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Computer-aided Industrial Design
and Electronic Design Automation

Computer-aided industrial design (CAID) is a subset of

computer-aided design (CAD) that includes software that

directly helps in product development. Within CAID

programmes designers have the freedom of creativity, but

typically follow a simple design methodology:

• Creating sketches, using a stylus

• Generating curves directly from the sketch

• Generating surfaces directly from the curves

The end result is a 3D model that projects the main

design intent the designer had in mind. The model can then

be saved in STL format to send it to a rapid prototyping

machine to create the real-life model. CAID helps the designer

to focus on the technical part of the design methodology

rather than taking care of sketching and modeling—then

contributing to the selection of a better product proposal
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in less time.  Later, when the requisites and parameters of

the product have been defined by means of using CAID

software, the designer can import the result of his work into

a CAD programme (typically a Solid Modeler) for adjustments

prior to production and generation of blueprints and

manufacturing processes. What differentiates CAID from

CAD is that the former is far more conceptual and less

technical than the latter. Within a CAID programme, the

designer can express him/herself without extents, whilst in

CAD software there is always the manufacturing factor.

Electronic Design Automation
Electronic design automation (EDA or ECAD) is a category

of software tools for designing electronic systems such as

printed circuit boards and integrated circuits. The tools

work together in a design flow that chip designers use to

design and analyze entire semiconductor chips.

HISTORY

EARLY DAYS
Before EDA, integrated circuits were designed by hand,

and manually laid out. Some advanced shops used geometric

software to generate the tapes for the Gerber photoplotter,

but even those copied digital recordings of mechanically-

drawn components. The process was fundamentally graphic,

with the translation from electronics to graphics done

manually. The best known company from this era was

Calma, whose GDSII format survives. By the mid-70s,

developers started to automate the design, and not just the
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drafting. The first placement and routing (Place and route)

tools were developed. The proceedings of the Design

Automation Conference cover much of this era. The next

era began about the time of the publication of “Introduction

to VLSI Systems” by Carver Mead and Lynn Conway in

1980. This ground breaking text advocated chip design with

programming languages that compiled to silicon.

The immediate result was a considerable increase in the

complexity of the chips that could be designed, with improved

access to design verification tools that used logic simulation.

Often the chips were easier to lay out and more likely to

function correctly, since their designs could be simulated

more thoroughly prior to construction.

Although the languages and tools have evolved, this

general approach of specifying the desired behavior in a

textual programming language and letting the tools derive

the detailed physical design remains the basis of digital IC

design today.

The earliest EDA tools were produced academically. One

of the most famous was the “Berkeley VLSI Tools Tarball”,

a set of UNIX utilities used to design early VLSI systems.

Still widely used is the Espresso heuristic logic minimizer

and Magic.

Another crucial development was the formation of MOSIS,

a consortium of universities and fabricators that developed

an inexpensive way to train student chip designers by

producing real integrated circuits. The basic concept was

to use reliable, low-cost, relatively low-technology IC

processes, and pack a large number of projects per wafer,

with just a few copies of each projects’ chips. Cooperating
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fabricators either donated the processed wafers, or sold

them at cost, seeing the programme as helpful to their own

long-term growth.

BIRTH OF COMMERCIAL EDA
1981 marks the beginning of EDA as an industry. For

many years, the larger electronic companies, such as Hewlett

Packard, Tektronix, and Intel, had pursued EDA internally.

In 1981, managers and developers spun out of these

companies to concentrate on EDA as a business. Daisy

Systems, Mentor Graphics, and Valid Logic Systems were

all founded around this time, and collectively referred to as

DMV. Within a few years there were many companies

specializing in EDA, each with a slightly different emphasis.

The first trade show for EDA was held at the Design

Automation Conference in 1984. In 1986, Verilog, a popular

high-level design language, was first introduced as a

hardware description language by Gateway Design

Automation. In 1987, the U.S. Department of Defense funded

creation of VHDL as a specification language. Simulators

quickly followed these introductions, permitting direct

simulation of chip designs: executable specifications. In a

few more years, back-ends were developed to perform logic

synthesis.

CURRENT STATUS
Current digital flows are extremely modular (see Integrated

circuit design, Design closure, and Design flow (EDA)). The

front ends produce standardized design descriptions that

compile into invocations of “cells,”, without regard to the
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cell technology. Cells implement logic or other electronic

functions using a particular integrated circuit technology.

Fabricators generally provide libraries of components for

their production processes, with simulation models that fit

standard simulation tools. Analog EDA tools are far less

modular, since many more functions are required, they

interact more strongly, and the components are (in general)

less ideal. EDA for electronics has rapidly increased in

importance with the continuous scaling of semiconductor

technology. Some users are foundry operators, who operate

the semiconductor fabrication facilities, or “fabs”, and design-

service companies who use EDA software to evaluate an

incoming design for manufacturing readiness. EDA tools

are also used for programming design functionality into

FPGAs.

SOFTWARE FOCUSES

DESIGN
• High-level synthesis(syn. behavioural synthesis,

algorithmic synthesis) For digital chips

• Logic synthesis translation of abstract, logical

language such as Verilog or VHDL into a discrete

netlist of logic-gates

• Schematic Capture For standard cell digital, analog,

rf like Capture CIS in Orcad by CADENCE and ISIS

in Proteus

• Layout like Layout in Orcad by Cadence, ARES in

Proteus
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DESIGN FLOWS
Design flows are the explicit combination of electronic

design automation tools to accomplish the design of an

integrated circuit. Moore’s law has driven the entire IC

implementation RTL to GDSII design flows from one which

uses primarily standalone synthesis, placement, and routing

algorithms to an integrated construction and analysis flows

for design closure. The challenges of rising interconnect

delay led to a new way of thinking about and integrating

design closure tools. New scaling challenges such as leakage

power, variability, and reliability will keep on challenging

the current state of the art in design closure. The RTL to

GDSII flow underwent significant changes from 1980 through

2005. The continued scaling of CMOS technologies

significantly changed the objectives of the various design

steps.

The lack of good predictors for delay has led to significant

changes in recent design flows. Challenges like leakage

power, variability, and reliability will continue to require

significant changes to the design closure process in the

future. Many factors describe what drove the design flow

from a set of separate design steps to a fully integrated

approach, and what further changes are coming to address

the latest challenges. In his keynote at the 40th Design

Automation Conference entitled The Tides of EDA, Alberto

Sangiovanni-Vincentelli distinguished three periods of EDA:

The Age of the Gods, The Age of the Heroes, and The Age

of the Men. These eras were characterized respectively by

senses, imagination, and reason. When we limit ourselves

to the RTL to GDSII flow of the CAD area, we can distinguish
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three main eras in its development: the Age of Invention,

the Age of Implementation, and the Age of Integration.

• The Age of Invention: During the invention era,

routing, placement, static timing analysis and logic

synthesis were invented.

• The Age of Implementation: In the age of

implementation, these steps were drastically improved

by designing sophisticated data structures and

advanced algorithms. This allowed the tools in each

of these design steps to keep pace with the rapidly

increasing design sizes. However, due to the lack of

good predictive cost functions, it became impossible

to execute a design flow by a set of discrete steps, no

matter how efficiently each of the steps was

implemented.

• The Age of Integration: This led to the age of

integration where most of the design steps are

performed in an integrated environment, driven by a

set of incremental cost analyzers.

SIMULATION
• Transistor simulation – low-level transistor-simulation

of a schematic/layout’s behavior, accurate at device-

level.

• Logic simulation – digital-simulation of an RTL or gate-

netlist’s digital (boolean 0/1) behavior, accurate at

boolean-level.

• Behavioral Simulation – high-level simulation of a

design’s architectural operation, accurate at cycle-level

or interface-level.
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• Hardware emulation – Use of special purpose

hardware to emulate the logic of a proposed design.

Can sometimes be plugged into a system in place of

a yet-to-be-built chip; this is called in-circuit

emulation.

• Technology CAD simulate and analyze the underlying

process technology. Electrical properties of devices are

derived directly from device physics.

• Electromagnetic field solvers, or just field solvers, solve

Maxwell’s equations directly for cases of interest in

IC and PCB design. They are known for being slower

but more accurate than the layout extraction above.

ELECTRONIC CIRCUIT SIMULATION
Electronic circuit simulation uses mathematical models

to replicate the behavior of an actual electronic device or

circuit. Simulation software allows for modeling of circuit

operation and is an invaluable analysis tool. Due to its

highly accurate modeling capability, many Colleges and

Universities use this type of software for the teaching of

electronics technician and electronics engineering

programmes. Electronics simulation software engages the

user by integrating them into the learning experience. These

kinds of interactions actively engage learners to analyze,

synthesize, organize, and evaluate content and result in

learners constructing their own knowledge. Simulating a

circuit’s behavior before actually building it can greatly

improve design efficiency by making faulty designs known

as such, and providing insight into the behavior of electronics

circuit designs.
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In particular, for integrated circuits, the tooling

(photomasks) is expensive, breadboards are impractical,

and probing the behavior of internal signals is extremely

difficult. Therefore almost all IC design relies heavily on

simulation. The most well known analog simulator is SPICE.

Probably the best known digital simulators are those based

on Verilog and VHDL. Some electronics simulators integrate

a schematic editor, a simulation engine, and on-screen

waveforms, and make “what-if” scenarios easy and instant.

They also typically contain extensive model and device

libraries. These models typically include IC specific transistor

models such as BSIM, generic components such as resistors,

capacitors, inductors and transformers, user defined models

(such as controlled current and voltage sources, or models

in Verilog-A or VHDL-AMS). Printed circuit board (PCB)

design requires specific models as well, such as transmission

lines for the traces and IBIS models for driving and receiving

electronics.

Types
While there are strictly analog  electronics circuit

simulators, popular simulators often include both analog

and event-driven digital simulation capabilities, and are

known as mixed-mode simulators. This means that any

simulation may contain components that are analog, event

driven (digital or sampled-data), or a combination of both.

An entire mixed signal analysis can be driven from one

integrated schematic. All the digital models in mixed-mode

simulators provide accurate specification of propagation

time and rise/fall time delays.
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The event driven algorithm provided by mixed-mode

simulators is general purpose and supports non-digital

types of data. For example, elements can use real or integer

values to simulate DSP functions or sampled data filters.

Because the event driven algorithm is faster than the

standard SPICE matrix solution, simulation time is greatly

reduced for circuits that use event driven models in place

of analog models.

Mixed-mode simulation is handled on three levels; (a)

with primitive digital elements that use timing models and

the built-in 12 or 16 state digital logic simulator, (b) with

subcircuit models that use the actual transistor topology

of the integrated circuit, and finally, (c) with In-line Boolean

logic expressions.

Exact representations are used mainly in the analysis

of transmission line and signal integrity problems where a

close inspection of an IC’s I/O characteristics is needed.

Boolean logic expressions are delay-less functions that are

used to provide efficient logic signal processing in an analog

environment. These two modeling techniques use SPICE to

solve a problem while the third method, digital primitives,

use mixed mode capability. Each of these methods has its

merits and target applications. In fact, many simulations

(particularly those which use A/D technology) call for the

combination of all three approaches. No one approach alone

is sufficient.

Another type of simulation used mainly for power

electronics represent piecewise linear algorithms. These

algorithms use an analog (linear) simulation until a power
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electronic switch changes its state. At this time a new

analog model is calculated to be used for the next simulation

period. This methodology both enhances simulation speed

and stability significantly.

Complexities
Often circuit simulators do not take into account the

process variations that occur when the design is fabricated

into silicon. These variations can be small, but taken together

can change the output of a chip significantly. Process

variations occur in the manufacture of circuits in silicon.

Temperature variation can also be modeled to simulate the

circuit’s performance through temperature ranges.

ANALYSIS AND VERIFICATION
• Functional verification

• Clock Domain Crossing Verification (CDC check):

Similar to linting, but these checks/tools specialize

in detecting and reporting potential issues like data

loss, meta-stability due to use of multiple clock

domains in the design.

• Formal verification, also model checking: Attempts to

prove, by mathematical methods, that the system has

certain desired properties, and that certain undesired

effects (such as deadlock) cannot occur.

• Equivalence checking: algorithmic comparison

between a chip’s RTL-description and synthesized

gate-netlist, to ensure functional equivalence at the

logical level.
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• Static timing analysis: Analysis of the timing of a

circuit in an input-independent manner, hence finding

a worst case over all possible inputs.

• Physical verification, PV: checking if a design is

physically manufacturable, and that the resulting

chips will not have any function-preventing physical

defects, and will meet original specifications.

MANUFACTURING PREPARATION
• Mask data preparation, MDP: generation of actual

lithography photomask used to physically

manufacture the chip.

o Resolution enhancement techniques, RET –

methods of increasing of quality of final

photomask.

o Optical proximity correction, OPC – up-front

compensation for diffraction and interference

effects occurring later when chip is manufactured

using this mask.

o Mask generation – generation of flat mask image

from hierarchical design.

o Automatic test pattern generation, ATPG – generates

pattern-data to systematically exercise as many

logic-gates, and other components, as possible.

o Built-in self-test, or BIST – installs self-contained

test-controllers to automatically test a logic (or

memory) structure in the design

COMPANIES

For more details on this topic, see List of EDA companies.
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TOP COMPANIES
• $3.73 billion - Synopsys

• $2.06 billion - Cadence

• $1.18 billion - Mentor Graphics

• $233 million - Magma Design Automation

• $157 million - Zuken Inc.

Note: Market caps current as of October, 2010. EEsof

should likely be on this list, but does not have a market

cap as it is the EDA division of Agilent.

ACQUISITIONS
Many of the EDA companies acquire small companies

with software or other technology that can be adapted to

their core business. Most of the market leaders are rather

incestuous amalgamations of many smaller companies. This

trend is helped by the tendency of software companies to

design tools as accessories that fit naturally into a larger

vendor’s suite of programmes ( on digital circuitry, many

new tools incorporate analog design, and mixed systems.

This is happening because there is now a trend to place

entire electronic systems on a single chip.

Computer Graphics
The development of computer graphics has made

computers easier to interact with, and better for

understanding and interpreting many types of data.

Developments in computer graphics have had a profound

impact on many types of media and have revolutionized

animation, movies and the video game industry. The term

computer graphics has been used in a broad sense to



Computer-aided Industrial Design

14

describe “almost everything on computers that is not text

or sound”. Typically, the term computer graphics refers to

several different things:

• the representation and manipulation of image data

by a computer

• the various technologies used to create and

manipulate images

• the images so produced, and

• the sub-field of computer science which studies

methods for digitally synthesizing and manipulating

visual content, see study of computer graphics

Today, computers and computer-generated images touch

many aspects of daily life. Computer imagery is found on

television, in newspapers, for example in weather reports,

or for example in all kinds of medical investigation and

surgical procedures. A well-constructed graph can present

complex statistics in a form that is easier to understand

and interpret. In the media “such graphs are used to illustrate

papers, reports, thesis”, and other presentation material.

Many powerful tools have been developed to visualize data.

Computer generated imagery can be categorized into several

different types: 2D, 3D, 4D, 7D, and animated graphics. As

technology has improved, 3D computer graphics have become

more common, but 2D computer graphics are still widely

used.

Computer graphics has emerged as a sub-field of

computer science which studies methods for digitally

synthesizing and manipulating visual content. Over the

past decade, other specialized fields have been developed
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like information visualization, and scientific visualization

more concerned with “the visualization of three dimensional

phenomena (architectural, meteorological, medical,

biological, etc.), where the emphasis is on realistic renderings

of volumes, surfaces, illumination sources, and so forth,

perhaps with a dynamic (time) component”. The advance in

computer graphics was to come from Ivan Sutherland.  In

1961 Sutherland created another computer drawing

programme called Sketchpad. Using a light pen, Sketchpad

allowed one to draw simple shapes on the computer screen,

save them and even recall them later. The light pen itself

had a small photoelectric cell in its tip. This cell emitted

an electronic pulse whenever it was placed in front of a

computer screen and the screen’s electron gun fired directly

at it. By simply timing the electronic pulse with the current

location of the electron gun, it was easy to pinpoint exactly

where the pen was on the screen at any given moment.

Once that was determined, the computer could then draw

a cursor at that location. Sutherland seemed to find the

perfect solution for many of the graphics problems he faced.

Even today, many standards of computer graphics

interfaces got their start with this early Sketchpad

programme. One example of this is in drawing constraints.

If one wants to draw a square for example, s/he doesn’t

have to worry about drawing four lines perfectly to form the

edges of the box. One can simply specify that s/he wants

to draw a box, and then specify the location and size of the

box. The software will then construct a perfect box, with

the right dimensions and at the right location. Another

example is that Sutherland’s software modeled objects - not
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just a picture of objects. In other words, with a model of

a car, one could change the size of the tires without affecting

the rest of the car. It could stretch the body of the car

without deforming the tires. These early computer graphics

were Vector graphics, composed of thin lines whereas modern

day graphics are Raster based using pixels.  The difference

between vector graphics and raster graphics can be

illustrated with a shipwrecked sailor.

He creates an SOS sign in the sand by arranging rocks

in the shape of the letters “SOS.” He also has some brightly

colored rope, with which he makes a second “SOS” sign by

arranging the rope in the shapes of the letters. The rock

SOS sign is similar to raster graphics. Every pixel has to

be individually accounted for. The rope SOS sign is equivalent

to vector graphics. The computer simply sets the starting

point and ending point for the line and perhaps bend it a

little between the two end points. The disadvantages to

vector files are that they cannot represent continuous tone

images and they are limited in the number of colors available.

Raster formats on the other hand work well for continuous

tone images and can reproduce as many colors as needed.

Also in 1961 another student at MIT, Steve Russell, created

the first video game, Spacewar. Written for the DEC PDP-

1, Spacewar was an instant success and copies started

flowing to other PDP-1 owners and eventually even DEC got

a copy. The engineers at DEC used it as a diagnostic

programme on every new PDP-1 before shipping it. The

sales force picked up on this quickly enough and when

installing new units, would run the world’s first video game

for their new customers.
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E. E. Zajac, a scientist at Bell Telephone Laboratory

(BTL), created a film called “Simulation of a two-giro gravity

attitude control system” in 1963. In this computer generated

film, Zajac showed how the attitude of a satellite could be

altered as it orbits the Earth. He created the animation on

an IBM 7090 mainframe computer. Also at BTL, Ken

Knowlton, Frank Sindon and Michael Noll started working

in the computer graphics field. Sindon created a film called

Force, Mass and Motion illustrating Newton’s laws of motion

in operation.

Around the same time, other scientists were creating

computer graphics to illustrate their research. At Lawrence

Radiation Laboratory, Nelson Max created the films, “Flow

of a Viscous Fluid” and “Propagation of Shock Waves in a

Solid Form.” Boeing Aircraft created a film called “Vibration

of an Aircraft.” It wasn’t long before major corporations

started taking an interest in computer graphics. TRW,

Lockheed-Georgia, General Electric and Sperry Rand are

among the many companies that were getting started in

computer graphics by the mid 1960’s. IBM was quick to

respond to this interest by releasing the IBM 2250 graphics

terminal, the first commercially available graphics computer.

Ralph Baer, a supervising engineer at Sanders Associates,

came up with a home video game in 1966 that was later

licensed to Magnavox and called the Odyssey.  While very

simplistic, and requiring fairly inexpensive electronic parts,

it allowed the player to move points of light around on a

screen. It was the first consumer computer graphics product.

Also in 1966, Sutherland at MIT invented the first

computer controlled head-mounted display (HMD). Called
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the Sword of Damocles because of the hardware required

for support, it displayed two separate wireframe images, one

for each eye. This allowed the viewer to see the computer

scene in stereoscopic 3D. After receiving his Ph.D. from

MIT, Sutherland became Director of Information Processing

at ARPA (Advanced Research Projects Agency), and later

became a professor at Harvard. Dave Evans was director

of engineering at Bendix Corporation’s computer division

from 1953 to 1962, after which he worked for the next five

years as a visiting professor at Berkeley. There he continued

his interest in computers and how they interfaced with

people. In 1968 the University of Utah recruited Evans to

form a computer science programme, and computer graphics

quickly became his primary interest. This new department

would become the world’s primary research center for

computer graphics. In 1967 Sutherland was recruited by

Evans to join the computer science programme at the

University of Utah. There he perfected his HMD. Twenty

years later, NASA would re-discover his techniques in their

virtual reality research.

At Utah, Sutherland and Evans were highly sought after

consultants by large companies but they were frustrated at

the lack of graphics hardware available at the time so they

started formulating a plan to start their own company. A

student by the name of Edwin Catmull started at the University

of Utah in 1970 and signed up for Sutherland’s computer

graphics class. Catmull had just come from The Boeing

Company and had been working on his degree in physics.

Growing up on Disney, Catmull loved animation yet quickly

discovered that he didn’t have the talent for drawing. Now
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Catmull (along with many others) saw computers as the

natural progression of animation and they wanted to be part

of the revolution. The first animation that Catmull saw was

his own. He created an animation of his hand opening and

closing. It became one of his goals to produce a feature length

motion picture using computer graphics. In the same class,

Fred Parke created an animation of his wife’s face.

Because of Evan’s and Sutherland’s presence, UU was

gaining quite a reputation as the place to be for computer

graphics research so Catmull went there to learn 3D

animation. As the UU computer graphics laboratory was

attracting people from all over, John Warnock was one of

those early pioneers; he would later found Adobe Systems

and create a revolution in the publishing world with his

PostScript page description language. Tom Stockham led

the image processing group at UU which worked closely

with the computer graphics lab. Jim Clark was also there;

he would later found Silicon Graphics, Inc. The first major

advance in 3D computer graphics was created at UU by

these early pioneers, the hidden-surface algorithm. In order

to draw a representation of a 3D object on the screen, the

computer must determine which surfaces are “behind” the

object from the viewer’s perspective, and thus should be

“hidden” when the computer creates (or renders) the image.

IMAGE TYPES

2D COMPUTER GRAPHICS
2D computer graphics are the computer-based generation

of digital images—mostly from two-dimensional models, such
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as 2D geometric models, text, and digital images, and by

techniques specific to them. 2D computer graphics are

mainly used in applications that were originally developed

upon traditional printing and drawing technologies, such

as typography, cartography, technical drawing, advertising,

etc.. In those applications, the two-dimensional image is not

just a representation of a real-world object, but an

independent artifact with added semantic value; two-

dimensional models are therefore preferred, because they

give more direct control of the image than 3D computer

graphics, whose approach is more akin to photography

than to typography.

Pixel Art
Pixel art is a form of digital art, created through the use

of raster graphics software, where images are edited on the

pixel level. Graphics in most old (or relatively limited)

computer and video games, graphing calculator games, and

many mobile phone games are mostly pixel art.

Vector Graphics
Vector graphics formats are complementary to raster

graphics, which is the representation of images as an array

of pixels, as it is typically used for the representation of

photographic images Vector graphics consists in encoding

information about shapes and colors that comprise the

image, which can allow for more flexibility in rendering.

There are instances when working with vector tools and

formats is best practice, and instances when working with

raster tools and formats is best practice. There are times
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when both formats come together. An understanding of the

advantages and limitations of each technology and the

relationship between them is most likely to result in efficient

and effective use of tools.

3D COMPUTER GRAPHICS
3D computer graphics in contrast to 2D computer

graphics are graphics that use a three-dimensional

representation of geometric data that is stored in the

computer for the purposes of performing calculations and

rendering 2D images. Such images may be for later display

or for real-time viewing. Despite these differences, 3D

computer graphics rely on many of the same algorithms as

2D computer vector graphics in the wire frame model and

2D computer raster graphics in the final rendered display.

In computer graphics software, the distinction between 2D

and 3D is occasionally blurred; 2D applications may use

3D techniques to achieve effects such as lighting, and

primarily 3D may use 2D rendering techniques. 3D computer

graphics are often referred to as 3D models. Apart from the

rendered graphic, the model is contained within the graphical

data file. However, there are differences. A 3D model is the

mathematical representation of any three-dimensional object.

A model is not technically a graphic until it is visually

displayed. Due to 3D printing, 3D models are not confined

to virtual space. A model can be displayed visually as a two-

dimensional image through a process called 3D rendering,

or used in non-graphical computer simulations and

calculations. There are some 3D computer graphics software

for users to create 3D images.
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COMPUTER ANIMATION
Computer animation is the art of creating moving images

via the use of computers. It is a subfield of computer

graphics and animation. Increasingly it is created by means

of 3D computer graphics, though 2D computer graphics are

still widely used for stylistic, low bandwidth, and faster real-

time rendering needs. Sometimes the target of the animation

is the computer itself, but sometimes the target is another

medium, such as film. It is also referred to as CGI (Computer-

generated imagery or computer-generated imaging),

especially when used in films. Virtual entities may contain

and be controlled by assorted attributes, such as transform

values (location, orientation, and scale) stored in an object’s

transformation matrix. Animation is the change of an

attribute over time. Multiple methods of achieving animation

exist; the rudimentary form is based on the creation and

editing of keyframes, each storing a value at a given time,

per attribute to be animated. The 2D/3D graphics software

will interpolate between keyframes, creating an editable

curve of a value mapped over time, resulting in animation.

