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The Deep learning is a branch of machine learning based on data presentation via 
complex representations with high degree of abstraction - that are obtained by applying 
learned nonlinear transformations. Deep learning methods find their application in 
important areas of artificial intelligence, such as: computer vision, natural language 
processing, speech and sound comprehension, as well as in bioinformatics. Deep 
learning is a class of machine learning algorithms that: 

�� uses multilayer nonlinear processor units to extract and transform features. 
Each subsequent layer takes as input the output elements of the previous 
layer.

�� learns in a supervised and / or unsupervised manner.
�� learns a number of levels of representation - corresponding to different 

degrees of abstraction.
�� uses some form of descending gradient algorithm to train through error 

backpropagation.
The layers used in deep programming include the hidden layers of the artificial neural 
network and a multitude of statement formulas.
This book covers the most important discriminant and generative deep models with 
special emphasis on practical implementations. We cover the key elements of classical 
neural networks and provides an overview of the building blocks, regularization 
techniques, and learning methods that are specific to deep models. Also we consider the 
deep convolutional models and illustrates their application in image classification and 
natural language processing.
The generative deep models are often used in computer vision applications and natural 
language processing. Sequence modeling by deep feedback neural networks can be 
applied in the field of natural language processing. Practical implementations of deep 
learning are made in modern dynamic languages   (Python, Lua or Julia), and also with 
application frameworks for deep learning (e.g. Theano, TensorFlow, Torch).
This edition covers different topics from deep learning algorithms, including: methods 
and approaches for deep learning, deep learning applications in biology, deep learning 
applications in medicine, and deep learning applications in pattern recognition systems.
Section 1 focuses on methods and approaches for deep learning, describing 
advancements in deep learning theory and applications - perspective in 2020 and 
beyond; deep ensemble reinforcement learning with multiple deep deterministic policy 
gradient algorithm; dynamic decision-making for stabilized deep learning software 
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platforms; deep learning for hyperspectral data classification through exponential 
momentum deep convolution neural networks; and ensemble network architecture for 
deep reinforcement learning.
Section 2 focuses on deep learning applications in biology, describing fish detection 
using deep learning; deep learning identification of tomato leaf disease; deep learning 
for plant identification in natural environment; and applying deep learning models to 
mouse behavior recognition.
Section 3 focuses on deep learning applications in medicine, describing application 
of deep learning in neuroradiology: brain hemorrhage classification using transfer 
learning; a review of the application of deep learning in brachytherapy; exploring 
deep learning and transfer learning for colonic polyp classification; and deep learning 
algorithm for brain-computer interface.
Section 4 focuses on deep learning applications in pattern recognition systems, describing 
application of deep learning in airport visibility forecast; hierarchical representations 
feature deep learning for face recognition; review of research on text sentiment analysis 
based on deep learning; classifying hand written digits with deep learning; and bitcoin 
price prediction based on deep learning methods.



SECTION 1: 

 Methods and Approaches for 
Deep Learning





ADVANCEMENTS IN DEEP 
LEARNING THEORY AND 

APPLICATIONS:  
PERSPECTIVE IN 2020  

AND BEYOND

CHAPTER 1

Citation: Md Nazmus Saadat and Muhammad Shuaib (December 9th 2020). Advance-
ments in Deep Learning Theory and Applications: Perspective in 2020 and beyond, 
Advances and Applications in Deep Learning, Marco Antonio Aceves-Fernandez, Inte-
chOpen, DOI: 10.5772/intechopen.92271. 
Copyright: © 2020 by authors and IntechOpen. This paper is an open access article 
distributed under a Creative Commons Attribution 3.0 License .

Md Nazmus Saadat and Muhammad Shuaib

University of Kuala Lumpur, Malaysia

ABSTRACT

The aim of this chapter is to introduce newcomers to deep learning, deep 
learning platforms, algorithms, applications, and open-source datasets. 
This chapter will give you a broad overview of the term deep learning, 
in context to deep learning machine learning, and Artificial Intelligence 
(AI) is also introduced. In Introduction, there is a brief overview of the 
research achievements of deep learning. After Introduction, a brief history 
of deep learning has been also discussed. The history started from a famous 
scientist called Allen Turing (1951) to 2020. In the start of a chapter after 
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Introduction, there are some commonly used terminologies, which are used 
in deep learning. The main focus is on the most recent applications, the 
most commonly used algorithms, modern platforms, and relevant open-
source databases or datasets available online. While discussing the most 
recent applications and platforms of deep learning, their scope in future is 
also discussed. Future research directions are discussed in applications and 
platforms. The natural language processing and auto-pilot vehicles were 
considered the state-of-the-art application, and these applications still need 
a good portion of further research. Any reader from undergraduate and 
postgraduate students, data scientist, and researchers would be benefitted 
from this. 

Keywords:- Deep learning, machine learning�� ����
����� ���	����	��	, 
neural networks

INTRODUCTION

Deep learning is focusing comprehensively on video, image, text and audio 
recognition, autonomous driving, robotics, healthcare, etc. [1]. Deep learning 
is a result orientated field of study that why getting very much attention 
from researcher and academicians. The Rina Dechter introduced the word of 
deep learning in 1986, the main motivation behind the advent of field deep 
learning was making an intelligent machine that mimic the human brain. In 
humans, the brain is the most important and decision-making organ; brain 
takes decision based on sight, smell, touch, and sounds. The brain also can 
store memory and solve complex problems based on their experience.

For the last few decades, the researchers dreamed of making a machine 
that is as intelligent as, like our brains, they started studying the biological 
structure and working of the human brain. Making a robot that performs 
certain duties and self-driving cars is to reduce roadside incidents. 
Because according to the World Health Organization (WHO), 1.35 million 
people die every year in road incidents [2] and approximately 90% of the 
incidents are due to human errors [3]. To develop state-of-the-art devices 
for the applications listed above, ones need to think in a different way of 
���������������	���	�������	��������
����������	����	�����		���	������������	�
of the most innovative paradigms that make it possible up to some extent. In 
deep learning, the word deep indicates the number of layers through which 
�������	�����	��	�����������������	��	���	�������������������
������������	��
�	�	���	���������	��� ����	�����!	��������"	����	�	����� ������������
�����
intelligence machine learning or deep learning because all these overlap 
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each other some way or the other. Machine learning is any sort of computer 
program that can learn by their own without having specially programmed 
by the programmer. There are two types of machine learning: supervised 
learning and unsupervised learning. In supervised learning, you teach or 
train the machine with a fully labeled data, the machine learns from the 
labeled data and then anticipate the unforeseen data. In supervised learning, 
the machine can only give you correct output when the input is already 
experienced in training phase; it is based on experience; the more is the 
training dataset or experience of your machine the higher is the chances of 
getting the actual output. It is a time-consuming process and also required a 
lot of expertise in data science. On the other hand, in unsupervised learning, 
supervision of a model is not needed, rather the model work on its own 
catches new data and discovers the information inside the data. It usually 
deals with label-less data; compared to supervised learning, unsupervised 
�	�������������	����������	�������������������	�����
����	����	��������������
patterns.

Deep learning models are agile and result oriented in terms of 
complicated abstractions. Deep learning models are mostly based on ANN, 
categorically CNNs, although there are deep belief networks, generative 
models, propositional formulas and Boltzmann machine also play their part 
(Figure 1).

Figure 1. Deep learning a subset of machine learning and AI.

Deep learning has been evaluated as a game-changer in AI and computer 
vision. Today, state-of-the-art object detection is possible only due to deep 
learning [4]; traditional methods of object detection are not enough to cater 
with detection so smartly. To understand the whole image of object detection, 
��� ��� ���� �	�	������ �������� ��������� ����	� ������
�������� #��� �����	���	���
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calculate the concept and locations of the objects in every image, that is, 
object detection which is based on face detection, pedestrian detection, 
and skeleton detection [5]. Deep learning has cutting-edge technology 
���� ��� ������������ ��� 	�	��� 
	��� ��� ���	� �������� ����� �������������� ���
healthcare. It has a very deep impact on the life of the people or societies 
because its application is always the need of the day. The deep learning 
����������������
��������������	���	�����	������$���������
	�������	��#���
data analytics. Big data analytics is the number of complicated processes 
	'������������	���������	��������	�������������������	
�	������	���*�	������
methods used to identify the hidden patterns, unknown correlations market 
trends, and customer preference from huge dataset. Big data analytics can 
���	����������#����	���#	�	
���������������	�	��	����	�����	����������	��	���
#	��	��������	���	����	��������	����	���������	�
��	�����	���

Deep learning is an emerging area of research and modern application. 
The deep learning�������	������	���	��������	��������
	������+���������
covers industry, business, and healthcare; it combines all the hot research-
���	��	�� 
	����� ���� ���� ��<�� 	+	���+���	�� ��#	��	�������� #���������������
optimization, and cyber-physical systems; these all are seen interdependent. 
Gartner has proposed top ten technology trends for 2020, some of them 
are, hyper-automation, human augmentation, AI Security, IoT, Autonomous 
things; etc.; all are related to AI, machine learning, and deep learning some 
way or the other. Surely, deep learning will bring a bunch of innovations 
to everywhere whether it is industry, health-care or business intelligence. 
According to Ref. [6], machine learning and AI will be used more in 2020 
experts says in the survey conducted by the computer-world.

In 2019, many researchers, academicians, and teachers claimed that 
deep learning is over because it cannot do common-sense reasoning; 
Rodney Brooks a professor in MIT says that some popular press started 
stories that the deep learning will be over by 2020. In 2020, hybrid, 
interdisciplinary, collaborative, and open-minded research is expected to 
add more contribution. The topics that are expected to be more prevalent in 
2020 are common-sense reasoning, active learning and life-long learning, 
multi-modal and multi-task learning, open-domain dialogue conversation, 
medical applications and autonomous vehicles, ethics that includes privacy, 
���
�	��������������#���	�������
��������#������

There are two most common deep learning platforms: TensorFlow and 
PyTorch; these two platforms compete; and this competition is very fruitful 
for the community; TensorFlow is easy to use, integrated with Keras; while 
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on the other hand, Pytorch has TPU support, etc. In 2020, it is expected to 
have a platform which can easily transform a TensorFlow model to Pytorch 
and vice versa. There is a need to develop an actively developed stable 
reinforcement learning framework. The higher layers of abstractions are 
expected in 2020 like Keras, so that machine learning is used outside the 
�����	��	�������
	����

History

Deep learning is a sub branch of machine learning, and machine learning is a 
sub branch of artificial intelligence. Deep learning is a set of algorithms that 
processes large set of data and imitates the thinking process. The history of 
deep leaning is started from 1943, when Warren McCulloch and Walter Pitts 
created a neural network-based computer model. There basic aim was to 
mimic thought process of human brain; they used algorithms and mathematics 
to make the threshold logic to mimic human thought process. Alan Turing 
called the father of AI concluded in 1951 that the machines would not take 
much time in started thinking of their own; at some point of time, they would 
be able to talk to each other; and it is also expected that they would take the 
control of the universe. In context to this, the frank Rosenblatt introduced 
single and multi-layer artificial neural network (1957–1962). The history 
amazed us when the world champion of chess player called Kasparov was 
defeated by deep blue computer in 1997. In 1957–62, the single layer and 
multi-layer perceptron’s was introduced. The first deep feedforward general 
purpose learning algorithm multilayer perceptron’s by Alexey Icakhnenko 
and Lapa was published in 1967. In 1971, a deep network with eight layers 
trained by the group method of data handling algorithm was described 
already. The idea of backpropagation, Recurrent Neural Network (RNN), 
and restricted Boltzmann machine (RBM) was introduced in 1970–1986. In 
1979-1998, the Convolution Neural Network (CNN), Bidirectional RNN, 
and long short-term memory (LSTM) were the state of the art. The deep 
belief network (DBN) was introduced by Geoff Hinton in 2006. The data 
sets called ImageNet and AlexNet that was created in 2009. Generative 
Adversarial Network (GAN) is a class of machine learning system invented 
by Ian Goodfellow and his colleagues in 2014. Coming up in history in 2016 
Google DeepMind challenge match between Alpha Go versus Lee Sedol, 
the AlphaGo win all the matches from a world champion Lee Sedol. AlfaGo 
and AlfaZero are computer programs developed by artificial intelligence 
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research company called DeepMind in (2016–2017); it plays the board 
game Go. The transformer introduced in 2017–19 a deep learning model 
used specially used for Natural language Processing (NLP). Although there 
is a lot of community contributed to the deep learning but Yann LeCun, 
Geoffrey Hinton, and Yoshua Bengio have received Turing awards in 2018.

DEEP NETWORK TOPOLOGIES

Deep neural network (DNN)

In DNN, there is multilayer perceptron or hidden layer between the input 
and output. All the layers are connected to previous layers; by going through 
each layer, the network estimates the exact output based on the weights and 
activation function. Through DNN, we can model any complex non-linear 
relation. The backbone of the DNN is the characteristic of learning about 
the feature that is most relevant to the targets [7]. The DNN has research 
gap in model selection, training dynamics, by using graph convolution 
neural network combination optimization, and Bayesian neural network 
for estimation of uncertainty. There are a lot of applications for DNN, that 
is, computer vision, machine translation, social network filtering, playing 
board, video games, and medical diagnosis (Figure 2).

Figure 2. Deep neural network.



Advancements In Deep Learning Theory And Applications: ... 9

Recurrent neural network (RNN)

RNN is a type of deep learning network that is used specifically when there 
is sequential data or time-series, that is, video, speech, etc. The RNN usually 
maintained the data from the previous state to the next state. It is called 
recurrent because it performs the same function for each input, while the 
output is different because it also depends on past calculations. The state-
of-the-art topic of deep learning with RNN is Long Short-Term Memory 
Network (LSTM). RNN provides the solution to many problems, that is, 
intelligent transportation system [8], solving time-varying matrix inversion 
[9], and many more. The RNN is famous for sentence evaluation and 
linguistic data processing (Figure 3).

Figure 3. Recurrent neural network.

Deep belief network (DBN)

DBN is a probabilistic unsupervised deep learning algorithm. It has many 
layers of hidden variables. To solve the more complex problems, it needs more 
hidden layers; each layer is a special statistical relation with the other layer. 
DBN can learn probabilistically; after learning, BDN needs training under 
supervisor to perform classification. The DBN is used to recognize clusters 
and generates images, video sequences, and motion-capture data (Figure 4).
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Figure 4. Deep belief network.

Boltzmann machine (BM)

The BM is a network that is a uniformly attached, neuron-like unit, which is 
responsible for taking decisions stochastically about whether to be off or on. 
Computational problems are solved through BM like search, optimization, 
and learning problem. Many features are uncovered in learning algorithm 
that shows very complex behavior in training dataset. Boltzmann machine 
is used for classification and dimensionality reduction.

Restricted Boltzmann machine (RBM)

RBM introduced in 1986 by Smolensky: two layers visible and hidden 
units, while there is no connection between visible-visible and hidden-
hidden. It can learn a probability distribution over a collection of datasets. 
The applications of RBM are features learning, collaborative filtering, 
dimensionality reduction, and classification.

Convolutional neural network (CNN)

In CNN, the layers are delicately connected to input layer as well as each 
other. There is a specific function for each neuron of the subsequent layer 
like it is only responsible for only a part of the input. CNN is now widely 
used for remote sensing, computer vision, audio, and text processing [10].

Deep auto-encoder

Just like others, deep auto-encoder has also many hidden layers. The difference 
between a simple auto-encoder and deep-auto-encoder is the simple auto-
encoder that has one hidden layer, while the deep-auto-encoder has many 
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hidden layers. In deep-auto-encoder, the training is complex normally, you 
need to train one hidden layer first to reconstruct the structure of the input 
data, and this input data are further used to train other hidden layers and so 
on. Some applications of deep auto-encoder are image extraction, image 
generation recommendation system, and sequence to sequence prediction.

Gradient descent (GD)

GD is used to reduce the overall cost function; it is considered as an 
optimization algorithm and is widely used for determination of coefficient 
function in machine learning. When there is not possible to estimate the 
parameters analytically, then GD is used to calculate the desired parameters. 
Using the GD weight of the model is updated for every epoch. It is used for 
supervised machine learning.

Stochastic gradient descent (SGD)

Just like GD, SGD is also an optimization algorithm but GD is used when 
the datasets are small, while SGD is usually used when the datasets are 
large, and SD becomes very costly if used for a large number of datasets.

APPLICATION OF DEEP LEARNING

Deep learning is new and state-of-the-art technology used for large scale 
applications now-days. Deep learning (also called differential programming 
or structure learning) is member of a large family of machine learning class. 
It is edge-cutting technology used for many different new research fields 
which are stated below.

Deep learning in automatic speech recognition

The automatic speech recognition is the convincing application of deep 
learning. Speech recognition means making speech as in input to a machine 
that can make the input process very easy and has a hundred of other 
advantages as well, that is, illiterate people can also use technology, speech 
coding, text to speech synthesis, speech recognition, speaker recognition, 
speech enhancement, speech segmentation, language identification, and 
many more [11]. The speech is the natural form of communication, hence it 
is considered a very convincing application.
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Image recognition

Image recognition based on deep learning becomes very famous and 
accurate result-oriented technology based on the training and experience 
of machine. Deep learning plays a very important part in image recognition 
and image classification in underwater target recognition [12] although the 
images from underwater are always noisy and deteriorated. MNIST is one 
of the most renowned examples used for image classification, below is the 
simple of dataset of MNIST dataset (Figure 5).

Figure 5. Image example of handwritten digits from the MNIST dataset.

Natural language processing

LSTM helps a lot in language modeling and machine translation [13]; 
language modeling task is to understand the language. To implement the 
language, models’ neural networks are used. Google translate is the most 
famous and widely used application in this regard; Google translate is used 
for more than 100 languages all over the world. It also used LSTM; and it 
learns from millions of examples and translates the whole sentence rather 
than word by word translation. BERT (Google) is one of the most common 
technologies in this field achieved a lot of benchmarks, that is, sentence 
classification, sentence pair classification, sentence pair similarity, sentence 
tagging, create contextualized words embedding, question answering, and 
multiple-choice questions. There are some other transformer-based language 
models developed in 2019, which are XLNet (Google/CMU), RoBERTa 
(Facebook), Distil BERT (hugging Face), CTRL (Salesforce), GPT-2 (Open-
AI), ALBERT (Google), and Magatron (NVIDIA). Magatron is the largest 
transformer model ever trained. It has 8.3 million parameters transformer 
language model. XLNet is the best transformer in terms of performance; 
XLNet outperforms BERT on 20 tasks often by a large margin. ALBERT 
developed by Google is used to reduce the parameters via cross-layer 
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parameters sharing. The state of the artwork in this domain is about multi-
domain task-oriented dialogue system [14]. In 2020, it expected to combine 
common sense reasoning with language models, extending language model 
context to thousands of words and to have more focus on open-domain 
dialogue (Figure 6).

Figure 6. NLP and deep learning.

Games and robotics

Robots are the agents who are artificially intelligent and working in the real-
world replacing humans. OpenAI and Dota 2 are popular games; in 2017, 
1v1 bot beats top professional Dota 2 players; in 2018, OpenAI five lost two 
games against top Dota 2 player, while in 2019, OpenAI five beat OG team 
(the world champion in 2018). The OpenAI five win in 2019 is only because 
of the more training compute; the current version of OpenAI has consumed 
800 petaflops/day and experiences about 45,000 years of dota self-play over 
10 real-time months. 

The current version has 99.9%-win rate versus the 2018 version. It is one 
of the best experiences in deep learning that systems that learn to play with 
each other and incrementally improving. OpenAI Rubiks Cube Manipulation 
is another example from Robotics. The researchers are expecting in 2020 
to implement reinforcement-learning methods in the manipulation of real-
world interaction tasks. 

In games, experts are loss from different machines, using these machines 
to assist human experts in discovering new strategies. Waymo a company 
that is focusing on developing auto-pilot like Tesla in October 2018; they 
have 10 million miles on road and now in 2020 they have 20 million miles 
on road 20,000 of classes for structure test, also initiated testing without 
having a safety driver.
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Financial fraud detection

Deep learning is playing a very important role in financial fraud detection. 
With the advent of technology and a significant amount of e-commerce 
platforms, the number of e-payments is increasing day by day chances of 
financial fraud, which is also a source of headache for banks and other 
financial institutions. Thus, focusing on fraud detection is a hot area of 
research. The author of [15] used auto-encoder for financial fraud detection 
[16]. This research uses deep learning model for fraud detection, while [17] 
proposed a solution to fraud detection using machine learning approach.

Deep learning in health-care

In this modern era of computing, deep learning also produced best results 
medical and health care, that is, deep learning is used for cancer cell 
coordination, organ segmentation, protein folding, lesion detection, and 
image enhancement in the field of medicine. There are several other issues 
like [18, 19, 20, 21] and much more where deep learning is directly involved 
in the suggestion of the ultimate solution to the problem in healthcare.

Military

Deep learning is used for making many different military devices used in wars 
or other spy services. The military is also working on robots to train the robots 
to handle the critical situation through these robots. The militaries of some 
countries are making their weapons more intelligent using AI. In a war zone, 
AI can be embedded in the robots for remote surgical support in healthcare.

Cybersecurity

Cybersecurity is also one of the hot research areas; deep learning models 
are used for the cybersecurity of the Internet of Things (IoT) [22]. The IoT 
devices are usually low power devices having power-constrained that’s why 
always vulnerable to external threats. Deep learning models can detect threats 
more accurately than any other technology. The author of [23] used deep 
learning and machine learning for intrusion, spam, and malware detection.

MODERN DEEP LEARNING PLATFORMS

Open-sources deep learning platforms discussed in this section. It will 
provide a quick review of the open-source platforms for beginners and 
mediocre because every platform has its pros and cons.
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TensorFlow

The TensorFlow is new and open-source platform for differential 
programming; it was developed by Google team called Google brain and 
was first released in 2015 [24]. In February 2017, they released version 1.0.0; 
TensorFlow can work on CPU and GPU; it is available for Mac, Linux, and 
windows and also for mobile computing platform android and iOS. It is the 
most famous machine learning library in the world today. Its best-supported 
client language is python but there is also interface available in C++, Java, 
and GO. It is easy to use and have Keras integration. TensorFlow has many 
of its versions available like for mobiles TensorFlow lite, for industry 
TensorFlow Serving, etc.

Pytorch

Pytorch is also machine learning and deep learning library, based on torch 
library. It was initially released by Facebook’s AI Research lab (FAIR) in 2016. 
Pytorch has two high-level features, Tensor computing with graphics processing 
units (GPU), and auto-diff based deep neural network. It is too easy in Pytorch 
to move tensors to and from GPU. Pytorch Mobile is the version of Pytorch 
used for mobiles. There are some key features of Pytorch; the first feature is 
called imperative programming; most of the python code is imperative; this 
type of programming is more flexible. The other feature of Pytorch is dynamic 
computation graphs, it run time the system generates the graph structure, 
dynamic graph work well for dynamic networks like RNN, dynamic graph also 
makes debugging very easy. The Pytorch provides maximum flexibility and 
speed during implementing and building deep neural network.

Theano

Theano is designed by Montreal Institute for Learning Algorithms (MILA), 
which is very famous after their deployment, but unfortunately, there is no 
support after version 1.0.0 (November 2017). It is a python library designed 
for code compilation optimization [25]; it is primarily used for mathematical 
operations like multi-dimensional arrays. Theano was far better than other 
python libraries like Numpy in terms of speed, computing symbolic graphs, 
and stability optimizations. Tensor operations, GPU computation, and 
parallelism are also supported by Theano.
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Microsoft cognitive toolkit (CNTK)

CNTK is used for commercial-grade distributed deep learning. It can be used 
as a standalone tool for machine learning or also can be included as a library in 
C++ programs, python, and C#; its model evaluation functionality can be also 
used from Java programs. It supports ONNX that allows sharing model with 
frameworks Caffe2, MXNet, and PyTorch [26]. CNTK can be used only on Linux 
and Windows. The CNTK is considered as a powerful machine learning platform 
similar surge of performance as compared to other widely used platforms [27].

Keras

Keras is a powerful library written in python; it uses TensorFlow, Theano, 
and CNTK as a framework because it does not have their framework. Keras 
can work on GPUs and CPUs and can also support RNNs and CNNs. The 
beauty of Keras is it has the ability of fast and easy prototyping; Keras is 
user-friendly. It has been ranged one of the most cited API in 2018 and has 
enough number of users on board.

Deep learning 4J

It is distributed open-source, robust deep learning framework for Java 
designed by Skymind [28] which is added a lot to Java ecosystem and 
eclipse foundation. It has compatibility with Clojure and Scala APIs just 
like Keras; it is also able to work with both CPUs and GPUs. It is widely 
used for academics and industrial applications.

Torch

It is a scientific computing open-source machine learning framework released 
in October 2002; it is not able to work on CPUs; it is only made to focus on 
GPUs accelerated computing. It is developed in programming language C 
and based on Lua, a contribute in a LuaJIT, a scripting language. Max OSX 
and Ubuntu 12+ can use this framework, although they have Platform for 
Windows, but their implementations are not supported officially [29].

Caffe and Caffe2

CAFFE (Convolutional Architecture for Fast Feature Embedding) created 
by Berkeley AI Research (BAIR) is a framework for deep learning. It is 
developed in C++ with a python interface. Caffe2 was introduced by the 
research group of Facebook in 2017, but Caffe2 was merged in PyTorch in 
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March 2018. It supports multiple platforms, that is, Mac OS X, Windows, 
Linux, iOS, and Android [30].

Apache MXNet

An MXNet is a fast-scalable deep learning platform that supports many 
programming languages, i.e., Scala, Julia, C++, R, Python, Gluon API, 
and Perl APIs. Like Torch, it is also made only for GPUs, and it is very 
competent in multi GPUs implementations. The Apache MXNet is scalable 
flexible and portable, and due to these qualities, it attracts many users.

TRAINING ALGORITHMS

One of the most important parts of deep learning is learning algorithms. 
The deep neural network can be differentiated only through the number of 
layers; if the number of layers increases, the network becomes deeper and 
more complex. Each layer has its specific function or can detect or help in 
the detection of the special feature.

According to the author [31], if the problem is face recognition, the 
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higher features such as the nose, eye, ears, etc., the next layer can further 
dig out the features, and so on. Thus, each layer is developed earlier to 
the development of training algorithm like gradient descent; that’s why 
�	�	����������������
	�����	����������#�	������������	��������	������	����
variation. This was discussed by Yann et al. [32]; they further concluded that 
a system with less manual and more automatic design can give better results 
in pattern recognition.

Backpropagation is the solution; it takes information from the data 
������� ������ ������ ������
	��� ���� 
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recognition. List of few famous training algorithms is listed below.

Gradient descent

In statistics, data science, and machine learning, we optimize a lot of stuffs; 
when we fit a line with linear regression, we optimize the intercept and 
slope; when we use logistic regression, we optimize a squiggle; when we 
use t-SNE, we optimize clusters. The gradient descent is used to optimize all 
these and tons of others as well.
Gradient descent algorithm is similar to Newton’s roots finding algorithm 
of 2D function. The methodology is very simple; just pick a point randomly 
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on a curve and move toward the right or left along x-axis depending on the 
positive and negative value of the slope of the function at the given point 
up-till the value of y-axis, that is, function or f(x) becomes zero. There is 
the same concept behind the gradient descent; we move or traverse along 
a specific path in many-dimensional space weight when the error rate is 
reduced to your limits than we stop. It is one of the underlying concepts for 
most of deep learning and machine learning algorithms.

   (1)

Stochastic gradient descent

A method used for optimizing an objective function with the iterative 
method is called stochastic gradient descent. It can also be called gradient 
descent optimization. Stochastic gradient descent would randomly pick one 
sample for each step and from that, just use this one sample to calculate 
the derivatives, thus in super sample example, stochastic gradient descent 
reduced the number of terms by computed by 3.If we had one million 
samples than the stochastic gradient descent would reduce the number of 
terms by computed by factor of one million. In stochastic gradient descent, 
�	������#��������	����#	����������	��
���	�������������������	����	�
applied, in here update of weights is more frequent, so we reach a global 
minimum in less time (Figure 7).

Figure 7. Comparison of GD and SGD.

Momentum

In stochastic gradient descent to update the weight or to calculate step 
size, a fixed multiplier is used as a learning rate; this can cause the update 
to overshoot a potential-minima; if the gradient is too steep or delay, the 
convergence of the gradient is noisy. The concept of momentum used in 
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Physics is velocity exponentially decreasing an average of gradient [33]. 
This prevents the descent going in the wrong direction.

Levenberg-Marquardt algorithm

This type of algorithm is used for curve fitting or non-linear least-squares 
problems. This algorithm is also called as deep least-square; these kinds of 
issues arise usually in the least-squares curve fitting. It was first introduced 
by Kenneth Levenberg in 1944, although it was rediscovered by statistician 
called Donald Marquardt in 1963.

Backpropagation through time

It is one of the famous and standard methods used to train the recurrent neural 
network. It was developed independently by several researchers. Unlike 
general-purpose optimization techniques, it is faster in training RNN. The 
backpropagation through time also has issues with local optima [34].

ROUTINE CHALLENGES OF DEEP LEARNING

According to Google trends graph more and more expert and professionals 
have attracted toward deep learning in last five year; the percentage of 
professionals increased from 12 to 100% [35, 36]. Deep learning is used 
everywhere, that is, bio-informatics, computer vision, IoT security, health-
care, e-commerce, digital marketing, natural language processing, and many 
more [37, 38]. Because of the very hot research area, there must have some 
challenges which are enlisted below.

Non-contributing columns or inputs

When dealing with data or making a model, several inputs are not necessary 
for finding any feature, so it is advised to drop un-necessary attributes. 
There is also necessary to find one best column and make it separate from 
the dataset; it can be done using numpy array in Keras; but it is difficult and 
challenging to find best match attribute.

Number of hidden layers

The number of hidden layers is directly propositional to computational 
complexity and deepness of the network. To deal with a large number of 
layers require a high computational cost, difficult to manage a large number 
of neurons.
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Optimization algorithms

In model optimizations, gradient descent optimizer helps to make the model 
cost minimum by adjusting the value; choosing an optimizer is also a 
challenging task to do, because sometimes it makes your cost of model high 
rather than decreasing the model cost.

Loss function

Is from the name indicate loss function, it estimates the loss or the difference 
between the expected outcome and the actual outcome the formula for loss 
function is listed below.

?����\^'�	��	��������	_�������������	� � � `{|
There are many different ways to calculate the loss function; choosing 

a loss function is also one of the essential and challenging tasks of deep 
learning

Activation function

There are many different activation functions; every activation function 
does not produce the same results; sigmoid activation function shows good 
results with binary classification problem. One needs to be careful about 
Tanh activation function because of the vanishing gradient problem. In 
multi-labeled classification, softmax is the best option; Relu should be used 
when there is much zeros in the input side because Relu is good in dead 
neuron generation. It is also a point to use the required activation function.

Epoch

When the dataset is passed backwards and forward through the whole neural 
network, it is called one epoch, as after every epoch value of weights as-
signed is analyzed to make model. The weights are changed, checked, and 
tested in every cycle for the same dataset simulation. The main memory is 
keeping the record of all the training data; sometimes it is not possible to 
keep all the record in main memory, like for larger datasets, so the epoch is 
#����������	�������������	�����#���	������������
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resented as an epoch output. Dealing with epoch is also a challenging task 
in deep learning.
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AVAILABLE OPEN-SOURCE DATASETS

Research in machine learning and deep learning is started since last many 
decades hence significant improvement it brings to the society in terms of 
various application-based on deep learning and machine learning. There are 
many freely available datasets on the web which can be used by researchers 
for various purposes.
Image datasets (Table 1):

Table 1. Open source image datasets

Pascal VOC MS COCO

MNIST handwritten digits NORB

CIFAR10/CIFAR100 color images data set 
with

COIL100

Caltech101 Google’s Open Images

Caltech 256 COIL 20

The dataset of street view LabelMe

STL-10 ImageNet

Geospatial datasets available online:

�� NEXRAD
�� OpenstreetMAP
�� Landsat8

Dataset available for text (Table 2):
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Table 2. Text open-source datasets

Google books Ngrams Yelp open 

dataset

20 newsgroups

UCI’s Spambase 
(Older)

Prediction UCI machine learning 
repository

Text clas-
��
�������
datasets

SQuAD Google books 
Ngrams

Broadcast news WikiText

Penn Treebank Reuters news 
dataset

Billion words dataset: Common 
crawl

Artificial datasets:

�� Arcade Universe
�� Dataset inspired from baby-AIschool
�� All images and question datasets
�� Deep vs. shallow comparison ICML
�� Background correlation
�� Rectangles data
�� Mnist variations

Facial datasets (Table 3):

Table 3. Databases for face recognitions.

Labeled faces in the 

wild

UMD faces annotated 

dataset

CASIA WebFace facial

MS-Celeb-1M Olivetti Multi-Pie

JACFEE FERET mmifacedb

Indian face database The Yale face database Mut1nyFace/head segmentation 
dataset

Recent additions of datasets (Table 4):



Advancements In Deep Learning Theory And Applications: ... 23

Table 4. Free databases developed recently

The UZH-FPV drone rac-

ing dataset

North Korean missile 

test database

Flickr-Faces-HQ Da-

taset (FFHQ)

Hotels-50K MIMIC-CXR Google Audioset

Two new evaluation data-
sets

Open-source biometric 
data recognition

Uber 2B trip data

Yelp Open Dataset Core50 Data portals

Open data monitor Quandl data portal Mutiny face/head seg-
mentation dataset

Awesome public dataset Head CT scan dataset Open datasets

WAPo Chess dataset NLP datasets
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ABSTRACT

Deep deterministic policy gradient algorithm operating over continuous 
space of actions has attracted great attention for reinforcement learning. 
However, the exploration strategy through dynamic programming within 
the Bayesian belief state space is rather inefficient even for simple systems. 
Another problem is the sequential and iterative training data with autonomous 
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vehicles subject to the law of causality, which is against the i.i.d. (independent 
identically distributed) data assumption of the training samples. This usually 
results in failure of the standard bootstrap when learning an optimal policy. 
In this paper, we propose a framework of m-out-of-n bootstrapped and 
aggregated multiple deep deterministic policy gradient to accelerate the 
training process and increase the performance. Experiment results on the 
2D robot arm game show that the reward gained by the aggregated policy 
is 10%–50% better than those gained by subpolicies. Experiment results on 
the open racing car simulator (TORCS) demonstrate that the new algorithm 
can learn successful control policies with less training time by 56.7%. 
Analysis on convergence is also given from the perspective of probability 
and statistics. These results verify that the proposed method outperforms the 
existing algorithms in both efficiency and performance.

INTRODUCTION

Reinforcement learning is an active branch of machine learning, where 
an agent tries to maximize the accumulated reward when interacting with 
a complex and uncertain environment [1, 2]. Reinforcement learning 
combining deep neural network (DNN) technique [3, 4] had gained some 
success in solving challenging problems. One of the most noticeable results 
was achieved through the deep Q-network (DQN), which exploited deep 
neural networks to achieve maximum accumulated reward [5]. DQN has 
performed well over 50 different Atari games and inspired many deep 
reinforcement learning (DRL) algorithms [6–8].

However, DQN only deals with the tasks with small, discrete state 
and action spaces while many reinforcement learning tasks have large, 
continuous, real-valued state and action spaces. Although such tasks could 
be solved with DQN by discretizing the continuous spaces, the instability 
��� �	� �������� ����	�� ���� #	� ����	��	��� ?��� ��	�������� ���� ���
�������
deterministic policy gradient (DPG) algorithm [9] with the DNN technique 
was proposed, producing deep deterministic policy gradient (DDPG) 
algorithm� �{��������������	�������������	��� ����� ��	�
��	��� 	'����������
and unstable training [11]. Many existed works attempted to solve the 
problems. Gu et al. proposed the Q-prop method, a Taylor expansion of 
the off-policy critic as a control variant to stabilize DDPG [12]. Q-Prop 
combines the on-policy Monte Carlo and the off-policy DPG; it achieves 
�	���������	����������	�	�
��	�����������#�������~���	������������	������
to stabilize the training process of DDPG, by training the parallel agents 
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with asynchronously accumulated updates [13]. Interactive learning with 
the environment in multiple threads is performed at the same time, and 
each thread summarizes the learning results and stores them in a common 
place. In this way, A3C avoids the problem of too strong correlation of 
empirical playback and achieves an asynchronous concurrent learning 
model. This method consumes considerable computation resources. When 
the implementation complexity is not a strong limit, we can use any of these 
policy gradient-related methods to generate subpolicies to further improve 
our method, where the centralized experience replay buffer stores and shares 
experiences from all subpolicies, enabling more knowledge gained from the 
environment.

Additionally, researchers attempted to overcome the disadvantage of 
unstable training of DDPG and speed up the convergence of DDPG with 
bootstrap technique recently [14]. Osband et al. developed bootstrapped DQN 
as the critic of DDPG [15]. Yang et al. employed a multiactor architecture 
for multitask purpose [16]. DBDDPG [11] and MADDPG [17] both used 
����������+���������������	����������	��	�	'����������	�
��	������������	��	�
the training stability. Shi et al. introduced deep soft policy gradient (DSPG) 
[18], an off-policy and stable model-free deep RL algorithm by combining 
policy and value-based methods under maximum entropy RL framework. 
The authors discover that the standard bootstrap is likely to fail when 
learning an optimal policy, since in most reinforcement learning tasks, the 
sequential and iterative training data subject to the law of causality, which 
is against the i.i.d. (independent identically distributed) assumption of the 
training samples. Hence, a novel bootstrap technique is needed for achieving 
the optimal policy.In consideration of the above shortcomings of the 
previous work, this paper introduces a simple DRL algorithm with m-out-
of-n bootstrap technique [19, 20] and aggregated multiple DDPG structures. 
The control policy will be gained by averaging all learned subpolicies. 
Additionally, the proposed algorithm uses the centralized experience replay 
#���	�� ��� ������	� �	� 	'���������� 	�
��	����� ����	� �+���+��+�� #���������
with random initialization produces reasonable uncertainty estimates at 
low computational cost, this helps in the convergence of the training. The 
proposed bootstrapped and aggregated DDPG can substantially reduce 
the learning time. The remainder of this paper is organized as follows. 
Section 2 presents a brief background. Section 3 introduces the proposed 
method in detail and analyses the convergence of the algorithm. The 
experimental results of the proposed method are presented in Section 4. The 
paper is concluded in Section 5.
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BACKGROUND

Reinforcement Learning

In a classical scenario of reinforcement learning, an agent aims at learning 
an optimal policy according to the reward function by interacting with the 
environment E in discrete time steps, where policy is a map from the state 
space to action space [1]. At each time step, the environment state st is 
observed by the agent, and then it executes the action at by following the 
�������������	�����������	������`�t, at) is received immediately. The following 
equation defines the accumulated reward that the agent receives from step t:

  (1)

where  is a discount factor. As the agent maximizes the expected 
accumulated reward E[Rt��������	�������������	���	������������������ will 
#	�����	��
�����

Deterministic Policy Gradient Algorithm

Policy gradient (PG) algorithms optimize a policy directly by maximizing the 
performance function with the policy gradient. Deterministic policy gradient 
algorithm which is originated from deterministic policy gradient theorem 
[9] is one of the policy gradient methods. It learns deterministic policies 

 with the actor-critic framework, while the critic estimates 
the action-value function and the actor represents the deterministic policy 
function. /e updates for the action-value function and the policy function are 
given below

   (2)
where  denotes the discounted state distribution [9]. Since full 
optimization is expensive, stochastic gradient optimization is usually used 
instead. /e following equation shows the deterministic policy gradient [9] 
which is used to update the parameter of the deterministic policy:

 (3)
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DDPG Algorithm

DDPG applies the DNN technique onto the deterministic policy gradient 
��������� �{���� ���� �����'����	�� �	�	���������� ������� ��������� �� ����
actionvalue function Q with neural network, as shown in Figure 1. 

<	�	� ��	� ���� �	��� ��� �	����� ��� ������ ��� �� ��	� �	����� ���� �����
�	����������	����������	��	�������������	���	�������������	���������	�����
[5] for generating the Q-learning targets. We use  to denote 
the main networks while  represent the target networks. 
As equations (4) and (5) shows, weights of the main networks are updated 
according to the stochastic gradient, while weights of target networks are 
updated with “soft” updating rule [10], as shown in equation (6):

 (4)

   (5)

Figure 1. Diagram of deep deterministic policy gradient.

    (6)
DDPG utilizes the experience replay technique [10] to break training 

samples’ temporal correlation, keeping them subject to the i.i.d. (independent 
identically distributed) assumption. Furthermore, the “soft” updating rule 
is used to increase the stability of the training process. DDPG updates the 
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main actor network with the policy gradient, while the main critic network is 
updated with the idea of combining the supervised learning and Q-learning 
which is used in DQN. After training, the main actor network converges to 
the optimal policy.

METHODS

Structure of Multi-DDPG

Compared with DQN, DDPG is more appropriate for reinforcement learning 
tasks with continuous action spaces. However, it takes long time for DDPG 
to converge to the optimal policy. We propose multiDDPG structure and 
bootstrap technique to train several subpolicies in parallel so as to cut 
down the training time. We randomly initialize N main critic networks 
Qi(s, a |wi) and main actor networks �i(s| �i) with weights wi and �i (i = 1, 
2, ... , N), and then, we initialize N target networks  with weights 

 (I = 1, 2, ... , N) and initialize the centralized experience 
replay buffer R.

The structure of multi-DDPG with the centralized experience replay 
buffer is shown in Figure 2. We name the proposed method which utilizes the 
multi-DDPG structure and bootstrap technique as bootstrapped aggregated 
multiDDPG (BAMDDPG). Figure 3 demonstrates that BAMDDPG averages 
���� ������� �������� ��� �����	�� ��#������	�� ��� ���	�	� �	� 
���� ����	���	��
policy. For clarity, the terms agent, main actor network, and subpolicy refer 
to the same thing and are interchangeable in this paper. Algorithm 1 presents 
the entire algorithm of BAMDDPG.

In Algorithm 1, “#Env” means the number of environment modules while 
“#selected DDPG” represents the number of selected DDPG components. 
During the training process, each DDPG component which exploits 
the actorcritic framework is responsible for training the corresponding 
subpolicy. Figure 2 demonstrates the training process of a DDPG component, 
containing the interaction procedure and the update procedure.

In the interaction procedure, the main actor network which represents 
an agent interacts with the environment. It receives the current environment 
state st and outputs an action at. The environment gives the immediate reward 
rt and the next state st+1 after executing the action. Then the transition 
tuple (st, at, rt, st+1)t is stored into the central experience replay buffer. To 
	�
��	����� 	'����	� �	� 	�������	���� ����	� �����	�� ����� ��� �����	��¢
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Uhlenbeck process N is added to the action.In the update procedure, a 
random minibatch of transitions used for updating weights is sampled from 
the central experience replay buffer. e main critic network is updated by 
minimizing the loss function which is based on the Q-learning method [1], 
while the target networks are updated by having them slowly track the main 
networks. Weights of the main actor network are updated with the policy 
gradient along which the overall performance increases. By following such 
an update rule, each subpolicy of BAMDDPG gradually improves. The 
centralized experience replay buffer stores experiences from all subpolicies.

Figure 3 illustrates the aggregation details of subpolicies. We denote 
subpolicies approximated by main actor networks with  
and the outputs of these subpolicies with a1, a2, ... , aN. In addition, the 
aggregated policy’s output is denoted as a.

In practice, we train multiple subpolicies by setting a maximum number 
of episodes. Since episodes in BAMDDPG terminate earlier than that of the 
original DDPG algorithm with less steps, the training time of subpolicies 
is less than the optimal policy. It can be predicted that the performance 
of less-trained subpolicies will be worse than the optimal policy to some 
degree, but we can aggregate the trained subpolicies to increase the 
performance and get the optimal policy. Furthermore, we use the average 
method as aggregation strategy in consideration of the equal status and real-
valued outputs of all subpolicies. Specically, the outputs of all subpolicies 
��	� ��	���	�� ��� ������	� �	� 
���� ���������� ?����	� �� �	��������	��� �	�
interaction procedure of a DDPG requires an environment component to 
interact with the agent Therefore, multi-DDPG structure requires multiple 
environment modules. However, for some reinforcement learning tasks, the 
environment module does not support being copied for multiple DDPGs. In 
such case, the environment component interacts with only one subpolicy in 
each time step. BAMDDPG supports reinforcement learning tasks with both 
one environment module and multiple environment modules by choosing 
one subpolicy or multiple subpolicies to interact with the environments 
in each time step. All subpolicies are then updated simultaneously with 
sampled minibatch from the centralized experience replay buffer. In the end, 
���� �����	�� ��#������	�� ��	� ��	���	�� ��� ����� �	�
���������������������{�
presents the BAMDDPG algorithm.

Additionally, from the perspective of intuition, the centralized 
experience replay technique exploited in BAMDDPG enables each agent 
to use experiences encountered by other agents. /is makes the training of 
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��#������	�������~��������	�	�
��	��� ����	�	�����	�������������	��
vision and more environment information.

Figure 2. Structure of BAMDDPG.

Figure 3. Aggregation of subpolicies.

Randomly initialize N main critic networks Qi(s, a | wi) and main actor 
networks ��(s| �i) with weights wi and �i (i = 1, 2, . . . , N) Initialize N target 
networks   with weights 

Initialize centralized experience replay buffer R
for episode = 1, M do
Initialize an Ornstein–Uhlenbeck process N for action exploration
if #Env == 1 do
Alternately select Qi and �i among multiple DDPGs to interact with the 

environment
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else do
Select all Qi and �i, each DDPG is bound with one environment
end if
for t = 1, T do
for #selected DDPG do
Receive state st from its bound environment
Execute action  and observe reward rt and new state st+1 
Store experience  in R
end for
for i = 1, N do
Update  according to equations (4)–(6)
     end for
   end for
end for

Get final policy by aggregating subpolicies: 
Algorithm 1. Bootstrapped and aggregated multi-DDPG (BAMDDPG).

Analysis on Convergence with Bootstrap and Aggregation

For ease of description, we suppose BAMDDPG trains N subpolicies 
simultaneously and denote these subpolicies with �i (i = 1, 2, · · · N). /e 
����	���	�������������	���	���������������#	���������	����

    (7)
where  represents the aggregation of subpolicies. Let the optimal 

policy denoted as . Then the following formula holds [20]

   (8)

where  means the average bias of subpolicies and the 
optimal policy while  represents bias of the aggregated policy and the 
optimal policy.

Equation (8) demonstrates that the aggregated policy has better 
performance than subpolicies and approximates the optimal policy more 
closely than any subpolicy. Under this conclusion, the aggregated policy 
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approximates the optimal policy quickly as subpolicies are trained to a 
certain extent [21].

Further, we analyze the convergence from the perspective of probability 
and statistics [22]. Assume all policies are from the policy space U. The 
��#������	���1���2, . . . , �N are sampled according to a distribution function F 
in U. Let  denote the empirical cumulative distribution function

   (9)
) where N is the number of the sampled subpolicies.  is an indicator 

���������������������{��	���	�������������������
	�����	����	����<	�
��	������£�¤�¥� ���£�i�¤�'¥��	����'� �����#	��	��������� �����i in U, which 
indicates the agent acting by following the policy x is able to gain more 
reward than those only adopting ui. According to the rule of Dvoretzky–
Kiefer–Wolfowitz inequality [23], we get

   (10)
�	�	��`¦|��	��	�	�������#�#����������`¦|��	�������	��#����������§�������

arbitrary small positive integer.
Equation (10) shows that  converges uniformly to the true distribution 

function exponentially fast in probability. Suppose we are interested in the 
mean , then the unbiasedness of the empirical measure extends to 
the unbiasedness of linear functions of the empirical measure. Actually, 
empirical cumulative distribution can be seen as a discrete distribution with 
equal probability for each component, which means we can get a policy 
from the empirical cumulative distribution by averaging multiple policies. 
Therefore, the aggregating policy  subjects to empirical cumulative 
distribution and it subjects to true distribution.

Since  is a better policy than  in U,  converges to the 
optimal policy of U.

The m-out-of-n Bootstrap

Bootstrap [14] is a significant resample technique in statistics, which generally 
works by random sampling with the replacement process. In this paper, we 
try to train multiple DDPG components with bootstrap. It is analyzed that 
such requirement can be simply attained by initializing the network weights 
of different DDPG components with different methods [15]. Therefore, we 
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adopt this technique as a prior and multiple DDPG components are trained 
in parallel on different subdataset from experience replay buffer.
However, standard bootstrap fails as the training data subject to a long-tail 
distribution, rather than the usual normal distribution, as the i.i.d. assumption 
implies. A valid technique is m-out-of-n bootstrap method [19], where 
the number of bootstrap samples is much smaller than that of the training 
dataset. More specifically, we draw subsamples without replacement and 
use these subsamples as new training datasets. Multiple DDPG components 
are then trained with this newly produced training dataset

RESULTS AND DISCUSSION

2D Robot Arm

In order to illustrate the effectiveness of aggregation, we use BAMDDPG to 
learn a control policy for a 2D robot arm task.

Benchmark and Reward Function
As Figure 4 demonstrates, a 2D robot arm contains a two-link arm with one 
joint which is attempting to get to the blue block. Th first link rotates around 
the root point while the second link rotates around the joint point. /e action 
of an agent consists of two real-valued numbers denoting angular increment. 
We construct the reward according to the distance between the finger point 
of the arm (endpoint) and the blue block. /e farther away the finger point 
being from the blue block, the lesser the reward is. Additionally, the reward 
adds one when the distance  is less than the threshold §��¨	���	�
finger point stops within the blue block for a while (more than 50 iterations), 
the reward adds ten. /e following equation presents the reward:

  (11)
where I[·] is an indicator function which outputs 1 when the condition 

��������
	�����	����	

Performance of Aggregated Policy
During the training process of BAMDDPG, each agent interacts with its 
corresponding environment, producing multiple learning curves. Figure 5 
demonstrates learning curves of 3 subpolicies with shared experience on 2D 



Deep Learning Algorithms40

robot arm benchmark. /e curve depicts the moving average of episode reward 
while the shaded area depicts the moving average ± partial standard deviation. 
As Figure 5 shows, the training process of BAMDDPG’s subpolicies is better 
than that of DDPG. /e centralized experience replay buffer stores and shares 
experiences from all subpolicies, enabling more knowledge gained from 
the environment. /erefore, BAMDDPG’s subpolicies can gain more reward 
during the training process. After about 1000 episodes, the subpolicies of 
BAMDDPG and the policy of the original DDPG both converge.

