point 𝑡 = 2,
and then process’s behavior is continuous and stable for 𝑡 > 2.
3. Conclusion

Usually, in mathematical describing of real processes with
short-term perturbations evolution one supposes that pertur-
bations are momentary and mathematical model is dynamic
system with discontinuous trajectories. In this case the
important class of the systemswith impulse impact frequency
increasing is lost. This paper is one of the important steps
in learning of such systems and development of the quality
persistence theory and learning the stabilization problem.

On the other hand, this paper significantly expands the
class of equalities, for whichwe can consider the conditions of
resistance, existence of periodic and quasi-periodic solutions,
and tasks of the optimal control.

Additional Points

Annotation. The sufficient conditions of existence and
uniqueness of the strong solution of stochastic dynamic
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systems with random structure with Markov switching and
concentration points are proved in the paper.
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This paper proposes themorbidity of themultivariable grey predictionMGM(1, 𝑚)model. Based on themorbidity of the differential
equations, properties ofmatrix, andGerschgorin PanelTheorem,we analyze the factors that affect themorbidity of themultivariable
grey model and give a criterion to justify the morbidity of MGM(1, 𝑚). Finally, an example is presented to illustrate the practicality
of our results.

1. Introduction

In recent decades, grey system theory, as well as fuzzy set
theory [1] and rough set theory [2], is one of the most widely
used theories to study uncertain problems. The grey system
theory which was introduced by Deng [3], characterized
by few data and poor information, has been successfully
utilized in uncertain problems.On account of their enormous
applications in agriculture, economics, management, and
engineering, the grey system attracts many scientific research
workers and scholars devoted to various aspect of those
fields.

Grey forecasting models, an important part of grey sys-
tems, have been widely adopted to predict practical problems
due to their simple calculating process and higher forecasting
accuracy [4, 5]. However, some researchers put forward that
the tiny changes of the initial data can result in the estimation
errors, which is called the morbidity of the grey models. The
research on morbidity and stability problems occupies an
important part in grey forecasting system. Zheng et al. [6]
pointed out that there existed morbidity in grey prediction
models and analyzed the reasons in earlier times. Dang et
al. [7] showed the possibility of the morbidity problem could
only exist inGM(1, 1) when the first item of original sequence
was unequal to zero while other items were equal to zero
approximatively. Wei [8] resolved the morbidity problem for
the grey model with the accumulating method based on the
condition number theory. Xiao and Li [9] studied the effects

of themultiple transformation to the condition number of the
non-equigap GM(1, 1) model.

Except for the research on the morbidity of GM(1, 1)
model, there are also some studies concentrating on the mor-
bidity of other grey models. Xiao and Guo [10] and Zeng
and Xiao [11] researched on the morbidity problem of
GM(2, 1) which had two characteristic values.Wang et al. [12]
summarized the main factor that affected the morbidity of
GM(1, 1, 𝑡𝛼) and suggested that there existed morbidity in
some cases. Cui et al. [13, 14] found that there was no mor-
bidity in NGM(1, 1, 𝑘) and grey Verhulst model; the solution
of thosemodels will notmake significant drift for the original
data series of systems if there exist minor errors in collecting
process.

Compared to the morbidity of grey models group, there
is a little attention on the morbidity of multivariate grey
prediction model MGM(1, 𝑚). The MGM(1, 𝑚) model was
proposed by Zhai et al. [15] and has been developed rapidly
and caught the attention of many researchers. Zou [16]
applied a step by step optimum new information modeling
method to build multivariable nonequidistance information
grey model. Xiong et al. [17] optimized the background value
and set the multiple linear regression model based on MGM
in order to eliminate the fluctuations or random errors of
the original data. Guo et al. [18] constructed SMGM(1, 𝑚)
through coupling self-memory principle of dynamic sys-
tem to MGM; examples showed that it had superior
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predictive performance over other traditional grey prediction
models.

Does the possibility of the morbidity inMGM exist? How
to identify the morbidity of the multivariable grey model has
become an important aspect in the process of constructing
the MGM(1, 𝑚) model. This paper discusses the possibility
of the MGM(1, 𝑚) model and the remainder of the paper
is organized as follows: Section 2 introduces the morbidity
of matrix equations and analyzes the factors that affect the
condition number of special matrix. Section 3 provides a
criterion to justify the morbidity of MGM(1, 𝑚). Section 4
gives an example to illustrate the practicality of our results.
Some conclusions are presented in Section 5.

2. The Morbidity of Equations

Considering the differential equation𝐴𝑥 = 𝑏,𝐴 is nonsingu-
lar matrix, 𝑏 is the constant variable, and 𝑥 is the solution of
the equation.

Definition 1 (see [19]). If𝐴 or 𝑏 has a small change and causes
a larger change in the solution of the equation 𝐴𝑥 = 𝑏, the
equation is said to be morbidity equation.

Definition 2 (see [19]). Suppose that𝐴 is a squarematrix with
full rank. The condition number of 𝐴 is

cond (𝐴)V = 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩V ⋅ ‖𝐴‖V , V = 1, 2, . . . ,∞. (1)

If𝐴 is a real symmetric matrix, then the condition number of𝐴 is

cond (𝐴) = 󵄨󵄨󵄨󵄨𝜆max (𝐴)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆min (𝐴)󵄨󵄨󵄨󵄨 , (2)

where 𝜆max is the maximal eigenvalue of the matrix and 𝜆min
is the minimal eigenvalue of matrix. If cond(𝐴) ∈ (1, 10),𝐴 is well conditioned. If cond(𝐴) ∈ [10, 100), 𝐴 is slightly
ill-conditioned. If cond(𝐴) ∈ [100, 1000), 𝐴 is moderately
ill-conditioned. If cond(𝐴) ∈ [1000,∞), 𝐴 is strongly ill-
conditioned.

In the process of parameters identification of multivari-
able grey model, we usually use the least square method to
estimate the parameters, so there exist least square problems
in the parameters.

Assuming that𝐶 ∈ 𝑅𝑚×𝑛,𝑦 ∈ 𝑅𝑚, and𝐶 is the parameters
matrix of the grey model. If there exists a vector 𝑥0 ∈ 𝑅𝑛,
making ‖𝐶𝑥 − 𝑦‖2 achieve the minimum of the function,
which is 󵄩󵄩󵄩󵄩𝐶𝑥0 − 𝑦󵄩󵄩󵄩󵄩2 = min

𝑥∈𝑅𝑛

󵄩󵄩󵄩󵄩𝐶𝑥 − 𝑦󵄩󵄩󵄩󵄩2 , (3)

then 𝑥0 is the solution of the linear equation 𝐶𝑥 = 𝑦, which
is the estimated parameter of the grey model.

Suppose that 𝑓(𝑥) = ‖𝐶𝑥 − 𝑦‖2 = (𝐶𝑥 − 𝑦)𝑇(𝐶𝑥 − 𝑦) =𝑥𝑇𝐶𝑇𝐶𝑥−𝑥𝑇𝐷𝑇𝑦−𝑦𝑇𝐷𝑥+𝑦𝑇𝑦. By the extremum condition
of the equation, we have𝑑𝑓 (𝑥)𝑑𝑥 = 2𝐶𝑇𝐶𝑥 − 2𝐶𝑇𝑦 = 0. (4)

Then we obtain the solution 𝐶𝑇𝐶𝑥 = 𝐶𝑇𝑦, which is also the
least square solution of the equation 𝐶𝑥 = 𝑦.

In the multivariable grey prediction models, the data
matrix 𝐶 is usually the long matrix; it is not easy to solve
its condition number. It should be noted that 𝐶𝑇𝐶 is a real
symmetric matrix, the condition number is easy to obtain.
Therefore, we often justify the morbidity of the multivariable
grey model by the condition number of 𝐶𝑇𝐶.
3. The Morbidity of MGM(1, 𝑚)
3.1. Grey MGM(1, 𝑚) Model. Themultiple variable grey pre-
diction model abbreviated as MGM(1, 𝑚) is one of the
frequently used grey forecasting models. The MGM(1, 𝑚)
model constructing process is presented below.

Definition 3. Assume that the data sequence

𝑋(0)𝑗 = (𝑥(0)𝑗 (1) , 𝑥(0)𝑗 (2) , . . . , 𝑥(0)𝑗 (𝑚))𝑇 ,𝑗 = 1, 2, . . . , 𝑚 (5)

is the original nonnegative data matrix. The data matrix

𝑋(1)𝑗 = (𝑥(1)𝑗 (1) , 𝑥(1)𝑗 (2) , . . . , 𝑥(1)𝑗 (𝑛))𝑇 ,𝑗 = 1, 2, . . . , 𝑚 (6)

is the first-order accumulated generating matrix of 𝑋(0),
where

𝑥(1)𝑗 (𝑘) = 𝑘∑
𝑖=1

𝑥(0)𝑗 (𝑖) . (7)

The adjacent neighbour average sequence of 𝑋(1) is
𝑍(1)𝑗 = (𝑧(1)𝑗 (1) , 𝑧(1)𝑗 (2) , . . . , 𝑧(1)𝑗 (𝑛)) , (8)

where 𝑧(1)𝑗 (𝑘) = 0.5(𝑥(1)𝑗 (𝑘) + 𝑥(1)𝑗 (𝑘 − 1)), 𝑘 = 2, 3, . . . , 𝑛.
The first-order differential equations of the multivariable

grey model MGM(1, 𝑚) are as follows:
𝑑𝑥(1)1𝑑𝑡 = 𝛼11𝑥(1)1 + 𝛼12𝑥(1)2 + ⋅ ⋅ ⋅ + 𝛼1𝑚𝑥(1)𝑚 + 𝛽1𝑑𝑥(1)2𝑑𝑡 = 𝛼21𝑥(1)1 + 𝛼22𝑥(2)2 + ⋅ ⋅ ⋅ + 𝛼2𝑚𝑥(1)𝑚 + 𝛽2
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...𝑑𝑥(1)𝑚𝑑𝑡 = 𝛼𝑚1𝑥(1)1 + 𝛼𝑚2𝑥(1)2 + ⋅ ⋅ ⋅ + 𝛼𝑚𝑚𝑥(𝑚)𝑚 + 𝛽𝑚.
(9)

Note that 𝐴 = (𝛼𝑖𝑗)𝑚×𝑚 ,𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑚)𝑇 , (10)

and (9) can be noted as𝑑𝑋(1) (𝑡)𝑑𝑡 = 𝐴𝑋(1) (𝑡) + 𝛽. (11)

Applying the least square method to the first-order differen-
tial equation 𝑑𝑋(1) (𝑡)𝑑𝑡 = 𝐴𝑍(1) (𝑡) + 𝛽, (12)

we obtain the estimated parameters

𝑄 = (𝐴󸀠𝛽󸀠) = (𝑃𝑇𝑃)−1 𝑃𝑇 (𝑌1, 𝑌2, . . . , 𝑌𝑚) , (13)

where

𝑄 = ((((
(

𝛼̂11 𝛼̂21 ⋅ ⋅ ⋅ 𝛼̂𝑚1𝛼̂12 𝛼̂22 ⋅ ⋅ ⋅ 𝛼̂𝑚2... ... d
...𝛼̂1𝑚 𝛼̂2𝑚 ⋅ ⋅ ⋅ 𝛼̂𝑚𝑚𝛽1 𝛽2 ⋅ ⋅ ⋅ 𝛽𝑚

))))
)

,

𝑃 = (
(

𝑧(1)1 (2) 𝑧(1)2 (2) ⋅ ⋅ ⋅ 𝑧(1)𝑚 (2) 1𝑧(1)1 (3) 𝑧(1)2 (3) ⋅ ⋅ ⋅ 𝑧(1)𝑚 (3) 1... ... d
... ...𝑧(1)1 (𝑛) 𝑧(1)2 (𝑛) ⋅ ⋅ ⋅ 𝑧(1)𝑚 (𝑛) 1

)
)

,
(14)

and 𝑌𝑗 = (𝑥(0)𝑗 (2), 𝑥(0)𝑗 (3), . . . , 𝑥(0)𝑗 (𝑛))𝑇, 𝑗 = 1, 2, . . . , 𝑚.

3.2. The Morbidity of MGM. In this part, we give a criterion
to justify the morbidity of MGM(1, 𝑚).
Lemma 4 (Gerschgorin Panel Theorem). If 𝐴 ∈ 𝐶𝑛×𝑛 and𝐴 = (𝑎𝑖𝑗), then every eigenvalue of 𝐴 is contained in the plane,
which is

𝜆 ∈ 𝑛⋃
𝑖=1

𝐷𝑖, (15)

where 𝐷𝑖 is the panel centred by 𝑎𝑖𝑖 in the complex plane and

𝐷𝑖 = {{{𝑧 ∈ 𝐶 | 󵄨󵄨󵄨󵄨𝑧 − 𝑎𝑖𝑖󵄨󵄨󵄨󵄨 ≤ 𝑛∑
𝑗=1,𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨}}} ,
𝑖 = 1, 2, . . . , 𝑛. (16)

Theorem 5. Suppose that 𝑋(0)𝑗 (1), 𝑋(0)𝑗 (2), . . . , 𝑋(0)𝑗 (𝑛) are
data vectors, and 𝑋(1)𝑗 (𝑛) is the first-order accumulated gen-
erating vector. If every consecutive neighbour 𝑧(1)𝑗 (𝑘) ≥ 1 (𝑗 =1, 2, . . . , 𝑚), then the multivariable grey model MGM(1, 𝑚) is
morbidity.

Proof. In the process of estimating the parameters of 𝐴, 𝛽, by
least square method, we calculate the matrix of 𝑃𝑇𝑃, which is
𝑃𝑇𝑃

=
((((((((((((
(

𝑛∑
𝑘=2

(𝑧(1)1 (𝑘))2 ⋅ ⋅ ⋅ 𝑛∑
𝑘=2

𝑧(1)1 (𝑘) 𝑧(1)𝑚 (𝑘) 𝑛∑
𝑘=2

𝑧(1)1 (𝑘)
𝑛∑
𝑘=2

𝑧(1)1 (𝑘) 𝑧(1)2 (𝑘) ⋅ ⋅ ⋅ 𝑛∑
𝑘=2

𝑧(1)2 (𝑘) 𝑧(1)𝑚 (𝑘) 𝑛∑
𝑘=2

𝑧(1)2 (𝑘)... d
... ...

𝑛∑
𝑘=2

𝑧(1)𝑚 (𝑘) 𝑧(1)1 (𝑘) ⋅ ⋅ ⋅ 𝑛∑
𝑘=2

(𝑧(1)𝑚 (𝑘))2 𝑛∑
𝑘=2

𝑧(1)𝑚 (𝑘)
𝑛∑
𝑘=2

𝑧(1)1 (𝑘) ⋅ ⋅ ⋅ 𝑛∑
𝑘=2

𝑧(1)𝑚 (𝑘) 𝑛 − 1

))))))))))))
)

. (17)

From (𝑃𝑇𝑃)𝑇 = 𝑃𝑇𝑃, (18)

we know 𝑃𝑇𝑃 is a symmetric matrix; since 𝑃 is invertible, we
deduce that all the eigenvalues of the matrix 𝑃𝑇𝑃 are positive
real numbers and 𝑃𝑇𝑃 is positive definite matrix. Therefore,
the condition number of matrix 𝑃𝑇𝑃 can be represented
by the maximal eigenvalue and minimal eigenvalue of the
matrix.

Set 𝜆1, 𝜆2, . . . , 𝜆𝑛−1 as the eigenvalues of 𝑃𝑇𝑃. By Ger-
schgorin Panel Theorem, we have

𝐷1 = {{{𝜆1 ∈ 𝑅+ | 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆1 − 𝑛∑𝑘=2 (𝑧(1)1 (𝑘))2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑚∑
𝑗=2

( 𝑛∑
𝑘=2

𝑧(1)1 (𝑘) 𝑧(1)𝑗 (𝑘)) + 𝑛∑
𝑘=2

𝑧(1)1 (𝑘)}}} ,
𝐷2 = {{{𝜆2 ∈ 𝑅+ | 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆2 − 𝑛∑𝑘=2 (𝑧(1)2 (𝑘))2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑚∑
𝑗=1,𝑗 ̸=2

( 𝑛∑
𝑘=2

𝑧(1)2 (𝑘) 𝑧(1)𝑗 (𝑘)) + 𝑛∑
𝑘=2

𝑧(1)2 (𝑘)}}} ,
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...
𝐷𝑛−1 = {{{𝜆𝑛−1 ∈ 𝑅+ | 󵄨󵄨󵄨󵄨𝜆𝑛−1 − (𝑛 − 1)󵄨󵄨󵄨󵄨

≤ 𝑚∑
𝑗=1

𝑛∑
𝑘=2

𝑧(1)𝑗 (𝑘)}}} .
(19)

It is easy to see that all the eigenvalues of 𝑃𝑇𝑃 are contained
in the𝐷1 ∪ 𝐷2 ∪ ⋅ ⋅ ⋅ ∪ 𝐷𝑛−1; that is to say, every eigenvalue of𝑃𝑇𝑃 is contained in the panel.

If all the adjacent neighbour average sequences 𝑧(1)𝑖 (𝑘) ≥1 and the chosen sample is theminimal permitted data in grey
system, then we conclude that ∑𝑛𝑘=2(𝑧(1)𝑖 (𝑘))2 is larger than𝑛 − 1, and the maximal eigenvalue and minimal eigenvalue
are contained in different circles, and the centres of circles are
far from each other. Therefore, the maximal eigenvalue and
minimal eigenvalue are far away from each other on the num-
ber line. From the definition of the ill-conditioned matrix,
we deduce that the multivariable grey model MGM(1, 𝑚) is
morbidity. This completes the proof.

4. Example

In what follows, we give an example to illustrate the practi-
cality of our results.The data are the price indexes of financial
intermediation and real estate in 1981–1984, and data resource
is the China statistical yearbook. Set𝑋(0)1 and𝑋(0)2 as the price
index of financial intermediation and price index of the real
estate, respectively; the data are shown in Table 1. As usual,
we chose 4 group samples which are the minimum permitted
data in grey models.

We construct MGM(1, 2) model to simulate and predict
the data vectors. By the definition of 𝑃, we obtain

𝑃 = ( 1.339 1.133 11.7855 1.2125 12.3015 1.415 1) ,
𝑃𝑇𝑃 = (10.2778 6.9386 5.42606.9386 4.7561 3.76055.426 3.7605 3 ) .

(20)

By Theorem 5, there exists morbidity in MGM(1, 2) model.
In fact, all the eigenvalues of 𝑃𝑇𝑃 are

𝜆1 = 0.0011,𝜆2 = 0.1249,𝜆3 = 17.9079. (21)

Table 1: The data vectors.𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4𝑋(0)1 1.102 1.576 1.995 2.608𝑋(0)2 1.084 1.182 1.243 1.587

It is clear that cond(𝐴) ≥ 1000, and there exists morbidity in
themodel. It proves that our criterion is a useful way to justify
the morbidity of MGM(1, 𝑚) model.

5. Conclusions

This paper discusses the morbidity of the multivariable grey
model. From the morbidity of the differential equations, we
analyze the factors that affect the morbidity of MGM(1, 𝑚)
model. By Gerschgorin Panel Theorem and the knowledge
of matrix, we give a criterion to justify the morbidity of
MGM(1, 𝑚). An example is given to illustrate the maneuver-
ability of our results.
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By combining the techniques of fractional calculus with measure of weak noncompactness and fixed point theorem, we establish
the existence of weak solutions of multipoint boundary value problem for fractional integrodifferential equations.

1. Introduction

In recent years, fractional differential equations in Banach
spaces have been studied and a few papers consider fractional
differential equations in reflexive Banach spaces equipped
with the weak topology. As long as the Banach space is
reflexive, theweak compactness offers no problem since every
bounded subset is relatively weakly compact and therefore
the weak continuity suffices to prove nice existence results
for differential and integral equations [1, 2]. De Blasi [3]
introduced the concept of measure of weak noncompactness
and proved the analogue of Sadovskiis fixed point theorem
for the weak topology (see also [4]). As stressed in [5], in
many applications, it is always not possible to show the weak
continuity of the involved mappings, while the sequential
weak continuity offers no problem. This is mainly due to the
fact that Lebesgues dominated convergence theorem is valid
for sequences but not for nets. Recall that a mapping between
two Banach spaces is sequentially weakly continuous if it
maps weakly convergent sequences into weakly convergent
sequences.

The theory of boundary value problems for nonlinear
fractional differential equations is still in the initial stages
and many aspects of this theory need to be explored. There
are many papers dealing with multipoint boundary value
problems both on resonance case and on nonresonance case;
for more details see [6–11]. However, as far as we know, few

results can be found in the literature concerning multipoint
boundary value problems for fractional differential equations
in Banach spaces andweak topologies. Zhou et al. [12] discuss
the existence of solutions for nonlinear multipoint boundary
value problem of integrodifferential equations of fractional
order as follows:

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡) , (𝐾𝑥) (𝑡)) ,
𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] ,

𝑎1𝑥 (0) − 𝑏1𝑥󸀠 (0) = 𝑑1𝑥 (𝜉1) ,
𝑎2𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝑑2𝑥 (𝜉2) ,

(1)

with respect to strong topology, where 𝑐𝐷𝛼0+ denotes the
fractional Caputo derivative and the operators given by

(𝐻𝑥) (𝑡) = ∫𝑡
0
𝑔 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠,

(𝐾𝑥) (𝑡) = ∫𝑡
0
ℎ (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠.

(2)

Moreover, theory for boundary value problem of inte-
grodifferential equations of fractional order in Banach spaces
endowed with its weak topology has been few studied until
now. In [13], we discussed the existence theorem of weak
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solutions nonlinear fractional integrodifferential equations in
nonreflexive Banach spaces 𝐸:

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , (𝑇𝑥) (𝑡) , (𝑆𝑥) (𝑡)) ,
𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] ,

𝑎1𝑥 (0) − 𝑎2𝑥󸀠 (0) = 𝛾1,
𝑏1𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝛾2,

(3)

and obtain a new result by using the techniques of measure
of weak noncompactness andHenstock-Kurzweil-Pettis inte-
grals, where 𝑐𝐷𝛼0+ denotes the fractional Caputo derivative
and the operators given by

(𝑇𝑥) (𝑠) = ∫𝑠
0
𝑘1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏,

(𝑆𝑥) (𝑠) = ∫1
0
𝑘2 (𝑠, 𝜏) ℎ (𝜏, 𝑥 (𝜏)) 𝑑𝜏.

(4)

Our analysis relies on the Krasnoselskii fixed point theorem
combined with the technique of measure of weak noncom-
pactness.

Motivated by the above works, in this paper, we use the
techniques of measure of weak noncompactness combine
with the fixed point theorem to discuss the existence theorem
of weak solutions for a class of nonlinear fractional integrod-
ifferential equations of the form

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , (𝑇𝑥) (𝑡) , (𝑆𝑥) (𝑡)) ,
𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] ,

𝑎1𝑥 (0) − 𝑏1𝑥󸀠 (0) = 𝑑1𝑥 (𝜉1) ,
𝑎2𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝑑2𝑥 (𝜉2) ,

(5)

where 𝑇 and 𝑆 are two operators defined by

(𝑇𝑢) (𝑡) = ∫𝑡
0
𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(𝑆𝑢) (𝑡) = ∫𝑎
0
𝑘2 (𝑡, 𝑠) ℎ (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(6)

𝐸 is a nonreflexive Banach space, 𝑐𝐷𝛼0+ denotes the fractional
Caputo derivative, 𝑘1 ∈ 𝐶(𝐷, 𝑅+), 𝑘2 ∈ 𝐶(𝐷0, 𝑅+), 𝐷 ={(𝑡, 𝑠) ∈ 𝑅2 : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1}, 𝐷0 = {(𝑡, 𝑠) ∈ 𝑅2 : 0 ≤𝑡, 𝑠 ≤ 1}, 𝑎1, 𝑏1, 𝑑1, 𝑎2, 𝑏2, 𝑑2 are real numbers, 0 < 𝜉1, 𝜉2 < 1,𝑓 : 𝐼 × 𝐸3 󳨀→ 𝐸, 𝑔, ℎ : 𝐼 × 𝐸 󳨀→ 𝐸 are given functions
satisfying some assumptions that will be specified later, the
integral is understood to be the Henstock-Kurzweil-Pettis,
and solutions to (5) will be sought in 𝐸 = 𝐶(𝐼, 𝐸𝜔).

The problems of our research are different between this
paper and paper [13]. In paper [13], we studied two point
boundary value problem by using the corresponding Green’s
function and fixed point theorems; moreover, we get some
good results. In this paper, we use the techniques of mea-
sure of weak noncompactness and Henstock-Kurzweil-Pettis

integrals to discuss the existence theorem of weak solutions
for a class of the multipoint boundary value problem of
fractional integrodifferential equations equipped with the
weak topology. Our results generalized some classical results
and improve the assumptions conditions, so our results
improve the results in [13].

The paper is organized as follows: In Section 2 we recall
some basic known results. In Section 3 we discuss the
existence theorem of weak solutions for problem (5).

2. Preliminaries

Throughout this paper, we introduce notations, definitions,
and preliminary results which will be used.

Let 𝐼 = [0, 1] be the real interval, let 𝐸 be a real Banach
space with norm ‖ ⋅ ‖, its dual space 𝐸∗ also 𝐵(𝐸∗) denotes
the closed unit ball in 𝐸∗, and 𝐸𝑤 = (𝐸, 𝑤) = (𝐸, 𝜎(𝐸, 𝐸∗))
denotes the space 𝐸 with its weak topology. Denote by𝐶(𝐼, 𝐸𝜔) = (𝐶(𝐼, 𝐸), 𝜔) the space of all continuous functions
from 𝐼 to 𝐸 endowed with the weak topology and the usual
supremum norm ‖𝑥‖ = sup𝑡∈𝐼|𝑥(𝑡)|.

LetΩ𝐸 be the collection of all nonempty bounded subsets
of 𝐸, and letW𝐸 be the subset of Ω𝐸 consisting of all weakly
compact subsets of 𝐸. Let 𝐵𝑟 denote the closed ball in 𝐸
centered at 0 with radius 𝑟 > 0. The De Blasi [14] measure of
weak noncompactness is the map 𝛽 : Ω𝐸 󳨀→ [0,∞) defined
by

𝛽 (𝐴) = inf {𝑟 > 0 : there exists a set 𝑊
∈W𝐸 such that 𝐴 ⊆ 𝑊 + 𝐵𝑟} (7)

for all 𝐴 ∈ Ω𝐸. The fundamental tool in this paper is the
measure of weak noncompactness; for some properties of𝛽(𝐴) and more details see [3].

Now, for the convenience of the reader, we recall some
useful definitions of integrals.

Definition 1 (see [15]). A function 𝑢 : 𝐼 󳨀→ 𝐸 is said to be
Henstock-Kurzweil integrable on 𝐼 if there exists an 𝐽 ∈ 𝐸
such that, for every 𝜀 > 0, there exists 𝛿(𝜉) : 𝐼 󳨀→ R+ such
that, for every 𝛿-fine partition𝐷 = {(𝐼𝑖, 𝜉𝑖)}𝑛𝑖=1, we have󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛∑
𝑖=1

𝑢 (𝜉𝑖) 𝜇 (𝐼𝑖) − 𝐽
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < 𝜀, (8)

and we denote the Henstock-Kurzweil integral 𝐽 by (HK)
∫𝑏
𝑎
𝑢(𝑠)𝑑𝑠.

Definition 2 (see [15]). A function 𝑓 : 𝐼 󳨀→ 𝐸 is said
to be Henstock-Kurzweil-Pettis integrable or simply HKP-
integrable on 𝐼, if there exists a function 𝑔 : 𝐼 󳨀→ 𝐸 with
the following properties:

(i) ∀𝑥∗ ∈ 𝐸∗, 𝑥∗𝑓 is Henstock-Kurzweil integrable on𝐼;
(ii) ∀𝑡 ∈ 𝐼, ∀𝑥∗ ∈ 𝐸∗, 𝑥∗𝑔(𝑡) = (HK) ∫𝑡

0
𝑥∗𝑓(𝑠)𝑑𝑠.

This function 𝑔 will be called a primitive of 𝑓 and be
denote by 𝑔(𝑡) = ∫𝑡

0
𝑓(𝑡)𝑑𝑡 the Henstock-Kurzweil-Pettis

integral of 𝑓 on the interval 𝐼.
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Definition 3 (see [16]). A family M of functions 𝑓 : 𝑆 󳨀→ 𝐸
is called HK-equi-integrable if each 𝑓 ∈M is HK-integrable
and for every 𝜀 > 0 there exists a gauge 𝛿 on 𝑆 such that, for
every 𝛿-fine HK-partition 𝜋 of 𝑆, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∑(𝐼,𝑠)∈𝜋𝑓 (𝑠) 𝜆𝑚 (𝐼) − (HK) ∫
𝑆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀, (9)

for all 𝑓 ∈M.

Theorem 4 (see [16]). Let (𝑓𝑛) be a pointwise bounded
sequence of 𝐻𝐾𝑃 integrable functions 𝑓𝑛 : 𝑆 󳨀→ 𝐸 and let𝑓 : 𝑆 󳨀→ 𝐸 be a function. Assume that,

(i) for every 𝑥∗ ∈ 𝐸∗, 𝑥∗(𝑓𝑛(𝑡)) 󳨀→ 𝑥∗(𝑓(𝑡)) 𝑎.𝑒. 𝑜𝑛 𝑆,
(ii) for every sequence (𝑥∗𝑘 ) ⊂ 𝐵(𝐸∗), the sequence(𝑥∗𝑘 (𝑓𝑛))𝑘,𝑛 is 𝐻𝐾-equi-integrable, then 𝑓 is 𝐻𝐾𝑃-

integrable and for every 𝐼 ∈ I, and we have

lim
𝑛󳨀→∞

𝐹𝑛 (𝐼) = 𝐹 (𝐼) (10)

in the weak topology 𝜎(𝐸, 𝐸∗), where 𝐹 is the 𝐻𝐾𝑃-primitive
of 𝑓 and 𝑆 is a fixed compact nondegenerate interval in R𝑛.
Denote byI the family of all closed nondegenerate subintervals
of 𝑆.
Lemma 5 (see [17]). If 𝐵 ⊂ 𝐶(𝐼, 𝐸) is equicontinuous, 𝑢0 ∈𝐶(𝐼, 𝐸), then 𝑐𝑜{𝐵, 𝑢0} is also equicontinuous in 𝐶(𝐼, 𝐸).
Lemma 6 (see [17, 18]). Let 𝐸 be a Banach space, and let𝐵 ⊂ 𝐶(𝐼, 𝐸) be bounded and equicontinuous. Then 𝛽(𝐵(𝑡)) is
continuous on 𝐼, and 𝛽(𝐵) = max𝑡∈𝐼𝛽(𝐵(𝑡)).
Lemma 7 (see [14, 19]). Let 𝐸 be a Banach space and let 𝐵 ⊂𝐶(𝐼, 𝐸) be bounded and equicontinuous. Then the map 𝑡 󳨀→𝛽(𝐵(𝑡)) is continuous on 𝐼 and

𝛽 (𝐵) = sup
𝑡∈𝐼
𝛽 (𝐵 (𝑡)) = 𝛽 (𝐵 (𝐼)) , (11)

where 𝐵(𝑡) = {𝑏(𝑡) : 𝑏 ∈ 𝐵} and 𝐵(𝐼) = ⋃𝑡∈𝐼{𝑏(𝑡) : ℎ ∈ 𝐵}.
Lemma 8 (see [17]). Let 𝐵 ⊂ 𝐶(𝐼, 𝐸) be bounded and
equicontinuous. Then 𝛽(𝐵(𝑡)) is continuous on 𝐼 and

𝛽(∫
𝐼
𝐵 (𝑠) 𝑑𝑠) ≤ ∫

𝐼
𝛽 (𝐵 (𝑠)) 𝑑𝑠. (12)

We give the fixed point theorem, which play a key role in
the proof of our main results.

Lemma 9 (see [20]). Let 𝐸 be a Banach space and 𝛽 a regular
and set additive measure of weak noncompactness on 𝐸. Let𝐶 be a nonempty closed convex subset of 𝐸, 𝑥0 ∈ 𝐶, and𝑛0 a positive integer. Suppose 𝐹 : 𝐶 󳨀→ 𝐶 is 𝛽-convex
power condensing about 𝑥0 and 𝑛0. If 𝐹 is weakly sequentially
continuous and 𝐹(𝐶) is bounded, then 𝐹 has a fixed point in𝐶.

The following we recall the definition of the Caputo
derivative of fractional order.

Definition 10. Let 𝑥 : 𝐼 󳨀→ 𝐸 be a function. The fractional
HKP-integral of the function 𝑥 of order 𝛼 ∈ R+ is defined by

𝐼𝛼0+𝑥 (𝑡) fl ∫𝑡
0

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠) 𝑑𝑠. (13)

In the above definition the sign “∫” denotes the HKP-
integral integral.

Definition 11. The Riemann-Liouville derivative of order 𝛼
with the lower limit zero for a function 𝑓 : [0,∞) 󳨀→ 𝑅
can be written as

𝐷𝛼0+𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) 𝑑
𝑛

𝑑𝑡𝑛 ∫
𝑡

0

𝑓 (𝑠)
(𝑡 − 𝑠)𝛼+1−𝑛 𝑑𝑠,
𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛.

(14)

Definition 12. The Caputo fractional derivative of order 𝛼 for
a function 𝑓 : [0,∞) 󳨀→ 𝐸 can be written as

𝑐𝐷𝛼0+𝑓 (𝑡) = 𝐷𝛼0+ [𝑓 (𝑡) −
𝑛−1∑
𝑘=0

𝑡𝑘𝑘!𝑓(𝑘) (0)] ,
𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛,

(15)

where 𝑛 = [𝛼] + 1 and [𝛼] denotes the integer part of 𝛼.
3. Main Results

In this section, we present the existence of solutions to
problem (5) in the space 𝐶(𝐼, 𝐸𝜔).
Definition 13. A function 𝑥 ∈ 𝐶(𝐼, 𝐸𝑤) is said to be a
solution of problem (5) if x satisfies the equation 𝑐𝐷𝛼0+𝑥(𝑡) =𝑓(𝑡, 𝑥(𝑡), (𝑇𝑥)(𝑡), (𝑆𝑥)(𝑡)) on 𝐼 and satisfies the conditions𝑎1𝑥(0) − 𝑏1𝑥󸀠(0) = 𝑑1𝑥(𝜉1), 𝑎2𝑥(1) + 𝑏2𝑥󸀠(1) = 𝑑2𝑥(𝜉2).
Lemma 14 (see [21]). Let 𝛼 > 0. If one assumes 𝑢 ∈ 𝐶(0, 1) ∩𝐿(0, 1), then the differential equation

𝑐𝐷𝛼0+𝑢 (𝑡) = 0 (16)

has solution 𝑢(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝑛−1, 𝑐𝑖 ∈ R, 𝑖 =0, 1, . . . , 𝑛, 𝑛 = [𝛼] + 1.
From the lemma above, we deduce the following state-

ment.

Lemma 15 (see [21]). Assume that 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1) with
a fractional derivative of order 𝛼 > 0 that belongs to 𝐶(0, 1) ∩𝐿(0, 1). Then

𝐼𝛼0+ (𝑐𝐷𝛼0+𝑢 (𝑡)) = 𝑢 (𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝑛−1 (17)

for some 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑛, 𝑛 = [𝛼] + 1.
The following we give the corresponding Greens function

for problem (5).
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Lemma 16. Let Δ ̸= 0, 𝜌 ∈ 𝐶(𝐼, 𝐸𝑤) and 𝛼 ∈ (1, 2], then the
unique solution of

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝜌 (𝑡) , 𝑡 ∈ 𝐼,𝑎1𝑥 (0) − 𝑏1𝑥󸀠 (0) = 𝑑1𝑥 (𝜉1) ,
𝑎2𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝑑2𝑥 (𝜉2)

(18)

is given by

𝑥 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠, (19)

where the Green function 𝐺 is given by

𝐺 (𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(𝑡 − 𝑠)𝛼−1Γ (𝛼) + 𝑑1 [𝑎2 (1 − 𝑡) + 𝑏2 + 𝑑2 (𝑡 − 𝜉2)] (𝜉1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝑠 ≤ 𝜉1, 𝑠 ≤ 𝑡;
𝑑1 [𝑎2 (1 − 𝑡) + 𝑏2 + 𝑑2 (𝑡 − 𝜉2)] (𝜉1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝑠 ≤ 𝜉1, 𝑡 ≤ 𝑠;
(𝑡 − 𝑠)𝛼−1Γ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝜉1 ≤ 𝑠 ≤ 𝜉2, 𝑠 ≤ 𝑡;
−𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝜉1 ≤ 𝑠 ≤ 𝜉2, 𝑡 ≤ 𝑠;
(𝑡 − 𝑠)𝛼−1Γ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) , 𝜉2 ≤ 𝑠, 𝑠 ≤ 𝑡;
−𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) , 𝜉2 ≤ 𝑠, 𝑡 ≤ 𝑠.

(20)

Proof. Based on the idea of paper [7], assuming that 𝑥(𝑡)
satisfies (18), by Lemma 15, we formally put

𝑥 (𝑡) = 𝐼𝛼0+𝜌 (𝑡) − 𝑐1 − 𝑐2𝑡
= 1Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜌 (𝑡) 𝑑𝑠 − 𝑐1 − 𝑐2𝑡 (21)

for some constants 𝑐1, 𝑐2 ∈ R.
On the other hand, by the relations𝐷𝛼0+𝐼𝛼0+𝑥(𝑡) = 𝑥(𝑡) and𝐼𝛼0+𝐼𝛽0+𝑥(𝑡) = 𝐼𝛼+𝛽0+ 𝑥(𝑡), for 𝛼, 𝛽 > 0, 𝑥 ∈ 𝐶(𝐼, 𝐸𝑤), we get

𝑥󸀠 (𝑡) = 1Γ (𝛼 − 1) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−2 𝜌 (𝑠) 𝑑𝑠 − 𝑐2. (22)

By the boundary conditions of (18), we have

(𝑑1 − 𝑎1) 𝑐1 + (𝑏1 + 𝑑1𝜉1) 𝑐2
= 𝑑1𝐼𝛼0+𝜌 (𝜉1) + 𝑏1𝐼𝛼−10+ 𝜌 (0) − 𝑎1𝐼𝛼0+𝜌 (0) ,

(𝑑2 − 𝑎2) 𝑐1 + (−𝑎2 − 𝑏2 + 𝑑2𝜉2) 𝑐2
= 𝑑2𝐼𝛼0+𝜌 (𝜉2) − 𝑏2𝐼𝛼−10+ 𝜌 (1) − 𝑎2𝐼𝛼0+𝜌 (1) ,

(23)

By the proof of paper [12], we get

𝑐1 = −𝑑1 (𝑎2 + 𝑏2 − 𝑑2𝜉2)ΔΓ (𝛼) ∫𝜉1
0
(𝜉1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

+ (𝑏1 + 𝑑1𝜉1)Δ [𝑎2 ∫1
0

(1 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠

+ 𝑏2 ∫1
0

(1 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜌 (𝑠) 𝑑𝑠

− 𝑑2 ∫𝜉2
0

(𝜉2 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠] ,

𝑐2 = 𝑑1 (𝑎2 − 𝑑2)ΔΓ (𝛼) ∫𝜉1
0
(𝜉1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

+ (𝑎1 − 𝑑1)Δ [𝑎2 ∫1
0

(1 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠
+ 𝑏2 ∫1
0

(1 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜌 (𝑠) 𝑑𝑠
− 𝑑2 ∫𝜉2

0

(𝜉2 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠] ,
(24)

whereΔ = [(𝑏1+𝑑1𝜉1)(𝑎2−𝑑2)+(𝑎2+𝑏2−𝑑2𝜉2)(𝑎1−𝑑1)] ̸= 0.
Substituting the values of 𝑐1 and 𝑐2 in (21), we get

𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

+ 𝑑1 [𝑎2 (1 − 𝑡) + 𝑏2 + 𝑑2 (𝑡 − 𝜉2)]ΔΓ (𝛼)
⋅ ∫𝜉1
0
(𝜉1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

− 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)]ΔΓ (𝛼)
⋅ ∫1
0
(1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

− 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)]ΔΓ (𝛼 − 1)
⋅ ∫1
0
(1 − 𝑠)𝛼−2 𝜌 (𝑠) 𝑑𝑠

+ 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)]ΔΓ (𝛼)
⋅ ∫𝜉2
0
(𝜉2 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠 = ∫1

0
𝐺 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠.

(25)

This completes the proof.
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Let 𝐷𝑟 = {𝑧 ∈ 𝐶(𝐼, 𝐸𝑤), ‖𝑧‖ ≤ 𝑟}, 𝐵𝑉(𝐼,R) denote the
space of real bounded variation functions with its classical
norm ‖ ⋅ ‖𝐵𝑉.

Problem (5) will be studied under the following assump-
tions:

(1) For each weakly continuous function 𝑥 : 𝐼 󳨀→ 𝐸,
the functions 𝑘1(𝑡, ⋅)𝑔(⋅, 𝑥(⋅)), 𝑘2(𝑡, ⋅)ℎ(⋅, 𝑥(⋅)),𝑓(⋅, 𝑥(⋅), 𝑇(𝑥)(⋅), 𝑆(𝑥)(⋅)) are HKP-integrable, 𝑓 : 𝐼 ×𝐸3 󳨀→ 𝐸, 𝑔, ℎ : 𝐼 × 𝐸 󳨀→ 𝐸 are weakly-weakly
continuous function, and ∫𝑡

0
𝑔(𝑠, 𝑥(𝑠))𝑑𝑠, ∫1

0
ℎ(𝑠,𝑥(𝑠))𝑑𝑠 are bounded.

(2)

(i) For any 𝑟 > 0, there exist a HK-integrable
function 𝑚 : 𝐼 󳨀→ R+ and nondecreasing con-
tinuous functions 𝜓1 : [0, +∞) 󳨀→ (0,∞), 𝜓2 :[0, +∞) 󳨀→ [0, +∞), 𝜓3 : [0, +∞) 󳨀→[0, +∞), 𝜓2, 𝜓3 satisfying 𝜓2(𝜆𝑥) ≤ 𝜆𝜓2(𝑥),𝜓3(𝜆𝑥) ≤ 𝜆𝜓3(𝑥) for 𝜆 > 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥, 𝑦, 𝑧)󵄩󵄩󵄩󵄩
≤ 𝑚 (𝑠) [𝜓1 (‖𝑥‖) + 𝜓2 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) + 𝜓3 (|𝑧|)] ,

𝜓2 (󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥)󵄨󵄨󵄨󵄨) ≤ 𝜓2 (|𝑥|) ,
𝜓3 (|ℎ (𝑠, 𝑥)|) ≤ 𝜓3 (|𝑥|)

(26)

for all 𝑠 ∈ 𝐼, (𝑥, 𝑦, 𝑧) ∈ 𝐷𝑟 × 𝐷𝑟 × 𝐷𝑟 with
∫1
0
𝑀(𝑠) 𝑑𝑠 < ∫∞

0

𝑑𝑟
∑3𝑖=1 𝜓𝑖 (𝑠) . (27)

(ii) For each bounded set 𝑋,𝑌, 𝑍 ⊂ 𝐷𝑟, and each
for each closed interval 𝐽 ⊂ 𝐼, 𝑡 ∈ 𝐼, there exists
positive constant 𝑙 ≥ 0 such that

𝛽(𝑘1 (𝐽, 𝐽) 𝑔 (𝐽, 𝑌) ≤ 𝑘∗1𝛽 (𝑌 (𝐽)) ,
𝛽(𝑘2 (𝐽, 𝐽) ℎ (𝐽, 𝑍) ≤ 𝑘∗2𝛽 (𝑍 (𝐽))
𝛽 (𝑓 (𝑡, 𝑋, 𝑌, 𝑍)) ≤ 𝑙max {𝛽 (𝑋) , 𝛽 (𝑌) , 𝛽 (𝑍)} ,

(28)

where 𝑀(𝑠) = 𝐺∗𝑚(𝑠)max{1, 𝑎𝑘∗1 , 𝑎𝑘∗2 }, 𝑘∗1 =
sup𝑡∈𝐼‖𝑘1(𝑡, ⋅)‖𝐵𝑉, 𝑘∗2 = sup𝑡∈𝐼‖𝑘2(𝑡, ⋅)‖𝐵𝑉.

(3) For each 𝑡 ∈ 𝐼, 𝐺(𝑡, .), 𝑘𝑖(𝑡, ⋅) ∈ 𝐵𝑉(𝐼,R), 𝑖 = 1, 2
are continuous; i.e., the maps 𝑡 󳨃󳨀→ 𝐺(𝑡, .) and 𝑡 󳨃󳨀→𝑘𝑖(𝑡, .) are ‖.‖𝐵𝑉-continuous.

(4) The family {𝑥∗𝑓(⋅, 𝑥(⋅), 𝑇(𝑥)(⋅), 𝑆(𝑥)(⋅)) : 𝑥∗ ∈𝐸∗, ‖𝑥∗‖ ≤ 1} is uniformly HK-integrable over 𝐼 for
every 𝑥 ∈ 𝐷𝑟.

Remark 17. From assumption (3) and the expression of
function 𝐺(𝑡, 𝑠), it is obvious that it is bounded and let 𝐺∗ =
sup𝑡∈𝐼‖𝐺(𝑡, ⋅)‖𝐵𝑉.

Now, we present the existence theorem for problem (5).

Theorem 18. Assume that conditions (5)-(20). Then problem
(5) has a solution 𝑥 ∈ 𝐶(𝐼, 𝐸𝑤).
Proof. Let 𝑚 = max{sup𝑡∈𝐼‖𝑘𝑖(𝑡, ⋅)‖𝐵𝑉, 𝑖 = 1, 2} and 𝑘0 =
max{sup𝑡∈𝐼| ∫𝑡0 𝑔(𝑠, 𝑥(𝑠))𝑑𝑠|, sup𝑡∈𝐼| ∫10 ℎ(𝑠, 𝑥(𝑠))𝑑𝑠|}. Let 0 <𝑘0 < min(𝑟0, 𝑟0/𝑚), for 𝑥 ∈ 𝐷𝑟

0

and 𝑥∗ ∈ 𝐸∗ such that‖𝑥‖∗ ≤ 1; we have
󵄨󵄨󵄨󵄨𝑥∗ (𝑇𝑥 (𝑠))󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(HK) ∫𝑡

0
𝑥∗ (𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩 sup
𝑡∈𝐼

󵄩󵄩󵄩󵄩𝑘1 (𝑡, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉∫1
0

󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑥 (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠
≤ 𝑚 ⋅ 𝑘0 ≤ 𝑟0,

(29)

and also

sup {󵄨󵄨󵄨󵄨𝑥∗𝑇𝑥󵄨󵄨󵄨󵄨 : 𝑥 ∈ 𝐸∗, 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩 ≤ 1} ≤ 𝑟0. (30)

So 𝑇𝑥 ∈ 𝐷𝑟
0

. Similarly, we prove 𝑆𝑥 ∈ 𝐷𝑟
0

.
Defining the set

𝑄 fl {𝑥 ∈ 𝐷𝑟
0

: ‖𝑥 (⋅)‖ ≤ 𝑟0, ‖𝑥 (𝑡) − 𝑥 (𝑠)‖
≤ 𝑟0𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉 , 𝑡1, 𝑡2 ∈ 𝐼} ,

(31)

it is clear that the convex closed and equicontinuous subset𝑄 ⊂ 𝐷𝑟
0

⊂ 𝐶(𝐼, 𝐸𝑤), where
𝑏 (𝑡) = 𝐼−1 (∫𝑡

0
𝑀(𝑠) 𝑑𝑠) and

𝐼 (𝑧) = ∫𝑧
0

𝑑𝑠
∑3𝑖=1 𝜓𝑖 (𝑠) .

(32)

Clearly,

𝑏󸀠 (𝑡) = 𝑀 (𝑡)( 3∑
𝑖=1

𝜓𝑖 (𝑏 (𝑡))) , and
𝑏 (0) = 0

(33)

for all 𝑡 ∈ 𝐼. Also notice that 𝑄 is a closed, convex,
bounded, and equicontinuous subset of 𝐶(𝐼, 𝐸𝑤). We define
the operator 𝐹 : 𝐶(𝐼, 𝐸𝑤) 󳨀→ 𝐶(𝐼, 𝐸𝑤) by
𝐹𝑥 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠,

𝑡 ∈ 𝐼,
(34)

where 𝐺(⋅, ⋅) is Green’s function defined by (20). Clearly the
fixed points of the operator 𝐹 are solutions of problem (5).
Since for 𝑡 ∈ 𝐼 the function 𝑠 󳨃󳨀→ 𝐺(𝑡, 𝑠) is of bounded
variation, then by the proof of Theorem 3.1 in [13] and
assumption (4), the function 𝐺(𝑡, ⋅)𝑓(⋅, 𝑥(⋅), 𝑇(𝑥)(⋅), 𝑆(𝑥)(⋅))
is HKP-integrable on 𝐼 and thus the operator 𝐹makes sense.
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Wewill show that𝐹 satisfies the assumptions of Lemma 8;
the proof will be given in three steps.

Step 1.We shall show that the operator 𝐹maps into itself. To
see this, let 𝑥 ∈ 𝑄, 𝑡 ∈ 𝐼.Without loss of generality, assume
that 𝐹𝑥(𝑡) ̸= 0. By Hahn-Banach theorem, there exists 𝑥∗ ∈𝐸∗ with ‖𝑥∗‖ = 1 and ‖𝐹𝑥(𝑡)‖ = |𝑥∗(𝐹𝑥(𝑡))|.Thus

‖𝐹𝑥 (𝑡)‖ = 󵄨󵄨󵄨󵄨𝑥∗ (𝐹𝑥 (𝑡))󵄨󵄨󵄨󵄨
≤ 𝑥∗ (∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠)

≤ sup
𝑡∈𝐼
‖𝐺 (𝑡, ⋅)‖𝐵𝑉∫1

0
𝑚(𝑠)

⋅ [𝜓1 (𝑏 (𝑠)) + 𝑎𝑘∗1𝜓2 (𝑏 (𝑠)) + 𝑎𝑘∗2𝜓3 (𝑏 (𝑠))] 𝑑𝑠
≤ ∫1
0
𝑏󸀠 (𝑠) 𝑑𝑠 ≤ 𝐼−1 (∫1

0
𝑀(𝑠) 𝑑𝑠) = 𝑟0.

(35)

Then ‖𝐹𝑥‖ = sup𝑡∈𝐼|𝐹𝑥(𝑡)| ≤ 𝑟0.Hence 𝐹 : 𝑄 󳨀→ 𝑄.
Let 0 < 𝑡1 < 𝑡2 ≤ 1, without loss of generality; assume that𝐹𝑥(𝑡2) − 𝐹𝑥(𝑡1) ̸= 0. By Hahn-Banach theorem, there exists𝑥∗ ∈ 𝐸∗ with ‖𝑥∗‖ = 1 and
󵄩󵄩󵄩󵄩𝐹𝑥 (𝑡2) − 𝐹𝑥 (𝑡1)󵄩󵄩󵄩󵄩 = 𝑥∗ (𝐹𝑥 (𝑡2) − 𝐹𝑥 (𝑡1))
≤ ∫1
0

󵄨󵄨󵄨󵄨𝐺 (𝑡2, 𝑠) − 𝐺 (𝑡1, 𝑠)󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨𝑥∗ (𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉∫1

0
𝑚(𝑠)

⋅ [𝜓1 (𝑏 (𝑠)) + 𝑎𝑘∗1𝜓2 (|𝑏 (𝑠) ) + 𝑎𝑘∗2𝜓3 (𝑏 (𝑠))] 𝑑𝑠

≤ 1𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉∫
1

0
𝑏󸀠 (𝑠) 𝑑𝑠

≤ 1𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉 𝐼−1 (∫
1

0
𝑀(𝑠) 𝑑𝑠)

= 𝑟0𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉 ,
(36)

and this estimation shows that 𝐹maps 𝑄 into itself.

