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Automatic Speech Recognition (ASR) is one of the greatest technical challenges of 
modern times and has been attracting the attention of researchers around the world for 
more than half a century. As with all speech technologies, this is a multidisciplinary 
problem that requires knowledge in many areas, from acoustics, phonetics and 
linguistics, to mathematics, telecommunications, signal processing and programming. 
A special problem is the fact that it is a problem that is extremely language-dependent.
The task of automatic speech recognition is to obtain an appropriate textual record based 
on the input data in the form of a sound recording of a speech unit (word or sentence). In 
that way, the speech is practically converted into a text, that is, it is “recognized” what 
a certain speaker said.
We distinguish ASR systems that recognize isolated words from systems that can also 
recognize related spoken words. ASR systems can also be sorted by dictionary size 
(number of words they can recognize), by whether they recognize only fixed, predefined 
words or are phonetic (practically recognize individual voices), as well as by whether 
they are dependent or independent from the speaker.
The applications of the ASR system are numerous and depend on its characteristics. In 
the widest application, ASR systems are speaker-independent. Such systems are used 
within voice machines, the purpose of which is to automatically provide services to 
callers (access to information, initiating and controlling transactions, etc.) - with all 
the flexibility that speech recognition provides. Namely, the caller does not have to 
move through the complex menu structure using the telephone keypad, but is enabled to 
immediately say what he wants, which reduces the call time and increases the efficiency 
of the system - through the number of callers served.
This edition covers different topics from speech recognition and understanding, 
including: methods and approaches for speech recognition, speech recognition of 
different languages, applications of speech recognition in different domains, and 
methods for language understanding. 
Section 1 focuses on methods and approaches for speech recognition, describing 
artificial intelligence for speech recognition based on neural networks; an HMM-like 
dynamic time warping scheme for automatic speech recognition; direct recovery of 
clean speech using a hybrid noise suppression algorithm for robust speech recognition 
system; deep neural learning adaptive sequential Monte Carlo for automatic image and 
speech recognition; and fast learning method for multilayer perceptrons in automatic 
speech recognition systems.
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Section 2 focuses on speech recognition of different languages, describing development 
of application specific continuous speech recognition system in Hindi, multitask 
learning with local attention for Tibetan speech recognition, Arabic speech recognition 
system based on MFCC and HMMs, using morphological data in language modeling 
for Serbian large vocabulary speech recognition, and phoneme sequence modeling in 
the context of speech signal recognition in language Baoule.
Section 3 focuses on applications of speech recognition in different domains, describing 
an overview of basics speech recognition and autonomous approach for smart home 
IOT low power devices, BigEar: ubiquitous wireless low-budget speech capturing 
interface, using speech recognition in learning primary school mathematics via explain, 
instruct and facilitate techniques, and prototype of a semantic platform with a speech 
recognition system for visual impaired people.
Section 4 focuses on methods for language understanding, describing English sentence 
recognition based on HMM and clustering, a comparative study to understanding about 
poetics based on natural language processing, semi-supervised learning of statistical 
models for natural language understanding, and linguistic factors influencing speech 
audiometric assessment.
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ABSTRACT
Speech recognition or speech to text includes capturing and digitizing 
the sound waves, transformation of basic linguistic units or phonemes, 



Speech Recognition and Understanding4

constructing words from phonemes and contextually analyzing the words 
to ensure the correct spelling of words that sounds the same. Approach: 
Studying the possibility of designing a software system using one of the 
techniques of artificial intelligence applications neuron networks where 
this system is able to distinguish the sound signals and neural networks of 
irregular users. Fixed weights are trained on those forms first and then the 
system gives the output match for each of these formats and high speed. The 
proposed neural network study is based on solutions of speech recognition 
tasks, detecting signals using angular modulation and detection of modulated 
techniques.
Keywords: Speech Recognition, Neural Networks, Artificial Networks, 
Signals Processing

INTRODUCTION
Artificial intelligence applications have proliferated in recent years, 
especially in the applications of neural networks where they represent an 
appropriate tool to solve many problems highlighted by distinguished styles 
and classification.

�	��	������<_`{����^���������	�[	������������	�	|���������������
�����
neural systems.

�	� 
���� ������� ���	�� ��� �	����� through a computer model that 
includes all the necessary elements and the completion and implementation 
of the electronic form of this model is not practical or reasonable in terms 
of tech during the vacuum tube. It should be noted that this model has been 
applied extensively to describe computer hardware for the vacuum tube [1] . 
Initially, planned tutorial to update connections of nerve cells that are referred 
to the law educational learning rule HYIP has stated that the information 
can be stored in the links and connections. It is recognized that learning 
�	��������������|	������[	�	
�������	������	��	|	����	����������
	����
Hip education Act initial contribution in neural network theory had been 
[����������	��	������	�
��������������	��	�����������������	� in the 1950s, 
where the application contacts automatically and during this stage the term 
preceptor called the unit represented for neural cell to invent the term world 
and divorced on the neuron, he pioneered the term frank Rosenblatt in 1958. 
������|	������������|��[�	���������������	��	�����������������
����������
�	���������	���[���������������������������������	����
����������������
it has become along with the imagination of engineers and scientists and a 
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background to the calculations of this type of machinery which is still used 
today.

In the early 1960s, a new created method called Adaptive Linear 
Combiner developed a very useful law [2] .

PATTERN RECOGNITION
Automatic recognition, description, classification and grouping patterns are 
important parameters in various engineering and scientific disciplines such 
as biology, psychology, medicine, marketing, computer vision, artificial 
intelligence and remote sensing. The template can be fingerprint images, 
handwritten words cursive, a human face or the voice signal. Given the 
pattern, its recognition/classification may be one of the following two tasks 
[3] .

�� ���	���	����	�|�����������������
�������������������	������������
��������	�����������	�������	
�	��������	�[	���������	�	
�	��
class;

�� �����	�|��	�� ������
�������� �����	����� ��� ���� ��� �	� ������
template is unknown.

\	������������� �	����[�	��	�	���������������
����������������
�������
���[�	�����	�	��	������	����	��	
�	��[��	��	���	�����	���	����	�������
��������	��������
�����������	���	��[��	����������������	�����������	�|��	��
������
�������

�	�	� ������������� ������	� ����� ������� �	� �	
������� ��� �������� ����
example, he correlations or independently in millions of multidimensional 
���	���� �����	��� ������
������� 	��	���|	��� �	���� �	��� �����	�����

��������� ���	��������� ������������� ���� �	���	|��� ��� ������	���� ����[��	��
and biometrics. The rapidly growing and available computing power, 
enabling faster processing of huge amounts of data, also promoted the use 
��������	��������|	��	��	���������������
�����������������������������$��
the same time, the demand for automatic pattern recognition is growing due 
to the presence of large databases and strict requirements speed, accuracy 
and cost. Design of recognition system template essentially consists of the 
following three aspects:

�� Collection and preprocessing, data reporting;
�� Decision-making process;
�� Scope dictates the choice of pretreatment technique.
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Schema view and decision making models It is recognized that the 
���[�	�������	������	
�	���������
��	����������	���	����������������	������
the introduction of the compact model and simple decision-making strategy. 
Learning from a set of examples is an important and necessary attribute of 
most systems of recognition template.

The most prominent approaches for pattern recognition are:
�� Matching pattern;
�� ������������������
�������
�� Syntactic or structural conformity and neural networks.

NEURAL NETWORKS
Neural networks consist of a set of nodes that a special type of account 
collectively and that each node is the standard unit of account and the contract 
could work in parallel depends on the interactions among themselves and 
how they relate to some of the scholars are defined as:

�� Mathematical models simulating characteristics of biological 
systems that deal with information in parallel composed of 
relatively simple elements called.

�� Is a simple entity class of algorithms that are formulated in charts 
(graphs grouped these schemes a large number of algorithms 
and these algorithms provide solutions to a number of complex 
problems [4] .

�����������	�����|��������	������	����^������	�����	������������
�������
and coding and to highlight the properties of neural networks are:

�� Resistance to noise;
�� Flexibility in dealing with the distorted images;
�� Maximum resistance to tag images of dismembered or partially 

decomposed;
�� Combinations of parallel processes with a large number of 

operating units that stimulate by interdependence of processes in 
addition to the stock of information distributed in parallel.

With non-linear operations, i.e. their ability to make non-linear 
relationships include maps of noise that makes them a good source of ratings 
���������[������'������
���������	��������>�



$���
��������	����	��	�������		��\	�������������	������	������	����^� 7

��  High capacity to adapt the system of logarithms and powers of 
education internal allows the use of internal adjustment that lives 
in the vicinity of lasting change.

Types of Neural Networks

Possible to identify the most common types of neural networks with input 
types and learn some common uses as in Table 1 shown [5] [6] .

PROCEDURE WORKS
The method consists of iteratively selecting the most distant score with 
respect to mean. If this score goes beyond a certain threshold, the score 
is removed and mean and standard deviation estimations are recalculated. 
When there are only a few utterances to estimate mean and variance, this 
method leads to a great improvement. Text dependent and text independent 
experiments have been carried out by using a telephonic multisession 
database. The paper presents the inter-relationship between algorithmic 
research system developments based on the experience from the speaker 
using mini-problems during the system design process, and presents a 
model of speech recognition based on artificial neural networks [7] . Figure 
1 shows the diagram of the processing of speech signals.

Figure 1. Diagram of the processing of speech signals planning.
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Table 1. Types of neural networks and application.

Types of neural networksInput typeInput 
method

Common uses

���
	��"�	�BinarySupervisedAssociated memory 
to distinguish ASCII 
characters

Hammin_NetBinarySupervisedConnect with similar 
dual channel

Carpenter/grassbery clas-
��
	�

BinarySupervisedAssembly (adaptive 
resonance theory)

PerceptronContinuousSupervisedDiscrimination and 
������
����������
simple shapes

Multi-layer perceptronContinuousSupervisedFeaturing complex 
���	������������
��-
tion

Kohonenself organizing 
feature map

ContinuousSupervisedEvaluation of vec-
tor and speech, and 
analogy to biological 
neural networks

�� ]�	�	����������������
������	������	����^��������		���	����������
���^�� �	����� �	����^� ���	� ����	��	� ��� �	� 	��	���|	�	��� ���
detection of phonemes in words. The research methods of speech 
signal parameterization. Learn about how to use linear prediction 
analysis, a temporary way of learning of the neural network for 
recognition of phonemes. The proposed way of teaching as input 
requires only the transcription of words from the training set and 
do not require any manual segmentation of words;

�� Development and research of the methods for diagnosing and 
detecting modulated signals;

�� Software implementation and pilot testing on real signals of 
neural network methods for processing.

Recognition Process Recognition Algorithm

�� Input signal into the computer and select word boundaries;
�� Allocation of parameters characterizing the signal spectrum;
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�� �	� ��	� ��� ����
����� �	����� �	����^ to evaluate the degree of 
proximity of acoustic parameters;

�� Comparison with standards in the dictionary [8] .
Voice signal as an input to a neural network, after processing the audio 

data received an array of segments of the signal. Each segment corresponds 
to a set of numbers that characterize the amplitude spectra of a signal, to 
prepare for the calculation for the signal outputs of the neural network 
to write all the numbers shows in Table 2, where a row which is a set of 
numbers of each frame.

Where I is the number of values of a set of numbers, N is the number 
of sets of numbers (frame signal after slicing). The number of input and 
output neurons is known, each of the input neurons corresponds to one set 
of numbers, and the output layer only one neuron, which corresponds to 
the desired value of the signal recognition. Table 3 shows the parameter 
�	
���������	����������	�	��������������������	�*�

Equations

To calculate the output of the neural network, it’s a must complete the 
following successive steps [9] :

Step 1: Initiate all contexts of all the neurons in the hidden layer;
��	��*#�$������	�
�����	��������[	�������	��	������	����^. Calculate 

the output of the hidden layer.

   (1)
�'�>����"���	�������|��������������

     (2)
for the numbers from 0 to 9.
To recognize the one number you need to build your own neural 

network it’s a must to build 10 of neural networks. Database of over 250 
words (numbers from 0 to 9) with different variations of pronunciation, 
base randomly divided into two equal parts-tutorial and sample tests. When 
training neural network recognition of one number, for number 5, the desired 
output of the neural network needs to be unit for the training set with the 
number 5 and the remainder is zero.
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Figure 2. The structure of a neural network with a feedback.

Table 2. Description of a set of speech signal.

Frame 1-value 2-value … I-value

1-Frame x11 x12 … x1I

2-Frame X21 X22 … X2I

… … … … …
N-Frame XN1 XN2 … XNI

Table 3��]����	�	����	
�������

Name ���������

xqi i-th q is the input value to a set of numbers

yj Output j-neuron layer
 �ij

The weight of the link connecting the i-th neuron with the 
j-th neuron

�j weight feedback

�j Weight feedback j-th neuron; the offset of the j-the neuron 
layer

Neural network training is carried out through the consistent presentation 
of the training set, with simultaneous tuning scales in accordance with a 
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specific procedure, until around the variety of configuration error reaches 
an acceptable level. Error in the system function will be calculated by the 
following formula:

   (3)
where N is the number of training samples processed by neural network 
examples the real output of the neural network.
A prototype of a neuron is nerve cell biology. A neuron consists of a cell body, 
or soma, and two types of external wood-like branches: Axon and dendrites. 
The cell body contains the nucleus, which holds information on hereditary 
characteristics and plasma with molecular tools for the production and 
transmission of elements of the neuron of the necessary materials. A neuron 
receives signals from other neurons through the dendrites and transmits 
signals generated by the cells of the body, along the axon, which at the end 
of branches into the fiber, the endings of synapses [1] [3] .
Mathematical model of a neuron described democratic ratio:

   (4)
where wi is the synapse, the weight (b)-offset value, s is the input signal, 
y-signal output neuron, n is the number of inputs to the neuron, f-function is 
activated. Technical model of a neuron is represented in Figure 3.
Block diagram of a neuron:  -input neuron;  the Wn-a 
set of weights; F(S) is a function of activation; y-output signal, neuro control 
performs simple operations like weighted summation, treating the result of 
nonlinear threshold conversion. Feature of neural network approach is that 
the structure of the simple homogeneous elements allows you to meet the 
challenges of the complex relationships between items. The structure of 
relations defines the functional properties of the network as a whole.
The functional features of neurons and how they combine into a network 
structure determines the features of neural networks. To meet the challenges 
of the most adequate identification and management are multilayer neural 
networks direct action or layered perceptions. When designing neurons 
together in layers, each of which handles vector signals from the previous 
layer. Minimum implementation is smiling two-layer neural network, 
consisting of the input (switch gear), intermediate (hidden), and the output 
layer [10] (Figure 4).
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Figure 3. Technical model of a neuron is represented.

Figure 4. Structural diagram of two-layer neural network.

Implementation of the model of two-layer neural network of direct 
action has the following mathematical representation:

   (5)
�	�	� �	� ���	������ ��� �	� |	����� ������� ��#� ��� � neural network; nh-
the number of neurons in the hidden layer; �"|	���� of the configurable 
parameters of the neural network, which includes weights and neuron-by 
offset (wji, Wij); fj(x)-activation function for the hidden layer neurons; Fi(x)-
activation function neuron in the output layer.
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The most important feature of neural network method is the possibility of 
parallel processing. This feature if there are a large number of international 
�	���������	�������	��[�	����������
����������	�	���	��	�����	����������	�"
data processing [6] . A possibility of processing of speech signals in real 
time. The neural network has qualities that are inherent in the so-called 
����
��������	����	��	��<<���

CONCLUSION
Model of speech recognition was based on artificial neural networks. 
This was investigated to develop a learning neural network using genetic 
algorithm. This approach was implemented in the system identification 
numbers, coming to the realization of the system of recognition of voice 
commands. A system of automatic recognition of speech keywords that were 
associated with the processing of telephone calls or a sphere of security was 
developed. The accuracy level of forecasting on the basis of present data set 
experience was always better.



Speech Recognition and Understanding14

REFERENCES
1. Childer, D.G. (2004) The Matlab Speech Processing and Synthesis 

Toolbox. Photocopy Edition, Tsinghua University Press, Beijing, 45-
51.   

2. Chien, J.T. (2005) Predictive Hidden Markov Model Selection 
for Speech Recognition. IEEE Transaction on Speech and Audio 
Processing, 13.   

3. ���	��� ��� ���� ���[[�	
	���� ��� '*++`>� $���
����� ���	����	��	#�
Structures and Strategies for Complex Problem Solving. 5th 
Edition, The Benjamin/Cummings Publishing Company, Inc. 
���#�������������	�������	����"
�����������������

4. Choudhary, A. and Kshirsagar, R. (2012) Process Speech Recognition 
����	��������$���
��������	����	��	��	���!�	�����	������������������
of Soft Computing and Engineering (IJSCE), 2.   

5. Ovchinnikov, P.E. (2005) Multilayer Perceptron Training without 
Word Segmentation for Phoneme Recognition. Optical Memory & 
Neural Networks (Information Optics), 14, 245-248.   

6. Guo, X.Y., Liang, X. and Li, X. (2007) A Stock Pattern Recognition 
Algorithm Based on Neural Networks. Third International Conference 
on Natural Computation, 2.   

7. Dai, W.J. and Wang, P. (2007) Application of Pattern Recognition 
����$���
������	������	����^������������	�������������	������]��	��
System. Third International Conference on Natural Computation, 1.   

8. Shahrin, A.N., Omar, N., Jumari, K.F. and Khalid, M. (2007) Face 
�	�	������ ������ $���
����� �	����� �	����^�� $�������� ������ $����
International Conference on Modelling & Simulation.   

9. Lin, H., Hou, W.S., Zhen, X.L. and Peng, C.L. (2006) Recognition 
�������]���	����������$���
������	������	����^����������	����������
Conference on Intelligent Systems Design and Applications, 2.   

10. Al Smadi, T.A. (2013) Design and Implementation of Double Base 
Integer Encoder of Term Metrical to Direct Binary. Journal of Signal 
and Information Processing, 4, 370.   

11. Takialddin Al Smadi Int. An Improved Real-Time Speech Signal in 
Case of Isolated Word Recognition. Journal of Engineering Research 
and Applications, 3, 1748-1754. 



An HMM-Like Dynamic  
Time Warping Scheme for  

Automatic Speech Recogni-
tion

CHAPTER 2

Citation: Ing-Jr Ding, Yen-Ming Hsu, “An HMM-Like Dynamic Time Warping Scheme 
for Automatic Speech Recognition”, Mathematical Problems in Engineering, vol. 2014, 
Article ID 898729, 8 pages, 2014. https://doi.org/10.1155/2014/898729.
Copyright: © 2014 by Authors. This is an open access article distributed under the 
Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.

Ing-Jr Ding and Yen-Ming Hsu
Department of Electrical Engineering, National Formosa University, No. 64, Wunhua Road, 
Huwei Township, Yunlin County 632, Taiwan

ABSTRACT
In the past, the kernel of automatic speech recognition (ASR) is dynamic 
time warping (DTW), which is feature-based template matching and 
belongs to the category technique of dynamic programming (DP). Although 
DTW is an early developed ASR technique, DTW has been popular 
in lots of applications. DTW is playing an important role for the known 
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Kinect-based gesture recognition application now. This paper proposed an 
intelligent speech recognition system using an improved DTW approach for 
multimedia and home automation services. The improved DTW presented 
in this work, called HMM-like DTW, is essentially a hidden Markov model- 
(HMM-) like method where the concept of the typical HMM statistical 
model is brought into the design of DTW. The developed HMM-like DTW 
method, transforming feature-based DTW recognition into model-based 
DTW recognition, will be able to behave as the HMM recognition technique 
and therefore proposed HMM-like DTW with the HMM-like recognition 
model will have the capability to further perform model adaptation (also 
known as speaker adaptation). A series of experimental results in home 
automation-based multimedia access service environments demonstrated 
the superiority and effectiveness of the developed smart speech recognition 
system by HMM-like DTW.

INTRODUCTION
Multimedia and home automation services have been popular and 
necessary techniques in humans’ home life. Among multimedia access and 
home automation applications, automatic speech recognition (ASR) is an 
important mainstream technique and plays a kernel role for improving the 
interaction between home members and home devices [1]. The development 
of speech recognition methods with satisfactory recognition performances 
in multimedia and home automation applications has been a challengeable 
issue. This paper will propose an improved dynamic time warping (DTW) 
speech recognition method, called HMM-like DTW, which brings the 
statistical model idea of the typical hidden Markov model (HMM) into 
the design of conventional DTW. The presented HMM-like DTW method 
demonstrated its superiority in recognition accuracy in the home media 
access and automation application.

From the viewpoint of application scenarios, ASR techniques can be 
categorized into two classes, speech understanding and voice command 
operations. This paper focuses on the aspect of the voice command operation 
of ASR. Human-machine interactions and media device operations by voice 
commands are extremely proper in a home environment [2]. For example, 
voice-command-based recognition operation can increase the convenience 
of humans’ home life in home device control and home media access. Speech 
recognition using voice commands not only will save a lot of time and 
manpower but also is helpful for automatic recognition operations without 
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any human operators. However, speech recognition is encountering a lot 
of challenges due to too many unexpected variables and adverse factors, 
such as the variety of accents and speech habits on testing speakers [3]. 
The testing speaker utters the same words for the operated voice command, 
but these uttered commands will not have exactly the same result so that 
speech recognition with the correct recognition outcome in each recognition 
test will be hard to achieve. To overcome this problem, related works on 
speech recognition enhancements have been quite common in the recent 
years, and most of those studies aimed at increasing the reliability of the 
recognition result by improving the recognition system [4] or reducing the 
mismatch phenomenon between a new speaker and the speech recognition 
system by performing machine learning schemes [5] or adaptive designs [6] 
on original speech recognition system.

The current mainstream speech recognition methodologies are hidden 
���^�|����	���'���>����������
������	������	����^�'$��> [8], and DTW 
[9, 10]. HMM and ANN are categorized into the class of model-based 
recognition methods, and DTW belongs to the feature-based recognition 
category technique. Compared with model-based speech recognition, 
feature-based speech recognition does not involve adopting a statistical 
���	��������������������
����������	�������|���	���������	!���	�������	����	"
based speech recognition and therefore this method is generally considered 
a conceptually simple and direct recognition technique. DTW, belonging to 
the dynamic programming (DP) methodology [9], is a type of feature-based 
speech recognition. Although lots of ASR-related studies focus on HMM 
and ANN techniques, DTW still has its technical position due to the low 
complexity recognition calculations and high recognition accuracy, which 
will be the necessary factor in multimedia and home automation applications 
[10]. Nowadays, the popular DTW speech recognition has been seen to be 
largely utilized in the sensing-based applications [11], such as the Microsoft 
Kinect sensing device.

For model-based HMM or feature-based DTW speech recognition, the 
most important technical issue is how to effectively increase the recognition 
rate. In fact, improving the recognition performance of a speech recognition 
system has been a challenging problem. In HMM speech recognition, speaker 
adaptation (SA), sometimes also known as HMM model adjustments, has been 
widely used for overcoming the problem [6]. Speaker adaptation in HMM 
speech recognition will continually tune the statistical model parameters of 
HMM such as mean and covariance parameters using the information of 
the speaker’s uttered data, and therefore the recognition system will not be 
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strange to the speaker again after a series of model parameter adjustments 
[6]. For the feature-based DTW speech recognition technique, however, 
such speaker adaptation methodology cannot be employed due to the lack 
of a statistical model. Although related investigations on improving DTW 
speech recognition have been conducted in recent years [12, 13], most 
of these DTW-related studies have either developed improved template-
�������� ���������� �<*�� ��� ���|��	�� ����
	�� ��	�	�� ���� �� ����
operation optimization framework [13] for increasing the robustness of the 
recognition system. Speaker adaptation studies on DTW speech recognition 
are extremely rare.

In the author’s previous work [5], speaker learning for DTW speech 
recognition has been explored where the learning strategy is interpolated 
into traditional DTW. Under the scheme, the DTW system is additionally 
equipped with the developed machine learning approaches for modifying 
the database containing referenced templates of speech patterns [5]. 
However, the fundamental structure of DTW in [5] is almost still the same 
as that of conventional DTW except the additionally given machine learning 
scheme for the database of DTW referenced templates, both of which still 
belong to feature-based recognition techniques. The DTW system learning 
performance by the developed work in [5] will still be largely restricted due 
to the essence of invariable feature-based template matching and the lack 
of a statistical recognition model when performing recognition. In order to 
solve the problem, this paper presents an HMM-like DTW approach, which 
is to thoroughly change the fundamental structure of DTW operations by 
establishing an HMM-like recognition model. By transforming feature-based 
into model-based recognition methodologies, the developed HMM-like 
DTW in this work will behave as the modeling technique of HMM speech 
�	���������������	�	���	�������|	�����[	�	
�������������	�"[��	����		��
recognition category techniques including the abovementioned speaker 
adaptation techniques used in model-based speech recognition. Different to 
the improved DTW approach in [5], the proposed HMM-like DTW in this 
work is essentially a modeling recognition technique, and the developed 
HMM-like recognition model for DTW will provide a crucial framework for 
the development of possible speaker adaptation techniques on DTW speech 
recognition. The popular HMM speaker adaptation techniques [14, 15] with 
����	������
�������������[	��[�	����[	�	��	��	������	�������	�����"��^	�
DTW herein, which can effectively solve the problem of learning restriction 
of developed DTW machine learning in [5]. In summary, the proposed 
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HMM-like DTW approach in this study has several advantages compared 
with those without

�� [	��	���	��������	������	��������������������������	��	��[������
in recognition system alignments,

�� �� ������������ ���"��^	� ������
������� ���	�� ���� �	� �[������ ���
model adjustments for recognition performance improvements as 
compared with those enhanced DTW methods that only aim at 
dynamical programming design of template matching of acoustic 
features (e.g., [12, 13]),

�� ���	� ���|	��	��	� ������	��	�� 	�
��	���� ���� ����	�� 	��	�������
of speaker adaptation, compared with those feature-based DTW 
system learning methods (e.g., the machine learning method for 
just the adaptive design of the DTW referenced template database 
[5]).

The remainder of this paper is organized as follows. Section 2 details the 
theoretical formulation of DTW speech recognition. Section 3 introduces 
the concept of hidden Markov model that is employed in the developed 
HMM-like DTW, followed by the formulation of HMM-like DTW speech 
recognition, containing model initialization of DTW referenced templates, 
recursive model training of DTW referenced templates, and recognition 
estimates of the established HMM-like DTW model in the testing phase. 
Section 4 presents the experiment results where the effectiveness and 
performance of presented HMM-like DTW are demonstrated, compared 
with conventional DTW. Finally, Section 5 provides concluding remarks.

SPEECH RECOGNITION BY DTW
The conventional DTW speech recognition procedure will be illustrated 
in this section. As mentioned before, DTW is belonging to dynamic 
programming category techniques. DTW speech recognition combines both 
time-warping and template-matching calculations for achieving the purpose 
of speech pattern recognition [9].

The framework of DTW speech recognition is depicted in Figure 
1. As shown in Figure 1, DTW speech recognition contains two phases, 
the training phase and the testing phase. In the training phase of DTW, 
the main work is to establish the database of reference templates, which 
could be employed to complete the template matching work in the DTW 
testing phase. The primary mission of the DTW testing phase is to perform 
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template matching between the testing template and the reference template. 
When computing the similarity degree between the testing template and the 
reference template, the low distortion between the two of them suggests a 
high similarity degree. As could be seen in Figure 1, feature extraction is an 
important and crucial procedure for such DTW feature-based recognition 
�	����������	�����	������������	����� ���
�������������������������
path between the testing template feature vector and the referenced template 
feature vector. Figure 2 shows the feature extraction procedure indicated 
in Figure 1. At the end of feature extraction, the input speech signal will 
be transformed into the parameter of speech features, LPC parameters of 
�	����	���������������	�����	����	���	���������	�
��	���'�]��>������	�	���
of the frequency domain. This paper adopts the LPCC parameter to be the 
feature of speech signals in the DTW template matching work.

Figure 1: Frameworks of DTW-based speech recognition.

Figure 2: Feature extraction of speech signals.
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The DTW template matching operation between the testing LPC feature 
and the referenced LPC feature is described herein. The testing utterance 
is composed of � frames and an arbitrary frame (a feature vector), denoted 
by �. The reference template consists of � frames and the arbitrary frame, 
indicated as �. The distortion between the � and � frames can be represented 
as [�(�), �(�)]. The starting point and the end point of the comparison path 
are ((1), �(1)) = (1, 1) and (�(�), �(�)) = (�, �), respectively. Based on 
these DTW operational settings, the DTW distance, �, from the optimal 
comparison path can be derived using (1). The arbitrary frame � in the testing 
data is generally not equal to the arbitrary frame � in the indices reference 
template [9]. Consider

     (1)

Assuming that the point ((0), �(0)) = (0, 0) and �(0, 0) = 0, the accumulated 
distance that selects the optimal source path can be represented as

  (2)

where min �(�, �) is the shortest distance from the starting position to 
position (�, �). In the testing recognition of DTW, the recognition outcome 
is the label of the referenced template with the smallest value of min (�, �).

Note that, in the previous work on DTW enhancements [5], machine 
learning schemes to drive the DTW recognition system to be adaptive with a 
new speaker are to provide proper management on the database of referenced 
templates (see Figure 1). However, such scheme in [5] will still encounter 
��	�
��	����������	��	���|	�	����������	���������������	�����	����^������
statistical model. A modeling technique for DTW, HMM-like DTW, will be 
presented in the following section.

THE PROPOSED HMM-LIKE DTW APPROACH FOR 
SPEECH RECOGNITION
This section describes the proposed improved DTW, HMM-like DTW, for 
speech recognition. At the beginning of this section, the basic methodology 
of HMM will be primarily introduced.
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Hidden Markov Model (HMM)

HMM is a statistical probability model, which is composed of a series of 
state transitions. HMM is essentially a hidden Markov chain that could be 
used to simulate and then model acoustic signals. All frames in the state 
will have the same characteristics in a Markov chain. In the methodology 
of HMM, the probability model is employed to describe the pronunciation 
characteristics of a segment of uttered speech signals. In this uttering process 
of a speaker, the segment of acoustic signal will be viewed as a continuous 
state transition in a Markov model. HMM state transition will be the primary 
work in an HMM-based speech recognition system. Figure 3 illustrates the 
frequently used left-to-right state transition in HMM speech recognition. As 
shown in Figure 3, there are 	 states in total in the HMM model; the term 


��
 

denotes the state transition between the state i and the state �. Only two ways 
of state transitions could be done in the HMM model of Figure 3, staying at 
the same state or going to the next state.

Figure 3: Left-to-right HMM state transition schemes in speech recognition 
applications.

HMM-based speech recognition is usually used in the keywords-
spotting voice command operation applications. As shown in Figure 4, the 
keywords voice command “ ” (pronounced in Mandarin) is modeled 
as the HMM state sequence composed of 12 states, two 3-state initial parts 
������	�¡"����	�
������������������������		���	����������������������	�
subsyllable method is used to establish the HMM model of each keyword 
voice command. In general, there are 3 states in the initial part and 6 states 
��� �	� 
���� ������ ��� ���� ���^�� �	� ������	�� ���"��^	� ���� ��������
will establish the acoustic model for each of the DTW referenced template 
database using HMM-like left-to-right state sequences of the keyword voice 
command, which will be described in detail in the following section.
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Figure 4: HMM state sequence of the keyword voice command “ ” in Man-
darin.

HMM-LIKE DTW
The basic idea of statistical HMM models introduced in the previous section 
will be incorporated into the design of the HMM-like speech recognition 
system. Figure 5 depicts the framework of the proposed HMM-like DTW 
speech recognition, which is different to conventional feature-based 
DTW and is belonging to a model-based technique. As could be seen in 
conventional DTW of Figure 1 and in the developed HMM-like DTW of 
Figure 5, the primary work of HMM-like DTW is to model the DTW system 
by establishing the HMM-like acoustic model for each of DTW referenced 
templates of keywords voice commands. HMM-like DTW contains mainly 
two design phases, the training phase to model DTW referenced templates 
and the testing phase to use the established acoustic models of TW referenced 
templates for performing the recognition of the test utterances. The training 
phase design of HMM-like DTW will be provided in Sections 3.2.1 and 
3.2.2, which primarily describe model initialization and recursive model 
training of DTW keywords referenced templates, respectively. Section 
3.2.3 describes how HMM-like DTW with established acoustic models of 
DTW keywords templates in Sections 3.2.1 and 3.2.2 is used for recognition 
calculations in the testing phase. As could be seen in Figure 1 and Figure 
5, proposed HMM-like DTW changes template matching of conventional 
DTW as model recognition estimating.
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Figure 5: Frameworks of model-based HMM-like DTW speech recognition 
systems.

Model Initialization of DTW Referenced Templates
The proposed HMM-like DTW will perform the model initialization first 
in the beginning of the model training phase. Model initialization of DTW 
referenced templates is to establish the initial model for certain keyword 
voice command template. The initial model will be represented as the HMM-
like state sequence. Figure 6 shows the averaged segmentation procedure 
for model initialization of certain DTW keywords command template. In the 
model initialization of the DTW referenced template, averaged segmentation 
is an important task for establishing the initial state sequence. Averaged 
segmentation divides each of the training data into a series of acoustic 
segments with the same numbers of acoustic frames. As shown in Figure 

6, 	 states are set for certain keywords voice command “ ” 
pronounced in Mandarin, where the DTW referenced template 
is modeled as the state sequence with 	 states. Each of 	 states denotes 
the characteristics of a series of acoustic frames within certain segment of 
continuous time and therefore is represented as the corresponding averaged 
frame segmentation information of the training data. For example, the state 
1 in Figure 6 reveals the statistical information of frames of 	 training data, 
��
�����-�
�
1, ��
�����-�
�
2,..., and ��
�����-�
�


�
, at the first time 

interval. The state 1 is derived using (3) as follows:

  (3)
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Figure 6: Averaged segmentation for model initialization of certain DTW key-
words command template.

The initial model, the state sequence with 	 states, of certain DTW 
keywords command referenced template will be further reestimated for 
achieving the optimal recognition performance using a recursive model 
training procedure, which will be presented in the following section.

Recursive Model Training of DTW Referenced Templates
Model initialization of DTW referenced templates is to establish the 
initial model for each of DTW keyword voice command template. These 
initial models are further tuned for achieving the optimal performance on 
recognition accuracy. The developed recursive model training procedure 
in HMM-like DTW is depicted in Figure 7. As could be seen in Figure 7, 
the Viterbi algorithm is employed to carry out resegmentation of acoustic 
frames of training data. After doing the Viterbi algorithm, the new model 
is estimated in the iteration. It is noted that in this training procedure a 
checking process of the index � is performed to verify the performance of 
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the trained state sequence model. The index � is the Euclidean distance and 
is determined using (4) as follows:

  (4)

where � is the error value between the current and the last state sequence 
models; ��� denotes the Gaussian mean value of the �th dimension of the 
�th state of the current new state sequence model trained in this iteration; 
���� is the Gaussian mean value of the �th dimension of the �th state of 
the past old state sequence model trained in the last iteration. Note that 
the ideal value of � is expected to approach zero in this recursive model 
training of DTW referenced templates. However, such ideal trained model 
is hard to be established in the real training situation. The threshold � is set 
to decide if the value of the calculated � is acceptable for model parameter 
convergence in the recursive model training. When the value of � is limited 
to be smaller than the value of the preset threshold �, the overall recursive 
training procedure is finished and then the estimated state sequence model of 
DTW reference templates will have the highest performances in recognition 
accuracy in the test phase.

Figure 7: The developed recursive model training procedure in proposed 
HMM-like DTW.
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Recognition Estimates of HMM-Like DTW in the Testing Phase
As mentioned in the previous section, when finishing recursive model 
training of DTW referenced templates, trained state sequence models for the 
corresponding DTW keywords templates could be used for online speech 
recognition in the testing phase. An HMM-like DTW speech recognition 
system with � keywords command templates in the conventional DTW 
referenced template dataset will have � trained state sequence models for 
each of the DTW referenced templates. When performing the recognition 
estimate of HMM-like DTW in the testing phase, the likelihood degree 
between each of those � trained state sequence models and the input test 
utterance of a new test speaker will be calculated. The label of the trained 
state sequence model with the highest value of the likelihood degree will be 
the recognition outcome. In this work, a Viterbi-like approach is developed 
for performing the likelihood degree estimates. Figure 8 depicts the operation 
of the presented Viterbi-like approach in the HMM-like recognition test 
phase. Figure 8 depicts the operation of the presented Viterbilike approach 
in the HMM-like recognition test phase. Viterbi-like approach belongs to 
the category of dynamical programming in essence, and therefore a global 
optimization result will be calculated when completing the overall path (�) 
programming. In this work, the score function �(�>�����	
�	��������'=>����|	��
the observed set of � speech frames, � = {�1, �2,...,��

},

 (5)

where �
�
(�) has the largest probability at time � and at state 

�
; � is the trained 

model for each of DTW keywords referenced templates as mentioned in the 
previous section. �

�+1(�) is computed as follows using �(�) by induction:

     (6)

where 

��
 is the state transition probability of going from state 

�
 to state 

�
; 

�
�
(�

�+1) denotes the Gaussian distribution probability of the observed frame 
�

�+1 given the state 
�
. The Viterbi-like approach in this study is to solve 

the iterative procedure of (5) and (6) and the state sequence that has the 
maximum likelihood will be searched if one keeps tracking of all the states 
which maximize (5).
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Figure 8: Recognition calculations of HMM-like DTW by the Viterbi-like 
method in the test phase.

EXPERIMENTS AND RESULTS
The proposed HMM-like DTW speech recognition is performed in the 
application of multimedia and home automation services. The HMM-like 
DTW speech recognition system adopts the voice command operation 
mechanism where a set of DTW keywords referenced template models is 
established in advance. Table 1 shows the voice command set containing 8 
keywords that denote command operations of noticing the strong wing (the 
index 
), opening the light (the index �), showing the temperature (the index 
�), turning off the air conditioner (the index �), adjusting the temperature 
(the index �), turning on the TV set (the index �), turning up the volume (the 
index �), and selecting the TV channel (the index h).

In the HMM-like DTW speech recognition experiments, the sampling 
rate of speech signals is 44.1 KHz; the resolution of the speech sample is 
set as 16 bits; the number of channels is one (i.e., mono settings); for each 
acoustic frame, the frame size is set as 20 ms with a 10 ms frame overlap; the 
LPCC feature is adopted on feature extraction, and each feature parameter 
of the acoustic frame is composed of the 10-dimension linear prediction 
cepstrum parameters. The HMM-like DTW speech recognition experiment 
is divided into two phases, the training phase that establishes the state 
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sequence model for each of DTW keywords referenced templates and the 
testing phase to evaluate the recognition performance of proposed HMM-
like DTW.

Table 1: The voice command set of keywords in the HMM-like DTW speech 
recognition system.

In the training phase, a training dataset for establishing HMM-like DTW 
models is made. Ten males and 10 females are requested for uttering. Each 
of the 10 males and 10 females is asked to make 5 utterances for each of the 
8 keywords, and therefore there are 800 utterances in total for training these 
8 models of keywords, 100 utterances for each of the 8 keywords models. 
Table 2 shows numbers of states (	) of HMMlike DTW set for each DTW 
keywords template model and the corresponding recognition performance. 
Observed from Table 2, when the number of states is set improperly, the 
recognition rate of HMM-like DTW will be very dissatisfactory. Among all 
state settings, HMM-like DTW with the state setting 	 = 50 performs best 
on the recognition accuracy, which achieves 70.6%. HMM-like DTW with 
	 = 50 will be chosen to be compared with conventional DTW in the testing 
phase.
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Table 2: Numbers of states of HMM-like DTW for each DTW keywords tem-
plate model and the corresponding recognition performance in the training 
phase.

Numbers of states 
(N)

Recognition rates 
(%)

50 70.6%
40 67.5%
30 49.4%
20 23.1%
10 25.0%

In the testing phase, the collected 10 males and 10 females are requested 
again to make the additional utterances for the testing experiments. There 
are 160 utterances in total for the test experiment, 20 utterances for each 
of the 8 keywords models. Note that these 160 utterances are completely 
different from those 800 utterances in the training phase. Table 3 shows the 
recognition performance comparisons of proposed HMM-like DTW with 
	 = 50 and conventional DTW. As could be seen in Table 3, the proposed 
HMM-like DTW with the developed HMM-like modeling scheme is 
apparently more competitive than conventional DTW with only simple 
template matching. HMM-like DTW has a better recognition performance 
than conventional DTW, which is about 6.8%.

Table 3: Performance comparisons of proposed HMM-like DTW with N = 50 
and conventional DTW on the recognition accuracy.

Keywords commands Recognition rates
HMM-like DTW
(N = 50)

Conventional
DTW

Index a 70% 70%
Index b 55% 85%
Index c 65% 70%
Index d 70% 80%
Index e 75% 50%
Index f 70% 60%
Index g 60% 40%
Index h 100% 55%
Average 70.6% 63.8%
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CONCLUSIONS
In this paper, the HMM-like DTW method is proposed for speech recognition. 
Proposed HMM-like DTW provides a statistical model recognition strategy 
for traditional feature-based DTW template matching using the kernel 
concept of hidden Markov model. The proposed HMM-like DTW will be 
able to further carry out model adaptation as HMM. Speech recognition 
experiments in the application of home automation-based multimedia access 
services showed that the presented HMM-like DTW with the appropriately 
designed acoustic model is obviously more competitive than conventional 
DTW without any statistical models on the recognition accuracy.
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ABSTRACT
A new log-power domain feature enhancement algorithm named NLPS 
is developed. It consists of two parts, direct solution of nonlinear system 
model and log-power subtraction. In contrast to other methods, the proposed 
algorithm does not need prior speech/noise statistical model. Instead, it 



Speech Recognition and Understanding36

works by direct solution of the nonlinear function derived from the speech 
recognition system. Separate steps are utilized to refine the accuracy of 
estimated cepstrum by log-power subtraction, which is the second part 
of the proposed algorithm. The proposed algorithm manages to solve the 
speech probability distribution function (PDF) discontinuity problem caused 
by traditional spectral subtraction series algorithms. The effectiveness of 
the proposed filter is extensively compared using the standard database, 
AURORA2. The results show that significant improvement can be achieved 
by incorporating the proposed algorithm. The proposed algorithm reaches a 
recognition rate of over 86% for noisy speech (average from SNR 0 dB to 
20 dB), which means a 48% error reduction over the baseline Mel-frequency 
Cepstral Coefficient (MFCC) system.

INTRODUCTION
The main objective of speech recognition is to get a higher recognition rate. 
However, lots of factors tend to degrade the performance of automatic speech 
recognition (ASR) system, such as environmental noise, channel distortion, 
and speaker variability [1, 2]. Generally, automatic speech recognition 
system consists of two parts, feature extraction and pattern matching. 
Therefore, methods which aim to improve the performance of ASR system 
can be mainly divided into two categories, the “model” approach and the 
“feature” approach. The “model” approach mainly focuses on improving 
the speech recognizer, where the speech features are classified into different 
patterns developed from the statistical properties of speech. As for “feature” 
approach, emphasis is put on improving the robustness of speech features. 
The method proposed by this paper belongs to this category.

Noise reduction or clean speech estimation is a straight forward 
“feature” approach to improve the performance of ASR systems. There 
are different ways to get the estimation. minimum mean square Error is 
one of the most important ones. Ephraim derived the short-time spectral 
amplitude (STSA) estimator using minimum mean square error (MMSE) 
in 1984 [3], which has become a standard approach for clean speech 
estimation in speech processing. The advantage of MMSE estimator is 
very obvious. It is mathematically optimized, which theoretically can get 
a good estimation of the clean speech. Besides, there is solid derivation 
making it easier to analyze. Originally, the MMSE-based algorithms were 
intended to be used for speech enhancement. For speech recognition, several 
MMSE-based algorithms have been developed. Yu et al. in 2008 developed 
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the MMSE estimator in the log-power domain [4]. The cepstral domain 
estimator appears also in 2008 [5]. Besides, different distortion models 
are developed for improving speech recognition system [5, 6]. Recently, 
some more complicated MMSE-based algorithms which require the so 
called stereo data input are proposed [7]. Admittedly, MMSE works well for 
speech enhancement and speech recognition. The main idea of MMSE is to 
estimate the clean speech from the noisy speech. The success of MMSE in 
previous implementation reveals that it is one of the means to improve the 
performance of an automatic speech recognition system (ASR). However, it 
is not necessarily the only one. Mathematically, the recovery of clean speech 
from noisy corpus is a problem of solving a nonlinear function. The above 
mentioned MMSE approach can be treated as a kind of statistical approach 
to solve the function. However, there are other ways for nonlinear function 
�����
�����������������	����	���	����|	������
���������������������������	��
to recover the clean speech.

Unlike many other algorithms, the proposed algorithm does not need 
stereo data input, which makes it more robust to different conditions. It is 
because stereo data is impossible to get in practical situations. The novelty 
of this paper lies in that the two parts of MFCCs (c1~c12, log-power) are 
processed separately. Direct solution of nonlinear system function is much 
easier than the statistical approach. Besides, compared with earlier MMSE-
based algorithms, the proposed method does not need any additional training. 
�	�$�\«\$*�����[��	������	������|	��
��������	����������������	�����	���
standard English database, which contains isolated digits as well as digit 
serials. Comparison is made against ordinary MFCCs, MMSE-STSA [3], 
Spectral Subtraction (SS) [8], Cepstral Mean and Variance Normalization 
(CMVN), the ETSI standard advanced front-end feature extraction algorithm 
(AFE) [9], and Mean Variance Normalization�����$\�$�
��	�����'�§$>�
[10]. Experimental results show the excellent performance of the proposed 
method.

The rest of the paper is organized as follows. In Section 2, the system 
model, nonlinear function, is presented. Section 3 discusses the details of 
�	� ������	�� ���������� ���������� �	����	�� ��	������� ��	��� ��� ����� 
������
algorithm, prior estimates for clean speech and noise, and the novel log-
power subtraction method. The experimental speech databases, ASR 
systems and the additional comparison methods are described in Section 4. 
Conclusions are summarized in Section 5.
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SYSTEM MODEL
Following similar derivation procedure from [11], the clean speech waveform 
is denoted as xt where t is the time index. It is assumed that xt is corrupted by 
the independent additive noise waveform nt and becomes the noisy speech 
waveform yt as shown in

      (1)
The speech signal is cut into frames and transformed into frequency domain 
using DFT. Then (1) becomes

     (2)
By assuming the additivity on the powers of the components in the frequency 
domain [12], the power spectrum of the noisy speech is given by

     (3)
After applying Mel-filterbanks to the power spectra,

  (4)
where Wl

f stands for the transfer function for the lth filter.
Define the log channel energy vectors as:

    (5)
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where log(·) denotes the natural logarithm
Then (4) becomes

      (6)
Then changing (6) to the log-power domain,

      (7)
then

     (8)
where 1 stands for a vector with all elements equal to one.
Then, the MFCCs can be calculated by

       (9)

ALGORITHM DESCRIPTION

Iterative Root-Finding

Theoretical Analysis
In fact, with no additional constraints, and if |Yf ,t| 

2 and |Nf ,t| 
2 are already 

known, according to (3) the clean speech can be estimated simply by

    (10)

where  is the clean speech estimate.
Equation (10) is just the basic idea of Spectral Subtraction (SS) [8]. However, 
(10) only exists when |Y f ,t| 

2> |N f ,t| 
2. If |Y f ,t| 

2�®�¯��f ,t| 
2, then |Y f ,t| 

2°�¯��f ,t| 
2®�

0. The clean speech estimate becomes zero or negative, which is obviously 
wrong.
A traditional way to solve the above mentioned problem is to implement a 
threshold to guarantee the clean speech estimate to be positive:

  (11)
where the parameter  is a small positive constant value.
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Equation (11) is a very common way to implement Spectral Subtraction 
(SS) in speech recognition which will be denoted as SS in later discussion. 
Admittedly, (11) manages to increase SNR, which in return is a straight 
forward way to improve the performance of speech recognition systems.
However, there is a very serious problem caused by SS. Because of the 
��	������±�����	������������������	��	��|	�	����		���������	�����[	�����	��	��
���±�������	�<���|	�����	�����	�����	�	��	��������������		����	����������
�	�[��	���	����������	�<'[>��������	!�������±�

Figure 1: Spectrogram of digital string “3Z82”.
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After processed by SS or other similar methods, the probability 
distribution of speech is greatly changed. For example, in Figure 2, it can 
[	�	���������������������	����[�[�����������		�����	��	!����±������	�����
increased, which makes the pdf of the processed speech discontinuous.

Figure 2: Speech PDF of Mel channel log-power for digital string “3Z82”.

Most state of the art ASR systems incorporate statistical methods to 
perform pattern recognition. HMM is one of the most popular ones. These 
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statistical methods are all developed based on certain statistical model of the 
speech. In other words, a probability distribution is always assumed as the 
basis of recognizer derivation. SS like algorithms greatly changes the pdf 
of speech, which in return causes the performance of ASR systems to drop.
The proposed algorithm intends to achieve the clean speech in an iterative 

manner, which means the clean speech estimation  slowly converges 
to a better guess. There would not be a mass force assignment of the negative 
elements to a certain value. Thus the discontinuity problem is avoided.

Iterative Solution
The novelty of implementing iterative root finding algorithm is that unlike 
the Spectral Subtraction like approaches it manages to overcome the 
awkward  problem without causing discontinuity in the 
speech PDF. The statistical approach handles this by applying a series of 
mathematical operations which are not sensitive to the above mentioned 
problem. In power domain, the final expression is

  (12)
which fundamentally avoids the possibility of |Y f ,t| 

2�®�¯� f ,t| 
2 . It is because 

�	�	!��|��	�������	�	������	� ��� '<°�>²� ¯  ̈ f ,t| 
2 , which is generated from 

only the current frame.
As described before, the iterative root finding algorithm can also handle |Y f 

,t| 
2�®�¯� f ,t| 

2 very well. Equation (8) can be reshaped to

     (13)
where Y is the noisy speech vector, X is the parameter that needed to be 
recovered. If the noise vector N can be reasonably estimated, (13) becomes 
a nonlinear function about X, which can be solved by iterative root finding 
algorithms.
Denoting

     (14)
then

     (15)
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According to Newton’s method, given a function f (X), its derivative f’(X) 
and a first guess , the solution to the function can be reached by

      (16)
where i is the iteration index.
For the iterative step

   (17)
it has to be noted that

   (18)
�	�	���	������	���������������	������������		��	��	�������������[	����"
zero. Then (17) is modified to

  (19)
With a successful guess of the initial step, clean speech vector  and noise 
vector , the clean speech estimate  can be satisfactorily approximated. 
Equation (19) can work very well even if |Y f ,t| 

2� ®� ¯� f ,t| 
2 . About the 

�����������������[�	������	���	�	�������������	�	��	���	����������^���
the iteration becomes

  (20)
It can be easily seen that (20) would not cause mass assignment of the same 
value, which means the discontinuity problem will not appear.

Prior Estimates

In statistics, a minimum mean square error (MMSE) estimator is the approach 
which minimizes the mean square error (MSE), which is widely used in 
lots of areas in signal processing. In 1984, Ephraim and Malah derived the 
short time spectral amplitude (STSA) estimator using MMSE [3]. After that, 
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MMSE has become a standard approach for enhancing the quality of speech. 
Therefore, it is chosen to generate the prior estimate of the clean speech. The 
following equation shows the standard cost function for MMSE approach 
[3]:

     (21)
By following MMSE-STSA [3] the clean speech estimate can be reached by

  (22)
�	�	� ³'´>� �	���	�� �	� ������ ���������� �'����� �>� ��� �	� ������	���
hypergeometric function; I0(·) and I1(·) denote the zero and first order 
������	���	��	������������µ�f ,t and ¶f ,t are the a priori and a posteriori signal-
to-noise ratios (SNR), respectively:

     (23)
Then the clean amplitude estimate is transferred to log-power domain:

  (24)
Equation (24) will serve as the initial guess for the iterative approach.

Log-Power Subtraction (LPS)

Algorithm Description
As is shown in Figure 3, there are mainly four different domains in the 
MFCC scheme. The proposed algorithm works in the log-power domain.
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Figure 3: Different domains in MFCC scheme.

The clean speech estimate generated by the proposed algorithm in (19) 
is actually

   (25)
It is the clean speech log-power vector, in the log-power domain as described 
in Figure 3.
The MFCC static parameters can be divided into two parts, c1~c12 and 
c0/log-energy. Strictly speaking, the proposed algorithm mainly focuses on 
c1~c12. For log-energy, traditionally it should be calculated by

   (26)
The clean speech power estimate, |X f ,t| 

2 , cannot be perfectly recovered 
from (25) because of the Mel-filterbanks. Additional distortion will be 
introduced to the feature vectors. For c0, although it seems to work smoothly, 
the recognition results are just about “average”. Therefore, a separate noise 
removing scheme is developed. At the iterative root finding part, an estimate 
for the noise is reached. The frame clean speech power can be estimated by

  (27)
Then the log-energy can be calculated by
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   (28)
However, problem arises when �®�+���	�	���	�����	������������	�	�����
incorporated to reduce the chances of imaginary parts appearing. Then (28) 
becomes

      (29)
����	����	������	�������	�	��±0 is set the guarantee the log-energy not to 
be infinity. Therefore, the log-power part becomes

  (30)

Theoretical Analysis
The basic idea of log-power subtraction is similar to the Spectral Subtraction 
(SS) algorithm developed by Boll in 1979 [8]. Figure 4 shows the diagram 
of Spectral Subtraction algorithm.

Figure 4: Diagram of spectral subtraction.

����� �	
�	�� �	� ��� ��� �	� ��������	� ������� ��� �¸��� �	�� �����	��
in speech recognition, SS is normally implemented in the power spectral 
domain.

Most of noise estimation algorithms are developed based on statistical 
���	��������	���������������		���������^	���	�	�����������������	��
��
point, |N f ,t| 

2 , more like an expectation or average of noise based on previous 
frames. Therefore, when used in spectral subtraction, lots of elements will 
become negative, especially in the non-speech period, which will lead to the 
problem described in Section 3. However, for the proposed LPS approach 
the effect of the above mentioned problem is to a certain extent avoided. It 
is because traditionally the log-power is calculated by (26). It is based on the 
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sum of all the speech power elements in one frame. Mathematically, from 
(29), the following equation can be derived:

  (31)
where F is the total number of frequency bins.