Figure 4. 2D robot arm benchmark.

Figure 5. Comparison between sub-DDPGs of BAMDDPG and DD.
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The key of BAMDDPG is the aggregation of subpolicies. In this section, 
we show the comparison of performance between the aggregated policy and 
subpolicies so as to illustrate the effectiveness of aggregation. Suppose the 
action given by the ith subpolicy is ai = [ai1, ai2], then the immediate reward 
of the ith subpolicy is given by:

   (12)
where f(ai|��	���	���	��������	�#	��		���	�
��	������������	���������

the blue block after executing action ai while it is an implicit function. The 
immediate reward of the aggregated policy can be expressed in the same 
way:

    (13)

where  represents the action taken by the aggregated policy.
Table 1 shows the performance comparison of subpolicies and 

aggregated policy of BAMDDPG. /e result demonstrates that reward gained 
by the aggregated policy is 10% 50% better than those gained by subpolicy.

TORCS

Benchmark and Reward Function
The Open Racing Car Simulator (TORCS) is a car driving simulation 
software with high portability, which takes the client-server architecture [24, 
25]. It realistically simulates real cars by modeling the physical dynamic 
models of the car engines, brakes, gearboxes, clutches, etc. It is a commonly 
used DRL benchmark and is appropriate for test of self-driving techniques. 
Using TORCS, a developer is able to easily access a simulated car’s sensor 
information. Therefore, the controller of the simulated car is able to get the 
current environment state and follow a policy to send controlling instructions, 
including control of steering, brake, and throttle. Figure 6 presents TORCS’s 
client-server architecture. /e controller connects to the race server through 
the user datagram protocol (UDP). At each time step, the information of 
the current driving environment state is perceived by the simulated car 
and is sent to the controller. /e server then waits for an instruction from the 
controller for 10 ms. The simulated car executes the corresponding actions 
according to the current instruction, or last instruction if no new instruction 
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is sent.Designing a suitable reward function is a key for using TORCS as the 
platform to test BAMDDPG, which helps to learn a good policy to control 
the simulated car. We describe the details of designing the reward function 
in this section. As the driving environment state of TORCS can be perceived 
by various sensors of the simulated car, we can create the reward function 
using these sensor data which is shown in Table

Equation (14) presents our constructed reward function, which restricts 
the behavior of the simulated car in TORCS. Each time the simulated car 
interacts with the driving environment of TORCS, we expect to gain as large 
reward as possible through the following equation:

  (14)

Table 1. Performance comparison of subpolicies and the aggregated policy

Figure 6. Diagram of the client-server architecture of TORCS.
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Table 2. Information of sensor data for creating the reward function

where the term v represents the car is expected to run as fast as possible 
so as to maximize the reward. /e terms cos ������`{�_�ª�����|) mean � is 
expected as zero so that the car can run along the track all the time. /e term 
`{�_�ª�2|) represents the car is on the track axis. I�·� represents an indicator 
function whose value is 1 or 0 depending on whether the condition is met or 
�����«	�����������	*��������	��������	���	�
�����	������	*�������`{�|�

   (15)
Equation (15) takes into account the speed constraints of the car whether 

the car encounters a turn or not. /e car slows down when a turn is encountered 
and drives as fast as possible along a straight route. Here, d1 = 10 is set to 
be the threshold of encountering a turn. /e car is at a turn when d1 < 10 and 
the corresponding reward is a quadratic function with respect to the speed 
��� �	� ����� ���	� ���� � ���� ®� ��	� ��	�� �����	�	��� �		����� ��� 
�	+���	��
?����	������������	���	����������	�*�������������������	���\�{����®�\�
180. /e quadratic function reaches the maximum value when v = 90.5, which 
means the expected speed of the car at a turn is 90.5 km/h and the car will 
decelerate automatically when it encounters a turn.

Figure 7. Graph of speed constrained function.
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Equation (16) reformulates the last term in equation (14). It restricts the 
distance between the track edge ahead and the car. This term means that the 
turn should be observed by the car in advance and the steering angles should 
be adjusted according to the turn:

   (16)

Learning Curve and Training Time
We successfully achieve the optimal self-driving policy with BAMDDPG 
by aggregating multiple subpolicies in TORCS. During one episode of the 
training process, one subpolicy is selected. /e corresponding agent perceives 
the driving environment state through various sensors and executes the 
action by following the selected subpolicy. Table 3 presents the detailed 
description of the action commands, including steering, brake, and throttle.

After the interaction, all subpolicies were updated using the minibatch 
from the centralized experience replay buffer. We have argued that less 
training time is demanded by BAMDDPG than DDPG. Figure 8(a) illustrates 
the comparison of learning curve between BAMDDPG and DDPG while 
Figure 8(b) demonstrates the comparison of training time.

In our experiments on TORCS, the simulated car was trained 6000 
episodes with the Aalborg track using BAMDDPG and DDPG, respectively. 
Figure 8(a) illustrates the learning curve comparison of DDPG and 
BAMDDPG. /e curve depicts the moving average of episode reward 
while the shaded area depicts the mean ± the standard deviation. Figure 
8(a) demonstrates that BAMDDPG and DDPG both converge and oscillate 
�����������	��
���	���	�����	��	��������	��#	���������	�������	�����	���
Figure 8(b) demonstrates that BAMDDPG takes less time to train since the 
aggregated policy quickly approximates the optimal policy as subpolicies 
are trained to a certain extent. It takes 22.84 hours for BAMDDPG to be 
trained 6000 episodes, but 52.77 hours for DDPG, which demonstrates 
BAMDDPG can cut down the training time by 56.7%.

Figure 8(b) also shows that training time spent by BAMDDPG and 
����� ��� ���� �������	�	��� ��� �	�
���� {���� 	�����	��� «	� �	����� ��� ���� �	�
attention is mostly paid on environment exploring by the simulated car 
��� 
���� ���� �	�	� �������� 	�����	�� 
���� *�������� ^'�������� ���	� ��	��� #��
BAMDDPG and DDPG is nearly the same. From the perspective of network 
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�����������	�
����{����	�����	������#	�������	�	������	���������!����������	�
corresponding networks.

4.2.3. Effectiveness of Aggregation
The ability of the BAMDDPG algorithm to reduce training time is based on 
policy aggregation. Section 3.3 illustrated the conclusion that the performance 
of the aggregated policy is better than that of subpolicies through theoretical 
analysis. In addition, Section 4.1 has shown the effectiveness of aggregation 
on 2D robot arm benchmark. In this section, we are to further illustrate the 
effectiveness of aggregation on TORCS.

��� ���	�� ��� ������ �	� ��$�	��	� ��� ���� ����� ��#������	�� ��� �	�
conciseness and contrast of expression, only three subpolicies are trained by 
the BAMDDPG algorithm in this experiment. /e trained subpolicies and the 
aggregated policy control the same simulated car on the same track, Aalborg 
track, within one lap. Then, we observe the total reward and whether the 
��������
������	���������	���������������<�#�	������������	���	��������	��
���� ��������	�� #�� �	� ����	���	�� ������� 
���	�� �	� ���#���� ������ ����
gained much larger total reward than subpolicies, but the cars controlled by 
subpolicies all left the track and are not able to complete the track, which 
indicates that aggregation technique does increase the performance of 
subpolicies.

Figure 9 further illustrates the difference in total reward between 
subpolicies and the aggregated policy. As shown by the real line, the total 
reward of the aggregated policy is in a steady upward trend as the number 
of steps increases. However, the total rewards of subpolicy 2 and subpolicy 
3 increases steadily in the initial stage and then stops rising because the 
car pulled out of the track at some point. /e performance of subpolicy 1 is 
the worst, and its total reward is always the lowest and ultimately remains 
unchanged due to the car leaving the track.

Effect from Number of Subpolicies
The final policy gained by BAMDDPG is based on the aggregation of 
subpolicies, but the algorithm does not give specific number of subpolicies. 
In theory, when there is large enough number of subpolicies, the aggregated 
policy successfully approximates the optimal policy. However, aggregating 
a large number of subpolicies is inefficient in consideration of computing 
and storage resource consumption in practice.
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Under the consideration of balancing efficiency and performance, this section 
explores the appropriate number range of subpolicies through experiment. 
We choose the numbers of subpolicies within 30 and get the appropriate 
number of subpolicies by comparing the performance of the aggregated 
policies with different number of subpolicies. These aggregated policies 
are tested on the Aalborg track, and we then compare their training time, 
total reward within 5000 steps. Furthermore, we compare the generalization 
performance of the aggregated policies by testing them on the CG1 track and 
CG2 track. Experimental results are demonstrated in Figure 10 and Table 5.

Table 3. Description of action commands

Figure 8. (a) Learning curve and (b) training time comparison of BAMDDPG 
and DDPG.

Table 4. Performance comparison of the aggregated policy and subpolicies
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Figure 9. Performance comparison of the aggregated policy and subpolicies.

Figure 10 illustrates the comparison of total reward gained by aggregated 
policies with different number of subpolicies on the Aalborg track. Since the 
episode of TORCS may not terminate, we set the maximum number of steps 
to be 5000 in one episode. /e aggregated policies with 3–10 subpolicies are 
able to reach the maximum number of steps while others terminate early 
in one episode. Therefore, they gained much larger reward than those 
aggregated policies with over 10 subpolicies.

Table 5 demonstrates, for policies aggregating from different numbers 
of subpolicies within 30, no large difference appears in training time, but 
the performances of different policies vary from each other. /e policies 
aggregating from 3 to 10 subpolicies can achieve the maximum interaction 
number of 5000 steps on the Aalborg track, complete the training Aalborg 
track with larger total reward than the aggregated policies with over 10 
subpolicies, and pass the test track CG1 and CG2 safely.
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Figure 10. Reward comparison of aggregated policies with different numbers 
of subpolicies on Aalborg.

Table 5. Comparison of aggregated policies with different numbers of subpoli-
cies

Figure 11. Maps of training and test tracks. (a) Aalborg; (b) CG1; (c) CG2.

Generally speaking, when the number of subpolicies is 3–10, 
the corresponding aggregated policies perform well and have better 
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generalization performance than the aggregated policies with over 10 
subpolicies, which means 3–10 is the appropriate number of subpolicies for 
BAMDDPG in practical application.

However, the aggregated policies with over 10 subpolicies cannot 
�	����	���'�������	�������	����#����������������	������#�	����
�����	�
CG1 track. /e reason why the aggregated policies with over 10 subpolicies 
performed worse mainly lies in the limit of the centralized experience replay 
#���	�����������	�������������	���	�
'	���	���!	�����	��	������!	��	'�	��	��	�
replay buffer to 100, 000 transition tuples (st, at, rt, st+1), by considering the 
�	���#����������	�
��	�����������	�	���������¯��	�	�������#���	������������
manage to share all experiences with more than 10 subpolicies. As a result, 
the aggregated policies with over 10 subpolicies gained less knowledge and 
performed not well. /e experiment with a larger buffer size will display a better 
performance with aggregation of 10 subpolicies. But the memory setting has 
a nonmonotonic effect on the reinforcement learning (RL) performance [26]. 
«	���$�	��	�����	��	������	����������������	��������	�����	+����#	��		��
the correct weight update direction and the wrong direction.

Table 6. Generalization performance of the aggregated policy

Generalization Performance
Generalization performance is a research hotspot in the field of machine 
learning, and it is also a key evaluation index for the performance of 
algorithms. An overtrained model often performs well in the training set, 
while it performs poorly in the test set. In our experiments, self-driving 
policies are learned successfully on the Aalborg track using BAMDDPG. 
/e car controlled by these policies has good performance on the training 
track. However, the generalization performance of the learned policies is 
not known. Hence, we test the performance of the aggregated policy learned 
with BAMDDPG on both the training and test tracks, including Aalborg, 
CG1, and CG2, whose maps are illustrated in Figure 11.

The total reward of the aggregated policy shown in Table 6 differs in 
different tracks since the length of different tracks is not the same. On a long 
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track, the car travels for a longer time, and the total reward will be larger. In 
our experiment, route CG2 is the longest and CG1 is the shortest.

Table 6 illustrates that the car controlled by the aggregated policy passes 
the test tracks successfully. It demonstrates that the learned aggregated 
policy from BAMDDPG achieves a good generalization performance.

CONCLUSIONS

This paper proposed a deep reinforcement learning algorithm, by aggregating 
multiple deep deterministic policy gradient algorithm and an m-out-of-n 
bootstrap sampling method. /is method is effective to the sequential and 
iterative training data, where the data exhibit long-tailed distribution, rather 
than the norm distribution implicated by the i.i.d. data assumption. The 
method can learn the optimal policies with much less training time for tasks 
with continuous space of actions and states.

Experiment results on the 2D robot arm game show that the reward 
gained by the aggregated policy is 10% 50% better than those gained by 
the nonaggregated subpolicies. Experiment results on TORCS demonstrate 
the proposed method can learn successful control policies with less training 
time by 56.7%, compared to the normal sampling method and nonaggregated 
subpolicies.
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ABSTRACT

This chapter introduces a dynamic and low-complexity decision-making 
algorithm which aims at time-average utility maximization in real-time 
deep learning platforms, inspired by Lyapunov optimization. In deep 
learning computation, large delays can happen due to the fact that it is 
computationally expensive. Thus, handling the delays is an important issue 
for the commercialization of deep learning algorithms. In this chapter, the 
proposed algorithm observes system delays at first formulated by queue-
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backlog, and then it dynamically conducts sequential decisionmaking under 
the tradeoff between utility (i.e., deep learning performance) and system 
delays. In order to evaluate the proposed decision-making algorithm, the 
performance evaluation results with real-world data are presented under the 
applications of super-resolution frameworks. Lastly, this chapter summarizes 
that the Lyapunov optimization algorithm can be used in various emerging 
applications. 

Keywords:- Lyapunov optimization, stochastic optimization, real-time 
computing, deep learning platforms, computer vision platforms

INTRODUCTION

Nowadays, many machine learning and deep learning algorithms have been 
developed in various applications such as computer vision, natural language 
processing, and so forth. Furthermore, the performances of the algorithms 
are getting better. Thus, the developments of machine learning and deep 
learning algorithms become mature. However, the research contributions 
which are focusing on the real-world implementation of the algorithms 
are relatively less than the developments of the algorithms themselves. In 
order to operate the deep learning algorithms in real-world applications, it is 
essential to think about the real-time computation. 

Thus, the consideration of delay handling is desired because deep 
learning algorithm computation generally introduces large delays [1].In 
communications and networks research literature, there exists a well-known 
stochastic optimization algorithm which is for utility function maximization 
while maintaining system stability. 

Here, the stability is modeled with queue, and then the algorithm aims 
at the optimization computation while stabilizing the queue dynamics. 
In order to formulate the stability, the queue is mathematically modeled 
with Lyapunov drift [2].This algorithm is designed inspired by Lyapunov 
control theory, and thus, it is named to Lyapunov optimization theory [2]. 
In this chapter, the basic theory, examples, and discussions of the Lyapunov 
optimization theory are presented. Then, the use of Lyapunov optimization 
theory for real-time computer vision and deep learning platforms is discussed. 
Furthermore, the performance evaluation results with real-world deep 
learning framework computation (e.g., real-world image super-resolution 
computation results with various models) are presented in various aspects. 
Finally, the emerging applications will be introduced.
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STABILIZED CONTROL FOR RELIABLE DEEP 

LEARNING PLATFORMS

In this section, Lyapunov optimization theory which is for time-average 
optimization subject to stability is introduced at first (refer to Section 2.1), 
and then example-based explanation is presented (refer to Section 2.2). 
Finally, related discussions are organized (refer to Section 2.3).

Theory

In this section, we introduce the Lyapunov optimization theory which aims at 
time-average penalty function minimization subject to queue stability. Notice 
that the time-average penalty function minimization can be equivalently 
converted to time-average utility function maximization. The Lyapunov 
optimization theory can be used when the tradeoff exists between utility and 
stability. For example, it can be obviously seen that the tradeoff exists when 
current decision-making is optimal in terms of the minimization of penalty 
function, whereas the operation of the decision takes a lot of time, i.e., thus 
it introduces delays (i.e., queue-backlog increases in the system). Then, 
the optimal decision can be dynamically time-varying because focusing on 
utility maximization (i.e., penalty function minimization) is better when the 
delay in the current system is not serious (i.e., queueing delay is small or 
marginal). On the other hand, the optimal decision will be for the delay 
reduction when the delay in the current system is large. In this case, the 
decision should be for delay reduction while sacrificing certain amounts of 
utility maximization (or penalty function minimization).

������	� ���� ���� ���	+��	���	� �	������ ��������� ��� �	���	�� #�� �� `�
[t]) and it should be minimized and our control action decision-making is 
�	���	��#��������<	����	�*�	�	��������������	�����	�����	���²���������#	�
formulated as follows:

   (1)

       (2)
where  is an arrival process at  at t when our control action 

decision-making is . In (1),  t is a departure/service process at  
when our control action decision-making is  at t.
In this section, control action decision-making should be made in each 
unit time for time-average penalty function minimization subject to queue 
stability. Then, the mathematical program for minimizing time-average 
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penalty function, P([t]) where the control action decision-making��������������
can be presented as follows:

      (3)
Subject to queue stability:

      (4)
���̀ �|���`���|�������������	��	����������������	��������������������	������+
making�������������

As mentioned, the Lyapunov optimization theory can be used when 
tradeoff between utility maximization (or penalty function minimization) 
and delays exists. Based on this nature, drift-plus-penalty (DPP) algorithm 
[2, 3, 4] is designed for maximizing the time-average utility subject to queue 
���#������� ¯	�	�� �	� ��������� ��������� ��� �	
�	�� ��� , and 
�	��³`�|�#	���������������*������������������������������������������	��
���^��`²��µ{�|_�`²���|ª²�����������������	������	��������������������������
[2], this dynamic policy is designed to achieve queue stability by minimizing 
an upper bound of our considering penalty function on DPP which is given 
by

     (5)
�	�	�¶������ ����	������	�
��	����<	����	��#���������	���������� �	�

Lyapunov function at t is derived as follows:

    (6)

   (7)
Therefore, the upper bound of the conditional Lyapunov drift can be 

derived as follows:

    (8)
where C is a constant given by

     (9)



Dynamic Decision-Making For Stabilized Deep Learning Software ... 59

which supposes that the arrival and departure process rates are upper 
bounded. Due to the fact that C is a constant, minimizing the upper bound 
on DPP is as follows:

   (10)
Algorithm 1. Stabilized Time-Average Penalty Function Minimization

Finally, the dynamic control action decision-making� ���� ��� 	��� �����
���	� �� ���� ���	+��	���	� �	������ ��������� �`���|� ������!������ ��#"	���
to queue stability can be formulated as follows based on the Lyapunov 
optimization theory:

  (11)
�	�	��� ��� �	� �	�� ��� ���� �����#�	� �������� �������� ����  [t+1] is the 

optimal control action decision-making for the next time slot.
In order to verify whether (11) works correctly or not, following two example 
cases can be considerable:

�� Case 1:�������	�²���¸¹��<	�

 (12)

     (13)
Then, (13) shows that control action decision-making should works as 
follows, i.e., (i) the arrival process should be minimized, and (ii) the 
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departure process should be maximized. Both cases are for stabilizing the 
*�	�	����	������������#	�#	�	��������	��²���¸¹�

�� Case 2: Suppose Q[t]=0. Then

  (14)

     (15)
Then, (15) shows that control action decision-making should work for 

minimizing the given penalty function. This is semantically reasonable 
because focusing on our main objective is possible because stability does 
not need to be considered because Q[t]=0.

The pseudo-code of the proposed time-average penalty function 
minimization algorithm is presented in Algorithm 1. From line 1 to line 3, 
all variables and parameters are initialized. The algorithm works in each unit 
time as shown in line 4. In line 5, current queue-backlog Q[t] is observed to 
be used in (11). From line 7 to line 13, the main computation procedure for 
(11) is described.

Up to now, the time-average penalty function minimization is considered. 
Based on the theory, the dynamic control action decision-making��������	���
��������	����������	+��	���	�������������������`���|���'���!��������#"	������
queue stability can be formulated as follows:

   (16)
�	�	��� ��� �	� �	�� ��� ���� �����#�	� �������� �������� ���� �[t+1] is the 

optimal control action decision-making for the next time slot.

2.2 Example: multicore scheduling in mobile devices

In this section, the Lyapunov optimization-based stabilized time-average 
optimization algorithm is introduced with one simple toy model. In this 
example, dynamic core allocation decision-making algorithm is designed 
which is for time average energy consumption minimization subject to 
queue stability.
As illustrated in Figure 1, mobile smartphone is with the processor which is 
equipped with multiple cores. For example, ARM big.LITTLE processors 
are with multiple little and big heterogeneous cores.
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In this system, the task events will be generated when users generate events, 
which are denoted by a[t] in Figure 1. Then, the events will be located in the 
task queue (i.e., Q[t] in Figure 1). Then, the events can be processed by the 
multicore processor. In this case, if many/more cores are allocated in order 
to process the events from the queue, the processing can be accelerated 
which is beneficial in terms of queue stability. However, it is not good in 
terms of our main objective, i.e., energy consumption minimization. On 
the other hand, if less cores are allocated, the processing becomes slow 
which is harmful in terms of queue stability but is beneficial in terms of 
our main objective, i.e., energy consumption minimization. Finally, the 
tradeoff can be observed between energy consumption minimization (i.e., 
our main objective) and stability. Then, it can be confirmed that Lyapunov 
optimization-based algorithm can be used.

Figure 1. Mobile devices with multicore processors.

������	������	������	������������	�������������	������+���������������
	�����������	����������	+��	���	�	�	����������������^`���|�������!������
subject to queue stability can be formulated as follows based on (11):

 (17)
where A is the set of all possible core allocation combinations and 

 [t+1] is the optimal core allocation decision-making for the next time 
slot. Here, it is obvious that the arrival process is not controllable (i.i.d. 
�������	�	���|��������������#	������	���<	����	�
�������������	���������
�	������+��������������������#	��	
�	�������������

   (18)
In order to check whether the derived Eq. (18) is correct or not, two example 
���	������#	�������	�	�����	���`�|�²���¸¹������`��|�²���\��
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�� �����*�	�	����	�`²���¸¹|������������	

 (19)

  (20)
Thus, the departure process should be accelerated, i.e., more cores 

should be allocated. This is semantically true because the fast processing 
	�	����������	�*�	�	�����	���	�������	�$�����������������	��

�� Busy queue case (Q[t]=0): In this case

   (21)

    (22)
Thus, less cores should be allocated for energy consumption minimization 

which is our main objective. This is semantically true because the given 
main objective should be desired if the system is stable, i.e., Q[t]=0.

As discussed with examples, the proposed Lyapunov optimization-
based dynamic core allocation decision-making algorithm works as desired.

Discussions in stabilized control

The proposed dynamic super-resolution model selection algorithm is 
beneficial in various aspects, as follows.

Hardware/system-independent self-adaptation
Suppose that this proposed algorithm is implemented in supercomputer-like 
high-performance computing machines. In this case, the processing should be 
fast; thus, the queue-backlog is always low. Therefore, the system has more 
chances to focus on our main objective, i.e., penalty function minimization 
or utility function maximization. On the other hand, if the hardware itself 
is performance/resource limited (e.g., mobile devices), then the processing 
speed is also limited due to the low specifications in processors. Thus, the 
queue-backlog can be frequently busy because it may not be able to process 
many data with the queue even though it utilizes the fastest model. Therefore, 
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it can be finally observed that the proposed algorithm is self-adaptive 
which can adapt depending on the given hardware/system specifications. It 
automatically adapts the models based on the given hardware/system; thus, 
it does not require system engineer’s trial-and-error tuning. Furthermore, the 
proposed algorithm is reliable according to the fact that the self-adaptation 
is for maximizing its utility while maintaining stability.

Low-complexity operation
As shown in Algorithm 1, the computation procedure is iterative for solving 
closed-form equation, i.e., (11) and (16). Thus, the computational complexity 
of the proposed algorithm is polynomial time, i.e., O(N), where N is the 
number of the given control actions. Thus, it guarantees low-complexity 
operations.

THE USE OF LYAPUNOV OPTIMIZATION FOR DEEP 

LEARNING PLATFORMS

As explained, the Lyapunov optimization theory is a scalable, self-
configurable, low-complexity algorithm which can be used in many 
applications. In this section, the use of Lyapunov optimization for deep 
learning and computer platforms is discussed in two different ways, i.e., 
departure process control (refer to Section 3.1) and arrival process control 
(refer to Section 3.2). Finally, its related performance evaluation results are 
presented (refer to Section 3.3).

Lyapunov control over departure processes

As illustrated in Figure 2, stabilized real-time computer vision platforms 
should be equipped with queues in order to handle bursty traffics. If the 
queue is busy or near-overflow, the departure process should be accelerated. 
Thus, the simplest model should be used for reducing the corresponding 
computation. On the other hand, if the queue is empty, deep learning 
computation accuracy can be improved with more sophisticate models 
because we have enough time to conduct the computation. Thus, multiple 
models are desired in order to select one depending on queue backlog.
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Figure 2. Lyapunov control over departure processes in real-time computer 
vision platforms for time-average learning accuracy maximization subject to 
queue stability.

Figure 3. Lyapunov control over arrival processes in real-time computer vision 
platforms for time-average learning accuracy maximization subject to queue 
stability.

In Figure 2, multiple models exist, and it can be seen that the simplest 
model (i.e., low-resolution model) is able to conduct fast computation, but 
it presents low learning accuracy. On the other hand, the most sophisticate 
model (i.e., high-resolution model) is good for accurate learning performance, 
but it introduces computation delays. Thus, the tradeoff exists between 
performance and delays, i.e., Lyapunov optimization theory-based dynamic 
model selection decision-making algorithm can be designed as follows:

 (23)
and this can be reformulated as follows due to the fact that the arrival 

process is out of control:
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  (24)
�	�	��`���|�������������	��	������+����������	���	����	���	�	������

�	��������������������¯	�	��������	��	��������������#�	��		���	����������	����
�����[t+1] is the optimal control action decision-making for next time slot.

Lyapunov control over arrival processes

The stabilized real-time computer vision platform in Section 3.1 is novel 
and scalable; however it has burden because multiple deep learning models 
should be implemented in a single platform.

Thus, a new dynamic control algorithm with a single deep learning 
model is also needed for resource-limited systems. As illustrated in 
Figure 3, our considering system has a single computer vision and deep 
learning model in computing platforms. In addition, the queue is in front 
of the system. Thus, the departure process is not controllable anymore. In 
this case, the arrival process should be controllable in order to control the 
queue dynamics for stability. Therefore, the arrival image/video streams 
should be controlled by handling sample rates. If high-frequency sampling 
is available, more signals will be generated, and then the results will be 
	�*�	�	���<�����	�������������	�������	��	���<������#	�	
�����#	����	����
increases computer vision performance due to the fact that more images/
videos can be obtained especially in surveillance applications. On the other 
hand, i.e., if low-frequency sampling is conducted, the computer vision 
performance can be degraded, whereas the number of arrival process data 
�	��	��	���������#	�	
���������	����������#�������^�	����������	�����	����
between computer vision performance and delays can be observed. Finally, 
Lyapunov optimization theory-based sampling rate selection decision-
making algorithm can be designed as follows:

 (25)
and this can be reformulated as follows due to the fact that the departure 

process is out of control:

  (26)
�	�	��`���|� ������� ���� �	� �	������� ��������� �	�� �	� �����	� ���	�

�	�	�������	��������������������¯	�	��������	��	��������������#�	������	����	���
���� [t+1] is the optimal control action decision-making for next time slot.
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Performance evaluation and discussions

In this section, the performance evaluation results of the proposed algorithm 
in Section 3.1 are presented. The data-intensive simulation-based evaluation 
is performed, and then the results are presented in Figure 4. In addition, 
Table 1 shows the performance of super-resolution depending on the number 
of hidden layers. If the number of hidden layers is maximum (i.e., 20 in this 
research), the PSNR and structural similarity (SSIM, one of the widely used 
performance metrics in super-resolution) values are maximum. However, 
the computation times (for CPU-only and CPU-GPU) become slow.

As illustrated in Figure 4, if the models are static (i.e., deep or shallow), 
�	� ����	�� ���� ���� �	� ���� ���	��� ��	� ���� 	�
��	���� <	� �		�� ���	��
�����������	��	���	�$���������������������	�*�	�	����	��	�������	���	��
hand, the shallow model is too fast; thus, the queue is always empty. This 
is obviously positive for stability where the performance in terms of super-
resolution performance is the lowest. Thus, it might be better if the algorithm 
allows certain amounts of delays in order to enhance the quality of super-
resolution. The proposed algorithm is initially follows deep model because 
�	�*�	�	�������	���������	������������	�������	�*�	�	�#	���	��
��	������
certain amounts of images (i.e., near threshold), it starts the control, i.e., 
self-adaptive, near the unit time of 5800. Thus, the proposed algorithm starts 
to select super-resolution models which can handle delays. Thus, it is true 
that the proposed algorithm is better than the other two static algorithms.

Figure 4. Performance evaluation: Queue-backlog (x-axis, unit time; x-axis, 
queue occupancy (unit: Bits)).
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Table 1. Tradeoff between utility and delay obtained from super-resolution per-
formance measurement results (processing time have measured on 512 768 im-
ages)

For the proposed self-adaptive stabilized algorithm, the evaluation with 
two processing capabilities (CPU-only platform vs. CPU-GPU platform), 
it can be observed that the CPU-GPU platform selects the maximum 
performance superresolution model (i.e., 20 hidden layers in Table 1) 4:36 
times more than the CPU only platform. It means that the proposed algorithm 
is self-adaptive depending on the hardware/platform requirements. This is 
�#��������#	�	
���������	�����������	��	����		���#	����	��	����������		��
to conduct trial-and-error-based system parameter tuning anymore.
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Figure 5. Super-resolution computation results. Note that the model for low-
resolution is bicubic which has no hidden layers. (a) Image #1 (low-resolution), 
(b) image #1 (high-resolution), (c) image #2 (low-resolution), (d) image #2 
(high-resolution), (e) image #3 (low-resolution) and (f) image #3 (high-reso-
lution).

In order to confirm the performance of super-resolution models, Figure 5 
shows the super-resolution computation results with real-world images. 
As can be seen in the figures, the super-resolution models show better 
performances if they have more hidden layers, as shown in Figure 5b, Figure 
5d, and Figure 5f. For the superresolution computation without hidden layers, 
this paper uses bicubic interpolation, as shown in Figure 5a, Figure 5c, and 
Figure 5e. Finally, these results show that our considering Lyapunov control 
algorithms for adaptive deep learning platforms can make different super-
resolution performance depending on queue-backlog size information.

EMERGING APPLICATIONS

As presented, the Lyapunov optimization framework is for time-average 
utility maximization while achieving queue stability; and this theory is 
scalable; thus it is widely applicable [2]. Therefore, there exist many 
applications based on this algorithm as follows.

Adaptive video streaming

Kim et al. [3, 5] design a dynamic control algorithm for time-average 
streaming quality (i.e., peak-signal-to-noise ratio (PSNR)) maximization 
subject to transmit buffer stability in wireless video networks. Koo et al. [6, 
7] also propose a novel dynamic adaptive streaming over HTTP (DASH)-
based mechanism for video streaming quality maximization under the 
consideration of battery status, LTE data quota, and stability in hybrid LTE 
and WiFi networks.
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Networks

Neely et al. [8] proposed a novel dynamic multi-hop routing algorithm 
which is for energy-efficient data/packet forwarding in wireless ad hoc and 
sensor networks subject to queue stability.

Security applications: surveillance monitoring

Mo et al. [9] design a deep learning framework for CCTV-based distributed 
surveillance applications. In the system, multiple deep learning frameworks 
exist; and each deep learning model is with its own configurations. In this 
situation, there exists a tradeoff between complexity and performance. 
Therefore, the proposed CCTV-based surveillance algorithm adaptively 
selects a deep learning model depending on queue-backlog in the system for 
recognition performance maximization subject to CCTV queue stability. Kim 
et al. [10] also design a novel face identification deep learning frameworks 
for CCTV-based surveillance platforms. Instead of having multiple deep 
learning models, this system has one learning system (based on OpenFace 
open-source software library) and controls the sampling rates of the CCTV 
camera. Finally, the proposed decision-making algorithm dynamically 
selects CCTV sampling rates for recognition performance maximization 
subject to CCTV queue stability.

Others

The application of Lyapunov optimization-based dynamic control algorithm 
for dynamic reinforcement learning policy design is illustrated in [11]. In 
addition, the adaptive control algorithms using the Lyapunov optimization 
framework in stock market pricing and smart grid are introduced in [12, 13].

CONCLUSIONS

This chapter introduces a dynamic control decision-making algorithm, 
inspired by Lyapunov optimization theory under the situation where the 
tradeoff between utility/performance and delays exists. Thus, the dynamic 
decision-making algorithms aim at time-average utility maximization (or 
penalty minimization) in real-time deep learning platforms. As discussed, 
the Lyapunov optimization-based algorithms are scalable, hardware/system-
independent, self-configurable, and lowcomplexity. Thus, it can be used in 
various emerging applications such as video streaming, wireless networks, 
security applications, and smart grid applications.
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ABSTRACT

Classification is a hot topic in hyperspectral remote sensing community. 
In the last decades, numerous efforts have been concentrated on the 
classification problem. Most of the existing studies and research efforts are 
following the conventional pattern recognition paradigm, which is based on 
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complex handcrafted features. However, it is rarely known which features 
are important for the problem. In this paper, a new classification skeleton 
based on deep machine learning is proposed for hyperspectral data. The 
proposed classification framework, which is composed of exponential 
momentum deep convolution neural network and support vector machine 
(SVM), can hierarchically construct high-level spectral-spatial features 
in an automated way. Experimental results and quantitative validation on 
widely used datasets showcase the potential of the developed approach for 
accurate hyperspectral data classification.

INTRODUCTION

Recent advances in optics and photonics have allowed the development 
of hyperspectral data detection and classification, which is widely used in 
agriculture [1], surveillance [2], environmental sciences [3, 4], astronomy 
[5, 6], and mineralogy [7]. In the past decades, hyperspectral data 
classification methods have been a hot research topic. A lot of classical 
classification algorithms, such as k-nearest neighbors, maximum likelihood, 
parallelepiped classification, minimum distance, and logistic regression (LR) 
[8, 9], have been proposed. However, there are several critical problems in 
the classification of hyperspectral data: (1) high dimensional data, which 
would lead to curse of dimensionality; (2) limited number of labeled training 
samples, which would lead to Hughes effect; (3) large spatial variability of 
spectral signature [10].

~��������	�	'�����������������	�������	�������
������������	���	������
data, follows the conventional paradigm of pattern recognition and complex 
��������	�� �	����	��	'��������� ����� �	� �������������������
	��� ����������
Classical feature extraction methods include the following: principle 
component analysis, singular value decomposition, projection pursuit, 
self-organizing map, and fusion feature extraction method. Many of these 
methods extract features in a shallow manner, which do not hierarchically 
extract deep features automatically. In contrast, the deep machine learning 
framework can extract high-level abstract features, which has rotation, 
scaling, and translation invariance characteristics [11, 12].

In recent years, the deep learning model, especially the deep convolution 
neural network (CNN), has been shown to yield competitive performance 
��� ����� 
	���� ���������� ������
������� ��� �	�	������ ������ ���� ������	�
image [13–15], speech [16], and language [17]. However, most of the CNN 
network input data are original image without any preprocessing based 
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on the prior knowledge. Such manner directly extends the CNN network 
training time and the feature extraction time [18, 19]. Besides, the traditional 
�����	�����������������������	�	��������������
����������������!	������
the training algorithm based on gradient descend technique may lead to 
entrapment in local optimum and gradient dispersion. Moreover, there is 
little study on the convergence rate and smoothness improvement of CNN 
at present.

����������	����	�������	����������	����	���	�����������������
������ 
framework based on exponential momentum deep convolution neural 
network (EM-CNN). And an innovative method for updating parameters 
of the CNN on the basis of exponential momentum gradient descendent is 
proposed aiming at the problem of gradient diffusion of deep network.

The rest of the paper is organized into four sections. Section 2 describes 
the feature learning and deep learning. The proposed EM-CNN framework is 
introduced in Section 3, while Section 4 details the new way of exponential 
momentum gradient descent method, which yields the highest accuracy 
compared with homologous parameters momentum updating methods. 
Section 5 is the experiment results. Section 6 summarizes the results and 
draws a general conclusion.

FEATURE LEARNING

Feature extraction is necessary and useful in the real-world for that the data 
such as images, videos, and sensor measurement data is usually redundant, 
highly variable, and complex. Traditional handcrafted feature extraction 
algorithms are time-consuming and laborious and usually rely on the prior 
knowledge of certain visual task. In contrast, feature learning allows a 
machine to both learn at a specific task and learn the features themselves.

Deep learning is part of a broader family of machine learning based on 
learning representations of data. It attempts to model high-level abstractions 
in data by using a deep graph with multiple processing layers, composed 
of multiple linear and nonlinear transformations. Typical deep learning 
models include autoencoder (AE) [20], deep restricted Boltzmann machine 
(DRBM) [21], deep Boltzmann machines (DBM) [22], deep belief networks 
(DBN) [23], stacked autoencoder (SAE) [24], and deep convolutional neural 
networks (DCNN) [25].

The deep convolution neural network (DCNN), a kind of neural network, 
is an effective method for feature extraction, which can potentially lead to 
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progressively more abstract and complex features at higher layers, and the 
learnt features are generally invariant to most local changes of the input. 
������#		������� �����	�������	�����	��	��������	� ��������
	����� ����
as object detection [13–15], speech simultaneous interpretation [16], and 
�������	� ������
������� �{���� ��� �	� �	��������	� ��� ������
������� �����
depends on the features [26], we adopt deep convolution neural network 
(DCNN)�����	���������������	���	�����������������
������ framework.

STRUCTURE DESIGN OF HYPERSPECTRAL DATA 

CLASSIFICATION FRAMEWORK

In deep convolutional neural network, input data, convolution kernel, and 
threshold parameter are the three most important issues [27–29]. The input 
���������	�#���������	����	�	'���������������	�	����	���	�
����������
��-
tion performance. 

The size of the convolution kernel determines the degree of abstraction 
of the feature. If convolution kernel size is too small, the effective local 
�	����	�� ��	� ���
����� ��� 	'������� ��	����	�� �	� 	'��������� �	����	� ������
exceed the feature range that convolution kernel can express. Threshold 
parameter is mainly used to control the degree of response of characteristic 
submode. Besides, the network depth and dimension of output layer can also 
��$�	��	��	�*�����������	����	�	'����������

The deeper network layers indicate stronger feature expression ability, 
���	��	���������	��������	�
����������������	��+���	��#�������<	����	������
of output layer directly determines the convergence speed of network. 

When the sample sets are limited, over lower dimension of the output 
layer cannot guarantee the validity of features, while over higher feature of 
the output layer will produce feature redundancy.
Since the traditional CNN input the original image directly into the deep 
�	�����������	������������������������������������	�
�����	����	�	'���������
[28, 29], three images obtained by image data preprocessing are used as 
����������������	��	�����	��	��	���		��������	��
������	���������
�������
performance. In order to obtain better extraction features, the sizes of con-
������������	��
��	����	���»������»���������»�����	��	����	���������	��	������
network is seven according to the results of the experiments.
Besides, the lower sampling applies Max-pooling and the nonlinear map-
ping function is LREL function, which is shown in the following formula:
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    (1)
where � is nonzero small constant and � is the weight of neuron. The 

setting of � ensures that inactive neurons receive a nonzero gradient value, 
so that the neuron has the possibility of being activated.

Based on the above analysis, a deep network framework for hyperspectral 
�����������
������ based on deep convolutional neural network is proposed 
in Figure 1.
In the proposed deep CNN model, the first layer, the third layer, and the fifth 
layer are convolution layers, which realized feature extraction from lower 
level to higher level. The second layer, the fourth layer, and the sixth layer 
are lower sampling layers, used for feature dimension reduction. The final 
layer is the output layer which is whole connection layer and output of the 
final extraction features.

EXPONENTIAL MOMENTUM GRADIENT  

DESCENT ALGORITHM

Error Transfer

Error transmission descends by two steps through forward propagation 
and reverse gradient, to conduct weight generation and adjustment. Using 
gradient descent method to update weight is shown in formula (2), and bias 
updating method is shown in formula (3) [30]:

    (1)

    (2)

Figure 1��������
�����������	�����#��	�����^~+����
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In the formula, � is the learning rate,  is the gradient of error to 
weight, and  is the gradient of error to bias, namely, the sensitivity 
of parameter adjustment. In order to achieve weight and bias optimizing, 
the gradient of error to weight and the gradient of error to bias must be first 
obtained.
For convolution layer, its output is shown as the following formula:

   (3)
where 	



 is the bias of 
�� ���	���� �	����	�����������



 is the block of in-

put feature diagram, and  is convolution kernel. According to derivation 
formula of sensitivity function, the sensitivity of convolution layer can be 
represented by the following formula:

    (4)

where  is the convolution kernel of �+1 sampling layer, up represents 

upper sampling, and  is 1/4 of , so upper sampling should be 
conducted.�symbol represents the multiplication of corresponding elements

Thus, the gradient of convolution layer error to bias is shown in formula 
(6). In the formula, (, V) is the element location of sensitivity matrix:

     (5)
The gradient of convolution layer error to weight is shown in formula (7). In 
the formula,  is the convolution block of  and convolution kernel ��
, 
(, V) is the element location of the block:

   (6)
Substitute formula (5), (6) into formula (1), (2) and obtain the updated 

value of convolution layer’s weight.
The output of sampling layer’s neural network can be expressed by 

formula (8), in which , respectively, represent multiplicative bias 
and additive bias. Multiplicative bias is generally set as 1:
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    (7)
According to the sensitivity of calculating formula of gradient descent, 

the sensitivity of sampling layer obtained is shown as the following formula:

     (8)
Whereby the bias updating formula of sampling layer can be obtained, 

as is shown in formula (10). According to formula (3), bias value updating 
can be obtained:

     (9)

Exponential Momentum Training Algorithm

The traditional gradient descent method only transmits gradient error 
between single layers, which lead to slow convergence rate of the network. 
Increasing the learning rate � is a good way to improve the convergence 
speed. 

But it not only improves the convergence speed but also causes unstable 
problem of the network, namely, “oscillation.” Faced with this situation, 
paper [19] proposes the momentum method, which increases the convergence 
speed by adding momentum factor. Paper [31] proposes the self-adaptive 
momentum method based on paper [19]. 

However, neither of these methods considers the relation between 
oscillation, convergence, and momentum. And the momentum factor 
does not promote convergence and enhance learning performance.This 
paper applies error exponential function of gradient to adjust the pace of 
momentum factor. 

<	� ��������� ���� ����	��	� �	� ���	����� ������� ��� �	� $��� �	������
which can accelerate the network convergence speed and can decrease 
the momentum factor at the steep region of error curve, which can avoid 
excessive network convergence. Such method can improve the convergence 
rate of the algorithm and avoid oscillation of convergence process.
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Figure 2������������	����	���	����������	����������������������������
�������

The updating formula of momentum factor is the following formula:

   (11)
����	����������³�� = ��+1 _�� , and��� represents the gradient of error 

to weight.

EXPERIMENT AND ANALYSIS

In this section, the performance of the proposed algorithm is evaluated on 
AVIRIS and ROSIS hyperspectral dataset. The overall accuracy, generalized 
accuracy, and kappa parameters, the most three important criteria, are used 
to evaluate the performance of the proposed framework.
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Data Description

In our experiments, we experimented and validated the proposed framework 
with AVIRIS and ROSIS hyperspectral datasets. AVIRIS hyperspectral 
data 92AV3C was obtained by the AVIRIS sensor in June 1992. ROSIS 
hyperspectral datasets were gathered by a sensor known as the reflective 
optics system imaging spectrometer (ROSIS-3) over the city of Pavia, Italy. 
In particular, we employed the Indian Pines dataset, which depicts Indiana 
����������������{���»�{����������!	�����������	������#���������	����	�	����
range 0.4 to 2.510_� meters. It contains a total of 16 categories, as shown in 
Table 1. Its true mark is shown in Figure 2. The other datasets we employed 
are the Pavia University datasets, whose number of spectral bands are 102. 
Nine land cover classes are selected, which are shown in Figure 3. The 
numbers of samples for each class are displayed in Table 2.

Table 1. Sixteen classes of Indian Pines dataset

For investigating the performance of the proposed methods, experiments 
were organized step by step. The influence of the convolution kernel size and 
the depth of the network on the classification results was first analyzed. Then, 
we verified the performance of exponential momentum training algorithm. 
Finally, classifications based on CNN framework were conducted.
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Figure 3����������	���	����������	����������������������������
�������

Effect of Kernel Size and Depth

The influence of the kernel size and the network depth on the classification 
performance of the proposed framework is analyzed in this section. The deep 
convolution neural network is trained by a series of different kernel size and 
network depth under fixed network structure and algorithm parameters. 

The results are shown in Tables 3 and 4. Table 3 suggested that the 
convolution kernel size is less affected by the overall accuracy of the 
method, and it better be consistent with the features size of the image data. 
<�#�	����	����������������	��		�	����������	�������	��#	��	��������
�������
accuracy.

Exponential Momentum Training Algorithm

In this section, we verified the general accuracy and the convergence speed 
of the algorithm. We select adaptive momentum [31] and elastic momentum 
[32] as the comparative method to observe the iteration round change of loss 
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function of training objectives. It can be easily seen from Figure 4 that the 
convergence point of adaptive momentum is 14, the convergence point of 
elastic momentum is 8, and the convergence point of exponential momentum 
is 7. So the convergence of iteration times of exponential momentum is the 
minimum, and its consumption of the training time is also the minimum.

For the general accuracy test experiment, the LeNet5 neural network 
[33] and standard multiple neural network [34] are chosen for comparison. 
The accuracy results obtained are shown in Table 5. It can be seen from the 
table that, compared with the corresponding training models of the standard 
momentum and adaptive momentum, the exponential momentum training 
�	��������	�	���	��	�������
��������������� on different network.

Table 2. Nine classes of Pavia dataset.

Table 3. Accuracy comparison of different kernel size

Table 4. Accuracy comparison of different depth
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Table 5. Accuracy comparison of algorithms’ image recognition

Comparing with Other Methods

Comparing with Other Feature Extraction Methods
We verify the effectiveness of the proposed feature extraction method from 
the sense of classification, by comparing our algorithm with other classical 
feature extraction methods, involving principle component analysis- (PCA-
) SVM, kernel PCA- (KPCA-) logistic regression (LR), independent 
component analysis- (ICA-) SVM, nonnegative matrix factorization- (NMF-
) LR, and factor analysis- (FA-) SVM

���� �	� ��������� �	��	������ ������
	�� are set to have learning rate 0.1 
and are iterated on the training data for 8000 epochs. The result is shown 
in Figure 5. Experiments show that, by combining with SVM, the proposed 
method outperforms all other feature extraction methods and gets the highest 
accuracy.

Table 6�����������������������������	�	���������
	�
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Figure 4. Convergence curve.

�������	
���������������������	�������
We examine the classification accuracy of EFM-CNN-SVM framework by 
comparing proposed framework with spatialdominated methods, such as 
radial basis function- (RBF-) linear SVM, principle component analysis- 
(PCA-) RBFSVM, and stacked autoencoder- (SAE-) logistic regression 
(LR). By putting both the spectral and spatial information together to form 
a hybrid input and utilizing the deep classification framework detailed in 
Section 3, we get the highest classification accuracy we have ever attained. 
The experiments were performed with same parameter settings above 100.
The results are shown in Table 6 and Figure 6. From Table 6, we can see 
that the EFM-CNN-SVM method turns out to be better on all other methods. 
And the joint features yield higher accuracy than spectral features in terms 
of mean performance. In Figure 6, we look into the classification accuracy 
from a visual perspective. It can be seen that classification results of proposed 
method are closest to the ideal classification results other than RBF-SVM 
and linear SVM methods.
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Figure 5. Comparison with other feature extraction methods.

CONCLUSION

In this paper, a hyperspectral data classification framework is proposed 
based on deep CNN features extraction architecture. And an improved error 
transmission algorithm, selfadaptive exponential momentum algorithm, is 
proposed. Experiments results show that the improved error transmission 
algorithm converged quickly compared to homologous error optimization 
algorithm such as adaptive momentum and elastic momentum. And proposed 
EFM-CNN-SVM framework has been proven to provide better performance 
than PCA-SVM, KPCA-SVM, and SAE-LR frameworks. Our experimental 
results suggest that deeper layers always lead to higher classification 
accuracies, though operation time and accuracy are contradictory. It has 
shown that the deep architecture is useful for classification and the high-
level spectral-spatial feature, increasing the classification accuracy. When 
the data scale is larger, the extracted feature has better recognition ability.
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Figure 6��������
��������������������	�������	��#��	�����^?~+���+�¶~�
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ABSTRACT

The popular deep Q learning algorithm is known to be instability because 
of the Q-value’s shake and overestimation action values under certain 
conditions. These issues tend to adversely affect their performance. 
In this paper, we develop the ensemble network architecture for deep 
reinforcement learning which is based on value function approximation. 
The temporal ensemble stabilizes the training process by reducing the 
variance of target approximation error and the ensemble of target values 
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reduces the overestimate and makes better performance by estimating more 
accurate Q-value. Our results show that this architecture leads to statistically 
significant better value evaluation and more stable and better performance 
on several classical control tasks at OpenAI Gym environment.

INTRODUCTION

Reinforcement learning (RL) algorithms [1, 2] are very suitable for 
learning to control an agent by letting it interact with an environment. 
In recent years, deep neural networks (DNN) have been introduced into 
reinforcement learning, and they have achieved a great success on the 
value function approximation. The first deep Q-network (DQN) algorithm 
which successfully combines a powerful nonlinear function approximation 
technique known as DNN together with the Q-learning algorithm was 
proposed by Mnih et al. [3]. In this paper, experience replay mechanism 
was proposed. Following the DQN work, a variety of solutions have been 
proposed to stabilize the algorithms [3–9].The deep Q-networks classes 
have achieved unprecedented success in challenging domains such as Atari 
2600 and some other games.

