

Practical Python Programming for

Data Scientists

Practical Python Programming for

Data Scientists

A. Suresh, N.Malarvizhi, Pethuru Raj,

and E. A. Neeba

www.arclerpress.com

Practical Python Programming for Data Scientists

A. Suresh, N.Malarvizhi, Pethuru Raj, and E. A. Neeba

Arcler Press

224 Shoreacres Road
Burlington, ON L7L 2H2
Canada
www.arclerpress.com
Email: orders@arclereducation.com

© 2022 Arcler Press

ISBN: 978-1-77469-158-8 (Hardcover)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated and copyright remains with the original owners. Copyright for images and
other graphics remains with the original owners as indicated. A Wide variety of references are
listed. Reasonable efforts have been made to publish reliable data. Authors or Editors or Publish-
ers are not responsible for the accuracy of the information in the published chapters or conse-
quences of their use. The publisher assumes no responsibility for any damage or grievance to the
persons or property arising out of the use of any materials, instructions, methods or thoughts in
the book. The authors or editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
��������	��
�����

����������
���������������

Arcler Press publishes wide variety of books and eBooks. For more information about
Arcler Press and its products, visit our website at www.arclerpress.com

��������	
�
���
�
2

ISBN: ������������		���
(���

�)

A. Suresh, Ph.D. works as the Associate Professor, Department of the Computer
Science and Engineering in SRM Institute of Science & Technology, Kattankulathur,
Chengalpattu Dist., Tamil Nadu, India. He has been nearly two decades of experience in
teaching and his areas of specializations are Data Mining, Artificial Intelligence, Image
Processing, Multimedia and System Software. He has published three patents and 90
papers in International journals. He has book authored “Industrial IoT Application
Architectures and use cases” published in CRC press and edited book entitled “Deep
Neural Networks for Multimodal Imaging and Biomedical Application” published in
IGI Global. He has currently editing three books namely “Deep learning and Edge
Computing solutions for High Performance Computing” in EAI/Springer Innovations
in Communications and Computing, “Sensor Data Management and Analysis: The
Role of Deep Learning” and “Bioinformatics and Medical Applications: Big Data
using Deep Learning Algorithms” in Scrivener-Wiley publisher. He has published 15
chapters in the book title An Intelligent Grid Network Based on Cloud Computing
Infrastructures in IGI Global Publisher and Internet of Things for Industry 4.0 in EAI/
Springer Innovations in Communication and Computing. He has published more than
40 papers in National and International Conferences. He has served as editor / reviewer
for Springer, Elsevier, Wiley, IGI Global, IoS Press, Inderscience journals etc... He is a
member of IEEE (Senior Member), ISTE, MCSI, IACSIT, IAENG, MCSTA and Global
Member of Internet Society (ISOC). He has organized several National Workshop,
Conferences and Technical Events. He is regularly invited to deliver lectures in various
programmes for imparting skills in research methodology to students and research
scholars. He has published four books in Indian publishers, in the name of Hospital
Management, Data Structures & Algorithms, Computer Programming, Problem Solving
and Python Programming and Programming in “C”. He has hosted two special sessions
for IEEE sponsored conference in Osaka, Japan and Thailand.

ABOUT THE AUTHORS

N. Malarvizhi, PhD currently working as the Professor in the Department of Computer
Science and Engineering at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of
Science and Technology, Chennai-62, Tamilnadu, India. She is having more than 18
years of teaching experience. She has written a book titled “Computer Architecture and
Organization”, Eswar Press, The Science and Technology Book Publisher, Chennai.
She serves as a reviewer for many reputed journals. She has published numerous
papers in International Conferences and Journals. Her area of interest includes Parallel
and Distributed Computing, Grid Computing, Cloud Computing, Big Data Analytics,
Internet of Things, Computer Architecture and Operating Systems. She is a life member
of Computer Society of India (CSI), Indian Society for Technical Education (ISTE),
IARCS and IAENG. She is a Senior Member of IEEE and IEEE Women in Engineering
(WIE). She is a Member of Association for Computing Machinery (ACM) and The
Institution of Engineering and Technology (IET).

Pethuru Raj has been working as the chief architect in the Site Reliability Engineering
(SRE) Center of Excellence, Reliance Jio Platforms., Bangalore. He previously worked
as a cloud infrastructure architect in the IBM Global Cloud Center of Excellence (CoE),
IBM India Bangalore for four years. Prior to that, He had a long stint as TOGAF-
certified enterprise architecture (EA) consultant in Wipro Consulting Services (WCS)
Division. He also worked as a lead architect in the corporate research (CR) division of
Robert Bosch, Bangalore. In total, He have gained more than 17 years of IT industry
experience and 8 years of research experience. He obtained his PhD through CSIR-
sponsored PhD degree in Anna University, Chennai and continued the UGC-sponsored
postdoctoral research in the department of Computer Science and Automation, Indian
Institute of Science, Bangalore. Thereafter, He was granted a couple of international
research fellowships (JSPS and JST) to work as a research scientist for 3.5 years in
two leading Japanese universities. Regarding the publications, He have published
more than 30 research papers in peer-reviewed journals such as IEEE, ACM, Springer-
Verlag, Inderscience, etc. He has authored 7 books thus far and He focus on some
of the emerging technologies such as IoT, Cognitive Analytics, Blockchain, Digital
Twin, Docker-enabled Containerization, Data Science, Microservices Architecture,
etc. He has contributed 25 book chapters thus far for various technology books edited
by highly acclaimed and accomplished professors and professionals. The CRC Press,
USA had also released his first book titled as ”Cloud Enterprise Architecture” in the
year 2012 and you can find the book details in the page http://www.crcpress.com/
product/isbn/9781466502321 He has edited and authored a book on the title” Cloud
Infrastructures for Big Data Analytics” published by IGI International USA in March
2014. A new book on the title” Smarter Cities: the Enabling Technologies and Tools” by
CRC Press, USA, is to hit the market in the month of June 2015. He has collaborating
with a few authors to publish a book on the title” High-Performance Big Data Analytics”
to be published by Springer-Verlag in the year 2015.

E. A. Neeba, currently working as an Assistant Professor in the Department of
Information Technology at Rajagiri School of Engineering & Technology, Kochi,
Kerala, which is affiliated to the A.P.J Abdul Kalam Technological University, Kerala.
She received her doctoral degree from Vel Tech Rangarajan Dr. Sagunthala R&D
Institute of Science and Technology, Chennai, Tamil Nadu. She completed her Masters
in Computer Science & Engineering from SRM Institute of Science and Technology,
Chennai. Her research interests include Analysis of data, Data Mining and Big Data,
knowledge representation, and ontology, both from the theoretical perspective and their
application to natural language understanding, reasoning, information visualization, and
interoperability. Having a rich industrial experience of around 10 years prior to joining
academia, and also, she has publications in around 10 SCI/ SCIE/Scopus indexed
international journals and a few national journals. An active participant in various
conferences and workshops on data mining, she is currently involved in several projects
in this field. She was entrusted with leadership positions such as the Accreditation
coordinator for the college, and Head of the Quality Cell, besides organizing various
national and international events.

List of Figures ...xv

List of Tables ..xvii

List of Abbreviations ... xix

Preface..xxi

Chapter 1 The Distinctions of Python Language .. 1

1.1. Introduction .. 2

1.2. Web Application Development ... 3

1.3. Game Development ... 3

1.4. Artificial Intelligence (AI) Applications .. 3

1.5. Graphical User Interfaces (GUIS) .. 4

1.6. Computer Vision (CV) Applications ... 4

1.7. Audio And Video Applications .. 4

1.8. Knowledge Visualization Applications .. 5

1.9. Scientific and Numeric Applications ... 5

1.10. IoT and CPS Applications ... 5

1.11. Data Analytics .. 6

1.12. Python For Blockchain Apps ... 6

1.13. Conclusion ... 7

Chapter 2 Demystifying the Data Science Paradigm .. 9

2.1. Introduction .. 10

2.2. Briefing Data Analysis ... 11

2.3. Entering Into Data Science (DS) .. 11

2.4. The Lifecycle of a Data Science (DS) Project 15

2.5. The Prominent Use Cases of Data Science (DS) 17

2.6. Machine Learning (Ml) Algorithms .. 21

2.7. Key Machine Learning (Ml) Algorithms ... 28

TABLE OF CONTENTS

x

2.8. Ensemble Learning Algorithms .. 31

2.9. Steps to Build a Random Forest (RF) .. 32

2.10. Time Series Forecasting ... 33

2.11. Time Series Forecasting Methods ... 34

2.12. Time Series Forecasting Applications ... 35

2.13. Clustering Algorithms.. 35

2.14. Case Study: Diabetes Prevention ... 40

2.15. Conclusion ... 42

Chapter 3 Python for Data Analysis ... 43

3.1. Python for Data Analysis ... 44

3.2. Python Libraries .. 44

3.3. Scientific Libraries in Python-Numpy, Scipy, Matplotlib,
and Pandas ... 46

3.4. Machine Learning (Ml) .. 57

3.5. Machine Learning (Ml) With Internet of Things (IoT) 69

3.6. Machine Learning (Ml) Application With IoT 71

3.7. Algorithm ... 72

3.8. Building Blocks of Algorithms (Instructions/Statements,
State, Control Flow, Functions) ... 73

3.9. Notation (Pseudocode, Flow Chart, Programming Language) 77

3.10. Algorithmic Problem Solving .. 87

3.11. Flow of Control ... 91

3.12. Illustrative Program ... 96

Chapter 4 Python Programming: An Introduction ... 103

4.1. Introduction to Python .. 104

4.2. Downloading and Installing Python 3.6.2 106

4.3. Python Interpreter and Interactive Mode ... 110

4.4. Values and Types: Int, Float, Boolean, String, and List 114

4.5. Variables ... 119

4.6. Keywords .. 119

4.7. Statements and Expressions ... 120

4.8. Comments .. 121

4.9. Input and Output .. 121

4.10. Operators ... 122

xi

Chapter 5 Functions ... 135

5.1. Function Definition ... 136

5.2. Built-In Functions ... 136

5.3. Math Functions ... 140

5.4. User Defined Function .. 142

5.5. Function Prototypes .. 144

5.6. Return Statement .. 148

5.7. Modules ... 148

Chapter 6 Control Structures ... 157

6.1. Boolean Values ... 158

6.2. Conditional Statements ... 159

6.3. Iteration/Control Statements .. 166

6.4. Loop Control Statements ... 174

6.5. Fruitful Functions .. 179

6.6. Local and Global Scope .. 180

6.7. Function Composition .. 181

6.8. Recursion ... 182

Chapter 7 Strings ... 185

7.1. String Definition ... 186

7.2. Operations On String .. 186

7.3. String Methods .. 188

7.4. String Module ... 195

7.5. List As Array .. 197

7.6. Searching .. 199

Chapter 8 Lists ... 207

8.1. Lists .. 208

8.2. List Operations ... 209

8.3. List Slices .. 209

8.4. List Methods ... 210

8.5. List Loop ... 215

8.6. Mutability ... 216

8.7. List Aliasing .. 217

8.8. Cloning Lists ... 219

xii

8.9. List Parameters .. 221

8.10. Deleting List Elements ... 223

8.11. Python Functions For List Operations .. 223

8.12. List Comprehension .. 224

Chapter 9 Tuples .. 227

9.1. Tuples ... 228

9.2. Tuple Methods .. 235

9.3. Other Tuple Operations .. 236

9.4. Tuples As Return Values .. 237

9.5. Built-In Functions With Tuple .. 238

9.6. Variable-Length Argument Tuples .. 238

9.7. Comparing Tuples ... 239

Chapter 10 Dictionaries ... 241

10.1. Dictionaries .. 242

10.2. Built-In Dictionary Functions and Methods 244

10.3. Access, Update, and Add Elements in Dictionary 245

10.4. Delete or Remove Elements From a Dictionary 246

10.5. Sorting a Dictionary .. 247

10.6. Iterating Through a Dictionary .. 247

10.7. Reverse Lookup .. 247

10.8. Inverting a Dictionary ... 248

10.9. Memoization (MEMOS) .. 249

Chapter 11 Files ... 263

11.1. Files .. 264

11.2. Errors and Exception ... 277

Chapter 12 Modules and Packages .. 287

12.1. Modules ... 288

12.2. Packages ... 294

xiii

Chapter 13 Classes in Python ... 305

13.1. Introducing the Concept of Classes in Python 306

13.2. Object .. 306

13.3. Methods ... 307

13.4. Inheritance ... 308

13.5. Encapsulation ... 309

13.6. Polymorphism... 310

 Index ... 317

LIST OF FIGURES

Figure 4.1. Function of interpreter.
Figure 4.2. Function of compiler.
Figure 4.3. Start IDLE from the Windows Start menu.
Figure 4.4. The IDLE interpreter Window.
Figure 4.5. A simple Python program entered and run with the IDLE interactive shell.
Figure 4.6. Launching the IDLE editor.
Figure 4.7. The simple Python program typed into the IDLE editor.
Figure 4.8. Saving a file created with the IDLE editor.
Figure 7.1. Case 2-positon updation.
Figure 8.1. State diagram.
Figure 8.2. State diagram.
Figure 10.1. Selection sort.
Figure 10.2. Insertion sort.
Figure 10.3. Merge sort.
Figure 10.4. Quicksort.
Figure 11.1. Exception handling.
Figure 12.1. Organization of packages and modules.

LIST OF TABLES

Table 4.1. Python keywords
Table 4.2. Truth table of and operator
Table 4.3. Truth table of or operator
Table 4.4. Truth table of not operator
Table 4.5. Truth table of &, |, ^, ~ operator
Table 12.1. Python modules and their description

LIST OF ABBREVIATIONS

AI Artificial Intelligence
ANNs Artificial Neural Networks
ARIMA Autoregressive Integrated Moving Average
BI Business Intelligence
CMS Content Management Systems
CPS Cyber-Physical Systems
CV Computer Vision
CWI Centrum Wiskunde and Informatica
DApps Decentralized Applications
DBMS Database Management Systems
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DL Deep Learning
DNNs Deep Neural Networks
DS Data Science
DSS Decision Support Systems
EDA Event-Driven Architecture
ELT Extract, Load, and Transform
EM Expectation-Maximization
GAN Generative Adversarial Network
GUIs Graphical User Interfaces
IoT Internet of Things
K-NN K Nearest Neighbors
LSTM Long Short Term Memory
ML Machine Learning
MSA Microservices Architecture
NLP Natural Language Processing
NN Neural Network

xx

PCA Principal Component Analysis
PEMDAS Parentheses, Exponentiation, Multiplication, Division, Addition,
 Subtraction
Q&A Question and Answering
RF Random Forest
SARIMA Seasonal Autoregressive Integrated Moving Average
SMEs Subject Matter Experts
SNA Social Network Analysis
SVMs Support Vector Machines
VAR Vector Autoregression

Data science (DS) is a fast-emerging field of study and research. It leverages integrated
data analytics (big, fast, and streaming analytics) platforms and artificial intelligence
(AI) (machine and deep learning (ML/DL), computer vision (CV), and natural
language processing (NLP)) algorithms extensively to extract actionable insights out
of burgeoning data volumes in time. There are several things happening concurrently
in the IT domain.

1. With the surging popularity of digitization and edge technologies, there is a huge
surge in digitized entities/smart objects/sentient materials in and around us.

2. The device ecosystem is growing rapidly with the ready availability of purpose-
	��
�����	��������������������
������
�	�����
�����
�	���	����
��	������
����

3. There is a faster maturity and stability of scores of connectivity technologies, it
is anticipated that there will be billions of connected embedded systems

4. With the wider acceptance and adoption of the microservices architecture (MSA)
and event-driven architecture (EDA) patterns for producing and sustaining
enterprise-scale applications, there is a rapid rise in the number of usable and
reusable event-driven microservices

5. With the purposeful interactions between digitized entities, connected devices
and interoperable microservices, there is a massive amount of multi-structured
data getting produced, collected, cleansed, and crunched meticulously

6. There are data analytics and science platforms in plenty to discover and
disseminate knowledge out of data heaps

The implications of the various digital technologies and tools are given below. In
the years ahead, we will be bombarded with

�� Millions of microservices;
�� Billions of connected devices;
�� Trillions of digital entities.

Thus, the smart leverage of pioneering digitization and digitalization technologies is
to result in unprecedented growth in data production. However, if generated data are
not subjected to a series of deeper investigations to squeeze out actionable insights
in time, then the data goes off wastefully. There is a realization that data is the new
oil intrinsically capable of fueling the world for long. Precisely speaking, every data
(internal and external) being produced by any establishment has to be meticulously
collected, processed, and mined in order to realize the much-needed cognition not only

PREFACE

xxii

for human beings in their everyday decisions, deals, and deeds but also for devices and
machines to be intelligent in their operations, outputs, and offerings.
Data science plays a very vital role in shaping up the process of transitioning data into
information and into knowledge. As business enterprises, organizations, governments,
IT companies, and service providers are keenly becoming data-driven, the role and
responsibility of data scientists are bound to go up significantly. There are several
enabling frameworks, libraries, tools, accelerators, engines, platforms, cloud, and edge
IT infrastructures, optimized processes, patterns, and best practices to simplify and
streamline data science tasks for data scientists.
Python is emerging as the leading programming language for data science projects.
Python brings in a number of technical advantages for the successful implementation of
data science applications. Due to the ready availability of several libraries for facilitating
the development of data science services, Python is turning out the programming
language of choice for data science. The following libraries are enabling data science
applications and are made available in Python:

1. NumPy: This is a library that makes a variety of mathematical and statistical
operations easier and faster. This is also the basis for many features of the Pandas
library.

2. Pandas:��
������

�� ����	��� ������	�����������	���� �
� �	�����	����
���������
�
data. This is one of the gamechangers for the tremendous success of data science
projects.

3. Matplotlib: This is a visualization library that makes it quick and easy to
generate charts from data.

4. Scikit-Learn: This is the most popular library for machine learning (ML) work
in Python.

The book starts with a couple of chapters on data science and machine learning (ML)
topics. Thereafter, the chapters are focusing on the fundamental and foundational
aspects of Python programming language. All kinds of language constructs are
accentuated and articulated for the benefit of programmers with all the practical details.
There are dedicated chapters for producing machine learning applications. The gist of
the book is to clearly explain how Python simplifies and speeds up the realization of
next-generation data science applications. All the specific libraries towards data science
are given the required thrust in order to empower our esteemed readers with all the right
and relevant information. This book is being prepared with the intention of empowering
data scientists with all the vital details about programming using the Python language.

—Pethuru Raj, PhD

THE DISTINCTIONS OF PYTHON
LANGUAGE

CHAPTER 1

CONTENTS
1.1. Introduction .. 2

1.2. Web Application Development ... 3

1.3. Game Development ... 3

1.4. Artificial Intelligence (AI) Applications .. 3

1.5. Graphical User Interfaces (GUIS) .. 4

1.6. Computer Vision (CV) Applications ... 4

1.7. Audio And Video Applications .. 4

1.8. Knowledge Visualization Applications .. 5

1.9. Scientific and Numeric Applications ... 5

1.10. IoT and CPS Applications ... 5

1.11. Data Analytics .. 6

1.12. Python For Blockchain Apps ... 6

1.13. Conclusion ... 7

Practical Python Programming for Data Scientists2

The inventor of Python says that the joy of coding using Python should be in
seeing concise, precise, and readable classes that express a lot of action in a
small amount of clear and lean code. Python is a programming language that
lets you work quickly and integrate systems more effectively.

1.1. INTRODUCTION

With digitization and digital technologies and tools becoming matured
and stabilized fast, the much-expected real business transformation is all
set to become a grandiose reality across industry verticals soon. Digital
innovations and disruptions are frequently and feverishly happening in the
business domain these days. Not only businesses but also common people
are also increasingly experiencing digitally empowered living. With digital
data getting accumulated and stocked in cloud storages, the challenge is how
data scientists are able to crunch digital data to extract actionable insights
in time. The widespread acceptance and adoption of digital paradigms such
as the establishment of software-defined cloud environments, artificial
intelligence (AI) algorithms, digital twins, blockchain technology, the
internet of things (IoT), 5G communication, microservices, and event-
driven architectures (EDAs), etc., come handy in making sense out of digital
data. The knowledge discovered gets disseminated to concerned systems
and decision-makers in time so that appropriate counter measures can be
considered and taken with all the confidence and clarity.

There are several noteworthy technologies-inspired transformations.
Businesses, government organizations, institutions, establishments, and cities
are constantly digitally empowered to bring forth premium and pioneering
services to their constituents. As we are tending towards the digital world,
we hear, read, and even experience a bevy of digital applications. Other
buzzwords in the digital era include digital intelligence and economy. We
����� 	� �	�
����	����� ��
��	������ �	���	��� �
� ������ ��!������ �	���
����
and futuristic software packages. Python is being recognized as the top
programming language for constructing digitally transforming applications.
In this chapter, we would like to throw some light on this innovation, which
is penetrative, pervasive, and persuasive too.

"��
������ �
� #�	��
����
�� $
����%''�����
�����	��
����
���
�'
survey/2019), Python is the most preferred language. That means the
majority of developers across the globe use python.

Python�
	�� �������	����� ��
����� ������ ���� ���	��
�� ��� *++*� ��� <���
�
Van Rossum. In short, Python is an interpreted, dynamic, and high-level

The Distinctions of Python Language 3

programming language that facilitates building a plethora of apps. All kinds
of enterprise-grade, service-oriented, cloud-hosted, and event-driven web,
machine learning (ML), mobile, embedded, and microservices-centric
applications are increasingly developed by Python programming language.
In this chapter, we are discussing the prominent domains, which are gaining
immensely through the unique capabilities of Python.

1.2. WEB APPLICATION DEVELOPMENT

Python is one of the popular programming languages for web development
because Python is being stuffed with a number of frameworks and content
management systems (CMS) that significantly simplify web developers’
life. Python offers several other benefits, such as simplicity, security, and
scalability. Python comes out with the intrinsic support for different data
representation and exchange formats. Also, myriads of data transmission
protocols are also supported innately. Python gains prominence for its
hundreds of libraries to simplify and speed up software programming.

1.3. GAME DEVELOPMENT

Besides web development, game development is also benefiting through
the various inherent facilities offered by Python. There are multiple game-
specific libraries and automated toolkits to streamline and accelerate the
realization of gaming applications.

1.4. ARTIFICIAL INTELLIGENCE (AI)

APPLICATIONS

The domain of data science (DS) is gaining surging popularity these days as it
has the wherewithal to discover knowledge out of massive amount of multi-
structured data. AI algorithms, especially machine and deep learning (ML/
DL) algorithms contribute immensely for the spectacular success of the DS
domain. Today Python is the preferred language for writing AI applications.
There are several high-performance libraries to assist AI developers to
quickly come out with competent AI applications. Python’s stability and
security are being presented as the key differentiators for data scientists to
choose Python to code AI and statistical applications. AI, being complicated
yet sophisticated applications, can demand high computing power. There are
other complications in realizing next-generation AI apps.

Practical Python Programming for Data Scientists4

Having understood this need, there came a number of unique libraries
as enumerated below:

=� #������
������������	������
���	���
�������>
=� Pandas for data analysis and manipulation;
=� ?��	���
��	������	������	������
����$"XX�Y>
=� TensorFlow for ML tasks and deep neural networks (DNNs);
=� NumPy for complex mathematical functions and computation;
=� Scikit-learn for working with various ML models.

1.5. GRAPHICAL USER INTERFACES (GUIS)

GUIs are increasingly used by both technical as well as non-technical
professionals to interact fruitfully with local as well as remote applications
and services. GUI programming has been an important factor for modern
applications. Python’s comprehensible syntax and the modular programming
approach enable creating and sustaining intuitive, informative, and inspiring
GUIs.

1.6. COMPUTER VISION (CV) APPLICATIONS

With the widespread utilization of AI algorithms, especially deep learning
(DL) algorithms, computers in conjunction with cameras are able to do face
recognition, object detection, asset tracking, etc. Not only computers but
also industrial machineries and consumer electronics are able to excel in
collecting vision data and running vision-based applications. Python has
come out with several enabling libraries for simplifying the capture of still
and dynamic images and processing them in order to facilitate decision-
making and subsequent actions based on vision data.

Natural language processing (NLP) applications: Speech recognition
and synthesis are becoming common these days with the leverage of path-
breaking AI capabilities. Text processing, which involves a tremendous
amount of text, is also gaining importance these days. Text mining is another
buzzword. Python’s text processing capabilities are simply phenomenal.

1.7. AUDIO AND VIDEO APPLICATIONS

With Python, it is quite easy to handle audio and video files. Tasks such as
signal processing, audio manipulation, and recognition can be performed by

The Distinctions of Python Language 5

leveraging specific libraries. For video analytics, Python provides a number
of easy-to-use libraries.

1.8. KNOWLEDGE VISUALIZATION APPLICATIONS

Data is the modern asset and fuel to energize and bolster the digital era. Data
gets converted into information and into knowledge through a host of digital
technologies and tools. DS, which is a collection of digital technologies
and tools, predominantly deals with the transition of data into actionable
insights. Knowledge thus discovered gets disseminated to execution
systems quickly to proceed with the best course of action. Knowledge has to
be instantaneously articulated and accentuated to concerned people through
knowledge visualization applications in the form of charts, maps, graphs,
etc. Python is also primed to produce such applications.

1.9. SCIENTIFIC AND NUMERIC APPLICATIONS

Python is definitely used extensively for creating scientific and technical
computing applications. There are powerful libraries exclusively and
elegantly catering to this need. There are scientific and numerical tools and
libraries such as Pandas, SciPy, and Numeric Python, etc.

1.10. IOT AND CPS APPLICATIONS

All common, cheap, and casual objects in our midst are getting meticulously
transitioned into digitized entities through the smart leverage of digitization
and edge technologies. That is, all kinds of physical, mechanical, and
electrical systems in our personal, social, and professional environments
are systematically empowered to be digitized, and this distinct technology-
enablement makes them join in the mainstream computing. Similarly,
all kinds of consumer electronics, medical instruments, appliances,
equipment, kitchen appliances, manufacturing machineries, robots, drones,
game consoles, etc., are being connected. That is, all kinds of devices are
instrumented and interconnected. There are ways and means for empowering
connected devices to be intelligent in their operations. Digitized entities
and connected devices, which are going to be in several billions in the
years to come, are also integrated with cloud-hosted applications, services,
and databases. That is, our daily environments are stuffed by a dazzling
array of networked and embedded devices, which are not only integrated
locally but also substantially empowered through integration with remote

Practical Python Programming for Data Scientists6

software packages and data sources. Cyber-physical systems (CPS) are
conceptually similar to the IoT paradigm. That is, all kinds of ground-level
physical systems get hooked to cyberinfrastructure, applications, services,
and databases in order to gain extra capabilities to be right and relevant for
human beings in their everyday functions. CPSs will be empowered further
through a seamless and spontaneous integration with digital twins.

The IoT represents the future Internet comprising all kinds of digitized
artifacts in addition to connected electronics and traditional IT systems
(servers, storage appliances, desktops, laptops, etc.). The IoT is constantly
growing and will be encompassing digitized mechanical, electrical, and
physical systems. That is, there will be trillions of digitized entities, billions
of connected devices and millions of microservices in the years to come.
Such an all-powerful, connected, and complicated Internet poses a series
of challenges and concerns. All these improvements and improvisations
are leading to the visualization and realization of next-generation IoT
applications and services. Such sophisticated and complicated applications
can be realized through the intrinsic power of Python.

1.11. DATA ANALYTICS

This is one of the important jobs in emitting out useful insights out of
data mountains. Businesses are investing heavily to have data storage and
processing infrastructure through private or public or both clouds. There are
integrated big, fast, and streaming data analytics platforms. Apache Hadoop,
Spark, Samza, Flink, Storm, etc., are the well-known open-source platforms
to do batch and real-time data processing. That is, big, fast, and streaming
data analytics activities are quickened through the leverage of competent
platforms and cloud infrastructures to squeeze out usable insights. Python
is one of the popular languages to accomplish data analytics in a simplified
and smart manner. PySpark is a great extension/framework to create scalable
and data-intensive analyzes and pipelines by utilizing the power of Spark in
the background.

1.12. PYTHON FOR BLOCKCHAIN APPS

A blockchain is a “chain of blocks.” This chain is presented as a decentralized
and distributed database. This does not have a centralized entity to closely
monitor and manage the database. Because it is distributed, the aspects such as
high availability, lower latency, etc., are easily fulfilled. Each block contains

The Distinctions of Python Language 7

a “hash” and a “index” and information about the particular transaction that
took place. All the Blocks in the chain are linked to each other with the
“hash” variable. A “hash” contains information of the previous block in
the chain, and that’s what keeps the entire chain-linked and connected as
pictorially represented below.

If any value in any of the blocks in “tampered with,” every block
thereafter in the chain gets affected and hence stealing information from any

�� �
����
���� ���	����	��

��Z����	����� ���	����������	��	����[��	����	���
manipulation will cause the hash to change as well and it won’t match the
hash in the block after it. This will alert the network about the “tampering”
and will render the entire chain useless. So for any hacker to successfully
hack into a chain, one has to not only change values of one single block but all
the blocks before and after it. This wholesome change is nearly impossible.
For more details for an end-to-end blockchain example explanation, please
visit this page (https://medium.com/swlh/introduction-to-blockchain-with-
implementation-in-python-c12f8478a3c4).

Python is turning out to be an excellent programming language for
developing blockchain applications, especially decentralized applications
(DApps) and smart contracts. There are Python tools and libraries to speed
up blockchain apps development. There are several tutorials made available
in the Internet servers for easing up blockchain app development using
Python.

Thus, all modern applications development is being facilitated by
the unique power of the python language. The increasing complexity of
microservices-centric, event-driven, and cloud-native applications are being
lessened through the smart leverage of Python.

1.13. CONCLUSION

Python is a robust, resilient, and versatile programming language. A
growing array of software applications across multiple industry verticals
are being coded through Python. A fast-growing list of libraries has made it
possible for developers to easily use Python to come out with state-of-the-
art applications leveraging cutting-edge digital technologies. More details
can be found at the Python home page, which is made available at this URL
(https://www.python.org/).

DEMYSTIFYING THE DATA SCIENCE
PARADIGM

CHAPTER 2

CONTENTS
2.1. Introduction .. 10

2.2. Briefing Data Analysis ... 11

2.3. Entering Into Data Science (DS) .. 11

2.4. The Lifecycle of a Data Science (DS) Project 15

2.5. The Prominent Use Cases of Data Science (DS) 17

2.6. Machine Learning (Ml) Algorithms .. 21

2.7. Key Machine Learning (Ml) Algorithms ... 28

2.8. Ensemble Learning Algorithms .. 31

2.9. Steps to Build a Random Forest (RF) .. 32

2.10. Time Series Forecasting ... 33

2.11. Time Series Forecasting Methods ... 34

2.12. Time Series Forecasting Applications ... 35

2.13. Clustering Algorithms.. 35

2.14. Case Study: Diabetes Prevention ... 40

2.15. Conclusion ... 42

Practical Python Programming for Data Scientists10

2.1. INTRODUCTION

There are several beautiful things happening simultaneously in the IT field.
There is an exponential growth of multi-structured data due to the consistent
eruption of different and distributed data sources. The fast-growing device
ecosystem, the explosion of digitized assets, the emergence of simple
websites (web 1.0), social websites (web 2.0), and semantic websites (web
3.0), the journey towards the Industry 4.0 vision, and the faster proliferation
of microservices for implementing enterprise-scale software applications are
incredibly laying down a stimulating foundation for the data-driven world.
The continuous optimization of data-to-information-to-knowledge process
with the releases of data analytics platforms and AI toolkits is raising the
interest level is being supported across.

And the realization of the truth that data-driven insights and insights-
driven decisions and deeds are very critical not only for businesses but also for
�
���
�	��
��	���
��������������	�����	�������	������#
���	������������
���
infrastructures are being established and sustained by cloud service provides
and enterprise IT teams across the world. Thus, we are being bombarded
with integrated platforms, lean processes, high-value products, enabling
patterns, facilitating frameworks, knowledge guides, and best practices in
addition to highly optimized and organized cloud IT infrastructures. All
these spectacular accomplishments clearly tell that the domains of data
engineering, analytics, storage, processing, management, and mining are
��	��������� �
����
����� \�� 	��� ������� �
�� ��	���
��� ��	��Z	��
��
�� �����
learning systems in plenty for solving diverse requirements across industry
������	����]�� �

���� �
�������
���	�	� �������� $_#Y, the next and intelligent
version of data analytics and mining, is progressing fast with the aim of
extracting actionable insights out of data volumes in a simpler and quicker
manner. In this chapter, we are to discuss about DS and how it is promising
to impact the world in a hitherto unheard fashion.

_#��	������������	��
��	������������
����	�������������������	����	����
	������ �����
���
���
�� �	�	�
�	���� _#�� �
��� 	������� �
� ���������� �������
can lead to incredible new insights. Precisely speaking, DS transforms
the accumulated digital data into data-driven knowledge. Digital data is
increasingly not interpreted by an individual anymore. Instead DS relies on
machines to interpret, process, and alter it.

Demystifying The Data Science Paradigm 11

2.2. BRIEFING DATA ANALYSIS

Businesses across the world are generating a lot of poly-structured data,
which originates from multiple and diverse sources. We have technology-
inspired, service-oriented, knowledge-filled, enterprise-scale, event-driven,
and cloud-hosted applications (operational, conversational, commercial,
analytical, transactional, etc.), and a growing variety of user devices (mobile,
wearable, portable, fixed, wireless, handhelds, implantable, etc.). These
applications and devices are generating a lot of data. The beauty is that there
is something valuable and unique hidden in the data. The challenge is how to
squeeze out the right actionable insights out of data heaps in time. There is
a need to extract tactical and strategic information and knowledge from data
mountains so that business executives and execution systems together steer
businesses in the right direction. Data analytics is typically exploratory and
being presented as the one capable of answering business-related questions
in detail with all the clarity and confidence.

Data analysis�� �
�����������	���
���
��_#�����	���	�
���	��������������
questions with the intention of bringing forth usable responses. As the data
�
��������
�����
�����������	���������`��������	�������

������
�	��#{}�
or Python or R. They allow data analysts to aggregate and manipulate data
in order to arrive at correct conclusions and to make the right decisions.
Data analysts have to produce the right questions using SQL for slicing
and searching SQL databases for bringing forth useful answers. SQL works
well with structured data. Thus, there are a lot of manual activities involved
in collecting, cleansing, and crunching data. Of course, there are data
virtualization, ingestion, pre-processing, storage, analytics, and visualization
tools for transitioning data into information and into knowledge. DS is the
next version of data analytics with a host of things getting automated through
powerful tools.

2.3. ENTERING INTO DATA SCIENCE (DS)

As accentuated elsewhere, bringing out useful patterns out of data volumes
is the central aspect of DS. Data analytics has been the prime domain blessed
with so many frameworks, platforms, tools, accelerators, techniques, and
tips to simplify and streamline knowledge discovery and dissemination. DS
represents the next-generation data analytics.

"������������	����	������	���������������$"]Y wants some kind of human
interaction and is intended to be somewhat human or “intelligent” in the way
it carries out those interactions. Thus, it is important to have an intelligent

Practical Python Programming for Data Scientists12

and natural interactions between machines and men. That intelligence is
being derived through DS. DS is all about producing insights that enable
building intelligent systems. In other words, DS places less emphasis on
human interaction but pitches for producing and providing human-like
intelligence, strategically sound and sharp recommendations, decisions, and
conclusions.

DS is turning out to be an indispensable ingredient for any enterprising
business today. With the accumulation of data and the ready availability of
algorithms, platforms, and infrastructures, corporates have started setting
up and sustaining DS competencies to grow their business and increase
����
�����	����	���
���_#�����������	���
��������������
�	���
�������������
and research to sensibly and scholarly handle a tremendous amount of data.
That is, how to make sense and money out of data is the biggest challenge
for worldwide data scientists. There are facilitating tools and accelerators,
specialized engines and appliances to deal effectively and inspiringly with
fast-growing data. It is all about pinpointing unseen patterns for deriving
meaningful information, which will go a long way in arriving at future-
proof business decisions. DS uses complex machine and deep learning (DL)
algorithms to build predictive and prescriptive models. The data used for
deeper and decisive analysis can be from multiple sources. There are several
data representation and exchange formats. Further on, there are a variety of
�	�	���	�������
����
�
�
�����
��������������������	��
�����	���������
������
due to multiplicity and heterogeneity. And to bring a kind of homogeneity,
pioneering technologies and tools are being leveraged.

Precisely speaking, DS is a blend of various analytics platforms, enabling
tools, statistical methods, and AI algorithms with the goal to discover hidden
patterns from the raw data.

2.3.1. Business Intelligence (BI) vs. Data Science (DS)

Businesses have been concentrating on business intelligence (BI) for long.
With the ready availability of matured BI tools and data visualization
dashboards, it is possible to explain what is going on by processing data.
That is, it is a kind of exploratory analysis to discover viable insights out of
data.

On the other hand, data scientists not only doing exploratory analysis but
also apply various ML algorithms��
�����
�����
��
����������
��	���������
event in the future. A data scientist will look at the data from multiple
perspectives.

Demystifying The Data Science Paradigm 13

So, DS is predominantly used to make decisions and predictions making
use of predictive causal analytics and prescriptive analytics (predictive plus
decision science):

1. Predictive Causal Analytics: If you want a model that can neatly
predict the occurrence of a particular event in the future, you
need to apply predictive causal analytics. For example, if you
are providing money on credit, then the probability of customers
�	����� ������� �	�������
�� ����� ��� �
�� ������� ��� ����������
worrisome for you. The way forward is that you have to build
a model that can perform predictive analytics on the payment
history of the customer to predict if the future payments will be
on time or not.

2. Prescriptive Analytics: If you want a model that has the inherent
intelligence of taking its own decisions and the ability to modify the
model with dynamic parameters, you certainly need prescriptive
analytics capability for it. That is, prescriptive analytics not only
predicts but prescribe a set of actions and associated outcomes
to achieve the predicted. In the case of self-driving cars, the
data gathered by cars can be used to train self-driving cars. This
training emits out insights. Cars can leverage the insights to make
decisions like when to turn, which path to take, when to slow
down or speed up.

In short, data analytics majorly represents deterministic, descriptive,
and diagnostic analytics with a bit of predictive analytics. DS, on the other
side, is more on predictive, prognostic, and prescriptive analytics. Machine
and deep learning (ML/DL) algorithms play a very vital role here.

2.3.2. Why Data Science (DS)?

For long, we have been handling structured data and making sense out of it
through BI tools. But today the scenario is totally different. We have more
than 80% of multi-structured data. Data is being generated and collected
from multiple sources ranging from IoT sensors, devices, and machines,
business, and social applications, etc. Data formats are disparate, and data
transmission protocols are also diversified. The traditional BI tools find it
difficult to process such a tremendous amount of data. Thus, the multiplicity
of data sources and heterogeneity of data complicate the matter further. This
demands for highly sophisticated data processing tools.

Practical Python Programming for Data Scientists14

Further on, if a business can understand the precise requirements of its
customers from the existing data like the customer’s past browsing history,
����
	���
���
����	����	������
��������������������	��

����
���
������������
�
�	�����
����`�������	����	������X
�����
	����
�����������
�
�
������
��
model generation, and also there are data, which are not only vast but also
varied. These transitions empower businesses to train and test prediction
�
������������������
�����	���	��
��������
�����
������������	�����	�����
to accurately recommend the product to their customers. Thus, model
generation is being touted as one of the key differentiators of DS. Let us
take weather forecasting as an example. Data from ships, aircraft, radars,
satellites can be collected and analyzed to build models. These models will
not only forecast the weather but also help in predicting the occurrence of any
natural calamities. It will help you to take appropriate measures beforehand
and save many precious lives.

In summary, BI has been an important phenomenon for achieving real
business transformation. As indicated above, a perfect leverage of suitable
technologies and strategies is needed for performing useful analysis on
business data. This is a kind of exploratory search for uncovering actionable
insights. This will answer for questions like what happened last month, why,
and how it happened so, etc. It can also predict something. However, there
are some critical differences between BI and DS.

Business Intelligence Data Science

Uses structured data Leverages multi-structured data
(structured, semi-structured, and un-
structured)

Analytical in nature. BI provides a his-
torical report on the data

#��������� ����	������_#�����
����	��
in-depth statistical analysis on the
data

Uses basic statistics with emphasis on
visualization (dashboards, charts, and
reports)

Leverages sophisticated statistical
and does predictive analysis through
machine learning (ML) algorithms

Compares historical data to current
data to come out with trends

Combines historical and current data
to accurately predict future perfor-
mance and outcomes

Demystifying The Data Science Paradigm 15

2.4. THE LIFECYCLE OF A DATA SCIENCE (DS)

PROJECT

A data scientist typically analyzes business data to extract meaningful
insights. In other words, a data scientist solves business problems through a
series of steps, including:

=� Ask the right questions to understand the problem in an
unambiguous manner;

=� Gather data from different and distributed sources-sensor
and machine data, business, web, and social application data,
transactional, and operational data, personal data, etc.;

=� Do the pre-processing on raw data to cleanse and convert to
become compatible for easy and quick analytics;

=� Feed the data into the analytic system-ML algorithm or a statistical
model;

=� Prepare the results and insights to share with the appropriate
stakeholders.

ML and DL algorithms emerge as the most preferred way forward for
data scientists to artistically shine in their obligations. Let us move over to
the detail.

2.4.1. Understand the Business Domain and the Problem

The idea is to gain a deeper understanding of the problem by performing a
study of the business model. The business strategy, plan, and architecture
are deeply studied and well-understood before initiating the project. For
example, let’s say you are trying to predict the price of a 1.35-carat diamond.
This phase is for understanding the terminology used in the industry and the
business problem. This is for collecting a sufficient amount of relevant data
about the underlying industry.

2.4.2. Data Acquisition

This involves acquiring data from different internal and external sources that
can help answer business questions. Data can be extracted from different
sources, including cloud IT services, business workloads running on cloud
servers, scores of input/output devices including smartphones, wearables,
etc., social web sites, different data stores. All kinds of data are meticulously
collected, cleansed, and deposited in data repositories such as data lakes.
Data brings in information.

Practical Python Programming for Data Scientists16

2.4.3. Data Preparation

This is turning out to be an important factor for attaining the intended
success. There may be incompatible, inconsistent, and incomplete data, and
there may be some noisy data intruded into the data. Hence a data scientist
has to first thoroughly examine the input data to pinpoint any gaps or data
that do not add any value. This is known as data cleaning. During this
process, you must go through several steps, such as data integration through
data virtualization methods. Then data has to be transformed accordingly
in order to facilitate the data to be used by data analytics or DS platform.
ETL or ELT (extract, load, and transform) tools are the ones primed for
data transformation. Data reduction is also widely recommended. There are
strategies and technologies to enable data size reduction. Compression and
other optimization methods are being meticulously considered to filter out
repetitive, redundant, and routine data. At any cost, the reduction process
should not lead to any loss or lacunae in the correctness of insights.

2.4.4. Data Exploration

Once the data is fully cleaned, real works commence with confidence.
Experts are of the opinion that data scientists can perform hypothesis testing
and visualize the data to understand the data better. This step is alternatively
referred to as data mining, which is used to identify patterns in a data set and
find important potential features with statistical analysis.