Equation (31) shows that LPS is equivalent to performing spectral 
subtraction after averaging all the elements in the current frame. Due to 
the averaging process, the whole spectral subtraction scheme become more 
robust since both speech and noise estimate are kind of expectations of the 
actual signal.

Implementation Details

The proposed algorithm consists of two parts, iterative solution of the 
nonlinear function and log-power subtraction.

Figure 5 shows the block diagram of the proposed algorithm. The 
�	����	�������	�	���	���������	�¹�º�+�_��¹f ,t º�+�`����º�+�¸��±0 = 10°<+, and the 
iteration is performed only once. Minimum Statistics (MS) is used for noise 
estimation [13].

Figure 5: Diagram of the proposed algorithm.
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ALGORITHM EVALUATION

Experiment Setup

AURORA2 Database
The AURORA2 database is adopted to evaluate the performance of the 
proposed method. The AURORA2 data is based on a version of the original 
TIDigits (as available from LDC) sampled to 8 kHz [14]. Noise is artificially 
���	������	|	������\��'*+�����<=�����<+�����=�����+�����°=���>���	��$�����
Set B are filtered with a G712 [15] characteristic filter, which simulates the 
response of filters found in the A/D interface of PCM transmission systems. 
Set C is filtered with MIRS filter to simulate a telephone system. There 
are two training conditions in AURORA2, clean training set and multi-
condition training set. For clean training condition, the training set has no 
noise added and it consists of 8440 utterances recorded from 55 male and 
55 female adults. 4004 utterances from 52 male and 52 female speakers 
are split equally into 4 subsets with 1001 utterances each, with all speakers 
being present in each subset. In the multi-condition training set, four types 
of noises have been added at various SNR levels [14, 16].

System Description
The proposed front-end feature extractor is modified from the MFCC model 
provided by Voicebox Toolkit [17]. The demo scripts from the AURORA2 
database are used for training. In the evaluation experiments, log-energy 
(log E) together with c1 to c12 is used as the static feature vector, and then 
the delta and delta-delta features are calculated using the frame-differential.

The same recognizer is used for both the proposed front-end feature 
extraction algorithm and the baseline system for comparison. Each digit 
is modeled by a simple left-to-right 18 states (including two non-emitting 
states) HMM model, with 3 Gaussian mixtures per state. Two pause models 
��	��	
�	���«�	������������������{���������	���������	����	�����	��
before and after each utterance. The other one is “sp”, which is a single state 
model (tied with the middle state of “sil”) and models the pauses among 
words.

Comparison Targets
The proposed algorithm does not need stereo data input. Therefore, algorithms 
such as SPLICE [18] are not selected for comparison, since comparison 
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between algorithms with and without clean speech input is unfair. Because 
the proposed method is developed based on MFCC, it is chosen to be the 
baseline. The diagram is given in Figure 6.

Figure 6: Diagram of MFCC.

MMSE-STSA is the standard MMSE approach for mathematically 
recovering the clean speech. In this paper, the STSA algorithm is 
implemented with minimum statistics as the noise estimation part. The log-
power subtraction approach is similar to SS, so it is chosen to show that in 
speech recognition log-power subtraction is much better than SS. MVA is 
a cepstral domain approach, which is chosen to show the superiority of the 
proposed algorithm in relevant area. Figure 7 shows the diagram of MVA.

Figure 7: Diagram of MVA.

The ETSI standard advanced front-end feature extraction algorithm 
(AFE) is also implemented for comparison [9].

Results and Discussion

Experimental Results
Experiments are conducted to show the speech recognition results of the 
proposed NLPS algorithm with different iterations. Detailed recognition 
results are given in Table 1. It can be easily found out that the optimal result 
comes at the second iteration.

Table 1: Detailed recognition rates (%).

Iteration No. 1 2 3 4 5

Clean 99.09 99.08 98.37 98.36 97.23
Avg 0–20 85.70 85.76 85.66 80.07 76.17

°=��� 27.80 27.85 23.24 23.24 21.31
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Comparison is made against MFCC, MMSE-STSA [3], Spectral 
Subtraction (SS) [8], Cepstral Mean Variance Normalization (CMVN), AFE 
[9], and MVA [10].

There are two training conditions in the AURORA2 database demo, 
clean-training condition and multi-training condition. In the multi-training 
condition noisy speech together with the clean speech are used for training 
HMMs. Therefore, the recognition results from multi-training condition are 
very good. For most of the SNR levels, the recognition results are over 90%. It 
makes all of the above mentioned methods yields similar recognition results, 
about 92% on average. Actually, it is meaningless to make the recognition 
results increase from 92.1% to 92.5%. Besides, in real life preparing a noisy 
����[��	���������������������������	���������������[	����	��	�	���	���
���	�
���	���������	�������\���������^	��������
���������	�	���	����	��	���|	�
database for training. Moreover, if the noise encountered is very different 
from that in the database, bad results will be obtained. Therefore, only the 
clean training condition results are used for comparison. The experiment 
results are shown in Tables 2, 3, 4, and 5.

Table 2: Detailed recognition rates (%).

SNR Set A Set B Set C

Subway Bab-
ble

Car Exhi-
bition

Station Restau-
rant

Street Airport Restau-
rant

Street

Clean 98.83 99.09 99.14 99.29 98.83 99.09 99.14 99.29 98.93 99.15

Avg 
0–20

85.96 86.72 87.77 82.81 86.80 86.84 88.33 87.94 83.15 84.82

°=��� 29.23 26.18 31.40 29.37 29.63 29.50 31.26 30.64 21.80 26.72

Table 3: Recognition results for different parts of the proposed algorithm.

 Clean Avg 0–20 ��

CMVN 99.32 77.78 13.90
LPS 99.47 73.07 12.92
LPS + CMVN 99.07 83.30 20.78
Newton 99.20 83.83 25.65
Newton + CMVN 99.25 84.96 27.78
NLPS ( New-
ton + LPS + CMVN )

99.08 85.76 27.85
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Table 4: Recognition results for comparison targets.

 Clean Avg 0–20 ��

MFCC 99.42 71.80 13.39
SS 99.32 72.42 25.26
CMVN 99.32 77.78 13.90
STSA 99.26 80.12 20.31
AFE 99.20 82.23 24.77
MVA 99.20 84.15 26.24

Table 5: Recognition results for comparison targets.

 Avg 0–20 Relative Imp. Relative Imp.

MFCC 71.80 19.4% 13.39 108.0%
SS 72.42 18.4% 25.26 10.3%
CMVN 77.78 10.3% 13.90 100.4%
STSA 80.12 7.0% 20.31 37.1%
AFE 82.23 4.3% 24.77 12.4%
MVA 84.15 1.9% 26.24 6.1%

In Table 3, LPS stands for log-power subtraction. LPS + CMVN means 
only LPS and CMVN are implemented in the speech recognition system. 
Newton refers to the system with only Newton’s iterative method. Newton 
»���§���	����[����	�������	�����	�	��	�����]������	�
������������
the proposed algorithm which involves the implementation of all the three 
methods, Newton’s method, LPS and CMVN. The experimental results in 
Table 3 are given to show that the three parts of the proposed algorithm all 
helps to improve the performance of speech recognition system.

In the following discussion, MFCC denotes the traditional 13 Mel 
��	!�	�����	���������	�
��	���� ���	�	������ �	�����	���������|	�������
and acceleration parameters. Results are averaged over the noisy test sets 
with SNRs from 0 to 20 dB, denoted as Avg 0–20. Another point that has 
to be mentioned is that the clean set results of all the above mentioned 
algorithms are over 99%. It is also meaningless to attempt to achieve 
�����
����������|	�	������������	|	����	�	���	������������������[	������	��
���������������$|��+¼*+�������\�°=����������	�¸�������	�	��	���	�����
�	���������$|��+¼*+�������\�°=����
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Figure 8: Experimental results.

Results Analysis
Experimental results in Table 3 show that the implementation of LPS and 
Newton’s method greatly improves the recognition results. Besides, the 
two fundamental parts, LPS and Newton’s method, both contribute to the 
excellent performance of the proposed algorithm. As shown in Table 3, 
Newton’s method alone can reach a recognition rate of 83.83% at Avg 0–20. 
With the combination of LPS and CMVN, the performance of the speech 
recognition system is further improved, 84.96% for Newton + CMVN and 
85.76% for the proposed NLPS algorithm.

Comparisons in Tables 3 and 4 show that the proposed algorithm 
�����
������� �����|	�� �	� �	��������	� ��� ��		�� �	���������� ����	���
The relative improvement ratios are shown in Table 5. Compared with the 
baseline MFCC system, the proposed algorithm achieves very impressive 
improvements, 19.4% in terms of Avg 0–20 and 108½������\�°=���������
��§���������$�������|	��������
����������|	�	������	��	��	�������	�
level of Avg 0–20, the relative improvements are 10.3% over CMVN, and 
�½��|	�����$���	��������	�������\�°=������	������|	�	����[	���	�
�������	������
������100.4% over CMVN and 37.1% over STSA.
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In speech processing technique, there is a kind of awkward situation 
when speech enhancement algorithm sometimes cannot improve the speech 
recognition results even if it manages to improve speech quality in terms 
of human listening test. SS is just one of the above mentioned methods. 
Direct implementation of the SS in [8] yields terrible results. Therefore, in 
our evaluation test, the noise estimation part of SS is replaced by Minimum 
Statistics [19]. In terms of Avg 0–20, the relative improvement reaches 
<¸�`½��$����\�°=�����	��	����|	������|	�	������<+�{½���	��	��������	�
of SS can successfully support the novelty of the LPS method, which is an 
indispensible part of the proposed NLPS algorithm. As for MVA, admittedly 
it is a very successful algorithm. However, the proposed algorithm still yields 
[	��	���	�������$��$|��+¼*+����<�_½������|	�	�������	��	���������\�°=�����
the relative improvement is 6.1%. For the European Telecommunications 
Standards Institute (ETSI) standard AFE, at Avg 0–20, a relative improvement 
���`�{½�����	��	���������\�°=������	��	����|	������|	�	������<*�`½�

CONCLUSION
In this paper, a novel algorithm for robust speech recognition system is 
presented with its detailed derivation, implementation, and evaluation. It 
is based on the direct solution of a nonlinear system model together with a 
novel log-power subtraction method. The novelty of the proposed algorithm 
lies in four parts. Firstly, the proposed method does not need any additional 
training process, which makes the computational burden very small. Besides, 
the proposed method is a blind approach, which means that the proposed 
method yields good performance at all SNRs and noise types. Another 
advantage of the proposed algorithm is its ability to adapt to changing 
environments. The adaptation can be made by simply changing the noise 
estimation part. Finally, the NLPS algorithm can be easily combined with 
other algorithm, such as the MVA discussed above. The proposed algorithm 
is implemented and evaluated with AURORA2 database. Comparison 
is made against STSA, SS, and MVA. Experimental results demonstrate 
significant improvement in the recognition accuracy.
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SUPPLEMENTARY MATERIALS

Table.1. Experimental Results

SNR/dB Clean 20 15 10 5 0 -5 Avg 0-20

MFCC
(39)

Set A 99.37 97.98 94.84 82.55 56.09 27.59 12.54 71.81

Set B 99.37 98.17 94.97 82.30 56.52 29.39 13.23 72.27

Set C 99.35 95.96 90.73 78.63 55.47 28.20 13.36 69.80

Avg 99.36 97.37 93.51 81.16 56.02 28.39 13.04 71.29

SS
(Boll)

Set A 99.34 95.93 91.57 79.58 50.46 22.61 10.72 68.03

Set B 99.34 96.55 93.08 82.80 58.29 27.98 12.01 71.74

Set C 99.29 95.43 90.80 77.43 51.18 24.10 11.32 67.79

Avg 99.32 95.97 91.82 79.94 53.31 24.90 11.35 69.19

SS
(Martin)

Set A 95.11 90.74 86.63 79.06 65.51 44.02 26.50 73.19

Set B 95.11 91.17 88.13 81.51 67.97 45.75 26.96 74.90

Set C 95.13 89.34 84.08 74.64 59.32 38.44 22.33 69.16

Avg 95.11 90.41 86.28 78.40 64.27 42.74 25.26 72.42

Newton
Only

Set A 99.20 97.90 96.15 91.60 79.35 52.17 24.33 83.43

Set B 99.20 98.14 96.83 93.26 81.95 56.04 28.47 85.24

Set C 99.19 97.37 95.80 90.29 78.82 51.74 24.16 82.80

Avg 99.20 97.80 96.257 91.71 80.04 53.32 25.65 83.83

Newton
+ CMVN

Set A 99.26 97.84 95.96 91.33 79.96 56.34 26.77 84.29

Set B 99.26 98.12 96.83 93.33 83.49 59.94 29.31 86.34

Set C 99.235 97.43 95.85 90.96 80.34 56.64 27.26 84.24

Avg 99.25 97.80 96.21 91.87 81.26 57.64 27.78 84.96

Iterative
(Proposed)

Set A 99.09 97.80 96.11 92.13 82.15 60.90 29.05 85.82

Set B 99.09 98.22 96.95 94.07 84.95 63.21 30.26 87.48

Set C 99.04 97.47 95.89 91.50 80.55 54.52 24.26 83.98

Avg 99.07 97.83 96.31 92.56 82.55 59.54 27.85 85.76

Spectral subtraction is not very suitable for speech recognition. The main 
problem lies in the noise estimation part. State of the art noise estimation 
algorithms intends only to estimate the noise in a ‘general’ way. Therefore, 
the estimated noise is very ‘stationary’ compared with the true noise.

� �X Y N Y N� � � � �

If the noise estimate is ‘very different’ from the true noise, the spectral 
subtraction scheme actually is adding new noise, N� , into the speech. 
Besides, from the recognition results in Table 1 it can be easily found out 
that the proposed algorithm is much better than spectral subtraction. Even 
the primary form (Newton’s method only) yields better results than spectral 
subtraction at all SNR levels.
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Detailed Recognition Results

Experimental results for the comparison targets (including detailed SNR 
level) are shown below.

Table.2. Experimental Results

SNR/dB Clean 20 15 10 5 0 -5 Avg 
0-20

MFCC
(39)

Set A 99.37 97.98 94.84 82.55 56.09 27.59 12.54 71.81

Set B 99.37 98.17 94.97 82.30 56.52 29.39 13.23 72.27

Set C 99.35 95.96 90.73 78.63 55.47 28.20 13.36 69.80

Avg 99.36 97.37 93.51 81.16 56.02 28.39 13.04 71.29

CMVN

Set A 99.34 97.03 94.48 88.52 72.62 40.98 14.95 78.72

Set B 99.34 97.48 95.21 89.57 73.75 42.56 15.31 79.71

Set C 99.29 96.40 93.29 84.69 67.23 32.99 11.45 74.92

Avg 99.32 96.97 94.32 87.59 71.20 38.84 13.90 77.78

SS

Set A 95.11 90.74 86.63 79.06 65.51 44.02 26.50 73.19

Set B 95.11 91.17 88.13 81.51 67.97 45.75 26.96 74.90

Set C 95.13 89.34 84.08 74.64 59.32 38.44 22.33 69.16

Avg 95.11 90.41 86.28 78.40 64.27 42.74 25.26 72.42

STSA

Set A 99.27 96.83 94.18 88.53 76.00 50.07 21.33 81.12

Set B 99.27 97.30 94.69 88.81 75.06 48.54 20.97 80.88

Set C 99.24 96.44 93.25 86.36 71.34 44.35 18.65 78.35

Avg 99.26 96.86 94.04 87.90 74.13 47.65 20.31 80.12

MVA

Set A 99.25 97.34 95.21 90.49 79.56 56.22 28.36 83.76

Set B 99.25 97.61 95.75 91.67 80.35 57.41 28.78 84.56

Set C 99.12 96.50 93.94 87.42 73.87 46.83 21.58 79.71

Avg 99.20 97.15 94.97 89.86 77.93 53.48 26.24 82.68
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ABSTRACT
To enhance the performance of image classification and speech recognition, 
the optimizer is considered an important factor for achieving high accuracy. 
The state-of-the-art optimizer can perform to serve in applications that 
may not require very high accuracy, yet the demand for high-precision 
image classification and speech recognition is increasing. This study 
implements an adaptive method for applying the particle filter technique 
with a gradient descent optimizer to improve model learning performance. 
Using a pretrained model helps reduce the computational time to deploy 
an image classification model and uses a simple deep convolutional neural 
network for speech recognition. The applied method results in a higher 
speech recognition accuracy score—89.693% for the test dataset—than the 
conventional method, which reaches 89.325%. The applied method also 
performs well on the image classification task, reaching an accuracy of 
89.860% on the test dataset, better than the conventional method, which has 
an accuracy of 89.644%. Despite a slight difference in accuracy, the applied 
optimizer performs well in this dataset overall.

INTRODUCTION
Soft computing is available in several applications due to its usefulness in 
modeling and optimization. Numerous studies have focused on image and 
video processing with objectives such as detection and tracking. Various 
models have been proposed, including neural networks, deep learning, fuzzy 
logic, and hybrid methods [1]. However, their practical use in applications 
remains problematic because many applications require higher accuracy 
than the available models can supply. Hybrid methods that combine two or 
more soft computing techniques can often enhance the efficiency of image 
and video retrieval processes [2]. In an image context, a 3D geographical 
information system (GIS) data plan for the WiMax network was integrated 
to optimize both the network performance and the investment costs, both of 
which are relevant to the required number of base stations and sectors [3]. 
In addition, soft computing plays an important role in GIS research [4–7]. 
One important aspect of implementing soft computing is the quality of the 
dataset. Soft computing can also be used to generate meaningful and human-
interpretable big datasets by defining an interface between the numerical and 
categorical spaces, i.e., the data definition and the linguistic space of human 
reasoning [8]. Furthermore, datasets applied to investigate soft computing 
methods should use a benchmark dataset intended for validating various 
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methods [1]. One example of applying soft computing for decision making 
was presented [9]; this is a new method named the neurofuzzy analytical 
network process. The presented method works based on both fuzzy logic 
and an artificial neural network. Another implementation of soft computing 
was proposed for tunneling optimization [10]. This model analyzes the 
relationship between the target tunneling responses and the impact of input 
parameters, including both geometrical and geological factors. The proposed 
implementation is useful in reaching robust and low-cost soft computing 
solutions in the mining industry [11]. Soft computing can be applied in 
environmental management to predict vehicular traffic noise using data such 
as the volume per hour, percentage of heavy vehicles, and average speed of 
vehicles as inputs to neural networks or random forests [12]. Six methods 
are used for modeling soil water capacity parameters that are important in 
environmental management of targeted areas [13]. In the aviation industry, 
a multilayer perceptron neural network is employed to diagnose aerospace 
structure defects: the classical method uses signal processing and data 
interpretation [14]. Soft computing has also been implemented in path 
categorization of airplanes [15]. Soft computing can also be applied for 
estimating the position and orientation of spacecraft, which is useful for 
space technology development [16].

����	� ������
������� ���� ��		�� �	���������� �	����� �	��������
research topics, since they can be applied in various applications [17]. One 
	�����	�����������	�������
��������	�������������"[��	���������	����^�
regression model [18], for which the researchers presented a method that 
can reduce the losses in matrix data correlations that occur when an image 
������������	���������|	����������[�	���������	�������
�����������	��	���$��
integrated recurrent neural network and a convolutional neural network 
(CNN), named the multipath x-D recurrent neural network (MxDRNN), 
���[		��������	����������	�������
��������<_�����������������	�����	�|��	��
deep neural networks implement a robust loss function to enhance image 
������
������� �	��������	� �*+��� ���� ��	���	������ ����	� ������
�������
has been widely used in many earth observation tasks, including object 
detection, object recognition, and surveillance. A new joint spatial-spectral 
��	���	����������	�������
��������	����[��	���������	�	���������	�����"
stream convolutional networks and spatial enhancement achieved improved 
������
������� �	��������	� �*<��� ����	� ������
������� ���� |	��� ��"
resolution imagery (VHRI) is another challenging task because of the rich 
detail captured in the images. Many studies have focused on object-based 
convolutional neural networks (OCNNs) and proposed various innovations, 
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����������	����������������	|	������	��"����	��������
��������	��������
��� «���� ��� ���	|	� ��	�� §�\�� ������
������� ��������� �**��� ����	�
������
������� �	���!�	�� �|	� ����� [		�� �����	�� ��� �	������ �������������
such as breast cancer screening through histopathological imaging [23]. In 
addition, speech recognition research is useful for native language tasks, 
such as the implementation of deep neural networks for the Algerian dialect [24] 
and for code-switching among Frisian languages [25]. Other speech recognition 
research has concentrated on recognizing emotion from speech with regard 
to age and sex using hierarchical models [26]. A new approach for speech 
�	����������[��	������	���	��
���������������	�������	!�	����������	��������
of speech using CNNs has been presented [27]. Visual object tracking by using 
��� 	����	������ !������� �������	� 
��	�� ���� �	��� ����� ������������� ��� [		��
presented as an another challenge for object tracking [28].

�	� �����	�� �	���� 	������� �	� �������	� 
��	�� �	���!�	�� �� ����	�
estimation technique, to optimize the gradient descent optimizer. State 
estimation is often used in navigation and guidance applications and has 
sometimes been applied to other optimization methods. For example, for 
�	��"���	� ����
�� 	����������� ����	� 	���������� ��� [		�� ����	�	��	�� ������
��� 	��	��	�� %������ 
��	�� ����	��� ��� ������ ��������� ����	��� �	��	������
���	������� �	��	��� ������������������ �*_���$��������	�
��	����������[		��
����	�	��	�������À����|������������	�	�����������|	�����	�������
�������
�{+¼{*�������������	������������������������^�������������
��	������{{���
The gradient descent algorithm is mainly used to optimize an objective 
[34]. For instance, it was used to implement a demonstration of a morphing 
wing-tip for an aircraft to reduce low-speed drag [35]. Thermal power plants 
use state estimation to optimize various parameters [36]. The adaptive 
�	���!�	���	�	��	������������	����������[��	�����������	�
��	�������	�
gradient descent optimizer to adjust and improve the performance on image 
������
�������������		���	�������������^������	|�����	���������	�]���	��	� 
[37] and TensorFlow speech recognition challenge [38] datasets.

MATERIALS AND METHODS

Materials

PlanesNet Dataset
Future airport designs should provide improved passenger convenience, 
such as reducing airplane delays or requiring less check-in time. Air traffic 
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management, as the backbone of the aviation industry, is one factor leading 
airports to become more intelligent [17]. Airplane detection is a fundamental 
task in tracking, positioning, and predicting the positions of airplanes. 
PlanesNet is a medium-resolution, labeled, remote sensing image dataset 
that can serve as training data for training machine learning algorithms 
�{�����	������	��������������*+�²�*+�\�������	����[	�	����������	��������"
plane” as shown in Figures 1 and 2, respectively. The “plane” images mainly 
consist of the wings, tail, and nose of the airplane. The images labeled “no-
plane” may include land cover features such as water, vegetation, bare earth, 
or buildings and do not show any part of an airplane. Some example image 
data are presented in the following figures.

Figure 1: Example of images in the PlanesNet dataset labeled as the “plane” 
category.

Figure 2: Example of images in the PlanesNet dataset labeled as the “no-plane” 
category.



Speech Recognition and Understanding64

Speech Commands Dataset
Another dataset adopted in this study for testing the applied method is a 
public dataset for single word speech recognition, which was initially 
compiled for use in the TensorFlow Speech Recognition Challenge [38]. 
The dataset consists of audio files in which a single speaker says one word. 
The objective is to predict the audio files in the testing dataset, which are 
categorized in one of twelve categories: “silence,” “unknown,” “yes,” “no,” 
“up,” “down,” “left,” “right,” “on,” “off,” “stop,” and “go.” It should be 
noted that the applied method is based on a CNN, which is normally applied 
to 2D spatial problems. In contrast, audio is inherently a one-dimensional 
continuous signal across time. The dataset was preprocessed into images by 
defining a time window into which the spoken words fit; then, the captured 
audio signal is converted into an image by grouping the incoming audio 
samples into short segments, just a few milliseconds long, and calculating 
the strength of the frequencies across a set of bands. Each set of frequency 
strengths from a segment is treated as a vector of numbers, and those 
vectors are arranged in time sequence to form a two-dimensional array. This 
array of values can then be treated such as a single-channel image called a 
spectrogram.

Methods

The applied method is implemented based on a combination of a particle 
filter and minibatch gradient descent optimizer processes as expressed in 
equation (1) with the goal of obtaining a suitable optimizer for the target 
dataset:

  (1)
�	�	�������	��	�����Á�����	��	����������	�������������������	�������	������
��������� �'�>����� �	��	��� ����	���� ����	������������������	����	��	���
(SGD) performs a parameter update after processing each training example 
x(i) and label y(i) , which means that the batch size is 1. (e cost function in 
minibatch gradient descent is the average over a small data batch, which 
usually ranges in size between 50 and 256, but can vary depending on the 
application.
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The applied method uses a generated particle process in combination 
with variables from the minibatch gradient descent optimizer. Consequently, 
the applied optimizer performs updates by using the computed variables 
instead of the conventional variables from the minibatch gradient descent 
optimizer. The applied method can be expressed as shown in the following 
equation:

  (2)
where K is an adjustment value obtained from the particle filter process. 
K is multiplied by the deep learning rate before being added to the second 
equation term of the conventional minibatch gradient descent optimizer in 
equation (1). Figure 3 illustrates the working process of a particle filter. 
It works based on historical information from the prior stage. PF works 
iteratively by generating a particle, propagating it to the next time step t, and 
then performing an update to obtain an accurate value of the time step. A 
workflow of the applied method to obtain the K value is depicted in Figure 
4.

Figure 3#����^��������	���������������	�
��	��
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Figure 4: Working processes of the applied method.

The applied method shown in Figure 4 is described as follows [32]:
�� Initialization: at t = 0, generate n particles, and set their weights 

to 
�� For t = 1, · · · , end 

a. Input the particle set  to obtain the output  
by using the system model equation, which is determined by 
the particle plus a value from the Gaussian process with zero 
mean and whose variance is equal to the deep learning rate

b. Predict the observation value by using  with the 
measurement value assigned based on the mean of the prior 
iteration

c. Update the particle weight based on the observation vector zt 
by ht(·) or the observation model, which is set to 1. Calculate 
the importance weight using .

d. Normalize the weights according to . Par-
����	� �	À	��������� �	�	�������	�	������� �	��	���� 'Âi

t) and 
multinomial resampling, which is determined by the resam-
pling algorithm.



Deep Neural Learning Adaptive Sequential Monte Carlo for Automatic... 67

RESULTS AND DISCUSSION

�����
�������������
������

This experiment uses the inception_v3 model, which is a pretrained model 
intended for image classification applications. The PlanesNet dataset 
deployed in this experiment has a total of 18,085 images divided into two 
classes (7,995 “plane” images and 10,090 “no-plane” images). The data are 
divided into a training set with 14,377 images and a testing set with 3,708 
images. The training batch size is set to 100, the leaning rate is 0.001, and 
the deep learning computation requires 10,000 epochs.

The results of the applied method are compared with those of the 
conventional gradient descent optimizer. The applied method shows three 
���	�� '���� ����	�	��� ���[	��� ��� �������	�� ���� �������	� 
��	�� ��	�������� ���
parentheses). The results of the applied method and those of the gradient 
�	��	����������	����������	�������
������������[�	�<��	|	������� ��	��������
using the applied method (180, 300) achieve the best performance as 
measured by the mean cross entropy in every iteration (0.3193) and by the 

�����	������������'¸_�¸¡+½>���	������	���	����'=+��=+>����	|	���	�[	���
performance with regard to mean accuracy (87.4291%), which is calculated 
after every iteration.

Table 1: Results of the applied method and the gradient descent optimizer for 
����	�������
�������

Method Mean accu-
racy (%)

Mean cross 
entropy

Final test accuracy 
(%)

The applied 
method (50, 50)

87.4291 0.3196 89.482

The applied 
method (150, 100)

87.3806 0.3199 89.482

The applied 
method (180, 300)

87.4269 0.3193 89.860

The gradient de-
scent method

87.4073 0.3200 89.644

The accuracy and cross entropy after each deep learning iteration 
are shown in Figure 5. The graphs do not clearly express different model 
	�
��	���	�� [	����	� �	� �	��������	� �����|	�� ����� �������� ��� ����� ���
Table 1. However, both accuracy and cross entropy (Figures 5(a) and 5(b), 
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respectively) present the values of the corresponding trends for the applied 
method and the conventional method.

Figure 5:� ����	�������
��������	��������	#� '�>�������������	��	��� �	�������
step; (b) cross entropy after each learning step.

The confusion matrices for all cases are shown in Figure 6, clearly 
�	|	�����������	������	���	��������<¸+��������	������{++��������	�
��	��
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iterations achieves the best prediction result for the category of “no-plane;” 
however, it shows poor prediction results for the “plane” category. The 
confusion matrices for the other three results in Figures 6(a), 6(b), and 6(d) 
show no large differences in either the “plane” or the “no-plane” categories. 
These results imply that differences in the number of particles and the number 
�����	������������	��������	�
��	�����	����	��|	������	��������	�����	������	��
method. Thus, each application should select the most appropriate model 
based on user requirements and acceptable model accuracy.
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Figure 6: Confusion matrix: (a) the applied method (50, 50); (b) the applied 
method (150, 100); (c) the applied method (180, 300); (d) the gradient descent 
method.

Speech Recognition Result

A simple deep CNN is used in this experiment to generate a model for the 
audio file. The models are trained for 25,000 epochs with a batch size of 
100 and a learning rate of 0.001. The audio files include 105,829 individual 
files: 100,939 in the training dataset and 4,890 in the testing dataset. Similar 
to the image classification experiment, this experiment compares the results 
of the applied method under different numbers of particles and particle filter 
iterations with the results from the conventional minibatch gradient descent 
optimizer.
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The results are presented in Table 2, which show that the applied 
method (50, 50) achieves exceptional performance compared to the other 
models and obtains the best mean accuracy (77.8163%), mean cross entropy 
'+�¡��*>�� ���� 
���� �	��� ��������� '¸_�¡_{½>���	� ���|	�������� ����[����
gradient descent optimizer is the second best. From these results, we can 
�������	������	������	���	�������
���	�������������������	����[	�����
�������	�������������	�
��	����	���������������	|	���[	��	���	��������	�����
the conventional method. The accuracy and cross entropy results after each 
iteration are illustrated in Figure 7, which did not reveal obvious overall 
differences; therefore, the improvements are listed in Table 2. Confusion 
matrices are presented in Figure 8. The applied method (50, 50) shows 
exceptional performance on the “no,” “right,” and “off” classes. However, 
the conventional method achieves the best performance on the “yes,” 
“down,” and “go” classes. The other two versions of the applied method 
achieve a good performance on the “unknown” class. Finally, the applied 
method (150, 100) achieves the best results on the “left” and “on” classes.

Table 2: Results of the applied method and the gradient descent optimizer for 
speech recognition.

Method Mean accuracy 
(%)

Mean cross 
entropy

Final test accuracy 
(%)

The applied 
method (50, 50)

77.8163 0.6772 89.693

The applied 
method (150, 
100)

77.4286 0.6900 89.059

The applied 
method (180, 
300)

77.2724 0.6952 89.141

The gradient 
descent method

77.4950 0.6853 89.325
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Figure 7: Speech recognition performance: (a) accuracy after each learning 
step; (b) cross entropy after each learning step.
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Figure 8: Confusion matrices: (a) the applied method (50, 50); (b) the applied 
method (150, 100); (c) the applied method (180, 300); (d) the gradient descent 
method.
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The overall results of the speech recognition experiment show that the 
applied method performs better than the conventional method in terms of 
both accuracy and cross entropy. However, the confusion matrix results 
should be considered in detail before selecting the most suitable model for 
a given application.

The overall performance of using the applied method with image 
������
������� ���� ��		�� �	���������� ���|��	�� [	��	�� ���������� ���	|	���
���������� ������	�� ���� [��� ����	� ������
������� ���� ��		�� �	����������
illustrate some failure cases that remain a challenging task for further 
research. This is a very important consideration for some applications that 
�	!���	� ��� ��	������� ��� ����	� ������
�������� ���� ��� ��� �	� 	���� ���	�
industry, or high precision of speech recognition, such as in rescue processes. 
Therefore, the applied method in this experiment, based on state estimation 
and a well-known optimizer, is helpful to slightly improve performance 
in both applications. To apply this method in practical applications, more 
consideration of acceptable cases and failure cases using confusion matrices 
is required to reach optimal performance.

CONCLUSIONS
The goal of this study was to use the particle filter technique to optimize a 
variable in a gradient descent optimizer. The applied method was validated 
by applying it to two different types of public datasets: the PlanesNet 
dataset (for image classification) and the Speech Commands dataset (for 
speech recognition). Moreover, three variations of the applied method that 
use different numbers of particles and different numbers of iterations were 
tested on those two datasets: the three model variations used 50 particles and 
50 particle filter iterations, 150 particles and 100 particle filter iterations, 
and 180 particles and 300 particle filter iterations, respectively. The overall 
results show that the applied method achieves exceptional performances 
on both datasets, obtaining higher accuracy and lower cross entropy than 
the conventional method. The experiments also showed that the number 
of particles and the number of iterations used in the particle filter process 
affect the model’s overall performance. Therefore, to build a high-accuracy 
model, appropriate parameter values should be selected for the particle filter 
process in the applied method according to each application. A confusion 
matrix can be used as an assistive tool to select the most suitable model for 
a given application.
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ABSTRACT
We propose a fast learning method for multilayer perceptrons (MLPs) on large 
vocabulary continuous speech recognition (LVCSR) tasks. A preadjusting 
strategy based on separation of training data and dynamic learning-rate with 
a cosine function is used to increase the accuracy of a stochastic initial MLP. 
Weight matrices of the preadjusted MLP are restructured by a method based 
on singular value decomposition (SVD), reducing the dimensionality of 
the MLP. A back propagation (BP) algorithm that fits the unfolded weight 
matrices is used to train the restructured MLP, reducing the time complexity 
of the learning process. Experimental results indicate that on LVCSR tasks, 
in comparison with the conventional learning method, this fast learning 
method can achieve a speedup of around 2.0 times with improvement on 
both the cross entropy loss and the frame accuracy. Moreover, it can achieve 
a speedup of approximately 3.5 times with only a little loss of the cross 
entropy loss and the frame accuracy. Since this method consumes less time 
and space than the conventional method, it is more suitable for robots which 
have limitations on hardware.

INTRODUCTION
Pattern recognition is one of the most important topics on humanoid robots. 
To make robots have capabilities of communicating with and learning from 
the realistic world, recognizing information such as speeches and images 
is needed. There is much former relevant work. For instance, methods of 
speech recognition have been used for facilitating interactions between 
human and humanoid robots for more than ten years [1]. An automated 
speech recognisor, which has relatively better performance on separating 
sentences and reducing noises than before, has been then applied to robots 
[2]. Besides, methods of image recognition have been widely applied to 
such humanoid robots. A classic example is the use of the robotic vision, 
such as gesture recognition to realize the direct commanding from humans 
to robots [3, 4].

However, there are some problems restricting the application of such 
methods to robots, the chief among which is that the recognising results are 
not satisfying. Fortunately, deep neural networks (DNNs) can resolve this 
���[�	���������	����	��		��������	�	�
��������	�������������	���������	�
recognition, bringing evident improvement on the recognition performance 
[5]. Then they have been used in speech recognition, especially in LVCSR 
tasks, over the past few years. Former work reveals that automatic speech 
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recognition (ASR) systems based on context dependent Gaussian mixture 
models (CD-GMMs) and hidden Markov models (HMMs) are improved by 
replacing GMMs with DNNs [6–10]. Moreover, new usages of DNNs are 
proposed in recent work [11–18].

An MLP based on a supervised BP learning algorithm is one of the 
���	��� ��	�� ����� ��� $�\� ����	���� ���	|	��� �	������� ��� ���
����� ���
the MLP due to the heavy computational burdens of densely connected 
structures, multilayers, and several epochs of iterations, and thus it requires 
considerably long time to achieve an essential recognition accuracy. Another 
drawback of DNNs is that it is hard to decode them as the decoding processes 
also entail a large amount of time.

Some methods have been proposed to ameliorate these disadvantages. 
Since graphics processing units (GPUs) have powerful abilities on parallel 
computations, they have been used to improve the speed of computing 
matrix multiplications in regard to the dense weight matrices of MLPs 
[19]. Meanwhile, asynchronous training algorithms have been applied 
to the training processes, making several computers or processing units 
work asynchronously so that the training tasks were allocated to parallel 
simultaneous jobs [20–22]. Moreover, Hessian-free (HF) optimisation 
focuses on reducing the number of iterations, which makes parameters 
converge faster than conventional stochastic gradient descent (SGD) [23–
25]. Nevertheless, the heavy computational burdens of learning MLPs still 
	������	��	�����������	�����������^�������	��������^	�������
��	����	�������
to improve the recognition accuracy. To speed up the decoding processes, 
SVD is used to restructure the models, but it requires extra time for retraining 
and once again increases the time consumption [26, 27].

In this paper, we propose a fast learning method, reducing the 
computational burdens of learning MLPs and decoding them. The basic 
concept of this method is to preadjust roughly the initial MLP and then 
train the MLP using an unconventional BP algorithm after restructuring 
weight matrices via SVD. The preadjusting process alters the distributions 
of singular values before the MLP is accurately trained. Since SVD reduces 
the dimensionality of weight matrices, the burdens of computing matrix 
multiplications are lessened.

The rest of this paper is organized as follows. Section 2 describes the 
fast learning method. Section 3 shows experimental results and discussions 
and in Section 4 we draw conclusions.
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A FAST LEARNING METHOD

A Learning Strategy for the First Epoch

The basic concept of this strategy is to roughly train the MLP before accurate 
learning. Concretely, it goes through all of the training data only once during 
the first epoch, using the conventional BP algorithm. During this epoch, the 
frame accuracy of the MLP is heightened as far as possible.
This strategy first separates averagely the training data into � bunches. 
When training with the �th bunch data, a dynamically declining learning 
rate is used, which is

     (1)
where �0 denotes the initial learning rate and 0<���� The proportions of 
these bunches are different, observing a rule based on the cosine function. 
The proportion of the �th bunch is

   (2)
Particularly, to ensure that the rest of data are contained in the last bunch, the 
proportion of the �th bunch is

       (3)

In fact  converges to 1 when � tends to positive infinity, because

  (4)
It ensures that all bunches observe the rule of the cosine function and all data 
are used when � tends to positive infinity. Nonetheless, it is impossible to 
let � tend to positive infinity in reality, so � is set to a big positive integer 
practically. We particularly name this strategy as preadjusting (PA), as the 
learning-rates and data arrangement are different from those conventional 
training methods.

The dynamic declining learning-rate is used due to the fact that the 
PA process requires going through the training data once and achieving 
heightened accuracies as far as possible. Relatively high learning-rates learn 
models effectively, but low precision exists, whereas relatively low learning-
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rates learn MLPs slowly but achieve high recognition accuracies. In (1), the 
initial learning-rate is high, facilitating the learning speed at the beginning, 
and, then, ��°< decays this rate exponentially, ensuring the precisions of the 
intermediate and last learning.

A BP Algorithm Based on Weight Matrix Restructuring

Weight Matrix Restructuring and Training
An MLP consists of an input layer, several hidden layers, and an output layer. 
Except the input layer that obtains states directly from input vectors, each 
of the other layers uses a weight matrix, a set of biases, and an activation 
function to compute states. The computational burdens are mainly due to 
the weight matrices. Concretely, both forward and backward computations 
demand the products of weight matrices and various vectors; thus the time 
complexity of the MLP is determined by the dimensionality of weight 
matrices.

SVD is one of the basic and important analysis methods in linear algebra 
[28], which can be used to reduce the dimensionality of matrices and has the 
following equation [26, 27]:

  (5)
where the numbers in “( )” stand for dimensions, W'�²�>�stands for an  ²� 
weight matrix, U'�²�>��Æ'�²�>, and VT

'�²�>�stand for three matrices generated 
by SVD, W<'�²�> and W*'�²�> stand for two new obtained weight matrices, 
and ! < max( , �) stands for the number of kept singular values. The time 
complexity of computing a product of W'�²�> and a vector k(n) is originally 
�( �²��). By replacing W'�²�> " k(n) with W<'�²�> " (W*'�²�> " k(n)), the time 
complexity is reduced to �((  + �>�²�!) when ! <  �²��/(  + �). Since the 
effectiveness of SVD, to some extent, depends on the meaningful parameters 
of weight matrices, the SVD-based method is arranged after preadjusting. In 
other words, SVD is meaningless to stochastic weight matrices which have 
not learned anything.
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To simplify the discussion, consider a single layer. Let b(m) denote an 
 -dimensional set that contains   biases, and #($) denotes an activation 
function. The forward computation transforms an �-dimensional input 
vector i(n) to an  - dimensional output vector o(m) by

  (6)
Since the weight matrices are unfolded, the backward computation is 
required to fit the doubled matrix structure. Let e(m) stand for a received error 
signal, #’ ($) for the derivative of the activation function, �(m) for a gradient, 
e(n) for an error signal that will be transmitted to the beneath layer, Ç[(m), 
Ç�<'�²�>������Ç�*'�²�> for the deltas, and � for a learning-rate. According to 
the BP theory, the gradient is

  (7)
The update rule of b(m) is

      (8)
The update rule of W<'�²�> is

   (9)
The error signal becomes WT

<'�²�>"�(m) throughW<'�²�>; thus, the update rule 
of W*'�²�> is

   (10)
The error e(n) is

    (11)
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Algorithm 1 illustrates the training process based on weight matrix 
restructuring. Step (1) is the forward computation. In step (2), the error 
signal is obtained. In steps (3), (4), (5), and (6), update W<'�²�>, W*'�²�>, and 
b(m). In step (7), transmit the error to the beneath layer.
After being trained by this algorithm, the final weight matrices can be 
inversely converted to the original structure via

  (12)
Nonetheless, it is not necessary to convert them to the original structure 
unless being seriously demanded, because converting inversely does not 
improve the recognition accuracy but increases the computational burdens 
of recognition.

The Complexity Reduction Theorem
As previously mentioned, the SVD-based method reduces the time 
complexities of matrix multiplications, which is summarized by the 
following theorem.
Theorem 2. Assume that W is an  ×� weight matrix and i is an �-dimensional 
vector. By applying the SVD-based method on W and keeping ! largest 
singular values, the time complexity of computing W " i is reduced from (  
× �) to �((  + �) × !), when ! <   × �/(  + �).

Proof. Computing W " i requires  ²� times of real number 
multiplications, so the time complexity of computing W " i is ( �²��). Apply 
the SVD method on W and obtain W1 and W2. After replacing W by W1 " W2, 
W " i is replaced by (W1 " W2) " i. According to the associative law, we obtain

  (13)
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Computing W2 " i requires !²� times of real number multiplications and gets 
an !-dimensional vector. Computing the product of W2, the !-dimensional 
vector requires  ²! times of real number multiplications, so W1 " (W2 "i) 
requires (  + �>�²�! times of real number multiplications. The number of 
real number multiplications is reduced when

  (14)
and we obtain

    (15)
Therefore, the time complexity is reduced from ( �²��) to �((  + �>�²�!), 
when ! <  �²��/(  + �).
The time complexities of learning MLPs are reduced to ((  + �>�²�!) via 
(5), (7), (9), (10), and (11), when ! <  �²��/(  + �), so the computational 
burdens are eased in comparison with the conventional training algorithm.

EXPERIMENTS

Experimental Settings
We conduct experiments of LVCSR tasks on a server with 4 Intel Xeon 
E5-2620 CPUs and 512 GB memory. The training of MLPs is accelerated 
by an NVIDIA GeForce GTX TITAN Black graphics card. We use hours 
(h) of speech databases and their transcriptions to train and test acoustic 
models. The training data contain a 120 h speech database and the testing 
data contain a 3 h speech database. The texts of the testing data contain 
17,221 words. The language model used is a 5-gram ARPA model.

First, GMMs must be trained before replacing GMMs by MLPs. To 
�[������������	���	��	�"��	!�	�����	���������	�
��	����'�����> as the 
features of speeches and then train monophone, triphone, linear discriminant 
analysis (LDA), and maximum likelihood linear transformation (MLLT) in 
turn.

Then, MLPs are trained on the basis of GMMs. Featurespace maximum 
likelihood linear regression (FMLLR) is used as features of speeches for 
training MLPs. Alignments from GMMs are used as labels of supervised 
�	��������������]������� ������ ���	���
|	����	�� ���	������������������
layer. The input layer has 440 units, corresponding to 440-dimensional input 
|	������� ���	� ��	��
������� 	��� |	����� ��������� `+� �	��� ���[	��� ���� ��	�
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�	��	����	������	�����	�������������	������		�	������`+�²�'=�»�=>��	���
numbers that are the features of 5 frames before this frame and 5 frames 
after this frame. Each hidden layer has 1024 units. Sigmoid is chosen as 
the activation function of the hidden layers. The output layer has 1952 
�����������	������������������
����������[�	������$�\�����	���������������
chosen as the activation function of the output layer. All parameters of these 
layers, including weight matrices and biases, are stochastically initialized. 
The conventional method and the PA strategy are used to train this initial 
stochastic MLP, respectively. The number of bunches (�) is set to 20. For 
the conventional task, the data are averagely separated into bunches, and the 
learning-rate is set to 0.032. For the PA task, the data are separated by (2) 
and (3). The initial learning-rate �0 is set to 0.032 and � in (1) is set to 0.975.

Next, the SVD-based matrix restructuring method is applied to the 
basic model, keeping 384, 256, and 128 of the largest singular values, 
respectively. Since the input layer has 440 units, applying the SVD-based 
�	���� ��� �	� 
���� �	���� ������� ����� ���� 	|��	����� �	��	��	� �	� ���	�
complexity. Therefore, the SVD-based method will not be applied to the 

�����	������������[��������������	���	��������	��������������	���	�����	�
output layer. The structure of the model which keeps 256 singular values 
is shown in Figure 1 as an example, where the bottleneck means the linear 
transform. The reason of the numbers of kept largest singular values being 
�	�����{¸`'<+*`�²�{�¸>��*=¡'<+*`�²�<�`>������<*¸'<+*`�²�<�¸>���	��	���|	����
is that the time complexity is reduced when ! <  �²��/(  + �), and therefore 
! < 512 if   = � = 1024. After that, the BP algorithm illustrated in Section 
2.2 is used to train the restructured models. The learning-rates of iterations 
are decayed from an initial value: when the increment of the frame accuracy 
on cross validation (The frame accuracy is equal to (	correct/	total>� ²� <++��
where 	correct denotes the number of correct recognized states on softmax 
and 	total denotes the total number of states.) is not smaller than 0.5, the 
learning-rate does not change, but when the increment of the frame accuracy 
on cross validation is smaller than 0.5, the learning-rate is halved. The initial 
�	������"���	�����	�����<�²�<+°=.
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Figure 1: A model restructured by the SVD method.

In these experiments, the cross entropy losses and the frame accuracies 
on cross validation are used to appraise the performance of MLPs. The 
�����	��������	�'��\>������	��������	����	��	��������	����
������"��]"
HMMs, which is equal to the number of misrecognized words divided by 
the total number of words.

Results and Discussions

Figure 2 shows the changes of the cross entropy loss during the first epoch. 
The curves of the PA task and the conventional task are provided. Both 
of them first drop sharply, followed by slight decreases after training by 
8 bunches. However, the PA task drops more significantly when training 
by the first 8 bunches, after which it remains stable. By contrast, the cross 
entropy loss of the conventional task keeps decreasing when training, but 
finally it is still higher than that of the PA task, which is because the first 
8 bunches on the PA task contain more data due to the fact that they are 
based on the cosine function. Another further contributing factor is that the 
dynamic learning-rate facilitates the training, which is also the reason why 
the PA task has a considerable drop when training the 3rd–7th bunches..
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Figure 2:�������	�����������	����������	�
����	����

Figure 3 reveals the changes of frame accuracies on cross validation 
��������	�
����	��������[���������������	�*���	������		������	�����	�
accuracy increases when the cross entropy loss decreases. However, the 
����	�� ��� ����	� ��������	�� ��	� ���	� 	|��	����$��	�� ��������� [�� �	� 
����
5 bunches, the frame accuracy of the PA task reaches a very high point, 
whereas the low point of the cross entropy loss occurs after 8 bunches. A 
similar phenomenon also occurs on the conventional task. More importantly, 
�	�
��������	��������������	�]$����^������	��������������	����|	��������
one. Such a high accuracy facilitates the subsequent training, and it is the 
reason why we use the PA strategy.

Figure 3:�����	���������	�����������|������������������	�
����	����
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A glance at Figure 4 shows some differences on cross entropy losses 
between the PA-SVD training method and the conventional method. The 
��������������	����������������	����|	�����������^���������
���������	������
those of the PA-SVD tasks due to the fact that the PA strategy has better 
�	��������	�����	��������	�������	��������������������	�
����	���������
regard to the PA-SVD tasks, the initial cross entropy loss is low, and the 
more bottlenecks mean the lower value. However, the cross entropy losses 
of the PA-SVD tasks increase during the second epoch, achieving peaks 
which are dramatically higher than before, which is attributed to the fact 
that the structures of these models have been altered by the SVD method, 
and the training algorithm is different from the conventional BP method. 
After the peaks, marked declines of the cross entropy losses occur to these 
tasks, followed by sustained decreases. Finally, all of these cross entropy 
losses become more and more similar to each other. More importantly, the 

����������	�����������	������	�]$"���^��']$"�§�"{¸`�����]$"�§�"*=¡>�
are still slightly lower than that of the conventional task, indicating that the 
former models have better performance than the latter one.

Figure 4: Changes of cross entropy losses.

In fact, on LVCSR tasks, the frame accuracy is more practical, because 
it directly indicates the proportion of correct recognition results of MLPs. 
Figure 5 provides the changes of frame accuracies on cross validation. It is 
easy to note that the initial frame accuracies of PA-SVD tasks are evidently 
higher than that of the conventional one, which means that the PA strategy 
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improves not only the cross entropy loss (see Figure 4) but also the frame 
accuracy. Meanwhile, small gaps occur among the three PA-SVD tasks. 
This phenomenon is attributed to the fact that the SVD method brings loss 
of information to models, particularly when the number of bottlenecks is 
small. Then the frame accuracies of the PA-SVD tasks reach minima after 
the second epoch, and the reason is the same as that of the increasing of the 
cross entropy loss. After that, the frame accuracies keep increasing till the 
end of training. With regard to the conventional task, the frame accuracy has 
a slight decrease during the third epoch, which is because the learning-rate 
is high during this epoch, and from this point it is halved. Finally, the frame 
accuracy of the PA-SVD-384 task as well as that of the PA-SVD-256 task is 
slightly higher than that of the conventional task, whereas the frame accuracy 
of the PA-SVD-128 task is a little lower. These results again indicate that 
the PA-SVD-384 model and the PA-SVD-256 model perform better than the 
conventional model.

Figure 5: Changes of frame accuracies on cross validation.

��[�	�<����|��	���	�
�����	����������	��|	������§��\����^�������������
the WERs and the numbers of parameters. It is easy to note that the bigger 
number of parameters means the lower WER, but the gaps among them 
are very small. In comparison with the previous results, although the PA-
SVD-256 task and the PA-SVD-384 task have higher WERs than the 
conventional task, they have better cross entropy losses and frame accuracies, 
which is because WERs not only depend on the performance of MLPs but 
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also are affected by the ARPA models above them. For the same MLP, using 
different ARPA models will bring different results.

Table 1: WERs and model scales.

With regard to the complexities, the number of computations (including 
real number multiplications and additions) for both a forward pass and a 
backward pass is approximately equal to the number of parameters. During 
training, the computing is on GPUs, and a forward pass and a backward pass 
are required. Thus, the time complexity for training is

  (16)
where 	GPU denotes the number of GPU cores which can realistically 
run parallel (In reality, for some tasks, not all of the GPU cores can work 
simultaneously, but it is difficult to discuss in this work, as parallel computing 
is very complicated.). During decoding, only a forward pass is required. The 
time complexity for decoding is

   (17)
In our experiments, the NVIDIA GeForce GTX TITAN Black graphics card, 
including 2880 GPU cores, is used. Since 	GPU is large, the experiments run 
relatively fast and are finished in a few days. However, the volume of this 
����������������[���'*¡�¡�����²�<<�<*����²���``���>������������������	�[	��
it into a humanoid robot for decoding. If smaller graphics cards or CPUs 
are used in the robot, it will take considerable longer time for training and 
decoding. Thus, it is important to reduce the time complexities.
Equations (16) and (17) reveal that the time cost depends on the number 
of parameters. Revisiting Table 1, we notice that the PA-SVD tasks have 
significant less time cost than the conventional task, whereas the WERs are 
almost the same. Particularlly, the PA-SVD-256 task achieves a 2.0 times 
speedup and the PA-SVD-128 task achieves a 3.5 times speedup, which 
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provides a way for humanoid robots to learn and recognize speech much 
more efficiently and effectively. Besides, the memories of robots are much 
smaller than servers, as robots have restrictions on sizes, weights, and 
powers. It is easy to note that the final models of the PA-SVD tasks have 
markedly lower numbers of parameters than the conventional model, which 
consequently also provides a way for robots to reduce their sizes, weights, 
and consumptions of energy.