Although DQN algorithms have been successful in solving many 
problems because of their powerful function approximation ability and 
strong generalization between similar state inputs, they are still poor in 
solving some issues. Two reasons for this are as follows: (a) the randomness 
of the sampling is likely to lead to serious shock and (b) these systematic 
errors might cause instability, poor performance, and sometimes divergence 
of learning. In order to address these issues, the averaged target DQN 
(ADQN) [10] algorithm is implemented to construct target values by 
combining target Q-networks continuously with a single learning network, 
�����	�����������	���²���{{��������������������	������	�����	�	�
��	���
exploration and better performance with the use of several Q-networks 
learning in parallel. Although these algorithms do reduce the overestimate, 
they do not evaluate the importance of the past learned networks. Besides, 
high variance in target values combined with the max operator still exists.

There are some ensemble algorithms [4, 12] solving this issue in 
reinforcement learning, but these existing algorithms are not compatible 
with nonlinearly parameterized value functions.
In this paper, we propose the ensemble algorithm as a solution to this 
problem. In order to enhance learning speed and final performance, we 
combine multiple reinforcement learning algorithms in a single agent with 
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several ensemble algorithms to determine the actions or action probabilities. 
In supervised learning, ensemble algorithms such as bagging, boosting, and 
mixtures of experts [13] are often used for learning and combining multiple 
classifiers. But in RL, ensemble algorithms are used for representing and 
learning the value function.

Based on an agent integrated with multiple reinforcement learning 
algorithms, multiple value functions are learned at the same time. The 
	��	�#�	�����#��	��	�������	���	���	��������	�����	����������������
����
policy for the agent. The majority voting (MV), the rank voting (RV), the 
Boltzmann multiplication (BM), and the Boltzmann addition (BA) are 
used to combine RL algorithms. While these methods are costly in deep 
reinforcement learning (DRL) algorithms, we combine different DRL 
algorithms that learn separate value functions and policies. Therefore in our 
ensemble approaches we combine the different policies derived from the 
update targets learned by deep Q-networks, deep Sarsa networks, double 
deep Q-networks, and other DRL algorithms. As a consequence, this leads 
to reduced overestimations, more stable learning process, and improved 
performance.

RELATED WORK

Reinforcement Learning

Reinforcement learning is a machine learning method that allows the system 
to interact with and learn from the environment to maximize cumulative return 
rewards. Assume that the standard reinforcement learning setting where an agent 
interacts with the environment . We can describe this process with Markov 
Decision Processes (MDP) [2, 9]. It can be specifed as a tuple . At 
each step t, the agent receives a state st, and select an action at from the set of legal 
actions A according to the policy , where  is a policy mapping sequences to 
actions. The action is passed to the environment E. In addition, the agent receives 
the next state St+1 and a reward signal rt. Tis process continues until the agent 
reaches a terminal state.The agent seeks to maximize the expected discounted 
�	�������	�	��	��	
�	��	������	���������	���	�����������	������  
with discount factor . The goal of the RL agent is to learn a policy which 
makes the future discounted return maximize. For an agent behaving according 
to a stochastic policy �� �	�����	���� �	�����	�����������������#	��	
�	�����
follows: . Te optimal action-value function 
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Q satisfes the Bellman equation cThe 
reinforcement learning algorithms estimate the action value function by iteratively 
updating the Bellman equation . When 
�¾¹�� �	� ��������� ���	�� ²+����	� ��������� ����	��	� ��� �	� �������� �������
value function [1]. If the optimal Q- function Q� is known, the agent can 
select optimal actions by selecting the action with the maximal value in a state: 

.

Target Deep Q Learning

RL agents update their model parameters while they observe a stream 
of transitions like . They discard the incoming data after a 
single update. There are two issues with this method. The first one is that 
there are strong correlations among the incoming data, which may break 
the assumption of many popular stochastic gradient-based algorithms. 
Secondly, the minor changes in the Q function may result in a huge change 
in the policy, which makes the algorithm difficult to converge [7, 9, 14, 15].
As for the deep Q-networks algorithms proposed in (Mnih et al., 2013), 
two aspects are improved. On the one hand, the action value function is 
approximated by the DNN, DQN uses the DNN with a parameter  to 
approximate the value function, ; on the other hand, 
the experience replay mechanism is adopted. The algorithm learns from 
sampled transitions from an experience buffer, rather than learning fully 
online. Tis mechanism makes it possible to break the temporal correlations 
by mixing more and less recent experience for updating and training. Tis 
model free reinforcement learning algorithm solves the problem of “model 
disaster” and uses the generalized approximation method of the value 
function to solve the problem of “dimension disaster. The convergence issue 
was mentioned in 2015 by Schaul et al. [14]. The above Q-learning update 
rules can be directly implemented in a neural network. DQN uses the DNN 
with parameters  to approximate the value function�. The parameter  
updates from transition  are given by the following [11]:

   (1)

with 
The update targets for Sarsa can be described as follows:

     (2)
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where  is the scalar learning rate.  are target network parameters which 
are fixed to . In case the squared error is taken as a loss function

.
In general, experience replay can reduce the amount of experience 

required to learn and replace it with more computation and more memory, 
which are often cheaper resources than the RL agent’s interactions with its 
environment [14].

Double Deep Q Learning

In Q-learning and DQN, the max operator uses the same values to both 
select and evaluate an action. Tis can therefore lead to overoptimistic value 
estimates (van Hasselt, 2010). To mitigate this problem, the update targets 
value of double Q-learning error can then be written as follows:

  (3)

DDQN is the same as for DQN [8], but with the target  replaced with
.

ENSEMBLE METHODS FOR DEEP  

REINFORCEMENT LEARNING

As DQN classes use DNNs to approximate the value function, it has strong 
generalization ability between similar state inputs. The generalization can 
cause divergence in the case of repeated bootstrapped temporal difference 
updates. So we can solve this issue by integrating different versions of the 
����	���	������������������� ����������	�������
	���	��	�#�	����������������
system have been shown to be more effective. They can lead to a higher 
accuracy. Bagging, boosting, and Ada Boosting are methods to train multiple 
������
	�������� �������	��	�#�	�������������	���	�� ���� �	��	�	����������
learning the value function. They are combined by major voting, Rank 
Voting, Boltzmann Multiplication, mixture model, and other ensemble 
�	������ ��� �	�	��������� �	������	�������
	�����	������������������	���	���
�������������
�������������	��	�������
����������������

Temporal Ensemble

As described in Section 2.2, the DQN classes of deep reinforcement learning 
algorithms use a target network with parameters copied from  every 
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C steps. Temporal Ensemble method is suitable for the algorithms which 
use a target network for updating and training. Temporal ensemble uses 
the previous K learned networks to produce the value estimate and builds 
up N complete networks with K distinct memory buffers. The recent 
Q-value function is trained according to its own target network . So 
each one of Q-value functions  represents temporally extended 
estimate of Q- value function.

Note that the more recent target network is likely to be more accurate 
at the beginning of the training and the accuracy of the target networks is 
increasing as the training goes on. So we denote a learning rate parameter 

here for target network. The weight of ith target network is
.

So the learned Q-value function by temporal ensemble can be described 
as follows:

    (4)

As lim , we can see that the target networks have 
the same weights when  equals 1. Tis formula indicates that the closer 
the target networks are, the greater the target networks’ weight is. As target 
networks become more accurate, their weights become equal. The loss 
function remains the same as in DQN and so does the parameter update 
equation:

    (5)

In every iteration, the parameters of the oldest ones are removed from 
the target network buffer and the newest ones are added to the buffer. Note 
that the Q-value functions are inaccurate at the beginning of training. So the 
parameter  may be a function of time and even the state space.

Ensemble of Target Values

The traditional ensemble reinforcement learning algorithms maintain 
multiple tabular algorithms in memory space [4, 16], and majority voting, 
rank voting, Boltzmann addition, and so forth are used to combine these 
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tabular algorithms. But deep reinforcement learning uses neutral networks 
as function approximators. Te use of multiple neural networks is very 
computationally expensive and inefcient. In contrast to previous researches, 
we combine diferent DRL algorithms that learn separate value functions 
and policies. Terefore in our ensemble approaches we combine the diferent 
policies derived from the update targets learned by deep Q-networks, deep 
Sarsa networks, double deep Q-networks, and other DRL algorithms as 
follows:

 (6)
Besides these update targets formula, other algorithms based on value 

function approximators can be also used to combine. The update targets 
according to the algorithm k at time t will be denoted by .

The loss function remains the same as in DQN and so does the parameter 
update equation:

  (7)

The Ensemble Network Architecture

The temporal and target values ensemble algorithm (TEDQN) is an 
integrated architecture of the value-based DRL algorithms. As shown in 
Sections 3.1 and 3.2, the ensemble network architecture has two parts to 
avoid divergence and improve performance.

The architecture of our ensemble algorithm is shown in Figure 1; these 
two parts are combined together by evaluated network.

The temporal ensemble stabilizes the training process by reducing the 
variance of target approximation error [10]. Besides, the ensemble of target 
values reduces the overestimate and makes better performance by estimating 
more accurate Q-value. The temporal and target values ensemble algorithm 
are given by Algorithm 1.

As the ensemble network architecture shares the same input-output 
interface with standard Q-networks and target networks, we can recycle all 
learning algorithms with Q-networks to train the ensemble architecture.
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EXPERIMENTS

Experimental Setup

So far, we have carried out our experiments on several classical control 
and Box2D environments on OpenAI Gym: CartPole-v0, MountainCar-v0, 
and LunarLander-v2 [15]. We use the same network architecture, learning 
algorithms, and hyperparameters for all these environments.

We trained the algorithms using 10,000 episodes and used the Adaptive 
Moment Estimation (Adam) algorithm to minimize the loss with learning 
rate  and set the batch size to 32. 

<	�������������	����
������������������	��#	�����<	�����	���	������
updated each 300 steps. The behavior policy during training was -greedy 
with ����	��	�����	����������{�������{���	���	�
����
�	������������	���
����
'	��������{��	�	���	���̈ 	���	�����	������	���������	����������������
recent transitions

We independently executed each method 10 times, respectively, on 
every task. 

For each running time, the learned policy will be tested 100 times 
without exploration noise or prior knowledge by every 100 training episodes 
to calculate the average scores. We report the mean and standard deviation 
of the convergence episodes and the scores of the best policy.

Algorithm 1. The temporal and target values ensemble algorithm.
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Figure 1. The architecture of the ensemble algorithm.

Results and Analysis

We consider three baseline algorithms that use target network and value 
function approximation, namely, the version of the DQN algorithm from 
the Nature paper [8], DSN that reduce over estimation [17], and DDQN that 
substantially improved the state-of-the-art by reducing the overestimation 
bias with double Q-learning [9].

Using this 10 no-ops performance measure, it is clear that the ensemble 
network does substantially better than a single network. For comparison 
we also show results for DQN, DSN, and DDQN. Figure 2 shows the 
improvement of the ensemble network over the baseline single network of 
DQN, DSN, and DDQN. Again, we see that the improvements are often 
very dramatic.

The results in Table 1 show that algorithms we presented can successfully 
train neural network controllers on the classical control domain on OpenAI 
Gym. 

A detailed comparison shows that there are several games in which TE 
DQN greatly improves upon DQN, DSN, and DDQN. Noteworthy examples 
include CartPole-v0 (performance has been improved by 13.6%, 79.5%, and 
7.8%, and variance has been reduced by 100%, 100%, and 100%), 

MountainCar-v0 (performance has been improved by 26.7%, 21.2%, 
and 24.8%, and variance has been reduced by 31.6%, 77.9%, and 8.4%), 
and LunarLander-v2 (performance has been improved by 28.3%, 32.8%, 
and 50.5%, and variance has been reduced by 19.2%, 46.4%, and 50.5%).
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CONCLUSION

We introduced a new learning architecture, making temporal extension and 
the ensemble of target values for deep Q learning algorithms, while sharing 
a common learning module. The new ensemble architecture, in combination 
with some algorithmic improvements, leads to dramatic improvements over 
existing approaches for deep RL in the challenging classical control issues. 
In practice, this ensemble architecture can be very convenient to integrate 
the RL methods based on the approximate value function.

Figure 2. Training curves tracking the agent’s average score and average pre-
dicted action-value. (a) Performance comparison of all algorithms in terms of 
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the average reward on each task. (b) Average predicted action-value on a held-
out set of states on each task. Each point on the curve is the average of the 
action-value Q computed over the held-out set of states. (c) The performance 
of DQN and TEDQN on each task. The darker line shows the average scores 
of each algorithm, and the orange shaded area shows the two extreme values of 
DQN and the green shaded area shows TE DQN.

Table 1. The columns present the average performance of DQN, DSN, DDQN, 
EDQN, and TE-DQN after 10000 episodes, using -greedy policy with  = 
0.0001 after 10000 steps. The standard variation represents the variability over 
seven independent trials. Average performance improved with the number of 
averaged networks

Although the ensemble algorithms are superior to a single reinforcement 
learning algorithm, it is noted that the computational complexity is higher. 
The experiments also show that the temporal ensemble makes the training 
process more stable, and the ensemble of a variety of algorithms makes 
the estimation of the Q-value more accurate. The combination of the two 
ways enables the training to achieve a stable convergence. This is due to the 
fact that ensembles improve independent algorithms most if the algorithms 
predictions are less correlated. So that the output of the Q-network based 
on the choice of action can achieve balance between exploration and 
exploitation. In fact, the independence of the ensemble algorithms and their 
elements is very important on the performance for ensemble algorithms. 
In further works, we want to analyze the role of each algorithm and each 
Q-network in different stages, so as to further enhance the performance of 
the ensemble algorithm.
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ABSTRACT

Recently, human being’s curiosity has been expanded from the land to the 
sky and the sea. Besides sending people to explore the ocean and outer space, 
robots are designed for some tasks dangerous for living creatures. Take the 
ocean exploration for an example. There are many projects or competitions 
on the design of Autonomous Underwater Vehicle (AUV) which attracted 
many interests. Authors of this article have learned the necessity of platform 
upgrade from a previous AUV design project, and would like to share the 
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experience of one task extension in the area of fish detection. Because most 
of the embedded systems have been improved by fast growing computing 
and sensing technologies, which makes them possible to incorporate more 
and more complicated algorithms. In an AUV, after acquiring surrounding 
information from sensors, how to perceive and analyze corresponding 
information for better judgment is one of the challenges. The processing 
procedure can mimic human being’s learning routines. An advanced system 
with more computing power can facilitate deep learning feature, which 
exploit many neural network algorithms to simulate human brains. In this 
paper, a convolutional neural network (CNN) based fish detection method 
was proposed. The training data set was collected from the Gulf of Mexico by 
a digital camera. To fit into this unique need, three optimization approaches 
were applied to the CNN: data augmentation, network simplification, and 
training process speed up. Data augmentation transformation provided more 
learning samples; the network was simplified to accommodate the artificial 
neural network; the training process speed up is introduced to make the 
training process more time efficient. Experimental results showed that the 
proposed model is promising, and has the potential to be extended to other 
underwear objects.

INTRODUCTION

The ocean is full of mystery and the underwater exploration has always 
been an exciting topic. Nowadays, robotics has been widely adopted into 
our daily lives. The AUV is one type of robot, which is gaining more and 
more attention [1, 2]. It must be equipped with a sophisticate onboard 
computer, Inertial Measurement Unit (IMU), and other sensors to be able to 
support a preprogrammed navigation system [1]. Authors have experience 
on design and function of an AUV [3, 4] for competitions. The AUV, as 
shown in Figure 1, is featured with an i7-based industrial motherboard plus 
an ARM microcontroller. Detail hardware layout and mechanical balancing 
scheme are introduced in [3, 4]. It passed the qualification and became one 
of the eleven finalists at the 2017 IEEE Singapore AUV Challenge [5]. This 
competition was hosted in a swimming pool of clear water. The tasks did 
not need a high-resolution camera, so the major processor was not chosen 
to be of high performance. After this the AUV retired from the competition, 
authors realized it was time to revise the system to conquer real life tasks. 
As of now, most of the robot control platforms were shifting to Systems-
On-Chip (SOC) [6, 7]. To move forward and add more functionalities to 
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the AUV, one goal is to switch from a clear swimming pool environment to 
a real ocean water condition. Therefore, the hardware has to be upgraded 
to high resolution digital camera along with a powerful onboard computer, 
such as NVIDIA JETSON AGX XAVIER development board. So, before 
upgrading the whole system with integrated vision, research on an off-line 
simulation of the computer vision module was conducted. Fishes of many 
kinds were chosen to be the objects to build up the training and testing data 
set. Ocean water conditions vary from place to place. In the Gulf of Mexico 
where the authors reside, the water is not as clear as in the east or west coast 
of the United States. Thus, how to identify fish from the blurred sea water is 
most challenging in this research. One of the solutions is to adopt ultrasonic 
technology [8, 9]. To some extent, it was proved to be effective for the 
fish industry where a rough quantity of fish is sufficient enough. However, 
because of low resolution, it is difficult to differentiate objects in a complex 
environment that has mixed fishes, turtles, etc. The goal of this research is 
to investigate the object detection scheme under real sea water through an 
AUV build-in digital camera. Researchers have successfully adopted the 
digital camera as a tool for capturing images from the ocean to improve 
underwater robot vision [10], but the vehicle was remotely operated (ROV) 
instead of an AUV.

Figure 1. AUV and competition environment.

LITERATURE REVIEW

The main contribution of this research is to introduce deep learning 
methodology to accomplish fish identification in blurry ocean water. As a 
result, the approach improved computer vision into an AUV system through 
an applicable neural network.



Deep Learning Algorithms112

Computer Vision

Computer vision uses computers with imaging sensors to imitate human 
visual functions that extract features from obtained data set, analyse and 
classify them to assist in decision making. It usually involves many fields 
of knowledge such as high-level computer programming, image processing, 
artificial intelligence (AI), and so on. For example, manufacture industry 
uses it to check the defection or improve the quality from large quantities 
of products [11, 12]. There are mature applications on face detection and 
emotion observation at the airport and other security checking points [13–
15]. Medical doctors’ use certain diagnose software to assist in identifying 
tumours and other abnormal tissues from medical imaging [16]. The 
agricultural industry adopts the computer vision to decision making system 
for predicting the yield from the field [17]. Google is designing its own self-
driving car with a visual range of about 328 feet and the car can recognize 
traffic signs and avoid pedestrians [18]. Many state-of-the-art examples 
indicate that computer vision is changing our daily lives. To improve the 
performance, besides traditional image processing skills, deep learning 
algorithms which imitate our brain are widely adopted.

Deep Learning

The concepts of deep learning with neural network has arisen decades 
ago. It was originally developed by researcher LeCun et al. in 1998 [19]. 
He designed a five-layer classifier named LeNet5 using a Convolutional 
Neural Network (CNN). Due to dramatic improvement in computing power 
and the explosion of big data, deep learning is able to make tremendous 
achievements in the past several years. Deep learning is based on big 
data collected in a certain field. Learning resources from massive data are 
extremely important. Deep means that a neural network has lots of layers 
for imitating our brain. With the advent of high-performance GPU, ASIC 
accelerators, cloud storage, and powerful computing facility, it is now 
possible to collect, manage, and analyse big data sets. Because only with data 
sets large enough, can overfitting problems be solved in deep learning. And 
the enhanced computing power can accelerate the speed of time-consuming 
training process.

�		���	������#��	���������	����	�����	�������������	����������
	�����
���� ��	� �����
����� ��������	� ��	�� ������������ ���������� ��� ������	��
vision and object detection. The performance of many robotics systems has 
been improved by incorporating deep learning. Take Google’s AlphaGo as 



Fish Detection Using Deep Learning 113

an example, it studied human’s learning behavior and in return compete with 
the famous Go player [20].To be able to foster deep learning in computer 
vision, enough examples from images collected beforehand is critical. 
ImageNet is a good example [21]. One contribution of this research includes 
�	�	�������������#��	����
�������	������	���������������������������	�������
Nevertheless, a learning algorithm is important as well. Traditional computer 
vision and image processing approaches suffered from the accuracy of 
feature extraction, while deep learning method can be utilized to improve 
the technique through neural network.

Neural Network

Over the past few years, neural networks in deep learning were getting 
increasingly popular. In 2012, researcher Krizhevsky et al. adopted CNN 
to accomplish images classification in the ImageNet Large Scale Visual 
Recognition Challenge [22, 23], and the test accuracy was significantly 
higher than traditional algorithms. Due to this achievement, the interest in 
deep learning with neural network has been raised [24]. In 2014, Ross et 
al. proposed an algorithm called Fast R-CNN which aims to convert object 
identification into a regression problem [25]. The mean average precision 
was improved by almost 30% compared to the previous best result 53.3% 
on ImageNet Large Scale Visual Recognition Challenge in 2012. The 
amount of calculation was massive because features from different sizes 
of thousands of proposals in each image would be extracted. Since Faster 
R-CNN reduced the computational burden dramatically, it has been widely 
adopted recently in computer vision which involves target detection, image 
classification, and object identification. YOLO proposed in Facebook is also 
a milestone for corresponding research [26, 27].

MATERIALS AND METHODS

In this paper, a CNN model with image segmentation is introduced for fish 
detection from in blurry ocean water. Specific data set was developed to 
support this research. The data augmentation transformation scheme was 
adopted to obtain more learning resources because the original images in the 
particular environment are not sufficient for training purpose. To solve the 
overfitting problem, the dropout algorithm is applied. Because our goal is to 
incorporate this system into an AUV which requires real-time applications, 
some trade-offs were discussed to reduce processing time. In this section, 
detail system design with optimization approaches is addressed.



Deep Learning Algorithms114

CNN Architecture

A CNN model usually consists of many layers, such as an input layer, 
convolutional layers with nonlinear units, and fully connected layers [28, 
29]. An example of CNN is demonstrated in Figure 2. The first layer is the 
input layer which receives image information as learning resources from 
the outside world. The following layers are convolutional layers, which are 
responsible for extracting features from images. Convolution operation is 
one of the common mathematical operations. The convolution formula of 
two discrete functions is shown in Equation (1):

   (1)

Figure 2. Convolutional operation on a RGB color image [30].

The data set consists of 256 levels of RGB color images��<	��»�������'��
¨��#	������������	�����	��	�������
��	�������������	������������������	��������
are performed on R, G, and B channels respectively, and then the results are 
summed up to obtain each element in the feature map as shown in Figure 2.

In order to extract the features of an object more accurately, a lot of 

��	�����	���	�����	��������������������	�. For example, to extract features, 
�������	��	����	'���	��	���������	���������
��	�����	�������#�	������������
Figure 3. 

When performing the convolutional operation, the size of the feature 
����������	��������	��������<	�	���	���		��������������������$�	��	�����
size: depth, stride, and padding. Figure 4 illustrates the feature map where 
depth is 3, stride is 1, and with zero padding.For a complex neural network, 
usually there are two types of connections between two adjacent layers. They 
are the fully connected layer and locally connected neural layer respectively 
as illustrated in Figure 5. For a fully connected neural net, all pixels in the 
input layer are connected with each neuron in the hidden layer as shown 
in Figure 5(a). It is common that the last two layers in a CNN are fully 
connected layers. They are the somax and output layer, respectively. Because 
a huge number of parameters will increase the amount of computation and 
delay the processing. For a locally connected neural network, only a portion 
of pixels in the input layer are connected with the following neuron in the 
hidden layer as shown in Figure 5(b). This type of connection will reduce 
the number of connections and speed up the system.
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Figure 3. Convolution operation application in image feature exaction [31].

The Convolutional layer in CNN uses local connections as shown in Figure 
���?���	'����	���	�����	+������	��	����	�����������������	��	���������»��
matrix [0, 0, 0; 0, 1, 1; 0, 1, 2] from input image and has nothing to do with 
the remaining parts of the input image pixels.
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The parameters for fully or local connectivity for all the layers in this CNN 
are listed in Table 1.

<	�����	������#	��������!	������������
����������?����	���

System Validation Using ImageNET Dataset

Before applying this system into the ocean fish data set developed in this 
research, authors downloaded images from the well-known ImageNet 
ILSVRC [21] to do a system validation testing through object classification. 
There are 500 images with 20 classes ranging from fish, coral, sea turtle, 
�����������	����¯	�	������	���������	����	��	����	��������»������������
truths images are obtained from operate labeling soware manually. Each 
����	� ��� �����	�� ����� �� ����� ��� �»�� �	����� ^��� �	��� ����� ��	����� �	� ����
bounding boxes location information and class information made up of a 
{»{»����	������<����	������������������#"	����	��	�����������	� (X, Y), the 
width w, and height h of the bounding box confidence scores, and predicted 
probabilities of fish, as shown in Figure 8.To predict the target location of 
an image, the target is displayed in a bounding box. There are always errors 
between the ground truth and the predictions. Loss function was developed 
to measure errors consisting of three parts: coordinate error, (Intersection 
over union) IoU error, and class error. Equation (2) gives the mathematics 
form of the loss function.

   (2)
Here, IoU is used to measure position accuracy as shown in Figure 9.

Figure 4. Feature extractor using convolutional operation.
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Each grid cell in an image will predict  bounding boxes that encloses 
an object to predict the object localization and class. In addition, there is 
a confidence with each bounding box. Confidence score has nothing to do 
with the class of object. It just depicts how certain it is that the predicted box 
actually encloses the real object.

      (3)
where Pr(object) represents the probability of the object of interest. If 

there is an object in the grid cell, the Pr(object) is 1; otherwise, it is 0.
Usually, loss function is in the form of the sum of squared errors as 

shown below [33]. It consists of three parts which are localization errors, 
���
�	��	�	��������������#�#�����	��	������

    (4)
where xi, yi are the ground truth coordinates of objects center; wi , hi are 

the width and height of the ground truth bounding box;  are the predicted 
coordinates of the objects center;  are the width and height of predicted 
#��������#�'���#��	�?����	�{���������	��	�������������������
�	��	�
values from different classes.

Figure 5. Fully connected neural net and locally connected neural net [32].
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Figure 6. Convolutional operation using local connections.

Ground Truth Preparation for Real Ocean Environment

After testing the CNN system with perfect images without noise. Next step 
is to build our own dataset of fish in the ocean. Because it is difficult to 
obtain images from other kinds of objects such as the sea turtle, coral and 
so on. is part of the research, fish is the only object to be detected. For the 
collection of 410 images, many of them have multiple fish in one image, so 
the detection is challenging. The same method was chosen to create ground 
truth image. And all the parameters introduced before remain the same, only 
�	� ������ ������������ ��� ���	� ��� ��� �� {»{»{�� �	����� ����	��� ��� {»{»���
because of reduce in the classes. Figure 11 illustrates one labeled image 
example. It is obvious that this data set is totally different from the ideal 
images from ImageNET.

DATA AUGMENTATION

Since deep learning is based on large training dataset for the system to learn 
and build up the identification knowledge, enough data has to be provided as 
learning resources to extract object features [34]. 

<	� �������� ��� ����� ������ #����� ��	�
������ ���#�	��� ����	�� �	�	�
collected in real underwater environment from the Gulf of Mexico and are 
going to be used to attract object features. However, the number of original 
images collected from a particular environment is not large enough to train 
the system. 
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Therefore, data augmentation transformation was performed geometrically, 
which changed the pixels location while the images features remained 
unchanged as shown in Figure 12. Four types of data augmentation 
transformation were adopted, which doubled the number of original images to 
make the training dataset sufficient.

(1)  Rotation: rotate the images by random angles;
(2)  Scale: the images are scaled to different sizes according to scale 

factors set;
(3)  Crop: crop patches of images;
`�|�� ~������ ����	����� $��� �	� ��������� ����	�� ���!�������� ���

vertically

Dropout Algorithm

One of the common problems in deep learning is overfitting, which refers to 
the fact that the testing accuracy is much lower than the training accuracy. 
In this case, a model with high performance feature is built using real world 
training data. 

��� ��� ���������������	���	�
����������	���	���#����	�������	����	�����
worth consideration. Apart from the lacking of learning data, which will 
���������	���	�
���������#�	����	���	����������������	�	���������	�����
�	�������������	�������	���	�
����������	��<	�	���	���	������������������
[35] was introduced into the system to simplify the model, which is depicted 
in Figure 5.
Table 1. Parameters in CNN model with image segmentation
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Figure 7�����������	����	������#"	�����	���
������������

Figure 8. Output of CNN model using ImageNET.
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Figure 9. Intersection over union.

Figure 10���#"	���������
��������	���������������	�^<�������	��

Figure 11. Labeled ground truth.

Dropout means that we remove some nodes temporarily from the network 
according to the probability setting in the process of learning. In practice, 
some features can be extracted only when some hidden relationships exist, 
which decreased the robustness of the deep learning model. On the other 
����� �������� �	���	�� �� ���	�� 
'	�� �	���������� #	��		�� ���	��� ����+
���	��	�	��	��#����������#	�������	��������	�
���������#�	� can be solved 
to some extent. L1 and L2 regularization are achieved by modifying the cost 
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function, while dropout is implemented by modifying the neural network 
itself, which is a technique used when training the network. In each iteration 
of the training process, authors randomly drop some of the neurons, and set 
the probability of eliminating nodes in the neural network for each layer 
of the network. For example, the value is set to 0.5, as shown in Figure 13 
on the left. The neurons are discarded, then the connections from the node 
��	��	���	�������
���������	�����������	�	�����	�����������	������	�����
�#����	���	��	��������������	��������������������������#	�������
	������	�
one shown in Figure 13 on the right.

Figure 12. Data augmentation transformation.

Figure 13. A standard neural network model (a) and a network model with 
dropout (b) [35].

��������		�
������

YOLO improved loss function from Equations (4) and (5), [26]. Three 
coefficients were placed before the error terms in proportion to its 
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contribution to the loss. As shown in Equation (5), the first two terms are 
related to coordinate the identified object with x and y to denote the object 
location, while w and h refer to the width and height of the bounding box. 
In order to have more weight in the first two terms, was assigned to be 
the largest number, which had a value of 5. Thus, the weight of localization 
error got enhanced. In terms of IoU error computation, when the object 
center falls in this cell, the weight of IoU error should be increased in order 
to predict location accurately. The value of is set to be 0.5 to refine the 
IoU error. For the same error value, the effect of large object error on the 
detection should be less than the effect of small object error on the detection. 
This is because the same bias accounts for the proportion of large objects 
is much smaller than the proportion of the same deviation to small objects. 
Therefore, it is supposed to increase the contribution to loss due to bigger 
object IoU error. Square roots of width and height were chosen to replace 
their original forms. For same bias value, the square root error from the big 
box is smaller than the small one.

Figure 14��^����	�	��������	���
�����������������������������	��������

Figure 15. Comparison of training loss.



Deep Learning Algorithms124

   (5)

In this paper, authors refined the loss function to fit for multiple fish 
application. The proposed loss function is regularized to reduce the small 
dataset and overfitting problem, L2 regularization is to add a regularization 
function after the cost function which is listed in the Equations (6) and (7).

   (6)

Figure 16��^��	���������������	�������������	�
������
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 (7)

The last term is the L2 regularization term, which is the sum of the 
squares of all the parameters w, divided by the sample size n of the training 
set. �����	���	�
��	�������	��	�������	���������	�����	���������������
�	��	�������	��������	���	���	�����<	�	�������������	�
��	���{«���{«������	��
seen, mainly for the convenience of the results of the latter, the latter will 
produce a 2, multiplied by 1/2 just rounded up. The principle and procedure 
����������	���	���	�
�������������	��	�	�	��	���{��

Figure 17��^����	�	��������	���
����������������������������
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Figure 18. Effect of dropout on the training loss.

RESULTS AND DISCUSSION

The experiment implementations are based on the publicly available 
Tensorflow toolbox and Python language programming. THe hardware 
platform is built on a GeForce GTX 745 GPU with 4G memory. The 
experiment is carried out by the three criterions aforementioned, the 
performance, training loss, and testing loss are compared respectively.

Experimental Results from Data Augmentation

The number of images is doubled by taking data augmentation transformation 
approach, which means this methodology could assist the machine to learn 
the feature more accurately. We used the test dataset to evaluate our model. 
It turns out that with data augmentation, the machine can identify the objects 
of interest more accurately than the result without data augmentation, the 
experiment result is clearly shown in Figure 14.
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Figure 19��^��	�������������������	�
������

Figure 20��^����	�	��������	���
���������������������	��	
�	�	�����������
function.

?���� ?����	� {��� ��� ��� ��	��� ���� �	� 
�� ��� �	� ����	� ��� ��	���
	��
�������	�����	���	���	����
�	��	���������������������������	��	����	�������
the three sample images. 
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From Figure 15, it is observed that the final training loss of the proposed 
neural network model using original data is 0.35 while the final training 
loss using data augmentation is 0.46. This clearly demonstrates that the data 
augmentation transformation is much helpful to reduce the training loss. 

Figure 16 illustrates the training loss with the increase on the number 
of iterations. The iteration times are set from 0 to 600. e difference between 
training loss and test loss is decreased from 1.6 to 0.46 and 0.35 respectively. 
<	���	�
���������#�	����������	���������	���	'�	���

Experimental Results from Dropout

In this test, neurons in the hidden layers were randomly selected to be 
removed from this network. In this wary, a simplified deep neural network 
is obtained. Figure 17 shows the average confidence for each sample image 
is greatly improved; the effectiveness of identification by dropout approach 
is highly enhanced. 

The training loss of dropout is illustrated in Figure 18. As we can see, 
�	�
��������������������������������������������������������<	���������
�������������	����	���	��	�������������������������	��
����������������	��
dropout is 0.85, the training loss is smallest all the time (Figure 18).After 
conducted dropout approach, we can see from Figure 19, the difference 
between training loss and test loss decreased from 0.03 to 0.004. There is 
only a slight difference between training loss and test loss with dropout. The 
��	�
���������#�	�������	����	���������	���	'�	����<	�	���	���	����	���	�
built is applicable.

Experimental Results from Loss Function Om Algorithm Per-

formance

Authors used the CNN model with image segmentation and back-propagated 
the gradients of refined loss function and update the parameters in the 
network. With the refinement of loss function, the prediction gets more 
accurate as clearly shown in Figure 20.
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Figure 21. Effect of loss function on training loss.

As shown in Figure 21, when the iteration times are 575, it converges. 
<	�
�����������������������{���¯��	�	������������*���	������������������	�
convergent point is 0.27 when the iteration times are 650.

Discussions

With the design and the choices of optimization, a deep learning based 
fish detection module was designed and simulated. With the improved 
accuracy and reduced processing time, it is very promising to adopt the 
proposed method to an AUV for implementation. The Tensorflow toolbox 
and Python programming interface are compatible with current advanced 
microcontroller platforms.

CONCLUSION

In this paper, authors built a neural network model to accomplish fish 
detection. To support the training process with enough dataset, the data 
augmentation approach was conducted. Dropout algorithm was selected to 
solve the overfitting problem. Moreover, loss function was refined to update 
the parameters inside the network. By these approaches, both the training 
time and the training loss were reduced dramatically. To summarize the 
contribution of this article: (1) Establish the data set to include real blur ocean 
water condition; (2) Revise loss function and other parameters in CNN to 
explore an applicable solution for fish detection; (3) The system is targeted 
at an embedded system for AUV design with all possible optimizations.
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ABSTRACT

This paper applies deep convolutional neural network (CNN) to identify 
tomato leaf disease by transfer learning. AlexNet, GoogLeNet, and ResNet 
were used as backbone of the CNN. The best combined model was utilized 
to change the structure, aiming at exploring the performance of full training 
and fine-tuning of CNN. The highest accuracy of 97.28% for identifying 
tomato leaf disease is achieved by the optimal model ResNet with stochastic 
gradient descent (SGD), the number of batch size of 16, the number of 
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iterations of 4992, and the training layers from the 37 layer to the fully 
connected layer (denote as “fc”). The experimental results show that the 
proposed technique is effective in identifying tomato leaf disease and could 
be generalized to identify other plant diseases.

INTRODUCTION

Tomato is a widely cultivated crop throughout the world, which contains 
rich nutrition, unique taste, and health effects, so it plays an important 
role in the agricultural production and trade around the world. Given the 
importance of tomato in the economic context, it is necessary to maximize 
productivity and product quality by using techniques. Corynespora leaf 
spot disease, early blight, late blight, leaf mold disease, septoria leaf spot, 
two-spotted spider mite, virus disease, and yellow leaf curl disease are 8 
common diseases in tomato [1–8]; thus, a real time and precise recognition 
technology is essential.

Recently, since CNN has the self-learned mechanism, that is, extracting 
features and classifying images in the one procedure [9], CNN has been 
����	�������� �����	�� ��� �������� �������������� ���� ��� ����	�� ��	���
�������
[10], salient object detection [11, 12], scene text detection [13, 14], truncated 
inference learning [15], road crack detection [16, 17], biomedical image 
analysis [18], predicting face attributes from web images [19], and pedestrian 
detection [20], and achieved the better performance. In addition, CNN is 
able to extract more robust and discriminative features with considering the 
global context information of regions [10], and CNN is scarcely affected 
by the shadow, distortion, and brightness of the natural images. With the 
rapid development of CNN, many powerful architectures of CNN emerged, 
such as AlexNet [21], GoogLeNet [22], VGGNet [23], Inception-V3 [24], 
Inception-V4 [25], ResNet [26], and DenseNets [27].

Training deep neural networks from scratch needs amounts of data 
and expensive computational resources. Meanwhile, we sometimes have a 
������
������� ����� �����	���������#����	��������	�	���������� �����	��
domains. Fortunately, transfer learning can improve the performance of 
deep neural networks by avoiding complex data mining and data-labeling 
efforts [28]. In practice, transfer learning consists of two ways [29]. One 
������� ��� ���
�	+���	� �	��	��������	�����#�������������������� ������� ���
is worth nothing that the new data must be resized to the input size of the 
pretrained network. Another way is to obtain the learned weights from the 
pretrained network and apply the weights to the target network.
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In this work, first, we compared the performance between SGD [30] and 
Adaptive Moment Estimation (Adam) [30, 31] in identifying tomato leaf 
disease. These optimization methods are based on the pretrained networks 
AlexNet [21], GoogLeNet [22], and ResNet [26]. Then, the network 
architecture with the highest performance was selected and experiments on 
effect of two hyperparameters (i.e., batch size and number of iterations) on 
accuracy were carried out. Next, we utilized the network with the suitable 
hyperparameters, which was obtained from the previous experiments, to 
discuss the impact of different network structures on recognition tasks. We 
believe this makes sense for researchers who choose to fine-tune pretrained 
systems for other similar issues.

The rest of this paper is organized as follows. Section 2 displays an 
overview of related works. Section 3 introduces the dataset and three 
deep convolutional neural networks, i.e., AlexNet, GoogLeNet, and 
ResNet. Section 4 presents the experiments and results in this work. 
Section 5 concludes the paper.

Figure 1. Proposed workfow diagram.

RELATED WORK

The research of agricultural disease identification based on computer vision 
has been a hot topic. In the early years, the traditional machine learning 
methods and shallow networks were extensively adopted in the agricultural 
field.
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Sannakki et al. [32] proposed to use k-means based clustering performed 
on each image pixel to isolate the infected spot. They obtained the result 
that the Grading System they built by machine vision and fuzzy logic is 
very useful for grading the plant disease. Samanta et al. [33] proposed a 
novel histogram based scab diseases detection of potato and applied color 
image segmentation technique to exact intensity pattern. They got the best 
classification accuracy of 97.5%. Pedro et al. [34] applied fuzzy decision-
making to identify weed shape, with fuzzy multicriteria decision-making 
strategy; they achieved the best accuracy of 92.9%. Cheng and Matson 
[35] adopted Decision Tree, Support Vector Machine (SVM), and Neural 
Network to identify weed and rice; the best accuracy they achieved is 
98.2% by using Decision Tree. Sankaran and Ehsani [36] used quadratic 
discriminant analysis (QDA) and k-nearest neighbour (kNN) to classify 
citrus leaves infected with canker and Huanglongbing (HLB) from healthy 
citrus leaves; they got the highest overall accuracy of 99.9% by kNN.

Recently, deep learning methods have been applied in identifying plant 
disease widely. Cheng et al. [37] used ResNet and AlexNet to identify 
agricultural pests. At the same time, they carried out comparative experiments 
�����¶~���������	������	��������
������� �	������ �	�#	���������������
98.67% by ResNet-101. Ferreiraa et al. [38] utilized ConvNets to perform 
weed detection in soybean crop images and classify these weeds among 
grass and broadleaf. The best accuracy they achieved is 99.5%. Sladojevic et 
al. [39] built a deep convolutional neural network to automatically classify 
and detect 15 categories of plant leaf diseases. Meanwhile, their model was 
able to distinguish plants from their surroundings. They got an average 
accuracy of 96.3%. Mohanty et al. [40] trained a deep convolutional neural 
network based on the pretrained AlexNet and GoogLeNet to identify 14 
crop species and 26 diseases. They achieved an accuracy of 99.35% on a 
held-out test set. Sa et al. [41] proposed a novel approach to fruit detection 
by using deep convolutional neural networks. They adapted Faster Region-
based CNN (Faster R-CNN) model, through transfer learning. They got the 
?{�����	���������������
	�������������	��

MATERIALS AND METHODS

This paper concentrates on identifying tomato leaf disease by deep learning. 
In this section, the abstract mathematical model about identifying tomato 
leaf disease is displayed at first. Meanwhile, the process of typical CNN 
is described with formulas. Then, the dataset and data augmentation are 
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presented. Finally, we introduced three powerful deep neural networks 
adopted in this paper, i.e., AlexNet, GoogLeNet, and ResNet.

<	����������	��������������	������	��	���	���
�����������������������
be abstracted as a mathematical model (see Figure 1). First, we assume 
the mapping function from tomato leaves to diseases is  and then 
send the training samples to the optimization method. The hypothesis set 
H means possible objective functions with diferent parameters; through a 
�	��	����������	�	��������	���	������	���	�
��������������� .

Figure 2. Raw tomato leaf images.

The typical CNN process can be represented with following formulas. 
Firstly, send the training samples (i.e., training tomato leaf images) to 
the classifer (i.e., AlexNet, GoogLeNet, and ResNet). Ten, convolution 
��	���������������	��������������������#	�����
��	�������	���	���	��	����	�����
of the previous layer, and the weight matrices do dot product.

   (1)
where f ( ) is activation function, typically a Rectifer Linear Unit 

(ReLU) [42] function:

    (2)
Nj is the number of kernels of the certain layer, represents the feature 

map of the previous layer,  is the weight matrix, and  is the bias term.
Max-pooling or average pooling is conducted after the convolution opera-
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tion. Furthermore, the learned features are sent to the fully connected layer. 
<	�������'��	��	����������������������	�
��������������	��	�����	������
input x will get the probability of belonging to class i.

   (3)
where y is the response variable (i.e., predict label), k is the number of 

categories, and  is the parameters of our model.

Raw Dataset

The raw tomato leaf dataset utilized in this work comes from an open 
access repository of images, which focus on plant health [43]. Health and 
other 8 diseases categories are included (see Table 1, Figure 2), i.e., early 
blight (pathogen: Alternaria solani) [1], yellow leaf curl disease (pathogen: 
Tomato Yellow Leaf Curl Virus (Tylcv), Family Geminiviridae, Genus 
Begomovirus) [2], corynespora leaf spot disease (pathogen: Corynespora 
cassiicola) [3], leaf mold disease (pathogen: Fulvia fulva) [4], virus disease 
(pathogen: Tomato Mosaic Virus) [5], late blight (pathogen: Phytophthora 
Infestans)[6], septoria leaf spot (pathogen: Septoria lycopersici) [7], and 
two-spotted spider mite (pathogen: Tetranychus urticae) [8]. Te total dataset 
is 5550.

Data Augmentation

Deep convolutional neural networks contain millions of parameters; thus, 
massive amounts of data is required. Otherwise, the deep neural network 
may be overftting or not robust. The most common method to reduce 
overftting on image dataset is to enlarge the dataset manually and conduct 
label-preserving transformations [21, 44].

����������������
������	���������	������	�����������	���������Á����������
samples and 20% testing samples, and then the data augmentation procedure 
�����������	���̀ {|�
�������	�����	�������	������������̀ �|�
�������	�����	�
����� ���� ��� #������� `�|� 
������ �	� ����	� ������������ `�|� ��"������� �	�
brightness of image, setting the max delta to 0.4; (5) adjusting the contrast 
of image, setting the ratio from 0.2 to 1.5; (6) adjusting the hue of image, 
setting the max delta to 0.5; (7) adjusting the saturation of image, setting the 
ratio from 0.2 to 1.5; (8) rotating the image by 90� and 270� , respectively. 
<	�
���������	�������������<�#�	���������	���#	������	�
���������	��	�	����
the disease categories which are given in Table 1.
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Table 1. The raw tomato leaf dataset

Deep Learning Models

AlexNet
AlexNet is the winner of ImageNet LargeScale Visual Recognition Challenge 
(ILSVRC) 2012, a deep convolutional neural network, which has 60 million 
parameters and 650,000 neurons [21]. The architecture of AlexNet utilized 
in this paper is displayed in Figure 3. Te AlexNet architecture consists of 
five convolutional layers (i.e., conv1, conv2, and so on), some of which 
are followed by maxpooling layers (i.e., pool1, pool2, and pool5), three 
fully connected layers (i.e., fc6, fc7, and fc8), and a liner layer with sofmax 
activation in output. In order to reduce overftting in the fully connected 
layers, a regularization method called “dropout” is used (i.e., drop6, drop7) 
[21]. The ReLU activation function is applied to each of the first seven layers 
(i.e., relu1, relu2, and so on) [45]. In Figure 3, the notation  in each 
convolutional layer represents the size of the feature map for each layer, 4096 
represents the number of neurons of the first two fully connected layers. The 
number of neurons of the final fully connected layer was modified to 9, 
since the classification problem in this work has 9 categories. In addition, 
�	���!	��������������	�������#	����	��������»����������		����	�������
pixel size requirement of AlexNet.
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GoogLeNet
GoogLeNet is an inception architecture [22], which is the winner of 
ILSVRC 2014 and owns roughly 6.8 million parameters. Te architecture 
of GoogLeNet is presented in Figure 4. Te inception module is inspired by 
�	��	����������	�����������������	����������	�����#�����������{»{���»���
���� �»�� �������������� ���	�� ������ ���� �»�� ��'+�������� ���	�� ������ �	�
{»{������������������	��#	���	��»�������»�������������������	���	���	���	�
spatial dimension and limits the size of GoogLeNet. Te whole architecture of 
GoogLeNet is stacked by inception module on top of each other (See Figure 
4), which has nine inception modules, two convolutional layers, four max-
pooling layers, one average pooling layer, one fully connected layer, and a 
linear layer with sofmax function in the output. GoogLeNet uses dropout 
regularization in the fully connected layer and applies the ReLU activation 
function in all of the convolutional layers [29]. In this work, the last three 
layers of GoogLeNet were replaced by a fully connected layer, a sofmax 
layer, and a classifcation layer; the fully connected layer was modifed 
to 9 neurons, which is equal to the categories in the tomato leaf disease 
identifcation problem. The size requested of input image of GoogLeNet is 
����»�����

Table 2��<	�
������������	��������	��

Figure 3. The architecture of AlexNet in this work.

ResNet
The deep residual learning framework is proposed for addressing the 
degradation problem. ResNet consists of many stacked residual units, 
which won the first place in ILSVRC 2015 and COCO 2015 classification 
challenge with error rate of 3.57% [26]. Each unit can be expressed in the 
following formulas [47]:
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   (4)

    (5)
where  are input and output of the l-th unit, and F is a residual 

function. In [26]  is an identity mapping and f is a ReLU function 
[42]. A “bottleneck” building block is designed for ResNet (See Figure 5) 
���� �������	�� ���� {»{� ������������� ���� �� �»�� ������������ ��� #	��		��
���������	������������	������#���������������������������<	�{»{����	�����	�
responsible for changing in dimensions. ResNet model has three types of 
layers with 50, 101, and 152. For saving computing resources and training 
time, we choose the ResNet50, which also has high performance. In this work, 
���
������	��������		����	�������	��	���	�	������	��#��������������	��	��
���	�����������'����	���������������
����������	����	�����������	��	�����	��
was replaced to 9 neurons, which is equal to the categories of the tomato leaf 
disease. We changed the structure of ResNet subsequently. The size of input 
����	�����	��	��������������������»�����

EXPERIMENTS AND RESULTS

In this section, we reveal the experiments and discuss the experimental 
results. All the experiments were implemented in Matlab under Windows 
10, using the GPU NVIDIA GTX1050 with 4G video memory or NVIDIA 
GTX1080Ti with 11G video memory. In this paper, overall accuracy was 
regarded as the evaluation metric in every experiment on tomato leaf 
disease detection, which means the percentage of samples that are correctly 
classified:

 (6)
where “true positive” is the number of instances that are positive and 

������
	�� ��� �������	�� £���	� �	�����	¥� ��� �	� ���#	�� ��� �������	�� ���� ��	�
�	�����	� ���� ������
	�� ��� �	�����	�� ���� �	� �	���������� �	��	�	���� �	�
total number of samples. In addition, the training time was regarded as an 
additional performance metric of the network structure experiment.

Experiments on Optimization Methods

The first experiment is designed for seeking the suitable optimization 
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method between SGD [30] and Adam [30, 31] in identifying tomato leaf 
diseases, combining with the pretrained network AlexNet, GoogLeNet, and 
ResNet, respectively. In this experiment, the hyperparameters were set as 
follows for each network: the batch size was set to 32, the initial learning 
rate was set to 0.001 and dropped by a factor of 0.5 every 2 epochs, and the 
max epoch was set to 5; i.e., the number of iterations is 6240. So far as SGD 
optimization method, the momentum was set to 0.9. For Adam, the gradient 
decay rate  was set to 0.9, the squared gradient decay rate  was set to 
0.999, and the denominator offset ������	�����{�_����{���<	�������������
different networks is displayed in Table 3. In addition, we choose the better 
results in each deep neural network to show the training loss against number 
of iterations during the fine-tuning process (See Figure 6). The words inside 
parenthesis indicate the corresponding optimization method.