���������	
���

����
�����	��
��
�
��

The input data is now clean and clear to be subjected to a variety of
investigations. As a first step, it is essential to visualize and realize a suitable
model. For example, data scientists have to understand the problem at
hand is whether it is a regression or classification one. This step involves
performing an exploratory data analysis in a deeper manner. Then it is to
understand the relationship between variables. As indicated above, there are
independent variables/features/predictors and dependent variables. Model is
a sort of mathematical equation or formula capable of giving answer for any
fresh set of input data. Model is then evaluated for accuracy and efficiency.
Through the splitting of input data into training and test data, the obtained
model can be continuously updated and upgraded to be right and relevant for
giving highly accurate results.

Demystifying The Data Science Paradigm 17

2.4.6. Model Deployment

Once there is a predictive model in place, the next job is to deploy it in a
cloud environment. Preparing, previsioning, and configuring cloud servers/
virtual machines/containers to host and run predictive models is not an easy
task for data scientists. As cloud environments are steadily tending towards
made of containers, the emergence of Kubernetes as container orchestration
platform solution is being viewed positively. That is, we are heading towards
Kubernetes-managed containerized clouds. There are a few automation tools
to simplify the task of data scientists in deploying and running predictive
models. Kubeflow is an open-source project that accelerates the model
deployment on Kubernetes clusters.

Models are being exposed as microservices and are being containerized
and stocked as container images to facilitate model portability across laptops,
enterprise IT and cloud environments. There are a number of initiatives in
this model deployment arena to speed up model deployment.

2.4.7. Communication

There is a need to clearly articulate the findings of data scientists to business
executives. Thus, communication with clarity and confidence matters the most.

2.5. THE PROMINENT USE CASES OF DATA

SCIENCE (DS)

Having understood the strategic significance of DS, business behemoths
across the globe are putting DS capabilities in place in order to make sense
out of data. DS or data-driven science enables better decision making,
predictive analysis, and pattern discovery. It lets you:

=� Find the leading cause of a problem by asking the right questions;
=� Perform exploratory study on the data;
=� Model the data using various algorithms;
=� Communicate and visualize the results via graphs, charts, maps,

dashboards, etc.

2.5.1. Airline Industry

DS is already helping the airline industry predict disruptions in travel to
alleviate the pain for both airlines and passengers. With the help of DS,
airlines can optimize operations in many ways. Here comes a few:

Practical Python Programming for Data Scientists18

=� Plan routes and decide whether to schedule direct or indirect
���
��>

=� [����������������	�	��������
������
��
���	������
�����	��>
=� Offer personalized promotional offers based on customers

booking patterns;
=� Decide which class of planes to purchase for better overall

performance.
In another example, let’s say you want to buy new furniture for your

������\
����

�����
�������
���
�������
���
��	�����	����
���

����	������
some decision-enabling questions before making your decision.

Using this sample decision tree, you can narrow down your selection
�
�	��������������������	������������
��������
��	���	��
������
�������	��
decision.

1. Healthcare: These companies are using DS extensively to derive
actionable insights to build sophisticated medical systems to
diagnose, detect, and cure diseases. There are plentiful medical
����
���� ������������� 	��� ������
����� �������� �
�� ���������� 	�
number of healthcare-related tasks. As the healthcare domain
is generating a lot of patient, machine, and application data, DS
capability is being leveraged to rationalize, simplify, and optimize
healthcare processes.

2. Image Recognition: Still and dynamic images are being generated
in large quantities these days. Cameras and smartphones are
pouring out images and videos. Identifying unique patterns in
images and videos, detecting objects in an image, and recognizing
them are touted as the prime use cases of DS.

3. Recommendation and Expert Systems: Every complex domain
is wisely and widely assisted by intelligent devices individually
and collectively. Even knowledge workers in their everyday
obligations are being helped with modern cognitive systems
	��� �������� ���
����� �
� ����
� �
���� 	����������� ���
� 	�	������
	��� ���������� X����!� 	��� "�	Z
�� ����� �
���� 	��� ��
�����
recommendations based on what you like to watch, purchase,
or browse on their platforms. In the healthcare domain, there
are expert systems to assist doctors, caregivers, surgeons, and
nurses. There are AI-enabled chatbots in order to automate low-
end repetitive tasks. There are question and answering (Q&A)
systems perfectly enabled by data scientists.

Demystifying The Data Science Paradigm 19

4. Supply Chain and Logistics: We have discussed how DS comes
handy for the airline industry in optimizing several complex
things. This is expanding to the supply chain industry, and logistics
companies are increasingly depending on DS to optimize routes
to ensure faster delivery of products. This is resulting in increased

���	��
�	������������

5. Fraud Detection: This is a well-known use case of DS. Streaming
analytics enhanced by DS capability is doing yeomen service for
�
�� ��	���	�� ����
��� [���� 	��� ��	���	�� ���������
��� ���� _#� �
�
pre-emptively detect fraudulent transactions.

Data is termed as the fuel for business innovation, disruption, and
��	���
��	��
���_	�	��������������	��	������
��������������������
�������
��	���
relevant to their business partners, marketers, employees, and consumers.
���������������������	�����
�������������	�����	��
��
���	���	�	��	���������
immensely through the distinct improvements and improvisations in the DS
space. By incorporating DS talents, platforms, and infrastructures into their
business, companies can now forecast future growth and analyze if there are
any upcoming threats.

2.5.2. Prerequisites for Data Science (DS)

As articulated above, there are a number of powerful algorithms, frameworks,
integrated platforms, and cloud infrastructures to augment, accelerate, and
automate knowledge discovery and dissemination. Here comes a list of
prerequisites:

1. Data Analytics Methods: We have been working on big, fast,
and streaming data analytics. There are open source as well as
commercial-grade analytics platforms for batch and real-time
processing of data. As we all know, cloud computing is being
pitched and positioned as the one-stop IT solution for hosting,
running, and managing all kinds of customer-centric, enterprise-
scale, and business-critical applications. Without an iota of
doubt, cloud storages are the cost-effective, highly available,
impenetrable, and universally accessible infrastructural element
to stock a variety of databases, data warehouses, and data lakes.

 Most of the data analytics platforms are being already made
available as cloud-based service offerings. The data transmission
rate over the Internet is greatly raised through a host of patentable
techniques and hence cloud environment is being seen as the

Practical Python Programming for Data Scientists20

way forward for all kinds of data analytics. Except extreme real-
time data analytics, most of data analytics assignments are being
accomplished through cloud facilities. We have analytics platform
solutions such as Apache Hadoop, Spark, Flink, Storm, Samza,
�����\��
	����_�#�	���
��������������\��
	���X
#{}��	�	�	����
such as HBase, Casandra, MongoDB, CouchDB, etc. We have
knowledge visualization solutions such as Sisense (https://www.
sisense.com/), Qlik (https://www.qlik.com/us/), Tableau (https://
www.tableau.com/), etc.

2. AI Algorithms: As indicated above, the surging popularity of AI
algorithms has brought in additional automation in data analytics.
Predictive and prescriptive insights can be uncovered from data
heaps through AI algorithms. A dazzling array of AI algorithms
and approaches have rekindled a kind of interest and mystery
amongst DS professionals, researchers, and other subject matter
experts (SMEs) to go deep into data collections in order to emit out
strategically sound insights in time. Predominantly AI comprises
machine learning (ML), DL, computer vision (CV), and natural
language processing (NLP). In the succeeding sections, we write
about these in detail.

3. Statistics: These stays as the core of DS. The competency in
statistics can help data scientists extract intelligence and obtain
meaningful results tirelessly.

4. Programming: Data scientists need some programming expertise.
Python is currently the leader in the DS space. R is another DS-
�������� �	���	���� [�������� �
���� 	��� ��	������ �

������ ���
� 	��
MATLAB, RStudio, and Anaconda.

5. Databases: Data warehouses and lakes are the top data storage
mechanisms. A sound knowledge of database management
systems (DBMS) is expected from any aspiring data scientist.

There are innovations and disruptions in the DS space. DL is a subset
of ML. Feature engineering, which is manually and methodically done in
ML, gets automated in DL. Thus, researchers are focusing on bringing as
many automations as possible in order to lessen the load on data scientists.
There are complex business and social problems that increasingly need data
scientists to solve them. Also, the data size, scope, structure, and speed are
varying greatly. All these increase the complexity of DS projects. Now,
product vendors, cloud service providers, and AI researchers across the

Demystifying The Data Science Paradigm 21

globe are bringing forth additional automation in the form of producing ML
model engineering in an automated manner. AutoML is the new buzzword
in the IT industry, gaining widespread attention. Let us now discuss the
typical activities of data scientists in bringing forth trustworthy and timely
insights in producing and sustaining expert, prediction, decision-making,
and recommending systems.

2.6. MACHINE LEARNING (ML) ALGORITHMS

ML is touted as one of the enablers of DS. The faster maturity and stability
of ML algorithms has simplified and speeded up the aspect of DS. ML
algorithms have the power of empowering machines to self-learn from data.
That is, identifying hidden patterns and other insights out of data is being
automated through ML algorithms. ML is a kind of abstraction for data
analysts.

ML models/applications sit in between datastores and users. ML models
are trained using trained data and tested with test data. ML models are
�
�����
���������������
������
�������
���������������X
��������
���������
new data, the ML model comes out with a correct result. Thus, besides
doing exploratory analysis, ML models result in giving predictions/
prescriptions, enabling decisions and making conclusions. Thus, ML can
be called a kind of automated analytics. However, ML model creation is
not an easy or straightforward task. A lot of initial work is there to arrive
at competent models. That is, machines can learn automatically from data
and the knowledge gained helps machines to take intelligent/context-
aware decisions and plunge into the best course of actions. In other words,
machines just need data and use the appropriate ML model to come out with
results/outputs. That is, just input data is enough as the corresponding data
processing logic comes from the embedded ML model in order to emit out
output. There are several types of ML algorithms for simplifying the model
creation and sustenance.

2.6.1. Supervised Learning

This is a learning in which we teach or train machines using data which
is well-labeled. That means some data is already tagged with the correct
answer. For instance, you are given a basket filled with different kinds of
fruits. Now the first step is to train the machine with all different fruits one
by one like this.

Practical Python Programming for Data Scientists22

=� If shape of object is rounded and depression at top having color
Red, then it will be labeled as Apple;

=� If shape of the object is a long curving cylinder having color
Green-Yellow, then it will be labeled as Banana.

With this learning, we can give a new set of fruits to the machine to
�����
���
������	�������#������������	��������	����������
���
��	���
�����
��
algorithms

�� ������	
����
�� "� ��	�����	��
�� ��
����� ��� �
��� �
��
������
variable is a category, such as “Red” or “blue” or “disease” and
“no disease.”

�� Regression: A regression problem is when the output variable is
a real value, such as “dollars” or “weight.”

The well-known supervised learning types:

=� Regression;
=� Logistic regression;
=� ��	�����	��
�>
=� X	�����	������	�������>
=� Decision trees;
=� Support vector machine.
The prime advantages are:

=� Supervised learning allows collecting data and produce data
output from the previous experiences;

=� It helps to optimize performance criteria with the help of
experience.

The key disadvantages include classifying big data can be challenging
and training for supervised learning needs a lot of computation time.

From predicting who is going to win the Oscars to what advertisement
you are going to click and to make a prediction whether or not you’re going
to vote in the next election, supervised learning comes handy in answering
these sorts of questions. It works because we have seen these things before.
This works because we have seen the outcome/result/target and now with
that learning, we can rightly predict for fresh datasets. For example, we have
�	��
����
�����	���	����	������
����
	���	����	�������������
������\��
	���
�����	�����������������
���	����	��������
����
	���	�����
��
�����������
�
click. We have had elections and can determine what makes someone likely
to vote.

Demystifying The Data Science Paradigm 23

It is possible to predict Oscar winners manually by looking at the
�������
�����	���
���	��
���	��������������	������������
��
������
��
��
most to win. However, ML allows us to do it at a much larger scale and pick
out much better predictors/independent variables or features to arrive at a
best ML model. This leads to more accurate prediction, built on more subtle
�����	�
����
���
	�������������
�
	������]���������������	���������	�����	��
��
is multi-dimensional in the sense that sometimes you only have two classes
(“yes” or “no,” or “true” or “false”). But, sometimes you have more than two.
For instance, under risk management or risk modeling, you can have “low
risk,” “medium risk,” or “high risk.” Supervised ML algorithms represents a
set of popular ML algorithms. This is all about predicting something. It is all
about analyzing what the outcome of the process was in the past and based
on that knowledge, it is to build a system that predicts the future.

2.6.2. Unsupervised Learning

Unsupervised learning is the training of machine without any information,
which is neither classified nor labeled. Also, there is no guidance in
unsupervised learning. Here the task of the machine is therefore to group raw
and unsorted information according to hidden similarities, dissimilarities,
and patterns. For instance, suppose a machine is given an image having
both dogs and cats. The machine has no idea about the features of dogs and
cat, so it can’t categorize the feature in dogs and cats. But it can categorize
them according to their similarities and differences. The machine is capable
of discovering useful patterns and details that were previously undetected. It
mainly deals with unlabeled data.

���������������	��������	����������
���
��	���
�����
��	��
���
��%
1. Clustering: A clustering problem is for discovering the inherent

groupings in the data. Customers can be grouped based on their
purchasing behavior.

2. Association: This is to discover rules that describe large portions
of data. The association rules are such that people that buy X also
tend to buy Y.

The prominent clustering types:

=� Hierarchical clustering;
=� K-means clustering;
=� K-NN (K nearest neighbors);
=� Principal component analysis (PCA);

Practical Python Programming for Data Scientists24

=� Singular value decomposition;
=� Independent component analysis.
In summary, unsupervised learning is empowering machines to learn

without an observed outcome or target. This type of ML is less concerned
about making predictions than understanding and identifying relationships
or associations that might exist within the data. One common unsupervised
learning technique is the K Means algorithm. This technique calculates the
distance between different data points and groups similar data together. The
“suggested new friends” feature in Facebook is an example of this learning.
Facebook calculates the distance between users. The number of common
friends for each user is calculated, and this is being used the distance metric.
The more mutual friends between two users, the “closer” the distance
between two users. The distance metric is used to cluster mutual friends.

While supervised and unsupervised learning work for different
requirements, it’s worth noting that in real-world situations, they even take
��	���������	��
�������
���
����
�	�����!	��������X����!���
��
������	��
algorithm often referred to as a recommender system to suggest new content
to its viewers. You’ll probably like these movies because other people that
have watched these movies liked them. This is supervised learning. On the
other side, these are the movies that we think are similar to other movies that
you’ve previously enjoyed. This is unsupervised learning. Now let us move
towards reinforcement learning.

2.6.3. Reinforcement Learning

What differentiates reinforcement learning from its ML brethren is the
need for an active feedback loop. Whereas supervised and unsupervised
learning can rely on static dataset, for example, a database and return static
results. That is, the results do not change because they do not change often.
Reinforcement learning actually requires a dynamic dataset that interacts
with the real world. For example, think about how small kids explore the
world. They might touch something hot, receive negative feedback (a burn)
and eventually (hopefully) learn not to do it again. In reinforcement learning,
machines learn and build models the same way. One of the well-known
examples is the Deep Blue, a chess-playingchess-playing computer created
by IBM. Using reinforcement learning (understanding what moves were
good and which were bad), Deep Blue would play games, getting better and
better after each opponent. It soon became a formidable force within the
chess community and in 1996, it famously defeated chess grand champion

Demystifying The Data Science Paradigm 25

Garry Kasparov. There are ensemble learning methods and semi-supervised
algorithms for covering up different use cases.

2.6.4. Semi-Supervised Machine Learning (ML)

This is a combination of supervised and unsupervised learning. It uses a
small amount of labeled data and a large amount of unlabeled data. This
combination guarantees the advantages of both while avoiding the challenges
of collecting a large quantity of labeled data. These algorithms operate on
data that has a few labels but is mostly unlabeled. The figure below (taken
from https://towardsdatascience.com/supervised-learning-but-a-lot-better-
semi-supervised-learning-a42dff534781) tells all.

This is often the case everywhere. Fortunately, semi-supervised learning
	��
���
���
���	��������������
���%

=� A semi-supervised ML algorithm uses the labeled data to create a
‘partially trained’ model.

=� Now the partially trained model labels the unlabeled data. The
sample labeled data set may have many severe limitations, and
hence the results of labeling are considered to be ‘pseudo-labeled’
data.

=� Labeled and pseudo-labeled datasets are combined. This
combination creates a unique algorithm that combines the
descriptive and predictive aspects of supervised and unsupervised
learning.

#��������������� ��	������ ����� �
�� ��	�����	��
�� ��
����� �
� ���������
data assets and clustering process to group it into distinct parts. The semi-
supervised GAN algorithm is a variation of the generative adversarial
network (GAN) architecture to address semi-supervised learning problems.
A brief on GANs.

2.6.5. Generative Adversarial Networks (GANs)

GANs are a powerful class of neural networks (NNs) that are used for
unsupervised learning. GANs are generally made up of a system of two
competing NN models which compete with each other and are able to
analyze, capture, and copy the variations within a dataset. A generator (“the
artist”) learns to create images that look real, while a discriminator (“the art
critic”) learns to tell real images apart from fakes. That is, GANs can create
images that look like photographs of human faces, even though the faces

Practical Python Programming for Data Scientists26

don’t belong to any real person. This is pictorially illustrated below.
During training, the generator progressively becomes better at creating

images that look real, while the discriminator becomes better at telling them
apart. The generator tries to fool the discriminator, and the discriminator
tries to keep from being fooled. The process reaches equilibrium when
the discriminator can no longer distinguish real images from fakes. It has
been noticed most of the mainstream neural nets can be easily fooled into
misclassifying things by adding only a small amount of noise into the

�����	���	�	���
����	�������
���
�������
�	������
����
	��
��
����
��������
in the wrong prediction than when it predicted correctly. The reason for such
adversary is that most ML models generally learn from a limited amount
of data. Even a slight change in a point in the feature space may result in
�����	�����	��
��
���	�	�

The discriminator in a traditional GAN is trained to predict whether a
given image is real (from the dataset) or fake (generated). This allows it to
learn features from unlabeled images. The discriminator can then be used
��	� ��	������ ��	������ 	�� 	� ��	������ �
���� �
��� �����
����� 	� ��	������� �
��
�
���	����	�	������
����
���������������������
���	�������
����������
���
��
unsupervised training of the GAN. Since most of the image features have
	���	����������	�������
����	�����������	���	����	����
�����
�����	�����	��
��
will be substantially improved.

In a semi-supervised GAN, the discriminator is trained simultaneously
in two modes: unsupervised and supervised:

=� In unsupervised, the discriminator needs to differentiate between
real images and generated images, like in a traditional GAN; and

=� In supervised, the discriminator needs to classify an image into
the several classes in a prediction problem, like in a standard NN
��	�������

In order to train these two modes simultaneously, the discriminator must
output values for 1 + n nodes, in which 1 represents the ‘real or fake’ node
and n is the number of classes in the prediction task. In the semi-supervised
GAN, the discriminator model is updated to predict K+1 classes, where K is
the number of classes in the prediction problem and the additional class label
is added for a new “fake” class. It involves directly training the discriminator
�
�����
���
�
��
���������������<"X��	���	����
���������������	�����	��
��
task simultaneously. The entire dataset can be passed through the SGAN
— when a training example has a label, the discriminator’s weights are

Demystifying The Data Science Paradigm 27

	�����������
���������
����	�����	��
���	���������
�����	����
�����������	�
��
adjusts its weights to better distinguish between real and generated images.

The SGAN learns useful feature extractions from a very large unlabeled
dataset. Also supervised learning allows the model to utilize the extracted
��	��������
�����	�����������	�����	��
���	���

2.6.6. Why Semi-Supervised Learning?

The amount of data getting produced, collected, and stocked is growing
exponentially. For instance, the number of YouTube videos getting added
is simply mesmerizing. There is an exponential growth of data emanating
from web and social sites, digitized entities, and connected devices. Semi-
supervised learning is found to be effective in such situations. Therefore,
semi-supervised learning is skillfully applied across ranging from crawling
engines and content aggregation systems to image and speech recognition.
The ability of semi-supervised learning to combine the overfitting and
‘underfitting’ tendencies of supervised and unsupervised learning creates
a model that can perform classification tasks brilliantly while generalizing,
given a minimal amount of labeled data and a massive amount of unlabeled
data. Besides classification tasks, there exist other purposes such as enhanced
clustering and anomaly detection. Semi-supervised learning is therefore the
future of ML.

2.6.7. Real-World Applications of Semi-Supervised Learning

1. Speech Analysis: #������	�������
��	���
���������	����������������
task, semi-supervised learning is a very natural approach to solve
this problem.

2. �
���
��� ��
��
�� ������	
����
: In the Internet, there are
Billions of Webpages: Labeling each webpage is an unfeasible
process and hence semi-supervised learning algorithms are
recommended to classify webpages. Even the Google search
algorithm uses a variant of semi-supervised learning to rank the
relevance of a webpage for a given query.

���� ������
������

��������	
����
� Since DNA strands are typically
very large in size, semi-supervised learning is being presented
as the way forward to handle DNA data (A human DNA has
	���
!��	������������
���	����	���Y��
����������
���
���
��_X"�
strands.

Practical Python Programming for Data Scientists28

2.7. KEY MACHINE LEARNING (ML) ALGORITHMS

2.7.1. Regression Algorithms

Regression algorithm is a supervised ML algorithm, and the output of
regression is always a real or continuous value. Regression represents a
statistical relationship between two or more variables in which a change in
the independent variable is associated with a corresponding change in the
dependent variable.

Let’s say you have a website, and your revenue is based on the website
��	�����	����
���	����
����������
�����������	����
���������	������
���
���
��	���������������
��
�������������
��
��
����
������������
��������]��	���
��

���������������������������	�������	�����
��������
����������
��������������
variable, and revenue would be the dependent variable. The independent
variable is often called the explanatory variable, and the dependent variable
is called the response variable.

"�� �������� ��	���� �����	����� �
�� �������� �����	����� �
�� �	�� ��	�� 	�
line to show that relationship, and then you can use that line as a predictor
������#
���
���!	�������
	����������������������
�����	��������������]���
��
��	��	������������	���������
�����?�
���
��!�	!���$�
����	����	!��Y�����
��
��
regression line/predictor line. Then you could draw another line over to the
y-axis (the revenue axis) and see where it lands. You can see that when the
��	�������	�
������������
�������������	�
����*������

Actually, there is no need to draw any line. Instead an equation/model
�
�������������
���
����������
���������������	��	�������
��
���`�	��
���
�
generate the dependent variable output, which is the predicted value.

2.7.1.1. Linear Regression
When there is a linear relationship between a dependent variable (which is
continuous) and an independent variable (which is continuous or discrete),
we would use linear regression. Linear regression answers the question,
��
�����
����	���	�����������"���������� ��	�������
����

�����
������
�������� ��
��� #������ ����	�� ��������
�� �
��������
��� `�	����	����� 	���
independent variable X to predict the other quantitative but dependent
variable Y whereas multiple linear regression considers more than one
quantitative and independent variable to predict the other quantitative but
dependent variable Y. Linear regression is widely used for stock market
analysis, weather forecasting, and sales predictions.

Demystifying The Data Science Paradigm 29

2.7.1.2. Logistic Regression
Logistic regression is when the Y value on the graph is categorical (yes or
no, true or false) and depends on the X variable. Whereas logistic regression
predicts if something will happen or not, linear regression is generally used
to predict a continuous variable, like height and weight. That is, logistic
regression is used when a response variable has only two outcomes: yes or
no, true or false.

Logistic regression� ��� 	� ���	��� ��	�������� ������ �
���� 	���
���� ��
�

���
�����}������	���
���������	�����	��
��	����	����
��	�����������
�������

����
��
��� �
����	����������������
��	����
���
����
	�������	�������
� ��
�
�
�������
���
���%���
��	����
���
����
��	�����#
�����������������	����������
�
�����
���������������	��	�����]���
���	����
���������

�����
���
��������
be made, linear regression would be useful. For logistic regression, you will
�	�������
��	�����
���������
���	����
������
�������������
�������
�����������
For linear regression, you would use an equation of a straight line:

y = b0 + b1*x,
where; x is the independent variable; y is the dependent variable.

Because you cannot use a linear equation for binary predictions, you
need to use the sigmoid function, which is represented by the equation

p = 1/(1 + e – y)
where; e is the base of the natural logs.

Then by taking the log of both sides and solving it, you get the sigmoid
������
���[����	�
���������
�������
���
���������������
�������
����������

Another example goes like this. We have a dataset (GPAs and college
ranks for several students), and we need to predict whether a candidate will
get admission in the desired college or not, based on the person’s GPA and
college rank. Based on this labeled data, we can train the model, validate it,
and then use it to predict the admission for any GPA and college rank.

Linear regression is a ML algorithm for continuous variables. However,
�
������� ��������
�� ��� 	� ��	�����	��
�� 	��
���
��� �
�� 	� �
���	��� �	��	����
prediction algorithm. Other supervised ML algorithms are decision trees,
support vector machines (SVMs), and Naive Bayes.

2.7.1.3. Decision Trees
A decision tree is a supervised learning method used primarily for
classification. The algorithm classifies the various inputs according to

Practical Python Programming for Data Scientists30

a specific parameter. A decision tree is a tree-shaped algorithm used to
determine a course of action. Each branch of the tree represents a possible
decision, occurrence, or reaction:

1. Root Node: This node represents the entire population, and this
further gets subdivided into two or more homogeneous sets.

2. Splitting: This is a process of dividing a node into two or more
sub-nodes.

3. Decision Node: When a sub-node splits into further sub-nodes,
then it is called a decision node.

4. Leaf/Terminal Node: Nodes with no children (no further split)
are called a leaf or terminal nodes.

5. Pruning: When we reduce the size of decision trees through node
reduction (opposite of splitting), the process is called pruning.

6. Branch/Sub-Tree: A subsection of the decision tree is called a
branch or sub-tree.

7. Parent and Child Node: A node, which is divided into sub-nodes,
is called a parent node of sub-nodes, whereas sub-nodes are the
child of parent nodes.

There are two more important concepts that you should know before
implementing a decision tree algorithm: entropy and information gain.
Entropy is the measure of randomness or impurity in the dataset. Information

gain is the measure of the decrease in entropy after the dataset is split. It is
also known as entropy reduction.

2.7.1.4. Support Vector Machines (SVMs)
Support vector machines (SVMs) is also a supervised learning method
leveraged for classification purpose. SVMs can perform both linear and
non-linear classifications. The machine learns from the existing data and
predicts or makes decisions about future data. Your data set must contain
known outcomes so that the machine can learn, take the data and adjust it,
and apply the ML algorithm. The algorithm learns, creates a model, analyzes
the model, and then uses that model to make predictions. With classification,
you predict categories while in regression, and you generally predict values.

#��� ��� 	� ���	��� ��	������� $	� ��	������� ����� �
�� �

��� ����'�	����� ���'
�
� ������
����	�����	��
����
�����Y����	������	��� ���
��	��� ��������������
��	�������]���
����	��������	����	�������#����	������
�����������	�����	��
��
algorithm choice as opposed to logistic regression. Bug detection, customer

Demystifying The Data Science Paradigm 31

churn, stock price prediction (not the value of the stock price, but whether
or not it will rise or fall), and weather prediction (sunny/not sunny; rain/no
rain) are all examples.

Once you give it some inputs, the SVM algorithm will segregate and
classify the data and then create the outputs. When you ingest more new data
(an unknown fruit variable in this example), the algorithm will correctly
classify the fruit: e.g., “apple” versus “orange.” SVM is a powerful method to
classify unstructured data, make reliable predictions, and reduce redundant
information. SVM has applications in different areas of daily life, such as:

1. Face Detection:���������	�����	�������	�	��#�����	���������!����
in images like a face or non-face

���� �����������	
����
� Training data is used to categorize different
������
���
����������
������	����������	���������	�������	�������
as “business” or “entertainment.”

3. Classifying Images: By classifying images with improved
techniques, SVM increases search accuracy.

4. Bioinformatics: SVM algorithms have increased the effectiveness
�����
�����

�
�
���$�����	����Y��������
����	�������	�����	��
���
�������	�����	��
�������

2.7.1.5. Naive Bayes

Naive Bayes is a statistical probability-based classification method best
used for binary and multi-class classification problems.

2.8. ENSEMBLE LEARNING ALGORITHMS

2.8.1. Random Forest (RF)

Random forest (RF) is a popular supervised ML algorithm and this is used
for both classification and regression problems. It is an ensemble learning
method. The idea is to combine multiple classifiers to solve a complex
problem and to also improve the performance of the model. The RF
algorithm relies on multiple decision trees and accepts the results of the
predictions from each tree. Based on the majority votes of predictions, it
determines the final result. The classifier contains training datasets and each
training dataset contains different values. Multiple decision tree models are
created with the help of these datasets. Based on the output of these models,

Practical Python Programming for Data Scientists32

a vote is carried out to find the result with the highest frequency. A test set is
evaluated based on these outputs to get the final predicted results.

An example to learn more about how a decision tree works is as follows.
Suppose we want to predict whether a person will buy a phone or not based
on the phone’s features. For that, we can build a simple decision tree.

The parent/root node and the internal nodes represent the phone’s
features, while the leaf nodes are the outputs. The edges represent the
connections between the nodes based on the values from the features. Based
on the price, RAM, and internal storage, consumers can decide whether
they want to purchase the phone. The problem with this decision tree is that
we only have limited information, which may not always provide accurate
results. Here, by using a RF model, it is possible to improve the results, as
it provides diversity into building the model with several different features.

2.9. STEPS TO BUILD A RANDOM FOREST (RF)

=� Randomly select “K” features from total “m” features where k <
m;

=� Among the “K” features, calculate the node “d” using the best
split point;

=� Split the node into daughter nodes using the best split method;
=� Repeat the previous steps until you reach the “l” number of nodes;
=� Build a forest by repeating all steps for “n” number times to create

“n” number of trees.
"������
�����������	�����	��������	������	�������������
����	������	���

using the following steps:
=� Run the test data through the rules of each decision tree to predict

the outcome and then store that predicted target outcome;
=� Calculate the votes for each of the predicted targets;
=� �
���
���
��
����
���������������	���������
����	����������
��
We need to understand a few different terminologies that are used in RF

algorithms, such as:
1. Variance: When there is a change in the training data algorithm,

this is the measure of that change.
2. Bagging: This is a variance-reducing method that trains the

model based on random subsamples of training data.

Demystifying The Data Science Paradigm 33

3. Out-of-Bag (oob) Error Estimate:��
�������	������� ��� ��	�����
������ �

����	�� 	�����	��
��� �
���� �	�
� ���� ����� ��� ��� ��
��
a bootstrap sample of the training observations. The out-of-
bag (oob) error is the average error for each calculation using
predictions from the trees that do not contain their respective
�

����	�� �	�������
��� ��	����� �
�������	������� �
����	��������
and validated during training.

4. Information Gain and Entropy: These are already discussed in
this chapter.

5. Gini Index: Or Gini impurity, measures the degree of probability

�� 	� �	������	�� �	��	���� ������ ���
�������� ��	������� �
��� ��� ���
chosen randomly. The degree of the Gini index varies between
zero and one, where zero denotes that all elements belong to a
certain class or only one class exists, and one denotes that the
elements are randomly distributed across various classes. A Gini
index of 0.5 denotes equally distributed elements into some
classes.

�����	��������
	���	�����

�	�
��	�����	��
��%
=�]���
�������
���	�������������������
�����������	������������
�����
=� RFs are used to analyze the symptoms of patients and diagnose

diseases.
=�]�� �
�� ��
������� ������ ���
�����	��
�� ������
���� ��������

purchases based on customer activity.
=� "�	��Z����
����	�������������
�����������
���
���
����������
�����

algorithm.

2.10. TIME SERIES FORECASTING

Forecasting is a technique for making business predictions. Companies use
time-series data (historical and current) to accurately forecast. This comes
handy in making business decisions for the future. Time-series forecasting is
the method of exploring and analyzing time-series data recorded or collected
over a set period of time. Any data fit for time-series forecasting should
consist of observations over a regular and continuous interval. A time series
can be of annual budgets, quarterly expenses, monthly air traffic, weekly
sales quantity, daily weather reports, hourly stocks’ price, inbound calls per
minute in a call canter) and web traffic per second. In most manufacturing
companies, it drives the fundamental business planning, procurement, and

Practical Python Programming for Data Scientists34

production activities. Any error in the forecast will damage or degrade
��������
	��������������#
�� ����� ���
��	��� �
����� �
�� �
���	����	����	��� ���
order to save on costs and is critical to success.

2.10.1. The Time Series Components

To use time-series data to develop a model, there are some patterns to be
understood:

1. Trend: It represents the gradual change in the time-series data.
The trend pattern depicts long-term growth or decline.

2. Level: It refers to the baseline values for the series data if it were
a straight line.

3. Seasonality: It represents the short-term patterns that occur
���
���	�������������
�������	�������	���������������

4. Noise: It represents irregular variations and is purely random.
�
���������	��
���	������
�����������������	�����	����	��
�����
explained by the model.

2.11. TIME SERIES FORECASTING METHODS

1. Autoregressive Integrated Moving Average (ARIMA): The
ARIMA model is a combination of the autoregressive (AR) and
moving average (MR) model. The AR model forecast corresponds
to a linear combination of past values of the variable. The moving
average model forecast corresponds to a linear combination of
past forecast errors. The “I” represents the data values that are
replaced by the difference between their values and the previous
values.

2. Seasonal Autoregressive Integrated Moving Average
(SARIMA): This model extends the ARIMA model by adding a
linear combination of seasonal past values and forecast errors.

3. The Vector Autoregression (VAR): This method models the next
step in each time series using an AR model. The VAR model is
useful when you are interested in predicting multiple time series
variables using a single model.

4. The Long Short-Term Memory (LSTM): This network is a special
kind of recurrent NN that deals with long-term dependencies.
It can remember information from past data and is capable of
learning order dependence in sequence prediction problems.

Demystifying The Data Science Paradigm 35

"�]�"��
�����	�����	�����������
�����	��
��%
=� p = Number of autoregressive terms (AR);
=� d = How many non-seasonal differences are needed to achieve

stationarity (I);
=� q = Number of lagged forecast errors in the prediction equation

(MA).
For a detailed example and explanation, please visit the page (https://

www.machinelearningplus.com/time-series/arima-model-time-series-
forecasting-python/).

2.12. TIME SERIES FORECASTING APPLICATIONS

=� Time series forecasting is used in stock price prediction to predict
the closing price of the stock on each given day.

=� E-Commerce and retail companies use forecasting to predict
sales and units sold for different products.

=� Weather prediction is another application that can be done using
time series forecasting.

=� It is used by government departments to predict a state’s
population, at any particular region, or the nation as a whole.

2.13. CLUSTERING ALGORITHMS

Clustering algorithms come under the category of unsupervised learning.
Clustering algorithms work on a set of unlabeled data points and are good for
grouping data points into one or more clusters based on some identified and
indicated attributes. Let’s say you want to travel to 20 places over a period

���
����	�����
���
�������	����
����	������������������
�������
���
����
�����
grouping the places into a few clusters. The mechanism to determine these
clusters is to select places that are nearest to one another. Such a grouping
may result in a few clusters. Proximity is the measure used to group places
within a cluster. There may be a few clusters needed to accommodate all the
places. Thus, clustering comes handy in visiting all the 20 places within the
allotted time.

Clustering is the method of dividing objects and then identifying and
��
��������������
��������
���
������
�	�����������
�����
����
	��
�����������
can be formed on the basis of one or more properties/attributes. If you take
the trait of similarity, then all the similar objects can be clubbed together

Practical Python Programming for Data Scientists36

to form a cluster, whereas dissimilar objects can be joined together to form
another set. Some of the well-known applications of clustering are given
below:

1. Customer Segmentation: Here clustering can help to answer
questions as given below:

=� \
��
���
�������
����
��
��
�����
������������
=� How to group customers systematically together in forming

���������
2. Social Network Analysis (SNA): User personas are turning out

to be an excellent mechanism for clustering, which is primed for
social networking analysis. We can look for similar characteristics
among people and group them to form clusters accordingly.

3. City Planning: This become complex when the city size soars.
Therefore, mathematical, and IT solutions are mandated to
simplify things. Planners need to check that an industrial zone
isn’t near a residential area, or that a commercial zone should not
be in the middle of an industrial zone.

When choosing a clustering algorithm, the point to be noted is that
whether the algorithm has the inherent capability to scale to match with the
dataset, which is fast-growing. Typically, in ML problems, datasets can be
in millions. The problem is that all the clustering algorithms do not scale
�������������	��� ����������� 	��
���
����
������ �
�������� �
�� �����	�����
between all pairs of examples. This means their runtime increases as the
square of the number of examples. This is denoted as O(n2) in complexity
notation. However, O(n2) algorithms are touted as impractical when the
number of datasets are in millions. Therefore, the k-means clustering
algorithm, whose complexity is O(n), has gained immense popularity these
days. O(n) means this algorithm scales linearly with n. Here is a list of
prominent clustering algorithm groups.

2.13.1. Hierarchical Clustering

This creates a tree of clusters. Without an iota of doubt, hierarchical
clustering is suited to hierarchical data. Further on, any number of clusters
can be chosen by cutting the tree at the right level.

Demystifying The Data Science Paradigm 37

2.13.2. K-Means Clustering

K-means clustering is a popular hierarchical clustering algorithm. K-means
performs division of objects into K clusters that share some kinds of
similarities. K, which is an integer, tells the system how many clusters have
to be created. Imagine we receive data on a lot of cricket players from all
over the world, which gives information on the runs scored by the player and
the wickets taken by them in the last ten matches. Based on this information,
we can group the data into two clusters, namely batsman and bowlers.

The steps are illustrated below:
=� To begin with, we have to select a number of classes/groups to

use and randomly initialize their respective center points.
=� �	�
��	�	��
���������	�����������
���������
������	������������

that point and each group center, and then classifying the point to
be in the group whose center is closest to it.

=� [����
���
������	��������
������������
�������
����
����������
by taking the mean of all the vectors in the group.

=� Repeat these steps for a set number of iterations or until the group
centers don’t change much between iterations.

K-means has the advantage that it’s pretty fast, as all we do is computing
the distances between points and group centers. That is why it has achieved
the minimum complexity of o(n). K-means has a couple of disadvantages.
Firstly, you have to select how many groups/classes there are. This isn’t
always easy to calculate. K-means also starts with a random choice of cluster
centers, and therefore, it may yield different clustering results on multiple
runs of the algorithm. Thus, the results may not be repeatable and lack the
much-needed consistency.

2.13.3. Applications of K-Means Clustering

This clustering method is widely used in a variety of real-world scenarios:
1. Academic Performance: Based on the academic marks obtained,

students can be categorized into grades like A, B, or C.
2. Diagnostic Systems:��
�������	������������	����������������	���

clustering algorithm towards creating intelligent medical decision
support systems (DSS) and expert systems for treating and curing
a variety of diseases.

Practical Python Programming for Data Scientists38

3. Search Engines: When a search is performed in a search engine,
the search results need to be grouped based on some considerations
and the search engines have to lean upon clustering to do this
����������
�����
���������

4. Wireless Sensor Networks: The clustering algorithm helps to
pinpoint the cluster heads, each of which manages all the sensor
nodes clubbed together in each cluster. There can be multiple
clusters being formed out of all the sensor nodes for effectively
monitoring and aggregating sensor nodes and their data.

2.13.4. Centroid-Based Clustering

Centroid-based clustering organizes the data into non-hierarchical clusters.
K-means is the frequently used centroid-based clustering algorithm. This
is an iterative clustering algorithm in which the clusters are formed by
the closeness of data points to the centroid of clusters. Here, the cluster
center (that is, the centroid) is formed such that the distance of data points is
minimum with the center.

This problem is basically one of NP-hard problem, and thus solutions
are commonly approximated over a number of trials. The biggest problem
with this algorithm is that we need to specify K in advance. It also has
problem in clustering density-based distributions. K-means algorithm is one
of popular example of this algorithm.

2.13.5. Mean Shift Clustering

Mean shift clustering is a sliding-window-based algorithm that attempts to
find dense areas of data points. It is a centroid-based algorithm. The goal
is to locate the center points of each group/class, which works by updating
candidates for center points to be the mean of the points within the sliding
window. These candidate windows are then filtered in a post-processing
stage to eliminate near-duplicates, forming the final set of center points and
their corresponding groups.

2.13.6. Subspace Clustering

Subspace clustering (https://www.geeksforgeeks.org/different-types-
clustering-algorithm/) is an unsupervised learning problem that aims at
grouping data points into multiple clusters so that data point at single cluster
lie approximately on a low-dimensional linear subspace. Subspace clustering
is an extension of feature selection. The feature selection subspace clustering

Demystifying The Data Science Paradigm 39

requires a search method and evaluation criteria. Subspace clustering limits
the scope of evaluation criteria. Subspace clustering algorithm localize the
search for relevant dimension and allow to them to find cluster that exist
in multiple overlapping subspaces. Subspace clustering was originally
purposed to solve specific computer vision (CV) problem having a union of
subspace structure in the data. Professionals use this tool in social networks,
movie recommendation, and biological dataset.

There are two branches of subspace clustering based on their search
strategy:

=� �
���
���	��
���
�������	�������	���������������� �
�����������
��
dimensions and evaluate the subspace of each cluster; and

=� [
��
�����	���
	�
����������������
������
���������
�	����	���
and then combines to form clusters.

2.13.7. Density-Based Clustering

Density-based clustering connects areas of high density into clusters. This
allows for arbitrary-shaped distributions as long as dense areas can be
connected. It isolates various density regions based on different densities
present in the data space. These algorithms have difficulty with data of
varying densities and high dimensions. Further, by design, these algorithms
do not assign outliers to clusters. Density-based spatial clustering of
applications with noise (DBSCAN) is a density-based clustered algorithm.

2.13.8. Distribution-Based Clustering

This clustering approach assumes data is composed of distributions, such
as Gaussian distributions. As the distance from the distribution’s center
increases, the probability that a point belongs to the distribution decreases.
The bands show a decrease in probability. It is a clustering model in which
we will fit the data on the probability that how it may belong to the same
distribution. The grouping done maybe Normal or Gaussian. Gaussian
distribution is more prominent where we have a fixed number of distributions
and all the upcoming data is fitted into it such that the distribution of data
may get maximized. This model works good on synthetic data and diversely
sized clusters. But this model may have problem if the constraints are not
used to limit the model’s complexity. Distribution-based clustering produces
clusters which assume concisely defined mathematical models underlying
the data, a rather strong assumption for some data distributions. The

Practical Python Programming for Data Scientists40

expectation-maximization (EM) algorithm, which uses multivariate normal
distributions, is one of the popular examples of this algorithm.

2.13.9. Semi-Supervised Clustering

Clustering is to identify similarities and differences between data points,
but it doesn’t require any given information about the relationships within
the data. However, there are situations wherein some of the cluster labels,
outcome variables, or information about relationships within the data are
made available. Herein semi-supervised clustering is hugely beneficial.
Semi-supervised clustering uses some known cluster information in order to
classify other unlabeled data.