Step 2.Wewill show that the operator𝐹 is weakly sequentially
continuous. In order to be simple, we denote 𝑇𝑥(𝑡) =
𝜙(𝑥)(𝑡) = ∫1

0
𝑘1(𝑡, 𝑠)𝑔(𝑠, 𝑥(𝑠))𝑑𝑠, 𝑆𝑥(𝑡) = 𝜑(𝑥)(𝑡) = ∫10 𝑘2(𝑡,𝑠)ℎ(𝑠, 𝑥(𝑠))𝑑𝑠. To see this, by Lemma 9 of [22], a sequence𝑥𝑛(⋅) weakly convergent to 𝑥(⋅) ∈ 𝑄 if and only if 𝑥𝑛(⋅) tends

weakly to 𝑥(𝑡) for each 𝑡 ∈ 𝐼. From Dinculeanu ([23, p. 380])(𝐶(𝐼, 𝐸))∗ = 𝑀(𝐼, 𝐸∗), 𝑀(𝐼, 𝐸∗) is the set of all bounded
regular vector measures from 𝐼 to 𝐸∗ which are of bounded
variation). Let 𝑥∗ ∈ 𝐸∗, 𝑡 ∈ 𝐼. Put 𝑃𝑡 = 𝑥∗𝛿𝑡, where 𝛿𝑡
is the Dirac measure concentrated at the point 𝑡. Then 𝑃𝑡 ∈𝑀(𝐼, 𝐸∗). Since 𝑥𝑛 converges weakly to 𝑥 ∈ 𝑄, then we have

lim
𝑛󳨀→∞

⟨𝑝𝑡, 𝑥𝑛 − 𝑥⟩ = 0 (37)

which means that

lim
𝑛󳨀→∞

⟨𝑥∗, 𝑥𝑛 − 𝑥⟩ = 0. (38)

Thus, for each 𝑡 ∈ 𝐼, 𝑥𝑛(𝑡) converges weakly to 𝑥(𝑡) ∈ 𝐸. Since𝑔(𝑠, ⋅), ℎ(𝑠, ⋅) are weakly-weakly sequentially continuous, then𝑔(𝑠, 𝑥𝑛(𝑠)) and ℎ(𝑠, 𝑥𝑛(𝑠)) converge weakly to 𝑔(𝑠, 𝑥(𝑠)) andℎ(𝑠, 𝑥(𝑠)), respectively.Hence, and byTheorem4 and assump-
tions (1), we have

lim
𝑛󳨀→∞

∫1
0
(∫𝑡
0
(𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥𝑛 (𝑠)) − 𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠) 𝑑𝑚 (𝑠) = 0, ∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) . (39)

This relation is equivalent to

lim
𝑛󳨀→∞

(𝑚, 𝜙 (𝑥𝑛) − 𝜙 (𝑥))
= lim
𝑛󳨀→∞

∫1
0
(𝜙 (𝑥𝑛) (𝑡) − 𝜙 (𝑥) (𝑡)) 𝑑𝑚 (𝑡) = 0,

∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) .
(40)

Similarly, we have

lim
𝑛󳨀→∞

∫1
0
(∫1
0
(𝑘2 (𝑡, 𝑠) ℎ (𝑠, 𝑥𝑛 (𝑠)) − 𝑘2 (𝑡, 𝑠) ℎ (𝑠, 𝑥 (𝑠))) 𝑑𝑠) 𝑑𝑚 (𝑠) = 0, ∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) . (41)

This relation is equivalent to
lim
𝑛󳨀→∞

(𝑚, 𝜑 (𝑥𝑛) − 𝜑 (𝑥))
= lim
𝑛󳨀→∞

∫1
0
(𝜑 (𝑥𝑛) (𝑡) − 𝜑 (𝑥) (𝑡)) 𝑑𝑚 (𝑡) = 0,

∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) .
(42)

Therefore, the operators 𝑇, 𝑆 are weakly sequentially contin-
uous in 𝑄.
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Moreover, because 𝑓 is weakly-weakly sequentially con-
tinuous, we have that 𝑓(𝑠, 𝑥𝑛(𝑠), (𝑇𝑥𝑛)(𝑠), (𝑆𝑥𝑛)(𝑠)) converges
weakly to 𝑓(𝑠, 𝑥(𝑠), (𝑇𝑥)(𝑠), (𝑆𝑥)(𝑠)) in 𝐸. By assumption (4),
for every weakly convergent (𝑥𝑛)𝑛 ⊂ 𝐷𝑟

0

, the set

{𝑥∗𝑓 (⋅, 𝑥𝑛 (⋅) , 𝑇 (𝑥𝑛) (⋅) , 𝑆 (𝑥𝑛) (⋅)) : 𝑛 ∈ 𝑁, 𝑥∗
∈ 𝐵 (𝐸∗)} (43)

is HK-equi-integrable. Since for 𝑡 ∈ 𝐼 the function 𝑠 󳨃󳨀→𝐺(𝑡, 𝑠) is of bounded variation, and by the proof of Theorem
3.1 in [13], the function 𝐺(𝑡, ⋅)𝑓(⋅, 𝑥𝑛(⋅), (𝑇𝑥𝑛)(⋅), (𝑆𝑥𝑛)(⋅)) is
HKP-integrable on 𝐼 for every 𝑛 ≥ 1, and by Theorem 4, we
have that ∫1

0
𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑥𝑛(𝑠), (𝑇𝑥𝑛)(𝑠), (𝑆𝑥𝑛)(𝑠))𝑑𝑠 converges

weakly to ∫1
0
𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑥(𝑠), (𝑇𝑥)(𝑠), (𝑆𝑥)(𝑠))𝑑𝑠 in 𝐸 which

means that

lim
𝑛󳨀→∞

∫1
0
(∫1
0
(𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝑇𝑥𝑛) (𝑠) , (𝑆𝑥𝑛) (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠))] 𝑑𝑠) 𝑑𝑚 (𝑠) = 0, (44)

for all𝑚 ∈ 𝑀(𝐼, 𝐸∗).This relation is equivalent to

lim
𝑛󳨀→∞

(𝑚, 𝐹 (𝑥𝑛) − 𝐹 (𝑥))
= lim
𝑛󳨀→∞

∫1
0
(𝐹 (𝑥𝑛) (𝑡) − 𝐹 (𝑥) (𝑡)) 𝑑𝑚 (𝑡) = 0,

∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) .
(45)

Therefore 𝐹 is weakly-weakly sequentially continuous.
Step 3. We show that there is an integer 𝑛0 such that the
operator 𝐹 is 𝛽-power-convex condensing about 0 and 𝑛0. To
see this, notice that, for each bounded set𝐻 ⊆ 𝑄 and for each𝑡 ∈ 𝐼,
𝛽 (𝐹(1,0) (𝐻) (𝑡)) = 𝛽 (𝐹 (𝐻) (𝑡)) = 𝛽({∫𝑡

0
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠 : 𝑥 ∈ 𝐻})
≤ 𝛽 (𝐺∗𝑡𝑐𝑜 {𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) : 𝑥 ∈ 𝐻,
𝑠 ∈ 𝐼}) = 𝐺∗𝑡𝛽 (𝑐𝑜 {𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) : 𝑥
∈ 𝐻, 𝑠 ∈ 𝐼}) ≤ 𝐺∗𝑡𝛽 (𝑓 (𝐼 × 𝐻 (𝐼) × 𝑇 (𝐻) (𝐼)
× 𝑆 (𝐻) (𝐼))) ≤ 𝐺∗𝑡 ⋅max {1, 𝑘∗1 , 𝑘∗2 } ⋅ 𝑙𝛽 (𝐻 (𝐼)) .

(46)

Let 𝜏 = 𝐺∗ ⋅max{1, 𝑘∗1 , 𝑘∗2 } ⋅ 𝑙 > 0. Lemma 7 implies (since𝐻
is equicontinuous) that

𝛽 (𝐹(1,0) (𝐻) (𝑡)) ≤ 𝑡𝜏𝛽 (𝐻) . (47)

Since 𝐹(1,0)(𝐻) is equicontinuous, it follows from Lemma 5
that 𝐹(2,0)(𝐻) is equicontinuous. Using (47), we get
𝛽 (𝐹(2,0) (𝐻) (𝑡)) = 𝛽({∫𝑡

0
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠 : 𝑥
∈ 𝑐𝑜 (𝐹(1,0) (𝐻) ∪ {0})}) ≤ 𝛽({∫𝑡

0
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠 : 𝑥 ∈ 𝑉}) ,

(48)

where 𝑉 = 𝑐𝑜(𝐹(1,0)(𝐻) ∪ {0}); it is clear that 𝑉 is equi-
continuous set. By Lemma 8, we get

𝛽 (𝑉 (𝑠)) = 𝛽 (𝐹(1,0) (𝐻) (𝑠)) ≤ 𝑠𝜏𝛽 (𝐻) , (49)

and therefore,

∫𝑡
0
𝛽 (𝑉 (𝑠)) 𝑑𝑠 ≤ 𝑠𝜏𝑡22 𝛽 (𝐻) . (50)

Thus,

𝛽 (𝐹(2,0) (𝐻) (𝑡)) ≤ (𝜏𝑡)22 𝛽 (𝐻) . (51)

By induction, we get

𝛽 (𝐹(𝑛,0) (𝐻) (𝑡)) ≤ (𝜏𝑡)𝑛𝑛! 𝛽 (𝐻) . (52)

And by Lemma 7, we have

𝛽 (𝐹(𝑛,0) (𝐻)) ≤ (𝜏𝑇)𝑛𝑛! 𝛽 (𝐻) . (53)

Since lim𝑛󳨀→∞((𝜏𝑡)𝑛/𝑛!) = 0, then there exist an 𝑛0 with(𝜏𝑡)𝑛0/𝑛0! < 1, and we have

𝛽 (𝐹(𝑛0 ,0) (𝐻)) ≤ 𝛽 (𝐻) . (54)

Consequently, 𝐹 is 𝛽-power-convex condensing about 0 and𝑛0, by Lemma 8, then problem (5) has a solution 𝑥 ∈ 𝐶(𝐼,𝐸𝑤).
4. Conclusions

In this paper, we use the techniques of measure of weak
noncompactness and Henstock-Kurzweil-Pettis integrals to
discuss the existence theorem of weak solutions for a class
of the multipoint boundary value problem of fractional inte-
grodifferential equations equipped with the weak topology.
Our results generalized some classical results.
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This paper is concerned with stability analysis of additive Runge-Kutta methods for delay-integro-differential equations. We show
that if the additive Runge-Kutta methods are algebraically stable, the perturbations of the numerical solutions are controlled by the
initial perturbations from the system and the methods.

1. Introduction

Spatial discretization of many nonlinear parabolic problems
usually gives a class of ordinary differential equations, which
have the stiff part and the nonstiff part; see, e.g., [1–5]. In
such cases, the most widely used time-discretizations are the
special organized numerical methods, such as the implicit-
explicit numerical methods [6, 7], the additive Runge-Kutta
methods [8–12], and the linearized methods [13, 14]. When
applying the split numerical methods to numerically solve
the equations, it is important to investigate the stability of the
numerical methods.

In this paper, it is assumed that the spatial discretization
of time-dependent partial differential equations yields the
following nonlinear delay-integro-differential equations:

𝑦󸀠 (𝑡)
= 𝑓[1] (𝑡, 𝑦 (𝑡))

+ 𝑓[2] (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , ∫𝑡
𝑡−𝜏

𝑔 (𝑡, 𝑠, 𝑦 (𝑠)) 𝑑𝑠) ,
𝑡 > 0,

𝑦 (𝑡) = 𝜓 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0.

(1)

Here 𝜏 is a positive delay term, 𝜓(𝑡) is continuous, 𝑓[1]:[𝑡0, +∞]×𝑋 → 𝑋, and𝑓[2]: [𝑡0, +∞]×𝑋×𝑋×𝑋 → 𝑋, such
that problem (1) owns a unique solution, where𝑋 is a real or
complex Hilbert space. Particularly, when 𝑔 ≡ 0, problem (1)
is reduced to the nonlinear delay differential equations.When
the delay term 𝜏 = 0, problem (1) is reduced to the ordinary
differential equations.

The investigation on stability analysis of different numer-
ical methods for problem (1) has fascinated generations of
researchers. For example, Torelli [15] considered stability
of Euler methods for the nonautonomous nonlinear delay
differential equations. Hout [16] studied the stability of
Runge-Kutta methods for systems of delay differential equa-
tions. Baker and Ford [17] discussed stability of continuous
Runge-Kutta methods for integrodifferential systems with
unbounded delays. Zhang and Vandewalle [18] discussed the
stability of the general linear methods for integrodifferential
equations with memory. Li and Zhang obtained the stability
and convergence of the discontinuous Galerkin methods
for nonlinear delay differential equations [19, 20]. More
references for this topic can be found in [21–30].However, few
works have been found on the stability of splitting methods
for the proposed methods.

In the present work, we present the additive Runge-
Kutta methods with some appropriate quadrature rules
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to numerically solve the nonlinear delay-integrodifferential
equations (1). It is shown that if the additive Runge-Kutta
methods are algebraically stable, the obtained numerical
solutions are globally and asymptotically stable under the
given assumptions, respectively. The rest of the paper is
organized as follows. In Section 2, we present the numerical
methods for problems (1). In Section 3, we consider stability
analysis of the numerical schemes. Finally, we present some
extensions in Section 4.

2. The Numerical Methods

In this section, we present the additive Runge-Kutta methods
with the appropriate quadrature rules to numerically solve
problem (1).

The coefficients of the additive Runge-Kutta methods can
be organized in Buther tableau as follows (cf. [31]):

𝑐 𝐴[1] 𝐴[2](𝑏[1])𝑇 (𝑏[2])𝑇 ,
(2)

where 𝑐 = [𝑐𝑙, ⋅ ⋅ ⋅ , 𝑐𝑠]𝑇, 𝑏[𝑘] = [𝑏[𝑘]1 , ⋅ ⋅ ⋅ , 𝑏[𝑘]𝑠 ]𝑇, and 𝐴[𝑘] =(𝑎[𝑘]𝑖𝑗 )𝑠𝑖,𝑗=1 for 𝑘 = 1, 2.
Then, the presented ARKMs for problem (1) can be

written by

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑠∑
𝑗=1

𝑏[1]𝑗 𝑓[1] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 )
+ ℎ 𝑠∑
𝑗=1

𝑏[2]𝑗 𝑓[2] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 , 𝑦(𝑛)𝑗 ) ,
𝑦(𝑛)𝑖 = 𝑦𝑛 + ℎ 𝑠∑

𝑗=1

𝑎[1]𝑖𝑗 𝑓[1] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 )
+ ℎ 𝑠∑
𝑗=1

𝑎[2]𝑖𝑗 𝑓[2] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 , 𝑦(𝑛−𝑚)𝑗 , 𝑦(𝑛)𝑗 ) ,
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠,

(3)

where 𝑦𝑛 and 𝑦(𝑛)𝑖 are approximations to the analytic solution𝑦(𝑡𝑛) and 𝑦(𝑡𝑛 + 𝑐𝑖ℎ), respectively, 𝑦𝑛 = 𝜓(𝑡𝑛) for 𝑛 ≤ 0, 𝑦(𝑛)𝑖 =𝜓(𝑡𝑛+𝑐𝑖ℎ) for 𝑡𝑛+𝑐𝑖ℎ ≤ 0, and 𝑦(𝑛)𝑖 denotes the approximation
to ∫𝑡𝑛+𝑐𝑖ℎ
𝑡
𝑛
+𝑐
𝑖
ℎ−𝜏

𝑔(𝑡𝑛 + 𝑐𝑖ℎ, 𝜉, 𝑦(𝜉))𝑑𝜉, which can be computed by
some appropriate quadrature rules

𝑦(𝑛)𝑖 = ℎ 𝑚∑
𝑘=0

𝑝𝑘𝑔 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑡𝑛−𝑘 + 𝑐𝑖ℎ, 𝑦(𝑛−𝑘)𝑖 ) ,
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠.

(4)

For example, we usually adopt the repeated Simpson’s rule or
Newton-Cotes rule, etc., according to the requirement of the
convergence of the method (cf. [18]).

3. Stability Analysis

In this section, we consider the numerical stability of the
proposed methods. First, we introduce a perturbed problem,
whose solution satisfies

𝑧󸀠 (𝑡)
= 𝑓[1] (𝑡, 𝑧 (𝑡))

+ 𝑓[2] (𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏) , ∫𝑡
𝑡−𝜏

𝑔 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠) ,
𝑡 > 0,

𝑦 (𝑡) = 𝜙 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0.

(5)

It is assumed that there exist some inner product < ⋅, ⋅ > and
the induced norm ‖ ⋅ ‖ such that

Re ⟨𝑦 − 𝑧, 𝑓[1] (𝑡, 𝑦) − 𝑓[1] (𝑡, 𝑧)⟩ ≤ 𝛼 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩2 ,
Re ⟨𝑦 − 𝑧, 𝑓[2] (𝑡, 𝑦, 𝑢1, V1) − 𝑓[2] (𝑡, 𝑧, 𝑢2, V2)⟩

≤ 𝛽1 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩2 + 𝛽2 󵄩󵄩󵄩󵄩𝑢1 − 𝑢2󵄩󵄩󵄩󵄩2 + 𝛾 󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩2 ,󵄩󵄩󵄩󵄩𝑔 (𝑡, V, 𝑠1) − 𝑔 (𝑡, V, 𝑠2)󵄩󵄩󵄩󵄩 ≤ 𝜃 󵄩󵄩󵄩󵄩𝑠1 − 𝑠2󵄩󵄩󵄩󵄩 ,

(6)

where 𝛼 < 0, 𝛽1 < 0, 𝛽2 > 0, 𝛾 > 0, and 𝜃 > 0 are constants.
It is remarkable that the conditions can be equivalent to the
assumptions in [32, 33] (see. [34] 𝑅𝑒𝑚𝑎𝑟𝑘 2.1).
Definition 1 (cf. [9]). An additive Runge-Kutta method is
called algebraically stable if the matrices

𝐵] fl diag (𝑏[]]1 , ⋅ ⋅ ⋅ , 𝑏[]]𝑠 ) , V = 1, 2,
𝑀]𝜇 fl 𝐵]𝐴[𝜇] + 𝐴[]]𝑇𝐵𝜇 − 𝑏[]]𝑏[𝜇]𝑇 (7)

are nonnegative.

Theorem 2. Assume an additive Runge-Kutta method is
algebraically stable and 𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2 < 0, where 𝜂 =
max{𝑝1, 𝑝2. ⋅ ⋅ ⋅ , 𝑝𝑘}. Then, it holds that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧𝑛󵄩󵄩󵄩󵄩 ≤ √(1 + 2 𝑠∑
𝑖=1

𝜏𝑏[2]𝑖 𝛽2 + 4𝛾𝜏2𝜂2𝜃2)
⋅ max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)󵄩󵄩󵄩󵄩 ,
(8)

where 𝑦𝑛 and 𝑧𝑛 are numerical approximations to problems (1)
and (5), respectively.
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Proof. Let {𝑦𝑛, 𝑦(𝑛)𝑖 , 𝑦(𝑛)𝑖 )} and {𝑧𝑛, 𝑧(𝑛)𝑖 , 𝑧̃(𝑛)𝑖 )} be two
sequences of approximations to problems (1) and (5),
respectively, by ARKMs with the same stepsize ℎ and write

𝑈(𝑛)𝑖 = 𝑦(𝑛)𝑖 − 𝑧(𝑛)𝑖 ,
𝑈̃(𝑛)𝑖 = 𝑦(𝑛)𝑖 − 𝑧̃(𝑛)𝑖 ,
𝑈(𝑛)0 = 𝑦𝑛 − 𝑧𝑛,
𝑊[1]𝑖 = ℎ [𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑦(𝑛)𝑖 )

− 𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑧(𝑛)𝑖 )] ,
𝑊[2]𝑖 = ℎ [𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑦(𝑛)𝑖 , 𝑦(𝑛−𝑚)𝑖 , 𝑦(𝑛)𝑖 )

− 𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑧(𝑛)𝑖 , 𝑧(𝑛−𝑚)𝑖 , 𝑧̃(𝑛)𝑖 )] .

(9)

With the notation, the ARKMs for (1) and (5) yield

𝑈(𝑛+1)0 = 𝑈𝑛0 + 2∑
𝜇=1

𝑠∑
𝑗=1

𝑏[𝜇]𝑗 𝑊[𝜇]𝑗 ,
𝑈(𝑛)𝑖 = 𝑈(𝑛)0 + 2∑

𝜇=1

𝑠∑
𝑗=1

𝑎[𝜇]𝑖𝑗 𝑊[𝜇]𝑗 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠.
(10)

Thus, we have

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛+1)0 󵄩󵄩󵄩󵄩󵄩2 = ⟨𝑈(𝑛)0 + 2∑
𝜇=1

𝑠∑
𝑗=1

𝑏[𝜇]𝑗 𝑊[𝜇]𝑗 , 𝑈(𝑛)0
+ 2∑

]=1

𝑠∑
𝑖=1

𝑏[]]𝑖 𝑊[]]𝑖 ⟩ = 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩2 + 2 2∑
𝜇=1

𝑠∑
𝑖=1

𝑏[𝜇]𝑖
⋅ Re ⟨𝑈(𝑛)0 ,𝑊[𝜇]𝑖 ⟩ + 2∑

𝜇,]=1

𝑠∑
𝑖,𝑗=1

𝑏[𝜇]𝑖 𝑏[]]𝑗 ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩
= 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩2 + 2 2∑

𝜇=1

𝑠∑
𝑖=1

𝑏[𝜇]𝑖
⋅ Re⟨𝑈(𝑛)𝑖 − 2∑

]=1

𝑠∑
𝑗=1

𝑎[]]𝑖𝑗 𝑊[]]𝑗 ,𝑊[𝜇]𝑖 ⟩
+ 2∑
𝜇,]=1

𝑠∑
𝑖,𝑗=1

𝑏[𝜇]𝑖 𝑏[]]𝑗 ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩ = 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩2

+ 2 2∑
𝜇=1

𝑠∑
𝑖=1

𝑏[𝜇]𝑖 Re ⟨𝑈(𝑛)𝑖 ,𝑊[𝜇]𝑖 ⟩
− 2∑
𝜇,]=1

𝑠∑
𝑖,𝑗=1

(𝑏[𝜇]𝑖 𝑎[]]𝑖𝑗 + 𝑎[𝜇]𝑗𝑖 𝑏[]]𝑗 − 𝑏[𝜇]𝑖 𝑏[]]𝑗 )
⋅ ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩ .

(11)

Since that the matrixM is a nonnegative matrix, we obtain

− 2∑
𝜇,]=1

𝑠∑
𝑖,𝑗=1

(𝑏[𝜇]𝑖 𝑎[]]𝑖𝑗 + 𝑎[𝜇]𝑗𝑖 𝑏[]]𝑗 − 𝑏[𝜇]𝑖 𝑏[]]𝑗 ) ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩
≤ 0.

(12)

Furthermore, by conditions (6), we find

Re ⟨𝑈(𝑛)𝑖 ,𝑊[1]𝑖 ⟩ ≤ 𝛼ℎ 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2 , (13)

and

Re ⟨𝑈(𝑛)𝑖 ,𝑊[2]𝑖 ⟩ ≤ 𝛽1ℎ 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2 + 𝛽2ℎ 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛−𝑚)𝑖 󵄩󵄩󵄩󵄩󵄩2
+ 𝛾ℎ 󵄩󵄩󵄩󵄩󵄩𝑈̃(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2 .

(14)

Together with (11), (12), (13), and (14), we get

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛+1)0 󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩2 + 2 𝑠∑
𝑖=1

ℎ𝑏[1]𝑖 𝛼 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2

+ 2 𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2 + 𝛽2 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛−𝑚)𝑖 󵄩󵄩󵄩󵄩󵄩2

+ 𝛾 󵄩󵄩󵄩󵄩󵄩𝑈̃(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2) ≤ 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩2 + 2 𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2
+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛−𝑚)𝑖 󵄩󵄩󵄩󵄩󵄩2 + 𝛾 󵄩󵄩󵄩󵄩󵄩𝑈̃(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2) .

(15)

Note that

󵄩󵄩󵄩󵄩󵄩𝑈̃(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℎ
𝑚∑
𝑘=0

𝑝𝑘 [𝑔 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑡𝑛−𝑘 + 𝑐𝑖ℎ, 𝑦𝑛−𝑘𝑖 )
− 𝑔 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑡𝑛−𝑘 + 𝑐𝑖ℎ, 𝑧𝑛−𝑘𝑖 )]󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 ≤ (𝑚 + 1)
⋅ 𝜂2𝜃2ℎ2 𝑚∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛−𝑘)𝑖 󵄩󵄩󵄩󵄩󵄩2 .
(16)

Then, we obtain

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛+1)0 󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩2 + 2 𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩2

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛−𝑚)𝑖 󵄩󵄩󵄩󵄩󵄩2 + 𝛾 (𝑚 + 1) 𝜂2𝜃2ℎ2 𝑚∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛−𝑘)𝑖 󵄩󵄩󵄩󵄩󵄩2)
≤ 󵄩󵄩󵄩󵄩󵄩𝑈(0)0 󵄩󵄩󵄩󵄩󵄩2 + 2 𝑛∑

𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2

+ 𝛽2 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗−𝑚)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2 + 𝛾 (𝑚 + 1) 𝜂2𝜃2ℎ2 𝑚∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗−𝑘)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2)
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≤ 󵄩󵄩󵄩󵄩󵄩𝑈(0)0 󵄩󵄩󵄩󵄩󵄩2 + 2 𝑛∑
𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2 + 𝛽2 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2

+ 𝛾 (𝑚 + 1)2 ℎ2𝜂2𝜃2 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2)
+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2

+ 𝛾 (𝑚 + 1)2 ℎ2𝜂2𝜃2 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2) ≤ 󵄩󵄩󵄩󵄩󵄩𝑈(0)0 󵄩󵄩󵄩󵄩󵄩2
+ 2 𝑛∑
𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2

+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩𝑈(0)0 󵄩󵄩󵄩󵄩󵄩2

+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩𝑈(0)0 󵄩󵄩󵄩󵄩󵄩2

+ 2 𝑠∑
𝑖=1

𝑚ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) max
−𝑚≤𝑗≤−1

󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2 .
(17)

Hence,

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛+1)0 󵄩󵄩󵄩󵄩󵄩2 ≤ 𝐶max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)󵄩󵄩󵄩󵄩2 , (18)

where 𝐶 = [(1 + 2∑𝑠𝑖=1 𝜏𝑏[2]𝑖 𝛽2 + 4𝛾𝜏2𝜂2𝜃2)]. This completes
the proof.

Theorem 3. Assume an additive Runge-Kutta method is
algebraically stable and 𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2 < 0. Then, it holds
that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩 = 0. (19)

Proof. Similar to the proof of Theorem 2, it holds that

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛+1)0 󵄩󵄩󵄩󵄩󵄩2
≤ 󵄩󵄩󵄩󵄩󵄩𝑈(0)0 󵄩󵄩󵄩󵄩󵄩2

+ 2 𝑛∑
𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2

+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑗)𝑖 󵄩󵄩󵄩󵄩󵄩󵄩2 .

(20)

Note that 𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2 < 0 and 𝑏[2]𝑖 > 0; we have
lim
𝑛→∞

𝑠∑
𝑖=1

𝑏[2]𝑖 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩 = 0. (21)

On the other hand,󵄩󵄩󵄩󵄩󵄩𝑊[1]𝑖 󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩ℎ [𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑦(𝑛)𝑖 )
− 𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑧(𝑛)𝑖 )]󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿1 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩 (22)

󵄩󵄩󵄩󵄩󵄩𝑊[2]𝑖 󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩ℎ [𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑦(𝑛)𝑖 , 𝑦(𝑛−𝑚)𝑖 , 𝑦(𝑛)𝑖 )
− 𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑧(𝑛)𝑖 , 𝑧(𝑛−𝑚)𝑖 , 𝑧̃(𝑛)𝑖 )]󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿2 (󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩𝑈(𝑛−𝑚)𝑖 󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑦(𝑛)𝑖 − 𝑧̃(𝑛)𝑖 󵄩󵄩󵄩󵄩󵄩) .

(23)

Now, in view of (10), (21), (22), and (23), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩𝑈(𝑛)0 󵄩󵄩󵄩󵄩󵄩 = 0. (24)

This completes the proof.

Remark 4. In [35], Yuan et al. also discussed nonlinear
stability of additive Runge-Kutta methods for multidelay-
integro-differential equations. However, the main results are
different. The main reason is that the results in [35] imply
that the perturbations of the numerical solutions tend to
infinity when the time increase, while the stability results
in present paper indicate that the perturbations of the
numerical solutions are independent of the time. Besides, the
asymptotical stability of the methods is also discussed in the
present paper.

4. Conclusion

The additive Runge-Kutta methods with some appropriate
quadrature rules are applied to solve the delay-integro-
differential equations. It is shown that if the additive Runge-
Kutta methods are algebraically stable, the obtained numer-
ical solutions can be globally and asymptotically stable,
respectively. In the future works, we will apply the methods
to solve more real-world problems.
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This paper studies the behavior of a predator-preymodelwith switching and stage-structure for predator. Bounded positive solution,
equilibria, and stabilities are determined for the system of delay differential equation. By choosing the delay as a bifurcation
parameter, it is shown that the positive equilibrium can be destabilized through a Hopf bifurcation. Some numerical simulations
are also given to illustrate our results.

1. Introduction

The predator-prey system is important in dynamical popula-
tion models and has been discussed by many authors [1–15].

In the related studies, a switching predator-prey model
which has the switching property of predator was introduced
by [7]. It was assumed that the predators catch prey in an
abundant habitat. After a decrease in prey species population,
the predator moves to another abundant habitat. In [8], the
authors investigated a switching model of a two-prey one-
predator system and they have shown that the system under-
goes a Hopf bifurcation. They used the carrying capacity
of prey as the bifurcations parameter. More examples on
switching models can be found in [9–11]. Saito and Takeuchi
[12] proposed a stage-structure model of a species’ growth
consisting of immature and mature individuals. It is assumed
that the predators are divided into two-stage groups: juveniles
and adults. Only the adult predators are able to catch prey
species. As for the juvenile predators, they live with the adult
predators. It is assumed that juveniles survive on prey already
caught by adults. They live on a different resource which is
available in the abundant habitat from the adult predators.
Consequently, stage-structure model is more realistic than
the model without stage-structure. In [14], it was further
assumed that the time from juveniles to adults is itself state
dependent. Qu andWei [15] studied the asymptotic behavior
of a predator-prey model with stage-structure. They found

that an orbitally asymptotically stable periodic orbit exists in
that model.

The purpose of the present paper is to study nonlinear
delayed differential equations each of which describes a
switching and stage structured predator-prey model. The
present paper is organized as follows. In the next sec-
tion, the main mathematical model is formulated and
the positivity and boundedness of solutions are presented.
In Section 3, we discuss the local stability of equilibria
by analyzing the corresponding characteristic equations
and we prove the existence of Hopf bifurcations for the
model. Finally, numerical results and a brief discussion are
provided.

2. Model

In this paper, we extend the switching predator-prey model
in [8] by introducing stage structured with time delay into
the model. We consider the switching with stage-structure
predator-prey model of the following form:

𝑑𝑥1𝑑𝑡 = 𝑟𝑥1 (1 − 𝑥1𝑘 ) + 𝑝𝑞𝑥2 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 𝑟𝑥2 (1 − 𝑥2𝑘 ) + 𝑝𝑞𝑥1 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
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𝑑𝑦𝑑𝑡 = 2𝛿𝛽𝑒−𝛾𝜏 𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝜇𝑦
𝑑𝑦𝑗𝑑𝑡 = 2𝛿𝛽 𝑥1𝑥2𝑦𝑥1 + 𝑥2

− 2𝛿𝛽𝑒−𝛾𝜏 𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏)
− 𝛾𝑦𝑗

(1)

with initial conditions

𝑥1 (𝜃) , 𝑥2 (𝜃) , 𝑦 (𝜃) , 𝑦𝑗 (𝜃) ≥ 0
continuous on [−𝜏, 0) ,

𝑥1 (0) , 𝑥2 (0) , 𝑦 (0) > 0,
𝑦𝑗 (0) > 0.

(2)

The model is formulated under the following assumptions:

(1) It is assumed that two-prey species, denoted by 𝑥1
and 𝑥2, respectively, can be modelled by a logistic
equation when the predator is absent. The parameter𝑟 is the prey intrinsic growth rate and 𝑘 is its carrying
capacity.

(2) The prey lives in two different habitats and each prey
is able to migrate among two different habitats. The
parameter 𝑝 is the probability of successful transition
from each habitat and 𝑞 is inverse barrier strength in
going out of the first habitat and the second habitat.

(3) The functions 𝛽𝑥1/(𝑥1 + 𝑥2) and 𝛽𝑥2/(𝑥1 + 𝑥2) have
a characteristic property of a switching mechanism,
where 𝛽 is capturing rate.

(4) The parameter 𝛿 is the rate of conversion of prey to
predator and 𝜇 is the death rate of predator.

(5) The predators are derived into two-stage groups:
juveniles and adults, which are divided by age 𝜏, and
they are denoted by 𝑦𝑗(𝑡) and 𝑦(𝑡), respectively. It is
assumed that juveniles take 𝜏 units of time to mature
and 𝑒−𝛾𝜏 is the surviving rate of juveniles to adults.
Notice, we assume that the juveniles suffer amortality
rate of 𝛾.

For ecological reasons, we always assume that the initial data𝑥1(𝜃), 𝑥2(𝜃), 𝑦(𝜃), 𝑦𝑗(𝜃) ≥ 0 continuous on [−𝜏, 0), and 𝑥1(0),𝑥2(0), 𝑦(0), 𝑦𝑗(0) > 0. If (𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡), 𝑦𝑗(𝑡)) is a solution
of system (1) through that initial data, it is easy to verify
that (𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡), 𝑦𝑗(𝑡)) is positive on the maximum
existence interval of solution. Such solutions will be called
positive solution. Moreover, if such a solution is bounded
above and below, it is called a positive solution. Furthermore,
we discuss the bounded positive solutions of system (1) which
implies a natural restriction; that is, our system (1)must have a
bounded positive solution.The following theorem guarantees
that our stage-structure predator-prey model (1) with initial

condition (2) always has a bounded solution.Therefore, every
solution to system (1) is positive and bounded.

Theorem 1. Every solution of system (1) with initial condition
(2) is bounded for all 𝑡 ≥ 0 and all of these solutions are
ultimately bounded.

Proof. Let 𝑉(𝑡) = 𝛾(𝛿𝑥1 + 𝛿𝑥2 + 𝑦 + 𝑦𝑗). By calculating the
derivative of𝑉(𝑡)with respect to 𝑡 along the positive solution
of the system of system (1), we have

𝑉̇ (𝑡) = 𝛾𝛿𝑥̇1 + 𝛾𝛿𝑥̇2 + 𝛾 ̇𝑦 + 𝛾 ̇𝑦𝑗
= 𝛾𝛿 (𝑟𝑥1 − 𝑟𝑘𝑥21 + 𝑝𝑞𝑥2)

+ 𝛾𝛿 (𝑟𝑥2 − 𝑟𝑘𝑥22 + 𝑝𝑞𝑥1) − 𝛾𝜇𝑦 − 𝛾2𝑦𝑗.
(3)

Let 𝛾 > 𝜇. We have

𝑉̇ (𝑡) + 𝜇𝑉 (𝑡) = (𝛾𝛿𝑟 + 𝑝𝑞 + 𝛾𝜇𝛿) (𝑥1 + 𝑥2)
− 𝛾𝛿𝑟𝑘 (𝑥21 + 𝑥22) − 𝛾 (𝛾 − 𝜇) 𝑦𝑗

< (𝛾𝛿𝑟 + 𝑝𝑞 + 𝛾𝜇𝛿) (𝑥1 + 𝑥2)
− 𝛾𝛿𝑟𝑘 (𝑥21 + 𝑥22) .

(4)

Hence, there exists a positive constant 𝐶, such that

𝑉̇ (𝑡) + 𝜇𝑉 (𝑡) ≤ 𝐶. (5)

Thus, we get

𝑉 ≤ (𝑉 (0) − 𝐶𝜇) 𝑒−𝜇𝑡 + 𝐶𝜇 . (6)

Therefore, 𝑉(𝑡) is ultimately bounded; that is, each solution
of system (1) is ultimately bounded.

3. Local Stability and Existence of
Hopf Bifurcation

Themain goal in this section is to investigate the stability of a
positive equilibrium and the existence of a Hopf bifurcation.

Because of the last equation of system (1), 𝑦𝑗(𝑡) is
completely determined by 𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡). Therefore, in the
rest of this paper, we will study the following system:

𝑑𝑥1𝑑𝑡 = 𝑟𝑥1 (1 − 𝑥1𝑘 ) + 𝑝𝑞𝑥2 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 𝑟𝑥2 (1 − 𝑥2𝑘 ) + 𝑝𝑞𝑥1 − 𝛽𝑥1𝑥2𝑦𝑥1 + 𝑥2
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𝑑𝑦𝑑𝑡 = 2𝛿𝛽𝑒−𝛾𝜏 𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝜇𝑦
(7)

with the initial conditions 𝑥1(𝜃), 𝑥2(𝜃), 𝑦(𝜃) ≥ 0 continuous
on [−𝜏, 0) and 𝑥1(0), 𝑥2(0), 𝑦(0) > 0.

Before we proceed further, let us scale (7) by putting

𝑥1 = 𝑥1𝑘 ,
𝑥2 = 𝑥2𝑘 ,
𝑦 = 𝑒𝛾𝜏𝑦
𝛼 = 2𝛿𝛽𝑝𝑞 𝑘𝑒−𝛾𝜏

𝑔 = 𝑟𝑝𝑞 ,

𝑏 = 𝑒−𝛾𝜏𝛽𝑝𝑞 ,
𝑑 = 𝜇𝑝𝑞 ,
𝑡 = 𝑝𝑞𝑡,
𝜏 = 𝑝𝑞𝜏,

(8)

and dropping the bars for the sake of simplicity. We obtain
the following system containing dimensionless quantities:

𝑑𝑥1𝑑𝑡 = 𝑔𝑥1 (1 − 𝑥1) + 𝑥2 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 𝑔𝑥2 (1 − 𝑥2) + 𝑥1 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 𝛼𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝑑𝑦.

(9)

Next, we find equilibria of system (9) by equating the
derivatives on the left-hand sides to zero. The equilibria are
solutions of the system

𝑔𝑥1 (1 − 𝑥1) + 𝑥2 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2 = 0
𝑔𝑥2 (1 − 𝑥2) + 𝑥1 − 𝑏𝑥1𝑥2𝑦𝑥1 + 𝑥2 = 0

𝛼𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 𝑑𝑦 = 0.
(10)

This gives two possible equilibria which are

(i) boundary equilibrium 𝐸1 = (𝑥∗1 , 𝑔𝑥∗1 (𝑥∗1 − 1), 0),
which is corresponding to extinction of the predator,
where 𝑥∗1 > 1 is a real positive root of the cubic
equation

𝑔3𝑥∗31 − 2𝑔3𝑥∗21 + (𝑔3 − 𝑔2) 𝑥∗1 + (𝑔2 − 1) = 0. (11)

(ii) positive equilibrium 𝐸2 = (𝑥1, 𝑥2, 𝑦), which is corre-
sponding to coexistence of prey and predator and

𝑥1 = 𝑑𝛼 (𝑥 + 1)
𝑥2 = 𝑑𝛼𝑥 (𝑥 + 1)
𝑦 = 𝑥 + 1𝑏𝑥 (𝑔 (1 − 𝑥2) + 𝑥) ,

(12)

Here 𝑥 = 𝑥1/𝑥2 is a real positive root of the cubic
equation

𝑔𝑑𝑥3 + (𝑔𝑑 − 𝑔𝛼 + 𝛼) 𝑥2 + (𝑔𝛼 − 𝛼 − 𝑔𝑑) 𝑥 − 𝑔𝑑 = 0 (13)

or

(𝑥 − 1) (𝑔𝑑𝑥2 + (2𝑔𝑑 − 𝑔𝛼 + 𝛼) 𝑥 + 𝑔𝑑) = 0. (14)

Obviously, 𝑥 = 1 is the one real positive root of (13).
The other two values of 𝑥 will be real and positive if

𝑔 > 𝛼𝛼 − 4𝑑 . (15)

We now analyze the stability of each equilibrium.
Let 𝐸 = (𝑥1, 𝑥2, 𝑦) be any arbitrary equilibrium. The

characteristic equation about 𝐸 is given by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 − 2𝑔𝑥1 − 𝑏𝑦𝑥22(𝑥1 + 𝑥2)2 − 𝜆 1 − 𝑏𝑦𝑥21(𝑥1 + 𝑥2)2 − 𝑏𝑥1𝑥2𝑥1 + 𝑥2
1 − 𝑏𝑦𝑥22(𝑥1 + 𝑥2)2 𝑔 − 2𝑔𝑥2 − 𝑏𝑦𝑥21(𝑥1 + 𝑥2)2 − 𝜆 − 𝑏𝑥1𝑥2𝑥1 + 𝑥2

𝛼𝑦𝑥22(𝑥1 + 𝑥2)2 𝑒
−𝜆𝜏 𝛼𝑦𝑥21(𝑥1 + 𝑥2)2 𝑒

−𝜆𝜏 −𝑑 + 𝛼𝑥1𝑥2𝑥1 + 𝑥2 𝑒−𝜆𝜏 − 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0 (16)
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The next lemma gives conditions for the stability of
equilibrium 𝐸1 = (𝑥∗1 , 𝑥∗2 , 0).
Theorem 2. The equilibrium 𝐸1 = (𝑥∗1 , 𝑥∗2 , 0) is

(i) unstable if 𝑑 < 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1));
(ii) locally asymptotically stable if 𝑑 > 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 +𝑔(𝑥∗1 − 1)).

Proof. We consider the characteristic equation of (16) at the
equilibrium 𝐸1. It follows that

(𝜆 + 𝑑 − 𝑔𝛼 𝑥∗1 (𝑥∗1 − 1)
1 + 𝑔 (𝑥∗1 − 1)𝑒−𝜆𝜏)

⋅ ((𝑔 − 2𝑔𝑥∗1 − 𝜆) (𝑔 − 2𝑔2𝑥∗1 (𝑥∗1 − 1) − 𝜆) − 1)
= 0.

(17)

Hence, one characteristic root is the solution of the equation

𝑓1 (𝜆) ≡ 𝜆 + 𝑑 − 𝑔𝛼 𝑥∗1 (𝑥∗1 − 1)
1 + 𝑔 (𝑥∗1 − 1)𝑒−𝜆𝜏 = 0. (18)

If 𝑑 < 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1)), then 𝑓1(0) =𝑑 − 𝑔𝛼(𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1))) < 0, and 𝑓1(+∞) =∞. Therefore, 𝑓1(𝜆) has at least one positive root and the
equilibrium 𝐸1 is unstable.

On the other hand, let 𝑑 > 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 + 𝑔(𝑥∗1 − 1));
that is,

𝑑 − 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)
1 + 𝑔 (𝑥∗1 − 1) > 0. (19)

Then 𝑓1(−∞) = −∞ and 𝑓1(0) > 0. Thus, a root of 𝑓1(𝜆)
has negative real part. Hence, the other characteristic roots
are the solution of the equation

(𝑔 − 2𝑔𝑥∗1 − 𝜆) (𝑔 − 2𝑔2𝑥∗1 (𝑥∗1 − 1) − 𝜆) − 1 = 0; (20)

that is,

𝑓2 (𝜆) ≡ 𝜆2 + (𝑥∗1 − 1) (2𝑔 + 2𝑔2𝑥∗1 ) 𝜆 + 4𝑔3 (𝑥∗1 )3
− 6𝑔3 (𝑥∗1 )2 + 2 (𝑔3 − 𝑔2) 𝑥∗1 + (𝑔2 − 1)

= 0.
(21)

Since 𝑥∗1 > 1 is a real positive root of the cubic equation𝑔3𝑥∗31 − 2𝑔3𝑥∗21 + (𝑔3 − 𝑔2)𝑥∗1 + (𝑔2 − 1) = 0, we have(𝑥∗1 − 1)(2𝑔 + 2𝑔2𝑥∗1 ) > 0. We, then, consider the last few
terms from (21)

4𝑔3 (𝑥∗1 )3 − 6𝑔3 (𝑥∗1 )2 + 2 (𝑔3 − 𝑔2) 𝑥∗1 + 𝑔2 − 1
= (𝑔3 (𝑥∗1 )3 − 2𝑔3 (𝑥∗1 )2 + (𝑔3 − 𝑔2) 𝑥∗1 + 𝑔2 − 1)

+ 3𝑔3 (𝑥∗1 )3 + (𝑔3 − 𝑔2) 𝑥∗1 − 4𝑔3 (𝑥∗1 )2
= (𝑔3 (𝑥∗1 )3 − 2𝑔3 (𝑥∗1 )2 + (𝑔3 − 𝑔2) 𝑥∗1 )

+ 2𝑔3 (𝑥∗1 )2 (𝑥∗1 − 1)
= − (𝑔2 − 1) + 2𝑔3 (𝑥∗1 )2 (𝑥∗1 − 1)
= 𝑔2 (2𝑥∗1𝑥∗2 − 1) + 1 > 0.

(22)

Thus, all the roots of characteristic equation have negative real
part. The equilibrium 𝐸1 is locally asymptotically stable.

Now, we analyze the stability of positive equilibrium𝐸2(𝑥1, 𝑥2, 𝑦). The associated characteristic equation is

𝐺 (𝜆) = 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝑒−𝜆𝜏
+ 𝑎6 = 0, (23)

where

𝑎1 = −𝑏3 − 𝑏4 + 𝑑,
𝑎2 = 𝑏3𝑏4 − (1 − 𝑏1𝑥2) (1 − 𝑏1) − 𝑑 (𝑏3 + 𝑏4) ,
𝑎3 = −𝑑,
𝑎4 = 𝑑 (𝑏1 + 𝑏1𝑥2 + 𝑏3 + 𝑏4) ,
𝑎5 = 𝑑 (1 − 𝑏21𝑥2 − 𝑏3𝑏4 − 𝑏1𝑏4 − 𝑏1𝑏3𝑥2) ,
𝑎6 = 𝑑 (𝑏3𝑏4 − (1 − 𝑏1𝑥2) (1 − 𝑏1)) ,

𝑏1 = 𝑏𝑦
(𝑥 + 1)2 > 0, 𝑏2 = 2𝑏𝑥𝑦𝑥 + 1 > 0, 𝑏3 = 𝑔 + 𝑏2𝑥 − 2𝑥2 − 2𝑔𝑥 − 𝑏1, 𝑏4 = −𝑔 + 𝑏2 − 2𝑥 − 𝑏1𝑥2.

(24)

In the following, we study theHopf bifurcation for system
(9), using the time delay 𝜏 as the bifurcation parameter. We

assume that 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of the characteristic
equation (23). Then we get
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− 𝜔3𝑖 − 𝜔2𝑎1 + 𝑎2𝜔𝑖
+ (−𝜔2𝑎3 + 𝑎4𝜔𝑖 + 𝑎5) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) + 𝑎6

= 0.
(25)

By separating real part and imaginary part, we obtain

(𝑎5 − 𝑎3𝜔2) cos𝜔𝜏 + 𝑎4𝜔 sin𝜔𝜏 = 𝑎1𝜔2 − 𝑎6
(𝑎4𝜔) cos𝜔𝜏 + (𝑎3𝜔2 − 𝑎5) sin𝜔𝜏 = 𝜔3 − 𝑎2𝜔. (26)

By squaring both sides of the equations and using the
property that sin2𝜔𝜏+ cos2𝜔𝜏 = 1, we can simplify the above
equation. As a result,

𝜔6 + (𝑎21 − 2𝑎2 − 𝑎23) 𝜔4
+ (𝑎22 − 2𝑎1𝑎6 + 2𝑎3𝑎5 − 𝑎24) 𝜔2 + (𝑎26 − 𝑎25) = 0. (27)

Denote V = 𝜔2, 𝑒1 = 𝑎21 −2𝑎2−𝑎23 , 𝑒2 = 𝑎22 −2𝑎1𝑎6+2𝑎3𝑎5−𝑎24 ,
and 𝑒3 = 𝑎66 − 𝑎25 . Then (27) becomes

ℎ (V) = V3 + 𝑒1V2 + 𝑒2V + 𝑒3. (28)

By the Routh-Hurwitz criterion, we conclude that if

𝑎1 + 𝑎3 > 0,
𝑎5 + 𝑎6 > 0

(𝑎1 + 𝑎3) (𝑎2 + 𝑎4) > 𝑎5 + 𝑎6,
(29)

(23) has no positive real roots.Therefore, we get the following
results.

Theorem 3. Suppose conditions in (29) hold and 𝑒1, 𝑒2 > 0,𝑒3 ≥ 0.Then the equilibrium 𝐸2 is locally asymptotically stable.

Proof. For ℎ(V) defined in (28), we have

𝑑ℎ (V)𝑑V = 3V2 + 2𝑒1V + 𝑒2, (30)

and the zeros of (30) are

V1,2 = −𝑒1 ± √𝑒21 − 3𝑒2
3 . (31)

If 𝑒1, 𝑒2 > 0, then √𝑒21 − 3𝑒2 < 𝑒1. Hence, V1 and V2 are
negative. Thus, 𝑑ℎ(V)/𝑑V = 0 has no positive root. Sinceℎ(0) = 𝑒3 ≥ 0, it follows that ℎ(V) = 0 has no positive
roots. Therefore, the equilibrium 𝐸2 is locally asymptotically
stable.

Theorem 4. Suppose that conditions in (29) hold and that

(i) either 𝑒3 < 0,
(ii) or 𝑒3 ≥ 0, 𝑒2 < 0, and 2𝜔60 + (𝑎21 − 2𝑎2 − 2𝑎23)𝜔40 + 2𝑎25 −𝑎26 ̸= 0,

where 𝜔0 satisfies 𝐺(𝑖𝜔0) = 0 with 𝐺 given in (23). Then the
equilibrium 𝐸2 is locally asymptotically stable if 𝜏 < 𝜏0 and is
unstable if 𝜏 > 𝜏0, where
𝜏0 = 1𝜔0

⋅ cos−1((𝑎4 − 𝑎1𝑎3) 𝜔40 + (𝑎1𝑎5 + 𝑎3𝑎6 − 𝑎2𝑎4) 𝜔20 − 𝑎5𝑎6
𝑎24𝜔20 + (𝑎5 − 𝑎3𝜔20)2 ) .

(32)

Furthermore, when 𝜏 = 𝜏0, a Hopf bifurcation occurs; that is, a
family of periodic solutions are bifurcated from 𝐸2 as 𝜏 passes
through the critical value 𝜏0.
Proof. If 𝑒3 < 0, then it follows from (28) that ℎ(0) < 0 and
limV→∞ℎ(V) = ∞. Thus, (27) has at least one positive root. If
𝑒2 < 0, then V1 = (−𝑒1 + √𝑒21 − 3𝑒2)/3 is one positive root of𝑑ℎ(V)/𝑑V = 0. Since ℎ(0) = 𝑒3 ≥ 0, it follows that ℎ(V) = 0
has at least one positive root. As a consequence, (27) has a
positive root 𝜔0. This implies that the characteristic equation
(23) has a pair of purely imaginary roots.

Let 𝑢(𝜏) = 𝜂(𝜏)+ 𝑖𝜔(𝜏) be the eigenvalue of (23) such that𝜂(𝜏0) = 0 and 𝜔(𝜏0) = 𝜔0. If there exists 𝜔0 > 0, such that𝐺(𝑖𝜔) = 0.Then by the first equation of (26), we have

cos (𝜔0𝜏𝑗)
= (𝑎4 − 𝑎1𝑎3) 𝜔40 + (𝑎1𝑎5 + 𝑎3𝑎6 − 𝑎2𝑎4) 𝜔20 − 𝑎5𝑎6

𝑎24𝜔20 + (𝑎5 − 𝑎3𝜔20)2 , (33)

and then

𝜏𝑗
= cos−1

(𝑎4 − 𝑎1𝑎3) 𝜔40 + (𝑎1𝑎5 + 𝑎3𝑎6 − 𝑎2𝑎4) 𝜔20 − 𝑎5𝑎6
𝑎24𝜔20 + (𝑎5 − 𝑎3𝜔20)2

+ 2𝜋𝑗𝜔0 , 𝑗 = 0, 1, 2, . . . .
(34)

By taking the derivative of the characteristic equation (23)
with respect to 𝜏, we have

𝑑𝜆 (𝜏)𝑑𝜏 = (𝑎3𝜆3 + 𝑎4𝜆2 + 𝑎5𝜆) 𝑒−𝜆𝜏(3𝜆2 + 2𝑎1𝜆 + 𝑎2) − (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝜏𝑒−𝜆𝜏 + (2𝑎3𝜆 + 𝑎4) 𝑒−𝜆𝜏 . (35)
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Figure 1: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for Example 5.

Thus,

(𝑑𝜆 (𝜏)𝑑𝜏 )−1 = (3𝜆2 + 2𝑎1𝜆 + 𝑎2) + (2𝑎3𝜆 + 𝑎4) 𝑒−𝜆𝜏𝜆 (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝜏𝑒−𝜆𝜏
− 𝜏𝜆 .

(36)

We can also verify the following transversality condition [16]:

( 𝑑Re𝜆 (𝜏)𝑑𝜏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏

0

)−1

= Re((3𝜆2 + 2𝑎1𝜆 + 𝑎2) + (2𝑎3𝜆 + 𝑎4) 𝑒−𝜆𝜏𝜆 (𝑎3𝜆2 + 𝑎4𝜆 + 𝑎5) 𝜏𝑒−𝜆𝜏

− 𝜏𝜆)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏

0

= 2𝜔60 + (𝑎21 − 2𝑎2 − 2𝑎23) 𝜔40 + 2𝑎25 − 𝑎26
𝜔20 ((𝑎5 − 𝑎3𝜔20)2 + (𝑎4𝜔0)2) ̸= 0.

(37)

Therefore, if 𝜏 = 𝜏0, then a Hopf bifurcation occurs; that is,
a family of periodic solutions appear as 𝜏 passes through the
critical value 𝜏0.
4. Numerical Simulations and Discussion

In this section, we present some numerical simulation of
system (9) at different parameters to illustrate our analytic
results.

Example 5. Let 𝑔 = 1.8 𝑏 = 0.6 𝛼 = 2 𝑑 = 3 and we consider
the following system:

𝑑𝑥1𝑑𝑡 = 1.8𝑥1 (1 − 𝑥1) + 𝑥2 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 1.8𝑥2 (1 − 𝑥2) + 𝑥1 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 2𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 3𝑦.

(38)

In this case, we obtain only one boundary equilibrium 𝐸1 =(1.556, 1.557, 0), and the conditions of (ii) in Theorem 2 are
satisfied. Therefore, the equilibrium 𝐸1 is locally asymptoti-
cally stable. The behaviors of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡
are shown in Figure 1. According to the graph in Figure 1, the
predator population decreases and eventually the predator
species becomes extinct. As for prey species, the population
of both species reaches the equilibrium as the predator
population approaches zero.

Example 6. As an example, consider the following system:

𝑑𝑥1𝑑𝑡 = 1.8𝑥1 (1 − 𝑥1) + 𝑥2 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 1.8𝑥2 (1 − 𝑥2) + 𝑥1 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 2𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 0.3𝑦.