In Table 3, the ResNet with SGD optimization method gets the highest 
test accuracy 96.51%. In identifying tomato leaf diseases, the performance 
of Adam optimization method is inferior to the SGD optimization method, 
especially in combining with AlexNet. In the following paper, AlexNet 
(SGD), GoogLeNet (SGD), and ResNet (SGD) are referred to as AlexNet, 
GoogLeNet, and ResNet, respectively.

As it can be seen in Figure 6, the training loss of ResNet drops rapidly in 
the earlier iterations and tends to stable afar 3000 iterations. Consistent with 
Table 3, the performance of AlexNet and GoogLeNet is similar and both 
inferior to the ResNet.

Figure 4. The architecture of GoogLeNet [22, 45].
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Figure 5. ResNet bottleneck residual building block [26].

Table 3. Model recognition accuracy.

Experiments on Batch Size and Number of Iterations

From the experiment on optimization methods, the ResNet obtains the 
highest classification accuracy. Next, we evaluated the effects of batch size 
and the number of iterations on the performance of the ResNet. Te batch size 
was set to 16, 32, and 64, respectively. Meanwhile, the number of iterations 
was set to 2496, 4992, and 9984. The classification accuracy of different 
training scenarios is given in Table 4. At the same time, the classification 
accuracy of each label’s representative leaf disease category (See Table 1) 
is given. In this experiment, the initial learning rate was set to 0.001 and 
dropped by a factor of 0.5 every 2496 iterations.

In Table 4, the best overall classifcation accuracy 97.19% is got by the 
ResNet combining with batch size 16 and
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Iterations 4992. As shown in Table 4, whether increasing the number of 
iterations or batch size, the performance of corresponding models has not 
been improved significantly in identifying tomato leaf disease. A small 
batch size with a medium number of iterations is quite effective in this 
work. Moreover, a larger batch size and number of iterations increases the 
training duration. We have not tried higher or lower values for the attempted 
parameters, since different classification task may have various suitable 
parameters, and it is hard to give a certain rule in setting hyperparameters.

Figure 6��<	�����������������������	�
�	+������ process.

Experiments on Full Training and Fine-Tuning of ResNet

This section is designed for exploring the performance of CNN by changing 
the structure of the models. In practical, a deep CNN always owns a large 
size which means a large number of parameters. Thus, full training of a deep 
CNN requires extensive computational resources and is time-consuming. In 
addition, full training of a deep CNN may led to overftting when the training 
data is limited. So we compared the performance of the pretrained CNN 
through full training and fine-tuning their structures.

We changed the structure of ResNet, and combination of the best 
parameters from the front experiments was utilized.
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Table 4��������
���������������	����������	�	��������	�	����������
�	+������ 
of the ResNet. The numbers inside parenthesis indicate batch size and number 
of iterations.

ResNet50 has 177 layers if the layers for each building block and 
connection are calculated. In this experiment, the last three layers of ResNet 
�	�	�����
	�����������������	��	�����	��`�	���	�����£��¥|����������'����	���
���� �� ������
������� ���	��� ���� �	� ������ ����	��	�� ���	�� ����� �� �	�������
The structure was changed by freezing the weights of a certain number of 
layers in the network by setting the learning rate in those layers to zero. 
During training, the parameters of the frozen layers are not updated. Full 
�������������
�	+���������	��	
�	��#���	����#	����� ������������	���� ��	���
����� ��������� `{+£��¥|�� 
�	+������ (37-“fc”, 79-“fc”, 111-“fc”, 141- “fc”, 
163-“fc”). The accuracy and training time of different network structure 
��	���	�	��	�� ���<�#�	�������
����� �	�#������!	���������� ��	���������	�	�
combined; the initial learning rate was set to 0.001 and dropped by a factor 
of 0.1 every 2496 iterations. In order to get more convincing conclusions, 
ResNet (16, 9984), which gets the second place in Table 4, was also used to 
execute the experiments.

In Table 5, the accuracy and training time of different network structures 
are presented. In two cases, i.e., the 4992 iterations and 9984 iterations of 
ResNet, the accuracy of the model from the 37 layer fne-tuning structure are 
higher than that of the full training model. In the case where the number of 
��	������������������	��������������	����	��������	�������	��
�	+������ 
structure is equal to that of the full training model.The fonal column of the 
Table 5 represents the training time of the corresponding network, and it is 
��	��������	�������������	�����	�
�	+������ models is greatly lowered than 
the full training model. Because the gradients of the frozen layers do not need 
to be computed, freezing the weights of initial layers can speed up network 
����������̈ 	��#�	��	������	����	���	�
�	+������ models (37-“fc”, 79-“fc”, 
111-“fc”) always led to a performance superior or approximately equal to 
the full training models. Thus, we suggest that, for practical application, 
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�	����	���	�
�	+������ models may be a good choice. Especially for the 
�	�	���	�� ��� ����� ������	� ������ �	� 
�	+������ models may achieve 
good performance while saving computational resources and time.

~��	��	��� �	� �	����	�� ��� �	� 
���� ������ ����	��	�� ���	�� ��� �	��	��
(16, 4992, 37-“fc”) were examined by utilizing the t-distributed Stochastic 
Neighbor Embedding (t-SNE) algorithm (see Figure 7) [48]. 1176 test 
images were used to extract the features. In Figure 7, different colors 
represent different labels; the corresponding disease categories of the labels 
were listed in Table 1. As shown in Figure 7, 9 different color points are 
clearly separated, which indicates that the features learned from the ResNet 
with the optimal structure can be used to classify the tomato leaf disease 
precisely.

Figure 7. Two-dimensional scatter plot of high-dimensional features generated 
with t-SNE.
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CONCLUSION

Tis paper concentrates on identifying tomato leaf disease using deep 
convolutional neural networks by transfer learning. The utilized networks 
are based on the pretrained deep learning models of AlexNet, GoogLeNet, 
and ResNet. First we compared the relative performance of these networks 
by using SGD and Adam optimization method, revealing that the ResNet 
with SGD optimization method obtains the highest result with the best 
accuracy, 96.51%. Ten, the performance evaluation of batch size and number 
of iterations affecting the transfer learning of the ResNet was conducted. A 
small batch size of 16 combining a moderate number of iterations of 4992 
is the optimal choice in this work. Our findings suggest that, for a particular 
task, neither large batch size nor large number of iterations may improve 
the accuracy of the target model. The setting of batch size and number of 
iterations depends on your data set and the utilized network. Next, the best 
combined model was used to fine-tune the structure. Fine-tuning ResNet 
layers from 37 to “fc” obtained the highest accuracy 97.28% in identifying 
tomato leaf disease. Based on the amount of available data, layer-wise fine-
tuning may provide a practical way to achieve the best performance of the 
application at hand. We believe that the results obtained in this work will 
bring some inspiration to other similar visual recognition problems, and the 
practical study of this work can be easily extended to other plant leaf disease 
identification problems.

Table 5. Accuracies and training time in different network structures. The val-
ues inside parenthesis denote batch size, number of iterations, and training lay-
ers.
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ABSTRACT

Plant image identification has become an interdisciplinary focus in both 
botanical taxonomy and computer vision. The first plant image dataset 
collected by mobile phone in natural scene is presented, which contains 
10,000 images of 100 ornamental plant species in Beijing Forestry 
University campus. A 26-layer deep learning model consisting of 8 residual 
building blocks is designed for large-scale plant classification in natural 
environment. The proposed model achieves a recognition rate of 91.78% 
on the BJFU100 dataset, demonstrating that deep learning is a promising 
technology for smart forestry.
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INTRODUCTION

Automatic plant image identification is the most promising solution towards 
bridging the botanical taxonomic gap, which receives considerable attention 
in both botany and computer community. As the machine learning technology 
advances, sophisticated models have been proposed for automatic plant 
identification. With the popularity of smartphones and the emergence of Pl@
ntNet mobile apps [1], millions of plant photos have been acquired. Mobile-
based automatic plant identification is essential to real-world social-based 
ecological surveillance [2], invasive exotic plant monitor [3], ecological 
science popularization, and so on. Improving the performance of mobile-
based plant identification models attracts increased attention from scholars 
and engineers.

Nowadays, many efforts have been conducted in extracting local 
������	����������� �	����$��	������ �������~���� �	�	���	�����	���������������
leaf characteristic as a comparative tool for studying plants, and some leaf 
datasets including Swedish leaf dataset, Flavia dataset, and ICL dataset 
are standard benchmark. In [4], Söderkvist extracted shape characteristics 
and moment features of the leaves and analyzed the 15 different Swedish 
tree classes using back propagation for the feed-forward neural network. 
In [5], Fu et al. chose the local contrast and other parameters to describe 
�	�������	����������� �	���������������'	�������	�����<	�����
������	�����
network was used to segment the veins and other leaves. The experiment 
shows that the neural network is more effective in identifying the vein 
����	������	������ ����������	�����	�
��	��� �	����	���	'����������	����#��
combining snakes technique with cellular neural networks, which obtained 
satisfactory results on leaf segmentation. He and Huang used the probabilistic 
�	������	�����������������
	�������	�������	��������	�������	������������
#	��	����	���
��������������� comparing to BP neural network [7]. In 2013, 
the idea of natural-based leaf recognition was proposed, and the method 
of contour segmentation algorithm based on polygon leaf model was used 
to obtain contour image [8]. With the deep learning becoming a hot spot 
��� �	� 
	��� ��� ����	� �	����������� ���� ���� ���� ������	�� �	'���	� �	����	��
in combination with shape characteristics, using deep belief network 
�����	����	������������
	�������°����	�������	����	�����		���	�����������	��
which includes eight layers of Convolution Neural Network to identify leaf 
images and achieved a higher recognition rate. Some researchers focus on 
�	�$��	��������#��������°���	�����������	�����	�������#�������������
word to describe the color, shape, texture features, and other characteristics 
[10]. In [11], Zhang et al. combined Harr features with SIFT features of 
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$��	�� ����	�� ������� �	�� ���� ����	�����	� �����	� ������� �	���� ����
classifying them by k-nearest neighbor method. In [12], they raised a 
method of recognizing the picking rose by integrating BP neural network. 
The studies of identifying plants by fruit are relatively rare. Li et al. 
proposed the method of multifeature integration using preference Ainet as 
the recognition algorithm [13]. After so many years continued exploration 
into plant recognition technology, the dedicated mobile applications such as 
LeafSnap [14], Pl@ntNet [1], or Microsoft Garage’s Flower Recognition 
app [15] can be conveniently used for identify plants.

Although the research on automatic plant taxonomy has yield fruitful 
results, one must note that those models are still far from the requirements of 
a fully automated ecological surveillance scenario [3]. The aforesaid datasets 
lack the mobile-based plant images acquired in natural scene which vary 
greatly in contributors, cameras, areas, periods of the year, individual plants, 
�����������<	�������������������
����������	����	���	�����������	����	������
to eliminate complex background and enhance desiring features. What is 
more, the handcraft feature engineering is incapable of dealing with large-
scale datasets consisting of unconstrained images.

To overcome aforementioned challenges and inspired by the deep learning 
breakthrough in image recognition, we acquired the BJFU100 dataset by 
mobile phone in natural environment. The proposed dataset contains 10,000 
images of 100 ornamental plant species in Beijing Forestry University 
campus. A 26-layer deep learning model consisting of 8 residual building 
#����������	����	����������������	����������	���
��������<	�������	�����	��
achieves a recognition rate of 91.78% on the BJFU100 dataset.

PROPOSED BJFU100 DATASET AND DEEP  

LEARNING MODEL

Deep learning architectures are formed by multiple linear and nonlinear 
transformations of input data, with the goal of yielding more abstract and 
discriminative representations [16]. These methods have dramatically 
improved the state-of-the-art in speech recognition, visual object recognition, 
object detection, and many other domains such as drug discovery and 
genomics [17]. The deep convolutional neural networks proposed in [18] 
demonstrated outstanding performance in the large-scale image classification 
task of ILSVRC-2012 [19]. The model was trained on more than one million 
images and has achieved a winning top-5 test error rate of 15.3% over 1,000 
classes. It almost halved the error rates of the best competing approaches. 
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This success has brought about a revolution in computer vision [17]. Recent 
progress in the field has advanced the feasibility of deep learning applications 
to solve complex, real-world problems [20].

BJFU100 Dataset

The BJFU100 dataset is collected from natural scene by mobile devices. It 
consists of 100 species of ornamental plants in Beijing Forestry University 
campus. Each category contains one hundred different photos acquired by 
smartphone in natural environment. The smartphone is equipped with a 
����	��	������������	*�����	����������	���������������	���������{���»�
4208 resolution.

For tall arbors, images were taken from a low angle at ground as shown 
in Figures 1(a)–1(d). Low shrubs were shot from a high angle, as shown in 
Figures 1(e)–1(h). Other ornamental plants were taken from a level angle. 
Subjects may vary in size by an order of magnitude (i.e., some images 
show only the leaf, others an entire plant from a distance), as shown in 
Figures 1(i)–1(l).

Figure 1. Example images of the BJFU100 dataset. (a) Chinese buckeye, (b) 
�	���	*������ `�|��������#���#��� `�|��#���� ������ ��		�� `	|� 	̈��	���$����������
red-prince, (f) Yucca gloriosa, (g) Euonymus kiautschovicus Loes, (h) Berberis 
thunbergii var. atropurpurea, (i) mottled bamboo, (j) Celastrus orbiculatus, (k) 
Parthenocissus quinquefolia, and (l) Viburnum opulus.

The Deep Residual Network

With the network depth increasing, traditional methods are not as expected 
to improve accuracy but introduce problems like vanishing gradient 
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and degradation. The residual network, that is, ResNet, introduces skip 
connections that allow the information (from the input or those learned in 
earlier layers) to flow more into the deeper layers [23, 24]. With increasing 
depth, ResNets give better function approximation capabilities as they gain 
more parameters and successfully contribute to solving vanishing gradient 
and degradation problems. Deep residual networks with residual units have 
shown compelling accuracy and nice convergence behaviors on several 
large-scale image recognition tasks, such as ImageNet [23] and MS COCO 
[25] competitions.

Figure 2. (a) A basic building block. (b) A “bottleneck” building block of deep 
residual networks.

Figure 3�������	����	������+���	���	��	�����	��������������	���
�������

Residual Building Blocks
Residual structural unit utilizes shortcut connections with the help of 
identity mapping. Shortcut connections are those skipping one or more 
layers. The original underlying mapping can be realized by feed forward 
neural networks with shortcut connections. The building block illustrated in 
Figure 2 is defined as
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   (1)
where � and � are the input and output vectors of stacked layers, 

respectively. The function (�, {��}) represents the residual mapping that 
needs to be learned. The function (�) denotes ReLU [26] and the biases 
are omitted for simplifying notations. The dimensions of � and � must be 
equal to perform the element-wise addition. If this is not the case, a linear 
projection �� is applied to match the dimensions of � and �:

    (2)
The baseline building block is shown in Figure 2(a). A shortcut 

����	������������	�����	�������������»���
��	��������	�������	�������������	�
on deeper nets, a bottleneck building block is designed as in Figure 2(b). 
<	���		����	�����	�{�»�{����»��������{�»�{����������������	�	��	�{�»�{�
layers are responsible for reducing and then restoring dimensions, leaving 3 
»������	����#����	�	������������	�������«����������	������������������	�	���
building blocks use fewer parameters to obtain more abstraction of layers.

The overall network architecture of our 26-layer ResNet, that is, 
ResNet26, model is depicted in Figure 3. As Figure 3 shows, the model is 
mainly designed by using bottleneck building blocks. The input image is fed 
���������»������������������	����������»�����'������������	��������	��#����
#����	�	���#��������#�������̈ 	���	����	�����������	��	��{�»�{�������������
�����	�����#����	�	��������������	��������<	�{�»�{�������������	����	��
the level of abstraction and reduces the time complexity. The network ends 
with a global average pooling, a fully connected layer, and a softmax layer. 
We adopt batch normalization (BN) [27] right after each convolution layer 
and before ReLU [26] activation layer. Downsampling is performed by the 

�������������������	����	���'������������	��������	�������������#����	�	���
building blocks.

EXPERIMENTS AND RESULTS

Implementation and Preprocess

The model implementation is based on the open source deep learning 
framework keras [28]. All the experiments were conducted on a Ubuntu 
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16.04 Linux server with a 3.40 GHz i7-3770 CPU (16 GB memory) and a 
GTX 1070 GPU (8 GB memory). The 100 samples of each class are split 
into 80 training samples and 20 test samples. Compared with conventional 
classification methods, data preprocess on deep learning approaches is much 
simpler. In this paper, the inputs to the network are RGB color images. All 
�	�����	��������		�����#	��	����	���������»�������'	��������	���	�+��'	��
value is divided by 255.

Figure 4��^������������������
��������������������	��	����	��

Training Algorithm

During the back propagation phase, the model parameter is trained by the 
stochastic gradient descent (SGD) algorithm, with the categorical cross 
entropy loss function as optimization object. The SGD can be expressed as 
follows:

   (3)
where �� is sensitivity, ��+1 is multiplicative bias, � indicates that 

	���	�	�	��������������	������������������������������������������³�� 
represents the weight update of the layer, and � is the learning rate. The 
�����+	�������������������������	
�	�����#	
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   (4)
where �



 is the 
��	�	�	�������	�������
�����������	��	���� �.

After some preliminary training experiments, the base learning rate is 
set to 0.001, which is gradually reduced at each epoch. The decay rate is 10_� 
and the momentum is 0.9. Figure 4 shows the training process of ResNet26 
���	���<	������������������	��*�����������	��	�
����	������������#���!	��
after 40 epochs.

Figure 5. Test accuracy of the ResNet18, ResNet34, ResNet50 [23], and 
ResNet26 model. The proposed ResNet26 outperforms the best reference 
ResNet by 2.51%.

Results Analysis

To find the best deep residual network, a series of experiments have been 
conducted on BJFU100 dataset. Figure 5 shows the comparison of test 
accuracy among the proposed ResNet26 model and the original ResNet 
model of 18, 34, and 50 layers [23] designed for ImageNet. The ResNet18, 
ResNet34, and ResNet50 yield a test accuracy of 89.27%, 88.28%, and 
86.15%, respectively. The proposed ResNet26 results in 91.78% accuracy 
which increases the overall efficiency up to 2.51%.
The ResNet26 is the best tradeoff between model capacity and optimization 
difficulty. For the size of BJFU100, ResNet26 contains enough trainable 
parameter to learn the discriminative feathers, which prevents underfitting. 
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Compared to larger model, ResNet26 results in fast and robust convergence 
during SGD optimization, which prevents overfitting or falls into local 
optimum.

RESNET26 ON FLAVIA DATASET

To show the effectiveness of the proposed ResNet26 model, a series of 
experiments have been performed on the publicly available Flavia [29] leaf 
�����	�������������	��{��������	�����{����»�{������'	��������������	����	���
Some of the samples are shown in Figure 6. We randomly select 80% of the 
dataset for training and 20% for testing.

�����	�����	����	����#�	�������	��!	���������»�������'	�����	�+��'	��
value is divided by the maximum value and subtracted the mean values of 
the data.

The training algorithm is exactly the same as that applied to the 
BJFU100 dataset. Figure 7 shows the training process of ResNet26 model. 
<	������������������	��*�����������	��	�
����	������������#���!	�����	�����
epochs.

The test accuracy of each model is estimated by 10- fold cross-validation, 
as visualized in Figure 8. The ResNet18, ResNet34, and ResNet50 achieve 
a test accuracy of 99.44%, 98.95%, and 98.60%, respectively. The proposed 
�	��	���������������Á������������������	��	���	���	�����	�
��	�������
to 0.21%. Table 1 summarizes our result and other previously published 
results on Flavia [29] leaf dataset. The ResNet26 model achieves a 0.28% 
improvement compared with the best-performing method.

Figure 6. Example images of the Flavia dataset.
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Figure 7��^������������������
��������������������	��	����	��

CONCLUSION

The first mobile device acquired BJFU100 dataset containing 10,000 
images of 100 plant species which provides data pillar stone for further 
plant identification study. We continue to expand the BJFU100 dataset by 
wider coverage of species and seasons. The dataset is open for academic 
community, which is available at http://pan.baidu.com/s/1jILsypS.This 
work also studied a deep learning approach to automatically discover the 
representations needed for classification, allowing use of a unified end-to-
end pipeline for recognizing plants in natural environment. The proposed 
model ResNet26 results in 91.78% accuracy in test set, demonstrating that 
deep learning is the promising technology for large-scale plant classification 
in natural environment.

In future work, the BJFU100 database will be expanded by more plant 
species at different phases of life cycle and more detailed annotations. 
The deep learning model������#	�	'�	��	�������������
�����������������	���
prediction, insect detection, disease segmentation, and so on.
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Figure 8. Test accuracy of the ResNet18, ResNet34, ResNet50 [23], and 
ResNet26 model on Flavia dataset. The proposed ResNet26 outperforms the 
best reference ResNet by 0.21%.

Table 1. Recognition rate comparison on Flavia dataset
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ABSTRACT

In many animal-related studies, a high-performance animal behavior 
recognition system can help researchers reduce or get rid of the limitation of 
human assessments and make the experiments easier to reproduce. Recently, 
although deep learning models are holding state-of-the-art performances 
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in human action recognition tasks, these models are not well-studied in 
applying to animal behavior recognition tasks. One reason is the lack of 
extensive datasets which are required to train these deep models for good 
performances. In this research, we investigated two current state-of-the-art 
deep learning models in human action recognition tasks, the I3D model and 
the R(2 + 1)D model, in solving a mouse behavior recognition task. We 
compared their performances with other models from previous researches 
and the results showed that the deep learning models that pre-trained using 
human action datasets then fine-tuned using the mouse behavior dataset can 
outperform other models from previous researches. It also shows promises 
of applying these deep learning models to other animal behavior recognition 
tasks without any significant modification in the models’ architecture, all we 
need to do is collecting proper datasets for the tasks and fine-tuning the pre-
trained models using the collected data.

INTRODUCTION

Researchers widely use many animals from fruit flies, mice to primates for 
studying biology, psychology or for developing new therapies or medicines. 
In many researches, observing the behaviors of the animals is a crucial step 
to get the data which is needed for answering research questions. Since 
watching and annotating the behaviors of these animals in hours of video 
clips are hard works, it’s necessary to have a reliable and automated behavior 
recognition system to delegate these works to computers. With a well-
performed system, we could not only solve the problem of the limitation of 
human assessments but also make the experiments easier to reproduce.

Many studies reported works in creating such systems for animal 
behavior recognition tasks. In the paper of Jhuang H. et al. [1], they created 
a system to automatically analyze behaviors of mice in home-cages. The 
����	��������������������	������	����	�	'��������������	�������������
�������
module. In the feature extraction module, for each frame, they calculated 
the mouse’s position and velocity based features and combined them with 
motion features which are extracted from the adjacent frames using an 
algorithm in [2]. These features then fed into an SVMHMM (Support Vector 
Machine-Hidden Markov Models [3]) to assess the action in the frame. In 
another research [4], Jiang J. et al. also used a similar approach but with a 
����	�	����	����	�	'������������������
	���?����	��	����	�	'��������������	��
�	���	�	��	�� ���	�	����������������������
	���	��������� �	�������������
[5], then they extracted contextual and visual features from these points. 
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And they fed these extracted features into a shallow neural network that has 
only one hidden layer to assess the actions in the frames. The changes in the 
feature extraction method������	�������
������������������������������	��
the performance of the system in comparison to the previous paper. And 
it showed that the design of the feature extraction module can affect the 
performance of the whole system. However, creating good feature extractors 
is not an easy task. It requires much expert knowledge and carefulness and 
it is not always successful. And the abilities of these created systems are 
highly limited to the problems they were designed to solve. For example, 
an automated mouse behavior recognition system may not work well in a 
raccoon behavior recognition task, although the two animals are sharing 
many similarities in their appearance.

We could solve the above problem by using deep learning models which 
have the ability of automated learning to extract useful features from given 
data. Because of having this ability, deep learning models are widely used 
��� ����� ������������ 
	���� ����� ������	�� �������� ��		�� �	���������� ���
natural language processing and often become state-of-the-art models in the 

	����	�������	�����������	�������	��	����	����	�������������������	�
����������	��������������
���������	������	������	����	�����	����	���

Though its high performance, it is not easy to apply deep learning models 
for whatever tasks we have because these models have too many parameters 
that it requires an extensive amount of data to train these parameters. And it 
is one of the reasons why deep learning models have very high performances 
in human action recognition tasks but not well-studied in applying to animal 
behavior recognition tasks.

<��
��� ��� ��������� ��� ���� �	�	������	� ���	������	�� ��������	�������	+
of-the-art human action recognition deep learning models in applying to a 
����	�#	�������	����������������<	�
�������	���	����	������	������	�����
model� ��������� ����	�	������� ��$��	���	��������� �	� ���	�����������	�
architecture [7]. The most important features of inception module are the 
�����!����������	����#��	��	��	�������
��	����������	�	�����!	��������������
�	��	������������	����	��������	�����	����{�»�{���������������
��	�������
not only help to reduce the number of parameters but also introduce new 
combinations of features to its next layers. The second model we investigated 
in this research is the R(2 + 1)D model [8] which implements a 3D version 
of the residual module architecture [9]. This architecture allows the model 
to go deeper by solving the vanishing of information when training deep 
models.
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To deal with the scarcity of training data, we did not train the models from 
randomly-initialized parameters but we used the parameters that were pre-
trained on human action recognition tasks. By doing so, we can transfer 
knowledge that related to action recognition from human’s tasks to the new 
models [10]. In the next section, we show the dataset which we used to 
evaluate the performances of the two deep learning models in the mouse 
behavior recognition task. In Section 3, we describe in detail experiments 
and results of the evaluating process. Finally, we give some conclusions in 
Section 4.

THE MOUSE BEHAVIOR DATASET

In the research of H. Jhuang, et al. [9], they introduced a task of neurobehavioral 
analysis of mouse phenotypes by monitoring the mouse’s behaviors over 
long periods of time. In this experiment, each mouse is put in a transparent 
home cage, and there behaviors are recorded from a perpendicular angle to 
the side of the cages using consumer grade cameras.

In order to create a machine learning system to automatically analyze 
mouse’s behaviors, Jhuang and his colleges have created a mouse behavior 
dataset by annotating the mouse’s behaviors in over 10 hours of recorded 
videos. In their dataset, they have annotated 8 types of behavior: drinking, 
eating, grooming, hanging, rearing, walking, resting and micro-movements 
of the head. Example scenes of these behaviors are shown in Figure 1, and 
descriptions of these behaviors are shown in Table 1.
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Figure 1. Example scenes of mouse’s behaviors.

In the created mouse behavior dataset, among totally more than 9000 
short clips, only 4200 clips that are most unambiguous were selected to create 
the “clipped database”. It includes about 285,000 frames and corresponds to 
about 2.5 hours of recorded videos. In this research, in order to properly 
evaluate the performance of the deep learning models, we decided to use 
only this subset to eliminate the ambiguous in the data that even human 
cannot declare. The distribution of number of frames of each behavior in the 
“clipped database” is shown in Figure 2.

EXPERIMENTS AND RESULTS

Data Preparation

To generate optical-flow data from RGB data, we used the implementation 
of the TV-L1 algorithm from the research of [11] in OpenCV library. For 
each RGB frame, we input its previous frame and itself to the algorithm, 
and the algorithm outputs one optical-flow frame that has the same size as 
the inputs and contains two channels for horizontal and vertical movements 
respectively.

For data augmentation, we used the same method that used in the research 
of Carreira, J. and Zisserman, A. [6]. Each video frame in the dataset has a 
��!	��������»�������'	����?����	��������	����	��	��!	���	�������!	�����»�
������'	����<	���	���������������	���	���������!	��������»�������'	���
���� ������������!������$��� �	�� �����	��	� ������ ����	���?����`��µ�{|��
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���	����	��	��!	���	�����	�����{���»�{�����'	����	����������������	��
�	���������!	����{{��»�{{����'	����<������������	���������	����	�������
to increase the accuracy of prediction of about 3%.

Table 1. Behaviors description

Figure 2. Distribution of number of frames of each behavior in the “clipped 
database”.

The Models The

I3D models are derived from Inception-V1 models [7]. To benefit from the 
2D architecture, all filters and pooling kernels of 2D models were inflated 
������#��	���������	���������������������	����������	���������	����»���
����	���#	���	���»���»�������	����<	����	��	���������������	�����	��	�	��	��
N times along the temporal dimension to bootstrap parameters from pre-
trained 2D models to the 3D models. We showed the architecture of an 
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inflated inception module used in I3D models in Figure 3 and the detail of 
the architecture of the I3D model we used in this research in Figure 5.

The R(2 + 1)D models are derived from 2D versions [9] by replacing 
each 2D convolutional layer with two 3D convolutional layers, one for 2D 
����	����	�������������	�
��	���������!	�{�»���»���������	������	�
���	����	�������������
��	���������!	�~�»�{�»�{��������	����	�������	�
R(2 + 1)D models, to keep the total number of parameter to be the same as 
�	�����	���������	����#	�����
��	������	�	����	�����	���������	���������	�
formula shown in Figure 4. The detail of the architecture of the R(2 + 1)D 
model we used in this research is shown in Figure 5.

For both models, we used 16 successive frames as an input (current 
frame, its 8 previous frames and its 7 next frames). 

To initialize parameters of the model, for the I3D models, we used weights 
from model-checkpoints that were pre-trained on ImageNet data [12]; and 
for the R(2 + 1)D models, we used weights from model-checkpoints that 
were pre-trained on Sport1M [13] and Kinetics data [14]. 

<�� 
�	+���	� �	� ���	���� �	� ��	�� ���	����� ������!	�� ����� �	�
TensorFlow framework with momentum value equal to 0.9 and a learning 
���	������������{	_�������	��������	_�����	���	�	������������������	���������
We also used dropout in fully connected layers with keep-probability of 
��Á�����	���	��	�	��	��������	�
�������	��
�	+��������	����	���

Figure 3�������	����	���������$��	�����	�����������	�
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Figure 4. Architecture of a (2 + 1)D residual module.
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Figure 5. Architecture of the I3D model and the R(2 + 1)D model.

As discussed in the paper of Carreira, J. and Zisserman, A. [6], although 
I3D models can learn motion features from RGB input videos, using 
�������+$�������������������������	����	��	����	����	��	�����	����	�������
�����
�������������	���	��	��������	�����������	�	������	��������	��	�
same fusion method to combine output predictions of I3D models and R(2 
+ 1)D models. The two-stream fusion method is illustrated in Figure 6. To 
investigate the effects of different two-stream fusion ratios in prediction 
performances, we tested various fusion ratios of the two models by setting 
����	�	�������	��������#É�	��������$��É�	��������	�<��+���	����������
module. For example, if only using 30% of RGB data�
�	+���	�����	�¿��
������� ������Á�����������+$��������
�	+���	�����	�¿��������� �	�� ��#É
�	��������	�������������$��É�	��������	���������

Because frames of the dataset come from 12 different videos, we used 
leave-one-videos-out cross-validation to properly evaluate the performance 
of the models. For each video, we used all the frames extracted from it as 
testing data and all the frames extracted from the other videos as training 
������ 	̈���	���	������������������
�	+���	��	����	���������	���	�
�	+
tuned models to predict labels for testing data. Then we count the total 
number of correct and incorrect prediction and calculate the accuracy.

Results

Figure 7 shows the results of using different fusion ratio of RGB and optical-
flow data fine-tuned models on accuracies of prediction of each behavior. 
And Figure 8 and Figure 9 show confusion matrixes of correct and incorrect 
prediction ratio of behaviors in combinations of rgb_weight and flow_
weight. In Figure 7, we can see that for “drink” behaviors, combinations 
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with more portion of RGB fine-tuned models have better performance than 
combinations with more portion of optical-flow fine-tuned models for both 
I3D models and R(2 + 1)D models. And the performance of R(2 + 1)D 
models are better than the performance of the I3D models in this behaviors. 

Figure 6. The two-stream fusion method.

In Figure 8 and Figure 9, from confusion matrixes of both I3D model 
and R(2 + 1)D model, we can see that almost false predicted samples of 
£�����¥�#	���������	����������
	�����£	��¥�#	�������� 	̈�����	'����������
as the water-feed nipple and food-feed door are quite close to each other; 
Sometimes the two behaviors look very similar and the dataset is also 
imbalanced with the ratio of the number of “drink” frames to the number of 
“eat” frames is about 1:6.85. Therefore, the models tend to predict “drink” 
#	����������£	��¥�#	������������������	�����������	'�������������	���
�	+
tuned using RGB data are more precise in distinguishing the two behaviors 
�������	���
�	+���	���������������+$������������������
�	+���	�����	�� 
can utilize the information of the mouse’s mouth contact with water-feed 
�����	��������+�		��������¯��	�	�������������������������������������+$���
data because there is no motion of water-feed nipple or food-feed door in 
the scenes.
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Figure 7. Accuracies of the prediction of each behavior with different two-
stream fusion ratios.
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Figure 8. Confusion matrices of predictions of I3D models with different two-
stream fusion ratios.
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Figure 9. Confusion matrices of predictions of R(2 + 1)D models with different 
two-stream fusion ratios.

For “eat”, “groom”, “micro-movement”, “rear”, and “walk” behaviors, 
we can see that using a right combination of RGB data 
�	+���	�����	���
���� �������+$��� ����� 
�	+���	�� ���	�� give a better performance than 
using these models only. The R(2 + 1)D model outperforms I3D model in 
classifying “micro-movement” and “rear” behaviors but the I3D model is 
better in classifying “walk” behaviors.

The two models work very well on classifying “hang” behaviors and 
their performances just slightly reduce when we use a high portion of optical-
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$��������
�	+���	�����	�� because of the lack of the mouse surrounding 
	�������	�������	��������+$��������

And for the “rest” behaviors, it is easy to understand why using a high 
�������� ��� �������+$��� ����� 
�	+���	�� ���	�� give better performance 
as “rest” behaviors are different from other behaviors that they have no 
movement in the scenes.

Overall, the two deep learning models we investigated in this research 
outperform the previous research model in the Mouse behavior dataset as 
shown in Table 2. The accuracies of the two models with different fusion 
ratio are shown in Figure 10. Both models have best performances at fusion 
ratio of 40% RGB data 
�	+���	�����	���������Á��������+$��������
�	+
tuned models. The I3D model achieves 96.9% of accuracy and the R(2 + 1)
D achieves 96.3% of accuracy.

Table 2. Comparison of performance of models

Figure 10. Accuracies of I3D models and R(2 + 1)D models with different two-
stream fusion ratios.
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CONCLUSIONS

We have investigated two current state-of-the-art deep learning models 
for human action recognition in a mouse behavior recognition task. Both 
models outperformed the models from previous researches. It proves that 
our approach of utilizing deep learning models that pre-trained on human 
action datasets and fine-tuning them for animal behavior recognition tasks 
is efficient despite the scarcity of training data. We also showed the effect 
of two-stream fusion ratios on the predictions. The fine-tuned models can 
precisely recognize most of behaviors they learned from the mouse behavior 
dataset. But there are some difficulties in classifying behaviors that are 
ambiguous or similar to other behaviors. Our proposal to solve the problem 
is to collect more data on difficult-to-classify behaviors. And we can redesign 
experimental environment such as changing the camera position or the cage 
configuration in order to minimize the ambiguity between behaviors. For 
further research, we will collect behavior data of other animals. Then we will 
use them to fine-tune the fine-tuned models we achieved from this research 
to experiment if we can really efficiently utilize deep learning models for 
animal behavior recognition tasks without any requirements of extensive 
data for training these models.
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ABSTRACT

In this paper, we address the problem of identifying brain haemorrhage which 
is considered as a tedious task for radiologists, especially in the early stages 
of the haemorrhage. The problem is solved using a deep learning approach 
where a convolutional neural network (CNN), the well-known AlexNet 
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neural network, and also a modified novel version of AlexNet with support 
vector machine (AlexNet-SVM) classifier are trained to classify the brain 
computer tomography (CT) images into haemorrhage or nonhaemorrhage 
images. The aim of employing the deep learning model is to address 
the primary question in medical image analysis and classification: can a 
sufficient fine-tuning of a pretrained model (transfer learning) eliminate the 
need of building a CNN from scratch? Moreover, this study also aims to 
investigate the advantages of using SVM as a classifier instead of a three-
layer neural network. We apply the same classification task to three deep 
networks; one is created from scratch, another is a pretrained model that 
was fine-tuned to the brain CT haemorrhage classification task, and our 
modified novel AlexNet model which uses the SVM classifier. The three 
networks were trained using the same number of brain CT images available. 
The experiments show that the transfer of knowledge from natural images to 
medical images classification is possible. In addition, our results proved that 
the proposed modified pretrained model “AlexNet-SVM” can outperform a 
convolutional neural network created from scratch and the original AlexNet 
in identifying the brain haemorrhage.

INTRODUCTION

Intracranial haemorrhage (ICH) reveals as a bleeding within the intracranial 
vault [1]. Weak blood vessels, hypertension, trauma, and drug abuse are 
generally what trigger such a medical condition. ICH is a neurologic 
emergency in which it can have several subtypes such as basal ganglia, 
caudate nucleus, or pons. The types of haemorrhage are generally dependent 
on the anatomic location of bleeding [2]. According to the American Heart 
Association and American Stroke Association, the early and timely diagnosis 
of ICH is significant as this condition can commonly deteriorate the 
affected patients within the first few hours after occurrence [3]. Noncontrast 
head computer tomography (CT) is the imaging modality used to detect 
haemorrhage due its wide availability and speed. This modality has shown a 
high sensitivity and specificity in detecting acute haemorrhage [2].

Recently, deep learning has risen rapidly and effectively. Deep learning-
based networks have shown a great generalization capability when 
applied to solve challenging medical problems such as medical image 
������
����������������	������ ����	��������� [6], medical organs detection 
[7], and disease detection [8]. Convolutional neural networks were the most 
effective networks among deep networks, for they own the paradigms of 
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more biologically inspired structures than other traditional networks [9]. 
Eventually, various convolutional neural networks were developed such as 
AlexNet [10], VGG-NET [11], and ResNet [12]; these deep networks are 
all extensively trained on a large database named ImageNet, Large-Scale 
Visual Recognition Challenge [13], and they were considered as the state 
����	������������	�������
��������{{¢{����<	�	��	���������	�������	�	�����
machine learning methods that can learn features hierarchically from lower 
level to higher level by building a deep architecture of the input data.

The rise in deep convolutional neural networks performance, due to 
their abstractions of different levels of features, motivated many researchers 
to transfer the knowledge acquired by these networks, when trained on 
����������������	��������	����������������	����������	�������
�����������
#	�	
��������	����	���	�������	�	��������������������	�����

These convolutional neural networks models use fully connected layers, 
which represent a feedforward neural network trained using the conventional 
backpropagation algorithm. This means that these models may have the 
same drawbacks of the conventional simple neural network.

An effective neural network model is the one that performs well during 
both training and testing datasets; a good balance between variance error 
and bias error must be struck [14]. For simple models, a high bias and a 
low variance situation reveals when training these models; that is called 
���	�
������� ?��� ���	� �����	'� �	����� �	������ ���	���� �	� �����	��� ���
training may let the model enter a region of low variance and bias; this 
����#	�������	�	������������
���¯��	�	�������	���������������	��	������	��
(more complex models), the model may go through a high variance and low 
#����������������	����	�
�������<������������	�	������"������#�	��������������
a complex neural network model.

There are many approaches for alleviating this problem [15]. These 
approaches include early stopping, weights penalization, weights pretraining, 
and dropout of hidden neurons. However, in our study, we ought to avoid 
these problems by replacing the SoftMax neural network with a multiclass 
�¶~���������������������
	������#�����	�����	��	�����	�����	����<	�	�
��	�#		��������������	�������	���{�¢{����������	�������
���������	������	�
�������~�'��������������������
�������������������	�	������	���������	������
the support vector machine (SVM) might be the appropriate alternative as 
it may slightly boost the performance of neural network compared to the 
conventional SoftMax function.
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Thus, in this paper, we aim to transfer the knowledge acquired by AlexNet into 
a new target task: classifying the CT brain haemorrhage into haemorrhage 
or nonhaemorrhage images. Moreover, a CNN is created from scratch and 
a modified AlexNet combined with SVM are also employed to perform 
the same classification task. The goal of employing one CNN created from 
scratch and fine-tuning a pretrained model for the same classification task 
is to show that transfer learning-based network can perform better when 
data are not much. Also, it is aimed to show that sufficient fine-tuning of 
a pretrained model can eliminate the need for training a deep CNN from 
scratch which usually takes long time and requires large number of images 
to learn. Note that in this research, the CNN created from scratch is denoted 
as CNN, the pretrained model that uses original AlexNet architecture is 
denoted as AlexNet, and the modified model is denoted as AlexNet-SVM.

The paper is structured as follows: Section 1 is an introduction of the work. 
Section 3 is a brief explanation of the convolutional neural networks basics, 
while Section 4 explains the transfer learning concept including AlexNet. 
Section 5.3 discusses the training of the two employed deep networks in 
which the data used for training are described. Section 6 discusses the 
networks performances and compares the results of both models. Finally, 
Section 8 is conclusion of the paper.

RELATED WORK

Convolutional neural networks have been employed to overcome big 
medical challenges like image segmentation [19] and control for people 
with disabilities [20]. Hussain et al. [19] have developed a convolutional 
neural network designed for the segmentation of the most common brain 
tumor, i.e., glioma tumor. The authors proposed a system composed of two 
networks, stacked together to form a new ILinear nexus architecture. This 
new architecture was capable of achieving the best results among all the 
proposed and related architectures. Another study by Abiyev and Arslan [20] 
showed that convolutional neural networks can also be used as supporting 
elements for people with disabilities. The authors proposed a human-
machine interface based on two convolutional neural networks designed for 
disabled people with spinal cord, to control mouse by eye movements. Their 
work was validated and tested by a handcrafted dataset, and results showed 
that the network’s performance outscored many other related works.

Furthermore, deep learning techniques were employed by Helwan et al. 
[21] to classify brain computer tomography (CT) images into haemorrhage 
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or healthy. The authors used autoencoders and deep convolutional neural 
networks to perform this task. As authors claimed, the employed models 
performed differently when trained and tested on 2527 images. It was found 
that the stacked autoencoder used in their paper consists of three hidden 
layers and outperformed other employed networks, where it achieved the 
��	���������
����������	������	����	���~�^��<	���������������	������
the possible reason of this outperformance on the stacked autoencoder over 
convolutional neural network is due to the small number of data used for 
training, as a CNN needs large amount of training examples in order to 
converge.

In another study by Mahajan and Mahajan [22], brain haemorrhage 
���� 	'����	�� ��� ���	� �	
�	�� ����	�� #�� �		����� ������ �	� ���	��	��
�����������������������
������	������	������`���|������<���	���
�������
of brain haemorrhage type. The authors of this work used features extraction 
#	���	� �		����� ����	�� ��� �	��	����� ������
	��� �����������	�	��� �	����	��
were extracted using grey-level co-occurrence matrix (GLCM). Features 
�	�	� �	�� ������
	�� #�� �� ����	�������� #��������������� �	����� �	����� 
used to identify the type of haemorrhage. They found that adequate image 
processing techniques such as noise removal and high segmentation methods 
��	��	*���	�������������	���	���
�����������	������	�

Furthermore, Gong et al. [23] focused on dividing brain CT images into 
regions, where each region could either be normal or haemorrhage. For images 
containing haemorrhage, the regions which did not include haemorrhage 
were treated as normal regions resulting in a highly imbalanced dataset. 
The researcher had utilized an image segmentation scheme that used ellipse 

������� #���������� �	������� ���� ���	�	�� �	������������ �	���*�	�� <	�
weighted precision and recall value for this approach were approximately 
83.6% and 88.5%, respectively.

CONVOLUTIONAL NEURAL NETWORK

Convolutional neural network (CNN) is a well-employed network for several 
tasks in machine vision and medicine [24, 25]. Generally, the CNN relies on 
architectural features which include the receptive field, weight sharing, and 
pooling operation to take into account the 2D characteristic of structured data 
such as images [26]. The concept of weight sharing for convolution maps 
drastically reduces model parameters; this has the important implications that 
the model is less prone to overfitting as compared to fully connected models 
of comparable size. The pooling operation essentially reduces the spatial 
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dimension of input maps and allows the CNN to learn some invariance to 
moderate distortions in the training; this feature enhances the generalization 
of the CNN at test time as the model is more tolerant to moderate distortion 
in the test data [27]. The typical CNN is shown in Figure 1. Essentially, 
convolution layers, pooling layers, and the fully connected layers are 
shown. For example, layer 1 employs n convolution filters of size a » a to 
generate a bank of n convolution maps (C1) of size i » i; this is followed by 
a pooling (subsampling) operation on the convolution maps with a window 
size of b » b. Therefore, the pooling layer (S1) composes n feature maps 
of size j » j, where, j = i/b [25]. The convolution layer performs feature 
extraction on the incoming inputs via a convolution filter of specified size. 
The pooling operation pools features across input maps using a window 
of specified size; common pooling operations used in applications are the 
average and max pooling [28]. In average pooling, the average value of the 
inputs captured by the pooling window is taken, while, in max pooling, the 
maximum value of the inputs captured by the pooling window is taken. For 
learning the classifier model, features are forward-propagated through the 
network to the fully connected layer with an output layer of units. Then, the 
backpropagation learning algorithm can be employed to update the model 
parameters via the gradient descent update rule [29].

Figure 1. Convolutional neural network.

TRANSFER LEARNING

In medical image analysis and processing, a most common issue is that the 
number of available data for research purposes is limited and small. Hence, 
training a fully deep network structure like CNN with small number of data 
may result in overfitting, which is usually the reason of low performance 
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and generalization power [30]. Transfer learning is a solution to this problem 
where the learned parameters of effective and well-trained networks on a 
very large dataset are shared. The concept of transfer learning is the use 
of a pretrained model that is already trained on large datasets and transfers 
its pretrained learning parameters, in particular weights, to the targeted 
network model. To be able to use the network for another problem, the last 
fully connected layers are then trained with initial random weights on the 
new dataset. Although the dataset is different than the one that the network 
was trained on, the low-level features are similar. Thus, the parameters’ 
transfer of the pretrained model may provide the new target model with a 
powerful feature extraction capability and reduce its training computations 
and memory cost. Transfer learning has been used extensively in medical 
imaging, and it showed a great efficacy in terms of accuracy, training time, 
and error rates [10, 31, 32]. In this paper, we present a modified pretrained 
model, AlexNet, that has been employed for the classification of CT brain 
haemorrhage images into normal and abnormal classes.

AlexNet

AlexNet is the first convolutional neural network that achieved the highest 
classification accuracy at the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) in 2012 [10]. This deep structure is comprised of eight 
main layers; the first five layers are mainly convolutions, while the last 
three are fully connected layers. Each convolutional layer is followed by an 
activation function layer, i.e., rectified linear units layer (ReLU), proposed 
to improve the performance of the network by making the training faster 
than equivalents of “tanh” activation functions [10]. After each convolution 
layer, a max pooling is used in AlexNet, in order to reduce the network size. 
Moreover, a dropout layer is added after the first two fully connected layer 
which helps to reduce the number of neurons and prevent overfitting [33]. 
Finally, a layer is added after the last layer to classify the input given data. 
Figure 1 shows the structure of the AlexNet.

MATERIALS AND METHODS

This work addresses the problem of the classification of the CT brain images 
into normal or haemorrhage, which can be a hard task for some junior 
radiologists and doctors. The problem is addressed by the implementation 
of a deep learning network trained extensively to acquire the power of 
extracting low to high levels of features from normal brain CT images and 
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others with haemorrhage medical conditions using its designed and trained 
filters. These features are then what distinguishes the class of the brain 
images, i.e., haemorrhage or not. Nonetheless, the transfer of knowledge 
from original to target task, which is here Haemorrhage identification, is 
also considered by transferring the knowledge of a pretrained model known 
as AlexNet, into a new classification task and testing it by the same number 
of images used for testing the CNN created from scratch. 

In this manner, we aim to address the central issue in medical image 
analysis and diagnosis: training deep CNN from scratch is not needed; 
����	���� ��	� �� ��	�����	�� ����
	����	'�	�� #�� ������� �¶~� ������
	�� ���
������	�����������	��	�������	������	��������������
��	���
�	+������������
�������	��	'�	���	�������	��<�#������	������	�������
���������������
CNN created from scratch and the pretrained models will demonstrate the 
truth and accuracy behind this central issue.

Data

The two employed models are trained and tested using normal and diseased brain 
computer tomography (CT) images collected from the Aminu Kano Teaching 
Hospital, Nigeria [34]. It is important to note that the abnormal images collected 
from this database are of different types of haemorrhage, but they were all 
labeled as haemorrhage, because this work aims to classify whether the CT slice 
contains haemorrhage or not; haemorrhage identification from set of images 
regardless of the haemorrhage pathology type it may have is feasible [35].

Data Augmentation

Deep networks are data-hungry systems [36], hence the more data you 
feed them, the more powerful and accurate they become. Therefore, in this 
work we decided to use data augmentation in order to multiply the number 
of images collected for the database, which can help in preventing the 
overfitting that may be encountered during training [37]. 

<����	�������	����
���������	���	�����������������	��$���	������{����
and 270 degrees. Overall, a total number of 12635 normal and haemorrhage 
CT brain images are obtained. Note that 70% of the data are used for training 
the employed networks while 30% are used for testing, i.e., 8855 and 3790 
images, respectively. Table 1 shows the learning scheme that is used in this 
work.
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Table 1. Learning scheme of the networks.

Figure 2 shows some normal and haemorrhage CT slices of the brain 
that are the used for training and testing the deep networks.

Figure 2. Sample of the databases training and validating images. (a) Haemor-
rhage images; (b) normal images.

The images of this database are originally of size 1024 � 1024 � 1 pixels; 
	��	�� �	���	�	�
�������������	���������� 227 ��{���'	��� ���
�� �	� ������
layer of the pretrained model: AlexNet which does not accept other input data 
sizes. Note that we decided to use the same input images size for the CNN 
created from scratch, only for networks performance comparison purposes, 
although any size could be used. Moreover, the images of the database are of 
grayscale type, and since the AlexNet model requires 3-channels input data, 
images were all converted to RGB by concatenating their grayscale channel 
for three times to become 227 � 227 � 3.