A well-known application of semi-supervised learning is a text
�
���������	��������\��	�����
���
	�� ��!���
�������� ���������
������
��
scripts, books, blogs, etc., which are mostly unlabeled. The power of semi-
supervised learning is being felt here as it would be nearly impossible to
����	� �	���� 	�
����
�� �	������ ��!���
������������������� ���	������ �����
supervised learning allows for the algorithm to learn from a small amount
of labeled text documents while still classifying a large amount of unlabeled
text documents in the training data.

2.14. CASE STUDY: DIABETES PREVENTION

If we can predict the onset of diabetes through the leverage of machine and
DL algorithms on diabetes-associated data, it is a great help for people who
are on the verge of being bracketed as diabetes patient.

=� _	�	��
������
�� ��� �
������� 	��� �
���
���	���������� �
�� �����	�����
any ML project.

The features/independent variables/decision-enabling attributes have to
��������������

For accurate diabetes prediction, the following attributes are chosen:
�� npreg: Number of times pregnant;
�� glucose: Plasma glucose concentration;
�� bp: Blood pressure;
�� skin: Triceps skinfold thickness;
�� BMI: Body mass index;
�� ped: Diabetes pedigree function;

Demystifying The Data Science Paradigm 41

�� age: Age;
�� income: Income.
\��
	���	����
����	����������������	����	����
���
	�>����������
��
������

the data set. Going forward, all the collected data have to be cleaned to
make data ready for analysis. Data cleansing is very important because
there may be a number of inconsistencies, in the form of incomplete data,
empty columns, outliers, incompatible data format, etc. Here is a table with
organized data under different attributes. This gives a structured look indeed.

�
����	�	�
	��	��������
�����
��������������
�������
�
���	�����������
are problematic. All the issues are fully sorted out and the table below
gives a corrected look. Now we have the data set fully ready for deeper
and decisive analytics. Herein, the author of this practical example has
loaded the data into the analytical sandbox and applied various statistical
functions on it. RStudio has functions like describe, which gives the
number of missing values and unique values. The summary function gives
statistical information like mean, median, range, min, and max values. The
visualization techniques like histograms, line graphs, and box plots give a
fair idea of the data distribution.

�
�����
������������
���������������	������	��	����
������	����������	���
fully labeled. Further on, it is possible to take all the attributes consideration
at one go and hence decision tree is the most appropriate one to come out
with a prediction model. There are both linear and non-linear relationships.
Decision tree is chosen as it is robust. That is, it allows using different
combinations of attributes to make various trees and then helps to implement
�
��
������
��
���	!���������������

Here is a decision tree.

Practical Python Programming for Data Scientists42

Here, the most important parameter is the level of glucose, so it is being
designated as the root node. Now, the current node and its value determine
the next important parameter to be considered. It goes on until we get the
result in terms of pos (positive) or neg (negative).

2.15. CONCLUSION

We are experiencing big data days. Cloud-enabled data centers being set up
and sustained across the globe. The computing becomes consolidated and
centralized and now getting federated. With edge computing is on the anvil,
computing is steadily becoming distributed. The other prominent factor is
that there are competent and integrated data analytics getting deployed and
maintained in cloud environments. The surging popularity of AI algorithms
is another positive development. With these initiatives and implementations,
the era of DS is all set to flourish. That is, data-driven insights and insights-
driven decisions and actions are becoming the new normal. This chapter has
detailed the various aspects associated with DS.

PYTHON FOR DATA ANALYSIS

CHAPTER 3

CONTENTS
3.1. Python for Data Analysis ... 44

3.2. Python Libraries .. 44

3.3. Scientific Libraries in Python-Numpy, Scipy, Matplotlib,
and Pandas ... 46

3.4. Machine Learning (Ml) .. 57

3.5. Machine Learning (Ml) With Internet of Things (IoT) 69

3.6. Machine Learning (Ml) Application With IoT 71

3.7. Algorithm ... 72

3.8. Building Blocks of Algorithms (Instructions/Statements,
State, Control Flow, Functions) ... 73

3.9. Notation (Pseudocode, Flow Chart, Programming Language) 77

3.10. Algorithmic Problem Solving .. 87

3.11. Flow of Control ... 91

3.12. Illustrative Program ... 96

Practical Python Programming for Data Scientists44

3.1. PYTHON FOR DATA ANALYSIS

Python has gathered a lot of interest in recent times as a choice of language
for data analysis.

\
�����

��
=� Python is open source software;
=� Tremendous online society for communication;
=� It is very easy to learn since it is simpler;
=� It can be used as a widespread language for data science (DS) and

website-based analytics product construction.
Python is an interpreted language quite compiled language. Hence it

might obtain more CPU time. However, it saves programming time compared
to other languages due to easy code and learning it might be a good choice.

3.2. PYTHON LIBRARIES

=� Using Import:
To include the library function and modules into the python program, use
the following syntax:

import ModuleName

Example:

import math
Using this math module, the functions can be invoked using:

math.functionName

Example:

math.sqrt(25)
\���	��������	��	��	���
��
���
������
���������%

Import ModuleName as AliasName

Example:

import math as m
print(m.sqrt(25))

Python For Data Analysis 45

=� Using From…. Import:
The modules can also be imported using the keyword from:

Syntax:
from Module import *

Example:

from math import *
print(math.sqrt(25))

�
�������������
����	��
���	����	�	�	�	���������������
���
���
��
�����
list of libraries.

1. NumPy: It is a Numerical Python. The most use of Numpy is
n-dimensional array. It contains basic Fourier transforms, all linear
algebra functions, advanced random number capabilities and
integration tools with other low-level languages like FORTRAN,
C, and C++

2. SciPy:]�� ��� #��������� ���

���]�� ��� ������
�� X������ �
��
��
�
level science coding and for engineering modules, i.e., Fourier
transform, linear algebra, and sparse matrix, it is a very useful
library function.

3. Matplotlib: Using the Matplotlib enormous variety of graphs,
starting from histograms to line plots to heat plots can be plotted.
We can use Pylab features in ipython notebook. Without inline
the ipython environment is similar to the MATLAB environment.

4. Pandas: These are very useful for structured data operations
and manipulations. It is widely used for data administration and
preparation. Pandas were added relatively recently to Python and
have been instrumental in boosting Python’s usage in the data
scientist community.

5. Scikit: It is used to Learn for ML. It is Built on SciPy, NumPy,
and matplotlib, this library contains a lot of well-organized tools
for ML and statistical modeling, including regression, clustering,
��	�����	��
���	����������
�	������������
��

6. Statsmodels: It is used for statistical modeling. Stats models
is a Python module that allows users to explore data, estimate
statistical models, and perform statistical tests. A widespread list

Practical Python Programming for Data Scientists46

of evocative statistics, statistical tests, plotting functions, and
result statistics are offered for different types of data and each
estimator.

7. Scrapy: It is used for web crawling. It is a constructive framework
for getting precise patterns of data. It has the competence to start
at a website home URL and then dig from end to end web pages
contained by the website to collect information.

8. SymPy:]�����������
������	������
����	��
���]��
	���
����
�������
capabilities from basic symbolic arithmetic to algebra, calculus,
quantum physics, and discrete mathematics.

9. Requests: It is used to access the web. It works equivalent to the
standard python library urllib2 but is a lot easier to code. You will
��������������������������
�������¡�������
���������������`������
might be more expedient.

Supplementary libraries, we may need:
= OS:��
�������	����
������
���	��
���	���
���	������������
= networkx and igraph: It is used for graph-based data

manipulations.
= Regular Expressions:�]�����������
����������	������������!���	�	�
= BeautifulSoup: This library is used for scrapping web. It is

inferior to Scrapy as it will haul out information from just a single
webpage in a run.

3.3. SCIENTIFIC LIBRARIES IN PYTHON-NUMPY,

SCIPY, MATPLOTLIB, AND PANDAS

NumPy is an open-source Python package. NumPy is a ‘Numerical Python.’
It is the collections of multidimensional array objects and a compilation of
routines for processing of array.Jim Hugunin developed NumPy which is
the ancestor of Numeric.

3.3.1. Operations Using NumPy

Using NumPy, a developer can perform the following operations on arrays:
=� Mathematical operations;
=� Logical operations;

Python For Data Analysis 47

=� Fourier transforms and routines which are used for shape
management;

=� Linear algebra operations.

3.3.2. NumPy for MATLAB

NumPy is frequently used on the packages like Scientific Python and plotting
����	��� �	�¢��
������ �
��� 	�	��	�	��
�� ��� ��
	���� ����� 	�� 	�� 	�����	���
for MATLAB, a popular stand for technical computing. Though, Python
substitute to MATLAB is now seen as a more contemporary and inclusive
programming language.

�� Installation of NumPy: The Numpy can be installed through
python package installer PIP Command(Windows):

Python-m pip install NumPy

=� To install SciPy:
 Python-m pip install SciPy

=� To install matplot:
 Python-m pip install matplot

Practical Python Programming for Data Scientists48

=� To check the version of SciPy:
 scipy.version.version

Let’s plot a simple function with Matplotlib. First, we’ll import SciPy
and Matplotlib�	��� �
�������	���������
����
�����
�� �
�� $���*Y� ������	��
with:
import scipy as mp #import SciPy
import matplotlib.pylab as pt #import matplot
tt = mp.linspace(0, 1, 100) #defining points
pt.plot(tt, tt**2) #To plot a parabola
pt.show() #To show the output
We can see the parabola like:

Python For Data Analysis 49

3.3.3. Sine Wave Plot Using Matplotlib

The sine wave can be produced using the matplotlib module. The function
pyplot is used to draw the sine wave, and the values can be define using
the NumPy module. The NumPy is the library which is the collection of
the same data items. The arrange function is used to create the sequence of
values which have even distance. This arrangement can be used with the
following syntax:

Numpy.arange (start value, stop value, step value, datatype)
Here the stop value is a must, and the remaining parameters are optional.
Sample program:

import NumPy as n
import matplotlib.pyplot as plott
xx = n.arange(0, 4 * n.pi, 0.1)
yy = n.sin(xx)
plott.title(“sine wave form”)
plott.plot(xx, yy)
plott.show()

Output:

3.3.4. Drawing 3D Plot Using Matplotlib

To draw 3D images, the function axes3d has to be imported from the module
mpl_toolkits.mplot3d. The figure function is used to draw the canvas.

Practical Python Programming for Data Scientists50

Syntax:
plot_wireframe(self, X axis, Y axis, Z axis, *args, **kwargs)

Program:
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as pt
�
	���¦���������$Y
chart3d = chart.add_subplot(111, projection=‘3d’)
X, Y, Z = axes3d.get_test_data(0.05)
chart3d.plot_wireframe(X, Y, Z, color=‘g,’ rstride=20, cstride=30)
pt.show()
In this above code, X, Y, Z is the input 2D-array data, stride is the

step size. Downsampling stride is in every direction. These arguments are
normally restricted with rcount and ccount. If only one of rstride or cstride
is set, the other defaults to 1. Assigning stride to zero causes the data to be
not sampled in the subsequent direction, producing a 3D line plot rather than
a wireframe plot.

Output:

Python For Data Analysis 51

3.3.5. Data Analysis Using Pandas

Pandas is the mainly trendy python library that is used for data analysis. It
provides tremendously optimized performance with back-end source code is
exclusively written in C or Python.

Installation of Pandas:
Pandas is installed via pip

Python-m pip install pandas

To import panda library:
import pandas as pand

Using panda data analysis can be done on:
=� Series
=� Data Frames
Create series with data:

s = pand.Series(data)
Here, data is:
=� A scalar value which may be integer value, string.
=� A python dictionary which is a combination of key, value pair.
=� A N-d array.
Create series with data, and index:

si = pand.Series(Data, index = Index)

�� Example 1: When data contains the scalar values.
import pandas as pand
data1 =[1, 3, 4, 5, 6, 2, 9]
s = pand.Series(data1)

Practical Python Programming for Data Scientists52

Index1 =[‘a,’ ‘b,’ ‘c,’ ‘d,’ ‘e,’ ‘f,’ ‘g’]
si = pand.Series(data1, Index1)
print(s)
print(si)

Output:

�� Example 2: When data contains dictionary.
import pandas as pd
dictionary1 ={‘a’:1, ‘b’:2, ‘c’:3, ‘d’:4, ‘e’:5}
sdic= pd.Series(dictionary1)
print(sdic)

Output:

�� Example 3: When data contains Ndarray.
import pandas as pand
Data =[[20, 30, 40], [50, 60, 70]]
sarr = pand.Series(Data)
print(sarr)

Python For Data Analysis 53

Output:

3.3.6. Create Dataframes

Data frames are the data structures which is declared as the rows and
columns. It can be 2D arrays.

import pandas as pand
df = pand.dataFrame(data)

Here, data can be:
= Dictionaries
= Series
= 2D-numpy Ndarray
�� Example 1: Dataframe with dictionaries

import pandas as pd
dict1 ={‘a’:1, ‘b’:2, ‘c’:3, ‘d’:4}
dict2 ={‘a’:5, ‘b’:6, ‘c’:7, ‘d’:8, ‘e’:9}
_	�	�¦�«¬�����%����*��¬���
���%����¡­
df = pd.DataFrame(Data)
print(df)

Output:

Practical Python Programming for Data Scientists54

�� Example 2: Creating data frame when data is a series
import pandas as pand
s1 = pand.Series([1, 3, 4, 5, 6, 2, 9])
s2 = pand.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])
s3 = pand.Series([‘a,’ ‘b,’ ‘c,’ ‘d,’ ‘e’])
_	�	*�¦«¬�����%�*��¬���
���%�¡��¬�
����%��­
datseries = pand.DataFrame(Data1)
print(datseries)

Output:

�� Example 3: When data is 2D-numpy Ndarray
import pandas as pand
d1 =[[2, 3, 4], [5, 6, 7]]
d2 =[[2, 4, 8], [1, 3, 9]]
_	�	*�¦«¬�����%��*��¬���
���%��¡­
df2d = pand.DataFrame(Data1)
print(df2d)

Python For Data Analysis 55

Output:

3.3.7. Using CSV Files

Another way to create a DataFrame is by importing a csv file using Pandas.
���	���	��#���������
��
���	����	������
import pandas as pand
vehile = pand.read_csv(‘cars.csv’)
print(vehile)

Output:

�������
���������
����������
��������

\�� �	�� ��
��� �
�� ���	���� �	�	��	��� ���
� �
�� ���� ���� ������ �
�� �
��
�����
syntax:

�
����$¬����	���������!�¦���	���®�����Y
����	����	���
���
���������
index-True if the default value to be overwritten
index-False if the default value should not be overwritten
Default index value is True

Practical Python Programming for Data Scientists56

Example:
import pandas as pd
s1 = pd.Series([10, 14, 18])
s2 = pd.Series([11, 15, 19])
s3 = pd.Series([12, 16, 110])
dframe = pd.DataFrame([s1, s2, s3])
���	����
������¦¯¬�������¬���
�����¬�
����°
dframe.to_csv(‘sample.csv,’ index = False)
dframe.to_csv(‘sample1.csv,’ index = True)

Output:
Sample.csv

Sample1.csv

3.3.8. Data Visualization Using Matplotlib

The matplotlib is used to display the bar chart, line chart, and scatterplots,
which can be produced from the data analysis.

]��������	���
��������	������������
������
������
��

Python For Data Analysis 57

Example: From matplotlib import pyplot as plt
x = [1950, 1960, 1970, 1980, 1990, 2000, 2010]
y = [300.2, 543.3, 1075.9, 2862.5, 5979.6, 10289.7, 14958.3]
plt.plot(x,y,color=‘red,’marker=‘o,’linestyle=‘solid’)
plt.title(“X axis”)
plt.ylabel(“y axis”)
plt.show()

3.4. MACHINE LEARNING (ML)

3.4.1. Introduction

It will be more comfortable and essential if we have one language to
understand and sense the data just like the way of human beings do. In
another word, the language that is needed to take out the patterns from the
raw facts using some artificial Intelligence (AI) is much needed. For this, the
algorithm or methods can be used to haul out the data. The solution for this
prerequisite from the computer science is the ML. This machine learning
makes the machine to analyze and be trained from the periodic learning
from the experience without the human interference.

3.4.2. Prerequisite

Before getting started with ML, the programer need to have some basic
knowledge in terms of AI for learning machines. To make the machine to
think and learn, the knowledge in Python and NumPy, SciPy, Matplotlib,
Scikit-learn also be needed.

Practical Python Programming for Data Scientists58

3.4.3. Machine Learning (ML) Model

Professor Mitchell defined the ML as:
“A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experi-
ence E.”

In simple words, the ML is based on the three important parameters,
=� Tack (T);
=� Performance (P); and
=� Experience (E).

ML is the part of AI with learning algorithms and methods:
=� Develop and improve performance (P);
=� At carry out some task (T);
=� Over time with knowledge experience (E).

3.4.3.1. Task (T)
Task is the solution to the real world problem.

Example: Out of many kind of loan strategies from different bank, getting
the best and economic housing loan. From the conventional programming
	���
	�
�����������������������
��
�����}��	�����	�������������
���������������
transcription, and structured annotations are the best examples of ML-based
tasks to be solved.

3.4.3.2. Experience (E)
Human being is experienced by learning from the various situations and
environment, relationship among different people. As it is, experience can
be gained from the previous execution of an algorithm and the collected
data. To gain this knowledge, the dataset will be executed iteratively.

Python For Data Analysis 59

There are some ways to gain experience through:
=� Supervised learning;
=� Unsupervised learning;
=� Reinforcement learning.
[����
���
��	�
����
��	��
���
�������	�������	�%
=� Supervised learning algorithm;
=� Unsupervised learning algorithm;
=� Reinforcement learning algorithm;
=� Semi-supervised learning algorithm.
Supervised learning is based on the real word problem and the solution

�	������
���!	�������
��������
������	�����]�������	����������
���
�������
1. Regression: Response from the continuous values
2��� ������	
����
� Based on analyzing and classifying. For example,

Male, Female, and positive and negative comments
���������������	����������	����
���
����	����������
��	����	������������

It works on the no data label. That is unlabeled data sets.
Reinforcement learning is the process of giving the feedback to the

system so that the system can adjust dynamically and works perfectly.

3.4.3.3. Performance (P)
Performance is measured by how much the machine is performing as per
requirement and expected time bounce. It is a quantitative metric which
measures the performance of tasks T from the Experience (E).

3.4.4. Python for Machine Learning (ML)

For ML, make sure the below packages are installed in your machine.

3.4.4.1. Download and Install SciPy libraries.
The most important SciPy libraries to be present are:

=� SciPy;
=� matplotlib;
=� NumPy;
=� sklearn;
=� pandas.

Practical Python Programming for Data Scientists60

Installation of SciPy, matplotlib, NumPy, and pandas we have seen in
the deep learning (DL) chapters. Now let us see how to install sklearn.

The scikit can be installed using the following command:
Python-m pip install-U scikit-learn

To verify the installation of scikit run the command:
Python-m pip show scikit-learn

To install sklearn:
Python-m Pip install sklearn

Writing a Python program using Anaconda Prompt or terminal:
1. Open the anaconda prompt:

Python For Data Analysis 61

2. Enter into python prompt by giving the command:
Python

3. Check for the libraries whether they have installed:

Getting no error is confirming that the libraries are installed properly.
4. Open the Anaconda Navigator

5. Launch the Spyder and open:

Practical Python Programming for Data Scientists62

6. Now type:
Print(“Hello Python”)

7. Run the triangle symbol to execute the console:

3.4.4.2. Preparing Dataset for Python
To prepare a dataset for python, we need to ensure the following steps:

*��� ���	���
�������
���	�	���%��
���#�������	��������	�����������
�
���
�!����	�������	������	����	��	��#������

Python For Data Analysis 63

Here we have created the patientData.CSV file.
2. Import all the necessary libraries by using the following code:
 import NumPy as np1
 import matplotlib.pyplot as plt1
 import pandas as pd1
�����
���
����
��
�����
���
���
����	��
��
������	�������	��	��
�%

Since all the libraries installed successfully, there is no error.
3. Handling of missing data in dataset: When we are working with

the dataset always there will be a problem of missing data in the
given dataset. To run the code effectively, the missing data has to
���������������	����������
������	!��
���	���
���	�	���
���
���#��
�������	���
��
���

�	��	����	�±���$¬����	�������Y
By using the above syntax the code is altered as:

import NumPy as np1
import matplotlib.pyplot as plt1
import pandas as pd1
data = pd1.read_csv(‘patientData.csv’)

Practical Python Programming for Data Scientists64

While executing this dataset we are getting the following output as:

Here some of the rows contain the value ‘nan.’ That is Not Any Number.
It is indicating that there is no data or the data is missing.

�
�����������	�	��	��������������
��
�����"X���	����
XX = data.iloc[:,:–1].values

YY = data.iloc[:, 3].values

Here XX = data.iloc[:,:–1].values is used to extract the index starting
from beginning to the end except the last rows. LOC and ILOC are the
functions to retrieve the data from the row of the dataset.
To handle the missing data from the dataset we need SKLEARN, hence im-
�
����
������	�����
������
�����������	�	�����
	�������	���	��
���
����	�����
multivariate imputation algorithms. It uses the complete set of obtainable
characteristic dimensions to guess the missing values of the dataset. This
algorithm is inside the sklearn package and it can be imported by:

from sklearn.preprocessing import Imputer

Now alter the code,
imputer = Imputer(missing_values = ‘NaN,’ strategy = ‘mean,’ axis = 0)
imputer = imputer.fit(XX[:, 1:3])
XX[:, 1:3] = imputer.transform(XX[:, 1:3])

X
�� 	��� �
�� �������� �	���� ����� ��� ������ 	���
!��	����� ��� ������ �
��
function mean.

Python For Data Analysis 65

3.4.5. Plotting Graphs

For visualization of data frames, we need the library seaborn. This is used to
visualizes the statistical data, which provides an attractive way of visualizing
the data. The seaborn is based on the matplotlib.

We can draw or plot the different types of graphs from the dataset. One
type is the BOX plot. It can be drawn by the following code:

import pandas as pd1
import NumPy as np1
import matplotlib.pyplot as plt1
import seaborn as sns1
df1 = pd1.read_csv(‘patientData.csv’)
sns1.boxplot(x=df1[‘Age’])
sns1.boxplot(x=df1[‘Albumin’])

To count the frequency of the data we may use a counterplot.
For counter plot:

sns.countplot(x=‘X axis data,’hue=‘value,’data=dataframe)
The code for the counter plot:

import pandas as pd1
import NumPy as np1
import matplotlib.pyplot as plt1
import seaborn as sns1
df = pd1.read_csv(‘patientData.csv’)
sns1.countplot(x=‘Age,’hue=‘Liver Disease,’data=df)

Practical Python Programming for Data Scientists66

3.4.6. Categorization of Machine Learning (ML)

Base on the problem set, there are three types of ML:

1. Supervised Learning: The labeled data set is the training data
for the supervised learning. The knowledge and the relationship
between the feature and label set can be learnt from the labeled
�	�	�������
���������	���������
��!�	����
���	�����²}���
����}�
= {L1, L2,……..Lc} c-the value takes from 2 to 100. It is called
��	�����	��
��

 If the feature vector X is corresponds to the real vector R, then
�²��� ��� �	����� ��������
��� �
�� ��
������� �
��
� ���
��	�����
from the supervised learning is often used for the prediction and
recognition the problems.

2. Unsupervised Learning: The unlabeled dataset is the training
data for unsupervised learning. It is used in Probability density
�����	��
��� ������������ _������
�	����� �������
��� �������
association among features.

Python For Data Analysis 67

3. Reinforcement Learning: The reinforcement algorithm is mostly
used in decision making. The applications of reinforcement
include automatic chess player, automatic vehicle driving, etc.,

3.4.7. Machine Learning (ML) Algorithms

1. Linear regression;
2. Logistic regression;
3. Decision tree;
4. SVM;
5. Naive bayes;
6. kNN;
7. K-means;
8. Random forest (RF);
9. Dimensionality reduction algorithms;
10. Gradient boosting algorithms:

i. GBM;
ii. XGBoost;

iii. LightGBM;
iv. CatBoost.

3.4.7.1. Linear Regression
The real values are estimated by linear regression. The real values are
the number of calls, total sales of the product and the cost of houses, etc.
It is estimated based on the continuous values. The dependent and the
independent values are related by setting the lines. The setting of this fit line
is called regression line. The regression line is represented by:

Y = a + bX
In this equation:
= ‘Y’ is the dependent variable;
= ‘a’ is an intercept;
= ‘X’ is an independent variable;
= ‘b’ is a slope.
�����	�	�����	����
���
����������
��
��������������
���
������
���`�	���

of difference between data point ad regression line.
There are two types of linear regression. They are:
1. linear regression; and
2. multiple linear regressions.

Practical Python Programming for Data Scientists68

Take X as a feature vector and the Y as a response vector:
X = [x1, x2, x3……xn]
Y = [y1, y2, y3……yn] …for the n observation, here we take n = 10

X 0 1 2 3 4 5 6 7 8 9
Y 1 3 2 5 7 8 8 9 10 12

The scatter plot can be drawn for the above as:

Now for the above, we have to find the best fit that is the regression line,
which will enable us to find the response for any newly added features.
Let’s take h(xi) is the predictable response value.
B0 and B1 is taken as the coefficient values.
The equation for finding the regression line is as follows:

There may be a residual error represented as Ei can be added to the above
equation. But we have to try to reduce the residual error.

It can be:
h(xi) + Ei

Now the Ei can be found as Ei=yi-h(xi)

3.4.7.2. SVM
A Support Vector Machine, it is a model for supervised learning which is
using the classification algorithms to two-group classification problems.
After the training data set, we can able to categories the new types of texts.

Python For Data Analysis 69

It takes the data as the input and produces the output in two dimensions
called hyperplane which separate tag. This line is called decision boundary.
Sample:

3.5. MACHINE LEARNING (ML) WITH INTERNET OF

THINGS (IOT)

The recent applications works smarter than before with the modern
technologies like the internet of Things (IoT) which gives exploitation among
the modern world. Even though there are development and enhancement in
technologies, the data pool becomes larger and larger, which urges the new
techniques called ML to analyze and extract the data from the collection. The
ML techniques is collaborated with IoT to make the technology automatic
one. It may include smart home, smart lighting systems, automation, etc.

3.5.1. Internet of Things (IoT)

The purpose of IoT to minimize the cost of energy and saves them money
and time by developing the smarter environments, smart homes and smart
cities. Many of the industries has reduced their cost by applying the IoT.
Researchers are working on IoT for advancement which is in trending. The
data can be passed among the different devices to obtain their performance
and this transferring of data is automatic without any human interference
and also it doesn’t require any input.

Practical Python Programming for Data Scientists70

There are four very basic things associated with the IoT. They are:
=� sensors to sense the environment;
=� networks for processing;
=� data analysis; and
=� system monitoring.
A variety of technologies are incorporated into IoT and these technologies

need to be connected along with necessary conditions. For this, a suitable
protocol should be developed for the enhanced communication among a
variety of things. There are different types of communication protocols
which is mainly divided into three major categories:

1. Device to Device (D2D): This type of protocols is mainly used to
establish the communication in between the mobile phones which
are nearby. It is known as the next generation of the mobile phone
network.

Python For Data Analysis 71

2. Device to Server (D2S): It is used to collect the information from
the devices and being sent to the server for the storage. The server
may be near or far. An example for this types of protocols are
cloud processing.

3. Server to Server (S2S): The data is transmitted from one server
to another server. This protocol is applied in the cellular types
of networks. The data preparation and the processing is decisive
challenge. For this challenge edge analytics, stream analysis, IoT
analysis on database can be applied. Among the mentioned types,
it can be decided based on the type of application.

For data processing and data preparation before transmitting data to
another application, there are two analytical methods are used.

They are:
=� Fog;
=� Cloud processing.
In simple words the task of IoT is:
=� The data has been collected through the sensors and IoT devices

from the environment;
=� From the raw data, knowledge is been extracted;
=� The data is ready to transferred.

3.6. MACHINE LEARNING (ML) APPLICATION WITH

IOT

�� Energy: It is used to reduce the cost of the energy being used
with the help of Arduino Mega. Example Coffee Machine, air
conditioners, and Light that are connected to IoT.

�� �����
������	
� �
��'��	�����
�����������������}�	��
���
���	���

Practical Python Programming for Data Scientists72

different sensors are being used. It suggests the different routed
to the same destination.

�� Home Automation: The major application of IoT proposed to
home automation. They have been implemented in apartments
for humidity and light control application.

�� Industry Automation: In organizations and several companies,
�
��	�����	��
���	���������
���
����	�����	�	��������
�	��
��	���
and manufacturing industries. The human resource and time can
be saved with the help of IoT applications.

3.7. ALGORITHM

Definition: An algorithm is a sequence of finite number of steps to solve the
problem. An algorithm contains the specific rules which is to be followed
while writing.

Example algorithm:
=� Start;
=� Read the value of radius r;
=� Calculate Areaofcircle=3.14*radius*radius;
=� Print the result as Area of the circle;
=� Stop.
Characteristic of algorithm:
=� "��	��
���
���

�������������	�������������	����������>
=� No repetition of algorithm instruction is permitted;
=� The algorithm should be terminated at the end followed by the

attainment of the result;
=� This should be written in a sequential pattern.
Qualities of a good algorithm:
�� Time: Lesser time required.
�� Memory: Less memory required.
�� Accuracy: Suitable or correct solution obtained.
�� Sequence: Must be sequence and some instruction could be

repetitive until certain requirement is met.
�� Generability: Used to solve a single problem and a certain range

of input data could also be handled by the algorithm.

Python For Data Analysis 73

3.8. BUILDING BLOCKS OF ALGORITHMS (IN-

STRUCTIONS/STATEMENTS, STATE, CONTROL

FLOW, FUNCTIONS)

Any algorithm can be constructed with the following components. They are:
1. Instructions/Statements: This is said to be known as the heart of

an algorithm, which contains a sequence of sub-algorithms that
could perform minor task. Every algorithm could be separated
in the form of instructions that is similar to an object which is
composed of atoms. Certain algorithms could not be separated in
the form of instructions, say digit addition, which could form as a
fundamental instruction.

 Statements contain the following contents:
i. Series: All the Steps should be done in particular order, and each

of the steps must be used.
���� ��
����� Any Step must not he replaced by similar step.
iii. Steps: Everything we do is called step.
iv. Solve: Write an algorithm to get output from the input.
Simple example:
Multiplication of two numbers:
a. Description of Problem: �
��������������	��
��
����
���������
b. Setup: Two numbers required for multiplication for storing the

results.
c. Parameters:]����	��������������¡����	�����
����������
d. Execution: result = a*b.
e. Conclusion: The desired output is result.
2. Sequence: A good algorithm should be written in a sequenced

manner, where each step can be executed exactly one time.
An algorithm to solve the problem of converting Fahrenheit to Celsius

is:
= Read the temperature value in Fahrenheit.
= Calculate the Celsius using the formula:
Celsius= (5/9) * (Fahrenheit-32)
= Display result in degree Celsius.

Practical Python Programming for Data Scientists74

3. Variables: These provide a mean to name values so that they can
be used and manipulated later on.

>>English = 56
Here variables English refers to the value 56

4. Selection/Conditional: Algorithms could select a particular
instruction based on certain condition. In selection statements,
only one of the statements are executed based on the condition.

�
����	����
����������
���
���
���
������������%
i. Sequence: These refers to one or more instructions

that the computer performs in sequential order.
Example: Algorithm:

= Step 1: Start
= Step 2: Read the two values to the

�	��	����������	������
��
= Step 3: Calculate the addition

#���¦������´����
��
= Step 4: Print the result Sum
= Step 5: Stop

Pseudocode:
��"_����������
��
�"}��}"�������¦�����´����
��
print(sum)

Flowchart:

Program:
�����¦��
second = 4
	���¦������´����
��

Python For Data Analysis 75

print(“The sum of two numbers is:,”add)
ii. Selection: It is making a decision among several ac-

tions based on some conditions.
Algorithm:

= Step 1: Start
= Step 2: Get the value of a
= Step 3: Check whether the value of a is equal

to zero
= Step 4: Print the result as negative
= Step 5: Stop

Pseudocode:
READ a
IF a == 0 THEN

print(“a is nega-
tive”)
END IF

Flowchart:

Example:
a=0
if a==0:

print(“Negative Number”)
iii. Iteration: A Loop is one or more instructions that

the computer performs repeatedly (repetition or

Practical Python Programming for Data Scientists76

loop).
Algorithm:

= Step 1: Start
= Step 2: Get the value for limit
= Step 3: Test out whether the limit reached
= Step 4: Print “Good morning”
= Step 5: Go over the Steps from 3 to 4
= Step 6: Stop

Pseudocode:
READ limit
FOR i IN RANGE(0,limit)

Print(“GOOD NIGHT”)
END

Flowchart:

Example:
for I in range(0,5):

print(“GOOD NIGHT”)
Output:

GOOD NIGHT
GOOD NIGHT
GOOD NIGHT
GOOD NIGHT
GOOD NIGHT

5. State:]������
���	������	���
�����
���
	��	��	��	����������	��	���������
time.

6. Repetition/Control Flow: One or more steps is executed again
	���	�	����
���
������������������
�������

Example:������	���	���
��������������������������
���

�
total=0
for i in range I to 5

total= total+i
end for
average = total / 5
print average

Python For Data Analysis 77

7. Functions/Sub-Algorithms:
�� It is a collection of statements that is used to carry

out some task. It is easy to write function and easy
�
�����
������
������
����
��	��������	�������������-
tion.

�� In many cases algorithms will not perform its task
in its own. Those complicated algorithms could be
separated into smaller ones, which could be very
easy to refer or use further.

�� �
���!	����������
��	��
���
��
����������
��������
numbers between two integers, the prime number
checking function could be reused. Breaking up of
algorithm into logical parts could be very easy to
analyze their behavior and properties from a math-
ematical point of view

8. Performance: This analysis helps us to select the best algorithm
from many algorithms to solve a problem. To compare algorithms,
a set of parameters are considered. Generally, the performance of
an algorithm depends on the following aspects:

�� Whether the algorithm is providing the exact solu-
��
���
���
����
�����

�� \
��
����������	����
��������	���	�������������
�� How much space (memory) it requires to solve the

��
�����
�� �

����
����������	�����
��
�����
����
�����

Performance analysis of an algorithm is computed by using the fol-
lowing measure:

o Space required for completing the task (Space Complexity).
It includes program space and data space

o Time required completing the task of that algorithm (Time
Complexity)

3.9. NOTATION (PSEUDOCODE, FLOW CHART,

PROGRAMMING LANGUAGE)

3.9.1. Pseudocode

Pseudo consists of short legible and properly styled English language used
for amplification an algorithm. It uses plain English statements rather than

Practical Python Programming for Data Scientists78

symbols. It cannot be compiled and executed. It is also called “program
design language [PDL].
Example:
A pseudocode to add two numbers and display the results:

READ num1, num2
result = num1 + num2
WRITE result.

Rules for writing pseudocode:
= Only one statement can be written per line
= Initial keywords must be in Capital letters (READ, WRITE, IF,

WHILE, UNTIL).
= Pseudocode should be aligned properly to show hierarchy.
= Multiline structures must be ended at the last
��Advantages:

= It can be done effortlessly in any word processor;
=�]�����������	����
����	���	����
������
����
��	�����
��
���
��

chart;
= It is user-readable and very easy to understand;
= It is very undemanding to translate a pseudocode to a programming

language.
��Disadvantage:

= It is not visually illustrated;
= This does not form a pictorial form of representation with an

exact style and format;
= This method could be very complicated for the beginners of

programming language;

3.9.2. Basic Guidelines for Writing Pseudocode:
1. Write Only One Statement per Line: The pseudocode should contain
the statement that it should show only one action to the computer. Each and
every task should correspond to each line of code.
2. Capitalize Initial Keyword: The keywords should be written in capital
letters. For example, READ, and WRITE. Following are certain keywords
that are commonly used: WHILE; ENDWHILE; REPEAT; UNTIL; IF;
ELSE; ENDIF.

Python For Data Analysis 79

3. Indent to Show Hierarchy: In our design structure, it is necessary to
follow certain indentation pattern. Indentation is a process of showing the
boundaries of the structure:

�� Sequence: It keeps the statements, which are “stacked” in a
sequence that starts in a similar column.

�� Selection: The indentation is carried out in the statement and not
in the keywords of the selected structure.

�� iLooping: The indentation is conceded for the statements that
comes inside the loop, but not the keywords that form the loop.

4. End Multiline Structures: Each structure must be ended properly, which
provides more clarity. Example: ENDIF for IF statement
5. Keep Statements Language Independent: There may be special features
available in the language that you plan to eventually write the program in.
The code should be written in the most convenient language of the user.
Examples: Pseudocode:

��Problem 1: Calculate sum and average for n numbers.
BEGIN
INITIALIZE add=0, i=1
READ n
FOR i <=n, then

COMPUTE add = add +i
CALCULATE i=i+1

END FOR
COMPUTE avg = add/n
PRINT add, avg
END

��Problem 2: Calculate area of circle:
BEGIN
READ radius, r
INITIALIZE pi=3.14
CALCULATE Area=pi * r *r
PRINT Area
END

��Problem 3: Read Number n and print the integers counting up to n
BEGIN
READ n
INITIALIZE i to 1
FOR i <= n, then

Practical Python Programming for Data Scientists80

DISPLAY i
INCREMENT i

END FOR
END

��Problem 4: Find the greater number between two numbers.
BEGIN
Read a, b
IF a is less than b THEN

BIG = b
SMALL =a

ELSE
BIG = a
SMALL = b

WRITE / DISPLAY “BIG, SMALL”
END IF

��Problem 5: To determine a student whether successful or fail.
BEGIN
READ student grade
IF student’s grade is greater than or equal to 50 THEN

Print “passed”
ELSE

Print “failed”
END IF

3.9.3. Flowchart-Introduction

A flow chart is a diagrammatic demonstration of an algorithm. The benefits
of flowcharts are as follows:

=� It is easy to understand;
=� "���
������	�����	�	��Z����	��������
��
��
	��>
=� It gives clear idea of a program;
=� It acts as a guide during the development of the program;
=� It helps to clear the errors in coding;
=� It helps in maintenance of code.

Python For Data Analysis 81

���������
���
���������
��
	���%
1. Complex Logic: �
�� �
�� �
	��� ���
���� �
��� �
�����	����

when the program logic is complex.
��� !��
������"� ��	� ��	��������"�� Certain changes done in the

��
��	��������	����
����������
��
	����
��
��	����
3. Reproduction: #����� �
�� ����
���
�� �
�� �
��
	��� �	��
�� ���

�
�������� �
� ��� �!�������� ����	��
��
�� �
��
	��� ���
���� 	�
trouble.

4. The requirement of what is done could be gone astray effortlessly
in the technical information of how it is done.

3.9.3.1. Flowcharts Symbols
Certain symbols are used in the graphical representation of the flowchart,
which are as follows:

1. Terminal
symbols

Represent the start
and stop of the
program.

2.

Input /
Output

Denoted either an
input or output
operation.

3.

Process
symbol

Denotes the process
to be carried out.

4.

Decision
Represent decision
making and
branching.

5. Flow lines

Represents the
progression of
steps and way of
flow. Used to attach
symbols.

Practical Python Programming for Data Scientists82

6. Connectors

A connector symbol
is a circle with the
text inside to identify
the link. This symbol
are used to connect
the flowchart.

3.9.3.2. Basic Guide Lines for Preparing Flowchart
=� A particular logical order should be maintained and listed out

�
������	�����	��
���
	���
=� �
�� �
��
	��� �

���� ��� �������	��	����� ��	��� 	��� �
�������]��

should not lead to ambiguity.
=� �
���������
��
���
���
��
	��������
���
���
�	�����
��
��
�������

toward right.
=�]�����������	����
�
	���	���������
��������
	���������
�����
���
��

process symbol.
=� "���
���	���������	�����������
������
�������	�
����
����������

�
�� ������
�� ����
��� [��� ��� �	��
	��� ��
�
�� �
���� �
�� ������
coming out from the symbol.

=� ������	������
���

����
	���	���������
�������

Python For Data Analysis 83

=� Explanation can be written within the symbol. If required, use
the annotation symbol to portray data or computational steps
obviously.

=� �
�����
������
����
�������������
����
���
��
	������
����
������	����
������	����
���
����������
��	���������
������	��
������
���������	����
���	����
������������
��
���
��������

=� �
���
��
	��������
	���	��
���	����	���	�����
��
=� By passing from end to end it with a simple test data, the validity

���
���
��
	����	���
������
��

3.9.3.3. Example for Algorithm, Pseudocode, Flowchart

1. Draw the flowchart to find the largest among A and B.

Practical Python Programming for Data Scientists84

Algorithm:
= Step 1: Start
= Step 2: Read a, b, c
= Step 3: Compare the values of a, b
= Step 4: If a is greater than b, then display
“a is greater”
= Step 5: Otherwise display “b is greater”
= Step 6: Stop
Pseudocode Read a, b

IF a > b THEN
WRITE a is big

ELSE
WRITE b is big

ENDIF
2. Find the area of a circle of radius r.

3. Convert temperature Fahrenheit to Celsius.

4. Flowchart for an algorithm which gets two numbers and prints the sum
of their value.

Python For Data Analysis 85

3.9.4. Programming Language

A computer is electronic and supreme machine to perform computational
algorithms since:

=� Arithmetic operations can be performed by the computer.
=� The operations could be performed only if certain conditions are

���������$���
��
��
����
���
�����
�	����	��
����������
�Y�

��	�����	��
��
���	���	�������������
���������
��	�����%
1. Machine Language:

a. It is the binary number (0,1) which is converted from the
simple language as machine-understandable.

b. All Central Processing Unit has its own machine under-
standable language.

c. i.e., the instruction code 1 can convert a dissimilar instruc-
tion for different CPUs.

d. What a machine language program looks like:
11110011
10100111
11111111
10010100

Practical Python Programming for Data Scientists86

Assembler language or low-level programming language:
= An assembly language is a mnemonic which is like an English
= Every machine instruction is an example for mnemonics

Example:
start
add
sub
….
….
x, y
x, y

Every assembly instruction is a mnemonic that corresponds to an
exclusive machine instruction

2. High Level Programming Language

A high level language is the one which can be understandable by the human
which is used to

This allows programmer to write the code in his language that could be
effortlessly converted into machine instructions

iStatements are the sentences which are written in a high level language.

Example Program:
Void main()

{
if (x1 > y1)

{
maximum = x1;

Python For Data Analysis 87

}
else
{

maximum = y1;
}
.....
}

Some well-known programming languages

Name Application Area
Fortran Scientific application (FORmula TRANslator)
Cobol Business application (common business-oriented language)
C System application (successor of a language called “B”)
C++ System application (successor of the language “C”)
Java General-purpose (a generalization of “C++”)
C# All-purpose purpose (another simplification of “C++”)

Perl Scripting language with many string processing potential

Python Script language with indentation as block denotation.

3.10. ALGORITHMIC PROBLEM SOLVING

Algorithm forms as a technical solution to a problem. These solutions are
not clarification but specific instructions for receiving answers.
1. Understanding the Problem: �
������������������
���
����
������
������
is the understanding of the given problem.