CONCLUSIONS
We propose a fast learning method for MLPs in ASR systems in this paper, 
which is suitable for humanoid robots whose CPU/GPUs and memories are 
limited, as its time complexities are low, and the final model sizes are small. 
First, the PA strategy improves the frame accuracies and the cross entropy 
losses of the MLP during the first training epoch, based on the cosine 
function separation of training data and the dynamic learning-rate. The 
SVD-based method then restructures the weight matrices of the preadjusted 
MLPs and reduces their dimensionality. After that, the BP algorithm that 
fits the unfolded weight matrices is used to train the MLP obtained by the 
SVD restructuring. In the experiments, this method accelerates the training 
processes to around 2.0 times faster than before with improvements on the 
cross entropy loss and the frame accuracy, and moreover it accelerates the 
training processes to around 3.5 times faster than before with just a negligible 
increase of the cross entropy loss as well as a tiny loss of the frame accuracy.
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ABSTRACT
Application specific voice interfaces in local languages will go a long way 
in reaching the benefits of technology to rural India. A continuous speech 
recognition system in Hindi tailored to aid teaching Geometry in Primary 
schools is the goal of the work. This paper presents the preliminary work done 
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towards that end. We have used the Mel Frequency Cepstral Coefficients 
as speech feature parameters and Hidden Markov Modeling to model the 
����������	����	�������	�����^�|����	����������%���°{�`�������	��[���
for feature extraction and model generation. The Julius recognizer which is 
language independent was used for decoding. A speaker independent system 
is implemented and results are presented.
Keywords: Automatic Speech Recognition; Mel Frequency Cepstral 
Coefficients; Hidden Markov Modeling

INTRODUCTION
To make Information Technology (IT) relevant to rural India, voice access to 
a variety of computer based services is imperative. Although many speech 
interfaces are already available, the need is for speech interfaces in local 
Indian languages. Application specific Hindi speech recognition systems are 
required to make computer aided teaching, a reality in rural schools. This 
paper presents the preliminary work done to demonstrate the relevance of a 
Hindi Continuous Speech Recognition System in primary education.

Automatic speech recognition has progressed tremendously in the last 
two decades. There are several commercial Automatic Speech Recognition 
(ASR) systems developed, the most popular among them are Dragon 
Naturally Speaking, IBM Via voice and Microsoft SAPI. Efforts are on 
to develop speech recognition systems in different Indian Languages. An 
isolated word Hindi ASR for small vocabulary is developed and evaluated 
in [1]. An effort to increase the recognition accuracy of Hindi ASR by online 
speaker adaptation has been reported in [2]. It is demonstrated that Maximum 
Likelihood Linear Regression (MLLR) transform based adaptation 
transforms the acoustic models in such a way that the difference between 
test and training conditions is reduced, resulting in better performance.

A general approach to identifying feature vectors that effectively 
distinguish gender of a speaker from Hindi vowel phoneme utterances has 
been presented in [3,4]. Centre for Development of Advanced computing 
��� �	|	���	�� �� ������� ��	��
�� ��	�^	�� ���	�	��	��� ����������� ��		��
recognition system for Hindi using Julius recognition engine [5]. They also 
have built a Hindi ASR for travel domain [6] giving encouraging recognition 
accuracy.

State likelihood evaluation in Hidden Markov model (HMM) using 
mixture of Gaussians is one problem that needs to be solved. A novel method 
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using Gaussian Mixture Model (GMM)���������������������	���������
�������
is suggested to reduce computational load [7]. Development of speech 
interfaces in Hindi for IT based services is a work in progress [8]. Efforts 
to compensate for different accents in Hindi are also explored in [9]. Apart 
from Hindi ASR, speech recognition systems are being developed in other 
languages like Arabic, Malayalam, Tamil, Bengali, Telugu, etc. [10-14].

IBM Research Laboratory of India has developed a Hindi Speech 
Recognition system which has been trained on 40 hours of audio data and 
has a trigram language model that is trained with 3 million words [15]. 
Efforts are on to develop large speech databases in various Indian Languages 
for Large Vocabulary Speech Recognition Systems [16]. SRI Language 
Model (SRILM) extensible toolkit is discussed in [17] which can be used 
for developing Language model. This toolkit has been used in developing 
language model for large vocabulary systems in Hindi.

Hidden Markov Model provides an elegant statistical framework for 
modeling speech patterns and is the most widely used technique [18,19]. 
\	�	������	��[������������$���
������	������	����^�'$��>�����	���^�
is also used in an effort to overcome the challenges posed by speech 
variability due to physiological differences, style variability due to co-
articulation effects, varying accents, emotional states, context variability etc 
[20].

Another method to handle the problem of changes in the acoustic 
	�|�����	��� ��� ��	�^	�� ��	��
�� |���	� ������	�������� ��� [�� ��������� �	�
statistical models of a speech recognizer and speaker tracking. Combining 
speaker adaptation and speaker tracking may be advantageous, because it 
allows a system to adapt to more than one user at the same time. Authors 
in [21] have extended a standard speech recognizer by combining speaker 
��	��
�� ��		�� �	������� ���� ��	�^	�� ��	���
������� ��� ��� 	�
��	���
manner. Approximately 20% relative error rate reduction and about 94.6% 
��	���
����������	���	��	����	��

�	�����	����	�	��	��	�	���������������������	��
���������������		��
Recognizer in Hindi. It is restricted to the task of computer-aided teaching 
of Geometry at primary school level. The paper is organized as follows. 
Section 2 describes the architecture of the speech recognition system with 
the function of each module. Section 3 explains the training methodology 
of developing the proposed Hindi CSR. Section 4 details the testing of the 
system. The results are discussed in Section 5. Section 6 concludes with 
future direction of the work.
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AUTOMATIC SPEECH RECOGNITION SYSTEM
Speech recognition is the process of converting an acoustic signal, captured 
by a microphone or a telephone into a set of words. The recognized words 
can be the final result for applications such as commands and control, data 
entry, and document preparation. They can also serve as the input to further 
linguistic processing in order to achieve speech understanding. Figure 1 
shows the block diagram of a state of the art automatic speech recognition 
system.

��		�� ������� ��� �������� ��� �	� 
���� ����	� ������� 	�	�������� ��������
are converted to digital signals. This is done in two steps, sampling and 
quantization. So a typical representation of a speech signal is a stream of 
8-bit numbers at the rate of 10,000 numbers per second. Once the signal 
���|	��������������	�	��[��^�����������	����
��	�	�����^		����������������	�
ratio high. The signal is pre-emphasized and then speech parameters are 
extracted.  

Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCCs) are widely used features for 
automatic speech recognition systems to transform the speech waveform 
into a sequence of discrete acoustic vectors.

�	�������	���!�	���^	����	�����������	�����
��	������	�������	�����
����	��
��	������� ��������������� ����	��
��	�����	��	�� ��	!�	��������	�
has linear frequency spacing below 1000 Hz and a logarithmic spacing 
above 1000 Hz. In the sound processing, the Mel-frequency cepstrum is a 
representation of the short-term power spectrum of a sound, based on a linear 
cosine transform of a log power spectrum on a nonlinear Mel-frequency 
scale.

�	� ����	���	� [�� ���� �	� �	�"��	!�	���� �	������� ��	�
��	���� ��	�
obtained consists of the following steps. Figure 2 depicts the procedure of 
extracting MFCC feature vectors from speech.

�	���������������	����������
��	������	������	����	����	!�	���	���
This process will increase the energy of the signal at higher frequency.
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The Pre-emphasis of the speech signal is realized with this simple FIR 

��	���

   (1)
where a is from interval [0.9, 1].

The digitized speech is segmented into frames with a length within the 
range of 10 to 40 ms. The segment of waveform used to determine each 
parameter vector is usually referred to as a window.

�	�������������������������	�������	�������	�����	
�	��[���	�
equation

   (2)
where, 
N = number of samples in each frame.
Let Y(n) = Output signal and X(n) = input signal The result of windowing 

the signal is

     (3)

Figure 1. Automatic speech recognition system.
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Figure 2. Flow chart of MFCC feature extraction.

Next, the Fast Fourier transform (FFT) is used to convert each frame of 
N samples from time domain into frequency domain. Thus the components 
of the magnitude spectrum of the analyzed signal are calculated.

   (4)
The most important step in this signal processing is Mel-frequency 

transformation. Compensation for nonlinear perception of frequency is 
����	�	��	��[���	�[��^���������������[����
��	��������	����	���������[������
of frequencies along the so called Mel-frequency range. Linear deployment 
���
��	��� ����	�"��	!�	����������	������ ��������"���	���������[���������� �	�
�����������	!�	������������	������	
�����������	��	�"��	!�	��������	����
described by the following equation.
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   (5)
where f is frequency in linear range and fmel the corresponding frequency 

in nonlinear Mel-frequency range.
�	� �	�� ��	������ ��	�
��	���� ���� �	��� ��������� ��	� �	��� ���[	����

Hence they can be converted to the time domain using the discrete cosine 
transform (DCT)���	��	���������	��	����	!�	�����	���������	�
��	������	�
cepstral representation of the speech spectrum provides a good representation 
of the local spectral properties of the signal for the given frame analysis.  

   (6)
��º����[	������	�"��	!�	�����	���������	�
��	����%�º����[	������	�"

��	!�	����[����
��	���'
��	��[��^�����	��>�����	�[��^����
��	���

The Acoustic Model

In a statistical framework for speech recognition, the problem is to find the 
most likely word sequence, which can be described by the equation

    (7)
Applying the Bayes’ equation, we get

    (8)
The term P(X/W) in the above equation can be realized by the Acoustic 

���	���$��������������	�������
�	�����������������������������	��	�	�����������
each distinct sound that makes up a spoken word. It contains the sounds for 
each word found in the Language model.

The speech recognition system implemented here uses Hidden Markov 
Models (HMM) for representing speech sounds. A HMM is a stochastic 
model. A HMM consists of a number of states, each of which is associated 
with a probability density function. The model parameters are the set of 
probability density functions, and a transition matrix that contains the 
probability of transitions between states.

���"[��	�� �	���������� ���������� ��	� ������
	�� ����� ���� ���	���
namely, phoneme level model and word-level model. The word-level 
HMM has excellent performance at isolated word tasks and is capable of 
representing speech transitions between phonemes. However, each distinct 
word has to be represented by a separate model which leads to extremely 
high computation cost (which is proportional to the number of HMM 
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models). The phoneme model on the other hand can help reproduce a 
word as a sequence of phonemes. Hence new words can be added to the 
dictionary without necessitating additional models. Hence phoneme model 
is considered more suitable in applications with large sized vocabularies and 
where addition of word is a essential possibility.

The phoneme model is used here. The MFCC features extracted from 
speech and the associated transcriptions are used to estimate the parameters 
of HMM based acoustic models that represent phonemes. The iterative 
process of estimating and re-estimating the parameters to achieve a 
reasonable representation of the speech unit is called ASR system training. 
The training procedure involves the use of forward-backward algorithm.

The Language Model

The term P(W) in Equation (2) represents the a priori probability of a word 
sequence based on syntax, semantics and pragmatics of the language to be 
recognized. It can be realized by the Language Model which contains a list 
of words and their probability of occurrence in a given sequence, and is 
independent of the acoustic signal. The probability of a word sequence is 
given below.

     (9)
By Chain rule the probability of nth word is:

   (10)

       (11)
Language Model������������	��	���������	
�	����������������������	�

Speech Recognition Engine can expect as input.

The Recognizer

Recognizer is a Software program that takes the sounds spoken by a user 
and searches the Acoustic Model for the equivalent sounds. When a match 
is made, the Decoder determines the phoneme corresponding to the sound. 
It keeps track of the matching phonemes until it reaches a pause in the 
user’s speech. It then searches the Language Model or Grammar file for the 
equivalent series of phonemes. If a match is made it returns the text of the 
corresponding word or phrase to the calling program.



�	|	����	������$�������������	��
���������������		��\	�������������� 111

THE TRAINING METHODOLOGY
The two major stages involved in the process of Speech Recognition are 
the training of the ASR and the Testing. The training phase involves the 
following steps.

The Database

The text corpus consists of chosen application specific sentences, pertaining 
to teaching Geometry to children. Forty three distinct Hindi sentences about 
shape geometry using 29 distinct Hindi phonemes were designed as the text 
corpus. These sentences were spoken in a continuous fashion and recorded 
using good quality microphones under office noise conditions.

The Wave-surfer software was used for recording. The training corpus 
contains 1806 utterances spoken by 12 females and 18 males. All the 
speakers are natives of the Hindi heart-land of India, educated and in the age 
group of 18 to 30.

Phone Set

Phoneme is the basic unit of sound in any language. Hindi belongs to the 
Indo Aryan family of languages and is written in the Devanagari script. 
There are 11 vowels and 35 consonants in standard Hindi. In addition, five 
Nukta consonants are also adopted from Farsi/Arabic sounds. The phone 
set that is used here to develop the application specific speech recognition 
system for Hindi language uses only 29 of the 60 used in large vocabulary 
systems.

Lexicon

The pronunciation dictionary (lexicon) contains all the distinct words in the 
corpus and its corresponding pronunciation given as a string of phonemes. 
Some sample entries are given in Table 1. The pronunciation dictionary 
is case insensitive. This dictionary includes entries for the beginning-of-
sentence and the end-of-sentence tokens and respectively as well as the 
silence.

Transcription

The transcription file contains the sentences or utterances of the spoken text 
and the corresponding audio files in the following format. Each word in the 
transcription file is present in the pronunciation lexicon.
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Parameterization of Speech Data

The digitized speech signal is subjected to first order preemphasis applied 
using a coefficient of 0.97. The signal is then segmented into frames 
and hamming windowed. The HMM Tool Kit (HTK) [22] was used to 
parameterize the raw speech waveforms into sequences feature vectors.

Table 1. Pronunciation lexicon.

�	����	!�	�����	���������	�
��	����'�����>���	��	��|	����������"
[��	��������	������������������	�����	���������	���������������
���	��
��������������������|	�����������������������|	�������$����
���������
�	�
��	��
	����������	����|	�����������	�	����**���$������������
���������
�	�
is seen in Figure 3.
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The target parameters are to be MFCC using C0 as the energy component. 
The standard 39 dimension MFCC, delta and acceleration feature vector 
is computed for the 16 kHz sampled signals at 10 ms intervals (100 ns). 
�	������	��*¡�
��	��[��^������������	�¸�^�����	!�	��������	���	���	������
computation of MFCCs.

The output was saved in compressed format, and a crc checksum added. 
The 39-demensional feature vector consists of 13 Mel Scale Cepstral 
��	�
��	���� ���� �	��� 
���� ���� �	����� �	��|��	���$� �����	� ����� 
�	� ���
shown below in Figure 4.

Acoustic Model Generation

The speech recognition system implemented here employs Hidden Markov 
Model (HMM) for representing speech sounds. A HMM consists of a number 
of states, each of which is associated with a probability density function. The 
parameters of a HMM comprises of the parameters of the set of probability 
density functions, and a transition matrix that contains the probability of 
transition between states.

The MFCC feature vectors extracted from speech signals and their 
associated transcriptions are used to estimate the parameters of HMMs. 
This process is called ASR system training. HMM Tool Kit, HTK-3.4 was 
used for training models over 29 context-dependent Hindi phonemes used 
in the chosen application. The basic acoustic units are context dependent 
phonemes, that is, tri-phones modeled by left-to-right, 5-state, HMMs.

The output probability distributions of states were represented by 
Gaussian mixture densities. For every state of every phoneme 256 global 
Gaussian density functions were used to generate Gaussian mixtures.

]�������	� ���	��� ��	� [����� ������ �	� ���� ������ ��������� ���� �	�
exception of the transition probabilities, all of the HMM parameters given in 
�	���������	��	
���������	������	����	�������	�����	���������	��	
�������
is only to specify the overall characteristics and topology of the HMM. The 
actual parameters will be computed later.
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Figure 3��$������������
���������
�	�

Figure 4�����		����������������
�	�

A prototype model is shown in Figure 5.
�	�	� ���	��� �	�	� ����	�� �	
�	�� [�� ��������� ���	� ��	�������� ��� �	�

standard Baum-Welch embedded training procedure. These models are then 
converted to tri-phone models and two iterations of Baum-Welch training 
procedure are applied, then the states are tied using decision tree based 
approach and iterations of Baum-Welch training procedure are applied. 
Figure 6 shows the training procedure.
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EVALUATION METHODOLOGY
The performance of the ASR is tested while transcribing unknown utterances. 
A database which is not used for training the system is called unseen data. 
The test data here is an exclusive set consisting of 344 unseen utterances 
spoken by 8 speakers (4 males and 4 females) each speaking 43 sentences.

~o
<STREAMINFO> 1 39
<VECSIZE>
39<NULLD><MFCC_D_A_0><DIAGC>
~h “proto
<BEGINHMM>
<NUMSTATES> 5
<STATE> 2
<MEAN> 39
-7.055892e+00 -2.760827e+00 -1.855420e+00 …….
<VARIANCE> 39
3.614088e+01 4.895053e+01 6.375173e+01 …….
<GCONST> 1.185559e+02
<STATE> 3
<MEAN> 39
-7.055892e+00 -2.760827e+00 -1.855420e+00 ….
<VARIANCE> 39
3.614088e+01 4.895053e+01 6.375173e+01 …….
<GCONST> 1.185559e+02
<STATE> 4
<MEAN> 39
-7.055892e+00 -2.760827e+00 -1.855420e+00 ……
<VARIANCE> 39
3.614088e+01 4.895053e+01 6.375173e+01 …….
<GCONST> 1.185559e+02
<TRANSP> 5
0.000000e+00 1.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
0.000000e+00 6.000000e-01 4.000000e-01
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 6.000000e-01
4.000000e-01 0.000000e+00
0.000000e+00 0.000000e+000.000000e+00
7.000000e-01 3.000000e-01
0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
<ENDHMM>

Figure 5. A prototype model.
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Figure 6. Acoustic model training methodology.
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Role of Language Model

In speech recognition the Language Model is used for the task of finding 
word boundaries, that is, segmentation. The language model or grammar 
which is an a priori knowledge of the syntax, semantics and pragmatics 
of the language in question, helps decode the sequence of phonemes into 
different words in a sentence. An example is given in Figure 7.

Here the constraints applied by the Language model helps the Recognizer 
in decoding the phoneme sequence into words. We have generated our own 
language model.

The Recognizer

The decoder used for recognition is Julius. Since Julius itself is a language-
independent decoding program [23], we can make a recognizer of any 
language if given an appropriate language model and acoustic model for the 
target language. The recognition accuracy largely depends on the models. 
Julius is a real-time, high-speed, accurate recognition engine based on 2-step 
strategy. It works in two steps. The first step is a high-speed approximate 
search, which uses a 2-gram frame synchronous beam searching algorithm. 
In the first step, a treestructured lexicon assigned with the language model 
probabilities was applied. Pre-computed unigram factoring values are 
assigned to the intermediate nodes and bi-gram probabilities on the word-
end nodes. The second step is a high precision trigram N-best stack decoding. 
The tree trellis search in the second pass recovers the degradation caused by 
�	������������������������	�
������	�����������������������������	������
HTK ASCII format, pronunciation dictionary in almost HTK format, and 
word 3-gram language models in ARPA standard format (forward 2-gram 
and reverse 3- gram trained from same corpus). The following is a sample 
output for one of our test utterances.

The Evaluation Parameters

Finally, the recognition accuracy of the Speaker Independent ASR system 
and the percentage of correct words and percentage of correct sentences 
were calculated using the following formulae.

%correct � H / N       (12)
where, H = Number of labels (sentences here) correctly recognized N = 

Total number of labels
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   (13)
D = Number of unrecognized/missed words. (Deletion errors)

Figure 7. The Recognition of series of phonemes into series of words.

S = Number of times a word was misrecognized as another word (Substitution 
errors)
I = Number of extra words inserted between correctly recognized words 
(Insertion errors)
N = Total number of words or sentences

RESULTS AND DISCUSSION
The system was trained with 1806 Hindi utterances (sentences) spoken by 
18 males and 12 females. The performance of the system was evaluated 
both for seen and unseen speech data. All the 43 distinct sentences for which 
the system was trained were uttered by 8 persons (4 males and 4 females). 
A total of 316 test (unseen) utterances and 1371 seen utterances were used 
in testing. The % of correct sentences and Recognition Accuracy were 
calculated using formulae given above and results are shown in Table 2.

The Recognition Accuracy for males is better as expected as the ASR is 
speaker independent and the male speech data is more than that of females. 
The amount of training data must be increased to achieve better speaker 
independent model.

CONCLUSION AND FUTURE WORK
We have proposed an approach to implement a continuous speech recognition 
system in Hindi customized for computer aided teaching of geometry. We 
have used the MFCC as speech feature parameters and HMM to model the 
acoustic features. HTK-3.4 was used both for feature extraction and model 
generation. The Julius recognizer which is language independent was used 
for decoding.  
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The present work was limited to 29 phonemes of Hindi. It is mostly 
demonstrative in nature. The future endeavor will be to make the system 
����"�	��	��[������	������|���[���������������	������	!���	����������������
the Hindi phonemes. A phonetically balanced and rich database for the said 
application will be created and used.

More training data will be collected and used to improve the speaker 
Independent system. Methods to improve the Recognition rate of the speaker 
Independent Gaurav, Devanesamoni Shakina Deiv, Gopal Krishna Sharma, 
Mahua Bhattacharya system will be studied and experimented. Feature sets 
other than MFCC will be tested for reducing speaker and other variability.

Table 2. Recognition accuracies and % of correct words for speakers in training 
and test sets.
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ABSTRACT
In this paper, we propose to incorporate the local attention in WaveNet-
CTC to improve the performance of Tibetan speech recognition in multitask 
learning. With an increase in task number, such as simultaneous Tibetan 
speech content recognition, dialect identification, and speaker recognition, 
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the accuracy rate of a single WaveNet-CTC decreases on speech recognition. 
Inspired by the attention mechanism, we introduce the local attention to 
automatically tune the weights of feature frames in a window and pay different 
attention on context information for multitask learning. The experimental 
results show that our method improves the accuracies of speech recognition 
for all Tibetan dialects in three-task learning, compared with the baseline 
model. Furthermore, our method significantly improves the accuracy for 
low-resource dialect by 5.11% against the specific-dialect model.

INTRODUCTION
Multitask learning has been applied successfully for speech recognition to 
improve the generalization performance of the model on the original task by 
sharing the information between related tasks [1–9]. Chen and Mak [6] used 
the multitask framework to conduct joint training of multiple low-resource 
languages, exploring the universal phoneme set as a secondary task to 
improve the effect of the phoneme model of each language. Krishna et al. [7] 
proposed a hierarchical multitask model, and the performance differences 
between high-resource language and low-resource language were compared. 
Li et al. [8] and Toshniwal et al. [9] introduced additional information of 
language ID to improve the performance of end-to-end multidialect speech 
recognition systems.

Tibetan is one of minority languages in China. It has three major dialects 
in China, i.e., Ü-Tsang, Kham, and Amdo. There are also several local 
subdialects in each dialect. Tibetan dialects pronounce very differently, but 
�	������	��������	�����	����
	�������������	��������������	|��������^��<+���
Tibetan multidialect multitask speech recognition was conducted based on 
the WaveNet-CTC, which performed simultaneous Tibetan multidialect 
��		������	��� �	���������������	��� ��	���
��������������	�^	�� �	����������
in a single model. WaveNet is a deep generative model with very large 
�	�	���|	�
	�������������������	���	�����"�	����	�	��	���������		��������
It is very effective to learn the shared representation from speech data of 
different tasks. Thus, WaveNet-CTC was trained on three Tibetan dialect 
data sets and learned the shared representations and model parameters for 
��		�� �	����������� ��	�^	�� ��	���
�������� ���� ����	��� �	����������� ����	�
the Lhasa of Ü-Tsang dialect is a standard Tibetan speech, there are more 
corpora available for training than Changdu-Kham and Amdo pastoral 
dialect. Although two-task WaveNet-CTC improved the performance on 
speech recognition for Lhasa of Ü-Tsang dialect and Changdu-Kham dialect, 
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the three-task model did not improve performance for all dialects. With an 
increase in task number, the speech recognition performance degraded.

To obtain a better performance, attention mechanism is introduced into 
WaveNet-CTC for multitask learning in this paper. Attention mechanism 
can learn to set larger weight to more relevant frames at each time step. 
Considering the computation complexity, we conduct a local attention 
using a sliding window on the whole of speech feature frames to create 
the weighted context vectors for different recognition tasks. Moreover, we 
explore to place a local attention at the different positions within WaveNet, 
i.e., in the input layer and high layer, respectively.

The contribution of this work is three-fold. For one, we propose the 
WaveNet-CTC with local attention to perform multitask learning for Tibetan 
speech recognition, which can automatically capture the context information 
among different tasks. This model improves the performance of the 
Tibetan multidialect speech recognition task. Moreover, we compared the 
performance of local attention inserted at different positions in the multitask 
model. The attention component embedded in the high layer of WaveNet 
obtains better performance than the one in the input layer of WaveNet for 
speech recognition. Finally, we conduct a sliding window on the speech 
����	������	�
��	����������������	����������	������

The rest of this paper is organized as follows: Section 2 introduces the 
related work. Section 3 presents our method and gives the description of the 
baseline model, local attention mechanism, and the WaveNet-CTC with local 
attention. In Section 4, the Tibetan multidialect data set and experiments are 
explained in detail. Section 5 describes our conclusions.

RELATED WORK
Connectionist temporal classification (CTC) for end-to-end has its advantage 
of training simplicity and is one of the most popular methods used in speech 
recognition. Das et al. [11] directly incorporated attention modelling within 
the CTC framework to address high word error rates (WERs) for a character-
based end-to-end model. But, in Tibetan speech recognition scenarios, the 
Tibetan character is a two-dimensional planar character, which is written 
in Tibetan letters from left to right, besides there is a vertical superposition 
in syllables, so a word-based CTC is more suitable for the end-to-end 
model. In our work, we try to introduce attention mechanism in WaveNet 
as an encoder for the CTC-based end-to-end model. The attention is used 
in WaveNet to capture the context information among different tasks for 
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distinguishing dialect content, dialect identity, and speakers. In multitask 
settings, there are some recent works focusing on incorporating attention 
mechanism in multitask training. Zhang et al. [12] proposed an attention 
mechanism for the hybrid acoustic modelling framework based on LSTM, 
which weighted different speech frames in the input layer and automatically 
tuned its attention to the spliced context input. The experimental results 
showed that attention mechanism improved the ability to model speech. Liu 
et al. [13] incorporated the attention mechanism in multitask learning for 
computer vision tasks, in which the multitask attention network consisted 
��� �� ���	�� �	����^� ���� ���^"��	��
�� ����"���	������ �����	�� ��� �	���� �	�
���^"��	��
���	����	��������	����[�����������������������	���������������
for features to be shared across different tasks. Zhang et al. [14] proposed 
an attention layer on the top of the layers for each task in the end-to-end 
��������^�����	���^�����	��	|	��	��|	�
���������[�	�������		��	�������
recognition. Different from the works of Liu et al. and Zhang et al. [13, 
14], which distributed many attention modules in the network, our method 
merely uses one sliding attention window in the multitask network and has 
its advantage of training simplicity.

METHODS

Baseline Model

We take the Tibetan multitask learning model in our previous work [10] as 
the baseline model as shown in Figure 1, which was initially proposed for 
Chinese and Korean speech recognition from the work of Xu [15] and Kim 
and Park [16]. The work [10] integrates WaveNet [17] with CTC loss [18] to 
realize Tibetan multidialect end-to-end speech recognition.

WaveNet contains the stacks of dilated causal convolutional layers as 
shown in Figure 2. In the baseline model, the WaveNet network consists of 
15 layers, which are grouped into 3 dilated residual blocks of 5 layers. In 
every stack, the dilation rate increases by a factor of 2 in every layer. 
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Figure 1: The baseline model.

�	� 
��	�� �	���� ��� ������� �����	�� ���|��������� ��� *�� $��������� ���
	!��������'<>�����'*>���	��	��	���|	�
	��������|	�	�����`¡#

  (1)

  (2)
In equations (1) and (2), S refers to the number of stacks, Receptive 


	��block� �	�	��� ��� �	��	�	���|	�
	������������^���������	�������\	�	���|	�

	��stacks� �	�	��� ��� �	� �	�	���|	�
	������ ���	� ����^����� �����	������� ����
Dilationratei refers to the dilation rate of the i-th layer in a block.

WaveNet also uses residual and parameterized skip connections [19] to 
speed up convergence and enable training of much deeper models. More 
details about WaveNet can be found in [17].
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Figure 2:�{�����^�����=������	������������|�������������	�������
��	���	����*�

����	����������	�������������
�������'���> is an algorithm that trains 
a deep neural network [20] for the end-to-end learning task. It can make 
the sequence label predictions at any point in the input sequence [18]. In 
the baseline model, since the Tibetan character is a two-dimensional planar 
character as shown in Figure 3, the CTC modeling unit for Tibetan speech 
recognition is Tibetan single syllable, otherwise a Tibetan letter sequence 
from left to right is unreadable.
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Figure 3: The structure of a Tibetan syllable.

Local Attention Mechanism

Since the effect of each speech feature frame is different for the target 
label output at current time, considering the computational complexity, we 
introduce the local attention [21] into WaveNet to create a weighted context 
vector for each time i. The local attention places a sliding window with the 
length 2n centered around the current speech feature frame on the input 
layer and before the softmax layer in WaveNet, respectively, and repeatedly 
produces a context vector Ci for the current input (or hidden) feature frame 
x(h)i . The formula for Ci is shown in equation (3), and the schematic diagram 
is shown in Figure 4:

   (3)

�	�	� ¹i,j ��� �	� ���	������ �	����� ��[À	��� ��� ¹� Ê� +� ����  through 
softmax normalization. The ¹i,j calculation method is as follows:

  (4)
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Figure 4: Local attention.

It captures the correlation of speech frame pair (x(h)i, x(h)j��À�Ë��>���	�
attention operates on n frames before and after the current frame. Score 
(.) is an energy function, whose value is computed as equation (5) by the 
MLP which is jointly trained with all the other components in an end-to-end 
network. Those x(h)j��À�Ë��������	������	������	���������|	����	��	�����
in context vector Ci.

  (5)
Finally, x(h)i is concatenated with Ci as the extended feature frame and 

fed into the next layer of WaveNet as shown in Figures 5 and 6. The attention 
module is inserted in the input layer in Figure 5 referred as Attention-
WaveNetCTC. The attention module is embedded before the softmax layer 
in Figure 6 referred as WaveNet-Attention-CTC.

Figure 5: The architecture of attention-WaveNet-CTC.
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Figure 6: The architecture of WaveNet-attention-CTC.

EXPERIMENTS

Data

Our experimental data are from an open and free Tibetan multidialect 
speech data set TIBMD@MUC [10], in which the text corpus consists of 
two parts: one is 1396 spoken language sentences selected from the book 
“Tibetan Spoken Language” [22] written by La Bazelen and the other part 
contains 8,000 sentences from online news, electronic novels, and poetry 
of Tibetan on internet. All text corpora in TIBMD@MUC include a total of 
3497 Tibetan syllables.

There are 40 recorders who are from Lhasa City in Tibet, Yushu City in 
Qinghai Province, Changdu City in Tibet, and Tibetan Qiang Autonomous 
Prefecture of Ngawa. They used different dialects to speak out the same 
text for 1396 spoken sentences, and other 8000 sentences are read loudly in 
���������	������		�������
�	����	����|	��	�����<¡%���������������	!�	�����
16 bit quantization accuracy, and wav format.
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Our experimental data for multitask speech recognition are shown in 
Table 1, which consists of 4.4 hours Lhasa-Ü-Tsang, 1.90 hours Changdu-
Kham, and 3.28 hours Amdo pastoral dialect, and their corresponding 
texts contain 1205 syllables for training. We collect 0.49 hours Lhasa-Ü-
Tsang, 0.19 hours Changdu-Kham, and 0.37 hours Amdo pastoral dialect, 
respectively, to test.

Table 1: The experimental data statistics.

Dialect Training 
data (hours)

Training ut-
terances

Test data 
(hours)

Test utter-
ances

Speaker

Lhasa-Ü-Tsang 4.40 6678 0.49 742 20
Changdu-
Kham

1.90 3004 0.19 336 6

Amdo pastoral 3.28 4649 0.37 516 14
Total 9.58 14331 1.05 2110 40

39 MFCC features of each observation frame are extracted from speech 
data using a 128 ms window with 96 ms overlaps.

The experiments are divided into two parts: two-task experiments and 
��		"���^� 	��	���	����� ��		� ����	��"��	��
�� ���	��� ���� �� �����"����	���
model without attention are trained on WaveNet-CTC.

In WaveNet, the number of hidden units in the gating layers is 128. 
�	� �	������� ���	� ��� *�²�<+°`. The number of hidden units in the residual 
connection is 128.

Two-task Experiment

For two-task joint recognition, the performances of the dialect ID or speaker 
ID at the beginning and at the end of output sequence were evaluated, 
respectively. We set n = 5 frames before and after the current frame to 
calculate the attention coefficients for attention-based WaveNet-CTC, which 
are referred to as Attention (5)-WaveNet-CTC and WaveNet-Attention (5)-
CTC, respectively, for the two architectures in Figures 5 and 6. Compared 
with the calculation of the attention coefficient of all frames, the calculation 
speed of local attention has been improved quickly, which is convenient for 
the training of models.
The speech recognition result is summarized in Table 2. The best model is 
the proposed WaveNet-Attention-CTC with the attention embedded before 
the softmax layer in WaveNet and dialect ID at the beginning of label se-
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!�	��	���������	��������	�����	��"��	��
�����	��[����{_½�����*�`½���	-
spectively, for Lhasa-Ü-Tsang and Changdu-Kham and gets the SER close 
����	�����	��"��	��
�����	������$����]�����������������	���	���$\-
SER (average relative syllable error rate) for three dialects. The model of di-
alectID-speech (D-S) in the framework of WaveNet-Attention-CTC is effec-
tive to improve multilinguistic speech content recognition. Speech content 
recognition is more sensitive to the recognition of dialect ID than speaker 
ID. The recognition of dialect ID helps to identify the speech content. How-
ever, the attention inserted before the input layer in WaveNet resulted in 
the worst recognition, which shows that raw speech feature cannot provide 
much information to distinguish the multitask.

Table 2: Syllable error rate (%) of two-task models on speech content recogni-
tion.

Architec-
ture

Model Lhasa-Ü-Tsang Changdu-Kham Amdo Pastoral

SER1 RSER2 SER RSER SER RSER ASER3

����	��"��	��
��
model

28.83 62.56 17.6

WaveNet-CTC 29.55 °+��* 62.83 °+�*� 33.52 °<=�_* °=�¡{
WaveNet-
CTC with 
dialect 
ID or 
speaker ID 
(baseline 
model)

D-S4 32.84 °`�+< 68.58 °¡�+* 33.00 °<=�`+ °¸�`¸
S-D5 26.80 2.03 64.03 °<�`� 30.79 °<{�+_ °`�*<
S-S16 27.21 1.62 64.17 °<�¡< 29.68 °<*�+¸ °`�+*
S-S27 28.13 0.7 62.43 0.13 28.04 -10.44 °{�*+

Attention 
(5)-Wave 
Net-CTC

D-S 52.19 °*{�{¡ 65.24 °*�¡¸ 50.22 -32.62 °<_�==
S-D 55.16 °*¡�{{ 67.78 °=�** 55.23 -37.63 °*{�+¡
S-S1 77.42 °`¸�=_ 85.44 °**�¸¸ 82.08 -64.48 °`=�{*
S-S2 83.32 °=`�`_ 89.15 °*¡�_` 81.47 -63.87 °`¸�`{

WaveNet-
Attention 
(5)-CTC

D-S 21.44 7.39 60.16 2.40 20.46 °2.86 2.31

S-D 23.79 5.04 62.96 °+�` 24.15 °¡�== °+�¡`
S-S1 34.86 °¡�+{ 63.36 °+�¸ 40.10 °**�=+ °_��¸
S-S2 34.83 °¡�++ 62.70 °+�<` 37.63 °*+�+{ °¸��*

1SER: syllable error rate, 2RSER: relative syllable error rate, 3ARSER: 
average relative syllable error rate, 4D-S: the model trained using the 
transcription with dialect ID at the beginning of target label sequence, like 
“A ���� ��� 	�,” 5S-D: the model trained using the transcription with dialect 
ID at the end of target label sequence, 6S-S1: the model trained using the 
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transcription with speaker ID at the beginning of target label sequence, 
and 7S-S2: the model trained using the transcription with speaker ID at the 
end of target label sequence.

For dialect ID recognition, in Table 3, we can see that the model with 
attention mechanism added before the softmax layer performs better than 
which is added in the input layer, and the dialect ID at the beginning is better 
than that at the end. From Table 2 and Table 3, it can be seen that the dialect 
����	��������������	��	���	���		������	����	����������

Table 3: Dialect ID recognition accuracy (%) of two-task models.

Architecture Model Lhasa-Ü-Tsang Changdu-Kham Amdo Pastoral

DialectID model 97.88 92.24 97.9
WaveNet-CTC 
with dialect 
ID

D-S 98.57 95.23 99.6

S-D 99.01 97.61 99.41

A t t e n t i o n 
(5)-WaveNet-
CTC

D-S 100 89.28 94.52
S-D 0 0 0

W a v e N e t -
Attention (5)-
CTC

D-S 100 98.8 99.41
S-D 100 94.04 98.06

We also test the speaker ID recognition accuracy for the two-task models. 
Results are listed in Table 4. It is worth noting that the Attention-WaveNet-
CTC model performs poorly on both tasks of the speaker and speech content 
�	��������������	�����������	���	�^	����	���
����������^���	��	�������������	�
of the speakerID-speech model in all three dialects is very poor. Among the 
Attention-WaveNet-CTC models, it can be seen that the modelling ability of 
two models of the dialectID-speech and speakerID-speech model shows big 
gap, which means the Attention-WaveNet-CTC architecture cannot learn 
effectively the correlation among multiple frames of acoustic feature for 
�������	�������
����������^�����������������	���|	�	�"$��	�����"�������	��
has a much better performance on the two tasks. The attention embedded 
before the softmax layer�����
����	��	���	��������������������	������	������
high recognition accuracy.
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Table 4: Speaker ID recognition accuracy (%) of two-task models.

Architecture Model Lhasa-Ü-Tsang Changdu-Kham Amdo Pastoral

SpeakerID model 67.75 93.13 95.31
WaveNet-CTC 
with speaker 
ID

S-S1 68.32 92.85 97.48

S-S2 71.15 95.23 96.12

Attention 
(5)-WaveNet-
CTC

S-S1 0 0 0
S-S2 60.64 77.38 85.85

WaveNet-At-
tention (5)-CTC

S-S1 70.35 92.85 97.48

S-S2 69.40 100 96.70

Three-task Experiment

We compared the performances of two architectures, namely, Attention-
WaveNet-CTC and WaveNet-Attention-CTC on three-task learning with the 
dialect-specific model and WaveNet-CTC, where we evaluated n = 5, n = 7, 
and n = 10, respectively, for the attention mechanism. The results are shown 
in Table 5.

Table 5: Syllable error rate (%) of three-task models on speech content recogni-
tion.

Architecture Model Lhasa-Ü-Tsang Changdu-
Kham

Amdo Pastoral

SER RSER SER RSER SER RSER ASER
����	��"��	��
�����	� 28.83 62.56 17.60

WaveNet-
CTC with 
dialect ID 
and speaker 
ID (baseline 
model)

S-D-S 30.64 °<�¸< 64.17 °<�¡< 34.06 °<¡�`¡ °¡�¡*
D-S-S1 39.64 °<+�¸< 65.10 °*�=` 45.15 °*��== °<{�¡{
D-S-S2 33.43 °`�¡+ 64.83 °*�*� 37.56 °<_�_¡ °¸�_`

Attention 
(5)-WaveNet-
CTC

S-D-S 48.69 °<_�¸¡ 68.31 °=��= 63.22 °`=�¡* °*{��`
D-S-S1 52.57 °*{��` 69.38 °¡�¸* 71.42 °={�¸* °*¸�<{
D-S-S2 49.10 °*+�*� 79.41 °<¡�¸= 61.09 °`{�`_ °*¡�¸�

WaveNet-
Attention 
(5)-CTC

S-D-S 30.75 °<�_* 69.51 °¡�_= 34.21 °<¡�¡< °¸�`_
D-S-S1 33.17 °`�{` 69.51 -6.95 38.49 °*+�¸_ °<+��{
D-S-S2 31.16 °*�{{ 69.25 °¡�¡_ 34.14 °<¡�=` °¸�=*
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WaveNet-
Attention 
(7)-CTC

S-D-S 30.39 °<�=¡ 70.05 °��`_ 32.7 °<=�< °¸�+=
D-S-S1 35.28 °¡�`= 68.12 °=�=¡ 38.03 °*+��{ °<+�¸<
D-S-S2 32.58 °{��= 62.74 °+�<¸ 37.16 °<_�=¡ °��¸{

WaveNet-
Attention 
(10)-CTC

S-D-S 30.25 °1.42 69.25 °¡�¡_ 32.01 ������ °��=<
D-S-S1 34.06 °=�*{ 70.05 °��`_ 40.10 °**�=+ °<<��`
D-S-S2 31.85 °{�+* 57.45 5.11 33.65 °<¡�+= �����

We can see that the three-task models have worse performance compared 
with the two-task model, and WaveNet-Attention-CTC has lower SERs for 
����"Ì"����������$����]���������������� �	�����	��"��	��
�����	���[���
for Changdu-Kham, a relative low-resource Tibetan dialect, the model of 
dialectID-speech-speakerID (D-S-S2) based on the framework of WaveNet-
Attention (10)-CTC achieved the highest recognition rate in all models, which 
����	��������	�����	��"��	��
�����	��[��=�<<½���	�������	���	��	�����
that maybe is the reduction of generalization error of the multitask model 
with the number of learning tasks increasing. It improves the recognition 
rate for small-data dialect, however not for big-data dialects. Since ASER 
�	�	�����	��	�	�����������	���������	����	����"�"�*������|	�	�"$��	������
(10)-CTC has highest ASER in all models, which shows it has better 
generalization capacity. Meanwhile, WaveNet-Attention (10)-CTC achieved 
the better performance than WaveNet-Attention (5)-CTC and WaveNet-
Attention (7)-CTC for speech content recognition as shown in Figure 7, 
where the syllable error rates declined with the number of n increasing for 
three dialects, and Changdu-Kham’s SER has a quickest descent. We can 
conclude that attention mechanism needs a longer range to distinguish more 
tasks, and it pays more attention on the low-resource task. It is also observed 
that WaveNet-Attention (5)-CTC has better performance than Attention 
(5)-WaveNet-CTC, which demonstrates again that the attention mechanism 
����	������	�������	������
����	��	���	��������������������������������
leads to more accurate speech recognition than when it is put in the input 
layer.
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Figure 7: Syllable error rate of WaveNet-Attention-CTC for different lengths 
of the attention window.

From Tables 6 and 7, we can observe that models with attention have 
worse performance than the ones without attention for dialect ID recognition 
and speaker ID recognition, and longer attention achieved the worse 
recognition for the language with large data. It also shows that in the case 
of more tasks, the attention mechanism tends towards the low-resource task, 
such as speech content recognition.

Table 6:  Dialect ID recognition accuracy (%) of three-task models.

Architecture Model Lhasa-Ü-Tsang Changdu-Kham Amdo Pastoral

DialectID model 97.88 92.24 97.9
WaveNet-CTC 
with dialect ID 
and speaker ID

D-S-S1 98.01 98.8 99.41
D-S-S2 99.73 96.42 99.61

S-D-S 99.25 95.23 99.03
Attention 
(5)-WaveNet-
CTC

S-D-S 100 76.19 91.27
D-S-S1 100 90.47 94.18
D-S-S2 100 82.14 93.02

WaveNet-Atten-
tion (5)-CTC

S-D-S 100 89.28 93.79
D-S-S1 100 85.71 93.79
D-S-S2 100 95.23 94.18
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WaveNet-Atten-
tion (7)-CTC

S-D-S 0 85.71 91.66
D-S-S1 0 89.98 93.88
D-S-S2 0 89.28 95.34

WaveNet-Atten-
tion (10)-CTC

S-D-S 0 85.71 95.54
D-S-S1 0 94.04 93.99
D-S-S2 0 0 0

Table 7: Speaker ID recognition accuracy (%) of three-task models.

Architecture Model Lhasa-Ü-Tsang Changdu-Kham Amdo pastoral

SpeakerID model 67.75 93.13 95.31
WaveNet-CTC 
with dialect ID 
and speaker ID

S-D-S 72.91 98.8 96.12
D-S-S1 70.21 95.23 93.6
D-S-S2 70.35 96.42 96.89

Attention 
(5)-WaveNet-
CTC

S-D-S 61.08 83.33 89.53
D-S-S1 62.12 83.33 87.01
D-S-S2 61.99 84.52 90.11

WaveNet-Atten-
tion (5)-CTC

S-D-S 61.99 85.71 92.05
D-S-S1 62.53 82.14 91.08
D-S-S2 61.18 89.28 92.44

WaveNet-Atten-
tion (7)-CTC

S-D-S 60.91 85.71 91.66
D-S-S1 62.04 84.31 92.01
D-S-S2 58.49 86.90 90.69

WaveNet-Atten-
tion (10)-CTC

S-D-S 58.49 84.52 92.05
D-S-S1 59.43 83.33 91.27
D-S-S2 63.47 92.85 97.86

In summary, combining the results of the above experiments, whether two 
���^������		����^���	���������^����	��������^	��������
����������|	�	���
on the performance of the low-resource task by incorporating the attention 
mechanism, especially when the attention is applied to the high-level abstract 
features. The attention-based multitask model can achieve the improvements 
on speech recognition for all dialects compared with the baseline model. 
With an increase in the task number, the multitask model needs to increase 
the range for attention to distinguish multiple dialects.
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CONCLUSIONS
This paper proposes a multitask learning mechanism with local attention 
based on WaveNet to improve the performance for low-resource language. 
We integrate Tibetan multidialect speech recognition, speaker ID recognition, 
and dialect identification into a unified neural network and compare the 
attention effects on the different places in architectures. The experimental 
results show that our method is effective for Tibetan multitask processing 
scenarios. The WaveNet-CTC model with attention added into the high layer 
obtains the best performance for unbalance-resource multitask processing. 
In the future works, we will evaluate the proposed method on larger Tibetan 
data set or on different languages.
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ABSTRACT
Speech recognition allows the machine to turn the speech signal into text 
through identification and understanding process. Extract the features, 
predict the maximum likelihood, and generate the models of the input speech 
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signal are considered the most important steps to configure the Automatic 
Speech Recognition System (ASR). In this paper, an automatic Arabic 
speech recognition system was established using MATLAB and 24 Arabic 
words Consonant-Vowel Consonant-Vowel Consonant-Vowel (CVCVCV) 
was recorded from 19 Arabic native speakers, each speaker uttering the same 
word 3 times (total 1368 words). In order to test the system, 39-features were 
extracted by partitioning the speech signal into frames ~ 0.25 sec shifted by 
0.10 sec. in back-end, the statistical models were generated by separated the 
features into number of states between 4 to 10, each state has 8-gaussian 
distributions. The data has 48 k sample rate and 32-bit depth and saved 
separately in a wave file format. The system was trained in phonetically rich 
and balanced Arabic speech words list (10 speakers * 3 times * 24 words, 
total 720 words) and tested using another word list (24 words * 9 speakers 
* 3 times *, total 648 words). Using different speakers similar words, the 
system obtained a very good word recognition accuracy results of 92.92% 
and a Word Error Rate (WER) of 7.08%.
Keywords: Speech Recognition, Feature Extraction, Maximum Likelihood, 
Gaussian Distribution, Consonant-Vowel

INTRODUCTION
Speech is a way to express ourselves, it’s a complex naturally acquired human 
motor ability [1]. Speech recognition is the capability of a device to receive, 
identify, and recognize the speech signal [2]. Speech recognition process 
fundamentally functions as a pipeline that converts the sound into recognized 
text, as shown in Figure 1. Based on spectral, the input signal is converted 
into a sequence of training and testing feature vectors saved in unique files. 
Given all the observations in the training data, Baum-Welch algorithm can 
learn and generate the HMM models equal to the number of the words to 
be recognized. In testing process, pattern matching provides likelihoods of 
a match of all sequences of speech recognition units to the input speech. 
Decision making generated according to the best path sequence between 
the models and testing data. Speech recognition system involved in several 
applications such as: call routing, automatic transcriptions, information 
searching, data entry, Speech to Text conversion, Text to Speech conversion 
etc. [3].

Arabic is the native language for over 300 million speakers and 
������	�	����	�����	���
������������	�����������������	����������	��������
It has a unique set of diacritics that can change the meaning [4]. Arabic 
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ASR received little attention compared to other languages, and research was 
oblivious to the diacritics in most cases. Omitting diacritics circumscribes 
the Arabic ASR system’s usability for several applications such as voice-
enabled translation, text to speech, and speech-to-speech [5].

Feature Extraction is accomplished by changing the waveform speech 
form to a form of parametric representation with a relatively low data 
rate for subsequent processing and analysis. Subsequently, the acceptable 
������
������� ��� �	� ��������� ���� �	������ ����� ��� �	��|	�� ����� �	� !�������
features [6]. Therefore, the most popular speech methods, Mel Cepstral 
��	!�	���� ��	�
��	���� '����>� ���� ����	�� ���^�|� ���	�� �|	� [		��
selected and tested in order to provide a high level of reliability and 
acceptability of the Arabic ASR.

MEL FREQUENCY CEPSTRAL COEFFICIENTS 
(MFCC)
MFCC is a feature widely used in automatic speech and speaker recognition 
has been used to extract spectral features from frame sequences [7] [8].

Figure 1. Speech recognition process.

 Fast Fourier Transform (FFT) has been used to transfer the signal into 
frequency domain using the Equation (2.1). After pre-emphases, blocking, 
and windowing the input signal, FFT applies on the speech frames to obtain 
256-point certain parameters, converting the power-spectrum to a Mel-
��	!�	������	�������������!��������'*�*>�����'*�{>������
��������^�����	�
logarithm of that spectrum and computing its inverse Fourier transform as 
shown in Figure 2.
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   (2.1)

     (2.2)

     (2.3)

HIDDEN MARKOV MODEL (HMM)
HMM is used to classify the features and generate the correct decision. 
HMM considered the powerful statistical tool used in speech recognition 
and speaker identification systems, due to the ability to model non-linearly 
aligning speech and estimating the model parameters [9]. Gaussian Mixtures 
also used to model the emission probability distribution function inside each 
state.

In training process, the observation parameters, transition probability 
matrix, the prior probabilities, and Gaussian distribution were re-estimated 
in order to get good parameters at each iteration as shown in Figure 3. As a 
result, all the previous HMM parameters are used to generate the likelihood 
����	���������	���	�����
����	�[	�������[	��		���	�����	��������	�����
recognize the unknown word [10] [11].

Evaluation Process

Given the observation sequence�'«>������	����	�������	�	���'Î>����������
'¹>��������^�����'�>������������	�	���	�� ��� ����� �	����[�[��������� �	�
�[�	�|�������	!�	��	���|	���	����	��]'«¯Î>]'«¯Î>��<*���$���������������	�
4, forward and backward probabilities are added to evaluate the probability 
that any sequence of states has produced the sequence of observations.

Figure 2���	����	!�	�����	���������	�
��	����'����>�[���^���������
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Figure 3. Three states hidden Markov model.

Figure 4. Recognition rate using different state numbers based on MFCC.

Training Process

Given the observation sequence�'«>������	����	�������	�	���'Î>������"
Welch algorithm was used to re-adjust and re-estimate the transition 
probability matrix and Gaussian mixture parameters (mean and covariance) 
that best describe the process [13] [14]. Baum welch algorithm also used to 
learn and encode the characteristics of the observation sequence in order to 
recognize a similar observation sequence.

Decoding Process

Viterbi algorithm has been used to comparing between the training and the 
testing data and find the optimal scoring path of state sequence by selecting 
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the high probabilities between the model and the testing data [15] [16]. The 
maximal probability of state sequences is defined using the Equation (3.1), 
and the optimal scoring path of state sequence selected is calculated using 
the following MATLAB function.
start_recognition (“testing_list.mat”, dim).

  (3.1)

EXPERIMENTAL RESULTS
Using the automatic ASR system, several experiments were carried out 
using 24 (CVCVCV) Arabic isolated words as shown in Table 1. The 
feature vectors have been extracted for each sound using MFCC algorithm 
and saved, and the statistical models were generated using Hidden Markov 
Model classifier to match the data. The performance evaluation of the Arabic 
ASR system was obtained by finding the maximum word recognition rate.

In this work, (24 words * 3 times) Arabic CVCVCV words, small 
vocabulary data set are recorded from 19 adult male speakers (total 1368) 
��|��	���������������������	������
�	�����[�	�*�������	���������������������
�	��|	���	�������
��������	������������[����	�����������|	��	����	����	��
in training and testing sessions. Each experiment conducted by dividing the 
data into 4, 5, 6, 7, 8, 9, and 10 number of states and modeled using 8 multi-
dimensional Gaussians Hidden Markov Model.

Table 1. CVCVCV arabic words.
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Table 2. Recognition rate using different state numbers based on MFCC.

State 
No.

Wrong words

1 2 3 4 5 6 7 8 9 10 11 12
4 3 4 12 5 0 8 27 8 2 2 0 3
5 6 1 11 4 0 6 1 0 0 2 0 1
6 4 3 4 0 0 5 0 0 4 0 1 5
7 12 0 4 2 1 3 4 3 2 0 2 2
8 3 0 1 1 1 3 0 0 1 0 0 0
9 0 1 2 1 0 1 3 1 0 0 0 1
10 8 0 2 1 0 0 0 0 0 2 0 1
State 
No.

Wrong words

13 14 15 16 17 18 19 20 21 22 23 24
4 5 0 7 3 0 10 3 6 0 0 11 22
5 17 0 10 3 2 0 16 8 0 0 3 16
6 4 1 5 10 5 0 21 7 0 1 1 12
7 11 0 5 9 3 0 6 5 0 0 0 12
8 10 0 4 4 0 1 9 2 0 0 1 10
9 9 0 8 4 2 0 4 8 0 0 1 13
10 13 2 4 3 0 0 13 0 0 1 7 7

Table 3. Recognition rate summary based on MFCC.

State No. Total error count Total correct 
count

Recognition rate

4 141 579 80.4166667
5 107 613 85.1388889
6 93 627 87.0833333
7 86 634 88.0555556
8 51 669 92.9166667
9 59 661 91.8055556
10 64 656 91.1111111

During the experiments, the speech signal pre-reemphasis using 0.975 
factor, covered by 25 milliseconds hamming window, and 10 milliseconds 
overlapping. The 256-point Fast Fourier Transform (FFT) was applied to the 
signal to transform 200 samples of speech from time to frequency domain. 
�	�������������	��	�����������
�	��	��	|	�����	�|���������	��	����������
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rate obtained in decoding process are listed in Table 3 and the chart in Figure 
1 summarizes the recognition rate obtained for each state number.