Other methods of animation include procedural and

expression-based techniques: the former consolidates related

elements of animated entities into sets of attributes, useful

for creating particle effects and crowd simulations; the

latter allows an evaluated result returned from a user-

defined logical expression, coupled with mathematics, to

automate animation in a predictable way (convenient for

controlling bone behavior beyond what a hierarchy offers

in skeletal system set up). To create the illusion of movement,

an image is displayed on the computer screen then quickly
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replaced by a new image that is similar to the previous

image, but shifted slightly. This technique is identical to the

illusion of movement in television and motion pictures.

CONCEPTS AND PRINCIPLES

Images are typically produced by optical devices;such as

cameras, mirrors, lenses, telescopes, microscopes, etc. and

natural objects and phenomena, such as the human eye

or water surfaces. A digital image is a representation of a

two-dimensional image in binary format as a sequence of

ones and zeros. Digital images include both vector images

and raster images, but raster images are more commonly

used.

PIXEL
In digital imaging, a pixel (or picture element) is a single

point in a raster image. Pixels are normally arranged in a

regular 2-dimensional grid, and are often represented using

dots or squares. Each pixel is a sample of an original image,

where more samples typically provide a more accurate

representation of the original. The intensity of each pixel

is variable; in color systems, each pixel has typically three

components such as red, green, and blue.

GRAPHICS
Graphics are visual presentations on some surface, such

as a wall, canvas, computer screen, paper, or stone to

brand, inform, illustrate, or entertain. Examples are

photographs, drawings, line art, graphs, diagrams,

typography, numbers, symbols, geometric designs, maps,
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engineering drawings, or other images. Graphics often

combine text, illustration, and color. Graphic design may

consist of the deliberate selection, creation, or arrangement

of typography alone, as in a brochure, flier, poster, web site,

or book without any other element. Clarity or effective

communication may be the objective, association with other

cultural elements may be sought, or merely, the creation

of a distinctive style.

RENDERING
Rendering is the process of generating an image from a

model (or models in what collectively could be called a scene

file), by means of computer programmes. A scene file contains

objects in a strictly defined language or data structure; it

would contain geometry, viewpoint, texture, lighting, and

shading information as a description of the virtual scene.

The data contained in the scene file is then passed to a

rendering programme to be processed and output to a

digital image or raster graphics image file. The rendering

programme is usually built into the computer graphics

software, though others are available as plug-ins or entirely

separate programmes. The term “rendering” may be by

analogy with an “artist’s rendering” of a scene. Though the

technical details of rendering methods vary, the general

challenges to overcome in producing a 2D image from a 3D

representation stored in a scene file are outlined as the

graphics pipeline along a rendering device, such as a GPU.

A GPU is a purpose-built device able to assist a CPU in

performing complex rendering calculations. If a scene is to

look relatively realistic and predictable under virtual lighting,
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the rendering software should solve the rendering equation.

The rendering equation doesn’t account for all lighting

phenomena, but is a general lighting model for computer-

generated imagery. ‘Rendering’ is also used to describe the

process of calculating effects in a video editing file to produce

final video output.

3D Projection
3D projection is a method of mapping three dimensional

points to a two dimensional plane. As most current methods

for displaying graphical data are based on planar two

dimensional media, the use of this type of projection is

widespread, especially in computer graphics, engineering

and drafting.

Ray Tracing
Ray tracing is a technique for generating an image by

tracing the path of light through pixels in an image plane.

The technique is capable of producing a very high degree

of photorealism; usually higher than that of typical scanline

rendering methods, but at a greater computational cost.

Shading
Shading refers to depicting depth in 3D models or

illustrations by varying levels of darkness. It is a process

used in drawing for depicting levels of darkness on paper

by applying media more densely or with a darker shade for

darker areas, and less densely or with a lighter shade for

lighter areas. There are various techniques of shading

including cross hatching where perpendicular lines of varying
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closeness are drawn in a grid pattern to shade an area. The

closer the lines are together, the darker the area appears.

Likewise, the farther apart the lines are, the lighter the area

appears. The term has been recently generalized to mean

that shaders are applied.

Texture Mapping
Texture mapping is a method for adding detail, surface

texture, or colour to a computer-generated graphic or 3D

model. Its application to 3D graphics was pioneered by Dr

Edwin Catmull in 1974. A texture map is applied (mapped)

to the surface of a shape, or polygon. This process is akin

to applying patterned paper to a plain white box.

Multitexturing is the use of more than one texture at a time

on a polygon. Procedural textures (created from adjusting

parameters of an underlying algorithm that produces an

output texture), and bitmap textures (created in an image

editing application) are, generally speaking, common methods

of implementing texture definition from a 3D animation

programme, while intended placement of textures onto a

model’s surface often requires a technique known as UV

mapping.

Anti-aliasing
Rendering resolution-independent entities (such as 3D

models) for viewing on a raster (pixel-based) device such as

a LCD display or CRT television inevitably causes aliasing

artifacts mostly along geometric edges and the boundaries

of texture details; these artifacts are informally called

“jaggies”. Anti-aliasing methods rectify such problems,
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resulting in imagery more pleasing to the viewer, but can

be somewhat computationally expensive. Various anti-

aliasing algorithms (such as supersampling) are able to be

employed, then customized for the most efficient rendering

performance versus quality of the resultant imagery; a

graphics artist should consider this trade-off if anti-aliasing

methods are to be used. A pre-anti-aliased bitmap texture

being displayed on a screen (or screen location) at a resolution

different than the resolution of the texture itself (such as

a textured model in the distance from the virtual camera)

will exhibit aliasing artifacts, while any procedurally-defined

texture will always show aliasing artifacts as they are

resolution-independent; techniques such as mipmapping

and texture filtering help to solve texture-related aliasing

problems.

VOLUME RENDERING
Volume rendering is a technique used to display a 2D

projection of a 3D discretely sampled data set. A typical 3D

data set is a group of 2D slice images acquired by a CT or

MRI scanner. Usually these are acquired in a regular pattern

(e.g., one slice every millimeter) and usually have a regular

number of image pixels in a regular pattern. This is an

example of a regular volumetric grid, with each volume

element, or voxel represented by a single value that is

obtained by sampling the immediate area surrounding the

voxel.

3D MODELING
3D modeling is the process of developing a mathematical,

wireframe representation of any three-dimensional object,
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called a “3D model”, via specialized software. Models may

be created automatically or manually; the manual modeling

process of preparing geometric data for 3D computer graphics

is similar to plastic arts such as sculpting. 3D models may

be created using multiple approaches: use of NURBS curves

to generate accurate and smooth surface patches, polygonal

mesh modeling (manipulation of faceted geometry), or

polygonal mesh subdivision (advanced tessellation of

polygons, resulting in smooth surfaces similar to NURBS

models). A 3D model can be displayed as a two-dimensional

image through a process called 3D rendering, used in a

computer simulation of physical phenomena, or animated

directly for other purposes. The model can also be physically

created using 3D Printing devices.

PIONEERS IN GRAPHIC DESIGN

CHARLES CSURI
Charles Csuri is a pioneer in computer animation and

digital fine art and created the first computer art in 1964.

Csuri was recognized by Smithsonian as the father of digital

art and computer animation, and as a pioneer of computer

animation by the Museum of Modern Art (MoMA) and

Association for Computing Machinery-SIGGRAPH.

DONALD P. GREENBERG
Donald P. Greenberg is a leading innovator in computer

graphics. Greenberg has authored hundreds of articles and

served as a teacher and mentor to many prominent computer

graphic artists, animators, and researchers such as Robert
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L. Cook, Marc Levoy, and Wayne Lytle. Many of his former

students have won Academy Awards for technical

achievements and several have won the SIGGRAPH

Achievement Award. Greenberg was the founding director

of the NSF Center for Computer Graphics and Scientific

Visualization.

A. MICHAEL NOLL
Noll was one of the first researchers to use a digital

computer to create artistic patterns and to formalize the

use of random processes in the creation of visual arts. He

began creating digital computer art in 1962, making him

one of the earliest digital computer artists. In 1965, Noll

along with Frieder Nake and Georg Nees were the first to

publicly exhibit their computer art. During April 1965, the

Howard Wise Gallery exhibited Noll’s computer art along

with random-dot patterns by Bela Julesz.

OTHER PIONEERS
• Jim Blinn

• Arambilet

• Benoît B. Mandelbrot

• Henri Gouraud

• Bui Tuong Phong

• Pierre Bézier

• Paul de Casteljau

• Daniel J. Sandin

• Alvy Ray Smith

• Ton Roosendaal

• Ivan Sutherland

• Steve Russell
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COMPUTER GRAPHICS STUDY

The study of computer graphics is a sub-field of computer

science which studies methods for digitally synthesizing

and manipulating visual content. Although the term often

refers to three-dimensional computer graphics, it also

encompasses two-dimensional graphics and image

processing. As an academic discipline, computer graphics

studies the manipulation of visual and geometric information

using computational techniques. It focuses on the

mathematical and computational foundations of image

generation and processing rather than purely aesthetic

issues. Computer graphics is often differentiated from the

field of visualization, although the two fields have many

similarities.
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2

Computer-aided Design

Computer-aided design (CAD), also known as computer-

aided design and drafting (CADD)  , is the use of computer

technology for the process of design and design-

documentation. Computer Aided Drafting describes the

process of drafting with a computer. CADD software, or

environments, provides the user with input-tools for the

purpose of streamlining design processes; drafting,

documentation, and manufacturing processes. CADD output

is often in the form of electronic files for print or machining

operations. The development of CADD-based software is in

direct correlation with the processes it seeks to economize;

industry-based software (construction, manufacturing, etc.)

typically uses vector-based (linear) environments whereas

graphic-based software utilizes raster-based (pixelated)

environments. CADD environments often involve more than

just shapes. As in the manual drafting of technical and
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engineering drawings, the output of CAD must convey

information, such as materials, processes, dimensions, and

tolerances, according to application-specific conventions. CAD

may be used to design curves and figures in two-dimensional

(2D) space; or curves, surfaces, and solids in three-

dimensional (3D) objects. CAD is an important industrial art

extensively used in many applications, including automotive,

shipbuilding, and aerospace industries, industrial and

architectural design, prosthetics, and many more. CAD is

also widely used to produce computer animation for special

effects in movies, advertising and technical manuals. The

modern ubiquity and power of computers means that even

perfume bottles and shampoo dispensers are designed using

techniques unheard of by engineers of the 1960s. Because

of its enormous economic importance, CAD has been a major

driving force for research in computational geometry, computer

graphics (both hardware and software), and discrete

differential geometry. The design of geometric models for

object shapes, in particular, is occasionally called computer-

aided geometric design (CAGD).

Beginning in the 1980s Computer-Aided Design

programme s reduced the need of draftsmen significantly,

especially in small to mid-sized companies. Their affordability

and ability to run on personal computers also allowed

engineers to do their own drafting work, eliminating the

need for entire departments. In today’s world most, if not

all, students in universities do not learn drafting techniques

because they are not required to do so. The days of hand

drawing for final drawings are almost obsolete. Universities

no longer require the use of protractors and compasses to
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create drawings, instead there are several classes that focus

on the use of CAD software such as Pro Engineer or IEAS-

MS. Current computer-aided design software packages range

from 2D vector-based drafting systems to 3D solid and

surface modellers. Modern CAD packages can also frequently

allow rotations in three dimensions, allowing viewing of a

designed object from any desired angle, even from the inside

looking out. Some CAD software is capable of dynamic

mathematic modeling, in which case it may be marketed

as CADD — computer-aided design and drafting.

CAD is used in the design of tools and machinery and

in the drafting and design of all types of buildings, from

small residential types (houses) to the largest commercial

and industrial structures (hospitals and factories).  CAD is

mainly used for detailed engineering of 3D models and/or

2D drawings of physical components, but it is also used

throughout the engineering process from conceptual design

and layout of products, through strength and dynamic

analysis of assemblies to definition of manufacturing methods

of components. It can also be used to design objects. CAD

has become an especially important technology within the

scope of computer-aided technologies, with benefits such

as lower product development costs and a greatly shortened

design cycle. CAD enables designers to lay out and develop

work on screen, print it out and save it for future editing,

saving time on their drawings.

TYPES

There are several different types of CAD. Each of these

different types of CAD systems require the operator to think
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differently about how he or she will use them and he or she

must design their virtual components in a different manner

for each. There are many producers of the lower-end 2D

systems, including a number of free and open source

programmes. These provide an approach to the drawing

process without all the fuss over scale and placement on

the drawing sheet that accompanied hand drafting, since

these can be adjusted as required during the creation of

the final draft.

3D wireframe is basically an extension of 2D drafting (not

often used today). Each line has to be manually inserted

into the drawing. The final product has no mass properties

associated with it and cannot have features directly added

to it, such as holes. The operator approaches these in a

similar fashion to the 2D systems, although many 3D systems

allow using the wireframe model to make the final engineering

drawing views. 3D “dumb” solids are created in a way

analogous to manipulations of real world objects (not often

used today). Basic three-dimensional geometric forms

(prisms, cylinders, spheres, and so on) have solid volumes

added or subtracted from them, as if assembling or cutting

real-world objects. Two-dimensional projected views can

easily be generated from the models. Basic 3D solids don’t

usually include tools to easily allow motion of components,

set limits to their motion, or identify interference between

components. 3D parametric solid modeling require the

operator to use what is referred to as “design intent”. The

objects and features created are adjustable. Any future

modifications will be simple, difficult, or nearly impossible,

depending on how the original part was created. One must
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think of this as being a “perfect world” representation of the

component. If a feature was intended to be located from the

center of the part, the operator needs to locate it from the

center of the model, not, perhaps, from a more convenient

edge or an arbitrary point, as he could when using “dumb”

solids. Parametric solids require the operator to consider

the consequences of his actions carefully.

Some software packages provide the ability to edit

parametric and non-parametric geometry without the need

to understand or undo the design intent history of the

geometry by use of direct modeling functionality. This ability

may also include the additional ability to infer the correct

relationships between selected geometry (e.g., tangency,

concentricity) which makes the editing process less time

and labor intensive while still freeing the engineer from the

burden of understanding the model’s. These kind of non

history based systems are called Explicit Modellers or Direct

CAD Modelers.

Top end systems offer the capabilities to incorporate

more organic, aesthetics and ergonomic features into designs.

Freeform surface modelling is often combined with solids

to allow the designer to create products that fit the human

form and visual requirements as well as they interface with

the machine.

MAIN USES

Computer-aided design is one of the many tools used by

engineers and designers and is used in many ways depending

on the profession of the user and the type of software in
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question. CAD is one part of the whole Digital Product

Development (DPD) activity within the Product Lifecycle

Management (PLM) process, and as such is used together

with other tools, which are either integrated modules or

stand-alone products, such as:

• Computer-aided engineering (CAE) and Finite element

analysis (FEA)

• Computer-aided manufacturing (CAM) including

instructions to Computer Numerical Control (CNC)

machines

• Photo realistic rendering

• Document management and revision control using

Product Data Management (PDM).

CAD is also used for the accurate creation of photo

simulations that are often required in the preparation of

Environmental Impact Reports, in which computer-aided

designs of intended buildings are superimposed into

photographs of existing environments to represent what

that locale will be like were the proposed facilities allowed

to be built. Potential blockage of view corridors and shadow

studies are also frequently analyzed through the use of

CAD..

TECHNOLOGY

Originally software for Computer-Aided Design systems

was developed with computer languages such as Fortran,

but with the advancement of object-oriented programming

methods this has radically changed. Typical modern

parametric feature based modeler and freeform surface
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systems are built around a number of key C modules with

their own APIs. A CAD system can be seen as built up from

the interaction of a graphical user interface (GUI) with

NURBS geometry and/or boundary representation (B-rep)

data via a geometric modeling kernel. A geometry constraint

engine may also be employed to manage the associative

relationships between geometry, such as wireframe geometry

in a sketch or components in an assembly. Unexpected

capabilities of these associative relationships have led to a

new form of prototyping called digital prototyping.

In contrast to physical prototypes, which entail

manufacturing time in the design. Today, CAD systems

exist for all the major platforms (Windows, Linux, UNIX and

Mac OS X); some packages even support multiple platforms.

Right now, no special hardware is required for most CAD

software. However, some CAD systems can do graphically

and computationally expensive tasks, so a good graphics

card, high speed (and possibly multiple) CPUs and large

amounts of RAM are recommended. The human-machine

interface is generally via a computer mouse but can also

be via a pen and digitizing graphics tablet. Manipulation of

the view of the model on the screen is also sometimes done

with the use of a Spacemouse/SpaceBall. Some systems

also support stereoscopic glasses for viewing the 3D model.

HISTORY

Designers have long used computers for their calculations.

Initial developments were carried out in the 1960s within

the aircraft and automotive industries in the area of 3D
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surface construction and NC programming, most of it

independent of one another and often not publicly published

until much later. Some of the mathematical description

work on curves was developed in the early 1940s by Robert

Issac Newton from Pawtucket, Rhode Island. Robert A.

Heinlein in his 1957 novel The Door into Summer suggested

the possibility of a robotic Drafting Dan. However, probably

the most important work on polynomial curves and

sculptured surface was done by Pierre Bezier (Renault),

Paul de Casteljau (Citroen), Steven Anson Coons (MIT, Ford),

James Ferguson (Boeing), Carl de Boor (GM), Birkhoff (GM)

and Garibedian (GM) in the 1960s and W. Gordon (GM) and

R. Riesenfeld in the 1970s. It is argued that a turning point

was the development of the SKETCHPAD system at MIT in

1963 by Ivan Sutherland (who later created a graphics

technology company with Dr. David Evans).

The distinctive feature of SKETCHPAD was that it allowed

the designer to interact with his computer graphically: the

design can be fed into the computer by drawing on a CRT

monitor with a light pen. Effectively, it was a prototype of

graphical user interface, an indispensable feature of modern

CAD. The first commercial applications of CAD were in large

companies in the automotive and aerospace industries, as

well as in electronics. Only large corporations could afford

the computers capable of performing the calculations.

Notable company projects were at GM (Dr. Patrick J.Hanratty)

with DAC-1 (Design Augmented by Computer) 1964;

Lockheed projects; Bell GRAPHIC 1 and at Renault (Bezier)

– UNISURF 1971 car body design and tooling. One of the

most influential events in the development of CAD was the
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founding of MCS (Manufacturing and Consulting Services

Inc.) in 1971 by Dr. P.J. Hanratty, who wrote the system

ADAM (Automated Drafting And Machining) but more

importantly supplied code to companies such as McDonnell

Douglas (Unigraphics), Computervision (CADDS), Calma,

Gerber, Autotrol and Control Data. As computers became

more affordable, the application areas have gradually

expanded.

The development of CAD software for personal desktop

computers was the impetus for almost universal application

in all areas of construction. Other key points in the 1960s

and 1970s would be the foundation of CAD systems United

Computing, Intergraph, IBM, Intergraph IGDS in 1974 (which

led to Bentley Systems MicroStation in 1984)

CAD implementations have evolved dramatically since

then. Initially, with 3D in the 1970s, it was typically limited

to producing drawings similar to hand-drafted drawings.

Advances in programming and computer hardware, notably

solid modeling in the 1980s, have allowed more versatile

applications of computers in design activities. Key products

for 1981 were the solid modelling packages -Romulus

(ShapeData) and Uni-Solid (Unigraphics) based on PADL-

2 and the release of the surface modeler CATIA (Dassault

Systemes). Autodesk was founded 1982 by John Walker,

which led to the 2D system AutoCAD.

The next milestone was the release of Pro/ENGINEER

in 1988, which heralded greater usage of feature-based

modeling methods and parametric linking of the parameters

of features. Also of importance to the development of CAD

was the development of the B-rep solid modeling kernels
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(engines for manipulating geometrically and topologically

consistent 3D objects) Parasolid (ShapeData) and ACIS

(Spatial Technology Inc.) at the end of the 1980s and

beginning of the 1990s, both inspired by the work of Ian

Braid. This led to the release of mid-range packages such

as SolidWorks in 1995, Solid Edge (then Intergraph) in 1996

and Autodesk Inventor in 1999.
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Computer: Drawing, Painting and
Design

Drawing and painting software is available on most

platforms at the University. However, there are many

differences between software intended primarily for drawing

and that intended for painting. Drawing software will provide

the user with a set of ‘entities’ used to construct the drawing

(an entity is a drawing element such as a line, circle, or text

string). Drawing entities can range from simple lines, points

and curves in 2D to their equivalents in 3D and may include

3D surfaces. Advanced versions of drawing packages used

for design are referred to as Computer Aided Design (CAD)

systems. Painting software tends to work on a conceptually

lower layer. Whilst it may provide some entities for

constructing geometric shapes (these tend to be 2D geometric

shapes), a painting package will also provide control over

individual pixels in the image, i.e. it provides direct control
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over the bitmap. It is worth remembering that opening any

image in a painting package causes it to become pixelated.

The following packages are available on the ISS NT Cluster

Desktop:

• Paint Very basic painting programme. Can create

simple pictures and edit bitmaps. Only possible to

read in and save files in a BMP format.

• Picture Publisher Painting package used to edit and

create pictures. Can read in and save files in a

number of different formats.

• Paint Shop Pro Recommended as the main painting

package on the desktop. Used to edit and create

pictures. Can read in and save files in a number of

different formats.

• CorelDraw Recommended as the main drawing

package on the desktop. Useful for editing vector

graphics.Can read in and save files in both vector

and bitmap formats.

• Micrografx Designer Drawing package used for

technical drawing.

The following drawing and painting software is available

on the Suns:

• Island Paint Painting programme that provides tools

for creating and editing images formed by

monochrome and colour bitmaps. Several painting

tools can be used to create geometric and freehand

shapes. Scanned images and clip art can also be

imported.

• Island Draw 2D drawing package.

• Island Paint General purpose CAD system in use in
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engineering, and allows 3D solid modelling as well as

2D/3D draughting. An extension, AEC, for

architectural and construction applications, is also

available.

COMPUTER AIDED DESIGN AND DRAWING
CAD systems provide drawing entities with powerful

construction, editing and database techniques. CAD data

can also be output and read in by other applications software

for analysing the CAD model. For example, a CAD system

could be used to generate a 3D model which could then be

read into a finite element analysis package. A common

requirement in engineering design is to produce a drawing

which is a schematic layout of components, and which

accurately reflects the relative sizes and relationships of these

parts. Engineering drawing and draughting is a specialist

area with its own set of procedures and practices which have

become de facto standards in the engineering industry.

Manual methods are now being replaced by computer-

assisted methods, and the software that is used to enable

these drawings to be produced embodies the functions and

capabilities that are required.

CAD applications are very powerful tools that can be used

by a designer. The speed and ease with which a drawing

can be prepared and modified using a computer have a

tremendous advantage over hand-based drawing techniques.

CAD-based drawings can be created very easily using the

drawing primitives made available by the software (2D/3D

lines, arcs, curves, 3D surfaces, text etc.). The drawing can

be shared by a number of designers over a computer network

who could all be specialists in particular design areas and
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located at different sites. CAD also allows drawings to be

rapidly edited and modified, any number of times.

Drawings can also be linked into databases that could

hold material specifications, material costs etc., thereby

providing a comprehensive surveillance from design through

to manufacturing. In engineering applications, CAD system

specifications can be passed through to numerically

controlled (NC) machines to manufacture parts directly.

For creating three-dimensional objects, most CAD

systems will provide 3D primitives (such as boundary

representations of spheres, cubes, surfaces of revolution and

surface patches). They may also provide a solid modelling

facility through Constructive Solid Geometry (CSG). Using

CSG, basic 3D solids (usually cubes, spheres, wedges, cones,

cylinders and tori) more complex composite solids can be

created using three basic operations: joining (union) solids,

removing (subtraction) solids and finding the common

volume (intersection) of solids. With solid modelling, mass

properties of solids (e.g. moments of inertia, principal

moments etc.) can be quickly calculated.

There is virtually no limit to the kind of drawings and

models that can be prepared using a CAD system: if it can

be created by hand, a CAD system will allow it to be drawn

and modelled. Some of the applications where CAD is used

are: architectural and interior design, almost all engineering

disciplines (e.g. electronic, chemical, civil, mechanical,

automotive and aerospace), presentation drawings,

topographic maps, musical scores, technical illustration,

company logos and line drawing for fine art.
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Most CAD models can be enhanced for further

understanding and presentation by the use of advanced

rendering animation techniques (by adding material

specifications, light sources and camera motion paths to the

model) to produce realistic images and interactive motion

through the model. AutoCad is the primary general purpose

CAD system in use in engineering, and allows 3D solid

modelling as well as 2D/3D draughting. An extension, AEC,

for architectural and construction applications, is also

available.