Practical Python Programming for Data Scientists88

Go through the problem’s narrative carefully and raise queries in case of any
doubt arises, perform a few small examples by hand, consider about special
cases, and ask questions over again if essential.
An input to an algorithm specifies an occurrence of the problem the algorithm
solves. It is important to identify exactly the range of instances the algorithm
needs to hold.
2. Determine the Potential of the Computational Device: If you have
completely understood the given problem, you have to determine the
potential of the device which is proposed for.

�� Sequential Algorithms: The instructions are carried out one by
one at a time. Similarly, an algorithm is designed in a certain
manner to be executed on a particular machine.

�� Parallel Algorithms: The central supposition of the RAM
model does not cling to some novice computers that can execute
operations concomitantly, i.e., in corresponding.

3. Preferring Between Exact and Approximate Problem Solv-

ing: The next principal decision is to select how to solve the

problem:

=� If the problem is solved accurately is called an exact algorithm;
=� If the problem is solved, something like is called an approximation

algorithm.
Need of approximation algorithm:
=� �
�� ����� ��� �
���
�� �
�� �������� ��
������ �
��
� �
���� �
�� ���

�
����� ������� �	����
�� �������� ����	����>� �!	������ ����	���
������� �`�	��� �

���� �!��	������ �
�����	�� �`�	��
���� 	���
	���	��������������������	���

=� Second, because of the problem complication, the available
algorithms for that particular problem could be very deliberate.
This problem takes place when the problem has a vast amount of
choices.

=� Third, an approximation algorithm could be an appropriate
����
	����
���
�������
���
��������������
�����

4. Deciding on Appropriate Data Structures: In the pioneering world
of object-oriented programming, data structures become unavoidably
significant for both design and analysis of algorithms. Data structures helps
in organizing and storing the data

Python For Data Analysis 89

Algorithms + Data Structures = Programs
5. Algorithm Design Techniques: It is a universal right to use to resolve
problems algorithmically, which is germane to a variety of problems from
various area of computing. A most important one is that they afford assistance
for scheming algorithms to new problems, i.e., the problems, which has
unsatisfactory algorithm. Next, algorithms are the foundation stone of
computer science. Every science is alarmed in categorizing its chief subject,
and computer science has no exemption. Algorithm design techniques
construct it potential to categorize algorithms based on a fundamental design
idea; therefore, they can provide a normal way to both categorize and study
algorithms.
6. Methods of Denoting an Algorithm: Once an algorithm is designed, you
need to denote it in some fashion.

i. Complimentary and also a step-by-step form;
ii. Pseudocode.

There are two methods tailored recently to specify algorithms.
Pseudocode is a combination of a normal language and programming

language like constructs. Pseudocode is normally more explicit than natural
language, and its procedure regularly yields to more concise algorithm
similes.

�����
����� �
��
	���� ����� ����� 	�� 	� ��	����� ��
������� �
�� �
��
�������	��
��
��	��
���
�����
����
��
	������������	�����
��������
	�����
��
expressing the algorithm’s procedure. For simple algorithms, this method
�	���
���	�	��	���������
���
���
����!�
�����
����	���
�����������������

7. Demonstrating an Algorithm’s Accuracy: Formerly an algo-

���#��#�"�$

����
��"
%����#�"����$
�������
	�������"�����
���
""��

That is, you must verify that the algorithm yields a mandatory

result for every genuine input in a limited amount of time.

A frequent technique for demonstrating the correctness involves the usage
of mathematical induction since an algorithm’s iterations provide a natural
sequence of steps necessary for certain proofs. Although tracing the algo-
���
���������	���
������	�������������������	�����	�������
��
�
����	������������
�	��
���
������
��	��
���
�����
������������	������	����
The concept of precision for approximation algorithms is less uncomplicated
than it is for exact algorithms since the error produced in this approximation
algorithm should not expand the firm limit.

Practical Python Programming for Data Scientists90

8. Analyzing an Algorithm: Efficiency is a significant characteristic of any
algorithm.
There are two variety of algorithm competence:

�� &��
�'����
��*��It shows how fast the algorithm runs
�� ����
�'����
��*��It shows how much extra memory it uses.
Another desirable characteristic of an algorithm is simplicity.
Because simpler algorithms are uncomplicated to understand and easier

to program; accordingly, the resulting programs frequently have fewer
bugs. Sometimes simpler algorithms are also more resourceful than more
complicated alternatives.

Simple strategies for developing algorithms (iteration, recursion)
There are two fundamental strategies to solve a problem:
=� Top-down approach (recursion); and
=� Bottom-up approach (iteration).
In simple words, Iteration, in the framework of computer programming,

is a process wherein a set of instructions or structures are recurring in a
��`������	�����������������
��������
��������	��
�����
����������\
����
��
���������
�����������
�������!�������	�	�����������	���������	��
��

Recursion is a problem solving approach by which a function calls itself
����	�������������
�������������
�����
��
	��������	���������������
���������
a problem into one or more simpler versions of itself.

Recursion Iteration

Repetition is achieved
through repeated function
calls

Iteration is explicitly a
repetition structure

Recursion expires when a
base case is recognized

Iteration terminates when the
loop continuation test turns out
to be false

Recursion causes another
copy of the function and
hence a considerable memory
space is occupied

Iteration usually occurs
surrounded by a loop, so the
extra memory assignment is
omitted

Python For Data Analysis 91

3.11. FLOW OF CONTROL

Three basic constructs for flow of control:
1. Sequence: It is a default mode. It is used for the sequential

execution of statements, one line after another.
2. Selection: It is Used for decisions to choose between two or more

alternative paths.
3. Repetition: It is Used for looping to repeat a piece of code several

times.

3.11.1. Sequence
It is specified by writing one statement after another, each statement on a
line by itself, and all statements aligned with the same indent. The actions
are executed in the order in which they are written, from top to bottom.

��Common Keywords:

=� Input: READ, INPUT, OBTAIN, GET
=� Output: PRINT, OUTPUT, DISPLAY, SHOW
=� Compute: COMPUTE, CALCULATE, DETERMINE
=� Initialize: SET, INIT

Add one: INCREMENT, BUMP

Examples:
1. Pseudocode for computing the area of a rectangle.

READ rectangle height
READ rectangle width
COMPUTE area =height* width
PRINT area

¡�������
�
����
���
���������
��	���	���
��������������
PRINT “Enter the 5 numbers”
READ m1, m2, m3, m4, m5
PRINT “The average is”
SET average to (m1+m2+m3+m4+m5)/5

PRINT average

3.11.2. Selection

When the choice is made between two alternative courses of action it is
called decision (selection) and it comprises of the following constructs:

Practical Python Programming for Data Scientists92

i. IF-THEN-ELSE
ii. CASE...ENDCASE
��IF-THEN-ELSE

Binary choice is indicated by the use of four keywords:
IF, THEN, ELSE, and ENDIF.

The general form is:
IF condition THEN

sequence 1
ELSE

sequence 2
ENDIF

The ELSE keyword and “sequence 2” are optional. If the condition is true,
sequence 1 is performed, otherwise sequence 2 is performed.
Examples:

i. Pseudocode to check whether the number is odd or even.
READ number
IF number MOD 2 = 0 THEN
DISPLAY “Number is Even”
ELSE
DISPLAY “Number is Odd”
ENDIF

ii. Pseudocode to check whether the given non-zero number is positive
or negative.
READ number
IF num is less than 0 THEN
PRINT num is negative
ELSE
PRINT num is positive
ENDIF
CASE

CASE is a multiway branch (decision) based on the value of an expression.
CASE is a simplification of IF-THEN-ELSE. Four keywords, CASE, OF,
OTHERS, and ENDCASE, and conditions are used to point to the various
alternatives.
The general form is:

CASE expression OF
condition 1: sequence 1
condition 2: sequence 2
...

Python For Data Analysis 93

condition n: sequence n
OTHERS:
default sequence

ENDCASE
The other clause with its default sequence is non-compulsory. Conditions are
usually numbers or characters indicating the value of “expression,” but they
can be English statements or some other notation that indicates the condition
under which the given sequence is to be performed. A certain sequence may
be associated with more than one condition.
Examples:
iii. Pseudocode for simple calculator

READ m1, m2
READ choice
CASE choice OF
+: PRINT m1+m2
–: PRINT m1-m2
*: PRINT m1*m2
/: PRINT m1/m2
ENDCASE

iv. Pseudocode for determining grade points from grades.
READ grade
CASE grade OF
S: gradepoint = 10
A: gradepoint = 9
B: gradepoint = 8
C: gradepoint = 7
D: gradepoint = 6
E: gradepoint = 5
U: gradepoint = 0
ENDCASE
DISPLAY gradepoint

3.11.3. Repetition

It is a loop (iteration) based on the satisfaction of some condition(s). It
comprises of the following constructs:

=� \�]}�����X_\�]}�
=� ����"�����X�]}
=� �������X_���

Practical Python Programming for Data Scientists94

��WHILE...ENDWHILE

The body of the statements will be executed again and again until some
conditions are satisfied. The start and end of the loop are specified by two
keywords WHILE and ENDWHILE.
The general form is:

WHILE condition
sequence

ENDWHILE
The loop is enters into the body only if the condition is true. The “sequence”
is performed for each iteration. At the conclusion of each iteration, the
condition is appraised, and the loop continues as long as the condition is
true.
Examples:

i. Pseudocode to print the numbers from 1 to 100.
n=1
WHILE n is <= to 100

DISPLAY n
INCREMENT n by 1

ENDWHILE
ii. Pseudocode to print the sum of the digits of a given number

INPUT number
INITIALIZE Sum as zero
WHILE Number is not zero

COMPUTE Remainder by Number Mod 10
ADD Remainder to Sum
DIVIDE Number by 10

ENDWHILE
PRINT Sum

��REPEAT...UNTIL

This is similar to WHILE except that the condition is tested at the end of the
loop. It have two keywords, REPEAT, and UNTIL.
The general form is:

REPEAT
statement

UNTIL condition
The “statement” in this type of loop is always performed at least

once, because the test is carried out after the sequence is executed. At the
conclusion of each iteration, the condition is estimated, and the loop repeats
if the condition is false. The loop terminates when the condition becomes

Python For Data Analysis 95

false.
Examples:

i. Pseudocode to print the numbers from 1 to 100.
n=1
REPEAT

DISPLAY n
INCREMENT n by 1

UNTIL n is greater than 100
ii. Pseudocode to print the sum of the digits of a given number

INPUT a Number
INITIALIZE Sum to zero
REPEAT

COMPUTE Remainder = Number % 10
ADD Remainder to Sum, sum=sum+Remainder
DIVIDE Number by 10, Number=Number/10

UNTIL Number = 0
PRINT Sum

��FOR...ENDFOR

It is a “counting” loop. This loop is a unique construct for iterating a specific
number of times, often called a “counting” loop. Two keywords, FOR, and
ENDFOR are used.
The general form is:

FOR iteration condition
statements

ENDFOR
Examples:

i. Pseudocode to print the numbers from 1 to 100.
FOR n=1 to 100

DISPLAY n
ENDFOR

ii. Pseudocode to input ten numbers and print the sum.
INITIALIZE sum to 0
FOR n=1 to 10

INPUT number
COMPUTE sum as sum+number

ENDFOR
DISPLAY sum

Practical Python Programming for Data Scientists96

3.12. ILLUSTRATIVE PROGRAM

1. Guess an Integer in a Range
Algorithm:

= Step1: Start.
= Step 2: Declare hidden, guess.
= Step 3: Compute hidden= Choose a random value in a range.
= Step 4: Read guess.
= Step 5: If guess = hidden, then

Print Guess is hit
Else

Print Guess not hit Print
hidden

= Step 6: Stop
Pseudocode:

BEGIN
COMPUTE hidden = random value in a range
READ guess
IF guess = hidden, then

PRINT Guess is hit
ELSE

PRINT Guess not hit
PRINT hidden

END IF-ELSE
END
Flowchart:

Python For Data Analysis 97

2. Find Minimum in a List

Algorithm:
= Step 1: Start
= Step 2: Read the limit n
= Step 3: Initialize I to 0
= Step 4: If the values of i<n, then go to the step 4.1,
else go to step
o Step 4.1: Read a[i]
o Step 4.2: i=i+1 go to the step 4
= Step 5: Compute min=a[0]
= Step 6: Initialize the value i=1
= Step 7: If i<n, then go to step 8 else go to step 10
= Step 8: If a[i]<min, then go to step 8.1,8.2 else go to 8.2
o Step 8.1: min=a[i]
o Step 8.2: i = i + 1 go to 7
= Step 9: Print min
= Step 10: Stop

Pseudocode:
BEGIN
READ n
FOR i=0 to n, then

READ a[i]
INCREMENT i

END FOR COMPUTE
min=a[0]
FOR i=1 to n, then

IF a[i]<min, then
CALCULATE min=a[i]
INCREMENT i

ELSE
INCREMENT i

END IF-ELSE END FOR
PRINT min
END

Practical Python Programming for Data Scientists98

3. Insert a Card in a List of Sorted Cards

Algorithm:
= Step 1: Start
= Step 2: Read n
= Step 3: Initialize i=0
= Step 4: If i<n, then go to step 4.1, 4.2 else go to step 5

o Step 4.1: Read a[i]
o Step 4.2: i=i+1 go to step 4

= Step 5: Read item
= Step 6: Calculate i=n–1
= Step 7: If i>=0 and item<a[i], then go to step 7.1, 7.2 else go to

step 8
o Step 7.1: a[i+1]=a[i]
o Step 7.2: i=i–1 go to step 7

= Step 8: Compute a[i+1]=item
= Step 9: Compute n=n+1
= Step 10: If i<n, then go to step 10.1, 10.2 else go to step 11

o Step 10.1: Print a[i]
o Step 10.2: i=i+1 go to step 10

Python For Data Analysis 99

= Step 11: Stop
Pseudocode:

BEGIN
READ n
FOR i=0 to n, then

READ a[i]
INCREMENT i

END FOR READ item
FOR i=n–1 to 0 and item<a[i], then

CALCULATE a[i+1]=a[i]
DECREMENT i

END FOR COMPUTE
a[i+1]=a[i]
COMPUTE n=n+1
FOR i=0 to n, then

PRINT a[i]
INCREMENT i

END FOR END

Practical Python Programming for Data Scientists100

4. Tower of Hanoi:

Algorithm:
= Step 1: Start
= Step 2: Read n
= Step 3: Calculate move=pow(2,n)–1
= Step 4: Function call T(n,Beg,Aux,End) recursively until
n=0

o Step 4.1: If n=0, then go to step 5 else go to step 4.2
o Step 4.2: T(n–1,Beg,End,Aux) T(1,Beg,Aux,End),

Move disk from source to destination T(n–
1,Aux,Beg,End)

= Step 5: Stop

Pseudocode:
BEGIN READ n
CALCULATE move=pow(2,n)–1
FUNCTION T(n,Beg,Aux,End) Recursively until n=0
PROCEDURE IF n=0 then,

No disk to move
Else

T(n–1,Beg,End,Aux)
T(1,Beg,Aux,End), move disk from source to destination
T(n–1,Aux,Beg,End)

END PROCEDURE
END

Flowchart:

Python For Data Analysis 101

3.12.1. Procedure to Solve Tower of Hanoi

The goal of the puzzle is to move all the disks from leftmost peg to rightmost
peg:

=� Move only one disk at a time;
=� A larger disk may not be p1aced on top of a smaller disk. For

example, consider n=3 disks.

Practical Python Programming for Data Scientists102

Data, Expressions, and Statements

PYTHON PROGRAMMING: AN
INTRODUCTION

CHAPTER 4

CONTENTS
4.1. Introduction to Python .. 104

4.2. Downloading and Installing Python 3.6.2 106

4.3. Python Interpreter and Interactive Mode ... 110

4.4. Values and Types: Int, Float, Boolean, String, and List 114

4.5. Variables ... 119

4.6. Keywords .. 119

4.7. Statements and Expressions ... 120

4.8. Comments .. 121

4.9. Input and Output .. 121

4.10. Operators ... 122

Practical Python Programming for Data Scientists104

4.1. INTRODUCTION TO PYTHON

4.1.1. What Is Python?

Python is a general-purpose interpreted, interactive, object-oriented, and
high-level programming language. It was founded by Guido van Rossum
during 1985–1990. Python got its name from “Monty Python’s flying
circus.” Python was released in the year 2000.

4.1.2. Features of Python

1. Python is Interpreted: Python is managed at runtime by the inter-
preter.

2. Python is Interactive: You can interact with the interpreter straight-
ly to write your programs.

3. Python is Object-Oriented: Python supports Object-Oriented style
or technique of programming that encapsulates code within objects.

4. Python is a Beginner’s Language: Python is mainly for the begin-
ner:

i. Level programmers and supports the improvement of an ex-
tensive variety of applications.

5. Easy-to-Learn: Python is easily readable. The structure of the pro-
gram is very simple. It employs few keywords.

6. Easy-to-Maintain: Python’s source code is fairly easy-to-maintain.
7. Portable: Python can run on a wide variety of hardware platforms

and has the same interface on all platforms.
8. Interpreted: Python is processed at runtime by the interpreter. So,

there is no need to compile a program before executing it. You can
simply run the program.

9. Extensible: Programmers can embed python within their
C,C++,Javascript, ActiveX, etc.

10. Free and Open Source: Anyone can freely distribute it, read the
source code, and edit it.

11. High Level Language: When writing programs, programmers con-
centrate on solutions to the current problem, no need to worry about
the low level details.

12. Scalable: Python provides a better structure and support for large
programs than shell scripting.

Python Programming: An Introduction 105

4.1.3. History of Python

The history of Python commences with ABC. ABC is a general-purpose
programming language and programming environment, which had been
developed in the Netherlands, Amsterdam, at the CWI (Centrum Wiskunde
and Informatica). The ultimate accomplishment of ABC was to inspire the
design of Python.

Python was conceptualized in the late 1980s. Guido van Rossum worked
that time in a project at the CWI, called Amoeba, a distributed operating
system. He programmed in ABC. In an interview with Bill Venners (January
2003), Guido van Rossum said: “I remembered all my experience and some
of my frustration with ABC. I decided to try to design a simple scripting
language that possessed some of ABC’s better properties, but without its
problems. So I started typing. I created a simple virtual machine, a simple
parser, and a simple runtime. I made my own version of the various ABC
parts that I liked. I created a basic syntax, used indentation for statement
grouping instead of curly braces or begin-end blocks, and developed a small
number of powerful data types: a hash table (or dictionary, as we call it), a
list, strings, and numbers.

4.1.4. Comparing Python with Java, Perl, and Other Program-

ming Languages

Prof. Lutz Prechelt from the University of Karlsruhe compared Python with
other programming languages. He sums up his results: “80 implementations
of the same set of requirements are compared for several properties, such
as run time, memory consumption, source text length, comment density,
program structure, reliability, and the amount of effort required for writing
them. The results indicate that, for the given programming problem, which
regards string manipulation and search in a dictionary, ‘scripting languages’

Practical Python Programming for Data Scientists106

(Perl, Python, Rexx, Tcl) are more productive than ‘conventional languages’
(C, C++, Java). In terms of run time and memory consumption, they often
turn out better than Java and not much worse than C or C++.

4.1.5. Other Advantages of Python

It’s amazingly calm to embed Python, or better the Python interpreter into C
programs. By doing this, you can add features from Python that could take
months to code in C. Vice versa, it’s likely to spread the Python interpreter
by including a module written in C. One reason to do this is if a C library
exists that does something which Python doesn’t. Another good reason is if
you need something to run quicker than you can achieve in Python.

The Python Standard Library comprises of huge number of valuable
elements and is part of every standard Python installation. After having
learned the fundamentals of Python, it is essential to become aware of the
Python Standard Library because many problems can be resolved rapidly
and effortlessly if you are familiar with the potentials that these libraries
provide.

4.2. DOWNLOADING AND INSTALLING PYTHON

3.6.2

Installing Python is simple, and today numerous Linux and UNIX
distributions comprises of fresh Python. There are inbuilt Python in some
Windows.

4.2.1. Python: Version 3.6.2

The Python download needs about 30 Mb of disk space; keep it on your
machine, in case you want to re-install Python. When installed, Python
needs an extra 90 Mb of disk space.

4.2.2. Python on Windows

Downloading:
=� Go to https://www.python.org/downloads/.
� #������
�������%

Python Programming: An Introduction 107

 Click the Download Python 3.6.2 button.
� �
�������	�������

����µ�¡��!���

������	����
���
	����� ���
�

your standard download folder.
� #������
�������%

=� �
����
��������
�	��
�������	������
�	��
���
�����	������

�
=� Start the Installing instructions directly below.

Installing:
=� _
������������
����
���	��������
���������

����µ�¡��!��
� #������
�������%

Practical Python Programming for Data Scientists108

=� Click Run.
� #������
�������%

 Ensure that the Install launcher for all users (recommended)
and the Add Python 3.6 to PATH checkboxes at the bottom are
checked.

=� Highlight the Install Now (or Upgrade Now) message, and then
click it.

 A User Account Control pop-up window will appear, posing the
question Do you want the allow the following program to make
�
	������
��
����
�������

=� Click the Yes button.
 A new Python 3.6.2 (32-bit) Setup pop-up window will appear

with a Setup Progress message and a progress bar.

Setup was successful message will be displayed.

Python Programming: An Introduction 109

=� Close and Python installed successfully.

4.2.3. Python on Linux

=� Installing Python 3
=� Installing Required Packages
To install Python, it should require prerequisites as shown below:

$ sudo apt-get install build-essential check install
To install supportive libraries, use the following command:
$ sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev

libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

To download python use the following commands:

$ cd /usr/src
$ sudo wget https://www.python.org/ftp/python/3.7.8/Python-3.7.8.tgz

Now extract the downloaded package as shown below:
$ sudo tar xzf Python-3.7.8.tgz

�� Compiling Python Source: To compile Python source, use the
following command:

$ cd Python-3.7.8
$ sudo./configure
To check the Python version, use the following command:
$ sudo python 3.7.8-V
The sample output should be like this:
Python 3.7.8

Practical Python Programming for Data Scientists110

4.3. PYTHON INTERPRETER AND INTERACTIVE

MODE

4.3.1. Interpreter

Python is an interpreted language because they are executed by an interpreter.
Interpreter take high level program as input and executes what the program
says. It processes the program a minimum at a time. It read lines and
performs computations alternatively. Figure 4.1 explains the structure of an
interpreter.

Figure 4.1. Function of interpreter.

4.3.2. Compiler

A compiler reads the program and interprets it to machine-readable form
called object code or executable code before the program starts running.
Once a program is compiled, the program can be executed repeatedly
without further translations. Figure 4.2 shows the structure of a compiler.

Figure 4.2. Function of compiler.

The python program that you have installed will by default act as
something called an interpreter. An interpreter takes text commands and
runs them as you enter them very handy for trying things out.

To execute the program code, the interpreter can be used. There are two
different modes to use the interpreter. 1. Interactive mode, 2. Script mode.
In interactive mode, the program statements can be typed in prompt, so the
interpreter displays the result.

Just type python at your console, hit Enter, and you should enter Python’s
]�������������
�����
����
��
������
��
�����

���
�������������������	�������
python-V in your console to tell you.

Python Programming: An Introduction 111

Compiler Interpreter
Compiler takes entire program
as input

Interpreter takes single
instruction as input

Intermediate object code is
created

No intermediate object code
is created

Conditional control statements
are executes faster

Conditional control statements
are executes slower

Requires more memory Requires less memory
Program need not be compiled
every time

Every time higher-level
program is converted into
lower-level program

Errors are displayed after
entire program is checked

Errors are displayed for every
instruction interpreted

Example: C Compiler Example: Python

4.3.3. Interacting with Python

After opening Python, contextual information is shown:
Python 3.5.0 (default, Sep 20 2015, 11:28:25)
[GCC 5.2.0] on linux
Type “help,” “copyright,” “credits” or “license” for more information.
>>>

Now try this below code:

print(“Hello world”)

Press Enter. After viewing the results, Python goes to the interactive prompt,
where you could enter another command:

>>> print(“Hello world”)
Hello world
>>> (1 + 4) * 2
10

Practical Python Programming for Data Scientists112

4.3.4. Writing a Python Program

We will consider two ways:
=� Enter the program directly into IDLE’s interactive shell; and
Enter the program into IDLE’s editor, save it, and run it.
1. IDLE’s Interactive Shell: IDLE is a simple Python integrated

development environment available for Windows, Linux, and
Mac OS X. Figure 4.1 shows how to start IDLE from the Microsoft
Windows Start menu. The IDLE interactive shell is shown in
Figure 4.2. You may type the above one-line Python program
directly into IDLE and press enter to execute the program. Figure
4.3 shows the result using the IDLE interactive shell.

2. IDLE’s Editor: IDLE has a built-in editor. From the IDLE menu,
select New Window, as shown in Figure 4.4. Type the text as
shown in Listing 1.1 (simple.py) into the editor. Figure 4.5 shows
the resulting editor window with the text of the simple Python
program. You can save your program using the Save option in the
�����������	���

���������������µ��#	����
���
����
�	������	����
simple.py. We can run the program from within the IDLE editor
by pressing the F5 function key or from the editor’s Run menu:
���·�����
�������
��
������	���	�������
��]_}�������	������
shell window (Figures 4.3–4.8).

Figure 4.3. Start IDLE from the Windows Start menu.

Python Programming: An Introduction 113

Figure 4.4. The IDLE interpreter Window.

Figure 4.5. A simple Python program entered and run with the IDLE interactive
shell.

Figure 4.6. Launching the IDLE editor.

Figure 4.7. The simple Python program typed into the IDLE editor.

Practical Python Programming for Data Scientists114

Figure 4.8. #	�����	��������	�������
��
��]_}������
�.

Example:
1. First simple program to print Hello, World!

Print(“Hello, World!”)
It prints Hello, World. In Python, printing statement uses the keyword print
as in the above-mentioned format. The parenthesis indicates that the print is
a function. The single quotation represents the beginning and end of the text
to be displayed.

4.4. VALUES AND TYPES: INT, FLOAT, BOOLEAN,

STRING, AND LIST

Value:
A value is a basic thing that a program works with, like a letter or a number.

For example, the values are 2, 42.0, and ‘Hello, World!.’
These values belong to different datatypes.

Data type:
Every value in Python has a data type. It is a set of values and the
allowable operations on those values. The values belong to different
data types. In Python, the standard data types available are:

= Numbers;
= String;
= List;
= Tuple;
= Dictionary.

Python Programming: An Introduction 115

1. Number Data Type: These stores numerical values. It supports four
numerical types. Number data type stores Numerical Values. This data type
is immutable [i.e., values/items cannot be changed].
Python supports integers, floating-point numbers, and complex numbers.
They are defined as:

i. Integer: They are positive or negative whole numbers without
decimal points

 Example:
 signed numbers like 10, –20

Long
 They are long integers. They can also be represented in octal and

hexadecimal representation like, ox3245 and 234L
Example:

569243L
ii. Float: They are written with a decimal point dividing the integer

and the fractional parts.
 Example:

3.45
iii. Complex: �������� �	����
�� ��	�� �
	������
���� ��������

represented by x ± jy, where x & y are real numbers and j is
imaginary part.

Complex numbers like, 7.32e-3j
2. String Data Type: Strings are the sequence of characters

represented within quotation marks. It allows either pairs of
single or double-quotes. The substring access is possible through
the slicing operator ([] or [:]). The string index 0 represents the
beginning of the string whereas, index-1 represents the ending
of the string. The following examples illustrate the string and
substring accesses.

Practical Python Programming for Data Scientists116

Example:
str= “Hello, World!”

Code Comment Result
print(str) # prints complete string Hello, World!
print(str[0]) # prints first character of the string H

print(str[-1]) #prints last character of the string !

print(str[1:5]) # prints character starting from
index 1 to 4
prints str[start_at: end_at-1]

ello

print(str[2:]) #prints string starting at index 2
till end of the string

llo, World!

print(str * 2) # asterisk (*)-is the repetition
operator. Prints the string two
times.

Hello,
World!Hello,
World!

print(str, ‘Hai’) # prints concatenated string Hello, World!
Hai

3. List Data Type: }����� 	��� �
�� �
��� �������	��� �
��
���� �	�	�
types that contain elements of various types. A List can hold items
of different data types. The list is enclosed by square brackets []
where the items are separated by commas. Like string data type,
the list values can be accessed using the slice operator.

1 or [:]). The index 0 represents the beginning of the list
whereas, index-1 represents the ending of the list. The fol-
lowing example illustrates list accesses.
Example:

list1=[‘abcd,’ 345, 3.2,’python,’ 3.14]
list2=[234, ‘xyz’]

Code Comment Result
print(list1) # prints complete list [‘abcd,’ 345,

3.2,’python,’
print(list1[0]) # prints first element of the

list
abcd

print(list1[–1]) #prints last element of the
list

3.14

print(list1[1:3]) # prints elements starting
from index 1 to 2

[345, 3.2]

Python Programming: An Introduction 117

prints list1[start_at: end_
at-1]

print(list1[2:]) #prints list starting at index
2 till end of the list

[3.2, ‘python,’ 3.14]

print(list 2 * 2) # asterisk (*)-is the repetition
operator. Prints the list two
times.

[‘abcd,’ 345, 3.2,
‘python,’

3.14, 234, ‘xyz’]
print(list1 + list2) # prints concatenated lists [‘abcd,’ 345,

3.2,’python,’
3.14, 234, ‘xyz’]

4. Tuple Data Type: Tuple is another sequence data type similar
to the list. A tuple consists of a number of values separated by
commas and enclosed within parentheses. Unlike list, the tuple
values cannot be updated. They are treated as read-only lists. The
following example explains the tuple element access.

 Example:
tuple1= (‘abcd,’ 345, 3.2,’python,’ 3.14)
tuple2= (234, ‘xyz’)

Code Comment Result
print(tuple1) # prints complete tuple1 (‘abcd,’ 345,

3.2, ‘python,’
3.14)

print(tuple1[0]) # prints first element of
the tuple1

abcd

print(tuple1[–1]) #prints last element of
the tuple1

3.14

print(tuple1[1:3]) # prints elements
starting from index 1
to 2

(345, 3.2)

prints tuple1[start_at:
end_at-1]

print(tuple1[2:]) #prints tuple1 starting
at index 2 till the

(3.2, ‘python,’
3.14)

End

Practical Python Programming for Data Scientists118

print(tuple 2 * 2) # asterisk (*)-is the
repetition operator.

(234, ‘xyz,’
234, ‘xyz’)

Prints the tuple2 two
times.

print(tuple1 + # prints concatenated
tuples

(‘abcd,’ 345,
3.2,’python,’

tuple2) 3.14, 234,
‘xyz’)

5. Dictionary Data Type: This is a kind of hash table. It contains
key-value pairs. A dictionary key can be almost any Python type,
usually numbers or strings. Values can be arbitrary Python object.
Dictionaries are enclosed by curly braces {} and values can be
assigned and accessed using square brackets []. The following
example explains the dictionary element access.

dict1= {‘name’: ‘ABCD,’ ‘code’: 6734, ‘dept’: ‘Engg’}
dict2= {}
dict2 [‘rollno’] = “II-ITA24”

Code Comment Result

print(dict1) # prints complete diction-
ary

{ ‘dept’: ‘Engg,’ ‘code’:6734,
‘name’: ‘ABCD’}

print(dict1.keys()) # prints all keys of dic-
tionary

{ ‘dept,’ ‘code,’ ‘name’}

print(dict1.values) #prints all values of dic-
tionary

{‘Engg,’ 6734, ‘ABCD’}

print(dict2[‘rollno’]) # print the value for the
key rollno

II-ITA24

6. Boolean Data Type: Boolean is one more data type supported in
Python. It takes the two values; True and False.

Example:
print(True)

True is a Boolean value
print(False)

False is a Boolean value

Python Programming: An Introduction 119

4.5. VARIABLES

A variable allows us to store a value by assigning it to a name, which can be
used later. Named memory locations to store values. Programmers generally
choose names for their variables that are meaningful. It can be of any length.
No space is allowed. We don’t need to declare a variable before using it. In
Python, we simply assign a value to a variable, and it will exist.

4.5.1. Variable Declaration

In Python, interpreter automatically detects the type by the data to which it
is assigned. For assigning values “=” is used.
Examples of variable declaration:

>>>X= 10# x is an integer
ººº�¦*��»� ¼�������
	�
>>>Z=“Welcome to Python”# Z is a string

Assigning value to variable:
Value should be given on the right side of assignment operator(=) and
variable on left side.

Assigning a single value to several variables simultaneously:

Assigning multiple values to multiple variables:

4.6. KEYWORDS

Keywords are the reserved words in Python. We cannot use a keyword
as variable name, function name or any other identifier. They are used to
define the syntax and structure of the Python language. Keywords are case
sensitive (Table 4.1).

Practical Python Programming for Data Scientists120

Table 4.1. Python Keywords

and Del From not while
as Elif Global or with
assert Else If pass yield
break Except Import print
class Exec In raise
continue Finally Is return
def For Lambda try

4.7. STATEMENTS AND EXPRESSIONS

Statements:
Instructions that a Python interpreter can executes are called state-
ments. A statement is a unit of code like creating a variable or dis-
playing a value.

�������
���������������	��	������������	��������
	��������	��	�����
���
The second line is a print statement that displays the value of n.
Expressions:

An expression is a combination of values, variables, and operators.
A value all by itself is considered an expression, and also a variable.
So the following are all legal expressions:

Python Programming: An Introduction 121

4.8. COMMENTS

Comments are the non-executable statements explain what the program
does. For large programs, it often difficult to understand what it does. The
comment can be added in the program code with the symbol #.
Example:

print(‘Hello, World!’) # print the message Hello, World!;
comment

v=5 # creates the variable v and assign
the value 5; comment

4.9. INPUT AND OUTPUT

Input:
Input is data entered by user (end user) in the program. In python,
input () function is available for input.
Syntax for input() is:

variable = input (“data”)
Example:

>>> x=input(“enter the name:”) enter the name:
george

>>>y=int(input(“enter the number”))
enter the number 3
#python accepts string as default data type. conver-

sion is required for type.
Output:

Output can be displayed to the user using a Print statement.
Syntax:

print(expression/constant/variable)
Example:

>>> print (“Hello”) Hello
QUOTATION IN PYTHON:
>>>
Python accepts single (‘), double (“) and triple (“‘ or ”””)

quotes to denote string literals.
>>>

Anything that is represented using quotations are considered as
string.

=� single quotes (‘ ’)
E.g., ‘This a string in single quotes’

Practical Python Programming for Data Scientists122

=� double quotes (“ ”)
E.g., “‘This a string in double quotes’”

=� triple quotes(“““ ”””)
E.g., This is a paragraph. It is made up of multiple lines and

sentences.”””

4.10. OPERATORS

An operator is a special symbol that asks the compiler to perform particular
mathematical or logical computations like addition, multiplication,
comparison, and so on. The values the operator is applied to are called
operands. For example, in the expression 4 + 5, 4 and 5 are operands and +
is an operator.

The following tokens are operators in Python:

+ – * ** / // %

<< >> & | ^ ~

< > <= >= == != <>

4.10.1. Types of Operator

Python language supports the following types of operators.
= Arithmetic operators;
= Comparison (relational) operators;
= Assignment operators;
= Logical operators;
= Bitwise operators;
= Membership operators;
= Identity operators;
= Unary arithmetic operators.

Python Programming: An Introduction 123

4.10.1.1. Arithmetic Operators

Operator Description Example
+ Addition Adds values on either side of the

operator.
a + b = 30

– Subtraction Subtracts right hand operand
from left hand operand.

a – b = –10

* Multiplication Multiplies values on either side
of the operator

a * b = 200

/ Division Divides left hand operand by
right hand operand

b / a = 2

% Modulus Divides left hand operand by
right hand operand and returns
remainder

b % a = 0

** Exponent Performs exponential (power)
calculation on operators

a**b =10 to the power
20

// Floor Division The division of operands where
the result is the quotient in which
the digits after the decimal point
are removed

5//2=2

Examples Output:

a=10

b=5
print(“a+b=,”a+b) a+b= 15
print(“a-b=,”a-b) a-b= 5

print(“a*b=,”a*b) a*b= 50
print(“a/b=,”a/b) a/b= 2.0
print(“a%b=,”a%b) a%b= 0
print(“a//b=,”a//b) a//b= 2
print(“a**b=,”a**b) a**b= 100000

4.10.1.2. Comparison (Relational) Operators
These are used to compare values. It either returns True or False according
to the condition. Assume, a=10 and b=5.

Practical Python Programming for Data Scientists124

Operator Description Example
== If the values of two operands then

the condition are equal, becomes
true.

(a == b) is not
true

!= If the values of two operands are not
equal, then condition becomes true.

(a!=b) is true

> If the value of left operand is greater
than the value of right operand, then
condition becomes true.

(a > b) is not
true.

< If the value of left operand is less
than the value of right operand, then
condition becomes true.

(a < b) is true.

>= If the value of left operand is greater
than or equal to the value of right
operand, then condition becomes
true.

(a >= b) is not
true.

<= If the value of left operand is less
than or equal to the value of right
operand, then condition becomes
true.

(a <= b) is true.

Example Output
a=10
b=5
print(“a>b=>,”a>b) a>b=> True

print(“a>b=>,”a<b) a>b=> False
print(“a==b=>,”a==b) a==b=> False
print(“a!=b=>,”a!=b) a!=b=> True

print(“a>=b=>,”a<=b) a>=b=> False
print(“a>=b=>,”a>=b) a>=b=> True

Python Programming: An Introduction 125

4.10.1.3. Assignment Operators
These are used in Python to assign values to variables.

Operator Description Example
= Assigns values from right side

operand to left side operand.
c = a + b assigns value
of a + b into c

+= Performs addition using two
operands and assigns the result to
left side operand.

c += a is equivalent to
c = c + a

-= Subtracts right-side operand from
the left side operand and assigns
the result to left side operand.

c– = a is equivalent to
c = c – a

*= Performs multiplication using two
operands and assigns the result to
left side operand.

c*=a is equivalent to c
= c * a

/= Divides left side operand by the
right side operand and assigns the
result to left side operand.

c/=a is equivalent to
c = c/a

%= Finds modulus using two
operands and assigns the result to
left side operand.

c%=a is equivalent to
c = c % a

**= Performs exponential calculation
and assigns the result to the left
side operand.

c**=a is equivalent to
c = c ** a

//= Performs floor division and
assigns the result to the left side
operand

c//=a is equivalent to c
= c // a

Example:
a = 21
b = 10
c = 0
c = a + b
print(“Line 1-Value of c is,” c)
c += a
print(“Line 2-Value of c is,” c)
c *= a
print(“Line 3-Value of c is,” c)
c /= a
print(“Line 4-Value of c is,” c)
c %= a

Practical Python Programming for Data Scientists126

print(“Line 5-Value of c is,” c)
c **= a
print(“Line 6-Value of c is,” c)
c //= a
print(“Line 7-Value of c is,” c)

Output:
�� Line 1: Value of c is 31
�� Line 2: Value of c is 52
�� Line 3: Value of c is 1092
�� Line 4: Value of c is 52.0
�� Line 5: Value of c is 2
�� Line 6: Value of c is 2097152
�� Line 7: Value of c is 99864

4.10.1.4. Logical Operators
These are and, or, not operators.

Operator Description
And Logical AND returns true, if, and only if both

operands are true.
Or Logical OR returns true, if any of the two

operands is true.
Not Logical NOT returns the logical negation of its

operand.

Here, any nonzero number is interpreted as true and zero is interpreted
as false. Both the and operator and the or operator expect two operands. not
operator operates on a single operand.

�
����
	��
��
���	�
��
���	��
���	�
�����������������	�����
��	�����
���
	��
operator.

The truth tables for and, or, and not (Tables 4.2–4.4).

Python Programming: An Introduction 127

Table 4.2. Truth Table of and Operator

Op1 Op2 Op1 and Op2
True True True
True False False
False True False
False False False

Table 4.3. Truth Table of or Operator

Op1 Op2 Op1 or Op2
True True True
True False True
False True True
False False False

Table 4.4. Truth Table of Not Operator

Op1 Not Op1
True False
False True

Example: Truth Function

a = True
b = False
print(‘a and b is,’ a and b)
print(‘a or b is,’ a or b)
print(‘not a is,’ not a)
Output
a and b is False
a or b is True
not a is False

Practical Python Programming for Data Scientists128

4.10.1.5. Bitwise Operators

This operates on one or more bit patterns at the level of individual bits (Table
4.5)
Example:

x = 10 (0000 1010 in binary)
y = 4 (0000 0100 in binary)

Operator Description
& Performs bitwise AND operation between two the

operands.
| Performs bitwise OR operation between two the

operands.
^ Performs bitwise XOR (exclusive OR) operation

between two the operands.
~ Performs bitwise 1’s complement on a single

operand.
<< Shifts the first operand left by the number of bits

specified by the second
operand (bitwise left shift).

>> Shifts the first operand right by the number of bits
specified by the second
operand (bitwise right shift).

a B a & b a | b a ^ b ~a
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

Table 4.5. Truth Table of &, |, ^, ~ Operator

a = 60 # 60 = 0011 1100

b = 26 # 13 = 0001 1010

c = a & b; # 24 = 0001 1000

print(“Result of Bitwise AND is,” c)

Python Programming: An Introduction 129

c = a | b; # 62 = 0011 1110

print(“Result of Bitwise OR is,” c)

c = a ^ b; # 38 = 0010 0110

print(“Result of Bitwise XOR is,” c)

c = ~a; # –61 = 1100 0011

print(“Result of Bitwise Ones Complement is,” c)
c = a << 2; # 240 = 1111 0000
print(“Result of Bitwise Left Shift is,” c)
c = a >> 2; # 15 = 0000 1111
print(“Result of Bitwise Right Shift is,” c)

Sample output:
Result of Bitwise AND is 24
Result of Bitwise OR is 62
Result of Bitwise XOR is 38
Result of Bitwise Ones Complement is –61
Result of Bitwise Left Shift is 240
Result of Bitwise Right Shift is 15

4.10.1.6. Membership Operators
These test for membership in a sequence, such as strings, lists, or tuples and
explained below.

Operator Description
in Evaluates to true if it finds a variable in the specified

sequence and false otherwise.
not in Evaluates to true if it does not finds a variable in the

specified sequence and false otherwise

Sample code:
a = 6
b = 2
list = [1, 2, 3, 4, 5];
print(a in list)
print(a not in list)
print(b in list)
print(b not in list)

Practical Python Programming for Data Scientists130

Sample output:
False
True
True
False

4.10.1.7. Identity Operators
They are used to check if two values (or variables) are located on the same
part of the memory.
Identity operators compare the memory locations of two objects. They are
explained below:

Operator Description
is Returns true if both operands point to the

same object and false otherwise.
is not Returns false if both operands point to the

same object and true otherwise.
Sample code:

a = 20
b = 20
print(a is b)
print(id(a) == id(b))
print(a is not b)
b=30
print(a is b)
print(a is not b)
print(id(a) == id(b))

Sample output:
True
True
False
False
True
False

Python Programming: An Introduction 131

4.10.1.8. Unary Arithmetic Operators

Operator Description
+ Returns its numeric argument without any

change.
– Returns its numeric argument with its sign

changed.
Sample Code:

a = 10
b = +a
print(b)
c = –a
print(c)

Sample output:
10
–10

4.10.2. Operator Precedence

When more than one operator appears in an expression, the order of evaluation
depends on the rules of precedence. For mathematical operators, Python
follows mathematical convention. The acronym PEMDAS (parentheses,
exponentiation, multiplication, division, addition, subtraction) is a useful
way to remember the rules.