Training the Network Models

The two employed deep models are simulated using MATLAB environment. 
The networks were trained on a Windows 64-bit desktop computer with an 
Intel Core i7 4770 central processing unit (CPU) and 16 GB random access 
memory. It is important to mention that there was no graphical processing 
unit (GPU) available in the used desktop.
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The performance evaluation of the networks was carried out using a held-
out test set 30% of the data. The calculation of the loss and accuracy was 
achieved as follows:

   (1)

�	�	��`�|�����	����#�#����������	�����	�����������
	������	���������	�
number of images, while N is the total number of images during the training 
and/or testing phases.

CNN Training
The model architecture and training settings for the CNN employed to perform 
the classification of brain haemorrhage are presented in this section. Extensive 
tests are performed to determine the best learning parameters that optimize the 
neural network. 

Note that out of the retrieved 12635 brain CT images, 8855 images are 
used for training and 3790 images are used for validating the trained network.
<	����������	����	�	�����	�������	�������
����������#������	������	�
images is shown in Figure 3, where “Conv” denotes a convolution layer, 
“BN” denotes batch normalization, “FM” denotes feature maps, and “FC” 
denotes fully connected layer. 

In this paper, all convolution operations are performed using convolution 

��	��������!	���»�������!	��������������������������	����������	��	�����	��
��������'����������������������!	���»�����	�����������	������	����	����	�
�����!	����»����

For designing the proposed architecture, we take into consideration 
the size of available (i.e., limited) training data for constructing a learning 
model that is considerably regularized. 

For example, we employ batch normalization and dropout training 
schemes which have been shown to improve model generalization [38–40]. 
For optimizing the proposed model, we employ minibatch optimization via 
gradient descent; we use a batch size of 60. In addition, we use a learning 
rate of 0.001 and train the model for 100 epochs. The learning curve for 
the trained CNN is shown in Figure 4; a validation accuracy of 90.65% is 
achieved.
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Figure 3. Proposed CNN architecture.

In addition, we observe a slight drop in validation performance 
when dropout and batch normalization are not employed for training the 
model; a validation accuracy of 87.33% is obtained. e overall proposed 
����	�� ����#������	������	� ��	���
������� ��� �	��	�������� �	���<�#�����
haemorrhage images obtained from di erent sources available online. From 
the aforementioned database, we collect CT brain images of subjects with 
di erent haemorrhage conditions as test images. i.e., Figure 5. Experimental 
results show that the developed haemorrhage identi��cation deep framework 
is capable of e ectively classifying the haemorrhage within the test images 
with an accuracy of 87.13%.

We note that in contrast to other works that train and test the proposed 
approach on the same dataset, the proposed pipeline in this paper has been 
trained and validated on one dataset and achieved promising results when 
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tested again on a completely di erent dataset. This shows the robustness of 
�	��		��������������	����	����������������
������������

AlexNet Training
AlexNet is the pretrained model selected to be used in this research because 
of its effective power in feature extraction. As can be seen in Figure 5, 
this deep convolutional neural network is comprised of 5 convolutional 
layers denoted as CONV1 to CONV5. These layers are followed by 3 fully 
connected layers denoted as FC1 to FC3, along with a Softmax activation 
function in the output layer (multinomial logistic regression).

Figure 4. A sample of the brain images collected from the Internet to test the 
robustness of the system [41].
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Figure 5. AlexNet proposed transfer learning network for the haemorrhage 
������
�������

In this research, the publicly available weights of the network trained 
against the ILSVRC12 are used. As a pretrained model is employed 
`��	'�	�|���	�
��������������	��	�����	��`?��|������������	��	��������	��
to add a new layer having 2 output neurons corresponding to the two CT 
brain images’ categories. Note that the weights of this layer are initialized 
at random.

������������ �	� �	�������� 
�	� �������������� ���	��� ��	� �	��� ��� �	�
network for sharing the learned parameters, in particular, weights. These 
weights are already trained on large datasets, ImageNet, to extract high-level 
features of the input data. +us, when transferring the knowledge of AlexNet 
��� �	������	� ������
������� ������ �	�	� �	����� ���� ���� ��� �� ���	�����
extractor of different levels of abstractions from input data features.

The network is trained using minibatch of size 200 images of each 
iteration via stochastic gradient descent SGD [42]. Also, an initial learning 
rate is set to 0.01 to the fully connected layers (FC6, FC7, and FC8) and 
a reducing factor of 0.1 after 2000 iterations. Wherefore, this may fasten 
�	� �	������� ��� �	� �	������ ���� �	� 
���� ������ ����	��	�� ���	�� `?��|��
Table 2 shows the networks parameters during training and the result of 
�	�������
�����������������		�����	'�	������	��	����	���	��������������
testing accuracy of 94.12% and 92.13%, respectively.

An image from the test dataset is selected to evaluate the performance 
����	��	����������	�������
���������������<�#�	���������	��	����*���	�
error (MSE) loss after each convolutional layer being trained.
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Proposed AlexNet-SVM Training
Figure 6 shows the architecture of the modified version of AlexNet, in 
which an SVM classifier is used instead of a neural network. Similarly, this 
modified network, AlexNet-SVM, is also trained with the same conditions 
and same number of images except for the number of iterations which is 
here 140.

As seen in Figure 6 AlexNet-SVM’s training parameters were similar to 
the parameters of AlexNet; however, it is noted that their performance was 
different. AlexNet-SVM was trained and it reached a lower MSE (0.054) 
compared to other networks. In addition, AlexNet-SVM achieved higher 
accuracies during training and testing with values of 96.34% and 93.48%, 
respectively.

RESULTS AND DISCUSSION

Once trained, all network models are tested on 30% of the available data. 
Table 4 shows the performances of each model during testing. As can be 
seen, the CNN, AlexNet, and AlexNet-SVM achieved different accuracies 
of 90.65%, 92.13%, and 93.48%, respectively. AlexNet-SVM was capable 
of achieving more accurate generalizing power on unseen data. However, 
a larger number of epochs was required to achieve such accuracy, which 
is relatively higher than that needed for CNN and AlexNet to achieve their 
highest accuracy. It is also noted that AlexNet-SVM reached a lower mean 
square error (MSE) (0.054) than that reached by AlexNet (0.087) and CNN 
(0.092); however, this also required longer training time. +e learning curves 
of the trained models are shown in Figures 7–9. The figures show the 
variations accuracy with respect to the increase of the number of epochs. 
Consequently, it is seen that all models are trained well, but the increase of 
depth of AlexNet and AlexNet-SVM makes it more difficult to train, i.e., it 
required longer time and more epochs to reach the minimum square error 
(MSE) and converge. Furthermore, it is important to mention that due to 
this difference in time and epoch number, the classifier of AlexNet-SVM 
resulted in a lower MSE and higher recognition rate than that scored by 
AlexNet and CNN. As a result, to understand the learning performance of 
networks, we have an insight into the different levels features learned by 
the employed models, by visualizing the learned kernels or features in the 
convolutional layers, shown in Figures 10 and 11.
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Table 2. Models learning parameters

Table 3. Loss at each convolutional layer of CNN

Figures 10 and 11 show the learned features of CNN and AlexNet, 
�	��	����	���� ?���� ?����	� ��� ��� ���� #	� �		�� ���� �	������ ��� �	� 
����
convolution layer are the mostly active neurons in capturing good features 
in the training data. However, from Figure 11, it is seen that the neurons 
of the last convolutional layer of AlexNet are the most active neurons in 
capturing descriptive and different levels features. In addition, compared to 
CNN, this layer has an improved activity as observed in the learned features. 
�������� �������#	����	�� ���� �	��	��������� �	�
�������� �������������������
layers of both networks have learned different and interesting representation 
of the input images. Generally, networks that tend to learn more descriptive 
and different levels features tend to perform better at run time, as the good 
knowledge acquired in the unsupervised pretraining contributes to better 

�	+�����������������
�������

Table 5 shows a comparison of the developed networks with some 
previous works that were proposed to classify brain haemorrhage using 
deep learning. Note that we ought to compare our approach with the deep 
networks and pretrained model researches that provide explicitly achieved 
accuracies and number of data. Firstly, a general analysis of the table shows 
that the pretrained models (transfer learning-based networks) achieved 
higher accuracies when compared to those that were created from scratch. 
The proposed AlexNet_SVM employed in this research achieved more 
powerful generalization capabilities than other AlexNet that use neural 



Deep Learning Algorithms206

�	������������
	������	��	��	�������	�����	����������	�	����������������
other researches [43]. Moreover, AlexNet-SVM outperformed the networks 
that were created from scratch such as convolutional neural networks and 
autoencoders [21]. Furthermore, it is seen that the employed pretrained 
model (AlexNet) achieved a higher recognition rate (92.13%) than other 
earlier research works such as CNN created from scratch on less number of 
images [21]. Also, this model has outperformed other types of deep networks 
such as autoencoder (88.3%) and stacked autoencoder (90.9%) [21].

Figure 6��~���
	����	'�	��`��	'�	�+�¶~|�

Table 4. Performance comparison of the employed networks
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Figure 7. Learning curve for the trained CNN.

Figure 8. Learning curves of AlexNet.

<����������#�#���#	���	�����	��	
��	��������	����#�����	����������
extracting the important features from input images which is a result of the 
small number of images used for training them in addition to their depth.

Overall, the application of pretrained models to solve haemorrhage 
������
�����������	��	�����	����������������������	����������	��	�	��		��
structures have gained powerful feature extraction capabilities as they were 
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trained using huge databases such as ImageNet [13]. The obtained results 
of applying the proposed AlexNet-SVM, AlexNet and CNN in this research 
show that applying deep CNNs to the problem of brain haemorrhage is 
���������������������������	������	�����#	���	���
	��#�����		���	�����
network with low margins of error.

Figure 9. Learning curves of AlexNet-SVM.

Figure 10. Learned kernels of CNN.
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Figure 11. Learned kernels of AlexNet

Table 5. Performance metrics of the networks

Table 6. Results comparison with earlier works

Performance Evaluation Metrics

These metrics are derived from classification of the tested sampling 
images, as shown in Table 6, being derived by a contingency table which is 
called confusion matrix [13]. Accuracy indicates the percentage of rightly 
classified image samples, without considering their class labels. For a binary 
classification that concludes on positive and negative classes, sensitivity is 
the percentage of correctly classified samples and specificity is the number 
of correctly negative samples classified:
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   (2)

Models Comparison

In this section, the comparison of the conventional AlexNet and the proposed 
AlexNet-SVM is explained, in order to show the advantages of the fusion 
of AlexNet and SVM, in addition to the possible reasons of AlexNet-SVM 
outperformance. As seen in Table 5, the fusion of AlexNet and SVM resulted 
in a slight boost of accuracy by 0.934. +is outperformance is mainly due to 
the use of a different optimization criterion that the SVM uses. This algorithm 
is used to minimize the prediction loss on the training set of the neural 
network. However, in practice, there are two challenges with this risk. First 
is the convexity; it is not convex which means that many local minimums 
may exist. Second problem is the smoothness; it is not smooth, which means 
it may not be practically minimized. In contrast, SVM aims to minimize the 
generalization error by using structural risk minimization principles for the 
testing set. As a result of a maximized margin, the generalization ability of 
SVM is greater than that of the other classifiers.

LIMITATIONS

The effectiveness of deep learning in medical applications is great and 
improving with time; however, it still encounters some drawbacks, in 
particular, the availability data. +e variability of data (e.g., contrast, 
noise, and resolution) can be one of the main barriers of the adaptation of 
deep learning in medicine. +ese intelligent models can suffer from poor 
generalization if data contain some noise and when they are generated 
from different modalities. Moreover, deep learning models are data-driving 
systems; the more the data, the more efficient they become. +e problem is 
very few data are not publicly available in the medical field due to privacy 
issues as in most cases, the data contain sensitive information. +us, we and 
many other researchers prefer to use transfer learning based models which 
usually require less number of data to learn, as they are already trained using 
large amounts of data. Hence, the system is capable of learning different 
levels of features, which helps in adapting the new task accurately, even if 
the data are not large.
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CONCLUSION

In this research, the detection of brain haemorrhage in CT images problem 
is solved using neural networks and the results sound robust and promising. 
One of the motivations behind this research is to address and attempt to 
overcome the difficulties that radiologists might encounter when diagnosing 
brain haemorrhage suspected images. Hence, we investigated the use of a 
potential deep convolutional neural network that can help the medical 
experts in making more accurate decisions. As a result, this may reduce 
the diagnosis error and boost the accuracy of haemorrhage identification 
made by medical experts. The paper proposes a pretrained modified network 
“AlexNet-SVM” for the same classification task. +e three models including 
the proposed model were trained on a relatively small database in order to 
examine the network performance. It is obvious that the application of deep 
learning networks in medical image analysis encounters several challenges. 
+e most common challenge is the lack of large training data sets which 
can be considered as an obstacle. +e experiments conducted in this study 
demonstrated that the transfer of knowledge into medical images can be 
possible, even though the deep networks are originally trained on natural 
images. +e proposed model using the SVM classifier helps in improving the 
performance of AlexNet. Moreover, it was manifested that small number of 
data can be enough for fine-tuning a pretrained model, in contrast to a CNN 
created from scratch which needs a large number of data to be trained. +us, 
the proposed model’s performance is an indicator of how transfer learning-
based networks can be considered in brain haemorrhage identification.
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ABSTRACT

Objective

The automation of brachytherapy is the direction of future development. 
This article retrospectively studied the application of deep learning in 
brachytherapy of cervical cancer and clarified the status quo of development. 

Method

This survey reviewed the application of machine learning and deep learning 
in brachytherapy for cervical cancer in the past 10 years. The survey 
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retrieved and reviewed electronic journal articles in scientific databases 
such as Google Scholar and IEEE. The three sets of keywords used 1) deep 
learning, brachytherapy, 2) machine learning, brachytherapy, 3) automation, 
brachytherapy. 

Results

Through research on the application of deep learning in brachytherapy, it 
is found that the U-net model is basically based on convolutional neural 
networks or some attention mechanisms are added to it, and it is applied to 
brachytherapy of prostate or cervical cancer. The automatic segmentation 
and reconstruction of the mid-source applicator (interpolation needle), 
target area delineation, optimization in the treatment planning system and 
dose calculation have achieved good results, proving that deep learning can 
be applied to the clinical treatment of brachytherapy. 

Conclusion

The research on the application of deep learning in brachytherapy confirmed 
that deep learning can effectively promote the development of brachytherapy.

Keywords:- Deep Learning, Brachytherapy, Machine Learning, 
Automation

INTRODUCTION

Brachytherapy technology is a method of placing a radioactive source into 
the tumor area through an applicator or directly implanting it into the tumor 
tissue for radiotherapy. Because of its inherent physical and biological 
characteristics, brachytherapy can give a high absorbed dose to the focused 
irradiation of the tumor, and the dose around the source drops rapidly, which 
can effectively increase the local irradiation of the tumor and protect the 
normal tissue around the tumor. The local control rate and survival rate 
have significantly reduced the complications associated with brachytherapy. 
When the patient moves or the tumor moves in the body, the relative position 
of the radiation source and the tumor can remain unchanged, and the tumor 
obtains high dose conformity. These advantages make brachytherapy 
widely used in clinical applications, often used in the cervix and uterus. The 
treatment of tumors in the body, vagina, nasopharynx, esophagus, rectum, 
breast, prostate, skin and other parts is also applicable to the treatment of 
tumors in many other parts [1] [2] [3].
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The basic procedures of brachytherapy include: target area delineation, 
applicator reconstruction, dose calculation and dose optimization [4]. The 
specific process is shown in Figure 1. This review revolves around the 
brachytherapy process.

In recent years, with the development of computer hardware, the rapid 
calculation and innovation of large amounts of data and neural network 
algorithms brought by social digitization, deep learning technology has 
developed rapidly, and deep learning has also gradually emerged in the 
�	������
	�������������������	������	��������������	������������	���	�������
applicator reconstruction, dose calculation and treatment planning system 
[6] [7] [8]. How to closely integrate emerging deep learning with traditional 
brachytherapy technology to promote the development of three-dimensional 
brachytherapy technology is the problem considered in this article, but 
�����������	�� ��#����	���	���	����	� ��� ����
	�������
�����	�����#�	����
This article reviews the application of deep learning in the brachytherapy 
automation process [9], which is reported as follows.

ORGAN DELINEATION AND SEGMENTATION

In brachytherapy, organ delineation and segmentation undoubtedly play an 
important role in the treatment plan. The patient performs layer-by-layer 
scanning through CT or MRI to obtain multiple medical images [10]. The 
doctor sketches the primary target area, the medium-risk target area and 
the organs at risk according to the patient’s condition. In clinical practice, 
manual sketching is still the main method. However, there are hundreds 
of CT images of a single patient, which is a lot of work for doctors. The 
automatic segmentation of the target area of medical images also plays an 
increasingly important role in helping doctors delineate tumor areas and 
endanger organs. Many segmentation methods have been developed, and 
the effects are different according to the type of application and the image 
studied. Now some of them have mature segmentation methods integrated 
in commercial treatment planning system [6].

Figure 1. The basic procedures of brachytherapy.
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Derek Allman [11] et al. used convolutional neural networks in 2018 
to locate and classify the sources and artifacts in the K-wave simulation 
formation data. The experimental results show that, unlike geometry-based 
beamforming, the use of convolutional neural networks can be effective 
to eliminate metal artifacts in the image. In 2018, Xia Huang [12] et al. 
constructed a convolutional neural network and combined residual learning 
to eliminate metal artifacts on CT images. The final signal-to-noise ratio on 
the test set was 38.09. In 2019, Davood Karimi [13] et al. used Convolutional 
Neural Networks (CNN) to develop an automated accurate and stable 
segmentation method for the clinical target volume of transrectal ultrasound 
imaging of the prostate in brachytherapy, and proposed two different 
strategies to Improving the accuracy of image segmentation, research shows 
that this method can significantly improve the performance of medical image 
segmentation. Yang Lei [14] et al. built the supervised learning model V-net 
in 2019 to complete the segmentation of the prostate in the ultrasound image, 
and marked the prostate tissue through deep supervised learning. Finally, the 
segmented prostate volume is reconstructed and refined through contours. 
Experiments prove that the proposed technique can be used for the diagnosis 
and treatment of the prostate. The results show that the Days similarity 
coefficient, Hausdorff distance, and average surface distance of prostate 
segmentation are 0.92, 3.94, and 0.60, respectively. Nathan Orlando [15] 
et al. completed the automatic segmentation of the prostate in ultrasound-
guided prostate cancer by constructing U-net and V-net networks in 2020, 
proving that the constructed model achieved good results in segmentation, 
and the evaluation parameters all indicated that the segmentation effect was 
better good. Qin Nannan [16] et al. completed the automatic delineation 
of clinical target areas and endangered organs in brachytherapy of cervical 
cancer by building a U-net network in 2020. The average value of the Dess 
similarity coefficient of the automatically delineated target area is 0.898, 
Hausdorff distance. The average value is within 5.3 mm, which proves that 
it can be used in clinic and can greatly improve the efficiency of doctors.

SEGMENTATION AND RECONSTRUCTION OF THE 

APPLICATOR (INTERSTITIAL NEEDLES)

The applicators serve as a bridge between the radiation source and the 
patient in brachytherapy, and are extremely important in brachytherapy. 
Due to the difference in density and patient tissue, highlight features are 
displayed on the CT image. In the formulation of the treatment plan, it 
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is especially important to re-construct the contour of the applicator. The 
subsequent source distribution and dose optimization are all based on the 
accurate reconstruction of the applicator. Deep learning and reconstruction 
of the applicator are also the direction of development at this stage. Nlls 
Gessert [17] et al. built a deep learning model based on spatial continuity 
in 2019 to estimate the position of the tip when the interpolation needle 
is inserted, to solve problems in clinical applications, and proved that this 
model can also be used to adjust the position of the calibration interpolation 
needle. The relationship coefficient is 0.9997, which is significantly better 
than other methods. In 2019, William T. Hrinivich [18] et al. reconstructed 
the reconstruction of ring-shaped applicators and oval applicators in MRI-
guided cervical cancer through a model-to-image registration algorithm, 
proving that the accuracy and time of the algorithm fully meet the clinical 
needs and make treatment The automation of the plan is a step forward. 
Hyunuk Jung [19] [20] et al. completed the segmentation of the applicator 
in high-dose cervical cancer by constructing a U-net network, and then 
generated the trajectory of the applicator through the voxel clustering 
algorithm to complete the reconstruction of the applicator, and The model 
was evaluated using Hausdorff distance, Days similarity coefficient, and the 
average difference in needle tip positions. On the basis of this work, the 
segmentation and reconstruction of the interpolation needle in brachytherapy 
for cervical cancer were also studied by the same algorithm. Experiments 
have proved that the reconstruction of interpolation needles and applicators 
in brachytherapy for cervical cancer is of great help to the clinic. Paolo 
Zaffino [21] et al. proposed an algorithm based on Convolutional Neural 
Network (CNN) in 2019 for fully automatic segmentation of multiple 
closely spaced applicators in nuclear magnetic images. The average error 
distance of the final segmentation is 2.0 ± 3.4 mm, the proportion of false 
positive and false negative applicators were 6.7% and 1.5%, respectively. 
By combining Attention gate and U-net in 2020, Xianjin Dai [22] et al. used 
a total variation (TV) regularization to construct a model to complete the 
detection and reconstruction of interpolation needles in brachytherapy for 
prostate cancer with high dose rate MRI, and evaluate the model through 
tip deviation and movement deviation. Yupei Zhang [23] et al. studied the 
reconstruction of the position of interpolation needles in prostate cancer 
guided by ultrasound images through the combination of U-net network 
and attention in 2020. Similar to the work of Xianjin Dai, they are all 
interpolation needles for brachytherapy of prostate cancer. For positioning 
and reconstruction, the only difference is that the ultrasound and MRI guided 
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images are reconstructed separately, and the reconstruction results are good 
enough to meet the clinical needs. Fuyue Wang [24] et al. also applied the 
automatic segmentation of interpolation needles in brachytherapy of prostate 
cancer by constructing U-net network in 2020, and proved that the model 
can accurately reconstruct the trajectory of interpolation needles.

In the past two or three years, great attention has been paid to target 
area delineation and applicator reconstruction. Different network models 
have also been constructed for reconstruction of applicators or interpolation 
pins. However, the change is inseparable, basically based on the idea of 
deep learning, using U-net network or its variants to reconstruct or segment 
the applicator. Target area sketching is also done using supervised neural 
networks.

DOSE CALCULATION

Deep learning has not done much research on dose calculation. It is still 
relatively blank at this stage, but dose calculation is an important step in 
brachytherapy, and further research is needed [25]. Marc Morcos [26] et al. 
calculated and studied the dose of nuclear magnetically guided brachytherapy 
for cervical cancer based on Monte Carlo in 2020, and evaluated the effect 
of different rotation angles on the intensity-modulated radiotherapy on the 
dose, laid the foundation for the treatment of complex cervical cancer by 
intensity modulated radiotherapy. In 2020, Ximeng Mao [27] et al. built a fast 
brachytherapy deep learning model through convolutional neural networks 
for dose calculation in brachytherapy planning. The results show that the 
accuracy is similar to the results obtained by the Monte Carlo algorithm, 
but the calculation speed is much faster and can be extended to other tumor 
sites.

APPLICATION OF TREATMENT PLANNING  

SYSTEM

The treatment plan is formulated by the physicist by the treatment planning 
system. Many semi-automatic or fully automatic treatment planning systems 
have been developed to improve the quality of treatment planning while 
reducing planning time. Some of them have been integrated and successfully 
tested in commerce. Therefore, deep learning methods are also suitable for 
the automation of treatment planning [6]. In 2011, Timmy Siauw [28] et al. 
proposed an optimization model and fast heuristic algorithm for calculating 
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HDR brachytherapy dose planning, inverse planning (IPIP), and evaluated 
the measured dose and compared it with the standard dose. Studies have 
shown that the prostate dose obtained by the algorithm used in this study 
has clinical significance. C Guthier [29] et al. studied a reverse planning 
for low-dose-rate brachytherapy in 2015, applied the idea of compressed 
sensing, developed a reverse planning algorithm, and optimized it to adapt 
this algorithm to the current best reverse Algorithms are compared and 
faster. The algorithm can also effectively reduce the cost of intervention. 
Alexandru Nicolae [30] et al. 2016 used machine learning algorithms to 
automatically generate a low dose rate brachytherapy plan for the prostate, 
and compared the pre- and post-implantation treatment plans generated by 
the machine learning algorithm with the plans made by the physicist. The 
results showed that the machine-generated plans quality was same with the 
plan made by the physicist, but it can reduce the planning time and resources. 
In 2019, Chenyang Shen [31] et al. developed a weight adjustment strategy 
network based on reverse optimization after high-dose-rate cervical cancer 
in order to observe the planned dose volume histogram and adjust the organ 
weighting factor in real time. The experimental results prove that the quality 
is improved by 10.7% compared to the plan made by the physicist. Maryam 
Golshan [32] et al. built a model through convolutional neural networks in 
2019 to complete the automatic detection of seeds in brachytherapy under 
the guidance of three-dimensional ultrasound images. The results show that 
the estimated time for each needle is 1 minute, and the total time is less than 
15 minutes. Compared with manual, the model obtained higher accuracy. 
By 2020, Alexandru Nicolae [33] et al. randomly compared the treatment 
plan based on machine learning with the traditional manual treatment plan 
to evaluate the total planning time between the two groups and the dose 
measurement results after 30 days of implantation, compared with the 
traditional Manual planning has a great advantage in the time of treatment 
planning based on machine learning.

OTHERS

In addition to the application of deep learning technology in the above 
aspects [34], some scholars have also conducted a series of studies in toxicity 
prediction and other aspects. Several research centers have confirmed 
the value of machine learning methods in prediction, and now have used 
deep learning to study the toxicity of lungs, prostate, etc. In 2017, Xin 
Zhen [34] et al. study on the prediction of rectal toxicity in cervical cancer 
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radiotherapy based on transfer learning deep convolutional neural network. 
Convolutional neural network was used to analyze rectal dose distribution 
and predict rectal toxicity. 42 patients were collected and overcome by 
transfer learning for quantity problems, training on VGG-16, fine-tuning of 
the patient’s rectal display dose map, and comparison with traditional dose 
volume parameters, studies have shown that pre-trained CNN can simulate 
rectal dose distribution and predict rectal toxicity after cervical cancer 
radiotherapy. There are also some studies on the prediction of the survival 
rate of deep learning in the next 5 years.

In terms of toxicity research, the application of deep learning is not so 
extensive for the time being. Future research areas in this area have better 
prospects. Of course, there are other areas worthy of improvement.

CONCLUSIONS

From the above, we can see that deep learning is becoming more and more 
widely used in brachytherapy, especially in the treatment of cervical cancer 
and prostate cancer has been widely developed. Often focusing on target area 
delineation, applicator reconstruction, radiotherapy planning system and 
dose calculation, etc., it provides new assistance for improving the clinical 
treatment effect and the automation of the treatment planning system.

The automation of the brachytherapy plan is one of the future 
development directions. It is worthwhile to conduct a series of studies to 
construct different networks through deep learning to solve the problems 
in brachytherapy. At this stage, target area delineation and applicator 
reconstruction are both moving in the direction of automation. Future dose 
calculation and dose optimization are also worthy of attention.
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ABSTRACT

Recently, Deep Learning, especially through Convolutional Neural 
Networks (CNNs) has been widely used to enable the extraction of highly 
representative features. This is done among the network layers by filtering, 
selecting, and using these features in the last fully connected layers for pattern 
classification. However, CNN training for automated endoscopic image 
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classification still provides a challenge due to the lack of large and publicly 
available annotated databases. In this work we explore Deep Learning for 
the automated classification of colonic polyps using different configurations 
for training CNNs from scratch (or full training) and distinct architectures 
of pretrained CNNs tested on 8-HD-endoscopic image databases acquired 
using different modalities. We compare our results with some commonly 
used features for colonic polyp classification and the good results suggest 
that features learned by CNNs trained from scratch and the “off-the-shelf” 
CNNs features can be highly relevant for automated classification of colonic 
polyps. Moreover, we also show that the combination of classical features 
and “off-the-shelf” CNNs features can be a good approach to further improve 
the results.

INTRODUCTION

The leading cause of deaths related to the intestinal tract is the development 
of cancer cells (polyps) in its many parts. An early detection (when the 
cancer is still at an early stage) and a regular exam to everyone over an age 
of 50 years can reduce the risk of mortality among these patients. More 
specifically, colonic polyps (benign tumors or growths which arise on the 
inner colon surface) have a high occurrence and are known to be precursors 
of colon cancer development.

Endoscopy is the most common method for identifying colon polyps 
and several studies have shown that automatic detection of image regions 
which may contain polyps within the colon can be used to assist specialists 
in order to decrease the polyp miss rate [1, 2].

The automatic detection of polyps in a computer-aided diagnosis (CAD) 
system is usually performed through a statistical analysis based on color, 
shape, texture, or spatial features applied to the videos frames [3–6]. The 
main problems for the detection are the different aspects of color, shape, and 
�	'���	�������������#	������$�	��	�������	'����	��#���	���	���������	���	�
�������	�������	��������������	�������	�	��#���	������������$����������	���
as the degree of colon muscular contraction [5].

���	���	�	��������	��������������������#	�������
	���������		�����	�	���
categories: hyperplasic, adenomatous, and malignant. Kudo et al. [7] 
proposed the so-called “pit-pattern” scheme to help in diagnosing tumorous 
lesions once suspicious areas have been detected. In this scheme, the mucosal 
������	�����	�����������#	�������
	�������������	�	������	���	�����������	�
size, shape, and distribution of the pit structure [8, 9].
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As can be seen in the Figures 1(a)–1(d), these five patterns also allow 
the division of the lesions into two main classes: (1) normal mucosa or 
hyperplastic polyps (healthy class) and (2) neoplastic, adenomatous, or 
carcinomatous structures (abnormal class). This approach is quite relevant 
in clinical practice as shown in a study by Kato et al. [10].

Figure 1. Example images of the two classes (a–d) and the pit-pattern types of 
these two classes (e–f).

In the literature, existing computer-aided diagnosis techniques generally 
make use of feature extraction methods of color, shape, and texture in 
���#�����������������	��	�������������
	�������	�������	�������
�������
of colon polyps [9, 11, 12]. For example, the dual-tree complex wavelet 
transform DT-CWT features proved to be quite suitable for the distinction 
of different types of polyps as can be seen in many works like, for example, 
[13–15]. Other features were also proved to be quite suitable for colonic 
������ ������
������� ��� �	� ��#��� ���	�	��� �{���� ���������!������ �	����	��
[17], and directional wavelet transform features [18]. Particularly, in the 
work of Wimmer et al. [18], using the same 8 colonic polyp databases of this 
work, an average accuracy of 80.3% was achieved in the best scenario. In 
this work, we achieve an average accuracy of 93.55% in our best scenario.

<	� ����� ���
������ ��� �	� �	����	� 	'��������� �	����� ��� �	� ����	��
characterization of these patterns due to several factors as the lack or excess 
of illumination, the blurring due to movement or water injection, and the 
���	�����	� ��� ������� ���� ���������� ��� 
��� �� ��#���� ���� �� ���#��� �	����	�
extractor that summarizes and represents all these pit-pattern structures in a 
�����	��	���������	������
����������		���	�����������#	�����������	������	�
to surpass these problems. In this work we explore the use of Deep Learning 
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through Convolutional Neural Networks (CNNs) to develop a model for 
��#�����	����	�	'�������������	�
��	�����������������������
�������

To achieve this, we test the use of CNNs trained from scratch (or full 
training) and off-the-shelf CNNs (or pretrained) using them as medical 
imaging feature extractors. In the case of the CNN full training we assume 
that a feature extractor is formed during the CNN training, adapting to the 
context of the database and particularly in the case of off-the-shelf CNNs 
we consider that the patterns learned in the original database can be used 
��� ������������ ����	�� ���� �������� ������ ������
�������� ��� ������������ �	�
explore two different architectures for the training from scratch and six 
different off-the-shelf architectures, describing and analyzing the effects of 
CNNs in different acquisition modes of colonoscopy images (8 different 
databases). This study was motivated by recent studies in computer vision 
addressing the emerging technique of Deep Learning presented in the next 
section.

MATERIALS AND METHODS

Using CNNs on Small Datasets
Some researchers propose replacing handcrafted feature extraction 

algorithms with Deep Learning approaches that act as features extractor 
��������	�������
	������	����	����	��{����?���	'����	���	��		���	�������
approach using CNNs takes advantage of many consecutive convolutional 
layers followed by pooling layers to reduce the data dimensionality making 
it, concomitantly, invariant to geometric transformations. Such convolution 

��	��� `�	��	��|� ��	� #����� ��� ���� ��� �	����	� 	'��������� ������� �	� ���������
process and recent research indicates that a satisfactorily trained CNN with 
a large database can perform properly when it is applied to other databases, 
which can mean that the kernels can turn into a universal feature extractor 
[19]. Also, Convolutional Neural Networks (CNNs) have been demonstrated 
to be effective for discriminative pattern recognition in big data and in real-
world problems, mainly to learn both the global and local structures of 
images [20].

Many strategies exploiting CNNs can be used for medical image 
������
��������<	�	������	��	������#	�	�����	����������������	�����������
characteristics of each database [21] and two of them, mostly used when it 
comes to CNN training, are described in the following part.
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When the available training database is large enough, diverse, and very 
different from the database used in all the available pretrained CNNs (in 
a case of transfer learning), the most appropriate approach would be to 
initialize the CNN weights randomly (training the CNN trained from scratch) 
and train it according to the medical image database for the kernels domain 
adaptation, that is, to find the best way to extract the features of the data in 
order to classify the images properly. The main advantage of this approach 
is that the same method can be used for the extraction of strong features 
that are invariant to distortion and position at the same time of the image 
classification. Finally, the Neural Network Classifier can make use of these 
inputs to delineate more accurate hyperplanes helping the generalization of 
the network.

This strategy, although ideal, is not widely used due to the lack of large 
and annotated medical image database publicly available for training the 
CNN. However, some techniques can assist the CNN training from scratch 
with small datasets and the most used approach is data augmentation. 
Basically, in data augmentation, transformations are applied to the image 
making new versions of it to increase the number of samples in the database. 
These transformations can be applied in both the training and the testing 
phase and can use different strategies such as cropping (overlapped or not), 
���������������������������$�������������^'�	���	�������������������	�	�
�	���*�	������#	�	��	����	�������#�����	�
����������	������������������
������	��	��	��������������������
�������������������������

Furthermore, when the database is small, the best alternative is to use 
an off-the-shelf CNN [21]. In this case, using a pretrained CNN, the last 
or next-to-last linear fully connected layer is removed and the remaining 
pretrained CNN is used as a feature extractor to generate a feature vector 
for each input image from a different database. These feature vectors can be 
��	��������������	��������
	��`������������������	����������	���¶~|����
classify the images correctly. If the original database is similar to the target 
database, the probability that the high-level features describe the image 
correctly is high and relevant to this new database. If the target database is 
not so similar to the original, it can be more appropriate to use higher-level 
features, that is, features from previous layers of CNN.

In this work, besides using a CNNs trained from scratch, we consider 
the knowledge transfer between natural images and medical images using 
off-the-shelf pretrained CNNs. The CNN will project the target database 
samples into a vector space where the classes are more likely to be separable. 
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This strategy was inspired by the work of Oquab et al. [24], which uses 
a pretrained CNN on a large database (ImageNet) to classify images in a 
smaller database (Pascal VOC dataset) with improved results. Unlike that 
work, rather than copy the weights of the original pretrained CNN to the 
target CNN with additional layers, we use the pretrained CNN to project 
data into a new feature space through the propagation of the colonic polyp 
database into the CNN getting the resultant vector from the last CNNs 
layer, obtaining a new representation for each input sample. Subsequently, 
�	���	��	��	����	��	������	����������������	���������
	� (e.g., support vector 
machines) in this representation to evaluate the results as used in [25, 26].

CNNs and Medical Imaging

In recent years there has been an increased interest in machine learning 
techniques that is based not on hand-engineered feature extractors but using 
raw data to learn the representations [19].

�������	��	�	����	������	�
��	���������	������	������	�	������������
the use of Deep Learning has been extensively explored in the last years in 
����	�	���
	���������������������		���	�����������������	����	���	������	���	�
of raw data to do high-level representations of this knowledge through a large 
volume of annotated data. However, when it comes to the medical area, this 
type of application is limited by the problem of the lack of large, annotated, 
and publicly available medical image databases such as the existing natural 
����	�����#��	����������������������������
��������������������������*���	�����
�������	� ���� ����	�� ���� ��	� ��� �	� ��	��
�� �����	� ��� ����	�	��� �	������
imaging modalities which seems to have different properties according to 
each modality the situation is even aggravated [21, 27].

Recently, works addressing the use of Deep Learning techniques in 
medical imaging have been explored in many different ways mainly using 
CNNs trained from scratch. In biomedical applications, examples include 
mitosis detection in digital breast cancer histology [28] and neuronal 
segmentation of membranes in electron microscopy [29]. In Computer-
Aided Detection systems (CADe systems), examples include a CADe of 
pulmonary embolism [30], computer-aided anatomy detection in CT volumes 
[31], lesion detection in endoscopic images [32], detection of sclerotic 
spine metastases [33], and automatic detection of polyps in colonoscopy 
���	��� ����� ���� ����� ��� �	������ ����	� ������
�������� ����� ��	� ��	�� ����
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���������������� ����	�������
������� ������ ���	����	�������� ������
�������
in wireless capsule endoscopy images [37, 38], and automatic colonic polyp 
������
��������������	���	��������������	������#		��	'����	�����������	�
the accuracy of CADe systems knee cartilage segmentation using triplanar 
CNNs [40].

Other recent studies show the potential for knowledge transfer from natural 
images to the medical imaging domain using off-the-shelf CNNs. Examples 
������	��	���	���
�����������������������½+��������������	������������
��������	������������������������
���������������������	��
������������	��
[41], pulmonary nodule detection [26], and mammography mass lesion 
������
������� ������ ~��	��	��� ��� ������¶��� ����	�	�� 	�� ���� ���� ���� �	�
combination of CNNs features and classical features for pulmonary nodule 
detection can improve the performance of the model.

CNNs Trained from Scratch: Architecture
In this section we briefly describe the components of a CNN and how it can 
be used to perform the CNN from scratch.

A CNN is very similar to traditional Neural Networks in the sense 
of being constructed by neurons with their respective weights, biases, 
and activation functions. The structure is basically formed by a sequence 
of convolution and pooling layers ending in a fully connected Neural 
Network as shown in Figure 2. Generally, the input of a CNN is  
image (or patch), where  is the dimension of the image and d is the 
number of channels (depth) of the image. The convolutional layer consists 
of k� �	����#�	� 
��	��� (also called kernels) with size  where  
which are convolved with the input image resulting in the so-called activation 
maps or feature maps. As classic Neural Networks, the convolution layer 
outputs are submitted to an activation function, for example, the ReLU 
�	���
	����������� , where x is the neuron input. After the 
convolution, a pooling layer is included to subsample the image by average 
functions (mean) or max-pooling over regions of size . These functions 
are used to reduce the dimensionality of the data in the following layers 
(upper layers) and to provide a form of invariance to translation thus making 
��	�
�������������������	����������������������������	����	������	�������#	�
��	��
	����	�����	���	������	���	������	���	���	�����������	��	�������	�
output volume dimensions.
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Figure 2����������������������	����������	����	�������������������������
��-
tion.

At the end of the CNN there is a fully connected layer as a regular 
Multilayer Neural Network with the Softmax function that generates a well-
formed probability distribution on the outputs. After a supervised training, 
�	���������	�������#	���	�������������
	�����������	����	�	'������������	�
case of transfer learning.

CNNs and Transfer Learning
Transfer learning is a technique used to improve the performance of machine 
learning by harnessing the knowledge obtained by another task. According 
to Pan and Yang [43], transfer learning can be defined by the following 
model. We give a domain D having two components: a feature space 

 and a probabilistic distribution ; that is, 
. Also, we give a task T with two components: a ground truth  
and an objective function  assuming that this function can be 
learned through a training database. Function  can be used to predict the 
correspondent class  of a new instance x. From a probabilistic point of 
view,  can be written as . In colonic polyp classification, usually, 
a feature extractor is used to generate the feature space. A given training 
database X associated to the ground truth Y consisting of the pairs  
is used to train and “learn” the function  until it reaches a 
defined and acceptable error rate between the result of the function  and 
the ground truth Y.

In case of transfer learning, given a source domain 
 and the learning task Ts and the target 

domain and the learning task , 
transfer learning aims to help improve the learning of the target predictive 
function  using the knowledge in , where  and .
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Among the various categories of transfer learning, one, called inductive 
transfer learning, has been used with success in the pattern recognition 
area. In the inductive transfer learning approach an annotated database is 
necessary for the source domain as well as for the target domain. In this 
work, we apply transfer learning between two very different tasks using 
different labels  and different distributions 
. To bypass the difference between the probability distribution of the images 

, the last layer from the original function  directly connected to the 
������
�����������	���	��#	�����	����	��#����	�����	������������`����¶~|�
to adapt it to the new task  turning into the function . In the following 
sections the functions  used in this work are presented. Also, the use 
of transfer learning using pretrained CNNs can help to avoid the problem 
��������������������	��	������
	����<	������������!������	�������{�������
Oquab et al. [24] suggest that the use of CNNs intermediate layer outputs 
����#	���	������������	����	�������������	��������
	���`����������������	�����
machines) for a number of other applications different from the original 
CNN obtaining a good performance.

Despite the difference between natural and medical images, some feature 
descriptors designed especially for natural images are used successfully 
��� �	������ ����	� �	�	������ ���� ������
�������� ���� 	'����	�� �	'���	+#��	��
������ �	�	������ ����� ?����	�� ���� �̈�	�	�� 
��	��� ���� ������ ������
�������
[18], shape descriptors [44], and local fractal dimension [45] for colonic 
������������
���������������������� �	�	��������	�������	����	��������� �	�
knowledge transfer between natural and medical images using pretrained 
(off-the-shelf) CNNs [34, 46].

Experimental Setup

Data
The use of an integrated endoscopic apparatus with high-resolution acquisition 
devices has been an important object of research in clinical decision support 
system area. With high-magnification colonoscopies it is possible to acquire 
images up to 150-fold magnified, revealing the fine surface structure of 
the mucosa as well as small lesions. Recent work related to classification 
of colonic polyps used highly-detailed endoscopic images in combination 
with different technologies divided into three categories: high-definition 
endoscope (with or without staining the mucosa) combined with the i-Scan 
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technology (1, 2, and 3) [18], high-magnification chromoendoscopy [8], and 
high-magnification endoscopy combined with narrow band imaging [47].

��	��
������� �	� �+����� �	�������� `�	���'|� ��	�� ��� ���� ����� ��� ���
image processing technology consisting of the combination of surface 
enhancement and contrast enhancement aiming to help detect dysplastic 
areas and to accentuate mucosal surfaces and applying postprocessing to the 
�	$	��	�������#	��������	���������������	���������`�¶�|������

There are three i-Scan modes available: i-Scan1, which includes surface 
enhancement and contrast enhancement, i-Scan2 that includes surface 
enhancement, contrast enhancement, and tone enhancement, and i-Scan3 
that, besides including surface, contrast, and tone enhancement, increases 
lighting emphasizing the features of vascular visualization [18]. In this 
work we use an endoscopic image database (CC-i-Scan Database) with 8 
different imaging modalities acquired by an HD endoscope (Pentax HiLINE 
HD+ 90i Colonoscope) with images of size  extracted from video 
frames either using the i-Scan technology or without any computer virtual 
chromoendoscopy .

Table 1 shows the number of images and patients per class in the different 
i-Scan modes. The mucosa is either stained or not stained. Despite the fact 
�����	�����	���	�	�����������������+�	
���������	�����	���!	��������	��
(i) to be large enough to describe a polyp and (ii) small enough to cover just 
one class of mucosa type (only healthy or only abnormal area). The image 
labels (ground truth) were provided according to their histological diagnosis.

Table 1. Number of images and patients per class of the CC-i-Scan databases 
gathered with and without CC (staining) and computed virtual chromoendos-
copy (CVC)
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Employed CNN Techniques
Due to the limitation of colonic polyp images to train a good CAD system 
from scratch, the main elements of the proposed method are defined in 
order to (1) extract and preprocess images aiming to have a database with 
a suitable size, (2) use CNNs for learning representative features with good 
generalization, and (3) enable the use of methods to avoid overfitting in the 
training phase.

To test the application of a CNN trained from scratch we used the i-Scan1 
database without chromoscopy (staining the mucosa) that presents a good 
performance in the tests using classical features and pretrained CNNs (on 
��	���	|� ���� ��#�	*�	����� ��������� �	�#	��� ���
��������� ��� �	� �+������
without chromoscopy database that presented the best results among the 
classical features results.

��� �	� 
���� 	'�	���	��� ��� ���� ����� ���������� ��� ��� ������	�� ���� ���
architecture should be trained with subimages of size  based 
����	�����������������
��������	����	�������	����	��������������	������	�
preprocessing techniques are necessary for the image feature generation. In 
this experiment we apply normalization by subtracting the mean and dividing 
by the standard deviation of its elements as in [48] corresponding to local 
brightness and normalization contrast. We also perform data augmentation 
#��$�������	����������������	����!�������������	�����������������������	�
original image �����	�����������	�����	���	��������	�$���	�����!��������
�	������	������	��������	���	�$���	���	����������	����!��������$���	��
image, totalizing 7 new samples for each original image. After the data 
augmentation (resulting in 800 images), we randomly extract 75 subimages 
of size  from each healthy image and 25 subimages from each 
abnormal image for the training set to balance the number of images in each 
class.

Also, in this experiment, to be able to compare the different architectures 
in a faster way, we used cross-validation evaluation with 10 different CNNs 
for each architecture. In nine of them, we removed 56 patients for training 
and used 6 for tests and, in one of them, we removed 54 patients for training 
and used 8 for test to assure that all the 62 patients are tested. The accuracy 
result given for each architecture is the average accuracy from each of the 
{������������	��#��	������	�
����������
����������	�������	�#	��		���	�
two classes.

For the second experiment in the CNN full training we propose to extract 
subimages of size  from the original images using the same 
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���������������	�
����	'�	���	��������������	���	�	'����	��	�����	����
�����	���������������������
������������	���������#	����	������������
part of the image, and then we trained the network with smaller subimages 
instead of the entire image. This helps to reduce the size of the network 
�	������� ���� �����	'���� ���� ���� ������ ����	�	��� ������ ������
�������� ���
the same image using different subimages in different parts of the image. 
Additionally, choosing smaller regions in a textured image can diminish the 
degree of intraimage variances in the dataset as the neighborhood is limited.

Besides the different architectures for the training from scratch, we 
mainly explore six different off-the-shelf CNN architectures trained to 
�	������������
�����������	�����	�	�����¶�������	��	�������<	�������
��������	��	����	�����	������������!	��������»�����»��������	��	�����������
as well as the details of each CNN are given as follows:(i)The CNN VGG-
VD� ����� ��	�� �� ����	� ���#	�� ��� ���	��� ���� �	��� ������ 
��	��� `�� »� �|�
divided into two architectures according to the number of their layers. The 
CNN VGG-VD16����{�����������������	�������
�	������������	������	��	�
CNN VGG-VD19 has 19 convolution layers, adding one more convolutional 
layer in three last sequences of convolutional layers. The fully connected 
���	�����	�������	������������	��#����������'�������
	������{�����	������
����	��������� ��� �	����#	����������	�� ��� �	� ���¶���������
������������
�	����	�����	�������	��#�����	���
	�����	��������`�	��|����	����������	��	�
sparsity in the hidden units and reduce the gradient vanishing problem.(ii)
The CNN-F (also called Fast CNN) [22] is similar to the CNN used by 
��	'�	����������������������������������	����<	�����������	���!	��������»�
���������	����������	��������������	��#���	������	��������'	�������	�
����
convolutional layer. The fully connected layers also have 4096 neurons as 
the CNN VGG-VD. Besides the original implementation, in this work, we 
also used the MatConvNet implementation (beta17 [50]) of this architecture 
trained with batch normalization and minor differences in its default 
hyperparameters and called here CNN-F MCN.(iii)The CNN-M architecture 
(Medium CNN) [22] also has 5 convolutional layers and 3 pooling layers. 
<	����#	�����
��	��������	�������	�?����������������	���������
��	������
�	�
�������������������	�������������	����!	�� 	̈��������	��	�~�������	��
implementation called CNN-M MCN.(iv)The CNN-S (Slow CNN) [22] 
is related to the “accurate” network from the Overfeat package [51] and 
�������� �����	��
��	������� �� �����	��������'	��� ��� �	�
���� ��������������
layer. We also use the MatConvNet implementation called CNN-S MCN.(v)
The AlexNet�������������
�	������������������	������		������������	���
(after layers 2 and 5), and two fully connected layers. This architecture is 
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������������	����+?����	�	����������	�
��	�������	������������������	����
We also use the MatConvNet implementation called AlexNet MCN.(vi)
The GoogleLeNet [52] CNN has the deepest and most complex architecture 
among all the other networks presented here. With two convolutional layers, 
two pooling layers, and nine modules also called “inception” layers, this 
network was designed to avoid patch-alignment issues introducing more 
sparsity in the inception modules. Each module consists of six convolution 
���	���������	������������	��������	��������	�	�
��	����������	�	�����!	������
���	�������������������	��	��
��	��

In order to form the feature vector using the pretrained CNNs, all images 
are scaled using bicubic interpolation to the required size for each network, 
in the case of this work, . The vectors obtained by the linear 
layers of the CNN have size of  for the GoogleLeNet CNN and of 

������	���	���	���������	�����	��������	����	���	��
����	��

Classical Features
To allow the CNN features comparison and evaluation, we compared them 
with the results obtained by some state-of-the-art feature extraction methods 
for the classification of colonic polyps [18] shortly explained in the next 
items.(i)BSAG-LFD. The Blob Shape adapted Gradient using Local Fractal 
Dimension method combines BA-LFD features with shape and contrast 
histograms from the original and gradient image [45].(ii)Blob SC. The 
Blob Shape and Contrast algorithm [44] is a method that represents the 
local texture structure of an image by the analyses of the contrast and shape 
of the segmented blobs.(iii)Shearlet-Weibull. Using the Discrete Shearlet 
Transform this method adopts regression to investigate dependencies 
across different subband levels using the Weibull distribution to model the 
subband coefficient distribution [53].(iv)GWT Weibull. The Gabor Wavelet 
Transform function can be dilated and rotated to get a dictionary of filters 
with diverse factors [18] and its frequency using different orientations is 
used as a feature descriptor also using the Weibull distribution.(v)LCVP. 
In the Local Color Vector Patterns approach, a texture operator computes 
the similarity between neighboring pixels constructing a vector field from 
an image [12].(vi)MB-LBP. In the Multiscale Block Local Binary Pattern 
approach [54], the LBP computation is done based on average values of 
block subregions. This approach is used for a variety image processing 
applications including endoscopic polyp detection and classification [12].
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For the classical features, the classification accuracy is also computed using 
an SVM classifier, however, with the original images (without resizing) 
trained using the leave-one-patient-out cross-validation strategy assuring 
that there are no images from patients of the validation set in the training set 
as in [55] to make sure the classifier generalizes to unseen patients. 