SCIENTIFIC VISUALISATION
Scientific Visualisation is concerned with exploring data

and information graphically - as a means of gaining insight

into and understanding the data. By displaying multi-

dimensional data in an easily-understandable form on a 2D

screen, it enables insights into 3D and higher dimensional

data and data sets that were not formerly possible. The

difference between scientific visualisation and presentation

graphics is that the latter is primarily concerned with the

communication of information and results that are already

understood. In scientific visualisation we are seeking to

understand the data.

The recent upsurge of interest in scientific visualisation

has been brought about principally by the provision of

powerful and high-level tools coupled with the availability

of powerful workstations, excellent colour graphics, and

access to supercomputers if required. This symbiosis

provides a powerful and flexible environment for visualising

all kinds and quantities of data.
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This was once regarded as the exclusive domain of expert

system and application programmers who could write the

large programmes required, incorporate the algorithms for

the graphics, get rid of the bugs in the resulting programme

(a non-trivial and time-consuming task), and then process

the data. Most of this now comes already available ‘off the

shelf’ - all the users have to do is activate it and plug in

their data sets.

Visualisation tools range from lower-level presentation

packages, through turnkey graphics packages and libraries,

to higher-level application builders. The former are used for

simple and modest requirements on small to medium sized

data sets and are often used on PCs. The second take larger

and more complex data sets and have a variety of facilities

for analysis and presentation of the data in two and three

dimensions. The latter enable users to specify their

requirements in terms of their application and ‘build’ a

customised system out of pre-defined components supplied

by the software. This can usually be done visually on the

screen and then the data can be read in, processed and

viewed. You can interact with it by changing parameters or

altering values.

Presentation Packages
Many spreadsheet packages for the PC have the facilities

for doing elementary 2D graphics, i.e. to take a table of X, Y

data and show it in visual form on X, Y axes. This enables

us to see the overall form of the data much more easily than

looking at the table of numbers.

It also enables us to identify any kinks or unusual

features and even missing or incorrect data. These facilities
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are also available in PC graphics packages such as Origin -

this is menu-driven and allows users to read in data and

select the options required without any programming

knowledge.

Turnkey Graphics Packages and Libraries
Turnkey graphics packages include the Uniras interactive

modules Unigraph, Unimap and Gsharp. Unigraph is used

for scientific graphing and charting in two and three

dimensions. Unimap is used for mapping, contouring and

surface drawing. Gsharp is used for both. All these

programmes contain advanced facilities for processing data

and for the selection of curve and surface requirements. No

programming knowledge or experience is required; the user

interacts with the modules via menus on the screen.

Application Builders
These are large systems which contain a wide variety of

pre-defined functions and facilities. Building an application

consists of visually selecting the iconised functions on the

screen, connecting them together by ‘pipes’ and then

activating the network to read in the data and feed it through

the interconnected modules. Many state-of-the-art functions

for graphics, imaging, rendering, interfacing and displaying

are contained in the system. Users can extend the functions

available by writing their own modules and adding them to

the system.

Examples of visualisation application builders are AVS/

Express and IRIS Explorer. AVS/Express is an advanced

interactive visualisation environment for scientists and

engineers. AVS/Express supports geometric, image and
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volume datasets. Modules can be dynamically added,

connected and deleted. Modules have control panels for

interactive control of input parameters in the form of on-

screen sliders, file browsers, dials and buttons. AVS/Express

has a wide range of data input, filter, mapper and renderer

modules. Examples of mappers include isosurfaces of a 3D

field, 2D slices of a 3D data volume and 3D meshes from 2D

elevation datasets. Multiple visualisation techniques can be

selected to suit the problem being studied. User-written

programmes or subroutines in FORTRAN or C can be easily

converted into AVS/Express modules which can then be

integrated into networks using the network editor.

IRIS Explorer provides similar visualisation and analysis

functionality. With IRIS Explorer, users view data and create

applications by visually connecting software modules into

flow chart configurations called module maps. Modules, the

building blocks of IRIS Explorer, perform specific programme

functions such as data reading, data analysis, image

processing, geometric and volume rendering and many other

tasks.

DESKTOP MAPPING AND GIS
Graphs which are maps, or have a cartographic

component, are a special case of a 2D graph which requires

some special techniques. Many people who are not

geographers require this form of graph. Mapping and GIS

are two areas that benefit greatly from computer processing

of images. It has been estimated that 85% of all the

information used by private and public sector organisations

contains some sort of geographic element such as street
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addresses, cities, states, postcodes or even telephone

numbers with area codes. Any of these geographic

components can be used to help visualise and summarise

the data on a map display, enabling you to see patterns and

relationships in the data quickly and easily.

MapInfo Professional is a comprehensive desktop

mapping tool, available on the PC network, that enables you

to create maps, create thematic maps, integrate tabular data

onto maps, as well as perform complex geographic analysis

such as redistricting and buffering, linking to your remote

data, dragging and dropping map objects into your

applications, and much more. A GIS (Geographical

Information System) is a system for sorting, manipulating,

analysing and displaying information with a significant

spatial (map-related) content. ArcView and ArcInfo are the

two packages available in this category. ArcView is a leading

software package for GIS and mapping. It gives you the power

to visualise, explore, query and analyse data geographically.

ArcView also has three add-on packages - Spatial, Network

and 3D Analyst - for more complicated queries. ArcView is

available on the NT Cluster Desktop and on the Sun

workstations.

ArcInfo is an advanced GIS that gives users of geographic

data one of the best geoprocessing systems available at

present. It integrates the modern principles of software

engineering, database management and cartographic theory.

Users are advised that this is a very comprehensive GIS

package and requires familiarity with and understanding of

GIS concepts. ArcInfo is available on the Sun workstations.
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SUBROUTINE LIBRARIES FOR GRAPHICS
Uniras and OpenGL are subroutine libraries which are

available at Leeds. The former is available on both the Sun

and the Silicon Graphics workstations whilst the latter is only

available on the Silicon Graphics workstations. Both libraries

have at least FORTRAN and C bindings. This means that users

have to embed their graphics requirements into their own

application programmes and write their own programme code

to do this. In contrast, the interactive modules of Uniras (e.g.

Gsharp or Unigraph) work entirely off data sets - you do not

need to write a programme. If you have a pre-existing

applications programme for which you require graphical

output, it may be easier just to produce a data file from the

execution of this programme and then read this data file into

a software package. It only becomes necessary to write your

own programme (or extend your existing programme to include

calls to graphics library routines) if you have to embed your

graphics requirements to make them an integral part of your

application environment, or (in the case of Uniras) you need

the more advanced library functions which are not available

in the interactive modules.

Multimedia
There is joint provision for networked colour printing,

graphics, slides and video by Information Systems Services

and the Print & Copy Bureau.

On-line Services: Printers, Slide Makers and
Scanners

A4 monochrome (black and white) and colour postscript

printers are available on the network. Users can send
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electronic picture and text information for direct output on

to paper or OHP foil. Additional printing facilities are provided

by Media Services where users can also discuss converting

draft electronic information into pre-designed images with

design staff.

Computer-Based Video Production
Data can be displayed or animated in real-time on a high-

powered workstation. However, the audience is clearly limited

to those who can sit at the workstation. For research

seminars, conference presentations, and grant proposals it

is often more useful to be able to record the real-time image

sequences on video tape and present them to the audience

via a video player or video projector. To ensure such

presentations are effective, they have to be at a professional

standard of presentation. All of us have become

unconsciously accustomed to a high quality of presentation

from watching programmes on television. Anything less than

this immediately looks inferior and can often reflect on the

content of what is being presented.

Graphic Design
Graphic design is a creative process – most often involving

a client and a designer and usually completed in conjunction

with producers of form (i.e., printers, programmers,

signmakers, etc.) – undertaken in order to convey a specific

message (or messages) to a targeted audience. The term

“graphic design” can also refer to a number of artistic and

professional disciplines that focus on visual communication

and presentation. The field as a whole is also often referred

to as Visual Communication or Communication Design.
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Various methods are used to create and combine words,

symbols, and images to create a visual representation of

ideas and messages. A graphic designer may use typography,

visual arts and page layout techniques to produce the final

result. Graphic design often refers to both the process

(designing) by which the communication is created and the

products (designs) which are generated. Common uses of

graphic design include identity (logos and branding), web

sites, publications (magazines, newspapers, and books),

advertisements and product packaging. For example, a

product package might include a logo or other artwork,

organized text and pure design elements such as shapes

and color which unify the piece.

Composition is one of the most important features of

graphic design, especially when using pre-existing materials

or diverse elements. While Graphic Design as a discipline

has a relatively recent history, with the name ‘graphic

design” first coined by William Addison Dwiggins in 1922,

graphic design-like activities span the history of humankind:

from the caves of Lascaux, to Rome’s Trajan’s Column to

the illuminated manuscripts of the Middle Ages, to the

dazzling neons of Ginza.

In both this lengthy history and in the relatively recent

explosion of visual communication in the 20th and 21st

centuries, there is sometimes a blurring distinction and

over-lapping of advertising art, graphic design and fine art.

After all, they share many of the same elements, theories,

principles, practices and languages, and sometimes the

same benefactor or client. In advertising art the ultimate

objective is the sale of goods and services. In graphic design,
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“the essence is to give order to information, form to ideas,

expression and feeling to artifacts that document human

experience.”

ADVENT OF PRINTING
During the Tang Dynasty (618–907) between the 4th and

7th century AD, wood blocks were cut to print on textiles

and later to reproduce Buddhist texts. A Buddhist scripture

printed in 868 is the earliest known printed book. Beginning

in the 11th century, longer scrolls and books were produced

using movable type printing making books widely available

during the Song dynasty (960–1279). Sometime around

1450, Johann Gutenberg’s printing press made books widely

available in Europe. The book design of Aldus Manutius

developed the book structure which would become the

foundation of western publication design. This era of graphic

design is called Humanist or Old Style.

EMERGENCE OF THE DESIGN INDUSTRY
In late 19th century Europe, especially in the United

Kingdom, the movement began to separate graphic design

from fine art. In 1849, Henry Cole became one of the major

forces in design education in Great Britain, informing the

government of the importance of design in his Journal of

Design and Manufactures. He organized the Great Exhibition

as a celebration of modern industrial technology and

Victorian design. From 1891 to 1896, William Morris’

Kelmscott Press published books that are some of the most

significant of the graphic design products of the Arts and

Crafts movement, and made a very lucrative business of
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creating books of great stylistic refinement and selling them

to the wealthy for a premium. Morris proved that a market

existed for works of graphic design in their own right and

helped pioneer the separation of design from production

and from fine art. The work of the Kelmscott Press is

characterized by its obsession with historical styles. This

historicism was, however, important as it amounted to the

first significant reaction to the stale state of nineteenth-

century graphic design. Morris’ work, along with the rest

of the Private Press movement, directly influenced Art

Nouveau and is indirectly responsible for developments in

early twentieth century graphic design in general.

TWENTIETH CENTURY DESIGN
The name “Graphic Design” first appeared in print in the

1922 essay “New Kind of Printing Calls for New Design” by

William Addison Dwiggins, an American book designer in

the early 20th century. Raffe’s Graphic Design, published

in 1927, is considered to be the first book to use “Graphic

Design” in its title. The signage in the London Underground

is a classic design example of the modern era and used a

font designed by Edward Johnston in 1916. In the 1920s,

Soviet constructivism applied ‘intellectual production’ in

different spheres of production. The movement saw

individualistic art as useless in revolutionary Russia and

thus moved towards creating objects for utilitarian purposes.

They designed buildings, theater sets, posters, fabrics,

clothing, furniture, logos, menus, etc.

Jan Tschichold codified the principles of modern

typography in his 1928 book, New Typography. He later
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repudiated the philosophy he espoused in this book as

being fascistic, but it remained very influential. Tschichold,

Bauhaus typographers such as Herbert Bayer and Laszlo

Moholy-Nagy, and El Lissitzky have greatly influenced graphic

design as we know it today. They pioneered production

techniques and stylistic devices used throughout the

twentieth century. The following years saw graphic design

in the modern style gain widespread acceptance and

application. A booming post-World War II American economy

established a greater need for graphic design, mainly

advertising and packaging. The emigration of the German

Bauhaus school of design to Chicago in 1937 brought a

“mass-produced” minimalism to America; sparking a wild

fire of “modern” architecture and design. Notable names in

mid-century modern design include Adrian Frutiger, designer

of the typefaces Univers and Frutiger; Paul Rand, who, from

the late 1930s until his death in 1996, took the principles

of the Bauhaus and applied them to popular advertising

and logo design, helping to create a uniquely American

approach to European minimalism while becoming one of

the principal pioneers of the subset of graphic design known

as corporate identity; and Josef Müller-Brockmann, who

designed posters in a severe yet accessible manner typical

of the 1950s and 1970s era.

The growth of the graphic design industry has grown in

parallel with the rise of consumerism. This has raised some

concerns and criticisms, notably from within the graphic

design community with the First Things First manifesto.

First launched by Ken Garland in 1964, it was re-published

as the First Things First 2000 manifesto in 1999 in the
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magazine Emigre 51 stating “We propose a reversal of

priorities in favor of more useful, lasting and democratic

forms of communication - a mindshift away from product

marketing and toward the exploration and production of a

new kind of meaning.

The scope of debate is shrinking; it must expand.

Consumerism is running uncontested; it must be challenged

by other perspectives expressed, in part, through the visual

languages and resources of design.” Both editions attracted

signatures from respected design practitioners and thinkers,

for example; Rudy VanderLans, Erik Spiekermann, Ellen

Lupton and Rick Poynor. The 2000 manifesto was also

notably published in Adbusters, known for its strong critiques

of visual culture.

APPLICATIONS

From road signs to technical schematics, from interoffice

memorandums to reference manuals, graphic design

enhances transfer of knowledge. Readability is enhanced by

improving the visual presentation of text. Design can also

aid in selling a product or idea through effective visual

communication. It is applied to products and elements of

company identity like logos, colors, packaging, and text.

Together these are defined as branding. Branding has

increasingly become important in the range of services

offered by many graphic designers, alongside corporate

identity. Whilst the terms are often used interchangeably,

branding is more strictly related to the identifying mark or

trade name for a product or service, whereas corporate
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identity can have a broader meaning relating to the structure

and ethos of a company, as well as to the company’s external

image.

Graphic designers will often form part of a team working

on corporate identity and branding projects. Other members

of that team can include marketing professionals,

communications consultants and commercial writers.

Textbooks are designed to present subjects such as

geography, science, and math. These publications have

layouts which illustrate theories and diagrams. A common

example of graphics in use to educate is diagrams of human

anatomy. Graphic design is also applied to layout and

formatting of educational material to make the information

more accessible and more readily understandable. Graphic

design is applied in the entertainment industry in decoration,

scenery, and visual story telling.

Other examples of design for entertainment purposes

include novels, comic books, DVD covers, opening credits

and closing credits in film, and programmes and props on

stage. This could also include artwork used for t-shirts and

other items screenprinted for sale. From scientific journals

to news reporting, the presentation of opinion and facts is

often improved with graphics and thoughtful compositions

of visual information - known as information design.

Newspapers, magazines, blogs, television and film

documentaries may use graphic design to inform and

entertain. With the advent of the web, information designers

with experience in interactive tools such as Adobe Flash are

increasingly being used to illustrate the background to

news stories.
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SKILLS

A graphic design project may involve the stylization and

presentation of existing text and either preexisting imagery

or images developed by the graphic designer. For example,

a newspaper story begins with the journalists and

photojournalists and then becomes the graphic designer’s

job to organize the page into a reasonable layout and

determine if any other graphic elements should be required.

In a magazine article or advertisement, often the graphic

designer or art director will commission photographers or

illustrators to create original pieces just to be incorporated

into the design layout. Or the designer may utilize stock

imagery or photography. Contemporary design practice has

been extended to the modern computer, for example in the

use of WYSIWYG user interfaces, often referred to as

interactive design, or multimedia design.

VISUAL ARTS
Before any graphic elements may be applied to a design,

the graphic elements must be originated by means of visual

art skills. These graphics are often (but not always) developed

by a graphic designer. Visual arts include works which are

primarily visual in nature using anything from traditional

media, to photography or computer generated art. Graphic

design principles may be applied to each graphic art element

individually as well as to the final composition.

TYPOGRAPHY
Typography is the art, craft and techniques of type design,

modifying type glyphs, and arranging type. Type glyphs
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(characters) are created and modified using a variety of

illustration techniques. The arrangement of type is the

selection of typefaces, point size, line length, leading (line

spacing) and letter spacing. Typography is performed by

typesetters, compositors, typographers, graphic artists, art

directors, and clerical workers. Until the Digital Age,

typography was a specialized occupation. Digitization opened

up typography to new generations of visual designers and

lay users.

PAGE LAYOUT
The page layout aspect of graphic design deals with the

arrangement of elements (content) on a page, such as image

placement, and text layout and style. Beginning from early

illuminated pages in hand-copied books of the Middle Ages

and proceeding down to intricate modern magazine and

catalogue layouts, structured page design has long been a

consideration in printed material. With print media, elements

usually consist of type (text), images (pictures), and

occasionally place-holder graphics for elements that are not

printed with ink such as die/laser cutting, foil stamping or

blind embossing.

INTERFACE DESIGN
Since the advent of the World Wide Web and computer

software development, many graphic designers have become

involved in interface design. This has included web design

and software design, when end user interactivity is a design

consideration of the layout or interface. Combining visual

communication skills with the interactive communication
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skills of user interaction and online branding, graphic

designers often work with software developers and web

developers to create both the look and feel of a web site or

software application and enhance the interactive experience

of the user or web site visitor. An important aspect of

interface design is icon design.

PRINTMAKING
Printmaking is the process of making artworks by printing

on paper and other materials or surfaces. Except in the case

of monotyping, the process is capable of producing multiples

of the same piece, which is called a print. Each piece is not

a copy but an original since it is not a reproduction of

another work of art and is technically known as an

impression. Painting or drawing, on the other hand, create

a unique original piece of artwork. Prints are created from

a single original surface, known technically as a matrix.

Common types of matrices include: plates of metal, usually

copper or zinc for engraving or etching; stone, used for

lithography; blocks of wood for woodcuts, linoleum for

linocuts and fabric plates for screen-printing. But there are

many other kinds, discussed below. Works printed from a

single plate create an edition, in modern times usually each

signed and numbered to form a limited edition. Prints may

also be published in book form, as artist’s books. A single

print could be the product of one or multiple techniques.

TOOLS

The mind may be the most important graphic design

tool. Aside from technology, graphic design requires judgment
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and creativity. Critical, observational, quantitative and

analytic thinking are required for design layouts and

rendering. If the executor is merely following a solution (e.g.

sketch, script or instructions) provided by another designer

(such as an art director), then the executor is not usually

considered the designer. The method of presentation (e.g.

arrangement, style, medium) may be equally important to

the design. The layout is produced using external traditional

or digital image editing tools. The appropriate development

and presentation tools can substantially change how an

audience perceives a project. In the mid 1980s, the arrival

of desktop publishing and graphic art software applications

introduced a generation of designers to computer image

manipulation and creation that had previously been

manually executed. Computer graphic design enabled

designers to instantly see the effects of layout or typographic

changes, and to simulate the effects of traditional media

without requiring a lot of space. However, traditional tools

such as pencils or markers are useful even when computers

are used for finalization; a designer or art director may hand

sketch numerous concepts as part of the creative process.

Some of these sketches may even be shown to a client

for early stage approval, before the designer develops the

idea further using a computer and graphic design software

tools. Computers are considered an indispensable tool in

the graphic design industry. Computers and software

applications are generally seen by creative professionals as

more effective production tools than traditional methods.

However, some designers continue to use manual and

traditional tools for production, such as Milton Glaser. New
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ideas can come by way of experimenting with tools and

methods. Some designers explore ideas using pencil and

paper. Others use many different mark-making tools and

resources from computers to sculpture as a means of

inspiring creativity. One of the key features of graphic design

is that it makes a tool out of appropriate image selection

in order to possibly convey meaning.ArtsComputers and the

Creative Process

There is some debate whether computers enhance the

creative process of graphic design. Rapid production from

the computer allows many designers to explore multiple

ideas quickly with more detail than what could be achieved

by traditional hand-rendering or paste-up on paper, moving

the designer through the creative process more quickly.

However, being faced with limitless choices does not help

isolate the best design solution and can lead to endless

iterations with no clear design outcome. A graphic designer

may use sketches to explore multiple or complex ideas

quickly without the distractions and complications of

software.

Hand-rendered comps are often used to get approval for

an idea execution before a design invests time to produce

finished visuals on a computer or in paste-up. The same

thumbnail sketches or rough drafts on paper may be used

to rapidly refine and produce the idea on the computer in

a hybrid process. This hybrid process is especially useful

in logo design where a software learning curve may detract

from a creative thought process. The traditional-design/

computer-production hybrid process may be used for freeing
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one’s creativity in page layout or image development as well.

In the early days of computer publishing, many ‘traditional’

graphic designers relied on computer-savvy production

artists to produce their ideas from sketches, without needing

to learn the computer skills themselves. However, this

practice has been increasingly less common since the advent

of desktop publishing over 30 years ago. The use of computers

and graphics software is now taught in most graphic design

courses.

OCCUPATIONS

Graphic design career paths cover all ends of the creative

spectrum and often overlap. The main job responsibility of

a Graphic Designer is the arrangement of visual elements

in some type of media. The main job titles include graphic

designer, art director, creative director, and the entry level

production artist. Depending on the industry served, the

responsibilities may have different titles such as “DTP

Associate” or “Graphic Artist”, but despite changes in title,

graphic design principles remain consistent. The

responsibilities may come from or lead to specialized skills

such as illustration, photography or interactive design.

Today’s graduating graphic design students are normally

exposed to all of these areas of graphic design and urged

to become familiar with all of them as well in order to be

competitive. Graphic designers can work in a variety of

environments. Whilst many will work within companies

devoted specifically to the industry, such as design

consultancies or branding agencies, others may work within
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publishing, marketing or other communications companies.

Increasingly, especially since the introduction of personal

computers to the industry, many graphic designers have

found themselves working within non-design oriented

organizations, as in-house designers. Graphic designers

may also work as free-lance designers, working on their own

terms, prices, ideas, etc.

A graphic designer reports to the art director, creative

director or senior media creative. As a designer becomes

more senior, they may spend less time designing media and

more time leading and directing other designers on broader

creative activities, such as brand development and corporate

identity development. As graphic designers become more

senior, they are often expected to interact more directly with

clients.

SOFTWARE THAT CREATES

GRAPHIC ORGANIZERS

You probably have a lot of software on programmes on

the computer that you use that can create Graphic

Organizers.

These include the Office Productivity Suite applications

(Word Processing, Spreadsheet, and Presentation Programs).

If you use Microsoft(TM) Windows, you probably have a low

end drawing programme called, “Paint.” All these

programmes can create Graphics Organizers.

If you do not have this Office Suite, we have included an

Open Source (Free) Office Suite called “Open Office.” This

programme is free to use and to share with others. Open
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Office applications also can save your Graphic Organizer files

in the PDF file format. If you save Graphic Organizer files in

the PDF format, you can share them with everyone, and the

file will print exactly as you created it.

OPEN OFFICE (OPEN SOURCE)
The catch with sharing Graphic Organizers that are saved

in the PDF file format is that you cannot make changes to

them without expensive software. However, the viewer

programme that opens and prints the files is free and most

people who connect to the Internet have the Acrobat Reader

programme. We have included the latest version to save you

from having to download it from the Internet.

SOFTWARE THAT IS A GRAPHIC ORGANIZER
There are a lot of software products on the market that

are Graphic Organizers.

The majority of these products call themselves, “Mind

Mapping” software.

The competition in this market is very strong, so all

vendors seem to offer free trials of their products. It is

possible that a teacher could use a different trial version of

these products each month, and never purchase a copy.

The only catch is that the formats of the various products

are proprietary. This means that you cannot open the files

you create with another company’s product. Inspiration(TM)

and Kidspiration(TM) are products that fall into this category,

and these products are often available in school districts.

Inspiration and Kidspiration are easy to use, but low-end

products.
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GRAPHICS PIPELINE PERFORMANCE

Over the past few years, the hardware-accelerated

rendering pipeline has rapidly increased in complexity,

bringing with it increasingly intricate and potentially

confusing performance characteristics.

Improving performance used to mean simply reducing

the CPU cycles of the inner loops in your renderer; now it

has become a cycle of determining bottlenecks and

systematically attacking them.

This loop of identification and optimization is

fundamental to tuning a heterogeneous multiprocessor

system; the driving idea is that a pipeline, by definition, is

only as fast as its slowest stage. Thus, while premature

and unfocused optimization in a single-processor system

can lead to only minimal performance gains, in a

multiprocessor system such optimization very often leads

to zero gains.