(39)

There is a positive equilibrium 𝐸2 = (0.3, 0.3, 7.53). By direct
calculation, we have 𝑒3 = −0.01903, 𝜔0 = 0.639, and2𝜔60 + (𝑎21 − 2𝑎2 − 2𝑎23)𝜔40 + 2𝑎25 − 𝑎26 = 0.2234 ̸= 0. From
Theorem 4, there is a critical value 𝜏0 = 1.1071, and the
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Figure 2: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for Example 6 with 𝜏 = 0.5.
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Figure 3: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for Example 6 with 𝜏 = 1.8.

equilibrium 𝐸2 is locally asymptotically stable as 𝜏 < 𝜏0 =1.1071. A Hopf bifurcation occurs as 𝜏 = 𝜏0 = 1.1071
and the equilibrium becomes unstable and stable periodic
solutions exist for 𝜏 > 𝜏0 = 1.1071. Figures 2 and 3 show
the solutions of that system corresponding to 𝜏 = 0.5 and𝜏 = 1.8. Furthermore, a bifurcation diagram for Example 6
is shown in Figure 4. This is an example when the predator
and prey coexist permanently. If the time that juvenile takes
to be mature is less than 𝜏0, then both predators and prey
population reach the nonzero equilibrium. They can coexist
permanently. On the other hand, if the time that juvenile
predators takes to becomemature and ready to hunt is longer
than 𝜏0, then the population of both predator and prey species
becomes unstable and periodic.

x


0 = 1.1071

1
Stable Unstable

Figure 4: Bifurcation diagram for Example 6.
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Figure 5: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸12 with 𝜏 = 0.6.
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Figure 6: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸12 with 𝜏 = 2.

Example 7. As an example, consider the following system:

𝑑𝑥1𝑑𝑡 = 1.8𝑥1 (1 − 𝑥1) + 𝑥2 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑥2𝑑𝑡 = 1.8𝑥2 (1 − 𝑥2) + 𝑥1 − 0.6𝑥1𝑥2𝑦𝑥1 + 𝑥2
𝑑𝑦𝑑𝑡 = 2𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)𝑥1 (𝑡 − 𝜏) + 𝑥2 (𝑡 − 𝜏) − 0.2𝑦.

(40)

In this case, we obtain three positive equilibria 𝐸12 = (0.2, 0.2,8.133), 𝐸22 = (0.1519, 0.2927, 8.7420), and 𝐸32 = (0.2925,

0.1519, 8.7410). By Theorem 4, we know that the positive
equilibrium 𝐸12 is locally asymptotically stable when 𝜏 < 𝜏0 =1.8227 and unstable when 𝜏 > 𝜏0 = 1.8227, and the system
can also undergo a Hopf bifurcation at the equilibrium 𝐸12
when 𝜏 crosses through the critical value 𝜏 > 𝜏0 = 1.8227;
see Figures 5 and 6. Similarly, at the positive equilibrium 𝐸22,
a Hopf bifurcation occurs as 𝜏 = 𝜏0 = 2.4353. Hence, the
positive equilibrium 𝐸22 is locally asymptotically stable when𝜏 < 𝜏0 = 2.4353 and unstable when 𝜏 > 𝜏0 = 2.4353; see
Figures 7 and 8. For equilibrium 𝐸32, (27) has no positive real
root. Hence, equilibrium 𝐸32 is locally asymptotically stable
and no stability switches can occur; see Figure 9. On this last

120 Differential Equations: Concepts and Applications



0 50 100 150
0

1

2

3

4

5

6

7

8

9

10

t

So
lu

tio
n
x
1
,x

2
,y

x1(t)

x2(t)

y(t)

0.1
0.15

0.2
0.25

0.3
0.35

0
0.2

0.4
0.6

0.8
6

6.5
7

7.5
8

8.5
9

9.5
10

y
(t
)

x
2 (t)

x1(t
)

Figure 7: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸22 with 𝜏 = 1.8.
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Figure 8: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸22 with 𝜏 = 2.6.

example, what occurs at the first two equilibria 𝐸12 and 𝐸22
is similar to the previous example where Hopf bifurcations
occur at 𝜏0’s and the stable limit cycle exists. The predator
and prey species coexist. As for the other equilibrium 𝐸32,
the system is locally asymptotically stable where predator and
prey species also coexist. Finally, the bifurcation diagram for
Example 7 is shown in Figure 10.

5. Concluding Remarks

In this paper, we find that system (7) has complex dynamics
behavior. By Theorem 2, our results show that the predator

and prey coexist permanently if 𝑑 < 𝑔𝛼𝑥∗1 (𝑥∗1 −1)/(1+𝑔(𝑥∗1 −1)); that is, the adult predators’ reproductive rate at the peak
of prey abundance is larger than its death rate. On the other
hand, the predator faces extinction, if 𝑑 > 𝑔𝛼𝑥∗1 (𝑥∗1 − 1)/(1 +𝑔(𝑥∗1 − 1)), which implies that the predator’s possible highest
reproductive rate is less than its death rate. We also find the
stability switches of the positive equilibrium 𝐸2 due to the
increase of 𝜏. Our results show that when there is no time
delay or the time delay is very small, the positive equilibrium𝐸2 is locally asymptotically stable. As the time delay increases
to the critical value, it can cause a stable equilibrium to
become unstable and Hope bifurcation can occur.
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Figure 9: The behavior of 𝑥1, 𝑥2, and 𝑦 with respect to 𝑡 for equilibrium 𝐸32 with 𝜏 = 2.6.
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In this paper, we will consider the existence of a strong solution for stochastic differential equations with discontinuous drift
coefficients.More precisely, we study a class of stochastic differential equations when the drift coefficients are an increasing function
instead of Lipschitz continuous or continuous.Themain tools of this paper are the lower solutions and upper solutions of stochastic
differential equations.

1. Introduction

There are many works [1–3] about the existence and unique-
ness of strong or weak solutions for the following stochastic
differential equation (denoted briefly by SDE):

𝑑𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡) 𝑑𝑡 + 𝜎 (𝑡, 𝑋𝑡) 𝑑𝑊𝑡 𝑡 ≥ 0, (1)

where 𝑏(𝑡, 𝑥) : R+ × R 󳨀→ R and 𝜎(𝑡, 𝑥) : R+ × R 󳨀→ R

are called drift and diffusion coefficients, respectively. 𝑊𝑡 is
standard Brownian motion. Usually, the drift and diffusion
coefficients are Lipschitz or local Lipschitz continuous or at
least are continuous with respect to 𝑥when the existence and
uniqueness of solutions are investigated. In fact, the solutions
of stochastic differential equations may exist when their drift
and diffusion coefficients are discontinuous with respect to 𝑥.
Therefore, many authors discussed the existence of solutions
for SDE with discontinuous coefficients. For example, L.
Karatzas and S. E. Shreve [1] (Proposition 3.6 of §5.3) consid-
ered the existence of aweak solutionwhen the drift coefficient
of SDE need not be continuous with respect to 𝑥. A. K.
Zvonkin [4] considered the following stochastic differential
equation with a discontinuous diffusion coefficient:

𝑋𝑡 = ∫
𝑡

0
sgn (𝑋𝑠) 𝑑𝑊𝑠; 0 ≤ 𝑡 < ∞, (2)

where

sgn (𝑥) = {
{
{
1, 𝑥 > 0;
−1, 𝑥 ≤ 0. (3)

The weak solution of this stochastic differential equation
exists, but there is not the strong solution. N. V. Ktylov
[5] and N. V. Ktylov and R. Liptser [6] also discussed
existence issues of SDE when their diffusion coefficients
are discontinuous with respect to 𝑥. And many authors
also considered the approximation solutions of SDE with
discontinuous coefficients, such as [7–11].

In this paper, we will consider the existence of a strong
solution of SDE (1) when the drift coefficient 𝑏(𝑡, 𝑥) is an
increasing function but need not be continuous with respect
to 𝑥 and the diffusion coefficient 𝜎(𝑡, 𝑋𝑡) satisfies (𝐶𝜎)
condition. Section 1 is an introduction. In Section 2, we will
show a comparison theorem by using the upper and lower
solutions of SDE. We will prove our main result by using the
above comparison theorem in Section 3.

2. The Setup and a Comparison Theorem

In our paper, we just consider a 1-dimensional case.We always
assume that (Ω,F,P) is a completed probability space,𝑊 =:
{𝑊𝑡 : 𝑡 ≥ 0} is a real-valued Brownian motion defined on
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(Ω,F,P), and {F𝑡 : 𝑡 ≥ 0} is natural filtration generated by
the Brownian motion𝑊; i.e., for any 𝑡 ≥ 0

F𝑡 = 𝜎 {𝑊𝑠 : 𝑠 ≤ 𝑡} . (4)

We consider SDE (1) with coefficients 𝑏(𝑡, 𝑥) : R+×R 󳨀→
R and 𝜎(𝑡, 𝑥) : R+ ×R 󳨀→ R, whereR+ and R are a positive
real number and real number, respectively. And we use ‖ ⋅ ‖ to
denote norm of R. The following is the definition of a strong
solution for SDE.

Definition 1. An adapted continuous process 𝑋𝑡 defined on
(Ω,F,P) is said to be a strong solution for SDE (1) if it satisfies
that

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑋𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠, 𝑡 ≥ 0, (5)

holds with probability 1.
Moreover, 𝑋𝑡 and 𝑋𝑡 are two strong solutions of SDE (1);

then 𝑃[𝑋𝑡 = 𝑋𝑡; 0 ≤ 𝑡 < ∞] = 1. Under this condition, the
solution of SDE (1) is said to be unique.

The following is the conception of upper and lower
solutions for stochastic differential equations, which are given
byN.Halidias and P. E. Kloeden [12].Many authors discussed
the upper and lower solutions of the stochastic differential
equation by using the other name which is the solutions of
the stochastic differential inequality, for example, S. Assing
and R. Manthey [13] and X. Ding and R. Wu [14].

Definition 2. An adapted continuous stochastic process 𝑈𝑡
(resp., 𝐿 𝑡) is an upper (resp., lower) solution of SDE (1) if the
inequalities

(1) 𝑈𝑡 ≥ 𝑈𝑠 + ∫𝑡
𝑠
𝑏(𝑢,𝑈𝑢)𝑑𝑢 + ∫𝑡

𝑠
𝜎(𝑢,𝑈𝑢)𝑑𝑊𝑢, 𝑡 ≥ 𝑠 ≥ 0;

(2) 𝐿 𝑡 ≤ 𝐿 𝑠 + ∫𝑡𝑠 𝑏(𝑢, 𝐿𝑢)𝑑𝑢 + ∫
𝑡

𝑠
𝜎(𝑢, 𝐿𝑢)𝑑𝑊𝑢, 𝑡 ≥ 𝑠 ≥ 0,

hold with probability 1.

Remark 3. It is not an easy thing to calculate the exact
upper and lower solution of the general stochastic differential
equations. However, one can discuss the existence of upper
and lower solutions. S. Assing and R. Manthey [13] discussed
the “maximal/minimal solution” of the stochastic differential
inequality. They proved the existence of a “maximal/minimal
solution” under some conditions. However, it is easy to
show there exist the upper solutions of stochastic differential
equations if theminimal solution of the stochastic differential
inequality exists. In fact, theminimal solution is special upper
solutions of stochastic differential equations. Similarly, we
can show the existence of the lower solution by using the
maximal solution of the stochastic differential inequality.

Usually, the existence and uniqueness of solutions of
SDE (1) are investigated under the conditions in which the
diffusion coefficient satisfies Lipschitz condition and liner
growth condition. In fact, the Lipschitz condition can be
generalized. In this paper, the diffusion coefficient satisfies the
(𝐶𝜎) condition.

(𝐶𝜎): For 𝑁 > 0, there exist an increasing function 𝜌𝑁 :
R+ 󳨀→ R+ and a predictable process 𝐺𝑁(𝑡, 𝜔) such that

󵄨󵄨󵄨󵄨𝜎 (𝑡, 𝜔, 𝑥) − 𝜎 (𝑡, 𝜔, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐺𝑁 (𝑡, 𝜔) 𝜌𝑁 (󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨) ,

∫
𝑡

0
𝐺𝑁 (𝑡, 𝜔) 𝑑𝑡 < ∞ 𝑎.𝑠.,

∫
0+
𝜌−2𝑁 (𝑢) 𝑑𝑢 = ∞,

(6)

for all 𝑡 ≥ 0, and 𝑥, 𝑦 ∈ R with ‖𝑥‖, ‖𝑦‖ ≤ 𝑁.
Note that the Lipschitz condition satisfies the (𝐶𝜎) condi-

tion. The following lemma is an important tool of this paper
and had to be proved in proposition 2.3 of X. Ding and R.Wu
[14].

Lemma4. In SDE (1), we assume𝜎 satisfies (𝐶𝜎) and 𝑏 satisfies
that, for each𝑁 > 0, there exists a measurable process 𝐿𝑁(𝑡, 𝜔)
such that

󵄩󵄩󵄩󵄩𝑏 (𝑡, 𝜔, 𝑥) − 𝑏 (𝑡, 𝜔, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝐿𝑁 (𝑡, 𝜔) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ,

∫
𝑡

0
𝐿𝑁 (𝑡, 𝜔) 𝑑𝑡 < ∞, 𝑎.𝑠.,

(7)

for all 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ R with ‖𝑥‖, ‖𝑦‖ ≤ 𝑁. �en SDE (1) has
a unique local (explosion in the finite time) strong solution.

Remark 5. Moreover, if 𝑏 and 𝜎 satisfy the liner growth
condition (cf. J. Jacod and J. Memin [15])

‖𝑏 (𝑡, 𝜔, 𝑥)‖ + ‖𝜎 (𝑡, 𝜔)‖ ≤ 𝐻 (𝑡, 𝜔) (1 + ‖𝑥‖) , (8)

where 𝐻(𝑡, 𝜔), 𝑡 ≥ 0, is a predictable process such that
∫𝑡
0
𝐻2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠. Then SDE (1) has a unique global

strong solution.

The following theoremcan be considered as a comparison
theorem, and we will use it to arrive at our main result.

Theorem 6. Let 𝑏 : R+ × Ω 󳨀→ R be predictable such that
∫𝑡
0
𝑏2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠. 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ≥ 0, and let 𝜎 : R+ × Ω ×

R 󳨀→ R be predictable. Suppose that 𝜎 satisfies (𝐶𝜎) and there
exists a predictable process 𝐻(𝑡, 𝜔), 𝑡 ≥ 0 such that

‖𝜎 (𝑡, 𝜔)‖ ≤ 𝐻 (𝑡, 𝜔) (1 + ‖𝑥‖) , (9)

where ∫𝑡
0
𝐻2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠.And suppose that𝑈𝑡 and 𝐿 𝑡 are

upper and lower solutions of the following SDE:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝜔) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠,𝑋𝑠) 𝑑𝑊𝑠, 𝑡 ≥ 0, (10)

such that 𝐿0 ≤ 𝑋0 ≤ 𝑈0, 𝑎.𝑠.
�en there is a unique strong solution 𝑋𝑡 which satisfies

that 𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡 for any 𝑡 ≥ 0 holds with probability 1.
Proof. Obviously, we have that SDE (10) has a unique strong
solution𝑋𝑡 by using Lemma 4 andRemark 5. In the following
we will show

P {𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1. (11)

125The Existence of Strong Solutions for a Class of Stochastic Differential Equations



We only prove P{𝑋𝑡 ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1, because we can prove
P{𝐿 𝑡 ≤ 𝑋𝑡, ∀𝑡 ≥ 0} = 1 by using the similar way.

Define the stopping time

𝑇𝑁 š inf {𝑡 ∈ [0,∞) : 󵄨󵄨󵄨󵄨𝑋𝑡󵄨󵄨󵄨󵄨 ∨ 󵄨󵄨󵄨󵄨𝐿 𝑡󵄨󵄨󵄨󵄨 ∨ 𝑡 > 𝑁} ∧ 𝑁. (12)

Obviously, 𝑇𝑁 󳨀→ ∞ when 𝑁 󳨀→ ∞. And define the
stopping time 𝜏 š inf{𝑡 ∈ [0,∞) : 𝑋𝑡 < 𝐿 𝑡}. IfP{𝜏 < 𝑇𝑁} = 0
for𝑁 ≥ 1, then P{𝜏 < ∞} = 0; that is, P{𝐿 𝑡 ≤ 𝑋𝑡, ∀𝑡 ≥ 0} =
1. Indeed, ∀𝑞 ∈ 𝑄+ and 𝑁 ≥ 1, we define 𝛼 š (𝜏 + 𝑞) ∧ 𝑇𝑁
and Ω𝛼 š {𝑋𝛼 < 𝐿𝛼}. Note that

P {Ω𝛼} = 0, ∀𝑞 ∈ 𝑄+, 𝑁 ≥ 1 󳨐⇒ P {𝜏 < 𝑇𝑁} = 0. (13)

In fact, by P{Ω𝛼} = 0 and 𝑋,𝐿 being continuous and the
denseness of the rational number in R, we have

𝑋(𝜏+𝑡)∧𝑇𝑁 ≥ 𝐿 (𝜏+𝑡)∧𝑇𝑁 𝑎.𝑠. on {𝜏 < 𝑇𝑁} (14)

for all 𝑡 ≥ 0. That is for 𝑎.𝑠. 𝜔 ∈ {𝜏 < 𝑇𝑁} and 𝑡 ∈
[𝜏(𝜔), 𝑇𝑁(𝜔)] one has 𝑋𝑡 ≥ 𝐿 𝑡. However, by the definition
of 𝜏 and 𝐿𝜏 ≤ 𝑋𝜏, 𝑎.𝑠. we have P{𝜏 < 𝑇𝑁} = 0.

In the following we shall prove P{Ω𝛼} = 0, ∀𝑞 ∈
𝑄+, 𝑁 ≥ 1. Set 𝛽 š sup{𝑡 ∈ [0, 𝛼) : 𝐿 𝑡 ≤ 𝑋𝑡}. By continuity
of 𝑋 and 𝐿 we have 𝑋𝛽 ≥ 𝐿𝛽, 𝑎.𝑠. Obviously, {𝑋𝛼 ≥ 𝐿𝛼} ={𝛽 = 𝛼}. So, we have Ω𝛼 š {𝑋𝛼 < 𝐿𝛼} = {𝛽 < 𝛼}. Hence, for
𝜔 ∈ Ω𝛼 and 𝑡 ∈ (𝛽(𝜔), 𝛼(𝜔)] we have 𝑋𝑡 < 𝐿 𝑡. Using 𝐿 as a
lower solution of SDE (10), we have

𝐿 𝑡 − 𝑋𝑡 ≤ ∫
𝑡

𝛽
[𝜎 (𝑠, 𝐿 𝑠) − 𝜎 (𝑠, 𝑋𝑠)] 𝑑𝑊𝑠 š 𝑀𝑡. (15)

Hence,

[𝐿 𝑡 − 𝑋𝑡] 𝐼Ω𝛼𝐼(𝛽,𝛼] (𝑡) ≤ 𝑀𝑡𝐼Ω𝛼𝐼(𝛽,𝛼] (𝑡) . (16)

Let us take 𝑀+ š max{𝑀, 0}. By the Tanaka formula (refer
to [3]) we have

𝑀+𝑡 𝐼Ω𝛼 = 𝑀+𝛽𝐼Ω𝛼 + 𝐼Ω𝛼 ∫
𝑡

𝛽
𝐼{𝑀𝑠>0}𝑑𝑀𝑠

+ 1
2𝐼Ω𝛼 [𝐿

0
𝑡 (𝑀) − 𝐿0𝛽 (𝑀)] ,

(17)

where 𝐿𝑥𝑡 (𝑀) denotes local time at the point 𝑥 for𝑀. By the
definition of local time, one can prove easily that 𝐿0𝑡(𝑀) −
𝐿0𝛽(𝑀) = 0, for 𝑡 ∈ (𝛽, 𝛼] onΩ𝛼. So, by𝑀+𝛽𝐼Ω𝛼 = 0 (using the
definition𝑀) we have

𝑀+𝐼Ω𝛼 = ∫
𝑡

𝛽
𝐼{𝑀𝑠>0}𝐼Ω𝛼 [𝜎 (𝑠, 𝐿 𝑠) − 𝜎 (𝑠, 𝑋𝑠)] 𝑑𝑊𝑠

š 𝑁𝑡.
(18)

Since for 𝜔 ∈ Ω𝛼 and 𝑡 ∈ (𝛽(𝜔), 𝛼(𝜔)] we have 𝑋𝑡 < 𝐿 𝑡, by
(18) we have

𝑀+𝐼Ω𝛼 ≤ 𝑁𝑡 + ∫
𝑡

𝛽
𝐼{𝑀𝑠>0}𝐼Ω𝛼 [𝐿 𝑠 − 𝑈𝑠] 𝑑𝑠. (19)

Using (16), we have

𝑀+𝐼Ω𝛼 ≤ 𝑁𝑡 + ∫
𝑡

𝛽
𝐼Ω𝛼𝑀+𝑑𝑠. (20)

By the stochastic Gronwall inequality (e.g., Lemma 2.1 [14]),
we have

𝐼Ω𝛼𝑀+𝛼𝑒−𝑡 ≤ 𝑁𝛽𝑒−𝑡 + ∫
𝛼

𝛽
𝑒−𝑡𝑑𝑁𝑠. (21)

By𝑁𝛽 = 0 we have

𝐸 (𝐼Ω𝛼𝑀+𝛼𝑒−𝑡) ≤ 𝐸∫
𝛼

𝛽
𝑒−𝑡𝑑𝑁𝑠 = 0. (22)

So, using (16) once again we have

𝐼Ω𝛼 [𝐿𝛼 − 𝑋𝛼] ≤ 𝐼Ω𝛼𝑀+𝛼 = 0 𝑎.𝑒. (23)

That is 𝐿𝛼 ≤ 𝑋𝛼 on Ω𝛼 a.s. Hence, P{Ω𝛼} = 0. The proof is
completed.

3. Existence of Strong Solutions

In this section, we will show the existence of the solution
for SDEs with discontinuous drift coefficients. Themethod of
the proof of our main result is based on Amann’s fixed point
theorem (e.g., Theorem 11.D [16]), so we introduce it in the
following.

Lemma 7. Suppose that
(1) the mapping 𝑓 : 𝑋 󳨀→ 𝑋 is monotone increasing on an

ordered set 𝑋
(2) every chain in𝑋 has a supremum
(3) there is an element 𝑥𝑜 ∈ 𝑋 for which 𝑥0 ≤ 𝑓(𝑥0)
�en 𝑓 has a smallest fixed point in the set {𝑥 ∈ 𝑋 : 𝑥0 ≤𝑥}.
The following theorem is our main result.

Theorem 8. Let 𝑏, 𝜎 : R+ × Ω × R 󳨀→ R be predictable.
Suppose that 𝑏 is an increasing function in 𝑥 and 𝜎 satisfies
(𝐶𝜎) and there exists a predictable process𝐻(𝑡, 𝜔), 𝑡 ≥ 0, such
that

‖𝑏 (𝑡, 𝜔, 𝑥)‖ + ‖𝜎 (𝑡, 𝜔, 𝑥)‖ ≤ 𝐻 (𝑡, 𝜔) (1 + ‖𝑥‖) , (24)

where ∫𝑡
0
𝐻2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠.Moreover, suppose that 𝑈𝑡 and𝐿 𝑡 are upper and lower solutions of the SDE

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑋𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠, 𝑡 ≥ 0, (25)

such that 𝐿0 ≤ 𝑋0 ≤ 𝑈0, 𝑎.𝑠.
�en there is at least a strong solution 𝑋𝑡 which satisfies

that 𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡 for 𝑡 ≥ 0 holds with probability 1.
Proof. LetX be a space of adapted and continuous processes
and define the order relation ⪯:

𝑋 ⪯ 𝑌 ⇐⇒ P {𝑋𝑡 ≤ 𝑌𝑡, ∀𝑡 ≥ 0} = 1, (26)
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for𝑋,𝑌 ∈ X. We consider a subset of the space (X, ⪯)
D š [𝐿, 𝑈]

š {𝑋 ∈ X : P {𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1} . (27)

For arbitrary fixed 𝑍 ∈ D, we consider the following
equation:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑍𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠; (28)

byTheorem6 there exists a unique strong solution𝑋∗𝑡 . Define
a mapping 𝑆 : D 󳨀→ X and 𝑆(𝑍) = 𝑋∗. To complete the
proof it is enough to show 𝑆 has a fixed point.

Since 𝑏 is an increasing function and 𝑈 is an upper
solution of SDE (25), we have that

𝑈𝑡 ≥ 𝑈𝑠 + ∫
𝑡

𝑠
𝑏 (𝑢, 𝑍𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
𝜎 (𝑢, 𝑈𝑢) 𝑑𝑊𝑢 (29)

holds with probability 1 for 𝑡 ≥ 𝑠 ≥ 0. Then𝑈 is also an upper
solution of SDE (28). Similarly, we have that

𝐿 𝑡 ≤ 𝐿 𝑠 + ∫
𝑡

𝑠
𝑏 (𝑢, 𝑍𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
𝜎 (𝑢, 𝐿𝑢) 𝑑𝑊𝑢 (30)

holds with probability 1 for 𝑡 ≥ 𝑠 ≥ 0 such that 𝐿 is also a
lower solution of SDE (28). Hence, using Theorem 6 we have

P {𝐿 𝑡 ≤ 𝑆 (𝑍𝑡) ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1. (31)

Since 𝑍 is arbitrary, we have 𝑆 : D 󳨀→ D and 𝐿 ⪯ 𝑆(𝐿) and
𝑆(𝑈) ⪯ 𝑈. If 𝑆 is an increasing mapping, by Lemma 7 𝑆 has a
fixed point on D. In fact, take 𝑍1, 𝑍2 ∈ D and 𝑍1 ⪯ 𝑍2 and
set𝑋𝑖 š 𝑆(𝑍𝑖); that is,

𝑋𝑖𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑍𝑖𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑖𝑠) 𝑑𝑊𝑠,

𝑖 = 1, 2.
(32)

Since 𝑏 is an increasing function, we have that

𝑋2𝑡 ≥ 𝑋𝑠 + ∫
𝑡

𝑠
𝑏 (𝑢,𝑍1𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
𝜎 (𝑢,𝑋2𝑢) 𝑑𝑊𝑢 (33)

holds with probability 1 for 𝑡 ≥ 𝑠 ≥ 0. Hence 𝑋2 is an upper
solution of the following equation:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑍1𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠. (34)

And by (29)𝑈 is an upper solution of (34). Using Theorem 6
again, we have

P {𝑆 (𝑍1𝑡 ) ≤ 𝑆 (𝑍2𝑡 ) ≤ 𝑈𝑡, 𝑡 ≥ 0} = 1; (35)

that is, 𝑆(𝑍1𝑡 ) ⪯ 𝑆(𝑍2𝑡 ). Hence 𝑆 is an increasing function. The
proof is completed.

Example 9. We consider the following SDE:

𝑑𝑋𝑡 = sgn (𝑋𝑡) 𝑑𝑡 + 𝑑𝑊𝑡, ∀𝑡 ≥ 0, (36)

with initial value 𝑋0. Obviously, 𝑋0 − 𝑡 + 𝑊𝑡 ≤ 𝑋0 +
∫𝑡
0
sgn(𝑋𝑠)𝑑𝑠 + 𝑊𝑡 ≤ 𝑋0 + 𝑡 + 𝑊𝑡. By Theorem 8, there

exists at least one solution 𝑋𝑡 such that 𝑋0 − 𝑡 + 𝑊𝑡 ≤ 𝑋𝑡 ≤𝑋0 + 𝑡 +𝑊𝑡, 𝑡 ≥ 0 holds with probability 1.

Example 10. We have the SDE

𝑑𝑋𝑡 = 𝑓 (𝑋𝑡, 𝑡) 𝑑𝑡 + 𝜎𝑑𝑊𝑡, ∀𝑡 ≥ 0, (37)

with initial value𝑋0, where𝑓(𝑥, 𝑡) is a bounded function and
is defined as

𝑓 (𝑥, 𝑡) =
{{{{{{{
{{{{{{{
{

𝑀+ 1, 𝑥 ≥ 𝑀;
𝑥 + 1, 0 ≤ 𝑥 < 𝑀;
𝑥 − 1, −𝑀 ≤ 𝑥 < 0;
−𝑀 − 1, 𝑥 ≤ −𝑀.

(38)

It is easy to show𝑋𝑡 = 𝑋0−(𝑀+1)𝑡+𝜎𝑊𝑡 and𝑋𝑡 = 𝑋0+(𝑀+
1)𝑡 + 𝜎𝑊𝑡 are the lower solution and upper solution of (37),
respectively. And 𝑓(𝑥, 𝑡) is an increasing function in 𝑥 but is
not continuous in 𝑥, so we have that SDE (37) has a strong
solution by using Theorem 8.
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It is known that power series expansion of certain functions such as sech(𝑥) diverges beyond a finite radius of convergence. We
present here an iterative power series expansion (IPS) to obtain a power series representation of sech(𝑥) that is convergent for all 𝑥.
The convergent series is a sum of the Taylor series of sech(𝑥) and a complementary series that cancels the divergence of the Taylor
series for 𝑥 ≥ 𝜋/2. The method is general and can be applied to other functions known to have finite radius of convergence, such
as 1/(1 + 𝑥2). A straightforward application of this method is to solve analytically nonlinear differential equations, which we also
illustrate here.Themethod provides also a robust and very efficient numerical algorithm for solving nonlinear differential equations
numerically. A detailed comparison with the fourth-order Runge-Kutta method and extensive analysis of the behavior of the error
and CPU time are performed.

1. Introduction

It is well-known that the Taylor series of some functions
diverge beyond a finite radius of convergence [1]. For
instance, by way of example not exhaustive enumeration,
the Taylor series of sech(𝑥) and 1/(1 + 𝑥2) diverge for𝑥 ≥ 𝜋/2 and 𝑥 ≥ 1, respectively. Increasing the number
of terms in the power series does not increase the radius
of convergence; it only makes the divergence sharper. The
radius of convergence can be increased only slightly via
some functional transforms [2]. Among the many different
methods of solving nonlinear differential equations [3–9],
the power series is the most straightforward and efficient
[10]. It has been used as a powerful numerical scheme for
many problems [11–19] including chaotic systems [20–23].
Many numerical algorithms and codes have been developed
based on this method [10–12, 20–24]. However, the above-
mentioned finiteness of radius of convergence is a serious
problem that hinders the use of this method to wide class of
differential equations, in particular the nonlinear ones. For
instance, the nonlinear Schrödinger equation (NLSE) with
cubic nonlinearity has the sech(𝑥) as a solution. Using the

power series method to solve this equation produces the
power series of a sech(𝑥), which is valid only for 𝑥 < 𝜋/2.

A review of the literature reveals that the power series
expansionwas exploited by several researchers [10–12, 20–24]
to develop powerful numericalmethods for solving nonlinear
differential equations. Therefore, this paper is motivated by
a desire to extend these attempts to a develop a numerical
scheme with systematic control on the accuracy and error.
Specifically, two main advances are presented in this paper:(1) a method of constructing a convergent power series rep-
resentation of a given functionwith an arbitrarily large radius
of convergence and (2) a method of obtaining analytic power
series solution of a given nonlinear differential equation that
is free from the finite radius of convergence. Through this
paper, we show robustness and efficiency of the method via
a number of examples including the chaotic Lorenz system
[25] and the NLSE. Therefore, solving the problem of finite
radius of convergence will open the door wide for applying
the power series method to much larger class of differential
equations, particularly the nonlinear ones.

It is worth mentioning that the literature includes several
semianalytical methods for solving nonlinear differential
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equations; such as homotopy analysismethod (HAM), homo-
topy perturbation method (HPM), and Adomian decom-
position method (ADM); for more details see [26–29] and
the references therein. Essentially, these methods generate
iteratively a series solution for the nonlinear systems where
we have to solve a linear differential equation at each iteration.
Although these methods prove to be effective in solving
most of nonlinear differential equations and in obtaining a
convergent series solution, they have few disadvantages such
as the large number of terms in the solution as the number of
iterations increases. One of the most important advantages
of the present technique is the simplicity in transforming the
nonlinear differential equation into a set of simple algebraic
difference equations which can be easily solved.

The paper is thus divided into two, seemingly separated,
but actually connected main parts. In the first (Section 2),
we show, for a given function, how a convergent power
series is constructed out of the nonconverging one. In the
second part (Section 3.1), we essentially use this idea to solve
nonlinear differential equations. In Section 3.2, we investigate
the robustness and efficiency of the method by studying the
behavior of its error and CPU time versus the parameters of
the method. We summarise our results in Section 4.

2. Iterative Power Series Method

This section describes how to obtain a convergent power
series for a given function that is otherwise not converging
for all 𝑥. In brief, the method is described as follows. We
expand the function 𝑓(𝑥) in a power series as usual, say
around 𝑥 = 0. Then we reexpress the coefficients, 𝑓(𝑛)(𝑥), in
terms of 𝑓(𝑥). This establishes a recursion relation between
the higher-order coefficients, 𝑓(𝑛)(0), and the lowest order
ones, 𝑓(0)(0) and 𝑓(1)(0), and thus the power series is written
in terms of only these two coefficients. Then the series and
its derivative are calculated at 𝑥 = Δ, where Δ is much less
than the radius of convergence of the power series. A new
power series expansion of 𝑓(𝑥) is then performed at 𝑥 =Δ. Similarly, the higher-order coefficients are reexpressed in
terms of the lowest order coefficients 𝑓(0)(Δ) and𝑓(1)(Δ).The
value of the previous series and its derivative calculated at𝑥 = Δ are then given to𝑓(0)(Δ) and𝑓(1)(Δ), respectively.Then
a new expansion around 2Δ is performed with the lowest
order coefficients being taken from the previous series, and so
on.This iterative process is repeated 𝑁 times. The final series
will correspond to a convergent series at 𝑥 = 𝑁Δ.

Here is a detailed description of themethod.The function𝑓(𝑥) is expanded in a Taylor series, 𝑇0(𝑥), around 𝑥 = 0.
The infinite Taylor series is an exact representation of 𝑓(𝑥)
for 𝑥 < 𝑅 where 𝑅 is the radius of convergence. For 𝑥 ≥ 𝑅
the series diverges. We assume that 𝑥 is divided into 𝑁 small
intervals Δ = 𝑥/𝑁 such that Δ < 𝑅. Expanding 𝑓(𝑥) around
the beginning of each interval we obtain 𝑁 convergent Taylor
series representing 𝑓(𝑥) in each interval

𝑇𝑗 (𝑦) = ∞∑
𝑛=0

1𝑛! 𝑓(𝑛) (𝑗Δ) (𝑦 − 𝑗Δ)𝑛 ,
𝑗Δ ≤ 𝑦 < (𝑗 + 1) Δ, 𝑗 = 0, 1, 2, . . . , 𝑁, (1)

where 𝑇𝑗(𝑦) denotes the Taylor series expansion of 𝑓(𝑦)
around 𝑦 = 𝑗Δ and 𝑓(𝑛)(𝑗Δ) is the 𝑛th derivative of 𝑓(𝑦)
calculated at 𝑦 = 𝑗Δ. It is noted that we use 𝑦 ∈ [(𝑗 −1)Δ, 𝑗Δ] as the independent variable for the 𝑛th Taylor series
expansion to distinguish it from 𝑥 = 𝑁Δ. However, these
series can not be combined in a single series since their ranges
of applicability are different and do not overlap. To obtain a
single convergent power series out of the set of series 𝑇𝑗, we
put forward two new ideas, which constitute the basis of our
method; namely:(1) Reexpress 𝑓(𝑛)(𝑦) in terms of 𝑓(𝑦) as 𝑓(𝑛)(𝑦) =𝐹𝑛[𝑓(𝑦)], where the functional 𝐹𝑛[𝑓(𝑦)] is determined by
direct differentiation of 𝑓(𝑦) for 𝑛 times and then reexpress-
ing the result in terms of 𝑓(𝑦) only. We conjecture that this is
possible for a wide class of functions if not all. At least for the
two specific functions considered here, this turned out to be
possible. Equation (1) then takes the form

𝑇𝑗 (𝑦) = ∞∑
𝑛=0

𝑎𝑛 (𝑎𝑗0) (𝑦 − 𝑗Δ)𝑛 , (2)

where we have renamed 𝑓(𝑗Δ) by 𝑎𝑗0 and 𝐹𝑛[𝑓(𝑗Δ)]/𝑛! by𝑎𝑛(𝑎𝑗0) for a reason to be obvious in the next section. Thus,
the coefficients 𝑎𝑛 for all 𝑛 are determined only by 𝑎𝑗0.(2) Calculate 𝑎𝑗0 from 𝑇𝑗−1 at 𝑗Δ

𝑎𝑗0 = 𝑇𝑗−1 (𝑗Δ) = ∞∑
𝑛=0

𝑎𝑛 (𝑎𝑗−10 ) Δ𝑛, 𝑗 = 1, 2, . . . , 𝑁, (3)

which amounts to assigning the value of the Taylor series
at the end of an interval to 𝑎𝑗0 of the consecutive one.
Equation (3) captures the essence of the recursive feature of
our method; 𝑎𝑁0 is calculated recursively from 𝑎00 by repeated
action of the right-hand-side on 𝑎00 . While 𝑇𝑗 represents the
function 𝑓 within an interval of width Δ, the sequence 𝑎𝑗0
corresponds to the values of the function at the end of the
intervals. In the limit 𝑁 → ∞, or equivalently Δ → 0,
the discrete set of 𝑎𝑗0 values and 𝑗Δ render to the continuous
function 𝑓(𝑥) and its independent variable 𝑥, respectively.
Formally, the convergent power series expansion of 𝑓(𝑥)
around 𝑥 = 0 will thus be given by

𝑓 (𝑥) = lim
𝑁→∞

𝑆𝑁, (4)

where 𝑆𝑁 denotes the 𝑁tℎ iteration of

𝑆 [𝑓 (0)] = ∞∑
𝑛=0

𝑎𝑛 (𝑓 (0)) ( 𝑥𝑁 )𝑛 . (5)

As an illustrative example, we apply themethod to𝑓(𝑥) =
sech(𝑥). The infinite Taylor series expansion of this function
diverges sharply to infinity at 𝑥 = 𝜋/2. The first step is to
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determine the coefficients 𝑎𝑗𝑛, which are the coefficients of the𝑇𝑗 series𝑇𝑗 (𝑦) = sech (𝑦)󵄨󵄨󵄨󵄨𝑦=𝑗Δ + [− sech (𝑦) tanh (𝑦)]𝑦=𝑗Δ (𝑦
− 𝑗Δ) + 12! [−sech3 (𝑦) + sech (𝑦) tanh2 (𝑦)]

𝑦=𝑗Δ

⋅ (𝑦 − 𝑗Δ)2 + 13! [(5sech2 (𝑦) − tanh2 (𝑦))
⋅ sech (𝑦) tanh (𝑦)]

𝑦=𝑗Δ
(𝑦 − 𝑗Δ)3 + 14! [5sech5 (𝑦)

− 18sech3 (𝑦) tanh2 (𝑦) + sech (𝑦) tanh4 (𝑦)]
𝑦=𝑗Δ⋅ (𝑦 − 𝑗Δ)4 + ⋅ ⋅ ⋅ .

(6)

The next step is to reexpress the higher-order coefficients, 𝑎𝑗𝑛,
in terms of the zeroth-order coefficient 𝑎𝑗0 = sech(𝑦)|𝑦=𝑗Δ.
The property sech2(𝑦) + tanh2(𝑦) = 1 is used to that
end. It is noticed, however, that while it is possible to
express the even-𝑛 coefficients in terms of 𝑎𝑗0 only, the odd-𝑛 coefficients can only be expressed terms of both 𝑎𝑗0 and 𝑎𝑗1 =− sech(𝑦) tanh(𝑦)|𝑦=𝑗Δ. In the context of solving differential
equations using the power series method, this reflects the fact
that the solution is expressed in terms of two independent
parameters (initial conditions). The sech function is indeed
a solution of a second-order differential equation, which is
solved using this method in the next section. Equation (6)
then takes the form

𝑇𝑗 (𝑦) = 𝑎𝑗0 + 𝑎𝑗1 (𝑦 − 𝑗Δ) + 12! [1 − 2 (𝑎𝑗0)2]
⋅ 𝑎𝑗0 (𝑦 − 𝑗Δ)2 + 13! [1 − 6 (𝑎𝑗0)2]
⋅ 𝑎𝑗1 (𝑦 − 𝑗Δ)3

+ 14! [1 − 8 (𝑎𝑗0)2 + 8 (𝑎𝑗0)4 − 12 (𝑎𝑗1)2]
⋅ 𝑎𝑗0 (𝑦 − 𝑗Δ)4 + ⋅ ⋅ ⋅ .

(7)

Calculating 𝑇𝑗(𝑦) series at the end of its interval of applica-
bility, 𝑦 = (𝑗 + 1)Δ, we get

𝑇𝑗 ((𝑗 + 1) Δ) = 𝑎𝑗0 + 𝑎𝑗1Δ + 𝑎𝑗2 (𝑎𝑗0) Δ2 + 𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) Δ3
+ 𝑎𝑗4 (𝑎𝑗0) Δ4 + ⋅ ⋅ ⋅ , (8)

where the “recursion” coefficients are given by

𝑎𝑗2 (𝑎𝑗0) = 12! [1 − 2 (𝑎𝑗0)2] 𝑎𝑗0,
𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) = 13! [1 − 6 (𝑎𝑗0)2] 𝑎𝑗1,

𝑎𝑗4 (𝑎𝑗0) = 14! [1 − 8 (𝑎𝑗0)2 + 8 (𝑎𝑗0)4 − 12 (𝑎𝑗1)2] 𝑎𝑗0.
(9)

Finally, we assign 𝑇𝑗((𝑗 + 1)Δ) to 𝑎𝑗+10
𝑎𝑗+10 = 𝑎𝑗0 + 𝑎𝑗1Δ + 𝑎𝑗2 (𝑎𝑗0) Δ2 + 𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) Δ3

+ 𝑎𝑗4 (𝑎𝑗0) Δ4 + ⋅ ⋅ ⋅ . (10)

The second independent coefficient 𝑎𝑗+11 is determined by the
derivative of 𝑇𝑗(𝑦) calculated at 𝑦 = (𝑗 + 1)Δ

𝑎𝑗+11 = 𝑎𝑗1 + 2𝑎𝑗2 (𝑎𝑗0) Δ + 3𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) Δ2 + 4𝑎𝑗4 (𝑎𝑗0) Δ3
+ ⋅ ⋅ ⋅ . (11)

While, in the limit 𝑁 → ∞, 𝑎𝑗0 corresponds to the function𝑓(𝑥), the sequence 𝑎𝑗1 corresponds to 𝑓󸀠(𝑥). Therefore, the
power series expansion of sech(𝑥) and its first derivative are
given by

( 𝑓 (𝑥)𝑓󸀠 (𝑥)) = lim
𝑁→∞

(𝑎0 + 𝑎1 ( 𝑥𝑁 ) + 𝑎2 (𝑎0) ( 𝑥𝑁 )2 + 𝑎3 (𝑎0, 𝑎1) ( 𝑥𝑁 )3 + 𝑎4 (𝑎0) ( 𝑥𝑁 )4 + ⋅ ⋅ ⋅
𝑎1 + 2𝑎2 (𝑎0) ( 𝑥𝑁 ) + 3𝑎3 (𝑎0, 𝑎1) ( 𝑥𝑁 )2 + 4𝑎4 (𝑎0) ( 𝑥𝑁 )3 + ⋅ ⋅ ⋅ )

𝑁

, (12)

where the superscript of the matrix on the right-hand-side,𝑁, denotes the 𝑁th iteration of the matrix. The superscript 𝑗
has been removed since the functional form of the recursion
coefficients does not depend on 𝑗. The procedure of calcu-
lating the power series recursively is described as follows.
First, 𝑎0 = sech(0) = 1 and 𝑎1 = sech󸀠(0) = 0 are
substituted in the right-hand-side of the last equation. Then

the result of the upper element is taken as the updated value
of 𝑎0, and, similarly, the lower element updates 𝑎1. The two
updated values are then resubstituted back in the right-hand-
side. The process is repeated 𝑁 times. To obtain an explicit
form of the series we truncate the Taylor series at 𝑛max = 4
and use 𝑁 = 4 iterations. The resulting expansion takes the
form
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sech (𝑥) = 1 − 12 𝑥2 + 524 𝑥4 − 0.0806681𝑥6
+ 0.0302048𝑥8 + ⋅ ⋅ ⋅ + 1.4434798× 10−461𝑥624.

(13)

It is noted that the higher-order coefficients, which corre-
spond to ratios of large integers, are represented in real
numbers for convenience. Already with such a small number
of iterations, 𝑁 = 4, the number of terms equals 313. By
inspection, we find that the number of terms equals ((𝑛max +1)𝑁 + 1)/2. Here, 𝑛max is even due to the fact that sech(𝑥) is
an even function.

It is also noted that the series (13) is composed of the
Taylor expansion of sech(𝑥) around zero, represented by the
first three terms, and a series of higher-order terms generated
from the nonlinearity in the recursion relations of 𝑎𝑛. In fact,
we prove in the next section that this property holds for any𝑛max, 𝑁, and function 𝑓(𝑥), provided that the Taylor series
of the later exists. Therefore, the power series expansion of
sech(𝑥), given by (12), can be put in the suggestive form

sech (𝑥) = 𝑇 + lim
𝑁→∞

𝐶 (𝑁) , (14)

where 𝑇 is the infinite Taylor series of 𝑓(𝑥) about 𝑥 = 0
and 𝐶(𝑁) is a complementary series. It turns out that the
complementary series increases the radius of convergence of𝑇 for 𝑥 ≥ 𝜋/2. For finite 𝑁, the effect of 𝐶(𝑁) is to shift the
radius of convergence, 𝑅, to a larger value such that 𝑅 → ∞
for 𝑁 → ∞. In Figure 1 we plot the convergent power series
obtained by the present method as given by (12) using 𝑛max =4 and 𝑁 = 100. The curve is indistinguishable from the
plot of sech(𝑥). Both the Taylor series expansion, 𝑇, and the
complementary series, 𝐶, diverge sharply at 𝑥 = 𝜋/2. Since 𝐶
is essentially zero for 𝑥 < 𝜋/2, it will not affect the sum 𝑇 + 𝐶.
However, its major role is to cancel the divergency for 𝑥 ≥𝜋/2. In the limit 𝑁 → ∞, 𝑇 will be an exact representative of
sech(𝑥) for𝑥 < 𝜋/2 and𝐶will equal zero in the same interval.
For 𝑥 ≥ 𝜋/2, the divergences in 𝑇 and 𝐶 cancel each other
with a remainder that is an exact representative of sech(𝑥). In
this manner, 𝑇 + 𝐶 will represent sech(𝑥) for all 𝑥.

For finite values of 𝑛max and 𝑁, the series 𝑇 + 𝐶 is an
approximate representative of sech(𝑥). Truncating the Taylor
series at 𝑛max introduces an error of order Δ𝑛max+1. This error
will bemagnified𝑁 times due the recursive substitutions.The
total error is then estimated by

error = ( 𝑥𝑁 )𝑛max+1𝑁. (15)

For the parameters used in Figure 1, this error is of order 10−6
at 𝑥 = 5. This can be reduced to extremely small values such
as 10−131 with 𝑛max = 100. However, the number of terms in
the series 𝑇 + 𝐶 will be of order 10200 which is extremely large
and hinders any analytical manipulations.

As another example, we consider 𝑓(𝑥) = 1/(1 + 𝑥2) with
Taylor series diverging at 𝑥 = 1. Much of the formulation we
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Figure 1: The solid curve corresponds to the convergent power
series obtained by the presentmethod as given by (12) using 𝑛max = 4
and 𝑁 = 100. It is indistinguishable from the solid curve of 𝑓(𝑥) =
sech(𝑥). Dashed curve corresponds to the Taylor series expansion,𝑇, and the dotted curve corresponds to the complementary series,𝐶.
followed for the previous case holds here and the specifics of
the function alter only the recursion relations, (9):

𝑎𝑗2 (𝑎𝑗0) = [3 − 4𝑎𝑗0] (𝑎𝑗0)2 , (16)

𝑎𝑗3 (𝑎𝑗0, 𝑎𝑗1) = 2 [1 − 2𝑎𝑗0] 𝑎𝑗0𝑎𝑗1, (17)

𝑎𝑗4 (𝑎𝑗0)= [16 − 64𝑎𝑗0 + 85 (𝑎𝑗0)2 − 52 (𝑎𝑗0)3 + 16 (𝑎𝑗0)4] 𝑎𝑗0. (18)

The convergent power series is obtained by using these
recursion relations in (12). Plots similar to those of Figure 1
are obtained.

We present now a proof that the convergent power series
produced by the recursive procedure always regenerates the
Taylor series in addition to a complementary one.

Proposition 1. If we expand 𝑓(𝑥) in a Taylor series, 𝑇, around𝑥 = 0 truncated at 𝑛max and use the recursive procedure, as
described above, the resulting convergent power series always
takes the form 𝑇 + 𝐶 where 𝐶 is a power series of orders
larger than 𝑛max. This is true for any number of iterations, 𝑁,
maximumpower of the Taylor series, 𝑛max, and for all functions
that satisfy the general differential equation𝑓󸀠󸀠 (𝑥) = 𝐹 [𝑓 (𝑥)] , (19)

where 𝐹[⋅] is an analytic real functional that does not contain
derivatives.

Proof. It is trivial to prove this for a specific case, such as
sech(𝑥). For the general case, we prove this only for 𝑛max = 4
and 𝑁 = 2. The Taylor series expansion of sech(𝑥) around𝑥 = 0 is

sech (𝑥) = 1 − 12 𝑥2 + 524 𝑥4 + ⋅ ⋅ ⋅ . (20)
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In our recursive procedure, this is put in the equivalent form

( sech (Δ)
sech󸀠 (Δ)) ≃ (𝑎0 + 𝑎1Δ + 1 − 2𝑎202 Δ2 + 13! 𝑎1 (1 − 6𝑎20) Δ3 + 14! 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ4(1 − 2𝑎20) Δ + 12 𝑎1 (1 − 6𝑎20) Δ2 + 16 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ3 )

𝑁

, (21)

where the approximation stems from using finite 𝑁 and𝑛max, and Δ = 𝑥/𝑁. For 𝑁 = 1, 𝑎0 = 1, and 𝑎1 = 0,
(20) is regenerated. However, in our recursive procedure 𝑎0
and 𝑎1 are kept as variables since they will be substituted

for at each recursive step. Only at the last step are their
numerical values inserted. For 𝑁 = 2, we resubstitute in the
last equation for 𝑎0 and 𝑎1 by their updated expressions, as
follows:

(𝑎0𝑎1) 󳨀→ (𝑎0 + 𝑎1Δ + 1 − 2𝑎202 Δ2 + 13! 𝑎1 (1 − 6𝑎20) Δ3 + 14! 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ4(1 − 2𝑎20) Δ + 12 𝑎1 (1 − 6𝑎20) Δ2 + 16 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) Δ3 ) . (22)

Substituting the updated expressions for 𝑎0 and 𝑎1 in (21), we
get

sech (𝑥) ≃ 𝑎0 + 𝑎1 ( 𝑥𝑁 ) + 2𝑎0 (1 − 2𝑎20) ( 𝑥𝑁 )2
+ 43 𝑎1 (1 − 6𝑎20) ( 𝑥𝑁 )3
+ 23 𝑎0 (1 − 8𝑎20 + 12𝑎40 − 12𝑎21) ( 𝑥𝑁 )4 .

(23)

Clearly for 𝑁 = 2, the last equation gives the Taylor
expansion, that is, (21) with𝑁 = 1.The complimentary series,𝐶, is absent here since we have terminated the expansions at𝑛 = 𝑛max = 4. For 𝑁 = 3, another step of resubstituting
updated expressions is needed, and so on.

Now, we present the proof for the more general case,
namely, when 𝑓(𝑥) is unspecified but is a solution to (19). We
start with the following Taylor series expansion of 𝑓(𝑥) and
its derivative

( 𝑓 (Δ)𝑓󸀠 (Δ))
= (𝑎0 + 𝑎1Δ + 𝑎2 (𝑎0, 𝑎1) Δ2 + 𝑎3 (𝑎0, 𝑎1) Δ3 + 𝑎4 (𝑎0, 𝑎1) Δ4𝑎1 + 2𝑎2 (𝑎0, 𝑎1) Δ + 3𝑎3 (𝑎0, 𝑎1) Δ2 + 4𝑎4 (𝑎0, 𝑎1) Δ3 ) . (24)

Substituting on the right-hand-side for 𝑎0 and 𝑎1 by 𝑓(Δ) and𝑓󸀠(Δ), respectively, we get
𝑓 (Δ) = 𝑎0 + 𝑎1Δ + 4𝑎2Δ2 + (5𝑎3 + 2𝑎2 𝜕𝑎2𝜕𝑎1

+ 𝑎1 𝜕𝑎2𝜕𝑎0) Δ3 + (6𝑎4 + 3𝑎3 𝜕𝑎2𝜕𝑎1 + 2𝑎2 𝜕𝑎3𝜕𝑎1

+ 2𝑎22 𝜕2𝑎2𝜕𝑎21 + 𝑎2 𝜕𝑎2𝜕𝑎0 + 𝑎1 𝜕𝑎3𝜕𝑎0 + 2𝑎1𝑎2 𝜕2𝑎2𝜕𝑎1𝜕𝑎0
+ 12 𝑎21 𝜕2𝑎2𝜕𝑎20 ) Δ4.