CONCLUSION
The primary contribution of this work is to design Arabic ASR system and 
find the performance of the selected Arabic words is successfully verified 
and examined. For this purpose, 24 CVCVCV Arabic words were recorded 
from native speakers, all the experiments are conducted, and the recognition 
results of the ASR system were investigated and evaluated. The system is 
designed by MATLAB based on MFCC and discrete-observation multivariate 
HMM. In this work, the best results are achieved when the acoustic signals 
are extracted using 10 states and modeled by 8 Gaussian mixtures. The best 
recognition rate reaches 92.92% (51 total error count from 1368 total words 
count). According to Figure 3, the recognition rate decreased when using 
more or less than 10 state numbers.
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ABSTRACT
Serbian is in a group of highly inflective and morphologically rich languages 
that use a lot of different word suffixes to express different grammatical, 
syntactic, or semantic features. This kind of behaviour usually produces 
a lot of recognition errors, especially in large vocabulary systems—even 
when, due to good acoustical matching, the correct lemma is predicted by 
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the automatic speech recognition system, often a wrong word ending occurs, 
which is nevertheless counted as an error. This effect is larger for contexts 
not present in the language model training corpus. In this manuscript, an 
approach which takes into account different morphological categories of 
words for language modeling is examined, and the benefits in terms of word 
error rates and perplexities are presented. These categories include word 
type, word case, grammatical number, and gender, and they were all assigned 
to words in the system vocabulary, where applicable. These additional 
word features helped to produce significant improvements in relation to the 
baseline system, both for n-gram-based and neural network-based language 
models. The proposed system can help overcome a lot of tedious errors in a 
large vocabulary system, for example, for dictation, both for Serbian and for 
other languages with similar characteristics.

INTRODUCTION
There are two main components in any contemporary automatic speech 
recognition (ASR) system. The first is the acoustic model (AM), which 
describes acoustical characteristics of different speech components (most 
often context-dependent phonemes) for a single speaker (in speaker-
dependent or speaker-adapted systems) or multiple speakers (in speaker-
independent systems). The other component, on which this manuscript will 
be focused, is the language model (LM), which describes the vocabulary 
and sentence forming rules of the language or speech domain in question. 
The language model is used to provide the speech recognizer with allowed 
word sequences in limited-vocabulary and grammar-based environments, as 
well as to help the acoustic model to decide on the correct word sequence 
by introducing costs for all different sequences (i.e., language model costs, 
or scores), where the more likely sequences will have a lesser cost (a better 
score). In a lot of applications, a well-trained language model can even 
overcome certain flaws in the acoustic model, by eliminating unnatural, 
unlikely word sequences from the list of recognition result possibilities. It 
has been shown that language models have the capability to become very 
close to human language understanding [1].

For a long time, the best language models in existence were statistical 
models based on n-grams—frequencies or probabilities of individual word 
sequences up to and including length n [2]. These LMs proved to be highly 
effective for an array of applications, even though they had several known 
problems, e.g., data sparsity (smoothing requirement [3]) and modeling of 



Using Morphological Data in Language Modeling for Serbian Large .... 155

longer contexts (more than n words long). Recently, approaches based on 
recurrent neural networks (RNNs) have been proposed to overcome n-gram 
����	�� ������� �������� �	� ����	�	�������� ���
������ ���� ��������������
complexity too much. They have shown their superiority in relation to 
n-grams [4], but still they are computationally more demanding, and that 
usually results in a lot longer training duration.

For the Serbian language, in the past couple of years, several variants 
of RNN-based LMs (RNNLMs) as language models were examined and 
compared [5]. All of them produced big improvements over the baseline 
n-gram system, while the best approach seemed to be the TensorFlow-based 
LSTM-RNNLM (long short-term memory-based RNNLM) approach with 
pruned lattice rescoring, both in the resulting word error rates (WERs) and 
training duration. Unfortunately, a number of problems from the n-gram 
system seemed to remain. The biggest ones were errors where the lemma 
was correct, but the word ending was wrong, which resulted in a very low 
character error rate (CER) in comparison to the actual WER. The source of 
��������	������		�	�����[	�����������	����	���|��������	�[���Ð�	����	�
[���������������'�	���>������|	��������������	�	�����������
�	���	����[����
different grammatical or syntactic roles (Table 1). In Serbian grammar, there 
are seven word cases (nominative, genitive, dative, accusative, vocative, 
instrumental, and locative), which apply to all nouns and most adjectives, as 
well as some pronouns and numerals, two grammatical numbers (singular 
and plural), and three grammatical genders (masculine, feminine, and 
neuter). Grammatical numbers and genders apply to most verbs as well. 
Cases, numbers, and genders do not apply to invariable words (prepositions, 
adverbs, conjunctions, particles, and exclamations), even though certain 
prepositions are always followed by certain cases.

Table 1: Morphological categories for words in the Serbian language.

Morphological 
category

Possible category values

Word type Noun, pronoun, adjective, numeral, verb (variable), preposi-
tion, adverb, conjunction, particle, exclamation (invariable)

Word case Nominative, genitive, dative, accusative, vocative, instrumen-
tal, locative

Grammatical 
number

Singular, plural

Grammatical 
gender

Masculine, feminine, neuter
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In this manuscript, incorporation of the mentioned morphological 
features into both n-gram based and RNN-based language models for 
Serbian is examined, and the obtained results are presented on the largest 
Serbian audio database for acoustic modeling, as well as all the currently 
available textual materials in Serbian for language model training.

The following sections will describe relevant previous work, details of 
the available resources, training methods, the experimental setup, and the 
results, followed by conclusions.

RELEVANT PREVIOUS WORK
There were several approaches for incorporation of morphology knowledge 
into speech recognition systems for other languages, and most of them 
require some sort of a parser (word decomposer) to determine significant 
morphological units (morphemes, affixes, etc.) to represent lexical items 
and word classes, and then that information is used to provide additional 
constraints to the decoder (in combination or instead of regular words in 
the conventional approach). A lot of morphologically rich languages face 
similar issues [6–10].

Another approach is using factored language models (FLMs) [11], 
which explicitly model relationships between morphological and lexical 
items in a single language model, and a generalised back-off procedure is 
used during training to improve the robustness of the resulting FLM during 
decoding, especially for rarely seen words and n-grams. In the approach in 
this manuscript, additional morphological information about all the words 
in the textual corpus for LM training is explicitly embedded into the words 
�	��	�|	��������	�����������������	�����	�������������
	��|���[�������
Given the fact that Serbian is a fusional language, which are distinguished 
����������������|	��������	��[���	����	��	���������	��������	����	��������
morpheme to denote multiple grammatical, syntactic, or semantic features 
(and that has been a problem for some morphology models [8]), and the 
�����	������	�����	�$�\�����	�����!�	�������������	�[����	����|	���
���	�
|���[������ 	�|�����	���� '��	��
�� �������� ���� �� ���� ��� 	��	��	�� ������
��������	�>��������������������À����
�[�	��[��������	��	�	�������������^�
into the possibilities of creating open vocabulary systems as well [12, 13].
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MATERIALS AND METHODS

Audio Database

For all the experiments, the recently expanded speech database for Serbian 
was used. This database consists of three smaller parts (Table 2). The first 
part contains audio book recordings, recorded in studio environment by 
professional speakers. A large part of this database was already mentioned in 
previous papers [14], but lately it has been expanded by several new audio 
books. This database part is responsible for 168 hours of data in total, out 
of which about 140 hours is pure speech (the rest is silence). There are 32 
different male and 64 different female recognized speakers (with a slight 
possibility that a few of them are actually the same speaker), but male 
speakers had a lot more material by speaker on average. The original data 
for each speaker were further separated into chunks of 30–35 minutes at 
most, and all chunks except the first were modified by a carefully chosen 
combination of speech tempo or pitch changes, basically producing new, 
mutually distinct subspeakers. The purpose of this procedure was to equalize 
the amount of material per speaker, as in the original data some speakers 
have several hours of speech, while others have half an hour or even less. 
In this way, the trained acoustic models should not be biased towards those 
speakers with a lot of material. The described procedure resulted in 398 
distinct subspeakers. The second part of the database contains radio talk 
show recordings, separated by speaker. This part totals 179 hours of data, 
150 of which are nonsilence, and there are 21 male and 14 female speakers 
in total, again with a lot more material for males. Speaker equalization 
(in the same manner as above) was also performed here to produce 420 
subspeakers. These recordings contain mostly more spontaneous speech, 
with a lot more background noise, mispronounced words, etc., but are crucial 
for better modeling of conversational speech. The final database part is the 
so-called Serbian “mobile” speech database, also mentioned in previous 
papers [15], and consists of mobile phone recordings of read commands, 
questions, numbers, dates, names, locations, spellings, and other inquiry-
based utterances, like those to be expected in an interaction with a voice 
assistant type application on a smartphone. These are also more freely 
spoken, but the utterances are a lot shorter than those in previous database 
parts, the vocabulary is very domain-oriented and relatively small, and the 
material is already evenly distributed among speakers. This part contains 
61 hours of material, out of which 41 are pure speech, and there are 169 male 
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and 181 female distinct speakers. All audio data for acoustic model training 
were sampled at 16 kHz, 16 bits per sample, mono PCM.

Table 2: Audio database overview.

Database part Amount 
of data 
(h)

Amount of 
speech (h)

Male (sub) 
speakers

Female (sub) 
speakers

Audio books 168 140 208 190
Radio talk shows 179 150 350 70
Phone record-
ings

61 41 169 181

Total 408 331 727 441
For training 379 308 677 410

In addition to this, for testing purposes, 29 hours of material was 
extracted in total (between 5% and 10% from all database parts), 23 of 
which is speech, from 81 total test subspeakers. All subspeakers used in the 
test set were completely used for testing (i.e., excluded completely from 
training) to avoid biased test results.

Textual Corpus

All the language models that are going to be mentioned were trained on 
the same textual corpus. The largest part of it are texts previously collected 
for Serbian language model training [5, 15], divided into segments 
corresponding to different functional styles—the largest journalistic corpus, 
followed by literary, administrative, scientific, popular-scientific, and 
conversational segments. The whole corpus was used in an attempt to cover 
as much variability as possible, as it has been shown that sentence structures 
in different functional styles can differ significantly [16]. Additionally, the 
transcriptions of the training part of the audio data for acoustic modeling 
were appended to the existing corpus. In total, there are about 1.4 million 
sentences and 26 million words. Out of these, 20000 sentences were used 
only for evaluation (the development, or “dev” set), while the rest were used 
in the language model training procedure (Table 3).
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Table 3: Textual database overview.

Corpus part #Sentences #Words #Characters

Journalistic 737k 17M 94M
Literary 303k 3.9M 18M
���	���
� 23k 503k 3M
Administrative 15k 378k 2M
]������"���	���
� 18k 357k 2M
Conversational 38k 128k 530k
Transcriptions 251k 3.2M 15M
Total 1.4M 26M 135M
“Dev” set 20k 470k 2.6M

Training Method—Acoustic Model

The used acoustic models were subsampled time-delay neural networks 
(TDNNs), which are trained using cross-entropy training within the so-
called “chain” training method [17]. For this purpose, the Kaldi speech 
recognition toolkit [18] was used. The trained neural network is 9 layers 
deep, with 625 neurons per layer. The initial layers (1–5) were spliced in a 
Ñ°<��+��<Ò�����	��'�	���		�{�����	����|	�����	�>�����	�Ñ°{��+��{Ò����������
was used for the most hidden layers (layers 5–9; they also see 3 frames, 
but separated by 3 frames from each other). Using this configuration, the 
most hidden layers need to be evaluated only every 3 frames. No artificial 
data expansion was used for these experiments. The training was performed 
in 5 epochs (145 iterations based on the amount of data). Alignments for 
the deep neural network (DNN) training were provided by a previously 
trained speaker-adaptive HMM-GMM (hidden Markov model—Gaussian 
mixture model) system [19] with 3500 states and 35000 Gaussians. Acoustic 
features used for DNN training were 40 high-resolution MFCC features 
(Mel-frequency cepstral coefficients), alongside their first- and second-
order derivatives, as well as 3 pitch-based features—weighted log-pitch, 
delta-log-pitch, and warped normalized cross-correlation function (NCCF) 
|���	�'������������������[	��		��°<�����<��������	������|���	������	�>��
and their derivatives, producing a 129-dimensional feature vector, which is 
a configuration already used in other experiments [5, 15, 17]. The context 
dependency tree used for the “chain” training with its special model topology 
that allows a subsampling factor of 3 had 2000 leaves (output states). The 
effective learning rate was in the range from 0.001 (initial) to 0.0001 (final).
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Training Method—Language Models

The referent n-gram language model is a 3-gram model trained on the 
described textual data using the SRILM toolkit [20], with Kneser-Ney 
smoothing and previously optimized pruning cut-off parameter of 10°� [15]. 
The vocabulary for the LM was chosen in such a way to include all different 
words from the acoustic training data transcriptions, plus all other words 
that are mentioned at least 3 times in the whole textual corpus. Additionally, 
previously unseen words from the test dataset transcriptions were also 
added into the vocabulary, so there were no actual out-of-vocabulary (OOV) 
words, but these transcriptions were not used in probability estimation for 
the LM. Still, it should be acknowledged that adding OOV words to the LM 
training vocabulary can affect the recognition accuracy of the ASR system. 
This approach was related to the planned use of this system (relatively 
finite-vocabulary domains) and the fact that the experimental results 
needed to demonstrate the expected WERs in such conditions. Moreover, 
a similar approach was used previously as well [5, 15], but future research 
and experiments should measure the WER without adding all the OOV 
words from the test dataset into the vocabulary and even consider an open 
vocabulary language model capable of learning new words. The procedure 
used here resulted in 249809 total words (unigrams), while there were also 
1.87 million bigrams and 551 thousand trigrams with the given parameters. 
The test data perplexity was calculated to be around 634.0.

The RNN-based language model was trained using Kaldi-RNNLM 
[21], an extension to the Kaldi toolkit, which supports RNN-based language 
modeling��������	�%���������	���^������	���	��
���	�����	���������	�"�
(WFST-) based decoding. This method involves subword features; more 
precisely, letter n-gram counts for better prediction of rare words, as well 
as augmented features such as scaled word unigram log-probability and 
word length, the former of which is used for better out-of-domain results. 
Kaldi-RNNLM also shares the input and output embeddings for the neural 
network based on work given in [22], which alongside subword features can 
produce good results on very large vocabularies without having data sparsity 
issues (which is otherwise usually combatted by using shortlists during LM 
training). Finally, each of the most frequent N words receives an additional 
feature, so the top words end up having a one-hot representation in addition 
to their letter n-gram counts vector and the two augmented features (Table 
4).
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Table 4: Example of a feature vector in RNNLM experiments for word sam 
(Eng. am).

Index Feature type Feature Value Remarks

0 Constant Constant 0.01 For math reasons
1–5 Special Special word feat. 0 For bos/eos/unk/

brk/silence
6 Unigram Unigram prob. 0.00788 Scaled unigram 

log-prob.
7 Length Word length 0.00186 Scaled word 

length
8–36 Word 1-hot vect. elem. 0 —
37 Word 1-hot vect. elem. 0.21 Scale based on 

unigram prob.
38–97644 Word 1-hot vect. elem. 0 —
97645–97657 Final Lett. n-gram prob. 0 —
97658 Final 3-gram -am$ pr. 0.12 Scaled letter 

3-gram prob.
97659–97758 Final Lett. n-gram prob. 0 —
97759 Final 2-gram -m$ pr. 0.047 Scaled letter 

2-gram prob.
97760–97869 Final Lett. n-gram prob. 0 —
97870–98050 Initial Lett. n-gram prob. 0 —
98051 Initial 2-gram ^s- pr. 0.03 Scaled letter 

2-gram prob.
98052 Initial 3-gram ^sa- pr. 0.069 Scaled letter 

3-gram prob.
98053–98144 Initial Lett. n-gram prob. 0 —
98145–98300 Match Lett. n-gram prob. 0 —
98301 Match 2-gram -am- pr. 0.064 Scaled letter 

2-gram prob.
98302–100451 Match Lett. n-gram prob. 0 —
100452 Match 2-gram -sa- pr. 0.057 Scaled letter 

2-gram prob.
100453–100459 Match Lett. n-gram prob. 0 —
100460 Match 3-gram -sam- pr. 0.11 Scaled letter 

3-gram prob.
100461–101306 Match Lett. n-gram prob. 0 —



Speech Recognition and Understanding162

The baseline RNNLM is a 4-layer combined TDNN plus fast LSTMP 
(LSTM projected [23]) network, with an embedding dimension of 1024 and 
both recurrent and nonrecurrent projection dimension of 256. The number 
of most frequent words to receive a special feature is 97636 (calculated 
to be up to 100000, but to draw a line under a group of words with the 
same count in the input data). Letter 2-grams and 3-grams are utilized, the 
minimum frequency of any letter n-gram to be considered a feature was 
0.0001, and the training was run for 30 epochs (180 iterations based on input 
data), with the possibility for the best iteration to be before the last one (best 
iteration is calculated based on the objective function value on the “dev” 
dataset previously mentioned in the textual corpus section). For RNNLM 
rescoring, the pruned lattice rescoring method was used [24] with a 4-gram 
approximation to prevent lattice explosion and a RNNLM interpolation 
weight of 0.8 (previously determined to be optimal). The baseline perplexity 
with this RNNLM on the given test set was calculated using Kaldi tools to 
be about 119.0.

The approach to incorporation of morphological information into the 
language model for Serbian in this manuscript is to explicitly embed that 
information into the words themselves, thus modifying the vocabulary of the 
$�\�����	���������	�����
���	����������	�����	�	�������������������	����	��
for each word in the input textual corpus sentences, a part-of-speech (POS) 
tagging tool for Serbian [25] was used, alongside the Serbian morphologic 
dictionary [26]. Previously, morphological clustering of words into classes 
using a part of the Serbian textual corpus was examined, where the relevant 
�	����	���	�	��	
�	������	�����������	�'���	�����[	��������	��	������[��	���
mentioned in the introduction section of this manuscript, alongside subtype, 
e.g., proper, common, or abstract for nouns and degree of comparison for 
adjectives) [27]. Not all the additional features are available for all word 
types, even within a certain type some words do not behave like others, 
e.g., there are some invariable adjectives. For the following experiments, 
word type and case, alongside grammatical number and gender, are chosen 
��������������������	����	������������	�
������	���	�����	����������	����
was taken into account as well.

The POS tagging tool and an additional postprocessing tool were used 
to convert all input textual data for LM training into sentences with tagged 
���������	���������������	�������	��	�����	�����
�	������	���������	�������
its determined type, case, number, and gender, where applicable. Alongside 
the ten word types in Serbian, two additional types were introduced—
abbreviation and isolated letter (e.g., used when spelling something), since 
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they do not really belong in any other category. Some words were marked 
by the POS tagger as of unknown type (e.g., badly pronounced words which 
were written as such in transcriptions or words with typographical errors), so 
they were not assigned any other morphological features. The POS tagger, 
with the help of the morphologic dictionary, could distinguish six different 
cases, as dative and locative in Serbian tend to share the same word form. A 
case is also assigned to certain prepositions, if they are known to always be 
followed by a word in a particular case in Serbian. The grammatical number 
and gender did not receive any special treatment; they are used as already 
described above (Table 5).

Table 5: Some of the most frequent words, with and without morphology-based 
���
�	��

Without 
POS data

With POS data Explanation

je je_gl glagol = verb
i i_vez veznik = conjunction
u da_vez —
da u_pred_dat predlog = preposition
se se_zam zamenica = pronoun
na na_pred_dat dative/locative
koji koji_zam_nom_jd_mr nominative
bi bi_gl_jd jednina = singular
Srbije Srbije_im_gen_jd_mr imenica = noun, genitive, muški rod = masculine

Using the proposed procedure, the number of different words in the LM 
vocabulary grew to 380747, as some words could, as expected, have different 
values of certain POS features (sometimes the same word form could be 
a different combination of case/number/gender in different sentences, 
even a different word type in some cases). Using the same parameters for 
smoothing and pruning, the new 3-gram language model has 2.2 million 
bigrams and 523 thousand trigrams (relatively similar to the referent 3-gram 
LM). This time though, the perplexity was calculated to be 378.6, which is 
a lot better, likely because now there is a distinction between formerly same 
words that could have completely unrelated functions in sentences. On the 
other hand, the perplexity for the new RNNLM was a bit larger than that for 
the referent one—147.1, which may be explained by the implicit vocabulary 
size increase, which had more effect here in relation to the n-gram case 
(possibly due to applied smoothing and pruning techniques there).
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RESULTS AND DISCUSSION

3-Gram Results

The baseline 3-gram language model (250k words, without using 
morphological information) in combination with the resulting acoustic 
models trained with the “chain” method produced a word error rate of 8.89%. 
Problems with the inflectivity of Serbian can be observed when comparing 
that to the character error rate, which in this experiment was measured to 
be only 2.63%. The largest number of recognition errors happened in the 
radio talk show test set (12.64% WER), and the error rate for audio books 
was in the middle of the road (6.25% WER), while the mobile phone test 
set produced a very small WER of less than 1% (0.96%), just like in past 
experiments [15], which can be explained by the very small vocabulary 
(less than 4000 different words) and repeating word patterns and sentence 
structures for basically all speakers in this dataset, so the language model 
could learn to predict such sentences very well. When looking through the 
list of the most substituted words, on the top of it, the typical confusion 
between similarly sounding i and je (Eng. and, be) can be found, as well 
as a lot of wrong cases, grammatical genders, and numbers (koja instead 
of koji, koje or koju, and vice versa; Eng. which), but also words that have 
two slightly different but functionally completely equivalent forms (e.g., 
kad and kada, Eng. when), as well as several obvious typographical errors 
and words that are often shortened in spontaneous speech (e.g., zna�i and 
‘na�i, where the starting “z” sound is often not pronounced at all, likewise 
rekao and rek’o; Eng. so, told). Some of these errors should be automatically 
corrected by taking morphological features into account. On the other hand, 
the typographical errors can only be fixed by carefully looking through all 
the texts by a group of text checkers.

In comparison, when applying the new 3-gram language model which 
differentiated POS categories of words, the WER was lowered to 6.90%, 
and the CER to 2.20%, which is a 22% relative improvement in WER 
and a 16% relative improvement in CER (Table 6). A breakdown by test 
database part (audio books, radio talk shows, and phone recordings) shows 
that the most relative improvement occurred in audio books, possibly due 
to professionally read texts (no unexpected or mispronounced words and 
sentence structures most of the time). Somewhat less improvement can be 
observed for radio talk shows, while a very small deterioration happened 
for the mobile phone database, even though the error rate is still around 
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the 1% WER mark, probably because of more spontaneity in speech for 
these two test set parts and likely POS tagger mistakes and/or limitations 
when used on unconventional word forms encountered there (maybe even 
��������������	�������������^���������	����	�������	����	��������
�	�������	�
mobile phone database). The total number of substitutions dropped by more 
than 25%. The number of wrong-POS-category errors dropped as well, and 
they were more spaced-out through the list of most common errors (they 
were more rarely seen in relation to other errors). Insertion rate dropped 
by 19% and deletion rate by 9%—these errors mostly included very short 
invariable words, and with the new LM, some occurrences of longer and 
variable words disappeared from the top of those error lists (Table 7).

Table 6: WER and CER results for 3-gram experiments, without and with ad-
ditional POS data taken into account. Breakdown by test database part is shown 
as well.

Result Total (%) Books (%) Shows (%) “Mobile” (%)

WER 3-gram 8.89 6.25 12.64 0.96

WER 3-gram + POS 6.90 4.12 10.45 1.06
CER 3-gram 2.63 1.45 4.11 0.40

CER 3-gram + POS 2.20 1.05 3.59 0.42

Table 7: Lists of some of the most frequent word errors by type, with #occur-
rences (3-gram LM).

Substitutions with-
out POS

Substitutions with 
POS

Insertions 
w i t h o u t 
POS

Insertions 
with POS

D e l e -
t i o n s 
without 
POS

Deletions 
with POS

je % i (88) je % i (79) i (271) je (242) je (769) je (742)

i % je (61) i % je (50) je (260) i (235) i (713) i (669)

iz % i (48) iz % i (39) u (112) u (88) u (332) u (302)

reko % rekao (42) koji % koju (36) da (87) da (85) da (215) da (204)

koji % koju (40) reko % rekao (32) a (69) a (54) a (129) a (130)

koja % koje (39) sa % s (29) na (54) na (37) on (121) on (114)

koju % koje (37) se % su (28) po (31) on (25) na (99) na (82)

sa % s (33) je % oni (27) o (28) se (24) to (76) to (75)

��Õ��%����Õ��'{<> koji % koje (25) ne (25) o (22) ja (75) ja (63)

se % su (31) ��Õ��%����Õ��'*=> se (25) pa (19) od (63) se (60)

je % koje (30) koja % koje (24) on (23) od (17) ne (62) od (56)
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tu % to (28) mi % i (23) — — se (61) mi (54)

— — s (11) ne (14) — —

kada % kad (22) kada % kad (19) ^�Ö	�'<+> s (11) joj (29) sam (29)

imo % imao (19) imo % imao (18) koje (10) ^�Ö	�'<+> sam (28) koji (25)

bilo % bila (19) bila % bilo (18) koji (10) ovo (9) koji (25) joj (23)

RNNLM Results

The first RNNLM, without morphological features, already gave 
improvements across the board in comparison to both 3-gram systems. The 
average WER of 4.90% is a 46% relative improvement to the baseline 3-gram 
system and a 29% improvement to the 3-gram-POS system. The CER vas 
measured to be 1.61%. The biggest step forward occurred in the audio books 
database part again (2.77% WER), but a large step forward was made for 
radio shows as well (7.56% WER), and even for mobile phone recordings 
(0.73% WER). Looking at substitutions, insertions, and deletions, the same 
distribution of errors exists as for the baseline 3-gram system, there are just 
a lot less of them in absolute numbers.

The RNNLM system with morphological data taken into account 
produced further improvements in WER and CER—4.34% WER on average 
and 1.48% CER (Table 8). Best relative improvement was seen for audio 
books (21%), while radio show error rate lowering was a bit smaller (8%), 
and phone recordings suffered a 10% relative WER increment (the absolute 
error rate is still very low), just like in n-gram experiments, and probably 
for the same reasons. Likelihoods during training, both for the actual 
training data, and the “dev” data, show consistently slightly better values 
for the baseline RNNLM, probably due to the same set of reasons as for the 
difference in perplexities (Figure 1), and it has also been shown that a better 
perplexity does not necessarily mean a better WER and vice versa [28]. A 
better way to choose a representative “dev” set should be considered as well. 
The top list of errors by type, especially the substitutions list, now mostly 
�����	��������������[	����	�����	�����������	�������
����	��$���	�����	��
before, there are a lot of either typographical errors or badly-pronounced-
word errors, words with more than one equivalent similar form in regular 
usage, etc. The effect is even clearer than in the n-gram case.
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Table 8: WER and CER results for RNNLM experiments, without and with ad-
ditional POS data taken into account. Breakdown by test database part is shown 
as well.

Result Total (%) Books (%) Shows (%) “Mobile” (%)

WER RNNLM 4.90 2.77 7.56 0.73

WER RNNLM + POS 4.34 2.18 6.93 0.81
CER RNNLM 1.61 0.70 2.69 0.28

CER RNNLM + POS 1.48 0.59 2.52 0.33

Figure 1: Plot of average log-likelihoods per word during training with respect 
to training iterations, recorded over 180 iterations in total, for both RNNLM 
experiments. Likelihoods for the training set (blue lines) and for the “dev” set 
(red lines) are separated as well.

The last experiment was related to the usage of lemmas, i.e., basic 
forms of words, as additional information for RNNLM training. Similarly 
to how the most frequent words had their own feature (a one-hot vector 
representation as a subvector of their own word features), the most frequent 
lemmas were also given special features, so the words whose lemmas are 
in this set had an additional one-hot vector as a feature, representing the 
lemma. The number of top lemmas was chosen to be equal to the number 
of top words (97k). This experiment produced the best results on the given 
test database so far—a WER of 4.23% and CER of 1.45%. Even though the 
resulting feature and word embedding matrices for the RNNLM are quite 
����	������������
���������'����	�	���	����������	�����|������������	����	�>��
the decoding speed does not suffer (but memory consumption issues have 
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���[	���	|	��	������������	�[�����������������	�����������
��	����	�����
capacity).

Further improvements can be made in several different parts of the 
ASR system. Firstly, the acoustic models can probably be improved a bit, 
both with neural network parameter optimization and with audio database 
augmentation (e.g., by using speech speed perturbance algorithms, or audio 
��������
����������	������	� ��� �����|	�����	����[����	��>���	�	�����[	�
improvements in RNNLM training as well—one way is to optimize training 
parameters a bit more and another is to make more complex networks, but 
that will lead to slower decoding speeds. Finally, the textual data can be 
cleaned up and expanded—one way to do the cleaning is by using a simple 
�	�������	�������������
������	�����	������������������^	��������	�����
errors lists, which can also be used as a recognition result postprocessor 
with the current system. Currently, there is an additional textual database in 
��	������������������	��������������������	������	��
�������������	����	����
\���������������	��������[	���	������������	���	���������	�
��������	��
would prefer sentence structures mostly found in the desired type of text.

CONCLUSIONS
The experiments and the obtained results described in this manuscript show 
that using additional morphological knowledge for language model training 
can solve a large part of problems for highly inflective languages, as the 
Serbian language is. The proposed method incorporated the additional data 
into the words themselves, and one experiment used additional RNNLM 
word features on top of that. Big improvements were obtained both in n-gram 
systems and in RNNLM-based systems in relation to baseline systems 
which did not use any morphological data. The used Kaldi-RNNLM toolkit 
has also proven to be superior to any other previously used language model 
training toolkit for Serbian. There is still room for improvement, and there 
are future plans to create even better both acoustic and language models and 
even to further optimize the usage of morphological category information in 
the modeling of the Serbian language. Finally, an open-vocabulary language 
model capable of learning new words needs to be considered as well.
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ABSTRACT
This paper presents the recognition of “Baoule” spoken sentences, a language 
of C?te d’Ivoire. Several formalisms allow the modelling of an automatic 
speech recognition system. The one we used to realize our system is based 
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on Hidden Markov Models (HMM) discreet. Our goal in this article is to 
present a system for the recognition of the Baoule word. We present three 
classical problems and develop different algorithms able to resolve them. 
We then execute these algorithms with concrete examples.

Keywords: HMM, MATLAB, Language Model, Acoustic Model, Recogni-
tion Automatic Speech

INTRODUCTION
The speech recognition by machine has long been a research topic that 
fascinates the public and remains a challenge for specialists, and it has 
continued since then to be at the heart of much research. The progress of 
new information and communications technology has helped accelerate this 
research. In our first article, we presented a method to separate phonemes 
contained in a speech signal.

�������������	��	�������	������	������������������������	�����	�	�������
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deformations induced by the use of a microphone but also by a series of 
factors inherent in human language, homonyms; local accents; the habits of 
language; the speed differences between the speakers; the imperfections of 
a microphone, etc. For our human ear, these factors do not usually represent 
���
�����	���«���[�����À����	���	�	��	����������������		��[����^���������
account, almost unconsciously, nonverbal and contextual elements that 
allow us to eliminate ambiguities. It is only by taking into account these 
elements that are external to the voice itself that voice recognition software 
will be able to achieve a high level of reliability. Today, speech recognition 
softwares that work best are all based on a probabilistic approach. The 
aim of speech recognition is to reconstruct a sequence of words M from a 
recorded acoustic signal A. In the statistical approach, we will consider all 
the consequences of M words that could match the signal A. In this set of 
possible word sequences, we will then choose the one (M) which is the most 
likely to maximize the P(M/A) probability that M is the correct interpretation 
of A, we note:

This equation is the key to the probabilistic approach to speech 
�	��������������		����	�
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acoustic signal A if the M sequence of words is pronounced: it is a purely 
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acoustic problem; the second term P(M) is the probability that this is the 
result of M words that is actually stated: it is a linguistic problem. The above 
equation thus teaches us that we can split the speech recognition problem 
into two independent parts: we will model the acoustic aspects separately 
and language problems. In the literature, we usually speak of orthogonality 
between the ACOUSTIC MODELS and LANGUAGE. The succession of 
�����[�	���������������[����	�������[	��	
�	������|������	��[���	������
patterns and language. The acoustic model can take into account the acoustic 
and phonetic constraints in a sound or group of sounds. On our part, we have 
chosen the WORD as decision unit. By integrating also a Markov modeling, 
which has higher levels of language, it becomes possible to achieve a 
pronounced phrases discretely recognition system (i.e. in single word).

THE SPEECH SIGNALS

Characteristics of the Speech Signal

PAR is a difficult problem, mainly due to the specific material to interpret: 
the voice signal. The speech acoustic signal has characteristics that make 
complex interpretation.

Redundancy: the acoustic signal carries much more information than 
necessary, which explains its resistance to noise. Of analytical techniques 
were implemented to extract relevant information without too degrading it.

Variability: the acoustic signal is highly variable from one speaker to 
the other (gender, age, etc.) but also for a given speaker (emotional state, 
������	��	���>��������^	��|	������
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independent speech.

Continuity: the acoustic signal is continuous and contextual effects of 
sound on elementary visions are considerable.

Processing of the Speech Signal

By speech processing we mean the processing of the information contained in 
the speech signal. The objective is the transmission or recording of this signal, 
or its synthesis or recognition. The speech processing is now a fundamental 
component of the engineering sciences. Located at the intersection of 
digital signal processing and language processing (that is to say, symbolic 
data processing), this scientific discipline has known since the 60s a rapid 
expansion, linked to the development of means and telecommunications 
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techniques. The special importance of speech processing in this broader 
context is explained by the privileged position of the word as an information 
vector in our human society.

SYSTEM OVERVIEW

The Acoustic Model

The ACOUSTIC MODEL (Figure 1) reflects the acoustic realization of 
each modeled element (phoneme, silence, noise, etc.). It is based on the 
concept of phonemes. Phonemes can be considered as the basic sound units 
in verbal language. The first stage of speech recognition is to recognize a 
set of phonemes in words flow. Statistical realization of acoustic parameters 
of each phone is represented by a Markov model Cache (HMM: Hidden 
Markov Model). Each phoneme is typically represented by 2 or 3 states 
and density multigaussienne (GMM: Gaussian Mixture Model) is associated 
with each state. See Figure 2 below.

�	���		���������'���^	���������������������	>����
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sampled by a Fourier transformation which calculates the energy levels of the 
signal in bands of 25 milliseconds, which strips overlap in 10 milliseconds 
time.

The result is compared with prototypes stored in computer memory in 
both a standard dictionary and a speaker’s own dictionary. This dictionary 
is constructed by initially sessions dictation standard texts that the speaker 
must make before effectively use the software. This own dictionary is 
regularly enriched by self learning during the software uses. It is interesting 
to note that thus constituted voiceprint is relatively stable for a given speaker 
���������	�����	��	��[��	��	�����������������������	�����������	����'�����	�{>�

The Language Model

It is generally divided into two part linked to language: a syntactic part and a 
semantic game. When ACOUSTIC MODEL has identified at best phonemes 
“heard”, we still look the most likely message M corresponding thereto, that 
is to say, the probability P(M) defined above. It is the role of syntactic and 
semantic models. See Figure 4 below.
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Figure 1. System of speech recognition.

Figure 2. The part of the system using the acoustic model.

Figure 3. Acoustic model (A phoneme is modeled as a sequence of acoustic 
vector).
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Figure 4. The part of the system using the semantic model.

From the set of phonemes from the ACOUSTIC MODEL The 
SYNTACTIC MODEL will assemble phonemes into words. This work is 
also based on a dictionary and grammar standards (The language “Baoule” 
�����	>�����	���������������������������������������	�^	����	�	��	�	���
the “habits” of the speaker and is continuously enriched. Then SEMANTIC 
MODEL��		^������������	��	���	���
�����������	��	����	�[������������
the context of the words and while basing on both its own common language 
semantics and on cleanning the speaker semantics (a style). This modeling 
is usually built from the analysis of sequences of words from a large textual 
corpus. This clean semantics will be enriched as you use the software. Most 
�������	�������������	���������	��������������	���������	�	����	�����������
habits of the speaker. These two modules work together and it is easy to 
conceive that there is a feedback between them.

Initially, the dictionary associated with these two modules were based 
��� 
�	�� ������� �������	� ���	���� ���� ��� ��� ����� ���	�	�� ��� �� ��������
�	
�	��[�����������	��������	��'������������	����	���������$��������������	��
including the “Baoule” language).

Then, the voice recognition software has evolved into the use of local 
probabilistic models: recognition no longer performs at a word but at a 
series of words, called n-gram where n is the length words in a sequence 
.The statistics of these models are obtained from standard texts and may be 
enriched gradually. See Figure 5 below.

Here too, Hidden Markov Models are those currently used to describe 
the probabilistic aspects. the most advanced software tend to combine the 
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of probabilities that can be combined with those of a probabilistic model. In 
�	�	����������	������[	���	�����
��������������������	��������������	�����
the semantic model and we rather speak of a single language model.

HIDDEN MARKOV MODEL DISCRETE TIME

Overview and Features

Fundamentals
Hidden Markov Models (HMM) were introduced by Baum and his 
collaborators in the 60s and the 70s [1] . This model is closely related to 
Probabilistic Automata (PAs) [2] . A probabilistic automaton is defined 
by a structure composed of states and transitions, and a set of probability 
distribution on transitions. Each transition is associated with a symbol of a 
finite alphabet. This symbol is generated every time the transition is taken. 
An HMM is also defined by a structure consisting of states and transitions 
and by a set of probability distribution over the transitions. The essential 
difference is that the IPs symbol generation is performed on the states, and 
not on transitions. In addition, is associated with each symbol, not a state, 
but a probability distribution of the symbols of the alphabet.

Figure 5. Semantic model.

HMMs are used to model the observation sequences. These observations 
����[	������	�	�'	�����������	����������
���	�����[	�>���������������'�	�
��	!�	��������������������	��	�����	��	���>���	�
������	����������	������
have been applied is the speech processing in early 1970 [3] [4] . In this 
area, the HMM will rapidly become the reference model, and most of the 
techniques for using and implementing HMM have been developed in 
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the context of these applications. These techniques were then applied and 
adapted successfully to the problem of recognition of handwritten texts 
[5] [6] and analysis of biological sequences [7] [8] . Theorems, rating and 
proposals that follow are largely from [9] .

Characteristics of HMM
A sequence {Xk} of random variables with values in a finite set E is a Markov 
chain if the following property holds (Markov property):

for any time k and 
any suite 
Note that notion generalizes the notion of deterministic dynamical system 
(finite state machine recurrent sequence, or ordinary differential equation): 
the probability distribution of the present state Xk depends only on the 
immediate past state Xk-1.
A Markov chain {Xk} is entirely characterized by the data

�� the original legislation ����������±�

�� and the transition matrix ������������À±�
supposedly independent of time k (homogeneous Markov chain).
Knowing the transition probabilities that exist between two succesive 

times is enough to globally characterize a Markov chain.
Proposal

�  is a probability on E, and �  a Markov matrix E

The probability distribution of the Markov chain {Xk} of �  original 
legislation and �  transition matrix is given by

 for any time k, and any suite 

In this model the suite is not observed directly after{Xk}, but observations 
are available {YkÒ� ���� |���	�� ��� �� 
���	� ����	� «� '��� ���[����>� ��� \d 
(digital case), collected through a channel without memory, that is to say, 
conditionally to {Xk} states.

i. the observations {Yk} are mutually independent, and
ii. each observation {Yk} depends only on the {Xk} at the same time
This property is expressed as follows:
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for any result, , and every sequence 

Example
Assume that the observations {Yk} are connected with states {Xk} 

follows  where the sequence {Vk} is a Gaussian white noise 
dimension, with zero mean and covariance matrix R reversible, independent 
of the Markov chain {XkÒ� ��������� � �	
�	�� ��� �� ���� |���	�� ��� \d is 
������	���	��[���	�����������
���	��������º'�>�|	���������\d, and was

conditionally to , random vectors  are mutually 
independent, and each Yk is a Gaussian random vector of dimension d, 
medium hik and R covariance matrix so that no memory channel property 
���|	��
	��

A hidden Markov model  is fully characterized by the particular

The original legislation  for all 

The transition matrix for all 
 and emission densities  for 

all  for any and all .
So just a local data (transition probabilities between two successive 

times, and densities of issue at a time) comprehensively characterizes a 
hidden Markov model, example: for K = 3, it comes:

Proposal: The probability distribution of the hidden Markov 
model  initial �  law of �  transition matrix, and g emission 
densities, is given by 

 for all time k following
, and every sequence  is denoted by 

, the parameters characteristic of the model, and we focus on three issues:
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probability distribution of the following observations  (or likelihood 
function) according to the parameters of the model M. The answer to this 
problem is provided by the forward Baum equation.

Problem No. 2: Identify the model: given a series of observations 
, this is to calculate the maximum likelihood estimator for the unknown 
parameters of the model M. The answer to this problem is provided by the 
�	"	���������� ����������������"�	�����	
�������� ��	����|	�������������
maximize the likelihood function.

Problem No. 3: Estimate the condition of the system: given a sequence 
of observations , it is to estimated recursively the state Xn�'
��	�����
Song), or a good estimate Xn intermediate state for k = 0,…, n (smoothing 
Song), or an overall estimate of the sequence of states , for a 
��|	�����	������	��	�����	����
�����������[�	���������|��	��[���	���������
and backward equations Baum, which calculate the conditional probability 
distribution of Xk state given observations .

The answer to the last problem is provided by a dynamic programming 
algorithm, the Viterbi algorithm, which maximizes the conditional probability 
distribution of the sequence of states  given observations 

.

Equations Forward/Backward Baum

We first present a first method (basic but inefficient) to calculate the 
probability distribution of observations .

Proposal: The probability distribution of observations  is 
given (in the digital case) by  

 for any sequence .
���	� ���� 	�	�	������ �	���� ���|��	�� �� 
���� 	���	������ ���� �	�

conditional probability distribution of the sequence of states  
given observations  (in digital case):

and the likelihood of the model (obtained using the following observations 
 in place of dummy variables):
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we deduce the following identities:

Note the number of operations required to calculate the probability 
distribution of observations  from this basic method is significant 
for each possible path  of the Markov chain, you must compute the 
product of 2(n+1) words, and there is  different possible paths the total 
number of elementary operations (additions and multiplications) thus made 

is of the order of  the number is growing exponentially with 

the number n of observations. we define the forward  (seen as a 

row vector) by  for all i E	 .
Note the forward variable used to calculate the conditional probability 
distribution of the present state Xk given observations : 

 for all i E	 . (In this sense, pk is a distribution of 

non-normalized probability), and the normalization constant  
is interpreted as the likelihood of the model given observations .
Theorem: The sequence { pk } satisfies the following recurrence equation:

 for all j E	  with the initial condition 
 for any i E	 .

Note this statement result component-by-component can also be made for 
the variable forward view as a row vector  and .
Note the recursive calculation of the variable forward pn involves only the 
product matrix/vector, and to calculate more efficiently the probability 
distribution of observations  simply  elementary 
operations (additions and multiplications) to move from time k to time (k+1) 
the total number of elementary operations to be performed is thus of the 

order of:  this number grows only linearly with 
the number n of observations.
Digital implementation: Instead of first solving the equation for the forward 
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non-standardized version of the conditional distribution, defined at any 
time k as  for all i E	  and then deduct the 
normalization constant (likelihood) and the normalized version of the 
conditional distribution (filter)

It is more efficient, on a digital point of view, spread directly log-likelihood 
and filter.

Proposal: Following  Verie the following recurrent equation:

 for all j E	  with the initial condition 

 for any i E	 .

where the normalization constants are defined by  

and .
Note this result statement component-by-component may also be formulated 
for the 

normalized forward variable seen as a row vector  and 

where the normalization constants are defined by 
.

Note: Following  truth the following recurrent equation:

 with the initial condition  and 
iterating log . For all intermediate time k, less than the 

final instant n, is defined  for all i E	 .
Note: That variable allows to calculate the conditional probability distribution 
of the

present state Xk knowing all comments  
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for all i E	  with the normalization constant .
Note: Fix the state at time k allows a break between the past up to time (k-1) 
and the future from time (k+1). This justifies the introduction of the variable 

backward  (seen as a column vector) and defined as:

 for any i E	

and in particular  for all i E	  with this definition, 
is obtained  for all i E	 .

Note: Conditionally (Xk = i) the X_ suite  to come hidden 
states is a Markov chain, from initial law  (line i the �  matrix), that is to 

say that  for all j E	  and �  transition matrix it 
follows that the backward variable can be interpreted as the likelihood of the 
model derived from the Xk = i state at time k given observations .
Theorem:
After {vk} Verie recurrent retrograde following equation:

 for all i E	  with the initial condition:  
for all i E	 .
Note: This result statement component-by-component can also 
be formulated for the backward view variable as a column vector 

.
Proposal: the forward and backward equations are dual to one another:

 not dependent of the time in 
question
Proposal: For the distribution of conditional probability of transition 

 at an intermediate time given observations  until 
the final moment is given by:

 for all i, j E	

By summing for all j E	  and using the equation backward, or by summing 
for all i & E and using the forward equation, we find the following results in 
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terms of product component-by-component variables forward and backward.
Corollary: the conditional probability distribution of the present state Xk 

knowing all comments  is given by  with 

the definition  for all i E	 .
Note: Verie one that constant Standards

and 
do not depend on the time in question, and are interpreted as the likelihood of 
the model given observations . instead of first solve the backward 
and forward equation equation separately, and to successively deduct the 
non-normalized version of the conditional distribution, defined at any instant 

k as  for all i E	
then the normalized version of the conditional distribution (smoother)

.
It is more efficient on a digital point of view, spread directly log-likelihood 

and filter, then spread the variable defined at any time k as  
for any i E	 .
Note: That with normalization of the backward variable, the conditional 
probability distribution of Xk state given observations  is 
expressed as

 for all i E	 .

Proposal: Following  Verie recurrent retrograde following equation:
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 for all i E	 , with the initial condition:  
for all i E	  where the normalization constants are those already defined for 
the normalization of the variable forward.
Note: This result statement component-by-component can also be 
formulated for backward standardized variable viewed as a column vector 

 and  where the normalization constants are those 
already defined for the normalization of the variable forward.

Note: It is noted that  for all i, j E	
And postponing this identity in the expressions obtained above, we Verie 
that the conditional probability distribution of the transition  
given observations  is expressed as

for 
i, j E	 .

Viterbi Algorithm

Forward and backward variables used to calculate the conditional probability 
distribution of the state this Xn, or Xn state at an intermediate moment, given 
observations

 defined by  for all i E	

, and for any i E	  respectively, where the 

normalization constant  does 
not depend on the time in question, and interprets as the likelihood of 
the model given observations . it is not necessary to calculate 
the conditional average, but can be used however the estimator of 
maximum a posteriori, which minimizes the likelihood of the estimation 
error given observations  and defined for the present 

state 
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and for the state to an intermediate time by 
 it may happen 

that the sequence  generated is inconsistent 
with the model, in the following sense: it can happen that is obtained 

 for two successive times, while  for 
the same pair (i,j), which meant that the transition from state i to state j 
is just impossible for the model for this reason, rather it uses another 
estimator, called trajectoriel maximum a posteriori estimator, defined by

.
And minimizes the probability of the estimation error of the sequence of 
hidden states given observations  it is of course not possible 
to perform this maximization exhaustive manner, listing all  possible 
trajectories: the efficient calculation of this estimator is provided by a 
dynamic programming algorithm called Viterbi algorithm.

Re-Estimation Formulas Baum-Welch

So far, the focus was on the estimation of a hidden condition or because 
of successive hidden states, from a series of observations and for a given 
model. The goal here is to identifier the model, that is to say, to estimate the 
parameters of the model characteristics, from a series of observations, and 
the approach taken is that of estimation maximum likelihood.
In the digital case, we look at the case of the Gaussian emission densities 
characterized by the data of finite   vectors and of finite Family 

 matrices invertible covariance, that is to say:

The likelihood function of the model  admits expression

obtained with the basic method, and we will study an iterative algorithm to 
maximize Ln likelihood function with respect to the parameters  
model of either  another model, for which the likelihood 
function takes the value
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the (log) likelihood ratio between the M and the M’ is reduced by

which vanishes when the model M coincides with the model M’.

Maximize Qn compared with parameters  of the model M thus 
ensures that the likelihood of the model which achieved maximum Qn will 
be greater than the likelihood L’n current model M’ re-formulas Baum-
Welch -Estimated allow explicitly find the parameters of the new model 
based on parameters  of the current model M’ by repeating this 
procedure, we construct a sequence of increasing likelihood models, and 
ideally this sequence converges to a model that reaches the maximum 
likelihood function.
Theorem
In the digital case with densities of Gaussian issue, the iterative algorithm 
for esti- mating the maximum likelihood of the model parameters from the 
observations , is given by explicit formulas re-estimate

for all i, j E	  where the two sequences  are the standard 
equations of forward and backward solutions respectively for values 

 parameters.

Note: Concretely, if  denotes the 
current model in step (s-1) of the algorithm, then for values 

 the para- meters are calculated 

standardized solutions  of equations forward and backward 
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respectively the parameters  is calculated using 
the formulas to re-estimate what defines the new model  
to s next step of the algorithm.

IMPLEMENTATION
Our model is based on acoustic signal parameters. These parameters are 
obtained by calculating cepstral coefficients according to a Mel scale (MFCC 
Mel Frequency Cepstral Coefficients). Statistical realization of acoustic 
parameters of each phoneme is represented by a Hidden Markov model. 
Each phoneme is typically represented by 2 or 3 states, and multigaussienne 
density (GMM: Gaussian Mixture Model) is associated with each state. 
GMM densities with a large number of components designed to address 
multiple sources of variability that are affecting the speech signals (sex and 
age of the speaker, accent, noise).

For example: With the following data: Number of States (K = 2); Â = 
�+�_=�+�+=��+�+=�+�_=����º��°<�<���Ý2 = [3 3]; Þ = [0.5 0.5]; we have the 
Figure 6 below.

$���[������		���	��������������	�����[��	����������������	���
�������
�����	��[���������
��	������	����������������	����������������������������
as speech and emphasis of the speaker. The design of a robust speech 
recognition algorithm is a complex task which requires detailed knowledge 
of signal processing and statistical modeling. 

Figure 6. Graphic representation of the Hidden Markov Model.
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The isolated word recognition requires a short pause between each spoken 
word, while the speech recognition does not continue. Speech recognition 
����	�������[	�������
	��������	�	��	��������	�^	�"���	�	��	������	�^	��
dependent system recognizes only the word of the voice of a particular 
speaker, while an independent speaker system can recognize any voice. The 
implementation presented here uses features integrated into MATLAB and 
related products to develop the recognition algorithm. There are two main 
steps in the recognition of isolated words:

�� a learning phase and
�� a test phase.
The learning phase teaches the system by building its dictionary, an 

acoustic model for each word that the system has to recognize. In our 
example, the dictionary includes the numbers “zero” to “nine” in “Baoule” 
language. The test phase uses acoustic models of these numbers to recognize 
������	����������������������
������������������	������������	��	���		��
signal acquisition, and then we end with its analysis.

Speech Signal Acquisition

During the learning phase, it is necessary to record the repeated statements 
of each digit in the dictionary. For example, we repeat the word “nnou” 
(which means five in “Baoule” language) many times with a pause between 
each statement. That word will be saved in the file ‘cinq.wav’. Using the 
following MATLAB code with a sound card standard PC, we capture ten 
seconds of speech from a microphone to 8000 samples per second. We 
obtained y that is a matrix of 8000 rows and one column. This approach 
works well for training data.

Fs = 8000; Duration = 10; y = wavrecord(Duration*Fs, Fs);

Acquired Speech Signal Analysis

We first develop a word-detection algorithm that separates each word of 
ambient noise. We then obtain an acoustic model that provides a strong 
representation of each word in the stage of learning. Finally, we select an 
appropriate classification algorithm for testing.
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The Development of a Word-Detection Algorithm
The word-detection algorithm continuously reads 160 samples frames from 
the data of “speech”. To detect single digits, we use a combination of the 
signal energy and have zero crossing for each speech frame.

The signal energy works well to detect sound signals, while the zero-
crossing numbers work well for detecting non-voice signals. The calculation 
of these measures is simple using mathematical operators and MATLAB 
basic logic. To avoid identifying the ambient noise of speech, we assume 
that each individual word will last at least 25 milliseconds. In Figure 7 
[	������	�������	���		����������
|	�������	����	�����������������������
zero crossing measurement.

Figure 7����		����������
|	�������	����	������������������������	��������-
ing measurement.

cinq=wavread(‘cinq.wav’); N = 300; Px = stpower(cinq, N);
Zx = stzerocross(cinq, N); plot([Px*1e-5 Zx cinq])

Development of the Acoustic Model
A good acoustic model should be derived from the word of features that 
allow the system to distinguish different words in the dictionary. We know 
that different sounds are produced by varying the shape of the human vocal 
tract, and these different sounds can each have different frequencies. To 
investigate the frequency characteristics, we examine the density estimates 
Spectral Power (CSP) various spoken digits. Since the human vocal tract 
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can be modeled as a filter on all poles, we use the parametric spectral 
estimation technique Yule-Walker of the window Signal Processing Toolbox 
to calculate the DSP. After importing a statement of a single digit in the 
variable “word” we use the MATLAB code below to view the DSP estimate: 
here there is the speech signal that we have acquired (Figure 8).

order = 12; nfft = 512; Fs = 8000; pyulear(cinq, order, nfft, Fs)

�	����	� �	� �̈�	"���^	�� ��������� ������� �� ���	��� ��	�������� 
��	��
���	�������	��	����������	�������������������������������	���������
��	���
We select an arbitrary value of 12, which is typical for voice applications.

Figure 9 shows the PSD estimate of three different expressions of the 
words “one” and “two”. We can see the tops of the PSD remain consistent for 
����������������[	���[�������	���������	�
���	��������	��������	���������	�
can draw the acoustic models in our system from the spectral characteristics.

A set of spectral characteristics commonly used in voice applications 
[	����	����������[����	�������	����	!�	�����	���������	�
��	����'����>��
MFCC give a measure of the energy in overlapping boxes frequency of a 
deformed spectrum by (Mel) Frequency scale 1.