Working hard on graphics optimization and seeing zero

performance improvement is no fun. The goal of this chapter

is to keep you from doing exactly that.

THE PIPELINE
The pipeline, at the very highest level, can be broken into

two parts: the CPU and the GPU. Although CPU optimization

is a critical part of optimizing your application, it will not be

the focus of this chapter, because much of this optimization

has little to do with the graphics pipeline.

The GPU, there are a number of functional units

operating in parallel, which essentially act as separate
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special-purpose processors, and a number of spots where

a bottleneck can occur. These include vertex and index

fetching, vertex shading (transform and lighting, or T&L),

fragment shading, and raster operations (ROP).

Methodology
Optimization without proper bottleneck identification is

the cause of much wasted development effort, and so we

formalize the process into the following fundamental

identification and optimization loop:

1. Identify the bottleneck. For each stage in the pipeline,

vary either its workload or its computational ability

(that is, clock speed). If performance varies, you’ve

found a bottleneck.

2. Optimize. Given the bottlenecked stage, reduce its

workload until performance stops improving or until

you achieve your desired level of performance.

3. Repeat. Do steps 1 and 2 again until the desired

performance level is reached.

LOCATING THE BOTTLENECK
Locating the bottleneck is half the battle in optimization,

because it enables you to make intelligent decisions about

focusing your actual optimization efforts. A flow chart

depicting the series of steps required to locate the precise

bottleneck in your application. Note that we start at the back

end of the pipeline, with the frame-buffer operations (also

called raster operations) and end at the CPU. Note also that

while any single primitive (usually a triangle), by definition,

has a single bottleneck, over the course of a frame the
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bottleneck most likely changes. Thus, modifying the workload

on more than one stage in the pipeline often influences

performance. For example, a low-polygon skybox is often

bound by fragment shading or frame-buffer access; a skinned

mesh that maps to only a few pixels on screen is often bound

by CPU or vertex processing. For this reason, it frequently

helps to vary workloads on an object-by-object, or material-

by-material, basis.

Fig. Bottleneck Flowchart

For each pipeline stage, we also mention the GPU clock

to which it’s tied (that is, core or memory). This information

is useful in conjunction with tools such as PowerStrip

(EnTech Taiwan 2003), which allows you to reduce the

relevant clock speed and observe performance changes in

your application.

Raster Operations
The very back end of the pipeline, raster operations (often

called the ROP), is responsible for reading and writing depth

and stencil, doing the depth and stencil comparisons, reading

and writing colour, and doing alpha blending and testing.
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As you can see, much of the ROP workload taxes the available

frame-buffer bandwidth. The best way to test if your

application is frame-buffer-bandwidth bound is to vary the

bit depths of the colour or the depth buffers, or both. If

reducing your bit depth from 32-bit to 16-bit significantly

improves your performance, then you are definitely frame-

buffer-bandwidth bound.

Frame-buffer bandwidth is a function of GPU memory

clock, so modifying memory clocks is another technique for

helping to identify this bottleneck.

Texture Bandwidth
Texture bandwidth is consumed any time a texture fetch

request goes out to memory. Although modern GPUs have

texture caches designed to minimize extraneous memory

requests, they obviously still occur and consume a fair

amount of memory bandwidth.

Modifying texture formats can be trickier than modifying

frame-buffer formats as we did when inspecting the ROP;

instead, we recommend changing the effective texture size

by using a large amount of positive mipmap level-of-detail

(LOD) bias. This makes texture fetches access very coarse

levels of the mipmap pyramid, which effectively reduces the

texture size. If this modification causes performance to

improve significantly, you are bound by texture bandwidth.

Texture bandwidth is also a function of GPU memory

clock.

Fragment Shading
Fragment shading refers to the actual cost of generating

a fragment, with associated colour and depth values. This
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is the cost of running the “pixel shader” or “fragment shader.”

Note that fragment shading and frame-buffer bandwidth are

often lumped together under the heading fill rate, because

both are a function of screen resolution. However, they are

two distinct stages in the pipeline, and being able to tell the

difference between the two is critical to effective optimization.

Before the advent of highly programmable fragment-

processing GPUs, it was rare to be bound by fragment

shading. It was often frame-buffer bandwidth that caused

the inevitable correlation between screen resolution and

performance. This pendulum is now starting to swing

towards fragment shading, however, as the newfound

flexibility enables developers to spend oodles of cycles making

fancy pixels.

The first step in determining if fragment shading is the

bottleneck is simply to change the resolution. Because we’ve

already ruled out frame-buffer bandwidth by trying different

frame-buffer bit depths, if adjusting resolution causes

performance to change, the culprit is most likely fragment

shading. A supplementary approach would be to modify the

length of your fragment programmes and see if this

influences performance. But be careful not to add

instructions that can easily be optimized away by a clever

device driver.

Fragment-shading speed is a function of the GPU core

clock.

Vertex Processing
The vertex transformation stage of the rendering pipeline

is responsible for taking an input set of vertex attributes
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(such as model-space positions, vertex normals, texture

coordinates, and so on) and producing a set of attributes

suitable for clipping and rasterization (such as homogeneous

clip-space position, vertex lighting results, texture

coordinates, and more). Naturally, performance in this stage

is a function of the work done per vertex, along with the

number of vertices being processed.

With programmable transformations, determining if

vertex processing is your bottleneck is a simple matter of

changing the length of your vertex programme. If

performance changes, you are vertex-processing bound.

If you’re adding instructions, be careful to add ones that

actually do meaningful work; otherwise, the instructions may

be optimized away by the compiler or the driver. For example,

no-ops that refer to constant registers (such as adding a

constant register that has a value of zero) often cannot be

optimized away because the driver usually doesn’t know the

value of a constant at programme-compile time.

If you’re using fixed-function transformations, it’s a little

trickier. Try modifying the load by changing vertex work such

as specular lighting or texture-coordinate generation state.

Vertex processing speed is a function of the GPU core clock.

Vertex and Index Transfer
Vertices and indices are fetched by the GPU as the first

step in the GPU part of the pipeline. The performance of

vertex and index fetching can vary depending on where the

actual vertices and indices are placed. They are usually either

in system memory—which means they will be transferred

to the GPU over a bus such as AGP or PCI Express—or in

local frame-buffer memory. Often, on PC platforms especially,
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this decision is left up to the device driver instead of the

application, although modern graphics APIs allow

applications to provide usage hints to help the driver choose

the correct memory type.

Determining if vertex or index fetching is a bottleneck in

your application entails modifying the vertex format size.

Vertex and index fetching performance is a function of

the AGP/PCI Express rate if the data is placed in system

memory; it’s a function of the memory clock if data is placed

in local frame-buffer memory.

If none of these tests influences your performance

significantly, you are primarily CPU bound. You may verify

this fact by underclocking your CPU: if performance varies

proportionally, you are CPU bound.

OPTIMIZATION
Now that we have identified the bottleneck, we must

optimize that particular stage to improve application

performance. The following tips are categorized by offending

stage.

Optimizing on the CPU
Many applications are CPU bound—sometimes for good

reason, such as complex physics or AI, and sometimes

because of poor batching or resource management. If you’ve

found that your application is CPU bound, try the following

suggestions to reduce CPU work in the rendering pipeline.

Reduce Resource Locking
Anytime you perform a synchronous operation that

demands access to a GPU resource, there is the potential to
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massively stall the GPU pipeline, which costs both CPU and

GPU cycles. CPU cycles are wasted because the CPU must

sit and spin in a loop, waiting for the (very deep) GPU pipeline

to idle and return the requested resource. GPU cycles are

then wasted as the pipeline sits idle and has to refill.

This locking can occur anytime you

• Lock or read from a surface you were previously

rendering to

• Write to a surface the GPU is reading from, such as

a texture or a vertex buffer.

In general, you should avoid accessing a resource the

GPU is using during rendering.

Maximize Batch Size
We can also call this tip “Minimize the Number of

Batches.” A batch is a group of primitives rendered with a

single API rendering call (for example, DrawIndexedPrimitive

in DirectX 9). The size of a batch is the number of primitives

it contains.

As a wise man once said, “Batch, Batch, Batch!”. Every

API function call to draw geometry has an associated CPU

cost, so maximizing the number of triangles submitted with

every draw call will minimize the CPU work done for a given

number of triangles rendered.

Some tips to maximize the size of your batches:

• If using triangle strips, use degenerate triangles to

stitch together disjoint strips. This will enable you to

send multiple strips, provided that they share

material, in a single draw call.

• Use texture pages. Batches are frequently broken

when different objects use different textures. By
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arranging many textures into a single 2D texture and

setting your texture coordinates appropriately, you can

send geometry that uses multiple textures in a single

draw call. Note that this technique can have issues

with mipmapping and antialiasing. One technique that

sidesteps many of these issues is to pack individual

2D textures into each face of a cube map.

• Use GPU shader branching to increase batch size.

Modern GPUs have flexible vertex- and fragment-

processing pipelines that allow for branching inside

the shader. For example, if two batches are separate

because one requires a four-bone skinning vertex

shader and the other requires a two-bone skinning

vertex shader, you could instead write a vertex shader

that loops over the number of bones required,

accumulating blending weights, and then breaks out

of the loop when the weights sum to one. This way,

the two batches could be combined into one. On

architectures that don’t support shader branching,

similar functionality can be implemented, at the cost

of shader cycles, by using a four-bone vertex shader

on everything and simply zeroing out the bone

weights on vertices that have fewer than four bone

influences.

• Use the vertex shader constant memory as a lookup

table of matrices. Often batches get broken when

many small objects share all material properties but

differ only in matrix state (for example, a forest of

similar trees, or a particle system). In these cases,

you can load n of the differing matrices into the vertex
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shader constant memory and store indices into the

constant memory in the vertex format for each object.

Then you would use this index to look up into the

constant memory in the vertex shader and use the

correct transformation matrix, thus rendering n

objects at once.

• Defer decisions as far down in the pipeline as possible.

It’s faster to use the alpha channel of your texture as

a gloss factor, rather than break the batch to set a

pixel shader constant for glossiness. Similarly, putting

shading data in your textures and vertices can allow

for larger batch submissions.

Reducing the Cost of Vertex Transfer
Vertex transfer is rarely the bottleneck in an application,

but it’s certainly not impossible for it to happen.

If the transfer of vertices or, less likely, indices is the

bottleneck in your application, try the following:

• Use the fewest possible bytes in your vertex format.

Don’t use floats for everything if bytes would suffice

(for colours, for example).

• Generate potentially derivable vertex attributes inside

the vertex programme instead of storing them inside

the input vertex format. For example, there’s often

no need to store a tangent, binormal, and normal:

given any two, the third can be derived using a simple

cross product in the vertex programme. This technique

trades vertex-processing speed for vertex transfer rate.

• Use 16-bit indices instead of 32-bit indices. 16-bit

indices are cheaper to fetch, are cheaper to move

around, and take less memory.
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• Access vertex data in a relatively sequential manner.

Modern GPUs cache memory accesses when fetching

vertices. As in any memory hierarchy, spatial locality

of reference helps maximize hits in the cache, thus

reducing bandwidth requirements.

Optimizing Vertex Processing
Vertex processing is rarely the bottleneck on modern

GPUs, but it may occur, depending on your usage patterns

and target hardware.

Try these suggestions if you’re finding that vertex

processing is the bottleneck in your application:

• Optimize for the post-T&L vertex cache. Modern GPUs

have a small first-in, first-out (FIFO) cache that stores

the result of the most recently transformed vertices;

a hit in this cache saves all transform and lighting

work, along with all work done earlier in the pipeline.

To take advantage of this cache, you must use indexed

primitives, and you must order your vertices to

maximize locality of reference over the mesh. There

are tools available—including D3DX and NVTriStrip

(NVIDIA 2003)—that can help you with this task.

• Reduce the number of vertices processed. This is

rarely the fundamental issue, but using a simple level-

of-detail scheme, such as a set of static LODs,

certainly helps reduce vertex-processing load.

• Use vertex-processing LOD. Along with using LODs

for the number of vertices processed, try LODing the

vertex computations themselves. For example, it is

likely unnecessary to do full four-bone skinning on
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distant characters, and you can probably get away

with cheaper approximations for the lighting. If your

material is multipassed, reducing the number of

passes for lower LODs in the distance will also reduce

vertex-processing cost.

• Pull out per-object computations onto the CPU. Often,

a calculation that changes once per object or per

frame is done in the vertex shader for convenience.

For example, transforming a directional light vector

to eye space is sometimes done in the vertex shader,

although the result of the computation changes only

once per frame.

• Use the correct coordinate space. Frequently, choice

of coordinate space affects the number of instructions

required to compute a value in the vertex programme.

For example, when doing vertex lighting, if your vertex

normals are stored in object space and the light vector

is stored in eye space, then you will have to transform

one of the two vectors in the vertex shader. If the

light vector was instead transformed into object space

once per object on the CPU, no per -vertex

transformation would be necessary, saving GPU vertex

instructions.

• Use vertex branching to “early-out” of computations. If

you are looping over a number of lights in the vertex

shader and doing normal, low-dynamic-range, [0..1]

lighting, you can check for saturation to 1—or if you’re

facing away from the light—and then break out of

further computations. A similar optimization can occur

with skinning, where you can break when your weights
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sum to 1 (and therefore all subsequent weights would

be 0). Note that this depends on how the GPU

implements vertex branching, and it isn’t guaranteed

to improve performance on all architectures.

Speeding Up Fragment Shading
If you’re using long and complex fragment shaders, it is

often likely that you’re fragment-shading bound. If so, try these

suggestions:

• Render depth first. Rendering a depth-only (no-colour)

pass before rendering your primary shading passes

can dramatically boost performance, especially in

scenes with high depth complexity, by reducing the

amount of fragment shading and frame-buffer memory

access that needs to be performed. To get the full

benefits of a depth-only pass, it’s not sufficient to just

disable colour writes to the frame buffer; you should

also disable all shading on fragments, even shading

that affects depth as well as colour (such as alpha

test).

• Help early-z optimizations throw away fragment

processing. Modern GPUs have silicon designed to avoid

shading occluded fragments, but these optimizations

rely on knowledge of the scene up to the current point;

they can be improved dramatically by rendering in a

roughly front-to-back order. Also, laying down depth

first in a separate pass can help substantially speed

up subsequent passes (where all the expensive shading

is done) by effectively reducing their shaded-depth

complexity to 1.
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• Store complex functions in textures. Textures can be

enormously useful as lookup tables, and their results

are filtered for free. The canonical example here is a

normalization cube map, which allows you to

normalize an arbitrary vector at high precision for the

cost of a single texture lookup.

• Move per-fragment work to the vertex shader. Just

as per-object work in the vertex shader should be

moved to the CPU instead, per-vertex computations

(along with computations that can be correctly linearly

interpolated in screen space) should be moved to the

vertex shader. Common examples include computing

vectors and transforming vectors between coordinate

systems.

• Use the lowest precision necessary. APIs such as

DirectX 9 allow you to specify precision hints in

fragment shader code for quantities or calculations

that can work with reduced precision. Many GPUs

can take advantage of these hints to reduce internal

precision and improve performance.

• Avoid excessive normalization. A common mistake is

to get “normalization-happy”: normalizing every single

vector every step of the way when performing a

calculation. Recognize which transformations preserve

length (such as transformations by an orthonourmal

basis) and which computations do not depend on

vector length (such as cube-map lookups).

• Consider using fragment shader level of detail.

Although it offers less bang for the buck than vertex

LOD (simply because objects in the distance naturally
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LOD themselves with respect to pixel processing, due

to perspective), reducing the complexity of the shaders

in the distance, and decreasing the number of passes

over a surface, can lessen the fragment-processing

workload.

• Disable trilinear filtering where unnecessary. Trilinear

filtering, even when not consuming extra texture

bandwidth, costs extra cycles to compute in the

fragment shader on most modern GPU architectures.

On textures where mip-level transitions are not readily

discernible, turn trilinear filtering off to save fill rate.

• Use the simplest shader type possible. In both

Direct3D and OpenGL, there are a number of different

ways to shade fragments. For example, in Direct3D

9, you can specify fragment shading using, in order

of increasing complexity and power, texture-stage

states, pixel shaders version 1.x (ps.1.1 – ps.1.4), pixel

shaders version 2.x., or pixel shaders version 3.0. In

general, you should use the simplest shader type that

allows you to create the intended effect. The simpler

shader types offer a number of implicit assumptions

that often allow them to be compiled to faster native

pixel-processing code by the GPU driver. A nice side

effect is that these shaders would then work on a

broader range of hardware.

Reducing Texture Bandwidth
If you’ve found that you’re memory-bandwidth bound, but

mostly when fetching from textures, consider these

optimizations:
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• Reduce the size of your textures. Consider your target

resolution and texture coordinates. Do your users ever

get to see your highest mip level? If not, consider

scaling back the size of your textures. This can be

especially helpful if overloaded frame-buffer memory

has forced texturing to occur from nonlocal memory

(such as system memory, over the AGP or PCI Express

bus). The NVPerfHUD tool (NVIDIA 2003) can help

diagnose this problem, as it shows the amount of

memory allocated by the driver in various heaps.

• Compress all colour textures. All textures that are

used just as decals or detail textures should be

compressed, using DXT1, DXT3, orDXT5, depending

on the specific texture’s alpha needs. This step will

reduce memory usage, reduce texture bandwidth

requirements, and improve texture cache efficiency.

• Avoid expensive texture formats if not necessary. Large

texture formats, such as 64-bit or 128-bit floating-

point formats, obviously cost much more bandwidth

to fetch from. Use these only as necessary.

• Always use mipmapping on any surface that may be

minified. In addition to improving quality by reducing

texture aliasing, mipmapping improves texture cache

utilization by localizing texture-memory access

patterns for minified textures. If you find that

mipmapping on certain surfaces makes them look

blurry, avoid the temptation to disable mipmapping

or add a large negative LOD bias. Prefer anisotropic

filtering instead and adjust the level of anisotropy per

batch as appropriate.
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Optimizing Frame-Buffer Bandwidth
The final stage in the pipeline, ROP, interfaces directly

with the frame-buffer memory and is the single largest

consumer of frame-buffer bandwidth. For this reason, if

bandwidth is an issue in your application, it can often be

traced to the ROP.

Here’s how to optimize for frame-buffer bandwidth:

• Render depth first. This step reduces not only

fragment-shading cost, but also frame-buffer

bandwidth cost.

• Reduce alpha blending. Note that alpha blending, with

a destination-blending factor set to anything other

than 0, requires both a read and a write to the frame

buffer, thus potentially consuming double the

bandwidth. Reserve alpha blending for only those

situations that require it, and be wary of high levels

of alpha-blended depth complexity.

• Turn off depth writes when possible. Writing depth is

an additional consumer of bandwidth, and it should

be disabled in multipass rendering (where the final

depth is already in the depth buffer); when rendering

alpha-blended effects, such as particles; and when

rendering objects into shadow maps (in fact, for

rendering into colour-based shadow maps, you can

turn off depth reads as well).

• Avoid extraneous colour-buffer clears. If every pixel is

guaranteed to be overwritten in the frame buffer by your

application, then avoid clearing colour, because it costs

precious bandwidth. Note, however, that you should

clear the depth and stencil buffers whenever you can,
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because many early-z optimizations rely on the

deterministic contents of a cleared depth buffer.

• Render roughly front to back. In addition to the

fragment-shading advantages mention, there are similar

benefits for frame-buffer bandwidth. Early-z hardware

optimizations can discard extraneous frame-buffer

reads and writes. In fact, even older hardware, which

lacks these optimizations, will benefit from this step,

because more fragments will fail the depth test,

resulting in fewer colour and depth writes to the frame

buffer.

• Optimize skybox rendering. Skyboxes are often frame-

buffer-bandwidth bound, but you must decide how

to optimize them: (1) render them last, reading (but

not writing) depth, and allow the early-z optimizations

along with regular depth buffering to save bandwidth;

or (2) render the skybox first, and disable all depth

reads and writes. Which option will save you more

bandwidth is a function of the target hardware and

how much of the skybox is visible in the final frame.

If a large portion of the skybox is obscured, the first

technique will likely be better; otherwise, the second

one may save more bandwidth.

• Use floating-point frame buffers only when necessary.

These formats obviously consume much more

bandwidth than smaller, integer formats. The same

applies for multiple render targets.

• Use a 16-bit depth buffer when possible. Depth

transactions are a huge consumer of bandwidth, so

using 16-bit instead of 32-bit can be a giant win, and
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16-bit is often enough for small-scale, indoor scenes

that don’t require stencil. A 16-bit depth buffer is also

often enough for render-to-texture effects that require

depth, such as dynamic cube maps.

• Use 16-bit colour when possible. This advice is

especially applicable to render-to-texture effects,

because many of these, such as dynamic cube maps

and projected-colour shadow maps, work just fine in

16-bit colour.

As power and programmability increase in modern GPUs,

so does the complexity of extracting every bit of performance

out of the machine. Whether your goal is to improve the

performance of a slow application or to look for areas where

you can improve image quality “for free,” a deep

understanding of the inner workings of the graphics pipeline

is required. As the GPU pipeline continues to evolve, the

fundamental ideas of optimization will still apply: first identify

the bottleneck, by varying the load or the computational

power of each unit; then systematically attack those

bottlenecks, using your understanding of how each pipeline

unit behaves.
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4

Computer Programming Language

Computer programming (often shortened to programming

or coding) is the process of designing, writing, testing, debugging

/ troubleshooting, and maintaining the source code of computer

programmes. This source code is written in a programming

language. The purpose of programming is to create a programme

that exhibits a certain desired behaviour. The process of

writing source code often requires expertise in many different

subjects, including knowledge of the application domain,

specialized algorithms and formal logic.

DEFINITION

Hoc and Nguyen-Xuan define computer programming as

“the process of transforming a mental plan in familiar terms

into one compatible with the computer.” Said another way,

programming is the craft of transforming requirements into

something that a computer can execute.
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OVERVIEW

Within software engineering, programming (the

implementation) is regarded as one phase in a software

development process. There is an ongoing debate on the

extent to which the writing of programmes is an art, a craft

or an engineering discipline. In general, good programming

is considered to be the measured application of all three,

with the goal of producing an efficient and evolvable software

solution (the criteria for “efficient” and “evolvable” vary

considerably). The discipline differs from many other

technical professions in that programmers, in general, do

not need to be licensed or pass any standardized (or

governmentally regulated) certification tests in order to call

themselves “programmers” or even “software engineers.”

However, representing oneself as a “Professional Software

Engineer” without a license from an accredited institution

is illegal in many parts of the world. However, because the

discipline covers many areas, which may or may not include

critical applications, it is debatable whether licensing is

required for the profession as a whole. In most cases, the

discipline is self-governed by the entities which require the

programming, and sometimes very strict environments are

defined (e.g. United States Air Force use of AdaCore and

security clearance). Another ongoing debate is the extent

to which the programming language used in writing computer

programmes affects the form that the final programme

takes. This debate is analogous to that surrounding the

Sapir–Whorf hypothesis in linguistics, which postulates that

a particular spoken language’s nature influences the habitual
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thought of its speakers. Different language patterns yield

different patterns of thought. This idea challenges the

possibility of representing the world perfectly with language,

because it acknowledges that the mechanisms of any

language condition the thoughts of its speaker community.

HISTORY

The Antikythera mechanism from ancient Greece was a

calculator utilizing gears of various sizes and configuration

to determine its operation, which tracked the metonic cycle

still used in lunar-to-solar calendars, and which is consistent

for calculating the dates of the Olympiads. Al-Jazari built

programmable Automata in 1206. One system employed in

these devices was the use of pegs and cams placed into a

wooden drum at specific locations. which would sequentially

trigger levers that in turn operated percussion instruments.

The output of this device was a small drummer playing

various rhythms and drum patterns. The Jacquard Loom,

which Joseph Marie Jacquard developed in 1801, uses a

series of pasteboard cards with holes punched in them. The

hole pattern represented the pattern that the loom had to

follow in weaving cloth. The loom could produce entirely

different weaves using different sets of cards. Charles

Babbage adopted the use of punched cards around 1830

to control his Analytical Engine. The synthesis of numerical

calculation, predetermined operation and output, along with

a way to organize and input instructions in a manner

relatively easy for humans to conceive and produce, led to

the modern development of computer programming.

Development of computer programming accelerated through
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the Industrial Revolution. In the late 1880s, Herman Hollerith

invented the recording of data on a medium that could then

be read by a machine. Prior uses of machine readable

media, above, had been for control, not data. “After some

initial trials with paper tape, he settled on punched cards...”

To process these punched cards, first known as “Hollerith

cards” he invented the tabulator, and the keypunch

machines. These three inventions were the foundation of

the modern information processing industry. In 1896 he

founded the Tabulating Machine Company (which later

became the core of IBM). The addition of a control panel

(plugboard) to his 1906 Type I Tabulator allowed it to do

different jobs without having to be physically rebuilt. By the

late 1940s, there were a variety of plug-board programmable

machines, called unit record equipment, to perform data-

processing tasks (card reading). Early computer programmers

used plug-boards for the variety of complex calculations

requested of the newly invented machines. The invention

of the von Neumann architecture allowed computer

programmes to be stored in computer memory.