(25)

The partial derivatives can not be calculated unless the
functional forms of the recursion coefficients are known. One
possibility is to specify the function being expanded, 𝑓(𝑥),
as we did at the start of this proof. The other possibility is
to exploit the differential equation that 𝑓(𝑥) is a solution for,
namely, (19). Substituting the Taylor expansion of 𝑓(Δ), from
(24) in (19) and expanding up to the fourth power in Δ, we
obtain the following relations:

𝑎2 = − 𝐹2 ,
𝑎3 = − 𝑎1𝐹󸀠6 ,
𝑎4 = − 𝑎2𝐹󸀠12 − 𝑎21𝐹󸀠󸀠24 ,

(26)

which lead to 𝜕𝑎2𝜕𝑎0 = − 𝐹󸀠2 ,
𝜕𝑎2𝜕𝑎1 = − Δ𝐹󸀠2 ,

𝜕2𝑎2𝜕𝑎20 = − 𝐹󸀠󸀠2 ,
𝜕2𝑎2𝜕𝑎21 = − Δ2𝐹󸀠󸀠2 ,
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Figure 2: Error defined by the difference between the numerical and exact soliton solution of the NLSE, (29). (a) Dashed line corresponds
to RK4 and dotted line corresponds to IPS4. (b) IPS12. Parameters used: 𝑁 = 1000, number of digits 𝑁𝑑 = 50, 𝑓(0) = 1, and 𝑓󸀠(0) = 0.

𝜕2𝑎2𝜕𝑎0𝜕𝑎1 = − Δ𝐹󸀠󸀠2 ,
𝜕𝑎3𝜕𝑎1 = − 𝐹󸀠6 .

(27)

Using these equations in (28), we obtain𝑓 (Δ) = 𝑎0 + 𝑎1Δ + 4𝑎2Δ2 + 8𝑎3 (𝑎0, 𝑎1) Δ3+ 16𝑎4 (𝑎0, 𝑎1) Δ4. (28)

For 𝑁 = 2, the last equation regenerates the Taylor series of𝑓(𝑥), namely, (24) with 𝑁 = 1, and this completes the proof.

3. Application to Nonlinear
Differential Equations

The method described in the previous section can be used
as a powerful solver and integrator of nonlinear differential
equations both analytically and numerically. In Section 3.1,
we apply the method on a number of well-known problems.
In Section 3.2, we show the power of the method in terms of
detailed analysis of the error and CPU time.

3.1. Examples. For the sake of demonstration, we consider the
following nonlinear differential equation:12 𝑓 (𝑥) − 12 𝑓󸀠󸀠 (𝑥) − 𝑓3 (𝑥) = 0. (29)

The reason for selecting this equation is that 𝑓(𝑥) = sech(𝑥)
is one of its exact solutions. Substituting the power series
expansion 𝑓(𝑥) = ∑∞𝑛=0 𝑎𝑛𝑥𝑛, we obtain, as usual, the
recursion relations𝑎2 (𝑎0) = 12! [1 − 2 (𝑎0)2] 𝑎0,

𝑎3 (𝑎0, 𝑎1) = 13! [1 − 6 (𝑎0)2] 𝑎1,

𝑎4 (𝑎0) = 14! [1 − 8𝑎20 + 12𝑎40 − 12𝑎21] 𝑎0,
(30)

where 𝑎0 and 𝑎1 turn out to be independent parameters which
in the present case correspond to the initial conditions on the
solution and its first derivative. It is not surprising that these
recursion relations are identical with those we found for the
sech(𝑥) in the previous section, (9). Therefore, substituting
the above recursion relations in 𝑓(𝑥) = ∑∞𝑛=0 𝑎𝑛𝑥𝑛 we obtain
the Taylor series expansion, 𝑇, of 𝑓(𝑥) = sech(𝑥). Removing
the divergency in 𝑇 follows exactly the same steps as in
the previous section, and thus an exact solution in terms
of a convergent power series is obtained, as also plotted in
Figure 1.

For 𝑓(𝑥) = 1/(1 + 𝑥2), the relevant differential equation
is 𝑓󸀠󸀠 (𝑥) + 𝑓3 (𝑥) − 6𝑓2 (𝑥) = 0. (31)

Substituting the power series expansion in this equation, the
recursion relations will be given by (16)–(18). Similarly, the
convergent series solution will be obtained, as in the previous
section.

3.2. Numerical Method. As a numerical method, the power
series is very powerful and efficient [10]. The power series
method with 𝑁max = 4, denoted by IPS4, is used to solve
the NLSE, (29) and the error is calculated as the difference
between the numerical solution and the exact solution,
namely, sech(𝑥). The equation is then resolved using the
fourth-order Runge-Kutta (RK4) method. In Figure 2, we
plot the error of both methods which turn out to be of the
same order. Using the iterative power series method with𝑁max = 12, (IPS12), the error drops to infinitesimally low
values. Neither the CPU time nor the memory requirements
for IPS12 are much larger than those for IPS4; it is straight
forward upgrade to higher orders which leads to ultrahigh
efficiency.This is verified by the set of tables, Tables 1–4,where
we compute sech(1) using both the RK4 and the iterative
power series method and show the corresponding CPU time.
For the same 𝑁, Tables 1 and 3 show that both RK4 and
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Table 1: RK4 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1.
RK4𝑁 sech(1) CPU time1000 0.6480542736639463753683598987682775440961395993015 0.0872572000 0.6480542736638892102461002212645001242748400651983 0.1665343000 0.6480542736638861522791729310382098086291071707752 0.2290164000 0.6480542736638856377319630763886301512099763161750 0.3144805000 0.6480542736638854971232600221160524143929321411426 0.427610

Exact 0.6480542736638853995749773532261503231084893120719

Table 2: IPS4 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1.
IPS4𝑁 sech(1) CPU time1000 0.6480542736639323955233350367786700400715255548373 0.0567932000 0.6480542736638883277492809223389308596155602276884 0.1379413000 0.6480542736638859773823119964459740185046024606302 0.2153954000 0.6480542736638855823023023050565759829475356280281 0.3045015000 0.6480542736638854743968579026604641270130595226186 0.372284

Exact 0.6480542736638853995749773532261503231084893120719

Table 3: IPS12 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1.
IPS12𝑁 sech(1) CPU time1000 0.6480542736638853995749773532261503231079594354079 0.2806172000 0.6480542736638853995749773532261503231084891816361 0.5956393000 0.6480542736638853995749773532261503231084893110634 0.8913704000 0.6480542736638853995749773532261503231084893120400 1.0803575000 0.6480542736638853995749773532261503231084893120697 1.366386

Exact 0.6480542736638853995749773532261503231084893120719

Table 4: IPS12 sech(𝑥) solution of the NLSE, (29), computed at 𝑥 = 1, but with much less number of iterations than in Table 3.

IPS12𝑁 sech(1) CPU time3 0.6480542794079665629469114154348980055814088430953 0.0007826 0.6480542736643770346283969779587807646256058100135 0.0014299 0.6480542736638872007452856567074697922787489590238 0.00212312 0.6480542736638854259793573015747954030451932565027 0.00276815 0.6480542736638854001495023257702479909741369016589 0.003594
Exact 0.6480542736638853995749773532261503231084893120719

IPS4 produce the first 16 digits of the exact value (underlined
numbers in the last raw) and consume almost the same CPU
time. Table 3 shows that, for the same 𝑁, IPS12, reproduces
the first 49 digits of the exact value. The CPU time needed
for such ultrahigh accuracy is just about 3 times that of the
RK4 and IPS4. Of course the accuracy can be arbitrarily
increased by increasing 𝑁 or more efficiently 𝑁max. For IPS12
to produce only the first 16 digits, as in RK4 and IPS4,
only very small number of iterations is needed, as shown in
Table 4.TheCPU time in this case is about 100 times less than
that of RK4 and IPS4, highlighting the high efficiency of the
power series method.

Amore challenging test on the power seriesmethod is the
chaotic Lorenz system [25] given by𝑧̇1 = −𝜎𝑧1 + 𝜎𝑧2,𝑧̇2 = −𝑧1𝑧3 + 𝑟𝑧1 − 𝑧2,𝑧̇3 = 𝑧1𝑧2 − 𝑏𝑧3, (32)

where we take the usual values 𝜎 = 10, 𝑏 = −8/3, and𝑅 = 28 with initial conditions 𝑧1(0) = 𝑧2(0) = 1 and𝑧3(0) = 20. It is straight forward to generalise the method
to three differential equations; therefore we do not show the
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details of the calculation. In Figure 3, the results of solving
the Lorenz system using RK4 and IPS12 are shown. For the
sameparameters, namely discretization, RK4 reaches stability
at about 𝑥 = 30; that is, the curve for 𝑥 < 30 is unchanged by
increasing 𝑁, but for 𝑥 > 30, the curve keeps changing by
increasing 𝑁. In comparison, IPS12 reaches stability at about𝑥 = 50. In chaotic systems, it is quite challenging to go that
deep in the chaotic region. Hence, the need for such high
accuracy methods.

Achieving higher accuracy requires larger CPU time
usage. Therefore, it is important to investigate how the CPU
time, denoted here by 𝑇, depends on the main parameters
of the method, namely 𝑁 and 𝑁max. A typical plot is shown
in Figure 4, where we plot on a log-log scale the CPU time
versus the error.The linear relationship indicates 𝑇 ∝ error𝑝,
where 𝑝 is the slope of the line joining the points in Figure 4.
The error can be calculated in two ways: (i) the difference
between the numerical solution and (ii) theoretical estimate,
(15). Bothways are shown in the figure and they have the same
slope. However, as expected, error defined by (15), which is
actually an upper limit on the error, is always larger than
the first one. To find how the CPU time depends explicitly
on 𝑁 and 𝑁max, we argue that the dependence should be of

the form 𝑇 ∝ 𝑁𝑁3max. This is justified by the fact that CPU
time should be linearly proportional to the number of terms
computed.The number of terms computed increases linearly
with the number of iterations 𝑁. The number of terms in
the power series is linearly proportional to 𝑁max. When
substituted in the NLSE with cubic nonlinearity, the resulting
number of terms, and thus 𝑇, will be proportional to 𝑁3max. In
Figure 5, it is shown indeed that the ratio 𝑇/𝑁𝑁3max saturates
asymptotically to a constant for large 𝑁 and 𝑁max since the
scaling behaviorsmentioned here apply for large𝑁 and𝑁max.
The proportionality constant, 𝑐, is very small and corresponds
to the CPU time of calculating one term. It is dependent on
the machine, the programming optimization [10], and the
number of digits used, 𝑁𝑑. In terms of the number of digits,
the CPU time increases, as shown in Figure 6, where it is
noticed that CPU time is almost constant for number of digits𝑁𝑑 < 500.
4. Conclusions

We have presented an iterative power series method that
solves the problem of finite radius of convergence. We have
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proved that the iterative power series is always composed of
a sum of the typical power series of the function and a com-
plementary series that cancels the divergency. The method is
divided into two schemes where in the first we find a con-
vergent power series for a given function and in the second
we solve a given nonlinear differential equation.The result of
the iterative power series expansion of sech(𝑥) is remarkably
convergent for arbitrary radius of convergence and accuracy,
as shown by Figures 1 and 2 and Tables 1–4. Extremely high
accuracy can be obtained by using higher-order iterative
power series via increasing𝑁max with relatively lowCPU time
usage. Robustness and efficiency of the method have been
shown by solving the chaotic Lorenz system and the NLSE.
Extensive analysis of the error and CPU time characterising
the method is performed. Although we have focused on the
localised sech(𝑥) solution of the NLSE, all other solitary
wave solutions (conoidal waves) can be obtained using the
present method, just by choosing the appropriate initial
conditions.

The method can be generalised to partial and fractional
differential equationsmaking its domain of applicability even
wider.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, andMathematical Tables, vol.
7, Dover Publications, New York, NY, USA, 1965.

[2] R. E. Scraton, “A note on the summation of divergent power
series,” Mathematical Proc. of the Camb. Phil. Soc, vol. 66, pp.
109–114, 1969.

[3] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial
Differential Equations, Chapman andHall, New York, NY, USA,
2003.

[4] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura,
“Method for solving the Korteweg-deVries equation,” Physical
Review Letters, vol. 19, no. 19, pp. 1095–1097, 1967.

[5] P. D. Lax, “Integrals of nonlinear equations of evolution and
solitary waves,” Communications on Pure and Applied Mathe-
matics, vol. 21, pp. 467–490, 1968.

137Convergent Power Series of sech(x) and Solutions to Nonlinear Differential Equations



[6] V. B. Matveev and M. A. Salle, Darboux Transformations and
Solitons, Springer-Verlag, Berlin, Gemany, 1991.

[7] R. Hirota, Topics in Current Physics 17, R. K. Eullough and P. I.
Caudrey, Eds., Springer-Verlag, Berlin, Germany, 1980.

[8] G. Adomian, Solving Frontier Problems of Physics:TheDecompo-
sition Method, Kluwer Academic, Dordrecht, The Netherlands,
1994.

[9] S. Liao and Y. Tan, “A general approach to obtain series
solutions of nonlinear differential equations,” Studies in Applied
Mathematics, vol. 119, no. 4, pp. 297–354, 2007.
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An effective collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations
with initial and boundary conditions is presented. Using the properties of Genocchi polynomials, we derive a new Genocchi delay
operational matrix which we used together with the Genocchi operational matrix of fractional derivative to approach the problems.
The error upper bound for the Genocchi operational matrix of fractional derivative is also shown. Collocation method based on
these operational matrices is applied to reduce the generalized fractional pantograph equations to a system of algebraic equations.
The comparison of the numerical results with some existing methods shows that the present method is an excellent mathematical
tool for finding the numerical solutions of generalized fractional pantograph equations.

1. Introduction

Fractional calculus, the calculus of derivative and integral
of any order, is used as a powerful tool in science and
engineering to study the behaviors of real world phenomena
especially the ones that cannot be fully described by the
classical methods and techniques [1]. Differential equations
with proportional delays are usually referred to as panto-
graph equations or generalized pantograph equations. The
name pantograph was originated from the study work of
Ockendon and Tayler [2]. Many researchers have studied
different applications of these equations in applied sciences
such as biology, physics, economics, and electrodynamics
[3–5]. Solutions of pantograph equations were also studied
by many authors numerically and analytically. Bhrawy et
al. proposed a new generalized Laguerre-Gauss collocation
method for numerical solution of generalized fractional
pantograph equations [1]. Tohidi et al. in [6] proposed
a new collocation scheme based on Bernoulli operational
matrix for numerical solution of generalized pantograph

equation. Yusufoglu [7] proposed an efficient algorithm
for solving generalized pantograph equations with linear
functional argument. In [8], Yang and Huang presented a
spectral-collocation method for fractional pantograph delay
integrodifferential equations and in [9] Yüzbasi and Sezer
presented an exponential approximation for solutions of gen-
eralized pantograph delay differential equations. Chebyshev
and Bessel polynomials are, respectively, used in [10, 11] to
obtain the solutions of generalized pantograph equations.
Operationalmatrices of fractional derivatives and integration
have become very important tool in the field of numerical
solution of fractional differential equations. In this paper, a
member of Appell polynomials called Genocchi polynomials
is used; although this polynomial is not based on orthogonal
functions, it possesses operational matrices of derivatives
with high accuracy. It is very important to note that this
polynomial shares some great advantages with Bernoulli and
Euler polynomials for approximating an arbitrary function
over some classical orthogonal polynomials; we refer the
reader to [6] for these advantages. On top of that, we
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had successfully applied the operational matrix via Genoc-
chi polynomials for solving integer-order delay differential
equations [12] and fractional optimal control problems [13],
and the numerical solutions obtained are comparable or
even more accurate compared to some existing well-known
methods. Motivated by these advantages, in this paper, we
intend to extend the result for integer-order delay differential
equations in [12] to fractional delay differential equations
or so-called generalized fractional pantograph equations. To
the best of our knowledge, this is the first time that the
operationalmatrix based onGenocchi polynomials is applied
to solve the fractional pantograph equations. On the other
hand, some other types of polynomials were employed to
solve some special type of fractional calculus problems; for
example, Bessel polynomials were used for the solution of
fractional-order logistic population model [14]; Bernstein
polynomials were also used for the solution of Riccati type
differential equations [15].

In this paper, we use the new operational matrix of
fractional-order derivative via Genocchi polynomials to
provide approximate solutions of the generalized fractional
pantograph equations of the following form [1]:

𝐷𝛼𝑦 (𝑡) = 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡) 𝐷𝛽𝑛𝑦 (𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛) + 𝑔 (𝑡) ,
0 ≤ 𝑡 ≤ 1

(1)

subject to the following conditions:

𝑚−1∑
𝑛=0

𝑎𝑛,𝑖𝑦(𝑛) (0) = 𝑑𝑖, 𝑖 = 0, 1, . . . , 𝑚 − 1, (2)

where 𝑎𝑛,𝑖, 𝜆𝑗,𝑛, and 𝜇𝑗,𝑛 are real or complex coefficients;𝑚−1 < 𝛼 < 𝑚, 0 < 𝛽0 < 𝛽1 < ⋅ ⋅ ⋅ < 𝛽𝑚−1 < 𝛼, while 𝑝𝑗,𝑛(𝑡) and𝑔(𝑡) are given continuous functions in the interval [0, 1].
The rest of the paper is organized as follows: Section 2

introduces some mathematical preliminaries of fractional
calculus. In Section 3, we discuss some important properties
of Genocchi polynomials. In Section 4, we derive the Genoc-
chi delay operational matrix and we apply the collocation
method for solving fractional pantograph equation (1) using
the Genocchi operational matrix of fractional derivative and
the delay operational matrix in Section 5. In Section 6,
the proposed method is applied to several examples and
conclusion is given in Section 7.

2. Preliminaries

2.1. Fractional Derivative and Integration. We recall some
basic definitions and properties of fractional calculus that we
will use. There are various competing definitions for frac-
tional derivatives [16, 17]. The Riemann-Liouville definition
played a vital role in the development of the theory of frac-
tional calculus. However, there are certain disadvantages of
using this definition when modeling real world phenomena.
To cope with these disadvantages, Caputo definition was
introduced which is found to be more reliable in application.
So we use this definition of fractional derivatives. We begin
with the definition of Riemann-Liouville integral, in which
the fractional integral operator 𝐼 of a function 𝑓(𝑡) is defined
as follows.

Definition 1. The Riemann-Liouville integral 𝐼 of fractional-
order 𝛼 of 𝑓(𝑡) is given by

𝐼𝛼𝑓 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) 𝑑𝜏,

𝑡 > 0, 𝛼 ∈ R+,
(3)

where Γ(⋅) is the Gamma function. The fractional derivative
of order 𝛼 > 0 due to Riemann-Liouville is defined by

(𝐷𝛼𝑙 𝑓) (𝑡) = ( 𝑑𝑑𝑡)
𝑚 (𝐼𝑚−𝛼𝑓) (𝑡) ,

(𝛼 > 0, 𝑚 − 1 < 𝛼 < 𝑚) .
(4)

The following are important properties of Riemann-Liouville
fractional integral 𝐼𝛼:

𝐼𝛼𝐼𝛽𝑓 (𝑡) = 𝐼𝛼+𝛽𝑓 (𝑡) , 𝛼 > 0, 𝛽 > 0,
𝐼𝛼𝑡𝛽 = Γ (𝛽 + 1)

Γ (𝛽 + 𝛼 + 1) 𝑡𝛽+𝛼.
(5)

Definition 2. The Caputo fractional derivative 𝐷𝛼 of a func-
tion 𝑓(𝑡) is defined as

𝐷𝛼𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

0

𝑓(𝑛) (𝜏)
(𝑡 − 𝜏)𝛼−𝑛+1 𝑑𝜏,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N.
(6)

Some properties of Caputo fractional derivatives are as
follows:

𝐷𝛼𝐶 = 0, (𝐶 is constant) ,
𝐷𝛼𝑡𝛽 = {{{{{

0, 𝛽 ∈ N ∪ {0} , 𝛽 < ⌈𝛼⌉
Γ (𝛽 + 1)
Γ (𝛽 + 1 − 𝛼)𝑡𝛽−𝛼, 𝛽 ∈ N ∪ {0} , 𝛽 ≥ ⌈𝛼⌉ or 𝛽 ∉ N, 𝛽 > ⌊𝛼⌋ ,

(7)
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where ⌈𝛼⌉ denotes the smallest integer greater than or equal
to 𝛼 and ⌊𝛼⌋ denotes the largest integer less than or equal to𝛼.

Similar to the integer-order differentiation, the Caputo
fractional differential operator is a linear operator; that is,

𝐷𝛼 (𝜆𝑓 (𝑡) + 𝜇𝑔 (𝑡)) = 𝜆𝐷𝛼𝑓 (𝑡) + 𝜇𝐷𝛼𝑔 (𝑡) (8)

for 𝜆 and 𝜇 constants.
3. Genocchi Polynomials and Some Properties

Genocchi polynomials and numbers have been extensively
studied in many different contexts in branches of mathe-
matics such as elementary number theory, complex analytic
number theory, homotopy theory (stable homotopy groups
of spheres), differential topology (differential structures on
spheres), theory of modular forms (Eisenstein series), and
quantum physics (quantum groups). The classical Genocchi
polynomial 𝐺𝑛(𝑥) is usually defined by means of the expo-
nential generating functions [18–20].

2𝑡𝑒𝑥𝑡𝑒𝑡 + 1 =
∞∑
𝑛=0

𝐺𝑛 (𝑥) 𝑡𝑛𝑛! , (|𝑡| < 𝜋) , (9)

where 𝐺𝑛(𝑥) is the Genocchi polynomial of degree 𝑛 and is
given by

𝐺𝑛 (𝑥) = 𝑛∑
𝑘=0

(𝑛𝑘)𝐺𝑛−𝑘𝑥𝑘. (10)

𝐺𝑛−𝑘 here is the Genocchi number.
Some of the important properties of these polynomials

include

∫1
0
𝐺𝑛 (𝑥) 𝐺𝑚 (𝑥) 𝑑𝑥 = 2 (−1)𝑛 𝑛!𝑚!(𝑚 + 𝑛)! 𝐺𝑚+𝑛 𝑛,𝑚 ≥ 1, (11)

𝑑𝐺𝑛 (𝑥)𝑑𝑥 = 𝑛𝐺𝑛−1 (𝑥) , 𝑛 ≥ 1, (12)

𝐺𝑛 (1) + 𝐺𝑛 (0) = 0, 𝑛 > 1. (13)

Before we move to the next level, we need the following
linear independence on which the rest of theoretical results
are based.

Lemma 3. The set 𝐴 = {𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)} ⊂ 𝐿2[0, 1] is
a linearly independent set in 𝐿2[0, 1].
Proof. To show that 𝐴 is the set of linearly independent
elements of 𝐿2[0, 1], it is enough to show that the Gram
determinant is not zero. That is,

Gram (𝐺1, 𝐺2, . . . , 𝐺𝑁) ̸= 0, (14)

where
Gram (𝐺1, 𝐺2, . . . , 𝐺𝑁)

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝐺1, 𝐺1⟩ ⟨𝐺1, 𝐺2⟩ ⋅ ⋅ ⋅ ⟨𝐺1, 𝐺𝑁⟩⟨𝐺2, 𝐺1⟩ ⟨𝐺2, 𝐺2⟩ ⋅ ⋅ ⋅ ⟨𝐺2, 𝐺𝑁⟩... ... ⋅ ⋅ ⋅ ...
⟨𝐺𝑛, 𝐺1⟩ ⟨𝐺𝑛, 𝐺2⟩ ⋅ ⋅ ⋅ ⟨𝐺𝑛, 𝐺𝑁⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (15)

Now, to prove that this determinant is not equal to zero, we
first reduce the Gram matrix to an upper triangular matrix
by Gaussian elimination and it is not difficult to see that the
elements of the diagonal of the reduced matrix are given by

𝑎 (𝑛) = (𝑛! (𝑛 + 1)!)2(2𝑛!) (2𝑛 + 1)! , 𝑛 ∈ N. (16)

Clearly, one can see that, for any ∈ N, 𝑎(𝑛) ̸= 0. Consequently,
the determinant given by

𝑁∏
𝑛=1

𝑎 (𝑛) (17)

is not equal to zero. Therefore, the set 𝐴 is the set of linearly
independent sets.

3.1. Function Approximation. Assume that {𝐺1(𝑡), 𝐺2(𝑡),. . . , 𝐺𝑁(𝑡)} ⊂ 𝐿2[0, 1] is the set of Genocchi polynomials
and 𝑌 = Span{𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)}. Let 𝑓(𝑡) be arbitrary
element of 𝐿2[0, 1]; since𝑌 is a finite dimensional subspace of𝐿2[0, 1] space, 𝑓(𝑡) has a unique best approximation in 𝑌, say𝑓∗(𝑡), such that󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑓∗ (𝑡)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑦 (𝑡)󵄩󵄩󵄩󵄩2 , ∀𝑦 (𝑡) ∈ 𝑌. (18)

This implies that, ∀𝑦(𝑡) ∈ 𝑌,
⟨𝑓 (𝑡) − 𝑓∗ (𝑡) , 𝑦 (𝑡)⟩ = 0, (19)

where ⟨⋅⟩ denotes inner product. Since 𝑓∗(𝑡) ∈ 𝑌, there exist
the unique coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑁 such that

𝑓 (𝑡) ≈ 𝑓∗ (𝑡) = 𝑁∑
𝑛=1

𝑐𝑛𝐺𝑛 (𝑡) = C𝑇G (𝑡) , (20)

where C = [𝑐1, 𝑐2, . . . , 𝑐𝑁]𝑇, G(𝑡) = [𝐺1(𝑡), 𝐺2(𝑡), . . . ,𝐺𝑁(𝑡)]𝑇.
Using (19), we have

⟨𝑓 (𝑡) − C𝑇G (𝑡) , 𝐺𝑖 (𝑡)⟩ = 0 𝑖 = 1, 2, . . . , 𝑁; (21)

for simplicity, we write

C𝑇 ⟨G (𝑡) ,G (𝑡)⟩ = ⟨𝑓 (𝑡) ,G (𝑡)⟩ , (22)

where ⟨G(𝑡),G(𝑡)⟩ is an𝑁 ×𝑁matrix.
Let𝑊 = ⟨G(𝑡),G(𝑡)⟩ = ∫1

0
G(𝑡)G𝑇(𝑡)𝑑𝑡.

The entries of the matrix𝑊 can be calculated from (11).
Therefore, any function 𝑓(𝑡) ∈ 𝐿2[0, 1] can be expanded by
Genocchi polynomials as 𝑓(𝑡) = C𝑇G(𝑡), where

C = 𝑊−1 ⟨𝑓 (𝑡) ,G (𝑡)⟩ . (23)
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4. Genocchi Operational Matrix

In this section, we derive the operational matrices for the
delay and that of fractional derivative based on Genocchi
polynomials for the solution of fractional pantograph equa-
tions.

4.1. Genocchi Delay Operational Matrix. The Genocchi delay
vector G(𝑡 − 𝜇) can be expressed as

G (𝑡 − 𝜇) = RG (𝑡) , (24)

where R is the𝑁 ×𝑁 operational delay matrix given by

R = 𝑊1𝑊−1

=

[[[[[[[[[[[[[[[
[

1 0 0 0 0 ⋅ ⋅ ⋅ 0
−2𝜇 1 0 0 0 ⋅ ⋅ ⋅ 0
3𝜇2 −3𝜇 1 0 0 ⋅ ⋅ ⋅ 0
−4𝜇3 6𝜇2 −4𝜇 1 0 ⋅ ⋅ ⋅ 0
5𝜇4 −10𝜇3 10𝜇2 −5𝜇 1 ⋅ ⋅ ⋅ 0
... ... ... ⋅ ⋅ ⋅ ... ... ...

𝑏𝑛 (1) 𝑏𝑛 (2) 𝑏𝑛 (3) 𝑏𝑛 (4) 𝑏𝑛 (5) ⋅ ⋅ ⋅ 1

]]]]]]]]]]]]]]]
]

, (25)

where𝑊1 = ∫10 G(𝑡−𝜇)G𝑇(𝑡)𝑑𝑡 and 𝑏𝑛(𝑖) = (−1)𝑛−𝑖 (( 𝑛𝑖 )) 𝜇𝑛−𝑖,𝑖 = 1, 2, . . . , 𝑛.
Also, for any delay function 𝑓(𝑡 − 𝜇), we can express it in

terms of Genocchi polynomials as shown in (26):

𝑓 (𝑡 − 𝜇) = 𝑁∑
𝑖=1

𝑐𝑖𝐺𝑖 (𝑡 − 𝜇) = C𝑇RG (𝑡) , (26)

where C is given in (23).
The following lemma is also of great importance.

Lemma 4. Let 𝐺𝑖(𝑡) be the Genocchi polynomials; then𝐷𝛼𝐺𝑖(𝑡) = 0, for 𝑖 = 1, ..., ⌈𝛼⌉ − 1, 𝛼 > 0.
The proof of this lemma is obvious; one can use (7) and

(8) on (10).

4.2. Genocchi Operational Matrix of Fractional Derivative.
If we consider the Genocchi vector G(𝑡) given by G(𝑡) =[𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)], then the derivative of G(𝑡) with the
aid of (12) can be expressed in the matrix form by

𝑑G (𝑡)𝑇𝑑𝑡 = 𝑀G (𝑡)𝑇 , (27)

where

𝑀 =

[[[[[[[[[[[[[[[
[

0 0 0 ⋅ ⋅ ⋅ 0 0 0
2 0 0 ⋅ ⋅ ⋅ 0 0 0
0 3 0 ⋅ ⋅ ⋅ 0 0 0
0 0 4 ⋅ ⋅ ⋅ 0 0 0
... ... ... ⋅ ⋅ ⋅ ... ... ...
0 0 0 ⋅ ⋅ ⋅ 𝑁 − 1 0 0
0 0 0 ⋅ ⋅ ⋅ 0 𝑁 0

]]]]]]]]]]]]]]]
]

. (28)

Thus,𝑀 is𝑁 ×𝑁 operational matrix of derivative.
It is not difficult to show inductively that the 𝑘th deriva-

tive of G(𝑡) can be given by

𝑑𝑘G (𝑡)𝑇𝑑𝑡𝑘 = G (𝑡) (𝑀𝑇)𝑘 . (29)

In the following theorem, the operational matrix of frac-
tional-order derivative for theGenocchi polynomials is given.

Theorem5 (see [21]). Suppose thatG(𝑡) is the Genocchi vector
given in (20) and let 𝛼 > 0. Then,

𝐷𝛼G (𝑡)𝑇 = 𝑃𝛼G (𝑡)𝑇 , (30)

where 𝑃𝛼 is𝑁 ×𝑁 operational matrix of fractional derivative
of order 𝛼 in Caputo sense and is defined as follows:

𝑃(𝛼) =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

0 0 ⋅ ⋅ ⋅ 0
... ... ⋅ ⋅ ⋅ ...
0 0 ⋅ ⋅ ⋅ 0

⌈𝛼⌉∑
𝑘=⌈𝛼⌉

𝜌⌈𝛼⌉,𝑘,1 ⌈𝛼⌉∑
𝑘=⌈𝛼⌉

𝜌⌈𝛼⌉,𝑘,2 ⋅ ⋅ ⋅ ⌈𝛼⌉∑
𝑘=⌈𝛼⌉

𝜌⌈𝛼⌉,𝑘,𝑁
... ... ⋅ ⋅ ⋅ ...
𝑖∑
𝑘=⌈𝛼⌉

𝜌𝑖,𝑘,1 𝑖∑
𝑘=⌈𝛼⌉

𝜌𝑖,𝑘,2 ⋅ ⋅ ⋅ 𝑖∑
𝑘=⌈𝛼⌉

𝜌𝑖,𝑘,𝑁
... ... ⋅ ⋅ ⋅ ...

𝑁∑
𝑘=⌈𝛼⌉

𝜌𝑁,𝑘,1 𝑁∑
𝑘=⌈𝛼⌉

𝜌𝑁,𝑘,2 ⋅ ⋅ ⋅ 𝑁∑
𝑘=⌈𝛼⌉

𝜌𝑁,𝑘,𝑁

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

, (31)

where 𝜌𝑖,𝑘,𝑗 is given by

𝜌𝑖,𝑘,𝑗 = 𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼)𝑐𝑗. (32)

𝐺𝑖−𝑘 is the Genocchi number and 𝑐𝑗 can be obtained from
(23).

Proof. For the proof, see [21].

142 Differential Equations: Concepts and Applications



4.3. Upper Bound of the Error for the Operational Matrix of
Fractional Derivative𝑃𝛼. Webegin here by proving the upper
bound of the error of arbitrary function approximation by
Genocchi polynomials in the following Lemma.

Lemma 6. Suppose that 𝑓(𝑡) ∈ 𝐶𝑛+1[0, 1] and 𝑌 =
Span{𝐺1(𝑡), 𝐺2(𝑡), . . . , 𝐺𝑁(𝑡)}; if C𝑇G(𝑡) is the best approxi-
mation of 𝑓(𝑡) out of 𝑌, then

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑡) − C𝑇G (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑅
(𝑛 + 1)!√2𝑛 + 3 , (33)

where 𝑅 = max𝑡∈[0,1]|𝑓(𝑛+1)(𝑡)|.
To see this, we set {1, 𝑡, . . . , 𝑡𝑛} as a basis for the polynomial

space of degree 𝑛.
Define 𝑦1(𝑡) = 𝑓(0) + 𝑡𝑓󸀠(0) + (𝑡2/2!)𝑓󸀠󸀠(0) + ⋅ ⋅ ⋅ +(𝑡𝑛/𝑛!)𝑓(𝑛)(0).
FromTaylor’s expansion, one has |𝑓(𝑡)−𝑦1(𝑡)| = |(𝑡𝑛+1/(𝑛+1)!)𝑓(𝑛+1)(𝜉𝑡)|, where 𝜉𝑡 ∈ (0, 1).
SinceC𝑇G(𝑡) is the best approximation of𝑓(𝑡) out of𝑌 and𝑦1(𝑡) ∈ 𝑌, from (18), one has
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑡) − C𝑇G (𝑡)󵄩󵄩󵄩󵄩󵄩22 ≤ 󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑦1 (𝑡)󵄩󵄩󵄩󵄩22
≤ ∫1
0

󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑦1 (𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑡
= ∫1
0
( 𝑡𝑛+1(𝑛 + 1)!)

2 󵄩󵄩󵄩󵄩󵄩𝑓(𝑛+1) (𝜉𝑡)󵄩󵄩󵄩󵄩󵄩2 𝑑𝑡
≤ 𝑅2
((𝑛 + 1)!)2 ∫

1

0
𝑡2𝑛+2𝑑𝑡 = 𝑅2

((𝑛 + 1)!)2 (2𝑛 + 3) .

(34)

Taking the square root of both sides, one has

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑡) − C𝑇G (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑅
(𝑛 + 1)!√2𝑛 + 3 (35)

which is the desired error bound.

We use the following theorem from [22].

Theorem 7 (see [22]). Suppose that 𝐻 is a Hilbert space and𝑌 is a closed subspace of 𝐻 such that dim𝑌 < ∞ and𝑦1, 𝑦2, . . . , 𝑦𝑛 is a basis for 𝑌. Let 𝑓 be an arbitrary element
in𝐻 and let 𝑦0 be the unique best approximation of 𝑓 out of 𝑌.
Then,

󵄩󵄩󵄩󵄩𝑓 − 𝑦0󵄩󵄩󵄩󵄩2 = Gram (𝑓, 𝑦1, 𝑦2, . . . , 𝑦𝑛)
Gram (𝑦1, 𝑦2, . . . , 𝑦𝑛) , (36)

where

Gram (𝑦1, 𝑦2, . . . , 𝑦𝑛)

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝑦1, 𝑦1⟩ ⟨𝑦1, 𝑦2⟩ ⋅ ⋅ ⋅ ⟨𝑦1, 𝑦𝑛⟩⟨𝑦2, 𝑦1⟩ ⟨𝑦2, 𝑦2⟩ ⋅ ⋅ ⋅ ⟨𝑦2, 𝑦𝑛⟩... ... ⋅ ⋅ ⋅ ...
⟨𝑦𝑛, 𝑦1⟩ ⟨𝑦𝑛, 𝑦2⟩ ⋅ ⋅ ⋅ ⟨𝑦𝑛, 𝑦𝑛⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (37)

Theorem 8. Suppose that 𝑓(𝑡) ∈ 𝐿2[0, 1] is approximated by𝑓𝑛(𝑡) as
𝑓𝑛 (𝑡) = 𝑛∑

𝑖=1

𝑐𝑖𝐺𝑖 (𝑡) = C𝑇G (𝑡) ; (38)

then,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑓𝑛 (𝑡)󵄩󵄩󵄩󵄩 = 0. (39)

The proof of this theorem obviously follows from
Lemma 6.

The operational matrix error vector 𝐸𝛼 is given by

𝐸𝛼 = 𝑃𝛼G (𝑡) − 𝐷𝛼G (𝑡) , (40)

where

𝐸𝛼 =
[[[[[[
[

𝑒𝛼1𝑒𝛼2...
𝑒𝛼𝑛

]]]]]]
]
; (41)

fromTheorem 7, we get
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑓0 (𝑡) −

𝑁∑
𝑗=1

𝑐𝑗𝐺𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= (Gram (𝑓 (𝑡) , 𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡))
Gram (𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡)) )1/2 .

(42)

Thus, according to equations (29) and (30) in [21], one has

󵄩󵄩󵄩󵄩𝑒𝛼𝑖 󵄩󵄩󵄩󵄩 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷
𝛼𝐺𝑖 (𝑡)

− 𝑁∑
𝑗=1

( 𝑖∑
𝑘=⌈𝛼⌉

𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼)𝑐𝑗)𝐺𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑖∑
𝑘=⌈𝛼⌉

𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼) 𝑡𝑘−𝛼
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓0 (𝑡)

− 𝑁∑
𝑗=1

𝑐𝑗𝐺𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
𝑖∑
𝑘=⌈𝛼⌉

𝑖!𝐺𝑖−𝑘(𝑖 − 𝑘)!Γ (𝑘 + 1 − 𝛼) 𝑡𝑘−𝛼

⋅ (Gram (𝑓 (𝑡) , 𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡))
Gram (𝐺1 (𝑡) , . . . , 𝐺𝑁 (𝑡)) )1/2 .

(43)

By consideringTheorem 8 and (43), we can conclude that
by increasing the number of the Genocchi bases the vector 𝑒𝛼𝑖
tends to zero.

For comparison purpose in Table 1, we show below the
errors of operational matrix of fractional derivative based
on Genocchi polynomials and shifted Legendre polynomials
derived in [23, 24] when 𝑁 = 10 and 𝛼 = 0.75 at different
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Table 1: Comparison of the operational matrix errors for the GPOMFD and SLPOMFD.

𝐸𝛼 𝑥 = 1 𝑥 = 0 𝑥 = 0.5
GPOMFD SLPOMFD GPOMFD SLPOMFD GPOMFD SLPOMFD𝑒1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000𝑒2 0.01288 0.01343 0.51657 0.51648 0.00353 0.00345𝑒3 0.02204 0.03462 0.77767 1.56518 0.00531 0.01047𝑒4 0.00004 0.02916 0.01241 3.17608 0.00008 0.02487𝑒5 0.03944 0.17666 1.28048 5.36557 0.00911 0.02570𝑒6 0.00292 0.33223 0.02450 8.00571 0.00001 0.05647𝑒7 0.15747 2.61748 5.38767 15.06874 0.03839 0.04226𝑒8 0.00748 11.8527 0.15766 11.80719 0.00060 0.92194𝑒9 1.21090 38.04476 39.19581 54.74287 0.27897 15.64398𝑒10 0.04902 806.14232 1.32181 629.08480 0.00519 20.30772

points on [0, 1]. From this table, it is clear that the accuracy
of Genocchi polynomials operational matrix of fractional
derivative (GPOMFD) is better than the shifted Legendre
polynomials operational matrix of fractional derivatives
(SLPOMFD). We believe that this is the case for any value
of 𝑁 because the Genocchi polynomials have smaller coef-
ficients of individual terms compared to shifted Legendre
polynomials.

5. Collocation Method Based on Genocchi
Operational Matrices

In this section, we use the collocation method based on
Genocchi operational matrix of fractional derivatives and
Genocchi delay operational matrix to solve numerically the
generalized fractional pantograph equation. We now derive
an algorithm for solving (1). To do this, let the solution of (1)
be approximated by the first𝑁 terms Genocchi polynomials.
Thus, we write

𝑦𝑁 (𝑡) ≈ 𝑁∑
𝑛=1

𝑐𝑛𝐺𝑛 (𝑡) = 𝐺 (𝑡) 𝐶, (44)

where the Genocchi coefficient vector 𝐶 and the Genocchi
vector 𝐺(𝑡) are given by

𝐶𝑇 = [𝑐1, 𝑐2, . . . , 𝑐𝑁] ,
𝐺 (𝑡) = [𝐺1 (𝑡) , 𝐺2 (𝑡) , . . . , 𝐺𝑁 (𝑡)] ; (45)

thus, 𝐷𝛼𝑦𝑁(𝑡) and 𝐷𝛽𝑛𝑦𝑁(𝑡), 𝑛 = 0, 1, . . . , 𝑚 − 1, can be
expressed, respectively, as follows:

𝐷𝛼𝑦𝑁 (𝑡) = 𝐺 (𝑡) (𝑃𝑇)𝛼 𝐶,
𝐷𝛽𝑛𝑦𝑁 (𝑡) = 𝐺 (𝑡) (𝑃𝑇)𝛽𝑛 𝐶, 𝑛 = 0, 1, . . . , 𝑚 − 1.

(46)

Substituting (44) and (46) in (1), we have

𝐺 (𝑡) (𝑃𝑇)𝛼 𝐶
= 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡) 𝐺 (𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛) (𝑃𝑇)𝛽𝑛 𝐶 + 𝑔 (𝑡) , (47)

where 𝐺(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛) = [𝐺1(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛), 𝐺2(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛), . . . ,𝐺𝑁(𝜆𝑗,𝑛𝑡 + 𝜇𝑗,𝑛)].
Also the initial condition will produce𝑚 other equations:

𝑚−1∑
𝑛=0

𝑎𝑛,𝑖𝐺 (0) (𝑃𝑇)𝑖 𝐶 = 𝑑𝑖, 𝑖 = 0, 1, . . . , 𝑚 − 1. (48)

To find the solution 𝑦𝑁(𝑡)we collocate (47) at the collocation
points 𝑡𝑗 = 𝑗/(𝑁 − 𝑚), 𝑗 = 1, 2, . . . , 𝑁 − 𝑚, to obtain

𝐺(𝑡𝑗) (𝑃𝑇)𝛼 𝐶
= 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡𝑗)𝐺 (𝜆𝑗,𝑛𝑡𝑗 + 𝜇𝑗,𝑛) (𝑃𝑇)𝛽𝑛 𝐶
+ 𝑔 (𝑡𝑗)

(49)

for 𝑗 = 1, 2, . . . , 𝑁 − 𝑚. Additionally, one can also use
both the operational matrix of fractional derivative and delay
operational matrix to solve problem (1). According to (44),
we can approximate the delay function 𝑦(𝜆𝑗,𝑛𝑡𝑗 +𝜇𝑗,𝑛) and its
fractional derivative using the operational matrices P and R
as follows:

𝑦𝑁 (𝜆𝑗,𝑛𝑡𝑗 + 𝜇𝑗,𝑛) = R𝐶𝑇𝐺 (𝑡) ,
𝐷𝛽𝑛𝑦𝑁 (𝜆𝑗,𝑛𝑡𝑗 + 𝜇𝑗,𝑛) = R𝐶𝑇𝑃𝛽𝑛𝐺 (𝑡) . (50)

Putting this approximation together with (44) in (1), we have

𝐺 (𝑡) (𝑃𝑇)𝛼 𝐶 = 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡)R𝐶𝑇𝑃𝛽𝑛𝐺 (𝑡) + 𝑔 (𝑡) . (51)
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Table 2: Comparison errors obtained by the present method and those obtained in [25] when 𝛼 = 0.6 and 𝜏 = 0.3 for Example 1.

𝑡 Error (new method) [25] Error (FAM) [25] Error (present method)
0.2 0.0781197 0.078155 3.37154𝐸 − 03
0.4 0.129928 0.129978 6.52102𝐸 − 03
0.6 0.190687 0.19076 9.77309𝐸 − 03
0.8 0.248601 0.248694 1.30349𝐸 − 02
1.0 0.307649 0.307763 1.64103𝐸 − 02

Thus, collocating (51) at the same collocation point as that in
(47), we get

𝐺(𝑡𝑗) (𝑃𝑇)𝛼 𝐶 = 𝐽∑
𝑗=0

𝑚−1∑
𝑛=0

𝑝𝑗,𝑛 (𝑡𝑗)R𝐶𝑇𝑃𝛽𝑛𝐺(𝑡𝑗)
+ 𝑔 (𝑡𝑗) .

(52)

Hence, (49) or (52) is 𝑁 − 𝑚 nonlinear algebraic equation.
Any of these equations together with (48) makes𝑁 algebraic
equations which can be solved using Newton’s iterative
method. Consequently,𝑦𝑁(𝑥) given in (44) can be calculated.
6. Numerical Examples

In this section, some numerical examples are given to illus-
trate the applicability and accuracy of the proposed method.
All the numerical computations have been done using Maple
18.

Example 1. Consider the following example solved in [25]:

𝐷𝛼𝑦 (𝑡) = 2Γ (3 − 𝛼)𝑦1−𝛼/2 (𝑡) + 𝑦 (𝑡 − 𝜏) − 𝑦 (𝑡)
+ 2𝜏√𝑦 (𝑡) − 𝜏2

(53)

subject to

𝑦 (𝑡) = 0, 𝑡 ≤ 0. (54)

The exact solution for this example is given by 𝑦(𝑡) =𝑡2. We solve the example when 𝛼 = 0.6 and 𝜏 = 0.3.
In Table 2, we compare the errors obtained by our method
with those obtained using FAM and new approach in [25].
As reported in [25], the time required for the new method
is 104.343750 seconds and for the FAM the time taken is215.031250 seconds for completing the same task, whereas
in our method we only need 38.080 seconds to complete the
computations.

Example 2 (see [1]). Consider the following generalized
fractional pantograph equation:

𝐷5/2𝑦 (𝑡) = −𝑦 (𝑡) − 𝑦 (𝑡 − 0.5) + 𝑔 (𝑡) , 𝑡 ∈ [0, 1] (55)

subject to

𝑦 (0) = 0,
𝑦󸀠 (0) = 0,
𝑦󸀠󸀠 (0) = 0,

(56)

where

𝑔 (𝑡) = Γ (4)Γ (3/2) 𝑡1/2 + 𝑡3 + (𝑡 − 0.5)3 . (57)

The exact solution of this problem is known to be 𝑦(𝑡) =𝑡3. This problem is solved in [1] using generalized Laguerre-
Gauss collocation scheme. We apply our technique with𝑁 =4. Approximating (55) with Genocchi polynomials, we have

𝐺 (𝑡) (𝑃𝑇)5/2 𝐶 = −𝐺 (𝑡) 𝐶 + 𝐺 (𝑡 − 0.5) 𝐶 + 𝑔 (𝑡) . (58)

Also from the initial conditions we have
𝐺 (0) 𝐶 = 0,

𝐺 (0) (𝑃𝑇) 𝐶 = 0,
𝐺 (0) (𝑃𝑇)2 𝐶 = 0.

(59)

Thus, collocating (58) at 𝑡 = 0.267339, we get
− 3.507078326 + 15.27479180𝑐4 + 2𝑐1

+ 0.2727646328𝑐3 − 1.930640400𝑐2 = 0, (60)

and (59) gives

𝑐1 − 𝑐2 + 𝑐4 = 0,
2𝑐1 − 3𝑐2 = 0,
6𝑐3 − 12𝑐4 = 0.

(61)

Solving these equations, we have

𝑐1 = 0.4999969148,
𝑐2 = 0.7499953722,
𝑐3 = 0.4999969148,
𝑐4 = 0.2499984574.

(62)

Thus, 𝑦(𝑡) = 𝐺(𝑥)𝐶 is calculated and we have0.9999938296𝑡3 which is almost the exact solution. In Table 3,
we compare the absolute errors obtained by ourmethod (with
only few terms𝑁 = 4) and the absolute errors obtained in [1]
when𝑁 = 22 with different Laguerre parameters 𝛽.
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Table 3: Comparison of the absolute errors obtained by the present method and those obtained in [1] for Example 2.

𝑡 𝑁 = 22 [1] 𝑁 = 4𝛽 = 2 𝛽 = 3 𝛽 = 5 Present method
0.1 1.030𝐸 − 04 1.019𝐸 − 05 6.273𝐸 − 06 6.17040𝐸 − 09
0.2 6.510𝐸 − 04 6.051𝐸 − 05 3.892𝐸 − 05 4.93630𝐸 − 08
0.3 1.740𝐸 − 03 1.495𝐸 − 04 1.023𝐸 − 04 1.66600𝐸 − 07
0.4 3.283𝐸 − 03 2.559𝐸 − 04 1.901𝐸 − 04 3.94910𝐸 − 07
0.5 5.138𝐸 − 03 3.546𝐸 − 04 2.944𝐸 − 04 7.71300𝐸 − 07
0.6 7.175𝐸 − 03 4.261𝐸 − 04 4.088𝐸 − 04 1.33280𝐸 − 06
0.7 9.303𝐸 − 03 4.592𝐸 − 04 5.306𝐸 − 04 2.11640𝐸 − 06
0.8 1.147𝐸 − 02 4.510𝐸 − 04 6.597𝐸 − 04 3.15920𝐸 − 06
0.9 1.367𝐸 − 02 4.055𝐸 − 04 7.977𝐸 − 04 4.49820𝐸 − 06
1.0 1.589𝐸 − 02 3.311𝐸 − 04 9.468𝐸 − 04 6.17040𝐸 − 06

Table 4: Comparison of the absolute errors obtained by the present method and those in [26] for Example 4.

𝑡 Absolute error [26]𝑁 = 4 Absolute error (present method)𝑁 = 3
0.1 0.100𝐸 − 07 1.15000𝐸 − 09
0.2 0.115𝐸 − 07 2.00000𝐸 − 09
0.3 0.115𝐸 − 07 2.55000𝐸 − 09
0.4 0.107𝐸 − 07 2.80000𝐸 − 09
0.5 0.967𝐸 − 08 2.70000𝐸 − 09
0.6 0.811𝐸 − 08 2.40000𝐸 − 09
0.7 0.641𝐸 − 08 1.70000𝐸 − 09
0.8 0.440𝐸 − 08 8.00000𝐸 − 10
0.9 0.223𝐸 − 08 5.00000𝐸 − 10
1.0 0.372𝐸 − 09 2.00000𝐸 − 09

Example 3. Consider the following fractional pantograph
equation:

𝐷1/2𝑦 (𝑡) = 2𝑦 (3𝑡2 ) + 8𝑡
3/2

3√𝜋 − 9𝑡
2

2 , 𝑡 ∈ [0, 1] (63)

subject to

𝑦 (0) = 0,
𝑦 (1) = 1. (64)

The exact solution of this problem is known to be 𝑦(𝑡) =𝑡2.We solve (63) using our technique with𝑁 = 3 only. As in
Example 2, we obtained the values of the coefficients to be

𝑐1 = 12 ,
𝑐2 = 12 ,
𝑐3 = 13 .

(65)

Thus, 𝑦𝑁(𝑡) = 𝐺(𝑡)𝐶 is calculated to be 𝑡2 which is the exact
solution and so there is nothing to compare for the error is
zero.

Example 4. Consider the following fractional pantograph
equation solved in [26]:

𝐷2𝑦 (𝑡) + 𝐷3/2𝑦 (𝑡) + 𝑦 (𝑡)
= 𝑦 ( 𝑡2) + 3𝑡

2

4 + 4√ 𝑡𝜋 + 2, 𝑡 ∈ [0, 1]
(66)

subject to

𝑦 (0) = 0,
𝑦 (1) = 1. (67)

The exact solution of this problem is known to be 𝑦(𝑡) =𝑡2. As in Example 3, we solve (66) using our technique with𝑁 = 3 and the values of the coefficients obtained are

𝑐1 = 0.5000000011,
𝑐2 = 0.5000000011,
𝑐3 = 0.3333333384.

(68)

Thus, 𝑦𝑁(𝑡) = 𝐺(𝑡)𝐶 is calculated and compared with
the exact solution. This problem is solved using Taylor
collocation method in [26] when𝑁 = 4, 5, and 6. In Table 4,
we compare the absolute errors obtained by present method
when𝑁 = 3 with the errors obtained when𝑁 = 4 in [26].
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7. Conclusion

In this paper, a collocation method based on the Genocchi
delay operational matrix and the operational matrix of
fractional derivative for solving generalized fractional panto-
graph equations is presented. The comparison of the results
shows that the present method is an excellent mathematical
tool for finding the numerical solutions delay equation.
The advantage of the method over others is that only few
terms are needed and every operational matrix involves more
numbers of zeroes; as such themethod has less computational
complexity and provides the solution at high accuracy.
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This paper is concerned with the existence of asymptotically almost automorphic mild solutions to a class of abstract semilinear
fractional differential equations D𝛼𝑡 𝑥(𝑡) = 𝐴𝑥(𝑡) + D𝛼−1𝑡 𝐹(𝑡, 𝑥(𝑡), 𝐵𝑥(𝑡)), 𝑡 ∈ R, where 1 < 𝛼 < 2, 𝐴 is a linear densely defined
operator of sectorial type on a complex Banach space 𝑋 and 𝐵 is a bounded linear operator defined on 𝑋, 𝐹 is an appropriate
function defined on phase space, and the fractional derivative is understood in the Riemann-Liouville sense. Combining the fixed
point theorem due to Krasnoselskii and a decomposition technique, we prove the existence of asymptotically almost automorphic
mild solutions to such problems. Our results generalize and improve some previous results since the (locally) Lipschitz continuity
on the nonlinearity 𝐹 is not required.The results obtained are utilized to study the existence of asymptotically almost automorphic
mild solutions to a fractional relaxation-oscillation equation.