Figure 8���������	�����	�]���' �̈�	����^	�>��	�������
|	��
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Figure 9. (a) Estimating the PSD (Yule Walker) in three different expressions of 
the word “one.”; (b) estimating the PSD (Yule Walker) in three different expres-
sions of the word “two”.

��� �	� ����� �	���� �	� ����� ���� [	� ������	�	�� ��� ������������ �����
characteristics of the vectors are calculated for each speech frame detected. 
Using many statements of a number and by combining all of the feature 
vectors, we can estimate a multidimensional probability density function 
']��>�|	�������������	��
��
���	��\	�	��������������	�������	�����������	�
acoustic model is obtained for each digit. During the test phase, we extract 
�	������|	������
���	��	���������	������[�[���������	����	�����	�	����	�
the number of the source with the maximum likelihood.
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Figure 10��'�>��	�������[����������	�
�������	���������������	����	�|	������
for the digit “one.”; (b) Overlay estimated Gaussian components (red) and all 
Gaussian mixture model (green) for distribution in (4a).

�����	�<+�������	�������[����������	�
�������	���������������	����	�
vectors extracted from the training data for the digit “one.” We could use 
�
�����������������������[��������������]����[����	�������[�������		���!���	�
��[���������������������������[�����������������|��	��������
��

-One solution is to adjust a mixture of Gaussian model (GMM), a sum of 
weighted Gaussian (Figure 10(b)). The total density of Gaussian mixture is 
set by the weight of the mixture, the mean vectors and covariance matrices 
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from all densities of the components. For the recognition of isolated digits, 
each digit is represented by the parameters of the GMM.
To estimate the parameters of a GMM for a set of MFCC feature vectors 
	������	�� ����� �	� 
���	� �	�� �	�������� �	� ��	� ��� 	��	�������� ������-
zation (EM) iterative algorithm for maximum likelihood (ML) estimation. 
��|	�����	���������������������������������������|����[�	�'	!�������
|	�
here), we use the GMM distribution Statistics Toolbox function for estimat-
ing GMM parameters. This function is all that is needed to perform the EM 
iterative calculations.
%Number of Gaussian component densities
��º�¸�����	��º���������[������
�'���!���>�

��������	
�
�����������
��	������
After estimating a GMM for each digit, we have a dictionary for use in the 
testing phase. Given some test speech, we extracted again MFCC feature 
vectors of each frame of the detected word. The goal is to find the model 
numbers of the maximum a posteriori probability for all the long delivery 
tests, which reduces to maximize the value of log-likelihood.

Given a GMM model (equal to model here) model numbers and some 
�	����	�|	�������	�����	��������'	!�������
|	�	�	>���	����"��^	������|���	����
	��������������	���������	��������
�	�������������������[��#��]�����ß��^	��º�
���	��'���	���
|	>���	��	�	��������������������������	����	�����	����������
�	��	�����		�����������
	������	|	��	������	�����������	��	���������
log-likelihood.

CONCLUSIONS
In this article we presented an overview of HMM: their applications and 
conventional algorithms used in the literature, the generation probability 
calculation algorithms in a sequence by an HMM, the path search algorithm 
optimum, and the drive algorithms.

The speech signal is a complex form drowned in the noise. Its learning 
is part of complex intelligent activity [10] . By learning a starting model, 
we will build gradually an effective model for each of the phonemes of the 
“Baoule” language.

���	�
������ ����������|	�	���[���	�� �	��	�|	����� �	� �	�	�	��	�
model for solving certain types of problems in many application areas, 
whether in speech recognition, modeling of biological sequences or for the 
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extraction of information from textual data. However other formalisms such 
as neural networks can be used to improve the modeling. Our future work 
will focus on the modeling of the linguistic aspect of the “Baoule” language.

ANNEXES
function [valeur,ante,dens] = Viterbi(X,A,p,m,sigma2,K,T)
begin
% densite d’emission
dens = ones(T,K);
dens =
exp(-0.5*(X’*ones(1,K)-ones(T,1)*m).^2./(ones(T,1)*sigma2))./
sqrt(ones(T,1)*sigma2);
% fonction valeur
valeur = ones(T,K);
valeur(1,:) = p.*dens(1,:);
for t=2:T
[c,I] = max((ones(K,1)*valeur(t-1,:)).*A,[],2);
valeur(t,:) = c’.*dens(t,:);
valeur(t,:) = valeur(t,:)/max(valeur(t,:));
ante(t,:) = I;
end
end
function [alpha,beta,dens,ll] = ForwardBackward(X,A,p,m,sigma2,K,T)
% densite d’emission
dens = ones(T,K);
dens =
exp(-0.5*(X’*ones(1,K)-ones(T,1)*m).^2./(ones(T,1)*sigma2))./
sqrt(ones(T,1)*sigma2);
% variable forward
alpha = ones(T,K);
alpha(1,:) = p.*dens(1,:);
c(1) = sum(alpha(1,:));
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alpha(1,:) = alpha(1,:)/c(1);
for t=2:T
alpha(t,:) = alpha(t-1,:)*A;
alpha(t,:) = alpha(t,:).*dens(t,:);
c(t) = sum(alpha(t,:));
alpha(t,:) = alpha(t,:)/c(t);
end
ll = cumsum(log(c));
% variable backward
beta = ones(K,T);
for t=T-1:-1:1
beta(:,t) = beta(:,t+1).*(dens(t+1,:))’;
beta(:,t) = A*beta(:,t);
beta(:,t) = beta(:,t)/(alpha(t,:)*beta(:,t));
end
function [X,Y] = gen(A,p,m,sigma2,T)
begin
sigma = sqrt(sigma2);
Y(1) = multinomiale(p);
for t=2:T
q = A(Y(t-1),:);
Y(t) = multinomiale(q);
end
w = randn(1,T);
for t=1:T
moyenne = m(Y(t));
ecart_type = sigma(Y(t));
X(t) = moyenne+ecart_type*w(t);
end
end
function Px = stpower(x,N)
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begin
M = length(x);
Px = zeros(M,1);
Px(1:N) = x(1:N)’*x(1:N)/N;
for m=(N+1):M
Px(m) = Px(m-1) + (x(m)^2 - x(m-N)^2)/N;
end
end
function Zx = stzerocross(x,N)
begin
M = length(x);
Zx = zeros(M,1);
Zx(1:N+1) = sum(abs(sign(x(2:N+1)) - sign(x(1:N))))/(2*N);
for (m=(N+2):M)
Zx(m) = Zx(m-1) + (abs(sign(x(m)) - sign(x(m-1))) ...
- abs(sign(x(m-N)) - sign(x(m-N-1))))/(2*N);
end
end
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ABSTRACT
Automatic speech recognition, often incorrectly called voice recognition, is 
a computer based software technique that analyzes audio signals captured 
by a microphone and translates them into machine interpreted text. Speech 
processing is based on techniques that need local CPU or cloud computing 
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with an Internet link. An activation word starts the uplink; “OK google”, 
“Alexa”, … and voice analysis is not usually suitable for autonomous 
limited CPU system (16 bits microcontroller) with low energy. To achieve 
this realization, this paper presents specific techniques and details an 
efficiency voice command method compatible with an embedded IOT low-
power device.
Keywords: Voice Recognition, Speech Processing, Voice Command, Em-
bedded Device

INTRODUCTION
Human Machine interface based on speech recognition systems is a reality 
made possible through an Internet link and multi-threaded, multi-pipelined 
processor architecture or open source applications. This paper aims to 
analyze the development of a low cost and low power speech recognition 
system. The main challenge in this project is to realize the speech recognition 
system on embedded hardware, using limited resources (computing power, 
embedded energy) and based on a very small microcontroller (16 bits). 
This is a difficult task taking into account that a speech recognition system 
requires high processing power for the audio signal treatment [1] [2] .

The developed system is able to successfully distinguish and recognize 
short basic voice commands composed from a few words. Also, the language 
is used for recognition it doesn’t matter, the accuracy and reliability of the 
system remain almost the same in every case. The system is designed to 
be speaker independent, so it is capable in recognizing voice commands 
spoken by different persons.

The goal of the system is to help people with disabilities in making 
their lives easier, by letting them control different things only with voice 
commands. As well, it can be implemented to simplify the usage of different 
appliances which have too many hardware buttons for a high number of 
������� �{�� �`�� �� ���� ���	�� ��� ��|��	�� ��� 
|	� ����� ������� �	�	� �	����[	�
the state of art, then the analytical description of the system, followed by 
the algorithm description, and the recognition technique to conclude with 
results of the recognition.

OVERVIEW STATE OF THE ART
Speech recognition appeared in 1950 when the first digit recognition system 
was developed, a fully wired device and very unreliable. By 1960, the 



An Overview of Basics Speech Recognition and Autonomous Approach... 207

introduction of numerical methods and computer usage had entirely change 
research dimension.

However, the results were very poor because everyone had largely 
���	�	������	�� �	� �	�������������
��������� �	����	�����	����������������
for the continuous speech type of recognition system [5] [6] .

Around 1970, the need to use linguistic constraints in automatic speech 
decoding had been regarded as an engineering problem [7] . But in the end 
����	��+���	�
�����	�	������������		���	��������������	��[��	�����������	��
words started to be commercialized.

The following generations have started to take advantage of the 
increasing and increasing power calculation of the computers [8] , showing 
very promising results [9] . “Dragon speaking” is one of the best computer 
software in speech recognition commercialized today. Nowadays, “OK 
Google”, “Alexa”, “Siri” and “S-voice” services offered by Apple and 
Samsung prove to have very good speech recognition accuracy on their 
mobile devices [10] .

Most publications show the usage of this recognition is computer-based 
systems [6] [9] [10] . Many embedded software exist but they need a high 
computing power like 32/64 bits microcontrollers or a Raspberry Pi [11] . 
Few of them propose this integration on a limited embedded system but, 
actually, the voice recognition is deported [12] or the system has a high 
consumption [13] . Our following algorithm is designed to be implemented 
in a power-limited system by limiting the calculation time and the energetic 
consumption.

In general, speech recognition systems are devised in 3 important stages 
as follows:

�� Audio capture: a transducer (e.g.: microphone) that captures the 
audio signal, when a user is talking, and transforms it in electrical 
signal

�� Sound analysis and parameterization: it will analyze, decode 
and parameterize the audio signal captured by the sensor. This 
step is a mathematical treatment of signal and it is done in time, 
frequency and intensity domains. Here the audio signatures of the 
words will be extracted from the actual audio signal.

�� �	���	���
������#��	��	�������������������	���������^	��|���	�
commands is done in this step. Basically, here the program will 
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compare the audio signatures of the speech commands spoken by 
the user with the ones already learned (stored) in the system.

Figure 1 resumes these three stages on a schematic.

Voice Characteristics

Human voice properties should be taken in account in developing a speech 
embedded recognition system:

�� The bandwidth of the speech signal is around 4 kHz.
�� The speech signal is periodic and has a fundamental frequency 

between 80 Hz and 350 Hz.
�� Peaks exist in the spectral distribution of energy of the voice 

signal. The frequencies around these values are called formant 
frequencies.

Fpeaksº'*�°<>²=++��������º<�*�{�  (1)
�� Depending on the shape of the vocal tract the frequency of the 

����������	��	��������	�
���������	���������������	���	�	���	�
they will characterize the way vowel are articulated.

�� The envelope of the voice power spectrum also decreases with 
the increase of frequency with about 6 dB per octave.

Parametrization

First step is to configure the speaker’s voice signal looking for a “signature” 
to be founded for recognition. In order to do this, several methods exist.

First type consists of spectral analysis. It is based on the frequency 
�	����������������	�����������������������^����	��	��������
�	���������	��
The best and most used method is the one using Fast Fourier Transform 
(FFT), more precise the Discrete Fourier Transform calculation (DFT):

  (2)
Applying the DFT to a complex sound, and repeating this procedure, a 
graphic will be drawn showing time amplitude and frequency evolution, 
����	������		���������	�*������������	
�	��	���������������������	����	-
��
�� ������	�������� ��	� 	������	�� ���� ��	�� ����� ���� ������������� ��� 	|	��
the whole result, in the form of vectors or matrix later in the processing and 
��	���
�����������	��
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�	� �	����� �	���� ��������� ��� ��	���
������� [�� ���	���������� �	�
mechanisms of sound production. The most commonly used approachis 
based on linear predictive coding (LPC). The basic idea is that the mouth 
channel is constituted by a cylindrical tube with varying sections. The 
adjustment of the parameters of this model allows determining at almost any 
moment the transfer function. Afterwards, this provides an approximation 
of the spectrum envelope of the audio signal at the instant analysis. Then, 
��� 	������ ��	���
	�� �	� �������� ��	!�	���	��� ���� �	� 	��� ��� �	� �	�������
frequencies of the vocal tract. They correspond to the maximum energy in 
the spectrum. By repeating this method continuously, the audio signature 
of the sound will start to show. A LPC representation is shown in Figure 3.

Once the audio signature is obtained, the speech recognition procedure 
can move to the next step.

Isolated Word Recognition

Speech recognition systems can be configured to work on isolated words or 
even on continuous speech [14] [15] . The most used is the one on isolated 
words because it has the highest rate of accuracy and also it doesn’t require 
a powerful hardware as the complex method of continuous speech does, 
making it suitable for a low budget system. The absence of indicators in 
speech signal for the boundaries of phonemes and words is a major difficulty 
in speech recognition. Thus pronouncing words with an artificially isolation, 
a small silence exceeding a few tenths of a second, in speech commands 
represents a significant simplification of the problem.

Figure 1. Stages in a speech recognition system.
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Figure 2. DFT calculation of an audio signal.

Figure 3. LPC calculation of an audio signal.

Two types of this system currently exist:
�� �	���	�^	���	�	��	�������	���������[	���	�������[����	���	��

and it needs to be trained. A person should dictate a set of words, 
which maximizes the recognition rate and extend the vocabulary 
used. The disadvantage is that it can be used by one person only.

�� �	���	�^	�����	�	��	�������	�������	��������[��	������������
averages of audio signatures allowing the recognition of speech 
commands spoken by different persons. The main drawback is 
that the system is not equipped with learning capabilities and the 
number of words limited.
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To increase the recognition rate of the system, by making it work even 
if the person speaks on different tonalities (different octaves) or if more 
than one person is used, a normalization process must be implemented. This 
will be done before the system will start to decode voice commands into 
phonemes, syllables or words depending on the technique of the system.

Recognition Techniques

Recognition technique is based on two approaches, the global and the 
analytical method [16] [17] .

In the global approach (entire word), the basic unit is often the word 
seen as a global entity that is not decomposed. The idea of this method is to 
give the system an acoustic image of each word that will have to identify 
it later. This operation is done during the training phase, were each word is 
pronounced one or more times. This method has the advantage of avoiding 
the effects of articulation. It is however limited to small vocabulary by a 
limited number of speakers.

The analytical approach (structure of the word), which takes advantage 
of the linguistic structure of words, attempts to detect and identify the basic 
components (phonemes and syllables). These are the basic units to recognize. 
This method is simpler because only the features of the base units, instead of 
the whole words, have to be registered in the memory.

In fact, both approaches basically are the same; the difference is the 
	������ ��� [	� �	������	��� ��	� ������ ���� �	� 
���� ���� �	� ����	�	�� ���
syllable for the second.

Working Principle

The structure of the isolated word speech recognition system can be 
distinguished in two phases:

�	� ������������	�����	�� ������	�� �	� 	����	�|���[��������	�� ��� �	�
voice commands in order to create the reference audio signatures of the 
������������������ �	������������ �	���	������������������	����	���	��
��
words which contain important successions of phonemes. For an independent 
speaker system, this does not exist.

�	��	�������������	��	���	��������	��������|���	�������������
contain the words from the stored vocabulary. Then, the word recognition 
system is typical problem of pattern recognition. The calculation done in the 
recognition phase, when comparing speech commands, is not that simple 
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because words can have different forms depending on the user and speech 
rate. A speaker cannot pronounce several times the same speech sequence 
with exactly the same rate and same duration.

Also, time alignment is a problem because the user cannot repeat the 
same speech commands with the same pause between the words. It is very 
important that a special time warping algorithm is implemented in order to 
manage this problem.

Comparison methods by dynamic programming have been widely used 
for recognition of isolated words. The most commonly calculations used 
for this method are: the Euclidean squared distance, hidden Markov models 
and neuro-mimetic models. Classifying the calculation techniques after 
the required processing power, the Euclidean squared distance needs the 
least of them all. This makes it suitable for every speech recognition system 
which has a limited hardware budget. The Euclidean squared distance it 
is the simplest way to determine the similarity between words in speech 
commands. If the parameterization is done correctly, then the results obtained 
with this formula can have very high rate accuracy�����	���	���
����������
the right spoken voice command. To be more precise, with this formula 
it can be calculated the actual difference between two vectors containing 
different audio DFT results for example [18] .

OUR METHODOLOGY
With the main characteristics of speech recognition systems presented in the 
previous paragraphs, the challenge is to put all of those features into a low 
cost hardware and energy consuming. The system is configured to work on 
recognizing isolated words based on the global technique, the words being 
the unit for recognition. The words in the voice commands must have a 
small pause between them. As well, they are also aligned and delimited by 
the system. Audio signatures are extracted with the DFT spectral method.

With the help of the normalization process implemented, the system 
can be considered speaker independent, even though, before usage, the 
system has to be trained with the actual voice commands that will be used 
afterwards. Also, by using normalization process, the successful recognition 
rate is increased.

��	�����	��[�	������	���������	������������	�����	
�	�����[	�����|���	�
commands��$�|���	���������������	
�	���	�������*��	�������	���������
a person to say a few keywords for a command. For the speech recognition 
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system, it’s important to be able to distinct commands even though they 
are said on different tonalities and by different users, thus a normalization 
process is implemented in the system. This is done on every signature that 
�������	�����������������	�����[	��������	��	����������������	���
��������
Sometimes the speech commands have the same words in their composition. 
����|��������������[	��		������������	�����	����	���	���	���
�������
routine for the whole sentences and individually for each corresponding 
word in the sentences. Then it compares on how many words have been 
��	���
	�� ����� �	� ���^	�� �������� ���� �	� ��	�� ��� �� ����	�� |���	�
��������������	�|���	��������������	��������	���
	����������Û����^	��
in account. The Euclidean squared distance formula is used to calculate the 
similarities between the audio signature of a spoken command and the audio 
signatures of the stored voice commands. Depending on which result is the 
�����	������������	�������	������	�	
�	���	|	����	������|���	���������
is recognized.

 (3)
���������	�'�����������[	��		����������>
������	������^	��|���	��������
������	��|���	��������
�����[	�������������������	��'���	������>������|���	��������
The 8-kHz frequency sampling rate it’s chosen because it will offer a 

frequency range between 0 and 4 kHz and it will match the human voice, 
which has a frequency range from 300 Hz to 3.3 kHz. A sampling frequency 
beyond that value will be useless. Figure 4 presents a vocal command 
represent relative to the time and Figure 5 presents four different DFT 
applied on this signal.

As it can be seen from the DFT simulation (Figure 5) in the majority 
of the cases, every time 2 or 3 important frequency peaks with big density 
stand out. Also, this thing can vary by a little bit, depending on the language 
that is spoken. In English 3 peaks stand out.

Because the DSP engine in the microcontroller is optimized to do a 
256-point length type DFT [19] [20] , this spectral solution is chosen to 
extract the voice commands signatures. For an incoming audio signal, with a 
sample rate of 8 kHz, the 256 point length DFT is done every 32 ms, thus for 
a time window of 2 seconds are obtained about 64 DFT results, from which 
the voice commands signatures can be extracted.
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Figure 4. Voice command “Open the window” composed of 3 words.

Figure 5. Different 32 ms DFT time windows of a voice command.
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    (4)
The sound signatures with its three important high peaks define the audio 
signature. These are gathered from each successive 32 ms DFT calculation 
for a time of 2 seconds resulting in the final voice command audio signature.
To compare, the execution time of a DFT in a not-DSP microcontroller is 
very long. This time depends of the length of the processed data. For 8 Mhz 
clocked microprocessor, the execution time of an implementation of a DFT 
can be calculated by a polynomial expression.

   (5)
For a data of 256 points, the execution lasts 4338 ms which consumes 
28.3 μA.h. A DSP, for the 256 points DFT, consumes 0.18 μA.h. For our 
application, only the DSP can be chosen because of the slowness of the 
regular microcontroller. Moreover, the electric consumption is reduced by 
150, another advantage of using the DSP.
For our algorithm on a DSP, a recognition of a three-second-long text costs 
17.28 μA.h. This consumption is compatible with embedded systems. For 
example, using a button cell CR-2032 (210 mA.h), we can recognize 972 
sentences of 3 seconds that gives an equivalent autonomy of more than a 
month in continuous mode.

ALGORITHM DESCRIPTION
The analog to digital converter is set to process the data captured by the 
microphone at a sampling rate of 8 kHz and to transfer it into a temporary 
buffer. Every time this buffer is filled, it triggers a function which starts to 
do the 256-point length DFT calculation.
At this DFT length and audio sample rate, one unit (frequency bin) of the 
resulted DFT calculation has a range of frequency of 31.25 Hz. This bin 
represents the frequency resolution and it contains the actual magnitude of 
the audio signal in that specific frequency range.

   (6)
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The whole result of the calculation is stored in a vector with a length 
of 128 values. This contains all the frequency bins and has a frequency 
range of 0 - 4 kHz. Because this range is too wide for the human voice, it is 
cropped into a 91-length vector, which corresponds to the range of 280 Hz 
to 3 kHz. Also, this crop is done in order to eliminate the noise from the low 
frequency spectrum, caused sometimes by the microphone. The obtained 
vector represents the magnitude of the raw audio signal in that frequency 
range for a time of 32 ms.

All DFT calculations and most vector manipulations are done with 
the DSP engine, integrated in the microcontroller. This vastly reduces the 
processing time and frees the CPU workload.

In the following step, 3 frequency bins, which have the highest 
magnitude and represent the highest peaks of the audio signal, are extracted 
from the resulted vector of the DFT calculation. It is important that, between 
the selected frequency bins, a distance of at least 3 bins (93.75 Hz) exists, so 
the system will not pick up values from the same frequency peak.

After the 32 ms sound signature is created, the system is verifying in a 
loop, for every DFT calculation, if the magnitude of the highest frequency 
bin is different from 0. In this way, the system knows if something has been 
spoken by the user and that it is ready to proceed to the following processing 
steps.

If the system has detected any sign of voice, it starts to record, in a 
“First-in-First-Out” algorithm, the 3 important high peaks of the 32 ms DFT 
calculation, for a time length of 2 seconds. For 2 a second length and a 32 
ms DFT, the FIFO process will store in total 192 values, which means 64 
values for each 3 important frequency peaks. In the same, the LEDs on 
development board will turn on for 2 seconds to show the user that the audio 
��������[	�����	����	��������������	������
�����|���	����������������
time window.

After the recording stops, the values from the FIFO algorithm are 
distributed in order into 3 separate vectors, each one having a length of 64 
|���	��������	�|	�������	�����	���	�|���	��������������	�
������	����	�^�
frequency bins, in the second vector are stored the other values containing 
�	��	�������	����	�^���	!�	����[�������������	�
����|	�������	�����	���	�
third highest frequency bins. These 3 vectors represent the audio signature 
of the spoken voice command.

Because everyone differs in how they speak, by pronouncing the words 
at different frequencies and magnitudes, and in order to make the system a 
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speaker independent one, the 3 vectors are normalized. The normalization 
process is done separately for every vector. It is done by calculating the 
average of all values from a vector and then by dividing each value with the 
calculated average.

In the next step the vectors are passed to a time warping process. This 
����	���
�	���	��������	�������<*�|���	��'���	������>�����	���|	����������
�	�����	���	�������������	
�	���������	���	�����	��������
���	������	�	���
and identify a word in a vector, if more than 5 consecutive values of 0 exist 
after 2 consecutive values different from 0. In this way, the vectors containing 
the audio signature of the voice command have their words synchronized 
and can be compared with others.

As the audio signature of the 2-second-long voice command is now 
processed, the system moves to the next step of comparing the current audio 
��������	������	���	�����	��������	������	������	�����

If the system has not been trained, no audio signatures are stored on 
�	� ���� �	������ ��� ����� À���� ������	� �	� ����	��� ������ ��������	� ����
[���^���������������	����	������������������	���
	��|���	�������������������
commands stored, it will compare the current signature with stored ones.

The comparison between the audio signatures is done by different 
techniques using the Euclidean squared distance. Depending on the results, 
�	�����	���|���	��������������	���
	�����������������	�����	�����	��|���	�
commands.

�	� ��		�� �	���������� ����	�� ��� ���
���	�� ��� �|	� �� ����	�� |���	�
command in order to prevent the system from mistakenly recognizing 
different voice commands. This command activates the system for a 
recognition session, a time window of 10 seconds, in which the user can say 
his actual voice commands. After the 10 second timer expires, the system 
deactivates and the user is obliged to repeat the master command in order to 
resume. The master voice command has the same properties, as the rest of 
the commands, and it also needs to be stored in the training phase, just like 
the others.

Finally, after all the processing and calculations are done, the user can 
now choose to store his desired voice command in order to train the system, 
��������������������	����	�����	������	������	�������������	�������	�����	���
����	���	��������������
	�������	����	��������	��|���	���������.
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RECOGNITION TECHNIQUE
The technique used in recognizing the voice commands is based on the 
Euclidean squared distance. This formula can be applied in many ways 
between the audio signatures of the voice commands, but after many 
experiments, the following two calculation methods have been chosen and 
they are presented in the Figure 6:

���[����������	����� ������	�[�������������� �	��������	�[	��		���	�
whole vectors of the audio signatures. After the 3 vectors are processed, 
�����������
������	����������������	����	�^������	�¡`����	������������|���	�
command, they are ready for the distance calculation. First calculation is 
���	�[	��		���	�
����|	������������������	�
������	����	�^������	�����	���
����	��	��|���	��������������	�����	���������
����|	��������������	��|���	�
command. This continues by calculating in the same way for the second and 
third vectors. In the end three values are obtained representing the distances 
[	��		���	�
������	��������������|	�������������|���	���������. These 
|���	����	��	���|	���	��������	�	������[������	�
�����������	�����	�	��	�
between vectors.

This calculation is done individually between the current voice command 
����	���|���	�������������	��������	�����	�
�����	������������	���	�|���	�
<=+����� ��Û�� �	� �����	��� ����� �	� �	������ �	�
����|���	��� �	�� �	�|���	�
command stored, corresponding to the obtained result, is considered the 
recognized command.

����� �������	����� ��� ���	� [�� ������������ �	� �������	� [	��		�� �	�
words from vectors of the audio signatures. This method was chosen, in 
addition to the previous one, in order to avoid confusions made by the system 
in the scenario when the voice commands contain the same words. Also, as 
the previous method, this calculation is done after the vectors containing 
the audio signatures are processed. This method begins by calculating the 
�������	�[	��		���	�
���������������	�
����|	����������	�����	�������	��	��
|���	���������������	�����	���������
���������������	�
����|	�����������
stored voice command. Then, it continues by calculating in the same way for 
�	��	�������������	�
����|	���������	�|���	�����������[�����������������

|	�������������	��
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Figure 6. Algorithm description of the speech recognition system.
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The calculation is done for the next two vectors, resulting in another ten 
|���	���������������
��		��|���	����	�	���	��	���|	���	�����^���������������
�	��������	������	�����������[��������=�
�����������	��

As the previous method, this calculation is done individually between 
the current voice command and each voice command stored. Depending on 
����|���	������������ �	�[���	������[	����� �����	���
�����������	��
between words that is considered the recognized voice command.

After calculating both methods in parallel, the voice commands chosen 
and recognized by the calculation methods are compared in order to make 
the right decision, resulting in three cases as follows:

�� Case 1: If both voice commands���	���
	��[���	������	�����
match, then the resulted voice command is recognized.

�� Case 2: If the voice commands� ��	���
	�� [�� ���� �	����� ���
not match, then the system will partially recognize the voice 
command resulted from the global Euclidean squared distance 
method and it will ask the user to repeat the voice command.

�� Case 3: If the value resulted from the global Euclidean squared 
distance method it’s above 150, it will not identify anything and 
the result from the second calculation method will not be taken in 
account anymore, forcing the system to not recognize any voice 
command at all.

Table 1 resumes the results of these three cases.

RESULTS
The developed speech recognition system was tested in order to calculate its 
accuracy and reliability. Tests were done with English language, a worldwide 
language [21] [22] . We present here English language, in a quiet and in a 
noisy environment, with one person and with two persons. The system was 
trained with the following three voice commands spoken ten times:
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Table 1. Voice commands recognition technique.

Method I (global)
result - priority

Method II (word) re-
sult

Final result

Case 1 voice command “a”
recognized

voice command “a” 
recognized

voice command “a”
recognized
=> recognition

Case 2 voice command “b”
recognized

voice command “c” 
recognized

voice command “b”
partially recognized
=> confusion

Case 3 No voice command
recognized (>150 )

Not taken in account 
anymore

No recognition

� 1st voice command: “Turn on the light”
� 2nd voice command: “Close the window”
� 3rd voice command: “Open the door”

Speech Test in a Quiet Environment

Output results from the two recognition methods for the first voice command 
“Turn on the light” are presented in Figure 7 and in Figure 8.

It can be observed Figure 7 that the spoken voice command has the 
smallest value every time and it’s easy to take decision in recognizing the 
right voice command. A small exception being in the 5th case, when the 
distance is above the minimum required value of 150 and the system will not 
recognize anymore the voice command.

For the same spoken voice command, but now with the second method, 
it can be observed that the spoken voice command has the biggest amount 
����	������	��������	|	������	��������^��������������������	�
�����	����
has priority, and by combining the results, it turns out that accuracy of the 
����	�������	�
�������^	��|���	������������_+½�

Figure 9 and Figure 10 presents the results with the second voice 
command “Close the window”.

It can be noticed that not each the time the spoken voice command has 
the smallest value in this chart, so in order to improve the accuracy it has to 
be taken in account the second method. Also, in 2nd and 6th case the values 
are above 150, so they are not taken in account anymore. Worse, in the 
5th case another voice command has the smallest value, decreasing even 
more the recognition rate.
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The second method for the same spoken voice command helps in 
clarifying which test number has the biggest number of recognized words and 
���
�����	��	������������	�
�����	������	�
��������	�������	����������
rate is 70% for this voice command.

Output results from the two recognition methods for the third voice 
command “Open the door” are shown in Figure 11 and Figure 12.

Figure 7���������������������������
�����	�����

Figure 8. “First training command” second results.

Figure 9����	�����������������������
�����	������
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Figure 10. “Second training command” second results.

Figure 11������������������������
�����	������

Figure 12. Third training command second results.
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In this chart, it can be seen that the spoken voice command has all the 
time the smallest value. Even though, the distance is pretty big in the 6th test, 
being above 150, it’s easy for the system to take a decision in recognizing the 
���������������������������		������
��������������	��	������	����

The second method confuses three times the spoken voice command 
��������	����������[���������
���������	��	�������	��	�������������	�
�	���������	�
�����	��������������������	�
�����	���������	��	����������
rate for this command is 70%.

�	� 
���� �	������ �	�	��� |	��� ���� ��� ��� �	� ��	�� ��������	�� �	�
actual voice command in comparison with the stored voice command. This 
is the reasons why is better to have two recognition methods and to compare 
�	��� �	������ ��� ���	�� ��� ��^	� �	� 
���� �	������� ��� �	���������� �	� |���	�
commands

After reviewing and combining all the results in Table 2, obtained from 
the tests done, it can be concluded that the speech recognition system has 
achieved successful recognition rate of 90.0%.

Speech Test in a Noisy Environment

To test how the system will perform in a noisy environment, the system was 
trained in a quiet environment with the same English voice commands from 
the previous test. Then, the voice commands were spoken ten times each by 
the same person, but in a noisy environment this time.

The environment noise consisted from white noise and a couple of music 

�	����	���	�	�����	������������������ ������	�^	���������	�����[�	�
of outputting 4 watts of power. Table 3 presents the results in this noisy 
environment.

After the test was completed and all the results were analysed, the system 
showed a 85% accuracy in recognition, a little bit under accuracy showed in 
the test with a quiet environment.

Speech Test with Different Persons

To test how it will perform as speaker independent system, the system was 
trained again in a quiet environment with the same English voice commands 
from the first test. Then, in the recognition phase, the voice commands were 
repeated ten times each in a quiet environment, but by a different person this 
time. Table 4 shows the recognition rate for this test.
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Table 2. Test gathered results.

Voice com-
mands

Good 
recog-
nition

Bad 
recog-
nition

Confu-
sion

No 
recog-
nition

“Turn on the 
light”

90% 5% 5% 0%

“Close the 
window”

90% 5% 0% 5%

“Open the 
door”

90% 5% 5% 0%

Total success-
ful recogni-
tion: 90.0%

Table 3. Test gathered results in a noisy environment.

Voice com-
mands

Good recogni-
tion

Bad recogni-
tion

Confusion No recogni-
tion

“Turn on the 
light”

85% 5% 10% 0%

“Close the 
window”

85% 5% 10% 0%

“Open the 
door”

85% 5% 10% 0%

Total successful recognition: 85%

Table 4. Test gathered results with different persons.

Voice com-
mands

Good 
recog-
nition

Bad 
recog-
nition

Confu-
sion

No 
recog-
nition

“Turn on the 
light”

85% 10% 5% 0%

“Close the 
window”

85% 5% 10% 0%

“Open the 
door”

85% 5% 10% 0%

Total successful recognition: 85%
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Analyzing the obtained results, the speech recognition system showed 
still maintaining a good reliability, even though different persons were used 
for the training phase and recognition phase.

CONCLUSION
The developed speech recognition system has performed with an almost 
identical accuracy with few words for several users. This system has 
equivalent results in a quiet and in a noisy environment. It can support 
different persons too. So this system can be easily deployed in a house. 
Further, the system can be adapted to another language by changing its 
processing parameters, like the number of time slots reserved for every 
word.
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ABSTRACT
This article presents BigEar, a wireless low-cost speech capturing 
interface that aims to realize unobtrusive and transparent context-aware 
vocal interaction for home automation. The speech recognition process 
implemented in BigEar system considers noise sources including possible 
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holes in the reconstructed audio stream and tries to overcome them by 
means of inexactness toleration mechanisms to improve intelligibility of the 
reconstructed signal. Key contribution of this work is the use of extremely 
low cost devices to realize a modular flexible and real-time wireless sensor 
network. On-field implementation and experiments show that the proposed 
solution can perform real-time speech reconstruction, while listening tests 
confirm the intelligibility of the reconstructed signal.

Keywords: Wireless Sensor Networks, Speech Capture, Degraded Speech 
Recognition, Ubiquitous Systems, Low Cost Architectures

INTRODUCTION
The ageing of world’s population will raise the demand and challenges of 
elderly care in coming years. Based on a study of the US census, the number 
of people aged over 65 will increase by 101 percent between 2000 and 2030, 
at a rate of 2.3 percent each year; during that same period, the number of 
family members who can provide support for them will increase by only 
25 percent, at a rate of 0.8 percent each year. Several approaches have been 
devised to deal with the needs of older people proactively.

Assistive domotics represents a relatively recent effort in this direction 
addressing the needs of people with disability, older persons, and people 
���������	��������	���������
�������������	����	���	|	���������	�����	�������
and comfort, and thereby the chance to prolong their safe staying at home.

The BRIDGe1 (Behaviour dRift compensation for autonomous 
InDependent livinG) project [1] , carried out at Politecnico di Milano-
Polo di Como, aims to build strong connections between a person living 
independently at home and his/her social environment (family, caregivers, 
social services) by implementing a system that provides focused interventions 
according to the user’s needs.

BRIDGe addresses the needs of people with mild cognitive or physical 
impairments and, more generally, fragile people whose weakness threatens 
their autonomy, health or other important aspects of their life. Fragile 
people need mutual reassurance: they typically want to be independent and 
autonomous, but they also know that often somebody else must be present 
to help them.

BRIDGe’s core is a wireless sensor-actuator network that supports 
���	� �������� ���� ��	�� [	�|���� �	�	������ ������ �� ���� ���� �	��[�	�
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communication system between the person and his/her social environment, 
aiming at reassuring both the family and the user. BRIDGe is based on a 
�������������	����	���������[	�	���������
���	��������������	������	���	��
needs, including: house control e.g., lighting and shutter control; home 
appliance monitoring for user activity recognition and energy consumption 
measurements purposes; presence detection, i.e. identifying the presence of 
�	���	������	��
����	�������	����	���������������������������������������
(moving, sitting, falling, and so on); eventand status-based information 
���������������� ����������	��|	�������������[������	��
��	|	������������
when a fall is detected.

Target of this work is to model, realize and implement a distributed 
audio acquisition system called BigEar (uBiquitous wIreless low-budGet 
spEech cApturing inteRface) to support vocal interaction between the user 
and the assistive environment, for example, to vocally control some parts 
of a dwelling like lights, doors, etc. BigEar has been built according to the 
following Wireless Sensor Network [2] requirements:

The adopted technology (hardware and software) has to consider the 
economical possibilities of people.

The absence of power and/or signal cables is a strong requirement in 
order to lower costs for house adaptation. Moreover, wireless systems can 
	����	�����	���	��		�����	��[�������������
����[�������������	������	���

The key for pervasiveness is distributed computing [3] , an interaction 
model in which the devices concur in building a result whose information 
content is more than the sum of single contributions. Moreover, sensors 
are completely independent and an eventual failure will not completely 
compromise the result of the sensor network collaboration.

The system should be implemented using a modular approach in 
���	�� ��� [	� �����[�	� ���� !���^��� ���
����[�	� ��� ����� �	� 	�|�����	���
characteristics and the user’s needs.

Speech recognition should be immediate, so speed of processing is a 
crucial requirement in order to give the user an immediate feedback; assistive 
domotic interaction has to be as fast as possible.

The proposed system consists of different modules that take into 
account the acquisition environment with its acoustic characteristics and the 
behavior of the sensor-network model. Such modules have been simulated to 
investigate the archiecture capabilities of the system. Then, a Reconstruction 
Algorithm reconstructing the audio signal starting from the audio packets 
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received by the microphones has been developed. This work is organized 
as follows: after a brief analysis of existent solutions in literature (Section 
2), in Section 3 the architecture of BigEar system is described, focusing on 
the characterization of the context of use, on the features of the prototyping 
board, and on the communication protocol among the components of the 
system. Section 4 describes the speech acquisition model that has been 
�������	�� ��� �	
�	� �	� ���^���� �����	�	��� [	���	� �	� �	���������� ��� �	�
system and the real-world implementation. Section 5 explains operating 
principles of the BigEar Reconstruction Algorithm, focusing on crucial 
aspects such as energy compensation, time-delay analysis and streams 
superposition. The audio data captured by means of the real-world prototype 
have been compared with the ones generated by the simulated model, and 
results of this comparison are discussed in Section 6. Speed of processing 
and the quality of the reconstructed speech signal are evaluated in Section 
����������������	������¸�
�����	���^���������	��	����	���������^������|	��
the future works.

RELATED WORK
Different solutions have been proposed in the literature exploiting audio in 
smart homes, briefly described in the following subsections.

Sweet-Home Project
The Sweet-Home project [4] aims at designing a smart home system based 
on audio technology focusing on three main goals: to provide assistance via 
natural man-machine interaction (voice and tactile command), to ease social 
e-inclusion, and to provide security reassurance by detecting situations of 
distress. The targeted smart environments are multi-room homes with one 
or more microphones per room set near the ceiling.

To show the results of the project, a smart home was set up. It is a thirty 
�!���	��	�	�������	�����������������[����������^���	�����[	������������
study; in order to acquire audio signals, seven microphones were set in the 
ceiling. All the microphones were connected to a dedicated PC embedding 
an 8-channel input audio card. The authors based the architecture on a 
multichannel audio card; in general dedicated hardware increases costs and 
�	���	���	��[����������	�|	��������	������������������������	�	�������	�
��� �	!���	�� ���
�����	���������������� �����	��������	�	�����������	��������� 
project is based on low-cost hardware and wireless connections in order to 
��	�	�|	��	��[������	��	����������������������	���	�������
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Wireless Sensor Networks for Voice Capture in Ubiquitous 
Home Environments

The authors in Palafox and García-Macias [5] present a voice capture 
application using a wireless sensor network (WSN). The WSN nodes (each 
node is a MicaZ mote with a high sensitivity microphone) are grouped in 
clusters with a special node (cluster-head) coordinating the cluster activities 
in order to avoid to capture and transmit the same voice command by two 
or more nodes; the authors consider the command duplication unacceptable. 
Each cluster-head collects audio data from their cluster nodes and relays 
it to a base station. Each node continuously senses audio signals at 2 kHz 
sampling frequency; if the sensed signal intensity exceeds a predetermined 
threshold, the node sends a notification to the cluster-head. The cluster-head 
selects a node to capture the command; the selected node enters into 8 kHz 
sampling frequency, captures three seconds of audio (with 8 bit resolution) 
and transfers the audio data to the cluster-head node which, in turn, relays 
it to the base station where a computer processes speech recognition 
tasks. The authors implement two capturing techniques: capture and send 
without coordination (consisting of human voice detection, three seconds 
of audio recording and transmission of the data packet to the cluster-head) 
and coordinate (consisting of human voice detection, node selection by the 
clusterhead, three seconds of audio recording and transmission of the data 
packet to the cluster-head). The main limit of this solution, beside having 
a quite high cost, is the sampling of three seconds instead of having a 
continuous voice detection and reconstruction. Our solution improves such 
limitation.

Exploiting WSN for Audio Surveillance Applications:  
The VoWSN Approach

The work in Alesii et al. [6] focuses on the analysis of fundamental issues 
about the transmission of the voice using a wireless sensor network (WSN). 
The paper is based on the MicaZ wireless sensor nodes. The prototype of the 
system has been developed through the use of the CrossBow MicaZ-TinyOS_
v1.5. and a PC has been used for listening and the analysis of recorded data. 
The work focuses on audio surveillance systems (i.e. continuous or event-
driven audio monitoring tailored to voice signals that have to be archived 
and/or postprocessed) and on multi-point sampling to make proper signals 
(or noises) cancellations. BigEar nodes are based on Wixel prototyping 
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boards, that allow to reduce significantly costs with respect of the solution 
implemented from the authors, that is based on MicaZ motes [7] [8] .
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Activity Monitoring Network

Demir et al. [9] propose an indoor wireless activity monitoring network 
(WAMN) to transmit data in real time to a monitoring application. The 
architecture is based on a personal device where data from an accelerometer 
are transmitted to the sink for the detection of current physical activities (e.g. 
lying and sitting); an acoustic sensor was located close to the bed of the older 
person, to transmit short voice commands (e.g. need help, open the door 
etc.) for emergency attendance. The paper aims at experimenting a network 
which treats the voice data as emergency traffic and tries to achieve a certain 
Quality of Service. The system is only simulated considering the voice and 
activity data into two different Quality of Service classes: class 1 for voice 
and class 2 for activity data. The voice data segment (55 bytes) is periodically 
sent in every 3.57 ms and each voice command is represented by 800 data 
segment while 55 byte activity data segment is periodically sent in every 2.7 
s; they assume each captured voice command is digitized with a sampling 
rate of fs=8KHzfs=8KHz and bit depth of 8-bit. The authors consider only 
a single voice source for detecting the user command; compared to this 
approach we use a set of microphones, which are contemporaneously active. 
In this way, BigEar solution implements a wireless unobtrusive network that 
takes advantage of the simultaneous multi-sensor acquisition to reconstruct 
the speech signal regardless of the position of the source with respect to the 
sensors.

The Research and Design on Time Division Duplex (TDD) 
Voice WSN

Rong-lin et al. [10] present an architecture (including hardware architecture 
of voice node, routing node and gateway node) for Voice Wireless Sensor 
Networks (VoWSN). The main goal of this paper is the quality of the 
transmitted voice; such an objective justifies both costs and the energy 
consumption of the presented hardware solution. The voice node includes 
a voice circuit (with signal amplifier, filtering, acquisition, quantization, 
encoding and decoding, A/D and D/A conversion), a digital signal 
processing circuit (with real-time voice digital signal processing including 
ADPCM encoding to reduce data rate), and a ZigBee module; the routing 
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node includes only the ZigBee wireless communication module, while the 
gateway nodes includes the ZigBee communication module, the CDMA 
module, and an ARM processing circuit. The authors implement the time 
division duplex (TDD) method to achieve duplex voice communications; 
in particular, they use the same frequency but different time slots for data 
sending and receiving.

Blind Alignment of Asynchronously Recorded Signals for  
Distributed Microphone Array

In this work, Ono et al. [11] present an architecture of independent recording 
devices that is used as a distributed microphone array. The main goal is to 
introduce a novel method for the alignment of recorded signals to estimate 
the localization of microphones and sources. The authors implemented 
only a simulative experiment with 9 microphones and 8 sources randomly 
positioned. As source signals, real-recorded hand claps were used and each 
source was not overlapped each other. The sampling frequency used by 
the authors was 44,100 Hz and the signal length was 5.0 s. High sampling 
frequency force the use of devices with high computing capabilities that 
reflects on costs of the overall architecture. Moreover, it requires high 
bandwidth in order to transmit data between nodes. BigEar solution focuses 
on vocal signals and minimizes bandwidth requirements. As it will be 
discussed in following sections, our approach ensures a proper alignment of 
audio streams generated by different sensors.

BigEar Approach

The approach proposed in this work tries to improve the current state of the 
art by providing a faster and flexible access to the transmission channel that 
allows a more widespread acquisition, based on a low cost solution. Among 
non functional requirements we have considered that house adaptation 
should be avoided to ensure high degree of modularity and configurability. 
Moreover, closed systems and dedicated hardware have been considered as 
second-best choices not only for their licensing costs, but mainly to keep 
high levels of flexibility.

BIGEAR ARCHITECTURE
Figure 1 illustrates the architecture of the BigEar system. It is composed of 
a network of audio sensors that distributively capture audio in a room. The 
speech is sent to a main receiver (BigEar Receiver), acting as an interface 
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that converts speech packets received via radio channel into serial data to 
be sent to the Base Station. The Base Station contains the application logic 
to handle speech packets. Since the audio sensors perform a space-time 
sampling of the audio inside a room, the application logic tries to reconstruct 
a good-quality speech stream starting from packets that arrive to the base 
station with different timestamps and with different physical characteristics. 
Indeed, each sensor samples the audio signal that reaches the microphone 
after undergoing variations due to the physical model of the environment: 
different delays and amplitudes that depend on the position of the person 
with respect to the sensors, and reflections diffusions due to the geometry of 
the room and materials of the walls and furniture.

�������������������	"���	�����������������	��	��[�#
�� Number of audio sensors w.r.t the dimensions of the room: the 
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granularity of space sampling.

�� Audio sensor internal characteristics and constraints: each sensor 
needs time in order to sample data (depending on ADC type), 
store them into buffers and send them to the main receiver.

�� Network communication protocol characteristics and constraints: 
the number of packets sent to the main receiver is affected by 
the number of collisions that may happen on the channel and 
also by the protocols themselves (handshaking, request-response 
timings, timeslot allocations).

Figure 1. Overview of the BigEar architecture.
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BigEar Audio Sensors

The leaf nodes of the architecture are represented by the audio sensors, that 
are built using Wixel Programmable USB Wireless Modules, general-purpose 
boards featuring a 2.4 GHz radio and USB port. The Wixel is designed 
around the CC2511F32 System-on-Chip (SoC) from Texas Instruments, 
which has an integrated radio transceiver, 32 KB of flash memory, 4 KB of 
RAM, and a fullspeed USB interface.

Wixel’s ADC is connected to a simple signal acquisition and conditioning 
stage that captures audio signals. ADC resolution represents an important 
design choice: the higher is the resolution, the lower is the quantization 
error. On the one hand, low resolutions allow high sampling frequency and 
so a higher temporal resolution with the drawback of a lower number of 
quantization levels; on the other hand, high resolutions reduce quantization 
error granularity. This is an important key factor in signal post-processing.

BigEar Receiver

The only task of the BigEar Receiver is to act as a Radio-to-USB interface 
(and vice versa) between BigEar Audio Sensors and the Base Station. It 
mainly receives radio packets from the sensors, transforms them into 
hexadecimal nibbles and sends them to the Base Station via the USB port. 
When the Base Station needs to send commands to the sensors (or to reply to 
protocol messages), BigEar Receiver receives hexadecimal nibbles through 
the USB port, converts them into bytes and sends them using the built-in 
radio module. Like BigEar Audio Sensors, also the BigEar Receiver is based 
on a Wixel Programmable Module.

CC2511F32 SoC has been programmed in order to handle up to 256 
different radio channels [12] . All the sensors share the same channel used 
by the BigEar Receiver; if the network architecture requires channels 
separation (e.g., to reduce the number of collisions), a second BigEar 
Receiver connected to another USB port of the Base Station is needed.

Base Station

The Base Station is the device that collects data from the sensors and arranges 
packets in order to produce a clear and intelligible speech signal. In order to 
receive packets from audio sensors, it needs to be connected via USB port 
to the BigEar Receiver, which acts as a bidirectional Radio-to-USB dongle 
between the Base Station and the wireless audio sensors.
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The Base Station receives radio packets containing each one a set of buffer-
ized audio samples tagged with a timestamp and the sensor ID; for each sen-
sor, audio samples are arranged according to their timestamp. In this way, 
for each sensor a coherent but incomplete stream is obtained: indeed, audio 
samples are in the right time position with respect to the sensor timestamp, 
but there is no guarantee that the transmission time is less than, or at most 
equal to, the sampling time.

Once the samples have been sorted by their timestamps, the application 
performs a time delaying-or-advance of the audio streams coming from 
the sensors in order to remove the delays caused by the different distances 
between the mouth of the user and the sensors. Therefore, in-phase audio 
contributions are obtained; they can be summed each other in order to 
produce a seamless stream.

During the alignment process the different energy contribution of the 
sensors are considered: the closer is the sensor to the user, the bigger will be 
the signal amplitude and vice versa.

Figure 2 summarizes the Speech Reconstruction Logic carried out by 
the Base Station: in the left plot in Figure 2(a), audio packets can be seen as 
received from the Base Station. Then, the Base Station exploits timestamp 
information carried by each audio packet to arrange audio samples onto 
the sensor’s timeline (right plot in Figure 2(a)). Figure 2(b) illustrates the 
operating principles of cross-correlation analysis that allows the Base Station 
to obtain the in-phase contributions that will be superposed to generate a 
unique, coherent and intelligible speech signal.

Network Protocols

Network protocols have a big impact on the efficiency of the whole system: 
collisions, granularity of the network of sensors and presence of protocol 
messages can affect the number of audio packets transmitted and received 
successfully. In general, when the granularity of the network increases, also 
the likelihood of collisions grows. At the same time, the number of service 
messages to implement synchronization mechanisms have to be increased 
in order to reduce the number of collisions. This can be done at the expense 
of the channel availability and software complexity.
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The simplest protocol that can be adopted in this scenario is ALOHA 
[13] . Our application has been tested using the pure ALOHA protocol 
(without acknowledge) in order to exploit and examine system capabilities 
with the simplest communication protocol.

SPEECH ACQUISITION MODEL AND  
IMPLEMENTATION
Figure 3 shows a functional view of the BigEar application within its 
acquisition environment. It is composed of four interconnected modules: 
the Audio Model block performs the acoustic simulation of the acquisition 
environment, the Sensor Network Model (which is in turn composed of two 
inner blocks) simulates the behavior of the transmitters-receiver network; 
finally, the Speech Reconstruction block performs the reconstruction of the 
speech signal.

���	� �	� 
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receiver network have been simulated, the Speech Reconstruction block 
has been implemented and its prototype will be described and discussed in 
Section 5.
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(a)

(b)

Figure 2. Base station reconstruction logic. (a) Audio packets arranged w.r.t. 
their timestamp; (b) Audio packets are aligned exploiting cross-correlation be-
tween signals.



BigEar: Ubiquitous Wireless Low-Budget Speech Capturing Interface 241

Audio Model

The Audio Model block models the acoustic environment and sets: the 
room dimensions (and optionally other parameters such as reflection and 
diffraction coefficients of walls), the location of the sensors and of the audio 
source. Once an input audio file is provided, the block produces an audio 
stream for each sensor. Each stream differs for its amplitude, delay and 
diffusion, depending on the acoustics characteristics of the room and on the 
position of the sensor with respect to the source.

Figure 3. Architecture model.

In order to create an audio model of the typical use case, we made some 
assumptions about the typical environment where the system may work. The 
room is modeled as a parallelepiped represented by a three-dimensional space 
[����	��[������������	��'�������������	��������������>�����������������	����
���� ���� �[��������� ���� �����	����� '���������>� ��	�
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due to furniture and other objects in the room can be approximated by higher 
levels of overall room diffuseness. Audio modeling is performed by means of 
MCRoomSim multichannel acoustics MATLAB simulator [14] .

Sensor Network Model

This module recreates a realistic simulation of the behavior of the network 
where each sensor samples audio signals, buffers them into packets of a 
specific size and sends them according to a network communication logic. 
The module is internally split in two parts: the Radio Transmission model, 
that implements the communication protocol including possible interactions 
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between a receiver and the transmitters or between transmitters, and the 
N-buffer model, that carries out the internal buffer mechanism of each 
transmitter.

The Sensor Network module receives in input the audio streams 
generated by the audio simulator described in Section 4.1, and provides as 
output the packets of audio sampled and transmitted by each sensor.

Radio Transmission model This block implements the pure ALOHA 
protocol described in Section 3.4, where each transmitter sends data whenever 
there is a packet to send and then waits for a random delay before sending 
another packet. Since audio data are time-dependent, for our purposes it 
is worthless to re-transmit audio packets, so the transmitter will not wait 
for any acknowledgment from the receiver. The random delay between 
transmissions is obtained by the internal random number generator of each 
transmitter and it is chosen between 0 and a maximum value TmaxDelay.

The model also checks for collisions. Given the time instant t(i,j) in 
which the jth transmitter starts to transmit the ith packet, and called tbusy the 
duration of the transmission, all the transmissions started in the interval 
[t(i,j)°�busy , t(i,j)+tbusy, where tbusy are marked as colliding.