Early programmes had to be painstakingly crafted using

the instructions (elementary operations) of the particular

machine, often in binary notation. Every model of computer

would likely use different instructions (machine language)

to do the same task. Later, assembly languages were

developed that let the programmer specify each instruction

in a text format, entering abbreviations for each operation

code instead of a number and specifying addresses in

symbolic form (e.g., ADD X, TOTAL). Entering a programme

in assembly language is usually more convenient, faster,
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and less prone to human error than using machine language,

but because an assembly language is little more than a

different notation for a machine language, any two machines

with different instruction sets also have different assembly

languages. In 1954, FORTRAN was invented; it was the first

high level programming language to have a functional

implementation, as opposed to just a design on paper. (A

high-level language is, in very general terms, any

programming language that allows the programmer to write

programmes in terms that are more abstract than assembly

language instructions, i.e. at a level of abstraction “higher”

than that of an assembly language.) It allowed programmers

to specify calculations by entering a formula directly (e.g.

Y = X*2 + 5*X + 9). The programme text, or source, is

converted into machine instructions using a special

programme called a compiler, which translates the FORTRAN

programme into machine language. In fact, the name

FORTRAN stands for “Formula Translation”. Many other

languages were developed, including some for commercial

programming, such as COBOL. Programmes were mostly

still entered using punched cards or paper tape.  By the

late 1960s, data storage devices and computer terminals

became inexpensive enough that programmes could be

created by typing directly into the computers. Text editors

were developed that allowed changes and corrections to be

made much more easily than with punched cards. (Usually,

an error in punching a card meant that the card had to

be discarded and a new one punched to replace it.)

As time has progressed, computers have made giant

leaps in the area of processing power. This has brought
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about newer programming languages that are more

abstracted from the underlying hardware. Although these

high-level languages usually incur greater overhead, the

increase in speed of modern computers has made the use

of these languages much more practical than in the past.

These increasingly abstracted languages typically are easier

to learn and allow the programmer to develop applications

much more efficiently and with less source code.

However, high-level languages are still impractical for a

few programmes, such as those where low-level hardware

control is necessary or where maximum processing speed

is vital. Throughout the second half of the twentieth century,

programming was an attractive career in most developed

countries. Some forms of programming have been

increasingly subject to offshore outsourcing (importing

software and services from other countries, usually at a

lower wage), making programming career decisions in

developed countries more complicated, while increasing

economic opportunities in less developed areas. It is unclear

how far this trend will continue and how deeply it will

impact programmer wages and opportunities.

MODERN PROGRAMMING

QUALITY REQUIREMENTS
Whatever the approach to software development may be,

the final programme must satisfy some fundamental

properties. The following properties are among the most

relevant:
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• Efficiency/performance: the amount of system

resources a programme consumes (processor time,

memory space, slow devices such as disks, network

bandwidth and to some extent even user interaction):

the less, the better. This also includes correct disposal

of some resources, such as cleaning up temporary

files and lack of memory leaks.

• Reliability: how often the results of a programme are

correct. This depends on conceptual correctness of

algorithms, and minimization of programming

mistakes, such as mistakes in resource management

(e.g., buffer overflows and race conditions) and logic

errors (such as division by zero or off-by-one errors).

• Robustness: how well a programme anticipates

problems not due to programmer error. This includes

situations such as incorrect, inappropriate or corrupt

data, unavailability of needed resources such as

memory, operating system services and network

connections, and user error.

• Usability: the ergonomics of a program: the ease with

which a person can use the programme for its

intended purpose, or in some cases even

unanticipated purposes. Such issues can make or

break its success even regardless of other issues. This

involves a wide range of textual, graphical and

sometimes hardware elements that improve the clarity,

intuitiveness, cohesiveness and completeness of a

program’s user interface.

• Portability: the range of computer hardware and

operating system platforms on which the source code
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of a programme can be compiled/interpreted and run.

This depends on differences in the programming

facilities provided by the different platforms, including

hardware and operating system resources, expected

behaviour of the hardware and operating system, and

availability of platform specific compilers (and

sometimes libraries) for the language of the source

code.

• Maintainability: the ease with which a programme can

be modified by its present or future developers in order

to make improvements or customizations, fix bugs and

security holes, or adapt it to new environments. Good

practices during initial development make the

difference in this regard. This quality may not be

directly apparent to the end user but it can

significantly affect the fate of a programme over the

long term.

READABILITY OF SOURCE CODE
In computer programming, readability refers to the ease

with which a human reader can comprehend the purpose,

control flow, and operation of source code. It affects the

aspects of quality above, including portability, usability and

most importantly maintainability. Readability is important

because programmers spend the majority of their time

reading, trying to understand and modifying existing source

code, rather than writing new source code.

Unreadable code often leads to bugs, inefficiencies, and

duplicated code. A study found that a few simple readability

transformations made code shorter and drastically reduced
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the time to understand it. Following a consistent

programming style often helps readability.

However, readability is more than just programming style.

Many factors, having little or nothing to do with the ability

of the computer to efficiently compile and execute the code,

contribute to readability. Some of these factors include:

• Different indentation styles (whitespace)

• Comments

• Decomposition

• Naming conventions for objects (such as variables,

classes, procedures, etc)

ALGORITHMIC COMPLEXITY
The academic field and the engineering practice of

computer programming are both largely concerned with

discovering and implementing the most efficient algorithms

for a given class of problem. For this purpose, algorithms

are classified into orders using so-called Big O notation,

O(n), which expresses resource use, such as execution time

or memory consumption, in terms of the size of an input.

Expert programmers are familiar with a variety of well-

established algorithms and their respective complexities

and use this knowledge to choose algorithms that are best

suited to the circumstances.

METHODOLOGIES
The first step in most formal software development

projects is requirements analysis, followed by testing to

determine value modeling, implementation, and failure

elimination (debugging). There exist a lot of differing
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approaches for each of those tasks. One approach popular

for requirements analysis is Use Case analysis.

Nowadays many programmers use forms of Agile software

development where the various stages of formal software

development are more integrated together into short cycles

that take a few weeks rather than years. There are many

approaches to the Software development process. Popular

modeling techniques include Object-Oriented Analysis and

Design (OOAD) and Model-Driven Architecture (MDA). The

Unified Modeling Language (UML) is a notation used for

both the OOAD and MDA. A similar technique used for

database design is Entity-Relationship Modeling (ER

Modeling). Implementation techniques include imperative

languages (object-oriented or procedural), functional

languages, and logic languages.

MEASURING LANGUAGE USAGE
It is very difficult to determine what are the most popular

of modern programming languages. Some languages are

very popular for particular kinds of applications (e.g., COBOL

is still strong in the corporate data center, often on large

mainframes, FORTRAN in engineering applications, scripting

languages in web development, and C in embedded

applications), while some languages are regularly used to

write many different kinds of applications. Also many

applications use a mix of several languages in their

construction and use.

Methods of measuring programming language popularity

include: counting the number of job advertisements that
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mention the language, the number of books teaching the

language that are sold (this overestimates the importance

of newer languages), and estimates of the number of existing

lines of code written in the language (this underestimates

the number of users of business languages such as COBOL).

DEBUGGING
Debugging is a very important task in the software

development process, because an incorrect programme can

have significant consequences for its users. Some languages

are more prone to some kinds of faults because their

specification does not require compilers to perform as much

checking as other languages. Use of a static analysis tool

can help detect some possible problems.

Debugging is often done with IDEs like Eclipse, Kdevelop,

NetBeans, Code::Blocks, and Visual Studio. Standalone

debuggers like gdb are also used, and these often provide

less of a visual environment, usually using a command line.

PROGRAMMING LANGUAGES

Different programming languages support different styles

of programming (called programming paradigms). The choice

of language used is subject to many considerations, such

as company policy, suitability to task, availability of third-

party packages, or individual preference. Ideally, the

programming language best suited for the task at hand will

be selected. Trade-offs from this ideal involve finding enough

programmers who know the language to build a team, the

availability of compilers for that language, and the efficiency
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with which programmes written in a given language execute.

Languages form an approximate spectrum from “low-level”

to “high-level”; “low-level” languages are typically more

machine-oriented and faster to execute, whereas “high-

level” languages are more abstract and easier to use but

execute less quickly. It is usually easier to code in “high-

level” languages than in “low-level” ones. Allen Downey, in

his book How To Think Like A Computer Scientist, writes:

The details look different in different languages, but a

few basic instructions appear in just about every language:

• input: Get data from the keyboard, a file, or some

other device.

• output: Display data on the screen or send data to a

file or other device.

• arithmetic: Perform basic arithmetical operations like

addition and multiplication.

• conditional execution: Check for certain conditions

and execute the appropriate sequence of statements.

• repetition: Perform some action repeatedly, usually

with some variation.

Many computer languages provide a mechanism to call

functions provided by libraries such as in .dlls. Provided the

functions in a library follow the appropriate run time

conventions (e.g., method of passing arguments), then these

functions may be written in any other language.

PROGRAMMERS
Computer programmers are those who write computer

software. Their jobs usually involve:
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• Coding

• Compilation

• Debugging

• Documentation

• Integration

• Maintenance

• Requirements analysis

• Software architecture

• Software testing

• Specification

Programming Language
A programming language is an artificial language designed

to express computations that can be performed by a machine,

particularly a computer. Programming languages can be

used to create programmes that control the behavior of a

machine, to express algorithms precisely, or as a mode of

human communication. The earliest programming languages

predate the invention of the computer, and were used to

direct the behavior of machines such as Jacquard looms

and player pianos. Thousands of different programming

languages have been created, mainly in the computer field,

with many more being created every year.

Most programming languages describe computation in

an imperative style, i.e., as a sequence of commands,

although some languages, such as those that support

functional programming or logic programming, use

alternative forms of description. A programming language

is usually split into the two components of syntax (form)

and semantics (meaning) and many programming languages
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have some kind of written specification of their syntax and/

or semantics. Some languages are defined by a specification

document, for example, the C programming language is

specified by an ISO Standard, while other languages, such

as Perl, have a dominant implementation that is used as

a reference.

DEFINITIONS

A programming language is a notation for writing

programmes, which are specifications of a computation or

algorithm. Some, but not all, authors restrict the term

“programming language” to those languages that can express

all possible algorithms. Traits often considered important

for what constitutes a programming language include:

• Function and target: A computer programming language

is a language used to write computer programmes,

which involve a computer performing some kind of

computation or algorithm and possibly control

external devices such as printers, disk drives, robots,

and so on. For example PostScript programmes are

frequently created by another programme to control

a computer printer or display. More generally, a

programming language may describe computation on

some, possibly abstract, machine. It is generally

accepted that a complete specification for a

programming language includes a description, possibly

idealized, of a machine or processor for that language.

In most practical contexts, a programming language

involves a computer; consequently programming
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languages are usually defined and studied this way.

Programming languages differ from natural languages

in that natural languages are only used for interaction

between people, while programming languages also

allow humans to communicate instructions to

machines.

• Abstractions: Programming languages usually contain

abstractions for defining and manipulating data

structures or controlling the flow of execution. The

practical necessity that a programming language

support adequate abstractions is expressed by the

abstraction principle; this principle is sometimes

formulated as recommendation to the programmer to

make proper use of such abstractions.

• Expressive power: The theory of computation classifies

languages by the computations they are capable of

expressing. All Turing complete languages can

implement the same set of algorithms. ANSI/ISO SQL

and Charity are examples of languages that are not

Turing complete, yet often called programming

languages.

Markup languages like XML, HTML or troff, which define

structured data, are not generally considered programming

languages. Programming languages may, however, share

the syntax with markup languages if a computational

semantics is defined. XSLT, for example, is a Turing complete

XML dialect. Moreover, LaTeX, which is mostly used for

structuring documents, also contains a Turing complete

subset.
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The term computer language is sometimes used

interchangeably with programming language. However, the

usage of both terms varies among authors, including the

exact scope of each. One usage describes programming

languages as a subset of computer languages. In this vein,

languages used in computing that have a different goal than

expressing computer programmes are generically designated

computer languages. For instance, markup languages are

sometimes referred to as computer languages to emphasize

that they are not meant to be used for programming. Another

usage regards programming languages as theoretical

constructs for programming abstract machines, and

computer languages as the subset thereof that runs on

physical computers, which have finite hardware resources.

John C. Reynolds emphasizes that formal specification

languages are just as much programming languages as are

the languages intended for execution. He also argues that

textual and even graphical input formats that affect the

behavior of a computer are programming languages, despite

the fact they are commonly not Turing-complete, and

remarks that ignorance of programming language concepts

is the reason for many flaws in input formats.

ELEMENTS

All programming languages have some primitive building

blocks for the description of data and the processes or

transformations applied to them (like the addition of two

numbers or the selection of an item from a collection). These

primitives are defined by syntactic and semantic rules which

describe their structure and meaning respectively.
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SYNTAX
A programming language’s surface form is known as its

syntax. Most programming languages are purely textual;

they use sequences of text including words, numbers, and

punctuation, much like written natural languages. On the

other hand, there are some programming languages which

are more graphical in nature, using visual relationships

between symbols to specify a programme.

The syntax of a language describes the possible

combinations of symbols that form a syntactically correct

programme. The meaning given to a combination of symbols

is handled by semantics (either formal or hard-coded in a

reference implementation). Since most languages are textual,

this article discusses textual syntax.

Programming language syntax is usually defined using

a combination of regular expressions (for lexical structure)

and Backus–Naur Form (for grammatical structure). Below

is a simple grammar, based on Lisp:

expression ::= atom | list

atom ::= number | symbol

number ::= [+-]?[‘0’-’9']+

symbol ::= [‘A’-’Z’’a’-’z’].*

list ::= ‘(‘ expression* ‘)’

This grammar specifies the following:

• an expression is either an atom or a list;

• an atom is either a number or a symbol;

• a number is an unbroken sequence of one or more

decimal digits, optionally preceded by a plus or minus

sign;
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• a symbol is a letter followed by zero or more of any

characters (excluding whitespace); and

• a list is a matched pair of parentheses, with zero or

more expressions inside it.

The following are examples of well-formed token sequences

in this grammar: ‘12345’, ‘()’, ‘(a b c232 (1))’

Not all syntactically correct programmes are semantically

correct. Many syntactically correct programmes are

nonetheless ill-formed, per the language’s rules; and may

(depending on the language specification and the soundness

of the implementation) result in an error on translation or

execution. In some cases, such programmes may exhibit

undefined behavior. Even when a programme is well-defined

within a language, it may still have a meaning that is not

intended by the person who wrote it.

Using natural language as an example, it may not be

possible to assign a meaning to a grammatically correct

sentence or the sentence may be false:

• “Colorless green ideas sleep furiously.” is

grammatically well-formed but has no generally

accepted meaning.

• “John is a married bachelor.” is grammatically well-

formed but expresses a meaning that cannot be true.

The following C language fragment is syntactically correct,

but performs an operation that is not semantically defined

(because p is a null pointer, the operations p->real and p-

>im have no meaning):

complex *p = NULL;

complex abs_p = sqrt (p->real * p->real + p->im * p->im);
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If the type declaration on the first line were omitted, the

programme would trigger an error on compilation, as the

variable “p” would not be defined. But the programme

would still be syntactically correct, since type declarations

provide only semantic information.

The grammar needed to specify a programming language

can be classified by its position in the Chomsky hierarchy.

The syntax of most programming languages can be specified

using a Type-2 grammar, i.e., they are context-free grammars.

Some languages, including Perl and Lisp, contain constructs

that allow execution during the parsing phase. Languages

that have constructs that allow the programmer to alter the

behavior of the parser make syntax analysis an undecidable

problem, and generally blur the distinction between parsing

and execution. In contrast to Lisp’s macro system and Perl’s

BEGIN blocks, which may contain general computations,

C macros are merely string replacements, and do not require

code execution.

SEMANTICS
The term semantics refers to the meaning of languages,

as opposed to their form (syntax).

Static Semantics
The static semantics defines restrictions on the structure

of valid texts that are hard or impossible to express in

standard syntactic formalisms. For compiled languages,

static semantics essentially include those semantic rules

that can be checked at compile time. Examples include

checking that every identifier is declared before it is used
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(in languages that require such declarations) or that the

labels on the arms of a case statement are distinct. Many

important restrictions of this type, like checking that

identifiers are used in the appropriate context (e.g. not

adding a integer to a function name), or that subroutine

calls have the appropriate number and type of arguments

can be enforced by defining them as rules in a logic called

a type system. Other forms of static analyses like data flow

analysis may also be part of static semantics. Newer

programming languages like Java and C# have definite

assignment analysis, a form of data flow analysis, as part

of their static semantics.

Dynamic Semantics
Once data has been specified, the machine must be

instructed to perform operations on the data. For example,

the semantics may define the strategy by which expressions

are evaluated to values, or the manner in which control

structures conditionally execute statements. The dynamic

semantics (also known as execution semantics) of a language

defines how and when the various constructs of a language

should produce a programme behavior. There are many

ways of defining execution semantics. Natural language is

often used to specify the execution semantics of languages

commonly used in practice. A significant amount of academic

research went into formal semantics of programming

languages, which allow execution semantics to be specified

in a formal manner. Results from this field of research have

seen limited application to programming language design

and implementation outside academia.
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Type System
A type system defines how a programming language

classifies values and expressions into types, how it can

manipulate those types and how they interact. The goal of

a type system is to verify and usually enforce a certain level

of correctness in programmes written in that language by

detecting certain incorrect operations. Any decidable type

system involves a trade-off: while it rejects many incorrect

programmes, it can also prohibit some correct, albeit unusual

programmes. In order to bypass this downside, a number

of languages have type loopholes, usually unchecked casts

that may be used by the programmer to explicitly allow a

normally disallowed operation between different types. In

most typed languages, the type system is used only to type

check programmes, but a number of languages, usually

functional ones, infer types, relieving the programmer from

the need to write type annotations. The formal design and

study of type systems is known as type theory.

Typed versus untyped languages: A language is typed if

the specification of every operation defines types of data to

which the operation is applicable, with the implication that

it is not applicable to other types. For example, the data

represented by “this text between the quotes” is a string.

In most programming languages, dividing a number by a

string has no meaning. Most modern programming languages

will therefore reject any programme attempting to perform

such an operation. In some languages, the meaningless

operation will be detected when the programme is compiled

(“static” type checking), and rejected by the compiler, while

in others, it will be detected when the programme is run
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(“dynamic” type checking), resulting in a runtime exception.

A special case of typed languages are the single-type

languages. These are often scripting or markup languages,

such as REXX or SGML, and have only one data type—most

commonly character strings which are used for both symbolic

and numeric data. In contrast, an untyped language, such

as most assembly languages, allows any operation to be

performed on any data, which are generally considered to

be sequences of bits of various lengths. High-level languages

which are untyped include BCPL and some varieties of

Forth. In practice, while few languages are considered typed

from the point of view of type theory (verifying or rejecting

all operations), most modern languages offer a degree of

typing. Many production languages provide means to bypass

or subvert the type system.

Static versus dynamic typing: In static typing all

expressions have their types determined prior to the

programme being run (typically at compile-time). For

example, 1 and (2+2) are integer expressions; they cannot

be passed to a function that expects a string, or stored in

a variable that is defined to hold dates.

Statically typed languages can be either manifestly typed

or type-inferred. In the first case, the programmer must

explicitly write types at certain textual positions (for example,

at variable declarations). In the second case, the compiler

infers the types of expressions and declarations based on

context. Most mainstream statically typed languages, such

as C++, C# and Java, are manifestly typed. Complete type

inference has traditionally been associated with less

mainstream languages, such as Haskell and ML. However,
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many manifestly typed languages support partial type

inference; for example, Java and C# both infer types in

certain limited cases.

Dynamic typing, also called latent typing, determines the

type-safety of operations at runtime; in other words, types

are associated with runtime values rather than textual

expressions. As with type-inferred languages, dynamically

typed languages do not require the programmer to write

explicit type annotations on expressions. Among other things,

this may permit a single variable to refer to values of

different types at different points in the programme

execution. However, type errors cannot be automatically

detected until a piece of code is actually executed, potentially

making debugging more difficult. Ruby, Lisp, JavaScript,

and Python are dynamically typed.

Weak and strong typing: Weak typing allows a value of

one type to be treated as another, for example treating a

string as a number. This can occasionally be useful, but

it can also allow some kinds of programme faults to go

undetected at compile time and even at runtime.

Strong typing prevents the above. An attempt to perform

an operation on the wrong type of value raises an error.

Strongly typed languages are often termed type-safe or safe.

An alternative definition for “weakly typed” refers to

languages, such as Perl and JavaScript, which permit a

large number of implicit type conversions. In JavaScript, for

example, the expression 2 * x implicitly converts x to a

number, and this conversion succeeds even if x is null,

undefined, an Array, or a string of letters. Such implicit
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conversions are often useful, but they can mask

programming errors. Strong and static are now generally

considered orthogonal concepts, but usage in the literature

differs. Some use the term strongly typed to mean strongly,

statically typed, or, even more confusingly, to mean simply

statically typed. Thus C has been called both strongly typed

and weakly, statically typed.

Standard Library and Run-time System
Most programming languages have an associated core

library (sometimes known as the ‘standard library’, especially

if it is included as part of the published language standard),

which is conventionally made available by all

implementations of the language. Core libraries typically

include definitions for commonly used algorithms, data

structures, and mechanisms for input and output.

A language’s core library is often treated as part of the

language by its users, although the designers may have

treated it as a separate entity. Many language specifications

define a core that must be made available in all

implementations, and in the case of standardized languages

this core library may be required. The line between a language

and its core library therefore differs from language to

language. Indeed, some languages are designed so that the

meanings of certain syntactic constructs cannot even be

described without referring to the core library. For example,

in Java, a string literal is defined as an instance of the

java.lang.String class; similarly, in Smalltalk, an anonymous

function expression (a “block”) constructs an instance of

the library’s BlockContext class. Conversely, Scheme
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contains multiple coherent subsets that suffice to construct

the rest of the language as library macros, and so the

language designers do not even bother to say which portions

of the language must be implemented as language constructs,

and which must be implemented as parts of a library.

DESIGN AND IMPLEMENTATION

Programming languages share properties with natural

languages related to their purpose as vehicles for

communication, having a syntactic form separate from its

semantics, and showing language families of related

languages branching one from another. But as artificial

constructs, they also differ in fundamental ways from

languages that have evolved through usage. A significant

difference is that a programming language can be fully

described and studied in its entirety, since it has a precise

and finite definition. By contrast, natural languages have

changing meanings given by their users in different

communities. While constructed languages are also artificial

languages designed from the ground up with a specific

purpose, they lack the precise and complete semantic

definition that a programming language has.

Many languages have been designed from scratch, altered

to meet new needs, combined with other languages, and

eventually fallen into disuse. Although there have been

attempts to design one “universal” programming language

that serves all purposes, all of them have failed to be

generally accepted as filling this role. The need for diverse

programming languages arises from the diversity of contexts

in which languages are used:
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• Programmes range from tiny scripts written by

individual hobbyists to huge systems written by

hundreds of programmers.

• Programmers range in expertise from novices who

need simplicity above all else, to experts who may be

comfortable with considerable complexity.

• Programmes must balance speed, size, and simplicity

on systems ranging from microcontrollers to

supercomputers.

• Programmes may be written once and not change for

generations, or they may undergo continual

modification.

• Finally, programmers may simply differ in their tastes:

they may be accustomed to discussing problems and

expressing them in a particular language.

One common trend in the development of programming

languages has been to add more ability to solve problems

using a higher level of abstraction. The earliest programming

languages were tied very closely to the underlying hardware

of the computer. As new programming languages have

developed, features have been added that let programmers

express ideas that are more remote from simple translation

into underlying hardware instructions. Because

programmers are less tied to the complexity of the computer,

their programmes can do more computing with less effort

from the programmer. This lets them write more functionality

per time unit. Natural language processors have been

proposed as a way to eliminate the need for a specialized

language for programming.  However, this goal remains

distant and its benefits are open to debate. Edsger W.
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Dijkstra took the position that the use of a formal language

is essential to prevent the introduction of meaningless

constructs, and dismissed natural language programming

as “foolish”.

Alan Perlis was similarly dismissive of the idea. Hybrid

approaches have been taken in Structured English and

SQL. A language’s designers and users must construct a

number of artifacts that govern and enable the practice of

programming. The most important of these artifacts are the

language specification and implementation.

SPECIFICATION
The specification of a programming language is intended

to provide a definition that the language users and the

implementors can use to determine whether the behavior

of a programme is correct, given its source code. A

programming language specification can take several forms,

including the following:

• An explicit definition of the syntax, static semantics,

and execution semantics of the language. While syntax

is commonly specified using a formal grammar,

semantic definitions may be written in natural

language (e.g., as in the C language), or a formal

semantics (e.g., as in Standard ML and Scheme

specifications).