1. Introduction

The almost periodic function introduced seminally by Bohr
in 1925 plays an important role in describing the phe-
nomena that are similar to the periodic oscillations which
can be observed frequently in many fields, such as celes-
tial mechanics, nonlinear vibration, electromagnetic theory,
plasma physics, engineering, and ecosphere. The concept of
almost automorphy, which is an important generalization
of the classical almost periodicity, was first introduced in
the literature [1–4] by Bochner in relation to some aspects
of differential geometry. Since then, this pioneer work has
attracted more and more attention and has been substan-
tially extended in several different directions. Many authors
have made important contributions to this theory (see, for
instance, [5–17] and the references therein). Especially, in [5,
6], the authors gave an important overview about the theory
of almost automorphic functions and their applications to
differential equations.

As a natural extension of almost automorphy, the con-
cept of asymptotic almost automorphy, which is the central
issue to be discussed in this paper, was introduced in the

literature [18] by N’Guérékata in the early eighties. Since
then, this notion has found several developments and has
been generalized into different directions. Until now, the
asymptotically almost automorphic functions as well as the
asymptotically almost automorphic solutions for differential
systems have been investigated by many mathematicians;
see [19] by Bugajewski and N’Guérékata, [20] by Diagana,
Hernández, and dos Santos, and [21] by Ding, Xiao, and
Liang for the asymptotically almost automorphic solutions
to integrodifferential equations, see [22] by Zhao, Chang,
and N’Guérékata for the asymptotically almost automorphic
solutions to the nonlinear delay integral equations, and see
[23] by Chang and Tang and [24] by Zhao, Chang, and
Nieto for the asymptotically almost automorphic solutions
to stochastic differential equations, and the existence of
asymptotically almost automorphic solutions has becomeone
of the most attractive topics in the qualitative theory of
differential equations due to its significance and applications
in physics, mathematical biology, control theory, and so on.
We refer the reader to the monographs of N’Guérékata [25]
for the recently theory and applications of asymptotically
almost automorphic functions.
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With motivation coming from a wide range of engineer-
ing and physical applications, fractional differential equations
have recently attracted great attention of mathematicians
and scientists. This kind of equations is a generalization of
ordinary differential equations to arbitrary noninteger orders.
Fractional differential equations find numerous applications
in the field of viscoelasticity, feedback amplifiers, electri-
cal circuits, electro analytical chemistry, fractional multi-
poles, neuron modelling encompassing different branches of
physics, chemistry, and biological sciences [26–32]. Many
physical processes appear to exhibit fractional order behavior
that may vary with time or space. In recent years, there
has been a significant development in ordinary and partial
differential equations involving fractional derivatives; we
only enumerate here the monographs of Kilbas et al. [26, 27],
Diethelm [28], Hilfer [29], Podlubny [30], Miller [31], and
Zhou [32] and the papers of Agarwal et al. [33, 34], Benchohra
et al. [35, 36], El-Borai [37], Lakshmikantham et al. [38–41],
Mophou et al. [42–45],N’Guérékata [46], andZhou et al. [47–
50] and the reference therein.

The study of almost periodic and almost automorphic
type solutions to fractional differential equations was initi-
ated by Araya and Lizama [11]. In their work, the authors
investigated the existence and uniqueness of an almost
automorphic mild solution of the semilinear fractional dif-
ferential equation

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ R, 1 < 𝛼 < 2, (1)

when 𝐴 is a generator of an 𝛼-resolvent family and D𝛼𝑡 is the
Riemann-Liouville fractional derivative. In [51], Cuevas and
Lizama considered the fractional differential equation:

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) +D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡)) ,
𝑡 ∈ R, 1 < 𝛼 < 2, (2)

where 𝐴 is a linear operator of sectorial negative type on
a complex Banach space 𝑋 and the fractional derivative is
understood in the Riemann-Liouville sense. Under suitable
conditions on 𝐹(𝑡, 𝑥), the authors proved the existence and
uniqueness of an almost automorphic mild solution to (2).
Cuevas et al. [52, 53] studied, respectively, the pseudo almost
periodic and pseudo almost periodic class infinity mild
solutions to (2) assuming that 𝐹 : R × 𝑋 󳨀→ 𝑋 and(𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is a pseudo almost periodic and pseudo
almost periodic of class infinity function satisfying suitable
conditions in 𝑥 ∈ 𝑋. Agarwal et al. [54] studied the existence
and uniqueness of a weighted pseudo almost periodic mild
solution to equation (2). Ding et al. [55] investigated the
existence and uniqueness of almost automorphic solution to
(2) assuming that 𝐹 : R × 𝑋 󳨀→ 𝑋 and (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is
Stepanov-like almost automorphic in 𝑡 ∈ R satisfying some
kind of Lipschitz conditions. Cuevas et al. [56] studied the
existence of almost periodic (resp., pseudo almost periodic)
mild solutions to equation (2) assuming that 𝐹 : R×𝑋 󳨀→ 𝑋
and (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is Stepanov almost (resp., Stepanov-
like pseudo almost) periodic in 𝑡 ∈ R uniformly for 𝑥 ∈ 𝑋.
Chang et al. [57] studied the existence and uniqueness of
weighted pseudo almost automorphic solution to equation

(2) with Stepanov-like weighted pseudo almost automorphic
coefficient. He et al. [58] studied also the existence and
uniqueness of weighted Stepanov-like pseudo almost auto-
morphic mild solution to (2). Cao et al. [59] studied the
existence and uniqueness of antiperiodic mild solution to
(2). In [60], Cuevas et al. showed sufficient conditions to
ensure the existence and uniqueness of mild solution for (2)
in the following classes of vector-valued function spaces: peri-
odic functions, asymptotically periodic functions, pseudo
periodic functions, almost periodic functions, asymptotically
almost periodic functions, pseudo almost periodic func-
tions, almost automorphic functions, asymptotically almost
automorphic functions, pseudo almost automorphic func-
tions, compact almost automorphic functions, asymptotically
compact almost automorphic functions, pseudo compact
almost automorphic functions, 𝑆-asymptotically 𝜔-periodic
functions, decay functions, and mean decay functions.

Recently, Xia et al. [61] established some sufficient criteria
for the existence and uniqueness of (𝜇, ])-pseudo almost
automorphic solution to the semilinear fractional differential
equation

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + D𝛼−1𝑡 𝐹 (𝑡, 𝐵𝑥 (𝑡)) , 𝑡 ∈ R, (3)

where 1 < 𝛼 < 2, 𝐴 is a sectorial operator of type 𝜔 < 0 on a
complex Banach space𝑋 and 𝐵 is a bounded linear operator.
The fractional derivative is understood in the Riemann-
Liouville sense.Their discussion is divided into two cases, i.e.,𝐹 : R × 𝑋 󳨀→ 𝑋, (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥) is (𝜇, ])-pseudo almost
automorphic and 𝐹 : R × 𝑋 󳨀→ 𝑋, and (𝑡, 𝑥) 󳨀→ 𝐹(𝑡, 𝑥)
is Stepanov-like (𝜇, ])-pseudo almost automorphic. Kavitha
et al. [62] studied weighted pseudo almost automorphic
solutions of the fractional integrodifferential equation

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡) , 𝐾𝑥 (𝑡)) , 𝑡 ∈ R, (4)

where 1 < 𝛼 < 2 and
𝐾𝑥 (𝑡) = ∫𝑡

−∞
𝑘 (𝑡 − 𝑠) ℎ (𝑠, 𝑥 (𝑠)) d𝑠, (5)

𝐴 is a linear densely defined sectorial operator on a complex
Banach space 𝑋, 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋, and (𝑡, 𝑥, 𝑦) 󳨀→𝐹(𝑡, 𝑥, 𝑦) is a weighted pseudo almost automorphic function
in 𝑡 ∈ R for each 𝑥, 𝑦 ∈ 𝑋 satisfying suitable conditions.
The fractional derivative is understood in the Riemann-
Liouville sense. Mophou [63] investigated the existence and
uniqueness of weighted pseudo almost automorphic mild
solution to the fractional differential equation:

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) +D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡) , 𝐵𝑥 (𝑡)) ,
𝑡 ∈ R, 1 < 𝛼 < 2, (6)

where 𝐴 : 𝐷(𝐴) ⊂ 𝑋 󳨀→ 𝑋 is a linear densely oper-
ator of sectorial type on a complex Banach space 𝑋, 𝐵 :𝑋 󳨀→ 𝑋 is a bounded linear operator and 𝐹 : R × 𝑋 ×𝑋 󳨀→ 𝑋, and (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) is a weighted pseudo
almost automorphic function in 𝑡 ∈ R for each 𝑥, 𝑦 ∈ 𝑋
satisfying suitable conditions. The fractional derivative D𝛼𝑡 is
to be understood in Riemann-Liouville sense. Chang et al.
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[64] investigated some existence results of 𝜇-pseudo almost
automorphic mild solutions to (6) assuming that 𝐹 : R ×𝑋×𝑋 󳨀→ 𝑋 and (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) is a 𝜇-pseudo almost
automorphic function in 𝑡 ∈ R for each 𝑥, 𝑦 ∈ 𝑋 satisfying
suitable conditions. For more on the almost periodicity and
almost automorphy for fractional differential equations and
related issues, we refer the reader to [65–67] and others.

Equation (6) is motivated by physical problems. Indeed,
due to their applications in fields of sciencewhere characteris-
tics of anomalous diffusion are presented, type (6) equations
are attracting increasing interest (cf. [68–70] and references
therein). For example, anomalous diffusion in fractals [69] or
in macroeconomics [71] has been recently well studied in the
setting of fractional Cauchy problems like (6). For this reason,
(6) has gotten a considerable attention in recent years (cf. [51–
64, 68–71] and the references therein).

To the best of our knowledge, much less is known
about the existence of asymptotically almost automorphic
mild solutions to (6) when the nonlinearity 𝐹(𝑡, 𝑥, 𝑦) as a
whole loses the Lipschitz continuity with respect to 𝑥 and𝑦. Motivated by the abovementioned works, the purpose
of this paper is to establish some new existence results of
asymptotically almost automorphic mild solutions to (6).
In our results, the nonlinearity 𝐹 : R × 𝑋 × 𝑋 󳨀→𝑋, (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) does not have to satisfy a
(locally) Lipschitz condition (see Remark 22). However, in
many papers (for instance, [11, 51–64]) on almost periodic
type and almost automorphic type solutions to fractional
differential equations, to be able to apply the well-known
Banach contraction principle, a (locally) Lipschitz condition
for the nonlinearity of corresponding fractional differential
equations is needed. As can be seen, our results generalize
those as well as related research and have more broad
applications. In particular, as application and to illustrate
our main results, we will examine some sufficient conditions
for the existence of asymptotically almost automorphic mild
solutions to the fractional relaxation-oscillation equation
given by

𝜕𝛼𝑡 𝑢 (𝑡, 𝑥) = 𝜕2𝑥𝑢 (𝑡, 𝑥) − 𝑝𝑢 (𝑡, 𝑥) + 𝜕𝛼−1𝑡 [𝜇𝑎 (𝑡)

⋅ sin( 1
2 + cos 𝑡 + cos√2𝑡) [sin 𝑢 (𝑡, 𝑥) + 𝑢 (𝑡, 𝑥)]

+ ]𝑒−|𝑡| [𝑢 (𝑡, 𝑥) + sin 𝑢 (𝑡, 𝑥)]] , 𝑡 ∈ R, 𝑥 ∈ [0, 𝜋]

(7)

with boundary conditions 𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0, 𝑡 ∈ R, where𝑎(𝑡) ∈ 𝐵𝐶(R,R+) is a function and 𝑝, 𝜇, and ] are positive
constants.

The rest of this paper is organized as follows. In Section 2,
some concepts, the related notations, and some useful lem-
mas are introduced and established. In Section 3, we prove
the existence of asymptotically almost automorphic mild
solutions to such problems. The results obtained are utilized
to study the existence of asymptotically almost automorphic
mild solutions to a fractional relaxation-oscillation equation
given in Section 4.

2. Preliminaries

This section is concerned with some notations, definitions,
lemmas, and preliminary facts which are used in what
follows.

From now on, let (𝑋, ‖ ⋅ ‖) and (𝑌, ‖ ⋅ ‖𝑌) be two Banach
spaces and 𝐵𝐶(R, 𝑋) (resp., 𝐵𝐶(R × 𝑌 × 𝑌,𝑋)) is the space
of all 𝑋-valued bounded continuous functions (resp., jointly
bounded continuous functions 𝐹 : R × 𝑌 × 𝑌 󳨀→ 𝑋).
Furthermore, 𝐶0(R, 𝑋) (resp., 𝐶0(R × 𝑌 × 𝑌,𝑋)) is the
closed subspace of 𝐵𝐶(R, 𝑋) (resp., 𝐵𝐶(R × 𝑌 × 𝑌,𝑋))
consisting of functions vanishing at infinity (vanishing at
infinity uniformly in any compact subset of 𝑌 × 𝑌, in other
words,

lim
|𝑡|󳨀→+∞

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩 = 0 uniformly for (𝑥, 𝑦) ∈ K, (8)

whereK is an any compact subset of 𝑌×𝑌). Let also L(𝑋) be
the Banach space of all bounded linear operators from𝑋 into
itself endowed with the norm:

‖𝑇‖L(𝑋) = sup {‖𝑇𝑥‖ : 𝑥 ∈ 𝑋, ‖𝑥‖ = 1} . (9)

For a bounded linear operator 𝐴 ∈ L(𝑋), let 𝜌(𝐴) and 𝐷(𝐴)
stand for the resolvent and domain of 𝐴, respectively.

First, let us recall some basic definitions and results on
almost automorphic and asymptotically almost automorphic
functions.

Definition 1 ((Bochner) [1] (N’Guérékata) [6]). A continuous
function 𝐹 : R 󳨀→ 𝑋 is said to be almost automorphic
if for every sequence of real numbers {𝑠󸀠𝑛}, there exists a
subsequence {𝑠𝑛} such that

Θ (𝑡) = lim
𝑛󳨀→∞

𝐹 (𝑡 + 𝑠𝑛) (10)

is well defined for each 𝑡 ∈ R and

lim
𝑛󳨀→∞

Θ(𝑡 − 𝑠𝑛) = 𝐹 (𝑡) for each 𝑡 ∈ R. (11)

Denote by 𝐴𝐴(R, 𝑋) the set of all such functions.

Remark 2 (see [6]). By the point-wise convergence, the
functionΘ(𝑡) inDefinition 1 ismeasurable but not necessarily
continuous. Moreover, if Θ(𝑡) is continuous, then 𝐹(𝑡) is
uniformly continuous (cf., e.g., [17], Theorem 2.6), and if
the convergence in Definition 1 is uniform on R, one gets
almost periodicity (in the sense of Bochner and von Neu-
mann). Almost automorphy is thus a more general concept
than almost periodicity. There exists an almost automorphic
functionwhich is not almost periodic.The function𝐹 : R 󳨀→
R given by

𝐹 (𝑡) = sin( 1
2 + cos 𝑡 + cos√2𝑡) (12)

is an example of such functions [72].

Lemma 3 (see [5]). 𝐴𝐴(R, 𝑋) is a Banach space with the
norm ‖𝐹‖∞ = sup𝑡∈R‖𝐹(𝑡)‖ .
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Definition 4 (see [6]). A continuous function𝐹 : R×𝑌×𝑌 󳨀→𝑋 is said to be almost automorphic in 𝑡 ∈ R uniformly for all(𝑥, 𝑦) ∈ 𝐾, where𝐾 is any bounded subset of𝑌×𝑌, if for every
sequence of real numbers {𝑠󸀠𝑛}, there exists a subsequence {𝑠𝑛}
such that

lim
𝑛󳨀→∞

𝐹 (𝑡 + 𝑠𝑛, 𝑥, 𝑦) = Θ (𝑡, 𝑥, 𝑦) exists

for each 𝑡 ∈ R and each (𝑥, 𝑦) ∈ 𝐾 (13)

and
lim
𝑛󳨀→∞

Θ(𝑡 − 𝑠𝑛, 𝑥, 𝑦) = 𝐹 (𝑡, 𝑥, 𝑦) exists

for each 𝑡 ∈ R and each (𝑥, 𝑦) ∈ 𝐾. (14)

The collection of those functions is denoted by 𝐴𝐴(R × 𝑌 ×𝑌,𝑋).
Remark 5. The function 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 given by

𝐹 (𝑡, 𝑥, 𝑦) = sin( 1
2 + cos 𝑡 + cos√2𝑡) [sin (𝑥) + 𝑦] (15)

is almost automorphic in 𝑡 ∈ R uniformly for all (𝑥, 𝑦) ∈ 𝐾,
where𝐾 is any bounded subset of 𝑋 × 𝑋, 𝑋 = 𝐿2[0, 𝜋].

Similar to Lemma 2.2 of [73] and Proposition 3.2 of
[63], we have the following result on almost automorphic
functions.

Lemma 6. Let 𝐹 : R×𝑋×𝑋 󳨀→ 𝑋 be almost automorphic in𝑡 ∈ R uniformly for all (𝑥, 𝑦) ∈ 𝐾, where 𝐾 is any bounded
subset of 𝑋 × 𝑋, and assume that 𝐹(𝑡, 𝑥, 𝑦) is uniformly
continuous on 𝐾 uniformly for 𝑡 ∈ R, that is, for any 𝜀 > 0,
there exists 𝛿 > 0 such that 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝐾 and ‖𝑥1 − 𝑦1‖ +‖𝑥2 − 𝑦2‖ < 𝛿 imply that󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑥1, 𝑥2) − 𝐹 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩 < 𝜀 ∀𝑡 ∈ R. (16)

Let 𝑥, 𝑦 : R 󳨀→ 𝑋 be almost automorphic. Then the functionΥ : R 󳨀→ 𝑋 defined by Υ(𝑡) = 𝐹(𝑡, 𝑥(𝑡), 𝑦(𝑡)) is almost
automorphic.

Proof. Suppose that {𝑠𝑛} is a sequence of real numbers. Then
by the definition of almost automorphic functions, we can
extract a subsequence {𝜏𝑛} of {𝑠𝑛} such that

(𝑃1) lim
𝑛󳨀→∞

𝑥 (𝑡 + 𝜏𝑛) = 𝑥 (𝑡) for each 𝑡 ∈ R,
(𝑃2) lim
𝑛󳨀→∞

𝑥 (𝑡 − 𝜏𝑛) = 𝑥 (𝑡) for each 𝑡 ∈ R,
(𝑃3) lim
𝑛󳨀→∞

𝑦 (𝑡 + 𝜏𝑛) = 𝑦 (𝑡) for each 𝑡 ∈ R,
(𝑃4) lim
𝑛󳨀→∞

𝑦 (𝑡 − 𝜏𝑛) = 𝑦 (𝑡) for each 𝑡 ∈ R,
(𝑃5) lim
𝑛󳨀→∞

𝐹 (𝑡 + 𝜏𝑛, 𝑥, 𝑦) = 𝐹 (𝑡, 𝑥, 𝑦)
for each 𝑡 ∈ R, 𝑥, 𝑦 ∈ 𝑋,

(𝑃6) lim
𝑛󳨀→∞

𝐹 (𝑡 − 𝜏𝑛, 𝑥, 𝑦) = 𝐹 (𝑡, 𝑥, 𝑦)
for each 𝑡 ∈ R, 𝑥, 𝑦 ∈ 𝑋.

(17)

Write

Υ̃ (𝑡) fl 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ R. (18)

Then
󵄩󵄩󵄩󵄩󵄩Υ (𝑡 + 𝜏𝑛) − Υ̃ (𝑡)󵄩󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡 + 𝜏𝑛) , 𝑦 (𝑡 + 𝜏𝑛))
− 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡 + 𝜏𝑛) , 𝑦 (𝑡 + 𝜏𝑛))
− 𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡))
− 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩 .

(19)

Since 𝑥(𝑡) and 𝑦(𝑡) are almost automorphic, then 𝑥(𝑡), 𝑦(𝑡)
and 𝑥(𝑡), and 𝑦(𝑡) are bounded. Therefore we can choose a
bounded subset𝐾 ⊂ 𝑋 × 𝑋, such that

(𝑥 (𝑡) , 𝑦 (𝑡)) ∈ 𝐾,
(𝑥 (𝑡) , 𝑦 (𝑡)) ∈ 𝐾

∀𝑡 ∈ R.
(20)

By (𝑃1), (𝑃3), and the uniform continuity of 𝐹(𝑡, 𝑥, 𝑦) in(𝑥(𝑡), 𝑦(𝑡)) ∈ 𝐾, we have

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡 + 𝜏𝑛) , 𝑦 (𝑡 + 𝜏𝑛))
− 𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩 = 0. (21)

Moreover, by (𝑃5),
lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝐹 (𝑡 + 𝜏𝑛, 𝑥 (𝑡) , 𝑦 (𝑡)) − 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩 = 0, (22)

so remembering the above triangle inequality, we deduce that

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩Υ (𝑡 + 𝜏𝑛) − Υ̃ (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0 for each 𝑡 ∈ R. (23)

Using the same argument we can prove that

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩Υ̃ (𝑡 − 𝜏𝑛) − Υ (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0 for each 𝑡 ∈ R. (24)

This proves that Υ(𝑡) is almost automorphic by the definition.

Remark 7. If 𝐹(𝑡, 𝑥, 𝑦) satisfies a Lipschitz condition with
respect to 𝑥 and 𝑦 uniformly in 𝑡 ∈ R, i.e., for each pair𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑥1, 𝑥2) − 𝐹 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩
≤ 𝐿 (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩)

(25)

uniformly in 𝑡 ∈ R, where 𝐿 > 0 is called the Lipschitz
constant for the function 𝐹(𝑡, 𝑥, 𝑦), then 𝐹(𝑡, 𝑥, 𝑦) is uni-
formly continuous on 𝐾 uniformly for 𝑡 ∈ R, where𝐾 is any
bounded subset of 𝑋 × 𝑋.
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Remark 8. If 𝐹(𝑡, 𝑥, 𝑦) satisfies a local Lipschitz condition
with respect to 𝑥 and 𝑦 uniformly in 𝑡 ∈ R, i.e., for each pair𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋, 𝑡 ∈ R,

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑥1, 𝑥2) − 𝐹 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩
≤ 𝐿 (𝑡) (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩) ,

(26)

where 𝐿(𝑡) ∈ 𝐵𝐶(R,R+), then 𝐹(𝑡, 𝑥, 𝑦) is uniformly con-
tinuous on 𝐾 uniformly for 𝑡 ∈ R, where 𝐾 is any bounded
subset of 𝑋 × 𝑋.

Definition 9 (see [6]). A continuous function 𝐹 : R 󳨀→ 𝑋
is said to be asymptotically almost automorphic if it can be
decomposed as 𝐹(𝑡) = 𝐺(𝑡) + Φ(𝑡), where

𝐺 (𝑡) ∈ 𝐴𝐴 (R, 𝑋) ,
Φ (𝑡) ∈ 𝐶0 (R, 𝑋) . (27)

Denote by 𝐴𝐴𝐴(R, 𝑋) the set of all such functions.

Remark 10. The function 𝐹 : R 󳨀→ R defined by

𝐹 (𝑡) = 𝐺 (𝑡) + Φ (𝑡)
= sin( 1

2 + cos 𝑡 + cos√2𝑡) + 𝑒−|𝑡| (28)

is an asymptotically almost automorphic function with

𝐺 (𝑡) = sin( 1
2 + cos 𝑡 + cos√2𝑡) ∈ 𝐴𝐴 (R,R) ,

Φ (𝑡) = 𝑒−|𝑡| ∈ 𝐶0 (R,R) .
(29)

Lemma 11 (see [6]). 𝐴𝐴𝐴(R, 𝑋) is also a Banach space with
the supremum norm ‖ ⋅ ‖∞.
Definition 12 (see [6]). A continuous function 𝐹 : R × 𝑌 ×𝑌 󳨀→ 𝑋 is said to be asymptotically almost automorphic if
it can be decomposed as 𝐹(𝑡, 𝑥, 𝑦) = 𝐺(𝑡, 𝑥, 𝑦) + Φ(𝑡, 𝑥, 𝑦),
where

𝐺 (𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴 (R × 𝑌 × 𝑌,𝑋) ,
Φ (𝑡, 𝑥, 𝑦) ∈ 𝐶0 (R × 𝑌 × 𝑌,𝑋) . (30)

Denote by𝐴𝐴𝐴(R×𝑌×𝑌,𝑋) the set of all such functions.
Remark 13. The function 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 given by

𝐹 (𝑡, 𝑥, 𝑦) = 𝐺 (𝑡, 𝑥, 𝑦) + Φ (𝑡, 𝑥, 𝑦)
= sin( 1

2 + cos 𝑡 + cos√2𝑡) [sin (𝑥) + 𝑦]
+ 𝑒−|𝑡| [𝑥 + sin (𝑦)]

(31)

is asymptotically almost automorphic in 𝑡 ∈ R uniformly for
all (𝑥, 𝑦) ∈ 𝐾, where𝐾 is any bounded subset of 𝑋 × 𝑋, 𝑋 =𝐿2[0, 𝜋] and

𝐺 (𝑡, 𝑥, 𝑦) = sin( 1
2 + cos 𝑡 + cos√2𝑡) [sin (𝑥) + 𝑦]

∈ 𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) ,
Φ (𝑡, 𝑥, 𝑦) = 𝑒−|𝑡| [𝑥 + sin (𝑦)] ∈ 𝐶0 (R × 𝑋 × 𝑋,𝑋) .

(32)

Next we give some basic definitions and properties of
the fractional calculus theory which are used further in this
paper.

Definition 14 (see [26]). The fractional integral of order 𝛼 > 0
with the lower limit 𝑡0 for a function 𝑓 is defined as

𝐼𝛼𝑓 (𝑡) = 1
Γ (𝛼) ∫𝑡

𝑡0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) d𝑠, 𝑡 > 𝑡0, 𝛼 > 0 (33)

provided that the right-hand side is point-wise defined on[𝑡0,∞), where Γ is the Gamma function.

Definition 15 (see [26]). Riemann-Liouville derivative of
order 𝛼 > 0 with the lower limit 𝑡0 for a function 𝑓 :[𝑡0,∞) 󳨀→ R can be written as

𝐷𝛼𝑡 𝑓 (𝑡) = 1
Γ (𝑛 − 𝛼)

d𝑛

d𝑡𝑛 ∫
𝑡

𝑡0
(𝑡 − 𝑠)−𝛼 𝑓 (𝑠) d𝑠,

𝑡 > 𝑡0, 𝑛 − 1 < 𝛼 < 𝑛.
(34)

The first and maybe the most important property of
Riemann-Liouville fractional derivative is that, for 𝑡 > 𝑡0
and 𝛼 > 0, one has 𝐷𝛼𝑡 (𝐼𝛼𝑓(𝑡)) = 𝑓(𝑡), which means
that Riemann-Liouville fractional differentiation operator is
a left inverse to the Riemann-Liouville fractional integration
operator of the same order 𝛼.

It is important to define sectorial operator for the defini-
tion of mild solution of any fractional abstract equations. So,
let us nowgive the definitions of sectorial linear operators and
their associated solution operators.

Definition 16 ([74] sectorial operator). A closed and linear
operator 𝐴 is said to be sectorial of type 𝜔 and angle 𝜃 if
there exist 0 < 𝜃 < 𝜋/2, 𝑀 > 0, and 𝜔 ∈ R such that its
resolvent 𝜌(𝐴) exists outside the sector 𝜔 + 𝑆𝜃 fl {𝜔 + 𝜆 : 𝜆 ∈
C, |arg(−𝜆)| < 𝜃} and

󵄩󵄩󵄩󵄩󵄩(𝜆 − 𝐴)−1󵄩󵄩󵄩󵄩󵄩 ≤ 𝑀
|𝜆 − 𝜔| , 𝜆 ∉ 𝜔 + 𝑆𝜃. (35)

Sectorial operators are well studied in the literature,
usually for the case 𝜔 = 0. For a recent reference including
several examples and properties we refer the reader to [74].
Note that an operator 𝐴 is sectorial of type 𝜔 if and only if𝜔𝐼 − 𝐴 is sectorial of type 0.

Definition 17 (see [75]). Let𝐴 be a closed and linear operator
with domain 𝐷(𝐴) defined on a Banach space 𝑋. We call 𝐴
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the generator of a solution operator if there are 𝜔 ∈ R and
a strongly continuous function 𝑆𝛼 : R+ 󳨀→ L(𝑋) such that{𝜆𝛼 : Re𝜆 > 𝜔} ⊆ 𝜌(𝐴) and

𝜆𝛼−1 (𝜆𝛼 − 𝐴)−1 𝑥 = ∫∞
0

𝑒−𝜆𝑡𝑆𝛼 (𝑡) 𝑥 d𝑡,
Re𝜆 > 𝜔, 𝑥 ∈ 𝑋.

(36)

In this case, 𝑆𝛼(𝑡) is called the solution operator generated by𝐴.
Note that if𝐴 is sectorial of type𝜔with 0 ≤ 𝜃 ≤ 𝜋(1−𝛼/2),

then 𝐴 is the generator of a solution operator given by

𝑆𝛼 (𝑡) fl 1
2𝜋𝑖 ∫𝛾 𝑒

−𝜆𝑡𝜆𝛼−1 (𝜆𝛼 − 𝐴)−1 d𝜆, (37)

where 𝛾 is a suitable path lying outside the sector 𝜔 + Σ𝜃 (cf.
[74]).

Very recently, Cuesta in [74](Theorem 1) has proved that
if 𝐴 is a sectorial operator of type 𝜔 < 0 for some𝑀 > 0 and0 ≤ 𝜃 < 𝜋(1 − 𝛼/2), then there exists 𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)󵄩󵄩󵄩󵄩L(𝑋) ≤ 𝐶𝑀
1 + |𝜔| 𝑡𝛼 for 𝑡 ≥ 0. (38)

In the border case 𝛼 = 1, this is analogous to saying that 𝐴
is the generator of a exponentially stable 𝐶0-semigroup. The
main difference is that in the case 𝛼 > 1 the solution family𝑆𝛼(𝑡) decays like 𝑡−𝛼 . Cuesta’s result proves that 𝑆𝛼 (𝑡) is, in fact,
integrable.

In the following, we present the following compactness
criterion, which is a special case of the general compactness
result of Theorem 2.1 in [76].

Lemma 18 (see [76]). A set 𝐷 ⊂ 𝐶0(R, 𝑋) is relatively com-
pact if

(1) 𝐷 is equicontinuous;
(2) lim|𝑡|󳨀→∞𝑥(𝑡) = 0 uniformly for 𝑥 ∈ 𝐷;
(3) the set 𝐷(𝑡) fl {𝑥(𝑡) : 𝑥 ∈ 𝐷} is relatively compact in𝑋 for every 𝑡 ∈ R.

The following Krasnoselskii’s fixed point theorem plays a
key role in the proofs of our main results, which can be found
in many books.

Lemma 19 (see [77]). Let 𝑈 be a bounded closed and convex
subset of𝑋 and 𝐽1, 𝐽2 be maps of𝑈 into𝑋 such that 𝐽1𝑥+𝐽2𝑦 ∈𝑈 for every pair 𝑥, 𝑦 ∈ 𝑈. If 𝐽1 is a contraction and 𝐽2 is
completely continuous, then 𝐽1𝑥 + 𝐽2𝑥 = 𝑥 has a solution on𝑈.
3. Asymptotically Almost Automorphic
Mild Solutions

In this section, we study the existence of asymptotically
almost automorphic mild solutions for the semilinear frac-
tional differential equations of the form

D𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) +D𝛼−1𝑡 𝐹 (𝑡, 𝑥 (𝑡) , 𝐵𝑥 (𝑡)) ,
𝑡 ∈ R, 1 < 𝛼 < 2, (39)

where 𝐴 : 𝐷(𝐴) ⊂ 𝑋 󳨀→ 𝑋 is a linear densely defined
operator of sectorial type of 𝜔 < 0 on a complex Banach
space 𝑋, 𝐵 : 𝑋 󳨀→ 𝑋 is a bounded linear operator and𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋, and (𝑡, 𝑥, 𝑦) 󳨀→ 𝐹(𝑡, 𝑥, 𝑦) is a given
function to be specified later. The fractional derivative D𝛼𝑡 is
to be understood in Riemann-Liouville sense.

We recall the following definition that will be essential for
us.

Definition 20 (see [63]). Assume that 𝐴 generates an inte-
grable solution operator 𝑆𝛼(𝑡). A continuous function 𝑥 :
R 󳨀→ 𝑋 satisfying the integral equation

𝑥 (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝜎) 𝐹 (𝜎, 𝑥 (𝜎) , 𝐵𝑥 (𝜎))d𝜎, 𝑡 ∈ R (40)

is called a mild solution on R to (39).

In the proofs of our results, we need the following
auxiliary result.

Lemma 21. Given 𝑌(𝑡) ∈ 𝐴𝐴(R, 𝑋) and 𝑍(𝑡) ∈ 𝐶0(R, 𝑋), let
Φ1 (𝑡) fl ∫𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝑌 (𝑠) 𝑑𝑠,

Φ2 (𝑡) fl ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝑍 (𝑠) 𝑑𝑠,
𝑡 ∈ R.

(41)

Then Φ1(𝑡) ∈ 𝐴𝐴(R, 𝑋),Φ2(𝑡) ∈ 𝐶0(R, 𝑋).
Proof. Firstly, note that

∫∞
0

1
1 + |𝜔| 𝑠𝛼 d𝑠 = |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) for 1 < 𝛼 < 2. (42)

Then

󵄩󵄩󵄩󵄩Φ1 (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝑌 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

0
𝑆𝛼 (𝜏) 𝑌 (𝑡 − 𝜏) d𝜏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀‖𝑌‖∞ ∫∞
0

1
1 + |𝜔| 𝜏𝛼 d𝜏

= 𝐶𝑀 |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) ‖𝑌‖∞ ,

(43)

which implies thatΦ1(𝑡) is well defined and continuous onR.
Since𝑌(𝑡) ∈ 𝐴𝐴(R, 𝑋), then for any 𝜀 > 0 and every sequence
of real numbers {𝑠󸀠𝑛}, there exist a subsequence {𝑠𝑛}, a function𝑌̃(𝑡), and 𝑁 ∈ N such that

󵄩󵄩󵄩󵄩󵄩𝑌 (𝑠 + 𝑠𝑛) − 𝑌̃ (𝑠)󵄩󵄩󵄩󵄩󵄩 < 𝜀
for each 𝑛 > 𝑁 and every 𝑠 ∈ R. (44)
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Define

Φ̃1 (𝑡) fl ∫𝑡
−∞

𝑇 (𝑡 − s) 𝑌̃ (𝑠) d𝑠. (45)

Then

󵄩󵄩󵄩󵄩󵄩Φ1 (𝑡 + 𝑠𝑛) − Φ̃1 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡+𝑠𝑛

−∞
𝑆𝛼 (𝑡 + 𝑠𝑛 − 𝑠) 𝑌 (𝑠) d𝑠

− ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝑌 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

0
𝑆𝛼 (𝑠) 𝑌 (𝑡 + 𝑠𝑛 − 𝑠) d𝑠

− ∫+∞
0

𝑆𝛼 (𝑠) 𝑌 (𝑡 − 𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑀∫∞

0

1
1 + |𝜔| 𝑠𝛼

󵄩󵄩󵄩󵄩󵄩𝑌 (𝑠 + 𝑠𝑛) − 𝑌̃ (𝑠)󵄩󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀 |𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼)

(46)

for each 𝑛 > 𝑁 and every 𝑡 ∈ R. This implies that

Φ̃1 (𝑡) = lim
𝑛󳨀→∞

Φ1 (𝑡 + 𝑠𝑛) (47)

is well defined for each 𝑡 ∈ R.
By a similar argument one can obtain

lim
𝑛󳨀→∞

Φ̃1 (𝑡 − 𝑠𝑛) = Φ1 (𝑡) for each 𝑡 ∈ R. (48)

ThusΦ1(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Since 𝑍(𝑡) ∈ 𝐶0(R, 𝑋), one can choose an 𝑁1 > 0 such

that ‖𝑍(𝑡)‖ < 𝜀 for all 𝑡 > 𝑁1. This enables us to conclude
that, for all 𝑡 > 𝑁1,

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑁1

−∞
𝑆𝛼 (𝑡 − 𝑠)𝑍 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝑁1
𝑆𝛼 (𝑡 − 𝑠) 𝑍 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀‖𝑍‖∞ ∫𝑁1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

+ 𝜀𝐶𝑀∫𝑡
𝑁1

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤ 𝐶𝑀‖𝑍‖∞|𝜔| ∫𝑁1
−∞

1
(𝑡 − 𝑠)𝛼 d𝑠

+ 𝐶𝑀 |𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼)

≤ 𝐶𝑀‖𝑍‖∞|𝜔|
1

(𝛼 − 1) (𝑡 − 𝑁1)𝛼−1

+ 𝐶𝑀|𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼) ,

(49)

which implies

lim
𝑡󳨀→+∞

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 = 0. (50)

On the other hand, from𝑍(𝑡) ∈ 𝐶0(R, 𝑋) it follows that there
exists an 𝑁2 > 0 such that ‖𝑍(𝑡)‖ < 𝜀 for all 𝑡 < −𝑁2.
This enables us to conclude that, for all 𝑡 < −𝑁2,

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝑍 (𝑠) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 ‖𝑍 (𝑠)‖ d𝑠

≤ 𝐶𝑀𝜀∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

= 𝐶𝑀 |𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼) ,

(51)

which implies

lim
𝑡󳨀→−∞

󵄩󵄩󵄩󵄩Φ2 (𝑡)󵄩󵄩󵄩󵄩 = 0. (52)

Now we are in position to state and prove our first main
result. To prove ourmain result, let us introduce the following
assumptions:(𝐻1) 𝐹(𝑡, 𝑥, 𝑦) = 𝐹1(𝑡, 𝑥, 𝑦) + 𝐹2(𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴𝐴(R × 𝑋 ×𝑋,𝑋) with

𝐹1 (𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) ,
𝐹2 (𝑡, 𝑥, 𝑦) ∈ 𝐶0 (R × 𝑋 × 𝑋,𝑋) (53)

and there exists a constant 𝐿 > 0 such that, for all 𝑡 ∈ R and𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋,
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑥2) − 𝐹1 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩

≤ 𝐿 (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩) .
(54)

(𝐻2) There exist a function 𝛽(𝑡) ∈ 𝐶0(R,R+) and a
nondecreasing function Φ : R+ 󳨀→ R+ such that, for all𝑡 ∈ R and 𝑥, 𝑦 ∈ 𝑋 with ‖𝑥‖ + ‖𝑦‖ ≤ 𝑟,

󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑡) Φ (𝑟)
and lim inf
𝑟󳨀→+∞

Φ (𝑟)
𝑟 = 𝜌1.

(55)

Remark 22. Assuming that 𝐹(𝑡, 𝑥, 𝑦) satisfies the assumption
(𝐻1), it is noted that 𝐹(𝑡, 𝑥, 𝑦) does not have to meet the
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Lipschitz continuity with respect to 𝑥 and 𝑦. Such class of
asymptotically almost automorphic functions 𝐹(𝑡, 𝑥, 𝑦) are
more complicated than those with Lipschitz continuity with
respect to 𝑥 and 𝑦 and little is known about them.

Let 𝛽(𝑡) be the function involved in assumption (𝐻2).
Define

𝜎 (𝑡) fl ∫𝑡
−∞

𝛽 (s)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠, 𝑡 ∈ R. (56)

Lemma 23. 𝜎(𝑡) ∈ 𝐶0(R,R+).
Proof. Since 𝛽(𝑡) ∈ 𝐶0(R,R+), one can choose a 𝑇1 > 0 such
that ‖𝛽(𝑡)‖ < 𝜀 for all 𝑡 > 𝑇1. This enables us to conclude that,
for all 𝑡 > 𝑇1,

‖𝜎 (𝑡)‖ ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑇1

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝑇1

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩∞ ∫𝑇1

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

+ 𝜀∫𝑡
𝑇1

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤
󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩∞|𝜔| ∫𝑇1

−∞

1
(𝑡 − 𝑠)𝛼 d𝑠 +

|𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼)

≤
󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩∞|𝜔|

1
(𝛼 − 1) (𝑡 − 𝑇1)𝛼−1 +

|𝜔|−1/𝛼 𝜋𝜀
𝛼 sin (𝜋/𝛼) ,

(57)

which implies

lim
𝑡󳨀→+∞

‖𝜎 (𝑡)‖ = 0. (58)

On the other hand, from 𝛽(𝑡) ∈ 𝐶0(R,R+) it follows that
there exists a 𝑇2 > 0 such that ‖𝛽(𝑡)‖ < 𝜀 for all 𝑡 < −𝑇2.
This enables us to conclude that, for all 𝑡 < −𝑇2,

‖𝜎 (𝑡)‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜀∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠 = |𝜔|−1/𝛼 𝜋𝜀

𝛼 sin (𝜋/𝛼) ,
(59)

which implies

lim
𝑡󳨀→−∞

‖𝜎 (𝑡)‖ = 0. (60)

Theorem 24. Assume that 𝐴 is sectorial of type 𝜔 < 0. Let𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy the hypotheses (𝐻1) and (𝐻2).
Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Then (39) has at least one asymptotically
almost automorphic mild solution provided that

𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼)

+ 𝐶𝑀(1 + ‖𝐵‖L(𝑋)) 𝜌1𝜌2 < 1.
(61)

Proof. The proof is divided into the following five steps.

Step 1. Define a mapping Λ on 𝐴𝐴(R, 𝑋) by

(ΛV) (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)) d𝑠,
𝑡 ∈ R

(62)

and prove Λ has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Firstly, since the function 𝑠 󳨀→ 𝐹1(𝑠, V(𝑠), 𝐵V(𝑠)) is

bounded inR and

‖[ΛV] (𝑡)‖ ≤ ∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀󵄩󵄩󵄩󵄩𝐹1󵄩󵄩󵄩󵄩∞ ∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

= 𝐶𝑀𝐿 |𝜔|−1/𝛼 𝜋 󵄩󵄩󵄩󵄩𝐹1󵄩󵄩󵄩󵄩∞𝛼 sin (𝜋/𝛼) ,

(63)

this implies that (ΛV)(𝑡) exists. Moreover from 𝐹1(𝑡, 𝑥, 𝑦) ∈𝐴𝐴(R × 𝑋 × 𝑋,𝑋) satisfying (54), together with Lemma 6
and Remark 7, it follows that

𝐹1 (⋅, V (⋅) , 𝐵V (⋅)) ∈ 𝐴𝐴 (R, 𝑋)
for every V (⋅) ∈ 𝐴𝐴 (R, 𝑋) . (64)

This, together with Lemma 21, implies that Λ is well defined
and maps 𝐴𝐴(R, 𝑋) into itself.

In the sequel, we verify that Λ is continuous.
Let V𝑛(𝑡), V(𝑡) be in 𝐴𝐴(R, 𝑋)with V𝑛(𝑡) 󳨀→ V(𝑡) as 𝑛 󳨀→∞; then one has

󵄩󵄩󵄩󵄩[ΛV𝑛] (𝑡) − [ΛV] (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V𝑛 (𝑠) , 𝐵V𝑛 (𝑠))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))] d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩
⋅ [󵄩󵄩󵄩󵄩V𝑛 (𝑠) − V (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵V𝑛 (𝑠) − 𝐵V (𝑠)󵄩󵄩󵄩󵄩]d𝑠
≤ 𝐶𝑀𝐿∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V𝑛 (𝑠)

− V (𝑠)󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞
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⋅ ∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

= 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞ .

(65)

Therefore, as 𝑛 󳨀→ ∞ and ΛV𝑛 󳨀→ ΛV, hence Λ is
continuous.

Next, we prove that Λ is a contraction on 𝐴𝐴(R, 𝑋) and
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

In fact, let V1(𝑡), V2(𝑡) be in 𝐴𝐴(R, 𝑋), and similar to the
above proof of the continuity of Λ, one has

󵄩󵄩󵄩󵄩[ΛV1] (𝑡) − [ΛV2] (𝑡)󵄩󵄩󵄩󵄩
≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩∞ , (66)

which implies
󵄩󵄩󵄩󵄩[ΛV1] (𝑡) − [ΛV2] (𝑡)󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2

󵄩󵄩󵄩󵄩∞ . (67)

Together with (61), this proves that Λ is a contraction on𝐴𝐴(R, 𝑋). Thus, Banach’s fixed point theorem implies that Λ
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Step 2. Set

Ω𝑟 fl {𝜔 (𝑡) ∈ 𝐶0 (R, 𝑋) : ‖𝜔 (𝑡)‖ ≤ 𝑟} . (68)

For the above V(𝑡), define Γ fl Γ1 + Γ2 on 𝐶0(R, 𝑋) as
(Γ1𝜔) (𝑡) = ∫𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠,

(Γ2𝜔) (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)
+ 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠

(69)

and prove that Γ maps Ω𝑘0 into itself, where 𝑘0 is a given
constant.

Firstly, from (54) it follows that, for all 𝑠 ∈ R and 𝜔(𝑠) ∈𝑋, 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 ≤ 𝐿 [‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖]
≤ 𝐿 (1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ ,

(70)

which implies that

𝐹1 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) − 𝐹1 (⋅, V (⋅) , 𝐵V (⋅))
∈ 𝐶0 (R, 𝑋) for every 𝜔 (⋅) ∈ 𝐶0 (R, 𝑋) . (71)

According to (55), one has

󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑠)
⋅ Φ(‖𝜔 (𝑠) + 𝐵𝜔 (𝑠)‖ + sup

𝑠∈R
‖V (𝑠) + 𝐵V (𝑠)‖)

≤ 𝛽 (𝑠) Φ((1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖

+ (1 + ‖𝐵‖L(𝑋)) sup
𝑠∈R

‖V (𝑠)‖) = 𝛽 (𝑠)

⋅ Φ((1 + ‖𝐵‖L(𝑋)) [‖𝜔 (𝑠)‖ + sup
𝑠∈R

‖V (𝑠)‖])

(72)

for all 𝑠 ∈ R and 𝜔(𝑠) ∈ 𝑋 with ‖𝜔(𝑠)‖ ≤ 𝑟; then
𝐹2 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) ∈ 𝐶0 (R, 𝑋)

as 𝛽 (⋅) ∈ 𝐶0 (R,R+) . (73)

Those, together with Lemma 21, yield that Γ is well defined
and maps 𝐶0(R, 𝑋) into itself.

On the other hand, in view of (55) and (61) it is not
difficult to see that there exists a constant 𝑘0 > 0 such that

𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋
𝛼 sin (𝜋/𝛼) 𝑘0

+ 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + sup
𝑠∈R

‖V (𝑠)‖))
≤ 𝑘0.

(74)

This enables us to conclude that, for any 𝑡 ∈ R and 𝜔1(𝑡),𝜔2(𝑡) ∈ Ω𝑘0 ,
󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) + (Γ2𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫

𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))] d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫𝑡
−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠)
+ 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 d𝑠 + ∫𝑡

−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝐶𝑀∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 [󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩
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+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠)󵄩󵄩󵄩󵄩] d𝑠
+ 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼Φ(󵄩󵄩󵄩󵄩𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩

+ ‖V (𝑠)‖ + ‖𝐵V (𝑠)‖) d𝑠 ≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋))
⋅ 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ ∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠 + 𝐶𝑀𝜎 (𝑡) Φ ((1

+ ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞ + ‖V (𝑠)‖∞))
= 𝐶𝑀𝐿 |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) ‖𝜔‖∞
+ 𝐶𝑀𝜌2Φ ((1 + ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞ + ‖V (𝑠)‖∞))
≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 𝑘0 + 𝐶𝑀𝜌2Φ((1
+ ‖𝐵‖L(𝑋)) (𝑘0 + ‖V (𝑠)‖∞)) ≤ 𝑘0,

(75)

which implies that (Γ1𝜔1)(𝑡) + (Γ2𝜔2)(𝑡) ∈ Ω𝑘0 . Thus Γ mapsΩ𝑘0 into itself.
Step 3. Show that Γ1 is a contraction onΩ𝑘0 .

In fact, for any 𝜔1(𝑡), 𝜔2(𝑡) ∈ Ω𝑘0 and 𝑡 ∈ R, from (54) it
follows that

󵄩󵄩󵄩󵄩[𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]
− [𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]󵄩󵄩󵄩󵄩 ≤ 𝐿 [󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠) − 𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩] ≤ 𝐿 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)
− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 .

(76)

Thus

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) [(𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))

− (𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))]d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿∫𝑡

−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)

− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ∫𝑡
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠 = 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1
− 𝜔2󵄩󵄩󵄩󵄩∞ ,

(77)

which implies that

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩∞
≤ 𝐶𝑀𝐿 (1 + ‖𝐵‖L(𝑋)) |𝜔|−1/𝛼 𝜋

𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ .
(78)

Thus, in view of (61), one obtains the conclusion.

Step 4. Show that Γ2 is completely continuous onΩ𝑘0 .
Given 𝜀 > 0. Let {𝜔𝑘}+∞𝑘=1 ⊂ Ω𝑘0 with 𝜔𝑘 󳨀→ 𝜔0 in𝐶0(R, 𝑋) as 𝑘 󳨀→ +∞. Since 𝜎(𝑡) ∈ 𝐶0(R,R+), one may

choose a 𝑡1 > 0 big enough such that, for all 𝑡 ≥ 𝑡1,
Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) 𝜎 (𝑡) < 𝜀

3𝐶𝑀. (79)

Also, in view of (𝐻1), we have
𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))

󳨀→ 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) (80)

for all 𝑠 ∈ (−∞, 𝑡1] as 𝑘 󳨀→ +∞ and

󵄩󵄩󵄩󵄩𝐹2 (⋅, V (⋅) + 𝜔𝑘 (⋅) , 𝐵 (V (⋅) + 𝜔𝑘 (⋅)))
− 𝐹2 (⋅, V (⋅) + 𝜔0 (⋅) , 𝐵 (V (⋅) + 𝜔0 (⋅)))󵄩󵄩󵄩󵄩
≤ 2Φ ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) 𝛽 (⋅)
∈ 𝐿1 (−∞, 𝑡1] .

(81)

Hence, by the Lebesgue dominated convergence theorem we
deduce that there exists an𝑁 > 0 such that

𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) − 𝐹2 (𝑠, V (𝑠)
+ 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝜀

3

(82)
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whenever 𝑘 ≥ 𝑁. Thus

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔𝑘) (𝑡) − (Γ2𝜔0) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))d𝑠 − ∫𝑡
−∞

𝑆𝛼 (𝑡

− 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) − 𝐹2 (𝑠, V (𝑠)
+ 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠 + 2𝐶𝑀Φ((1
+ ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) ∫

max{𝑡,𝑡1}

𝑡1

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠)

+ 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) − 𝐹2 (𝑠, V (𝑠)
+ 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠 + 2𝐶𝑀Φ((1
+ ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) 𝜎 (𝑡) ≤ 𝜀

3 + 2𝜀
3 = 𝜀

(83)

whenever 𝑘 ≥ 𝑁. Accordingly, Γ2 is continuous onΩ𝑘0 .
In the sequel, we consider the compactness of Γ2.
Set 𝐵𝑟(𝑋) for the closed ball with center at 0 and radius 𝑟

in 𝑋, 𝑉 = Γ2(Ω𝑘0), and 𝑧(𝑡) = Γ2(𝑢(𝑡)) for 𝑢(𝑡) ∈ Ω𝑘0 . First,
for all 𝜔(𝑡) ∈ Ω𝑘0 and 𝑡 ∈ R,

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑀𝜎 (𝑡)Φ ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞)) ,

(84)

and in view of 𝜎(𝑡) ∈ 𝐶0(R,R+), which follows from
Lemma 23, one concludes that

lim
|𝑡|󳨀→+∞

(Γ2𝜔) (𝑡) = 0 uniformly for 𝜔 (𝑡) ∈ Ω𝑘0 . (85)

As

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)

+ 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

0
𝑆𝛼 (𝜏)

⋅ 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏)
+ 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(86)

Hence, given 𝜀0 > 0, one can choose a 𝜉 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

𝜉
𝑆𝛼 (𝜏) 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏)

+ 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< 𝜀0.

(87)

Thus we get

𝑧 (𝑡) ∈ 𝜉𝑐 ({𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0 ≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, ‖𝜔‖∞ ≤ 𝑟}) + 𝐵𝜀0 (𝑋) , (88)

where 𝑐(𝐾) denotes the convex hull of 𝐾. Using that 𝑆𝛼(⋅) is
strongly continuous, we infer that

𝐾 = {𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0
≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, ‖𝜔‖∞ ≤ 𝑟} (89)

is a relatively compact set and 𝑉 ⊂ 𝜉𝑐(𝐾) + 𝐵𝜀0(𝑋), which
implies that 𝑉 is a relatively compact subset of 𝑋.

Next, we verify the equicontinuity of the set {(Γ2𝜔)(𝑡) :𝜔(𝑡) ∈ Ω𝑘0}.
Let 𝑘 > 0 be small enough and 𝑡1, 𝑡2 ∈ R and 𝜔(𝑡) ∈ Ω𝑘0 .