This cross-validation is applied to the classical feature extraction 
methods from the literature as well as to the full training and off-the-shelf 
CNNs features. The accuracy measure is used to allow an easy comparability 
of results due to the high number of methods and databases to be compared.

RESULTS AND DISCUSSION

CNNs Trained from Scratch

In the first experiment for the CNN full training, we first use the configuration 
similar to [20] that can be seen in Table 2 and it can be concluded that the 
accuracy result was not satisfactory (79%). 

This can be explained by the fact that Neural Networks involving a 
large number of inputs require a great amount of computation in training, 
�	*����������	������ �����������	�
������`���� �������������#�	����	�� �	�
size of our dataset).

Table 2���������
���������������������#����	�������!	�����»�����»�����������
respective accuracy in %

For the second experiment, the hyperparameters presented in 
Table 3 were selected based on the works [48, 56] and empirical adjustment 
�	��������	������	����	�����������������	���!	��������#	�����
��	������
well as the number of units in the fully connected layer were made and are 
also shown in Table 3. It can be seen that the architecture CNN-05 obtained 
the best results, therefore, chosen to perform the subsequent tests.
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Table 3������������	���������������	�	����������
��������������������������!	�
{���»�{���»������Á

����	������	'�	���	���������	����+������
�����������	������	����	�
CNN for each patient from the database (leave-one-patient-out (LOPO) 
�����+����������|�� ��	��
������� �	� �	������ ����� �	� ����� ��	�	��	�� ���
Table 4 are the mean values of the validation set from 62 different CNNs, 
one for each patient, implemented using the MatConvNet framework [50]. 
���	�� ��������� �	� ����� ��� �	� 	���������� ���	�� �	� 
���� �	������� ���� ��
����»�������'	������	�����	������	������#����	��#����"�����������������	�
�	���������������{���»�{�����'	����#����	��`����	�|����	�����	���������	��
of this approach is the opportunity to have a set of decisions available to 
��*���	��	�
�����	�������������	�����	���������	��	��������������	���������
subimages can increase the system accuracy likewise to give the assurance 
of certainty for the overall decision.

Table 4. Accuracy of different strides for overlapping subimages in the CNN-
05 evaluation for i-Scan1 database in %

����������#	��		�����<�#�	����
�����	��	��	�������������	����{�	'���������
�	���'��������#	�����{���»�{�����#����	��������#�	��������!����{�����
subimages for each image, resulting in an accuracy of 89.00%. This 
evaluation is very computationally expensive to perform, so we decided to 
evaluate with different strides resulting in different number of subimages as 
it is shown in Table 4. We also perform a random patch extraction and it can 
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be concluded that there is not much difference between 16384 subimages 
or just 25 cropped subimages (accuracy of 91.00%), saving considerable 
computation time and achieving good results. Besides that, using the same 
procedure we evaluate the architecture CNN-05 for the i-Scan3 database 
without staining the mucosa that presented the best results among the 
classical features and results are presented in Table 5.

Table 5. Accuracy of CNN-05 architecture comparing to classical features for 
the i-Scan1 and i-Scan3 databases in %

For a better comparability of results, we trained an SVM with the 
extracted vectors from the last fully connected layers (LFCL) and from the 
prior fully connected layers (PFCL) of CNN-05 as we make in the transfer 
learning approach explained in the next section. The vectors are extracted 
����� ��� �����	�� ��#����	�� ��� ��!	� {��� »� {��� `���� �����	� ��� ��� ��'	��|�
feedforwarded into the CNN-05 subsequently used to train a support vector 
machine also using the LOPO cross-validation [55]. The results from this 
approach using the CNN-05 architecture trained with the i-Scan1 and 
i-Scan3 without staining the mucosa databases are presented in Table 5. As 
it can be seen, using the last-layer vectors to train an SVM does not improve 
�	��	��������������#	����	��	��������������������������
��	�������	�	���	�
�	��	�	������	��	����	�����#	������	������������	���������
	���¯��	�	����	��
the CNN is fully trained, the results surpass the classical features results as 
can be seen also in Table 5 mostly because the last layers are more suitable 
����	�����������	�����	�����	�� ��� �	� ������
����������	��¯��	�	��� �	�
problem of lack of data still is an issue and using all the information in 
�	� ����	� ������ #	� #	��	�� ���� ������ �����	�� ����	��� <	� �����
����	�
comparison between the methods will be explored in the next section. 
Therefore, in order to try solving this problem, we also propose the use of 
transfer learning by pretrained CNNs that will be also explained in the next 
section.
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Pretrained CNNs

In this section we present the experiments made exploring the 11 different 
off-the-shelf CNN architectures with the classical features trying to achieve 
better results than the CNN trained from scratch. As well as in the CNN 
trained from scratch, we use the i-Scan1 without staining the mucosa 
database for the first experiments.

��� �	� 
���� 	'�	���	���� �	� �	��	�� �	� ��	� ��� ���	� �����	�� ����� �	�
same image using overlapping patches by randomly cropping 25 images 
�����!	�����»�����»������	����������������	������!	�����»�����»���`�	��!	��
using bicubic interpolation for the tests presented in Table 8) increasing the 
database from 100 to 2500 images. The obtained results after the feature 
extraction performed by the CNN and after the SVM training also using the 
LOPO cross-validation are presented in Table 6.

Table 6���	������������+����{�����#��	���������	���	��!	���������»���������
�����	������������	�������!	�����»����

It can be observed that, in this case, the use of more samples from the 
���	� ����	���	������������	� ���� �����
����� ������	�	��� ��� �	� �	�������
On the average, resizing the images produces an accuracy of 87.70% while 
cropping the images produces an average of 84.87%. One of the explanations 
for this is that, in case of resized images, there is more information about the 
polyp to provide to the network, so the CNN can abstract more information 
and form a more robust and intrinsic vector from the actual features of the 
lesion. However, in three cases (GoogleLeNet, VGG-VD16, and AlexNet 
MCN), the results using smaller cropped images surpassed the results using 
the entire image.

In the second experiment, still using i-Scan1 without staining the 
mucosa database, we also tested the use of other layers of CNNs to extract 
features. Table 7 shows the results obtained when the vectors are extracted 
from the last fully connected layer and when the vectors are from the prior 
fully connected layer. In the case of the last layer, the results are worse 
(87.70% against 85.75% on average) because the vectors from the prior 
fully connected layer are more related to high-level features describing the 
natural images used for training the original CNNs that are very different 
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from the features to describe colonic polyp images. However, in this case, 
the results from CNN-F and AlexNet CNN are better using the features from 
the last fully connected layers.

Table 7���	������������+����{�����#��	���������	���	��!	���������»�����������
the last fully connected layer and the prior fully connected layer

Table 8. Accuracies of the methods for the CC-i-Scan databases in %

Based on the results from the two experiments explained before, we 
tested the methods with all the other databases using the inputs resized to 
��!	�����»�����»���#��#���#������	��������� and extracting the features from 
the prior fully connected layer. The accuracy results for the colonic polyp 
������
����������� �	�������	�	�������#��	����	��	����	�����<�#�	�����������
be seen, the results in Table 8 are divided into three groups: off-the-shelf 
features, classical features, and the fusion between off-the-shelf features and 
classical features that will be explained as follows.

Among the 11 pretrained CNNs investigated, the CNNs that present 
lower performance were GoogleLeNet, CNN-S, and AlexNet MCN. These 
�	�����������������	����������	��������	��	��	����	��������
��	������#	�
������	�	�����+�	+�	����	����	�	'��������������	�������������
������������
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As it can be seen in Table 8, the pretrained CNN that presents the best 
result on average for the different imaging modalities  is the CNN-M 
network trained with the MatConvNet parameters (89.74%) followed by 
�	� ���� ¶��+¶�{�� `�����Á|�� <	�	� �		�� ���	��� ���� �����	�� 
��	���
generalize well with other datasets as it is shown in [49], including texture 
recognition, which can explain the better results in the colonic polyp 
database. However, there is a high variability in the results and thus it is 
���
��������������	�	����������������

Many results obtained from the pretrained CNNs surpassed the classic 
�	����	� 	'��������� ���� �������� ������ ������
������� ��� �	� ���	�����	�� <	�
database that presents the best results using off-the-shelf features is the 
database staining the mucosa without any i-Scan technology ( , 88.54% 
on average). In the case of classical features, the database with the best result 
on average is the database using the i-Scan3 technology without staining the 
mucosa (81.61%).

<�����	������	��	�����	�	��	������	��	�������	����	����	������
����	����
them using the McNemar test [57]. By means of this test we analyze if the 
����	�������������#��	���	�������
	������	�	�������������������	������������
two methods. With a high accuracy it is supposed that the methods will have 
���	������������	�����	������	������
����	��	�	��  must be small enough to 
differentiate between classifying an image as correct or incorrect.

The test is carried out on the databases i-Scan3 and i-Scan1 without 
����������	�������������������
����	��	�	��  with all the off-the-
shelf CNNS, all the classical features, and the CNN-05 architecture trained 
from scratch. The results are presented in Figure 3. It can be observed by 
�	� #����� �*���	�� `����������� �����
������� ����	�	��	�|� ����� ������ �	�
��	�����	�������� ��� �	� �+����{�����#��	� �	� �	��������	����� �����
�������
different and in the i-Scan3 database the CNN-M MCN and GoogleLeNet 
��	�	����	�����������
�����������	�	����	��������������������	���	��������
��� ���������#	��		�� ���� �	����+�����	��������	������
�����������	�	���
results comparing to the other CNNs in the i-Scan1 database and has 
�����
�����������	�	����	�������������+~�~������������	�	�	������	�
i-Scan3 database.
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Figure 3. Results of the McNemar test for the i-Scan1 (a) and i-Scan3 (b) da-
tabases without staining. A black square in the matrix means that the methods 
��	������
�����������	�	������������
����	��	�	�����������	���*���	����̀ �|��	����
�����	��	�������	������
�����������	�	������������
����	��	�	��������	��*���	�
������	��	���	�	������������
���������	�	��	�#	��		���	��	�����

Also, in Figure 3, when comparing the classical feature extraction 
methods with the CNNs features it can be seen that there is a quite different 
response among the results in i-Scan3 database, especially for CNN-M 
~���������������
�����������	�	�������������	������������	����������	�
exception of the Shearlet-Weibull method. 

<	����+����������+���µ��¶~�����������	�	��������
�����������	�	���
results with the classical features (except with LCVP in i-Scan1 database) 
and with the pretrained CNNs (except with CNN-M and GoogleLeNet in 
i-Scan3 database). Likewise, the methods with high accuracy in the i-Scan3 
database (BSAG-LFD, VGG-VD16, and VGG-VD19) are not found to be 
�����
�����������	�	���

��� �	� �+����{� ����#��	�� ���� �	� �����
����	� �	�	�� , the 
�	��������	����������
�����������	�	�������	�	����`	'�	���������¶���	����	�|��
¯��	�	��� ���� �	� �����
����	� �	�	�� �� �	� �����
����	� �	������
represented by the grey squares in Figure 3(a) show that the two databases 
presented different correlation between methods which means that it is 
���
����������	�������������	����	�	'������������������������#�������#��	�����
the same time.

�#�	�������	��	�����������	�	��	�������
�����������	�	����	������ ���
Figure 3 and with good results in Table 8 we decided to produce a feature 
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level fusion in the feature vectors concatenating them to see if the features 
can complement each other. It can be seen in Figure 3 that the two most 
����	��������������+~�~�������¶��+¶�{����	������
�����������	�	���
from each other in both databases and the feature level fusion of these two 
vectors improve the results from 89.74% and 88.59%, respectively, to an 
accuracy of 90.58% in average as can be seen in Table 8 (Fusion 5/8).

In Figure 3(b) it can also be observed that the results from CNN-M 
~�����	������
�����������	�	�������	������������	����	������+�?������	�
i-Scan3 database. With the feature level fusion of these two features the 
accuracy increases to 91.03% on average. 

Concatenating the three feature vectors (CNN-M MCN, VGG-VD16, 
and BSAG-LFD) leads to an even better accuracy: 93.22%. It is interesting 
to note that in both databases the results from CNN-M MCN and VGG-
¶�{����	������
�����������	�	����

�	���	�� ����� ����+�?�� �	������ ��	� �����
������� ����	�	��� ��� ¶��+
¶�{���������#��	��+����{��?���	����	������+�?���	��������	������
�������
different to CNN-M MCN in database i-Scan3 which can explain the 
improvement in the feature level fusion between these three methods.

Making the fusion with these two off-the-shelf CNNs (CNN-M MCN and 
VGG-VD16) to other classical feature vectors also increases the accuracy as 
it can be seen in Table 8 (Fusion 5/8/14 and Fusion 5/8/15).

When we add to the vector Fusion 5/8/12 one more classical feature 
`~�+���|������������������
�����������	�	���������+~�~����������#��	�
�+��������������	����	����	������
�����������	�	����������+�?���������#��	�
i-Scan1, the result outperforms all the previous approaches: 93.55% as it can 
be seen in Table 8.

In Figure 4� �	� ��	�	��� ���	� 	'����	� ����	�� ����� �	� ������
�������
results of all the methods used in the McNemar test with the higher agreement 
for each prediction outcome. 

<	��	��	����	��#��	�	�������	�������	���	���	�������
����������	�
of the prediction. For example, in the i-Scan1 database and i-Scan3 database 
(Figures 4(a) and 4(b)), the two images presented in the true positive box 
�	�	�������
	����������������������
	����¯��	�	���������+����������#��	�����
�	����	�����	�����	��	�����	�#�'����	�����	������Á�������������
�������
��������	��{�Á�������������
������������	���	�
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Figure 4��^'����	��	����������	�������
�������������		�	���������	��	�����
tested in the McNemar test for each prediction outcome.

Comparing the results from all off-the-shelf CNNs and classical features 
with the CNN-05 trained from scratch using the databases i-Scan1 and 
i-Scan3 in Table 8 it can be observed that the full training CNN outperformed 
the results obtained by the classical features and some of the pretrained 
CNNs. This approach can be considered an option for automatic colonic 
������������
����������������	�������������	���������	�����������	'����
are not worthwhile if comparing to the off-the-shelf features.

CONCLUSION

In this work, we propose to explore Deep Learning and Transfer Learning 
approach using Convolutional Neural Networks (CNNs) to improve the 
accuracy of colonic polyp classification based on the fact that databases 
containing large amounts of annotated data are often limited for this 
type of research. For the training of CNNs from scratch, we explore data 
augmentation with image patches to increase the size of the training database 
and consequently the information to perform the Deep Learning. Different 
architectures were tested to evaluate the impact of the size and number of 
filters in the classification as well as the number of output units in the fully 
connected layer.

We also explored and evaluated several different pretrained CNNs 
architectures to extract features from colonoscopy images by knowledge 
transfer between natural and medical images providing what is called off-
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the-shelf CNNs features. We show that the off-the shelf features may be well 
����	�������	�����������������
�����������������������	�	�������������	��
amount of data.

Besides the fact that the pretrained CNNs were trained with natural 
images, the 4096 features extracted from CNN-M MCN and VGG-16 
provided a good feature descriptor of colonic polyps. Some reasons for 
�	�����	������ �	�������
�������������	� �	� ��������������� ����	�����	����
different images providing a powerful extractor joining the intrinsic features 
from the images such as color, texture, and shape in the same architecture 
reducing and abstracting these features in just one vector. Also, the 
combination of classical features with off-the-shelf features yields the best 
prediction results complementing each other. It can be concluded that Deep 
Learning using Convolutional Neural Networks is a good option for colonic 
������������
������������	���	������	����������������� �	�#	�������	����
achieve the best results being improved by feature level fusion with classical 
features. In future work we plan to use this strategy to also test the detection 
of colonic polyps directly into video frames and evaluate the performance 
in real time applications as well as to use this strategy in other endoscopic 
����#��	�������������������������
�����������	��������	��	�
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ABSTRACT

Electroencephalography-(EEG-) based control is a noninvasive technique 
which employs brain signals to control electrical devices/circuits. Currently, 
the brain-computer interface (BCI) systems provide two types of signals, 
raw signals and logic state signals. The latter signals are used to turn on/
off the devices. In this paper, the capabilities of BCI systems are explored, 
and a survey is conducted how to extend and enhance the reliability and 
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accuracy of the BCI systems. A structured overview was provided which 
consists of the data acquisition, feature extraction, and classification 
algorithm methods used by different researchers in the past few years. 
Some classification algorithms for EEG-based BCI systems are adaptive 
classifiers, tensor classifiers, transfer learning approach, and deep learning, 
as well as some miscellaneous techniques. Based on our assessment, we 
generally concluded that, through adaptive classifiers, accurate results are 
acquired as compared to the static classification techniques. Deep learning 
techniques were developed to achieve the desired objectives and their real-
time implementation as compared to other algorithms.

INTRODUCTION

Background

Brain-computer interface (or BCI) is basically setting up a connection 
between the human brain and the computer device to control or to perform 
certain activity using brain signals. These brain signals are translated as an 
action for a device. The interface thus provides a one-to-one communication 
pathway between the brain and the target.

The technology has advanced from mechanical devices and touch 
systems, and now, world is approaching towards use of neural waves as 
the input. Even though it is not widely applied for now, it has a promising 
�����	��^��	������������	�����������������	���	���	�������	����
�����	��
in performing physical activities and lose their brain signal to move their 
muscles, it is the only way to function.

A BCI system includes a device with electrodes that act as sensors and 
�	����	� #����� ��������� ��� �����
	�� ��� ����	� �	� �	��� �	����� ��������� ����
a computer which decodes the signals into controlling signals to operate 
devices. Mostly, the BCI device is a headset which is portable and wearable.

The BCI device has two functions. Firstly, it records the data reviewed at 
its electrodes, and secondly, it interprets or decodes neural signals.

Nervous system resembles an electrical system which passes nerve 
impulses as a message. This means neurons (brain cells) communicate by 
transmitting and receiving very small electrical waves, merely in range of 
microvolts. Now, to sense and record these signals, we require precise and 
advanced sensors.
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Electrodes are set directly on the scalp or embedded in the brain which 
requires surgical procedure. The nonsurgical method of electrode placement 
though does not damage the brain, it yields poor-quality brain signals. 
Those that are recorded directly from the scalp yield better results but at the 
risk of surgery that may induce damage in the brain. The risk of damaging 
brain tissues exceeds the quality obtained through the surgical method. 
BCI is therefore a better pathway for neurorehabilitation for paralyzed 
people. Apart from these, other techniques include functional MRI (fMRI) 
and magnetoencephalography (MEG). fMRI maps brain activity with an 
MRI scanner, while MEG is a brain imaging process that identifies brain 
activity. Electric currents flowing through the brain produce magnetic field, 
and these are sensed by highly sensitive magnetometers. Both fMRI and 
MEG techniques use large and expensive machines. Another noninvasive 
methodology is near-infrared spectroscopy (NIRS). In this process, neural 
signals are recorded by passing NI light through the head. The quality of the 
brain activity measurement is not adequate for the brain computer interface.

In case of healthy people, the brain transmits signals from the central 
nervous system to the muscles, and thus, they can move the muscles of the 
body. However, in case of people suffering from stroke or neuromuscular 
illness, the transmission of signals between the brain and the rest of body 
muscles is distorted. The patient’s body becomes paralyzed or losses the 
capability to control muscle movement, like cerebral palsy. It is observed 
that a patient may not be able to move a muscle, but a brain can transmit the 
neural signal. This means that the neural signal is transmitted from the CNS 
but not received by target muscles. A BCI can be designed to utilize those 
commands to control devices or computer programs.

Each part of the body is controlled by a particular part of the brain as 
���������	�
���	�������������	���*�	����������#�	��	���������������	�
brain is active and transmitting the signal. Through this, the BCI system can 
predict the muscle locomotion from the brain activity [1].

BCI systems can be advanced, and multiple new applications can be 
developed using a fact that a variety of other brain activities can also be 
recognized. For instance, while one performs a numeric calculation, the 
frontal lobe is activated, and when one comprehends a language, Wernicke’s 
area is activated.

Currently, numerous groups are contributing to the evolution of BCIs 
������ ����	�	�������	������������������� ��	��
�� ����	������	�������� �	�
consumer. Each day, scientists and engineers are improving algorithms, BCI 
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sensor devices, and techniques for quality attainment of data and improved 
accuracy of systems.

The problem is which method is optimal to analyze these complex time-
varying neural responses and map them accordingly to the output response 
desired. These signals are merely in the range of microvolts. So, these 
electrical signals are passed through several processes to remove noise and 
������	����	��������������	'�����������������������
��������	���*�	����	�
applied to the data obtained [2].

Preliminaries

To attain a better understanding of BCI systems and the processes that 
undergo within them, an explanation of the terminologies and the said 
processes is presented as follows.

Brain Waves
Brain waves are oscillating voltages bearing amplitudes from microvolts 
to some millivolts; there are 5 widely known brain waves bearing different 
frequency ranges exhibiting states of the brain as shown in Table 1 [3].

Table 1. Brain waves and associated frequencies

Brain Activity Recording Methods for the BCI
The neural activity of the brain can be analyzed and understood based on the 
recording methods used. Recording methods of the BCI can be categorized 
as follows:

(1)  Invasive Recording Techniques. Invasive recording methods 
are those in which the electrodes are inserted deep in the brain 
using surgical methods, and the quality of the signal generated 
is better as compared to its noninvasive counterpart; however, 
issues arise from long-term stability, and protection is required 
to hinder them from creating infections. One such example is 
electrocorticography (ECoG), which measures the brain activity 
from the neural cortex.
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(2)  Noninvasive Recording Techniques. Noninvasive techniques do 
not require any surgical treatment and thus safe from causing any 
sort of infections; though their signal quality is low, it is still a 
popular means of brain signal acquisition.

These techniques include electroencephalography (EEG) in which 
the electrical activity is recorded from the scalp of the brain and 
magnetoencephalography (MEG) in which magnetic properties exhibited 
due to the difference in oxygenated and deoxygenated hemoglobin are 
recorded.

For our project, we will opt for an EEG-based signal recording technique 
and explain its characteristics in the following [1].

Electroencephalography (EEG)

Introduced by Hans Berger in 1929, EEG is a measurement of voltage 
levels that underlines the activity of the brain in response to an event or 
a stimulus. EEG method comprises electrodes placed on the scalp of the 
brain at different locations as specified in Figure 1 with temporary glue. The 
electric signals are generated due to the ionic content present in the brain 
consisting of Na+, ��µµ���µ��������_��������	��������������������	�	������
invokes the electric potential used in EEG.

Figure 1. Brain anatomy.
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The EEG signals are of low quality because of different layers of tissues 
between the EEG cap and the signal source as shown in Figure 2. The 
potential created is in a range of tens of microvolts, and these electrodes 
need to have powerful amplifiers in order to acquire meaningful signals.

Figure 2. EEG: (a) subject wearing a 32-electrode EEG cap; (b) standardized 
electrode placements.

Need of BCI

Brain-computer interface-based technology is a developing field, and it has 
been under focus by many industries to innovate and make everyday life 
tasks easier. One of the questions which arises in the mind is why we need 
BCI systems? BCI system is a complex technology, no doubt, however, 
leading to a simpler life.

Following are the main reasons why we need to focus on this technology:(i)
Control of devices can be made easy through just our thoughts(ii)Making a 
decision and then performing a task takes time, while operating a device 
using thoughts or technically our brain waves is easier(iii)Re-establishing 
������������������ ����� �	�#����� ��� ����
����� ���#���������������� ���	�
affected by brain-related diseases

Individuals in Need of a BCI to Re-Establish Motor Control and 
Communication
A wide range of neurological diseases such as motor neuron diseases 
and spinal cord injury may lead to severe paralysis of the motor muscles, 
restricting the patient to control artificial devices through only a few muscles 
and thereby termed as “locked-in,” while people who have completely lost 
their motor control are termed as “completely locked-in.”
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Evident that the normal communication channel from the brain to the limbs 
is lost, BCI is used to re-establish the communication through an alternative 
route.

Even being applicable to a healthy person, BCI systems can be used to 
employ numerous tasks from the users using the signals generated from the 
brains to control applications as presented in the following [4]:

(1)  Noninvasive Brain-Computer Interface Research at the 
Wadsworth Center. The research conducted at the Wadsworth 
Center was to study different approaches employed in the BCI to 
control a computer screen cursor to analyze their advantages and 
disadvantages; one approach was sensory-based rhythm control 
in which the selected features in the frequency domain were based 
on the potentials created by motor imagery and linear regression 
was employed so that they can be converted as control signals to 
move the cursor.

 The other procedure was the P300-based cursor control in which 
the user focuses attention on the desired symbol and is provided 
with a matrix to produce time-varying stimuli and linear 
regression is utilized to allow these signals as a control input to 
move the cursor.

 The research suggested that the BCI is an application-oriented 
approach and depends entirely on user training; the EEG features 
dictate the BCI system for speed, accuracy, bit rate, and usefulness.

 Sensorimotor Rhythms (SMR) is an approach employing better 
results for control tasks such as controlling a screen cursor, while 
the P300-BCI system was slower as compared to the SMR-BCI.

(2)  The Berlin Brain-Computer Interface: Machine Learning-Based 
"
�
���������#�
�$��
�����%�	�����	�
�. The researchers for the 
Berlin brain-computer interface employed sensory motor rhythms, 
i.e., thinking of moving the left hand or right hand and used 
�����	��	������+#��	���	�	����������	���	����	��
��#���������	���
While testing their trained model, they achieved an information 
transfer rate above 35 bits per minute (bpm), and overall spelling 
seed was 4.5 letters per minute including correcting the mistakes, 
using 128-channel EEG and using feedback control for untrained 
users in order to properly train the machine learning algorithms, 
thereby reducing the training user time used in the voluntary 
control approach [2].
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Structure of the BCI

The steps of the brain computer interface system include the following:(1)
Brain activity measurement/recording methods of the BCI(2)Preprocessing 
techniques(3)Feature extraction(4)Machine learning implementation/
classification(5)Translation to control signal

Preprocessing
In BCI, preprocessing techniques consist of data acquisition of brain 
signals to check the signal quality without losing important information; the 
recorded signals are cleaned and conduct noise removal to acquire relevant 
information encoded in the signal. As mentioned above, the EEG signals 
are of poor quality; even the commercial 50 Hz frequency, due to nearby 
appliances, can corrupt the EEG signals, and the users are also advised not 
to think anything else apart from the stimuli as presented. In preprocessing, 
using Fourier transform or Fourier series, the signals are taken into the 
frequency domain and studied what frequency content is present in the 
signal. The undesired 60 Hz frequency signal and undesired signal produced 
by performing actions other than the said stimuli are then filtered out using 
a notch filter as mentioned in Figure 3.

Figure 3. BCI block diagram.

Feature Extraction
Feature extraction plays a vital role in brain-computer interface applications; 
the raw EEG signals are nonstationary signals that are corrupted by noise or 
due to artifacts present in the environment where they are being recorded, 
but still meaningful information can be extracted from them. The data 
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dimensionality is also reduced to process it better, and machine learning 
models are applied. This method is essential to increase the classification 
accuracy of the BCI system.

EEG signal is a time-domain nonstationary signal, and the relevant 
information such as signal energy is analyzed as a function of time or 
frequency later; relevant statistic measures are adapted to properly explain 
the characteristics of the signal.

Some of the commonly used feature extraction techniques are listed as 
follows.

Short-time Fourier transform is a frequency-domain feature extraction 
technique in which the EEG signal is convolved with a window function  to 
extract the relevant frequency features of the brain which are broken down 
as sinusoids at different frequency ranges.
Mathematically, it is represented as

   (1)
where x[k] is the input EEG and w[n – k] is the window multiplied to 

	'�������	���	*�	�����	����	��������������	�
���	�����
Discrete-time and continuous-time wavelet transform is a time 

frequency-based feature extraction technique that allows better temporal 
and spatial resolution in which the EEG signals are produced in the form 
of wavelets at different frequency ranges of interest as shown in Figure 4.

Figure 4. Feature extraction using short-time Fourier transform.
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The technique of wavelet transforms as adapted in the literature is a filtering 
continuous application of high-pass and low-pass filters to extract the 
wavelets of the signal which, when added together, constitute the original 
signal and downsampled by a factor of 2 as shown in Figure 5.

Figure 5. Wavelet transform.

g and h���	�����	�����	���+������������+�����
��	�������������	�
�	��	�	������	����	�����������'����	����	�
��	��������	�^^��������� [5].

Neural Networks
Before starting to explain what deep learning is, it is first beneficial to 
explain the role of deep learning and its fundamental blocks.

�		���	������������������
��������������	�����������	�������������������������
which is composed of speech recognition and computer vision to natural 
language processing in the context of the BCI; the input features which are 
����	�	���#�������	*�	����#�������	�������
	�����������������������������	�
user is performing at the moment.

Neural Network. A neural network is a model similar to that of a neuron 
in our brain that has input nodes and output nodes; the mathematical model 
for a neural network is given by the following equation: 

   (2)
where v is the weighted sum of the inputs and the bias term which will 

be fed at the output node, b is a bias term which is mostly set to 1, and w is 
the random weights assigned that are multiplied with the input in order to 
reach closer to the desire output.
The neural network is shown in Figure 6.



Deep Learning Algorithm for Brain-Computer Interface 269

Figure 6. Neural network.

These calculations are often preceded in the form of matrices; the input, 
the weight terms, the output, and the bias are as follows:

  (3)
Finally, the output node is passed to an activation function and provides 

�	�
�������������	�����������������������������	���	�������	�����������	�
node. The activation function acts to map the corresponding inputs to the 
right output y present at the output node:

       (4)
<	��	������	��������	�������	����������������������	�
�������	��������

needs to be trained a lot, and so a training rule is assigned to neural networks 
to get the right output. Many training rules are adapted, but one of the most 
commonly used is the delta rule, and the rule is expressed using the following 
equation:

     (5)
where xj represents the number of inputs, ei is the error generated at the 

output node, and & is the learning rule between (0 < & < 1).
The training rule is summarized as follows:(1)Assign adequate values 

to the weights.(2)Obtain the input from the training data and feed it into the 
neural network which will give an output d; subtract the output d to obtain 
the correct output at the output node.
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     (6)
(3)Calculate the weight updates:

     (7)
(4) Adjust the weights accordingly until the correct output or that has 

small tolerance is obtained:

     (8)
The above explanation was presented for a single-layer neural network; 

the architecture of neural networks is becoming better with the cost of 
��	��	���	������#���������	��������
������������������	���	��		���	�����
networks which are the same as the single-layer neural network but with 
hidden layers added in between the input and output nodes, as shown in 
Figure 7.

Figure 7. Structure of the deep neural network.

The concepts are similar to those of a single neural network but with the 
adjustments of added hidden layers and a different training rule because the 
delta rule has a drawback of not propagating the output to the hidden layers, 
thereby the weights are not adjusted.

To explain how the deep neural network works, the above explained 
single neural network is set as basis.

In Figure 8, given a multiple-layered neural network, the weighted sum 
�#����	������	�
�������	�����	�������	�	��	����
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    (9)

Figure 8. Multilayered network.

The outputs are calculated via the sigmoid activation function:

     (10)
The process is repeated, and the outputs obtained are treated as the 

inputs to the other nodes, and we get the outputs as

    (11)
And lastly, the weighted sum is being inserted into the activation 

���������������	��	���������
�����������
Deep learning training rule is given in the following.

     (12)
Backpropagation algorithm is commonly used as the training instruction 

for the deep neural networks; the procedure is summarized as follows:
(1) Assign adequate values to the weights.
(2) Take the input from the training data and feed it into the neural 

network which will give an output d. Subtract the output d to 
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obtain the correct output at the output node and the delta ('! of 
the output nodes:

   (13)
(3) Propagate the delta back towards the hidden nodes, and determine 

respective delta ' of nodes:

   (14)
(4) Repeat until it reaches the input nodes.
(5) Modify the weights according to the rule:

    (15)
(6) These steps are repeated until the neural network is utterly trained 

as shown in Figure 6.
Now, the alpha-beta ranges are extracted, and consecutive energies are 

calculated. The features are fed into the deep learning neural network, and 
using the backpropagation learning rule, the model is trained, yielding an 
accuracy of 97.83%, as shown in Figure 9 [5].

Figure 9. General diagram of neural networks in the BCI.
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CRITICAL REVIEW OF THE RELATED  

LITERATURE

A brain-computer interface involves various stages, and development in each 
stage leads to an improved and efficient system. Here, the literature review 
of major steps including data acquisition, feature extraction, classification 
algorithm, and applications is presented.(1)Improvement of EEG signal 
acquisition: An electrical aspect for state of the art of front end. Computational 
intelligence and neuroscience: a research paper published by Ali Bulent 
Usakli, the NCO Academy, Turkey, presented some applicable concerns for 
acquiring quality EEG signals which are proven helpful for users and design 
engineers. One of the most important considerations is selecting suitable 
electrodes and headset. In the EEG-based BCI, electrodes, signal processing 
components including mental and environmental conditions, filtration of 
noise, amplification, signal translation, and data storage affect the recording 
process. The data acquisition is an important step in any machine learning 
procedure. Brain signals need to be cleaned and preprocessed so that a good 
result can be obtained [1].(2)P300 wave detection using Emotiv Epoc+ 
headset: effects of matrix size, flash duration, and colors: Saleh Ibrahim 
Alzahrani conducted research on P300 wave detection using the Emotive 
Epoc+ headset to study the effects of the size of the matrix, flash duration, 
and colors. In this study, P300 signals were obtained from five subjects 
with Emotive EPOC+ using all 14 channels. For this research, EEG signals 
obtained were communicated to software OpenViBE through a USB dongle. 
A sample was taken every 8 seconds at a rate of 128 samples per second. The 
configured sampling rate provides ample samples for the four frequency 
bands, containing significant ERP data. During process of signal recording, 
�	���#"	�����	�	�������������'������»��������»�������	�������	�����		���
They were instructed to stay calm, avoid any needless movement, and set 
all on letter which they desire to spell. It is reported in the study that one of 
the advantages of using the Emotiv EPOC+ headset is that it takes merely 
two to three minutes for preparation as compared to other headsets that take 
more than ten minutes. The quality of sensors is verified through Emotiv 
Xavier SDK which provides feedback report of each sensor. To decrease the 
contact impedance, saline liquid was applied to the sensor surface. Primary 
objective was to assess the potential of Emotiv EPOC+ to perceive P300 
signals. Finding the electrodes proficient at providing target signals helps 
minimize the number of channels which makes signal processing a lot 
easier. The results of this experiment provide evidence of the capability of 
Emotiv EPOC+ to detect the P300 signals from two channels, O1 and O2 
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[2].(3)Automatic seizure detection in SEEG using high frequency activities 
in wavelet domain. Medical engineering and physics: in this research paper, 
the researcher has found the method for detection of seizures using the high-
frequency analysis in the wavelet domain. This method is used highly in the 
high-frequency domain. Because of seizer detection, the method is usually 
done using high frequency in the range of 80–250 Hz. Also, it can handle 
fast ripples in the range of 250 to 500 Hz. The biggest advantage in the 
seizure detection is that it can detect the seizure offset. The methodology 
consists of the Continuous Wavelet Transform (CWT), which was computed 
by convolving the SEEG signal which has to make the feature extraction, 
and it also includes the complex conjugate of the wavelet basis function 
(Ayoubian, 2013).(4)Classification of epilepsy EEG signals using DWT-
based envelope analysis and neural network ensemble: envelope detection 
is a very efficient method for detecting the impact of the signals which are 
based on the biological change or diagnosis. In this paper, the researchers 
used the Hilbert transform which has a good impact on the resultant signals 
so that the signals are then widespread using the DWH technique which has 
a unique behavior regarding the biological change; the researchers detected 
the changes using this method [5].(5)Feature selection for motor imagery 
EEG classification based on firefly algorithm and learning automata: in this 
research paper, the researchers implemented spectral linear discriminant 
analysis for the classification of motor imagery signals. Feature extraction 
method used was basically common spatial patterns; the advantage of using 
this feature extraction method is basically of two-class discrimination 
problems. This maximizes the variance of one class and decreases the variance 
of the other class, which is the advantage, but the disadvantage is because of 
the multiclass overlap structure in this method, it is not used for multiclass 
prediction [6].(6)Unsupervised adaptation of electroencephalogram signal 
processing based on fuzzy C-means algorithm. International Journal of 
Adaptive Control and Signal Processing: this research paper presented 
the techniques of brain mapping with emphasis on multichannel EEG 
and functional brain imaging techniques. During training and testing, the 
concentration of the subject on the target object is one of the concerns which 
signifies the capacity to operate a device. They have used different algorithms 
such as LDA and fuzzy C-means. Fuzzy C-means is an adaptive classifier, 
and this is probably used where the device behavior is not synchronized 
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with the classification model [7].(7)A review of classification algorithms 
for EEG-based brain-computer interfaces: a 10-year update: this paper is the 
latest review of the BCI classification techniques; there are some algorithms 
discussed in this paper taken from different papers, and their accuracies, 
optimization, the method of feature extraction used were compared, and 
every algorithm has its own advantages and disadvantages. In this paper, 
they have used the event-related potentials. Feature extraction method they 
have used is based on spatial filtering which is the most optimized filter; 
it can further be optimized by using the calibration [8].(8)Sequential non-
stationary dynamic classification with sparse feedback: in this research 
paper, basically, they have discussed the technique for the classification of 
the nonstationary and nonlinear signals. As we know that the BCI signals are 
nonstationary in nature, sparse feedback can be used for the stability of the 
brain signals and classifying them using the RBF classifiers which are radial 
basis functions. The signals are acquired in a nonlinear manner, and we can 
apply linear models to them, but again, multiclass prediction is not able to be 
performed. This is because of the sparse feedback matrices involved [9].(9)
Motor imagery and direct brain-computer communication: Gert Pfurtscheller 
and Neuper researched about the technique for the motor imaginary signals 
by the imagination of the left hand, right hand, and foot movements. In the 
neurofeedback method, real-time prediction of brain signals is difficult to 
achieve. We have nonlinear signals at the input of the neurofeedback method 
so that we can use the Hidden Markov Method (HMM) to make predictions 
in real time but the accuracy is a tradeoff [10].(10)Toward unsupervised 
adaptation of LDA for brain-computer interfaces. IEEE Transactions on 
Biomedical Engineering: the firefly algorithm (FA) is an efficient algorithm 
for selecting the most appropriate subset of features and helps improving 
accuracy of classification. When the problem of entrapping of FA in the 
local optimum arises, a procedure for combining the firefly algorithm and 
learning automata (LA) is proposed which optimizes feature selection for 
motor imagery EEG. For the expected outcome of the high-dimensional 
feature set, a process of combining the common spatial pattern (CSP) and 
local characteristic-scale decomposition (LCD) algorithms is used. It is 
further classified by the use of the spectral regression discriminant analysis 
(SRDA) classifier [11].
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COMPARISON OF CLASSIFICATION ALGORITHMS

Table 2 shows the comparison of classification algorithms.

Table 2����������������������
����������������
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DISCUSSION

There is a large range of classifiers developed by scientists and engineers 
around the world. These classification algorithms can be divided into four 
groups.
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�����������		����	

Adaptive classifiers are listed as those classifiers in which parameters are 
progressively recalculated and also updated with procurement of new EEG 
data signals which are nonstationary, and adaptive classifiers are capable to 
follow the change in the feature distribution.

As mentioned in [10], a model for a motor-imagery-based self-paced BCI 
structure for operating a robot was proposed. They used a basic synchronous 
������	���	��	����	�������	�������������������$��	����������������
�������#	���	�
conducting the online self-paced procedure. They extracted logarithmic band 
power as features, and features were extracted from EEG signals. Feature 
selection was manual so as to gain quality frequency bands. To extract the 
�	����	������	����	*�	����#������	�	�����������#�������+
��	�	����*���	���
and averaged over 1 second sliding window, and natural log was applied. 
Utilizing the features and associated labels, two linear discriminant analysis 
`���|�������
	����	�	������	���������	�����	�����!	��	�������	�������������
and the other to isolate right imagery movement development from others.

Features related to subject’s control brain signals are extracted and 
�����������������
	��#���	���$��	���������������<	�	��	����	����	��	��
used to control the robot. They used parameters of the LDA algorithm in 
place of accommodating threshold and dwell features. Subject’s control 
intention and timing is the basis for adaptation for online training. The 
methodology proposed entailed information about the user’s control needed 
to train and adapt which could show promise of improving the accuracy 
�����	��������	��<	����	����	���������
��	������������	������	�	������#	�
������
	�������������^�	�����#	���������	���������������	������������	��
learning process [12].

��	�����	���������	���������	�	�������������	�������
	�����������	��
can employ both supervised and unsupervised. This means that even if there 
is no information of true labels of data being received, they can be executed. 
From multiple research studies, it is inferred that unsupervised learning 
��� ��	��	�� #	��	�� �	������ ���� ������� ������
	���� ����� ����� ��� �	� �	��+
world applications of BCI do not present class labels, and for this purpose, 
�����	����	�����������������
	����	*���	����	��	�	����	�������

�������������	������		����	

The approach which the researchers have used in this paper holds fewer stages 
for classification as compared to the classical machine learning algorithms, 
and they are simpler as well. Compared to other standard classifiers, 
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Riemannian classifier does not need any parameter-tuning techniques such 
as cross validation to properly train and verify the accuracy of the produced 
model, which makes it far more robust and accurate all due to its logarithmic 
tendencies. Likewise, the inborn Riemannian separation for the SPD matrix 
is invariant both to inversion of the matrix and to any direct invertible change 
of the information, for example, any outside interference added to the EEG 
sources does not change the separations among the witnessed covariance 
matrices. These properties partially clarify why Riemannian classification 
techniques give a decent speculation ability, which empowered analysts to 
set up adjustment-free versatile ERP-BCIs utilizing basic subject-to-subject 
and session-to-session exchange learning methodologies [9].

It is shown that several approaches were implemented and gave higher 
performance than CSP + LDA procedures on motor imagery EEG data. 
The biggest advantage is quality performance. However, this is a gain at 
tradeoff between performance and greater number of weights because of 
elevated expansion in input feature dimensionality which makes suitable 
regularization a much-needed step [12].

EEG data can be represented in the form of tensors and are treated as 
analysis tools for EEG data tools for EEG data analysis which includes feature 
	'��������������������	���������������������
�����������	������^^���������	�
represented in more than one dimension; this includes time, frequency space, 
and trails and hence, these are presented by the tensor order. EEG data that 
have time frequency and space can be represented by 3-dimensional tensor. 
Tensors have been used frequently for motor imagery-based analysis even 
with a large amount of data containing different categories which can be 
represented by the tensor and its order [10].

Transfer Learning and Deep Learning

Transfer learning is a crucial tool when it comes to session-to-session and 
subject-to-subject decoding performance. If transfer learning is improved 
enough, BCI system can be operated without calibration, and this will 
revolutionize the BCI systems forever.

It is observed that calibration sessions are strenuous and mentally 
exhausting for subjects. It is explained that accepting the input from the 
earliest starting point of their BCI system is promising for started subjects.

Deep learning is categorized as a ML algorithm, where features and 
�	�������
	����	�����	����	��� �	���	���������� �����^^��������<	�	�	'����
multiple deep learning algorithms. One of the most explored and commonly 
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used is deep neural networks (DNNs). DNN is also performed online for 
slow cortical potentials (SCP) and motion-onset visual evoked potential 
(MVEP)�������	����������������	���<	��	���
�����	�	�����������	��
and paper was published on the P300-based BCI by Cicotte et al. Two 
convolutional layers were constructed followed by completely connected 
���	�����	������������������	�������������	�����	������������
��	��������	�
�	�������	���������	�����	�������
��	����<	����	����������	��#	��	������
the P300 experiment, but the SVM model had more accuracy [2].

Deep extreme learning machine is used for Slow Cortical Potentials 
`���|�������
���������<����	���*�	��������������������	����	���������	������
one was Kernal ELM. However, in this project, number of units, network 
structure, hyperparameter, and input features were not reasoned. This did 
not prove to be better than multiplayer ELM or standard ELM [4].

��	���������	����		����	

In order to classify more than two mental tasks, two main approaches can 
be used to obtain a multiclass classification function. The first approach 
consists in directly estimating the class using multiclass techniques such as 
decision trees, multilayer perceptron, naive Bayes classifiers, or k-nearest 
neighbors. The second approach consists of decomposing the problem into 
several binary classification problems.

Multiclass and multilabel approaches therefore aim to recognize more 
than two commands. It is therefore necessary to choose carefully the mapping 
between mental commands and corresponding labels. However, the errors 
����#	������#�	���������	�������
������������������������	��	�����	������	��
labels, sometimes, may not correspond to any class, and several classes may 
be at equal distances, thus causing class confusion [13].

METHODOLOGY

Here are some methods which are discussed in the research papers for the 
past few years in brain-computer interface systems, as shown in Table 3.
Table 3. Summary of various methodologies in BCI systems
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CONCLUSION

During this course of work, a question arises whether it is possible to 
create a brain computer interface which is affordable, with high accuracy 
and optimization. So, after reviewing different papers, the conclusion is 
that if we need an optimized model with high accuracy for the noninvasive 
technique of brain signals, the artificial neural network has a high accuracy 
and is optimal. However, there are some tradeoffs as well that are model 
compatibility with the brain signals. From 10 years of BCI review, we 
have obtained that the ANN has a high response and accuracy; after all, it 
optimizes the system as well. However, further research studies have been 
done to make it more accurate because this has to be used in health care.

Due to the fast processing that ANN allows, a form of guidance could 
#	�������	����������������������	��#�	������	�� ��� ������	��	�������
	�¿��
�	��������	������	������	$	�����«	�����	�������	����	���<����������	�����
very useful for one of the three subjects.

Also, the statistical test was examined on whether it performs in a way 
��������#	�	'�	��	���<	�	���	�����	���	���$��	�������
�������������	��	�����
accuracy above 90 percent.

<	� �������� ������	�� #�� �	� �	�	���	�� ����	�� ��� #		�� ���
��	���
to conclude that it provides enough control that a user can command an 
arbitrary computerized device. Also, it showed to be easily trainable.

In the future, the proposed model can provide support on multiplatforms. 
This can be achieved by developing applications which can help humanity 
and make everyday tasks easier. Furthermore, the system can be controlled 
with a smartphone that can override EEG headset commands. This will act 
as fail-safe if the BCI system experiences any malfunctioning. On the basis 
��������	�	����	����#	��	��^^������#	��	����	��������	��	�
��	��������
��������	����	�	��	��������$��	�������
�������
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ABSTRACT

This paper uses Urumqi International Airport’s hourly observation from 
2007 to 2016 and builds regression prediction model for airport visibility 
with deep learning method. From the results we can see: the absolute error 
�������������#������ ����������¨	�� �	�����#������¤�{������� �	��#�����	�
error is 325 m, and this method can predict visibility’s trend. So we can use 
this method to provide the airport visibility’s objective forecast guidance 
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products for aviation meteorological services in the future. In this paper, the 
Urumqi area is as the research object, to explore the depth of learning in the 
field of weather forecasting applications, providing a new visibility return 
forecast for weather forecast personnel so as to improve the visibility of the 
level of visibility to ensure the safe and stable operation of the airport.

Keywords:- Deep Learning, Airport Visibility, Regression Prediction

INTRODUCTION

With the rapid development of the national economy and the increasing 
popularity of civil aviation transport, airport operation on the visibility is 
becoming increasingly prominent. A long, low-visibility weather caused by 
fog, haze and other weather can cause a wide range of airport delays and 
cancellations. This not only has brought huge losses for the airlines and 
the airport, but also affects the public travel. At the same time visibility 
and flight safety are closely related. Low visibility is also one of the most 
common causes of flight accidents. Urumqi International Airport is the hub 
of the Xinjiang region airport. It is responsible for the Xinjiang region and 
Central Asia flight operations. The existing climate data show that Urumqi 
airport visibility was below 1000 m the average number of days for 60 
days [1] [2]. Most of the low visibility days occurred in the winter half 
(November to March), up to 57 days. The weather phenomenon that causes 
low visibility is mainly fog and smoke.

Improving the level of visibility is an important measure to ensure the 
safe and stable operation of the airport. At present, the low visibility forecast 
for the smoke, fog and other weather, is still based on empirical forecasts 
and statistical forecasts. Although with the development of numerical 
forecasting, there are also numerical and fog model predictions and many 
experiments have shown that the fog model has only a certain degree of 
�������������	�����������
����������	������<	�	���	���	����������������	����
����#��������������������
���������������������	�	��������������	���������	�	���
years [3]-[11].

DEEP LEARNING

Deep Learning (DNNs) is also known as deep neural network (DNNs), 
which is the sub-field of machine learning. Its concept originated in the 
Artificial Neural Network (ANN). In essence, it refers to a class of neural 
networks with deep structure of the effective training methods. It uses a 
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multi-layer representation to model the complex relationships between the 
data [12] [13] [14]. Deep Learning can be used in sorting, regression and 
information retrieval and other specific issues.