• A description of the behavior of a translator for the

language (e.g., the C++ and Fortran specifications).

The syntax and semantics of the language have to be

inferred from this description, which may be written

in natural or a formal language.
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• A reference or model implementation, sometimes

written in the language being specified (e.g., Prolog

or ANSI REXX). The syntax and semantics of the

language are explicit in the behavior of the reference

implementation.

IMPLEMENTATION
An implementation of a programming language provides

a way to execute that programme on one or more

configurations of hardware and software. There are, broadly,

two approaches to programming language implementation:

compilation and interpretation. It is generally possible to

implement a language using either technique. The output

of a compiler may be executed by hardware or a programme

called an interpreter. In some implementations that make

use of the interpreter approach there is no distinct boundary

between compiling and interpreting. For instance, some

implementations of BASIC compile and then execute the

source a line at a time. Programmes that are executed

directly on the hardware usually run several orders of

magnitude faster than those that are interpreted in software.

One technique for improving the performance of interpreted

programmes is just-in-time compilation. Here the virtual

machine, just before execution, translates the blocks of

bytecode which are going to be used to machine code, for

direct execution on the hardware.

USAGE

Thousands of different programming languages have been

created, mainly in the computing field. Programming
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languages differ from most other forms of human expression

in that they require a greater degree of precision and

completeness. When using a natural language to

communicate with other people, human authors and

speakers can be ambiguous and make small errors, and

still expect their intent to be understood. However, figuratively

speaking, computers “do exactly what they are told to do”,

and cannot “understand” what code the programmer

intended to write. The combination of the language definition,

a programme, and the program’s inputs must fully specify

the external behavior that occurs when the programme is

executed, within the domain of control of that programme.

A programming language provides a structured mechanism

for defining pieces of data, and the operations or

transformations that may be carried out automatically on

that data. A programmer uses the abstractions present in

the language to represent the concepts involved in a

computation.

These concepts are represented as a collection of the

simplest elements available (called primitives). Programming

is the process by which programmers combine these

primitives to compose new programmes, or adapt existing

ones to new uses or a changing environment. Programmes

for a computer might be executed in a batch process without

human interaction, or a user might type commands in an

interactive session of an interpreter. In this case the

“commands” are simply programmes, whose execution is

chained together. When a language is used to give commands

to a software application (such as a shell) it is called a

scripting language.
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MEASURING LANGUAGE USAGE
It is difficult to determine which programming languages

are most widely used, and what usage means varies by

context. One language may occupy the greater number of

programmer hours, a different one have more lines of code,

and a third utilize the most CPU time. Some languages are

very popular for particular kinds of applications. For example,

COBOL is still strong in the corporate data center, often on

large mainframes; FORTRAN in scientific and engineering

applications; C in embedded applications and operating

systems; and other languages are regularly used to write

many different kinds of applications.

Various methods of measuring language popularity, each

subject to a different bias over what is measured, have been

proposed:

• counting the number of job advertisements that

mention the language

• the number of books sold that teach or describe the

language

• estimates of the number of existing lines of code

written in the language—which may underestimate

languages not often found in public searches

• counts of language references (i.e., to the name of

the language) found using a web search engine.

Combining and averaging information from various

internet sites, langpop.com claims that  in 2008 the 10

most cited programming languages are (in alphabetical

order): C, C++, C#, Java, JavaScript, Perl, PHP, Python,

Ruby, and SQL.
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TAXONOMIES

There is no overarching classification scheme for

programming languages. A given programming language

does not usually have a single ancestor language. Languages

commonly arise by combining the elements of several

predecessor languages with new ideas in circulation at the

time. Ideas that originate in one language will diffuse

throughout a family of related languages, and then leap

suddenly across familial gaps to appear in an entirely

different family. The task is further complicated by the fact

that languages can be classified along multiple axes.

For example, Java is both an object-oriented language

(because it encourages object-oriented organization) and a

concurrent language (because it contains built-in constructs

for running multiple threads in parallel). Python is an object-

oriented scripting language. In broad strokes, programming

languages divide into programming paradigms and a

classification by intended domain of use. Traditionally,

programming languages have been regarded as describing

computation in terms of imperative sentences, i.e. issuing

commands. These are generally called imperative

programming languages. A great deal of research in

programming languages has been aimed at blurring the

distinction between a programme as a set of instructions

and a programme as an assertion about the desired answer,

which is the main feature of declarative programming. More

refined paradigms include procedural programming, object-

oriented programming, functional programming, and logic

programming; some languages are hybrids of paradigms or
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multi-paradigmatic. An assembly language is not so much

a paradigm as a direct model of an underlying machine

architecture. By purpose, programming languages might be

considered general purpose, system programming languages,

scripting languages, domain-specific languages, or

concurrent/distributed languages (or a combination of these).

Some general purpose languages were designed largely with

educational goals. A programming language may also be

classified by factors unrelated to programming paradigm.

For instance, most programming languages use English

language keywords, while a minority do not. Other languages

may be classified as being esoteric or not.

HISTORY

EARLY DEVELOPMENTS
The first programming languages predate the modern

computer. The 19th century had “programmable” looms

and player piano scrolls which implemented what are today

recognized as examples of domain-specific languages. By

the beginning of the twentieth century, punch cards encoded

data and directed mechanical processing. In the 1930s and

1940s, the formalisms of Alonzo Church’s lambda calculus

and Alan Turing’s Turing machines provided mathematical

abstractions for expressing algorithms; the lambda calculus

remains influential in language design. In the 1940s, the

first electrically powered digital computers were created.

The first high-level programming language to be designed

for a computer was Plankalkül, developed for the German

Z3 by Konrad Zuse between 1943 and 1945. However, it was
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not implemented until 1998 and 2000. Programmers of

early 1950s computers, notably UNIVAC I and IBM 701,

used machine language programmes, that is, the first

generation language (1GL). 1GL programming was quickly

superseded by similarly machine-specific, but mnemonic,

second generation languages (2GL) known as assembly

languages or “assembler”.

Later in the 1950s, assembly language programming,

which had evolved to include the use of macro instructions,

was followed by the development of “third generation”

programming languages (3GL), such as FORTRAN, LISP,

and COBOL. 3GLs are more abstract and are “portable”, or

at least implemented similarly on computers that do not

support the same native machine code. Updated versions

of all of these 3GLs are still in general use, and each has

strongly influenced the development of later languages. At

the end of the 1950s, the language formalized as ALGOL

60 was introduced, and most later programming languages

are, in many respects, descendants of Algol. The format and

use of the early programming languages was heavily

influenced by the constraints of the interface.

REFINEMENT
The period from the 1960s to the late 1970s brought the

development of the major language paradigms now in use,

though many aspects were refinements of ideas in the very

first Third-generation programming languages:

• APL introduced array programming and influenced

functional programming.
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• PL/I (NPL) was designed in the early 1960s to

incorporate the best ideas from FORTRAN and

COBOL.

• In the 1960s, Simula was the first language designed

to support object-oriented programming; in the mid-

1970s, Smalltalk followed with the first “purely” object-

oriented language.

• C was developed between 1969 and 1973 as a system

programming language, and remains popular.

• Prolog, designed in 1972, was the first logic

programming language.

• In 1978, ML built a polymorphic type system on top

of Lisp, pioneering statically typed functional

programming languages.

Each of these languages spawned an entire family of

descendants, and most modern languages count at least

one of them in their ancestry.

The 1960s and 1970s also saw considerable debate over

the merits of structured programming, and whether

programming languages should be designed to support it.

Edsger Dijkstra, in a famous 1968 letter published in the

Communications of the ACM, argued that GOTO statements

should be eliminated from all “higher level” programming

languages.

The 1960s and 1970s also saw expansion of techniques

that reduced the footprint of a programme as well as improved

productivity of the programmer and user. The card deck for

an early 4GL was a lot smaller for the same functionality

expressed in a 3GL deck.
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CONSOLIDATION AND GROWTH
The 1980s were years of relative consolidation. C++

combined object-oriented and systems programming. The

United States government standardized Ada, a systems

programming language derived from Pascal and intended

for use by defense contractors. In Japan and elsewhere,

vast sums were spent investigating so-called “fifth generation”

languages that incorporated logic programming constructs.

The functional languages community moved to standardize

ML and Lisp. Rather than inventing new paradigms, all of

these movements elaborated upon the ideas invented in the

previous decade. One important trend in language design

for programming large-scale systems during the 1980s was

an increased focus on the use of modules, or large-scale

organizational units of code. Modula-2, Ada, and ML all

developed notable module systems in the 1980s, although

other languages, such as PL/I, already had extensive support

for modular programming. Module systems were often

wedded to generic programming constructs.

The rapid growth of the Internet in the mid-1990s created

opportunities for new languages. Perl, originally a Unix

scripting tool first released in 1987, became common in

dynamic websites. Java came to be used for server-side

programming, and bytecode virtual machines became

popular again in commercial settings with their promise of

“Write once, run anywhere” (UCSD Pascal had been popular

for a time in the early 1980s). These developments were not

fundamentally novel, rather they were refinements to existing

languages and paradigms, and largely based on the C family

of programming languages.
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Programming language evolution continues, in both

industry and research. Current directions include security

and reliability verification, new kinds of modularity (mixins,

delegates, aspects), and database integration such as

Microsoft’s LINQ. The 4GLs are examples of languages which

are domain-specific, such as SQL, which manipulates and

returns sets of data rather than the scalar values which are

canonical to most programming languages. Perl, for example,

with its ‘here document’ can hold multiple 4GL programmes,

as well as multiple JavaScript programmes, in part of its

own perl code and use variable interpolation in the ‘here

document’ to support multi-language programming.
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5

Building Information Modeling

Building Information Modeling (BIM) is the process of

generating and managing building data during its life cycle.

Typically it uses three-dimensional, real-time, dynamic

building modeling software to increase productivity in

building design and construction. The process produces the

Building Information Model (also abbreviated BIM), which

encompasses building geometry, spatial relationships,

geographic information, and quantities and properties of

building components.

ORIGINS OF BIM

Charles M. Eastman at Georgia Tech coined the term

BIM,. This theory is based on a view that the term BIM

“Building Information Model” is basically the same as

“Building Product Model”, which Eastman has used

extensively in his book  and papers since the late 1970s.
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(‘Product model’ means ‘data model’ or ‘information model’

in engineering.). Architect and Autodesk building industry

strategist Phil Bernstein, FAIA, first used the actual term

BIM “building information modeling.” Jerry Laiserin then

helped popularize and standardize it  as a common name

for the digital representation of the building process as then

offered primarily by Graphisoft, Bentley Systems, and

Autodesk to facilitate exchange and interoperability of

information in digital format. According to him and others,

the first implementation of BIM was under the Virtual

Building concept by Graphisoft’s ArchiCAD, in its debut in

1987.

DEFINITION

Building information modeling covers geometry, spatial

relationships, light analysis, geographic information,

quantities and properties of building components (for

example manufacturers’ details). BIM can be used to

demonstrate the entire building life cycle, including the

processes of construction and facility operation. Quantities

and shared properties of materials can be extracted easily.

Scopes of work can be isolated and defined. Systems,

assemblies and sequences can be shown in a relative scale

with the entire facility or group of facilities. Dynamic

information of the building, such as sensor measurements

and control signals from the building systems, can also be

incorporated within BIM to support analysis of building

operation and maintenance. Under the guidance of a Virtual

Design to Construction Project Manager (VDC) BIM can be

seen as a companion to PLM as in the Product Lifecycle
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Management, since it goes beyond geometry and addresses

issues such as Cost Management, Project Management and

provides a way to work concurrently on most aspects of

building life cycle processes.

BIM goes far beyond switching to a new software. It

requires changes to the definition of traditional architectural

phases and more data sharing than most architects and

engineers are used to. BIM is able to achieve such

improvements by modeling representations of the actual

parts and pieces being used to build a building. This is a

substantial shift from the traditional computer aided drafting

method of drawing with vector file-based lines that combine

to represent objects.

The interoperability requirements of construction

documents include the drawings, procurement details,

environmental conditions, submittal processes and other

specifications for building quality. It is anticipated by

proponents that VDC utilizing BIM can bridge the information

loss associated with handing a project from design team,

to construction team and to building owner/operator, by

allowing each group to add to and reference back to all

information they acquire during their period of contribution

to the BIM model.

For example, a building owner may find evidence of a

leak in his building. Rather than exploring the physical

building, he may turn to his BIM and see that a water valve

is located in the suspect location. He could also have in the

model the specific valve size, manufacturer, part number,

and any other information ever researched in the past,

pending adequate computing power. Such problems were
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initially addressed by Leite et al. when developing a

vulnerability representation of facility contents and threats

for supporting the identification of vulnerabilities in building

emergencies There have been attempts at creating a BIM

for older, pre-existing facilities.

They generally reference key metrics such as the Facility

Condition Index (FCI). The validity of these models will need

to be monitored over time, because trying to model a building

constructed in, say 1927, requires numerous assumptions

about design standards, building codes, construction

methods, materials, etc., and therefore is far more complex

than building a BIM at time of initial design. The American

Institute of Architects has further defined BIM as “a model-

based technology linked with a database of project

information”, and this reflects the general reliance on

database technology as the foundation. In the future,

structured text documents such as specifications may be

able to be searched and linked to regional, national, and

international standards.

MANAGING THE BIM MODEL GUIDELINES

“The production of a Building Information Model (BIM)

for the construction of a project involves the use of an

integrated multi-disciplinary performance model to

encompass the building geometry, spatial relationships,

geographic information, along with quantities and properties

of the building components.

The Virtual Design to Construction Project Manager (VDC

- also known as VDCPM) is a professional in the field of
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project management and delivery. The VDC is retained by

a design build team on the clients’ behalf from the pre-

design phase through certificate of occupancy in order to

develop and to track the object oriented BIM against predicted

and measured performance objectives. The VDC manages

the project delivery through multi-disciplinary building

information models that drive analysis, schedules, take-off,

and logistics.

The VDC is skilled in the use of BIM as a tool to manage

and assess the technology, staff, and procedural needs of

a project. In short the VDC is a contemporary project

managing architect who is equipped to deal with the current

evolution of project delivery. The VDC acts as a conduit to

bridge time tested construction knowledge to digital analysis

and representation.”

BIM IN THE UK

In the UK, CPIC, responsible for providing best practice

guidance on construction production information and formed

by representatives of the major UK industry institutions,

has proposed a definition of Building Information Modelling

for adoption throughout the UK construction industry and

has invited all UK industry parties to discuss it in order to

ensure an agreed starting point. The proliferation of

interpretations of the term currently hampers the adoption

of a working method that will drastically improve the

construction industry and the quality and sustainability of

the deliveries from the design and construction team to

clients.
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BIM IN THE USA

CONTRACTORS
The Associated General Contractors and contracting firms

also have developed a variety of working definitions of BIM that

describe it generally as “an object-oriented building development

tool that utilizes 5-D modeling concepts, information technology

and software interoperability to design, construct and operate

a building project, as well as communicate its details.” 5-D

modeling concepts involve modeling not only the 3 primary

spatial dimensions of X, Y, and Z; but also time as the 4th

dimension and cost as the 5th.

Although the concept of BIM and relevant processes are

being explored by contractors, architects and developers

alike, the term itself is under debate, and it is yet to be seen

whether it will win over alternatives, which include:

• Virtual Building Environment (VBE)

• Virtual Design to Construction Project Manager (VDC)

BIM is seen to be closely related to Integrated Project

Delivery (IPD) where the primary motive is to bring the

teams together early on the project. A full implementation

of BIM also requires the project teams to collaborate from

the inception stage and formulate model sharing and

ownership contract documents. BIM is often associated

with IFCs (Industry Foundation Classes) and aecXML, which

are data structures for representing information used in

BIM. IFCs is developed by buildingSMART (International

Alliance for Interoperability). Other data structures are

proprietary, and many have been developed by CAD firms
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that are now incorporating BIM into their software. One of

the earliest examples of a nationally approved BIM standard

is the AISC (American Institute of Steel Construction)-

approved CIS/2 standard, a non proprietary standard with

its roots in the UK.

Proponents claim that BIM offers:

1. Improved visualization

2. Improved productivity due to easy retrieval of

information

3. Increased coordination of construction documents

4. Embedding and linking of vital information such as

vendors for specific materials, location of details and

quantities required for estimation and tendering

5. Increased speed of delivery

6. Reduced costs

In August 2004 the US National Institute of Standards

and Technology (NIST) issued a report entitled “Cost Analysis

of Inadequate Interoperability in the U.S. Capital Facilities

Industry” (NIST GCR 04-867 (PDF), which came to the

conclusion that, as a conservative estimate, $15.8 billion

is lost annually by the U.S. capital facilities industry resulting

from inadequate interoperability due to “the highly

fragmented nature of the industry, the industry’s continued

paperbased business practices, a lack of standardization,

and inconsistent technology adoption among stakeholders”.

BIM IN FRANCE

In France, several bodies are pushing for a more integrated

adoption of BIM standards, in order to improve software
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interoperability and cooperation among actors of the building

industry. Examples are the FFB (Fédération française du

bâtiment), or the French arm of buildingSMART International

who are supporting IFCs.

On the other hand, software editing companies such as

Vizelia were early adopters of IFCs and can now benefit from

the full potential of BIM in the Green Building fast-emerging

business.

ADDITIONAL RESOURCES

BOOKS
BIG BIM little bim
Published October 2007
Written by Finith Jernigan, AIA
ISBN 978-0-9795699-0-6

Building Information Modeling: A Strategic Implementation Guide
for Architects, Engineers, Constructors, and Real Estate Asset
Managers
Published April 2009
Written by Dana K. Smith and Michael Tardif
ISBN 978-0-470-250003-7

Building Information Modeling: Planning and Managing
Construction Projects with 4D CAD and Simulations
Published April 2008
Written by Willem Kymmell
ISBN 978-0-07-149453-3

BIM Handbook: A Guide to Building Information Modeling for
Owners, Managers, Designers
Published March 2008
Written by Chuck Eastman, Paul Teicholz, Rafael Sacks, and
Kathleen Liston
ISBN 978-0-470-18528-5

Interoperable Methodologies and Techniques in CAD. Chapter 4.
Written by Semiha Kiziltas, Fernanda Leite, Burcu Akinci, Robert
Lipman
In: CAD and GIS Integration
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Published December 2009
Edited by Hassan Karimi, Burcu Akinci
ISBN 978-1-4200-6805-4

Green BIM: Successful Sustainable Design with Building
Information Modeling
Published April 2008
Written by Eddy Krygiel, Brad Nies; foreword by Steve McDowell,
FAIA, BNIM
ISBN 978-0-470-23960-5

BIM and Construction Management: Proven Tools, Methods and
Workflows
Published May 2009
Written by Brad Hardin; foreword by Eddy Krygiel
ISBN 978-0-470-40235-1

Handbook of Research on Building Information Modeling and
Construction Informatics: Concepts and Technologies
Published December 2009
Written by Jason Underwood, Umit Isikdag; foreword by Dana K.
Smith
ISBN 978-1-60566-928-1

RESEARCH REPORTS
McGraw-Hill Construction SmartMarket Report on BIM.
Published December 2008
Written by Stephen A Jones
Research with hundreds of current BIM users on implementation
and ROI. Includes 4-page special section “Introduction to BIM”.

The Business Value of BIM - McGraw-Hill Construction
SmartMarket Report
Published December 2009
Written by Stephen A Jones
Study of BIM adoption in North America and the ways in which
users are experiencing business value and generating ROI

Green BIM: How BIM is Contributing to Green Design and
Construction - McGraw-Hill Construction SmartMarket Report
Published August 2010
Written by Stephen A Jones
Study of how the tools and processes of BIM are contributing to
higher performing buildings, more environmentally responsible
construction practices and achievement of green objectives during
operations and maintenance.

The Business Value of BIM in Europe - McGraw-Hill Construction
SmartMarket Report
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Published October 2010
Written by Stephen A Jones
Study of how BIM is being adopted and implemented in 3 major
European economies: France, Germany and UK. Includes
comparisons to North American data collected as part of 2009
SmartMarket Report on Business value of BIM in North America.

VIDEOS
Thoughts on BIM by John Stebbins, CEO, Digital Vision

Automation http://www.digitalvis.com/bim/

ANTICIPATED FUTURE POTENTIAL

BIM is a relatively new technology in an industry typically

slow to adopt change. Yet many early adopters are confident

that BIM will grow to play an even more crucial role in

building documentation. BIM provides the potential for a

virtual information model to be handed from Design Team

(architects, surveyors, consulting engineers, and others) to

Contractor and Subcontractors and then to the Owner,

each adding their own additional discipline-specific

knowledge and tracking of changes to the single model.

The result greatly reduces the information loss that

occurs when a new team takes “ownership” of the project

as well as in delivering extensive information to owners of

complex structures. It also prevents errors made by design

team members as well as the construction team (Contractors

and Subcontractors) by allowing the use of conflict detection

where the computer actually informs team members about

parts of the building in conflict or clashing, and through

detailed computer visualization of each part in relation to

the total building. As computers and software become more

capable of handling more building information, this will
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become even more pronounced than it is in current design

and construction projects. This error reduction is a great

part of cost savings realized by all members of a project.

Reduction in time required to complete construction directly

contributes to the cost savings numbers as well. It’s

important to realize that this decrease can only be

accomplished if the models are sufficiently developed in the

Design Development phase. The Industry Foundation Classes

(IFC/ifcXML) are an open specification for Building

Information Modeling and are used to share and exchange

BIM in a neutral format among various software applications.

Green Building XML (gbXML) is an emerging schema, a

subset of the Building Information Modeling efforts, focused

on green building design and operation. gbXML is used as

input in several energy simulation engines. But with the

development of modern computer technology, a large number

of building energy simulation tools are available on the

market. When choosing which simulation tool to use in a

project, the user must consider the tool’s accuracy and

reliability, considering the building information they have

at hand, which will serve as input for the tool. Yezioro, Dong

and Leite  developed an artificial intelligence approach

towards assessing building performance simulation results

and found that more detailed simulation tools have the best

simulation performance in terms of heating and cooling

electricity consumption within 3% of mean absolute error.

Whole Building Design Guide
The Whole Building Design Guide or WBDG is the most

used online resource for building information in the world,
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with over 500,000 distinct users per month and over 3

million document downloads according to data as of January

2011. The online portal covers a wide range of topics, from

performance and sustainability to security and resilience.

WBDG is based on the premise that to create a successful

high-performance building, one must apply an integrated

design and team approach in all phases of a project, including

planning, design, construction, operations and maintenance.

The WBDG is managed by the National Institute of Building

Sciences.

HISTORY

The WBDG was initially designed to serve U.S. Department

of Defense (DOD) construction programmes. A 2003 DOD

memorandum named WBDG the “sole portal to design and

construction criteria produced by the U.S. Army Corps of

Engineers (USACE), Naval Facilities Engineering Command

(NAVFAC), and U.S. Air Force.” Since then, WBDG has

expanded to give all building industry professionals free,

wide access to federal and other design, construction and

performance criteria. The WBDG is public and freely available

to anyone. The majority of users are from the private sector.

The WBDG draws information from the Construction Criteria

Base and a privately-owned database run by Information

Handling Services.

A significant amount of the Whole Building Design Guide

content is organized by three categories: Design Guidance,

Project Management, and Operations and Maintenance. It

is structured to provide WBDG visitors first a broad
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understanding then increasingly specific information more

targeted towards building industry professionals. WBDG is

the resource that federal agencies look to for policy and

technical guidance on Federal High Performance and

Sustainable Buildings In addition, the WBDG contains online

tools, the original Construction Criteria Base, Building

Information Modeling guides and libraries, a database of

select case studies, federal mandates and other resources.

The WBDG also provides online continuing education courses

for architects and other building professionals, free of charge.

DEVELOPMENT

Development of the WBDG is a collaborative effort among

federal agencies, private sector companies, non-profit

organizations and educational institutions. Its success

depends on industry and government experts contributing

their knowledge and experience to better serve the building

community. The WBDG web site is offered as an assistant

to the building community by the National Institute of

Building Sciences through funding support from the DOD,

the NAVFAC Engineering Innovation and Criteria Office,

U.S. Army Corps of Engineers, the U.S. Air Force, the U.S.

General Services Administration (GSA), the U.S. Department

of Veterans Affairs, the National Aeronautics and Space

Administration (NASA), and the U.S. Department of Energy

(DOE), and the assistance of the Sustainable Buildings

Industry Council (SBIC). A Board of Direction and an Advisory

Committee consisting of representatives from over 25

participating federal agencies guide the development of the

WBDG.
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Virtual Design and Construction
Virtual Design to Construction (VDC) is the management

of integrated multi-disciplinary performance models of

design-construction projects, including the Product (i.e.,

facilities), Work Processes and Organization of the design

- construction - operation team in order to support explicit

and public business objectives.