Then by (55) we have

󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡2) − (Γ2𝜔) (𝑡1)󵄩󵄩󵄩󵄩󵄩 ≤ ∫𝑡2
𝑡1

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠)
⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1−𝑘
−∞

󵄩󵄩󵄩󵄩[𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)]
⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
+ ∫𝑡1
𝑡1−𝑘

󵄩󵄩󵄩󵄩[𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)]
⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝐶𝑀Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + ‖V‖∞))
⋅ ∫𝑡2
𝑡1

𝛽 (𝑠)
1 + |𝜔| (𝑡2 − 𝑠)𝛼 d𝑠 + Φ ((1 + ‖𝐵‖L(𝑋)) (𝑘0

+ ‖V‖∞)) sup
𝑠∈[−∞,𝑡1−𝑘]

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩
⋅ ∫𝑡1−𝑘
−∞

𝛽 (𝑠) d𝑠 + 𝐶𝑀Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0
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+ ‖V‖∞)) ∫
𝑡1

𝑡1−𝑘
( 𝛽 (𝑠)
1 + |𝜔| (𝑡2 − 𝑠)𝛼

+ 𝛽 (𝑠)
1 + |𝜔| (𝑡1 − 𝑠)𝛼) d𝑠 󳨀→ 0

as 𝑡2 − 𝑡1 󳨀→ 0, 𝑘 󳨀→ 0,
(90)

which implies the equicontinuity of the set {(Γ2𝜔)(𝑡) : 𝜔(𝑡) ∈Ω𝑘0}.
Now an application of Lemma 18 justifies the compact-

ness of Γ2.
Step 5. Show that (39) has at least one asymptotically almost
automorphic mild solution.

Firstly, the complete continuity of Γ2, together with the
results of Steps 2 and 3 as well as Lemma 19, yields that Γ
has at least one fixed point 𝜔(𝑡) ∈ Ω𝑘0 ; furthermore 𝜔(𝑡) ∈𝐶0(R, 𝑋).

Then, consider the following coupled system of integral
equations:

V (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)) d𝑠, 𝑡 ∈ R,

𝜔 (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠)
⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))] d𝑠 + ∫𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠,
𝑡 ∈ R.

(91)

From the result of Step 1, together with the above fixed point𝜔(𝑡) ∈ 𝐶0(R, 𝑋), it follows that
(V (𝑡) , 𝜔 (𝑡)) ∈ 𝐴𝐴 (R, 𝑋) × 𝐶0 (R, 𝑋) (92)

is a solution to system (91). Thus

𝑥 (𝑡) fl V (𝑡) + 𝜔 (𝑡) ∈ 𝐴𝐴𝐴 (R, 𝑋) (93)

and it is a solution to the integral equation

𝑥 (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) d𝑠, 𝑡 ∈ R; (94)

that is, 𝑥(𝑡) is an asymptotically almost automorphic mild
solution to (39).

Taking 𝐴 = −𝜌𝛼𝐼 with 𝜌 > 0 in (39), the above theorem
gives the following corollary.

Corollary 25. Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy (𝐻1) and(𝐻2). Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Then (39) admits at least one
asymptotically almost automorphic mild solution whenever

𝐶𝐿 (1 + ‖𝐵‖L(𝑋)) 𝜌𝜋𝛼 sin (𝜋/𝛼) + 𝐶 (1 + ‖𝐵‖L(𝑋)) 𝜌1𝜌2 < 1. (95)

Remark 26. It is interesting to note that the function 𝛼 󳨀→𝛼sin(𝜋/𝛼)/𝜌𝜋 is increasing from 0 to 2/𝜌𝜋 in the interval 1 <𝛼 < 2. Therefore, with respect to condition (61), the class of
admissible terms 𝐹1(𝑡, 𝑥(𝑡), 𝐵𝑥(𝑡)) is the best in the case 𝛼 = 2
and the worst in the case 𝛼 = 1.

Theorem 24 can be extended to the case of 𝐹1(𝑡, 𝑥, 𝑦)
being locally Lipschitz continuous with respect to 𝑥 and 𝑦,
where we have the following result.(𝐻󸀠1) 𝐹(𝑡, 𝑥, 𝑦) = 𝐹1(𝑡, 𝑥, 𝑦) + 𝐹2(𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴𝐴(R × 𝑋 ×𝑋,𝑋) with

𝐹1 (𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) ,
𝐹2 (𝑡, 𝑥, 𝑦) ∈ 𝐶0 (R × 𝑋 × 𝑋,𝑋) (96)

and for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋, 𝑡 ∈ R,
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑥2) − 𝐹1 (𝑡, 𝑦1, 𝑦2)󵄩󵄩󵄩󵄩

≤ 𝐿 (𝑡) (󵄩󵄩󵄩󵄩𝑥1 − 𝑦1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥2 − 𝑦2󵄩󵄩󵄩󵄩) ,
(97)

where 𝐿(𝑡) is a function on R.

Theorem 27. Assume that 𝐴 is sectorial of type 𝜔 < 0. Let𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy the hypotheses (𝐻󸀠1) and (𝐻2)
with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Let ‖𝐿‖ =
sup𝑡∈R ∫𝑡+1𝑡 𝐿(𝑠)d𝑠. Then (39) has at least one asymptotically
almost automorphic mild solution provided that

𝐶𝑀𝐿 ‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼)
+ 𝐶𝑀𝜌1𝜌2 (1 + ‖𝐵‖L(𝑋)) < 1.

(98)

Proof. The proof is divided into the following five steps.

Step 1. Define a mapping Λ on 𝐴𝐴(R, 𝑋) by (62) and prove
that Λ has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

Firstly, similar to the proof in Step 1 of Theorem 24, we
can prove that (ΛV)(𝑡) exists. Moreover from 𝐹1(𝑡, 𝑥, 𝑦) ∈𝐴𝐴(R × 𝑋 × 𝑋,𝑋) satisfying (97), together with Lemma 6
and Remark 8, it follows that

𝐹1 (⋅, V (⋅) , 𝐵V (⋅)) ∈ 𝐴𝐴 (R, 𝑋)
for every V (⋅) ∈ 𝐴𝐴 (R, 𝑋) . (99)

This, together with Lemma 21, implies that Λ is well defined
and maps 𝐴𝑃(R, 𝑋) into itself.

In the sequel, we verify that Λ is continuous.
Let V𝑛(𝑡), V(𝑡) be in 𝐴𝐴(R, 𝑋)with V𝑛(𝑡) 󳨀→ V(𝑡) as 𝑛 󳨀→∞; then one has

󵄩󵄩󵄩󵄩[ΛV𝑛] (𝑡) − [ΛV] (𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V𝑛 (𝑠) , 𝐵V𝑛 (𝑠))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ ∫𝑡
−∞

𝐿 (𝑠) 󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡
− 𝑠)󵄩󵄩󵄩󵄩 [󵄩󵄩󵄩󵄩V𝑛 (𝑠) − V (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵V𝑛 (𝑠) − 𝐵V (𝑠)󵄩󵄩󵄩󵄩] d𝑠
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≤ 𝐶𝑀∫𝑡
−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V𝑛 (𝑠)

− V (𝑠)󵄩󵄩󵄩󵄩 d𝑠 ≤ 𝐶𝑀(1 + ‖𝐵‖L(𝑋))
⋅ (+∞∑
𝑚=0

∫𝑡−𝑚
𝑡−(𝑚+1)

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀(1 + ‖𝐵‖L(𝑋))
⋅ (+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼 ∫

𝑡−𝑚

𝑡−(𝑚+1)
𝐿 (𝑠) d𝑠) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V𝑛 − V󵄩󵄩󵄩󵄩∞ .
(100)

Therefore, as 𝑛 󳨀→ ∞ and ΛV𝑛 󳨀→ ΛV, hence Λ is
continuous.

Next, we prove that Λ is a contraction on 𝐴𝐴(R, 𝑋) and
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

In fact, for V1(𝑡), V2(𝑡) in 𝐴𝐴(R, 𝑋), similar to the above
proof of the continuity of Λ, one has

󵄩󵄩󵄩󵄩(ΛV1) (𝑡) − (ΛV2) (𝑡)󵄩󵄩󵄩󵄩
≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2

󵄩󵄩󵄩󵄩∞ , (101)

which implies that
󵄩󵄩󵄩󵄩(ΛV1) (𝑡) − (ΛV2) (𝑡)󵄩󵄩󵄩󵄩∞

≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩∞ . (102)

Hence, by (98), together with the contraction principle,Λ has
a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).
Step 2. Set

Ω𝑟 fl {𝜔 (𝑡) ∈ 𝐶0 (R, 𝑋) : ‖𝜔 (𝑡)‖ ≤ 𝑟} . (103)

For the above V(𝑡), define Γ fl Γ1+Γ2 on𝐶0(R, 𝑋) as (69) and
prove that ΓmapsΩ𝑘0 into itself, where 𝑘0 is a given constant.

Firstly, from (97) it follows that, for all 𝑠 ∈ R, 𝜔(𝑠) ∈ 𝑋,
󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))

− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖]
≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ ,

(104)

which together with 𝐿(𝑠) ∈ 𝐵𝐶(R,R+) implies that

𝐹1 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅)))
− 𝐹1 (⋅, V (⋅) , 𝐵V (⋅)) ∈ 𝐶0 (R, 𝑋)

for every 𝜔 (⋅) ∈ 𝐶0 (R, 𝑋) .
(105)

According to (55), one has󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑠)
⋅ Φ(‖𝜔 (𝑠) + 𝐵𝜔 (𝑠)‖ + sup

𝑠∈R
‖V (𝑠) + 𝐵V (𝑠)‖)

≤ 𝛽 (𝑠) Φ((1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖

+ (1 + ‖𝐵‖L(𝑋)) sup
𝑠∈R

‖V (𝑠)‖) ≤ 𝛽 (𝑠)

⋅ Φ((1 + ‖𝐵‖L(𝑋)) [‖𝜔 (𝑠)‖ + sup
𝑠∈R

‖V (𝑠)‖])

(106)

for all 𝑠 ∈ R and 𝜔(𝑠) ∈ 𝑋 with ‖𝜔(𝑠)‖ ≤ 𝑟; then
𝐹2 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) ∈ 𝐶0 (R, 𝑋)

as 𝛽 (⋅) ∈ 𝐶0 (R,R+) . (107)

Those, together with Lemma 21, yield that Γ is well defined
and maps 𝐶0(R, 𝑋) into itself.

On the other hand, in view of (55) and (98) it is not
difficult to see that there exists a constant 𝑘0 > 0 such that

𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 𝑘0
+ 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + sup

𝑠∈R
‖V (𝑠)‖))

≤ 𝑘0.

(108)

This enables us to conclude that, for any 𝑡 ∈ R and 𝜔1(𝑡),𝜔2(𝑡) ∈ Ω𝑘0 ,
󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) + (Γ2𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫

𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫𝑡
−∞

𝐿 (𝑠) 󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 [󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠)󵄩󵄩󵄩󵄩] d𝑠 + 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼Φ

⋅ (󵄩󵄩󵄩󵄩𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖ + ‖𝐵V (𝑠)‖)d𝑠
≤ 𝐶𝑀∫𝑡

−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋))

⋅ 󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩 d𝑠 + 𝐶𝑀∫𝑡
−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼Φ ((1

+ ‖ 𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2 (𝑠)󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖) d𝑠 ≤ 𝐶𝑀(1
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+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ ∫𝑡
−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

+ 𝐶𝑀𝜎 (𝑡) Φ((1 + ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞
+ sup
𝑠∈R

‖V (𝑠)‖))

≤ 𝐶𝑀(+∞∑
𝑚=0

∫𝑡−𝑚
𝑡−(𝑚+1)

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠) (1

+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ + 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋))

⋅ (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩∞ + sup
𝑠∈R

‖V (𝑠)‖))

≤ 𝐶𝑀(+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼 ∫

𝑡−𝑚

𝑡−(𝑚+1)
𝐿 (𝑠) d𝑠) (1

+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1󵄩󵄩󵄩󵄩∞ + 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0

+ sup
𝑠∈R

‖V (𝑠)‖)) ≤ 𝐶𝑀(+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼) ‖𝐿‖ (1

+ ‖𝐵‖L(𝑋)) 𝑘0 + 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋))(𝑘0

+ sup
𝑠∈R

‖V (𝑠)‖))

= 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 𝑘0
+ 𝐶𝑀𝜌2Φ((1 + ‖𝐵‖L(𝑋)) (𝑘0 + sup

𝑠∈R
‖V (𝑠)‖))

≤ 𝑘0,
(109)

which implies that (Γ1𝜔1)(𝑡) + (Γ2𝜔2)(𝑡) ∈ Ω𝑘0 . Thus Γ mapsΩ𝑘0 into itself.
Step 3. Show that Γ1 is a contraction onΩ𝑘0 .

In fact, for any 𝜔1(𝑡), 𝜔2(𝑡) ∈ Ω𝑘0 and 𝑡 ∈ R, from (97) it
follows that

󵄩󵄩󵄩󵄩[𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]
− [𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠) − 𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩] ≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)
− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 .

(110)

Thus

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) [(𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))

− (𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))] d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ ∫𝑡
−∞

𝐿 (𝑠) 󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)

− 𝜔2 (𝑠)󵄩󵄩󵄩󵄩d𝑠 ≤ 𝐶𝑀∫𝑡
−∞

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 d𝑠

≤ 𝐶𝑀(+∞∑
𝑚=0

∫𝑡−𝑚
𝑡−(𝑚+1)

𝐿 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠) (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝑀(+∞∑

𝑚=0

1
1 + |𝜔|𝑚𝛼 ∫

𝑡−𝑚

𝑡−(𝑚+1)
𝐿 (𝑠) d𝑠) (1

+ ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝑀(+∞∑
𝑚=0

1
1 + |𝜔|𝑚𝛼) ‖𝐿‖ (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞

= 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ ,

(111)

which implies that

󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩∞
≤ 𝐶𝑀‖𝐿‖ |𝜔|−1/𝛼 𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) 󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄩󵄩󵄩󵄩∞ .

(112)

Thus, in view of (98), one obtains the conclusion.

Step 4. Show that Γ2 is completely continuous on Ω𝑘0 .
The proof is similar to the proof in Step 4 of Theorem 24.

Step 5. Show that (39) has at least one asymptotically almost
automorphic mild solution.
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The proof is similar to the proof in Step 5 of Theorem 24.

Taking 𝐴 = −𝜌𝛼𝐼 with 𝜌 > 0 in (39), Theorem 27 gives
the following corollary.

Corollary 28. Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy (𝐻󸀠1) and(𝐻2) with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Put 𝜌2 fl sup𝑡∈R𝜎(𝑡). Let ‖𝐿‖ =
sup𝑡∈R ∫𝑡+1𝑡 𝐿(𝑠)d𝑠.Then (39) admits at least one asymptotical-
ly almost automorphic mild solution whenever

𝐶 ‖𝐿‖ 𝜌𝜋 (1 + ‖𝐵‖L(𝑋))𝛼 sin (𝜋/𝛼) + 𝐶𝜌1𝜌2 (1 + ‖𝐵‖L(𝑋)) < 1. (113)

Now we consider a more general case of equations intro-
ducing a new class of functions 𝐿(𝑡). We have the following
result.

(𝐻󸀠2) There exists a function 𝛽(𝑡) ∈ 𝐶0(R,R+) such that,
for all 𝑡 ∈ R and 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑡) (‖𝑥‖ + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩) . (114)

Theorem 29. Assume that 𝐴 is sectorial of type 𝜔 < 0.
Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy the hypotheses (𝐻󸀠1)
and (𝐻󸀠2) with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Moreover the integral
∫𝑡−∞max{𝐿(𝑠), 𝛽(𝑠)}d𝑠 exists for all 𝑡 ∈ R. Then (39) has at
least one asymptotically almost automorphic mild solution.

Proof. The proof is divided into the following five steps.

Step 1. Define a mapping Λ on 𝐴𝐴(R, 𝑋) by (62) and prove
that Λ has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

Firstly, similar to the proof in Step 1 ofTheorem 27,we can
prove that Λ is well defined and maps 𝐴𝑃(R, 𝑋) into itself;
moreover Λ is continuous.

Next, we prove that Λ is a contraction on 𝐴𝐴(R, 𝑋) and
has a unique fixed point V(𝑡) ∈ 𝐴𝐴(R, 𝑋).

In fact, for V1(𝑡), V2(𝑡) is in 𝐴𝐴(R, 𝑋) and defines a new
norm

|‖𝑥‖| fl sup
𝑡∈R

{𝜇 (𝑡) ‖𝑥 (𝑡)‖} , (115)

where 𝜇(𝑡) fl 𝑒−𝑘∫𝑡−∞ max{𝐿(𝑠),𝛽(𝑠)}d𝑠 and 𝑘 is a fixed positive
constant. Let 𝐶𝛼 fl sup𝑡∈R‖𝑆𝛼(𝑡)‖; then we have

𝜇 (𝑡) 󵄩󵄩󵄩󵄩ΛV1 (𝑡) − ΛV2 (𝑡)󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝜎)

⋅ [𝐹1 (𝜎, V1 (𝜎) , 𝐵V1 (𝜎))
− 𝐹1 (𝜎, V2 (𝜎) , 𝐵V2 (𝜎))] d𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝛼 ∫

𝑡

−∞
𝜇 (𝑡) 𝐿 (𝜎) [󵄩󵄩󵄩󵄩V1 (𝜎) − V2 (𝜎)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵V1 (𝜎)

− 𝐵V2 (𝜎)󵄩󵄩󵄩󵄩] d𝜎 = 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝜎) 𝐿 (𝜎)

⋅ 𝜇 (𝜎)−1 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩V1 (𝜎) − V2 (𝜎)󵄩󵄩󵄩󵄩 d𝜎
≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝜇 (𝑡) 𝜇 (𝜎)−1

⋅ 𝐿 (𝜎) d𝜎 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝐿 (𝜎) d𝜎

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎 𝐿(𝜏)d𝜏𝐿 (𝜎) d𝜎

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

⋅ ∫𝑡
−∞

d
d𝜎 (𝑒𝑘∫𝜎𝑡 𝐿(𝜏)d𝜏) d𝜎

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝐿(𝜏)d𝜏) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩V1 − V2
󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ,

(116)

which implies that

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩Λ𝑥 (𝑡) − Λ𝑦 (𝑡)󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 . (117)

Hence Λ has a unique fixed point 𝑥 ∈ 𝐴𝐴(R, 𝑋) when 𝑘 is
greater than 𝐶𝛼(1 + ‖𝐵‖L(𝑋)).
Step 2. Set Θ𝑟 fl {𝜔(𝑡) ∈ 𝐶0(R, 𝑋) : |‖𝜔(𝑡)‖| ≤ 𝑟}. For the
above V(𝑡), define Γ fl Γ1 + Γ2 on 𝐶0(R, 𝑋) as (69) and prove
that Γmaps Θ𝑘0 into itself, where 𝑘0 is a given constant.

Firstly, from (97) it follows that, for all 𝑠 ∈ R, 𝜔(𝑠) ∈ 𝑋,
󵄩󵄩󵄩󵄩𝐹1 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))

− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖]
≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ + ‖𝐵𝜔 (𝑠)‖ ,

(118)

which together with 𝐿(𝑠) ∈ 𝐵𝐶(R,R+) implies that

𝐹1 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) − 𝐹1 (⋅, V (⋅) , 𝐵V (⋅))
∈ 𝐶0 (R, 𝑋) for every 𝜔 (⋅) ∈ 𝐶0 (R, 𝑋) . (119)

According to (114), one has
󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 ≤ 𝛽 (𝑠)

⋅ (‖𝜔 (𝑠) + 𝐵𝜔 (𝑠)‖ + ‖V (𝑠) + 𝐵V (𝑠)‖) ≤ 𝛽 (𝑠)
⋅ ((1 + ‖𝐵‖L(𝑋)) ‖𝜔 (𝑠)‖ + (1 + ‖𝐵‖L(𝑋)) ‖V (𝑠)‖)
≤ 𝛽 (𝑠) ((1 + ‖𝐵‖L(𝑋)) [‖𝜔 (𝑠)‖ + ‖V (𝑠)‖])

(120)
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for all 𝑠 ∈ R and 𝜔(𝑠) ∈ 𝑋 with ‖𝜔(𝑠)‖ ≤ 𝑟; then
𝐹2 (⋅, V (⋅) + 𝜔 (⋅) , 𝐵 (V (⋅) + 𝜔 (⋅))) ∈ 𝐶0 (R, 𝑋)

as 𝛽 (⋅) ∈ 𝐶0 (R,R+) . (121)

Those, together with Lemma 21, yield that Γ is well defined
and maps 𝐶0(R, 𝑋) into itself.

On the other hand, it is not difficult to see that there exists
a constant 𝑘0 > 0 such that

2𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 𝑘0 + 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 |‖V (𝑠)|‖
≤ 𝑘0,

(122)

when 𝑘 is large enough. This enables us to conclude that, for
any 𝑡 ∈ R and 𝜔1(𝑡), 𝜔2(𝑡) ∈ Θ𝑘0 ,

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) + (Γ2𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ [𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]d𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 + 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡

− 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝐿 (𝑠) (󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠)󵄩󵄩󵄩󵄩) d𝑠

+ 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝛽 (𝑠) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖ + 󵄩󵄩󵄩󵄩𝐵𝜔2󵄩󵄩󵄩󵄩

+ ‖𝐵V (𝑠)‖) d𝑠 = 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝑠) 𝐿 (𝑠) 𝜇 (𝑠)−1

⋅ (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝑠)󵄩󵄩󵄩󵄩 d𝑠 + 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝑠)

⋅ 𝛽 (𝑠) 𝜇 (𝑠)−1 (1 + ‖𝐵‖L(𝑋)) (󵄩󵄩󵄩󵄩𝜔2󵄩󵄩󵄩󵄩 + ‖V (𝑠)‖) d𝑠
≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡

−∞
𝜇 (𝑡) 𝜇 (𝑠)−1 𝐿 (𝑠) d𝑠

+ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ ) ∫𝑡
−∞

𝜇 (𝑡)

⋅ 𝜇 (𝑠)−1 𝛽 (𝑠) d𝑠 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝐿 (𝑠) d𝑠 + 𝐶𝛼 (1

+ ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ )
⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝛽 (𝑠) d𝑠

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
⋅ ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 𝐿(𝜏)d𝜏𝐿 (𝑠) d𝑠 + 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))

⋅ (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ ) ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑠𝑡 𝛽(𝜏)d𝜏𝛽 (𝑠) d𝑠

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

d
d𝑠 (𝑒𝑘 ∫𝑠𝑡 𝐿(𝜏)d𝜏) d𝑠

+ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ )
⋅ ∫𝑡
−∞

d
d𝑠 (𝑒𝑘 ∫𝑠𝑡 𝛽(𝜏)d𝜏) d𝑠

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝐿(𝜏)d𝜏) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
+ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝛽(𝜏)d𝜏) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
+ |‖V (𝑠)|‖ ) ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + 𝐶𝛼𝑘 (1
+ ‖𝐵‖L(𝑋)) (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V (𝑠)|‖ ) ≤ 𝑘0,

(123)

which implies that (Γ1𝜔1)(𝑡) + (Γ2𝜔2)(𝑡) ∈ Θ𝑘0 . Thus Γ mapsΘ𝑘0 into itself.
Step 3. Show that Γ1 is a contraction on Θ𝑘0 .

In fact, for any 𝜔1(𝑡), 𝜔2(𝑡) ∈ Θ𝑘0 and 𝑡 ∈ R, from (97) it
follows that

󵄩󵄩󵄩󵄩[𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]
− [𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠)))
− 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠))]󵄩󵄩󵄩󵄩 ≤ 𝐿 (𝑠) [󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝐵𝜔1 (𝑠) − 𝐵𝜔2 (𝑠)󵄩󵄩󵄩󵄩] ≤ 𝐿 (𝑠) (1 + ‖𝐵‖L(𝑋))
⋅ 󵄩󵄩󵄩󵄩𝜔1 (𝑠) − 𝜔2 (𝑠)󵄩󵄩󵄩󵄩 .

(124)

Thus

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠) [(𝐹1 (𝑠, V (𝑠) + 𝜔1 (𝑠) , 𝐵 (V (𝑠) + 𝜔1 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))

− (𝐹1 (𝑠, V (𝑠) + 𝜔2 (𝑠) , 𝐵 (V (𝑠) + 𝜔2 (𝑠))) − 𝐹1 (𝑠, V (𝑠) , 𝐵V (𝑠)))] d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶𝛼 ∫

𝑡

−∞
𝜇 (𝑡) 𝐿 (𝜎) (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝜎)
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− 𝜔2 (𝜎)󵄩󵄩󵄩󵄩 d𝜎 = 𝐶𝛼 ∫
𝑡

−∞
𝜇 (𝑡) 𝜇 (𝜎) 𝐿 (𝜎) 𝜇 (𝜎)−1 (1 + ‖𝐵‖L(𝑋)) 󵄩󵄩󵄩󵄩𝜔1 (𝜎) − 𝜔2 (𝜎)󵄩󵄩󵄩󵄩 d𝜎 ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋)) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1

− 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝜇 (𝑡) 𝜇 (𝜎)−1 𝐿 (𝜎) d𝜎 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎 max{𝐿(𝜏),𝛽(𝜏)}d𝜏𝐿 (𝜎) d𝜎

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

𝑘𝑒−𝑘∫𝑡𝜎 𝐿(𝜏)d𝜏𝐿 (𝜎) d𝜎 = 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ∫𝑡
−∞

d
d𝜎 (𝑒𝑘∫𝜎𝑡 𝐿(𝜏)d𝜏) d𝜎

= 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 (1 − 𝑒−𝑘∫𝑡−∞ 𝐿(𝜏)d𝜏) 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 ,
(125)

which implies
󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩 (Γ1𝜔1) (𝑡) − (Γ1𝜔2) (𝑡)󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝛼 (1 + ‖𝐵‖L(𝑋))𝑘 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔1 − 𝜔2󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 .
(126)

Thus, when 𝑘 is greater than 𝐶𝛼(1 + ‖𝐵‖L(𝑋)), one obtains the
conclusion.

Step 4. Show that Γ2 is completely continuous on Θ𝑘0 .
Given 𝜀 > 0. Let {𝜔𝑛}+∞𝑛=1 ⊂ Θ𝑘0 with 𝜔𝑛 󳨀→ 𝜔0 in Θ𝑘0 as𝑛 󳨀→ +∞. Since 𝜎(𝑡) ∈ 𝐶0(R,R+), one may choose a 𝑡1 > 0

big enough such that, for all 𝑡 ≥ 𝑡1,
(1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ) 𝜎 (𝑡) < 𝜀

3𝐶𝑀. (127)

Also, in view of (𝐻󸀠1), we have
𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))

󳨀→ 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) (128)

for all 𝑠 ∈ (−∞, 𝑡1] as 𝑘 󳨀→ +∞ and

𝜇 (⋅) 󵄩󵄩󵄩󵄩𝐹2 (⋅, V (⋅) + 𝜔𝑛 (⋅) , 𝐵 (V (⋅) + 𝜔𝑛 (⋅)))
− 𝐹2 (⋅, V (⋅) + 𝜔0 (⋅) , 𝐵V (⋅) + 𝜔0 (⋅)) )󵄩󵄩󵄩󵄩 ≤ 𝜇 (⋅)
⋅ 𝛽 (⋅) (󵄩󵄩󵄩󵄩𝜔𝑛 (⋅)󵄩󵄩󵄩󵄩 + ‖V (⋅)‖ + 󵄩󵄩󵄩󵄩𝐵𝜔𝑛 (⋅)󵄩󵄩󵄩󵄩 + ‖𝐵V (⋅)‖
+ 󵄩󵄩󵄩󵄩𝜔0 (⋅)󵄩󵄩󵄩󵄩 + ‖V (⋅)‖ + 󵄩󵄩󵄩󵄩𝐵𝜔0 (⋅)󵄩󵄩󵄩󵄩 + ‖𝐵V (⋅)‖) ≤ 𝛽 (⋅)
⋅ (󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔𝑛󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖V|‖ + 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝐵𝜔𝑛󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖𝐵V|‖ + 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝜔0󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩
+ |‖V|‖ + 󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝐵𝜔0󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 + |‖𝐵V|‖ ) ≤ 𝛽 (⋅)
⋅ (2 (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ )) ∈ 𝐿1 (−∞, 𝑡1] .

(129)

Hence, by the Lebesgue dominated convergence theorem we
deduce that there exists an 𝑁 > 0 such that

𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))

− 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝜀

3
(130)

whenever 𝑘 ≥ 𝑁. Thus

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ2𝜔𝑘) (𝑡) − (Γ2𝜔0) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠))) d𝑠
− ∫𝑡
−∞

S𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠))) d𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))
− 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩d𝑠
+ 𝐶𝑀(2 (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ))
⋅ ∫max{𝑡,𝑡1}

𝑡1

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 d𝑠

≤ 𝐶𝑀∫𝑡1
−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔𝑘 (𝑠) , 𝐵 (V (𝑠) + 𝜔𝑘 (𝑠)))
− 𝐹2 (𝑠, V (𝑠) + 𝜔0 (𝑠) , 𝐵 (V (𝑠) + 𝜔0 (𝑠)))󵄩󵄩󵄩󵄩d𝑠
+ 𝐶𝑀𝜎 (𝑡) (2 (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ )) ≤ 𝜀

3
+ 2𝜀

3 = 𝜀

(131)

whenever 𝑘 ≥ 𝑁. Accordingly, Γ2 is continuous on Θ𝑘0 .
In the sequel, we consider the compactness of Γ2.
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Set 𝐵𝑟(𝑋) for the closed ball with center at 0 and radius 𝑟
in 𝑋, 𝑉 = Γ2(Θ𝑘0), and 𝑧(𝑡) = Γ2(𝑢(𝑡)) for 𝑢(𝑡) ∈ Θ𝑘0 . First,
for all 𝜔(𝑡) ∈ Θ𝑘0 and 𝑡 ∈ R,

𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡)󵄩󵄩󵄩󵄩󵄩 = 𝜇 (𝑡) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

−∞
𝑆𝛼 (𝑡 − 𝑠)

⋅ 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑀∫𝑡

−∞

1
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡)

⋅ 󵄩󵄩󵄩󵄩𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄩󵄩󵄩󵄩 d𝑠
≤ 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡) (‖V (𝑠)‖ + ‖𝜔 (𝑠) )

+ ‖𝐵V (𝑠)‖ + ‖𝐵𝜔 (𝑠) )‖) d𝑠
≤ 𝐶𝑀∫𝑡

−∞

𝛽 (𝑠)
1 + |𝜔| (𝑡 − 𝑠)𝛼 𝜇 (𝑡) (1 + ‖𝐵‖L(𝑋))

⋅ (‖V (𝑠)‖ + ‖𝜔 (𝑠) ) ) d𝑠 ≤ 𝐶𝑀𝜎 (𝑡) (1
+ ‖𝐵‖L(𝑋)) (𝑘0 + |‖V (𝑠)|‖ ) ,

(132)

in view of 𝜎(𝑡) ∈ 𝐶0(R,R+) which follows from Lemma 23;
one concludes that

lim
|𝑡|󳨀→+∞

(Γ2𝜔) (𝑡) = 0 uniformly for 𝜔 (𝑡) ∈ Θ𝑘0 . (133)

as

(Γ2𝜔) (𝑡) = ∫𝑡
−∞

𝑆𝛼 (𝑡 − 𝑠) 𝐹2 (𝑠, V (𝑠)
+ 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠 = ∫+∞

0
𝑆𝛼 (𝜏)

⋅ 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏)
+ 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏.

(134)

Hence, for given 𝜀0 > 0, one can choose a 𝜉 > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
+∞

𝜉
𝑆𝛼 (𝜏) 𝐹2 (𝑡 − 𝜏, V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏) , 𝐵 (V (𝑡 − 𝜏) + 𝜔 (𝑡 − 𝜏))) d𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < 𝜀0. (135)

Thus we get

𝑧 (𝑡) ∈ 𝜉𝑐 ({𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0 ≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, |‖𝜔|‖ ≤ 𝑘0}) + 𝐵𝜀0 (Θ𝑘0) , (136)

where 𝑐(𝐾) denotes the convex hull of 𝐾. Using the fact that𝑆𝛼(⋅) is strongly continuous, we infer that
𝐾 = {𝑆𝛼 (𝜏) 𝐹2 (𝜆, V (𝜆) + 𝜔 (𝜆) , 𝐵 (V (𝜆) + 𝜔 (𝜆))) : 0

≤ 𝜏 ≤ 𝜉, 𝑡 − 𝜉 ≤ 𝜆 ≤ 𝜉, |‖𝜔|‖ ≤ 𝑘0} (137)

is a relatively compact set and 𝑉 ⊂ 𝜉𝑐(𝐾) + 𝐵𝜀0(Θ𝑘0), which
implies that 𝑉 is a relatively compact subset of Θ𝑘0 .

Next, we verify the equicontinuity of the set {(Γ2𝜔)(𝑡) :𝜔(𝑡) ∈ Θ𝑘0}, given 𝜀1 > 0. In view of (114), together with the
continuity of {𝑆𝛼(𝑡)}𝑡>0, there exists an 𝜂 > 0 such that, for all𝜔(𝑡) ∈ Ω𝑘0 and 𝑡2 ≥ 𝑡1 with 𝑡2 − 𝑡1 < 𝜂,

∫𝑡2
𝑡1

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀14 ,

∫𝑡1
𝑡1−𝜂

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀14 .
(138)

Also, one can choose a 𝑘 > 0 such that

∫𝑡1−𝜂
𝑡1−𝑘

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀14
(1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ) sup

𝑠∈[−∞,𝑡1−𝑘]

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩 ∫
𝑡1−𝑘

−∞
𝛽 (𝑠) d𝑠 < 𝜀14 ,

(139)
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which implies that, for all 𝜔(𝑡) ∈ Ω𝑘0 and 𝑡2 ≥ 𝑡1,

∫𝑡1−𝑘
−∞

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

≤ (1 + ‖𝐵‖L(𝑋)) (𝑘0 + |‖V|‖ ) sup
𝑠∈[−∞,𝑡1−𝑘]

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩 ∫
𝑡1−𝑘

−∞
𝛽 (𝑠) d𝑠 < 𝜀14 .

(140)

Then one has

󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩(Γ2𝜔) (𝑡2) − (Γ2𝜔) (𝑡1)󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩󵄩
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡2

−∞
𝑆𝛼 (𝑡2 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠 − ∫𝑡1

−∞
𝑆𝛼 (𝑡1 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠))) d𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ ∫𝑡2
𝑡1

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡2 − 𝑠) 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1
𝑡1−𝜂

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1−𝑘
−∞

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠

+ ∫𝑡1−𝜂
𝑡1−𝑘

󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 [𝑆𝛼 (𝑡2 − 𝑠) − 𝑆𝛼 (𝑡1 − 𝑠)] 𝐹2 (𝑠, V (𝑠) + 𝜔 (𝑠) , 𝐵 (V (𝑠) + 𝜔 (𝑠)))󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩 d𝑠 < 𝜀1,

(141)

which implies the equicontinuity of the set {(Γ2𝜔)(𝑡) : 𝜔(𝑡) ∈Θ𝑘0}.
Now an application of Lemma 18 justifies the compact-

ness of Γ2.
Step 5. Show that (39) has at least one asymptotically almost
automorphic mild solution.

The proof is similar to the proof in Step 5 of Theorem 24.

Taking 𝐴 = −𝜌𝛼𝐼 with 𝜌 > 0 in (39), Theorem 29 gives
the following corollary.

Corollary 30. Let 𝐹 : R × 𝑋 × 𝑋 󳨀→ 𝑋 satisfy (𝐻󸀠1)
and (𝐻󸀠2) with 𝐿(𝑡) ∈ 𝐵𝐶(R,R+). Moreover the integral
∫𝑡−∞max{𝐿(𝑠), 𝛽(𝑠)}d𝑠 exists for all 𝑡 ∈ R. Then (39) has at
least one asymptotically almost automorphic mild solution.

4. Applications

In this section we give an example to illustrate the above
results.

Consider the following fractional relaxation-oscillation
equation:

𝜕𝛼𝑡 𝑢 (𝑡, 𝑥) = 𝜕2𝑥𝑢 (𝑡, 𝑥) − 𝑝𝑢 (𝑡, 𝑥)
+ 𝜕𝛼−1𝑡 [𝜇𝑎 (𝑡) sin( 1

2 + cos 𝑡 + cos√2𝑡)

× [sin 𝑢 (𝑡, 𝑥) + 𝑢 (𝑡, 𝑥)]
+ ]𝑒−|𝑡| [𝑢 (𝑡, 𝑥) + sin 𝑢 (𝑡, 𝑥)]] ,

𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,
𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ R,

(142)

where 𝑎(𝑡) ∈ 𝐵𝐶(R,R+) is a function and 𝑝, 𝜇, and ] are
positive constants.

Take 𝑋 = 𝐿2([0, 𝜋]) and define the operator 𝐴 by

𝐴𝜑 fl 𝜑󸀠󸀠 − 𝑝𝜑, 𝜑 ∈ 𝐷 (𝐴) , (143)

where

𝐷 (𝐴) fl {𝜑 ∈ 𝑋 : 𝜑󸀠󸀠 ∈ 𝑋, 𝜑 (0) = 𝜑 (𝜋)} ⊂ 𝑋. (144)

It is well known that 𝐵𝑢 = 𝑢󸀠󸀠 is self-adjoint, with compact
resolvent, and is the infinitesimal generator of an analytic
semigroup on𝑋. Hence,𝑝𝐼−𝐵 is sectorial of type𝜔 = −𝑝 < 0.
Let

𝐹1 (𝑡, 𝑥 (𝜉) , 𝑦 (𝜉)) fl 𝜇𝑎 (𝑡)
⋅ sin( 1

2 + cos 𝑡 + cos√2𝑡) [sin 𝑥 (𝜉) + 𝑦 (𝜉)] ,
𝐹2 (𝑡, 𝑥 (𝜉) , 𝑦 (𝜉)) fl ]𝑒−|𝑡| [𝑥 (𝜉) + sin 𝑦 (𝜉)] .

(145)
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Then it is easy to verify that 𝐹1, 𝐹2 : R × 𝑋 × 𝑋 󳨀→ 𝑋 are
continuous and 𝐹1(𝑡, 𝑥, 𝑦) ∈ 𝐴𝐴(R × 𝑋 × 𝑋,𝑋) satisfying

󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑦1) − 𝐹1 (𝑡, 𝑥2, 𝑦2)󵄩󵄩󵄩󵄩22
≤ ∫𝜋
0

𝜇2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎 (𝑡) sin( 1
2 + cos 𝑡 + cos√2𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

⋅ 󵄨󵄨󵄨󵄨[sin 𝑥1 (𝑠) + 𝑦1 (𝑠)] − [sin 𝑥2 (𝑠) + 𝑦2 (𝑠)]󵄨󵄨󵄨󵄨 d𝑠
≤ 𝜇2𝑎2 (𝑡) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin( 1

2 + cos 𝑡 + cos√2𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

⋅ (󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩22) ,

(146)

that is,
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑦1) − 𝐹1 (𝑡, 𝑥2, 𝑦2)󵄩󵄩󵄩󵄩2

≤ 𝜇𝑎 (𝑡) (󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩2)
∀𝑡 ∈ R, 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝑋;

(147)

furthermore
󵄩󵄩󵄩󵄩𝐹1 (𝑡, 𝑥1, 𝑦1) − 𝐹1 (𝑡, 𝑥2, 𝑦2)󵄩󵄩󵄩󵄩2

≤ 𝜇 ‖𝑎‖∞ (󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩2)
∀𝑡 ∈ R, 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝑋.

(148)

And

󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩22 ≤ ∫𝜋
0
]2𝑒−2|𝑡| 󵄨󵄨󵄨󵄨𝑥 (𝑠) + sin 𝑦 (𝑠)󵄨󵄨󵄨󵄨 d𝑠

≤ ]2𝑒−2|𝑡| (‖𝑥‖22 + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩22) ,
(149)

that is,
󵄩󵄩󵄩󵄩𝐹2 (𝑡, 𝑥, 𝑦)󵄩󵄩󵄩󵄩2 ≤ ]𝑒−|𝑡| (‖𝑥‖2 + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2)

∀𝑡 ∈ R, 𝑥, 𝑦 ∈ 𝑋, (150)

which implies 𝐹2(𝑡, 𝑥, 𝑦) ∈ 𝐶0(R × 𝑋 × 𝑋,𝑋). Furthermore

𝐹 (𝑡, 𝑥, 𝑦) = 𝐹1 (𝑡, 𝑥, 𝑦) + 𝐹2 (𝑡, 𝑥, 𝑦)
∈ 𝐴𝐴𝐴 (R × 𝑋 × 𝑋,𝑋) . (151)

Thus, (142) can be reformulated as the abstract problem (39)
and the assumptions (𝐻1) and (𝐻2) hold with

𝐿 = 𝜇 ‖𝑎‖∞ ,
Φ (𝑟) = 𝑟,
𝛽 (𝑡) = ]𝑒−|𝑡|,

𝜌1 = 1,
𝜌2 ≤ ],

(152)

the assumption (𝐻󸀠1) holds with 𝐿(𝑡) = 𝜇𝑎(𝑡), and the
assumption (𝐻󸀠2) holds.

In consequence, the fractional relaxation-oscillation
equation (142) has at least one asymptotically almost auto-
morphic mild solutions if either

𝜇𝐶𝑀‖𝑎‖∞ 𝜋 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨−1/𝛼𝛼 sin (𝜋/𝛼) + 𝐶𝑀] < 1
2 (153)

(Theorem 24) or

𝜇𝐶𝑀‖𝑎‖ 𝜋 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨−1/𝛼𝛼 sin (𝜋/𝛼) + 𝐶𝑀] < 1
2 (154)

(Theorem 27), where ‖𝑎‖ = sup𝑡∈R ∫𝑡+1𝑡 𝑎(𝑠)d𝑠 or the integral
∫𝑡
−∞

max {𝜇𝑎 (𝑠) , ]𝑒−|𝑡|} d𝑠 (155)

exists for all 𝑡 ∈ R (Theorem 29).
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The objective of this paper is to obtain an approximate solution for some well-known linear and nonlinear two-point boundary
value problems. For this purpose, a semianalytical method known as optimal homotopy asymptotic method (OHAM) is used.
Moreover, optimal homotopy asymptotic method does not involve any discretization, linearization, or small perturbations and that
is why it reduces the computations a lot. OHAM results show the effectiveness and reliability of OHAM for application to two-point
boundary value problems. The obtained results are compared to the exact solutions and homotopy perturbation method (HPM).

1. Introduction

Two-point boundary value problems (TPBVP) have many
applications in the field of science and engineering [1, 2].
These problems arise in many physical situations like mod-
eling of chemical reactions, heat transfer, viscous fluids, dif-
fusions, deflection of beams, the solution of optimal control
problems, etc. Due to thewide applications and importance of
boundary value problems (BVP) in science and engineering
we need solutions to these problems.

There are many techniques available for the solution of-
of BVP like Adomian Decomposition Method (ADM) [3–
7], Extended Adomian Decomposition Method (EADM)[8],
Differential Transformation Method (DTM) [9], Variational
Iteration Method (VIM) [10], Perturbation methods(PMs)
[1, 11–13], and so on. Perturbation methods are easy to solve
but they require small parameters which are sometimes not
an easy task. Recently V. Marinca et al. presented optimal
homotopy asymptotic method (OHAM) [14] for the solution
of BVP, which did not require small parameters. The method
can also be applied to solve the stationary solution of some
partial differential equations, e.g., gKdv equation, nonlinear
parabolic problems, and so on [15–20]. In OHAM, the

concept of homotopy is used together with the perturbation
techniques. Here, OHAM is applied to TPBVP to check the
applicability of OHAM for TPBVP.

2. Basics of OHAM

Let us take the BVP whose general form is the following:

L (𝑤 (𝜉)) + N (𝑤 (𝜉)) + ϝ (𝜉) = 0,
𝐵 (𝑤, 𝑑𝑤𝑑𝜉 ) (1)

whereL is a linear operator, 𝜉 is independent variable, N is
the nonlinear operator, ϝ(𝜉) is a known function, and 𝐵 is a
boundary operator.

Homotopy on OHAM can be constructed as(1 − þ) (L (𝜑 (𝜉, þ) + ϝ (𝜉))= 𝐻 (þ) (L (𝜑 (𝜉, þ) + ϝ (𝜉) + N (𝜑 (𝜉, þ))) ,
𝐵(𝜑 (𝜉, þ) , 𝜕𝜑 (𝜉, þ)𝜕𝜉 ) (2)
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where þ ∈ [0, 1] is an embedding parameter, 𝜑(𝜉, þ) is an
unknown function, 𝐻(þ) is a nonzero auxiliary function forþ ̸= 0, and𝐻(þ) is of the form𝐻(þ) = þC1 + þ2C2 + þ3C3 + ⋅ ⋅ ⋅ (3)

Clearly when þ = 0 then 𝐻(0) = 0. And obviously, whenþ = 0 then 𝜑(𝜉, 0) = 𝑤0(𝜉).When þ = 1 then 𝜑(𝜉, 1) = 𝑤(𝜉).
So as þ increases from 0 to 1, the solution 𝜑(𝜉, þ) varies from𝑤0(𝜉) to the exact solution𝑤(𝜉), where𝑤0 (𝜉) is obtained from
(2) for þ = 0

L (𝑤0 (𝜉) + ϝ (𝜉) = 0 (4)

The proposed solution of (1) will be of the form𝜑 (𝜉, þ,C𝑖) = 𝑤0 (𝜉) + ∑
𝑘≥1

𝑤𝑘 (𝜉,C𝑖) þ𝑘, 𝑖 = 1, 2, 3, . . . (5)

Substituting this value of 𝜑(𝜉, þ,C𝑖) into (1), after some
calculations, we can obtain the governing equations of 𝑤0(𝜉)
by using (4) and 𝑤𝑘(𝜉), that is,
L (𝑤1 (𝜉)) = C1N0 (𝑤0 (𝜉)) ,
𝐵 (𝑤1, 𝑑𝑤1𝑑𝜉 ) = 0 (6)

L (𝑤𝑘 (𝜉) − 𝑤𝑘−1 (𝜉))
= C𝑘N0 (𝑤0 (𝜉)) + 𝑘−1∑

𝑖=1

C𝑖L (𝑤𝑘−1 (𝜉)
+ N𝑘−1 (𝑤0 (𝜉) , 𝑤1 (𝜉) , 𝑤2 (𝜉) , . . . , 𝑤𝑘−1 (𝜉)) ,𝑘 = 2, 3, 4, . . . ,

𝐵 (𝑤𝑘, 𝑑𝑤𝑘𝑑𝜉 ) = 0,
(7)

whereN𝑚(𝑤0(𝜉), 𝑤1(𝜉), 𝑤2(𝜉), . . . , 𝑤𝑚(𝜉)) is the coefficient ofþ𝑚 in the series expansion ofN(𝜑(𝜉, þ,C𝑖))with respect to the
embedding parameter þ. And
N (𝜑 (𝜉, þ,C𝑖)) = N0 (𝑤0 (𝜉))+ ∑

𝑚≥1

N𝑚 (𝑤0, 𝑤1, 𝑤2, . . . , 𝑤𝑚) þ𝑚,
𝑖 = 1, 2, 3, . . . , 𝑚

(8)

where 𝜑(𝜉, þ,C𝑖) is given by (5). The convergence of series
(5) depends on the convergence of the constants C󸀠𝑖𝑠, if these
constants are convergent at þ = 1, then the solution becomes𝑤 (𝜉,C𝑖) = 𝑤0 (𝜉) + ∑

𝑘≥1

(𝑤𝑘 (𝜉,C𝑖)) . (9)

Generally, the 𝑚𝑡ℎ order solution of the problem can be
obtained in the form

𝑤(𝑚) (𝜉,C𝑖) = 𝑤0 (𝜉) + 𝑚∑
𝑘=1

(𝑤𝑘 (𝜉,C𝑖)) ,
𝑖 = 1, 2, 3, . . . , 𝑚 (10)

Putting this solution in (1) we get the following residual:

R (𝜉,C𝑖) = L (𝑤(𝑚) (𝜉,C𝑖) + ϝ (𝜉))+ N (𝑤(𝑚) (𝜉,C𝑖)) , 𝑖 = 1, 2, 3, . . . , 𝑚 (11)

If R(𝜉,C𝑖) = 0, then the solution is going to be exact,
but generally, such a situation does not arise in nonlinear
problems but the functional defined below can be minimized

𝐽 (𝜉,C𝑖) = ∫𝑥1
𝑥0

R
2 (𝜉,C𝑖) 𝑑𝜉, (12)

where 𝑥0 and 𝑥1 are two constants depending on the given
problem. The values of C󸀠𝑖𝑠 can be optimally found by the
condition 𝜕𝐽𝜕C1 = 𝜕𝐽𝜕C2 = ⋅ ⋅ ⋅ = 𝜕𝐽𝜕C𝑚 = 0 (13)

After knowing these constants, the solution (10) is well
determined.

3. Examples

To check the applicability of OHAM for TPBVP, in this
section four examples of TPBVP are presented in which one
example is linear and the remaining are nonlinear.

3.1. Example 1. Let us consider the linear problem [1] of
second order𝑤󸀠󸀠 (𝜉) = 𝑤󸀠 (𝜉) − 𝑒(𝜉−1) − 1, 0 < 𝜉 < 1,𝑤 (0) = 0,𝑤 (1) = 1 (14)

The exact solution of problem (14) is 𝜉(1 − 𝑒𝜉−1). Now
according toOHAML(𝑤0(𝜉)) = 𝑤󸀠󸀠(𝜉)−𝑤󸀠(𝜉), the nonlinear
part N(𝑤(𝜉)) = 0 and ϝ(𝜉) = 𝑒(𝜉−1) + 1.

The zeroth-order problem is𝑤󸀠󸀠0 (𝜉) − 𝑤󸀠0 (𝜉) = 1 + 𝑒𝜉−1,𝑤0 (0) = 0,𝑤0 (1) = 1 (15)

The solution of (15) is

𝑤0 (𝜉) = (𝑒 − 𝑒𝜉) 𝜉𝜉 (16)

The first-order problem is𝑤󸀠󸀠1 (𝜉) − 𝑤󸀠1 (𝜉) = −1 − 𝑒𝜉−1 − C1 − C1𝑒𝜉−1 + 𝑤󸀠0 (𝜉)+ C1𝑤󸀠0 (𝜉) − 𝑤󸀠󸀠0 (𝜉)− C1𝑤󸀠󸀠0 (𝜉) ,𝑤1 (0) = 0,𝑤1 (1) = 0.
(17)
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Table 1: Comparison of the third-order OHAM solution with the exact solution and HPM.𝜉 OHAM Solution (𝑤(2)) Exact HPM [1] |𝑤(2) − 𝐸𝑥𝑎𝑐𝑡|0.1 0.059343 0.059343 0.05934820 1.38778 × 10−170.3 0.151024 0.151024 0.15103441 2.77556 × 10−170.5 0.196735 0.196735 0.19673826 2.77556 × 10−170.7 0.181427 0.181427 0.18142196 5.55112 × 10−170.9 0.0856463 0.0856463 0.08564186 5.55112 × 10−17

Ｑ
(
)
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Figure 1: Comparison between exact solution (dashed line) and
approximate solution (dotted line) for example 1.

The solution of (17) is 𝑤1 (𝜉) = 0 (18)

The second-order problem is

𝑤󸀠󸀠2 (𝜉) = −C2 − exp (𝜉 − 1)C2 + C2𝑤󸀠0 (𝜉) + 𝑤󸀠1 (𝜉)+ C1𝑤󸀠1 (𝜉) − 𝑤󸀠2 (𝜉) − C2𝑤󸀠󸀠0 (𝜉) − 𝑤󸀠󸀠1 (𝜉)− C1𝑤󸀠󸀠1 (𝜉) ,𝑤2 (0) = 0,𝑤2 (1) = 0
(19)

The solution of (19) is 𝑤2 (𝜉) = 0 (20)

And the third-order approximate solution of the bvp (14) is
as follows:

𝑤(2) (𝜉) = 𝑤0 (𝜉) + 𝑤1 (𝜉) + 𝑤2 (𝜉) (21)

𝑤(2) (𝜉) = (𝑒 − 𝑒𝜉) 𝜉𝜉 (22)

Table 1 shows the comparison between the exact solution and
the approximate solution obtained by OHAM. Figure 1 of the
solution also shows well agreement with the exact solution.

3.2. Example 2. Consider the nonlinear two-point boundary
value problem [1] of the type𝑤󸀠󸀠 (𝜉) = 𝑤3 (𝜉) − 𝑤 (𝜉) 𝑤󸀠 (𝜉) , 𝜉 ∈ [1, 2] ,𝑤 (1) = 12 ,𝑤 (2) = 13

(23)

According to OHAM L(𝑤(𝑥)) = 𝑤󸀠󸀠(𝜉) and N(𝑤(𝜉)) =
u(𝜉)u󸀠(𝜉) − 𝑤3(𝜉), while ϝ(𝜉) = 0. The exact solution of (23)
is 1/(𝜉 + 1). Now proceeding with the same lines as above we
have the following zeroth-order problem:𝑤󸀠󸀠0 (𝜉) = 0,𝑤0 (1) = 12 ,𝑤0 (2) = 13

(24)

The solution of (24) is 𝑤0 (𝜉) = 4 − 𝜉6 (25)

Now the first-order problem is𝑤󸀠󸀠1 (𝜉) = C1𝑤30 (𝜉) − C1𝑤0 (𝜉) 𝑤󸀠0 (𝜉) − 𝑤󸀠󸀠0 (𝜉)− C1𝑤󸀠󸀠0 (𝜉) (26)

𝑤1 (1) = 0,𝑤1 (2) = 0 (27)

The solution of (26) is𝑤1 (𝜉)
= −930C1 + 1649𝜉C1 − 880𝜉21C + 180𝜉31C − 20𝜉41C + 𝜉5C14320 (28)

The second-order problem is𝑤󸀠󸀠2 (𝜉) = C2𝑤30 (𝜉) + 3C1𝑤20 (𝜉)𝑤1 (𝜉)− C2𝑤0 (𝜉)𝑤󸀠0 (𝜉) − C1𝑤1 (𝜉) 𝑤󸀠0 (𝜉)− C1𝑤0 (𝜉)𝑤󸀠1 (𝜉) − C2𝑤󸀠󸀠0 (𝜉) − 𝑤󸀠󸀠1 (𝜉)− C1𝑤󸀠󸀠1 (𝜉) ,𝑤2 (1) = 0,𝑤2 (2) = 0.
(29)
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Table 2: Comparison of second-order OHAM solution with the exact solution for example 2.𝜉 OHAM Solution (𝑤(3)) Exact |𝑤(3) − 𝐸𝑥𝑎𝑐𝑡|1.1 0.47619 0.47619 2.0597 × 10−71.3 0.434783 0.434783 5.38284 × 10−71.5 0.400001 0.4 1.39261 × 10−61.7 0.370371 0.37037 6.7426 × 10−71.9 0.344828 0.344828 8.10196 × 10−8
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Figure 2: Comparison between exact solution (dashed line) and approximate solution (dotted line) for example 2.