THE ESTABLISHMENT OF PREDICTION MODEL

Data Preprocessing

This article uses the Urumqi Airport from 2007 to October 2016 to March the 
following year 24 hours a day observation data. Contains hourly dominant 
visibility, temperature, dew point temperature, relative humidity, average 
wind direction and average wind speed. By sorting and controlling data 
quality, 43,752 data records were received. Since each factor is composed 
of different meteorological elements, in order to avoid the difference in 
magnitude between the various factors, it needs to be normalized before the 
input factor as the depth neural network, so that its value is limited to [0, 1]. 
See Equation (1) for the specific algorithm.

   (1)

Prediction of Forecasting Factors

For the time series regression prediction, the simplest way is to build a 
nonlinear function based on historical data. Combined with the prediction 
of dominant visibility, we construct two types of factors: the first type of 
forecasting factor contains only the dominant visibility (Vis) in the past. 
See Equation (2) for details. Because the dominant visibility is related to 
the factors such as wind, temperature and relative humidity, the second type 
of forecasting factor not only includes the dominant visibility in the past, 
but also the temperature (T), dew point temperature (TD), relative humidity 
(RH), wind direction (WD) and wind speed (WS). See Equation (3) for 
details.

    (2)

  (3)
where the dominant visibility is Vist for the current dominant visibility. 

In order to verify the effect of the different length of time on the dominant 
visibility, here are a number of ns for modeling operations which is used to 
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evaluate the difference in the prediction effect of the model under different 
time length samples.

Build a Sample Sequence

This article takes hourly dominant visibility of Urumqi Airport as the 
forecast object. Using observations from October to March of the following 
ten years. According to the selection of forecast factors, two kinds of 28 
sample sequences were established. See Table 1 for details. In each of the 
sample sequences, 80% of the 43,752 historical data were randomly selected 
as training samples for the prediction model training and the predictive effect 
test. The rest are test samples. In Table 1, Vis is visibility, T is temperature, 
TD is Temperature difference, RH is Relative humidity, WD is Wind 
Direction, WS is Wind speed.

According to the 28 sample sequences which were established the 
above two types of factor selection methods, the MLP model (Multilayer 
Perceptron Model) in Keras was used to model the operation. And using 
test samples to test it. Finally 28 different models of dominant visibility 
prediction were obtained. The prediction effect of the model is discussed in 
detail below.

Table 1. The number of two types of forecasting factors at different times
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PREDICTIVE EFFECT TEST

This paper constructs the forecasting object for Urumqi airport hourly 
dominant visibility, which contains a total of nearly 45,000 records. Through 
the analysis of the forecast object, you can see the Urumqi airport visibility 
changes in the range of 0 to 10,000 meters. 26.9% of the dominant visibility 
is 10,000 meters. While the impact of the operation of the civil aviation 
airport to dominate the visibility of less than 1000 meters accounted for 
12.3% of the record. Specific distribution is shown in Figure 1. By using the 
MLP model to predict the dominant visibility, an hourly dominant visibility 
prediction result is obtained. Here we examine the predictive effect of this 
method from two different types of forecasting factors.

A Model with Dominant Visibility as a Predictor

This type of model contains only the dominant visibility of the past, without 
adding other meteorological elements. Constructing a predictive model that 
dominates the dominant time at historical time is based on the dominant 
visibility at the current time. The prediction model was established by using 
the dominant visibility of the past 1, 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, 96, 
108, 120 hours. 

The results of the predictive results shown in Figure 2 show that the 
average absolute error of dominant visibility is between 966 m and 706 m 
using historical dominant visibility as a predictor for different time lengths. 
It is best to use the forecast for 1 hour before the current time. The average 
absolute error is 706.98 m. The prediction effect of the model with different 
time length is different, and the error increases slowly with the increase of 
the length of time.
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Figure 1. Urumqi airport visibility distribution from November to next March.

Figure 2. The results using the dominant visibility of different time lengths.

In order to fully test the different factors of the model to dominate the 
visibility, the following statistics by 5000 m within the dominant visibility to 
predict the average absolute error. And analyzing the ability of the model to 
predict the dominant visibility of different scales. It can be seen from Table 
2 that this model has a mean absolute error of less than 1000 m between 325 
m and 520 m, and the average absolute error between the training sample 
and the test sample is small. Which used the past 1, 3 hours two kinds of 
factors to predict the effect is better. As the length of time in the predictor 
increasing, the mean absolute error of dominant visibility increases. In 
addition, as the size of the predicted object increasing, the average absolute 
	���������	��������������#����������	�����������������	�������������
�������
greater than the average absolute error in the range [0, 1000], to about 1200 
m.
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Table 2. Average absolute error (in m) for visibility below 5000 m
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A Multi-Meteorological Element Used as a Model of Forecast-

ing Factors

This paper attempts to extend the forecasting factor to the dominant visibility, 
temperature, dew point temperature, wind direction, and wind direction of 
the past, due to the fact that there are many reasons for the occurrence of low 
visibility weather and visibility and temperature, relative humidity and other 
factors. The model is used to predict the dominant visibility. Through the 
analysis of the forecast results can be found, using the multi-factor predictor 
model, the average absolute error in models of different time lengths is 
predicted from 799 m to 827 m. The average absolute error of the different 
models is about 10 m. The model used in the past 24-hour multi-factor 
forecasting factor is best. Its absolute error is 798.87 m. See Figure 3 for 
details.

In order to fully test the different factors of the model to dominate the 
visibility, the following statistics the dominant visibility within 5000 m to 
predict the average absolute error. The ability of the model to predict the 
dominant visibility of different orders of magnitude. The model has the 
best predictive effect on the dominant visibility within 1000 m. Its average 
absolute error is between 450 m and 550 m. Which used the past 72,120 hour 
factor to build the model to predict the effect is better. With the increase of 
the dominant visibility level, the error of the model prediction is gradually 
increased to about 1100 m. The detailed data statistics table is omitted here.

Figure 3. The effect using the dominant visibility of multiple factors for differ-
ent time lengths.
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Suggestion of Practical Predictive

Effect Based on the model predictive effect constructed by the two kinds 
of forecasting factors discussed in this paper, the forecasting model of 
single factor construction is better for the prediction with less than 1000 m 
visibility. The forecasting model of multi-factor construction is more stable 
than the forecasting effect of more than 2000 m. So here at the same time 
use these two models. And taking into account the continuity of the change 
in visibility, we choose the model using the forecast factor of the past 12 h 
to make the actual forecast.

Here we select Urumqi Airport December 31, 2016 visibility to predict. 
The day the airport visibility changes greatly, before 11 hours to maintain 
more than 1000 m, then quickly decreased to maintain two hours of 100 m, 
then 16:00 suddenly improved to 2000 m, and then down to maintain at 100 
m, see Figure 4. The low visibility process includes persistent low visibility 
and a sudden improvement in visibility. This has a high test of the ability of 
the model to predict. 

It can be seen from the model predictions that both models can predict 
the trend of decreasing the visibility and the turn of the day. When the real 
visibility is greater than 1500 m, the prediction error of the multi-factor 
model is relatively small. When the dominant visibility is less than 1000 m, 
the prediction effect of the single factor is relatively better, especially when 
the long-term continuous visibility is less than 300 m, the average absolute 
error of the visibility of the single factor is 86 m. Therefore, by using the two 
types of forecasting models, it is possible to provide a quantitative reference 
for the forecasting staff to predict the visibility. However, it can be seen 
from the simulation of the actual case that the depth learning model has a 
certain hysteresis when the dominant visibility is good or worse, and the 
error increases obviously when the visibility is greater than 1500 m.

CONCLUSIONS

Due to the high incidence of low visibility weather, the impact of the system 
is more complex. Especially the forecasts of low visibility of the starting and 
ending time are more difficult. So how to as much as possible predict low 
visibility weather and dissipation of the time are the keys of Urumqi Airport 
winter service guarantee.
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Figure 4. The effect of different models on the forecast of dominant visibility 
on December 31, 2016.

This paper attempts to use the depth neural network for airport visibility 
prediction, using nearly ten years’ data for model prediction. The results of 
�	����	�����	���������������������	$	����	���	�������	��������������#������
of Urumqi Airport. The average absolute error can reach a minimum of 
706 m. Where the minimum absolute error of less than 1000 m, it is as 
low as 325 m. At the same time, we can see that the prediction results of 
multi-factor factor prediction model are stable. Next, we will try to put this 
model into the actual business and conduct continuous testing to improve 
the quantitative forecasting capability of this method in leading visibility.

Although the method has better prediction effect, in the detailed analysis 
of its forecast results also found some shortcomings, such as predictive 
visibility turn or turn bad times have a certain lag. The results show that the 
average absolute error is greater than 2000 m above the dominant visibility, 
and the prediction effect is less than 1000 m. Then, we will cooperate with 
�����	��	����������������������������#��	��	��#����������	$	������+�	�	��
������
���������������������+�������	������
	����������������	����	�
	���
and other factors as a forecast factor to ensure that the forecasting factor can 
better contain the low visibility weather conditions to improve the prediction 
effect of the model.
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ABSTRACT

Most modern face recognition and classification systems mainly rely on 
hand-crafted image feature descriptors. In this paper, we propose a novel 
deep learning algorithm combining unsupervised and supervised learning 
named deep belief network embedded with Softmax regress (DBNESR) 
as a natural source for obtaining additional, complementary hierarchical 
representations, which helps to relieve us from the complicated hand-crafted 
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feature-design step. DBNESR first learns hierarchical representations 
of feature by greedy layer-wise unsupervised learning in a feed-forward 
(bottom-up) and back-forward (top-down) manner and then makes more 
efficient recognition with Softmax regress by supervised learning. As 
a comparison with the algorithms only based on supervised learning, we 
again propose and design many kinds of classifiers: BP, HBPNNs, RBF, 
HRBFNNs, SVM and multiple classification decision fusion classifier 
`~��?�|Ç�#���� ¯�����+¯��?���+�¶~� ��������	��� <	� �������	��
experiments validate: Firstly, the proposed DBNESR is optimal for face 
recognition with the highest and most stable recognition rates; second, 
the algorithm combining unsupervised and supervised learning has 
better effect than all supervised learning algorithms; third, hybrid neural 
networks have better effect than single model neural network; fourth, the 
average recognition rate and variance of these algorithms in order of the 
largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, 
HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, 
MCDFC, DBNESR; at last, it reflects hierarchical representations of feature 
by DBNESR in terms of its capability of modeling hard artificial intelligent 
tasks.

Keywords:- Face Recognition, Unsupervised, Hierarchical 
Representations, Hybrid

INTRODUCTION

Face recognition (FR) is one of the main areas of investigation in biometrics 
and computer vision. It has a wide range of applications, including access 
control, information security, law enforcement and surveillance systems. FR 
has caught the great attention from large numbers of research groups and 
has also achieved a great development in the past few decades [1] [2] [3]. 
However, FR suffers from some difficulties because of varying illumination 
conditions, different poses, disguise and facial expressions and so on [4] 
[5] [6]. A plenty of FR algorithms have been designed to alleviate these 
difficulties [7] [8] [9]. FR includes three key steps: image preprocessing, 
feature extraction and classification. Image preprocessing is essential 
process before feature extraction and also is the important step in the process 
of FR. Feature extraction is mainly to give an effective representation 
of each image, which can reduce the computational complexity of the 
classification algorithm and enhance the separability of the images to get a 
higher recognition rate. While classification is to distinguish those extracted 
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features with a good classifier. Therefore, an effective face recognition 
system greatly depends on the appropriate representation of human face 
features and the good design of classifier [10].

<�� �	�	��� �	� �	����	�� ���� ����������� ������
����������������������
feature selection methods have been presented, such as: spectral feature 
selection (SPEC) [11], multi-cluster feature selection (MCFS) [12], 
minimum redundancy spectral feature selection (MRSF) [13], and joint 
embedding learning and sparse regression (JELSR) [14]. In addition, 
wavelet transform is popular and widely applied in face recognition system 
for its multi-resolution character, such as 2-dimensional discrete wavelet 
transform [15], discrete wavelet transform [16], fast beta wavelet networks 
[17], and wavelet based feature selection [18] [19] [20].

After extracting the features, the following work is to design an effective 
������
	���������
������� ����� ����#����� �	� ���	� ���	� ���� �	� ������ ��������
<�����������	��������
��������������	��������	����������������������̄ ~~�
��{���������~~��������+����������¶~��������������	�����������
	�����������
addition, random weight network (RWN) is proposed in some articles [26] 
����������	�	���	��������	������������	������	���������	������	�������
	��
for FR [28] [29].

��� ���� ���	��� �	� 
���� ���	� ����	� ��	����	������ ��� 	�������	� �	�
interference of noise and redundant information, reduce the effects of 
environmental factors on images and highlight the important information of 
����	�������	����	����	��������	���������	����	��	��	
��	��������	��	�����
features, it is well known that the original face images often need to be 
�	����	��	�	��	������	������#	����������������	�������
	�����	�����#	����	�
of the huge computational cost. So PCA and 2D-PCA are used to extract 
geometric features from preprocessed images, reduce their dimensionality 
for computation and attain a higher level of separability. At last, we propose 
a novel deep learning algorithm combining unsupervised and supervised 
learning named deep belief network embedded with Softmax regress 
(DBNESR) to learn hierarchical representations for FR; as a comparison 
with the algorithms only based on supervised learning, again design many 
�����������	��������
	����������	�	'�	���	��������������	��	�	��	����	�	���
of the algorithm.

The proposed DBNESR has several important properties, which are 
summarized as follows: 1) Through special learning, DBNESR can provide 
effective hierarchical representations [30]. For example, it can capture 
the intuition that if a certain image feature (or pattern) is useful in some 
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locations of the image, then the same image feature can also be useful in 
other locations or it can capture higher-order statistics such as corners and 
������������������#	����	������	����������������	���	��
���#"	��������	��#	����
considered (e.g., faces). 2) DBNESR is similar to the multiple nonlinear 
functions mapping, which can extract complex statistical dependencies 
����� ��+���	�������� �	������ ������� `	����� ���	�|� ���� 	�
��	����� �	����
deep hierarchical representations by re-using and combining intermediate 
concepts, allowing it to generalize well across a wide variety of computer 
vision (CV) tasks���������������	��	���������������	�������
�����������������
others. 3) Further, an end system making use of deep learning hierarchical 
representations features can be more readily adapted to new domains.

The analysis and experiments are performed on the precise rate of face 
recognition. The conducted experiments validate: Firstly, the proposed 
DBNESR is optimal for face recognition with the highest and most 
stable recognition rates; Second, the deep learning algorithm combining 
unsupervised and supervised learning has better effect than all supervised 
learning algorithms; Third, hybrid neural networks has better effect than 
single model neural network; Fourth, the average recognition rate and 
variance of these algorithms in order of largest to smallest are respectively 
shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and 
BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR; At last, it 
�	$	�����	����������	��	�	�������������	����	�#�����^�������	�����������
����#������������	�������������
��������	����	���������

The remainder of this paper is organized as follows. Section 2 reviews 
the images preprocessing. Section 3 introduces the feature extraction 
�	�������	���������	������ �	�������
	������ ���	����	�� �	���������	������
�����	�������	�������	�������
	�����#�����������	����	���������	����	��
learning proposed by us. Experimental results are presented and discussed 
in Section 6. Section 7 gives the concluding remarks.

IMAGES PREPROCESSING

Images often appear the phenomenon such as low contrast, being not clear 
and so on in the process of generation, acquisition, input, etc. of images due 
to the influence of environmental factors such as the imaging system, noise 
and light conditions so on. Therefore it needs to make images preprocessing. 
The purpose of the preprocessing is to eliminate the interference of noise 
and redundant information, reduce the effects of environmental factors 
on images and highlight the important information of images [31]. 
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Images preprocessing usually includes gray of images, images filtering, 
gray equalization of images, standardization of images, compression of 
images (or dimensionality-reduced) and so on [32]. The process of images 
preprocessing is as following.

���� ����� ���
��� �����	
��� 	̈� ��	� �	����� 
��	����� ��� ���	�
smoothing denoising for images. This method not only can 
effectively restrain the noise but also can very well protect the 
#���������~	�����
��	���������������������	�����	�������������������
pixel point and all others pixel points within its neighborhood as 
the size of grey value, sets the median of the sequence as the gray 
value of the pixel point, as shown in Equation (1).

     (1)
�	�	��������	�
��	�����������������	��	�����	������»������	���	�����


��	����������	�	'�	���	�������	�#����
2)  Histogram equalization:- The purpose of histogram equalization 

is to make images enhancement, improve the visual effect of 
images, make redundant information of images after preprocessing 
less and highlight some important information of images. 

Set the gray range of image A(x,y) as [0, L] , image histogram for HA(r) 
, Therefore, the total pixel points are:

      (2)
Making normalization processing for the histogram, the probability 

density function of each grey value can be obtained:

      (3)
The probability distribution function is:

    (4)
Set the gray transformation function of histogram equalization as the 

limited slope not reduce continuously differentiable function s = (Tr), input 
it into A(x, y) to get the output B (x, y) . HB (r) is the histogram of output 
image, it can get

      (5)
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     (6)
where, . Therefore, when the difference between the 

molecular and denominator of HB (r) is only a proportionality constant, HB 
(r) is constant. Namely

      (7)

    (8)
In order to make the scope of s for [0, L] , can get C = L. For discrete 

case the gray transformation function is as following:

    (9)
where, rk is the kth grayscale, nk is the pixel number of kr, n is the total 

��'	������#	���������	����	�����	����������������_{����
We make the histogram equalization experiment for the images in the 

back.
3)  Compression of images (or dimensionality-reduced):- It is 

well known that the original face images often need to be well 
�	��	�	��	�� ����	��� ��� #	���� ������ ����� �	� ������
	�� ���	�����
because of the huge computational cost. As one of the popular 
representations, geometric features are often extracted to attain 
a higher level of separability. Here we employ multi-scale two-
dimensional wavelet transform to generate the initial geometric 
features for representing face images.

We make the multi-scale two-dimensional wavelet transform experiment 
for the images in the back.

FEATURE EXTRACTION

There are two main purposes for feature extraction: One is to extract 
characteristic information from the face images, the feature information can 
classify all the samples; The second is to reduce the redundant information 
of the images, make the data dimensionality being on behalf of human faces 
as far as possibly reduce, so as to improve the speed of subsequent operation 
process. It is well known that image features are usually classified into four 
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classes: Statistical-pixel features, visual features, algebraic features, and 
geometric features (e.g. transform-coefficient features).

1)  Extract features with PCA:- Suppose that there are N facial 
images  is column vector of M dimension. All samples can 
be expressed as following:

      (10)
Calculate the average face of all sample images as following:

       (11)
Calculate the difference of faces, namely the difference of each face with the 
average face as following:

     (12)
Therefore, the images covariance matrix C can be represented as following:

     (13)
Using the theorem of singular value decomposition (SVD) to calculate 

the eigenvalue Ïi and orthogonal normalization eigenvector Ði of AT A, through 
Equation (14) the eigenvalues of covariance matrix C can be calculated.

     (14)
Making all the eigenvalues  order in descend according to the 

size, through the formula as following:

    (15)
where, usually set a = 90% , can get the eigenvalues face subspace

. All the samples project to subspace U, as following:

      (16)
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Therefore, using front t principal component instead of the original vector 
X, not only make the facial features parameter dimension is reduced, but 
also won’t loss too much feature information of the original images.

2)  Extract features with 2D-PCA:- Suppose sample set is 
, i is the category, j is the sample of the 

ith category, N is the total number of category, M is the total 
number of samples of each category, K = NM  is the number of 
all samples.

Let  be average of all samples as follows:

    (17)
Therefore, the images covariance matrix G can be represented as follows:

   (18)
and the generalized total scattered criterion J (X) can be expressed by:

    (19)
Let Xopt be the unitary vector such that it maximizes the generalized total 
scatter criterion J (X) , that is:

    (20)
In general, there is more than one optimal solution. We usually select a 

set of optimal solutions  subjected to the orthonormal constraints 
and the maximizing criterion J (X), where, t is smaller than the dimension of 
�	���	�
��	���������'������������	����	����	������������	��	��	���������
the matrix G corresponding to t largest eigenvalues.

���� ���� 	��� ��#+#���� ��	�
��	��� �����'� ���� ������	� �	� ����������
component of the matrix Si as follows:

   (21)

Then we can get its reduced features matrix . 
We extract features respectively with PCA and 2D-PCA and compare 

their effects for the images in the back experiment.
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DESIGNING THE CLASSIFIERS OF SUPERVISED 

LEARNING

Usually the classifiers based on supervised learning are often used for FR, 
in the paper we design two types of classifiers. One is the type of supervised 
learning classifiers and the other is the classifiers combining unsupervised 
and supervised learning [33].

1)  BP neural network:- BP neural network is a kind of multilayer 
feed-forward network according to the back-propagation 
algorithm for errors, is currently one of the most widely used 
�	����� �	������ ���	��� ������ �	���������� ���� ������
������� ���
face images is an important application for BP neural network in 
�	�
	����������	����	��������������������
�������

The network consists of L layers as shown in Figure 1. Its training 
algorithm consists of three steps, illustrated as follows [35].

2)  Hybrid BP neural networks (HBPNNs):- When the number 
scale of human face images isn’t big, generalization ability and 
operation time of single model BP neural network are ideal, and 
�����	�����	��	�������#	��������	���
���������	��	����	���������	�
of BP network will become more complicated, which causes the 
time of network training to become longer, slower convergence 
rate, easy to fall into local minimum and poorer generalization 
ability and so on.

In order to eliminate these problems we design the hybrid BP neural 
networks (HBPNNs) composed of multiple single model BP networks to 
replace the complex BP network for FR. Hybrid networks have better fault 
tolerant and generalization than single model network, and can implement 
distributed computing to greatly shorten the training time of network [36].

<	����	���	������	���������#�����	�������������
	� is to divide a K-class 
����	���������
�����������������	�	��	����+����������	���������
��������<���
���������	��������	'�������
����������#�	���	������	����������	������	�
������
����������#�	��������	����	���������	������	����	������	���������	�
���#��	����������#�����	������������
	������	������	�������	����������
multiple inputs single output integrated, a BP network is a child network 
only being responsible for identifying one of K-class model category and 
parallel to each other between different subnets. In reference of Figure 1 the 
���	��
���	����¯�����������������?����	���
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Figure 1. Single model BP neural network.

����	������	����������������������	�����	�������������
��	������	��
�	������ ������
��	��� ���������'�������� �	� �����+������� �	����������������
Therefore, it selects standard three-layer BP neural network as the subnets 
for hybrid networks. For each subnets of hybrid networks, the number 
of neurons of input layer corresponds to the dimensions of face feature 
extraction, the number of neurons of output layer is 1. The number of 
neurons of hidden layer is calculated by the following empirical formula:

      (22)
where, m are the number of neurons of output layer, n are the number of 

neurons of input layer, a is constant between 1 - 10 [38]. If the dimensions 
of face feature extraction are X, the structure of each subnets of the hybrid 
networks is as following:

     (23)
The structure of BP neural network is as following:

     (24)
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The structure of subnets is simpler than the structure of single model 
BP neural network. When the structure of networks is complex, every 
increasing a neural the training time will greatly increase. In addition, with 
the size of networks gradually becoming larger, more and more complex 
network structure is easy to have slow convergence, prone to fall into local 
minimum, to have poor generalization ability and so on. By contrast, the 
�#�����	�������#��	��������	���#�	��������#��������	����#�	�����	�
��	���
������
	�������	�����	���	�����������	�������������

Figure 2. Hybrid BP neural networks (HBPNNs).

3)  RBF neural network:- Radial Basis Function (RBF) simulates 
the structure of neural network of the adjustment and covering 
each other of receiving domain of human brain, can approximate 
any continuous function with arbitrary precision. With the 
characteristics of fast learning, won’t get into local minimum.

The expression of RBF is as following [39]:

      (25)

Where, , Euclidean distance of x to c is . The radial basis 
function most commonly used is the Gaussian function for RBF neural 
network as following:

     (26)
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�	�	��Ñ�����	����������	������������������#��������������������	����	�����
construct the function as following:

   (27)
There are some different for ci of each radial basis function and the 

weight wi. The concrete process of training RBF is as follows.
For the set of sample data , we use Equation (27) with M hidden 

nodes to classify those sample data.

   (28)
The number of hidden nodes is chosen to be a small integer initially in 

applications. If the training error is not good, we can increase hidden nodes 
to reduce it. Considering the testing error simultaneously, there is a proper 
���#	��������	�����	�������������������<	����	��
���	������?���������
in Figure 3.

4)  Hybrid RBF neural networks (HRBFNNs):- The hybrid RBF neural 
networks (HRBFNNs) are composed of multiple RBF networks to 
replace RBF network for FR. Hybrid networks have better fault 
tolerant, higher convergence rate and stronger generalization than a 
single model network, and can implement distributed computing to 
greatly shorten the training time of network [40].

If the dimensions of face feature extraction are n, the structure of each 
subnets of the hybrid networks is as following:

   (29)
The structure of RBF neural network is as following:

    (30)
The structure of subnets is simpler than the structure of RBF neural 

network. In addition, when the structure of networks is complex, every 
increasing a neural the training time and amount of calculation will greatly 
����	��	��<	����	��
���	�����	�¯��?���������������?����	���

5)  Support Vector Machine (SVM):- SVM is a novel machine 
learning technique based on the statistical learning theory that 
��������
�������	�����������	�+����	�����������	�	��������	��
`���������������	�#������������
����������#�	�|������������������
training data in high dimensional feature space, and new test data 
����#	�������
	��#���	��	�����������	�+����	���{�������
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Supposing there are two classes of examples (positive and negative), the 
��#	������������	�	'����	� ���µ{������	�����	�	'����	� ���_{��<	����#	��
of positive and negative examples respectively is n and m. The set are 
given positive and negative examples for training. The set are the labels 

of i x , in which . 

Figure 3. RBF neural networks.

Figure 4. Hybrid RBF neural networks (HRBFNNs).
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SVM is to learn a decision function to predict the label of an example. The 
optimization formulation of SVM is:

    (31)
where, Òi�����	������������#�	������������������	����������������������
	��

training examples. This is a quadratic programming problem, use Lagrange 
multiplier method and meet the KKT conditions, can get the optimal 
������
���������������������	��#��	����#�	���

   (32)
where,  are to the parameters to determine the optimal 

������
�������������	��  is the dot product of two vectors.
For the nonlinear problem SVM can turn it into a high dimensional 

����	�#���	�������	���������������������������	��	���������������
�������
surface. Therefore, the original problem becomes linearly separable. As 
can be seen from Equation (32) if we know dot product operation of the 
������	������������	��	���������������
�������������	�����#	��#����	��#��
simple calculation. According to the theory of Mercer, for any ��`'|�Ó������

    (33)
The arbitrary symmetric function  will be the dot product of a 

certain transformation space. Equation (32) will be corresponding to:

    (34)
This is SVM. There are a number of categories of the kernel function K (x, 
xi):

�� The linear kernel function ;
�� The polynomial kernel function  ,where s, c and 

d are parameters;

�� The radial basis kernel function, ��	�	��Ô� ���
the parameter;

�� The Sigmoid kernel function , where, s and c 
are parameters.
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The model figure of SVM [43] [44] [45] is shown in Figure 5. SVM is 
essentially the classifier for two types. Solving multiple classification 
problems needs to make more appropriate classifier. 

<	�	� ��	� ���� ����� �	����� ���� �¶~� ��� ��������	� �	� ������
	�� ����
�������	� ������
��������� ��	� ��� �	� ���	��� �	����� ���	��� ������� �	�
objective function to use an optimization problem to solve the multiple 
������
������������	�	����<����	��������������������������������	'�����
����	���	��������	������	����	��������#�������������	����+������
	��
������������������	�������
�������������
	����

Figure 5. Support Vector Machine (SVM).

The method has two ways: 
�� One-Against-One: Build a hyper-plane between any two classes, 

to the problem of k classes needing to build �������
�������
planes. 

�� ��	+�������+�	+�	����<	�������
�����������	� ���#�����#	��		��
one category and other multiple categories, to the problem of k 
�����	��������		��������#�������������
�����������	��

We will use two methods of “One-Against-One” and “One-Against-
the-Rest” for the experiment and choose the method with better effect to 
�����������	��������	�������
�������������
	�������¶~�
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���� �������� �����������	� �������	� �����	� ���������� ���!���"
�#$���� %&'**�� %+&�**��,0�� ������������ The different 
������
	��� ��	� ����	�	��� �	��������	�� ?������ ��� �������	�
������
	��� ���	�������� �	��� �	��	����	� ������	�������� ���� ���	�
������
�������	��	���������#����	�������	��������	�	���

Feature fusion and decision-making fusion are of two main methods 
���������
	����������?	����	���������������	����������������#	�����	�������
���	�	���	�	���	���	��������	��	������+���������������<	����	��
���	�
of MCDFC is shown in Figure 6.
We use the weighted voting for decision fusion of each classifier:

     (35)
where, wi� ��� �	��	�������	���������
	�������	����	����������
�������

result, Õi� ��� �����#�	�� <	� 
���� ������
������� �	����� ��� �������	�� #�� 	���
������
	����������������	������������	���	�����������������

    (36)

where, � ��� �	�
���� ������
������� �	����� ��������	��������� ��� �	�
category y with the maximum, � ��� �	� ������
������� �	����� ��� �	� ���
������
	���'�����	������������������������	����	������	���  indicates 
�����	�������
��������	���������	����������
	���		������	����������������	�
category y and combines with the voting weight wi�����	�������
	�

Figure 6��~������	�������
��������	��������������������
	��`~��?�|�
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DESIGNING THE CLASSIFIER COMBINING  

UNSUPERVISED AND SUPERVISED LEARNING

Supervised learning systems are domain-specific and annotating a large-
scale corpus for each domain is very expensive [46]. Recently, semi-
supervised learning, which uses a large amount of unlabeled data together 
with labeled data to build better learners, has attracted more and more 
attention in pattern recognition and classification [47]. In the paper we 
design a novel classifier of semi-supervised learning, namely combining 
�����	����	�� ���� ���	����	�� �	������Ç�		�� #	��	�� �	������ 	�#	��	��
with Softmax regress (DBNESR) for FR. DBNESR first learns hierarchical 
representations of feature by greedy layer-wise unsupervised learning in a 
feed-forward (bottom-up) and back-forward (top-down) manner [48] and 
then makes more efficient classification with Softmax regress by supervised 
learning. Deep belief network (DBN) is a representative deep learning 
algorithm, has deep architecture that is composed of multiple levels of non-
linear operations [49], which is expected to perform well in semi-supervised 
learning, because of its capability of modeling hard artificial intelligent 
tasks [50]. Softmax regression is a generalization of the logistic regression 
in many classification problems.

1)  Problem formulation:- The dataset is represented as a matrix:

    (37)
where, N is the number of training samples, M is the number of test 

samples, D is the number of feature values in the dataset. Each column of X 
corresponds to a sample X. A sample which has all features is viewed as a 
vector in , where the jth coordinate corresponds to the jth feature.

Let Y be a set of labels correspond to L labeled training samples and is 
denoted as:

    (38)
where, C is the number of classes. Each column of Y is a vector in  , 

where, the jth coordinate corresponds to the jth class:
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     (39)
We intend to seek the mapping function  using all the samples in 

order to determine Y when a new X comes.
2)  Softmax regression:- Softmax regression is a generalization 

��� �	� ��������� �	��	������ ��������������
����������#�	��� ��{���
����������	��	�������������#������������
����������#�	��������������

 . The hypothesis function is as following:

     (40)
Training model parameters vector , which can minimize the cost 

function:

   (41)
Softmax regression� ��� ���� ����� ������
������� ���#�	���� ������ ����

. It is used for each given sample X, using hypothesis function 
to estimate the probability value  for each category j. The hypothesis 
function is as following:

   (42)
where,  denote model parameters vector, the cost function is 

as following:

    (43)
where, 1{�} denotes:

1 {The value of expression is true} = 1 or 1 {The value of expression is 
false} = 0      (44)
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There are no closed form solutions to minimize the cost function Equation 
(43) at present. Therefore, we use the iterative optimization algorithm (for 
example, gradient descent method or L-BFGS). After derivation we get 
gradient formula is as following:

  (45)
Then make the following update operation:

    (46)
�	�	����	���	���	����������	�

3)  Deep belief network embedded with Softmax regress (DBNESR):- 
������	����~�������������
	����	������	������!�����~����	�
(RBM) [52] [53] of unsupervised learning networks as building 
blocks for the multi-layer learning systems and uses a supervised 
�	�������������������	�����`#���������������|�����
�	+�������
after pre-training. Its architecture is shown in Figure 7. The deep 
architecture is a fully interconnected directed belief nets with one 
input layer  hidden layers  and one 
labeled layer at the top. The input layer v1 has D units, equal to 
the number of features of samples. The label layer has C units, 
equal to the number of classes of label vector Y. The numbers of 
������ ���� ���	�� ���	���� ����	������ ��	� ��	+�	
�	�� ���������� ���
the experience or intuition. The seeking of the mapping function, 
	�	��������������	������	����#�	�����
�������	������	�	������	�

 for the deep architecture [54].
 The semi-supervised learning method based on DBN architecture 

can be divided into two stages: First, DBN architecture is 
constructed by greedy layer-wise unsupervised learning using 
��~� ��� #�������� #������� ���� �����	�� ��	� �����!	�� ��� 
��� �	�
parameter space W with N layers. Second, DBN architecture is 
trained according to the log-likelihood using gradient descent 
�	�������� ��� ��� ���
����� ���������!	� ���		�� �����	����	�������
supervised learning directly, the unsupervised learning stage can 
abstract the hierarchical representations feature effectively, and 
��	�	�����	�+
����������	����	����	������������<	�������������
�����	��������	�	��������+���������
�	+����������	����	+���������
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Figure 7. Architecture of deep belief network embedded with Softmax regress 
(DBNESR).

?��������	����	���	���������	��	
�	��	�	�	��������	�"��������
���������
as [50]:

  (47)

where, are the model parameters:  is the symmetric 
interaction term between unit i in the layer and unit j in the layer hk , 

is the ith bias of layer is the jth bias of layer 
is the number of units in the kth layer. The network assigns a probability to 
every possible data via this energy function. The probability of a training 
data can be raised by adjusting the weights and biases to lower the energy of 
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that data and to raise the energy of similar, confabulated data that  would 
prefer to the real data. When we input the value of , the network can learn 
the content of by minimizing this energy function.

    (48)

     (49)
�	�	�� °`�|� �	���	�� �	� �������!���� ���������� <	� ������������

distributions over are given as:

     (50)

     (51)

The probability of turning unit j is a logistic function of the states 
and  :

    (52)
The probability of turning unit i is a logistic function of the states of hk 

and  :

     (53)
where, the logistic function been chosen is the sigmoid function:

      (54)
The derivative of the log-likelihood with respect to the model parameter 

wk can be obtained from Equation (48):

     (55)
where,  denotes an expectation with respect to the data distribution and 

Model ��	���	�����	'�	�������������	��	�������	�������#�������	
�	��
by the model [55]. The expectation  cannot be computed analytically. In 
practice, is replaced by  , which denotes a distribution of samples 
when the feature detectors are being driven by reconstructed . This is an 
approximation to the gradient of a different objective function, called the 
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contrastive divergence (CD) [56] [57] [58] [59]. Using Kullback-Leibler 
distance to measure two probability distribution “diversity”, represented by

, is shown in Equation (56):

    (56)
where, p0 denotes joint probability distribution of initial state of RBM 

network, pn denotes joint probability distribution of RBM network after n 
�������������������~�����������~���	������`~�~�|���¹��	���	�� "�����
probability distribution of RBM network at the ends of MCMC. Therefore, 
CDn can be regarded as a measure location for n p between p0 and p¹. It 
constantly assigns pn to pn and gets new p0 and pn. The experiments show 
that CDn will tend to zero and the accuracy is approximate of MCMC after 
�����������	����������	����������	�����������	�	�����<	��������������	������
RBM is shown in Figure 8.

We can get Equation (57) by training process of RBM using contrastive 
divergence:

     (57)
�	�	��Ö�����	��	����������	��<	���	������	�	������#	���"���	��������

      (58)
where, μ is the momentum.

The above discussion is based on the training of the parameters between 
hidden layers with one sample x. For unsupervised learning, we construct 
the deep architecture using all samples by inputting them one by one from 
layer h0, train the parameters between h0 and h1. Then 1 h is constructed, 
the value of h1 is calculated by h0 and the trained parameters between h0 
and h1. We also can use it to construct the next layer h2 and so on. The deep 
architecture is constructed layer by layer from bottom to top. In each time, 
the parameter space WK� ��� �����	�� #�� �	� ��������	�� ����� ��� �	� `�� _{�|�
layer. Accord to the WK calculated above, the layer hk is obtained as below 
for a sample x fed from layer h0:

  (59)
For supervised learning, the DBM architecture is trained by C labeled 

data. The optimization problem is formulized as:
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  (60)
namely, to minimize cross-entropy. Where, pk denotes the real label 

probability and  denotes the model label probability

Figure 8. Training process of RBM using contrastive divergence.

The greedy layer-wise unsupervised learning is just used to initialize the 
parameter of deep architecture, the parameters of the deep architecture are 
updated based on Equation (58). After initialization, real values are used in 
all the nodes of the deep architecture. We use gradient-descent through the 
whole deep architecture to retrain the weights for optimal classification.
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EXPERIMENTS

1)  Face Recognition Databases:- We selected some typical 
databases of images, for example ORL Face Database, which 
consists of 10 different images for each of the 40 distinct 
individuals. Each people is imaged in different facial expressions 
and facial details under varying lighting conditions at different 
times. All the pictures are captured with a dark background and 
the individuals are in an upright and frontal position; the facial 
gestures are not identical, expressions, position, angle and scale 
are some different; The depth rotation and plane rotary can be 
��� �����Ø�� �	� ����	���� ���	��������������������{�Á�����	��
For each face database as above, we randomly choose a part of 
images as training data and the remaining as testing data. In this 
���	���������	������	$	����	�����	���������������	�
��	�����������
������
������������������	��������������	��#������Á����	���
individual image as training data and the rest as testing data. At 

������������	�������#	����	���	����	�����������	����	�	'���������

All the experiments are carried out in MATLAB R2010b environment 
running on a desktop with  TM2 Duo CPU T6670 @2.20GHz and 
4.00 GB RAM.

2)  Relevant experiments:- Experiment 1. In this experiment, we 
��	� �	����� 
��	����� ��� ���	� ��������� �	�������� ���� ����	��
preprocessing and get the sample Figure 9 as following: Seeing 
������	������������������	�����	����	����	�����	�����	��
��	�����
eliminate most of noise interference.

Experiment 2. In this experiment, we make histogram equalization for 
�	�����	����	����	�����������	���	������	�
���	���������������

From Figure 10 and Figure 11 we can see: After histogram equalization, 
the distribution of image histogram is more uniform, the range of gray 
increases some and the contrast has also been stronger. In addition, the 
����	� ���	�� ��������� 	*����!������ #��������� 	�������	�� �	� ��$�	��	� ���
illumination, expanded the representation range of pixel gray, improved the 
contrast of image, made the facial features more evident and is conducive to 
follow-up feature extraction and FR
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Figure 9��?��	�����	�������	�����
��	������	���������	�����
��	�����

Figure 10. Face images before histogram equalization versus after histogram 
equalization. (a) Original image; (b) Image after histogram equalization.
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Figure 11. Histogram of original image versus histogram of image after his-
togram equalization. (a) Histogram of original image; (b) Histogram of image 
after histogram equalization.

Experiment 3. In this experiment, we employ multi-scale two-
dimensional wavelet transform to generate the initial geometric features 
�����	��	�	���������	�����	�������	�	'�	���	����	��	���	������	�
���	��
as following: From Figure 12 we can see: Although for compression of 
images (or dimensionality-reduced), LL sub-graph information capacity 
has decreased some, but still has very high resolution and the energy of 
wavelet domain did not decrease a lot. LL sub-graph can be well made for 
the follow-up feature extraction.

Experiment 4. In this experiment, we extract features respectively with 
PCA and 2D-PCA and compare their effects as following:

?����?����	�{���	������		������	�
�����	�	��������������������	����
contribution rates�	'�����	��������+������	���	�� �����	�
�����	�	����
principal components contribution rates extracted with PCA. From Figure 
14 we can see when the principal components are extracted for 20, the 
principal component contribution rate of 2D-PCA is greater than 90%, 
while the principal component contribution rate of PCA is less than 80%. 
Accordingly, 2D-PCA can use less principal component to better describe 
the image than PCA.
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Figure 12. Multi-scal two-dimensional wavelet transform.

Figure 13������������������	���	�	����
���	���#������������������������	�����
ordinate: energy value.

Figure 14. Principal component accumulation contribution rate. Abscissa: prin-
cipal components; ordinate: total energy value.
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Figure 15 is the comparing results image of reconstruction with the feature 
respectively extracted with PCA and 2D-PCA. We can see that the images 
of reconstruction by 2D-PCA are clearer than the images of reconstruction 
by PCA when extracting same number of principal components. The 
reconstruction face extracted 50 principal components by 2D-PCA is almost 
same clear with the original image. 2D-PCA has better effect than PCA.

Experiment 5. In this experiment, we compare the recognition rate of 
the methods respectively based on PCA + BP, WT + PCA + BP, PCA + 
HBPNNs and WT + PCA + HBPNNs. The experiment is repeated many 
times and takes the average recognition rate. The experimental results are 
shown in Table 1. As shown in Table 1, Recognition rates of HBPNNs are 
������	���	�����	�����#	����������	�������������	����	�������
	��`������
HBPNNs) recognition rates of the methods based on WT + PCA are higher 
than them based on PCA.

Experiment 6. This experiment compares the recognition rate of the 
methods respectively based on WT + 2D-PCA + RBF and WT + 2D-PCA 
+ HRBFNNs. The experiment is repeated for many times and takes the 
average recognition rate. The experimental results are shown in Table 2.

As shown in Table 2, Recognition rates of HRBFNNs are improved very 
greatly being compared to RBF. Therefore, HRBFNNs being used for FR is 
more feasible.

Experiment 7���	����	��¶~����	��	���������	�������
	�������������	���
�������� �	� �������	� ������
������� ���#�	��� �		��� ��� �	���������� ���	�
����������	�������
	��� 	̈��������	������	��������£��	+�������+��	¥�����
“One-Against-the Rest” for the experiment and choose the method with 
#	��	��	��	�����������������	��������	�������
�������������
	�������¶~��<	�
experiment is repeated for 20 times and takes the average recognition rate. 
The experimental results are shown in Table 3.
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Figure 15. Reconstructed images with 2D-PCA and PCA versus original image 
(t: principal component number). (a) Original image; (b) PCA principal com-
ponent reconstruction images; (c) 2D-PCA principal component reconstruction 
images.

Table 1. Average recognition rates of different recognition methods.

Table 2. Average recognition rates of different recognition methods.

As shown in Table 3, “One-Against-One” SVM has higher recognition 
rate than “One-Against-the-Rest” SVM and at the same time has lower wrong 
number. Therefore, we use the way of “One-Against-One” to reconstruct the 
�¶~�������
	������	���!	�?��

Experiment 8�� ��� �	� ���	�� �	� ���������� �	� �������	� ������
�������
�	������� ������� ������
	�� `~��?�|Ç�#���� ¯�����+¯��?���+�¶~�
������
	��� ��� ����	'�	���	���� ������	�� ��������	�	�
��	�������~��?���
�	� 
���� ���	� �	���������� 	'�	���	��� �	��	����	��� #��	�� ��� ¯�������
HRBFNNs and SVM, then use the decision function to make fusions for 
������
������� �	������ ��� ��		� ������
	��� ���� �	�� ������
������� �	������ ���
MCDFC. The experiment is repeated for 20 times and the experimental 
results are shown in Table 4 and in Figure 16.
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As shown in Figure 16, the recognition effect of MCDFC is always not 
lower than the average level of other three kinds of classifiers and in almost 
all cases the effect of MCDFC is optimal.

To eliminate the error of single experiment and greatly reduce the 
random uncertainty, Table 5 lists the average recognition rates of each 
������
	�� ���� ��� ���	�� ���� �	� �������	� ��� 	��� ������
	��� ��� ���� #	� �		��
������	�	'�	���	������	�����������	��������	�������
��������	��������������
������
	��`~��?�|Ç�#����¯�����+¯��?���+�¶~�������
	������	�
best effect for FR, has the minimum variance, can effectively improve the 
generalization ability and has high stability.

Experiment 9. In this experiment, in order to validate the performance 
�������������	����������Ç���^������������������?����	�������	�����
proposed algorithm with some other methods such as BP, HBPNNs, RBF, 
HRBFNNs, SVM and MCDFC.

Table 3. Average recognition rates of different recognition methods

Table 4. Recognition rates of different recognition methods for 20 times

Table 5. Average recognition rates and variances of different recognition meth-
ods.
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Figure 16��<	�����	�
���	������	�������������	���������	�	����	�����������	�-
ods.

In the experiment we set up different hidden layers and each hidden 
layer with different neurons. The architecture of DBNESR is similar with 
DBN, but with a different loss function introduced for supervised learning 
stage. 

For greedy layer-wise unsupervised learning we train the weights of 
	��� ���	�� ���	�	��	����� ���� �	� ����	�	��� 	������ �	� ����� ���	� 
�	+
tuning supervised learning for the different epochs. 

All DBNESR structures and learning epochs used in this experiment are 
separately shown in Table 6. The number of units in input layer is the same 
as the feature dimensions of the dataset.

Almost all the recognition rates of these DBNESR structures are more 
than 90%, in particular the effects of the models of 500-1000-40 and 1000-
500-40 are best and most stable. 

Therefore, the DBNESR structures used in this experiment are 1000-
500-40, which represents the number of units in output layer is 40, and in 2 
hidden layers are 1000 and 500 respectively. 

The learning rate is set to dynamic value, which the initial learning rate 
is set to 0.1 and becomes smaller as the training error becoming smaller. The 
experimental results are shown in Table 7, Table 8 and in Figures 17-19.
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Table 6. Different hidden layers of DBNESR and learning epochs used in this 
experiment

Table 7. Recognition rates of different recognition methods for 20 times

Table 8. Average recognition rates and variances of different recognition meth-
ods
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Figure 17��<	�����	�
���	������	�������������	���������	�	����	�����������	�-
ods.

Figure 18. The bar charts of average recognition rate of different recognition 
methods.
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Figure 19. The bar charts of variance of different recognition methods.

As shown in Table 7, Table 8 and in Figures 17-19, our proposed 
��������Ç���^������������������?��������������������	���	��	����������
rates of DBNESR is highest and most stable, namely there is the largest 
average recognition rate and the smallest variance.

CONCLUSION

The conducted experiments validate that the proposed algorithm DBNESR 
is optimal for face recognition with the highest and most stable recognition 
rates, that is, it successfully implements hierarchical representations’ feature 
deep learning for face recognition. You can also be sure that it reflects 
hierarchical representations of feature by DBNESR in terms of its capability 
of modeling other artificial intelligent tasks, which is also what we’re going 
to do in the future.
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ABSTRACT

Sentiment analysis is part of the field of natural language processing (NLP), 
and its purpose is to dig out the process of emotional tendencies by analyzing 
some subjective texts. With the development of word vector, deep learning 
develops rapidly in natural language processing. Therefore, the text emotion 
analysis based on deep learning has also been widely studied. This article is 
mainly divided into two parts. The first part briefly introduces the traditional 
methods of sentiment analysis. The second part introduces several typical 
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methods of sentiment analysis based on deep learning. The advantages and 
disadvantages of sentiment analysis are summarized and analyzed, which 
lays a foundation for the in-depth research of scholars.

Keywords:- Deep Learning, Sentiment Analysis, Convolutional Neural 
Network, Recurrent Neural Network

INTRODUCTION

Text sentiment analysis is also known as opinion mining and tendency 
analysis. In short, it is the process of analyzing, processing, inducing, and 
inferring subjective text with emotion. It has a wide range of applications 
in public opinion monitoring, stock and movie box office forecasting, and 
consumer preference analysis [1]. Traditional affective analysis methods 
are mainly based on affective dictionary and machine learning, but there 
are some difficulties in using these two methods for affective analysis. 
Firstly, the text is unstructured. The length of the text is difficult to fit the 
classic machine learning classification model. Secondly, feature extraction 
is difficult. The text may be talking about a certain topic, or it may be talking 
about a person, a product, or an event. Not only does it take a lot of effort 
to extract features manually, but the results are not good. Thirdly, there 
is a link between words, and it is also difficult to incorporate this part of 
the information into the model. “How to reduce manual work to a greater 
extent, and can quickly mine valuable information and perform sentiment 
analysis¥Ç��� �� �	����� ��� �������� �#���� �	� �#��	� ����	��� �		�� �	�������
successfully entered everyone’s field of vision.

Deep learning is a general term for a series of machine learning 
algorithms based on feature self-learning and deep neural networks (DNN). 
Its advantages are its strong discriminative ability and feature self-learning 
ability. It is very suitable for high-dimensional, unlabeled, and big data 
features. This article divides text sentiment analysis based on deep learning 
������	������������	�	�����������{|����	$����������	�����������	��	�	����
classic methods of text sentiment analysis, and point out the advantages of 
deep learning; 2) Introduce several existing mature deep learning methods 
and make relevant notes; 3) Summarize the existing problems in text 
sentiment analysis based on deep learning, and put forward suggestions and 
prospects.
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BRIEF REVIEW ON THE RESEARCH PROGRESS OF 

TEXT SENTIMENT ANALYSIS

Text sentiment analysis is also called sentiment mining. The core of sentiment 
analysis is to classify the data you have, The first is the subjective and 
objective classification of text to reduce the interference caused by objective 
text to the analysis, and the other is to classify subjective texts [2], and 
dividing emotions into several categories according to people’s emotional 
expressions for analysis of certain situations; In addition, the analyzed 
text can be divided into chapter-level, paragraph-level, and sentence-level. 
Different text lengths will result in different methods used in processing 
text. The following mainly introduces some mainstream methods of 
subjective information sentiment classification, and points out the problems 
and deficiencies in the current stage of sentiment classification research.