The theoretical basis of VDC includes:

• Engineering modeling methods: product, organization,

process

• Analysis methods (model-based): including schedule,

cost, 4D interactions and process risks, these are

termed BIM tools

• Visualization methods

• Business metrics and focus on strategic management

• Economic Impact analysis (i.e., models of both the

cost and value of capital investments)

VDC PROJECT MANAGER

“The production of a Building Information Model (BIM) for

the construction of a project involves the use of an integrated

multi-disciplinary performance model to encompass the

building geometry, spatial relationships, geographic

information, along with quantities and properties of the

building components. The Virtual Design to Construction

Project Manager (VDC - also known as VDCPM) is a

professional in the field of project management and delivery.

The VDC is retained by a design build team on the

clients’ behalf from the pre-design phase through certificate



Computer-aided Industrial Design

135

of occupancy in order to develop and to track the object

oriented BIM against predicted and measured performance

objectives. The VDC manages the project delivery through

multi-disciplinary building information models that drive

analysis, schedules, take-off, and logistics. The VDC is

skilled in the use of BIM as a tool to manage and assess

the technology, staff, and procedural needs of a project. In

short the VDC is a contemporary project managing architect

who is equipped to deal with the current evolution of project

delivery.

The VDC acts as a conduit to bridge time tested

construction knowledge to digital analysis and

representation. VDC position avoids the well intentioned

failures created by competent managers who lack the

knowledge to implement the technology for which they are

entrusted. Recent economic conditions have placed a spot

light on industry wide deficiency in the organization of

architectural staff, the lack of interoperability of project

generated information, and the amount of non-beneficial

redundancy which eventually finds its way to the client

through an inferior project with increased cost.

The VDC fulfills a critical role in contemporary project

delivery in part due to the single platform integration of

sketch tools, massing, solid modeling, analysis, & rendering

organized within a singular object change engine. Available

technology removes the need for digital redundancies and

file conversions at each stage of design. Information can be

tracked and managed from inception to project delivery with

the use of a qualified VDC who secures the clients return

on investment by tracking stated project performance
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objectives. The development of virtual design tools from

1957 to 2007 has created a digital landfill of applications,

many whose continued use has hindered progress all the

while accelerating Architect, Engineering, Contractor costs

without increased accuracy, efficiency, or integration of

disciplines.”

VDC MANAGED BIM PROJECT MODEL

“Virtual Design to Construction BIM models are virtual

because they show computer-based descriptions of the

project. The BIM project model emphasizes those aspects

of the project that can be designed and managed, i.e., the

product (typically a building or plant), the organization that

will define, design, construct and operate it, and the process

that the organization teams will follow, or POP. These models

are logically integrated in the sense that they all can access

shared data, and if a user highlights or changes an aspect

of one, the integrated models can highlight or change the

dependent aspects of related models. The models are multi-

disciplinary in the sense that they represent the Architect,

Engineering, contractor (AEC) and Owner of the project, as

well as relevant sub disciplines. The models are performance

models in the sense that they predict some aspects of

project performance, track many that are relevant, and can

show predicted and measured performance in relationship

to stated project performance objectives. Some companies

now practice the first steps of BIM modeling, and they

consistently find that they improve business performance

by doing so.”
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CONSTRUCTION INDUSTRY BIM TOOLS

AND METHODOLOGIES UTILIZED BY VDC

BIM SOFTWARE TOOLS
• ArchiCAD from Graphisoft

• Building Explorer

• Autodesk Navisworks JetStream 4D

• Autodesk Revit

• Autodesk AutoCAD Civil 3D

• Tekla Structures from Tekla Corporation

• Advance Concrete

• Advance Steel

• Microstation

VDC RELATED METHODOLOGIES
• Semantic integration

• Learning-by-doing

• Deductive-nomological model

• Scientific evidence

• Hypothesis

• Qualitative research

• Quantitative research

• Case-based reasoning

• Action research

• Power of a method

• Upper ontology within the Ontology domain

• Schema representation

• Work breakdown structure

• Object-oriented programming
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3D Floor Plan
A 3D floor plan, or 3D floorplan, is a virtual model of

a building floor plan, depicted from a birds eye view, utilized

within the building industry to better convey archtitectural

plans. Usually built to scale, a 3D floor plan must include

walls and a floor and typically includes exterior wall

fenestrations, windows, and doorways. It does not include

a ceiling so as not to obstruct the view. Other common

attributes may be added, but are not required, such as

cabinets, flooring, bathroom fixtures, paint color, wall tile,

and other interior finishes. Furniture may be added to

assist in communicating proper home staging and interior

design.

PURPOSE

3D floor plans assist real estate marketers and architects

in explaining floor plans to clients. Their simplicity allows

individuals unfamiliar with conventional floor plans to

understand difficult architectural concepts. This allows

architects and homeowners to literally see design elements

prior to construction and alter design elements during the

design phase. 3D floorplans are often commissioned by

architects, builders, hotels, universities, real estate agents,

and property owners to assist in relating their floor plans

to clients.

CONSTRUCTION

A 3d floor plan is built utilizing advanced 3d rendering

software, the same type of software used to create major
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animated motion pictures. Through complex lighting, staging,

camera, and rendering techniques 3D floorplans appear to

be real photographs rather than digital representations of

the buildings they are modeled after.
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6

CAD Standards Design

CAD Standards have been created to improve productivity

and interchange of Computer-aided design documents

between different offices and CAD programmes, especially

in architecture and engineering.

AEC (ARCHITECTURE ENGINEERING AND

CONSTRUCTION) STANDARDS

CAD LAYER STANDARDS
Most common:

• BS 1192, which relies heavily on the Code of

Procedure for the Construction Industry

• AIA Cad Layer Guidelines, 2nd edition (1997), has a

great usage in the USA;

• ISO 13567-1/3, International standard, common in

Northern Europe;
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• AEC (UK), an adaptation of BS1192 based on Uniclass.

• A/E/C CADD Standard, CADD/GIS standards adopted

by U.S. Government’s CADD/GIS Technology Center for

Facilities, Infrastructure, and Environment..]

• SIA 2014 (1996), Swiss standard for engineers and

architects, based on ISO 13567.

Samples of standardised layers:

A-B374—E- (ISO13567: agent Architect, element Roof window in
SfB, presentation graphic element);

A-37420-T2N01B113B23pro (ISO13567: agent Architect, element
Roof Window in SfB, presentation Text#2, New part, floor 01,
block B1, phase 1, projection 3D, scale 1:5(B), work package 23
and user definition “pro”);

A-G25—D-R (ISO13567: agent Architect, element wall in Uniclass,
presentation dimensions, status Existing to be removed);

A-G251-G-WallExtl-Fwd (AEC(UK): agent Architect, element
External Wall in Uniclass, presentation graphic element, user
definition “WallExtl” and view Forward);

A210_M_ExtWall (BS1192: agent Architect, element External Wall
in SfB, presentation model, user definition “ExtWall”);

A-WALL-FULL (AIA: agent Architect, element Wall, Full height).

LINE THICKNESS
Thickness for pens and plot: 0,13 mm Gray, 0,18 mm

Red, 0,25 mm White, 0,35 mm Yellow, 0,50 mm Magenta,

0,70 mm Blue, 1,00 mm Green. In AutoCAD usually parts

to be printed in black are drawn in 1 to 7 basic colors. Color

layer: Green-Center, Magenta-Measure of length and Blue-

Hidden.

Description Line thickness in mm Color Codes
Out Line 0.20 or 0.25 White, Cyan, Yellow,Blue
Hidden Line 0.00 or 0.05 Blue, Gray, 241
Center Line 0.10 or 0.15 Green, Red
Note 0.18 or 0.20 Cyan, Green, 41
Thin Line 0.00 or 0.05 Gray, 08, 111
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Reference Line 0.000 Magenta, Gray
Hatch Line 0.000 Magenta, Green, Gray
Color-9 to 256 0.000
Dimension line
Leader Line with 0.000 Gray Color-9,or 8, Red
Arrows
Text 0.18 or 0.20 Cyan, Green,

TEXT AND DIMENSION
Heights: 1,8 mm, 2,5 mm, 3,5 mm, 5,0 mm, 7,0 mm

(relative thickness are 1/10 of the heights). Font styles:

“Romans”, “ISO CP”. Exceptional use of true type fonts

(arial, etc.).

SCALES
1:1, 1:10, 1:100 .... 1:2, 1:20, 1:200 .... 1:5, 1:50, 1:500

....

FILE NAMING STANDARDS
• BS 1192:

Discipline (1 char), Element (2 char, using SfB Table

1 or Uniclass), Drawing type (1 char, P=preliminary,

X=special/xref, L=layout, C=component, S=schedules,

A=assembly drawings, K=co-ordination drawing),

Unique number (3 char), Revision (1 char, A=emission,

B,C,D...= revisions). Samples: A22P012G.dwg

(architect, internal walls in SfB, preliminary design,

sheet 012, revision G).

• AIA

• AEC

Samples: ZE1G-124.dwg, XE1G-100.dwg

• AEC (UK)
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Project (unlimited char), Discipline (2 char max,

recommended mandatory), Zone (optional), View (1

char, rec.mand.), Level (2 char, rec.mand.), Content

(rec.mand.), Sequential number (up to 3 char);

Samples: 1234-A-Off-P-M1-Furn-11c.dwg (project

#1234, architect, office zone, plan, mezzanine 1,

furnitures, version 1.1 revision c), A-P-01-Part

(architect, plan, 1st floor, partitions), 1234-A-S-

055.dgn (project #1234, architect, section, sheet 055),

A-S-xx-AA.dwg (architect, section, full building, section

AA), A-P-x-Grid.dgn (architect, plan, all floor, grid),

1838-S-C-P-03 (project 1838, structures, building C,

plan, 3rd floor).

• Other local:

Job number (4 char), Agent (1 char), Section (4 char),

phase (1 char), sheet number (2 char), revision (2 char)

Samples: 0512-A-00A_-1-01-02.dwg Job number (3

char), View (2 char), section (2char), phase (1 char),

revision (1 char) Samples: 123p0s2d0.dwg (job 1239,

plan, 2nd floor, definitive drawing, emission),

459s0BBD0.dgn (job 123, section B, definitive

drawing, emission).

MCAD (MECHANICAL) STANDARDS

GEOMETRIC DIMENSIONING AND
TOLERANCING

Industry standards for defining Product Manufacturing

Information (PMI), a 3D extension of Geometric Dimensioning

and Tolerancing (GD&T), include ASME Y14.41-2003 Product
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Data Definition and ISO 1101 Representation of

specifications in the form of a 3D model.

GEOMETRY QUALITY
VDA 4955

PRODUCT DATA QUALITY

PDQ is a field of PLM relating to the quality of product

data, particularly the geometrical and organizational quality

of CAD data. Checkers, software that analyze CAD data

formats, are often employed before and after data translation.

The checkers can check the organization and quality of the

data against internal company standards and international

or industry standards. These checkers can be built into

specific CAD packages or work on a number of CAD file

formats.

In 2006/2007 Part 59 of STEP ISO 10303-59 Product

data representation and exchange: Integrated generic resource:

Quality of product shape data is under development. It

defines how to represent quality criteria together with

measurement requirements and representation of inspection

results.

Digital Architecture
Digital architecture uses computer modeling,

programming, simulation and imaging to create both virtual

forms and physical structures. The terminology has also

been used to refer to other aspects of architecture that

feature digital technologies. The emergent field is not clearly
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delineated to this point, and the terminology is also used

to apply to digital skins that can be streamed images and

have their appearance altered. A headquarters building

design for Boston television and radio station WGBH by

Polshek Partnership has been discussed as an example of

digital architecture and includes a digital skin. Architecture

created digitally might not involve the use of actual materials

(brick, stone, glass, steel, wood).

It relies on “sets of numbers stored in electromagnetic

format” used to create representations and simulations that

correspond to material performance and to map out built

artifacts. Digital architecture does not just represent “ideated

space” it also creates places for human interaction that do

not resemble physical architectural spaces. Examples of

these places in the “Internet Universe” and cyberspace

include websites, multi-user dungeons, MOOs, and web

chatrooms.

Digital architecture allows complex calculations that

delimit architects and allow a diverse range of complex

forms to be created with great ease using computer

algorithms. The new genre of “scripted, iterative, and

indexical architecture” produces a proliferation of formal

outcomes, leaving the designer the role of selection and

increasing the possibilities in architectural design. This has

“re-initiated a debate regarding curvilinearity, expressionism

and role of technology in society” leading to new forms of

non-standard architecture by architects such as Zaha Hadid

and UN Studio. A conference held in London in 2009 named

“Digital Architecture London” introduced the latest

development in digital design practice. The Far Eastern
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International Digital Design Award (The Feidad Award) has

been in existence since 2000 and honours “innovative design

created with the aid of digital media.”

In 2005 a jury with members including a representative

from Quantum Film, Greg Lynn from Greg Lynn FORM,

Jacob van Rijs of MVRDV, Gerhard Schmitt, Birger Sevaldson

(Ocean North), chose among submissions “exploring digital

concepts such as computing, information, electronic media,

hyper-, virtual-, and cyberspace in order to help define and

discuss future space and architecture in the digital age.”

Molecular Design Software
Molecular design software is a software for molecular

modeling, distinctive property of which is the presence of

the special support for developing the molecular models. In

contrast to the usual molecular modeling programmes such

as the molecular dynamics and quantum chemistry

programmes, such software directly supports the aspects

related to the construction of molecular models:

• Molecular graphics

• interactive molecular drawing and conformational

editing

• building of polymeric molecules, crystals and solvated

systems

• partial charges development

• geometry optimization

• support for the different aspects of Force Field

development

• etc.
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Molecular Modelling
Molecular modelling encompasses all theoretical methods

and computational techniques used to model or mimic the

behaviour of molecules. The techniques are used in the

fields of computational chemistry, computational biology

and materials science for studying molecular systems ranging

from small chemical systems to large biological molecules

and material assemblies. The simplest calculations can be

performed by hand, but inevitably computers are required

to perform molecular modelling of any reasonably sized

system. The common feature of molecular modelling

techniques is the atomistic level description of the molecular

systems; the lowest level of information is individual atoms

(or a small group of atoms). This is in contrast to quantum

chemistry (also known as electronic structure calculations)

where electrons are considered explicitly. The benefit of

molecular modelling is that it reduces the complexity of the

system, allowing many more particles (atoms) to be

considered during simulations.

MOLECULAR MECHANICS

Molecular mechanics is one aspect of molecular modelling,

as it refers to the use of classical mechanics/Newtonian

mechanics to describe the physical basis behind the models.

Molecular models typically describe atoms (nucleus and

electrons collectively) as point charges with an associated

mass. The interactions between neighbouring atoms are

described by spring-like interactions (representing chemical

bonds) and van der Waals forces. The Lennard-Jones

potential is commonly used to describe van der Waals forces.
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The electrostatic interactions are computed based on

Coulomb’s law. Atoms are assigned coordinates in Cartesian

space or in internal coordinates, and can also be assigned

velocities in dynamical simulations. The atomic velocities

are related to the temperature of the system, a macroscopic

quantity.

The collective mathematical expression is known as a

potential function and is related to the system internal

energy (U), a thermodynamic quantity equal to the sum of

potential and kinetic energies. Methods which minimize the

potential energy are known as energy minimization

techniques (e.g., steepest descent and conjugate gradient),

while methods that model the behaviour of the system with

propagation of time are known as molecular dynamics. This

function, referred to as a potential function, computes the

molecular potential energy as a sum of energy terms that

describe the deviation of bond lengths, bond angles and

torsion angles away from equilibrium values, plus terms for

non-bonded pairs of atoms describing van der Waals and

electrostatic interactions.

The set of parameters consisting of equilibrium bond

lengths, bond angles, partial charge values, force constants

and van der Waals parameters are collectively known as a

force field. Different implementations of molecular mechanics

use different mathematical expressions and different

parameters for the potential function. The common force

fields in use today have been developed by using high level

quantum calculations and/or fitting to experimental data.

The technique known as energy minimization is used to find

positions of zero gradient for all atoms, in other words, a
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local energy minimum. Lower energy states are more stable

and are commonly investigated because of their role in

chemical and biological processes.

A molecular dynamics simulation, on the other hand,

computes the behaviour of a system as a function of time.

It involves solving Newton’s laws of motion, principally the

second law. Integration of Newton’s laws of motion, using

different integration algorithms, leads to atomic trajectories

in space and time. The force on an atom is defined as the

negative gradient of the potential energy function. The energy

minimization technique is useful for obtaining a static picture

for comparing between states of similar systems, while

molecular dynamics provides information about the dynamic

processes with the intrinsic inclusion of temperature effects.

VARIABLES

Molecules can be modelled either in vacuum or in the

presence of a solvent such as water. Simulations of systems

in vacuum are referred to as gas-phase simulations, while

those that include the presence of solvent molecules are

referred to as explicit solvent simulations. In another type

of simulation, the effect of solvent is estimated using an

empirical mathematical expression; these are known as

implicit solvation simulations.

APPLICATIONS

Molecular modelling methods are now routinely used to

investigate the structure, dynamics, surface properties and

thermodynamics of inorganic, biological and polymeric
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systems. The types of biological activity that have been

investigated using molecular modelling include protein

folding, enzyme catalysis, protein stability, conformational

changes associated with biomolecular function, and

molecular recognition of proteins, DNA, and membrane

complexes.

POPULAR SOFTWARE FOR MOLECULAR

MODELLING

• Abalone

• ADF

• AMBER

• Ascalaph Designer

• AutoDock,

• AutoDock Vina,

• BALLView

• Biskit

• BOSS

• Cerius2

• CHARMM

• Chimera

• Coot

• COSMOS (software)

• CP2K

• CPMD

• Culgi

• Discovery Studio

• DOCK

• Firefly
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• FoldX

• GAMESS (UK)

• GAMESS (US)

• GAUSSIAN

• Ghemical

• Gorgon

• GROMACS

• GROMOS

• InsightII

• LAMMPS

• LigandScout

• MacroModel

• MADAMM.

• MarvinSpace

• Materials and Processes Simulations

• Materials Studio

• MDynaMix

• MMTK

• Molecular Docking Server

• Molecular Operating Environment (MOE)

• MolIDE

• Molsoft ICM

• MOPAC

• NAMD

• NOCH

• Oscail X

• PyMOL

• Q-Chem

• ReaxFF

• ROSETTA
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• SCWRL

• Sirius

• Spartan (software)

• StruMM3D (STR3DI32)

• Sybyl (software)

• MCCCS Towhee

• TURBOMOLE

• VMD

• WHAT IF

• xeo

• YASARA

• Zodiac (software)

Molecule Editor
A molecule editor is a computer programme for creating

and modifying representations of chemical structures.

Molecule editors can manipulate chemical structure

representations in either two- or three-dimensions. Two-

Dimensional editors generate output used as illustrations

or for querying chemical databases. Three-dimensional

molecule editors are used to build molecular models, usually

as part of molecular modelling software packages. Database

molecular editors such as Leatherface, RECAP and Molecule

Slicer allow large numbers of molecules to be modified

automatically according to rules such as ‘deprotonate

carboxylic acids’ or ‘break exocyclic bonds’ that can be

specified by the user. Molecule editors typically support

reading and writing at least one file format or line notation.

Examples of each include Molfile and SMILES, respectively.

Files generated by molecule editors can be displayed by

molecular graphics tools.



Computer-aided Industrial Design

153

ONLINE EDITORS

• ChemDoodle Web Components HTML5 chemistry web

components including viewers, animations, interactive

components and editors by iChemLabs. Pure

Javascript code using Canvas and WebGL graphics.

Free and open source under the GPL v3.0 license.

• ChemWriter by Metamolecular. Written in pure

JavaScript. Runs on Internet Explorer 6-9 and modern

standards-compliant browsers. Touch interface

supported on iPad.

• jsMolEditor, the world’s first molecule structure editor

in Javascript. Runs in most web browsers, no plugin

or virtual machine is required. Free and open source

under the LGPL v3.0 license.

• Marvin molecule editor and viewer: proprietary

software from ChemAxon. Supports all major formats

and structure/query features. This Java

implementation also includes unlimited structure

based predictions for a range of properties (pKa, logD,

name<>structure, etc.).

• Molinspiration WebME molecule editor: proprietary

software, based on Ajax technology which does not

require Java.

• PubChem online molecule editor, supports SMILES,

SMARTS and InChI as well as all common chemical

file formats.

• Molecular Editor and Image Sharer Molecular editor

based on JChemPaint. Allows to store generated

images on the server.
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MOBILE EDITORS

• ChemJuice: iPhone app from IDBS.

• Mobile Molecular DataSheet: BlackBerry app from

Molecular Materials Informatics.
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7

Computer Design and
Analysis Technologies

The Design and Analysis Technologies critical technology

area includes technologies or processes that are pervasive

within the aerospace and defence sector. The technology

elements within the Design Technologies critical technology

area are depicted in the figure below and described in

subsequent paragraphs:

Multidisciplinary Design and Optimization
Multidisciplinary design and optimization is as the name

implies, the process of combining a full set of computational

design tools to create an optimum design. The process is

necessarily iterative in nature and all of the disciplines

normally utilized in an aircraft design are computationally

intensive. An MDO approach for an aircraft could include

aerodynamics, structures, and systems Computer Aided



Computer-aided Industrial Design

156

Engineering (CAE) tools. Initial design assumptions would

be input to each CAE toolset and the constraints and

parameters to be optimized defined. Each CAE suite would

then compute design parameters that would be utilized by

the other CAE tools as a subset of their required inputs.

The ultimate design would theoretically be structurally

sounder, lighter and more cost effective to fabricate. The

design timeframe would be also very much shortened. The

challenges to this process are in the exchange of data

between the CAE applications and the tuning of the entire

process to achieve convergence on the final solution set in

an efficient manner.

Structural Analysis
The optimization of analytical design tools is a process

that will lead to shortened design time frames, lighter and

more efficient designs, with reduced production and life cycle

costs of the final design.

The many analytical tools now available have been

typically developed for specific applications and are often not

readily applicable outside of their original design target arena.

An example lies in the structural analysis field where tools

developed for metallics will be much different from those

developed for composite materials where material properties

may vary according to axis.

The ability to rapidly define an optimized aircraft

structure having light weight, and improved fatigue and

damage tolerance capabilities, is a critical technology to

maintain competitive leadership in the development and

supply of future new aircraft. This will be achieved by the
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extensive use of computerized methods for structural

analysis and design optimization, and the analysis of failure

and fracture mechanics. The methods must be integrated

with the in-house design and manufacturing data bases, the

3-D CAD/CAMsystems, and also be easy to use. Suppliers

and partners will have access to the resulting design

information via Technical Data Interchange (TDI). This will

ensure consistency with an up-to-date knowledge of the

requirements for loads, interfaces and the space envelopes

available for their products. The immediate dissemination

to suppliers of information on design changes will help

diminish subsequent redesign activity and the time and cost

penalties incurred for rework.

The preliminary structural design will often use detailed

Finite Element Methods (FEM) for analysis, coupled with

constrained optimization, and the process must be highly

automated for rapid creation of FEM meshing for models. In

order to achieve shortened design cycle time, the loads and

dynamics stiffness requirements must become available

much sooner than at present. This will require early

development of MDO models for overall aerodynamic and

structural optimization that will define the static and

dynamic loads for flight and ground operations. Trade-off

studies must rapidly search for the best designs and arrive

at realistic structural sizes, providing space envelopes and

accurate weights to minimize subsequent redesign.

Structural Design, Analysis and Optimization
Shortened design cycle times are necessary for achieving

market advantage in the aerospace and defence sector.

Improvements in the structural analysis, design and
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optimization of gas turbine engines is necessary to achieve

these goals while also meeting the overall objectives of

increased durability and efficiency at lower costs.

A Multi-disciplinary Design Optimization (MDO) approach

that combines finite element analysis and aerodynamic

design techniques is employed. MDO is necessary to rapidly

determine the structure of the engine and identify critical

areas requiring further or more detailed analysis.

Many of the structural and aerodynamic codes developed

by companies are proprietary in nature and the integration

and refinement of these codes is an on-going challenge.

COMPUTATIONAL FLUID DYNAMICS

Computational Development and Validation
Computational Fluid Dynamics (CFD) has had the

greatest effect on both aircraft and engine design of any single

design tool over the past twenty-five years. Computational

power and cost have enabled widespread application and

development of CFD techniques. Computational fluid

dynamics is basically the use of computers to numerically

model flows of interest. Nodes in the flowpath are identified

and equations of motion solved at these locations to identify

flow parameters.

In essence a grid or mesh is defined over the surface of

the object that extends outwards into the flowfield containing

the object. Flow equations are then calculated at each node

in the grid, and iteratively re-calculated until all results for

each node are within an acceptable variance. The equations

used are either Euler based which do not include viscous
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effects (boundary layers) directly, or Navier-Stokes equations

which include viscous effects and which produce more

accurate but computationally more demanding solutions.