The following table summarizes the operator precedence in Python,
from the highest precedence to the lowest precedence. Operators in the
same box have the same precedence and group from left to right (except for
comparisons, including tests, which all have the same precedence and chain
from left to right and exponentiation, which groups from right to left).

Operator Description Associativity

(expressions...) Binding or tuple display left to right
[expressions...] List-display

{key: value...} Dictionary display

‘expressions...’ String conversion

x[index] Subscription left to right
x[index:index] Slicing

Practical Python Programming for Data Scientists132

x(arguments...) Call

x.attribute Attribute reference

** Exponentiation right-to-left
+x Unary plus left to right
-x Unary minus

~x Bitwise NOT

* Multiplication left to right
/ Division

// Floor division

% Remainder

+ Addition left to right
- Subtraction

<<, >> Bitwise Left Shift and Right left to right
Shift

& Bitwise AND left to right
^ Bitwise XOR left to right
| Bitwise OR left to right
in, not in Membership tests Chain from left to right
is, is not Identity tests
<, <=, >, >=, <>, !=,
==

Comparisons

Not Boolean NOT left to right
And Boolean AND left to right
Or Boolean OR left to right

Examples:
4 * (6–3) is 12, and
(1+2)**(6–3) is 27.
3**1+1 is 4, not 9.
2*1**4 is 2, not 16.
4*6–2 is 22, not 16.
4+2/2 is 5, not 3.
4/2*2 is 4, not 1.

�� Example 1:
a=9–12/3+3*2–1
	¦�

Python Programming: An Introduction 133

a=9–4+3*2–1
a=9–4+6–1
a=5+6–1
a=11–1 a=10

�� Example 2:
a=2,b=12,c=1
d=ac
d=2<12>1
d=1>1
d=False

�� Example 3:
A=2*3+4%5–3/2+6
A=6+4%5–3/2+6
A=6+4–3/2+6
A=6+4–1+6
A=10–1+6
A=9+6
A=15

�� Example 4:
a=2,b=12,c=1
d=ac–1
d=2<12>1–1
d=2<12>0
d=1>0
d=True

�� Example 5:
�����¦�
m=–43|8&0|–2
m=–43|0|–2
m=–43|–2
m=–1

�� Example 6:
a=2*3+4%5–3//2+6
a=6+4–1+6
a=10–1+6
a=15

FUNCTIONS

CHAPTER 5

CONTENTS
5.1. Function Definition ... 136

5.2. Built-In Functions ... 136

5.3. Math Functions ... 140

5.4. User Defined Function .. 142

5.5. Function Prototypes .. 144

5.6. Return Statement .. 148

5.7. Modules ... 148

Practical Python Programming for Data Scientists136

5.1. FUNCTION DEFINITION

Function is a sub program which consists of a set of instructions used to
perform a specific task. A large program is divided into basic building blocks
called function.
(i). Need for function:

=� When the program is too complex and large, they are divided into
parts. Each part is separately coded and combined into a single
program. Each subprogram is called function.

=� Debugging, Testing, and maintenance becomes easy when the
program is divided into subprograms.

=� Functions are used to avoid rewriting the same code again and
again in a program.

=� Function provides code re-usability
=� The length of the program is reduced.

(ii). Types of function:
The functions can be classified into two categories:

=� Built-in function and
=� ������������������
��

5.2. BUILT-IN FUNCTIONS

�������+<���=>�@Q�
=�
��
	��<������

=� Built in functions means already created and stored functions in
Python.

=� These built in functions are always available for usage and
	�����������	���
��	������]���	��
������
������

print() Print objects to the stream.
input() Reads a line from input, converts it to a string

(stripping a trailing newline), and returns that.
abs() Return the absolute value of a number.
len() Return the length (the number of items) of an

object.

Functions 137

Built in Function Description

>>>max(3,4)
4

returns largest element

>>>min(3,4)
3

returns smallest element

>>>len(“hello”)
5

#returns length of an object

>>>range(2,8,1)
[2, 3, 4, 5, 6, 7]

#returns range of given values

>>>round(7.8)
8.0

#returns rounded integer of the given
number

>>>chr(5)
\x05’

#returns a character (a string) from an
integer

>>>float(5)
5.0

#returns float number from string or
integer

>>>int(5.0)
5

returns integer from string or float

>>>pow(3,5)
243

#returns power of given number

>>>type(5.6)
<type ‘float’>

#returns data type of object to which
it belongs

>>>t=tuple([4,6.0,7])
(4, 6.0, 7)

to create tuple of items from list

>>>print(“good morning”)
Good morning

displays the given object

>>>input(“enter name: ”)
enter name: George

reads and returns the given string

Example:
Program to find the ASCII value of the given character.
c = input(“Enter a character”)
print(“ASCII value of ,”c, “is,”ord(c))

Practical Python Programming for Data Scientists138

ord() function converts a character to an integer (ASCII value). It returns the
Unicode code point of that character.

5.2.2. Type Conversion Functions

Python provides built-in functions that convert values from one type to
another.

Function Converting What to

What

Example

>>> int(‘2014’)
int() ����������
	������
����·�

integer
2014
>>> int(3.141592)

3
>>> float(‘1.99’)

float() ����������������·�
floating point

1.99

Number >>> float(5)

5.0
>>> str(3.141592)

str() integer, float, list, tuple,
dictionary

‘3.141592’

·������� >>> str([1,2,3,4])

‘[1, 2, 3, 4]’
>>> list(‘Mary’) # list of

characters in
‘Mary’

list() string, tuple, dictionary
·�����

[‘M,’ ‘a,’ ‘r,’ ‘y’]

>>> list((1,2,3,4)) # (1,2,3,4) is
a tuple

[1, 2, 3, 4]

Functions 139

>>> tuple(‘Mary’)
(‘M,’ ‘a,’ ‘r,’ ‘y’)

tuple() �������������·������ >>> tuple([1,2,3,4]) # [] for list,
() for
tuple
(1, 2, 3, 4)

>>> age = 21
>>> sign = ‘You must be ‘ + age + ‘Years old’
‘+’ can also be used for concatenation, but Many Python functions are
sensitive to the type of data. For example, you cannot concatenate a string
with an integer. If you try, it will result in the following error.
Traceback (most recent call last):
File “<pyshell#71>,” line 1, in <module> sign = ‘You must be ‘ + age +
‘years old’ TypeError: cannot concatenate ‘str’ and ‘int’ objects
For the example above, use the str() conversion function to convert integer
to string data type.
age = 21
sign = “You must be “ + str(age) + “Years old”
>>>sign
Sample output:
You must be 21 Years old
Examples using Built-in functions for type conversion:

Program Code
Output

Converting float to int
>>>print(3.14, int(3.14)) 3.14 3

>>>print(3.9999,
int(3.9999))

3.9999 3

>>>print(3.0, int(3.0)) 3.0 3

>>>print(–3.999, int(–
3.999))

–3.999 –3

Converting string to int

Practical Python Programming for Data Scientists140

>>>print(“2345,”
int(“2345”))

2345 2345

>>>print(int(“23bottles”)) Error:

ValueError: invalid literal for int() with

base 10: ‘23bottles’

Converting int to string
>>>print(str(17)) 17

Converting float to string
>>>print(str(123.45)) 123.45

>>>print(type(str(123.45)))
<class ‘str’>

Converting list to tuple
>>>fruits = [‘apple,’
‘orange,’ ‘grapes,’
‘pineapple’] (‘apple,’ ‘orange,’ ‘grapes,’ ‘pineapple’)
>>>print(tuple(fruits))

(‘P,’ ‘y,’ ‘t,’ ‘h,’ ‘o,’ ‘n’)

>>>print(tuple(‘Python’))

Converting tuple to list
>>>print(list(‘Python’)) [‘P,’ ‘y,’ ‘t,’ ‘h,’ ‘o,’ ‘n’]

5.3. MATH FUNCTIONS

Math and cmath are mathematical modules available in Python to support
familiar mathematical functions. A module is a file that contains a collection
of related functions. Before using built-in math functions, import math
module.

>>>import math
It will create a module object named math which contains functions and
variables defined in the module. Some of the familiar math functions are
listed in the table.

Functions 141

Function Description Example Output
abs(n) Return the

absolute value of a
number(n)

abs(–99) 99

round(n,d) Round a number(n)
to a number of
decimal points(d)

round(3.1415,2) 3.14

floor(n) Round down to
nearest integer

math.floor(4.7) 4.0

ceil(n) Round up to nearest
integer

math.ceil(4.7) 5.0

pow(n,d) Return n raised to
the power d

math.pow(10,3) 1000.0

sqrt(n) Returns the square
root of number(n)

math.sqrt(256) 16.0

fsum(iterable) Return an accurate
floating point sum
of values in the
iterable

sum([.1,.1,.1,.1,.
1,.1,.1,.1,.1,.1])
fsum([.1,.1,.1,.1,
.1,.1,.1,.1,.1,.1])

0.99999999999999
1.0

factorial(n) Return n factorial math.factorial(5) 120
gcd(n,m) Return greatest

common division of
(n,m)

math.
gcd(10,125)

5

trunc(x) Return the real
value x truncated to
an integral

math.
trunc(1.999)

1

Practical Python Programming for Data Scientists142

sin(x), cos(x),
tan(x)

Return the arc sine,
cosine, tangent of x,
in radians.

math.sin(math.
pi/4)

0.7071067811865476

math.cos(math.
pi)

–1.0

math.tan(math.
pi/6)

0.5773502691896257

5.4. USER DEFINED FUNCTION

The functions defined by the users according to their requirements are called
user-defined functions. The users can modify the function according to their
requirements.

"��	��	����
��������������������
��%
=� Large project are divided into smaller different functions.
=� Repeated code could be included and executed.
��Function��
���������[�<$�Q��\���]

=� A header-starts with def (keyword) and ends with a colon.
=� A body contains one or more Python statements each indented the

same amount-4 spaces is the Python standard-from the header.
Inside the function add the program statements to be executed
End with or without return statement

Syntax:
def fun_name(Parameter1,Parameter2…Parameter n):

statement1
statement2…
statement n
return[expression]

The code block inside every function commences with a colon (:) and
��������������
���������	�������
��	�������
���	�����	��
���
�	����	�������
the documentation string of the function or docstring. The statement return
[expression] exits a function, and it returns the result of the function. The rules
for function names are the same as for variable names: letters, numbers, and
�
���������	��
���	����	������	��������
��������
	�	������	�������	���������
Keywords should not be used as function name. To avoid confusion, use
different names for functions and variables.
Example:

def my_add(a,b):
c=a+b

Functions 143

return c
��Function Calling: (Main Function):

A function can be executed by calling it from another function or directly
from the Python prompt by its name.

Syntax:
function_name(parameters)

Function to display Welcome message.
def display():
print(“Welcome!!!”)
>>>display()

Sample output:
Welcome!!!

�
������������
���
��������
���������
������	������
��
�	���>��
����������
called the body. The header has to end with a colon, and the body has to
be indented. By convention, the indentation is always four spaces. In this
example, the function name is display(). The empty parentheses after the
name indicate that this function doesn’t take any arguments.

Function��
������
����������
���
������������
def great(no1,no2,no3):

if (no1>no2) and (no1>no3):
return no1

elif (no2>no3):
return no2

else:
return no3

�*¦���$�����$�������������������YY
n2=int(input(“Enter second number”))
n3= int(input(“Enter third number”))
result=great(n1,n2,n3)
print(result, “is bigger”)

Sample input/output:
������������������*�
Enter second number 5
Enter third number 25
25 is bigger

Practical Python Programming for Data Scientists144

In this example, the function name is great().It takes three parameters
and returns the greatest of three. input() reads input value from the user. The
function is invoked by calling great(n1,n2,n3). print() displays the output.
The strings in the print statements are enclosed in double-quotes.

Flow of execution:
=� �
��
���������
��
���	��������	����!�����������	������
���
��
��

execution;
=� �!�����
��	��	����������	���
���������	�������
���
����
��	�>
=� Statements are executed one at a time, in order, from top to

bottom;
=� Function� �������
��� �
� �
�� 	����� �
�� �
��
�� �!�����
��
�� �
��

program, but remember that statements inside the function are
not executed until the function is called;

=� Function��	����	��������	����	�������
���
��
���!�����
���]����	��

���
�����
��
����!����	���������
���
���������
��
������������
��
the called function, executes all the statements there, and then
comes back to pick up where it left off.

5.5. FUNCTION PROTOTYPES

1. Function Without Arguments and Without Return Type: In
this type, no argument is passed through the function call, and no
output is return to the main function.

 The subfunction will read the input values perform the operation
and print the result in the same block.

Example:
def add():

a=int(input(“Enter a”))
b=int(input(“Enter b”))
c=a+b
print(c)

add()

Output:
Enter a 5
Enter b 10
15

Functions 145

2. Function with Arguments and Without Return Type:

Arguments are passed through the function call, but output is not
return to the main function.

Example:
def add(a,b):

c=a+b
print(c)

a=int(input(“Enter a”))
b=int(input(“Enter b”))
add(a,b)

Output:
Enter a 5
Enter b 10
15

3. Function Without Arguments and with Return Type: In this
type, no argument is passed through the function call, but output
is return to the main function.

Example:
def add():

a=int(input(“Enter a”))
b=int(input(“Enter b”))
c=a+b
return c

c=add()
print(c)

Output:
Enter a 5
Enter b 10
15

4. Function with Arguments and with Return Type: In this type,
arguments are passed through the function call and output is
return to the main function.

Example:

Practical Python Programming for Data Scientists146

def add(a,b):
c=a+b

return c
a=int(input(“Enter a”))

b=int(input(“Enter b”))
c=add(a,b)
print(c)

Output:
Enter a 5
Enter b 10
15

5.5.1. Parameters and Arguments

1. Parameters: These are the value(s) provided in the parenthesis when we
write function header. These are the values required by function to
work. If there is more than one value required, all of them will be
listed in the parameter list separated by comma.

Example:
def my_add(a,b):

2. Arguments: These are the value(s) provided in the function call/invoke
statement. List of arguments should be supplied in the same way as
parameters are listed. Bounding of parameters to arguments is done
1:1, and so there should be the same number and type of arguments
as mentioned in the parameter list.

Example:
my_add(x,y)

Arguments types:
i. Required Arguments: The number of arguments in the function

�	����

�����	��
��!	��������
��
��������
���������
��

def my_details(name, age):
print(“Name:,” name)
print(“Age,” age)
Return

Functions 147

my_details(“george,”56)

Output:
Name: george
Age: 56

ii. Keyword Arguments: Python interpreter is able to use the key-
words provided to match the values with parameters even though if
they are arranged in out of order.

def my_details(name, age):
print(“Name:,” name)
print(“Age,” age)
return

my_details(age=56,name=“george”)

Output:
Name: george
Age: 56

iii. Default Arguments: Assumes a default value if a value is not pro-
vided in the function call for that argument.

def my_details(name, age=40):
print(“Name:,” name)
print(“Age,” age)
return
my_details(name=“george”)

Output:
Name: george
Age: 40

iv. Variable Length Arguments: If we want to specify more argu-
�������
	������������
�������������
��������
����	��	���������
�	�-
guments are used. It is denoted by * symbol before parameter.

def my_details(*name):
print(*name)

my_details(“rajan,”“rahul,”“micheal,” “ärjun”)

Output:
rajan rahul micheal ärjun

Practical Python Programming for Data Scientists148

5.6. RETURN STATEMENT

The return statement is used to exit a function and go back to the place from
where it was called. If the return statement has no arguments, then it will not
return any values. But exits from function.

Syntax:
return[expression]

Example:
def my_add(a,b):

c=a+b
return c

x=5
y=4
print(my_add(x,y))

Output:
9

5.7. MODULES

A module is a file containing Python definitions, functions, statements, and
instructions. Standard library of Python is extended as modules. To use these
modules in a program, the programmer needs to import the module.

Once we import a module, we can reference or use to any of its functions
or variables in our code.

=� There is a large number of standard modules also available in
Python.

=� Standard modules can be imported the same way as we import

����������������
������

=� Every module contains many function.
=� To access one of the function, you have to specify the name of

the module and the name of the function separated by dot. This
format is called dot notation.

Syntax:
import module_name
module_name.function_name(variable)

Importing built-in module:

Functions 149

import math
x=math.sqrt(25)
print(x)

]��
�������������������
����%
import cal
x=cal.add(5,4)
print(x)

Built-in python modules are:
1. Math-mathematical functions: Some of the functions in math module
is:

math.ceil(x) Return the ceiling of
x, the smallest integer
greater than or equal to x

�	�
��

�$!Y� ��������
���

��
��!���
��
largest integer less than
or equal to x.

math.factorial(x) Return x factorial.
math.gcd(x,y) Return the greatest com-

mon divisor of the inte-
gers a and b

math.sqrt(x) Return the square root
math.log(x) Return the natural loga-

rithm of x
math.log10(x) Returns the base-10 log-

arithms
math.log2(x) Return the base-2 loga-

rithm of x.
math.sin(x) Returns sin of x radians
math.cos(x) Returns cosine of x radi-

ans
math.tan(x) Returns tangent of x ra-

dians
math.pi The mathematical con-

��	���¾�¦�3.141592
math.e Returns The math-

ematical constant e
= 2.718281

2 .random-Generate Pseudo-Random Numbers

random.randrange(stop)
random.randrange(start, stop[, step])
random.uniform(a, b)

�������	��	��
���
	������
����������

Practical Python Programming for Data Scientists150

5.7.1. Illustrative Programs

1. Program for SWAPPING (exchanging) of values:

a = int(input(“Enter a value ”))
b = int(input(“Enter b value ”))
c = a
a = b
b = c
print(“a=,”a,“b=,”b,)

Output:
Enter a value 5
Enter b value 8
a=8
b=5

���Q��\���������	�	�"����
�$
�^

���^�������"�

import math
x1=int(input(“Enter x1”))
y1=int(input(“Enter y1”))
x2=int(input(“Enter x2”))
y2=int(input(“Enter y2”))
distance =math.sqrt(((x2-x1)**2)+((y2 – y1)**2))
print(distance)

Output:
Enter x1 7
Enter y1 6
Enter x2 5
Enter y2 7
2.36

3. Program to circulate n numbers:

a=list(input(“Enter the list”))
print(a)
for i in range(1,len(a),1):

print(a[i:]+a[:i])

Output:
Enter the list ‘1234’

Functions 151

[‘1,’ ‘2,’ ‘3,’ ‘4’]
[‘2,’ ‘3,’ ‘4,’ ‘1’]
[‘3,’ ‘4,’ ‘1,’ ‘2’]
[‘4,’ ‘1,’ ‘2,’ ‘3’]

4. Python program to test for leap year:

Note: A leap year is divisible by 4, but not by 100, unless it is divisible by
400.

def leapyr(yr): # function
�������
�

if yr%4==0 and yr%100!=0 or yr%400==0: #condition-
leap year

print(“Leap Year”)
else:

print(“Not a Leap Year”)
return

year=int(input(“Enter a year”))
leapyr(year) # function

call

Sample input/output:
Enter a year1900
Not a Leap Year

5. Python function to check whether a number is in a given range:

def test_range(n):
if n in range(1,10):

print(“No. is between 1 and 10”)
else:

print (“No. is not between 1 and 10”)
no=int(input(“Enter a no.”))
test_range(no)

Sample input/output:
Enter a no. 10

No. is not between 1 and 10
Enter a no. 4

Practical Python Programming for Data Scientists152

No. is between 1 and 10

6. Python program to print the even numbers from a given list:

def even(l):
for n in l:

if n % 2 == 0:
print(‘\n,’ n)

return
even([1, 2, 3, 4, 5, 6, 7, 8, 9])

Sample output:
2
4
6
8

7. Function that circulates/rotates the list values for given number of

times (order):

def rotate(l,order):
for i in range(0,order):

j=len(l)–1
while j>0:

tmp=l[j]
l[j]=l[j–1]
l[j–1]=tmp
j=j–1

print (i, ‘rotation,’l)
return

l=[1,2,3,4,5]
rotate(l,3)

Sample output:
0 rotation: [5, 1, 2, 3, 4]
1 rotation: [4, 5, 1, 2, 3]
2 rotation: [3, 4, 5, 1, 2]

8. Function that takes a number and check the number is prime or not:

Note: A prime number (or a prime) is a natural number greater than 1 and
that has no positive divisors other than 1 and itself.

Functions 153

def test_prime(n): # function that re-
turns Boolean value

if(n==1):
return False

elif(n==2):
return True

else:
for x in range(2,n):

if(n%x==0):
return False

return True
no=int(input(“Enter a number”))
if(test_prime(no)):

print(no, “is Prime”)
else:

print(no, “is not Prime”)

Sample output:
Enter a number9
9 is not Prime
Enter a number11
11 is Prime

9. Function to check whether a number is perfect or not:

Example:��
�������������������������µ�����	����*��¡��	�����	���������
����
positive divisors, and 1 + 2 + 3 = 6. Equivalently, the number 6 is equal to
half the sum of all its positive divisors: (1 + 2 + 3 + 6) / 2 = 6.

def perfect_number(n):
sum = 0
for x in range(1, n):

if n % x == 0:
sum += x

return sum
no=int(input(“Enter a number”))
sum=perfect_number(no)
if(sum==no):

print(“Perfect number”)

Practical Python Programming for Data Scientists154

else:
print(“Not a Perfect number”)

Sample input/output:
Enter a number5
Not a Perfect number
Enter a number6
Perfect number

10. Function that checks whether a number is palindrome or not:

def Palindrome_Number():
no =int(input(“Enter a Number:”))
q=no
rev = 0
while(q!=0): # loop for reverse

rev = (q % 10) + (rev * 10)
q = q // 10

if(rev == no):
print(“%d is a palindrome number” %no)

else:
print(“%d is not a palindrome number” %no)

Palindrome_Number()

Sample input/output:
Enter a Number121
121 is a palindrome number

11. Find the distance between two points (x
c
,y

c
) and (x

p
,y

p
):

import math
def distance(x1, y1, x2, y2):

dx = x2 – x1
dy = y2 – y1
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

xc=int(input(“Enter xc”))
yc=int(input(“Enter yc”))

Functions 155

xp=int(input(“Enter xp”))
yp=int(input(“Enter yp”))
print (distance(xc,yc,xp,yp))

Sample input/output:
Enter xc 2
Enter yc 2
Enter xp 4
Enter yp 4
2.82

Control Flow Statements

CONTROL STRUCTURES

CHAPTER 6

CONTENTS
6.1. Boolean Values ... 158

6.2. Conditional Statements ... 159

6.3. Iteration/Control Statements .. 166

6.4. Loop Control Statements ... 174

6.5. Fruitful Functions .. 179

6.6. Local and Global Scope .. 180

6.7. Function Composition .. 181

6.8. Recursion ... 182

Practical Python Programming for Data Scientists158

6.1. BOOLEAN VALUES

6.1.1. Boolean

The Boolean values are True and False. The relational operators such as
==, !=, >, <, >=, <= and the logical operators such as and, or, not are the
Boolean operators. The statement that prints either true or false is a Boolean
expression. Given below is the example of the operator != that inspects two
operands and produces True if they are not equal else displays False.

6. 5 != 6
True
7. 5 != 5
False

So, True, and False are special values which belong to the Boolean type;
they are not strings (case sensitive):
To know the type of data, the following example can be used.

6. type(True)
<type ‘bool’>
7. type(False)
<type ‘bool’>

The relational operators are as follows.
Boolean function works with relational operator, string comparison and
logical operators.

6.1.1.1. Relational Operators

Relational operators compares values and evaluate single value either True
or False. The relational operators are as follows:

a == b #if a is equal to b
a != b # if a is not equal to b
a > b # if a is greater than b
a < b #if a is less than b
a >= b # if a is greater than or equal to b
a <= b #if a is less than or equal to b

Simple program to explain relation operators for Boolean conditions:

a = 10
b = 12
print(‘a > b is,’a>b)
print(‘a < b is,’a<b)

Control Structures 159

print(‘a == b is,’a==b)
print(‘a != b is,’a!=b)
print(‘a >= b is,’a>=b)
print(‘a <= b is,’a<=b)

The result is:
a > b is False
a < b is True
a == b is False
a != b is True
a >= b is False
a <= b is True

There are three logical operators: and, or, and not.
For example;

��and operator:

(a > 0) and (a < 10)
�� True only if a is greater than 0 and less than 10.
�� Otherwise False

��or operator:

(n%2 == 0) or (n%3 == 0)
�� True if either of the conditions is true, that is, if the

number is divisible by 2.
�� Otherwise False

��not operator:

�� not operator negates a Boolean expression
�� not (a > b)
�� True if a > b is False, that is, if a is less than or equal

to b.
�� False if a>b is True, that is if a is greater than b

6.2. CONDITIONAL STATEMENTS

6.2.1. Condition Statement (if)

Conditional statements provide the ability to check conditions and control
the program execution accordingly. The simplest form of conditional
statement is the if statement. The syntax of the if statement is given below.

Practical Python Programming for Data Scientists160

Syntax:
if test expression:

statement(s)
(or)

if test expression: statement

Flowchart:

The program evaluates the test expression and will execute statement(s)
only if the text expression is True. If the text expression is False, the
statement(s) is not executed.
Example:

if x > 0:
print(‘x is positive’)

Program code:
num = 5
if (num%2) != 0:

print(num, “is odd number.”)
print(“This is always printed.”)
num = 4
if (num%2) == 0:

print(num, “is even number.”)
print(“This is also always printed.”)

Result:
5 is an odd number.

This is always printed.
4 is even number.

This is also always printed.

Control Structures 161

6.2.2. Alternative Execution (If...Else Statement)
The if…else statement is called alternative execution, in which there are
two possibilities and the condition determines which one gets executed. The
syntax of if…else statement is given below.
Syntax:

if test expression:
Body of if

else:
Body of else

The if...else statement evaluates the test expression and will execute the
body of if only when test condition is True. And if the condition is False,
body of else is executed. Indentation is used to separate the blocks.

Flowchart:

�� Example 1: Odd or even number
n=int(input(“Enter a number”))
if(n%2==0):

print(“Even number”)
else:

print(“Odd number”)

Output:
Enter a number4
Even number

�� Example 2: Positive or Negative Number
n=int(input(“Enter a number”))

Practical Python Programming for Data Scientists162

if(n>=0):
print(“Positive number”)

else:
print(“Negative number”)

Output:
Enter a number8
Positive number

�� Example 3: greatest of two numbers
a=int(input(“Enter a value:”))
b=int(input(“Enter b value:”))
if(a>b):

print(“Greatest:,”a)
else:

print(“Greatest:,”b)

Output:
enter a value:4
enter b value:7
greatest: 7

6.2.3. Chained Conditionals (If-Elif-Else)

Chained conditionals (if-elif-else) allows more than two possibilities and
need more than two branches. The syntax of if-elif-else is shown below.

Syntax:
if test expression:

Body of if
elif test expression:

Body of elif
else:

Body of else

Flowchart:

Control Structures 163

The example explains the if-elif-else:
if x < y:

print(‘x is less than y’)
elif x > y:

print(‘x is greater than y’)
else:

print(‘x and y are equal’)

Here, elif stand for “else if.” There can be numerous elif statements and at
least one branch will be executed. The program of the elif statements will be
terminated by an else statement at the end.

�� Example 1: Positive, Negative or Zero
num = 5.4
if num > 0:

print(“Positive number”)
elif num == 0:

print(“Zero”)
else:

print(“Negative number”)

Output:
Positive number

�� Example 2: Roots of quadratic equation
a=eval(input(“Enter a value:”))
b=eval(input(“Enter b value:”))

Practical Python Programming for Data Scientists164

c=eval(input(“Enter c value:”))
d=(b*b–4*a*c)
if(d==0):

print(“Same and real roots”)
elif(d>0):

print(“Diffrent real roots”)
else:

print(“Imaginagry roots”)

Output:
Enter a value:1
Enter b value:0
Enter c value:0
Same and real roots

�� Example 3: Greatest among Three Numbers
	�¦����$�����$������������������%��YY
b = int(input(“Enter second number: ”))
c = int(input(“Enter third number: ”))
if (a > b) and (a > c):

largest = a
elif (b > a) and (b > c):

largest = b
else:

largest = c
print(“The largest number between,“a,,,”“b,”and,“c,”is,”lar

gest)

Output:
�����������������%��
Enter second number: 56
Enter third number: 6
(‘The largest number between,’ 4.0,,,” 56.0, ‘and,’ 6.0, ‘is,’

56.0)

6.2.4. Nested Conditionals

Any number of conditional statements can be nested inside one another.
To indicate the level of nesting, indentation is used. The structure of nested
conditionals is shown below.

Control Structures 165

if test expression:
Body of if

else:
if test expression:
Body of if

else:
if test expression:
Body of if

:
:
else:

Body of else

Example:
x=3
y=4
if x == y:

print(‘x and y are equal’)
else:

if x < y:
print(‘x is less than y’)

else:
print(‘x is greater than y’)

In this program, the variables x and y are assigned with values 3 and 4 re-
������������]���
�������]����	�����������
������
��
���!�����`�	���
����]��������
true, then prints x and y are equal. If it is false, it executes the else part. Here,
the else part contains the if statement (Nested if) checks whether x is lesser
than y. If it is true, then it prints x is less than y. If it is false, then it prints x
is greater than y that is the statement in else part.
Flowchart:

Practical Python Programming for Data Scientists166

Example 1: Greatest of three numbers
a=int(input(“Enter the value of a”))
b= int (input(“Enter the value of b”))
c= int (input(“Enter the value of c”))
if(a>b):

if(a>c):
print(“The greatest no is,”a)

else:
print(“the greatest no is,”c)

else:
if(b>c):

print(“the greatest no is,”b)
else:

print(“the greatest no is,”c)

Output:
Enter the value of a 9
Enter the value of a 1
Enter the value of a 8
The greatest no is 9

6.3. ITERATION/CONTROL STATEMENTS

6.3.1. State of a Variable

It is possible to have more than one assignment for the same variable. The
value which is assigned at the last is given to the variable. The new assignment
makes an existing variable assigned with a new value by replacing the old
value.

For example, consider the following multiple assignments.
x=5
y=3
x=4
print x
print y

The result is:
4
3

Control Structures 167

�
���	��	����!���������	�����������
����
���������	�����������
�����
���	���	�-
signment statement x=4 replaces the old value of x (x=5).
Consider the following program code for multiple assignments.

x = 5
y = a # x and y are now equal
x = 3 # x and y are no longer equal
print x
print y

The result is:
3
5

6.3.2. Looping Statements

Normally, program statements are executed sequentially, one after another.
In certain criteria, it is necessary to execute a certain number of blocks
repeatedly. These are repetitive program codes, the computers have to
perform to complete tasks. The computers are used to automate the repetitive
tasks. Programming languages present various control structures like
looping statements which permit for more difficult implementation paths.
The function of the looping statements is to execute a set of loops repeatedly
(iterations). The following types of loops are used in Python programming
language to handle looping requirements.

Loop Type Description
While loop This loop starts with condition checking. It

repeats the execution of a statement or group
of statements while the given condition is
TRUE. Every time it tests the condition before
executing the loop body.

For loop It executes a statement or a group of statements
multiple times and abbreviates the code that
manages the loop variable.

Nested loops One or more loops used in another loop.

1. While Loop: The function of the while loop is to execute repeatedly
until the given condition becomes false. First and foremost, the test
�
�����
�����������
�����������
���
�����

���\
����
��������
���-
tion is true, the program enters into the body of the loop. Subsequent
to the completion of iteration, the test condition will be checked
again. This process persists until the test_expression becomes False.

Practical Python Programming for Data Scientists168

In Python, the body of the while loop is decided through indentation. The
��	�������� ������� �
���
������	������
� ������	��
��	����
������������������
line marks the end.

Syntax:
while test_expression:

Body of while

Flowchart:

Example:
count = 0
while count < 5:

print(count)
count += 1

The result is:
0
1
2
3
4

�� Example 1: Program to add natural numbers up to n
n = int(input(“Enter n: ”))
sum = 0
i = 1

Control Structures 169

while i <= n:
sum = sum + i
i = i+1

print (“The sum is,” sum)

Output:
Enter n: 10
The sum is 55

�� Example 2: Factorial of a numbers:
n=int(input(“Enter n”))
i=1
fact=1
while(i<=n):

fact=fact*i
i=i+1

print(fact)

Output:
Enter n 5
120

�� Example 3: Sum of digits of a number
n=int(input(“enter a number”))
sum=0
while(n>0):

a=n%10
sum=sum+a
n=n//10

print(sum)

Output:
enter a number
123
6

�� Example 4: Reverse the given number
n=int(input(“enter a number”))
sum=0

Practical Python Programming for Data Scientists170

while(n>0):
a=n%10
sum=sum*10+a
n=n//10

print(sum)

Output:
enter a number
123
321

�� Example 5: Armstrong number or not
n=int(input(“enter a number”))
org=n
sum=0
while(n>0):

a=n%10
sum=sum+a*a*a
n=n//10

if(sum==org):
print(“The given number is Armstrong number”)

else:
print(“The given number is not Armstrong number”)

Output:
enter a number153

The given number is Armstrong number

�� Example 6: Palindrome or not
n=int(input(“Enter a number”))
org=n
sum=0
while(n>0):

a=n%10
sum=sum*10+a
n=n//10

if(sum==org):
print(“The given no is palindrome”)

else:

Control Structures 171

print(“The given no is not palindrome”)
Output:

Enter a number121
The given no is palindrome

2. For Loop: Python uses For loop to iterate over a sequence of ele-
ments (list, tuple, string) or other iterable objects. Iterating over a
sequence of items is named as traversal. The syntax of for loop is
shown below.

Syntax:
for val in sequence:

Body of for
The val is the loop variable which takes the value of the item inside the se-
quence on each iteration. The loop continues until the last element is reached
in the sequence. The body of for loop is marked using indentation.

Flowchart:

�� Example 1:
numbers = [3, 2, 5, 7, 9, 1, 4, 6, 8]
total= 0
for item in numbers:

total = total+item
print (“The total is,” total)

Result:
The total is 45

Practical Python Programming for Data Scientists172

Example 1: Fibonacci series
a=0
b=1
n=eval(input(“Enter the number of terms: ”))
print(“Fibonacci Series: ”)
print(a)
print(b)
for i in range(1,n,1):

c=a+b
print(c)
a=b
b=c

Output:
Enter the number of terms: 6
Fibonacci Series:
0
1
1
2
3
5
8

�� Example 2: Check the no is prime or not
n=eval(input(“Enter a number”))
for i in range(2,n):
if(n%i==0):

print(“The num is not a prime”)
break

else:
print(“The num is a prime number.”)

Output:
Enter a no:7
The num is a prime number.

�� Example 3: check a number is perfect number or not

Control Structures 173

n=int(input(“enter a number:”))
sum=0
for i in range(1,n,1):

if(n%i==0):
sum=sum+i

if(sum==n):
print(“the number is perfect number”)

else:
print(“the number is not perfect number”)

Output:
enter a number:6
the number is perfect number

�� Example 4:���
��	���
���������������������������
number=int(input(“Enter no of prime numbers to be dis-

played:”))
count=1
n=2
while(count<=number):

for i in range(2,n):
if(n%i==0):

break
else:

print(n)
count=count+1

n=n+1

Output:
enter no of prime numbers to be displayed:5
2
3
5
7
11

�� Example 5: Program to print prime numbers in range
lower=int(input(“Enter a lower range”))
upper=int(input(“Enter a upper range”))

Practical Python Programming for Data Scientists174

for n in range(lower,upper + 1):
if n > 1:

for i in range(2,n):
if (n % i) == 0:

break
else:

print(n)

Output:
Enter a lower range50
Enter a upper range100
53
59
61
67
71
73
79
83
89
97

6.4. LOOP CONTROL STATEMENTS

Loop control statements change execution from its normal sequence. When
execution leaves a scope, all automatic objects that were created in that
scope are destroyed. Python supports the following control statements.

Control
Statement

Description

Break
statement

It terminates or breaks the loop statement and
transfers the flow of execution to the statement
immediately following the loop.

Continue
statement

Causes the loop to skip the rest of its body
and immediately retest its condition before
reiterating.

Pass statement The pass statement in Python is used when a
statement is required syntactically but you do
not want any command or code to execute.

Control Structures 175

6.4.1. Break Statement

The break statement is used to change or alter the flow of execution. The
looping statements iterates till the test expression is true. In some cases, the
current iteration of the loop need to be terminated. The break statement is
used in this case. If the break statements are used in the nested loops, then it
will terminate the particular loop where it has been used.
Syntax of break:

Break

Flowchart:

The working of break statement in for loop is explained as follows:
1. For var in sequence:

if condition: # it is true; executes break

break
 # codes inside the loop
 #codes outside the loop
2. While test expression:

 #codes inside the loop
if condition: # it is true; executes break

break
 # codes inside the loop
 #codes outside the loop

Practical Python Programming for Data Scientists176

Example:
for i in “welcome”:

if(i==“c”):
break

print(i)
Output:

w
e
l

6.4.2. Continue Statement

The continue statement will skip the rest of the code inside a loop for the
current iteration without terminating the loop.

Syntax:
Continue

Flowchart:

The working of continue statement in while loop is shown below.
While test expression:

 #codes inside the loop

Control Structures 177

if condition: # it is true; executes
continue

 #codes inside the loop
 #codes outside the loop

Example:
for i in “welcome”:

if(i==“c”):
continue

print(i)
Output:

w
e
l
o
m
e

6.4.3. PASS

Pass statement executes nothing. It results in No operation. In Python
programming, pass is a null statement. There is a slight difference between
comment and pass statement. The comment statement ignores a comment
entirely by the interpreter, but this will not happen in pass statement.
Syntax of pass:

pass
The pass statement can be used in places where the program code cannot be
left as blank. But that can be written in future. The pass is used as placehold-
ers. Pass is used in to construct program codes that do nothing.

�� Example 1:
for i in “welcome”:

if(i==“c”):
pass

print(i)
Output:

w
e
l
o
m

Practical Python Programming for Data Scientists178

e
�� Example 2:

sequence = {‘p,’ ‘a,’ ‘s,’ ‘s’}
for val in sequence:
pass

The result is:
no output will be displayed

Difference between break and continue

Break Continue
It terminates the existing loop
and executes the residual
statement outside the loop.

It terminates the current
iteration and transfer the
control to the next iteration
in the loop

Syntax:
Break

Syntax:
continue

for i in “welcome”:
if(i==“c”):
break
print(i)

for i in “welcome”:
if(i==“c”):
continue
print(i)

w
e
l

w
e
l
c
o
m
e

Else statement in loops:
Else in for loop:
In this case, the else will be executed when the loop reaches a limit. The
statements inside for loop and statements inside else will also execute.
Example:

for i in range(1,6):
print(i)

else:
print(“the number greater than 6”)

Output:
1

Control Structures 179

2
3
4
5
The number greater than 6

Else in while loop:
In this case, when the while loop becomes false, the else loop will be ex-
ecuted. The statements inside for loop as well as else will also execute.

Program
i=1
while(i<=5):
print(i)
i=i+1

else:
print(“the number is greater than 5”)

Output:
1
2
3
4
5
the number greater than 5

6.5. FRUITFUL FUNCTIONS

Fruitful functions are functions that return value. While using fruitful
function, the return value must be handled properly by assigning it to a
variable or use it as part of the expression.

import math
x=math.sin(90)+1
print(x) # Output is 1.8939966636

In a script, calling a fruitful function without assigning the return value will
result in loss.

import math
math.sin(90) # no output-as the return val-

ue is not assigned

Practical Python Programming for Data Scientists180

6.5.1. Void Functions

Void function is a function that always returns None. It represents the
absence of value.

def show():
print(‘Welcome!!!’)

result=show()
print(result)

Output:
Welcome!!!
None

Return values:
Return keywords are used to return the values from the function.

Example:
return a-return 1 variable
return a,b– return 2 variables
return a,b,c– return 3 variables
return a+b– return expression
return 8– return value

6.6. LOCAL AND GLOBAL SCOPE

6.6.1. Global Scope

The scope of a variable refers to the places that you can see or access a
variable. A variable with global scope can be used anywhere in the program.
It can be created by defining a variable outside the function.

6.6.2. Local Scope

A variable with local scope can be used only within the function.
Example:

Control Structures 181

def sub():
b=30
c=a-b
print(c)

print(a)
add()
sub()
print(b)

Output:
50
70
20
40

Note:�]��	��	��	����
	���������������
�
��������	���
�������	�������
����
���
local value will be taken inside the function, and global value will be taken
outside the function.

6.7. FUNCTION COMPOSITION

Function composition is the ability to call one function from within another
function. It is a way of combining functions such that the result of each
function is passed as the argument of the next function. In other words, the
output of one function is given as the input of another function is known as
function composition.

Example: Compute area of circle with the given inputs center point
(xc,yc) and perimeter point (xp,yp).
Note: �����������
���	�����
�������������
������������	������������$!����Y�
	���$!����Y��}	���������
��	��	�
����������������	�����

import math
def distance(x1, y1, x2, y2):

dx = x2 – x1
dy = y2 – y1
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

def area(radius):
return (math.pi*radius*radius)

xc=int(input(“Enter xc”))
yc=int(input(“Enter yc”))

Practical Python Programming for Data Scientists182

xp=int(input(“Enter xp”))
yp=int(input(“Enter yp”))
print (area(distance(xc,yc,xp,yp)))

Output:
Enter xc10
Enter yc10
Enter xp15
Enter yp10
78.5398163397

6.8. RECURSION

Recursion is a way of programming in which a function calls itself again
and again until a condition is true. A recursive function calls itself and has a
termination condition.
� Advantages of Recursion:

=� Recursive functions provide a good look to the program.
=� With the help of the recursive function, we can break a complex

program into a simple one.
=� Rather than using iteration, recursive function provides a simple

way for the sequence generation.
= Disadvantages of Recursion:

= At certain situation, it is very hard to follow the recursion logic.
= Recursive calls consume a lot of memory spaces that makes it

�����������
= Recursive functions are very tough to debug.

6.8.1. Program for Factorial Computation Using Recursion

The process involved in factorial computation using recursion. For example
5! computation can be represented as:

5!=5*4!; 4!=4*3!; 3!=3*2!; 2!=2*1!; 1!=1*0!; and 0!=1

Control Structures 183

1
def factorial(n):
if n ==0: # base case
return 1
else:
return n * factorial(n – 1)
n=int(input(“Enter a number:”))
print (factorial(n))

Output:
Enter a number:5
120

Example 1: sum of n numbers using recursion
def sum(n):

if(n==1):
return 1

else:
return n+sum(n–1)

n=int(input(“Enter no.sum:”))
sum=sum(n)
print(“Fact is,”sum)

Practical Python Programming for Data Scientists184

Output:
�������
���
��������%*�
Fact is 55

STRINGS

CHAPTER 7

CONTENTS
7.1. String Definition ... 186

7.2. Operations On String .. 186

7.3. String Methods .. 188

7.4. String Module ... 195

7.5. List As Array .. 197

7.6. Searching .. 199

Practical Python Programming for Data Scientists186

7.1. STRING DEFINITION

A string is a sequence of null or any number of characters. An empty
string which holds no characters and has length 0.The indices of a string’s
characters are numbered from 0 from the left end and numbered from –1
from the right end. String is defined as a sequence of characters correspond
to in quotation marks (either single quotes (‘) or double quotes (“).