Emotion Dictionary-Based Approach

The sentiment dictionary-based sentiment analysis method is an unsupervised 
analysis method, and usually requires the method of “affective dictionary 
+ manual judgment” for analysis. Turney [3] divides emotions into two 
categories: excellent and poor, and then introduces the method of pointwise 
mutual information (PMI) to calculate the semantics between the selected 
word and the excellent or poor words, respectively. The similarity is used 
to find the semantic orientation (SO) of the candidate words. The formula 
is as follows:

  (1)
Alistair et al. [4] believe that it is necessary to consider the polarity 

transition factor of each sentiment word in the current context (CVS); in 
2012, Jinan et al. [5] studied two different sentiment dictionaries and three 
different scoring methods are used for sentiment analysis. The scoring 
method includes the commonly used weighting techniques for retrieving 
data, word frequency-inverse text frequency (TF-IDF), and potential 
Dirichlet allocation (LDA) strategy. However, the above methods are all 
#��	���������
���������������	������������	�����	���	���������
�����	�������
In recent years, with the explosion of network data and the continuous 
increase of network language, this single method has been unable to solve 
the problems of a large number of unknown words and complex ambiguous 
words. But for small amounts of text, its accuracy is very high, so we can 
consider using it in combination with other methods.
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Machine Learning Methods

The core of sentiment analysis based on machine learning is effective feature 
extraction, and then using classifiers for emotion classification. In 2002, 
Pang [6] and others first used machine learning algorithms for sentiment 
classification tasks, and proposed Naive Bayes (NB), Maximum Entropy 
(ME), and Support Vector Machine (SVM) and other models for sentiment 
classification of text. Here only introduces an algorithm, taking the Weibo 
comment of an event as an example, The NB algorithm is that given several 
sentiment categories, it is assumed that the target data is independent 
between several sentiments, and then input text data to find the maximum 
probability of the target data appearing in each text category, which is the 
corresponding text categories to solve text classification problems; In recent 
years, machine learning-based sentiment classification models have been 
widely studied, which has led to rapid development of machine learning in 
sentiment analysis. The machine learning-based method runs faster, but still 
requires a lot of manual annotation and other operations. High-quality data 
integration is costly and time-consuming. Its classification performance is 
also limited by the design of complex features, and has poor adaptability in 
different fields.

INTRODUCTION TO TEXT SENTIMENT ANALYSIS 

BASED ON DEEP LEARNING

In 2006, the concept of deep learning was proposed [7], and in 2011, 
Socher [8] introduced a model based on recursive autoencoders to perform 
sentiment analysis on movie evaluation, and the effect is more obvious than 
traditional methods. In recent years, CNN, RNN, LSTM and other methods 
have been gradually applied to sentiment analysis, and their effects have 
been significant. This chapter will summarize the characteristics of deep 
learning methods and introduce the characteristics of several deep neural 
networks and their applicability in sentiment analysis of texts.

Features of Deep Learning Methods

Compared with the sentiment dictionary method and machine learning 
method, deep learning method is not perfect. It also has advantages and 
disadvantages for different types of text. In order to make it play a better role, 
the following summarizes and discusses its advantages and disadvantages.



Review of Research on Text Sentiment Analysis Based on Deep Learning 345

Firstly, deep learning methods can automatically learn multi-level 
features, replacing the tedious manual feature extraction in machine 
learning, and because of the powerful learning and expression capabilities 
of deep neural networks, the results are often more accurate than traditional 
methods. However, due to its powerful expression ability, many useless 
parameters will be generated at runtime, which requires a large number of 
data samples for network training. It can be seen that this method is more 
suitable for sentiment analysis of large amounts of data, and traditional 
methods are more accurate for sentiment analysis of small volumes of data.

Secondly, the focus of traditional machine learning methods and 
dictionary construction methods is how to build a mathematical model and 
what features to extract. However, the focus of deep learning methods is to 
�	����������	�	�
��	����	��������������	����������� ���������	��������	�
network parameters.

Thirdly, due to the powerful autonomous learning function, deep neural 
networks can automatically adjust the weights of network parameters to 
achieve the desired effect as much as possible. The same model and training 
method may be applied to different problems, but for different problems, the 
network structure and parameter weights are different, the whole structure is 
like a function, the input and output are one-to-one corresponding. Because 
��� ����� �		�� �	������� ���� #	� �����	�� ��� ����� ����	�	��� 
	���� ���� ���
achieved good results. However, due to the diversity and complexity of the 
language text, it is easy to make the emotional evaluation deviate, especially 
for the Chinese language, which is also the key to further improve the deep 
learning.

Characteristics and Applicability of Several Deep Networks

In recent years, deep network models have been continuously innovated 
and developed. Different network structures have made their respective 
characteristics and functions different. It is mainly reflected in the type of 
text (for example, long text and short text), the granularity and scale of the 
problem, and the type of the problem. In the following, some of the more 
classic deep network models are briefly analyzed and summarized in terms 
of text sentiment analysis.

Based on CNN (Convolutional Neural Network Model)
Convolutional neural network is a kind of feed forward neural network [9]. 
In recent years, it has been widely used in natural language processing, 
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speech recognition, and image processing. Its structure is mainly composed 
of an input layer, a convolutional layer, a pooling layer, a fully connected 
layer, and an output layer. The structure is shown below in Figure 1:

Figure 1. Structure of a classic convolutional neural network (Note: picture 
reference [10]).

As shown in Figure 1, taking short text as an example, the input layer is 
a vector representation of the input data, where the matrix is represented as:

      (2)
Among them, n is the word length of the sentence and k is the dimension 

of the word vector.
Next, the convolution layer performs a convolution operation on the 

input matrix and vectorizes the input data to extract local features. The result 
can be expressed as:

     (3)
Among them, ci represents the i-th eigenvalue corresponding to the 

convolution operation; W represents the weight matrix; b represents the 
bias; f represents the activation function; represents the length of the i 
to words in the sentence. After performing the convolution operation 
on the input matrix, the convolution kernel feature vector map is obtained 
as:

      (4)
among them, .

The pooling layer is an important layer in the network structure. It can 
extract important features from the feature vector map obtained from the 
previous layer. In more operations, the maximum pooling method is used for 
sampling. The obtained features are expressed as:



Review of Research on Text Sentiment Analysis Based on Deep Learning 347

   (5)
The convolution operation is used to obtain the vectorization of the 

sentence through the vectorization of the words, and then learn the vector 
representation of the sentence as a feature, which makes it more suitable 
as a way to deal with the sentiment analysis problem of short text. Not 
only can multiple channels be used for multi view feature extraction, but 
also the number of parameters can be reduced by sharing weights, but the 
main disadvantage is that the complexity is high when processing long text, 
and with the increase of convolution layer, there will be problems such as 
gradient disappearance.

Based on RNN (Recurrent Neural Network Model)
Recurrent neural network mainly includes input layer, hidden layer and 
output layer. For some text data, there may be a relationship between the 
front and back, that is, there is a temporal relationship between the data. 
The “memory function” of the recurrent neural network is reflected here. 
Compared to ordinary fully connected neural networks, each neuron of the 
recurrent neural network will remember the output value of the previous 
moment, and affect the calculation of the output value of the current moment 
to a certain extent. The structure of the recurrent neural network is shown 
below in Figure 2.
Calculated as follows:

      (6)

     (7)
Among them, x is the value of the input layer; s is the output of the 

hidden layer; U is the weight parameter when calculating from x to s; V is 
the weight parameter when calculating the hidden layer to the input layer; W 
�	��	�	�����	��	���������	�	������	���$�	��	�����	�����	�����	����	��
layer before calculation on the value of the hidden layer at the current 
moment; O represents the value of the output layer.

But the recurrent neural network has its own shortcomings. During data 
training, if a longer sequence appears, the gradient will disappear or the 
gradient cannot be updated. Therefore, RNNs have a poor ability to capture 
long text information. Based on traditional RNNs, they are more suitable 
for sentence-level sentiment analysis problems (such as Weibo reviews). 
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Hochreiter [12] and others proposed long-short-term memory networks 
(LSTMs), and Cho [13] and others proposed gated recurrent units (GRU). 
These recurrent neural network variant structures effectively solve the 
problem of long-term dependence by introducing gate layers such as forget 
gates to process input data. Text sentiment analysis belongs to a type of 
natural language processing. Words are related to each other and depend on 
each other. Therefore, the “memory function” of the recurrent neural network 
shows its advantages. It can analyze the feature associations between the 
words before and after in the sentence to extract more accurate features. 
With the introduction of LSTM, GRU and other models, the problem of 
long text gradient disappearance has been solved, making recurrent neural 
�	����������	�����	������	�
	�������	����	�����������.

Based on FNN (Fuzzy Neural Network Model)
FNN networks, the initial text representations are generally BOW and VSM 
models with great sparsity, which is more suitable for processing text-level 
sentiment analysis problems at the chapter level. Because the text set of 
the same size will cause the initial representation of the short text to be too 
sparse, the problem will not be obvious. Therefore, the short text can be 
processed by controlling the size of the text set. Model training generally 
combines unsupervised pre-training and supervised parameter adjustment; 
accordingly it can use a large amount of unlabeled data, which is also its 
advantage.

Figure 2. RNN structure based on time. (Note: picture reference [11]).

SUMMARY AND PROSPECT

<���������	�#��	$���	��	������������!	���������������	���������	'���	���-
ment analysis. It mainly introduces several different deep learning methods 
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and text data for different categories, and further summarizes and analyzes 
their unique advantages and applicability. Deep learning method saves a 
lot of complicated process of complicated feature extraction compared with 
machine learning method, but it has its own shortcomings. If there is su-
pervised deep learning, it still needs to label a large number of data sets for 
model training. In the case of unsupervised deep learning, the requirements 
for semantic association are very strict. But the understanding of semantics 
is diverse and often causes ambiguity, which affects the degree of relevance. 
Therefore, the sentiment analysis of text based on deep learning still needs 
further research, and the author will continue to work hard in this direction.
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ABSTRACT

Recognizing digits from natural images is an important computer vision 
task that has many real-world applications in check reading, street number 
recognition, transcription of text in images, etc. Traditional machine 
learning approaches to this problem rely on hand crafted feature. However, 
such features are difficult to design and do not generalize to novel situations. 
Recently, deep learning has achieved extraordinary performance in many 
machine learning tasks by automatically learning good features. In this 
paper, we investigate using deep learning for hand written digit recognition. 
We show that with a simple network, we achieve 99.3% accuracy on the 
MNIST dataset. In addition, we use the deep network to detect images with 
multiple digits. We show that deep networks are not only able to classify 
digits, but they are also able to localize them.
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INTRODUCTION

Text recognition from images is an important task that has multiple real-
world applications such as text localization [1] [2], transcription of text 
into digital format [3] [4], car plate reading [5] [6] [7] [8], automatic check 
reading [9], classifying text from unlabeled/partially labeled documents 
[10], recognizing road signs and house number [11] [12], etc. Traditionally 
hand designed features are used to for image classification [13] [14] [15] 
[16] [17]. However, these techniques require a huge amount of engineering 
effort, and often do not generalize to novel situations. 

�	�	��� �	���*�	�� ��� �		�� �	������� ��	� �����	�� 	�
��	��� ����������
learning of features that are superior to hand designed features. As a result, 
�	���	��#�	����������������
	��������������
����������	��������	�������	��
to previous methods. In this paper, we investigate using deep learning to 
classify handwritten digits, and show that with a simple deep network, we 
can classify digits with near-perfect accuracy.

We test our methods on the MNIST dataset [18]. This dataset consists of 
50,000 training digit images and 10,000 testing images and is an important 
benchmark for deep learning methods. Samples images from the dataset are 
shown in Figure 1. On this dataset, we achieve an accuracy of 99.3% on the 
test set.

We also investigate classifying multiple digits, where more than one 
digit is present in an image. An example of this task is shown in Figure 
��� 	̈��	����������	���	����������������������
	������������	������� ������
image with multiple digits. Though the number of digits and their location is 
unknown a-priori, our method is able to accurately localize and classify all 
the digits in the image.

DIGIT CLASSIFICATION WITH DEEP NETWORKS

Supervised Learning

A supervised learning task consists of two components, the input x and label 
y. For example, the input can be images of handwritten digits, or image 
of natural objects, and the label is the corresponding digit class or object 
class. The goal is to learn the correct mapping f from input x to label y. To 
accomplish this a learner is provided with examples of the correct mapping 
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 where xi is an example input and yi is the corresponding 
label provided by human annotators. Ideally after learning, f should map 
each input in the dataset  to the correct label, i.e.  The 
hope is that the learner can learn the correct mapping between x and y based 
on these examples, so that on unseen data, the learner f can also correctly 
classify.

��������������	�	��	�������������������������������	'	��#���������	�	�����
For example, the class of functions can be quadratic functions

Figure 1. Samples from the MNIST dataset.

Figure 2. Classifying multiple digits.

in this example,  are the parameters. We will denote the 
function selected by a parameter choice as f�.

To encourage the learner to select a f� that maps each xi to the correct yi 
�	��	
�	�����������������������

In general any loss function that takes a smaller value when f(xi) is 
closer to yi�����#	���	���?���������
��������������	���	�����	��������������
functions f� that outputs a probability distribution. That is for each  
is the probability the input belongs to the j-th class. Then we can use the 
cross-entropy loss
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where K is the number of classes, and   if  and equals to 0 
otherwise.

To train the model, we use gradient descent on the loss function L�. This 
is described by the following process:

{|�� 	̈��������������������������	�	������������#	���#������������	���
2)  We compute the gradient of the loss function ��L�. Computation 

of this gradient is discussed in the next section.
3)  We update the parameters by ��<�������	��������	�

direction that minimizes the loss L��� � ��� �	� �	������� ���	� ����
����������	���	����!	��<	�����	���	���	����!	���	�����	��������	���
However, step size that is too large may lead to instability or 
	�	�����	��	��	��<	�	���	�� �	� �	������� ���	�� ������ ����������
��	������	�	����������	�	��	��#��	������	���	��
�����#�	��

�|�� 	̈��	�	����������	��������������������������
The above algorithm reduces L� during each iteration. The hope is that 

when L� is minimized, f�(xi) will be close to yi, that is, the function f� we 
selected can correctly predict the label yi given xi on the training set.

However, even if f� correctly predicts every example we provided, this 
does not mean that f� will classify correctly on new data. For example, f� 
may have only memorized the training dataset. Therefore we need additional 
examples  that the learner has not seen during training. The 
learner should only be able to classify these new examples correctly if it has 
learned the correct mapping between x and y. We can compute the testing 
accuracy by dividing the number of examples f������	�����������
	��#���	�
���������#	�����	'����	���<�������	�
�����	����	�	�������	��������	�����
we use to evaluate our learner.

Deep Networks 

In the previous section we left an open question: which class of functions 
{f�} to select from during training. This section introduces an important 
function class of deep networks [19] [20] [21].

The key idea of deep learning is to compose very simple functions 
 into a very complex function . Each function 
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 is a simple function with parameters �i. Then the parameters of f is simply 
the combined parameters of all the layers . Common functions used 
in deep learning include

1)  Matrix multiplication g(x) = Ax + b where the parameters are 
matrix A and vector b.

�|�� �	���
	�����	������`�	��|�����

 
This function does not contain a parameter.

3)  Softmax function: the softmax function “squashes” a 
n-dimensional vector of arbitrary real values to a n-dimensional 
vector of real values in the range [0, 1] that add up to 1. The 
function applied to an n-dimensional input vector z is given by

 
 Note that sigmoid naturally produces a distribution because the 

output sum to 1

 
4)  Convolution [23] [24] [25] [26]: the convolution function takes as 

���������������!������!	�~�»���»������������������������������!	�~�
»���»����<	�
�����������	�����������#	����	���	�	��������������
height, while the third is the number of “channels”. This function 
takes the input z, and applies a 2D-convolution operation��	
�	��
as

 
� �	�	����������	���	���!	�����	�
��	�����������	����c is an array 

�����!	���»���»�������� �	��c combined  is the set of 
parameters of the convolution function.

�|�� ��������������������������	��������	���	����~�»���»���������
into a smaller array, e.g. of size . Usually we keep 
the number of “channels” unchanged. For example, in the digit 
������
���������������������	���	��	�����	��������	��	��������	������
a more ambiguous one, making it easier to process in the later 
steps.
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We shall denote the output of . Then  
etc. Finally, we have . Intuitively the network must map raw input 
images into highly abstract and meaningful labels, which is a highly complex 
mapping. The network accomplishes through a sequence of simple mappings 
composed together. Each function  can be viewed as one “layer” of a 
network. This function  processes the output of the previous functions  
into higher level representations hi. The network therefore can be viewed as 
processing the input through a sequence of “layers” whose output become 
increasingly more high level and abstract, until we finally reach the output 
layer, which corresponds to the labels. This intuition is illustrated in Figure 
3.

Computing Gradients

Now that we have defined our model class, to implement the algorithm 
in Section 2.1, we must be able to compute the gradient ��L�. This is 
accomplished with the back-propagation algorithm [19] [20] [21].
The back-propagation algorithm sequentially computes 

 Intuitively, this tells us how each hidden layer 
must change to minimize loss L�. When all the  are simple functions, 
we can compute  analytically, and this can be computed 
�������������� #�� �������	� ���� ��� <	����$��� ������ ���	�� �����	���  
over each layer hi, we can correspondingly compute the gradient ���L� over 
parameters �i analytically. This can also be automatically computed by 
<	����$���

��������	����	�������������$��� “backward” through the next (hence 
the name back-propagation). We compute gradient in the following sequence

Detecting and Localizing Multiple

Digits In many real-world problems, such as car plate detection [5] [6] [7] 
[8] or house number recognition [11] there are multiple digits in the same 
image, and their location is unknown to us. Therefore, not only do we want to 
classify existing digits, we would also like to locate where the digits are, and 
how many there are. We show that based on the deep classifier we trained 
before we can design an algorithm to accomplish this. What we need is that 
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given an image patch we must identify both whether there is a digit in the 
image patch, and what digit it is, if there is one. If we can accomplish this, 
then we may simply apply this method to each patch of our input image, and 
we will be able to localize and classify all the digits in the image.

��	���������	������	����������
	����(x) that takes as input an image, and 
outputs a probability distribution over all possible digits. We observe that 
when the input is an image that do not contain any digit, the output is a 
������#�������������	�����������������	��	���������������������
�	���
that any digit has been observed. On the other hand, when presented with an 
image that contains a digit, the output is a distribution with low entropy, and 
�	��	�������	�	���������������	�����	��������������	���������
�	��	�

Figure 3. Illustration of a deep network.

We can then take advantage of this property. We measure the difference 
between the highest probability score and the second highest probability 
score. If the image contains a digit, the top prediction should have high 
probability score compared to the second highest. If the image does not 
contain a digit, all the possible predictions should be assigned similar 
���#�#�����������	�	�����������#	��������
���������	�	��	�� 	̈���������
this approach works very well in practice and we are able to accurately 
discover digits in an image in the experiments.
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EXPERIMENT

Experiment Setting

We use 50,000 digit figures from the MNSIT training dataset to accomplish 
our training. Each example is a 28 by 28 single-color image. Our network 
architecture is as follows

{|�� �����������������	������
��	�����������!	����������	�����������
�	����»����»�{�����	����������������	����	�����������	����»����
»���

�|�� �������������	�������	���	���	���!	���������»����»�������{��»�{��
»���

3)  A ReLU layer
�|�� �����������������	������
��	�����������!	������������������	����	�

����������	�{��»�{��»���
�|�� �������������	�������	���	���	���!	������{��»�{��»���������»���»�

64
�|�� �������'�������������������	��������������	����������!	���»���»����

to 1024
7)  A ReLU layer
8)  A matrix multiplication layer that maps a vector of size 1024 to 

10
9)  A softmax layer 
We train our network with gradient descent with a learning rate of  

for 20,000 iterations. We also use a new adaptive gradient descent algorithm 
known as Adam [28] which has been shown to perform better on a variety of 
tasks. Because shifting a digit does not change its class, during training we 
also randomly shift the digit by up to 6 pixels in each direction to augment 
the dataset. This makes the network more robust to shifting of the digit and 
improves testing accuracy

?��������+������������
���������	�
����	'�������������#���������	�����	��
�����������	�������<	���	���������������
��������	��������������	�����	���
�	� ���	� �	������ ���
�	��������� ��	�������� ��� �� �	����� ������������� ������
prediction.
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Results

,�	
���!�
�������������	
After training our network, we use another 10,000 test data to test the 
accuracy of our network. We achieved a testing accuracy of 0.993, which 
indicates that the network only makes a mistake in 7 out of every 1000 digits. 
We show the training curve in Figure 4. It can be observed that accuracy 
improves very quickly in the first 5000 iterations, then improves gradually 
until we reach approximately 99% accuracy on both the training set and 
testing set. No overfitting is observed.

��������!�
�������������	
For the multi-digit classification, we show in Figure 5 the response of each 
digit detector at different locations of the sample input. The redder a region 
is, the more confident the classifier predicts that digit at that image patch. 
It can be seen that at correct digit locations, the detector shows consistently 
confident predictions throughout the region. This can be used to identify a 
region as containing a digit. 

	̈�������������?����	����	����
�	��	�����	������	�������	����	��	��
�������������	����	�	��	�������������<	�����������	�	��	����
�	��	�����	�
is high corresponds very well to where digits are present.

CONCLUSIONS

This paper applies deep networks to digit classification. Instead of hand 
designed features, we automatically learn them with a deep network and the 
back-propagation algorithm. We use a convolutional neural network with 
ReLU activations. In addition, we use pooling layers to remove unnecessary 
detail and learn higher level features.

We train our network with stochastic gradient descent. Training 
progresses quickly, we are able to achieve 90% accuracy with only 1000 
iterations. After 100 k iterations, we achieve test performance of 99.3% on 
�	�~���<������	��� 	̈�����������������+������������
�����������������	���
method to detect digits in an image with multiple digits. We utilize the fact 
��������������
	��������	�������#�#������������#�������

	̈��#�	��	������	���	��������������������������	�������
	��������	��
��������#���������� ����	�����������������
�	��	���� �	�����	��� ��#	���
��� �	���	��������	�� �	� ��������	����������������������� �	�������
	��
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produces an almost uniform distribution. We use this different to detect 
whether an image patch contains an image. We experiment on multiple digit 
detection and our method is able to successfully localize digits and classify 
them.

Figure 4. Training Curve. On the x-axis we plot the number of training itera-
�����������������	������	��+�'����	�������	�������
��������������������	��	���
set. It can be observed that accuracy improves very quickly initially, reaching 
approximately 90% accuracy with only 1000 iterations. After that accuracy im-
proves slowly. Eventually we reach an accuracy of 99.3% on the test set.

Figure 5. Detection of Multiple Images. Left and right are two examples where 
our model is able to localize the digits in an image with multiple digits at ran-
��������������� 	̈�����������������
	�����	������������	�����	�������	����-
�������	���������
���������#	����	��	������������	������������	�����
�	��	�
����	���	�	��	�������������������#��	�����	�����������������
�	��	�
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Figure 6�����
�	��	�����	��������	��	���	�	���������������<	�����	������	��
(redder) where there is a digit and lower (bluer) when there is not.

Future work should further improve accuracy and handle different size 
of digits in the multi-digit detection task.
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ABSTRACT

Bitcoin is a current popular cryptocurrency with a promising future. It’s 
like a stock market with time series, the series of indexed data points. We 
looked at different deep learning networks and methods of improving the 
accuracy, including min-max normalization, Adam optimizer and windows 
min-max normalization. We gathered data on the Bitcoin price per minute, 
and we rearranged them to reflect Bitcoin price in hours, a total of 56,832 
points. We took 24 hours of data as input and output the Bitcoin price of 
the next hour. We compared the different models and found that the lack 
of memory means that Multi-Layer Perceptron (MLP) is ill-suited for the 
case of predicting price based on current trend. Long Short-Term Memory 
(LSTM) provides relatively the best prediction when past memory and 
Gated Recurrent Network (GRU) is included in the model. 
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INTRODUCTION

Bitcoin is a cryptocurrency and a form of electronic cash. It is a digital 
currency that can be sent from user to user on the peer-to-peer Bitcoin 
network without intermediaries. It keeps a record of trading among peers 
and every record is encrypted. Each new record created contains the 
cryptographic hash of a previous block. Each record contains a timestamp 
and the data of the sender, the receiver, and the amount. Given Bitcoin is 
an emerged technology, few predictions is made on Bitcoin future value. 
Greaves and Au used linear regression, logistic regression and support vector 
machine to predict Bitcoin future price with low performance [1]. Indira et 
al. proposed a Multi-layer Perceptron based non-linear autoregressive with 
External Inputs (NARX) model to predict Bitcoin price of the next day [2]. 
Jakob Aungiers proposed a long-short term memory deep neural networks 
to predict S & P 500 stock price [3]. His research sheds light on Bitcoin 
prediction which is similar to stock price. Madan et al. used more machine 
learning approaches like generalized linear models and random forest to 
address Bitcoin prediction problem [4].

Researches mentioned above focuses on predicting the Bitcoin price 
of the next day. However, Bitcoin is traded frequently in a much smaller 
interval. In this research, we try to use historical data to predict next hour’s 
price instead of next day’s price which may have better application in real 
world. First we implemented data normalization like min-max normalization 
and normalization with window [5] where the data is normalized based on 
the window’s initial value and the percentage of change. Multiple Layer 
Perceptron (MLP), Long-ShortTerm-Memory (LSTM) and Gated recurrent 
units (GRU) models are compared on the test dataset with cross-validation.

DATASET EXPLORATION

Data used in this research is collected from Kaggle [6]. Bitcoin data from 
Jan 2012 to July 2018 is collected. It has a timestamp, the value at Open, 
High, Low, Close, the volume traded in Bitcoin and USD, the weighted 
price and the date. This research focuses on predicting Bitcoin price in the 
future hour by using the price of past 24 hours, so only the timestamp and 
the weighted price are used in the model.
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PRE-PROCESSING

As shown in Figure 1, the dataset is by minute, and contains around 
3,409,920 points. Since we predicted the price by hours, we have had 
1,409,920/60 which is 56,832 datapoints. The dataset is further split into 
training, validating and testing sets. As shown in Figure 2, training data takes 
up to 80% of the entire dataset, and validating and testing 10% respectively. 
As the time series data, samples are not randomized. We used the first 24 
hours’ Bitcoin price as input to predict the next hours’ Bitcoin price. Several 
other pre-processing methods are implemented to improve data processing 
and model convergency efficiency. Minibatch is used to split large data into 
small batches, which improves memory efficiency. Minimum-Maximum 
normalization and window-based normalization is used to set the whole 
��������� �����	�� ��� `_{�� {|� ����	�� ¨������ �������!������ ��� #��	�� ��� �	�
reference of stock market. The normalization methods will take each sized 
window and normalize each one to reflect percentage changes from the start 
hour of the window [3].

MODELS

Deep learning network is a type of computer modeling that finds the pattern 
within the given datasets and categorize the input accordingly. There are 
many different structures for deep learning network, including Multiple 
Layer Perceptron (MLP) that has a linear activation function, Recurrent 
Neural Network (RNN) that records a separate hidden unit to influence the 
next calculation. Extensions of RNN include Long Short-Term Memory 
(LSTM) and Gated Recurrent Model (GRU).

Figure 1. The overview of data listed by minutes.
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Figure 2. Training, validating and testing dataset.

MLP is a basic method in prediction. It reads all input with no ordering 
and then determine the relationship between the independent variables and 
the de- pendent variables. Hidden layers can be added between the input 
layer and the output layer together with the activation function, to better 
describe the non-linear relationship.

RNN is a group of method to calculate products from previous result 
of the model and new input data. In fact, it is better to MLP that it has 
£	'�	��	��	¥�����������������������������������$�	��	�������������������<	�
“experience” is gained from the model, is kept privately but is allowed to 
pass onto the next model. This private variable is called the hidden state 
and is passed on from the current calculation to the future calculation. It 
determines independently the output of the model, apart from the algorithm 
���	���� ¯��	�	��� ���� ���	�� �	�	���� ��� �	� ����������� $���� ���� ���
sequential like the time series, in order to input data for the training. If the 
pattern repeats only over the long term, the previous repetition may be not 
��$�	������	�����������	����������	��	'���	�	�����������������	*���	���	������
to be in order of time. Therefore determines, unlike MLP, RNN cannot be 
given random samples.
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Long Short-Term Memory solves the issue that the diminished influence of 
distant events on the RNN network. It has a switch that can choose certain 
events to remember. It also is not long-term dependent and doesn’t require 
as much training. It has four layers to determine the output, then passes the 
hidden state with the result to the next cycle. “Forgetting gates” exists in 
addition to four layers to determine if the experience should not be counted. 
Four layers and forgetting gates can be given different information to focus 
on either short-term or long-term memory.

GRU or Gated Recurrent Model is considered as one of the simpler 
model compared to the LSTM model, combination of the “forget” step with 
the “input” step into one, and as a result, requires only one hidden unit.

Among the three methods, MLP is mostly credited with its simplicity 
and the need for less computational power. They have the same amount 
of information as input. However, the number of hidden layers and the 
hidden units are more magic numbers. Some number turns out to work 
well especially, while some may turn out to be just the opposite. RNN 
accounts on the previous model through the hidden unit. The value uses 
in the calculation but does not need intervention. It can be very accurate, 
given the fact that the model has a large training set. However, long term 
patterns cannot be memorized and this may result in inaccuracy, especially 
when rapid changes take place in recent years. LSTM can choose whether 
it should “forget” previous states. Therefore, it is better capable of dealing 
with data that has repetitive trend over a long time. GRU model is also able 
to choose whether it should recall previous experience, but it is capable of 
learning more rapidly and need a bit less resource.

Six models are compared in this research. The model setups are listed in 
the following Table 1 and training results will be discussed in the next part.

RESULTS

As shown in Figure 3, in MLP and RNN frameworks, we find the similar 
conclusion that window-based normalization is much better than whole-
dataset based normalization. Because of time-series data feature, the RNN 
frameworks converge faster than MLP methods. Model performance in this 
research is evaluated by Root Mean Square Error (RMSE) of the predicted 
price and the true price of the dataset. The results are listed in the following 
table. As shown in Table 2, normalization by window method performs 
much better.
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Figure 3. Training performance of models. (a) MLP with whole-dataset-nor-
malization; (b) MLP with window-normalization; (c) RNN with whole-dataset-
based normalization; (d) RNN with window-normalization.

Table 1. Font sizes of headings. Table captions should always be positioned 
above the tables

We visualize the predicted price in the test dataset against true values 
in Figure 4 and zoom in to have a closer look at the predicted price in 
?����	���� 	̈�����
���������<~������������!������#�������������	�#	���
combination.

A ten-fold cross-validation is conducted on all the models. As shown 
in Figure 6, we can see that the error goes down after the training set is 
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	�����	�������	�	�������	����	+�	��	���������	���	�$������������	������
the error goes up a little again. Based on the cross-validation results, as 
summarized in Table 3, 2 layers of GRU is the best, and 2 layers of LSTM 
are very close to the performance.

Figure 4. Predicted price on the test dataset.

Figure 5. Zooming in.



Deep Learning Algorithms374

Table 2. RMES of six models by different normalization methods

Figure 6. Cross validation results. The top one is the 10-fold split of original 
data, the middle one is the average RMSE for each fold, the bottom one is the 
RMSE/average price in that fold.

Table 3. Summarize of cross-validation results



Bitcoin Price Prediction Based on Deep Learning Methods 375

CONCLUSION AND DISCUSSION

According to cross-validation results, 2 layers of LSTM has the best 
performance on the original test dataset and 2 layers of GRU is the best. All 
six models have close performance, so different models may be preferred in 
different scenarios. MLP model requires less computing power while it has 
slightly lower performance than RNN model. Our study combines several 
unique features, including the hour-based prediction, the usage of data from 
the past 24 hours, normalization by window and the comparison of different 
types of model with different amounts of layers. Based on this research, 
future work can be done on predicting a sequence of estimation so that it can 
be applied in more common Bitcoin trading scenarios.



Deep Learning Algorithms376

REFERENCES

1. Alex, G. and Au. B. (2015) Using the Bitcoin Transaction Graph to 
Predict the Price of Bitcoin. 

2. Indera, N.I., Yassin, I.M., Zabidi, A. and Rizman, Z.I. (2017) Non-
Linear Autoregressive with Exogeneous Input (NARX) Bitcoin Price 
Prediction Model Using PSO-Optimized Parameters and Moving 
Average Technical Indicators. Journal of Fundamental and Applied 
Sciences, 9, 791-808. https://doi.org/10.4314/jfas.v9i3s.61 

3. Aungiers, J. (2018) Time Series Prediction Using LSTM Deep Neural 
Networks. https://www.altumintelligence.com/articles/a/Time-Series-
Prediction-Using-LSTMDeep-Neural-Networks 

4. Isaac, M., Saluja, S. and Zhao. A. (2015) Automated Bitcoin Trading 
via Machine Learning Algorithms. http://cs229.stanford.edu/
proj2014/Isaac%20Madan,%20Shaurya%20Saluja,%20Aoj ia%20
Zhao,Automated%20Bitcoin%20Trading%20via%20Machine%20
Learning%2 0Algorithms.pdf 

5. Pedregosa, F., et al. (2011) Scikit-Learn: Machine Learning in Python. 
Journal of machine learning research, 12, 2825-2830. 

6. Zielak. (2019) Bitcoin Historical Data, Bitcoin Data at 1-Min Intervals 
from Select Exchanges, Jan 2012 to July 2018, Version 14. https://
www.kaggle.com/mczielinski/Bitcoin-historical-data



Index

Symbols

2D-convolution operation  357

A

Action-value function  32
Adaptive moment estimation  137
Airport operation  288
Airport visibility  287, 288, 297
Algebraic features  305
Animal behavior recognition system  

171
Animal behavior recognition tasks  

172
Applicator reconstruction  219
Arbitrary precision  309
����
��������	����	��	���
����
����� �	����� �	������ `���|��

195
Audio recognition  4
Automatic check reading  354
Automatic detection  230
Automatic learning  354
��������������������	���	���
��������

158

Automatic speech recognition  11
Automation  218
Automation, brachytherapy  218
Autonomous underwater vehicle 

(AUV)  109
AUV design project  109

B

Back-propagation algorithm  358, 
361

Backpropagation learning algorithm  
196

Backpropagation neural network  
195

BAMDDPG algorithm  35, 45
Batch size  145
BCI system  260, 261, 264, 265, 

267, 279, 281
Bicubic interpolation  68, 246
Bitcoin  367, 368, 369, 375, 376
Boltzmann addition (BA)  95
Boltzmann machine  5, 7, 10
Boltzmann multiplication (BM)  95
Botanical taxonomy  157
Brachytherapy  217



Deep Learning Algorithms378

Brachytherapy process  219
Brain-computer interface  259, 260, 

264, 265, 266, 273, 280, 283
Brain computer tomography (CT)  

192
Brain haemorrhage  200
������ �	������	� ��	���
��������

211

C

CAD system  239
Cancer cells  230
Car driving simulation software  41
Car plate detection  358
Central nervous system  261
Central processing unit (CPU)  199
Civil aviation transport  288
Classical feature extraction methods  

248
Classical machine learning algo-

rithms  278
������
���������������� �������������

86
������
�����������	��	������{��
Clinical treatment  218, 224
Clipped database  175, 176
CNN model  113, 114, 119, 120, 128
CNN system  118
CNN training  229, 232, 233
Colonic polyp images  239
Commercial treatment planning sys-

tem  219
Communication channel  265
Complex neural network  114
Computational intelligence  273
������������$��������
Computation procedure  60, 63
Computed virtual chromoendoscopy 

(CVC)  238

Computer-aided diagnosis (CAD) 
system  230

Computer-aided diagnosis tech-
niques  231

Computer program  5
Computer tomography (CT)  192, 

194, 198
Computer vision  112, 157, 268
Computer vision (CV) tasks  302
Computer vision platforms  56, 63, 

64
Confusion matrix  209
Contour segmentation algorithm  

158
Control action decision-making  57, 

58, 59, 60, 65
Control electrical devices  259
����	��������������
��������	������

163
Convergence behaviors  161
Convolutional layer  114
Convolutional neural networks  192, 

194, 215
Convolutional neural networks per-

formance  193
Convolution neural network (CNN)  

74
Convolution operation  346, 347
CT brain images  197, 198, 201, 203, 

214
CT images  192, 195, 197, 200, 211

D

Data analytics  6, 26
Data augmentation transformation  

110, 122
Data augmentation transformation 

approach  126
DBN architecture  317



Index 379

DBNESR structures  329
Decision function  312, 327
Decision making  112
Deep belief network (DBN)  315
Deep belief network embedded with 

Softmax regress (DBNESR)  
299

Deep belief networks (DBN  75
Deep Boltzmann machines (DBM)  

75
Deep convolution neural network 

(DCNN)  75, 76
Deep learning  3, 4, 5, 6, 8, 9, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 
21, 24, 25, 26

Deep Learning approach  232
Deep learning architectures  159
Deep learning model  166
Deep learning platforms  55, 56, 68, 

69, 71
Deep learning technology  219, 223
Deep network  354
Deep network models  345
Deep neural network (DNNs)  288
deep Q learning algorithm  93
Deep reinforcement learning  93
Deep reinforcement learning (DRL) 

algorithms  30
Deep residual learning framework  

142
Deep restricted Boltzmann machine 

(DRBM)  75
Deterministic policies  32
Deterministic policy gradient 

(DDPG) algorithm  30
Deterministic policy gradient (DPG) 

algorithm  30
Dew point temperature  294
������������
���������������{

Dirichlet allocation (LDA) strategy  
343

Discrete distribution  38
Discriminative representations  159
Disease categories  141, 148
Disease segmentation  166
Distributed computing  307, 310
Distribution function  38, 52
DNN technique  30, 33
Dominant visibility  290
Dose calculation  219
Dose conformity  218
Dose optimization  219, 224
DQN classes  97
DRL algorithms that  95, 99
Drug discovery  159
Dynamic control algorithm  65, 68, 

69

E

EEG signals  264, 266, 267, 268, 
273, 278, 282

Effective training methods  288
Electrical system  260
Electrocorticography (ECoG)  262
Electroencephalography-(EEG-) 

based control  259
Embedded systems  110
EM-CNN framework  75
Ensemble architecture  99
Ensemble network architecture  93
Exponential momentum training al-

gorithm  81
Extensive computational resources  

146
External Inputs (NARX) model  368

F

Face database  322



Deep Learning Algorithms380

Face recognition  299
Feature extraction  342
Feature extraction method  173
Feed forward neural network  193
Financial fraud detection  14
Financial institutions  14
Fine-tuning  135, 144, 146, 147, 

148, 149
Fish detection  129
FNN networks  348
Forecasting factors  291
FR algorithms  300
Functional MRI (fMRI)  261
Function takes  357
Fusion ratio  185

G

Gated recurrent model (GRU)  369
Gated recurrent network (GRU  367
Gated recurrent units (GRU) models  

368
Gradient descent  354
Gradient error  79
Grading system  138
Graphical processing unit (GPU)  

199

H

Hierarchical representations  300, 
332

¯��	���������
�����������������{��
High-performance computing ma-

chines  62
Hour-based prediction  375
House number recognition  358
Human action datasets  186
Human action recognition  186
Human action recognition tasks  172

Human visual functions  112
Hybrid BP neural networks 

(HBPNNs)  307
Hybrid HBPNNs  328
¯�#�����	�������������
	������
Hybrid RBF neural networks (HRB-

FNNs)  310
¯��	���	�����������������
������������

75, 76, 77, 86, 88
Hyperspectral remote sensing com-

munity  73

I

I3D model  172, 173, 175, 177, 180, 
181, 184, 185

��	���
�����������������{��
ILinear nexus architecture  194
Image processing  112
Image segmentation  194
Images preprocessing  303
Imaging system  302
Inception module architecture  173
Independent algorithms  103
Information security  300
Insect detection  166
Intracranial haemorrhage (ICH)  192
Inverse planning (IPIP)  223
Iterative optimization algorithm  317

J

Joint embedding learning and sparse 
regression (JELSR)  301

K

Kernel size  76, 81, 82, 83
k-nearest neighbour (kNN)  138

L

Language modeling task  12



Index 381

Large-scale image recognition tasks  
161

Large-scale visual recognition chal-
lenge  193

Large training dataset  118
Larning parameters  197
Leaf curl disease  136, 140
Learning curve  44, 200
Learning module  102
���	���������
	������
Linear SVM methods  85
Linguistic data processing  9
����������	��	������������
	������
Logistic regression (LR)  84, 85
Long short-term memory  368
Long short-term memory network 

(LSTM)  9
Long-term continuous visibility  295
Loss function  122
Lyapunov optimization  55, 56, 57, 

58, 59, 60, 61, 62, 63, 64, 65, 
68, 69, 72

Lyapunov optimization theory  56, 
57

M

Machine learning  4
Machine learning-based method  

344
Machine learning-based sentiment 

������
����������	�������
Machine learning methods  193
Machine learning system  174
Majority voting (MV)  95
Manufacture industry  112
Market trends  6
Markov decision processes (MDP)  

95

Mathematical program  57
Mature segmentation methods  219
Mechanical devices  260
Medical image analysis  192, 196, 

198, 211
Medical image segmentation  220
Meteorological elements  291
Minimum redundancy spectral fea-

ture selection (MRSF)  301
Min-max normalization  367, 368
Model compatibility  281
Model implementation  162
Model parameter  163
Monmonotonic effect  49
Motion-onset visual evoked poten-

tial (MVEP)  280
Mouse behavior dataset  175
Multi-cluster feature selection 

(MCFS)  301
Multi-digit detection task  363
Multi-factor forecasting factor  294
Multi-layer learning systems  317
Multilayer perceptron  8
Multi-layer perceptron (MLP)  367
Multiple digits  361
~������	�
���������������{��
Multiple layer perceptron (MLP)  

369
Multiplicative bias  78

N

Natural images  353
Natural language processing  268
Near-infrared spectroscopy (NIRS)  

261
Neural network-based computer 

model  7
Neural networks  4



Deep Learning Algorithms382

Neurological diseases  264
Neuroscience  273
Nonhaemorrhage images  192, 194
Nonlinear function  94
Normalization  368
Novel machine learning technique  

310
Numerical forecasting  288

O

Object center coordinates  116
One-to-one communication pathway  

260
�������+$���������{�{
�������+$��������
�	+���	�����	����

180, 184, 185
Optimal policy  32
Ornstein–Uhlenbeck process  35, 36
��	�
���������#�	���{�{

P

Pattern recognition paradigm  73
Penalty function  60
Performance evaluation  56
Per-pixel value  163
Pixels location  119
Planning time  222
����������	���	���
��������{��
Pointwise mutual information (PMI)  

343
Policy gradient (PG) algorithms  32
Prediction model training  290
Preprocessing techniques  266
Pretrained network  144
Principal components contribution 

rates  324
Principle component analysis  84
Prior fully connected layers (PFCL)  

244

Probability score  359
Probability setting  121

Q

Q-network  94, 103
Quadratic discriminant analysis 

(QDA)  138
Quality performance  279
Q-value functions  98

R

Radial Basis Function (RBF)  309
Radiation source  220
Real-time computing  56
Real-world applications  278
Recognition ability  86
Recurrent neural network  342
Regression prediction  288
Reinforcement learning  30, 94, 95, 

104
Relative humidity (RH)  289
Residual structural unit  161
Restricted Boltzmann machine 

(RBM)  317
Reverse planning algorithm  223
RGB color images  114
RGB data  175, 180, 181, 184, 185
���� ����� 
�	+���	�� ���	��� � {�{��

184, 185
Root mean square error (RMSE)  

371

S

SAE-LR frameworks  86
Segmentation methods  195
Sentiment analysis  341, 342, 343, 

344, 345, 347, 348, 349
�	����	��� ������
������� �	�	�����

343



Index 383

Sentiment dictionary method  344
Shallow networks  137
Single reinforcement learning algo-

rithm  103
Singular value decomposition 

(SVD)  305
Slow cortical potentials (SCP)  280
Softmax regression  315, 316
SPD matrix  279
Speech recognition  268
State-of-the-art application  4
Statistical-pixel features  305
Stochastic gradient  11, 18
Stochastic optimization  56
Structural risk minimization princi-

ples  210
Super-resolution model selection al-

gorithm  62
Super-resolution performance  66, 

67, 68
Supervised learning algorithms  300, 

302
Support vector machines  234
Support vector machine (SVM)  

313, 344
Surgical procedure  261
Surveillance applications  65, 69, 71
Surveillance systems  300
System accuracy  243

T

Target network  101
t-distributed Stochastic Neighbor 

Embedding (t-SNE) algorithm  
148

Testing accuracy  119
Text processing  10
Text sentiment analysis  342, 343, 

348
The open racing car simulator 

(TORCS)  41
Thinking process  7
Time-average optimization algo-

rithm  60
Time series regression prediction  

289
Tomato leaf disease  148
Tomato yellow leaf curl virus  140
Touch systems  260
Trading scenarios  375
Traditional brachytherapy technol-

ogy  219
Traditional gradient descent method  

79
Training database  236
Training process  30
Training progresses  361
Training samples  30
Training time  129
Transfer learning  138
Transrectal ultrasound imaging  220
Treatment planning system  224
Ttraining scenarios  145

U

Ultrasonic technology  111
Underwater environment  118
Underwater robot vision  111
User datagram protocol (UDP  41

V

Value-based DRL algorithms  99
Value function  96
Vector machine-hidden Markov 

models  172
Videos frames  230



Deep Learning Algorithms384

Visibility weather conditions  296
Visual features  305

W

Whole-dataset based normalization  

371
Wind direction (WD  289

Y

Yield prediction  166






	Cover
	Title Page
	Copyright
	DECLARATION
	ABOUT THE EDITOR
	TABLE OF CONTENTS
	List of Contributors
	List of Abbreviations
	Preface
	Section 1: Methods and Approaches for Deep Learning
	Chapter 1 Advancements in Deep Learning Theory and Applications: Perspective in 2020 and Beyond
	Abstract
	Introduction
	Deep Network Topologies
	Application of Deep Learning
	Modern Deep Learning Platforms
	Training Algorithms
	Routine Challenges of Deep Learning
	Available Open-Source Datasets
	References

	Chapter 2 Deep Ensemble Reinforcement Learning With Multiple Deep Deterministic Policy Gradient Algorithm
	Abstract
	Introduction
	Background
	Methods
	Results and Discussion
	Conclusions
	References

	Chapter 3 Dynamic Decision-Making For Stabilized Deep Learning Software Platforms
	Abstract
	Introduction
	Stabilized Control for Reliable Deep Learning Platforms
	The Use of Lyapunov Optimization for Deep Learning Platforms
	Emerging Applications
	Conclusions
	Acknowledgements
	References

	Chapter 4 Deep Learning For Hyperspectral Data Classification Through Exponential Momentum Deep Convolution Neural Networks
	Abstract
	Introduction
	Feature Learning
	Structure Design of Hyperspectral Data Classification Framework
	Exponential Momentum Gradient Descent Algorithm
	Experiment and Analysis
	Conclusion
	Acknowledgments
	References

	Chapter 5 Ensemble Network Architecture for Deep Reinforcement Learning
	Abstract
	Introduction
	Related Work
	Ensemble Methods for Deep Reinforcement Learning
	Experiments
	Conclusion
	References


	Section 2: Deep Learning Techniques Applied in Biology
	Chapter 6 Fish Detection Using Deep Learning
	Abstract
	Introduction
	Literature Review
	Materials and Methods
	Data Augmentation
	Results and Discussion
	Conclusion
	Acknowledgments
	References

	Chapter 7 Can Deep Learning Identify Tomato Leaf Disease?
	Abstract
	Introduction
	Related Work
	Materials and Methods
	Experiments and Results
	Conclusion
	Acknowledgments
	References

	Chapter 8 Deep Learning For Plant Identification In Natural Environment
	Abstract
	Introduction
	Proposed Bjfu100 Dataset and Deep Learning Model
	Experiments and Results
	Resnet26 on Flavia Dataset
	Conclusion
	Acknowledgments
	References

	Chapter 9 Applying Deep Learning Models to Mouse Behavior Recognition
	Abstract
	Introduction
	The Mouse Behavior Dataset
	Experiments and Results
	Conclusions
	Acknowledgements
	References


	Section 3: Deep learning Applications in Medicine
	Chapter 10 Application of Deep Learning in Neuroradiology: Brain Hemorrhage Classification Using Transfer Learning
	Abstract
	Introduction
	Related Work
	Convolutional Neural Network
	Transfer Learning
	Materials and Methods
	Results and Discussion
	Limitations
	Conclusion
	References

	Chapter 11 A Review of the Application of Deep Learning in Brachytherapy
	Abstract
	Introduction
	Organ Delineation and Segmentation
	Segmentation and Reconstruction of the Applicator (Interstitial Needles)
	Dose Calculation
	Application of Treatment Planning System
	Others
	Conclusions
	References

	Chapter 12 Exploring Deep Learning and Transfer Learning for Colonic Polyp Classification
	Abstract
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusion
	Acknowledgments
	References

	Chapter 13 Deep Learning Algorithm For Brain-Computer Interface
	Abstract
	Introduction
	Critical Review of the Related Literature
	Comparison of Classification Algorithms
	Discussion
	Methodology
	Conclusion
	References


	Section 4: Deep Learning in Pattern Recognition Tasks
	Chapter 14 The Application of Deep Learning In Airport Visibility Forecast
	Abstract
	Introduction
	Deep Learning
	The Establishment of Prediction Model
	Predictive Effect Test
	Conclusions
	References

	Chapter 15 Hierarchical Representations Feature Deep Learning For Face Recognition
	Abstract
	Introduction
	Images Preprocessing
	Feature Extraction
	Designing the Classifiers of Supervised Learning
	Designing the Classifier Combining Unsupervised and Supervised Learning
	Experiments
	Conclusion
	Acknowledgements
	References

	Chapter 16 Review of Research on Text Sentiment Analysis Based on Deep Learning
	Abstract
	Introduction
	Brief Review on the Research Progress of Text Sentiment Analysis
	Introduction to Text Sentiment Analysis Based on Deep Learning
	Summary and Prospect
	References

	Chapter 17 Classifying Hand Written Digits With Deep Learning
	Abstract
	Introduction
	Digit Classification with Deep Networks
	Experiment
	Conclusions
	References

	Chapter 18 Bitcoin Price Prediction Based on Deep Learning Methods
	Abstract
	Introduction
	Dataset Exploration
	Pre-Processing
	Models
	Results
	Conclusion and Discussion
	References


	Index
	Back Cover