N-Buffer model This block implements the buffering system internal to 
each transmitter. In a real world, data are continuously sampled and buffered 
by each transmitter in order to be ready to send them when needed; during 
the simulation, instead, the time instants in which transmission occurs are 
known, but we need to model the buffering structures to know which data 
are ready for being transmitted. This block produces in output the audio 
samples packed as if they were coming from real transmitters. The structure 
of each packet is described in Figure 4: each packet contains the ID of the 
���������	����	����	����������	�
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samples that correspond to the frame size of each buffer. Only the timestamp 
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inferred by adding ä�=i/Fs, where ii is the (0-based) index of ith sample in 
the packet and Fs is the sampling frequency. Multiple buffering allows the 
sensor to work simultaneously on read and write sides: a periodical interrupt 
routine acquires the signal and stores samples into the write frame, while the 
main loop can read from the read frame for the transmission.

Real-World Implementation

The three modules described so far compose the virtual model that has been 
used in order to define the working parameters before the realization of 



BigEar: Ubiquitous Wireless Low-Budget Speech Capturing Interface 243

the prototypes. In the real world, the system is composed of a set of audio 
sensors that perform a space-time sampling of a room. Before sampling, the 
audio signal converted by each microphone capsule has to be amplified and 
biased in order to match to ADC characteristics. Each audio sensor samples 
the signal and packs data into frames in order to send them to the receiver. 
The multi-buffer internal structure of each transmitter allows an efficient 
application logic where the sampling stage is managed by means of a timer-
handled interrupt routine, and the network logic is handled by the main loop 
of the applications. Network structure can be layered onto several radio 
channels in order to reduce the number of collisions. A separate BigEar 
Receiver is needed for each radio channel.

Figure 4. BigEar������
	�����������	�

Once the packets arrive to the BigEar receiver, they are converted into 
hexadecimal nibbles and serially sent to the Base Station by means of the 
USB port. The Base Station, in its experimental form, is composed of a 
pipelined application that listens to each BigEar Receiver connected to the 
USB ports of the machine, receives audio packets and stores them into an 
���	�	���	!�	��	����
�	��������	�����	��	��[���	����������$��$���������
that reconstructs the audio data using the reconstruction principles described 
in Section 5.

SPEECH RECONSTRUCTION
This section illustrates how audio packets are processed in order to produce 
the best speech signal in terms of intelligibility.

Starting point of the Speech Reconstruction is constituted by the audio 
packets received by the Base Station from each audio sensor. Due to sound 
propagation laws, the closer is the sensor to the source, the higher will be 
the power of captured audio signal; so, in order to preserve energy of the 
reconstructed signal, audio packets are unbiased and normalized. Then, 
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audio samples are arranged using timestamp information contained in each 
packet (as already illustrated in Figure 4).

Delays introduced by the different distances between the source and the 
audio sensors (the closer is the sensor to the source, the lower will be the 
time of arrival of pressure wave to the microphone) are compensated in the 
streams alignment stage using cross-correlation analysis.

When the signals have been properly aligned they can be superposed 
with several summing or replacing methods in order to preserve the signal 
energy and not to introduce energy variations due to the different number of 
contributions that are summed at the same time.
�	�����������������	�=����������	���	���	��������	�����	��[���	���		��
Reconstruction module; they are described in the next subsections.

Energy Compensation

Audio packets have to be processed in terms of energy compensation to 
prevent distortions. In particular, the following steps are performed:

�� Bias removal, in order to eliminate possible incorrect polarization 
of the input stage.

�� Normalization of input signals, to remove the amplitude 
attenuation due to the different distances between the speech 
source and the sensors.

Bias Removal
Incorrect polarization of the input signal can affect the result of the 
reconstruction block, that is based on the summation of contributions 
that vary randomly in time. Audio signals coming from different sensors 
are affected by different polarization. The summation of different DC 
components corresponds to the superposition to the audio signal of a square 
wave whose frequency and amplitude are randomly changing, introducing 
in this way harmonic distortion to the speech signal, as illustrated in Figure 
6.
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Figure 5. Flowchart of the signal reconstruction block.

  (1)
where N is the number of sensors.

Normalization
Normalization removes energy dependence on the distance between the 
speech source and the sensor. In this way, neglecting differences in frequency 
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response of microphones and small variations in spectral content due to 
room acoustics, contributions of different sensors can be summed without 
compensations coefficients:

Figure 6. The image shows the effect of the acquisition of the same signal by 
means of different sensors, each one characterized by a different DC bias.

  (2)

Audio Packets Arrangement

The second step of Speech Reconstruction is the arrangement of audio 
packets. Audio samples are extracted from each packet and get ready for 
processing using two matrices: A and P , where each element a(i,j)&A 
represents the ith sample transmitted by the jth sensor and the corresponding 
element p(i,j)&P represents the position of the audio sample in the stream 
expressed in discretetime units:

  (3)
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Using position information, audio samples are correctly spaced on the 
�	����Û�����	���	������	����	�����À#<åÀ®������|	������j of samples is created:

   (4)
The elements in yj where no audio samples are present are 0-filled.

Streams Alignment

The streams generated from audio data coming from sensors are aligned 
to reduce the delay due to the distance of the speech source with respect to 
the position of the sensors. The alignment is obtained by using the cross-
correlation function [15] . In order to apply it efficiently, the audio streams 
are processed according to their informative contribution: they are sorted by 
their normalized power in descending order to allow the cross-correlation 
algorithm to work in the best condition.

Cross-correlation is a measure of similarity of two series as a function 
of the lag of the one relative to the other. For two generic discrete functions 
���������������������"����	��������	����	�����	
�	����#

   (5)
where f* denotes the complex conjugate of f . The equation essentially slides 
the gg function along the x-axis, and calculates the integral of their product 
at each position. When the functions match, the value of (f)g) is maximized. 
Thus, applying cross-correlation to the streams yi and yj generated by two 
different sensors i and j means to find the delay n (expressed in number of 
samples) that should be applied to yj to obtain the best in-phase superposition 
with yi .

Envelopes Cross-Correlation
A drawback of Cross-correlation function is the inability in discriminating 
between the true signal and noise or holes.

Cross-correlation function operates on signals that, for their origin, are 
noisy and holey. If holes and noise are negligible, cross-correlation gives 
expected results; if sequence of zeros (holes) are much bigger than the 
signal itself, or if the signal is subject to particular types of noises such 
as impulse trains, the Cross-correlation function would produce wrong 
results. To overcome this problem, instead of applying Cross-correlation 
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function directly on noisy or holey signals, it has been applied to the positive 
envelopes of the signals themselves. A positive envelope is a particular 
representation of a signal that evidences the shape of the signal. Figure 7 
illustrates the result of the alignment step of the envelopes. On the image, 
for the sake of readability, envelopes of the streams coming from different 
sensor have been shifted along y-axis. It can be noted that peaks and valley 
of the signals are globally aligned. This alignment technique offers higher 
robustness with highly noisy or highly depleted streams, although the effort 
for a better alignment could be frustrated from the lower intelligibility of the 
speech signal.

Streams Superposition

Once audio streams obtained by sensor acquisition have been made uniform 
by means of unbiasing and normalizations, and they have been delayed to 
make them coherent, they need to be superposed in order to reconstruct the 
recorded speech signal. Two methods have been implemented: Weighted 
Sum of Contribution and Holes Replacement.

Figure 7. Cross-correlation analysis and alignment on signal’s envelopes.

Weighted Sum of Contributions
Contribution coming from different sensors are summed and scaled to 
prevent amplitude artifacts. Given y(i,j) the ith sample of the audio stream 
coming from jth sensor and w(i) the number of sensors that contribute to the 
ith sample, the ith sample of the resulting stream ysum is given by:
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   (6)
Weighted Sum is needed for energy preservation and for avoiding harmonic 
distortions due to the summation of contributions. Figure 8 illustrates an 
example of distortion caused by the sum of multiple contributions without 
weighting.

Holes Replacement
Weighted Sum of Contribution presents some drawbacks: it does not 
take into account the big differences in the spectrum of signals and in the 
environment contributions between sensors located in different places. Each 
BigEar Audio Sensor is subject to an environment contribution that depends 
on:

�� The distance between the sensors and the speech source;
�� The position of the sensors in the environment.
Contributions can be very different in terms of signal spectrum and of 

reverberation. In general, the closer the sensors, the lower will be the overall 
effect of the environment-inducted artifacts since spectrum of the signals 
will be similarly colored and reverberation tails will be alike.
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Figure 8. Harmonic distortion due to unweighted sum of contributions.

For this reason, an alternative superposition policy has been tested: 
instead of performing a weighted sum of each contribution, only the holes 
����	���������	��������������	�����	�
��	������������[�������������������
other sensors. This method reduces the number of summation artifacts, 
provided that the reference signal (the one on which the holes will be 
replaced with samples coming from other sensors) has the higher number of 
valid samples, otherwise there is the risk that replacing artifacts will become 
prominent with respect to summing artifacts. A comparison metric between 
Weighted Sum and Holes Replacement will be discussed in Section 7.2.

BIGEAR SIMULATION AND MODEL VALIDATION
Once the system has been implemented and the prototype realized, some 
metrics have been defined to compare the data captured by means of the 
BigEar prototype and the data obtained by means of the BigEar simulated 
model described in Section 4.

This Section focuses on the quality of reconstructed signal analyzing 
amount of overlapping data between the stream generated by each sensor, 
while Section 7 illustrates system capabilities in terms of speed of processing 
and outlines qualitative aspects of the reconstructed speech.

<������
���������

The metrics defined in this sections provide quantitative measures 
concerning the reconstructed speech signal. As already mentioned in Section 
5, the success of speech recognition is influenced by the number and the size 
of holes in the reconstructed signal. Moreover, the BigEar Reconstruction 
algorithm convergence is influenced by the amount of information that can 
be overlapped for the Cross-correlation alignment. The following metrics 
are therefore defined:
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Referring to the reconstructed signal, it represents the amount of samples 
with respect to the total length of the stream. The more the value is close to 
1, the more the reconstructed signal is complete.

Since reconstructed signal is given by the superposition of audio packets 
sampled by different sensors at random time instants, it can be affected by 
sequences of empty samples. In conjunction with NoH , SoH characterizes 
the distribution of empty samples (holes) into the reconstructed signal. In 
case of constant Fill_ratio, SoH and SoH allow to compare whether empty 
samples are gathered into few big blocks or are diffused into many small 
blocks.

Sf=Averagenumberofcontributorpersample.
Sf gives a measure of the contribution of each single transmitter to the 

�����������������	�
������		������������&(0,NTX] where NTX is the number 
of transmitters. The higher Sf , the higher the overlapping of the streams 
obtained by the different transmitters.

Simulation Setup

Simulations have been performed using the BigEar Simulator described in 
Section 4 in a MATLAB 2015b environment [16] using McRoomSim v. 
2.14 [14] and varying some parameters in order to study system behavior 
under different configurations. The parameters that have been changed 
are: the number of sensors, their positions in the room, the radio channel 
configuration (how many transmitters communicating on the same radio 
channel), and the maximum delay between adjacent transmission of the 
same transmitter.

From these simulations, Statistic data and Metrics have been calculated 
according to Section 6.1. These data will be compared with real data obtained 
�����«�"
	����	����'��[�	������¡�{>������������	������	������¡�`�
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On-Field Setup

Near-field Tests During Near-field tests, the consistence between the 
simulated model and the real world has been probed. In this setup, BigEar 
Audio Capture boards were placed side by side on a plane surface, and the 
speaker has been asked to talk at a distance of about 0.6 m far from the 
microphones. Then data have been captured using different configurations:

�� ���[	�� ��� ���������	��� ���� ����	�� ���
���������� ������	��
sequences indicate the number of channel and how many 
transmitters are transmitting on the same channel (e.g. AAB 
means two transmitters on radio channel A and one transmitter 
on radio channel B):
– One transmitter: A.
– Two transmitters: AA-AB.
– Three transmitters: AAA-AAB.
– Four transmitters: AAAA-AAAB-AABB.

�� Maximum delay between adjacent transmissions from the same 
transmitter ( TmaxDelay parameter): 1-3-7-15-31-63 ms.

���"
	��� �	���� ������� ���"
	��� �	����� �	� ������ ��� ����	�� ��� �	�
Reconstruction Algorithm. This is a test stage close to real situation since 
BigEar�$�����������	�[�������|	�[		��
�	��������	��<�¡+�����������
ground level and have been placed in a medium-size room. The talker has 
been asked to speak from an asymmetric position to examine the signal 
power differences between the different streams.

Figure 9 shows the obtained plots; black asterisks mark real values 
obtained from the prototypes, while lines indicate the simulated ones. By 
varying the TmaxDelay parameter and the number of transmitters, the obtained 
curves are asymptotic. Differences are notable when TmaxDelay&{1,3,7}, i.e., 
when the average distance between adjacent transmissions of the same 
transmitter are comparable with the duration of a frame of samples

This difference is due to the modular structure of the BigEar Simulator: 
the N-buffer Internal model (Section 4.2) does not communicate to its 
predecessor the Radio Transmission model (Section 4.2)-any information 
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about the buffer status. In the real world, if the buffer is empty, no 
transmission happens; instead, the Radio Model makes no considerations 
on the buffer status, with the result that virtual transmitters that have no data 
to transmit also contribute to the saturation of the audio channel and then to 
the valid packet loss.
Looking at Fill_ratio, it can be observed that in most cases the real Fill_ratio 
is slightly higher than the simulated Fill_ratio. The motivation is due to the 
fact that the model adopts Tbusy = 1 ms as duration of the transmission, while 
for the prototype the measured duration of a transmission is 0.937 ms.

In general, the increase of the number of transmitters leads to an 
increment of the overlap between sampled data, while the increase of the 
used radio channel leads to the reduction of the collisions between packets 
traveling on the same channel. By comparing Figure 9(a) with Figure 9(b) it 
can be observed that doubling the number of transmitters and working on 2 
channels instead of 1, a big increment in Fill_ratio and in Sf (support factor) 
are obtained, thus improving the quality of signal (in term of size of holes) 
and the support factor, i.e. the quantity of overlapped samples between the 
streams.

EXPERIMENTAL RESULTS AND EVALUATION
In this section experimental results will be evaluated to test the reactivity of 
the system and the accuracy of the speech recognition process.
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(a)

(b)

Figure 9. Metrics of the reconstructed signal plotted as a function of TmaxDelay 
parameter. (a) Test case: 2 transmitters on the same channel (AA); (b) Test case: 
4 transmitters on the two channels (AABB).
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Speed of Processing Evaluation

System reactivity can be considered as the system’s ability to interact with 
the user in real-time, i.e. to perform an action as soon as possible. Due to 
the modular architecture of the system, the reactivity can be analyzed from 
different points of view.

Clock Tests During the implementation of the hardware part of the 
BigEar� ��������	�� �	� ���	�� ���[������ �|	� [		�� |	��
	�� ����	� ��	� ��� �	�
crucial points of the application is that every BigEar Audio Capture board 
samples the analog signal at the right sampling frequency Fs . Moreover, 
it is important to observe that the N-Buffer mechanism works perfectly in 
order to avoid corrupted data that could generate unattended behaviors in 
�	��	���������������	���$����	��	�������
��	���	�����^����[������
Speed of Speech Reconstruction Algorithm The speed of the Speech 
Reconstruction Algorithm can be expressed as the ratio of the length of the 
considered audio segment Ç�rec over the duration of the elaboration process 
Ç�elab . This metric, called Realtime Performance Ratio (RPR), is defined as:

   (7)
This measure depends on the number of transmitters, since with a higher 

���[	��������������	�����	�	�������������	����������������	��	���������[	�
used as a global trade-off parameter: RPR>1 states that the whole system is 
able to buffer, send and process data faster than sampling. For each test case 
discussed in Section 10, RPR has been measured. For all the tests RPR*1 
, i.e. the processing speed of the BigEar Reconstruction Algorithm is faster 
than the sampling speed.

Reconstruction Quality Metric

During Far field tests, the speech signal was reconstructed using both 
Weighted Sum method (Section 5.4.1) and Holes Replacement method. 
Listening tests have denoted big differences in reconstructed speech signal 
depending on the superposition policy adopted. As explained in Section 
5.4.2, the higher the distances between BigEar Audio Capture boards, the 
higher the differences in the audio signals due to different environment 
reflections and diffusions. These differences cause discontinuity artifacts 
in the reconstructed signal at the positions where different contributions 
are superposed in the attempt to fill the holes in the reconstructed signal 
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(described in Section 5).
In order to examine how superposition methods could affect the presence 

of artifacts, Potential Artifact Ratio metric counts the number of positions 
where artifacts could be generated and normalizes it with respect to the 
length of the signal, obtaining thus a comparable metric.

where edgesk = 2"NoHk and NoHk = no"of holes in the stream produced by 
kth sensor.

where edgesk
h<k=edgesinthe kth stream covered by samples of previous 

streams.
Since number of potential artifacts is dependent on the chosen 

superposition policy, two different calculation methods are needed: Aws is 
the metric used for Weighted Sum reconstruction and Ahr is the one used for 
Holes Replacement method.

Figure 10 shows that for each TmaxDelay set, Weighted Sum method 
(whose Artifact Ratio is denoted with Aws) is more prone to artifacts creation 
than Holes Replacement method. Moreover, as expected, Potential Artifacts 
Ratio grows with the number of transmitters that compose the system, in 
particular when multiple transmitters operate on multiple channel: since 
there is high overlapping between audio packets, Weighted Sum has more 
data to superpose.

The approach of the Holes Replacement policy (Section 5.4.2) is 
different: it adopt as reference the more powerful signal, then it uses other 
streams for holes replacement. In this way, the Potential Artifacts Ratio 
metric gives better results, keeping low the number of points in which an 
artifact could be generated.
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Figure 10. Potential Artifacts Ratio plotted for different test cases, divided by 
TmaxDelay sets.

CONCLUSIONS AND FUTURE WORKS
In this paper, we have presented an application based on a distributed 
wireless sensor network that performs a space-time audio sampling of an 
environment. It is based on the low cost technology, i.e. on Wixel Prototyping 
boards, whose cost is around 20 $ each one; cost for speech acquisition 
circuit is under 10 $ per board2.

$�|����������	������	������	����	����[		��
��������	�	��	�������������
an Audio Model that performs the acoustic simulation of the acquisition 
environment and a Sensor Network Model simulating the behavior of the 
transmittersreceiver network: this BigEar Simulator can be used to perform 
an apriori analysis to identify the best parameters (such as number of sensors, 
�������������	����������[	���������	�����������	"���
����[�	������	�	��>�
���� �� ��	��
�� ��	� ���	�� ����������� ����������� ���� ������������� ������� $�
real-world system has also been implemented to examine its real behavior 
and capabilities. A speech reconstruction algorithm has been proposed to 
�	���������� �	� ������ ������� ������� ����� ����	�	��� ��������	��� 
�������
since in case of speech recognition, the reconstructed stream may contain 
holes; an inexactness toleration mechanism has been included in the speech 
recognition process to improve recognition accuracy. The whole architecture 
��������[�	������������[	�	�������	���
���	��[�������������	��|�����	������
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from the sensor network. Results show that the BigEar Reconstructor 
algorithm can perform real-time speech reconstruction, and listening tests 
���
��� �	� ���	�����[��������� �	� �	���������	�� ��������$�� �����	����^���	�
plan to improve the BigEar Reconstruction Algorithm to properly feed 
��\�[��
��	���� only vocal commands. Some experiments have shown that 
the differential information of power and delay of the signals acquired by 
the sensors can be used to make a coarse-grain localization of the source. 
����	�������	��������	�������������
���������	��	�����������������������������
associate each keyword to a spatial information. In order to neutralize effects 
��� ���	���������������������
��	�������� ���"
	��� ��		������	�������	�����
can be integrated into the BigEar Reconstructor algorithm; moreover, 
periodical training stages can be adopted for identifying physical and spectral 
characteristics of the ambient noise. Finally, the Network Interaction Model 
could be extended to other network protocols than pure ALOHA family in 
���	�����	�����	����\	���������	����������	��������	�����	��	��[������	�	���
Network Interactions. In particular, different Network Protocols might help 
in reducing superposition artifacts; furthermore, Network Protocol could 
include synchronization mechanisms to prevent sensor clock drift.
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ABSTRACT
The application of Information and Communication Technologies has 
transformed traditional Teaching and Learning in the past decade to 
computerized-based era. This evolution has resulted from the emergence 
of the digital system and has greatly impacted on the global education 
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and socio-cultural development. Multimedia has been absorbed into the 
education sector for producing a new learning concept and a combination of 
educational and entertainment approach. This research is concerned with the 
application of Window Speech Recognition and Microsoft Visual Basic 2008 
Integrated/Interactive Development Environment in Multimedia-Assisted 
Courseware prototype development for Primary School Mathematics 
contents, namely, single digits and the addition. The Teaching and Learning 
techniques—Explain, Instruct and Facilitate are proposed and these could 
be viewed as instructors’ centered strategy, instructors’—learners’ dual 
communication and learners’ active participation. The prototype is called 
M-EIF and deployed only users’ voices; hence the activation of Window 
Speech Recognition is required prior to a test run. 

Keywords: Explain, Instruct and Facilitate Techniques, Multimedia-
Assisted Courseware, Primary School Mathematics, Visual Natural 
Language, Window Speech Recognition

INTRODUCTION
Teaching and Learning (T & L) is an activity or process in connection 
with the dissemination of knowledge or specific skills. It covers planning, 
management, delivery, supervision and evaluation in order to effectively 
disseminate knowledge. The model [1] divides T & L process into Teaching 
Objectives, Available Knowledge, Teaching Method and Performance 
Evaluation as shown in Figure 1.

The model in Figure 1 indicates that T & L includes a range of decisions 
and practices which might require personal contacts between instructors-
learners; however, instructors’ personality is not the central element in 
T & L. The use of technological devices, team teaching and non-graded 
������������������	
���	�����������	������	�������������[	��		�������������"
learners. Depending on the requirement of the T&L situations, particularly 
on the knowledge available, the future classroom will provide for rather 
different personal contact to the present conventional classroom. The model 
implies a greater emphasis on instructors’ competence rather than personal 
charisma; however, it is useful to have these combinations.

The facilitation technique [2] is using questions. Previous research has 
shown that questioning is a key strategy that facilitators use to promote 
discussion in Problem-Based Learning (PBL). In this study, different types 
of questions is examined that experienced facilitators asked to promote 
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discussion of teaching problems in professional development for science 
teachers. PBL sessions facilitated by three pairs of experienced facilitators 
are recorded. Data analysis showed that facilitators asked a set of questions 
to initiate and solicit ideas, to reframe ideas, to clarify ideas, to push for 
elaboration, to check for interpretation, and to connect to teachers’ classroom 
practice. This study has implications for the development of PBL facilitators.

�� É� �� �����	��	�� ���� [	� ������
	�� ��� ��		� ^	�� 	�	�	���#� �����������Û�
centered, concentration and learners’ centralization learning. These strategies 
are sometimes intertwined to each other in T&L process. The 5E model 
�{��Ð�����	��������	��������������[����	� �����|�����	Ð�������
	��[��
inserting a conscious pause in a learning cycle. It is called as an express 
phase to assess and ensure that learners progress adequately through early 
phases of the cycle. Ultimately, this revised cycle enables learners to meet 
the standards addressed in a particular lesson by providing differentiated 
opportunities.

Various technologies have been used to convey knowledge and the use 
of checklist [4] is common in Teaching and Learning (T & L) conventional 
qualitative studies. It is pointed out that the problem must be translated into 
mathematical terms and mathematical language before it is completed as 
�	� ����	���� �������	�� ��� �	� ��������	� ��� �	� ���[�	��� ���	� ���
�����	��
����� É� �� ���� ����	�� ��	|	��� ���[�	��� ���� ���
�����	�� �=�� �¡�� ����� [	�
overcome by using Information and Communication Technology (ICT). 
ICT environment [7] is urged to become personalized for T&L and it should 
be a full multimedia with an almost perfect online for community. T & L 
might be delivered in various forms and modes, such as entertainment and 
games. This makes T & L process [8] more interesting, interactive and fun.

The study [9] discussed on teachers’ educational beliefs, namely, 
constructivist and traditional as antecedent of computer use while controlling 
for the impact of technology-related variables in computer experience and 
general computer attitudes with demographical variables of sex and age. A 
multilevel modelling has been used in identifying differences in determinants 
of computer use in the classroom. For measuring primary teachers’ use 
��� ������	��� ��� ���������� É� �� ����	���� �� ����
	�� |	������ ��� �	� ������
Use of Computers scale [10] was used. The study supports the hypothesis 
���� �	��	�� [	��	��� ��	� �����
����� �	�	��������� ��� 	���������� �	������ ����
adopting computers in the classroom. The impacts of computer experience, 
general computer attitudes and gender have shown positive constructivist 
beliefs on the classroom use of computers as opposed to traditional beliefs.
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Multimedia is viewed as a dynamic approach when absorbed into 
education sectors for producing a new T&L concept with a combination of 
educational and entertainment approach. The rapid development in mobile 
computing, digital memory, internet resources, audio, video transmission, 
virtual imaging and wireless communication have created new possibilities 
for the use of technology in T & L. Multimedia technology [11] which 
combines computer technologies, compact disc players; video and audio 
systems yield a better enhanced interaction among end users. Interactive 
multimedia in the context of education has played a vital role in developing 
a T & L process towards a more dynamic and quality. Moreover, this 
�	�������� ��	��	�� �� [��� ���� �		�� ������� ��� �	� 
	��� ��� ��������������
and education by representing numbers with pictures and animations. This 
is supported by computer abilities in presenting information and also T&L 
applications [12] . To date, ICT is often associated with education where 
the technology provides various facilities in T & L process and increase 
learners’ interest in the subject being taught.

Figure 1. Robert Glaser Model.

The goal in [13] is to acquire how multimedia video case studies can 
support the professionalization of primary school Mathematics educators. 
The use of multimedia is investigated to support educators in learning to 
mathematize, didactize and to learn how to use multimedia with students-
teachers. The research study has an exploratory character; presents a 
framework for the use of multimedia as a tentative answer, grounded in the 
researchers’ experiments and design activities. Finding from the study is 
of one course result in a six-step framework for working with multimedia 
cases.

Building an accurate sign language recognition system [14] is of a 
��	������������	�������	�����	�
��	��������������������������������[	��		��
normal and deaf communities. The study is the development of speech 
recognition for Arabic Sign Language using Window Speech Recognition 
(WSR). The grammar is developed and embedded in Microsoft Visual Basic 
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2008 (MSVB2008). The Arabic alphabets and single numbers with their 
respective signs and avatar images are stored in different directories and 
invoked upon receiving a word uttered by a user. The system is a visual 
natural language model that might be used for communication by both 
groups in Arabic speaking countries.

$��������� ��		�� �	���������� ��� ���� [	���	�� �� ��	��� [	�	
�� [���
to normal people and those with various disabilities. The study in [15] 
described T & L in an application of Talk Maths which used the output 
from a commonly-used conventional automatic speech recognition 
system. It enables users to dictate mathematical expressions in a relatively 
straightforward way. These are then converted into electronic formats and 
embedded in a document to be displayed in an editor or web browser. The 
process is used for preparing Mathematic teaching materials for online tests. 
By this, the learning should be relatively straightforward for users whose 
do not have extensive knowledge on computer or mathematics. The way 
in which the spoken mathematical expressions are analyzed, converted and 
encoded is a novel approach.

The current research [14] [15] shows the Speech Recognition application 
in some disciplines and with right T & L pedagogy and techniques, this 
surely will enhance the education for everyone. Though mathematics is 
seen as an abstract of study such as quantity, structure, space and change, 
it is feasible to be transformed into a WSR-assisted courseware for T & L. 
The presence of an Integrated/Interactive Development Environment (IDE) 
provides comprehensive facilities to computer programmers for software or 
courseware development. This research is concerned with the development 
of Primary Mathematics courseware prototype using Explain, Instruct and 
Facilitate Techniques (M-EIF) via WSR and MSVB2008 as IDE platform. 
The single digits and basic facts addition for these digits are used as the test 
bed materials for prototype development. The prototype could only be run 
by users’ voice uttering the selected words.

MATERIALS AND METHODS

Windows Speech Recognition

In general, a speech recognition process [14] consists of processing the 
speech which is in acoustic, extracting feature and recognizing the speech. 
The process is based on a model as shown in Figure 2.
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In this research, Windows 7 Speech Recognition [16] is applied since 
users’ voice can be recognized automatically by the system. Users are 
required to perform the following training in order to acquire the maximum 
possible recognized speech. In the system, a voice can be used to control a 
computer by simply saying commands that a computer responds to and also 
dictating texts to it. A microphone should be connected to a computer prior 
to the execution the steps in setting up WSR.

The success of speech recognition depends on the quality of the 
microphone and the headset and desktop microphones are commonly 
used. Headset microphones are considered better since they are less prone 
to picking up extraneous sounds. A 30 minutes WSR training tutorial will 
assist users to exploit the commands used. Figure 3 shows WSR pop-up 
widgets display for Starting Speech Recognition.

�	�	���������!�	�|���	����
�	���	��[����\�	����	�����	������	���	��Û�
voice and spoken commands. Once

Figure 2. A speech recognition process.

Figure 3. A WSR pop-up widget.           

��\����������	�����	��Û�|���	�����
�	��	������	��	����	����������	!�	�����
improving computer’s ability to understand the voices.

The WSR implementation
The implementation [17] written for C# provides an overview and examples 
in Windows Forms application by the following operations:

1) Initialize the speech recognizer.
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 Speech Recognizer SR = new Speech Recognizer().
2) Create a WSR grammar.
 The grammar is created by using the constructors and methods on 

the Grammar Builder and Choices classes. For a simple grammar, 
an element is added in a Choices object using the Add method. 
Then the Grammar Builder instance is created and using the 
Append method to insert the elements in that instance. Finally, 
the Grammar Builder instance is the initialized. A user must 
speak exactly one of the elements added by the Choices instance 
in order to attain the match between user speech and the grammar.

3) Load the grammar into the speech recognizer.
 The grammar created in the previous operation must be loaded and 

passed into the speech recognizer by calling the Load Grammar 
(Grammar) method.

`>� \	����	��������		���	����������	|	�������
�������
 The speech recognizer raises a number of the Speech Recognized 

events during its operation, when it accepts a user utterance with 
�����������$�����
��������������	|	�������	����	�	��[�����	������
an Event Handler instance via SR_Speech Recognized the name 
written by a developer.

5) Create a handler for the speech recognition event.
 A handler created for the Speech Recognized event displays the 

text of the recognized word or phrase using the Result property 
on the Speech Recognized Event Args parameter, e.

Primary School Mathematics

Mathematics is the study of measurements, properties, and relationships 
of quantities and sets, using numbers and symbols. It is a group of related 
sciences, including algebra, geometry, and calculus. It concerns with the 
study of quantity, shape, and space and their interrelationships by using 
specialized notations. These notations called mathematical operations and 
the process is to look for solutions to problems or studies of some scientific 
field. In this research, Primary Mathematics contents taught in Elementary 
Schools, Saudi Arabia [18] are considered. Figure 4 shows some materials 
taken from Class 1 book.

The basic topics in elementary mathematics are arithmetic and geometry. 
Elementary mathematics is used in everyday life activities such as dining, 
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���^�����[�����������	���������������� �����������	��	������
������	������	�
path to understanding science. The contents presented are only covered 
basic digits 0 to 9 and addition operation for two single digits known as 
[����������������	
���������	�[�������������	��������[	���������	��������
facts or ideas that can be instantly recalled without having to resort to a 
strategy to derive it. Table 1 shows the details for addition operation basic 
facts for two single digits from 0 to 9.

Figure 4. Part of Mathematics for Grade 1 contents.                                          

Table 1. The basic facts addition operation for digit 0 to 9.

Addition operation for digit 0 to 9

0 + 0 
= 0

1 + 0 
= 1

2 + 0 
= 2

3 + 0 
= 3

4 + 0 
= 4

5 + 0 
= 5

6 + 0 
= 6

7 + 0 
= 7

8 + 0 
= 8

9 + 0 
= 9

0 + 1 
= 1

1 + 1 
= 2

2 + 1 
= 3

3 + 1 
= 4

4 + 1 
= 5

5 + 1 
= 6

6 + 1 
= 7

7 + 1 
= 8

8 + 1 
= 9

9 + 1 
= 10

0 + 2 
= 2

1 + 2 
= 3

2 + 2 
= 4

3 + 2 
= 5

4 + 2 
= 6

5 + 2 
= 7

6 + 2 
= 8

7 + 2 
= 9

8 + 2 
= 10

9 + 2 
= 11

0 + 3 
= 3

1 + 3 
= 4

2 + 3 
= 5

3 + 3 
= 6

4 + 3 
= 7

5 + 3 
= 8

6 + 3 
= 9

7 + 3 
= 10

8 + 3 
= 11

9 + 3 
= 12

0 + 4 
= 4

1 + 4 
= 5

2 + 4 
= 6

3 + 4 
= 7

4 + 4 
= 8

5 + 4 
= 9

6 + 4 
= 10

7 + 4 
= 11

8 + 4 
= 12

9 + 4 
= 13

0 + 5 
= 5

1 + 5 
= 6

2 + 5 
= 7

3 + 5 
= 8

4 + 5 
= 9

5 + 5 
= 10

6 + 5 
= 11

7 + 5 
= 12

8 + 5 
= 13

9 + 5 
= 14

0 + 6 
= 6

1 + 6 
= 7

2 + 6 
= 8

3 + 6 
= 9

4 + 6 
= 10

5 + 6 
= 11

6 + 6 
= 12

7 + 6 
= 13

8 + 6 
= 14

9 + 6 
= 15
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0 + 7 
= 7

1 + 7 
= 8

2 + 7 
= 9

3 + 7 
= 10

4 + 7 
= 11

5 + 7 
= 12

6 + 7 
= 13

7 + 7 
= 14

8 + 7 
= 15

9 + 7 
= 16

0 + 8 
= 8

1 + 8 
= 9

2 + 8 
= 10

3 + 8 
= 11

4 + 8 
= 12

5 + 8 
= 13

6 + 8 
= 14

7 + 8 
= 15

8 + 8 
= 16

9 + 8 
= 17

0 + 9 
= 9

1 + 9 
= 10

2 + 9 
= 11

3 + 9 
= 12

4 + 9 
= 13

5 + 9 
= 14

6 + 9 
= 15

7 + 9 
= 16

8 + 9 
= 17

9 + 9 
= 18

The Explain, Instruct and Facilitate (EIF) Techniques

Learning methods are frequently referred to as ways through which 
instructors deliver instructions and learners access these instructions. Several 
learning methods are described as traditional learning, e-Learning, blended 
learning, mobile learning, and personalized learning. These methods [19] 
accompanied with the advancements in technology and the paradigm shift 
from traditional learning to personalized learning methods. The proposed 
EIF technique, Explain (E), Instruct (I) and Facilitate (F) involves the 
development of theory and interactive courseware. Figure 5 shows that each 
stage has a different approach that involves a different role in T & L.

The Explain (E) stage is the process of explaining concepts for topics 
delivered. Many examples and other explanations are used to clarify in 
learning the concepts. Consequently, this stage can be viewed as presenting 
a text book for topics are being studied. For a courseware development, it 
is like an electronic book and the questions can be varied using a random 
function, especially involving numbers. It is useful for self-learning for those 
who haven’t learned the concept presented. Instructors’ presence might be 
required to clarify or clear any doubts.

The Instruct (I) stage is a dual communication where the session is 
[	�	
�	��[������	������	���|	��!�	�����������������������|��	��	�!�	�������
���������� ��� �	|	���� ����� 	���� ��� ���
������ ��� ��� �� �	��� ��� ^����	��	� ����
should be nurtured so that they will not hesitate to answer any questions. The 
courseware developed is seen as semi-interactive exercise book of students’ 
involvement in response to questions displayed on a computer screen. The 
numbers are delivered randomly and answers provided by students will 
[	�|	��
	��[��������	��������������
�����	�� �	� �	|	����������'�>�����[	�
referred again.



Speech Recognition and Understanding270

Figure 5���	������������������������������������������������������������������������������

Learners’ full participation is needed at the Facilitate (F) level. They 
are required to utter both questions and answers whilst instructors’ tasks 
are to guide or act as facilitators. It is a full of interactive T & L session and 
a courseware developed at this stage requires knowledge for concepts of 
topics taught. In addition, the use of logic should be considered as computers 
�����	��������������À�[���$��������	���	|	��������
�����	������	����������
guiding learners should be provided. For the materials chosen in Figure 4 
and Table 1, learners are required to pose questions and replied with answers 
������	�|	��
	��[��������	������[�	�*#���������	�	������É�������	������
be used in the developed software using EIF Techniques.

A courseware development requires methods and techniques appropriate 
to T & L that can help to improve learners’ understanding. The hardware and 
�������	���	��
���������|	� ���[	��	�	����	����� ������� ���[	��������	���
with the requirements used for the development. Any cases relating to T & L 
should be studied to see the strategies are compatible with a computer-aided 
learning. In this research, the tools used are WSR and MSVB2008 running 
on a standard personal computer.



Using Speech Recognition in Learning Primary School Mathematics .... 271

The Algorithm

By using WSR and MSVB2008, the idea is to build a language grammar that 
allocates word phonemes for a user’s voice to be recognized. The system 
is designed as such answers will only be accepted preceded by questions 
uttered. Table 3 contains the suggested words list and these are used in the 
source codes in section 3.2 and the respective interface in Section 3.3. The 
flow diagrams in Figure 6 and Figure 7 used the words mentioned in Table 3 
and transferred into the source codes presented in Section 3.2.

RESULTS AND DISCUSSIONS

Creating M-EIF Speech Recognition Grammar

The idea is to build the language grammar that allocates word phonemes 
in Table 3 for a user’s voice to be recognized. Figure 8 shows the M-EIF 
architecture.

Figure 6���	��������������������[	���
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Figure 7���	��������������������������

Table 2. T & L process.                                                                    

T & L

Strategy Approach Technique

Ÿ  Material Centered
Ÿ  Teacher Centered
Ÿ  Student Centered

Ÿ  From Simple to Complex
ì��������	�	���������	��
�
Ÿ  Multiple Stage Understanding

Ÿ  Explain (E)
Ÿ  Instruct (I)
Ÿ  Facilitate (F)

Table 3. The words list used in the source codes for each interface.                                  

Interface Words list

Main Menu See, Say, Do, Learn, Check, Attempt, Numbers, Books, 
Flow, Exit

Numbers Explain Show, Return

Instruct Question, Zero, One, Two, Three, Four, Five, Six, Seven, 
Eight, Nine, Return

Faci l i -
tate

Question, Zero, One, Two, Three, Four, Five, Six, Seven, 
Eight, Nine, Yes, Return
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Addition Explain Show, Return

Instruct Question, Zero, One, Two, Three, Four, Five, Six, Seven, 
Eight, Nine, Ten, Eleven, Twelve, Thirteen, Fourteen, 
Fifteen, Sixteen, Seventeen, Eighteen, Return

Faci l i -
tate

Question, Zero, One, Two, Three, Four, Five, Six, Seven, 
Eight, Nine, Ten, Eleven, Twelve, Thirteen, Fourteen, 
Fifteen, Sixteen, Seventeen, Eighteen, Yes, Return

EIF Flowchart Return

Numbers up to 100 Return

Material used Return

In this research, a speech recognition application in [17] [20] is adapted to 
perform the following operations and based on MS-VB2008 structure. The 
following details are for the M-EIF:

<>� �	� �	
������� ���� �ß���� ��� �� �	�� ��		�� \	���������� ���
�	
�	�� ��� ���� ����|	���� �ß���� $�� �	�� \	����������
SpeechRecognizer.

*>� �	��	
�������������	��������������[	�����������������	����	�
presented as Dim WordFacts As New Recognition.SrgsGrammar.
SrgsDocument.

Dim WordRule As New Recognition.SrgsGrammar.SrgsRule (“M_
EIF”).

DimWordList As New Recognition.SrgsGrammar.SrgsOneOf (“See”, 
“Say”, “Do”, “Learn”, “Check”, “Attempt”, “Numbers”, “Books”, “Flow”, 
“Exit”).

WordRule.Add(WordList).
WordFacts.Rules.Add (WordRule).
WordFacts.Root = WordRule.
M_EIF.LoadGrammar (New Recognition.Grammar (WordFacts)).
{>� �	�	|	������	�	���	��	
�	���ß��������	������	������������

to the grammar prescribed in Step 2, or otherwise and these 
�	!���	� �� ��[�������� �	
�	�� ��� ]��|��	� ��[� �ß���� ß
SpeechRecognized (ByVal sender As Object, ByVal e As System. 
Speech. Recognition. Recognition EventArgs) Handles M_EIF.
SpeechRecognized.

which returns the value in e as e.Result.Text 4)       The values in Step 2 are 
connected to the chosen location to display an interface, digit or picture for 
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words designated in Step 3. For example, on uttering the word “See”, the 
system executes frmNumberShow.show. The message “What was that?” in 
the widget is displayed when no matching is attained.

The Source Codes

The following source codes are based on the algorithm derived in Section 
2.4. Figure 9 and Figure 10 show the source codes for M-EIF Main Menu 
and its Speech Recognizer (SR) procedure.
The source codes for other interfaces and their respective SR procedures are 
as follows. The words list used for each form is as given in Table 3.
Number-Explain: “See”, Figure 11 and Figure 12.
Number-Instruct: “Say”, Figure 13 and Figure 14.
Number-Facilitate: “Do”, Figure 15 and Figure 16.
Addition-Explain: “Learn”, Figure 17 and Figure 18.
Addition-Instruct: “Check”, Figure 19 and Figure 20.
Addition-Facilitate: “Attempt”, Figure 21 and Figure 22.

Figure 8. The M-EIF architecture.                                   



Using Speech Recognition in Learning Primary School Mathematics .... 275

Figure 9. M-EIF main menu.                                                     

Figure 10. M-EIF SR procedure.                           
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Figure 11. Number-explain main.                                                   

Figure 12. Number-explain SR.                                                    

Figure 13. Number-instruct main.                                                  
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Figure 14. Number-instruct SR.                                              

Figure 15. Number-facilitate main.                                             

Figure 16. Number-facilitate SR.                               
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Figure 17. Addition-explain main.                                            

Figure 18. Addition-explain SR.                                                 

Figure 19. Addition-instruct main.                                                                  
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Figure 20. Addition-instruct SR.                                      

Figure 21. Addition-facilitate main.                                                            

Figure 22. Addition-facilitate SR.                                     
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The M-EIF Testing

The aim of this research is to develop T & L prototype in basic Mathematics, 
M_EIF based on techniques called EIF, Explain (E), Instruct (I) and Facilitate 
(F) using WSR and MSVB2008. The contents used are part of Elementary 
School Mathematics Curriculum, Saudi Arabia. Figure 23 shows the First 
Form upon executing M-EIF. The prototype only accepts users’ voice, hence 
WSR are required to be installed prior to the testing. The other forms with 
the details are as follows.

1) Number: Explain—“See”
Figure 24 is shown upon uttering the word “See”. By uttering the word 
“Show”, the Number-Explain form randomly displays a digit from 0 to 
9, the corresponding graphics birds and word depending on the digit that 
appeared. Figure 25 and Figure 26 show some sample output “Return” 
forces the lessons back to M-EIF Main Menu, Figure 23.

Figure 23���"����
����������������

Figure 24. Number-explain main.   
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Figure 25. Number-explain “Zero”.   

Figure 26. Number-explain “Nine”.   

2) Number-Instruct—“Say”
Upon uttering the word “Say”, the Number-Instruct form as in Figure 27 
appears. The word “Question” must be uttered next for a computer to show 
randomly a digit ranging from 0 to 9. Figure 28 shows a sample output. 
And for a right answered, the display is as Figure 29, otherwise the “?” is 
unchanged.

3) Number: Facilitate—“Do”
The screen displays the interface as in Figure 30, upon uttering the word 
“Do”. Users have to utter “Question” and a number (0 - 9), then the graphics 
bird is displayed. For the answer, they have to count the number of birds 
and say the number again, then “Yes” to validate. Figures 31-34 shows the 
details for the right answer where Q and A stand for Question and Answer 
respectively. Figures 35-37 is the display the wrong answer.
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Figure 27. Number-instruct main.      

Figure 28. Number-instruct “Question”.  

Figure 29. Number-instruct “Seven”.   
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Figure 30. Number-facilitate main.     

Figure 31. Number-facilitate—“Question”.         

Figure 32. Number-facilitate (Q)—“Seven”.        
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Figure 33. Number-facilitate (A)—“Seven”.         

Figure 34. Number-facilitate—“Yes”.              

Figure 35. Number-facilitate (Q)—“Six”.         
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Figure 36. Number-facilitate (A)—“Five”.        

Figure 37. Number-facilitate (A)—“Yes”.          

4) Addition: Explain—“Learn”
The word “Learn” will show the main form, Figures 38-41 shows the random 
outputs by uttering the word “Show”.

5) Addition: Instruct—“Check”
By uttering the word “Check”, the display as in Figure 42 will be shown. The 
word “Question” will randomly show the position of bird graphics between 
the three different locations, i.e., Figures 43-48 are a right combination for 
answers to a random question in Figure 43.
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6) Addition: Facilitate—“Attempt”
Figure 49 shows the Main form for Addition-Facilitate upon uttering the 
word “Attempt”. From Figure 49, users are required to utter the first number 
and the computer will choose the location. For any number bigger than 9, 
the number will be inserted on the right hand side of the equation. Then, the 
rest has to be completed in turn with the final word is “Yes” to validate the 
answer. Figures 50-53 shows the details for correct answer whilst Figure 54 
and Figure 55 are for the wrong and correct answer respectively.

Figure 38. Addition-explain main.                

Figure 39. Addition-explain “Show”.            
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Figure 40. Addition-explain “Show”.            

Figure 41. Addition-explain “Show”.             

Figure 42. Addition-instruct main.               
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Figure 43. Addition-instruct “Question”          

Figure 44. Addition-instruct “Question”.          

Figure 45. Addition-instruct “Question”.          
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Figure 46. Addition-instruct “Nine”.             

Figure 47. Addition-instruct “Three”.            

Figure 48. Addition-instruct “Twelve”.           



Speech Recognition and Understanding290

Figure 49. Addition-facilitate main.              

Figure 50. Addition-facilitate “Seventeen”.        

Figure 51. Addition-facilitate “Nine”.            
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Figure 52. Addition-facilitate “Eight”.            

Figure 53. Addition-facilitate “Yes”.             

Figure 54. Addition-facilitate “Yes”.              
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Figure 55. Addition-facilitate “Yes”.              

CONCLUSIONS AND RECOMMENDATIONS
The rapid change in mathematics education in as many decades implies a 
wind of change in society. Starting from behavioral theory the 1950-1970, 
Cognitive Science (1970-1980) and from 1980 to the present theory, the 
constructivism has been on the trust. Besides, the e-learning system becomes 
an alternative educational tool that promises to play a prominent role in 
years ahead. An interactive approach in T&L Mathematics using Explain, 
Instruct and Facilitate (EIF) technique is expected to open a new wave in 
mathematical education. The prototype used the multimedia technology 
to support the viability and significant of the approach. The EIF technique 
could be deployed in a developed multimedia courseware and implemented 
at schools for T & L. Learners as beginners on Mathematics or otherwise 
will benefit from the courseware whilst instructors act an aide to facilitate 
them.

One of the criteria that are essential in developing multimedia 
courseware is attractive interfaces and graphic designs. These features 
should be compatible with the local environment and user friendly. The 
consistency between learning objectives and content of instruction are 
required for conveying the right pedagogy with the chosen materials. In 
this research, M-EIF is successfully developed with the contents consist 
of single digits (0 to 9) and the basic facts for addition operation with the 
graphics specially designed for the local environment. The concept of 
interactive techniques has been much emphasized via EIF. M-EIF could 
be used to assist learners in mathematics and also English. Regardless of 
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their competencies, M-EIF provides random examples and questions in 
enriching T & L. M-EIF has been developed for some topics in Primary 
Mathematics with simple graphics representation and voices using WSR. To 
develop better courseware, the expertise in Mathematics or chosen subjects, 
educational psychology, programming, graphics and animations are much 
required and work as a group. By this, then the rest of the contents either 
simple or abstract such as mathematical proofs could be done subsequently 
for the entire curriculum and followed by some tests in schools to acquire 
the feedbacks. The EIF techniques could also be applied in the higher levels 
of education, at secondary schools and university to judge its effectiveness. 
In addition, this technique could also be implemented and tested in other 
�����	��������	��|����[���������
���������	�����	������������	�������	��
improvement on M-EIF is certainly viable. The use of web technology 
might be considered in facilitating T & L to anyone, in everywhere and 
anytime. M-EIF might be regarded as the opening for the development of 
more sophisticated Multimedia–WSR assisted courseware in the future.
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ABSTRACT
In the world, 10% of the world population suffer with some type of disability, 
however the fast technological development can originate some barriers 
that these people have to face if they want to access to technology. This 
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is particularly true in the case of visually impaired users, as they require 
special assistance when they use any computer system and also depend on 
the audio for navigation tasks. Therefore, this paper is focused on making a 
prototype of a semantic platform with web accessibility for blind people. We 
propose a method to interaction with user through voice commands, allowing 
the direct communication with the platform. The proposed platform will 
be implemented using Semantic Web tools, because we intend to facilitate 
the search and retrieval of information in a more efficient way and offer a 
personalized learning. Also, Google APIs (STT (Speech to Text) and TTS 
(Text to Speech)) and Raspberry Pi board will be integrated in a speech 
recognition module.

Keywords: Semantic Web, Ontology, ASR, Raspberry Pi

INTRODUCTION
In recent years the size of the World Wide Web (WWW) has grown 
dramatically; this has led to a considerable increase in the difficulty to find 
data about a particular issue, due to the ambiguity of terms used to make 
queries on the web.

The Semantic Web, also known as the Data Web and Web 3.0 [1] pretend 
to solve this problem creating a mechanism for the exchange information 
with certain meaning. To provide a website with a comprehensible 
meaning by computers, it is necessary to have a knowledge representation. 
The Semantic Web proposes the use of collections of information called 
ontologies in order to have a structured knowledge.

By other hand, people with disabilities are nearly 10% in the world; 
these people have to deal with many physical barriers and some new barriers 
have been added: Technology. These are causing the digital gap, also known 
����	�����������|��	������������������
��������*���

To be precise, in case of blind people, they require special help to 
work with any kind of computer system. Furthermore, these people needs 
appropriate tools to get relevant data from Internet.

From our point of view, in any case, the implementation of a web 
platform has to address certain problems like meaning understandable by 
������	����	�
��	����	���	|�������������������������	���[����������	|	����	�

The World Wide Web Consortium (W3C) offers standards which are 
���	������������ ���	��	��� �	�� ���	�� !�����
�[�	� ���	��� ��	|	��� �	[�
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developers often fail to implement them effectively. One of the reasons is 
that most of the available accessibility guidelines appear too costly [3] .

According to [4] , with the Semantic Web, there are now new 
�����������	�����[������	��[�	�����	�������������		���	��		����������[�	��
students. Disability aware systems could be designed using Semantic Web 
technologies, leading to personalized environments that will enable disabled 
students to have relevant learning resources and to work independently, with 
little assistance from a tutor.

For these reasons, in this paper we make a prototype of a platform based 
on semantic web with speech recognition using natural language allowing 
blind students access to knowledge resources and learn independently of 
their tutor. The present work is divided as follow: in Section 2 we review 
related papers. The next section discusses the current problems. Afterwards, 
in Section 4 we present our proposal, in Section 5 we present the conceptual 
��	�	� ��� �����	����	� ���� 
������ ��� �	������ ¡� 	��	��	�� ������[������ ���
presented.

REVIEW OF LITERATURE
The state-of-art was based in papers related to ontology, Semantic Web and 
accessibility for disabled people. In this section, we review papers from 
2010 to date.

In [3] was developed an ontology called CO to represent user interaction 
in its context and improve web accessibility for all people. In this work, 
����� ���������� ����	���� ��	� ��	���
	�#� ��	�� ����	���� �������� ����	����
environmental context and computational context.

In [5] was developed a model based on ontologies for integrating several 
web services and their delivery to users with reduced mobility. Under this 
proposal, people with disabilities are able to search on web for services.

In [6] was developed a prototype system based on an ontology for 
Internet information retrieval for autistic people through learning styles. 
In this paper, the autistic user expect to retrieve information with different 
������	���������[�������������
�������������������	���	��[	����	�����	������^�
����[�������������	��������	����������������������������^��	�����������
���
the desired result, based on a suitable set of keywords that are based on their 
memories of people with autism.

In [7] was proposed the use of the URC framework (The Universal 
Remote Console) in form of UCH- oriented Gateway (The Universal 
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Control Hub) and some services of Ontologies, such as ODP (Platform for 
dialogue based on Ontologies) to provide interactive services accessible to 
any TV architecture. This platform is called VITAL (Vital Assistance for the 
Elderly) and helps to elderly people to participate in dialogue.

In [4] was developed an ontology called ADOOLES (Abilities 
and Disabilities Ontology for Online Learning and Services) based on 
personalized online instruction for disabled students in higher education. 
This ontology was built on ADOLENA (Abilities and Disabilities Ontology 
for Enhancing Accessibility) that was developed by [8] .

In [9] , a middleware based on ontologies for personalize tourism to 
people with special needs was presented. Its function was to retrieve and 
classify information in places adapted for people with special needs. This 
was supported by PATRAC (Accesible Heritage) philosophy. Furthermore, 
they proposed a content manager based on ontologies divided in three 
designed modules. The content manager uses SOAP (Simple Object Access 
Protocol) web services.

Independently, in [10] was developed HIV (Heavyweight ontology 
Based Information Extraction for Visually impaired User) that provide a 
mechanism for highly precise information extraction using heavyweight 
ontology and built-in vocal command system for visually impaired internet 
users.

Finally, [11] presented the research program of the London Metropolitan 
University, which aims to use Semantic Web and mobile Internet for care 
of the disabled and elderly people using intelligent agents. The authors use 
���������	������[��^��������	����	����������������
�������������������������
Disability and Health (ICF), it has been established as a standard for the 
������
�����������	�|�����������	�����	������	�	��	����	�����	�����	���^�
is a pilot whose ontological domain is disability.