For a string ‘WELCOME,’ it’s index values are shown in the following
table:

Character W E L C O M E
Index from
left end

0 1 2 3 4 5 6

Index from
right end

–7 –6 –5 –4 –3 –2 –1

7.1.1. Subscript Operator

[] is a subscript operator that is used to access the characters one at a time.

Syntax:
< stringname>[<index>]

Index within [] indicates the position of the particular character in the string,
and it must be an integer expression.
Sample Code to print H

s= “HELLO”
print(s[0])

7.2. OPERATIONS ON STRING

1. Indexing:

>>>a=“HELLO”

Strings 187

>>>print(a[0])
>>>H
>>>print(a[–1])
>>>O

Positive indexing is used to access the string from the beginning.
Negative subscript helps in access the string from the end.

2. Slicing: A part of a string is called a slice. The operator [m:n] returns the
part of the string from mth index to nth index, including the charac-
ter at mth index but excluding the character at nth index. By omit-
����� �
������� ����!�� �������������
	����� ��
���
������������
�� �
��
string. By omitting the second index, the slice moves to the last part

���
����������]���
�����������!�������	�����
	��
���`�	����
��
�����
����
the slice is an empty string. If both indices are omitted, the slice is a
given string itself.

print[0:4]-HELL
print[:3]-HEL
print[0:]-HELLO

3. Concatenation: The + operator joins the text on both sides of the opera-
tor.

a=“save”
b=“earth”
>>>print(a+b)
saveearth

4. Repetitions: The * operator repeats the string on the left side number of
times the value on right hand side.

a=“panimalar ”
>>>print(3*a)
panimalarpanimalarpanimalar

5. Membership: A membership operator compares two strings with the
Boolean operator “in.” If the particular string is present in the sub-
string, then it returns true, else returns false. Usually membership
operator is used to check whether a particular character is present in
the string or not.

>>> s=“good morning”
>>>“m” in s
True
>>> “a” not in s
True

Practical Python Programming for Data Scientists188

7.2.1. Len Function

Len is a built-in function. It returns the number of characters in a string.
Sample code:

s= “HELLO PYTHON!”
print(“Length is,” len(s))

Output:
Length is 13
Immutability

The string is an immutable data structure. This means that its characters can
���	��������������
����������	��
������
������

Example:
s=‘hello, Python!’
s[0]=‘H’
TypeError: ‘str’ object does not support item assignment

7.3. STRING METHODS

Python consists of the following built-in methods for manipulating strings:

S L .
No.

Method Description

1. s.capitalize() It capitalizes only the first letter of a given
string s

2. s.center(width, fillchar) It returns a space-padded string where a
given string s is centered within the specified
width.

3. s.count(substr) Return the number of occurrences of substr
within a given string s

4. s.endswith(substr) Boolean function that returns True, if a
string s ends with substr. Else, returns False.

5. s.find(substr) Returns the smallest index in s, if substr is
found within s. Else, returns –1.

6. s.index(substr) Similar to find(), but raises an exception if
substr is not found.

Strings 189

7. s.isalnum() Boolean function that returns True, if
s is nonempty and all characters are
alphanumeric. Else, returns False.

8. s.isalpha() Boolean function that returns true, if s is
nonempty and all characters are alphabet.
Else, returns False.

9. s.isdigit() Boolean function that returns true if string is
nonempty and all characters are digits. Else,
returns False.

10. s.islower() Boolean function that returns true, if s is
nonempty and all characters are in small
letters. Else, returns False.

11. s.isupper() Boolean function that returns true, if s is not
an empty and all characters are in capital
letters. Else, returns False.

12. sp.join(seq) Returns a concatenation of the set of strings
in the given sequence (seq). The separator
between the elements is sp.

13. len(s) It returns the number of characters of a string
14. s.lower() Returns a lowercase letters of the given

string.
15. max(s) Returns the biggest alphabetical character

from the string s.
16. min(s) Returns the smallest alphabetical character

from the string s.
17. s.replace(old, new) Returns a copy of s after replacing all

occurrences of a substring old by a substring
new.

18. s.split() Returns a list of the words from the string,
using any whitespace as a delimiter.

19. s.startswith(substr) Boolean function. It returns True, when a
string s starts with substring. Else, returns
False.

20. s.swapcase() Returns all characters where they are case-
inverted.

21. title() Returns all the characters which are all in
starting capital letter

22. s.upper() Returns all characters in Uppercase.

Practical Python Programming for Data Scientists190

23. s.istitle() Boolean function that returns True, When a
string is in title case.
Else, returns False.

1. capitalize(): �
���������
����������	�����������
��
���������������	���	��Z����
It doesn’t modify the old string.
Syntax:

string.capitalize()
The capitalize() function doesn’t take any parameter.
Example:

Str1 = “python is awesome.”
str2 = str1.capitalize()
print(“Old String:,” str1)
print(“Capitalized String:,”str2)

Output:
Old String: python is awesome.
Capitalized String: Python is awesome.

2. center(): This method which returns a string that is padded with the par-
ticular character.

The syntax of center() method is:
�������������$����
¯������
	�°Y

The center() method takes two arguments:
= width-It is the length of the string with padding

characters
=� ����
	��$
���
�	�Y��	�������
	�	����

Example:
str = “Python is good”
new = str.center(24)
print(“Centered String:,” new)

Output:
Centered String: Python is good

3. count(): This method of the string takings the number of incidence of a
substring in the given string.

Normally it can be said as the count () method will search
for the substring in a given string and will return the number of times
the substring has occurred in the string. There is also the optional pa-
rameters, start, and end which is to point out the starting and ending
positions in the string in that order.
Syntax:

stringname.count(substring, start=..., end=...)

Strings 191

count() method only necessitates a solitary parameter for execution.
Though, it also has two optional parameters:

i. Substring: It is a string to be counted
ii. Start (Optional): It is the starting position from

where the search to begin
iii. End (Optional): It is the end position up to which

position we want to search
Example:

������*�¦�����

�����	���
��������������
substring = “is”
count = string1.count(substring)
print(“The count is:,” count)

Output:
The count is: 2

4. endswith(): This method returns true if the given string is ended with the
�������������������
�
������������������������	���

Syntax:
�������	����������
$����!¯����	��¯�����°°Y

The endswith() have three parameters:
i. �<��_��]������
��#������
��������
������!����
�����	�-

tan.
ii. Start (Optional): It is a Beginning location where

����!�����
�����
��������������
���������
iii. End (Optional): It is an Ending location where suf-

�!�����
�����
��������������
���������

Program:
text = “Welcome to Python to learn.”
Result1 = text.endswith(‘to learn’)
print(Result1)
Result1 = text.endswith(‘to learn.’)
print(Result1)
Result 1= text.endswith(“Welcome to Python to learn.”)
print(Result1)

Output:
False
True
True

Practical Python Programming for Data Scientists192

�����	[]���
������

�����������
������
����������������������
�����������-
tence. If it is not found it will return –1

Syntax:
�������	������$���¯����	��¯�����°°Y

�
�����$Y����

���	�����	!�����
���
�����	�	������%
i. Sub: It’s the substring to be looked for in the str

string.
ii. Start and End: substring is searched within

str[start:end]. It is the optional one
�
�����$Y����

����������	�����������	����

�� If substring is survived inside the string, it will pro-
duce the lowest index where the substring is origi-
nate.

�� If substring does not exist inside the string, it returns
–1.

Program:
qe = “Hello Python”
������*�¦�`�����$¬����
�Y
print(“Substring ‘Hello’:,” result1)
������*�¦�`�����$¬����
���Y
print(“Substring ‘welcome’:,” result1)
���$`�����$¬����Y�¿¦�À*Y%

print(“It Contains substring ‘be,’”)
else:

print(“Doesn’t contain substring”)

Output:
Substring ‘Hello’: 0
Substring ‘welcome ‘: –1
Doesn’t Contains substring

6. index(): �
������!$Y�������
�����������
������
����������
����
���
��
����
mentioned inside of the index(). If the substring is not found, then
the exception will be raised.

Syntax:

Strings 193

string variable. Index(sub[, start[, end]])
The index() method acquires three parameters:

�� Sub: It is a substring to be searched in the
string str.

�� Start and End(Optional): It is a substring
is searched surrounded by str[start:end]

Return value of the index()
�� If the substring is found in the given string

�
����
������!�
���
��������	��
�������������
will be returned

�� The value error exception will be raised
when the substring is not found.

Program:
String1 = ‘Welcome to Python programming.’
Result1= String1.index(‘Python’)
print(“Substring ‘Python’:,” Result1)
Result2 = String1.index(‘Java’)
print(“Substring ‘Java’:,” Result2)

Output:
Substring ‘Python’: 12
Result2 = String1.index(‘java’)

ValueError: substring not found

7. isalnum(): This method isalnum()returns True when all characters in the
string are alphanumeric (It should be either alphabets or numbers).
Otherwise it returns False.

Syntax:
string.isalnum()
The isalnum() doesn’t take any parameters.
The isalnum() returns:
True if all characters in the string are alphanumeric
False if at least one character is not alphanumeric

Program:
name = “Hello4”

Practical Python Programming for Data Scientists194

print(name.isalnum())
name = “Hello4 world6”
print(name.isalnum())
name = “Hello4world6”
print(name.isalnum())
name = “655”
print(name.isalnum())

Output:
True
False
True
True

8. isalpha(): This method produces True if all characters in the string are
alphabets. Otherwise, it returns False.

Syntax:
stringname.isalpha()
There is no parameter inside of isalpha()
The Output of isalpha() is:
True-if all characters in the string are alphabets (both lower-
case and uppercase acceptable).
False-if at least one character is not alphabet.

Program:
n = “Hello”
print(n.isalpha())
n = “22145”
print(n.isalpha())
n= “Hello Wor33ld”
print(name.isalpha())

Output:
True
False
False

9. islower(): This method proceeds True if all alphabets in a string are low-

Strings 195

ercase alphabets. If the string holds at least one uppercase alphabet,
it precedes False.

Syntax:
stringname.islower()
The islower() method do not take any parameters.
The islower() method returns:

= It Returns True if all alphabets that exist in
the string are lowercase alphabets.

= It Returns False if the string contains at least
one uppercase alphabet.

Program:
st = ‘hello world’
print(st.islower())
st= ‘hello5 worl3d’
print(st.islower())
st = ‘hello World’
print(st.islower())

Output:
True
True
False

7.4. STRING MODULE

The string module of Python is a file that offers additional functions, classes,
and variables to manipulate standard strings. But, some methods that are
available in the standard data structure are not found in the string module
(For example, isalpha()).

When we import a module, the following syntax is used:
import module1[, module2[,... modulen]

When an ‘import’ statement is encountered by the interpreter, the corre-
sponding module(s) is imported if it is available in the search path.

dir() Function
It returns a sorted list of strings that includes the names of all modules, func-
��
����	����	��	������
	��	�������������	��
�����
Sample code using dir():

import string

Practical Python Programming for Data Scientists196

content = dir(string)
print(content)

Sample output:

Escape sequences

Escape
Sequence

Description Example

\n new line >>> print(“hai \nhello”)
hai
hello

\\ prints
Backslash (\)

>>> print(“hai\\hello”)
hai\hello

\’ prints Single
quote (‘)

>>> print(“\’”)
‘

\” prints Double
quote
(“)

>>>print(“\”“)
“

\t prints tab
sapace

>>>print(“hai\thello”)
hai hello

\a ASCII Bell
(BEL)

>>>print(“\a”)

Strings 197

7.5. LIST AS ARRAY

Python lists can store standards of dissimilar data types. But, arrays in py-
thon can only store values of similar data type. Array is not a fundamental
data type in Python. So, the standard ‘array’ module has to be imported as:

from array import *
Then an array has to be declared as:

arrayID = array(typecode, [Initializers])
Here, ‘arrayID’ is the array name, ‘typecode’ is the array type and ‘Initial-
izers’ are the values with which an array is initialized.
Example:

my_array = array(‘i,’[1,2,3,4])

Type Code Description
‘b’ It is a signed integer with size 1 byte
‘B’ It is a unsigned integer with size 1 byte
‘c’ It is a character with size 1 byte
‘u’ It is a Unicode character with size 2 bytes
‘h’ It is a signed short integer with size 2 bytes
‘H’ It is a unsigned short integer with size 2 bytes
‘i’ It is a signed integer with size 2 bytes
‘I’ It is a unsigned integer with size 2 bytes
‘w’ It is a Unicode character with size 4 bytes
‘l’ It is a signed integer with size 4 bytes
‘L’ It is a unsigned integer with size 4 bytes
‘f’ It is a floating-point with size 4 bytes
‘d’ It is a floating-point with size 8 bytes

Sample code:
from array import *
myArray = array(‘i,’ [1,2,3,4,5])
for i in myArray:
print(i)

Output:
1
2
3

Practical Python Programming for Data Scientists198

4
5

Lists as Arrays
As Python do not have a native array data structure, it is required to load the
NumPy python module. Both the visual module and the pylab module load
NumPy. But, if we use plain python, there is no array. Since arrays look a lot
like a list, lists can be employed as arrays. However, arrays (instead of lists)
should be used to perform arithmetic operations. Moreover, arrays will store
�	�	��
����
��	�����	��������������
In Python, a one-dimensional array can easily be represented as a list. The
�
��
������
��������	��Z���	��	��	��¬��"��	���	���	���������
������
���	������
with its items, using the concept with lists in Python.

myA=[45, 23, 76, 12, 33]
print(“The given elements are”)
for i in range(len(myA)):

print(myA[i])
m=0
for i in range(len(myA)):

if m<myA[i]:
m=myA[i]

print(“The largest is,” m)

Output:
The given elements are:

45
23
76
12
33
The largest is 76

A 2D array can be created using lists within the list. The following code cre-
ates the 2×2 matrix as [[11,22],[33,44]] with the list [11,22] representing the
������
��	����
�������¯�����°���������������
�����
����
��

Sample code:
myA=[[11,22],[33,44]]

Strings 199

for i in range(len(myA)):
for j in range(len(myA [i])):

print(myA [i][j])

Output:
11
22
33
44

In a similar manner, a 3×2 matrix with elements [‘aa,’ ‘bb,’ ‘cc,’ ‘dd,’ ‘ee,’
‘ff’] is created and displayed along with their indices in the following code:

Sample code:
myA=[[‘aa,”bb’],[‘cc,”dd’],[‘ee,”ff’]]
for i in range(len(myA)):

for j in range(len(myA[i])):
print(‘[,’i,,’’j,’],’myA[i][j])

Output:
[0 0] aa
[0 1] bb
[1 0] cc
[1 1] dd
[2 0] ee
[2 1] ff

7.6. SEARCHING

7.6.1. Sequential Search

Linear search or sequential search is a method for discovering a scrupulous
value in a list that scrutiny each element in sequence until the preferred
element till the end with the list. It is not compulsory for the list to be ordered.

20 30 40 50 60
0 1 2 3 4

��Case 1:

Search value = 50

Practical Python Programming for Data Scientists200

�� Step 1: Compare 50 with value at index 0
�� Step 2: Compare 50 with value at index 1
�� Step 3: Compare 50 with value at index 2
�� Step 4: Compare 50 with value at index 3 (Success)

��Case 2:

Search value = 70
�� Step 1: Compare 70 with value at index 0
�� Step 2: Compare 70 with value at index 1
�� Step 3: Compare 70 with value at index 2
�� Step 4: Compare 70 with value at index 3
�� Step 5: Compare 70 with value at index 4

Failure
Python program for sequential search

������`��	��
$�������Y%�¼�������������
���
����`�����	����	��

pos=0
found=“False”
while pos<len(ls):

if(ls[pos]==item):
found=“True”
break

pos=pos+1
return(found,pos+1)

ls=[]
i=0
n=int(input(“Enter number with elements in the list”))
for i in range(0,n,1):

v=input(“Enter the no.”) # Input number
ls.append(v)

print(ls)
key=input(“Enter key to be searched”) # Read search key
print(seqsearch(ls,key)) # call function for sequential search

Input/Output:
Enter number with elements in the list 3
Enter the no. 1
Enter the no. 2
Enter the no. 3
[‘1,’ ‘2,’ ‘3’]
Enter key to be searched 2

Strings 201

(True, 2)

7.6.2. Binary Search

A binary search or half-interval search algorithm calculates the target
position value within a sorted array. The binary search algorithm is classified
as a divide-and-conquer search algorithm and implemented in logarithmic
time. The fundamental operation concerned in binary search is as follows.

if (data value == middle)
data value is found
else if (data value < middle)
search the left half with list with the same routine
else
search right half with list with the same routine

��Case 1: value == a[mid]
Value = 11
low = 0
high = 8
mid = (0 + 8) / 2 = 4

1 2 7 9 11 13 17 23 27
0 1 2 3 4 5 6 7 8
Á Á Á
low mid high

In this case, the key-value we are searching for is positioned in the middle
position. The search operation can end there and returns an approximate
value (Figure 7.1).

��Case 2: val > a[mid]
val = 23
low = 0, high = 8
mid = (0 + 8) / 2 = 4
new low = mid + 1 = 5

1 2 7 9 11 13 17 23 27
0 1 2 3 4 5 6 7 8
Á Á Á Á
low mid n e w

low
high

Figure 7.1. Case 2-positon updation.

Practical Python Programming for Data Scientists202

In this case, the value 23 is larger than the middle. Hence it could be in
the right half array that begins from position 5 to position 8. It is shown in
Figure 7.1 that the new low is at position 5. The new positions with low and
high, are enforced to the determined right half again.

��Case 3: val < a[mid]
val = 7
low = 0, high = 8
mid = (0 + 8) / 2 = 4
new high = mid – 1 =5

1 2 7 9 11 13 17 23 27
0 1 2 3 4 5 6 7 8
Á Á Á Á
low n e w

high
mid high

The data value to be searched in this case is 7 that is less than the value
at mid position. As the array is sorted, the left half might have the search
key. The left half array will begin from the alike starting position low=0 but
the high position will be altered to mid – 1, i.e., 3. This algorithm is executed
once more on this left half.
Python program for binary search.

def binary_search(arr, x):
low = 0
high = len(arr) – 1
mid = 0
while low <= high:

mid = (high + low) // 2
if arr[mid] < x:

low = mid + 1
elif arr[mid] > x:

high = mid – 1
else:

return True
return False

print(binary_search([11,22,33,55,88],32))
function call
print(binary_search([21,22,23,25,28],25))

Strings 203

Output:
False
True

7.6.3. Illustrative Programs

1. Square root using Newtons method:

def newtonsqrt(n):
root=n/2
for i in range(10):

root=(root+n/root)/2
print(root)

�¦���$�����$���������������
�����#`��%��YY
newtonsqrt(n)

Output:
��������������
�����#`��%�+
3.0

2. GCD with two numbers:

x=int(input(“Enter the smaller number1:”))
y=int(input(“Enter the larger number2:”))
for i in range(1,x+1):

if(x%i==0 and y%i==0):
gcd=i

print(“GCD is:,”gcd)

Output:
Enter the smaller number1:8
Enter the larger number2:24
GCD is: 8

3. Exponent with number:

def powr(base1,exp1):
if(exp1==1):

return(base1)
else:

return(base1*powr(base1,exp1–1))
base1=int(input(“Enter the base number: ”))
exp1=int(input(“Enter the exponential value:”))

Practical Python Programming for Data Scientists204

res=powr(base1,exp1)
print(“Result is:,”res)

Output:
Enter the base number: 2
Enter the exponential value:3
Result is: 8

4. Sum with array elements:

a=[2,3,4,5,6,7,8]
sum=0
for i in a:
sum=sum+i
print(“the sum is,”sum)

Output:
the sum is 35

5. Linear search:

a=[20,30,40,50,60,70,89]
print(a)
search=int(input(“enter an element to search:”))
for i in range(0,len(a),1):

if(search==a[i]):
print(“element found at index,”i+1)
Break

else:
print(“not found”)

Output:
[20, 30, 40, 50, 60, 70, 89]
enter an element to search:30
element found at index 2

6. Binary search:

a=[20, 30, 40, 50, 60, 70, 89]
print(a)
search=int(input(“enter element to search:”))

Strings 205

start=0
stop=len(a)–1
while(start<=stop):

mid=(start+stop)//2
if(search==a[mid]):

print(“element found at,”mid+1)
break

elif(search<a[mid]):
stop=mid – 1

else:
start=mid+1

else:
print(“not found”)

Output:
[20, 30, 40, 50, 60, 70, 89]
enter an element to search:30
element found at 2

7. Sample Pascal’s triangle:

Using recursion:
def pascaltri(m):

if m == 1:
return [[1]]

else:
res = pascaltri(m–1)
last = res[–1]

Practical Python Programming for Data Scientists206

res.append([(x+y) for x,y in zip([0]+last, last+[0])])
return res

def display(tree):
if len(tree) == 0:

return ”
else:

line1 = ‘ ‘ * len(tree)
for cell1 in tree[0]:

line1 += ‘ %2i’ % cell1
return line1 + “\n” + display(tree[1:])

print(display(pascaltri(int(6))))
Input/Output:

Using iteration:
def pascaltri(m):

row1 = [1]
a = [0]
for x in range(max(m,0)):

print(row1)
row1=[l+r for l,r in zip(row1+a, a+row1)]

return m>=1
pascaltri(6)

LISTS

CHAPTER 8

CONTENTS
8.1. Lists .. 208

8.2. List Operations ... 209

8.3. List Slices .. 209

8.4. List Methods ... 210

8.5. List Loop ... 215

8.6. Mutability ... 216

8.7. List Aliasing .. 217

8.8. Cloning Lists ... 219

8.9. List Parameters .. 221

8.10. Deleting List Elements ... 223

8.11. Python Functions For List Operations .. 223

8.12. List Comprehension .. 224

Practical Python Programming for Data Scientists208

8.1. LISTS

A list is a sequence of collection of any type of values and be able to be
created as a set of comma separated values within square brackets[]. The
values in a list are called elements or items. A list inside another list is called
nested list.

Sample code for creating lists
list1 = [“Ram,” “Chennai,” 2017] # list of differ-

ent types of el-
ements

list2 = [10, 20, 30, 40, 50] # list of num-
bers

list3 = [] # empty list
list4 = [“Priya,” 2017, 99.8, [“Mumbai,” “India”]] # nested list
print(list1)
print(list2, list3)
print(list4)

8.1.1. Accessing Elements in Lists Using Subscript Operator

The indices of the list’s elements are numbered from 0 from the left end
and numbered from –1 from the right end. For a list [“Ram,” “Chennai,”
2017], the indices of elements “Ram,” “Chennai” and 2017 are shown in the
following table.

Element “Ram” “Chennai” 2017
Index from left end 0 1 2
Index from right end –3 –2 –1

The elements in the list are accessed using the subscript operator [] (also
known as slicing operator) is used. Index within [] indicates the index of
the particular element which is present in the list, and it must be an integer
expression.

For example, in a list stulist = [“Ram,” “Chennai,” 2017], stulist[1]
returns Chennai as its output.

Lists 209

8.2. LIST OPERATIONS

Lists operate on + and * operators. Here, + represents concatenation and *
represents repetition. The following code explains the concatenation of two
lists named num1 and num2:

Sample Code and output for + (Concatenation)

Code Output

num1=[10, 20, 30] [10, 20, 30]
num2=[40, 50] [40, 50]
num3=num1+num2 [10, 20, 30, 40, 50]
print(num1)

print(num2)
print(num3)

The following code is another example for concatenation, where a list
contains elements of different data types:

Code Output

stulist = [“Ram,” “Chennai,”
2017]

[“Ram,” “Chennai,” 2017]

newlist = stulist+[“CSE”] [“Ram,” “Chennai,” 2017,
“CSE”]

print(stulist)

print(newlist)

Sample code and output for * (Repetition)
The following code describes the repetition operation which is performed

on a list num1 for 3 times:

Code Output

num1=[10, 20] [10, 20]
num2=num1*3 [10, 20, 10, 20, 10, 20]

print(num1)

print(num2)

8.3. LIST SLICES

A part of a list is called a list slice. The operator [m:n] returns the element
from the list from mth index to nth index, including the element at mth

Practical Python Programming for Data Scientists210

index but excluding the element at nth index.]���
�����������!����
���������
��
elements starting from the beginning will be returned. If the second index is

���������
���������������
��
������������������������]���
�����������!��	����
is greater than or equals to the second value, then it returns an empty string.
If both indices are omitted, the slice is a given string itself.

Code Output Description
stulist = [“Ram,”
“Chennai,” 2017]

List is created with 3
elements

print(stulist[0]) Ram Slice has the element at
index 0

print(stulist[:3]) [“Ram,”
“Chennai,”
2017]

Slice is from the
beginning

print(stulist[1:]) [“Chennai,”
2017]

Slice goes to the end

print(stulist[1:1]) [] Slice is empty
print(stulist[5:2]) [] Slice is empty
print(stulist[:]) [“Ram,”

“Chennai,”
2017]

Entire list is the slice

print(stulist[–2:]) [“Chennai,”
2017]

Slice goes to the end

print(stulist[:–2]) [“Ram”] Slice is from the
beginning

print(stulist[1:3]) [“Chennai,”
2017]

Slice is from 1st index
to 2nd index (excluding
the 3rd index)

8.4. LIST METHODS

Python gives the following methods that work on lists:
1. Append: This function is used to add an element to the end of specified
list and does not return any value.

Syntax:
listname.append(element)

Sample code for append:

Lists 211

stulist = [“Ram,” “Chennai,” 2017]
stulist.append(“CSE”)
print(“After appending”)
print(stulist)

2. Count: This function is used to returns the number of occurrences of an
�����������	��������������.

Syntax:
listname.count(element)

Sample code for count:
stulist = [“Ram,” “Chennai,” 2017, “Priya,” “Mumbai,” 2017]
print(stulist)
print(“Count for Chennai:,” stulist.count(“Chennai”))
print(“Count for 2017:,” stulist.count(2017))

3. Extend: "��������
���
�������
���
�����
���������
��
������������	����
���
not return any value.

Syntax:
����������!����$���
������Y

Sample code for extend:
stulist = [“Ram,” “Chennai,” 2017]
dept = [“CSE”]
print(“Before Extend:,” stulist)
stulist.extend(dept)
print(“After Extend:,” stulist)

Practical Python Programming for Data Scientists212

4. Index: It returns the index of an element, if an element is found in the
�������������. Else, an exception is raised.

Syntax:
listname.index(element)

Sample code for index:
stulist = [“Ram,” “Chennai,” 2017]
print(“Index of Ram:,” stulist.index(“Ram”))
print(“Index of Chennai:,” stulist.index(“Chennai”))
print(“Index of 2017:,” stulist.index(2017))

5. Insert: This function is used to inserts the given element at the given
����!����	�������������� and does not return any value

Syntax:
listname.insert(index, element)

Sample code for insert:
stulist = [“Ram,” “Chennai,” 2017]
print(“Before insert:,”stulist)
stulist.insert(1, “CSE”)
print(“After insert:,” stulist)

6. Pop: ���
����	������������
������������
���
������
���������������
Syntax:

listname.pop()
Sample code for pop:

stulist = [“Ram,” “Chennai,” 2017, “CSE,” 92.7]

Lists 213

print(“Initial list is:,” stulist)
print(“Popping the last item:,” stulist.pop())
print(“After popping the last item, the list is:,” stulist)

7. Pop(index): Removes and returns the element at given index.

Syntax:
listname.pop(index)

Sample code for pop(index):
stulist = [“Ram,” “Chennai,” 2017, “CSE,” 92.7]
print(“Initial list is:,” stulist)

print(“Popping an item with index 2:,” stulist.pop(2)) #2 is item’s location
to be removed

print(“Now the list is:,”stulist)

8. Remove: Removes an element from the list and does not return any value.

Syntax:
listname.remove(element)

Sample code for remove:
stulist = [“Ram,” “Chennai,” 2017, “CSE,” 92.7, 2017]
print(“Initial list is:,” stulist)
stulist.remove(“CSE”)
print(“After removing CSE from the list:,” stulist)
stulist.remove(2017)
print(“After removing 2017 from the list:,” stulist)

Practical Python Programming for Data Scientists214

9. Reverse: Reverses the entire list

Syntax:
listname.reverse()

Sample code for reverse:
stulist = [“Ram,” “Chennai,” 2017, “CSE,” 92.7]
print(“Initial list is:,” stulist)
stulist.reverse()
print(“After reversing, the list is:,” stulist)

10. Sort: Sorts the list in ascending order.

Syntax:
listname.sort()

Sample code for sort:

Example 1:
numlist = [6, 28, 11, 4, 20, 26, 13, 12]
print(“Before sorting:,” numlist)
numlist.sort()
print(“After sorting is:,” numlist)

Sample output:
Before sorting: [6, 28, 11, 4, 20, 26, 13, 12]
After sorting is: [4, 6, 11, 12, 13, 20, 26, 28]

Example 2:
stulist = [“Ram,” “Chennai,” CSE,”]
print(“Initial list is:,” stulist)

Lists 215

stulist.sort()
print(“After sorting, the list is:,” stulist)

Sample output:
Initial list is: [“Ram,” “Chennai,” “CSE,”]
After sorting, the list is: [“CSE,” “Chennai,” “Ram”]

8.5. LIST LOOP

The elements in the list can be traversed using the “for” loop. The following
code shows the exploit of for loop in accessing the elements of a list.

numlist = [11, 22, 43, 54, 65]
for j in numlist:
print(j)

Output:
11
22
43
54
65

The following code demonstrates the use of range and len functions in ac-
cessing the indices of the elements of a list:

numlist1 = [10, 20, 30, 40, 50]
for i in range(len(numlist)):

print(i)

Output:
0
1
2
3
4

������ ���� ���	������������������
���
��
��������� �
���������
�����������
present in the list and range is a function that returns a list of index starting
��
�����
���¢�*���
����������
�������
�$�������
����������Y�
���
���������
��

Practical Python Programming for Data Scientists216

following code gives an idea to traverse the list and to update the elements
of a list with the help of range and len functions in for loop:

Numlist1 = [11, 12, 13, 14, 15]
for j in range(len(numlist1)):

numlist1[j]=numlist1[j]+10
for j in numlist1:

print(j)

Output:
21
22
23
24
25

A for loop for empty list not at all executes the body and is shown in the
following code:

numlist = []
for i in numlist:

print(“never executes”)

8.6. MUTABILITY

The list is a mutable data structure. This means that its elements can be
replaced, inserted, and removed. Single or multiple elements of a list can be
updated using the slice operator. New elements can be added to the list using
the append() method.

The following code replaces “Ram” which is at index 0 in the stulist by
“Priya.” The values are shown in the output for both instances.

stulist = [“Ram,” “Chennai,” 2017]
print(“Before mutation,” stulist)
stulist[0] = “Priya”
print(“After mutation,” stulist)

Output:
Before mutation [“Ram,” “Chennai,” 2017]

Lists 217

After mutation [“Priya,” “Chennai,” 2017]

8.7. LIST ALIASING

When we create two lists, we get two objects as exposed in the following
code and the corresponding state diagram (Figure 8.1):

Figure 8.1. State diagram.

Here, the two lists list1 and list2, is correspondent to each other as they
contain the same elements, but are not identical because they belong to
different objects. If they belong to the same object, then they are identical.
But if two objects are the same and equal, then they are not inevitably
identical.

In the following code, the same object having two references. We say an
object to be aliased when the object with more than one reference has more
than one name.

����¦¯**�¡¡°
���
��¦����
�����$�����������
��Y� ¼� ������� ������ 	�� ����� 	���

second are the same object
The state diagram for the above code is as shown in Figure 8.2.

Practical Python Programming for Data Scientists218

Figure 8.2. State diagram.

]�� �
�� 	��	���� $�
����Y�
������ ��� ���	����� �
����	��
��� �
��� ���
���

����������������
��
�
���
������	��
��]���
���
��
������
��������*�	�������¡�
are aliased objects. Changes made in list1 affect list2 and similarly, changes
done in list2 affect list1.
Sample code:

����¦¯**�¡¡°
���
��¦����
�����$���������%�������Y
print(“Second is:,” second)
����¯�°¦*�
�����$���������%�������Y
print(“Second is:,” second)
second[1]=20
�����$���������%�������Y
print(“Second is:,” second)

Though aliasing can be helpful, it may lead to errors. So, avoid aliasing
in mutable objects. To prevent aliasing in lists, a new empty list can be
created and the contents of the existing list can be copied to it, as given in
the following code:
list1=[1,2] # Existing list
list2=[] # New and Empty list

for e in list1:

Lists 219

list2.append(e)
print(“List1 is:,” list1)
print(“List2 is:,” list2)
list1[0]=10
�����$�"������
����	��
��Y
print(“List1 is:,” list1)
print(“List2 is:,” list2)

8.8. CLONING LISTS

Assignment statements in Python is not copying objects. They simply create
bindings between two objects. For mutable sequences (like lists), a copy
of an existing object may be required, so that one object can be changed
without affecting another.
In lists, cloning operation can be used to create a copy of an existing list
�
��
	���
	������	������
����
���
���
�������������
�����������	�
�
�����
��
copy contains the same elements as the original.

��Method 1: list() function:
Built-in list() function can be used for cloning lists with the

following syntax:
Newlistname = list(Oldlistname)

Sample code:
old = [10, 20, 30, 40, 50]
new = list(old)
print(“Old list is:,” old)
print(“New list is:,” new)
old[0]=5
print(“Old list is:,” old)
print(“New list is:,” new)

Practical Python Programming for Data Scientists220

��Method 2: copy.copy() function:

Syntax:
Newlistname = copy.copy(Oldlistname)
copy.copy() is little slower than list() since it has to deter-

������	�	������
��
�������������

Sample code:
import copy
old = [10, 20, 30, 40, 50]
new = copy.copy(old) # Returns a shallow copy of old list
print(“Old list is:,” old)
print(“New list is:,” new)
old[0]=5
print(“Old list is:,” old)
print(“New list is:,” new)

��Method 3: copy.deepcopy() function:

Syntax:
Newname = copy.deepcopy(Oldname)

copy.deepcopy() is the slowest and memory-consuming method.
Sample code:

import copy
old = [10, 20, 30, 40, 50]
new = copy.deepcopy(old) # Returns a deep copy of old

Lists 221

print(“Old list is:,” old)
print(“New list is:,” new)
old[0]=5
print(“Old list is:,” old)
print(“New list is:,” new)

copy() (also known as shallow copy) and deepcopy() differs in the usage
of compound objects that are objects containing other objects, like lists).
copy() creates a new compound object first and then include references to
the objects of the original. deepcopy() constructs a new compound object and
then, recursively, inserts copies to the objects of the original. The following
code illustrates the use of deepcopy() for a compound (nested) list.
Sample CODE:

import copy
old = [1, 2, [“a,”“b”]]
new = copy.deepcopy(old)
print(“Old list is:,” old)
print(“New list is:,” new)
new[0] = “c”
new[2][1] = “d”
print(“Old list is:,” old)
print(“New list is:,” new)

8.9. LIST PARAMETERS

When a list is passed as a parameter to a function, the function gets a
reference to the list. In the following code, numlist is a list and it is passed as
a parameter to my_insert() function. Within my_insert(), it is referenced as t.

Practical Python Programming for Data Scientists222

������±������$�Y%� ¼�������
���������
�
t.insert(1,15)

numlist = [10, 20, 30, 40, 50]
print(“Before calling my_insert function:,” numlist)
my_insert(numlist) # function call
print(“After calling my_insert function:,” numlist)

Here, the parameter t and the variable numlist are denotes the same object.
my_insert() function inserts a new element 15 at index 1 in the list. This
change is visible to the caller. The elements of a list before and after calling
my_insert() are given below as the output:

Before calling my_insert function: [10, 20, 30, 40, 50]
After calling my_insert function: [10, 15, 20, 30, 40, 50]

The following program employs a function my_display() that creates and
returns a new list.

Within my_display(), numlist is referenced as n.
Sample Code:
������±�����	�$�Y%� ¼�������
���������
�

return n[:]
numlist = [10, 20, 30, 40, 50]
print(“numlist is:,” numlist)
newlist=my_display(numlist) # function call
print(“newlist is:,” newlist)

The following program includes a function my_display() that creates and
displays the elements of a list.
Sample code:

������±�����	�$�Y%� ¼�������
���������
�
nlist= n[:]
print(“Within a function:,” nlist)

numlist = [10, 20, 30, 40, 50]
print(“numlist is:,” numlist)

Lists 223

my_display(numlist) # function call

8.10. DELETING LIST ELEMENTS

The element from the list can be removed using, del operator, if an element
to be deleted is known. In the following code, the element “Chennai” is
deleted by mentioning its index in the del operator.

stulist = [“Ram,” “Chennai,” 2017, “CSE,” 92.7]
print(“Initial list is:,” stulist)
del stulist[1]

print(“Now the list is:,” stulist)

pop() and remove() methods can also be used to delete list elements.

8.11. PYTHON FUNCTIONS FOR LIST OPERATIONS

1. len

It returns the total number of
elements in a list.

 Syntax: len(listname)

Code Output
stulist = [“Ram”, “Chennai”, 2017,
“CSE”, 92.7]
print(“Length is : “, len(stulist)) Length is : 5

Practical Python Programming for Data Scientists224

2. max

It returns the largest item from the
list
Syntax: max(listname)

3. min

It returns the smallest item from the
list
Syntax: min(listname)

8.12. LIST COMPREHENSION

Comprehensions permit sequences to be built from other sequences. It
provides a brief way to create lists.

Code Output
numlist = [6, 28, 11, 4, 20, 26, 13, 12]
print(“Maximum is : “, max(numlist)) Maximum is : 28

print(“Minimum is : “, min(numlist)) Minimum is : 4

stulist = [“Anu”, “Chennai”, “CSE”]
print(“Maximum is : “, max(stulist)) Maximum is : Chennai

print(“Minimum is : “, min(stulist)) Minimum is : Anu

4. list

It Converts a tuple into a list and
returns a list.
Syntax: listname=list(tuplename)

Code Output
stu_tuple = (“Anu”, “Chennai”, 2017,
“CSE”, 92.7)

Tuple elements : (“Anu”,
“Chennai”,

print(“Tuple elements : “, stu_tuple) 2017, “CSE”, 92.7)

Lists 225

stulist = list(stu_tuple) List elements : [“Anu”,
“Chennai”,

print(“List elements : “, stulist) 2017, “CSE”, 92.7]

A list comprehension contains the following parts:
=� Input sequence.
=� Variable that is representing members of the input sequence.
=� An optional expression.
=� An output expression that is producing elements of the output list

from members of the Input Sequence that gratify the predicate.

Syntax:
[Expression for item in list if condition]
This is equivalent to:

for item1 in list:
if conditional:

expression
����¦�¯�!������
�$�Y��
�������
�����������$�Y°

New is the resultant list. expression(i) is based on the variable used for each
������������
��
���������]����������������	�����	������������������	�������
Example:

a_list = [1, “4,” 9, “a,” 0, 4]
squared = [e**2 for e in a_list if type(e) == int]
print(squared)

= The iterator part iterates through each member e of the input
sequence a_list.

= The predicate is used to check if the member is an integer.
= If the member is an integer then it is accepted to the output

expression, squared, to become a member of the output list.

Practical Python Programming for Data Scientists226

Example:

xx=[I for I in range(1,10)]
print(xx)

Sample output:

[1, 2, 3, 4, 5, 6, 7, 8, 9]
squares=[xx**2 for xx in range(10)]
print(squares)

str=[“this,” “is,” “an,” “example”]
items=[w[0] for w in str]
print(items)

value=[xx+yy for xx in [10,20,30] for yy in [1,2,3]]
print(value)

This example, adds the values in list x to each value in list y.

TUPLES

CHAPTER 9

CONTENTS
9.1. Tuples ... 228

9.2. Tuple Methods .. 235

9.3. Other Tuple Operations .. 236

9.4. Tuples As Return Values .. 237

9.5. Built-In Functions With Tuple .. 238

9.6. Variable-Length Argument Tuples .. 238

9.7. Comparing Tuples ... 239

Practical Python Programming for Data Scientists228

9.1. TUPLES

A tuple is a collection of values of different types. Unlike lists, tuple values
are indexed by integers values. The difference is that tuples are immutable,
i.e., not modifiable.

9.1.1. Advantages of Tuple over List

�� Tuples are like lists, so both of them are used in related situations as
well. But there are certain advantages of tuples over list, which are
scheduled below:

�� Tuple generally used for heterogeneous (different) data types, while
list for homogeneous (similar) data types.

�� Tuples are immutable. Hence iteration done through tuples is quick-
er when compared to the list.

�� Tuple elements could be used as a key element for a dictionary that
is not possible with list.

As we have seen before, a tuples are said to be comma-separated values.
Syntactically, a tuple can be represented like this:

>>> t = “aa,” “bb,” “cc,” “dd,” “ee”
Even if it is not necessary to parentheses to enclose tuples, it is so.

t1 = (“aa,” “bb,” “cc,” “dd,” “ee”)
t2=(11,22,33,44,55)

The empty tuple can be created by simply using the parentheses.
t3=()

The tuple with one element can be created as below. It takes one comma
after the element.

t4=(“s,”)
print(type(t4))

t5 = “a,”
print(type(t5))

Tuples 229

A value of tuple in parenthesis is not a tuple. The below program code ex-
plains this.

t2 = (“aa,”)
print(type(t2[0]))

The built-in function tuple can be used to create tuple. To create an empty
tuple, no arguments is passed in the built-in function.

t = tuple() # built-in function
print(t)

If the argument is a progression (string, list or tuple), the result is a tuple
with the elements of the sequence:

tt = tuple(“hello”)
print(tt)

tt = tuple(“12345”)
print(tt)

Program to illustrate the tuple creation for single element
#only parentheses is not enough

tup1 = (“hai”)

Practical Python Programming for Data Scientists230

print(type(tup1))
#need a comma at the end

tup2 = (“hai,”)
print(type(tup2))

#parentheses is optional
tup3 = “hai,”
print(type(tup3))

9.1.2. Accessing Values

To access the tuple elements slicing (bracket operator []) operator along
with index or indices is used.

t1 = (“C,” “C++,” “python,” 1997, 2000);
t2 = (1, 2, 3, 4, 5, 6, 7);
t3= (“a,” “b,” “c,” “d,” “e”)
print(“tup1[0]:,” t1[0])
print(“tup1[1]:,” t1[1])
print(“tup2[1:5]:,” t2[1:5])
print(“tup2[1:]:,” t2[1:])
print(t[0])

Program to illustrate the accessing the tuple elements
t1 = [“p,”“y,”“t,”“h,”“o,”“n”]
print(t1[0])
print(t1[5])

Tuples 231

print(t1[2]
print t1[–1])
print(t1[–6])

nested tuple
nesttup = (“hello,” [18, 42, 36], (11, 22, 53))

nested index
print(nesttup[0][4])
print(nesttup[1][2])
print(nesttup[2][0])

9.1.3. Updating Tuples

Tuples are immutable means that the tuple values could not be updated or
changed. However, the portions of existing tuples are added with a new
tuple to create another tuple as the following example demonstrates.
Consider the following tuple:

t3= (“aa,” “bb,” “cc,” “dd,” “ee”)

X
�����������	������
�������]���
�������
��
�������
	���
����
������	�����
��
t3[1]= “B”
TypeError: “tuple” object does not support item assignment

Instead of modifying an element in the tuple sequence, it is obvious to sim-
ply replace one tuple with another:

t = (“A,”) + t3 [1:]
print(t)

Practical Python Programming for Data Scientists232

�������
����������������	���������	�������
��"���"�����������������	�������
�
the value “A” is combined with tuple t3 having index from 1 to the last ele-
ment. The tuple value t3[0]=“a” is replaced by “A.”