The solution of (29) is

𝑤2 (𝜉) = 1130636800 (𝜉 − 2) (𝜉 − 1) {30240 (−465 + 𝜉 (127 + (𝜉 − 17) 𝜉)C1− (8985375 + 𝜉 (4253423 + 𝜉 (−3664113 + 𝜉 (1100519 + 5𝜉 (−36795 + 𝜉 (3709 + 7 (−33 + 𝜉) 𝜉))))))C21+ 30240 (−465 + 𝜉 (127 + (−17 + 𝜉) 𝜉))C2)
(30)

The third-order problem is

C3𝑤30 (𝜉) + 3C2𝑤20 (𝜉)𝑤1 (𝜉) + 3C1𝑤0 (𝜉) 𝑤21 (𝜉)+ 3C1𝑤20 (𝜉)𝑤2 (𝜉) − 3C3𝑤0 (𝜉) 𝑤󸀠0 (𝜉)− C2𝑤1 (𝜉) 𝑤󸀠0 (𝜉) − C1𝑤2 (𝜉) 𝑤󸀠0 (𝜉)− C2𝑤0 (𝜉) 𝑤󸀠1 (𝜉) − C1𝑤1 (𝜉) 𝑤󸀠1 (𝜉)− C1𝑤0 (𝜉) 𝑤󸀠2 (𝜉) − C3𝑤󸀠󸀠0 (𝜉) − C2𝑤󸀠󸀠1 (𝜉)− 𝑤󸀠󸀠2 (𝜉) − C1𝑤󸀠󸀠2 (𝜉) + 𝑤󸀠󸀠3 (𝜉) = 0

(31)

The solution of the third-order problem results a large output,
therefore not included here.

Now the third-order approximate solution is

𝑤(3) (𝜉) = 𝑤0 (𝜉) + 𝑤1 (𝜉) + 𝑤2 (𝜉) + 𝑤3 (𝜉) (32)

C󸀠𝑖𝑠 has the following values and then substituting in the
above solution we will get the approximate solution. 𝑤(3)(𝜉)
is given in Appendix (A.1).

C1 = −0.9637924142971654,
C2 = −0.0002296939939480446,
C3 = −0.000014314891134337846, (33)

The solution at the points given in Table 2 and the graph of the
solution is shown in Figure 2. Here it is third-order OHAM
solution while the HPM[1] gives the accuracy up to 9 decimal
places in 7th order.

3.3. Example 3. Now we consider higher order TPBVP of
order four. The problem is𝑑4𝑤 (𝜉)𝑑𝜉4 = 𝑤2 (𝜉) + ϝ (𝜉) , 0 ≤ 𝜉 ≤ 1 (34)

with the boundary conditions 𝑤(0) = 0, 𝑤󸀠(0) = 0, 𝑤(1) = 1,
and 𝑤󸀠(1) = 1.
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Table 3: Comparison of second-order OHAM solution with the exact solution for example 3.𝜉 OHAM Solution (𝑤(2)) Exact |𝑤(2) − 𝐸𝑥𝑎𝑐𝑡|0.2 0.077119 0.0771200 6.152306 × 10−110.4 0.279039 0.2790400 1.314346 × 10−100.6 0.538559 0.5385600 1.001054 × 10−100.8 0.788479 0.7884800 2.415356 × 10−11

Where L(𝑤(𝜉)) = 𝑑4𝑤(𝜉)/𝑑𝑥4, N(𝑤(𝜉)) = 𝑤2(𝜉), andϝ(𝜉) = −𝜉10 + 4𝜉9 − 4𝜉8 − 4𝜉7 + 8𝜉6 − 4𝜉4 + 120𝜉 − 48, the
exact solution of problem (34) is𝑤𝑒𝑥𝑎𝑐𝑡 = 𝜉5 −2𝜉4 +2𝜉2. After
solving this by themethod described in Section 2, we have the
following zeroth-order problem:

48 − 120𝜉 + 4𝜉4 − 8𝜉6 + 4𝜉7 + 4𝜉8 − 4𝜉9 + 𝜉10
+ 𝑑4𝑤0 (𝜉)𝑑𝜉4 = 0 (35)

𝑤0 (0) = 0,𝑤󸀠0 (0) = 0,𝑤0 (1) = 1,𝑤󸀠0 (1) = 1
(36)

The solution to (35) is

𝑤0 (𝜉) = 11081080 (2155683𝜉2 + 8038𝜉3 − 2162160𝜉4+ 1081080𝜉5 − 2574𝜉8 + 1716𝜉10 − 546𝜉11
− 364𝜉12 + 252𝜉13 − 45𝜉14)

(37)

The first-order problem is

− 48 + 120𝜉 − 4𝜉4 + 8𝜉6 − 4𝜉7 − 4𝜉8 + 4𝜉9 − 𝜉10
− 48C1 + 120𝜉C1 − 4𝜉41C + 8𝜉6C1 − 4𝜉7C1− 4𝜉8C1 + 4𝜉9C1 − 𝜉10C1 + C1𝑤20 (𝜉)
− (1 + C1) 𝑑4𝑤0 (𝜉)𝑑𝜉4 + 𝑑4𝑤1 (𝜉)𝑑𝜉4 = 0

(38)

𝑤1 (0) = 0,𝑤󸀠1 (0) = 0,𝑤1 (1) = 0,𝑤󸀠1 (1) = 0.
(39)
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Figure 3: Comparison between exact solution (dashed line) and
approximate solution (dotted line) for example 3.

The second-order problem is− 48C2 + 120𝜉C2 − 4𝜉4C2 + 8𝜉6C2 − 4𝜉7C2 − 4𝜉8C2+ 4𝜉9C2 − 𝜉10C2 + C2𝑤20 (𝜉) + 2C1𝑤0 (𝜉) 𝑤1 (𝜉)− C2𝑤(4)0 (𝜉) − 𝑤(4)1 (𝜉) − C1𝑤(4)1 (𝜉) + 𝑤(4)2 (𝜉) = 0 (40)

𝑤2 (0) = 0,𝑤󸀠2 (0) = 0,𝑤2 (1) = 0,𝑤󸀠2 (1) = 0.
(41)

The solutions of problem (38) and (40) are very large; there-
fore we did not write it here. The constants C1 and C2 have
the values −1.0011320722175725 and −1.079468959963785×10−6, respectively. Table 3 and Figure 3 show a good agree-
ment with the exact values. The approximate solution 𝑤2(𝜉)
is given in Appendix (A.2).

3.4. Example 4. At last, consider the second-order nonlinear
TPBVP[1]𝑤󸀠󸀠 (𝜉) = 𝑤2 (𝜉) + 2𝜋2cos (2𝜋𝜉) − sin2 (2𝜋𝜉) ,0 ≤ 𝜉 ≤ 1 (42)

𝑤 (0) = 0,𝑤 (1) = 0. (43)
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Table 4: Comparison of third-order OHAM solution with the exact solution.𝜉 OHAM Solution (𝑤(3)) Exact |𝑤(3) − 𝐸𝑥𝑎𝑐𝑡|0.1 0.0954915 0.0954915 5.59262 × 10−90.3 0.654508 0.654508 1.23779 × 10−80.5 0.999999 1. 1.51565 × 10−80.7 0.654508 0.654508 1.23779 × 10−80.9 0.0954915 0.0954915 5.59262 × 10−9

The exact solution of (42) is sin2(𝜋𝜉). Solving (42) by the
method depicted in Section 2, we have the following zeroth
order problem:

−2𝜋2cos (2𝜋𝜉) + sin4 (𝜋𝜉) + 𝑤󸀠󸀠0 (𝜉) = 0,𝑤0 (0) = 0,𝑤0 (1) = 0
(44)

The solution of (44) is given by

𝑤0 (𝜉) = 1128𝜋2 (15 − 64𝜋2 + 24𝜋2𝜉 − 24𝜋2𝜉2− 16 cos (2𝜋𝜉) − 64𝜋2cos (2𝜋𝜉) + cos (4𝜋𝜉)) . (45)

The first-, second-, and third-order problems are given in
(46), (47), and (48) respectively.

2𝜋2cos (2𝜋𝜉) (1 + C1) − sin4 (𝜋𝜉) (1 + C1)+ C1𝑤20 (𝜉) − 𝑤󸀠󸀠0 (𝜉) − C1𝑤󸀠󸀠0 (𝜉) + 𝑤󸀠󸀠1 (𝜉) = 0,𝑤1 (0) = 0,𝑤1 (1) = 0
(46)

{2𝜋2cos (2𝜋𝜉) − sin4 (𝜋𝜉)}C2 + C2𝑤20 (𝜉)+ 2C1𝑤0 (𝜉)𝑤1 (𝜉) − C2𝑤󸀠󸀠0 (𝜉) − 𝑤󸀠󸀠1 (𝜉)− C1𝑤󸀠󸀠1 (𝜉) + 𝑤󸀠󸀠2 (𝜉) = 0,𝑤2 (0) = 0,𝑤2 (1) = 0
(47)

{2𝜋2cos (2𝜋𝜉) − sin4 (𝜋𝜉)}C3 + C3𝑤20 (𝜉)+ 2C2𝑤0 (𝜉)𝑤1 (𝜉) + C1𝑤21 (𝜉) + 2C1𝑤0 (𝜉) 𝑤2 (𝜉)+ C3𝑤󸀠󸀠0 (𝜉) − C2𝑤󸀠󸀠1 (𝜉) − 𝑤󸀠󸀠2 (𝜉) − C1𝑤󸀠󸀠2 (𝜉)+ 𝑤󸀠󸀠3 (𝜉) = 0
(48)
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Figure 4: Comparison between exact solution (dashed line) and
approximate solution (dotted line) for example 4.

𝑤3 (0) = 0,𝑤3 (1) = 0 (49)

The solutions of problem (46), (47), and (48) are very large
and therefore cannot be written here but the table of values
and the graph are shown in Table 4 and Figure 4, respectively.
The approximate solution 𝑤(3)(𝜉) is written in Appendix
(A.3). The values of the constants C󸀠𝑖𝑠 can be found by (13)
which are given as follows:

C1 = −0.9030981665320986,
C2 = −0.00569345107292796,
C3 = 0.00021560218552318884 (50)

4. Conclusion

This paper reveals that OHAM is a very strong method
for solving TPBVP and gives us a more accurate solution
as compared to other methods. In these examples only
second- and third-order solution gives us the accuracy up
to 8 or 10 decimal places; therefore it is concluded that this
method converges very fast to the exact solution and in
some problems like example 1 it gives us the exact solution.
The plots and tables show well agreement with the exact
solution.

177Application of Optimal Homotopy Asymptotic Method to Some Well-Known Linear and Nonlinear Two-Point...



Appendix

(3)𝑤 (𝜉) = 4 − 𝜉6 + 14320 (−930C1 + 1649𝜉C1 − 880𝜉2C1 + 180𝜉3C1 − 20𝜉4C1 + 𝜉5C1) + 1130636800 (−28123200C1+ 49865760𝜉C1 − 26611200𝜉2C1 + 5443200𝜉3C1 − 604800𝜉4C1 + 30240𝜉5C1 − 17970750C21 + 18449279𝜉C21+ 11103120𝜉2C21 − 17446800𝜉3C21 + 7333620𝜉4C21 − 1689534𝜉5C21 + 241920𝜉6C21 − 22080𝜉7C21 + 1260𝜉8C21− 35𝜉8C21 − 28123200C2 + 49865760𝜉C2 − 26611200𝜉2C2 + 5443200𝜉3C2 − 604800𝜉4C2 + 30240𝜉5C2)
+ 113450364928000 (−2895564672000C1 + 5134178649600𝜉C1 − 2739889152000𝜉2C1 + 560431872000𝜉3C1− 62270208000𝜉4C1 + 3113510400𝜉5C1 − 3700536840000C21 + 3799075531680𝜉C21 + 2286354470400𝜉2C21− 3592645056000𝜉3C21 + 1510139030400𝜉4C21 − 347908841280𝜉5C21 + 49816166400𝜉6C21 − 4546713600𝜉7C21+ 259459200𝜉8C21 − 7207200𝜉9C21 − 1161287826270C31 + 270053629823𝜉C31 + 1988069792280𝜉2C31− 963479454080𝜉3C31 − 507564676190𝜉4C31 + 549609764847𝜉5C31 − 221549328000𝜉6C31 + 54219285120𝜉7C31− 9069733530𝜉8C31 + 1086825025𝜉9C31 − 93716480𝜉10C31 + 5653440𝜉11C31 − 220220𝜉12C31 + 4235𝜉13C31− 2895564672000C2 + 5134178649600𝜉C2 − 2739889152000𝜉2C2 + 560431872000𝜉3C2 − 62270208000𝜉4C2+ 3113510400𝜉5C2 − 3700536840000C1C2 + 3799075531680𝜉C1C2 + 2286354470400𝜉2C1C2− 3592645056000𝜉3C1C2 + 1510139030400𝜉4C1C2 − 347908841280𝜉5C1C2 + 49816166400𝜉6C1C2− 4546713600𝜉7C1C2 + 259459200𝜉8C1C2 − 7207200𝜉9C1C2 − 2895564672000C3 + 5134178649600𝜉C3− 2739889152000𝜉2C3 + 560431872000𝜉3C3 − 62270208000𝜉4C3 + 3113510400𝜉5C3) .

(A.1)

𝑤(2) (𝜉) = (2155683𝜉2 + 8038𝜉3 − 2162160𝜉4 + 1081080𝜉5 − 2574𝜉8 + 1716𝜉10 − 546𝜉11 − 364𝜉12 + 252𝜉13 − 45𝜉14) /1081080 + 1/2360410309588661890560000(−14113828503813453911359𝜉2C1+ 17512915766704666962322𝜉3C1 − 5586404113887189501420𝜉8C1 − 23144774000952226800𝜉9C1+ 3735433519034813810160𝜉10C1 − 1179691619002973294400𝜉11C1 − 797705495192034374400𝜉12C1+ 550212193377310464000𝜉13C1 − 97319245468388853600𝜉14C1 + 2551023644304960𝜉15C1− 856729299998872080𝜉16C1 + 279036341094724200𝜉17C1 + 247466505045614400𝜉18C1− 155275084044250800𝜉19C1 − 3650519253533040𝜉20C1 + 26398020790188000𝜉21C1− 8405056667479680𝜉22C1 + 897927547083840𝜉23C1 − 38159719228800𝜉24C1 + 21095475553152𝜉25C1+ 4049797421376𝜉26C1 − 6052906241984𝜉27C1 + 1221181635008𝜉28C1 + 475889853600𝜉29C1− 295593372480𝜉30C1 + 60656299200𝜉31C1 − 4738773375𝜉32C1)+ ((−32669682535166038177800562717403451774787200𝜉2C1+ 40537647046565498276872580694218893070457600𝜉3C1− 12931009390154359168924266696920562467136000𝜉8C1
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+ 40537647046565498276872580694218893070457600𝜉3C1− 12931009390154359168924266696920562467136000𝜉8C1− 53573870389240769630688977156787421440000𝜉9C1+ 8646514810996349122418420307721339216128000𝜉10C1− 2730665933188143522672522412342587755520000𝜉11C1− 1846471726465979561236202970676720619520000𝜉12C1+ 1273591901712376237386288026597835571200000𝜉13C1− 225267641104971069200162200032882362880000𝜉14C1 + 5904927396321076366168727485651968000𝜉15C1− 1983095815708383589080913455027281664000𝜉16C1 + 645893399999572047403581539117439360000𝜉17C1+ 572817797505678403219571120181611520000𝜉18C1+ 8620466886846280020965176767572231570851512𝜉10C21− 2701942454241603867437283593123940978268560𝜉11C21− 1853296246170788567680120913554535247983040𝜉12C21+ 1273591901712376237386288026597835571200000𝜉13C21− 223127551098503747806099303888254244271880𝜉14C21 + 24188753111272816253620159558815649776𝜉15C21− 3954294999119289026707499780027151742404𝜉16C21 + 1280476731768992936554600505857043216034𝜉17C21+ 1146299848262837493979094855639474837488𝜉18C21 − 716583570253989121237950089315154553020𝜉19C21− 18153410829102066767079156365109506436𝜉20C21 + 122325062475997255309755518897728337880𝜉21C21− 38583478912638559610674295035606805760𝜉22C21 + 4064708510722834491402346035781177920𝜉23C21− 304944482768990447155003185921595200𝜉24C21 + 172131824316102518718368542082822400𝜉25C21+ 31225989769228784108742227282106504𝜉26C21 − 48696064947262435404352469277878496𝜉27C21+ 9955954110432674815496294613892416𝜉28C21 + 3768051722420250956380935649060800𝜉29C21− 2341220030385245677826756247386880𝜉30C21 + 474526294591146486759733985232768𝜉31C21− 40917013297075779490615187391192𝜉32C21 + 3867571077895433794192598216016𝜉33C21− 521615945593005771502089327960𝜉34C21 − 578651890632287750071052046372𝜉35C21+ 265019543551924982873921756160𝜉36C21 − 7980251045802826679782141248𝜉37C21− 25268923385823287170976713452𝜉38C21 + 8700984701390689923286015560𝜉39C21− 1340309891030782820607242784𝜉40C21 + 135045166608803637462708432𝜉41C21− 18683464135506877900207872𝜉42C21 − 3279443942818588507522560𝜉43C21+ 3820823675617325912753400𝜉44C21 − 805194420243411190696704𝜉45C21 − 143582548822550108696880𝜉46C21+ 115436320975091250290520𝜉47C21 − 27795688158510545773500𝜉48C21 + 3304269870772182097500𝜉49C21
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− 165213493538609104875𝜉50C21 − 32669682535166038177800562717403451774787200𝜉2C2+ 40537647046565498276872580694218893070457600𝜉3C2− 12931009390154359168924266696920562467136000𝜉8C2− 53573870389240769630688977156787421440000𝜉9C2+ 8646514810996349122418420307721339216128000𝜉10C2− 2730665933188143522672522412342587755520000𝜉11C2− 1846471726465979561236202970676720619520000𝜉12C2+ 1273591901712376237386288026597835571200000𝜉13C2− 225267641104971069200162200032882362880000𝜉14C2 + 5904927396321076366168727485651968000𝜉15C2− 1983095815708383589080913455027281664000𝜉16C2 + 645893399999572047403581539117439360000𝜉17C2+ 572817797505678403219571120181611520000𝜉18C2 − 359419678365531276056662133636240640000𝜉19C2− 8449961331839350421935750500018432000𝜉20C2 + 61104253784799540864465470704550400000𝜉21C2− 19455425077784486158148965087647744000𝜉22C2 + 2078458576628113491233720925699072000𝜉23C2− 88329393580142122870344465623040000𝜉24C2 + 48830300656099081258580171252121600𝜉25C2+ 9374181927486220561295860381900800𝜉26C2 − 14010835209405620008882949076787200𝜉27C2+ 2826704059972590662056252066406400𝜉28C2 + 1101555855990308389571183162880000𝜉29C2− 684218434127313503766165801984000𝜉30C2 + 140402870708442139347389199360000𝜉31C2− 10968974274097042136514781200000𝜉32C2)) /5463709258346094058387175634104714600448000000+ ((−6381240944360971702818350529525900150881006436955309839999659827200000𝜉2C1)) /1067204898300215968287533458623769753803390805870787878857474048000000000
(A.2)𝑤(3) (𝜉) = (15 + 64𝜋2 + 24𝜋2𝜉 − 24𝜋2𝜉2 − 16 cos [2𝜋𝜉] − 64𝜋2 cos [2𝜋𝜉] + cos [4𝜋𝜉]) / (128𝜋2) + 1/ (94371840𝜋6)⋅ (2312275C1 + 12037120𝜋2C1 + 11059200𝜋4C1 + 1018080𝜋2𝜉C1 + 8824320𝜋4𝜉C1 + 19224576𝜋6𝜉C1− 1018080𝜋2𝜉2C1 − 8478720𝜋4𝜉2C1 − 17694720𝜋6𝜉2C1 − 691200𝜋4𝜉3C1 − 2949120𝜋6𝜉3C1 + 345600𝜋4𝜉4C1+ 1198080𝜋6𝜉4C1 + 331776𝜋6𝜉5C1 − 110592𝜋6𝜉6C1 − 2373120 cos [2𝜋𝜉]C1 − 12441600𝜋2 cos [2𝜋𝜉]C1− 11796480𝜋4 cos [2𝜋𝜉]C1 − 1105920𝜋2𝜉 cos [2𝜋𝜉]C1 − 4423680𝜋4𝜉 cos [2𝜋𝜉]C1 + 1105920𝜋2𝜉2 cos [2𝜋𝜉]C1+ 4423680𝜋4𝜉2 cos [2𝜋𝜉]C1 + 63360 cos [4𝜋𝜉]C1 + 414720𝜋2 cos [4𝜋𝜉]C1 + 737280𝜋4 cos [4𝜋𝜉]C1+ 17280𝜋2𝜉 cos [4𝜋𝜉]C1 − 17280𝜋2𝜉2 cos [4𝜋𝜉]C1 − 2560 cos [6𝜋𝜉]C1 − 10240𝜋2 cos [6𝜋𝜉]C1 + 45 cos [8𝜋𝜉]C1+ 1105920𝜋 sin [2𝜋𝜉]C1 + 4423680𝜋3 sin [2𝜋𝜉]C1 − 2211840𝜋𝜉 sin [2𝜋𝜉]C1 − 8847360𝜋3𝜉 sin [2𝜋𝜉]C1− 8640𝜋 sin [4𝜋𝜉]C1 + 17280𝜋𝜉 sin [4𝜋𝜉]C1) + 1/ (487049291366400𝜋10) (11933558784000𝜋4C1) + 1/(35659800916682342400𝜋12) 𝜉 (384696643800268800𝜋8C1 + 3334400329855795200𝜋10C1+ 7264291475800719360𝜋12C1 + 317056740153753600𝜋4C21 + 3055348438990848000𝜋6C21
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+ 9761324410664386560𝜋8C21 + 14367361192521891840𝜋10C21 + 15851242925787709440𝜋12C21+ 222124734074698455C31 + 2171404189900081136𝜋2C31 + 7100075693557310464𝜋4C31+ 10842199196917637120𝜋6C31 + 14250836120871567360𝜋8C31 + 11649501141852487680𝜋10C31+ 8684066594856370176𝜋12C31 + 384696643800268800𝜋8C2 + 3334400329855795200𝜋10C2+ 7264291475800719360𝜋12C2 + 317056740153753600𝜋4C1C2 + 3055348438990848000𝜋6C1C2+ 9761324410664386560𝜋8C1C2 + 14367361192521891840𝜋10C1C2 + 15851242925787709440𝜋12C1C2+ 384696643800268800𝜋8C3 + 3334400329855795200𝜋10C3 + 7264291475800719360𝜋12C3) + 1/(3770462866155503616000000𝜋14) (92382929312808960000000𝜋8C1 + 480922211281010688000000𝜋10C1+ 441851117127598080000000𝜋12C1 + 241156678171145748480000𝜋4C21 + 1273402703047211089920000𝜋6C21+ 1659580957335748608000000𝜋8C21 + 1923688845124042752000000𝜋10C21+ 883702234255196160000000𝜋12C21 + 594085555282615418420429C31 + 2862436440052784429431616𝜋2C31+ 2597952006766286551449600𝜋4C31 + 3066666484153535692800000𝜋6C31 + 2139343103453036544000000𝜋8C31+ 1442766633843032064000000𝜋10C31 + 441851117127598080000000𝜋12C31 + 92382929312808960000000𝜋8C2+ 480922211281010688000000𝜋10C2 + 441851117127598080000000𝜋12C2+ 241156678171145748480000𝜋4C1C2 + 1273402703047211089920000𝜋6C1C2+ 1659580957335748608000000𝜋8C1C2 + 1923688845124042752000000𝜋10C1C2+ 883702234255196160000000𝜋12C1C2 + 92382929312808960000000𝜋8C3 + 480922211281010688000000𝜋10C3+ 441851117127598080000000𝜋12C3) + 1/ (124684618589798400𝜋12) (−1345093160140800𝜋8𝜉2C1)
(A.3)
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The aim of this paper is to derive existence results for a second-order singular multipoint boundary value problem at resonance
using coincidence degree arguments.

1. Introduction

In this paper we derive existence results for the second-order
singular multipoint boundary value problem of the form

𝑥󸀠󸀠 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡) , 0 < 𝑡 < 1,
𝑥󸀠 (0) = 0,
𝑥 (1) = 𝑚−2∑

𝑖=1

𝑎𝑖𝑥 (𝜉𝑖) ,
(1)

where 𝑓 : [0, 1] × R2 → R is Caratheodory’s function (i.e.,
for each (𝑥, 𝑦) ∈ R2 the function 𝑓(⋅, 𝑥, 𝑦) is measurable on[0, 1]; for a.e. 𝑡 ∈ [0, 1], the function 𝑓(𝑡, ⋅, ⋅) is continuous on
R2). Let 𝜉𝑖 ∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑚 − 2, 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ <𝜉𝑚−2 < 1, 𝑎𝑖 ∈ (0, 1) 𝑖 = 1, 2, . . . , 𝑚 − 2, and ∑𝑚−2𝑖=1 𝑎𝑖 = 1,
where 𝑓 and 𝑔 have singularity at 𝑡 = 1.

In [1] Gupta et al. studied the above equation when 𝑓
and 𝑔 have no singularity and ∑𝑚−2𝑖=1 𝑎𝑖 ̸= 1. They obtained
existence of a 𝐶1[0, 1] solution by utilising the Leray-
Schauder continuation principle. In [2] Ma and O’Regan
derived existence results for the same equation when 𝑓 and𝑔 have a singularity at 𝑡 = 1 and ∑𝑚−2𝑖=1 𝑎𝑖 ̸= 1. They
also utilised the Leray-Schauder continuation method.These
results correspond to the nonresonance case. The purpose of
this article is therefore to derive existence results for (1) when∑𝑚−2𝑖=1 𝑎𝑖 = 1 (the resonance case) and when 𝑓 and 𝑔 have

a singularity at 𝑡 = 1. We shall employ coincidence degree
arguments in obtaining our results. In this case, the methods
used in [1, 2] are not valid.

Research on singular differential equations is important
because singular differential equations are useful in the
modeling of many problems in the physical and engineering
sciences; see [3].

In general singular boundary value problems can be dif-
ficult to solve because they may blow up near the singularity.
The existence and multiplicity of solutions for second-order
nonsingular boundary value problems have been extensively
studied by many researchers. However to the best of our
knowledge the corresponding problem for second-order
differential equations at resonance and with a singularity
had not received much attention in the literature. For recent
results in these directions see [1, 2, 4–9] and references
therein.

The rest of this paper is organised as follows. In Section 2,
we present some definitions, lemmas, and theorems neces-
sary for obtaining our main results. In Section 3, we derive
some lemmas and themain theorem. In what follows we shall
utilise the following assumptions:

(A0) For 𝜉𝑖 ∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑚 − 2, 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ <𝜉𝑚−2 < 1 and ∑𝑚−2𝑖=1 𝑎𝑖 = 1.
(A1)There exist 𝑎(𝑡), 𝑐(𝑡) ∈ 𝐿1[0, 1] with (1 − 𝑡)𝑎(𝑡), (1 −𝑡)𝑐(𝑡), 𝑏(𝑡) ∈ 𝐿1[0, 1] and |𝑓(𝑡, 𝑥, 𝑦)| ≤ 𝑎(𝑡)|𝑥| +𝑏(𝑡)|𝑦| + 𝑐(𝑡), a.e., 𝑡 ∈ [0, 1], (𝑥, 𝑦) ∈ R2.
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(A2) 𝑔 : [0, 1] → R is such that ∫1
0
(1 − 𝑡)|𝑔(𝑡)| < ∞.

2. Preliminaries

In this section we state some definitions, theorems, and
lemmas that will be used in the subsequent section.

Definition 1. Let 𝑋 and 𝑍 be real Banach spaces. One says
that the linear operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 is a Fredholm
mapping of index zero if Ker 𝐿 and 𝑍/ Im 𝐿 are of finite
dimension, where Im 𝐿 denotes the image of 𝐿.

As a result of Definition 1, we will require the continuous
projections 𝑃 : 𝑋 → 𝑋, 𝑄 : 𝑍 → 𝑍 such that Im𝑃 = Ker 𝐿,
Ker𝑄 = Im 𝐿, 𝑋 = Ker 𝐿 ⊕ Ker𝑃, 𝑍 = Im 𝐿 ⊕ Im𝑄, and𝐿|dom 𝐿∩Ker𝑃 : dom 𝐿 ∩ Ker𝑃 → Im 𝐿 is an isomorphism.

Definition 2. Let 𝐿 be a Fredholmmapping of index zero andΩ a bounded open subset of𝑋 such that dom 𝐿∩Ω ̸= 𝜙. The
map𝑁 : 𝑋 → 𝑍 is called 𝐿-compact onΩ, if themap𝑄𝑁(Ω)
is bounded and 𝐾𝑝(𝐼 − 𝑄) is compact, where one denotes by𝐾𝑝 : Im 𝐿 → dom 𝐿 ∩ Ker𝑃 the generalised inverse of 𝐿. In
addition 𝑁 is 𝐿-completely continuous if it is 𝐿-compact on
every boundedΩ ⊂ 𝑋.
Theorem 3 (see [10]). Let 𝐿 be a Fredholm operator of index
zero and let 𝑁 be 𝐿-compact on Ω. Assume that the following
conditions are satisfied:

(i) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for every (𝑥, 𝜆) ∈ [(dom 𝐿 \Ker 𝐿)∩𝜕Ω]×(0, 1).
(ii) 𝑁𝑥 ∉ Im 𝐿, for every 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω.
(iii) deg(𝑄𝑁|Ker𝐿∩𝜕Ω, Ω ∩ Ker 𝐿, 0) ̸= 0,

with 𝑄 : 𝑍 → 𝑍 being a continuous projection such that
Ker𝑄 = Im 𝐿. Then the equation 𝐿𝑥 = 𝑁𝑥 has at least one
solution in dom 𝐿 ∩ Ω.

In what follows, we shall make use of the following
classical spaces, 𝐶[0, 1], 𝐶1[0, 1], 𝐿1[0, 1], and 𝐿∞[0, 1].
Let 𝐴𝐶[0, 1] denote the space of all absolute continuous
functions on [0, 1], 𝐴𝐶1[0, 1] = {𝑥 ∈ 𝐶1[0, 1] : 𝑥󸀠(𝑡) ∈𝐴𝐶[0, 1]}, 𝐿1loc[0, 1] = {𝑥 : 𝑥|[0,𝑑] ∈ 𝐿1[0, 𝑑] for every
compact interval [0, 𝑑] ⊆ [0, 1)}.𝐴𝐶loc[0, 1) = {𝑥 : 𝑥|[0,𝑑] ∈ 𝐴𝐶[0, 𝑑]}.

Let 𝑍 be the Banach space defined by

𝑍 = {𝑦 ∈ 𝐿1loc [0, 1) : (1 − 𝑡) 𝑦 (𝑡) ∈ 𝐿1 [0, 1]} , (2)

with the norm

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 = ∫1
0
(1 − 𝑡) 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡. (3)

Let𝑋 be the Banach space

𝑋 = {𝑥 ∈ 𝐶1 [0, 1) : 𝑥
∈ 𝐶 [0, 1] , lim

𝑡→1−
(1 − 𝑡) 𝑥󸀠 (𝑡) exists} ,

(4)

with the norm

‖𝑥‖𝑋 = max {‖𝑥‖∞ , 󵄩󵄩󵄩󵄩󵄩(1 − 𝑡) 𝑥󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩∞}
where ‖𝑥‖∞ = sup

𝑡∈[0,1]

|𝑥 (𝑡)| . (5)

We denote the norm in 𝐿1[0, 1] by ‖ ⋅ ‖1. We define the linear
operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 by

𝐿𝑥 = 𝑥󸀠󸀠 (𝑡) , (6)

where dom 𝐿 = {𝑥 ∈ 𝑋 : 𝑥󸀠(0) = 0, 𝑥(1) = ∑𝑚−2𝑖=1 𝑎𝑖𝑥(𝜉𝑖)}
and𝑁 : 𝑋 → 𝑍 is defined by

𝑁𝑥 = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡) . (7)

Then boundary value problem (1) can be written as

𝐿𝑥 = 𝑁𝑥. (8)

Lemma 4 (see [2]). Let 𝑦 ∈ 𝑍. Then

(i) ∫𝑡
0
𝑦(𝑠)𝑑𝑠 ∈ 𝐿1[0, 1].

(ii) lim𝑡→1−(1 − 𝑡) ∫𝑡0 𝑦(𝑠)𝑑𝑠 = 0.
Lemma 5. If ∑𝑚−2𝑖=1 𝑎𝑖 = 1 then

(i) Ker 𝐿 = {𝑥 ∈ dom 𝐿 : 𝑥(𝑡) = 𝑐, 𝑐 ∈ R, 𝑡 ∈ [0, 1]};
(ii) Im 𝐿 = {𝑦 ∈ 𝑍 : ∑𝑚−2𝑖=1 𝑎𝑖 ∫1𝜉𝑖 ∫𝑠0 𝑦(𝜏)𝑑𝜏 𝑑𝑠 = 0};
(iii) 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 is a Fredholm operator of index

zero and the continuous operator 𝑄 : 𝑍 → 𝑍 can be
defined by

𝑄𝑦 = 𝑒𝑡ℎ
𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, (9)

where ℎ = ∑𝑚−2𝑖=1 𝑎𝑖[𝑒 + 𝜉𝑖 − 𝑒𝜉𝑖 − 1] ̸= 0.
(iv) The linear operator 𝐾𝑝 : Im 𝐿 :→ dom 𝐿 ∩ Ker𝑃 can

be defined as

𝐾𝑝𝑦 = ∫𝑡
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠. (10)

(v) ‖𝐾𝑝𝑦‖𝑋 ≤ ‖𝑦‖𝑍 for all 𝑦 ∈ 𝑍.
Proof. (i) It is obvious that

Ker 𝐿 = {𝑥 ∈ dom 𝐿 : 𝑥 (𝑡) = 𝑐, 𝑐 ∈ R} . (11)

(ii) We show that

Im 𝐿 = {𝑦 ∈ 𝑍 : 𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = 0} . (12)

To do this, we consider the problem

𝑥󸀠󸀠 (𝑡) = 𝑦 (𝑡) , (13)
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and we show that (13) has a solution 𝑥(𝑡) satisfying 𝑥󸀠(0) = 0,𝑥(1) = ∑𝑚−2𝑖=1 𝑎𝑖𝑥(𝜉𝑖) if and only if

𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = 0. (14)

Suppose (13) has a solution 𝑥(𝑡) satisfying 𝑥󸀠(0) = 0, 𝑥(1) =∑𝑚−2𝑖=1 𝑎𝑖𝑥(𝜉𝑖); then we obtain from (13) that

𝑥 (𝑡) = 𝑥 (0) + ∫𝑡
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, (15)

and applying the boundary conditions we get

𝑚−2∑
𝑖=1

𝑎𝑖 ∫𝜉𝑖
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = ∫1

0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, (16)

since ∑𝑚−2𝑖=1 𝑎𝑖 = 1, and using (i) of Lemma 4 we get

𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 = 0. (17)

On the other hand if (14) holds, let 𝑥0 ∈ R; then 𝑥(𝑡) = 𝑥0 +∫𝑡
0
∫𝑠
0
𝑦(𝜏)𝑑𝜏 𝑑𝑠, where 𝑦 ∈ 𝑍 and 𝑥󸀠(𝑡) ∈ 𝐴𝐶loc[0, 1). Then

from Lemma 4 ∫𝑡
0
𝑦(𝜏)𝑑𝜏 ∈ 𝐿1[0, 1] and lim𝑡→1−(1 − 𝑡)𝑥󸀠(𝑡)

= lim𝑡→1−(1 − 𝑡) ∫𝑡0 𝑦(𝜏)𝑑𝜏 = 0. Hence
𝑥󸀠󸀠 (𝑡) = 𝑦 (𝑡) . (18)

(iii) For 𝑦 ∈ 𝑍, we define the projection 𝑄𝑦 as

𝑄𝑦 = 𝑒𝑡ℎ
𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, 𝑡 ∈ [0, 1] , (19)

where ℎ = ∑𝑚−2𝑖=1 𝑎𝑖[𝑒 + 𝜉𝑖 − 𝑒𝜉𝑖 − 1] ̸= 0.
We show that 𝑄 : 𝑍 → 𝑍 is well defined and bounded.

󵄨󵄨󵄨󵄨𝑄𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

= 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 ,
󵄩󵄩󵄩󵄩𝑄𝑦󵄩󵄩󵄩󵄩𝑍 ≤ ∫1

0
(1 − 𝑡) 󵄨󵄨󵄨󵄨𝑄𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡

≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍∫1
0
(1 − 𝑡) 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 𝑑𝑡

= 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 󵄩󵄩󵄩󵄩󵄩𝑒𝑡󵄩󵄩󵄩󵄩󵄩𝑍 .

(20)

In addition it is easily verified that

𝑄2𝑦 = 𝑄𝑦, 𝑦 ∈ 𝑍. (21)

We therefore conclude that 𝑄 : 𝑍 → 𝑍 is a projection. If𝑦 ∈ Im 𝐿, then from (14)𝑄𝑦(𝑡) = 0. Hence Im 𝐿 ⊆ Ker𝑄. Let𝑦1 = 𝑦 − 𝑄𝑦; that is, 𝑦1 ∈ Ker𝑄. Then

𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦1 (𝜏) 𝑑𝜏 𝑑𝑠

= 𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠 − 1ℎ

𝑚−2∑
𝑖=1

∫1
𝜉𝑖

∫1
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠

⋅ ℎ = 0.

(22)

Thus, 𝑦1 ∈ Im 𝐿 and therefore Ker𝑄 ⊆ Im 𝐿 and hence 𝑍 =
Im 𝐿 + Im𝑄 = Im 𝐿 +R. It follows that since Im 𝐿 ∩R = {0},
then 𝑍 = Im 𝐿 ⊕ Im𝑄. Therefore

dimKer 𝐿 = dim Im𝑄 = dimR = codim Im 𝐿 = 1. (23)

This implies that 𝐿 is Fredholm mapping of index zero.
(iv) We define 𝑃 : 𝑋 → 𝑋 by

𝑃𝑥 = 𝑥 (0) , (24)

and clearly 𝑃 is continuous and linear and 𝑃2𝑥 = 𝑃(𝑃𝑥) =𝑃𝑥(0) = 𝑥(0) = 𝑃𝑥 and Ker𝑃 = {𝑥 ∈ 𝑋 : 𝑥(0) = 0}. We now
show that the generalised inverse𝐾𝑝 : Im 𝐿 → dom 𝐿∩Ker𝑃
of 𝐿 is given by

𝐾𝑝𝑦 = ∫𝑡
0
∫𝑠
0
𝑦 (𝜏) 𝑑𝜏 𝑑𝑠. (25)

For 𝑦 ∈ Im 𝐿 we have
(𝐿𝐾𝑝) 𝑦 (𝑡) = [(𝐾𝑝𝑦) (𝑡)]󸀠󸀠 = 𝑦 (𝑡) (26)

and for 𝑥 ∈ dom 𝐿 ∩ Ker𝑃 we know that

(𝐾𝑝𝐿) 𝑥 (𝑡) = ∫𝑡
0
∫𝑠
0
𝑥󸀠󸀠 (𝜏) 𝑑𝜏 𝑑𝑠

= ∫𝑡
0
(𝑡 − 𝑠) 𝑥󸀠󸀠 (𝑠) 𝑑𝑠

= 𝑥 (𝑡) − 𝑥󸀠 (0) 𝑡 − 𝑥 (0) = 𝑥 (𝑡)
(27)

since 𝑥 ∈ dom 𝐿 ∩ Ker𝑃, 𝑥(0) = 0, and 𝑃𝑥 = 0.
This shows that 𝐾𝑝 = (𝐿|dom 𝐿∩Ker𝑃)−1.
(v)

󵄩󵄩󵄩󵄩󵄩𝐾𝑝𝑦󵄩󵄩󵄩󵄩󵄩∞ ≤ max
𝑡∈[0,1]

∫𝑡
0
(𝑡 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 ,

󵄩󵄩󵄩󵄩󵄩󵄩(1 − 𝑡) (𝐾𝑝𝑦)󸀠󵄩󵄩󵄩󵄩󵄩󵄩∞ ≤ max
𝑡∈[0,1]

∫𝑡
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑦 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 .

(28)
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We conclude that

󵄩󵄩󵄩󵄩󵄩𝐾𝑝𝑦󵄩󵄩󵄩󵄩󵄩𝑋 ≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑍 . (29)

Lemma 6. The operator𝑁 : 𝑋 → 𝑍 defined by

𝑁𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡) , 𝑡 ∈ (0, 1) (30)

is 𝐿-completely continuous.

Proof. Suppose Ω is an open bounded subset of 𝑋. Let 𝑅1 =
sup{‖𝑥‖𝑋 : 𝑥 ∈ Ω}. From condition (A1) and each 𝑥𝑛 ∈ Ω we
have

󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡) , 𝑥𝑛 (𝑡) , 𝑥󸀠𝑛 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨
≤ 𝑎 (𝑡) 𝑅1 + 𝑏 (𝑡) 𝑅11 − 𝑡 + 𝑟 (𝑡) + 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨
= 𝜑 (𝑡) .

(31)

We can deduce from (A1) and (A2) that 𝜑(𝑡) ∈ 𝑍:
󵄨󵄨󵄨󵄨𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝑡ℎ
𝑚−2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
𝑁𝑥𝑛 (𝜏) 𝑑𝜏 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑠 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨

≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝜑 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨

≤ 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 , 𝑡 ∈ (0, 1) ,
󵄩󵄩󵄩󵄩𝑄𝑁𝑥𝑛󵄩󵄩󵄩󵄩𝑍 ≤ 1|ℎ|

𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍∫1
0
(1 − 𝑡) 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨 𝑑𝑡

= 1|ℎ|
𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 󵄩󵄩󵄩󵄩󵄩𝑒𝑡󵄩󵄩󵄩󵄩󵄩𝑍 .

(32)

This shows that 𝑄𝑁(Ω) is bounded in 𝑍 and 𝑄𝑁 is
continuous by using the Lebesgue Dominated Convergence
Theorem. Next we show that𝐾𝑃,𝑄𝑁(Ω) = 𝐾𝑃(𝐼 − 𝑄)𝑁(Ω) is
compact.

By using (31) we derive

󵄨󵄨󵄨󵄨𝐾𝑃𝑁𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ ∫𝑡
0
(𝑡 − 𝑠) 󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨𝜑 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 = 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 ,

󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑡) − 𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜑 (𝑡)󵄨󵄨󵄨󵄨 + 1|ℎ|

𝑚−2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑍 󵄨󵄨󵄨󵄨󵄨𝑒𝑡󵄨󵄨󵄨󵄨󵄨
= 𝛼𝑟 (𝑡) ,

󵄨󵄨󵄨󵄨𝐾𝑃,𝑄𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐾𝑝 (𝑁𝑥𝑛 − 𝑄𝑁𝑥𝑛) (𝑡)󵄨󵄨󵄨󵄨󵄨
≤ 𝐾𝑃𝛼𝑟 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝛼𝑟󵄩󵄩󵄩󵄩𝑍 .

(33)

This indicates that the sequence {𝐾𝑃,𝑄𝑁𝑥𝑛(Ω)} is uniformly
bounded in 𝐶[0, 1]. Also for 𝑡 ∈ [0, 1)

󵄨󵄨󵄨󵄨󵄨(1 − 𝑡) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1 − 𝑡) ∫

𝑡

0
(𝑁𝑥𝑛 (𝑠) − 𝑄𝑁𝑥𝑛 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫1
0
(1 − 𝑠) 𝛼𝑟 (𝑠) 𝑑𝑠 ≤ 󵄩󵄩󵄩󵄩𝛼𝑟󵄩󵄩󵄩󵄩𝑍 .

(34)

Hence the sequence 𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡) is bounded in 𝐶[0, 1] and
lim𝑡→1−(1−𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠(𝑡) = 0.Thus𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡) is bounded
in𝑋.

Next we show that the sequence {𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡)} is equicon-
tinuous. Let 𝑡1, 𝑡2 ∈ [0, 1], 𝑡1 < 𝑡2; then
󵄨󵄨󵄨󵄨𝐾𝑃,𝑄𝑥𝑛 (𝑡2) − 𝐾𝑃,𝑄𝑥𝑛 (𝑡1)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡2

𝑡1

(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑠) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡2
𝑡1

∫𝑠
0

󵄨󵄨󵄨󵄨(𝑁𝑥𝑛 (𝜏) − 𝑄𝑁𝑥𝑛 (𝜏))󵄨󵄨󵄨󵄨 𝑑𝜏 𝑑𝑠
≤ ∫𝑡2
𝑡1

∫𝑠
0
𝛼𝑟 (𝜏) 𝑑𝜏 𝑑𝑠,

(35)

for every 𝑡1, 𝑡2 ∈ [0, 1]. By (i) of Lemma 4 ∫𝑠
0
𝛼𝑟(𝜏)𝑑𝜏 ∈

𝐿1[0, 1]. Thus the sequence {𝐾𝑃,𝑄𝑁𝑥𝑛(𝑡)} is equicontinuous
on [0, 1] and by Arzela-Ascoli Theorem is convergent. Next
we prove that the sequence {(1 − 𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠} is also
equicontinuous on [0, 1]. We have for 𝑡 ∈ [0, 1]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨[(1 − 𝑡) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡)]

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨− (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡) + (1 − 𝑡) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
(𝑁𝑥𝑛 (𝑠) − 𝑄𝑁𝑥𝑛 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨(1 − 𝑡)𝑁𝑥𝑛 (𝑡)󵄨󵄨󵄨󵄨

≤ ∫𝑡
0
𝛼𝑟 (𝑠) 𝑑𝑠 + (1 − 𝑡) 𝜑 (𝑡) = 𝜓 (𝑡) .

(36)
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Using (i) of Lemma 4 and the fact that 𝛼𝑟(𝑡) and 𝜑(𝑡) are in𝑍
we conclude that 𝜓(𝑡) ∈ 𝐿1[0, 1]. Therefore

󵄨󵄨󵄨󵄨󵄨(1 − 𝑡2) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡2) − (1 − 𝑡1) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑡1)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡2

𝑡1

[(1 − 𝑠) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑠)]󸀠 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡2
𝑡1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨[(1 − 𝑠) (𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠 (𝑠)]
󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ ∫

𝑡2

𝑡1

𝜓 (𝑠) 𝑑𝑠.
(37)

The sequence {(1 − 𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠(𝑡)} is therefore equicon-
tinuous on [0, 1) and therefore converges to some (1 −𝑡)(𝐾𝑃,𝑄𝑁𝑥0)󸀠(𝑡) ∈ 𝐶[0, 1] with lim𝑡→1−(1 − 𝑡)[(1 −𝑡)(𝐾𝑃,𝑄𝑁𝑥𝑛)󸀠(𝑡)] = 0, 𝑡 ∈ [0, 1).

We then conclude that 𝐾𝑃,𝑄 is relatively compact and
since 𝑄𝑁(Ω) is bounded we conclude from Definition 2 that𝑁 is 𝐿-compact on every bounded subset Ω of 𝑋 and hence𝑁 is 𝐿-completely continuous.

3. Main Result

In this section we will state and prove the main existence
results for problem (1).

Theorem 7. Assume that the following conditions are satis-
fied:

(H1)There exists a positive constant 𝐵1 such that, for each𝑥 ∈ dom 𝐿, if |𝑥(𝑡)| > 𝐵1 for all 𝑡 ∈ [0, 1] then
𝑄𝑁𝑥 (𝑡)
= 𝑒𝑡ℎ
𝑚=2∑
𝑖=1

𝑎𝑖 ∫1
𝜉𝑖

∫𝑠
0
[𝑓 (𝜏, 𝑥 (𝜏) , 𝑥󸀠 (𝜏)) + 𝑔 (𝜏)] 𝑑𝜏 𝑑𝑠

̸= 0.
(38)

(H2)There exists a positive constant 𝐵2 such that for 𝑐 ∈ R

and |𝑐| > 𝐵2 either (𝑖) 𝑄𝑁(𝑐) ≥ 0 or (𝑖𝑖) 𝑄𝑁(𝑐) ≤ 0.
Then (1) has at least one solution in𝑋 provided

‖𝑎‖𝑍 + ‖𝑏‖1 < 12 . (39)

To proveTheorem 7, we first establish some lemmas.

Lemma 8. Let Ω1 = {𝑥 ∈ dom 𝐿 \ Ker 𝐿 : 𝐿𝑥 = 𝜆𝑁𝑥, 𝜆 ∈(0, 1)} then Ω1 is bounded in𝑋.
Proof. Let 𝑥 ∈ Ω1. We let 𝐿𝑥 = 𝜆𝑁𝑥, 0 < 𝜆 < 1. Since 𝜆 ̸= 0
it is clear that 𝑁𝑥 ∈ Im 𝐿 = Ker𝑄; hence 𝑄𝑁𝑥 = 0 for all

𝑡 ∈ [0, 1]. Therefore by assumption (H1) there exist 𝑡0 ∈ [0, 1]
such that |𝑥(𝑡0)| < 𝐵1. Now
∫𝑡
0
∫𝑠
0
𝑥󸀠󸀠 (𝜏) 𝑑𝜏 𝑑𝑠 = ∫𝑡0

0
(𝑡0 − 𝑠) 𝑥󸀠󸀠 (𝑠) 𝑑𝑠

= 𝑥 (𝑡0) − 𝑥 (0)
(40)

‖𝑃𝑥‖𝑋 = |𝑥 (0)|
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 (𝑡0) + ∫

𝑡0

0
(𝑡0 − 𝑠) 𝑥󸀠󸀠 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨𝑥 (𝑡0)󵄨󵄨󵄨󵄨 + ∫1
0
(1 − 𝑠) 󵄨󵄨󵄨󵄨󵄨𝑥󸀠󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐵1 + ‖𝐿𝑥‖𝑍 ≤ 𝐵1 + ‖𝑁𝑥‖𝑍 .

(41)

We note that (𝐼 − 𝑃)𝑥 ∈ dom 𝐿 ∩ Ker𝑃:
‖(𝐼 − 𝑃) 𝑥‖𝑋 = 󵄩󵄩󵄩󵄩𝐾𝑃𝐿 (𝐼 − 𝑃) 𝑥󵄩󵄩󵄩󵄩𝑋 ≤ 󵄩󵄩󵄩󵄩𝐾𝑃𝐿𝑥󵄩󵄩󵄩󵄩𝑋

≤ ‖𝐿𝑥‖𝑍 < ‖𝑁𝑥‖𝑍 . (42)

From (41) and (42) we get

‖𝑥‖𝑋 = ‖𝑃𝑥 + (𝐼 − 𝑃) 𝑥‖𝑋 ≤ ‖𝑃𝑥‖𝑋 + ‖(𝐼 − 𝑃) 𝑥‖𝑋
< 𝐵1 + 2 ‖𝑁𝑥‖𝑍 . (43)

From the definition of𝑁 we obtain

‖𝑁𝑥‖𝑍 = ‖(1 − 𝑡) (𝑁𝑥) (𝑡)‖1 = ∫1
0
(1 − 𝑡)

⋅ [𝑓 (𝑡, 𝑥 (𝑡) , 𝑥󸀠 (𝑡)) + 𝑔 (𝑡)] 𝑑𝑡
≤ ∫1
0
[(1 − 𝑡) 𝑎 (𝑡) |𝑥 (𝑡)| + |𝑏 (𝑡)| (1 − 𝑡) 𝑥󸀠 (𝑡)

+ (1 − 𝑡) |𝑟 (𝑡)| + (1 − 𝑡) 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨] 𝑑𝑡 ≤ ‖𝑎‖𝑍
⋅ ‖𝑥‖∞ + ‖𝑏‖1 󵄩󵄩󵄩󵄩󵄩(1 − 𝑡) 𝑥󸀠󵄩󵄩󵄩󵄩󵄩∞ + ‖𝑟‖𝑍 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑍 .

(44)

From (43) and (44) we get

‖𝑥‖𝑋 < 𝐵1
+ 2 [‖𝑎‖𝑍 ‖𝑥‖𝑋 + ‖𝑏‖1 ‖𝑥‖𝑋 + ‖𝑟‖𝑍 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑍] . (45)

Since 1 − 2[‖𝑎‖𝑍 + ‖𝑏‖1] > 0 we obtain that

‖𝑥‖𝑋 < 𝐵1 + 2 ‖𝑟‖𝑍1 − 2 [‖𝑎‖𝑍 + ‖𝑏‖1] +
2 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑍1 − 2 [‖𝑎‖𝑍 + ‖𝑏‖1] . (46)

Therefore Ω1 is bounded in𝑋.
Lemma 9. The set Ω2 = {𝑥 ∈ Ker 𝐿 : 𝑁𝑥 ∈ Im 𝐿} is a
bounded subset of𝑋.
Proof. Let 𝑥 ∈ Ω2 with 𝑥(𝑡) = 𝑐, 𝑐 ∈ R. Then 𝑄𝑁(𝑐) = 0
implies𝑁(𝑐) ∈ Im 𝐿 = Ker𝑄. We therefore derive from (H2)
that

‖𝑥‖𝑋 = |𝑐| = max {|𝑐| , ‖(1 − 𝑡) 0‖} = |𝑐| < 𝐵2. (47)
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Lemma 10. The sets Ω+3 = {𝑥 ∈ Ker 𝐿 : 𝜆𝑥 + (1 − 𝜆)𝑄𝑁𝑥 =0, 𝜆 ∈ [0, 1]} and Ω−3 = {𝑥 ∈ Ker 𝐿 : −𝜆𝑥 + (1 − 𝜆)𝑄𝑁𝑥 =0, 𝜆 ∈ [0, 1]} are bounded in𝑋 provided (H2)(i) and (H2)(ii)
are satisfied simultaneously.

Proof. If𝑄𝑁(𝑐) ≥ 0 then, for 𝑥 ∈ Ω+3 with 𝑥(𝑡) = 𝑐, 𝑐 ∈ R, we
have

𝜆𝑐 = − (1 − 𝜆)𝑄𝑁 (𝑐) . (48)

If 𝜆 = 0, it follows from (48) that𝑁(𝑐) ∈ Ker𝑄 = Im 𝐿; that
is,𝑁(𝑐) ∈ Ω2, and therefore by Lemma 9. we have ‖𝑥‖𝑋 ≤ 𝐵2.
However if 𝜆 ∈ (0, 1) and ‖𝑐‖ > 𝐵2 then using assumption
(H2)(i) we obtain the contradiction

𝜆𝑐2 = − (1 − 𝜆) 𝑐𝑄𝑁 (𝑐) ≤ 0. (49)

Thus ‖𝑥‖𝑋 = |𝑐| < 𝐵2. Hence Ω+3 is bounded in 𝑋. We can
use the same argument to prove that Ω−3 is also bounded in𝑋.
Proof of Theorem 7. We show that the conditions of
Theorem 3 are satisfied where Ω is an open and bounded set
such that⋃3𝑖=1Ω𝑖 ⊂ Ω. It is easily seen that conditions (i) and
(ii) of Theorem 3 are satisfied by using Lemmas 8 and 9. To
verify the third condition we set𝐻(𝑥, 𝜆) = ±𝜆𝑥+(1−𝜆)𝑄𝑁𝑥.
We choose the isomorphism 𝐽 : Im𝑄 → Ker 𝐿 defined by𝐽(𝑐) = 𝑐, 𝑐 ∈ R. By Lemma 10, we derive that𝐻(𝑥, 𝜆) ̸= 0 for
all (𝑥, 𝜆) ∈ (Ker 𝐿 ∩ 𝜕Ω) × [0, 1]. Hence

deg (𝑄𝑁|Ker𝐿 , Ω ∩ Ker 𝐿, 0)
= deg (±𝐽, Ω ∩ Ker 𝐿, 0) ̸= 0. (50)

Therefore problem (1) has at least one solution in𝑋.
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This paper aims to present a novel optimization technique, the residual power series (RPS), for handling certain classes of fuzzy
fractional differential equations of order 1 < 𝛾 ≤ 2 under strongly generalized differentiability. The proposed technique relies on
generalized Taylor formula under Caputo sense aiming at extracting a supportive analytical solution in convergent series form.The
RPS algorithm is significant and straightforward tool for creating a fractional power series solution without linearization, limitation
on the problem’s nature, sort of classification, or perturbation. Some illustrative examples are provided to demonstrate the feasibility
of the RPS scheme.The results obtained show that the scheme is simple and reliable and there is good agreement with exact solution.

1. Introduction

Fuzzy fractional differential equation is hot and important
branch of mathematics. It has attracted much attention
recently due to potential applications in artificial intelligence,
industrial engineering, physics, chemistry, and other fields
of science. Parameters and variables in many of the nature
studies and technological processes that were designed utiliz-
ing the fractional differential equation (FDE) are specific and
completely defined. Indeed, such information may be vague
and uncertain because of experimentation and measurement
errors that then lead to uncertain models, which cannot
handle these studies. The process of analyzing the relative
influence of uncertainty in inputs information to outputs led
us to study solutions to the qualitative behavior of equations.
Therefore, it is necessary to obtain some mathematical tools
to understand the complex structure of uncertainty models
[1–5]. On the other hand, the theory of fractional calculus,
which is a generalization of classical calculus, deals with
the discussion of the integrals and derivatives of noninteger

order, has a long history, and dates back to the seven-
teenth century [6–10]. Different forms of fractional operators
are introduced to study FDEs such as Riemann–Liouville,
Grunwald-Letnikov, and Caputo. Out of these forms, the
Caputo concept is an appropriate tool for modeling practical
situations due to its countless benefits as it allows the process
to be performed based on initial and boundary conditions as
is traditional and its derivative is zero for constant [11–17].

The residual power series (RPS) method developed in
[18] is considered as an effective optimization technique
to determine and define the power series solution’s values
of coefficients of first- and second-order fuzzy differential
equations [19–22]. Furthermore, the RPS is characterized
as an applicable and easy technique to create power series
solutions for strongly linear and nonlinear equations without
being linearized, discretized, or exposed to perturbation [23–
27]. Unlike the classical power seriesmethod, the RPS neither
requires comparing the corresponding coefficients nor is a
recursion relation needed as well. Besides that, it calculates
the power series coefficients through chain of equations of
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one or more variables and offers convergence of a series
solution whose terms approach quickly, especially when the
exact solution is polynomial.

The remainder of this paper is organized as follows. In
Section 2, essential facts and results related to the fuzzy
fractional calculus will be shown. In Section 3, the concept
of Caputo’s H-differentiability will be presented together with
some closely related results. In Section 4, basic idea of the
RPS method will be presented to solve the fuzzy FDEs of
order 1 < 𝛾 ≤ 2. In Section 5, numerical application will
be performed to show capability, potentiality, and simplicity
of the method. Conclusions will be given in Section 6.

2. Preliminaries

In this section, necessary definitions and results relating
to fuzzy fractional calculus are presented. For the fuzzy
derivative concept, the strongly generalized differentiability
will be adopted, which is considered H-differentiability mod-
ification.

A fuzzy set V in a nonempty set 𝑈 is described by its
membership function V : 𝑈 → [0, 1]. So, for each 𝜂 ∈ 𝑈
the degree of membership of 𝜂 in V is defined by V(𝜂).
Definition 1 ([28]). Suppose that V is a fuzzy subset of R.
Then, V is called a fuzzy number such that V is upper
semicontinuous membership function of bounded support,
normal, and convex.

If V is a fuzzy number, then [V]𝜎 = [V1(𝜎), V2(𝜎)], where
V1(𝜎) = min{𝜂 | 𝜂 ∈ [V]𝜎} and V2(𝜎) = max{𝜂 | 𝜂 ∈ [V]𝜎}
for each 𝜎 ∈ [0, 1]. The symbol [V]𝜎 is called the 𝜎-level
representation or the parametric form of a fuzzy number V.

Theorem 2 ([29]). Suppose that V1, V2 : [0, 1] → R satisfy the
following conditions:

(1) V1 is a bounded nondecreasing function.

(2) V2 is a bounded nonincreasing function.

(3) V1(1) ≤ V2(1).
(4) for each 𝑘 ∈ (0, 1], lim𝜎→𝑘−V1(𝜎) = V1(𝑘) and

lim𝜎→𝑘−V2(𝜎) = V2(𝑘).
(5) lim𝜎→0+V1(𝜎) = V1(0) and lim𝜎→0+V2(𝜎) = V2(0).

Then V : R→ [0, 1] given by V(𝑥) = sup{𝜎 | V1(𝜎) ≤ 𝑥 ≤ V(𝜎)}
is a fuzzy number with parameterization [V1(𝜎), V2(𝜎)].
Definition 3 ([29]). Let V, 𝑤 ∈ RF. If there exists an element
P ∈ RF such that V = 𝑤 + P, then we say that P is the
Hukuhara difference (H-difference) of V and 𝑤, denoted by
V ⊖ 𝑤.

The sign ⊖ stands always for Hukuhara difference.Thus, it
should be noted that V ⊖𝑤 ̸= V + (−1)𝑤.Normally, V + (−1)𝑤
is denoted by V − 𝑤. If the H-difference V ⊖ 𝑤 exists, then[V ⊖ 𝑤]𝜎 = [V1(𝜎) − 𝑤1(𝜎), V2(𝜎) − 𝑤2(𝜎)].

Definition 4 ([30]). The complete metric structure on RF is
given by the Hausdorff distance mapping 𝐷𝐻 : RF × RF →
R+ ∪ {0} such that

𝐷𝐻 (V, 𝑤) = sup0≤𝜎≤1max {󵄨󵄨󵄨󵄨V1𝜎 − 𝑤1𝜎󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V2𝜎 − 𝑤2𝜎󵄨󵄨󵄨󵄨} , (1)

for arbitrary fuzzy numbers V = (V1, V2) and 𝑤 = (𝑤1, 𝑤2).
Definition 5 ([30]). Let 𝜑 : [𝑎, 𝑏] → RF. Then the function 𝜑
is continuous at 𝑥0 ∈ [𝑎, 𝑏] if for every 𝜖 > 0, ∃𝛿 = 𝛿(𝑥0, 𝜖) >0 such that𝐷𝐻(𝜑(𝑥), 𝜑(𝑥0)) < 𝜖, for each𝑥 ∈ [𝑎, 𝑏], whenever|𝑥 − 𝑥0| < 𝛿.
Remark 6. If the function 𝜑(𝑥) is continuous for each 𝑥 ∈[𝑎, 𝑏], where the continuity is one-sided at endpoints of [𝑎, 𝑏],
then 𝜑(𝑥) is continuous function on [𝑎, 𝑏]. This means that𝜑(𝑥) is continuous on [𝑎, 𝑏] if and only if 𝜑1𝜎 and 𝜑2𝜎 are
continuous on [𝑎, 𝑏].
Definition 7 ([28]). For fixed 𝑥0 ∈ [𝑎, 𝑏] and 𝜑 : [𝑎, 𝑏] → RF,
the function 𝜑 is called a strongly generalized differentiable at𝑥0, if there is an element 𝜑󸀠(𝑥0) ∈ RF such that either

(i) the H-differences 𝜑(𝑥0 + 𝜉) ⊖ 𝜑(𝑥0), 𝜑(𝑥0) ⊖ 𝜑(𝑥0 −𝜉) exist, for each 𝜉>0 sufficiently tends to 0 and
lim𝜉→0+((𝜑(𝑥0 + 𝜉) ⊖ 𝜑(𝑥0))/𝜉) = 𝜑󸀠(𝑥0) =
lim𝜉→0+((𝜑(𝑥0) ⊖ 𝜑(𝑥0 − 𝜉))/𝜉), or

(ii) the H-differences 𝜑(𝑥0) ⊖ 𝜑(𝑥0 + 𝜉), 𝜑(𝑥0 − 𝜉) ⊖𝜑(𝑥0) exist, for each 𝜉>0 sufficiently tends to 0 and
lim𝜉→0+((𝜑(𝑥0) ⊖ 𝜑(𝑥0 + 𝜉))/ − 𝜉) = 𝜑󸀠(𝑥0) =
lim𝜉→0+((𝜑(𝑥0 − 𝜉) ⊖ 𝜑(𝑥0))/ − 𝜉),

where the limit here is taken in the complete metric space(RF, 𝐷𝐻).
Theorem 8 ([31]). Suppose that 𝜑 : [𝑎, 𝑏] → RF, where[𝜑(𝑥)]𝜎 = [𝜑1𝜎(𝑥), 𝜑2𝜎(𝑥)], ∀𝜎 ∈ [0, 1], then

(1) the functions 𝜑1𝜎 and 𝜑2𝜎 are two differentiable func-
tions and [𝐷11𝜑(𝑥)]𝜎 = [𝜑󸀠1𝜎(𝑥), 𝜑󸀠2𝜎(𝑥)], when 𝜑 is (1)-
differentiable;

(2) the functions 𝜑1𝜎 and 𝜑2𝜎 are two differentiable func-
tions and [𝐷12𝜑(𝑥)]𝜎 = [𝜑󸀠2𝜎(𝑥), 𝜑󸀠1𝜎(𝑥)], when 𝜑 is (2)-
differentiable.

Definition 9 ([31]). Suppose that 𝜑 : [𝑎, 𝑏] → RF. One can
say that 𝜑 is (𝑛,𝑚)-differentiable at 𝑥0 ∈ (𝑎, 𝑏), if 𝐷1𝑛𝜑 exists
on a neighborhood of 𝑥0 as a fuzzy function and it is (𝑚)-
differentiable at 𝑥0.The second-order derivatives of 𝜑 at 𝑥 are
indicated by 𝜑󸀠󸀠(𝑥) = 𝐷2𝑛,𝑚𝜑(𝑥) for 𝑛,𝑚 = {1, 2}.
Theorem 10 ([32]). Let 𝐷11𝜑 : [𝑎, 𝑏] → RF and 𝐷12𝜑 :[𝑎, 𝑏] → RF, where [𝜑(𝑥)]𝜎 = [𝜑1𝜎(𝑥), 𝜑2𝜎(𝑥)] for each𝜎 ∈ [0, 1]:

(1) If𝐷11𝜑 is (1)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷21,1𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠1𝜎(𝑥), 𝜑󸀠󸀠2𝜎(𝑥)],

(2) If𝐷11𝜑 is (2)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷21,2𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠2𝜎(𝑥), 𝜑󸀠󸀠1𝜎(𝑥)],
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(3) If𝐷12𝜑 is (1)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷22,1𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠2𝜎(𝑥), 𝜑󸀠󸀠1𝜎(𝑥)],

(4) If𝐷12𝜑 is (2)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷22,2𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠1𝜎(𝑥), 𝜑󸀠󸀠2𝜎(𝑥)].

Definition 11 ([32]). Let 𝜑 : [𝑎, 𝑏] → RF and 𝜑 ∈ 𝐶F[𝑎, 𝑏] ∩𝐿F[𝑎, 𝑏]. One can say that 𝜑 is Caputo fuzzy𝐻-differentiable
at 𝑥 when (𝐶𝐷𝛾𝑎+𝜑)(𝑥) = (1/Γ(1 − 𝛾)) ∫𝑥𝑎 𝜑󸀠(𝜏)/(𝑥 − 𝜏)𝛾𝑑𝜏
exists, where 0 < 𝛾 ≤ 1. Also, we say that𝜑 is Caputo [(1)−𝛾]-
differentiable if 𝜑 is (1)-differentiable and 𝜑 is Caputo [(2) −𝛾] differentiable if 𝜑 is (2)-differentiable, where 𝐶F[𝑎, 𝑏] and𝐿F[𝑎, 𝑏] stand for the space of all continuous and Lebesque
integrable fuzzy-valued functions on [𝑎, 𝑏], respectively.
Theorem 12 ([33]). Let 0 < 𝛾 ≤ 1 and 𝜑 ∈ 𝐶F[𝑎, 𝑏].Then, for
each 𝜎 ∈ [0, 1], the Caputo fuzzy fractional derivative exists on(𝑎, 𝑏) such that

[(𝐶𝐷𝛾𝑎+𝜑) (𝑥)]𝜎 = [ 1Γ (1 − 𝛾)
⋅ ∫𝑥
𝑎

𝜑󸀠1𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏, 1Γ (1 − 𝛾) ∫
𝑥

𝑎

𝜑󸀠2𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏]
(2)

for (1)-differentiable and

[(𝐶𝐷𝛾𝑎+𝜑) (𝑥)]𝜎 = [ 1Γ (1 − 𝛾)
⋅ ∫𝑥
𝑎

𝜑󸀠2𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏, 1Γ (1 − 𝛾) ∫
𝑥

𝑎

𝜑󸀠1𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏]
(3)

for (2)-differentiable.

Thenext characterization theorem shows away to convert
the FFDEs into a system of ordinary fractional differential
equations (OFDEs), ignoring the fuzzy setting approach.

Theorem 13 ([34]). Consider the below fuzzy fractional IVPs

(C𝐷𝛾
𝑡
0

+𝜑) (𝑡) = 𝑓 (𝑡, 𝜑 (𝑡)) , 𝑡 > 𝑡0, (4)

subject to

𝜑 (𝑡0) = 𝜑0, (5)

where 𝑓 : [𝑎, 𝑏] ×RF → RF such that
(i) [𝑓(𝑡, 𝜑(𝑡))]𝜎 = [𝑓1𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)), 𝑓2𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡))].
(ii) for any 𝜖 > 0 there exist 𝛿 > 0 such that |𝑓1𝜎(𝑡, 𝑠, 𝑢) −𝑓1𝜎(𝑡1, 𝑠1, 𝑢1)| < 𝜖 and |𝑓2𝜎(𝑡, 𝑠, 𝑢) − 𝑓2𝜎(𝑡1, 𝑠1, 𝑢1)| < 𝜖, ∀𝜎 ∈[0, 1], whenever (𝑡, 𝑠, 𝑢) and (𝑡1, 𝑠1, 𝑢1) ∈ [𝑎, 𝑏]×R2, ‖(𝑡, 𝑠, 𝑢)−(𝑡1, 𝑠1, 𝑢1)‖R3 < 𝛿 and 𝑓1𝜎, 𝑓2𝜎 are uniformly bounded on any

bounded set.
(iii) there is a constant (say) ℓ > 0 such that󵄨󵄨󵄨󵄨𝑓1𝜎 (𝑡2, 𝑠2, 𝑢2) − 𝑓1𝜎 (𝑡1, 𝑠1, 𝑢1)󵄨󵄨󵄨󵄨

≤ ℓ.max {󵄨󵄨󵄨󵄨𝑠2 − 𝑠1󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑢2 − 𝑢1󵄨󵄨󵄨󵄨} , ∀𝜎 ∈ [0, 1] (6)

and 󵄨󵄨󵄨󵄨𝑓2𝜎 (𝑡2, 𝑠2, 𝑢2) − 𝑓2𝜎 (𝑡1, 𝑠1, 𝑢1)󵄨󵄨󵄨󵄨
≤ ℓ.max {󵄨󵄨󵄨󵄨𝑠2 − 𝑠1󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑢2 − 𝑢1󵄨󵄨󵄨󵄨} , ∀𝜎 ∈ [0, 1] . (7)

Therefore, there are two systems of OFDEs that are equivalent
to FFDEs (4) and (5) as follows:

Case 1. When 𝜑(𝑡) is Caputo [(1)-𝛾]-differentiable
(C𝐷𝛾
𝑡
0

+𝜑1𝜎) (𝑡) = 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑡
0

+𝜑2𝜎) (𝑡) = 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) , (8)

with 𝜑1𝜎(𝑡0) = 𝜑01𝜎, 𝜑2𝜎(𝑡0) = 𝜑02𝜎.
Case 2. When 𝜑(𝑡) is Caputo [(2)-𝛾]-differentiable

(𝐶𝐷𝛾
𝑡
0

+𝜑1𝜎) (𝑡) = 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(𝐶𝐷𝛾
𝑡
0

+𝜑2𝜎) (𝑡) = 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) , (9)

with 𝜑1𝜎(𝑡0) = 𝜑01𝜎, 𝜑2𝜎(𝑡0) = 𝜑02𝜎.
3. Formulation of Fuzzy Fractional IVPs of
Order 1 < 𝛾 ≤ 2

Consider the below fuzzy fractional differential equation

(C𝐷𝛾
𝑎+
𝜑) (𝑡) = 𝑔 (𝑡) 𝜑󸀠 (𝑡) + 𝑓 (𝑡, 𝜑 (𝑡)) ,

𝑎 ≤ 𝑡 ≤ 𝑏, 1 < 𝛾 ≤ 2, (10)

subject to fuzzy initial conditions

𝜑 (𝑎) = 𝛼,
𝜑󸀠 (𝑎) = 𝛽. (11)

where 𝛼, 𝛽 ∈ RF, 𝑓 : [𝑎, 𝑏] × RF → RF is a linear
or nonlinear continuous fuzzy-valued function, 𝑔(𝑡) is a
continuous real valued function with nonnegative values on[𝑎, 𝑏], and 𝜑(𝑡) is unknown analytical fuzzy function to be
determined. We assume that the fuzzy fractional IVPs (10)
and (11) have unique smooth solution on the domain of
interest.

Next, some theorems and definitions which are used later
in this paper are presented.

Definition 14. Let 𝜑 : [𝑎, 𝑏] → RF be fuzzy function such
that 𝜑, 𝜑󸀠 ∈ 𝐶F[𝑎, 𝑏]∩𝐿F[𝑎, 𝑏]. Then, for 1 < 𝛾 ≤ 2, Caputo’s
H-derivative of 𝜑 at 𝑥 ∈ (𝑎, 𝑏) is defined as

(𝐶𝐷𝛾𝑎+𝜑) (𝑥) = 1Γ (2 − 𝛾) ∫
𝑥

𝑎
𝜑󸀠󸀠 (𝜏) (𝑥 − 𝜏)1−𝛾𝑑𝜏. (12)

Also, we say that 𝜑 is Caputo [(𝑛,𝑚) − 𝛾]-differentiable
for 𝑛,𝑚 ∈ {1, 2}, when (𝐶𝐷𝛾𝑎+𝜑)(𝑥) exists, and 𝜑 is (𝑛,𝑚)-
differentiable.
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Theorem 15. Let 𝜑, 𝜑󸀠 ∈ 𝐶F[𝑎, 𝑏], such that [𝜑(𝑥)]𝜎 =[𝜑1𝜎(𝑥), 𝜑2𝜎(𝑥)], ∀𝜎 ∈ [0, 1]. Caputo’s H-derivative of order1 < 𝛾 ≤ 2 exists on (𝑎, 𝑏) such that
(i) If 𝜑 is (1,1)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥), (𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥)].

(ii) If 𝜑 is (1,2)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥), (𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥)].

(iii) If 𝜑 is (2,1)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥), (𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥)].

(iv) If 𝜑 is (2,2)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥), 𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥)], where𝑀 = 1/Γ(2 − 𝛾).

The (𝑛,𝑚)-solution of fuzzy fractional IVPs (10) and
(11) is a function 𝜑 : [𝑎, 𝑏] → RF that has Caputo
[(𝑛,𝑚) − 𝛾]-differentiable and satisfies the FFIVPs (10) and
(11). To compute it, we firstly convert the fuzzy problem into
equivalent system of second OFDEs, called correspondence(𝑛,𝑚)-system, based upon the type of derivative chosen.
Then, by utilizing the 𝜎-cut representation of 𝜑(𝑡), 𝑓(𝑡, 𝜑(𝑡)),
and the initial data in (11) such that [𝜑(𝑡)]𝜎 = [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)],[𝑓(𝑡, 𝜑(𝑡))]𝜎 = [𝑓1𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)), 𝑓2𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡))],[𝜑(𝑎)]𝜎 = [𝜑1𝜎(𝑎), 𝜑2𝜎(𝑎)] = [𝛼1𝜎, 𝛼2𝜎], and [𝜑󸀠(𝑎)]𝜎 =[𝜑󸀠1𝜎(𝑎), 𝜑󸀠2𝜎(𝑎)] = [𝛽1𝜎, 𝛽2𝜎], the following corresponding(𝑛,𝑚)-systems will be hold:

(i) (1,1)-system such that

(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(13)

(ii) the (1,2)-system such that

(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(14)

(iii) the (2,1)-system such that

(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(15)

(iv) the (2,2)-system such that

(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(16)

subject to initial conditions

𝜑1𝜎 (𝑎) = 𝛼1𝜎,
𝜑󸀠1𝜎 (𝑎) = 𝛽1𝜎,
𝜑2𝜎 (𝑎) = 𝛼2𝜎,
𝜑󸀠2𝜎 (𝑎) = 𝛽2𝜎.

(17)

Theorem 16 ([33]). Let 𝑛,𝑚 ∈ {1, 2} and let [𝜑(𝑡)]𝜎 =[𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)] be an (𝑛,𝑚)-solution of FFIVPs (10) and (11)
on [𝑎, 𝑏]. Then, 𝜑1𝜎(𝑡) and 𝜑2𝜎(𝑡) will be a solution to the
associated (𝑛,𝑚)-system.

Theorem 17 ([33]). Let 𝑛,𝑚 ∈ {1, 2} and let 𝜑1𝜎(𝑡) and 𝜑2𝜎(𝑡)
be the solution of (𝑛,𝑚)-system for each 𝜎 ∈ [0, 1]. If [𝜑(𝑡)]𝜎 =[𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)] has valid level sets and 𝜑(𝑡) is Caputo [(𝑛,𝑚)−𝛾]-differentiable, then 𝜑(𝑡) is an (𝑛,𝑚)-solution of FFIVPs (10)
and (11) on [𝑎, 𝑏].

The aim of the next algorithm is to perform a strategy
to solve the FFIVPs (10) and (11) in terms of its 𝜎-cut
representation form. Indeed, there are four cases that depend
on type of differentiability.

Algorithm 18. To determine the solutions of FFIVPs (10) and
(11), do the following:

Case (I). If 𝜑(𝑡) is Caputo [(1,1)-𝛾]-differentiable and the
FFIVPs (10) and (11) will be converted to crisp system
described in (13) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)] and[𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (1,1)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].

Case (II). If 𝜑(𝑡) is Caputo [(1,2)-𝛾]-differentiable and the
FFIVPs (10) and (11) will be converted to crisp system
described in (14) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)] and[𝜑󸀠󸀠2𝜎(𝑡), 𝜑󸀠󸀠1𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (1,2)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].
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Case (III). If 𝜑(𝑡) is Caputo [(2,1)-𝛾]-differentiable and the
FFIVPs (10) and (11) will be converted to crisp system
described in (15) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)] and[𝜑󸀠󸀠2𝜎(𝑡), 𝜑󸀠󸀠1𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (2,1)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].

Case (IV). If 𝜑(𝑡) is Caputo [(2,2)-𝛾]-differentiable and
the FFIVPs (10) and (11) will be converted to crisp system
described in (16) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)] and[𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (2,2)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].

4. Description of Fractional RPS Method

In this section, the RPS scheme is presented for constructing
an analytical solution of FFIVPs (10) and (11) through
substituting the expansion of fractional power series (FPS)
among the truncated residual functions. In view of that, the
resultant equation helps us to derive a recursion formula
for the coefficients’ computation, where the coefficients can
be computed recursively through the recurrent fractional
differentiating of the truncated residual function.

Definition 19 ([35]). A fractional power series (FPS) repre-
sentation at 𝑡0 has the following form:

∞∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛾 = 𝑐0 + 𝑐1 (𝑡 − 𝑡0)𝛾 + 𝑐2 (𝑡 − 𝑡0)2𝛾 + . . . , (18)

where 0 ≤ 𝑚 − 1 < 𝛾 ≤ 𝑚, 𝑡 ≥ 𝑡0, and 𝑐𝑛’s are the coefficients
of the series.

Theorem 20 ([35]). Suppose that 𝑓 has the following FPS
representation at 𝑡0:

𝑓 (𝑡) = ∞∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛾 , (19)

where 𝑓(𝑡) ∈ 𝐶[𝑡0, 𝑡0 + 𝑅) and C𝐷𝑛𝛾𝑓(𝑡) ∈ 𝐶(𝑡0, 𝑡0 + 𝑅) for𝑛 = 0, 1, 2, . . .; then the coefficients 𝑐𝑛 will be in the form 𝑐𝑛 =
C𝐷𝑛𝛾𝑓(𝑡0)/Γ(1 + 𝑛𝛾) such that C𝐷𝑛𝛾 = C𝐷𝛾 ⋅ C𝐷𝛾 ⋅ . . . ⋅ C𝐷𝛾
(𝑛-times).

Conveniently, for obtaining (𝑛,𝑚)-solution of FFIVPs
(10) and (11) utilizing the solution of the corresponding(𝑛,𝑚)-system, we will explain the fashion to determine(1, 1)-solution equivalent to the solution for the system of
OFDEs (13) and (17). Further, samemanner can be applied to
construct other type of (𝑛,𝑚)-solutions. To achieve our goal,

assume that the solution of OFDEs (13) and (17) at 𝑡0 = 0 has
the following form:

𝜑1𝜎 (𝑡) = ∞∑
𝑛=0

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = ∞∑

𝑛=0

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(20)

Since 𝜑1𝜎(𝑡) and 𝜑2𝜎(𝑡) satisfy the initial conditions in
(17), then the following polynomials 𝜑1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 and𝜑2𝜎(𝑡) = 𝛼2𝜎 + 𝛽2𝜎𝑡 will be the initial guesses for the system
and the solutions can also be represented by

𝜑1𝜎 (𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + ∞∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = 𝛼2𝜎 + 𝛽2𝜎𝑡 + ∞∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(21)

Consequently, the 𝑘𝑡ℎ-truncated series solutions can be
given by

𝜑𝑘,1𝜎 (t) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + 𝑘∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑𝑘,2𝜎 (t) = 𝛼2𝜎 + 𝛽2𝜎𝑡 + 𝑘∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(22)

The residual functions 𝑅𝑒𝑠1𝜎(𝑡) and 𝑅𝑒𝑠2𝜎(𝑡) are defined
as follows:

𝑅𝑒𝑠1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)
− 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,

𝑅𝑒𝑠2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)
−𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,

(23)

and the 𝑘𝑡ℎ-residual functions 𝑅𝑒𝑠𝑘,1𝜎(𝑡) and 𝑅𝑒𝑠𝑘,2𝜎(𝑡) for𝑘 = 1, 2, 3, . . . 𝑛 are defined as follows:

𝑅𝑒𝑠𝑘,1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑𝑘,1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠𝑘,1𝜎 (𝑡)
− 𝑓1𝜎 (𝑡, 𝜑𝑘,1𝜎 (𝑡) , 𝜑𝑘,2𝜎 (𝑡)) ,

𝑅𝑒𝑠𝑘,2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑𝑘,2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠𝑘,2𝜎 (𝑡)
−𝑓2𝜎 (𝑡, 𝜑𝑘,1𝜎 (𝑡) , 𝜑𝑘,2𝜎 (𝑡)) .

(24)

From (23), we have 𝑅𝑒𝑠𝑛𝜎(𝑡) = 0 and lim𝑘→∞𝑅𝑒𝑠𝑘,𝑛𝜎(𝑡) =𝑅𝑒𝑠𝑛𝜎 ≡ 0 for 𝑛 = 1, 2 and each 𝑡 ≥ 0, which
leads to C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑛𝜎(𝑡) = 0. Also, the fractional derivatives
C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑛𝜎(𝑡) and C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑘,𝑛𝜎(𝑡) are equivalent at 𝑡 =0 for each 𝑚 = 0, 1, 2, . . . , 𝑘, that is, C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑛𝜎(0) =
C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑘,𝑛𝜎(0) = 0. However, C𝐷(𝑘−1)𝛾𝑡 𝑅𝑒𝑠𝑘,𝑛𝜎(0) = 0 holds
for 𝑛 = 1, 2.
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Regarding employing the RPS algorithm to obtain the 1st
unknown coefficients, 𝑐1and 𝑑1, substitute the 1st approxima-
tions 𝜑1,1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) and 𝜑1,2𝜎(𝑡) =𝛼2𝜎 + 𝛽2𝜎𝑡 + 𝑑1(𝑡𝛾/Γ(1 + 𝛾)) into the 1st residual functions𝑅𝑒𝑠1,1𝜎(𝑡) and 𝑅𝑒𝑠1,2𝜎(𝑡) of (24) such that

𝑅𝑒𝑠1,1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑1,1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠1,1𝜎 (𝑡)
− 𝑓1𝜎 (𝑡, 𝜑1,1𝜎 (𝑡) , 𝜑1,2𝜎 (𝑡)) ,

𝑅𝑒𝑠1,2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑1,2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠1,2𝜎 (𝑡)
− 𝑓2𝜎 (𝑡, 𝜑1,1𝜎 (𝑡) , 𝜑1,2𝜎 (𝑡)) ,

(25)

and based upon the facts 𝑅𝑒𝑠1,1𝜎(0) = 𝑅𝑒𝑠1,2𝜎(0) = 0, we have𝑐1 = 𝑔(0)𝜑󸀠1,1𝜎(0) − 𝑓1𝜎(0, 𝛼1𝜎, 𝛼2𝜎) and 𝑑1 = 𝑔(0)𝜑󸀠1,2𝜎(0) −𝑓2𝜎(0, 𝛼1𝜎, 𝛼2𝜎). Therefore, the 1st RPS approximate solutions
can be written as

𝜑1,1𝜎 (t)
= 𝛼1𝜎 + 𝛽1𝜎𝑡
+ (𝑔 (0) 𝜑󸀠1,1𝜎 (0) − 𝑓1𝜎 (0, 𝛼1𝜎, 𝛼2𝜎)) 𝑡𝛾Γ (1 + 𝛾) ,

𝜑1,2𝜎 (t)
= 𝛼2𝜎 + 𝛽2𝜎𝑡
+ (𝑔 (0) 𝜑󸀠1,2𝜎 (0) − 𝑓2𝜎 (0, 𝛼1𝜎, 𝛼2𝜎)) 𝑡𝛾Γ (1 + 𝛾) .

(26)

Currently, for the 2nd unknown coefficients, 𝑐2 and 𝑑2
substitute 𝜑2,1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + ∑2𝑛=1 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) and𝜑2,2𝜎(𝑡) = 𝛼2𝜎 + 𝛽2𝜎𝑡 + ∑2𝑛=1 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) into the 2nd
residual functions, 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡) of (24) such that

𝑅𝑒𝑠2,1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑2,1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠2,1𝜎 (𝑡)
−𝑓1𝜎 (𝑡, 𝜑2,1𝜎 (𝑡) , 𝜑2,2𝜎 (𝑡)) ,

𝑅𝑒𝑠2,2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑2,2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠2,2𝜎 (𝑡)
− 𝑓2𝜎 (𝑡, 𝜑2,1𝜎 (𝑡) , 𝜑2,2𝜎 (𝑡)) .

(27)

Then, by applying the fractional derivative C𝐷𝛾𝑡 on
both sides of 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡), using the facts
C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(0) = C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(0) = 0 as well, the values of 𝑐2
and 𝑑2 will be given by

𝑐2 = Γ (2𝛾)Γ (𝛾) (
Γ (𝛾) 𝛽1𝜎 (C𝐷𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑐1 (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓1𝜎 (0, 𝑐1, 𝑑1)Γ (2𝛾) − (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨𝑡=0 ) ,

𝑑2 = Γ (2𝛾)Γ (𝛾) (
Γ (𝛾) 𝛽2𝜎 (C𝐷𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑑1 (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓2𝜎 (0, 𝑐1, 𝑑1)Γ (2𝛾) − (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨𝑡=0 ) .

(28)

For the 3rd unknown coefficients, 𝑐3 and 𝑑3 substitute𝜑3,1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + ∑3𝑛=1 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) and 𝜑3,2𝜎(𝑡) =𝛼2𝜎 + 𝛽2𝜎𝑡 + ∑3𝑛=1 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) into the 3rd residual
functions, 𝑅𝑒𝑠3,1𝜎(𝑡) and 𝑅𝑒𝑠3,2𝜎(𝑡) of (24), and then by

computing C𝐷2𝛾𝑡 𝑅𝑒𝑠3,1𝜎(𝑡) and C𝐷2𝛾𝑡 𝑅𝑒𝑠3,2𝜎(𝑡) and using the
facts C𝐷2𝛾𝑡 𝑅𝑒𝑠3,1𝜎(0) = C𝐷2𝛾𝑡 𝑅𝑒𝑠3,2𝜎(0) = 0, the coefficients,𝑐3 and 𝑑3, will be given such that

𝑐3
= Γ (3𝛾)Γ (𝛾) Γ (2𝛾) (

Γ (𝛾) Γ (2𝛾) 𝛽1𝜎 (C𝐷2𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑐1 ( C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑐2 (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓1𝜎 (0, 𝑐2, 𝑑2)Γ (3𝛾) − (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡3𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 ) ,
𝑑3
= Γ (3𝛾)Γ (𝛾) Γ (2𝛾) (

Γ (𝛾) Γ (2𝛾) 𝛽2𝜎 (C𝐷2𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑑1 ( C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑑2 (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓2𝜎 (0, 𝑐2, 𝑑2)Γ (3𝛾) − (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡3𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 ) .

(29)

Using similar argument, the 4th unknown coef-
ficients, 𝑐4 and 𝑑4, will be given utilizing the facts
C𝐷3𝛾𝑡 𝑅𝑒𝑠4,1𝜎(0) = C𝐷3𝛾𝑡 𝑅𝑒𝑠3,1𝜎(0) = 0. The same manner

can be repeated until we obtain on the coefficients’
arbitrary order of the FPS solution for the OFDE
(13).
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5. Numerical Simulation and Discussion

This section aims to verify the efficiency and applicability
of the proposed algorithm by applying the RPS method to
a numerical example. Here, all necessary calculations and
analysis are done using Mathematica 10.

For this purpose, let us consider the fuzzy fractional
differential equation

(C𝐷𝛾
0+
𝜑) (𝑡) = 𝜇, 0 ≤ 𝑡 ≤ 1, (30)

with the fuzzy initial conditions

𝜑 (0) = 𝛼,
𝜑󸀠 (0) = 𝛽, (31)

where 𝛾 ∈ (1, 2] and 𝜇, 𝛼, 𝛽 are the fuzzy numbers whose 𝜎-
cut representation is [𝜎 − 1, 1 − 𝜎].

Based on the type of differentiability, the FFIVPs (30) and
(31) can be converted into one of the following systems.

Case 1. If 𝜑(𝑡) is (1,1)-solution, then the corresponding (1,1)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 𝜎 − 1,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 1 − 𝜎,
𝜑1𝜎 (0) = 𝜑󸀠1𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠2𝜎 (0) = 1 − 𝜎.

(32)

If 𝛾 = 2, then the exact solution of (32) is [𝜑(𝑡)]𝜎 = [𝜎 −1, 1 − 𝜎](1 + 𝑡 + 𝑡𝛾/Γ(𝛾 + 1)), 𝑡 ∈ [0, 1]. In finding the
fuzzy (1,1)-solution of FFDEs (30), let𝜑(𝑡) beCaputo [(1,1)-𝛾]-
differentiable. Sequentially, after selecting the initial guesses
as 𝜑0,1𝜎(𝑡) = (𝜎 − 1) + (𝜎 − 1)𝑡 and 𝜑0,2𝜎(𝑡) = (1 − 𝜎) + (1 −𝜎)𝑡, the FPS expansion of solutions for OFDEs (32) can be
represented as follows:

𝜑1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + ∞∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + ∞∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(33)

To determine the 1st RPS approximate solution for
OFDEs (32), substitute the 1st-truncated series 𝜑1,1𝜎(𝑡) = (𝜎−1)+ (𝜎−1)𝑡+ 𝑐1(𝑡𝛾/Γ(1+𝛾)) and 𝜑1,2𝜎(𝑡) = (1−𝜎)+ (1−𝜎)𝑡+𝑑1(𝑡𝛾/Γ(1 + 𝛾)) into the 1st-residual functions 𝑅𝑒𝑠1,1𝜎(𝑡) and𝑅𝑒𝑠1,2𝜎(𝑡) such that 𝑅𝑒𝑠1,1𝜎(𝑡) = 1 − 𝜎 + 𝑐1 and 𝑅𝑒𝑠1,2𝜎(𝑡) =𝜎 − 1 + 𝑑1. Thus, based upon the facts 𝑅𝑒𝑠1,1𝜎(0) = 0 and𝑅𝑒𝑠1,2𝜎(0) = 0, we have 𝑐1 = 𝜎 − 1 and 𝑑1 = 1 − 𝜎. Hence, the1st RPS approximate solution for OFDEs (32) can be written
in the form of

𝜑1,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑1,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) .

(34)

Similarly, to find out the 2nd RPS approximate solution
for OFDEs (32), substitute the 2nd truncated series 𝜑2,1𝜎(𝑡) =(𝜎 − 1) + (𝜎 − 1)𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) + 𝑐2(𝑡2𝛾/Γ(1 + 2𝛾)) and𝜑2,2𝜎(𝑡) = (1−𝜎)+(1−𝜎)𝑡+𝑑1(𝑡𝛾/Γ(1+𝛾))+𝑑2(𝑡2𝛾/Γ(1+2𝛾))
into the 2nd residual functions 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡) such
that 𝑅𝑒𝑠2,1𝜎(𝑡) = (C𝐷𝛾0+𝜑2,1𝜎)(𝑡) − (𝜎 − 1) = 1 − 𝜎 + 𝑐1 +𝑐2(𝑡𝛾/Γ(1 + 𝛾)) and 𝑅𝑒𝑠2,2𝜎(𝑡) = (C𝐷𝛾0+𝜑2,2𝜎)(𝑡) − (1 − 𝜎) =−1 + 𝜎 + 𝑑1 + 𝑑2(𝑡𝛾/Γ(1 + 𝛾)). Now, applying the fractional
derivative C𝐷𝛾𝑡 on both sides of𝑅𝑒𝑠2,1𝜎(𝑡) and𝑅𝑒𝑠2,2𝜎(𝑡) yields
the following: C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(𝑡) = 𝑐2 and C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(𝑡) = 𝑑2.
So, the 2nd unknown coefficients are 𝑐2 = 0 and 𝑑2 = 0
through using the facts C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(0) = C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(0) = 0.
Therefore, the 2nd RPS approximate solution for OFDEs (32)
is given by

𝜑2,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑2,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) .

(35)

Accordingly, the unknown coefficients 𝑐𝑛 and 𝑑𝑛 will be
vanished for 𝑛 ≥ 3 by continuing in the similar approach, that
is,∑∞𝑛=3 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0 and∑∞𝑛=3 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0.
Hence, the RPS approximate solutions corresponding to (1,1)-
system are coinciding well with the exact solutions 𝜑1𝜎(𝑡) =(1 + 𝑡 + (𝑡𝛾/Γ(1 + 𝛾)))(𝜎 − 1) and 𝜑2𝜎(𝑡) = (1 + 𝑡 +𝑡𝛾/Γ(1+ 𝛾))(1 −𝜎). Here, [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)], and[𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are valid level sets for 𝜎 ∈ [0, 1] and 𝑡 ∈ [0, 1].
Moreover,𝜑(𝑡) = 𝜇(1 + 𝑡 + 𝑡𝛾/Γ(1 + 𝛾)) is a (1,1)-solution for
FFIVPs (30) and (31) on [0, 1].
Case 2. If 𝜑(𝑡) is (1,2)-solution, then the corresponding (1,2)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 1 − 𝜎,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 𝜎 − 1,
𝜑1𝜎 (0) = 𝜑󸀠1𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠2𝜎 (0) = 1 − 𝜎,

(36)

If 𝛾 = 2, then the exact solution of (36) is [𝜑(𝑡)]𝜎 = [𝜎 −1, 1 − 𝜎](1 + 𝑡 − 𝑡𝛾/Γ(𝛾 + 1)), 𝑡 ∈ [0, 1]. In finding the fuzzy
(1,2)-solution of FFDEs (30), let 𝜑(𝑡) be Caputo [(1,2)-𝛾]-
differentiable. Sequentially, after selecting the initial guesses
as in case 1, the FPS expansion of solutions for OFDEs (36)
can be represented by

𝜑1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + ∞∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + ∞∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(37)

To determine the 1st RPS approximate solution for
OFDEs (36), substitute the 1st truncated series 𝜑1,1𝜎(𝑡) =
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(𝜎 − 1) + (𝜎 − 1)𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) and 𝜑1,2𝜎(𝑡) = (1 −𝜎) + (1 − 𝜎)𝑡 + 𝑑1(𝑡𝛾/Γ(1 + 𝛾)) into the 1st residual functions𝑅𝑒𝑠1,1𝜎(𝑡) and 𝑅𝑒𝑠1,2𝜎(𝑡) such that 𝑅𝑒𝑠1,1𝜎(𝑡) = 𝜎 − 1 + 𝑐1
and 𝑅𝑒𝑠1,2𝜎(𝑡) = 1 − 𝜎 + 𝑑1. Thus, based upon the facts𝑅𝑒𝑠1,1𝜎(0) = 𝑅𝑒𝑠1,2𝜎(0) = 0, we have 𝑐1 = 1−𝜎 and 𝑑1 = 𝜎−1.
Hence, the 1st RPS approximate solution for OFDEs (36) can
be written in the form of

𝜑1,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑1,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) .

(38)

Similarly, to find out the 2nd RPS approximate solution
for OFDEs (36), substitute the 2nd truncated series 𝜑2,1𝜎(𝑡) =(𝜎 − 1) + (𝜎 − 1)𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) + 𝑐2(𝑡2𝛾/Γ(1 + 2𝛾)) and𝜑2,2𝜎(𝑡) = (1−𝜎)+(1−𝜎)𝑡+𝑑1(𝑡𝛾/Γ(1+𝛾))+𝑑2(𝑡2𝛾/Γ(1+2𝛾))
into the 2nd residual functions 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡) such
that 𝑅𝑒𝑠2,1𝜎(𝑡) = 1 − 𝜎 + 𝑐1 + 𝑐2(𝑡𝛾/Γ(1 + 𝛾)) and 𝑅𝑒𝑠2,2𝜎(𝑡) =−1 + 𝜎 + 𝑑1 + 𝑑2(𝑡𝛾/Γ(1 + 𝛾)). Then, applying the fractional
derivative C𝐷𝛾𝑡 on both sides of 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡)yields
the following: C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(𝑡)=𝑐2 and C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(𝑡)=𝑑2. So, the2nd unknown coefficients are 𝑐2 = 0 and 𝑑2 = 0 through using
the facts C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(0) = C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(0) = 0.Therefore, the2nd RPS approximate solution for OFDEs (36) is given by

𝜑2,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑2,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) .

(39)

By continuing in the similar manner, the unknown
coefficients 𝑐𝑛 and 𝑑𝑛 will be vanished for 𝑛 ≥ 3, that is,∑∞𝑛=3 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0 and ∑∞𝑛=3 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0.
Hence, theRPS approximate solutions corresponding to (1,2)-
system are coinciding well with the exact solutions 𝜑1𝜎(𝑡) =(1+𝑡−𝑡𝛾/Γ(1+𝛾))(𝜎−1) and𝜑2𝜎(𝑡) = (1+𝑡−𝑡𝛾/Γ(1+𝛾))(1−𝜎).
Here, [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)], and [𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are
valid level sets for 𝜎 ∈ [0, 1] and 𝑡 ∈ [0, 1]. On the other hand,𝜑(𝑡) = 𝜇(1+𝑡− 𝑡𝛾/Γ(1+𝛾)) is a (1,2)-solution for FFIVPs (30)
and (31) on [0, 1].
Case 3. If 𝜑(𝑡) is (2,1)-solution, then the corresponding (2,1)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 1 − 𝜎,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 𝜎 − 1,
𝜑1𝜎 (0) = 𝜑󸀠2𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠1𝜎 (0) = 1 − 𝜎,

(40)

If 𝛾 = 2, then the exact solution of (40) is [𝜑(𝑡)]𝜎 = [𝜎 −1, 1 − 𝜎](1 − 𝑡 − 𝑡𝛾/Γ(1 + 𝛾)), 𝑡 ∈ (0, √3 − 1). To obtain the
fuzzy (2,1)-solution of FFDEs (30), let 𝜑(𝑡) is Caputo [(2,1)-𝛾]-differentiable. By using the samemanner in previous cases,

the solutions for (2,1)-system can be obtained such as𝜑1𝜎(𝑡) =(1−𝑡−𝑡𝛾/Γ(1+𝛾))(𝜎−1) and 𝜑2𝜎(𝑡) = (1−𝑡−𝑡𝛾/Γ(1+𝛾))(1−𝜎). It is easy to check that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)] and[𝜑󸀠󸀠2𝜎(𝑡), 𝜑󸀠󸀠1𝜎(𝑡)] are also valid level sets for 𝜎 ∈ [0, 1] and 𝑡 ∈[0, √3−1].Thus, 𝜑(𝑡) = 𝜇(1−𝑡−𝑡𝛾/Γ(1+𝛾)) is a (2,1)-solution
for FFIVPs (30) and (31) on (0, √3 − 1].
Case 4. If𝜑(𝑡) is (2,2)-solution, then the corresponding (2,2)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 𝜎 − 1,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 1 − 𝜎,
𝜑1𝜎 (0) = 𝜑󸀠2𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠1𝜎 (0) = 1 − 𝜎,

(41)

If 𝛾 = 2, then the exact solution of OFDEs (41) is [𝜑(𝑡)]𝜎 =[𝜎 − 1, 1 − 𝜎](1 − 𝑡 + 𝑡𝛾/Γ(𝛾 + 1)), 𝑡 ∈ [0, 1]. Finally, to
determine the fuzzy (2,2)-solution of FFDEs (30), let 𝜑(𝑡) be
Caputo [(2,2)-𝛾]-differentiable. By using the same manner in
previous cases, the solutions for (2,2)-system can be obtained
such as 𝜑1𝜎(𝑡) = (𝜎 − 1)(1 − 𝑡 + 𝑡𝛾/Γ(1 + 𝛾)) and 𝜑2𝜎(𝑡) =(1−𝜎)(1−𝑡+𝑡𝛾/Γ(1+𝛾)). Here, [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)]
and [𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are also valid level sets for 𝜎 ∈ [0, 1] and𝑡 ∈ [0, 1]. However, 𝜑(𝑡) = 𝜇(1 − 𝑡 + 𝑡𝛾/Γ(𝛾 + 1)) defines as a
(2,2)-solution for FFIVPs (30) and (31) on (0, 1].

To demonstrate the agreement between the exact and
approximate solution, Table 1 shows the absolute error of
the 10th PRS approximate solution for FFIVPs (30) and (31)
obtained for different values of 𝜎-cut representations and
nodes with fractional order 𝛾 = 1.9. Some graphical results
are also presented in Figures 1 and 2. The numerical results
obtained indicate that the RPS approximate solutions are in
good agreement with each other and with the exact solutions
for all cases of differentiability.

6. Conclusion

In this paper, the RPS algorithm is successfully developed,
investigated, and applied to solve the fuzzy differential
equation of fractional order 1 < 𝛾 ≤ 2 with fuzzy
initial constraints under the fuzzy concept of Caputo H-
differentiability. The fuzziness is represented using upper
semicontinuous membership function of bounded support,
convex, and normalized fuzzy numbers based on its single
parametric form. The behavior of approximate solution for
different values of fractional order 𝛾 is discussed quan-
titatively as well as graphically. The numerical results in
this paper demonstrate the efficiency of the algorithm. We
conclude that the proposed scheme is highly accurate in
solving widely array of fuzzy fractional issues.
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Figure 1: Plots of 𝛼-cut representations of 𝜑𝑘,1𝜎(𝑡), 𝜑𝑘,2𝜎(𝑡) with 𝑘 = 10, 𝜎 = 0.25, and different values of 𝛾 ∈ {2, 1.9, 1.8, 1.7} (--- Exact, ⋅ ⋅ ⋅
RPS-approximation).
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Figure 2: Plots of exact and RPS-approximation at 𝛾 = 2 with different values of 𝜎-levels, 𝜎 ∈ {0, 0.25, 0.5, 0.75, 1} (--- Exact, ⋅ ⋅ ⋅ RPS-
approximation).
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Table 1: The absolute error of 10th approximation of FFIVPs (30) and (31).

(𝑛, 𝑚)-solution 𝑡 𝜎 = 0 𝜎 = 0.25 𝜎 = 0.5 𝜎 = 0.75
(1, 1)-system

0.2 2.0578567 × 10−4 1.5433927 × 10−4 1.0289283 × 10−4 5.1446419 × 10−50.4 3.8465419 × 10−4 2.8849064 × 10−4 1.9232709 × 10−4 9.6163547 × 10−50.6 5.5428820 × 10−4 4.1571615 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 7.1821803 × 10−4 5.3866352 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
(1, 2) -system

0.2 2.9676224 × 10−4 2.2257168 × 10−4 1.4838112 × 10−4 5.1446419 × 10−50.4 4.7033136 × 10−4 3.5274852 × 10−4 2.3516568 × 10−4 9.6163547 × 10−50.6 6.3684312 × 10−4 4.7763234 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 7.9857642 × 10−4 5.3866352 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
(2, 1) -system

0.2 2.0578567 × 10−4 1.5433925 × 10−4 1.0289283 × 10−4 5.1446419 × 10−50.4 3.8465419 × 10−4 2.8849064 × 10−4 1.9232709 × 10−4 9.6163547 × 10−50.6 5.5428820 × 10−4 4.1571615 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 6.3684312 × 10−4 5.3746353 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
(2, 2) -system

0.2 2.0578567 × 10−4 1.5433925 × 10−4 1.0289283 × 10−4 5.1446419 × 10−50.4 3.8465419 × 10−4 2.8849064 × 10−4 1.9232709 × 10−4 9.6163547 × 10−50.6 5.5428820 × 10−4 4.1571615 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 7.1821803 × 10−4 5.3866352 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
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