CURRENT PROBLEMS OF WEB PLATFORMS FOR 
ACCESSIBILITY
A review of the literature found the following problems:

�� A big part of e-learning environments are not yet accessible for 
all users, because there are many electronic barriers that prevent 
access to online resources, and it does not have access technical 
aids (such as the use of screen reader) [3] .
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�� The number of students with disabilities in UK higher education 
institutions increases every year. Delivering education online 
is becoming increasingly challenging as institutions encounter 
some disabilities requiring adjustments of learning environments. 
The law requires that people with disabilities be given equivalent 
learning experiences to their non-disabled peers through 
reasonable adjustments. Educational institutions have thus 
utilised assistive technologies to assist disabled students in their 
learning, but some of these technologies are incompatible with 
some learning environments, hence excluding some disabled 
students and resulting in a disability divide [4] .

�� Disabled people represent an important part of our society, they 
have different needs based on the type of disability that they 
presented, and being the assistance provided to them important 
and the use of new technologies should accommodate their needs 
[11] .

PROTOTYPE OF SEMANTIC PLATFORM WITH 
SPEECH RECOGNITION SYSTEM
In order to achieve the prototype we consider the following steps:
1) Building of Ontology. For an easy and rapid extraction of information by 
the user, the knowledge about a particular subject or domain will be stored 
in an ontology. Such ontology contain terms and the relationships among 
these terms. Terms are often called classes, or concepts; these words are 
interchangeable. The relation- ships between these classes can be expressed 
by using a hierarchical structure: superclasses represent higher- level 
concepts and subclasses represent finer concepts, and the finer concepts have 
all the attributes and features that the higher concepts have. The ontology 
is designed in the language OWL (Ontology Web Language) that is most 
popular language for creating ontologies today [12] .
In addition for modelling the ontology we should follow the recommendations 
of Methontology that is a standard created by the Ontology Engineering 
Group of the Polytechnic University of Madrid (UPM), which comprises 
the following steps: Specification, conceptualization, acquiring knowledge, 
integration, implementa- tion, maintenance, evaluation, and documentation 
[13] .
2) Semantic Platform Implementation
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The implementation of the Semantic Platform will be using Jena libraries 
API for Java that allow the management of ontologies in OWL code and 
support a reasoner engine.
According to [14] Jena is a library to develop applications based on RDF 
(Resource Definition Framework) and OWL documents. It is only used in 
application code as a collection of APIs, and there is no GUI of any kind. 
Also provides a framework to development Semantic Web applications 
using Java language.
Furthermore, the platform will be based on the Model-View-Controller 
scheme, which implement servlets to manage user queries. Such queries can 
be verified in an ontological editor using SPARQL (SPARQL Protocol and 
RDF Query Language) [15] , so as W3C recommend, SPARQL will be used 
to consult RDF or OWL documents.
3) Adaptation of Speech Recognition System to Semantic Platform.
Automatic speech recognition systems (ASR) compared to other human-
machine interaction systems like keyboard, mouse, etc. provide better 
naturalness. Speech recognition seems so natural and simple for people but 
for machines is quite complicated. For this reason, a recognition of patterns 
is used, these patterns are a set of linguistic units as (words, syllables, 
sounds, shapes).
There are studies that use queries patterns using SPARQL [16] . We propose 
a mechanism to facilitate the interaction between the user and the platform 
through an interface that use natural language. We pretend to create a module 
that translates user queries in natural language to SPARQL queries. To solve 
this problem we will build a series of templates in SPARQL.
In our platform, a template consists of a SPARQL representation, which 
reflects the internal structure of the question from natural language. This 
module would be integrated into the server and also linked to the ASR system. 
A user with visual disabilities requires an accessible medium to interact with 
the platform. To achieve this, the following processes are required.
a) Voice-to-text. The process used for adapt the voice recognition system is 
the ASR (Automatic Speech Recognition). In [17] , we can see a considerable 
number ASR systems, some open source, other privative and even based in 
cloud services. In the last case, we focus specifically in API Google STT 
Service, because it is a cloud computing system and does not compromise 
the performance of the local computer. According to [18] , thanks to the 
processing in the cloud, the ASR can be used in devices that have no high-
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performance processor and avoid the use of complex algorithms. In [19] was 
presented a system using API Google STT that operate together with reduced 
board computer Raspberry Pi, with excellent results (85% - 90% accuracy). 
The advantage of using this Raspberry Pi is its small size that makes ideal 
to be embedded anywhere, without saturating the available space. By other 
hand, the low cost of equipment enables this massive distribution.
b) Text-to-Speech. To convert Text to Speech (TTS) we propose to use 
the cloud services of Google, using Google Translator, although is a less 
complex process compared with ASR. Other possibility could be run locally 
on your Raspberry Pi, obviously with a reduced quality of voice synthesis.

CONCEPTUAL SCHEME OF ARCHITECTURE
The conceptual scheme is roughed out in Figure 1 and explained as follow.
1) Information Request Module (IRM).
This module allows the user to makes consult through the keyboard and 
computer screen, this information is sent to a KRM. Once information is 
processed, the requested are shown to the user in the Prototype Portal.

Figure 1. Conceptual scheme of architecture.

2) Knowledge Representation Module (KRM). The module consists of an 
ontology that contains all the con- cept models of study case, and is used 
to describe and represent a specific area of knowledge such as medicine, 
tourism, film, etc.
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The ontology provides a way to encode knowledge and semantics such 
that machines can understand. Also, the ontological model contain logical 
rules. These rules depend on the selected domain, and it will need to be 
implemented as part of ontological model properties.
Depending on the source of the query, this module can interact with the other 
modules including IRM and NLM. In our prototype the SPARQL language 
will be used to extract different information from the ontology and answer 
the queries made by different modules.
3) Speech Recognition Module (SRM). This module allows to visually 
impaired people make queries in our Semantic Platform. For instance, the 
user ask for information in the microphone and such consult is converted 
to text in the ASR system. Then, this text is sent to the NLM to identify the 
appropriate template. After identifying the appropriate template, in KRM 
we make the SPARQL query to get the required information. This informa- 
tion is returned to the SRM in order to be converted to speech using TTS 
(Text-to-Speech). Finally, information is read for the user.
4) Natural Language Module (NLM). This module analyses and compare 
text queries come from SRM with certain patterns to create queries in 
SPARQL language and then it will be sent to KRM.
Although the process of formulating a natural language query and transform 
to SPARQL language is quite complex, it is possible to perform the query 
using query patterns [16] .
In [20] , they present a new approach based on a syntactic analysis of the 
questions to produce a SPARQL template that reflects the internal structure 
of the question.
With this in mind, we propose to use a series of templates associated with 
natural language. To give an illustration, in the query “Tell me the name of 
all transport to the city of Lima”, template natural language query would 
be: “Tell me the name of all transport to the city of %PLACE%” where 
%PLACE% is a variable that the system recognize and is associated in the 
following SPARQL template:
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The system will replace the variable %PLACE% with Lima and send 
SPARQL query resultant to the KRM, where the information initially is 
requested, will be obtained, finally this information will be read by the SRM.

EXPECTED CONTRIBUTIONS AND FUTURE WORK
Actually, there are studies about the accessibility to internet for disabled 
people using tools of the Semantic Web. The reason of our proposal is 
the lack of works that use natural language to achieve the integration of 
semantics and ASR systems as a tool for people with visual disabilities.

The implementation must choose a particular domain and such ontology 
�����������������^����	��	����������	��
���������

Once implemented the prototype of Semantic Platform with ASR 
����	����	�����������[	�	
�����	�	��	��	�#

�� The integration of semantics and ASR system using natural 
language for assisting visually impaired people through the web.

�� The developed platform architecture based on the prototype.
�� The high accuracy with the use of the Raspberry Pi in ASR 

implementation.
�� Generation of different templates SPARQL depending on the 

domain ontology for natural language queries.
�� The expected SPARQL query templates will be quite similar to 

queries in the day-to-day language.
�� As a complement and from the implemented prototype, a 

navigation support systems using voice commands, can be created 
to help people with visual disabilities, providing autonomy in its 
movement in an unfamiliar environment.

�� �	� ������������� ��� �� ���	� �	��[�	� ���� �	��������	�� ���������
using tools of the Semantic Web.

As a future work, we expect to develop a prototype in the domain of 
tourism. The prototype will help people with visual disabilities to obtain 
information about several tourist attractions in Peru.
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ABSTRACT
For English sentences with a large amount of feature data and complex 
pronunciation changes contrast to words, there are more problems existing 
in Hidden Markov Model (HMM), such as the computational complexity 
of the Viterbi algorithm and mixed Gaussian distribution probability. This 
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article explores the segment-mean algorithm for dimensionality reduction 
of speech feature parameters, the clustering cross-grouping algorithm and 
the HMM grouping algorithm, which are proposed for the implementation 
of the speaker-independent English sentence recognition system based on 
HMM and clustering. The experimental result shows that, compared with 
the single HMM, it improves not only the recognition rate but also the 
recognition speed of the system.

Keywords: English Sentence Recognition, HMM, Clustering

INTRODUCTION
The pauses between English words can simplify speech recognition. Because 
the endpoint detection of a word (i.e. detecting the starting point and the end 
point of the word) is relatively easy, and the Coarticulation effect between 
words can be reduced to the minimum. In addition, generally the word 
pronunciation is more serious, because there must have pauses between 
words which make less fluent reading. In view of the above reasons, many 
techniques can be used for the English word speech recognition system [1].

Compared with English word, more feature data and more complex 
changes in pronunciation make the English sentence speech recognition 
���	� ���
������ ��������� ������� �	��	��	� ��� �� ����	�� |���[������ ���� ���
obvious pause between words with pronunciation. That is to say, there is 
no clear boundary between sub-words. Secondly, every word pronunciation 
in English sentence is usually more natural, and associated language 
pronunciation is more casual than isolated word pronunciation, thus the 
coarticulation effect is more serious. Furthermore, affected by the context, 
in the process of English pronunciation, rhythm, intonation, stress and speed 
in English sentence may be different, even the same speaker at different 
times or in different environment, the prosodic features are different.

As a mainstream technology for large-vocabulary speaker-independent 
continuous speech recognition system, the Hidden Markov Model (HMM) 
[2-5] has achieved considerable success. Analyzing the short-term energy 
of speech signal and extracting the speech feature with a frame length, this 
paper takes Markov modeling on the whole sentence [6,7]. Model training 
uses a training set recorded by many speakers and the statistical theory is 
used to resolve the differences between the individual and the whole, so as 
to make the speaker independent single sentence Markov modeling robust. 
When recognizing speech, the system uses Viterbi algorithm to decode and 
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������� �	�����	��� �	���������� �	���������������^�|����	�������������	�
sentence can describe the correlation of the words within each sentence. 
���	���	�����������������
��	��������������		����	���	�^	�����	�	��	���
small statement English sentences modeling can be achieved with a high 
accuracy. However, HMM needs prior statistical knowledge of speech signal 
��������	�^�������
��������	��������[������������	�����[�	��������������
the computational complexity of the Viterbi algorithm and mixed Gaussian 
distribution probability�� �	�	� ������������ ��^	� ��� ���
����� ��� ����	��
improve the recognition performance of the single HMM [8].

���������	����	�����	���_"<`������	�
	��������		���	���������������|	�
clustering algorithm within HMM and take them as the method of pattern 
������
�������� ����������	� �	����	�������	�	���	�����������[��� �	�	��	���
for sentence recognition was not ideal. For English sentences with a large 
amount of data and complex pronunciation changes, the shortage of HMM 
is more apparent, making recognition time longer. In order to effectively 
�����|	� �	� �	���������� 	�
��	����� ���� ���	��� ��� �	� [����� ��� �	� �����	�
HMM, attempts to integrate clustering algorithm with HMM and apply to 
the English sentence recognition. According to the characteristics of English 
sentences and the similarity between them, the English sentences data set 
is divided into several groups, each of which consists of some sentences 
with similar phonetic feature. So when recognize an English sentence, there 
is no need for all the sentences on Viterbi decoding, just to calculate the 
HMM parameters within the selected group which the input speech belongs 
to. In the case of appropriate clustering groups, the system will save a 
considerable mount of calculation, and the recognition performance can be 
greatly improved. This is not only to provide a new reference method for 
speech recognition in small device applications which meet the requirement 
of realtime, but also to lay the foundation of speech recognition for a new 
English sentence evaluation system.

WHOLE DESIGN PROCESS
As shown in Figure 1, first to pretreat the input speech signal, including pre-
emphasis, frame processing, window adding and endpoint detection. Then 
extract the speech feature parameters MFCC and reduce the dimensionality 
of MFCC by segment-mean algorithm. The dynamic time warping (DTW) 
algorithm is followed to determine the speech feature clustering group K. 
Then calculate the HMM parameters within Group K and finally output the 
recognition results with post-processing.
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CORE ALGORITHM

Segment-Mean Algorithm

As K-means clustering algorithm has the iterative characteristics with 
randomly selected sample point, coupled with the higher dimensionality of 
speech feature parameters, so the stability of clustering results is relatively 
poor. For this reason, this article explores the segment mean algorithm for 
dimensionality reduction of speech feature parameters, as shown in Figure 
2.

Fragmenting the speech feature parameters into segments with the same 
dimension, the Segment-Mean algorithm consists of four steps:

<>�� �	
�	��	���		���	����	������	�	��������'%��>���	�	�%��	���	��
the orders of the MFCC parameters; J denotes the number of 
fragmented frames. Assumes T is the number of frames before 
fragmented. Then fragment the speech feature parameters into N 
segments can be:

    (1)
 M(i) represents the i-th segment of the fragmented speech feature 

parameters. The value of N is set to the statue number of the 
HMM.

2)  After fragmenting the speech feature parameters into average 
segments, we continue fragment M(i) into M average segments 
(The value of M is set to the observation sequence number of 
the HMM). The calculations of child segments see the above 
formula.

3)  The mean of each child segments is given by , k = 1,2, …, 
M.
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Figure 1. The frame diagram of speech recognition based on HMM and cluster-
ing.

Figure 2. Segment-mean algorithm for dimensionality reduction of voice fea-
���	���	�
��	����

4)  Merge all the mean of the child segments into a matrix. The 
matrix denotes the speech feature parameters output after 
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���	����������� �	��������� ��� ��� �	
�	�� ��� . The size of 
 is .

The total numbers of parameters in Figure 2 are shown in Table 1. The 
segment-mean algorithm turns the size of feature parameters matrix from 
T ² K to K ² M ² N. That is to say the algorithm successfully removes 
the frame length T from the matrix. This means, the matrix (dimensionality 
reduction) keeps the same size after the segment-mean calculation. And 
the size of feature parameters matrix is determined for K (the orders of 
the speech feature parameters), N (size of the segment) and M (size of the 
child segment).This makes speech with different length can be structured 
as a matrix of the same size, which largely facilitates the implementation of 
speech feature clustering algorithm.

Clustering Cross-Grouping Algorithm

In order to further enhance the performance in the field of speech feature 
clustering, this paper presents a new secondary training method-clustering 
cross-grouping algorithm.

As shown in Figure 3, the clustering cross-grouping algorithm consists 
of three steps:

�� Cluster the features of the training speech samples using K-means 
clustering algorithm.

�� Calculate the distances between the training speech samples 
and the cluster centers using dynamic time warping (DTW) 
algorithm. For each sample, the minimum distance determines 
its target group.

�� Check whether the target group contains the training sample. If 
������	��� �	� ������
������� ��� ����	���� 	��	� �	� �	��	��	������ [	�
added to the target group.

HMM Grouping Algorithm

In the recognition system based on single HMM, when using Viterbi 
algorithm to do decoding operations, all the model parameters must be 
involved in the computation. Assume the number of system vocabulary is 
n, then the number of HMM parameters is n. When recognizing a sentence, 
each output probability is calculated by Viterbi algorithm within n HMMs 
respectively. Because each isolated sentence has a unique HMM parameter 
with corresponding. We are able to have the sentences in the feature 
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clustering groups mapped to the corresponding HMM parameters. Therefore 
we achieve the clustering grouping HMM model as Figure 4 shown.

As the clustering cross-grouping algorithm is good in grouping 
performance, the number of the HMM parameters in the clustering group 
is always less than or equal to the number of system vocabulary. Also, the 
improved speech feature clustering model ensures a high grouping accuracy 
rate. Hence, this paper proposes to integrate the feature clustering model and 
HMM to form a hybrid model—English sentence recognition system based 
on clustering and HMM (as Figure 1 shown).

EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the validity of the proposed model, the recognition rate and 
time on the single HMM and the hybrid model based on HMM and clustering 
were compared in speaker-independent English sentence recognition 
systems. The number of system vocabulary is 30. This experiment selects 
30 different English sentences as standard sentences, 900 English sentences 
recorded by 30 individuals as training samples and 450 English sentences 
recorded by 15 individuals as test samples.

Table 1���	������	�	����[�	����|���	��	����	���	�
��	��������	�������	��	��"
mean algorithm.

Figure 3. Clustering cross-grouping algorithm.
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Figure 4. HMM grouping algorithm.

Take Sentence 1 “Can I have breakfast served in my room?” as an 
example to show the recognition rate and time in different recognition 
methods.

For example, comparing the sentences from Student 1, the system gives 
recognition results as shown in Figure 5.

No matter whether of the single model or the hybrid model the recognition 
results are correct, but the former total recognition time is 1.85 seconds, the 
latter total recognition time was 1.41 seconds, only 76.22% of the former. 
����������������	��	�������������	��	��	��	��������	�����	��	�
��	�������
improved.

Compare the sentences from all the students (student 1 to 15), the results 
are show as Table 2. The experiments show that the recognition rate of the 
single HMM and the proposed model are both 100%; but the former average 
recognition time is 1.5753 seconds, the latter average recognition time of 
1.2587 seconds, only 79.90% of the former, so as to improve the recognition 
	�
��	����
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Figure 5. The recognition result of sentence 1 from student 1.

Table 2. The recognition time table of sentence 1 (15 samples) in different rec-
ognition methods.

Table 3. The overall recognition performance table in different methods.

Table 3 is the overall recognition performance comparison in different 
recognition methods. The experimental results show that, compared with 
the English sentence recognition system based on single HMM, the average 
recognition rate of the English sentence recognition system based on HMM 
and clustering (the proposed model) increased by 2.89%, while the average 
recognition time accounted for only 69.25% of the former, improving the 
����	��	�
��	����

CONCLUSION
On the basis of the English sentence recognition method and the traditional 
HMM speech recognition technology, an improved algorithm based on HMM 
and clustering is proposed for the implementation of the English sentence 
recognition system. The experimental results show that the improved system 
in accordance with the method proposed in this paper, not only improve the 
recognition rate of the system, but also reduce the amount of computation 
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of the system (i.e., the recognition time), to achieve the goal of improving 
system performance. But how to determine the clustering groups to further 
improve the recognition efficiency and applied to more large-scale English 
sentence recognition is in need of further research.
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ABSTRACT
This paper tries to find out five poets’ (Thomas Hardy, Wilde, Browning, 
Yeats, and Tagore) differences and similarities through analyzing their works 
on nineteenth Century by using natural language understanding technology 
and word vector model. Firstly, we collect enough poems from these five 
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poets, build five corpus respectively, and calculate their high-frequency 
words, by using Natural Language Processing method. Then, based on the 
word vector model, we calculate the word vectors of the five poets’ high-
frequency words, and combine the word vectors of each poet into one vector. 
Finally, we analyze the similarity between the combined word vectors by 
using the hierarchical clustering method. The result shows that the poems 
of Hardy, Browning, and Wilde are similar; the poems of Tagore and Yeats 
are relatively close—but the gap between the two is relatively large. In 
addition, we evaluate the stability of our approach by altering the word 
vector dimension, and try to analyze the results of clustering in a literary 
(poetic) perspective. Yeats and Tagore possessed a kind of mysticism poetics 
thought, while Hardy, Browning, and Wilde have the elements of realism 
combined with tragedy and comedy. The results are similar comparing to 
those we get from the word vector model.

Keywords: Poets, Natural Language Processing, Word Vector Model, 
Similarity, Cluster Analysis

INTRODUCTION
Deep Learning is a new field in machine learning, a learning method based 
on the representation of data. The concept is derived from the study of 
artificial neural networks. By combining low-level features to form a more 
abstract high- level representation of attributes, categories, or features, the 
aim is to discover the distribution of data. The earliest neural network in deep 
�	���������������	��������	���]�����
������	��������	�����<_`{�'���������
2016 ), which was used to simulate human neuronal responses by computers 
at that time. In 1958, Rosenblatt invented the perceptron algorithm that used 
MCP for machine learning (Rhys, 2017).

The deep learning in natural language began in 2006 when Hinton 
proposed the concept of Deep Belief Network (DBN) ( Imagination Tech, 
*+<��>��]�	|���������	��	������	����^������������	����	������������
�����
to train, and only studied as a mathematical theory. In addition, Word vector 
model is the most common model used in natural language deep learning 
process. The core idea of this model is to symbolize the language into 1 
and 0, a mode that is suitable for machine learning. Andrew L et al. used 
a probabilistic model of documents, which learns semantically focused 
�����|	�����������	�����	�������	��	�	������������	����	�������	������
semantics ( Maas, Andrew, & Ng, 2011 ).
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Mikolov et al. proposed two new model structures for computing 
continuous vector representations of words from very large data sets to 
measure the similarity between syntactic and semantic words, and the results 
are compared to the previously techniques based on different types of neural 
networks ( Mikolov, Chen, Corrado, & Dean, 2013 ).

Attabi et al. studied the effectiveness of anchor models to solve multiple 
emotion recognition problems from speech, based on the FAU AIBO 
���������������������[��	�����������	���������	�Û����		���������	��
with generative model such as the Gaussian Mixture Models, the anchor 
���	��� �����|	� �����
������� �	� �	��������	� ��� ����� [�� ¡�*� �	��	���
relative in such problems ( Attabi & Dumouchel, 2013 ).

Sreeja et al. discussed the automatic recognition of emotions in English 
poems, which included Love, Sad, Anger, Hate, Fear, Surprise, Courage, 
Joy and Peace, by using the Vector Space model with a total of 348 poems 
of 163 poets mined from the web ( Sreeja & Mahalakshmi, 2016 ).

È��� �̈�������	�������������	��	��	���	������� �	����	�	�ñ�����
È���� [�� ������ �	� �����*|	�� |	����� ���	�� ��� ���	�	� ��������� �	��
found out that the convolutional neural network (CNN) with topic2vec 
gained an accuracy of 98.06% for long content texts, 93.27% for short time 
texts and an improvement comparing with other word embedding models ( 
Zhou & Fan, 2016 ).

According to a series of previous study in deep learning of natural 
�������	���	�����
����������	��|	������	���	�������������	�����������
text on the basis of word vector models. Some, based on the study of their 
��	�	�	������� ������	�� �	� 	�
��	���� ��� ����	�	��� ���	��� �����	�� ��� �	�
similar task. Others did detailed research such as using plenty of poems as 
corpora to carry out emotion recognition. Based on the study above, we will 
use the traditional word vector model for comparative poetics study.

MATERIALS AND METHOD
We will describe them from data, word vector calculations, and comparative 
approaches among poets in the following content.

Materials

Four of the five selected poets are from England, including Thomas Hardy, 
Wilde, Browning, and Yeats. The one left is Tagore, a poet from India. We 
selected a total of 257 poems from Thomas Hardy ( Poemhunter, 2017 ), 96 
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poems from Oscar Wilde ( Poemhunter, 2017 ), 63 poems from Browning ( 
Blackcatpoems, 2017 ), nearly 400 poems from ( Yeats, 1951 ; Blake, 2002), 
and 86 poems from Tagore ( Tagore, 2011 ).

�	�������	����������	�	�������	�
|	���	����������|�����	�	����������	��
by all sorts of differences. Firstly, the origin version of poems of their works 
are all in English. In this way, we do not need to translate their works in 
which we get the second-hand poems containing the translation errors in 
order to get accuracy results from analysis. Secondly, the gaps between their 
living years are very small since nearly all of their works are produced in 
early nineteenth Century to mid twentieth Century, which was the golden 
years of the development of European poetry. Thus, the problems which 
may be caused by the differences between archaic words and modern words 
can be effectively avoid. For example, in old English, poets used “thou” in 
lieu of “you” to express you’s nominative form and “thee” in lieu of “you” 
���	���	������Û����������|	� �������	�
|	���	�������������	�	���������
nineteenth Century and twentieth Century almost eliminate the use of old 
English, although some old words may also appear in their poems rarely. 
In other words, we will not choose to compare Beowulf with Mark Twain’s 
The Million Pound Note because they do not belong to different language 
systems at various times.

Word Vector Calculation

Although the research of natural language has already existed, traditional 
natural language study is a basic bottom-up study, from words, sentences, 
and paragraphs, and finally to the structures of text, but still can not let the 
computers understand the natural language well. One of the obstacles is the 
poor understanding of semantics. Before word2vec occurred, the research of 
semantic in NLP was mainly based on the understanding of latent semantic 
(LSA, Latent Semantic Analysis), and then its subsequent model (topic 
model) was introduced ( Niketim, 2016 ).

Word2vec and topic models are completely different things. In the topic 
model, the basic granularity is still the word, and the topic is a probabilistic 
combination of words.

The semantics mined from the topic model of the article is at high 
level. In word2vec, however, the word “fundamental granularity” has a new 
expression, which is called the word vector (word embedding).
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Before the occurrence of word vector, we often used the method called 
1-of-N (or one-hot). In this representation, the great majority of elements is 
0, and only one dimension is 1. This dimension represents the current word.

������	� ���� �	� �|	� 
|	� ������ ��� ���� ��[�	#� %����� ñ�		��� �����
Woman, Child. If we want to represent ‘Queen’, we can express it in 1-of N, 
as shown in Table 1.

This simple method has two drawbacks. One is the curse of dimensionality. 
Another is a phenomenon called “lexical gap”, namely the isolation between 
any two words, and is unable to judge a synonym like “microphone” and 
“Mike”.

The new method of word representation is called Distributed 
Representation. This method in representing word uses the position of a real 
|	���������	��	�	������������������+��_*��°+�<����°+�<+���+�<+_��°+�=`*��
…], as shown in Table 2.

For each poet, we combine all the poems we collected, and construct 
the corpus by NLTK. Then, the corresponding word vectors are generated 
by Word2vec.

Natural Language Toolkit, referred to as NLTK, is a Natural Language 
Processing kit and a often used Python library in NLP, which was developed 
by Steven Bird and Edward Loper in the information science department at 
University of Pennsylvania ( Baike, 2017 ).

Comparative Approaches among Poets

For each poet, we find the common high-frequency words of him and other 
poets, and assume that each high-frequency word is a 100 dimensional 
vector, and finally combine all the vectors into one corresponding to the 
high-frequency words.

�	��� �	� ��������	� �	� �������	� [	��		�� �	� 
|	� |	������ [�� �����	�
method. The cosine similarity is derived by the cosine value of the angle 
between the two vectors in the vector space to measure the difference 
between the two individuals. The closer the cosine is to one, the more the 
angle is closer to zero degrees, namely the close resemblance between the 
two vectors. This is called “cosine similarity” ( Yuhushangwei, 2016 ).
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Table 1. Expression in 1-of-N.

0 1 0 0 0

King Queen Man Woman Child

Table 2. Distributed Representation.

King Queen Woman Princess …

Royaling 0.99 0.99 0.02 0.98 …

Mascalining 0.99 0.05 0.01 0.02 …

Feminin 0.05 0.93 0.999 0.94 …

Age 0.7 0.6 0.5 0.1 …

… … … … … …

$��	���	��	���	��������	�[	��		���	�
|	���	�����	�|���	������[�����	��
[��<�������	�������	�� ����|���	���� �	������������[	��		�� �	�
|	���	����
Afterwards, we employ cluster analysis to analyze the relationship between 
�	�
|	���	���

�	�����	�	��	�[	��		�������	���������������
���������������	������	��
��|��	��[�������	�������	���^�����������	����� ��� ������	��� ���� ������
	��
data into different classes or clusters, so the objects in the same closer have 
great similarity, while objects between different clusters have great diversity. 
From the point of view of statistics, clustering analysis is a way to simplify 
date through data modeling.

There are many kinds of clustering methods, and here we use hierarchical 
clustering. This method decomposes the given date set as a hierarchical 
level until reaching a certain condition. Concretely, it can be divided into 
two programs: condensed and split. Hierarchical agglomerative cluster is a 
bottom-up strategy. Firstly, take each object as a cluster, and then combine 
these clusters into bigger clusters until all the objects are in one cluster, 
or a certain condition is reached. The great majority of the hierarchical 
�����	����� �	���� [	������ ��� ���� ������� ���� ����� �	� �	
�������� ��� �	�
similarity between clusters are different. Split level clustering is opposite 
to hierarchical agglomerative cluster, by using strategy of top-down. It will 

�������������	��[À	�����������	������	��������	��������������[��|��	���	��
into smaller clusters until each object form a cluster, or a certain condition 
is reached.
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RESULTS
We will show our results from three aspects: statistics of high-frequency 
word, similarity calculation, and cluster analysis.

Statistics of High-Frequency Word

The statistics of the high-frequency words of the five poets are shown in 
Table 3. This table is arranged from left to right, and from top to bottom. The 
word in the upper left corner has the highest number of occurrence, which 
is 1225; The word in the lower right corner has the minimum number of 
occurrence, which is 392.

Similarity Calculation

We set the word vector dimension to 100, then calculate the word vector, and 
finally compare the similarity between the five poets, as shown in Table 4.

Cluster Analysis

Based on Table 4, we use hierarchical clustering, and the results are shown 
in Figure 1.

Table 3��]�[�������"��	!�	����������'
����*+>�

word times word times word times word times

one 1225 come 715 know 530 shall 432

would 999 day 661 time 504 upon 420

like 941 life 623 king 480 never 416

said 821 man 584 old 442 night 399

heart 786 love 531 could 441 let 392

Table 4. Similarity between the Five Poets.

browning hardy tagore wilde yeats

browning 1.00 0.79 0.22 0.81 0.26

hardy 0.79 1.00 0.54 0.78 0.54
tagore 0.22 0.54 1.00 0.34 0.61
wilde 0.81 0.78 0.34 1.00 0.40
yeats 0.26 0.54 0.61 0.40 1.00
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Figure 1. A Hierarchical Clustering Map of Five Poets by a 100 Dimensional 
Vector Model.

��� �����	� <�� �	� �[������� ��� 
|	� ��	���� �	� �������	� ��� �	� �������	�
between those poets. The shorter the distance between the poets, the higher 
the similarity. From Table 1, Hardy, Browning, and Wilde are similar, with 
the difference of about 0.2, especially the latter two. Tagore and Yeats are 
����	����	�����	��������	�����	�	��	�����[����+�`�������������	�����	�
����
three poets. However, the difference between the group of Hardy, Browning 
and Wilde and the group of Tagore and Yeats is large, with the value between 
0.7 and 0.8 (the largest difference is 1).

DISCUSSION
As mentioned earlier, we talked about the definition of 100 dimensional 
computational vector of word, and obtained the results in Tables 1-4. In 
oder to test the stability of the results, we also use 80 dimension and 120 
dimension to calculate the word vector, and the result we get from the 
calculation is very close to that of 100 dimension. Take 120 dimension as an 
example. The clustering result we obtain is shown in Figure 2. The results 
of Figure 1 and Figure 2 are very close to each other, indicating that our 
method is stable and reliable.

From a literary perspective, Tagore is a patriotic poet, and his works 
reveal his patriotism and the spirit of Democracy. Yeats showed the reverence 
to Aestheticism and Romanticism in his early years. After he experienced 
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the nationalist political movement in Ireland in his forties, the style of his 
poetry gradually went close to realism.

Tagore and Yeats developed their friendship because of poetry. They 
shared many points of view in literature. First of all, Tagore and Yeats had 
direct contacts in life. In 1912, they met each other due to “Gitanjali”. 
Yeats admired Tagore’s talent very much, and helped Tagore publish this 
collection and made the preface of it. Second, both of them possessed a 
kind of mysticism poetics thought. Tagore’s belief is a mixture of religious 
philosophy while Yeat’s belief is derived from his natural disposition, which 
is personal philosophy. Third, although they are modern poets, they do not 
belong to Modernism since both of them criticize the modernist literature in 
their poems. Therefore, the results we obtained from literary appreciation 
are similar to those gained from the cluster analysis above ( Wang, 2012 ).

Wilde is one of the representative poets of aestheticism, with fairy tales as 
the main characteristic. His poems are full of the elements of duality, which 
shows the simultaneism of aesthetics and tragedy. Wilde is good at describing 
the contradiction between characters and the cruel social background. His 
tragic beauty and death consciousness contain his understanding about life 
( Sun, 2012 ).

Figure 2. A Hierarchical Clustering Map of Five Poets by a 100 Dimensional 
Vector Model.

Likewise, the poems of Thomas Hardy also have tragic color, which is 
mostly the natural revelation of personal experience and emotion. Hardy 
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believes that society is the root of pain; the personality of human beings 
leads to the suffering in the world; and the destiny is controlled by the 
universe. The analysis of these unique perspectives illustrates the ubiquitous 
tragedy and distress in his poems ( Ma, 2009 ). Robert Browning is a British 
poet and a playwright. He creates a unique from of poetry, referred to as 
“dramatic monologue”, using a cinematic narrative technique-Montage-
to restructure and integrate time and space. Browning loves to show the 
changes in characters’ psychological and story scenes through personal 
confession. Owning the color of the mixture of tragedy and comedy, His 
poems express the complexities of the characters and their attitudes of life. 
To sum up, although the styles of the three poets belong to different genres, 
all of them do well in depicting tragedies, and showing the irreconcilable 
contradictions between man and society ( Zhang, 2007 ). Thus, the results 
we obtained from literature perspective are similar to those gained from the 
cluster analysis above.

�	������������[����������������^�������������	�	��������	�
�������^�
to study different poets’ works by using the word vector model, which is 
pioneering and original. The drawback is that the number of the poets we 
used is limited. Also, the poet’s geographical distribution was not uniform 
	���������	�����	�
|	���	�������������	�����	���������������������	�
left came from India. Finally, the dimensions we used are limited that we 
only employed 80, 100, and 120 the three dimensions to calculate their 
difference, but larger ones have not been used.

CONCLUSION
This paper uses vector model and hierarchical clustering in deep learning 
�����|	������	��	�����������	��[	��		���	����^������	���|	���	���������
Hardy, Oscar Wilde, Robert Browning, William Yeats, and Rabindranath 
�����	���� �	� ���	�		��� �	������� «��� �	�	���� ������[��	�� ��� �	� ��	���
which combines mathematical analysis and literary analysis together. 
High frequency words picked from the five poets are analyzed by the 
word vector model in 100 dimensions. The results show that the poems of 
Hardy, Browning, and Wilde are similar; the poems of Tagore and Yeats are 
relatively close. We also have employed other dimensions such as 80 and 
120 to test the stability of our results, which have been proved reliable then. 
In addition, we have obtained the similar results by analyzing the works of 
the poets from a literary perspective which indicate their similarity in the 
interpretation of the tragedy, and the conflicts between men and the society.
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ABSTRACT
Natural language understanding is to specify a computational model that 
maps sentences to their semantic mean representation. In this paper, we 
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propose a novel framework to train the statistical models without using 
expensive fully annotated data. In particular, the input of our framework 
is a set of sentences labeled with abstract semantic annotations. These 
annotations encode the underlying embedded semantic structural relations 
without explicit word/semantic tag alignment. The proposed framework 
can automatically induce derivation rules that map sentences to their 
semantic meaning representations. The learning framework is applied on 
two statistical models, the conditional random fields (CRFs) and the hidden 
Markov support vector machines (HM-SVMs). Our experimental results 
on the DARPA communicator data show that both CRFs and HM-SVMs 
outperform the baseline approach, previously proposed hidden vector state 
(HVS) model which is also trained on abstract semantic annotations. In 
addition, the proposed framework shows superior performance than two 
other baseline approaches, a hybrid framework combining HVS and HM-
SVMs and discriminative training of HVS, with a relative error reduction 
rate of about 25% and 15% being achieved in F-measure.

INTRODUCTION
Given a sentence such as “I want to fly from Denver to Chicago,” its 
semantic meaning can be represented as FROMLOC(CITY(Denver)) 
TOLOC(CITY(Chicago)).

Natural language understanding can be considered as a mapping problem 
where the aim is to map a sentence to its semantic meaning representation (or 
abstract semantic annotation) as shown above. It is a structured classification 
task which predicts output labels (semantic tag or concept sequences) from 
input sentences where the output labels have rich internal structures.

������ �������	�� �	���������"�����	�� �	��������������� ���	�� ���
���
slots in semantic frames using word pattern and semantic tokens [1, 2]. 
�������	"[��	���������	����	�����������������"��	��
���������	��������	��
In contrast, statistical approaches are able to accommodate the variations 
found in real data and hence can in principle be more robust. They can 
be categorized into three types: generative approaches, discriminative 
approaches, and a hybrid of the two.

Generative approaches learn the joint probability model, (+, ), of input 
sentence  and its semantic tag sequence +, then compute �(+ | ) using 
���	�Û����	������
��������^	��	���������[�[�	��	������������	!�	��	�+. The 
hidden Markov model (HMM), a generative model, has been predominantly 
employed in statistical semantic parsing. It models sequential dependencies 
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by treating a semantic parse sequence as a Markov chain, which leads to 
���	�
��	������������������������������������������	�	��	������	��������
Discriminative approaches directly model posterior probability (+ | ) and 
learn mappings from  to +�� ������������ ������� 
	���� '�\��>, as one 
�	��	�	�����|	� 	�����	�� �	
�	� �� ������������ ���[�[������ ������[������ �|	��
label sequence given an observation sequence, rather than a joint distribution 
over both label and observation sequences [3]. Another example is the 
hidden Markov support vector machines (HM-SVMs) [4] which combine 
�	��	��[���������^	��	���	����������	���	���������������	���������[	��
sequence given an input sequence.

Nevertheless, statistical models mentioned above require fully annotated 
������������ ���������������	����
����� ����[����� ���������������������������
It thus motivates the investigation of train statistical models on abstract 
semantic annotations without the use of expensive token-style annotations. 
This is a highly challenging problem because the derivation from each 
sentence to its abstract semantic annotation is not annotated in the training 
data and is considered hidden.

A hierarchical hidden state structure could be used to model embedded 
structural context in sentences, such as the hidden vector state (HVS) model 
[5], which learns a probabilistic pushdown automaton. However, it cannot 
incorporate a large number of correlated lexical or syntactic features in input 
sentences and cannot handle any arbitrary embedded relations since it only 
supports right-branching semantic structures.

In this paper, we propose a novel learning framework to train statistical 
models from unaligned data. Firstly, it generates semantic parses by computing 
expectations using initial model parameters. Secondly, parsing results are 
�	��
��	�	��[��	��������	����	��	����[�����	��	|	��������		�	��������	�
�	��	��	��[��������	�����������������������������	�
��	�	�����������	������
are fed into model learning. With the reestimated parameters, the learning 
of statistical models goes to the next iteration until no more improvements 
could be achieved. The proposed framework has two advantages: one is 
that only abstract semantic annotations are required for training without 
the explicit word/semantic tag alignment; and another is that the proposed 
learning framework can be easily extended for training any discriminative 
models on abstract semantic annotations.

We apply the proposed learning framework on two statistical models, 
CRFs and HM-SVMs. Experimental results on the DARPA communicator 
data show that the framework on both CRFs and HM-SVMs outperforms 



Speech Recognition and Understanding338

the baseline approach, the previously proposed HVS model. In addition, the 
proposed framework shows superior performance than two other approaches, 
a hybrid framework combining HVS and HM-SVMs and discriminative 
training of HVS, with a relative error reduction rate of about 25% and 15% 
being achieved in F-measure.

The rest of this paper is organized as follows. Section 2 gives a brief 
introduction of CRFs and HM-SVMs, followed by a review on the existing 
approaches for training semantic parsers on abstract annotations. The 
proposed framework is presented in Section 3. Experimental setup and 
results are discussed in Section 4. Finally, Section 5 concludes the paper.

RELATED WORK
In this section, we first briefly introduce CRFs and HM-SVMs. Then, we 
review the existing approaches for training semantic parsers on abstract 
semantic annotations.

Statistical Models

Given a set of training data � = {(
�
, +

�
), � = 1, . . . , 	}, to learn a function 

that assigns to a sequence of words  = {,1 , ,2 ,...,,�}, ,� & s, � = 1, . . . , �, 
a sequence of semantic concepts or tags+ = {�1 , �2 ,...,��}, �� & c, � = 1, . . 
. , �, a common approach is to find a discriminant function -�#���²���ò�\�
that assigns a score to every input  & S and every semantic tag sequence + 
& C. In order to obtain a prediction () & C, the function is maximized with 
respect to �() = arg max

+&C-(, +).

Conditional Random Fields (CRFs)
Linear-chain CRFs, as a discriminative probabilistic model over sequences 
of feature vectors and label sequences, have been widely used to model 
sequential data. This model is analogous to maximum entropy models for 
structured outputs. By making a firstorder Markov assumption on states, 
a linear-chain CRF defines a distribution over state sequence + = {�1 , �2 
,...,��} given an input sequence  = {,1 , ,2 ,...,,�} (� is the length of the 
sequence) as

  (1)
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where the partition function .() is the normalization constant that makes 
the probability of all state sequences sum to one and is defined as .() = 
Æ

�
ô

�
õ

�
(��°<, �� , ).

By exploiting the Markov assumption, () can be calculated efficiently by 
variants of the standard dynamic programming algorithms used in HMM 
instead of summing over the exponentially many possible state sequences �. 
õ'��°<, �� , ) can be factorized as

  (2)
where /

0
 is the real weight for each feature function �0(��°<, � � , , �). 

The feature functions describe some aspect of a transition from � �°<� ���
� � as well as � � and the global characteristics of . For example, �

0
 may 

have value 1 when POS(,�°<) = DT and POS(,� ) = NN, which means that 
the previous word , �°< has the POS tag “DT” (determiner) and the current 
word , � has the POS tag “NN” (noun, singular common). The final model 
�����	�	��������\�����	����	������	����	�����÷�º�Ñ/

0
}, one for each feature.

Hidden Markov Support Vector Machines (HM-SVMs)
For HM-SVMs [4], the function -(, +) is assumed to be linear in some 
combined feature representation of  and +; -(, +) := 12��õ', +)3.The 
parameters 2 are adjusted so that the true semantic tag sequence +� scores 
higher than all other tag sequences+ & C

�
 := C\+

�
 with a large margin. To 

achieve the goal, the following optimization problem is solved:

  (3)
where �

� is nonnegative slack variables allowing one to increase the global 
margin by paying a local penalty on some outlying examples and Cons 
dictates the desired tradeoff between margin size and outliers. To solve (3), 
the dual of the equation is solved instead. The solution 2 can be written as

     (4)
where �

�
(+) is the Lagrange multiplier of the constraint associated with 

example � and +
�
.
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Training Statistical Models from Lightly Annotated Data

Semantic parsing can be viewed as a pattern recognition problem and statistical 
decoding can be used to find the most likely semantic representation. The 
majority of statistical approaches to semantic parsing rely on fully annotated 
corpora. There have been some prior works on learning semantic parsers 
that map natural language sentences into a formal meaning representation 
such as first-order logic [6–10]. However these systems either require 
a hand-built, ambiguous combinatory categorical grammar template to 
learn a probabilistic semantic parser [11] or assume the existence of an 
unambiguous, context-free grammar of the target meaning representations 
[6, 7, 9, 12, 13]. Furthermore, they have only been studied in two relatively 
simple tasks, GEOQUERY [14] for US geography query and ROBOCUP 
(http://www.robocup.org/) where coaching instructions are given to soccer 
agents in a simulated soccer field.

He and Young [5] proposed the hidden vector state (HVS) model based 
on the hypothesis that a suitably constrained hierarchical model may be 
������[�	� ������� ��		[��^� ����� ������ ��������	������ �	�������� ���
��	���
ability to capture the hierarchical structure needs to robustly extract task 
domain semantics. Such a constrained hierarchical model can be conveniently 
implemented using the HVS model which extends the flat-concept HMM 
model by expanding each state to encode the stack of a pushdown automaton. 
������������	����	�����	�
��	�����	����	��	�������������	����[���[	����	�
stack operations are highly constrained it avoids the tractability issues 
associated with full context-free stochastic models such as the hierarchical 
HMM. Such a model is trainable using only lightly annotated data and it 
���	���������	��[�	��	��������	�������������	������	����"����	������	��

������������ ������� 
	���� '�\��> have been extensively studied 
for sequence labeling. Most applications require the availability of fully 
annotated data, that is, an explicit alignment of sentence and word-level 
labels. There have been some attempts to train CRFs from a small set 
of labeled data and a large set of unlabeled data. In these approaches, a 
��������� �[À	���|	� ��� �	�	
�	�� ��� ���[��	� �	� ������������ ��^	������ ���
labeled data and unlabeled data. Jiao et al. [15] extended the minimum 
entropy regularization framework to the structured prediction case so a 
training objective that combines unlabeled conditional entropy with labeled 
conditional likelihood is yielded. Mann and McCallum [16] augmented 
the traditional conditional likelihood objective function with an additional 
term that aims to minimize the predicted label entropy on unlabeled data. 
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Entropy regularization was employed for semisupervised learning. In [17], 
a training objective combining the conditional likelihood on labeled data 
and the mutual information on unlabeled data is proposed. It is based on 
the rate distortion theory in information theory. Mann and Mccallum [18] 
used labeled features instead of fully labeled instances to train linear-chain 
CRFs. Generalized expectation criteria are used to express a preference 
for parameter settings in which the model distribution on unlabeled data 
����	���� ����	��������[��������	�� �	��	�� �	�������������� �	�������
	��
advertisements data set (CLASSIFIED)� �<_�� ����������� ��� ������
	��
advertisements for apartment rentals in the San Francisco Bay Area with 
<*�
	����[	������[	�	������	�������	���|	����	�	������������������	���	����
neighborhood, and features. With only labeled features, their approach 
gave a mediocre result with 68.3% accuracy being achieved. With an 
additional inclusion of 100 labeled instances, the accuracy is increased to 
80%. The DARPA communicator data used in our experiment appear to 
be more complex than the CLASSIFIED data since semantic annotations 
in the DARPA communicator data describe embedded structural context in 
sentences while semantic labels in the CLASSIFIED data do not represent 
any hierarchical relations.

THE PROPOSED FRAMEWORK
Given the training data � = {(1, 41), . . . , (	

, 4
	
)}, where 4� is the abstract 

annotation for sentence 
�
�� �	� �����	�	��� ÷� ����� [	� 	������	�� ������ ��

maximum likelihood procedure. The log-likelihood of (÷>�����	��	��������
over the abstract annotation is calculated as follows:

  (5)
where +5

�
 is the unknown semantic tag sequence of the �th word sequence. 

To learn statistical models, we extended the use of expectation maximization 
(EM) algorithm to estimate model parameters. The EM algorithm [20] is 
widely employed in statistical models for parameter estimation when the 
model depends on unobserved latent variables. Given a set of observed data 
�, a set of unobserved latent data, or missing values � , the EM algorithm 
seeks to find the maximum likelihood estimation of the marginal likelihood

   (6)
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by alternating between performing an expectation step and a maximization 
step. 

�� E-step: given the current estimate of the parameters, calculate the 
expected value for unobserved latent variables or data.

�� �"��	�#�
��� �	������	�	�� �����������	�� ����!����������	�	�
parameter estimates are then used to determine the distribution of 
the latent variables in the next E-step.

We propose a learning framework based on EM to train statistical 
models from abstract semantic annotations as illustrated in Figure 1. The 
whole procedure works as follows. Given a set of sentences S = {

�
, � = 1, . . 

. , 	} and their corresponding semantic annotations A = {4
�
, � = 1, . . . , 	}, 

each annotation 4�����	�����	������	�����	�	���	������������	!�	��	�+
�
 at 

�����������������	������	������	�����	�	���	������������	!�	��	����	���������
model parameters are estimated. After that, the semantic tag sequence +6� is 
generated for each sentence using the current model, C6 = {+6

�
, � = 1, . . . , 	}. 

Then, C6����
��	�	��[��	�����������	���������������	����	���	����		�	���
����	��	�	���	���	������������	!�	��	�������	������������	�	���	�������
tag sequences. In the maximization step, model parameters are reestimated 
�������	�
��	�	���6. The iteration continues until convergence. The details 
of each step are discussed in Figure 1.

Figure 1: The proposed learning framework of training statistical models from 
abstract semantic annotations.

Preprocessing

Given a sentence labeled with an abstract semantic annotation as shown 
in Table 1, we first expand the annotation to the flattened semantic tag 
sequence as in Table 1(a). The provision of abstract annotations implies that 
the semantics encoded in each sentence need not be provided in expensive 
token style. Obviously, there are some input words such as articles, which 
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have no specific semantic meanings. In order to cater for these irrelevant 
input words, a   DUMMY tag is introduced in the preterminal position. Hence, 
the flattened semantic tag sequence is finally expanded to the semantic tag 
sequence as in Table 1(b).

Table 1#�$[��������	������������������������������	�	���	������������	!�	��	�

Sentence I want to return to Dallas on Thursday.
Annotation RETURN (TOLOC (CITY (Dallas)) ON 

(DATE (Thursday)))
(a) Flattened semantic tag list:  
R E T U R N  R E T U R N + T O L O C  R E T U R N + T O L O C + C I T Y  ( D a l -
las) RETURN+ON RETURN+ON+DATE (Thursday)
(b) Expanded semantic tag list:  
RETURN RETURN+DUMMY RETURN+TOLOC RETURN+TOLOC+DUMMY RETURN+TOLOC+CITY (Dallas)

RETURN+ON  RETURN+ON+DUMMY  RETURN+ON+DATE  (Thurs-
day) RETURN+ON+DATE (Thursday)+DUMMY

Expectation with Constraints

During the expectation step, that is, calculating the most likely semantic tag 
sequence given a sentence, we need to impose the following two constraints 
which are implied from abstract semantic annotations. 

(1) Considering the calculated semantic tag sequence as a hidden state 
sequence, state transitions are only allowed if both current and next 
����	����	�����	������	��	�������������������	
�	�������	��	��	��	�

(2) ������	��������	����������	���������	�	��������������������	�	���	���-
tic tag, the semantic tag must appear bound to that lexical item in the 
training annotation.

To illustrate how these two constraints are applied, the sentence 
“I want to return on Thursday to Dallas” with its annotation 
“RETURN(TOLOC(CITY(Dallas)) ON(DATE(Thursday)))” is taken as 
an example. The transition from   RETURN+TOLOC+CITY to   RETURN 
is allowed since both states can be found in the semantic annotation and 
follows constraint 1. However, the transition from   RETURN to   FLIGHT 
is not allowed as it does not follow constraint 1 and   FLIGHT is not listed 
in the semantic annotation. Also, for the lexical item   Dallas in the training 
sentence, the only valid semantic tag is   RETURN+TOLOC+CITY because 
to apply constraint 2   Dallas has to be bound with the preterminal tag   CITY.
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We further describe how these two constraints can be imposed into two dif-
ferent models, CRFs and HM-SVMs:

   (7)

 (8)

Expectation in CRFs
The most probable labeling sequence in CRFs can be efficiently calculated 
using the Viterbi algorithm. Similar to the forward-backward procedure for 
HMM, the marginal probability of states at each position in the sequence 
can be computed as

   (9)

where .
The forward values �(�� = � | ) and backward values 7

�
(�� = � | ) are 

defined in iterative form as (7).
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Given the training data � = {(1, +1), . . . , (	
, +

	
>Ò���	������	�	��÷�����[	�

estimated through a maximum likelihood procedure. To calculate the log-
likelihood of (÷>�����	��	���������|	���	��[�����������������������������

  (10)

where  is the unknown semantic tag sequence of the ith word sequence 
and . It can be optimized using the 
same optimization method as in standard CRFs training.
To infer the word-level semantic tag sequences based on abstract annotations, 
(7) are modified as shown in (8), where (�� , �, ,� ) is defined as follows:

  (11)

Expectation in HM-SVM
To calculate the most likely semantic tag sequence + for each sentence , + 
= 6 arg max

+&C(, +), we can decompose the discriminant function -�#���²���
ò�\����������������	�����-(, +) = -1(, +) + -2(, +), where

  (12)
Here, (8, 9) is considered as the coefficient for the transition from state (or 
semantic tag) 8 to state 9 while :(,! , 8) can be treated as the coefficient for 
the emission of word , ! from state 8. They are defined as follows:
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   (13)

where describes the similarity of the input 
����	����ù�[	��		�������, ! and word ,  

 � , the  th word in the training 
example �, and �

�
(+) is a set of dual parameters or Lagrange multiplier of 

the constraint associated with example � and semantic tag sequence + as in 
(4). Using the results derived in (13), Viterbi decoding can be performed to 
generate the best semantic tag sequence.
To incorporate the constraints as defined in the abstract semantic annotations, 
the values of (8, 9) and :(,

!
 , 8) are modified for each sentence:

    (14)
where �(8, 9) and h(8, ,! ) are defined as follows:

  (15)
where �(8, 9) and h(8, ,! ) in fact encode the two constraints implied from 
abstract annotations.
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Filtering

For each sentence, the semantic tag sequences generated in the expectation 
step are further processed based on a measure on the agreement of the 
semantic tag sequence � = {�1, �2,...,�

} with its corresponding abstract 
semantic annotation 4. The score of T is defined as

  (16)
where precision = 	

�
/�, Recall = 	

�
/;. Here, 	� is the number of the semantic 

tags in � which also occur in 4, � is the number of semantic tags in �, and 
; is the number of semantic tags in the flattened semantic tag sequence for 
4. The score is similar to the --measure which is the harmonic mean of 
precision and recall. It essentially measures the agreement of the generated 
semantic tag sequence with the abstract semantic annotation. We filter 
out sentences with their score below certain predefined threshold and the 
remaining sentences together with their generated semantic tag sequences 
are fed into the next maximization step. In our experiments, we empirically 
set the threshold to 0.1.