9.1.4. Delete Tuple Elements

It is impossible to delete a single element in the tuple. To delete an entire
tuple, the keyword del is used.
Let’s consider an example:

t = (“C,” “C++,” “python,” 1998, 2001);
print(t)
del(t)
print(“After deleting: ”)
print(t)

After deleting:

Traceback (most recent call last):
File “main.py,” line 5, in
print(t)
X	�����
�%��	�����������
��������

Program for updating and deleting tuples
t1 = (2, 3, 4, [5, 6]) #Here [5,6] is a list

so it can be changed
whereas tuple can-
not be changed

print(t1)

We cannot change an element
t1[3][0] = 7
print(t1)

Tuples 233

Tuples can be reassigned
t1 = (“h,”“e,”“l,”“l,”“o”)
print(t1)

Concatenation
print((1, 2, 3) + (4, 5, 6))

Repetition operator
print((“Repeat,”)*3)
delete tuple
del(t1)
print(t1)

9.1.5. Tuple Assignment

Tuple assignment makes it possible to create and assign values for more
than one tuple in a single statement itself. For example,

x1, y1 = 1, 2
print(x1)
print(y1)

Practical Python Programming for Data Scientists234

In general, to swap the values of two variables, a transitory variable is used.
For example, to swap xq and yq:

temp = xq
xq = yq
yq = temp

This solution is clumsy; the tuple assignment is more elegant.
a1, b1 = b1, a1

In the expression, the left side belongs to the tuple of variables and the right
side belongs to a tuple of expressions. Each value is allocated to its corre-
sponding variable.

The variables on the left and right side of the assignment must be same:
a1, b1 = 1, 2

In this a1 is assigned with 1 and b1 is assigned with 2.

For the assignment:
a1, b1= 1,2,3

This statement creates error, as:
Value Error: too many values to unpack

The right side of the assignment statement can be any kind of sequence
(string, list or tuple). For example, to split an email address into a user name
and a domain, the split function can be used as follows.

mail_id = “students@python.org”
uname, domain = mail_id.split(“@”)
print(uname)
print(domain)

In this, the split function is used to separate the value into two parts. The
return value from the split function����	������
����
���������>��
���������������
is assigned to uname and the second is assigned to domain.

Tuples 235

Program to illustrate tuple creation and assignment

t1 = () print(t1)
t2 = (11, 21, 13)
print(t2)
t3 = (1, “Hello,” 2.4)
print(t3)
t4 = (“World,” [18,14,16], (11, 12,1 3))
print(t4)

Tuple can be created without parentheses (called tuple packing)
t5 = 3, 4.6, “ABC”
print(t5)

Tuple unpacking is also possible
#tuple assignment

x, y, z = t5
print(x)
print(y)
print(z)

9.2. TUPLE METHODS

In python methods for adding items and deleting items are not available.
The methods available are count and index.

=� count(x) method proceeds the number of occurrences of x
=� ����!$!Y����

��������������!�
���
�������
����������
���
�������

x.

Practical Python Programming for Data Scientists236

Program for count and index methods
t1 = (“p,”“y,”“t,”“h,”“o,”“n,”“p,”“r,”“o,”“g,”“r,”“a,”“m”)
Count print((t1.count(“p”)))
Index
print(t1.index(“y”))
print(t1.index(“h”))

9.3. OTHER TUPLE OPERATIONS

There are some additional tuple operations such as tuple membership test
and iterating throughout a tuple. Tuple Membership Test operation can used
to check whether an item belongs to a tuple or not. This is done using the
keyword in and not in. Iteration through a Tuple operation is performed
using a for loop. This could iterate each and every item of a tuple.

Simple program to illustrate tuple operations:
t1 = (“p,”“y,”“t,”“h,”“o,”“n”)

In operation
print(“t” in t1)
print(“k” in t1)

Not in operation
print(“o” not in t1)
print(“b” not in t1)
for lang in (“C,”“C++”): print(“Progrmming-languages,”lang)

Tuples 237

9.4. TUPLES AS RETURN VALUES

In general, a function can return only one value, but if the return value is a
tuple, then it is returning multiple values. For example, the procedure for
dividing two integers and computing the quotient and remainder could be
done by x/y and then x%y. But using python, it could be done at a time. The
following code explains this:

t = divmod (7, 3)
print(t)

Here, the built-in function divmod is used which takes two arguments and
returns a tuple of two values, the quotient and remainder. The result can be
stored as a tuple as in previous program code. Or tuple assignment can be
used to store the elements separately as in the following code.

quot, rem = divmod(7, 3)
print(quot)
print(rem)

One more example to explain tuples as return values. The built-in func-
��
�������	����	!�	���������
������
����	������	����	���������������
��	�
sequence. The function min_max computes both and returns a tuple of two
values.

Here is an example of a function that returns a tuple:
def min_max(t):
return min(t), max(t)

Practical Python Programming for Data Scientists238

9.5. BUILT-IN FUNCTIONS WITH TUPLE

Function Description

all()
Return True if all elements of the tuple are true (or if
the tuple is empty).

any()
Return True if any element of the tuple is true. If the
tuple is empty, return False.

enumerate()

Assigns an Index to each item in a tuple in python
2 whereas in python3 it just returns memory address
value.

len() Return the length (the number of items) in the tuple.
max() Return the largest item in the tuple.
min() Return the smallest item in the tuple

sorted()
Take elements in the tuple and return a new sorted list
(does not sort the tuple itself).

sum() Return the sum of all elements in the tuple.

tuple()
Convert an iterable (list, string, set, dictionary) to a
tuple.

9.6. VARIABLE-LENGTH ARGUMENT TUPLES

The functions can take a variable number of arguments for implementation.
An argument name that starts with (*) gathers the several arguments into
a tuple. For example, printall function takes any number of arguments and
prints them:

Example:
def printall(*args): # the function takes

several args print
(args)

The argument name may be anything, but args is conventional. Here is the
example to show how the function printall works:

n=(1,2.0.”3”)
printall(n)
(1, 2.0, “3”)

The complement of gather is scatter. To pass a sequence of values to a func-

Tuples 239

tion as multiple arguments, the * operator can be used. For example, con-
sider the divmod function which takes exactly two arguments; doesn’t work
with a tuple of variable length arguments:

t = (7, 3)
divmod(t)

But if you scatter the tuple, it works:

Instead of the above code, the code given below can be used for variable-
length arguments.

s=divmod(*t)
print (s)
(2, 1)

There are some other built-in functions which use variable-length argument
tuples.
The max and min functions take any number of arguments:
max(1,2,3)

The sum function does not take variable-length arguments. It gives error.
sum(1,2,3)

9.7. COMPARING TUPLES

With relational operators, it is possible to work with tuples and other
sequences. To compare two elements, Python starts by correlating the first
element from each sequence. If the elements are equal, it moves to the

Practical Python Programming for Data Scientists240

subsequent elements, and the process continues until it finds an element
that is dissimilar. Subsequent elements are not considered (even if they are
really big).

>>> (0, 1, 2) < (0, 3, 4)
True

�
�� �
��� ������
�� 	��
� �
���� ��� �
�� �	��� �	���]�� �
���� ����	����� ��� �����
element. But if there is a tie, it sorts by second element, and so on. This
feature lends itself to a pattern called DSU. DSU stands for Decorate, Sort,
Undecorate.

9.7.1. DSU

This will Decorate a sequence by constructing a list of tuples with one or
more sort keys preceding the elements from the sequence then Sort the list
of tuples, and Undecorate by removing the sorted elements of the sequence.
For example, to sort a list of words from longest to shortest:

def sort_by_length (word1):
t = []
for word1 in word1s:

t.append((len(word1), word1))
t.sort(reverse=True)
res1 = []
for length, word1 in t:
res1.append(word1)

return res1
n=“Hello World”
x=sort_by_length(n)
print(x)

Output:
[‘r,’ ‘o,’ ‘o,’ ‘l,’ ‘l,’ ‘l,’ ‘e,’ ‘d,’ ‘W,’ ‘H,’ ‘ ‘]

�
��������

���������	������
�����������
�����	�
����������	��
���������������
���������
���
���
���������
���
��	�����
����������������	������������
�������
and only considers the second element to break ties. The keyword argument
reverse=True tells sort to go in decreasing order. The second loop traverses
the list of tuples and builds a list of words in descending order of length.

DICTIONARIES

CHAPTER 10

CONTENTS
10.1. Dictionaries .. 242

10.2. Built-In Dictionary Functions and Methods 244

10.3. Access, Update, and Add Elements in Dictionary 245

10.4. Delete or Remove Elements From a Dictionary 246

10.5. Sorting a Dictionary .. 247

10.6. Iterating Through a Dictionary .. 247

10.7. Reverse Lookup .. 247

10.8. Inverting a Dictionary ... 248

10.9. Memoization (MEMOS) .. 249

Practical Python Programming for Data Scientists242

10.1. DICTIONARIES

Dictionary is an unordered collection of items. It is similar to a list, but
in list elements can be accessed using index, which must be an integer. In
Dictionary we access values by looking up a key instead of an index. A
key can be any string or number. For example, dictionaries can be used for
things like phone books (pairing a name with a phone number), login pages
(pairing an e-mail address with a username).

Each item in the dictionary has a key: value pair and the list of items
are enclosed inside curly braces {} separated by comma. The values can be
of any data type and can repeat; keys must be of immutable types (string,
number, or tuple with immutable elements) and must be unique.

Dictionaries in Python are implemented using a hash table. It is an
array whose indexes are obtained using a hash function on the keys. A hash
function takes a key-value and returns a hash value, an integer. This hash
value is used in the dictionary to store and lookup key-value pairs. So keys
in dictionary must be hashable.

The following code is a simple example which creates an empty
dictionary.

my_dict = {}
print(my_dict)

The following dictionary uses integer as keys and string as values.

#dictionary with integer keys my_dict = {1: “apple,” 2: “ball”}
print(my_dict)

print(my_dict[2])

Dictionaries 243

The following dictionary uses mixed keys. For item 1, both key and its cor-
responding value are string. In item 2, the key is an integer, and the value is
a list.

dictionary with mixed keys
my_dict = {“name”: “John,” 1: [2, 4, 3]}
print(my_dict)
print(my_dict[“name”])
print(my_dict[1])

In the output, the order of the key-value pairs is not the same. In general,
the order of items in dictionary is unpredictable. In the following example,
using list, a mutable data type as key results in the error message.

dic = { [1,2,3]:“abc”}
Traceback (most recent call last):
File “main.py,” line 1, in <module>

dic = { [1,2,3]:“abc”}
TypeError: unhashable type: “list”

Tuple, an immutable data type can be used as a key, which is shown in the
following example.

my_dic = { (1,2,3):“abc,” 3.14:“abc”}
print(my_dic)

An exception will be raised when we try to access a key that does not
exist in the dictionary. In the following example, accessing my_dict[2]
results in an error, as the key 2 not exist in the dictionary.

Practical Python Programming for Data Scientists244

my_dict = {“name”: “John,” 1: [2, 4, 3]}
print(my_dict[2])

Dictionaries can also be created using the dict() function.

using dict()
my_dict = dict({1:”apple,” 2:”ball”})
print(my_dict)

10.2. BUILT-IN DICTIONARY FUNCTIONS AND

METHODS

Built-in methods or functions that are available with dictionary are tabulated
below.

Function/
Method

Description

len(dict) Returns the length of the dictionary which is
equal to a number of pairs in the dictionary.

sorted(dict) Returns sorted list of keys in dictionary
dict.clear() Remove all items from dictionary
dict.copy() Returns a shallow copy of dictionary
dict.
fromkeys(seq[,
v])

Return a new dictionary with keys from seq
and value equal to v

dict.get(key) Returns the value of key. If the key does not
exists, it returns None

Dictionaries 245

dict.pop(key) Remove the item with key and returns its
value.
KeyError occurs when key is not found

dict.popitem() Remove and return an arbitrary item (key,
value). Raises
KeyError if the dictionary is empty.

dict.items() Returns a list of dict”s (key, value) tuple
pairs

dict.keys() Returns list of dictionary dict”s keys
dict1.
update(dict2)

Update the dictionary dict1 with the key/
value pairs from dict2, overwriting existing
keys.

10.3. ACCESS, UPDATE, AND ADD ELEMENTS IN

DICTIONARY

Key can be used either inside square brackets or with the get() method. The
difference while using get() is that it returns None instead of KeyError, if the
key is not found. Dictionary is mutable.

So we can add new items or change the value of existing items. If the
key is present, its value gets updated. Else a new key: value pair is added to
dictionary.

my_dict={“name”:”Ram,”“age”:21}
print(my_dict) # display all items
print(my_dict.get(“name”))# Retrieves value of name key
my_dict[“age”]=23 # update value print my_dict
my_dict[“dept”]=“CSE” # add item
print(my_dict)

Practical Python Programming for Data Scientists246

10.4. DELETE OR REMOVE ELEMENTS FROM A

DICTIONARY

A picky item in a dictionary can be removed by using the method pop().
This method removes as item with the key provided and returns the value.
The method, popitem() can be used to remove and go back an arbitrary item
(key, value) from the dictionary. All the items can be detached at once using
the clear() method.
squares={1:1,2:4,3:9,4:16,5:25}
print(squares.pop(3)) # remove a particular item
print(squares)
print((squares.popitem())) # remove an arbitrary item print(squares)
del squares[4] # delete a particular item
print(squares)
squares.clear() # remove all items
print(squares)

We can also use the del keyword to remove individual items or the entire
dictionary itself.
If we try to access the deleted dictionary, it will raise an Error.

del squares # delete the diction-
ary itself

print(squares) #throws error
Traceback (most recent call last):
File “main.py,” line 11, in <module>
X	�����
�%��	�����`�	���������
��������

Dictionaries 247

10.5. SORTING A DICTIONARY

The items in the dictionary can be sorted using the sorted() function. In the
following example, fromkeys() function is used to create a dictionary from a
sequence of values. The value 0 is assigned for all keys. Each item is accessed
iteratively using for loop that iterate through each key in a dictionary.

mark={}.fromkeys([“Math,”“English,”“Science”],0)
print(mark)

for item in mark.items():
print(item)

print(list(sorted(mark.keys())))

10.6. ITERATING THROUGH A DICTIONARY

Using a for loop, we can iterate through each key in a dictionary.

square={1:1,2:4,3:9,4:16,5:25}
for i in square:

print(square[i])

10.7. REVERSE LOOKUP

Lookup is the process of finding the corresponding value for the given key
from the dictionary.
]�����	����
������
���	����������	������
�	����

�������
�	���

value=dict[key]

Practical Python Programming for Data Scientists248

\
���	������������

��������
����
�����
����������
�������
��	��������	�����
There is no direct method to handle reverse lookup. The following function
�	����	��	����	������������
������������
	���	����
��
	���	����

def get_Value(dic,value):
for name1 in dic:

if dic[name1] == value:
return name1

raise ValueError
squares={1:1,2:4,3:9,4:16,5:25}
print(get_Value(squares,4)) # success-

ful reverse
lookup

In this example, raise keyword is used to raise/activate an exception.
ValueError points that there is a bit wrong with the value of the parameter.

On unsuccessful reverse lookup, when the value is not in the dic-
tionary, the exception ValueError is raised.
Unsuccessful reverse lookup result in following error.

print(get_Value(squares,6)) # unsuccess-
ful reverse
lookup

Traceback (most recent call last):
File “main.py,” line 7, in <module>
print(get_Value(squares,6))
File “main.py,” line 5, in get_Value
raise ValueError
Value Error

10.8. INVERTING A DICTIONARY

A dictionary can be inverted with list values. For example, if you were given
a dictionary that maps from child to parent, you might want to invert it;
that is, create a dictionary that maps from parent to children. Since there
might be several children with the same parent, each value in the inverted
dictionary should be a list of children.
Example:

Dictionaries 249

def invert_dict_nonunique(d):
newdict = {}
for k, v in d.items():

newdict.setdefault(v, []).append(k)
return newdict

d = {“chi1”: “par1,”
“chi2”: “par1,”
“chi3”: “par2,”
“chi4”: “par2,”
}

print invert_dict_nonunique(d)

Sample output:
{“par1”: [“chi1,” “chi2”], “par2”: [“chi3,” “chi4”]}

In this example, the loop iterates through dictionary items where k
represents key and v represents value. The setdefault() method will set
newdict[v]=[] and append the key value to list..

As we mentioned earlier, the keys in dictionaries have to hashable. It
works correctly only when keys are immutable. For example, if key is a
list and to store a key-value pair, Python will hash the key and store it in an
�`���	������
�	��
���]���
	����������
�����������
�������
	�
����
���������	��
location. In this case, we will have two entries for the similar key or might be
botched to locate a key. Either way, the dictionary would not work properly.
Since lists and dictionaries are mutable, they cannot be used as keys, but
they will be used as values.

10.9. MEMOIZATION (MEMOS)

Memoization effectively refers to remembering results of method calling,
which is based on the method inputs and then recurring the remembered
result pretty than computing the result again.

For example, consider the recursive version to calculate the Fibo-
nacci numbers. The following code to compute the Fibonacci series has an
exponential runtime behavior.

Example:
������
$�Y%

if n == 0:

Practical Python Programming for Data Scientists250

return 0
elif n == 1:

return 1
else:

���������
$�À*Y�´���
$�À¡Y

The runtime behavior of this recursive version can be improved by adding a
dictionary to memorize previously calculated values of the function.

def memory(f):
memo = {}
def helper(x):

if x not in memo:
memo[x] = f(x)

return memo[x]
return helper

������$�Y%
if n == 0:

return 0
elif n == 1:

return 1
else:

���������$�À*Y�´���$�À¡Y
���¦����
��$��Y
�����$��$µYY
output the 6th number in Fibonacci series (series starts from 0th

position)

Sample output:
8

memory() takes a function as an argument. The function memorize() uses
a dictionary “memo” to store the function results. Though the variable
“memo” as well as the function “f” are local to memory, they are captured
by a closure through the helper function, which is returned as a reference by
memory().

#
���
���	������
��$��Y���������	������������
��
��
������$Y���
��
�
����
�����
	����$Y��
�����
�
������
���������	���	������
��
��	�����
���	�-

Dictionaries 251

���	��������������
��	����������������$�Y������
��������	��������������
������
��
���
������
�	����]�������������������	��
���������
¯�°�	���
���������
����$�Y�

Memo = {}

def helper (x):

if x not in memo:

memo[x]=f(x)

return memo[x]

return helper

fib

Practical Python Programming for Data Scientists252

if n==0:

return 0

elseif n==1:

return 1

else:

return fib(n–1) + fib(n–2)

Executing;

fib = memory(fib)

helper is returned

if x not in memo:

memo [x]= f(x)

return memo [x]

After executed fib = memory(fib) fib points to the body of the assistant
function, which had been returned by memory. The decorated Fibonacci
function is called in the return statement return fib(n–1) + fib(n–2), this
means the code of the helper function which had been returned by memorize.

Dictionaries 253

10.9.1. Illustrative Programs

1. Python program to sort a list of elements using the selection

sort algorithm: Selection sort is a sorting algorithm. It is an
primed comparison-based algorithm in which the list is divided
into two parts: the sorted part at the left end and the unsorted
part at the right end. Primarily, the sorted part is empty and the
unsorted part is the whole list.

� #������
�� �
��� 	��
���
�� ��� �
��	����� ����� ��
� ���������
�� 	��
array and exchange if compulsory, i.e., if you want to arrange
�
�����������
��	��	�����	���������
�����	�������
���������������
is greater than second at that time, you necessitate to swap the
��������� ����� ��� �
�� ����� �������� ��� ��	����� �
	�� ���
���� ��	���
�
�����������	����������
����	�	����������������	����
������������
are compared and swapped if compulsory. This process goes

���������
�������	����	�����������
��	��	��	������
��	������
���
�
���������
������������
���������
���
�����
���
������
���������
��
sort algorithm is shown in Figure 10.1.

Practical Python Programming for Data Scientists254

Figure 10.1. Selection sort.

This algorithm is not suitable for large data sets as its average and worst-
case complexities are of Â$n2), where n is the number of items.

list1=[]
n=int(input(“Enter number of elements”))
for i in range(0,n):

x=int(input(“Enter number”))
list1.insert(i,x)
i+=1

for i in range(len(list1)):
for j in range(i, len(list1)):

if(list1[i] > list1[j]):
list1[i], list1[j] = list1[j], list1[i]

print(“Sorted List:,” list1)

2. Python program to sort a list of elements using the insertion

sort algorithm: Insertion sort is a simple sorting algorithm which
�����������
����	���
�����	��	��$
������Y�
��������	��	�������������	�

Dictionaries 255

sub-list is at all times sorted. The array is searched consecutively
and unsorted items are stimulated and inserted into the sorted
sub-list (in the same array). This algorithm is proper for small
�	�	�������[������������
��������
�������
���	�����������
	���
���
advanced algorithms such as quicksort, heapsort, or merge sort.
The worst case convolution of the algorithm is of Â$n2), where n
is the number of items (Figure 10.2).

Practical Python Programming for Data Scientists256

Figure 10.2. Insertion sort.

def insertionsort(list1):
for i in range(1,len(list1)):

temp=list1[i]
j=i–1
while temp<+list1[j] and j>=0:

list1[j+1]=list1[j]
j=j–1
list1[j+1]=temp

return list1
arr=[]
n=int(input(“Enter the number of elements”))
for i in range(0,n):

x=int(input(“Enter the number”))
arr.insert(i,x)
i+=1

print(insertionsort(arr))

Dictionaries 257

3. Python program to sort a list of elements using the merge sort

algorithm: Merge sort is a sorting technique that is similar to the
divide and conquer technique��]����������������
��	��	�����
��`�	��
half list and then merges them in a sorted manner. The basic steps
caught up in merge sort algorithm are as follows: Given an array
A.
i. Divide: If q1 is the half-way point between p1 and r1, then

we can split the subarray A[p1..r1] into two arrays A[p1..q1]
and A[q1+1, r1].

ii. Conquer: In the conquer step, we try to sort both the subar-
rays A[p..q] and A[q+1, r]. If we have not yet reached the
base case, again divide both these sub arrays and sort them.

iii. Combine: When the surmount step reaches the base step
and we get two sorted subarrays A[p1..q1] and A[q1+1, r1]
for array A[p1..r1], we merge the results by creating a sorted
array A[p1..r1] from two sorted subarrays A[p1..q1] and
A[q1+1, r1] (Figure 10.3).

Practical Python Programming for Data Scientists258

Figure 10.3. Merge sort.

As shown in Figure 10.3, the merge sort algorithm recursively divides
the array into halves pending we make the base case of array with 1 element.
Later than, the merge function picks up the sorted sub-arrays and merges
�
��� �
� ��	��	���� �
��� �
�� ������� 	��	��� �
�� �
�����	��� ����������
�� �
��
algorithm is O(n log n), where n is the number of items.

def merge_sort(seq):
if len(seq) < 2:

return seq
m = int(len(seq) / 2)
return merge(merge_sort(seq[:m]), merge_sort(seq[m:]))

def merge(lefthalf, lefthalft):
result = []

Dictionaries 259

i = j = 0
while i < len(lefthalf) and j < len(lefthalft):

if lefthalf[i] < lefthalft[j]:
result.append(lefthalf[i])
i += 1

else:
result.append(lefthalft[j])
j += 1

result += lefthalf[i:]
result += lefthalft[j:]
return result

print(merge_sort([50, 2, 16, 8,15, 80, 11]))

4. Python program to sort a list of elements using the Quick sort

algorithm: Like Merge Sort, Quick Sort is also a Divide and
Conquer algorithm. It picks an element as pivot and partitions the
given array around the picked pivot.

The pivot element can be chosen using the following different ways.
�� �
���	�����������������������	�����
�>
�� Constantly pick last element as pivot;
�� Choose a random element as pivot;
�� Choose median as pivot.

The runtime of the algorithm varies based on the pivot selected. The basic
idea behind this algorithm is as follows.

�� Choose one element in the array as pivot.
�� Make one pass throughout the array, called a partition step,

re-arranging the entries so that:
��The pivot is in its appropriate place;
��Entries smaller than the pivot are to the left of the

pivot;
��Entries larger than the pivot are to its right.

�� Recursively apply quick sort to the part of the array that is to
the left of the pivot, and to the right part of the array.

The steps involved in quick sort algorithm are listed below and can be un-
derstand easily using the example shown in Figure 10.4.

��Step 1: Prefer the highest index value as pivot.

Practical Python Programming for Data Scientists260

��Step 2: Acquire two variables to point left and right of the
list other than pivot.

��Step 3: left pointer points to the low index.
��Step 4: Right pointer points to the high.
��Step 5: While value at left is less than pivot move right.
��Step 6: While value at right is greater than pivot move left.
��Step 7: If both step 5 and step 6 does not match exchange

left and right.
��Step 8:]�������Ã����
����
���
�����
�����
�����������
������

pivot.

Dictionaries 261

Figure 10.4. Quick sort.

def partition (arr, low, high):
i = (low–1) # index of smaller element
pivot = arr[high] # pivot

for j in range(low, high):
If current element is smaller than or equal to pivot
if arr[j] <= pivot:

increment index of smaller element
i = i+1
arr[i], arr[j] = arr[j], arr[i]

arr[i+1], arr[high] = arr[high], arr[i+1]
return (i+1)

The main function that implements QuickSort
¼�	��¯°�·�"��	���
�����
�����
¼��
��·�#�	����������!�
¼�
��
�·������������!
Function to do Quick sort
def quickSort(arr, low, high):

if len(arr) == 1:
return arr

if low < high:
pi = partition(arr, low, high) # pi is partitioning index, arr[p] is now at
right place

Practical Python Programming for Data Scientists262

Separately sort elements before partition and after
partition

quickSort(arr, low, pi–1)
quickSort(arr, pi+1, high)

arr = [10, 7, 8, 9, 1, 5]
n = len(arr)
quickSort(arr, 0, n–1)
print(“Sorted array is:,” arr)

5. Write a Python program to create a histogram from a given list of
integers:

def histogrm(items):
for n in items:

op = “”
times = n
while(times > 0):
op += “*”
times = times – 1
print(op)

histogrm([2, 3, 6, 5])

FILES

CHAPTER 11

CONTENTS
11.1. Files .. 264

11.2. Errors and Exception ... 277

Practical Python Programming for Data Scientists264

11.1. FILES

11.1.1. Persistence

Most of the programs are transient, which means that they run for a short
time and produce some output. But, when the program terminates, their
data get vanished. When the program started again, it starts with a clean
slate. However, there are some other programs which are persistent that they
run for a long time (or all the time), maintain at least few of their data in
permanent storage (for example, a hard drive) and if the system set to shut
down and restart, the program takes the data from where it resides.

For instance, persistent programs are operating systems that run better
whenever a computer is on and web servers that run all the time and is
waiting for requests to come in on the network.

11.1.2. Reading and Writing Operation

Standard input and output through input functions such as input () and output
function print statement are used in file operation.

The Eval Function:
The eval function returns the evaluated result of an input expression.
Input() accepts as string, and eval() evaluates the same.

s = input(“Enter your input: ”)
print(“ The output is:,” eval(s))

X
���������������

���
�����	���	���	�	�������"���!���������	���`������
��
characters stored on a permanent storage medium����
�	��	�
	�����������	�
�
memory, or CD-ROM. Python offers some basic functions and methods
������	����
��	�����	��������������	������
���	��������
���	��
���	���
�����
��
������	���	��������������

11.1.2.1. The Open Function
To read or write a file, it is necessary to open it using Python’s built-in
function named open() function. The open() function creates a file object
that could be used to call other methods associated with it. The syntax for

Files 265

the open() function is shown below.
Syntax:

���
������¦�
���$���±�	���¯��	�����±�
��°¯�����������°Y

The parameters are explained below:
=� ���±�	��%��
�����±�	���	�����������	���������	�����
	���
��	����

�
���	���
���
�������
�	������
=� access_mode: The access_mode denotes the mode in which the

����
	���
����
������$��	����������	�����������Y��"��
������������
of possible values is mentioned in table below. This parameter is

���
�	���	����
�����	��������	�������
��������	��$�Y�

=� buffering: If the buffering value is set to 0, then there is no
buffering takes place. If the buffering value is 1, then line buffering
�������
������
����	���������	������]���
�������������	������������
�
an integer greater than 1, then buffering action is performed with
the indicated buffer size. If the buffering value is negative, then
the buffer size is the system default (default behavior).

�
�������
����������������
��������
���%

Modes Description
r Opens a file for reading only. The file pointer is

placed at the beginning of the file.
This is the default mode.

rb Opens a file for reading only in binary format. The
file pointer is placed at the beginning of the file. This
is the default mode.

r+ Opens a file for both reading and writing. The file
pointer placed at the beginning of the file.

rb+ Opens a file for both reading and writing in binary
format. The file pointer placed at the beginning of
the file.

w Opens a file for writing only. Overwrites the file if
the file exists. If the file does not exist, creates a new
file for writing.

wb Opens a file for writing only in binary format.
Overwrites the file if the file exists. If the file does
not exist, creates a new file for writing.

Practical Python Programming for Data Scientists266

w+ Opens a file for both writing and reading. Overwrites
the existing file if the file exists.
If the file does not exist, creates a new file for
reading and writing.

wb+ Opens a file for both writing and reading in binary
format. Overwrites the existing file if the file exists.
If the file does not exist, creates a new file for
reading and writing.

a Opens a file for appending. The file pointer is at the
end of the file if the file exists.
That is, the file is in the append mode. If the file
does not exist, it creates a new file for writing.

ab Opens a file for appending in binary format. The file
pointer is at the end of the file if the file exists. That
is, the file is in the append mode. If the file does not
exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file
pointer is at the end of the file if the file exists. The
file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing.

ab+ Opens a file for both appending and reading in
binary format. The file pointer is at the end of the
file if the file exists. The file opens in the append
mode. If the file does not exist, it creates a new file
for reading and writing.

11.1.2.2. The File Object Attributes
Once a file is opened, there would be one file object, to get various
information related to that file.

��������	������
��	���	�������������	�����
�����
�����%

Attribute Description
f i l e .
closed

Returns true if the file is closed, otherwise
false.

f i l e .
mode

Returns the file access mode with which
file was opened.

file.name Returns name of the file.

The following illustrate the file attribute description using file object.

Files 267

��¦�
���$����*��!������´�Y
�����$�X	���
���
�����%������	��Y
print(“Closed or not:,” f.closed)
print(“Opening mode:,” f.mode)

11.1.2.3. The Close() Method
The function close() of a file object flushes if there is any unwritten
information and closes the file object when there is no more writing can be
done. Python closes a file automatically when the reference object of a file is
reassigned with another file. It is a good practice to use the close () method
to close a file. The syntax of close () function is given below.
Syntax:

������������
��$Y>
�
����
��	���
�����
����
��
����	�����
���
���	��
���
��	�����

��¦�
����$����*��!������´�Y
�����$�X	���
���
�����%������	��Y
����
��$Y� ¼��
���
���������
print(“Closed or not:,” f.closed)

11.1.2.4. Reading and Writing Text Files
Python provides read () and write () methods to read and write files through
file object, respectively.

11.1.2.5. The Write() Method
The write() method is used to write any string to a file which is opened.
Python strings can have binary data and not just text. The write() method

Practical Python Programming for Data Scientists268

does not add a newline character (‘\n’) to the end of the string. The syntax
for write() function is shown below.
Syntax:

���������������$������Y>

�
��	���������	���������
���
�������
���������������
��
��
������������
��
�
��
�������
��	���������	�����
������������
���	��
��

��¦�
���$����*�����´�Y
�������$����

�����	���
��	�������	���	���Ä�]������������!����Ä��Y
f.close()

�
��	�
�����
��	�����	����	��������*��!��	���������� �
���������
������ ���
�
	�������	�����	���������
�����
	�������]���
���������
��������
�������
����
	���
content that is written.

]���
������	���	����!�������
���
��������������������
�����	�����
��
���
�	�	�	�����	��������
��]���
�������
�������!������
���	�����
���������	����
�
�����������

�����������
������	�	����
��
������
For example:

line1 = “Python is a programming language, \n”
f.write (line1)

������ �
������
��������������	���
���
������� ����
��������
���
� ��� �
��������
������
������	�����	�	�������	�����
�������	�	��
��
������
���
��������
���!-
ample,

����¡�¦��]������������!�����Ä��
f.write (line2)

]���
��
���
���	��
����������
��������
�������
����
�������
���������
����
������������
��$Y�������
��

f.close()

11.1.2.6. The Read() Method
The file read() function reads the file contents from an open file. It is
important to note that Python strings can have binary data in addition to text
data. The syntax for file read() is given below.

Files 269

Syntax:
������������	�$¯�
���°Y>

The argument passed is the number of bytes to be read from the opened
������
������

�� ��	���� ��	����� ��
�� �
������������
�� �
������� 	��� ��� �
��
argument count is missing, then it tries to read as much as possible, till the
����
���
������

�!	������
���	����
���
���������*��!����	����%

�¦
���$����*��!������´�Y
f.write(“ Python is a programming language”)
f.close()
��¦�
���$����*��!������´�Y
str = f.read(20);
print(“ The string read is:,” str)
f.close()

11.1.3. Format Operator

The file write() function takes the argument as a string. In order to take other
values in a file, it is important to convert them into strings. The easiest way
to do is with str function as follows.

x = 52
f.write (str(x))

Here, the str function converts integer x value as string. An alternative
way is to use the format operator, %. When this is applied to integers, % is
�
���������	���
���
������
���	�
���[����
����
�������
���	������	���������
% is considered as the format operator.

�
�������
���	�������
���
��	����������
	���
��	����
���
���
����
��	��
sequences, to specify how the second operand is formatted. The result is a
string. Consider the simple example.

x = 15
print (“%d” % x)

Practical Python Programming for Data Scientists270

The result is the string ‘15,’ which is not to be confused with the integer
value 15. A format sequence can appear anywhere in the string, so you can
embed a value in a sentence:

bugs= 10
print(‘I have spotted %d bugs.’ % bugs)

If there is more than one format sequence in the string, the second argu-
ment must be a tuple. Each format sequence is matched with an element of
the tuple, in sequence. The various format sequences are ‘%d’ to format an
���������¬Å����
��
��	��	��
	������
�����������	���¬Å����
��
��	��	��������

print(‘In %d years I have spotted %g %s.’ % (2, 0.3, ‘bugs’))

The number of elements in the tuple has to match the number of format
sequences in the string. The types of the elements have to match the format
sequences also.
Example:

print(‘%d %d %d’ % (1, 2))

Files 271

Example:
print(‘%d’ % ‘dollars’)

]�� �
�� ����� �!	������ �
���� 	��� �
���� �
��	�� ��`������� 	���
���� ��
�
elements; in the second, the format sequence is for integer, but the element
is string.

11.1.3.1. Python File Functions
There are various functions available with the file object.

Method Description
close() Close an open file. It has no effect if the file

is already closed.
detach() Separate the underlying binary buffer from

the TextIOBase and return it.
fileno() Return an integer number (file descriptor) of

the file.
flush() Flush the write buffer of the file stream.
isatty() Return True if the file stream is interactive.
read(n) Read at most n characters from the file.

Reads till end of file if it is negative or None.
readable() Returns True if the file stream can be read

from.
readline(n=–1) Read and return one line from the file. Reads

in at most n bytes if specified.

readlines(n=–1) Read and return a list of lines from the
file. Reads in at most n bytes/characters if
specified.

seek(offset,from=SEEK_
SET)

Change the file position to offset bytes, in
reference to from (start, current, end).

Practical Python Programming for Data Scientists272

seekable() Returns True if the file stream supports
random access.

tell() Returns the current file location.
truncate(size=None) Resize the file stream to size bytes. If size is

not specified, resize to the current location.
writable() Returns True if the file stream can be written

to.
write(s) Write string s to the file and return the

number of characters written.
writelines(lines) Write a list of lines to the file.

11.1.3.2. File Positions
The tell() method provides the current object position within the file. The
seek (offset [, from]) method changes the current file position. The offset
argument requires the number of bytes to be moved. The from argument
states the reference position from where the bytes are to be moved. If from
is set to 0, it means use the beginning of the file as the reference position
and 1 means use the current position as the reference position and if it is set
to 2 then the end of the file would be taken as the reference position. The
following program explains the functions of tell() and seek() functions.

�¦
���$����*��!������´�Y
f.write(“ Python is a programming language”)
f.close()
��¦�
���$����*��!������´�Y
str = f.read(20);
print (“The string read is:,” str)
pos = f.tell();
�����$��������������
����
�%����
�Y
pos = f.seek(0, 0)
str = f. read (10)
print(“Again the string read is:,” str)
f. close()

Files 273

11.1.3.3. Renaming and Deleting Files
The Python language offers methods that allow us to achieve file-processing
operations like renaming and deleting a file. To use this module, it is essential
to import the module first, and then the associated functions can be called.

11.1.3.4. The Rename() Method
The rename() method takes two arguments, the current filename and the
new filename.
Syntax:

�����	��$�������±���±�	�������±���±�	��Y
Example:

�
��
���������
���!	������
����	���	���!��������������*��!�%
import os
���	���	�������
�����*��!���
����¡��!�

�����	��$����*��!��������¡��!��Y

11.1.3.5. The Remove() Method
The remove() method can be used to delete files by providing the name of
the file to be deleted as the argument.

Syntax:

�����
��$���±�	��Y

Example:
�
��
���������
���!	������
��������	���!��������������¡��!��¢

import os

�����
��$����¡��!��Y� ¼_�������������¡��!�
os.mkdir(“test”)

Practical Python Programming for Data Scientists274

11.1.3.6. Program for Mail Merge
Mail merge is a process of doing this. Instead of writing each mail separately,
we have a template for the body of the mail and a list of names that we
merge together to form all the mails.

14. Python program to mail merger;
*��� X	����	�������
�������	�����!�>
16. Body of the mail is in body.txt.

#open names.txt for reading with
open(“names.txt,”“r,”encoding = “utf-8”) #as names_file:

open body.txt for reading with
open(“body.txt,”“r,”encoding = “utf-8”) #as body_file:

#read entire content of the body
�
���¦��
��±������	�$Y

#iterate over all names
�
���	�������	���±���%
mail = “Hello”+name+body

¼��������
���	�����
���������	����������

open(name.strip()+.”txt,”“w,”encoding = “utf-8”) #as mail_file:

�	��±���������$�	��Y

]���
�����
��	���	����
���	����	�����������������	�	�������������
�������	����
��	�����!�����
���
���
���
��������������
��������
��������
����!��

�
����
������	���
�����������	������
���	�������	���
�����	�
��	���
������	��
���

���"������������
��
���	����¯�	��°��!���������	������
����
name is the name of that person. Here, the strip() method is used to clean up
��	�����	�����	�������
�����	����$��	�����	��������
���
������	��
���	����
��
��������¬Ä����
	�	����Y�����	���������������
���
������
���
���	������
��
�������
using the write() method.

11.1.4. Command Line Arguments

Command line arguments are what we type at the command line prompt
along with the script name while we try to execute our scripts. Python-like
most other languages provides this feature. sys.argv is a list in Python, which

Files 275

contains the command line arguments passed to the script. We can count the
number of arguments using len(sys.argv) function. To use sys.argv, we have
to import the sys module.

import sys
print (“No. of arguments:,” len(sys.argv))
print (“Argument List:,”str(sys.argv))
this is savcd as test.py

Run the above script as follows:
$ python test.py arg1 arg2 arg3

11.1.4.1. Filenames and Paths
Files are organized into directories (also called “folders”). Every program
has a “current directory,” which is the default directory for most operations.
�
��
�� �
����� ��
������ ������
��� �
�� �
������ ���
� ����� 	��� ������
�����
(“os” stands for “operating system”). os.getcwd () returns the name of the
current directory:

import os
cwd = os.getcwd()
print(cwd)

cwd stands for “current working directory.” The result in this example is /
web/ com/1493114533_4353.
"������������������
	������������	���������	�����	��	�
��"����	������	�
���	����
from the current directory; an absolute path starts from the topmost direc-
�
��� ��� �
������ ���������
�
��	��� �
��	��
������	�
� �
� 	�������
���	������
os.path.abspath:

	��±�	�
¦
���	�
�	���	�
$����*��!��Y

Practical Python Programming for Data Scientists276

print(abs_path)

���	�
��!������
������
��
���	�����
��������
����!����%
�����$
���	�
��!����$����*��!��YY

If it exists, os.path.isdir checks whether it’s a directory:
�����$
���	�
������$����*��!��YY

#����	�����
���	�
��������
������
��
��������	�����

������������������	������
���
�������$	���
�
���������
����Y�����
�������������-
tory:

os.listdir(cwd)
¯¬���*���¬���¡�°

To validate these functions, the following example “walks” through a direc-
�
������������
���	����
��	����
��������	����	�����������������������
��	����
��
directories.

def walk(dirname):
for name in os.listdir(dirname):

path = os.path.join(dirname, name)
���
���	�
������$�	�
Y%

print path
else:

walk(path)

Files 277

���	�
��
����	����	�������
���	���	������	���	����
�����
������
�	�
complete path.

11.2. ERRORS AND EXCEPTION

11.2.1. Errors

Errors or mistakes in a program are often referred to as bugs. Debugging is
the process of finding and eliminating errors. Errors can be classified into
three major groups:
1. Syntax Errors: Also known as parsing errors�	�������������������

��

while parsing the program. It displays error message and exit with-
out continuing the execution process. Some common Python syntax
errors include:

�� Leaving out a keyword;
�� Putting a keyword in the wrong place;
�� Leaving out a symbol, such as a colon, comma or

brackets;
�� Misspelling a keyword;
�� Incorrect indentation;
�� Empty block.

Here are some examples of syntax errors in Python:
a=10
b=20
if a<b

print(“a is greater”)
Error Message:

File “main.py,” line 3
if a<b
^

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’
pointing at the earliest point in the line where the error was detected.
The error is caused by (or at least detected at) the token preceding
the arrow: in the example, the error is detected at the if a<b since a
colon (‘:’) is missing before it. Filename and line number are printed
so you know where to look in case the input came from a script.

Practical Python Programming for Data Scientists278

if True:
prnt(“Hello”)

Error Message:
File “main.py,” line 2
prnt(“Hello”)

^
SyntaxError: invalid syntax

In the above example, the error is detected at prnt ‘Hello’ since print
is misspelled.
2. Logical Errors: These occur due to mistake in the program’s logic. Here

are some examples of mistakes which lead to logical errors:
�� Using the wrong variable name;
�� Indenting a block to the wrong level;
�� ��������������������
�������	��
���
	������
��������-

sion;
�� Getting operator precedence wrong;
�� Making a mistake in a Boolean expression;
�� Off-by-one, and other numerical errors.

Here is an example of logical error in Python:

i=1
fact=0
while i<=5:

fact=fact*i
i=i+1

print(“Fact:,” fact)

In this example for computing factorial of 5, the obtained output is 0. There
are no syntax errors. The wrong output occurs due to logical error fact=0. To
compute factorial, the fact-value must be initialized to 1. As it is assigned as
0, it results in wrong output.

11.2.2. Exceptions

An exception is an error that occurs during execution of a program. It is also
called run time errors. Some examples of Python runtime errors:

Files 279

=� Division by zero
=� Performing an operation on incompatible types
=� ������	�������������
��
�
	���
�������������
=� Accessing a list element, dictionary value or object attribute

which doesn’t exist
=� ��������
�	������	������
��
��
�������!���
An example for run time error is as follows.

print (10/0)
Error Message:
Traceback (most recent call last):
File “main.py,” line 1, in <module>
print (10/0)
ZeroDivisionError: integer division or modulo by zero

Exceptions come in different types, and the type is printed as part of the
message: the type in the example is ZeroDivisionError which occurs due
to division by 0. The string printed as the exception type is the name of the
built-in exception that occurred.

Exception refers to unexpected condition in a program. The unusual
conditions could be faults, causing an error which in turn causes the program
to fail. The error handling mechanism is referred to as exception handling.
Many programming languages like C++, PHP, Java, Python, and many oth-
ers have built-in support for exception handling.

Python has many built-in exceptions which forces your program to
output an error when something in it goes wrong. Some of the standard ex-
ceptions available in Python are listed below.

Exception Name Description
Exception Base class for all exceptions
ArithmeticError Base class for all errors that occur for

numeric calculation.
OverflowError Raised when a calculation exceeds the

maximum limit for a numeric type.
FloatingPointError Raised when a floating-point

calculation fails.

Practical Python Programming for Data Scientists280

ZeroDivisionError Raised when division or modulo by
zero takes place for all numeric types.

AssertionError Raised in case of failure of the Assert
statement

EOFError Raised when there is no input from
either the raw_input() or input()
function and the end of file is reached.

ImportError Raised when an import statement fails.
IndexError Raised when an index is not found in

a sequence
KeyError Raised when the specified key is not

found in the dictionary.
NameError Raised when an identifier is not found

in the local or global namespace
IOError Raised when an input/ output

operation fails, such as the print
statement or the open() function when
trying to open a file that does not
exist.

SyntaxError Raised when there is an error in
Python syntax

SystemExit Raised when Python interpreter is
quit by using the sys.exit() function.
If not handled in the code, causes the
interpreter to exit

TypeError Raised when an operation or function
is attempted that is invalid for the
specified data type

ValueError Raised when the built-in function
for a data type has the valid type of
arguments, but the arguments have
invalid values specified.

RuntimeError Raised when a generated error does
not fall into any category

11.2.3. Handling Exceptions

The simplest way to handle exceptions is with a “try-except” block.
Exceptions that are caught in try blocks are handled in except blocks. The

Files 281

exception handling process in Python is shown in Figure 11.1. If an error is
encountered, a try block code execution is stopped and control transferred
down to except block.

Figure 11.1. Exception handling.

1.statements break
except ErrorName:
handler code

The try statement works as follows.
=� First, the try clause (the statement(s) between the try and except

keywords) is executed.
=� If no exception occurs, the except clause is skipped and execution

���
��������	��������������
���
=� If an exception occurs during execution of the try clause, the rest

of the clause is skipped. Then if its type matches the exception
named after the except keyword, the except clause is executed,
and then execution continues after the try statement.

=� If an exception occurs which does not match the exception named
in the except clause, it is passed on to outer try statements; if no
handler is found, it is an unhandled exception and execution stops
with a message.

A simple example to handle divide by zero error is as follows.

(x,y) = (5,0)
try:
z = x/y

Practical Python Programming for Data Scientists282

except ZeroDivisionError:
print “divide by zero”

To display built-in error message of exception, you could have:

(x,y) = (5,0)
try:
z = x/y

Syntax:
try:

statements break
except ErrorName1:

handler code
except ErrorName2:

handler code
A simple example to handle multiple exceptions is as follows.

try:
dividend = int(input(“Please enter the dividend: ”))
divisor = int(input(“Please enter the divisor: ”))
print(“%d / %d = %f” % (dividend, divisor, dividend/divi-

sor))
except ValueError:

print(“The divisor and dividend have to be numbers!”)
except ZeroDivisionError:

print(“The dividend may not be zero!”)

Files 283

An except clause may name multiple exceptions as a parenthesized tuple,
for example:

... except (RuntimeError, TypeError, NameError):

... #handler code
Example:

try:
dividend = int(input(“Please enter the dividend: ”))
divisor = int(input(“Please enter the divisor: ”))
print(“%d / %d = %f” % (dividend, divisor, dividend/divi-

sor))
except(ValueError, ZeroDivisionError):

print(“Oops, something went wrong!”)

To catch all types of exceptions using single except clause, simply
mention except keyword without specifying error name. It is shown in the
following example.

try:
dividend = int(input(“Please enter the dividend: ”))
divisor = int(input(“Please enter the divisor: ”))
print(“%d / %d = %f” % (dividend, divisor, dividend/divi-

sor))
except:

print(“Oops, something went wrong!”)

11.2.4. Raising Exceptions

The raise statement initiates a new exception. It allows the programmer to
force a specified exception to occur. The raise statement does two things: it
creates an exception object and immediately leaves the expected program
execution sequence to search the enclosing try statements for a matching

Practical Python Programming for Data Scientists284

except clause. It is commonly used for raising user defined exceptions. Two
forms of the raise statement are:

Syntax:
raise ExceptionClass(value)
raise Exception

Example:
try:

raise NameError
except NameError:

print(“Error”)

Raise without any arguments is a special use of python syntax. It means get
the exception and re-raise it. The process is called re-raise.

Example:
try:

raise NameError(‘Hi”)
except NameError:

print(‘Error’)
raise

In the example, raise statement inside except clause allows you to re-raise
the exception NameError.

Files 285

11.2.5. The Else and Finally Statements

Two clauses that can be added optionally to try-except block are else and
finally. else will be executed only if the try clause doesn’t raise an exception:

try:
age = int(input(“Please enter your age: ”))

except ValueError:
print(“Hey, that wasn’t a number!”)

else:
print(“I see that you are %d years old.” % age)

In addition to using except block after the try block, you can also use the
��	������
�����
���
�������
����	������
������������!����������	�������
��
whether an exception occurs and even if we exit the block using break, con-
tinue, or return.

try:
age = int(input(“Please enter your age: ”))

except ValueError:
print(“Hey, that wasn’t a number!”)

else:
print(“I see that you are %d years old.” % age)

��	���%
print(“Goodbye!”)

Practical Python Programming for Data Scientists286

�����{��|"
�=�
��
	�'_�
�����"

Python allows the user to create their custom exceptions by creating a new
class. This exception class has to be derived, either directly or indirectly,
from the Exception class.

�����	
����
��������
���
��
��
��
�������
class Error(Exception): #Base Error

pass
class PosError(Error): #Raised when the input value is positive

pass
class NegError(Error): #Raised when the input value is negative

pass
number=0
while True:

try:
i_num=int(input(“Enter a number:”))
if i_num < number:

raise NegError
elif i_num >number:

raise PosError
break

except PosError:
print(“This value is positive!”)

except NegError:
print(“This value is negative!”)

In the example, the user defined exception class Error is derived from
built-in class Exception. It handles two user defined exceptions: PosError,
raised when input value is positive and NegError, raised when input value
is negative. The pass keyword indicates null block. The main program
reads user input and compares input value with 0. If input>0, the exception
PosError is raised using raise keyword else the exception NegError is raised.

MODULES AND PACKAGES

CHAPTER 11

CONTENTS
12.1. Modules ... 288

12.2. Packages ... 294

Practical Python Programming for Data Scientists288

12.1. MODULES

A Python module is a file that consists of Python code. It allows us to
logically arrange related code and makes the code easier to understand and
use. It defines functions, classes, and variables.

Python has many useful functions and resources in modules. Functions
such as abs() and round() from __builtin__ module are always directly
accessible in every Python code. But, the programmer must explicitly import

�
���������
�����
���
���
����������
��
��
���	����������

12.1.1. Import Statement

An import statement is used to import Python module in some Python source
file.

The syntax is:
import module1[, module2[,... modulen]

When an ‘import’ statement is encountered by the interpreter, the corre-
sponding module(s) is imported if it is available in the search path.

Example:
import math

To use a resource from a module, the following syntax is used:
modulename.resourcename

For example, math is a built-in module that offers several built-in functions
for carrying out basic mathematical operations. The following code imports
math module and lists a directory of its resources:

import math
print(dir(math))

Modules And Packages 289

The usage of some built-in functions of math module is shown in the follow-
ing code along with its output:

import math # Import built-in module math
�����$�	�
��

�$µ�+YY
print(math.ceil(6.9))
print(math.pow(3,4))

Table 12.1 gives description about a few modules of Python.

Table 12.1. Python Modules and Their Description

Module Description
cmath Mathematical operations using complex

numbers
copy Shallow copy and deep copy operations
datetime Date and time
fileinput Loop over standard input or list of files
keyword Testing whether a given string is a keyword
linecache Accessing individual lines of text files

randomly
math Basic mathematical operations
modulefinder Finding modules
numbers Abstract base classes for numerals
operator Functions analogous to basic operators
py_compile Compiling Python source code to generate

byte code
statistics Statistical operations
string String operations

Practical Python Programming for Data Scientists290

12.1.2. Writing Modules

Any Python source������	��������
�����	��	��
����� ���
�	�
�
������

��
�
�����������
���!	�������
��������
���
��
������
����	����	������
�������
which is a Python source���������������
�������
���	��$Y�	��������	�$Y�

support.py
def add(a, b):
print(“Result is,” a+b)
return
def display(p):
print(“Welcome,,”p)
return

�
��� ����
������ ���� �	�� ��� ���
����� 	�� 	� �
����� ��� 	�
�
��� ���

��
source�����	�������������
����	������	�������
���
����������	���

�������
��
following code:

support.add(4.3) # calling add() of
support module with
two integers

support.add(3.5,4.7) # calling add() of
support module with
two real values

support.add(‘a,”b’) # calling add() of
support module with
two-character value

support.add(‘Ram,”Kumar’) # calling add() of sup-
port module with two
string values support.
display(‘Ram’)

calling display() of support module with a string value
When this code is executed, the following output is produced:

Result is 7
Result is 8.2
Result is ab
Result is RamKumar
Welcome, Ram
from...import Statement

Modules And Packages 291

]�� 	��
��� ��� �
� ���
��� �������� 	���������� ��
�� 	� �
����� ���
� �
�� ��������
namespace.

Syntax:
from modulename import name1[, name2[,... nameN]]

The first statement of the following code does not import the entire module
support into the current namespace; it just introduces the item add from
the module support into the global symbol table of the importing module.
Hence, a call to display() function generates an error as shown in the output.
from support import add # Import module support
add(3,4) # calling add() of support module with two
 integer values.
add(3.5,4.7) # calling add() of support module with two
 real values.
add(‘a,”b’) # calling add() of support module with two
 character values.
add(‘Ram,”Kumar’) # calling add() of support module with two
 string values.
display(‘Ram’) # calling display() of support module with a
 string value

from...import * Statement:
It allows us to import all names from a module into the current namespace.

Syntax:
from modulename import *

Practical Python Programming for Data Scientists292

Sample code:
from support import * # Import module support
add(3,4) # calling add() of support module with two integer values
add(3.5,4.7) # calling add() of support module with two real values.
add(‘a,”b’) # calling add() of support module with two character values.
add(‘Ram,”Kumar’) # calling add() of support module with two string
values.
display(‘Ram’) # calling display() of support module with a string value.

Programs that will be imported as modules often use the following expres-
sion:

if __name__ == ‘__main__’:
test code

Here, __name__ is a built-in variable and is set when the program starts ex-
ecution. If the program runs as a script, __name__ has the value __main__
and the test code is executed. Else, the test code is skipped.

Sample code:
from support import * # Import module support

if __name__ == ‘__main__’: # add() and
d i s p l a y ()
are called
only if this
pgm runs as

Modules And Packages 293

script.
add(3,4)
display(‘Ram’)

reload()

When the module is already imported into a script, the module is not re-read
������

��
��������
��������
���
���
��	��
���������!�������
����
������
�
reload the previously imported module again, the reload() function can be
used.

Syntax:
reload(modulename)

Suppose we have the following code in a module named my_module.
print(“Welcome”)

Now, examine the following execution sequence:
= import my_module Welcome
= import my_module
= import my_module

Here, the code is executed only once since the module was imported only
once. If the module is subsequently changed, it has to be reloaded. For this
reloading, one of the approaches is to restart the interpreter. But this does
not help much. So, we can employ reload() inside the imp module as shown:

= import imp
= import my_module Welcome
= import my_module
= imp.reload(my_module) Welcome

<module ‘my_module’ from.’\\my_module.py’>

12.1.3. Locating Modules

When a module is imported, Python interpreter searches for the module in
the following sequence:

Practical Python Programming for Data Scientists294

1. The current directory.
2. If the module is not found in the current directory, each directory

in the shell variable
PYTHONPATH is searched.

3. At last, Python checks the installation-dependent default
directory.

The module search path is stored in the sys module as sys.path variable.
This variable contains the current directory, PYTHONPATH, and the
installation-dependent default.

12.2. PACKAGES

When we have a large number of Python modules, they can be organized into
packages such that similar modules are placed in one package and different
modules are placed in different packages. A package is a hierarchical file
directory structure that defines a single Python application environment that
consists of modules, sub-packages, sub-subpackages, and so on. In another
word, it is a collection of modules. When a package is imported, Python
explores in list of directories on sys.path for the package subdirectory.

12.2.1. Steps to Create a Python Package

=� Create a directory and name it with a package name.
=� Keep subdirectories (subpackages) and modules in it.

���	���±±����±±������������
��������
��
�
��� ±±����±±���� ���� �	�� ��� ����� ������� ���� ��� �����	���� ��	��� �
��

initialization code with import statements to import resources from a newly
���	���� �	��	���� �
��� ���� ��� ������	��� ������ ���

�� ����� ��
�� �
	�� �
���
directory is a Python package directory other than an ordinary directory.
Example:
Assume we are creating a package named Animals with some subpackages
as shown in Figure 12.1.

Modules And Packages 295

Figure 12.1. Organization of packages and modules.

Modules are imported from packages using dot (.) operator.
��Method 1: Consider, we import the display.py module in the above

example. It is accomplished by the following statement.
import Animals.Birds.display

Now if this display.py module contains a function named display-
ByName(), we must use the following statement with full name to
reference it.

Animals.Birds.display.displayByName()
��Method 2: On another way, we can import display.py module alone

as follows:
from Animals.Birds import display

Then, we can call displayByName() function simply as shown in the
following statement:

display.displayByName()
��Method 3: In the following statement, the required function alone is

imported from a module within a package:
from Animals.Birds.display import displayByName

Practical Python Programming for Data Scientists296

Now, this function is called directly:
displayByName()

�

��
��
������

���������������	���
��������	����	���`�	������	�
�����
�-
����
��	��������������
������	�������������	������
���
��������
In the above example, __init__.py of Animals package contains the follow-
ing code:

from Mammals import Mammals
from Birds import Birds

]�����

����
��������	�����������

������	����	��	������	�������
���
����-
�

�� �
������ �
��	������ 	�� 	�����
�	�� ±±����±±���� ����� �	��	���� �	�� ���
nested to any depth, but the corresponding directories should include their

���±±����±±��������

12.2.2. Illustrative Programs

���Q*�#������\�������#��	�
�
_�
������^#
����
���
������"�

try:
�
��¦�
���$�����������Y� ¼�
�������������	���
��
�
�������$�]������� ��������� �
�������� �!�����
��
	������� ���

Python!!”)
except IOError:

print(“Error: can\’t find the file or read data”) # Exception occurs else:
print(“Write operation is performed successfully on the file”)
no Exception
Error:

���
�%��	���������
������
����	���	�	
2. Python program to raise an exception when the user input is negative

try:
a = int(input(“Enter a positive integer value: ”))
if a <= 0:

raise ValueError(“This is not a positive number!!”)
except ValueError as ve:

print(ve)
Sample output:

Enter a positive integer value: –1
Error:

Modules And Packages 297

This is not a positive number!!

}��Q*�#������\���������<����<�$
�����^��	"��������
�

try:
filename = ‘GettysburgAddress.txt’ # specify your input file

��!�����¦�
���$����	����¬�´�Y
��!����������$�����
��
��	����
��Y
��!�������
��$Y
l=0
���
�
���$����	����¬��Y�	���%

for line in f:
L=L+len(line.split(“ ”))
print(“The number of words are:,” L)
��!�������
��$Y

except IOError:
������$��	��
��
��������Å���
����	������Å�����	��Y
import sys
sys.exit(0)

���Q*�#������\���������<����#
���
~<
��*����^��	"�������
_����
�

���¦
���$�������!�����´�Y
�
���
���¦«­� ¼�������	������
�	����
	��

�����
���������
���

for word in file.read().split(): # for loop iterates through each word is the
file

if word not in wordcount:
wordcount[word] = 1

else:
wordcount[word] += 1

Exception is raised
for k,v in wordcount.items():

print (k,v)
������
��$Y

Practical Python Programming for Data Scientists298

���Q*�#������\����������*�������
��������
���
��������#
��

Program 1:

����¦
���$¬���������!����¬��Y� ¼�
���� ���� ��� ��	��
mode

try:
��	����±���¦�������	�$Y
����¦
���$¬�������¡��!����¬��Y� ¼�
���� ���� ��� ������

mode
try:

����������$��	����±���Y� ¼����������
����
��	���%

�������
��$Y
��	���%

�������
��$Y

Result:
�
�������
�������������������
������
��������¡��
��
��
�����-

ated
��Program 2:

with open(“in.txt”) as f:
with open(“out.txt,” “w”) as f1:

for line in f:
if “ROW” in line:

f1.write(line)

Result:
“ROW” will be copied to out.txt which got created.

��Program 3: The shutil module offers a number of high-level opera-
��
���
�������	����
������
���
������

Modules And Packages 299

��
���
��������
����
�����
�
�����$¬����������¬	������Y� ¼��
����
������
�� �������� �
�

abc.py

6. Some Additional Programs: ���

����
��	���
�	��������!���
�	�����	���
display the text

�������±��	�$��	��Y%
���
�
���$��	�������Y�	�������%

�����������$����

���!�������Ä��Y
�����������$�Æ	�	��!��������Y

txt = open(fname)
print(txt.read())

���±��	�$¬	����!��Y

���

����
��	���
��
�����
���������
�����������	���!�����

�������±�����
�$��	��Y%
with open(fname) as f:

for i, l in enumerate(f):
pass

return i + 1
�����$�X������
������������
�����%�����±�����
�$�������!��YY

Output:
X������
������������
�����%�*

]���
����!	������������
������
�������������	��$�Y�����	���
����������
���
�������
So each time through the loop i gets assigned a line number, and l gets as-
��������
���
�����
�������������
���
������
�	��
��	�������������

����
��	���
���	��	��	��
���������
��	�����

"��	��
��	�������	�	�������	������
���
���	��
�����������
��	��
��
	���
��������
��������
���	����������$Y����

���
������
�������	������
-

Practical Python Programming for Data Scientists300

����
��	�������$Y����

���
������
�����������
����
��
���
�������	������]��	�
��`�����	��	������������
���	��
������	��	������������
��	��
����`�����	�����
��	��������
���
������������
���
������

f=open(‘test.txt,”w’)
f.write(‘DearChanna ‘)
������$�Y� ¼�
��� ����

pointer to
4th position
from begin-
�����
�����

f.write(‘ Mr.Channa’)
f.close()
f=open(‘Python_source\\test.txt,”r’)
s=f.read()
print(s)

��
��	�� �
	��	���� �
������� �
� ����������
���� ���
��	��
����	���������
����
���

���
��������	�	��
��
������	����	������	������

���
��������������
����
���
��	��
����
������

¼�������	�	��
����
����������
���$X	�����	��¦�����¦��"������¦�Y%

try:
f=open(r’customerlist.txt,”a’)
f.write(Name+’:’+Email+’:’+Tel+’:’+Address)

except Exception:
�����$����
��������������
��������Y

��	���%
�����
$Y
f.close()

#Get all customers’information and display
def getall():

�¦
���$������
���������!�����Y¼
���������
����	����
content=f.readlines()#read all lines

Modules And Packages 301

f.close()
return content

def add():
Name=input(‘Name:’)
Email=input(‘Email:’)
Tel=input(‘Tel:’)

Address=input(‘Address:’)
������
���$X	�����	�������"������Y

#main program
add()
print(getall())

Output:
Name:xxxxx
Email:xxx@gmail.com
Tel:123456789
Address:India
[‘xxx:xxx@gmail.com:123456789:India’]

With reference to previous program, write a method to search for a customer
by name.

#Search customer by name. If match is found, it returns the position
of the name else returns –1.

def search(Name):
global flag #declare global variable

try:
�¦
���$������
���������!�����Y¼
���������
����	����
f.seek(0)
content=f.readline()
while content!=“:

����
���������$X	��Y¿¦À*%
print (content)
�	�¦*
return int(f.tell())-
int(len(content)+1)

else:
content=f.readline()
�	�¦�

Practical Python Programming for Data Scientists302

except Exception:
�����$����
�������	������������Y

��	���%
f.close()
����	�¦¦�%

print (‘Not found’) #Inform the use if the record does not exist
�������À*� ¼��
�����
����
���
����·��������À*

#Main Program
name=input(“enter name to be searched: ”)
search(name)

Output:
enter name to be searched: xxxxx
xxxxx:xxx@gmail.com:123456789:India

�����������
�����	��
����

�����
��	���
��������	�����
�����	�����
������
def delete(Name):

p=search(Name) # returns position of customer name.
print(“x=,”p)

if p!=–1: #Make sure the record exists
st=getall() #retrieve content from 1st program
f=open(r’customerlist.txt,”w’)
f.writelines(st)
f.seek(p)
f.write(‘*****’) #write 5 starts to override 5 letters of the name to be
else:
print (‘No record to delete’) # if the record does not exist
f.close()
name_del=input(“enter name to be deleted: ”)
delete(name_del)
name_s=input(“enter name to be searched: ”)
search(name_s)

Output:
enter name to be deleted: xxxxx

Modules And Packages 303

xxxxx:xxx@gmail.com:123456789:India
enter name to be searched: xxxxx
*****:xxx@gmail.com:123456789:India

CLASSES IN PYTHON

CHAPTER 13

CONTENTS
13.1. Introducing the Concept of Classes in Python 306

13.2. Object .. 306

13.3. Methods ... 307

13.4. Inheritance ... 308

13.5. Encapsulation ... 309

13.6. Polymorphism... 310

Practical Python Programming for Data Scientists306

13.1. INTRODUCING THE CONCEPT OF CLASSES IN

PYTHON

The example for class of parrot can be:
class Parrot:

pass
��������������
����	�������
����
�������	����������	����	��
�����
����	����
����
������������	������"������	�������	���������
���������	������
��	��	�-
ticular class.

13.2. OBJECT

An object (instance) is an instantiation of a class. When class is defined, only
the description for the object is defined. Therefore, no memory or storage is
allocated.
The example for object of parrot class can be:

obj = Parrot()
Here, obj is an object of class Parrot.
Suppose we have details of parrots. Now, we are going to show how to build
the class and objects of parrots.

��Example 1: Creating Class and Object in Python

class Parrot:
species = “bird” # class attribute
def __init__(self, name, age): # instance attribute

self.name = name
self.age = age

blu = Parrot(“Blu,” 10) # instantiate the Parrot class
woo = Parrot(“Woo,” 15)
print(“Blu is a {}.”format(blu.__class__.species)) # ac-

cess the class attributes
print(“Woo is also a {}.”format(woo.__class__.species))
print(“{} is {} years old.”format(blu.name, blu.age)) # access the

instance attributes
print(“{} is {} years old.”format(woo.name, woo.age))

Output:
Blu is a bird
Woo is also a bird
Blu is 10 years old

Classes In Python 307

Woo is 15 years old

In the above program, we created a class with the name Parrot. Then, we
������	������������
��	����������	���	��
	�	����������
��	��
������

�
����	����������	������������������
��±±����±±����

��
���
����	����
]������
�������	��Z������

���
	��������������	���

��	���
��
������������	����

Then, we create instances of the Parrot class. Here, blu, and woo are
references (value) to our new objects.

We can access the class attribute using __class__. species. Class at-
tributes are the same for all instances of a class. Similarly, we access the
instance attributes using blu.name and blu.age. However, instance attributes
are different for every instance of a class.

13.3. METHODS

Methods are functions defined inside the body of a class. They are used to
define the behaviors of an object.

��Example 2: Creating Methods in Python

class Parrot:
instance attributes
def __init__(self, name, age):

self.name = name
self.age = age
instance method

def sing(self, song):
return “{} sings {}.”format(self.name, song)

def dance(self):
return “{} is now dancing.”format(self.name)

instantiate the object
blu = Parrot(“Blu,” 10)
call our instance methods
print(blu.sing(“‘Happy’”))
print(blu.dance())

Output:
Blu sings ‘Happy’
Blu is now dancing

Practical Python Programming for Data Scientists308

]���
��	�
�����
��	��������������
����

��������������$Y�	����	���$Y���
����
are called instance methods because they are called on an instance object,
i.e., blu.

13.4. INHERITANCE

Inheritance is a way of creating a new class for using details of an existing
class without modifying it. The newly formed class is a derived class (or
child class). Similarly, the existing class is a base class (or parent class).

��Example 3: Use of Inheritance in Python

parent class
class Bird:

def __init__(self):
print(“Bird is ready”)

def whoisThis(self):
print(“Bird”)

def swim(self):
print(“Swim faster”)

child class
class Penguin(Bird):

def __init__(self):
call super() function
super().__init__()
print(“Penguin is ready”)

def whoisThis(self):
print(“Penguin”)

def run(self):
print(“Run faster”)

peggy = Penguin()
peggy.whoisThis()
peggy.swim()
peggy.run()

Output:
Bird is ready
Penguin is ready
Penguin
Swim faster
Run faster

Classes In Python 309

In the above program, we created two classes, i.e., Bird (parent class) and
Penguin (child class). The child class inherits the functions of the parent
class. We can see this from the swim() method.

"�	�����
���
������	����
�������
����
	��
��
���
���	�������	����\��
can see this from the whoisThis() method. Furthermore, we extend the func-
tions of the parent class, by creating a new run() method.

Additionally, we use the super() function inside the __init__() meth-
od. This allows us to run the __init__() method of the parent class inside the
child class.

13.5. ENCAPSULATION

Using OOP in Python, we can restrict access to methods and variables. This
����������	�	���
����������
����	��
���
��
�����	��������	����	��
���]����-
�

���������
�������	���	�����������������������
���	���
������!���������������
_ or double __.

��Example 4: Data Encapsulation in Python

class Computer:
def __init__(self):

self.__maxprice = 900
def sell(self):

print(“Selling Price: {}.”format(self.__maxprice))
def setMaxPrice(self, price):

self.__maxprice = price
c = Computer()
c.sell()
change the price
c.__maxprice = 1000
c.sell()

using setter function
c.setMaxPrice(1000)
c.sell()

Output:
Selling Price: 900
Selling Price: 900
Selling Price: 1000

]���
��	�
�����
��	�������������	��
���������	���
We used __init__() method to store the maximum selling price of Computer.

Practical Python Programming for Data Scientists310

We tried to modify the price. However, we can’t change it because Python
treats the __maxprice as private attributes.

As shown, to change the value, we have to use a setter function, i.e.,
setMaxPrice() which takes price as a parameter.

13.6. POLYMORPHISM

Polymorphism is an ability (in OOP) to use a common interface for multiple
forms (data types).

Suppose, we need to color a shape; there are multiple shape options
(rectangle, square, circle). However, we could use the same method to color
any shape. This concept is called Polymorphism.

��Example 5: Using Polymorphism in Python

class Parrot:
������$����Y%

�����$��	��
���	�����Y
def swim(self):

print(“Parrot can’t swim”)
class Penguin:

������$����Y%
�����$����������	�������Y

def swim(self):
print(“Penguin can swim”)

���������±����$����Y%� ¼� �
��
��
interface

�������$Y
blu = Parrot() #instantiate

objects
peggy = Penguin()
�����±����$���Y� ¼��	�������
��

object
�����±����$�����Y

Output:
�	��
���	����
���������	������

]���
��	�
�����
��	���������������
���	������	��
��	�������������	�
�
��
�
���
	���	��
��
����$Y����

����
��������
����������
���	�������������

Classes In Python 311

�
������
���
��
�����������	����	��
��
��������	���������������±
����$Y�������
���
	���	����	���
������	����	�����
��
����������$Y����

����
����
�
�������	������
������	���������
�����������
�������±����$Y�������
������
ran effectively.

��Examples:

1. Program to convert an integer to a roman numeral:

class py_solution:
def int_to_Roman(self, num):

val = [
1000, 900, 500, 400, 100, 90, 50, 40, 10, 9,

5, 4, 1]
syb = [“M,” “CM,” “D,” “CD,” “C,” “XC,” “L,”

“XL,” “X,” “IX,” “V,” “IV,” “I”]
roman_num = “
i = 0
while num > 0:

for _ in range(num // val[i]):
roman_num += syb[i]
num– = val[i]

i += 1
return roman_num

print(py_solution().int_to_Roman(15))
print(py_solution().int_to_Roman(2500))

Output:
XV
MMD

2. Program to implement pow(x, n):

class py_solution:
def pow(self, x, n):

if x==0 or x==1 or n==1:
return x

if x==–1:
if n%2 ==0:

return 1
else:

Practical Python Programming for Data Scientists312

return –1
if n==0:

return 1
if n<0:

return 1/self.pow(x,-n)
val = self.pow(x,n//2)
if n%2 ==0:

return val*val
return val*val*x

print(py_solution().pow(2, –3));
print(py_solution().pow(3, 5));
print(py_solution().pow(100, 0));

Output:
0.125
243
1

3. Program to print output string in uppercase:

class IOString():
def __init__(self):

self.str1 = “”
def get_String(self):

self.str1 = input()
def print_String(self):

print(self.str1.upper())
str1 = IOString()
str1.get_String()
str1.print_String()

Output:
w3resource
W3RESOURCE

���Q��\���������	��#�

�
�
�
��"��#���"<������
����������"
��������
���

numbers:

class py_solution:

Classes In Python 313

def threeSum(self, nums):
nums, result, i = sorted(nums), [], 0
while i < len(nums) – 2:

j, k = i + 1, len(nums) – 1
while j < k:

if nums[i] + nums[j] + nums[k] < 0:
j += 1

elif nums[i] + nums[j] + nums[k] > 0:
k– = 1

else:
result.append([nums[i], nums[j],

nums[k]])
j, k = j + 1, k – 1
while j < k and nums[j] == nums[j

– 1]:
j += 1

while j < k and nums[k] == nums[k
+ 1]:

k– = 1
i += 1
while i < len(nums) – 2 and nums[i] == nums[i – 1]:

i += 1
return result

print(py_solution().threeSum([–25, –10, –7, –3, 2, 4, 8, 10]))

Output:
[[–10, 2, 8], [–7, –3, 10]]

5. Program to compute the distance between that point and self:

import math
class Point: #Point class for representing and manipulating x,y

coordinates.
def __init__(self, initX, initY): #Create a new point at the given coordinates.

self.x = initX
self.y = initY

def getX(self):
return self.x

def getY(self):

Practical Python Programming for Data Scientists314

return self.y
def distanceFromOrigin(self):

return ((self.x ** 2) + (self.y ** 2)) ** 0.5
def distanceFromPoint(self, otherP):

dx = (otherP.getX() – self.x)
dy = (otherP.getY() – self.y)
return math.sqrt(dy**2 + dx**2)

p = Point(3, 3)
q = Point(6, 7)
print(p.distanceFromPoint(q))

Output:
5.0

{��Q��\���������	��#
�"���
�����#
����
�������\��#
����\�������#
�������

class Point: #Point class
for repre-
senting and
manipulat-
ing x,y coor-
dinates.

def __init__(self, initX, initY): #Create a
new point at
the given co-
ordinates.

self.x = initX
self.y = initY

def getX(self):
return self.x

def getY(self):
return self.y

def distanceFromOrigin(self):
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

def slope_from_origin(self):
if self.x == 0:

return None
else:

return self.y / self.x
p = Point(4, 10)

Classes In Python 315

print(p.slope_from_origin())

Output:
2.5

7. Program to check if a number is palindrome or not:

class Check:
def __init__(self,number):

self.num = number
def isPalindrome(self):

temp = self.num
result = 0
while(temp != 0):

rem = temp % 10
result = result * 10 + rem
temp //= 10

if self.num == result:
print(self.num,”is Palindrome”)

else:
print(self.num,”is not Palindrome”)

if __name__ == “__main__”:
check_Palindrome = Check(151)
check_Palindrome.isPalindrome()
check_Palindrome = Check(127)
check_Palindrome.isPalindrome()

Output:
151 is Palindrome
127 is not Palindrome

INDEX

A

Additional tuple 240
AI applications 3
Alternative execution 165
Arbitrary Python object 122
Arrays 201
"������	���������������$"]Y��**
ASCII value 141, 142
Assignment statements 223
Associated functions 277
Audio manipulation 4
Automatic objects 178
Autoregressive terms (AR) 35

B

Base class 312
Binary number 87
Binary search 205, 206
Boolean expression 162, 163

Boolean operator 191
Boolean values 162
Break statement 179
Built-in functions 143
Built-in methods 248
Business intelligence (BI) 12
Business predictions 33

C

CD-ROM 268
Centroid-based clustering 38
Chained conditionals 166
Cloud-enabled data centers 42
Cloud environments 17
Command line arguments 278
Command line prompt 278
Comment and pass statement 181
Comments 125
Compound objects 225

Practical Python Programming for Data Scientists318

Comprehensions 228
Computational algorithms 87
Computer vision (CV) problem 39
Conditional statements 163, 168
Continue statement 180
Control statements 178
Conventional languages 110
C programs 110
Cyber-physical systems (CPS) 6

D

Data analysis 11
Database management systems

(DBMS) 20
Data scientist 12, 15, 16, 20
Dataset 68
Data structures 90
Data transmission 3
Data types 314
Debugging 281
Deep learning (DL) algorithms 4
Deep neural networks (DNNs) 4
Default sequence 94
Del operator 227
Density-based clustering 39
Dictionary 246, 249
Digital data 10
Digital era 5
Digital innovations 2
Distributed data sources 10
Divide and conquer technique 261
Divmod function 243
Domplex domain 18
DS platform 16
Dynamic images 18

E

Edge technologies 5

Empty string 190, 191
Eror message 247
Exception 216
Exception class 290
Exception handling process 284
Execution process 281
Existing class 312

F

Fibonacci numbers 253
Fibonacci series 253, 254
File 294
File-processing operations 277
Forecasting 33
Fruitful functions 183
Function 140, 141, 142, 145, 146,

147, 148, 149, 156, 157, 158
Function composition 185
Function tuple 233
Fundamental data type 201

G

Gaming applications 3
Generative adversarial network

(GAN 25
Government organizations 2
GUI programming 4

H

High-level programming language
3, 108

I

IDLE editor 116, 118
IDLE interactive shell 116, 117
Import statement 292
Inheritance 312
Instantiation 310

Index 319

Internet of things (IoT) 2
Interpreter 115
IoT sensors 13

K

Knowledge discovery 19

L

Linear regression 28, 29, 68
Linear search 203, 208
Logarithmic time 205
Logistic regression 22, 29
Loop control statements 178

M

Machine and deep learning (ML/
DL) algorithms 13

Mathematical modules 144
Membership operator 191
Memoization 253
Merge sort algorithm 262
Microservices 17
ML algorithms 12, 21, 23, 29
Moving average (MR) model 34

N

Naive Bayes 29, 31
Natural language processing (NLP)

applications 4
Natural number 156
Nested conditionals 168
Neural networks (NNs) 25
Non-executable statements 125
Numerical tools 5

O

Object (instance) 310
One-dimensional array 202

Operator 126
Operator precedence 135
Ordinary directory 298

P

Palindrome 319
Parameters 150
Parent class 312
Parsing errors 281
Pass statement 178, 181
Permanent storage medium 268
Pivot element 263
Pogram design language 79
Polymorphism 314
Poly-structured data 11
Positive divisors 157
Predictive analytics 13
Printall function 242
Program execution sequence 287
Programmer 152
Programming language 2
Program statements 115, 171
Python 2, 3, 4, 5, 6, 7
Python code 292
Python commences 109
Python interpreter 110, 124
Python interpreter searches 297
Python lists 201
Python module 292
Python program 116, 117, 118
Python source 292, 293, 294
Python standard library 110

Q

Quotation marks 190

R

Raise statement 287, 288
Random forest (RF) 31

Practical Python Programming for Data Scientists320

Recursion 186, 209
Regression algorithm 28
Regression line 68, 69
Relational operators 162, 243
Return statement 146, 152, 256

S

Scripting languages 109
Scrupulous value 203
Semi-supervised ML algorithm 25
Sequence generation 186
Signal processing 4
Slice operator 220
Software applications 7
Software programming 3
Sorted manner 261
Sorting technique 261
Sort them 261
#��������������¡*���¡*���¡*µ
Split function 238
Standard data types 119
Standard input 268
Standard library 152
Statistical methods 12

#�	������	����
�	��������	������	����-
cation method 31

str function 273
String module 199
Strings 109, 122, 133
Sub arrays 261
Subject matter experts (SMEs 20
Subprogram 140
Support vector machines (SVMs)

30
Syntax 163, 165, 166, 175

T

tell() method 276
Traditional GAN 26
Tuple 232
Tuple assignment 237
Tuple elements 234
Tuple operation 240

U

������������������
����*�µ

V

Variable 123, 124, 125, 126, 133

	Cover

	Title Page

	Copyright

	ABOUT THE AUTHORS

	TABLE OF CONTENTS

	List of Figures

	List of Tables

	List of Abbreviations

	Preface

	Chapter 1 The Distinctions of Python Language

	1.1. Introduction

	1.2. Web Application Development

	1.3. Game Development

	1.4. Artificial Intelligence (AI) Applications

	1.5. Graphical User Interfaces (GUIS)

	1.6. Computer Vision (CV) Applications

	1.7. Audio And Video Applications

	1.8. Knowledge Visualization Applications

	1.9. Scientific and Numeric Applications

	1.10. IoT and CPS Applications

	1.11. Data Analytics

	1.12. Python For Blockchain Apps

	1.13. Conclusion

	Chapter 2 Demystifying the Data Science Paradigm

	2.1. Introduction

	2.2. Briefing Data Analysis

	2.3. Entering Into Data Science (DS)

	2.4. The Lifecycle of a Data Science (DS) Project

	2.5. The Prominent Use Cases of Data Science (DS)

	2.6. Machine Learning (Ml) Algorithms

	2.7. Key Machine Learning (Ml) Algorithms

	2.8. Ensemble Learning Algorithms

	2.9. Steps to Build a Random Forest (RF)

	2.10. Time Series Forecasting

	2.11. Time Series Forecasting Methods

	2.12. Time Series Forecasting Applications

	2.13. Clustering Algorithms

	2.14. Case Study: Diabetes Prevention

	2.15. Conclusion

	Chapter 3 Python for Data Analysis

	3.1. Python for Data Analysis

	3.2. Python Libraries

	3.3. Scientific Libraries in Python-Numpy, Scipy, Matplotlib, and Pandas

	3.4. Machine Learning (Ml)

	3.5. Machine Learning (Ml) With Internet of Things (IoT)

	3.6. Machine Learning (Ml) Application With IoT

	3.7. Algorithm

	3.8. Building Blocks of Algorithms (Instructions/Statements, State, Control Flow, Functions)

	3.9. Notation (Pseudocode, Flow Chart, Programming Language)

	3.10. Algorithmic Problem Solving

	3.11. Flow of Control

	3.12. Illustrative Program

	Chapter 4 Python Programming: An Introduction

	4.1. Introduction to Python

	4.2. Downloading and Installing Python 3.6.2

	4.3. Python Interpreter and Interactive Mode

	4.4. Values and Types: Int, Float, Boolean, String, and List

	4.5. Variables

	4.6. Keywords

	4.7. Statements and Expressions

	4.8. Comments

	4.9. Input and Output

	4.10. Operators

	Chapter 5 Functions

	5.1. Function Definition

	5.2. Built-In Functions

	5.3. Math Functions

	5.4. User Defined Function

	5.5. Function Prototypes

	5.6. Return Statement

	5.7. Modules

	Chapter 6 Control Structures

	6.1. Boolean Values

	6.2. Conditional Statements

	6.3. Iteration/Control Statements

	6.4. Loop Control Statements

	6.5. Fruitful Functions

	6.6. Local and Global Scope

	6.7. Function Composition

	6.8. Recursion

	Chapter 7 Strings

	7.1. String Definition

	7.2. Operations On String

	7.3. String Methods

	7.4. String Module

	7.5. List As Array

	7.6. Searching

	Chapter 8 Lists

	8.1. Lists

	8.2. List Operations

	8.3. List Slices

	8.4. List Methods

	8.5. List Loop

	8.6. Mutability

	8.7. List Aliasing

	8.8. Cloning Lists

	8.9. List Parameters

	8.10. Deleting List Elements

	8.11. Python Functions For List Operations

	8.12. List Comprehension

	Chapter 9 Tuples

	9.1. Tuples

	9.2. Tuple Methods

	9.3. Other Tuple Operations

	9.4. Tuples As Return Values

	9.5. Built-In Functions With Tuple

	9.6. Variable-Length Argument Tuples

	9.7. Comparing Tuples

	Chapter 10 Dictionaries

	10.1. Dictionaries

	10.2. Built-In Dictionary Functions and Methods

	10.3. Access, Update, and Add Elements in Dictionary

	10.4. Delete or Remove Elements From a Dictionary

	10.5. Sorting a Dictionary

	10.6. Iterating Through a Dictionary

	10.7. Reverse Lookup

	10.8. Inverting a Dictionary

	10.9. Memoization (MEMOS)

	Chapter 11 Files

	11.1. Files

	11.2. Errors and Exception

	Chapter 12 Modules and Packages

	12.1. Modules

	12.2. Packages

	Chapter 13 Classes in Python

	13.1. Introducing the Concept of Classes in Python

	13.2. Object

	13.3. Methods

	13.4. Inheritance

	13.5. Encapsulation

	13.6. Polymorphism

	Index

	Back Cover