Maximization

Given the filtered training examples from the filtering step, the parameters 
÷���	���À���	���������	�����������������������������
�����\�����	������	�	��÷�����[	�	������	��������������������^	������
procedure. The model is traditionally trained by maximizing the conditional 
log-likelihood of the labeled sequences, which is defined as

   (17)
where 	 is the number of sequences.
The maximization can be achieved gradient ascent where the gradient of the 
likelihood is

  (18)
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������"�§�����	������	�	���÷º2 are adjusted so that the true semantic 
tag sequence +

�
 scores higher than all the other tag sequences + & C := C \ +

�
 

with a large margin. To achieve the goal, the optimization problem as stated 
in (3) is solved using an online learning approach as described in [4]. In 
short, it works as follows: a pattern sequence 

�
 is presented and the optimal 

semantic tag sequence +6
�
 = (

�
) is computed by employing Viterbi decoding. 

If +6
�
 is correct, no update is performed. Otherwise, the weight vector 2 is 

�����	��[��	������	�����	�	��	�������	����	��	������������	!�	��	�Çõ�º�
õ'

�
,+6

�
>�°�õ'

�
, +

�
).

EXPERIMENTAL RESULTS
Experiments have been conducted on the DARPA communicator data (http://
www.bltek.com/spoken-dialog-systems/cu-communicator.html/) which 
were collected in 461 days. From these, 46 days were randomly selected for 
use as test set data and the remainders were used for training. After cleaning 
up the data, the training set consists of 12702 utterances while the test set 
contains 1178 utterances.

The abstract semantic annotations used for training only list a set of 
valid semantic tags and the dominance relationships between them without 
considering the actual realized semantic tag sequence or attempting to 
identify explicit word/concept pairs. Thus, it avoids the need for expensive 
treebank style annotations. For example, for the sentence “I wanna go from 
Denver to Orlando Florida on December tenth,” the abstract annotation 
would be   FROMLOC(CITY) TOLOC(CITY(STATE)) MONTH(DAY).

To evaluate the performance of the model, a reference frame structure 
was derived for every test set sentence consisting of slot/value pairs. An 
example of a reference frame is shown in Table 2.

Performance was then measured in terms of --measure on slot/value 
pairs, which combines the precision (�) and recall (�) values with equal 
�	������������	
�	�����- = 2 < � < �/(� + �).
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Table 2.

I wanna travel from Denver to San Diego on March sixth.
Frame AIR
Slots FROMLOC · CITY = Denver

TOLOC · CITY = San Diego
MONTH = March
DAY = sixth

�	�����
	���	���	�������	�����	��\������	�'���#���������^^�������
software/crfsuite/) and SVMHMM (http:// www.cs.cornell.edu/people/tj/svm 
light/svm hmm.html/) to implement our proposed learning framework. We 
employed two algorithms to estimate the parameters of CRFs, the stochastic 
gradient descent (SGD) iterative algorithm [21], and the limited-memory 
BFGS (L-BFGS) method [22]. For both algorithms, the regularization 
parameter was empirically set in the following experiments.

Overall Comparison

We first compare the time consumed in each iteration using HM-SVMs or 
CRFs as shown in Figure 2. The experiments were conducted on the Intel(R) 
Xeon(TM) model Linux server equipped with 3.00 Ghz processor and 4 GB 
RAM. It can be observed that, for CRFs, the time consumed in SGD is 
almost doubled compared to that in L-BFGS in each iteration. However, 
since SGD converges much faster than L-BFGS, the total time required for 
training is almost the same. 

(a) CRFs with L-BFGS
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(b) CRFs with SGD

(c) HM-SVMs

Figure 2: Time consumed in each iteration by CRFs and HM-SVMs.

As SGD gives balanced precision and recall values, it should be preferred 
more than L-BFGS in our proposed learning procedure. On the other hand, 
as opposed to CRFs which consume much less time after iteration 1, HM-
SVMs take almost the same run time for all the iterations. Nevertheless, the 
total run time until convergence is almost the same for CRFs and HM-SVMs. 
Figure 3 shows the performance of our proposed framework for CRFs and 
HM-SVMs at each iteration. At each word position, the feature set used for 
both statistical models consists of the current word and the current part-
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of-speech (POS) tag. It can be observed that both models achieve the best 
performance at iteration 8 with an F-measure of 92.95% and 93.18% being 
achieved using CRFs and HM-SVMs, respectively.

(a) CRFs with L-BFGS

(b) CRFs with SGD
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(c) HM-SVMs

Figure 3: Performance for CRFs and HM-SVMs at each iteration.

Results with Varied Features Set

We employed word features (such as current word, previous word, and 
next word) and POS features (such as current POS tag, previous one, and 
next one) for training. To explore the impact of the choices of features, we 
explored with feature sets comprised of words or POS tags occurring before 
or after the current word within some predefined window size.

Figure 4 shows the performance of our proposed approach with the 
window size varying between 0 and 3. Surprisingly, the model learned 
with feature set chosen by setting window size 0 gives the best overall 
performance. Varying window size between 1 and 3 only impacts the 
convergence rate and does not lead to any performance difference at the end 
of the learning procedure.
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(a) CRFs with L-BFGS

(b) CRFs with SGD
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(c) HM-SVMs

Figure 4: Comparison of performance on models learned with feature sets cho-
sen based on different window sizes.

Performance with or without Filtering Step

In a second set of experiments, we compare the performance with or without 
the filtering step as discussed in Section 3.3. Figure 5 shows that the filtering 
step is indeed crucial as it boosted the performance by nearly 4% for CRFs 
with L-BFGS and 3% for CRFs with SGD and HM-SVMs.

(a) CRFs with L-BFGS
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(b) CRFs with SGD

(c) HM-SVMs

Figure 5: Comparisons of performance with or without the filtering stage.

Comparison with Existing Approaches

We compare the performance of CRFs and HM-SVMs with HVS, all 
trained on abstract semantic annotations. While it is hard to incorporate 
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arbitrary input features into HVS learning, both CRFs and HM-SVMs have 
the capability of dealing with overlapping features. Table 3 shows that 
they outperform HVS with a relative error reduction of 36.6% and 43.3% 
being achieved, respectively. In addition, the superior performance of HM-
SVMs over CRFs shows the advantage of HM-SVMs on learning nonlinear 
discriminant functions via kernel functions.

Table 3: Performance comparison between the proposed framework and three 
other approaches (HF denotes the hybrid framework and DT denotes discrimi-
native training the HVS model.

Measurement HVS HF DT Proposed framework

CRFs HM-SVMs
Recall (%) 87.81 90.99 91.49 92.08 92.04
Precision (%) 88.13 90.25 91.87 93.83 94.36
F-measure (%) 87.97 90.62 91.68 92.95 93.18

We further compare our proposed learning approach with two other 
methods. One is a hybrid generative/discriminative framework (HF) [23] 
which combines HVS with HM-SVMs so as to allow the incorporation of 
arbitrary features as in CRFs. The other is a discriminative approach (DT) 
based on parse error measure to train the HVS model [24]. The generalized 
probabilistic descent (GPD) algorithm [25] was employed to adjust the HVS 
model to achieve the minimum parse error rate.

Table 3 shows that our proposed learning approach outperforms both 
HF and DT. Training statistical models on abstract annotations allows the 
calculation of conditional likelihood and hence results in direct optimization 
of the objective function to reduce the error rate of semantic labeling. On the 
�����������	��[��������	���^�
��������	���	��§������	������	�	���	������
annotations for training HM-SVMs. This process involves the optimization 
of two different objective functions (one for HVS and another for HM-
SVMs). Although DT also uses an objective function which aims to reduce 
the semantic parsing error rate, it is in fact employed for supervised reranking 
where the input is the N-best parse results generated from the HVS model.

CONCLUSIONS
In this paper, we have proposed an effective learning approach which 
can train statistical models such CRFs and HM-SVMs without using the 
expensive treebank style annotation data. Instead, it trains the statistical 
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models from only abstract annotations in a constrained way. Experimental 
results show that, using the proposed learning approach, both CRFs and 
HM-SVMs outperform the previously proposed HVS model on the DARPA 
communicator data. Furthermore, they also show superior performance 
than the two other methods: one is the hybrid framework (HF) combining 
both HVS and HM-SVMs, and the other is discriminative training (DT) of 
the HVS model, with a relative error reduction rate of about 25% and 15% 
being achieved when compared with HF and DT, respectively.

In future work, we will explore other score functions in filtering step 
to describe the precision of the parsing results. Also, we plan to apply the 
proposed framework in some other domains such as information extraction 
and opinion mining.
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ABSTRACT
In speech audiometric testing, hearing performance is typically measured 
by calculating the number of correct repetitions of a speech stimulus. We 
investigate to what extent the repetition accuracy of Dutch speech stimuli 



Speech Recognition and Understanding362

presented against a background noise is influenced by nonauditory processes. 
We show that variation in verbal repetition accuracy is partially explained 
by morpholexical and syntactic features of the target language. Verbs, 
prepositions, conjunctions, determiners, and pronouns yield significantly 
lower correct repetitions than nouns, adjectives, or adverbs. The reduced 
repetition performance for verbs and function words is probably best 
explained by the similarities in the perceptual nature of verbal morphology 
and function words in Dutch. For sentences, an overall negative effect of 
syntactic complexity on speech repetition accuracy was found. The lowest 
number of correct repetitions was obtained with passive sentences, reflecting 
the cognitive cost of processing a noncanonical sentence structure. Taken 
together, these findings may have important implications for the audiological 
practice. In combination with hearing loss, linguistic complexity may 
increase the cognitive demands to process sentences in noise, leading to 
suboptimal functional hearing in day-to-day listening situations. Using 
test sentences with varying degrees of syntactic complexity may therefore 
provide useful information to measure functional hearing benefits.

INTRODUCTION
Noise is omnipresent in many aspects of daily life and is known to interfere 
with oral communication. This is the case in settings as diverse as schools, 
offices, public transportation, restaurants, and even home. For hearing 
individuals, understanding speech in such noisy listening conditions can 
be a serious challenge. In noisy surroundings, auditory perception and 
processing of speech are even more compromised for individuals with a 
hearing impairment. Although this so-called “cocktail party effect” has been 
known for many years [1, 2], it is not yet fully understood how the listener is 
able to tune in to a single voice in the presence of background noise.

Current models of speech perception take successful speech-in-noise 
understanding to result from the interaction between auditory, linguistic, 
and cognitive processing mechanisms: it requires the processing of acoustic 
signals at the level of the peripheral auditory system to combine with the 
top-down processing of these input signals at the higher level of the brain 
by using several components of human cognition, including linguistic 
knowledge [3, 4].

Recent research regarding functional hearing in daily life situations has 
investigated speech understanding in noise in several populations, with a 
special focus on children and elderly listeners with and without hearing 
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impairment. In general, it has been shown that the perceptual accuracy of 
both children and adults decreases as the signal becomes noisier. The adverse 
effect of noise has been demonstrated for normal-hearing listeners as well 
as for listeners with hearing loss. The outcomes of studies targeting child 
populations indicate that small children require more advantageous signal-
to-noise ratios (lower noise levels) than older children and adult listeners 
[5–7]. A mirror image of the developmental pattern in children is found in 
elderly adults, a problem to understand speech in noise typically progressing 
in ageing listeners [4, 8–10].

LINGUISTIC CUES TO SPEECH UNDERSTANDING
For both populations, a variety of factors are claimed to contribute to 
speech-in-noise understanding. Age, noise level, and cognitive performance 
of the listener all interact with hearing loss. As such, age-related perception 
difficulties have been related to a decline in cognitive abilities that play 
a critical role in speech processing in general, including (verbal) working 
memory and inhibitory control [11–13].

For a few decades already it has been clear that the speech signal 
itself may also have an important contribution to word and sentence 
understanding accuracy. When a speech sound in a sentence is deleted and 
replaced by a noise such as a cough, many listeners are able to restore this 
portion of missed information. This “auditory induction” ability has been 
considered a special linguistic application of a general ability to perform 
phonemic restoration of interrupted signals [14]. Several researchers have 
also focused on particular features of the linguistic system itself. At the 
phonosyntactic level, for instance, it has been shown that the articulation 
���|��	���������������	��	��[���	������������[�������	�	�|��	�����	�
preceded or followed. If for whatever reason listeners have missed part of 
the incoming message, it may be recovered thanks to information coming 
from such coarticulation effects [15]. In addition, it has been shown that 
perception of auditory information is interacting with lexical knowledge as 
well: when auditory information is ambiguous, listeners have the tendency 
to make phonetic categorizations that lead to words rather than nonwords 
(“Ganong effect” [16]), a principle which is the driving force even behind 
erroneous phonemic replacements in speech audiometric assessment [17].

Some studies have focused more particularly on morphosyntactic 
features of the linguistic system of the target language [18, 19]. Syntactic 
complexity and presentation rate of the linguistic message play an 
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important role in sentence understanding, with less accurate performance 
being associated with syntactically more complex sentences. The effect 
increases with an increasing speech rate, in the presence of hearing loss 
and age-related cognitive decline [20]. Further syntactic analysis shows that 
�	��	�������������	�[	���	�����	����
���������	��	��	���������������������
word order and in sentences with complex verb argument structures [21, 
22]. Furthermore, speech perception seems to be sensitive to the degree of 
syntactic complexity of the message. Center-embedded Subject Relative 
clauses (“the cat that chased the dog meowed”), for instance, yield better 
sentence repetition scores than sentences with higher syntactic complexity 
such as center-embedded Object Relative clauses (“the cat that the dog 
chased meowed”) [20, 23].

AIM AND RESEARCH QUESTIONS
Building on insights from the literature, it becomes clear that both stimulus- 
and knowledge-driven processes are highly involved in speech understanding 
in noise [24, 25]. The exact contribution of auditory and linguistic processes 
is, however, still under discussion. The present study aims to increase our 
knowledge with respect to the role of syntactic features in speech-in-noise 
understanding. More particularly, we investigate how word identification 
accuracy in noise is influenced by lexical constraints such as the part of 
speech of the target word, on the one hand, and by syntactic constraints such 
as the structural complexity of the utterance serving as a natural linguistic 
context by which this word is surrounded, on the other hand. In addition, we 
examine the contribution of syntactic structure to the listening effort of the 
listener by measuring his/her reaction times in responding.

By analyzing verbal repetition scores in adult listeners for words that 
belong to different parts of speech and that are embedded in utterances 
with varying syntactic complexity and length, we will be able to better 
understand an important part of the nonauditory processes involved in 
speech understanding in noise. In what follows, we will try to answer the 
following research questions: 

�� ���|	�[����	�	��������������������	��	��[���	�������������������	�
of the carrier sentence, the part of speech of the target word, the 
length of the carrier sentence, or a combination of these linguistic 
factors?

�� Is listening effort determined by the syntactic complexity and/or 
the length of the sentence stimulus?
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The answer to these questions will have immediate implications for 
the audiological practice. Standard speech audiometric test batteries make 
use of short meaningful sentences that are presented at a given intensity 
to determine the patient’s hearing performance. If sentence materials are 
used for audiological testing, they need to be balanced in such a way that 
linguistic complexity contributes as little as possible to the variation in 
speech audiometric outcomes. If on the other hand no such effect is found, 
linguistic complexity can be safely “ignored” as a potential confounding 
factor for this type of audiometric testing.

��� �	� �	���������������� �	�������	���	������
���� ���� �����	����������	�
the concept of linguistic complexity in a relatively objective way and 
discuss some psycholinguistic evidence in favor of the role of syntactic and 
morpholexical cues to speech understanding (Sections 4 and 5). In Section 6 
we will present in more detail the development of the test materials and the 
proposed analyses. Finally in Sections 7 and 8 we will present the results of 
these analyses and discuss the potential implications for the clinical practice. 
The general conclusions can be found in Section 9.

SYNTACTIC COMPLEXITY, COGNITIVE LOAD, 
AND SPEECH UNDERSTANDING
In (psycho)linguistic research, the construct of linguistic complexity has 
received a good deal of scholarly attention. Although the concept is often 
used as an index of language proficiency in second language learners, it 
is generally defined rather sloppily as “the range of forms that surface in 
language production and the degree of sophistication of such forms” [26]. 
Similarly, syntactic complexity has been related to the degree of cognitive 
effort required to produce or interpret particular utterances. Here, syntactic 
complexity is taken to be “for some reason more difficult, more complex, 
less entrenched, less frequent, less accessible or in any way cognitively 
more complex” [27].

More recently, several attempts have been made to operationalize this 
concept in an objective way [28–31]. Various measures have been proposed, 
ranging from using pure length (as in the number of syllables, words, or 
intonation units) of an utterance as a proxy for syntactic complexity to 
�������	��	�� ��"�	���������	����� ���������� ��		���������	�� �{<���$������
�	�
��������������� �	���|�����	����[	���� �	�������|����[�	�� ��|��|����
no additional structural analysis, it has been shown at many occasions that 
increased sentence length does not necessarily go hand in hand with increased 
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syntactic complexity. As a matter of fact, the use of utterance length as a 
measure of linguistic complexity was challenged already a few decades ago, 
especially by generative approaches to syntax: “it is interesting to note that 
it is apparently not the length in words of the object that determines the 
naturalness of the transformation but, rather, in some sense, its complexity. 
Thus ‘They brought all the leaders of the riot in’ seems more natural than 
‘They brought the man I saw in’. The latter, though shorter, is more complex” 
[32, page 477].

Current linguistic research generally agrees upon the fact that utterances 
with the same number of words or syllables may differ in linguistic 
complexity resulting from underlying differences in the hierarchical nature 
of syntactic structure of its constituents. Within a formal framework, the 
richly articulated internal syntactic structure is captured by using a set of 
descriptive tools allowing a schematic representation of structural units by 
means of syntactic trees (see, e.g., [33]). Elementary trees of individual 
vocabulary items of a language may combine into phrases and sentences; that 
is, more complex structures are generated by combining syntactic building 
[���^������	��"�	
�	������������������"����	�������	��������������	��	��	��
exhibiting the base word order for the particular language in question. Under 
particular conditions, it is possible to move one or more elements out of 
their base position into a designated position in the syntactic tree, deriving a 
sentence with a word order that is different from the canonical one.

Within such a framework, larger syntactic units are represented as nodes 
in the syntactic tree. Representing linguistic complexity by means of nodes 
within trees is not merely a formal construct that may be used to describe 
syntactic variation within a given language in a more systematic way. The 
������������	�������������		�����	��|	�������^	������	�	������������������
entry to syntax, as the different operations underlying syntactic tree 
formation are representing the functioning of the human parser itself. 
Current formal syntactic theories are built around a minimalist principle 
[34] by which syntactic representations should be pure and simple, stripped 
of all features that are not relevant to the cognitive systems they provide 
input for. Similarly, syntactic derivations are considered to be subject to 
principles of economy involving the shortest possible route and the fewest 
possible steps [35].

Under such a view, linguistically complex structures are cognitively 
more demanding than their less complex counterparts. One way to quantify 
syntactic complexity is by counting the number of nodes by which a 
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particular phrase or sentence is dominated, where more nodes indicate a 
higher degree of formal complexity [29, 36]. The number of syntactic nodes 
����[	���^	������	�	������������	����������������	�����	���	!���	��[���	�
human brain to structure a sequence of words. Roll et al. [31] show that the 
total number of syntactic nodes in a sentence is a very robust measure of 
���������������	�������������[�	��������������������	�	��	����������	�������
spontaneous speech.

������������	������	���������
�����	����	����������[	�����������������
the cognitive cost that comes with syntactic movement [37]. Against this 
background, it follows rather naturally that utterances which contain a 
constituent that has been moved out of its base position will show a decreased 
processing accuracy as compared to utterances with a canonical word order. 
In order to process a new sentence, the listener needs to activate the syntactic 
��������	�������	!���	�����
��	����	������	�����	��������	����������������
may explain why sentences with a canonical word order are relatively easy to 
process: for syntactic constituents that appear in their basic sentence-initial 
position, no memory load is associated with keeping in mind the expectation 
of them potentially occurring later on in the sentence [36, 38].

Under such a view, passive clauses—that is, structures in which the 
semantic theme argument (i.e., the participant of a situation upon whom an 
action is carried out) of the verb occupies the sentence-initial position—will 
be syntactically more complex than active ones due to a greater cognitive cost 
for maintaining the possibility of an agent argument (i.e., the participant that 
carries out the action in a situation) appearing in the clause until encountered 
after the verb. Compare in this respect (1a-b) from Dutch:

(a)  Die hond bijt de man (active). That dogAGENT bites the manTHEME. 
(b)  De man wordt gebeten (door die hond) (passive). The manTHEME is 

bitten (by that dogAGENT).
Passive clauses such as (1b) are thought to be derived from the underlying 

canonical sentence of the type SubjectAGENT Verb ObjectTHEME by moving the 
theme into the sentenceinitial position, inserting an appropriate auxiliary 
(Du. worden) in front of the past participle and an optional by-phrase, the 
latter referring to the agent of the action expressed by the main verb.

The principle that cognitive costs are proportionally related to the 
�����	��������������������|	�	������[		����|�^	�����	����������	�
�	"
grained differences in sentence processing between structures that are 
characterized by movement. As movement has a cognitive cost proportional 
to the length of the path, longer distance movements are taken to require 
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additional computational resources resulting in reduced interpretation 
accuracy and longer reaction times [39].

This “shortest-movement” principle has been studied in more detail in 
the context of relative clauses exhibiting subject-extraction versus object-
extraction: in spite of having the same length in words, movement of the 
relativized noun out of its original subject position of the embedded clause 
as in (2a) will be shorter and therefore less complex than similar movement 
out of the object position of the embedded clause (2b): 

(a)  De jongens die [de jongens de oude man kusten], vertrokken 
gehaast (subj rel). The boys who the old man kissed, left in a 
hurry. The boys who kissed the old man, left in a hurry. 

(b)  De jongens die [de oude man kuste de jongens], vertrokken 
gehaast (obj rel). The boys whom the old man kissed, left in a 
hurry.

If syntactic movement operations are indeed representative for the 
functioning of the human mind, speech processing of utterances with 
a longer movement path may be taken to require an additional cognitive 
effort as compared to utterances characterized by shorter movement. 
Previous studies have shown that this is indeed the case: when confronted 
with complex sentences, the comprehension accuracy of hearing impaired 
����	�	��� ������ �����
�������� ��	� ��� �	� ����� ���� 	����� �������|	� �����
���� ���	�� ���� ����	������ ���� �����	�� ��		�� ��� �	�|���� �����
��	���
resources for the comprehension process [40–42]. More recently, Wendt 
et al. [43] have investigated the extent to which linguistic complexity 
����	��	�� �	���������������		������	������ ������[������������	������
impairment and/or noisy listening conditions in a more objective way by 
using an eye-tracking approach. More particularly, for participants with 
hearing impairment, longer processing durations were found for sentence 
structures with a higher level of linguistic complexity. In noise conditions, 
the processing durations for complex sentences were linked to cognitive 
factors such as working memory capacity.

THE ROLE OF OPEN VERSUS CLOSED WORD 
CLASSES IN SENTENCE UNDERSTANDING
In addition to measures related to syntactic structure, morpholexical features 
of linguistic units have been shown to influence speech understanding. 
In the literature, evidence is presented that listeners use their (implicit) 
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knowledge regarding differences between word classes to come to sentence 
understanding. Current linguistic theories generally take grammatical classes 
of words (e.g., nouns, verbs, prepositions, and pronouns) to fall into two 
main groups depending on the context-dependent character of their semantic 
content: (i) words that do not possess meaningful content by themselves but 
are mainly used to express a grammatical relationship with other words in 
the sentence are taken to represent a closed class of function words (e.g., 
pronouns or prepositions), whereas (ii) words that have an autosemantic 
content allowing for independent lexical meanings are members of an open 
class of lexical words (e.g., nouns or verbs).

There is empirical evidence that the open versus closed class distinction 
��� �� �	�	������ ��� �	��	��	� ���	����������� ���	� �������������� �	� ���	� ���
open/closed class words in the processing of spoken sentences has been 
related to differences in sentence-level prosodic structure: whereas open 
class words mostly contain at least one stressed syllable, closed class words 
are most often realized by means of a weak syllable [44]. From an acoustic 
point of view, the distinction between both classes can often be derived from 
the presence of full versus reduced vowels. In English, such phonological 
differences between closed and open word classes are robust and consistent 
[45, 46]. The human mind has been shown to exploit this phonological 
information when processing speech, especially with respect to identifying 
lexical unit boundaries in spoken sentences [47].

A number of studies have investigated whether the phonological 
differences between closed and open class words trigger differences in 
auditory processing. The results mainly indicate that open class words have 
a speech perception advantage over closed class words, probably due to 
the fact that the presence of a full vowel makes the former stand out more 
prominently in running speech. It has been shown, for instance, that listeners 
who are asked to detect a portion of a sentence that was replaced by a noise 
[�����������|	��	������
�����	���������������	���	�����	��	����	�������	��
������ ����� �`¸��� 	̈�� ��	�� �����	�� �|	� ���	� ��� ���	�� �������	� 
�������
showing that the lexical access process is more complex for open class 
words than for closed class items [49]. Based on syntactic grounds, similar 
conclusions have been reached arguing that closed class words mainly 
encode syntactic information and are therefore subject to relatively little 
contextual variation making them easier to process [50].

In the next section we will describe how a set of test sentences has 
been generated and coded in such a way that it is possible to investigate 
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the potential contribution of morpholexical and syntactic features to the 
��	���
����������������������^	���	��	��	��

MATERIALS AND METHOD

Materials

We used the Linguistically Controlled Sentences for Dutch (LiCoS), a 
sentence repetition task consisting of 12 lists of 30 Dutch sentences each 
containing 2 target words. In this task, sentence repetition accuracy is 
expressed in terms of the number of correctly repeated target words per 
sentence (0, 1, or 2). All sentences have been generated in such a way that 
their semantic predictability is low: they contain no fixed expressions, nor 
do the two keywords within one sentence belong to the same semantic field 
(e.g., de schoenmaker danst niet vaak met zijn verloofde, “the shoemaker 
does not dance often with his fiancée”). Lexical frequency was controlled for 
by selecting the key words out of the 5000 most frequent words of modern 
spoken Dutch. Taken together, the 360 test sentences are a representative 
set of the phonological, lexical, and grammatical variation found in modern 
spoken Dutch. Half of the test materials have been recorded by a male 
speaker of Dutch, the other half by a female speaker carefully balancing for 
the speaker’s gender over the different types of sentences.

The linguistic parameters taken into account involve (i) the syntactic 
structure of the sentences (SynStr), identifying different types of sentences 
with varying levels of syntactic complexity; (ii) the part of speech of the 

���������	���������	����������	����	��	��	�'PoS1, PoS2), representing 2 
major word classes (in agreement with current linguistic approaches, these 
word classes are representing both open and closed class parts of speech 
(open: nouns, verbs, adjectives, and adverbs; closed: pronouns, prepositions, 
determiners, and conjunctions)); (iii) the length of the sentence (SentLen) 
expressed in terms of the total number of syllables of the verbal stimulus.

The complete test set may be considered to be a representative sample of 
the variation of linguistic complexity taking the Corpus of Modern Spoken 
Dutch (Corpus Gesproken Nederlands [51]) as a reference. It therefore 
contains syntactically “simple” main clauses next to clauses with “medium” 
complexity (e.g., Passives) and “fully complex” structures (e.g., subject and 
Object Relative clauses). Variation with respect to the length of the sentence 
within one syntactic type is limited to 2 syllables per sentence. In a similar 
vein, all sentence lists were balanced with respect to the length of the key 
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words, each list having a representative proportion of mono-, bi-, tri-, and 
quadrisyllabic words.

For this study, we have selected a subset of sentences with a length of 11 
to 12 syllables equally divided over 6 syntactic types of different complexity. 
An overview of the syntactic types of the test sentences and of the part of 
speech of the target words with relevant examples is given in Tables 1 and 
2, respectively.

Table 1: Inventory of the syntactic types of the test sentences.

SynStr # syllables Examples

Topic Verb Subject 11 Over het algemeen ben jij nogal speels. 
Generally (speaking) you are quite play-
ful.

12 Tegen de avond zou het kunnen regenen. 
By tonight it might be raining.

Passive 11 Deze acteur wordt door de pers ge-
prezen.
This actor is praised by the press.

12 Toetsen worden door de ouders onder-
tekend. 
Written tests shall be signed by the 
parents

Coordination 11 Hij gaat naar het zwembad en zij naar 
de stad. 
He is going to the swimming pool and 
she (is going) into town

12 We vonden het erg leuk en bleven dus 
langer. 
We liked it very much and therefore 
stayed longer

Subordination 11 Hij dacht niet dat jij die tafel zou kopen. 
He didn’t think that you would buy that 
table

12 Ze had geluk dat die windhoos haar net 
mistte. 
She was lucky that the tornado just 
missed her.
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Subject Relatives 11 De meubels die in de schuur staan, 
mogen weg. 
The furniture that is in the barn can be 
thrown away.

12 De schilder die zonet hier was, is nu 
weg. 
The painter who was just here, has left 
now.

Object Relatives 11 Ze kent geen burger die altijd zijn plicht 
doet.
She doesn’t know a citizen who always 
does his duty.

12 De fles die op tafel stond, gooide hij 
omver. 
He threw away the bottle that was on the 
table.

Table 2: Inventory of the part of speech of the target words within the sentences.

Class PoS Examples

Open Adjective Groot, 
“great”

Moeilijk, 
����
�����

Aanwezig, 
“present”

Plaatselijke, 
“local”

Adverb Al, 
“already”

Even, 
“a while”

Donderdag, 
“thursday”

 

Noun Vrouw, 
“woman”

Zusje, 
“little sister”

Zakenman, 
“businessman”

Belastingen, 
“taxes”

Verb Kent, 
“knows”

Wijzen, 
“point”

Bevallen, 
“given birth”

 

Closed Preposition Met, 
“with”

Tegen, 
“against”

  

Pronoun Ze, 
“she”

Ervan, 
“thereof”

Iedereen, 
“all”

 

Determiner Die, 
“that”

   

Method

$����	��	��	���	�	���	�	��	��������������������		������	����°=������\�����
the speech noise component fixed at 65 dB SPL. Speech noise was created 
by spectrally shaping white noise to match the long-term average spectrum 
of the complete set of sentences. Finally, processing speed was measured 
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in terms of the reaction time of the listener in repeating each individual 
sentence.

The speech repetition task was performed in one of the quiet rooms 
of the MediaLab at Free University Amsterdam. In agreement with the 
local ethical procedures (Ethical Approval EC02.14b), all participants were 
given oral and written information regarding the goals and procedure of 
the test and gave their written consent to participate in this study. Prior to 
the sentence repetition task, the hearing performance of all participants 
was tested through pure-tone audiometry (500 Hz, 1000 Hz, 2000 Hz, and 
4000 Hz). Only participants with hearing thresholds <30 dBHL at all tested 
frequencies were included. They were given the instruction to repeat as much 
as they could of each sentence. No additional information was given with 
respect to which words in the sentence served as target words to measure 
verbal repetition accuracy.

The sentences were inserted in A§E 2012® audiometric assessment 
�������	��=*��������	�	��	�������		�
	��������	�������	�^	����	�����<"�	�	��
distance of the listener. All correct and erroneous repetitions of target words 
were scored directly in the A§E 2012 software program (Figure 1) by the test 
administrator, a native speaker of Dutch coming from the same (dialectal) 
region of the participants. Within sentences, target words were only 
����	�����[	��������	������	�	��	������������	�	���	�	���������������	���
including grammatical morphemes such as person and tense or plural 
markers combining with the nominal or verbal item; for example, repetition 
of the sentence de ananas wilde ze niet opeten, “she didn’t want to eat the 
pineapple” (target words underlined), as de ananas wil ze niet opeten, “she 
doesn’t want to eat the pineapple,” yielded a score of 1. In modern spoken 
��������������������������������	����|��|	���	��	�	�������������
��� -n, 
regardless of the morphological status of the syllable and lexical category 
to which it belongs (mole(n), “mill,” goude(n), “golden,” and tege(n), 
“against”). Therefore, in nouns with -en plural marking, the omission of the 
entire plural morpheme has been scored as incorrect (belasting instead of 
belastingen) whereas the omission of the mere  -n�	���������[		������	��
as correct (belastinge instead of belastingen).
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Figure 1: Screen shot of the LiCoS sentence repetition task implemented in 
A§E 2012 software while presenting the test sentence belastingen betalen vond 
ze steeds jammer, “she always disliked paying taxes.” Sentence repetition scor-
ing is based on the two target words belastingen and vond (underlined) and may 
	���[	�����	���	���	�	��	������	�����

Participants

30 normal-hearing Dutch speaking adults were included in this study, 
involving 8 males and 22 females within the age range of 19–57 years 
(average age in years = 27.2; SD = 9.89). None of the participants had any 
experience with speech audiometric testing or sentence repetition tasks. 
Audiometric data are given in Table 3.

Table 3: Participant data.

Participant Gender Age PTA AS PTA AD

1 Female 56 21.25 17.5
2 Male 22 1.25 5
3 Male 35 8.75 5
4 Female 21 23.75 18.75
5 Female 22 13.75 8.75
6 Female 22 18.75 10
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7 Male 21 11.25 10
8 Male 22 13.75 5
9 Female 20 10 6.25
10 Female 19 13.75 10
11 Female 29 10 6.25
12 Female 23 13.75 15
13 Female 19 16.25 13.75
14 Female 22 7.5 5
15 Female 26 7.5 8.75
16 Female 24 27.5 21.25
17 Female 42 27.5 26.25
18 Female 23 12.5 12.5
19 Female 57 17.5 16.25
20 Male 30 12.5 11.25
21 Male 33 28.75 25
22 Male 23 13.75 8.75
23 Female 23 11.25 12.5
24 Female 25 7.5 3.75
25 Female 24 10 10
26 Female 22 10 6.25
27 Female 23 16.25 13.75
28 Female 22 13.75 11.25
29 Male 24 12.5 13.75
30 Female 42 15 15

RESULTS

Syntactic Structure and Sentence Length

Table 4 presents the means with standard deviations of the percentage of 
correct repetitions per sentence based on 30 listeners. A repeated measures 
ANOVA was run using the syntactic structure and the length of the test 
sentences as within-subjects variables. The results show a significant 
main effect for both linguistic variables. Firstly, the proportion of correct 
repetitions revealed to be significantly affected by the syntactic structure of 
the carrier sentence, (5, 67.97) = 4.92, ; < .007, and =2 = .145, representing 
a small effect. A post hoc analysis showed that listeners obtain significantly 
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lower repetition scores with Passives compared to Topic V Subj structures 
(-(1, 29) = 26.15, ; < .001). Taking Topic V Subj structures as a baseline, all 
other comparisons between syntactic structures were not significant. Figure 
2(a) depicts the 95% CI of the repetition scores for the different syntactic 
structures under analysis.

Table 4: Means and standard deviations of the percentage of correct scores for 
verbal repetition based on syntactic structure and length of the test sentences.

 Mean SD

Syntactic structure   
Topic V Subj 70.04 (11.86)
Passives 62.92 (10.05)
Subordinated 69.51 (8.61)
Coordinated 69.77 (9.25)
Subject Relatives 78.00 (7.32)
Object Relatives 64.13 (8.84)
Sentence length   
11 syllables 71.43 (9.49)
12 syllables 65.43 (9.52)
Syntactic structure  sentence length   
Topic V Subj   
 11 syllables 76.08 (10.06)
 12 syllables 64.00 (10.46)
Passives   
 11 syllables 65.94 (8.62)
 12 syllables 59.90 (10.60)
Subordinated   
 11 syllables 72.86 (8.05)
 12 syllables 66.17 (7.93)
Coordinated   
 11 syllables 73.33 (9.07)
 12 syllables 66.20 (8.09)
Subject Relatives   
 11 syllables 72.92 (16.44)
 12 syllables 69.76 (12.54)
Object Relatives   
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 11 syllables 61.67 (24.33)
 12 syllables 70.95 (15.46)

(b)



Speech Recognition and Understanding378

(c)

�����	�*#��	����	��	����	��������	���|	�[����	�	�����������	������_=½����
-
dence intervals. (a) Comparison based on syntactic structure. (b) Comparison 
based on sentence length in syllables. (c) Comparison based on the interaction 
between syntactic structure and sentence length in syllables.

�	���������������
����������	��	�������	��	��	��	��������������������
with lower correct verbal repetitions for sentences of 12 syllables of length 
as compared to sentences of 11 syllables, -(1, 29) = 11.49, ; < .002, and =2 
= .284, representing a medium effect (see Figure 2(b)).

Finally, the effect of the interaction between both linguistic variables was 
tested. The results of this analysis indicate that sentence length is interacting 
�����
����������� �	� ���������� ��������	���� �	� �	��	��	���	����� ��|	�[���
stimulus ((4, 116) = 6.24, ; < .002, and =2 = .177). As can be observed in 
Figure 2(c), the number of correct repetitions decreases with the increasing 
length of the sentence, except for Object Relatives. A post hoc analysis of 
within-subject contrasts for the interaction between syntactic structure and 
�	��	��	��	�������	�������
�����	��	�������������������������	��'-(1, 29), 
Passives = 5.96, ; = .021; Subordinates = 5.40, ; = .027; Coordinates = 
4.57, ; = .041; Subject Relatives = 6.65, ; = .015; Object Relatives = 14.77, 
; = .001).
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Part of Speech and Sentence Length

Table 5 presents the means with standard deviation of the percentage of 
correct repetitions per key word based on 30 listeners for open versus closed 
word classes.

Table 5: Means with standard deviations of the percentage of correct scores for 
verbal repetition based on the part of speech of the key words and the length of 
the test sentences.

 Mean SD

Part of speech   
Open 64.08 (7.71)
Closed 69.33 (15.84)
Sentence length   
 11 syllables 72.28 (14.83)
 12 syllables 66.20 (13.45)
Part of speech    sentence length   
Open   
 11 syllables 65.17 (7.51)
 12 syllables 63.00 (7.88)
Closed   
 11 syllables 64.67 (10.08)
 12 syllables 74.00 (19.05)
Open word classes: part of 
speech    sentence length

  

Adjectives   
 11 syllables 75.28 (11.88)
 12 syllables 67.67 (5.17)
Adverbs   
 11 syllables 78.79 (15.53)
 12 syllables 62.99 (8.22)
Nouns   
 11 syllables 71.23 (5.80)
 12 syllables 67.33 (5.17)
Verbs   
 11 syllables 67.78 (8.88)
 12 syllables 62.99 (8.22)
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First, a repeated measures ANOVA was run using the open/closed word 
class distinction and the length of the test sentences as within-subjects 
variables. The results show that the percentage of correct verbal repetitions 
��������
����������	��	��[���	����	��������������		��'��	������	�>�����	�
key words, -(1, 29) = 4.55, ; = .042, and =2 = .136, and by the length of the 
sentence, -(1, 29) = 7.6, ; < .01, and =2 = .208, as well as by the interaction 
between both of the variables, -(1, 29) = 19.8, ; = .001, and =2 = .406.

As can be read from the descriptive statistics in Table 5 and Figure 3, 
in sentences that are 11 syllables long, higher repetition scores are obtained 
for adjectives, adverbs, and nouns than for function words. In sentences 
that are 12 syllables long, a reverse effect occurs, the percentage of correct 
repetitions for adjectives, adverbs, and nouns being situated within the 
lower bound of the 95% CI for function words. For the category of verbs, 
however, the number of correct repetitions is low, regardless of the length of 
the sentences in which they occur.

Figure 3:��	����	��	����	��������	���|	�[����	�	�����������	������_=½����
-
dence intervals. Comparison based on the part of speech of the key words for 
lexical categories. ADJ = adjectives, ADV = adverbs, N = nouns, and V = verbs. 
The dotted and full horizontal lines represent, respectively, the lower and upper 
bound of the 95% CI for function words (blue lines = 11 syllables; green lines 
= 12 syllables).
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Ease of Listening

Table 6 presents the means with standard deviations of the reaction times 
in milliseconds in repeating each sentence type based on 30 listeners. A 
repeated measures ANOVA was run using the syntactic structure and the 
length have a significant main effect on the reaction times of the listeners 
(-(5, 102) = 2.67, ; = .043, and =2 = .084 for syntax; -(1, 29) = 10.2, ; 
= .003, and =2 = .260 for sentence length) and that there is a significant 
interaction effect between both linguistic variables (-(5, 145) = 3.49, ; = 
.005, and =2 = .108); see Figure 4.

Table 6: Means with standard deviation of the reaction times in repeating the 
test sentences in milliseconds based on syntactic structure and length of the test 
sentences.

 Mean SD

Syntactic structure   
Topic V Subj 8140 (1036)
Passives 8555 (1322)
Subordinated 8555 (975)
Coordinated 8771 (1082)
Subject Relatives 8560 (1638)
Object Relatives 8783 (1426)
Sentence length   
11 syllables 8412 (1095)
12 syllables 8665 (1186)
Syntactic structure * sentence length   
Topic V Subj   
 11 syllables 8112 (1148)
 12 syllables 8168 (928)
Passives   
 11 syllables 8584 (1319)
 12 syllables 8527 (1347)
Subordinated   
 11 syllables 8432 (878)
 12 syllables 8678 (1064)
Coordinated   
 11 syllables 8652 (972)



Speech Recognition and Understanding382

 12 syllables 8889 (1187)
Subject Relatives   
 11 syllables 7931 (980)
 12 syllables 9189 (1919)
Object Relatives   
 11 syllables 9629 (1629)
 12 syllables 8936 (1197)

Figure 4: Mean reaction times in repeating the test sentences in milliseconds 
����_=½����
�	��	����	�|����������������[��	������	����	��������[	��		��
syntactic structure and sentence length in syllables.

Post hoc analyses of within-subject contrasts show that Topic Verb 
��[À	����	��	��	���	!���	������
����������	���	����������	�����������	�����
all other syntactic structures (Passives (-(1, 29) = 7.68, ; = .01), Subordinates 
(-(1, 29) = 5.83, ; = .022), Coordinates (-(1, 29) = 15.18, ; = .001), Subject 
Relatives (-(1, 29) = 4.26, ; = .048), and Object Relatives (-(1, 29) = 8.46, 
; = .007)). At the interaction level, no effect of sentence length on reaction 
times was found for Topic V Subj, Passives, Subordinates, Coordinates, and 
Object Relatives. Only Subject Relatives revealed to be highly sensitive to 
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�	��	��	��	�������	�����������
������������	���	����������	�������	��������	��
that were 11 syllables long (-(1, 29) = 7254, ; = .012).

DISCUSSION
Our results indicate that language grammar at least partially shapes auditory 
processing: when confronted with speech stimuli with high linguistic 
complexity such as passive clauses or Object Relatives, many listeners have 
difficulties in reconstructing meaningful sentences out of the perceived 
words. This language-driven aspect of auditory processing becomes 
noticeable at both the level of accuracy and speed of verbal repetition: 
while the highest percentage of correct repetition scores is obtained with 
the sentences that have low syntactic complexity within the test set (Topic 
Verb Subject structures), the structures with highest syntactic complexity 
(Object Relative clauses) take most time to be processed. Although syntactic 
structure has a significant effect on speech perception by its own, it becomes 
even more pronounced in combination with an increased sentence length. 
This interaction effect is remarkable given that the difference in length 
exhibited by the set of test sentences is just 1 syllable. The fact that longer 
sentences yield significantly lower repetition scores in case of Passives as 
compared to Topic Verb Subject sentences may be related to the cognitive 
cost associated with the increased length of the movement path associated 
with the former structure.

However, our analysis did not reveal any perceptual disadvantage 
for Subject Relative clauses. If it is indeed the case that the human mind 
prefers syntactic structures that involve shorter movement over structures 
with longer—and therefore cognitively more costly—movement paths, this 

������������	����	��	��	���\	����|	������	��[	�����	�	������������	�	����	�
of the most complex structures in natural language, one would expect them 
to be associated with a very low repetition accuracy. Yet relative clauses also 
differ from the other syntactic structures under investigation in that they are 
typically F(ocus)-marked constructions of which the relativized head noun is 
standing out in speech (e.g., de SOKKEN die ze kwijt was, zijn weer terecht, 
“the SOCKS that she had lost have been found again,” versus ze was haar 
sokken VERLOREN maar ze zijn weer terecht, “she had LOST her socks but 
they have been found again”). According to well-known theories of focus 
and syntax-prosody interface [53, 54], an F-marked constituent in syntax is 
interpreted as new or contrastive information in the context. Experimental 
studies of auditory processing indicate that language users are sensitive to 
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such focused speech materials: not only do words bearing high stress appear 
to be easier to process during sentence comprehension, they also direct the 
listener’s attention to important elements in the sentence and enable him to 
make predictions of upcoming accent locations in the entire sentence. These 
predictions are taken to facilitate sentence understanding [55]. Although 
our study does not provide direct evidence to claim that focus-marking 
����	��	���	��	��	��	�	������������������	������������	��	�	���	��	��������
compatible with current insights regarding the role of multiple components 
����������	�����������		������	��������������
��������	����	��	��������	��
to automated speech recognition, for instance, besides expert knowledge 
regarding the phonetics, phonotactics, and lexicon of spoken language, 
syntactic and pragmatic features are typically integrated in the design of 
particular models and algorithms in view of enhancing speech recognition 
accuracy [56].

To evaluate the single contribution of syntactic structure to speech 
repetition accuracy, we may compare the two types of relative clauses within 
our data set. Subject and Object Relative clauses are taken to show similar 
focus-marking on the head noun; this implies that differences in repetition 
accuracy may be taken to result from differences in syntactic complexity 
between the two categories. This is precisely what comes out of the data 
���������� «[À	��� \	����|	�� 	��[������ �����
������� ���	�� �	�	������� ����	��
than Subject Relatives. Our results are in line with a vast body of literature 
showing a rather robust asymmetry in the comprehension of Subject versus 
«[À	���\	����|	����	�����	��[	�������	����
�����������	�������������|��|����
longer processing times. For the sake of completeness, we would like to 
���������������[	���	�����������������	��������	������������������	��	��	�
�����������������	���������
�������������	�	������	������	����|	������	�����
well. Animacy, frequency, or internal make-up of the relativized antecedent 
��������	��	��	����|	������	����	������������������	��������	�	�«[À	���
Relatives will yield better repetition scores than Subject Relatives. In 
controlled experiments, for instance, it has been demonstrated that placing 
an inanimate entity in sentential subject position and an animate entity in 
�	�«[À	���\	����|	������	���	������	���	���	����
�����������������������	��
with Object Relative clauses [57].

As for the effect of the different parts of speech of the key words on 
verbal repetition accuracy, the reduced performance of listeners with verbs 
as target words is striking. Contrary to adjectives, adverbs, and nouns, 
repetition accuracy on verbs is as low as that on closed word classes such 
as prepositions, conjunctions, determiners, and pronouns. We believe that 
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��������[	��	���	������	������ �����	�	�����������|	�[���|	�[		������	��
as correct if and only if they contained the verbal lexeme carrying all its 
grammatical morphemes (including tense and person/number agreement 
�����	���[À	��>�������|	�[������	������[	����������	���	��[���	���	!�	���
use of morphemes with low perceptual salience, repetition mistakes often 
consisted in the omission of such tense or plural markers. Compare in this 
respect, for instance, the unstressed syllables and nonsyllabic consonants 
as -de marking past tense on verbs like irriteerde, “irritatedPAST.SG,” to the 
determiner de, “the.” In this sense, the perceptual nature of verbal morphemes 
is not different from that of function words and may therefore explain the 
observed similarities in repetition performance for both classes of words.

In some cases the omission of these grammatical markers on the verb 
may even have led to sentences that are wellformed in Dutch (e.g., het 
vest dat ik van je zus leen is blauw, “the jacket that I am borrowing1.SG.PRES 
from your sister is blue,” instead of het vest dat ik van je zus leende is 
blauw, “the jacket that I borrowed1.SG.PAST from your sister is blue”). The 
�[�	�|	�� ����������� ��� �	��	������ ���
������ [	��		�� [����� ���� ��[�����
grammatical morphemes is a characteristic that Dutch shares with other 
Germanic languages such as English. In Romance languages such as Italian, 
|	�[��� ���	���������	� ����������|������� ��������	� '	����������������PRES.3.SG. 
, “Mary sings”) and are therefore expected to trigger less repetition errors. 
Psycholinguistic research presents experimental evidence in support of the 
claim that vowels are indeed more perceptually salient than consonants [58]. 
In atypically developing children, this perceptual factor of morphology has 
been taken to account for differences in verbal production accuracy: due to the 
fact that English verb endings are perceptually less salient than their Italian 
�����	����������������	�^���������	��������	��
���������	��������	���
have a harder time acquiring verbal morphology than their Italianspeaking 
peers [59]. Whether similar perceptual properties of morphemes may be 
invoked to explain the reduced repetition accuracy of verbs in Dutch speech 
audiometric testing contexts should be further investigated in a contrastive 
setting including speech stimuli and native listeners of both types of 
languages.

Finally, by measuring the reaction times that listeners need to repeat 
each of the test sentences, we intended to shed some light on the potential 
differences in listening effort associated with the understanding of sentences 
with different linguistic complexity. In this respect, our study offers some 
interesting outcomes: for speech understanding in noise, earlier studies 
�	�	� �[�	� ��� 
��� ����	��	�� �	������� ���	�� ��� ����������� �	�������� �������
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during sentence processing indicating an increase in local processing costs 
triggered by syntactic complexity [21]. Our data show that an effect of 
syntactic complexity on reaction times also exists at the level of the entire 
sentence. Prolonged reaction times with relative clauses as compared to 
������§	�[���[À	����	��	��	������[	���^	������	�	�������	��	������	������
times associated with increasing syntactic complexity. Interestingly, longer 
Object Relative clauses do not need more time to be processed than shorter 
ones; bearing in mind that they triggered more repetition errors than other 
syntactic structures, this seems to indicate that whereas pragmatic salience 
�����|	���[	�	
���������	��	��������	�����	������������	�������	�	��������
favor perceptive accuracy.

For the present study, only young hearing participants were recruited. 
For hearing impaired listeners, and even more so in the case of elderly 
individuals, the increased reaction times that are associated with 
understanding syntactically complex sentences such as Object Relatives may 
be expected to be even more pronounced as more cognitive effort is needed 
���
��� ����������������� ��� �	� ��������� ������������ �	�|���� �	��� �	�����	��
to process syntax. A recent study using an eye-tracking paradigm points in 
this direction: when confronted with linguistically complex sentences, the 
	�	� 
�������� ��� 	������ ������	�� ����	�	��� ������� �� ����	�� ������	� ����
����	���	����������������	�	��	���	��	��	���	������
�����������	���������
normal-hearing listeners. Even at high levels of speech intelligibility hearing 
impaired patients are shown to spend more time processing sentences [43].

��^	�����	�	����	�	�
������������|	�����������������������������	�
clinical practice. Firstly, they illustrate that perceptual accuracy measured 
in terms of correct verbal repetitions may well represent just one aspect 
of functional hearing. In spite of good levels of speech intelligibility, the 
cognitive demands imposed by particular linguistic contexts in combination 
with hearing loss may lead to suboptimal functional hearing in day-to-
day adverse listening situations. In this respect, the duration of sentence 
����	�����������	�	����	�������[���������������������������������	��	��	�
of language understanding” in the sense of Rönnberg et al. [60].
�	�������� ���� 
������� ���
��� ��	�� �������� ������	�� ����������� ���� �	�
choice of test materials used to measure speech perception performance has 
an important effect on the outcomes [61]. In case speech materials with low 
linguistic complexity are used, the observed hearing performance accuracy 
�����������	���������	��[�	�[	�	
���[����	���������	�������������������	-
ar implant while the subjective evaluation by the patient is dissatisfactory 
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[62]. In a recent study [63], it was shown that self-assessment of the abil-
��������	������������������������	���������������������
�����������	���	������
speech perception measured by means of a sentence repetition task while no 
such correlation was found with phoneme discrimination [63]. If linguistic 
factors indeed make an important contribution to subjective hearing ben-
	
�����	���	�����	����	��	��	������|��������	��		��������������������	�����
may provide useful information with respect to the functional hearing of the 
patient.

CONCLUSION
In current speech audiometric test settings, the hearing performance of 
patients is typically measured by calculating the number of correct repetitions 
of a speech stimulus. In this study we have investigated if sentence repetition 
in noise is influenced by morpholexical constraints such as the part of 
speech of the target word, on the one hand, and by syntactic constraints such 
as the structural complexity of the utterance serving as a natural linguistic 
context by which this word is surrounded, on the other hand. The outcomes 
of our study showed that variation in verbal repetition accuracy is at least 
partially influenced by the linguistic make-up of the sentence: at the lexical 
level, we found that repetition scores are significantly lower with verbs than 
with nouns, adjectives, or adverbs but similar to prepositions, conjunctions, 
determiners, and pronouns. The reduced repetition performance for verbs 
and function words is probably best explained by the similarities in the 
perceptual nature of verbal morphology and function words in the Dutch 
language.

At the level of syntax, six categories of structures were compared 
exhibiting different structural complexity according to the length of the 
movement path of one or more constituents in the sentence. An overall 
effect of syntactic structure on speech repetition accuracy was found. The 
lowest number of correct repetitions was obtained with passive sentences, 
�	�	�������	��������|	�������������	�������������	����������	���������	�
semantic object of the verb has been moved out of its base position. The fact 
that no perceptual disadvantage was found for relative clauses is unexpected 
but probably best explained by the fact that relativized nouns are generally 
focus-marked items and are therefore perceptually standing out in the 
sentence. When such pragmatic factors are controlled for, the negative effect 
of syntactic complexity becomes noticeable again: worse repetition scores 
are obtained with syntactically more complex Object Relative clauses as 
compared to less complex Subject Relative clauses.
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Finally, by measuring reaction times in repeating each test sentence, we 
were able to show that processing speed is dependent upon the same syntactic 
features. In this respect, similar reaction times with Object Relative clauses 
as compared to less complex sentence types indicate that whereas pragmatic 
salience may favor listening effort, perceptive accuracy seems to be mainly 
determined by syntactic complexity.

��^	�� ���	�	�������
������������|	� ���������� ������������� ���� �	�
audiological practice. Nonauditory factors such as lexical and syntactic 
features of the target language system may increase the cognitive demands 
to process sentences in noise. In combination with hearing loss, this may 
lead to suboptimal functional hearing in day-to-day listening situations even 
for patients with good speech discrimination outcomes. In this sense, the use 
of test sentences with varying degrees of syntactic complexity may provide 
��	���� ������������ ��� ��[À	���|	�[	�	
�����������������	�������	|��	�� ����
the patient.
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