Such methods can be used for external flows about an

aircraft or for internal flows in a gas turbine including

combustion. The Euler based analyses are typically less

computationally demanding but are less precise for modeling

separated flows on wings and bodies, or for internal reversed

flows. It should be noted that Navier first developed his

equations in 1823 and that Stokes refined them in 1845.

The development of solutions to these equations was not

feasible until the latter part of this century. Today much

R&D effort on NS methods is expended on improving

modeling of the turbulent flow terms for specific problems.

Numerous forms of Euler and Navier-Stokes solutions

have been developed to address particular design problems.

Solutions to these equations are dependent on

experimentation for both coefficients and for validation.

Mesh selection and node placement is critical to the

solution of the flowfield. The automated generation of meshes

is now in wide spread use and can often be linked to

Computer Aided Engineering and Design tools. The form of

the equation used, the density of the mesh or grid and

convergence requirements determine computational

demands. Complete aircraft solutions require huge computer

resources and much R&D is aimed at improving the speed

of the solution.

Computational Fluid Dynamics - Gas Turbines
CFD is perhaps the single most critical technology for gas

turbine engines. Gas turbineCFD needs have typically posed
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the greatest challenges to engine designers, and computational

power and code developers. While CFD is of utmost

importance to the engine designer it is a very specific

disciplinary design requirement and competence is held by a

very small number of engine design firms worldwide.

Computation techniques for gas turbine engines also tend

to be very module specific — compressor, transition duct,

combustor, turbine and exhaust duct/military afterburner

are examples. Computational techniques are often also

specific to engine size class and thus Canada, focusing on

small gas turbines, has a specific set of technology

requirements.

Advanced 3D CFD codes have been used to generate the

following design improvements:

• In the compressor to develop advanced swept airfoils

capable of high compression ratios that in turn yield

higher efficiency at less weight and with a smaller

parts count (significant life cycle cost factor);

• In the combustor for higher intensity (smaller volumes

with much higher energy density) combustors that

approach stoichiometric conditions to yield higher

efficiency with lower weight; and

• In the turbine to produce higher stage loading with

reduced turbine cooling air requirements that again

reduces weight and cost while reducing fuel burn.

Combustion Systems Computation
The combustor of a gas turbine engine is that part of the

engine that receives the compressed air from the compressor.

Energy is added to the airflow in the combustor in the form
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of chemical energy derived from fuel. The combustor

discharge air is expanded across a turbine or turbines where

energy is extracted to drive the compressor and gearbox of

a turboshaft/turboprop engine, or to provide jet thrust via

a turbofan and core nozzle in a thrust engine.

Small gas turbines, of the size that have typically been

designed and built in Canada pose significant design

challenges because of their size. Pratt and Whitney Canada

combustors are the highest intensity combustors in the

world, where intensity can be thought of as the amount of

energy converted per unit volume within the combustor. The

design objectives for gas turbine engines, including small

ones, are to increase both overall pressure ratios and cycle

temperatures, which lead to increased efficiency and smaller

size and weight, while simultaneously producing reduced

noise and noxious emissions levels.

Combustor technology development challenges for

Canadian engine manufacturers include.

Computational fluid dynamics: CFD analyses are

complicated by the reverse flow designs typically selected to

maintain short combustors within small volumes. Cooling

flow and chemical additions to the CFD design further

complicate the process as the temperatures of gases at the

core of the flows are well above the melting temperatures of

the combustor materials. Pressure losses and cooling flow

requirements must be minimized to improve performance.

Materials: Increasing compressor ratios result in

increased compressor discharge temperatures and decreased

cooling capability. These increased temperatures also push

for higher fuel to air ratios and higher temperatures within
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the combustor. Stoichiometric ratio is that ratio when all

oxygen is consumed in the combustion process leaving less

air for cooling. Materials challenges in this environment are

the most demanding. Fuel injection and mixing: CFD and

injector specific techniques are required.

Emissions: While not legislated and not contributing

significantly in absolute terms, there is a drive for lower

emissions that drives designs often in the opposite direction

to those factors identified above.

AERODYNAMICS AND FLIGHT MECHANICS

Aerodynamics is the study of forces on wing bodies and

controls due to air pressure and viscous (drag) effects. Flight

mechanics is the study of the resulting motion of objects

through the air and includes the stability and control

Behaviour. The laws of motion and aerodynamics are

combined to ensure that an aircraft flies in the intended

manner. Much of the aerodynamics and flight mechanics

work that is pursued for the purposes of aircraft designed

and built in Canada will pertain to such issues as the design

of improved wings, the integration of various components

onto an aircraft or issues such as flight in adverse conditions

where the handling qualities of an aircraft will be adversely

influenced by the build up of ice on the surface of the wing.

Advanced technology development in this field will be directed

towards supersonic transports and eventually hypersonic

flight. There are considerable differences between fixed wing

and rotary wing aircraft aerodynamics and flight mechanics

and both areas are of considerable interest to the Canadian

aerospace and defence industry.
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Technologies relevant to Aerodynamics and Flight

Mechanics are described below:

Advanced Aerodynamics and Handling
Included here are technologies that will enable the

Canadian Aerospace industry to contribute to the design of

advanced concept aircraft technologies or components or be

the lead design integrator.

These enabling technologies should be pursued dependent

on their links to, and pre-positioning for potential application

to specific aircraft platforms or types as follows:

• Future Transport Aircraft: Future transport aircraft

will have to demonstrate increased speed and load

carrying capabilities over greatly extended ranges.

Specific targets have been set by the U.S. for next

generation transport aircraft although no new

advanced concept transport aircraft are currently well

advanced. Wing loading factors will double over that

of existing aircraft with the development of materials

new to the transport aircraft envelope. For shorter-

range aircraft, a key enabling technology will be that

of high efficiency turboprop engines with cruise

speeds above the M.72 range. Propulsion technology

and propulsion integration issues, aircraft design

optimization, CFD, and materials technology

development and insertion will be key to the success

of the future transport aircraft.

• Hypersonic Aircraft: Hypersonic aircraft are in

exploratory or advanced development model stage at

this time and will be used initially for low cost space

launch and delivery platforms and subse-quently for
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commercial transport. Propulsion technologies are

significant to hypersonic vehicle feasibility and are now

the limiting factor. Variable cycle engines, advanced

materials, endothermic fuels and fuel control

technologies are key aeropropulsion technology

elements where significantR&D remains unsatisfied.

Numerous controls and materials research topics

require further investment as well, although less

uncertainty remains in these areas due to advances

made through the shuttle Programmes.

• Advanced Rotorcraft: Future rotorcraft will demon-

strate increased cruise speeds of 200 kts or greater

with tiltrotor speeds approaching 450 kts. These

cruise speeds will be possible at significantly reduced

vibration levels and with greatly increased range/fuel

economy. Many of the design concepts for attaining

these performance improvements are already in

development, however much work remains undone.

• Advanced Rotorcraft Flight Mechanics: For both

conventional helicopter and tiltrotor blades, the wings

and propulsion system operate in a very complex

aeromechanical environment. Aerodyn-amics,

structures, vibration and acoustics parameters are

inseparable and typically drive the design of the entire

air vehicle. In trimmed forward flight the advancing

blade tip will be moving at near sonic velocities whilst

the retreating blade is often in near stall conditions.

Advanced Design and Development
General aviation aircraft pose specific design challenges

in all aspects of their design and fabrication. Increasing
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availability of low cost and high performance avionics,

advanced composite designs and powerplant integration all

offer opportunities for general aviation aircraft designers and

builders.

Many of the technologies being furthered for use in

military unmanned aerial vehicles will be of pertinence to

general aviation aircraft.

Low cost gas turbine technologies and composite

structures development and certification issues will likely

be the technologies of greatest interest.

The development of technologies for military purposes

will underwrite some of the costs of introduction of those

design concepts into general aviation use.

Experimental Assessment and Performance
Analytical design and analysis techniques are a

prerequisite to reductions in design cycle time, design and

production costs, and improved safety and environmental

impact. The development of these analytical or numerical

design techniques will remain heavily dependent on

experimental validation of design codes and performance

targets for another 10-15 years. Whereas in the past,

experimental resources such as wind tunnels were used

primarily for design development and refinement, in the

future they may increasingly be used for the validation of

computational design tools.

Notwithstanding the foregoing, there will continue to be

a requirement for national facilities including wind tunnels,

engine test facilities, flight test resources, and specialized

resources including icing tunnels and rig test facilities for

some time to come.
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Experimental design and performance validation

technology investment will be required in the following areas

to support the aerospace industry in Canada:

• Data Capture and Analysis Automation: Automated

methods for intelligent data capture and analysis will

be required to reduce large facility run times and meet

the challenges of design tool validation. This will

require investment both in sensors and in

computational tools;

• Experimental Code Development: Increased data

capture rates and fidelity will be required and will

necessitate the development of specific codes for

experimental design and performance validation.

Facilities and infrastructure will have to be maintained

or enhanced to achieve these goals; and

• Infrastructure Support: The maintenance of critical

national facilities will have to be supported in concert

with other government departments and industry. The

objective will not necessarily be to create new facilities

but rather to improve the functionality of existing

resources to meet the needs of new technology

developments.

Aeropropulsion Performance Assessment
Test cells utilized for Canadian aero-engine Programmes,

and also those developed for sale, have typically been sea-

level static facilities offering little or no altitude, forward flight

velocity or temperature pressure simulation. Some limited

flying test bed capability exists in Canada for the testing of

engines.



Computer-aided Industrial Design

167

That being said, the National Research Council has

participated in numerous international projects in the

process ensuring that a world leading test cell capability

exists both for engine qualification testing, performance

testing and for the development of performance assessment

techniques.

Engine test cells take a number of forms. Sea level test

facilities are used for Engine Qualification Testing that

involves the monitoring of a relatively small number of

parameters over long periods where in-service usage is

evaluated in a time compressed manner. Qualification testing

also involves the ingestion of ice or water to ensure that

unacceptable engine degradation does not occur in those

instances. The NRC Institute for Aerospace Research has

developed world recognized icing testing competencies and

icing test facilities that are used by Canadian and off-shore

engine manufacturers for qualification testing.

Altitude test cells are used to qualify engines over a full

flight envelope as opposed to the endurance type testing

previously described.

The National Research Council in colLabouration with

Pratt and Whitney Canada have developed and operated one

small altitude test cell at NRC for some time. An initiative

that began in 2000 will see the development and

commissioning of a somewhat larger and more capable

altitude facility, again as a colLabourative effort between NRC

and P&WC.

Test cells can also be used for the analysis of problems

or validation of problem resolution. In these cases the test

cells often require enhanced instrumentation suites and a
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much more careful design to ensure that performance

parameters are correctly measured. World interest in

advanced test cell technologies has been directed at those

required to support hypersonic vehicles for military uses or

for space launch vehicles.

This type of test cell is very resource intensive and highly

specialized and will likely be of little interest or utility to any

but a limited number of Canadian firms. The Short Take

Off and Vertical Landing (STOVL) version of the F35 Joint

Strike Fighter has recently posed new challenges in the world

of aeropropulsion testing. For this testing, in-flow

preparation, exhaust treatment, fan drive systems, and 6

axis thrust measurement in the vertical axis will all pose

significant new challenges to the performance assessment

community.

ADVANCED CONCEPTS OF DESIGN

Analysis and Design Integration
Advanced aerodynamics profile development in Canada

will be primarily directed at wing design for subsonic aircraft

carrying less than 120 passengers. The objective of work done

on advanced aerodynamic profiles will be to increase

efficiency and cruise speeds through reduced drag while

improving structural and control characteristics. Wing

profile, control surface effectiveness, airframe and engine

interface effects with the wing and wing tip designs are areas

of research and development interest. Also, developments

improving wing-flap high lift performance are important

areas for minimizing wing size required and hence costs.
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Laminar flow control is a term that deserves discussion.

Airflow over wings begins as a laminar or ordered flowfield

and will transition to a higher drag producing turbulent flow

based on flow characteristics such as speed and wing

influences including wing shape, surface roughness. It has

been estimated that if laminar flow could be maintained on

the wings of a large aircraft, fuel savings of up to 25% could

be achieved.

Wing and flight characteristics of small aircraft are such

that laminar flow can be relatively easily maintained over

much of the flight envelope. A variety of methods can be

used to increase laminar flow regions on aircraft of larger

size and having higher Reynolds numbers and sweep angles.

Computational fluid dynamics will be the most important

technology relevant to the development of advanced

aerodynamic profiles. A number of areas require R&D activity

and support for aircraft design particular to Canadian

aerospace interests. Large-scaleCFD code refinement and

validation is one area requiring work to improve accuracy

and reduce computational times for MDO by more rapid

design convergence. These CFD codes will also require

validation in Labouratories and in wind tunnels.

All-Electric Aircraft Concept Development
The all-electric aircraft will utilize electronic actuators

to replace equivalent hydraulic system components. The

intent is to save weight and increase reliability. For example,

electrical generators would provide power to electric

actuators for flight control surface movement rather than

equivalent hydraulic powered components. Electric power
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cables are lighter and less prone to damage or service

induced degradation such as fitting vibration that results

in leakage in hydraulic systems. Alternate power supply

redundancy is an additional advantage of this concept.

Challenges associated with this type of technology insertion

would be related to electromagnetic interference (EMI), and

rapid load fluctuations imposed on the power generation

engines.

Fly-by-Light Concept Development
Fly-by-Light (FBL) technology involves the replacement

of electronic data transmission, mechanical control linkages,

and electronic sensors with optical components and

subsystems. Benefits include lower initial acquisition and

life cycle costs, reduced weight, and increased aircraft

performance and reliability.

Fibre-optic cables are essentially immune to

electromagnetic interference and therefore not affected by

fields generated by other lines or electrical devices in close

proximity, nor are they affected by lightning strikes. For flight

controls, hydraulic or electric actuators are still employed but

receive their command inputs via fibre-optic cables. Weight

reductions are significant as the fibre-optic cables need only

be protected from physical damage, whereas electric cables

must be insulated and shielded increasing weight significantly.

Also with a FBL connection multiple routes can be readily

provided that are well separated to provide control

redundancy.

There are a number of enabling technologies that must be

developed in order to enable photonics technology insertion.

Fibre-optic connectors for in-line and end connections must
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be developed that are durable and insensitive to in-service

maintenance activities. Fibre-optic sensors development will

also be necessary to allow the achievement of the full range of

benefits that can be obtained in fly-by-light aircraft. This

technology is usually associated with smart structures concepts

such as smart skins where fibre-optic cabling can be readily

embedded in a composite lay-up to achieve dispersed damage,

stress, temperature or vibration sensing capability.

Detection Management and Control Systems
Regional airliners and helicopters operating in lower level

airspace are increasingly exposed to hazardous icing

conditions. This has increased the need for technologies for

proactive and reactive ice detection and protection. Reactive

technologies are those related to the detection of runback

icing and attempt to monitor real-time or infer likely

aerodynamic performance degradation.

Proactive systems forecast the potential for icing

conditions and provide on-board avoidance advisory

information. Reactive systems provide reasonable protection

of the aircraft within the regulated flight envelope but are

essentially go/no-go decision aids. Aircraft on Search and

Rescue Missions and most civil transport aircraft often do

not have the option of avoiding hazardous icing conditions

and should have pro-active pilot advisors and ice removal

systems.

Reactive ice detection devices include: embedded sensors

that are mounted on the wing surface in a critical location

and monitor ice build-up; and aerodynamic performance

sensors that typically monitor pressure within the boundary

layer of the wing to determine lift performance degradation.
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Proactive systems require the remote measurement of Liquid

Water Content (LWC), Outside Air Temperature (OAT) and

Mean Volume Diameter (MVD) of the liquid water. Knowledge

of these three parameters is required to predict hazardous

icing conditions. Additional R&D work on MVD measurement

is required.

Ice control and removal systems may use heated air from

the engines or electrical heat elements to remove ice from airfoil

surfaces. Coatings that are termed"iceophobic" may also be

applied to minimize ice build-up. CFD tools are needed to

Analyse ice-buildup characteristics, assess aerodynamic

degradation, and improve ice removal air supply performance.

This technology area is of particular interest because of the

types of aircraft produced in Canada and because of climatic

conditions.

Design Techniques
A previously stated objective for noise reduction is in the

order of 6 EPNdB (Effective Perceived Noise in dB). This

objective can be achieved through the utilization of larger

by-pass ratio fans, innovative design concepts for turbo fans

and sound conscious designs in the combustor and exhaust

nozzles/liners. Generally speaking, noise improvements and

fuel efficiency must be improved to meet future regulatory

requirements without sacrifice of overall engine efficiency.

Of special interest will be advanced ducted propulsors (ADF)

that offer both noise attenuation and increased efficiency

potential. This technology area will be heavily dependent on

computational design techniques and multidisciplinary

design optimization.
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The reduction in aircraft emissions is also a regulated

requirement. While small aircraft engines contribute an

insignificant amount of pollution they are still the targets of

increased environmental scrutiny. Regulatory requirements

are targeted at Nitrous Oxides (NOx), Carbon Monoxide (CO)

and visible particulate emissions. CFD analysis techniques

specific to combustion processes will be the major tool used

to lower aeropropulsion emissions.



Computer-aided Industrial Design

174

8

Software Configuration
Management

In software engineering, software configuration

management (SCM) is the task of tracking and controlling

changes in the software. Configuration management

practices include revision control and the establishment of

baselines. SCM concerns itself with answering the question

“Somebody did something, how can one reproduce it?”

Often the problem involves not reproducing “it” identically,

but with controlled, incremental changes. Answering the

question thus becomes a matter of comparing different

results and of analysing their differences. Traditional

configuration management typically focused on controlled

creation of relatively simple products. Now, implementers

of SCM face the challenge of dealing with relatively minor

increments under their own control, in the context of the

complex system being developed.
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TERMINOLOGY

The history and terminology of SCM (which often varies)

has given rise to controversy. Roger Pressman, in his book

Software Engineering: A Practitioner’s Approach, states that

SCM is a “set of activities designed to control change by

identifying the work products that are likely to change,

establishing relationships among them, defining’ for

managing different versions of these work products,

controlling the changes imposed, and auditing and reporting

on the changes made.”

Source configuration management is a related practice

often used to indicate that a variety of artifacts may be

managed and versioned, including software code, hardware,

documents, design models, and even the directory structure

itself. Atria (later Rational Software, now a part of IBM),

used “SCM” to mean “software configuration management”.

Gartner uses the term software change and configuration

management.

PURPOSES

The goals of SCM are generally:

• Configuration identification - Identifying

configurations, configuration items and baselines.

• Configuration control - Implementing a controlled

change process. This is usually achieved by setting

up a change control board whose primary function is

to approve or reject all change requests that are sent

against any baseline.
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• Configuration status accounting - Recording and

reporting all the necessary information on the status

of the development process.

• Configuration auditing - Ensuring that configurations

contain all their intended parts and are sound with

respect to their specifying documents, including

requirements, architectural specifications and user

manuals.

• Build management - Managing the process and tools

used for builds.

• Process management - Ensuring adherence to the

organization’s development process.

• Environment management - Managing the software

and hardware that host the system.

• Teamwork - Facilitate team interactions related to the

process.

• Defect tracking - Making sure every defect has

traceability back to the source.

Software Documentation
Software documentation or source code documentation

is written text that accompanies computer software. It either

explains how it operates or how to use it, and may mean

different things to people in different roles.

INVOLVEMENT OF PEOPLE IN SOFTWARE

LIFE

Documentation is an important part of software

engineering. Types of documentation include:
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1. Requirements - Statements that identify attributes,

capabilities, characteristics, or qualities of a system.

This is the foundation for what shall be or has been

implemented.

2. Architecture/Design - Overview of softwares. Includes

relations to an environment and construction

principles to be used in design of software

components.

3. Technical - Documentation of code, algorithms,

interfaces, and APIs.

4. End User - Manuals for the end-user, system

administrators and support staff.

5. Marketing - How to market the product and analysis

of the market demand.

REQUIREMENTS DOCUMENTATION
Requirements documentation is the description of what

a particular software does or shall do. It is used throughout

development to communicate what the software does or

shall do. It is also used as an agreement or as the foundation

for agreement on what the software shall do. Requirements

are produced and consumed by everyone involved in the

production of software: end users, customers, product

managers, project managers, sales, marketing, software

architects, usability engineers, interaction designers,

developers, and testers, to name a few. Thus, requirements

documentation has many different purposes.

Requirements come in a variety of styles, notations and

formality. Requirements can be goal-like (e.g., distributed

work environment), close to design (e.g., builds can be started
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by right-clicking a configuration file and select the ‘build’

function), and anything in between. They can be specified

as statements in natural language, as drawn figures, as

detailed mathematical formulas, and as a combination of

them all. The variation and complexity of requirements

documentation makes it a proven challenge.

Requirements may be implicit and hard to uncover. It

is difficult to know exactly how much and what kind of

documentation is needed and how much can be left to the

architecture and design documentation, and it is difficult

to know how to document requirements considering the

variety of people that shall read and use the documentation.

Thus, requirements documentation is often incomplete (or

non-existent). Without proper requirements documentation,

software changes become more difficult—and therefore more

error prone (decreased software quality) and time-consuming

(expensive). The need for requirements documentation is

typically related to the complexity of the product, the impact

of the product, and the life expectancy of the software. If

the software is very complex or developed by many people

(e.g., mobile phone software), requirements can help to

better communicate what to achieve. If the software is

safety-critical and can have negative impact on human life

(e.g., nuclear power systems, medical equipment), more

formal requirements documentation is often required.

If the software is expected to live for only a month or two

(e.g., very small mobile phone applications developed

specifically for a certain campaign) very little requirements

documentation may be needed. If the software is a first

release that is later built upon, requirements documentation
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is very helpful when managing the change of the software

and verifying that nothing has been broken in the software

when it is modified. Traditionally, requirements are specified

in requirements documents (e.g. using word processing

applications and spreadsheet applications). To manage the

increased complexity and changing nature of requirements

documentation (and software documentation in general),

database-centric systems and special-purpose requirements

management tools are advocated.

ARCHITECTURE/DESIGN DOCUMENTATION
Architecture documentation is a special breed of design

document. In a way, architecture documents are third

derivative from the code (design document being second

derivative, and code documents being first). Very little in the

architecture documents is specific to the code itself. These

documents do not describe how to programme a particular

routine, or even why that particular routine exists in the

form that it does, but instead merely lays out the general

requirements that would motivate the existence of such a

routine. A good architecture document is short on details

but thick on explanation. It may suggest approaches for

lower level design, but leave the actual exploration trade

studies to other documents. Another breed of design docs

is the comparison document, or trade study.

This would often take the form of a whitepaper. It focuses

on one specific aspect of the system and suggests alternate

approaches. It could be at the user interface, code, design,

or even architectural level. It will outline what the situation

is, describe one or more alternatives, and enumerate the
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pros and cons of each. A good trade study document is

heavy on research, expresses its idea clearly (without relying

heavily on obtuse jargon to dazzle the reader), and most

importantly is impartial. It should honestly and clearly

explain the costs of whatever solution it offers as best. The

objective of a trade study is to devise the best solution,

rather than to push a particular point of view. It is perfectly

acceptable to state no conclusion, or to conclude that none

of the alternatives are sufficiently better than the baseline

to warrant a change. It should be approached as a scientific

endeavor, not as a marketing technique.

A very important part of the design document in enterprise

software development is the Database Design Document

(DDD). It contains Conceptual, Logical, and Physical Design

Elements. The DDD includes the formal information that

the people who interact with the database need. The purpose

of preparing it is to create a common source to be used by

all players within the scene. The potential users are:

• Database Designer

• Database Developer

• Database Administrator

• Application Designer

• Application Developer

When talking about Relational Database Systems, the

document should include following parts:

• Entity - Relationship Schema, including following

information and their clear definitions:

o Entity Sets and their attributes

o Relationships and their attributes
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o Candidate keys for each entity set

o Attribute and Tuple based constraints

• Relational Schema, including following information:

o Tables, Attributes, and their properties

o Views

o Constraints such as primary keys, foreign keys,

o Cardinality of referential constraints

o Cascading Policy for referential constraints

o Primary keys

It is very important to include all information that is to

be used by all actors in the scene. It is also very important

to update the documents as any change occurs in the

database as well.

TECHNICAL DOCUMENTATION
This is what most programmers mean when using the

term software documentation. When creating software, code

alone is insufficient. There must be some text along with

it to describe various aspects of its intended operation. It

is important for the code documents to be thorough, but

not so verbose that it becomes difficult to maintain them.

Several How-to and overview documentation are found

specific to the software application or software product

being documented by API Writers. This documentation may

be used by developers, testers and also the end customers

or clients using this software application. Today, we see lot

of high end applications in the field of power, energy,

transportation, networks, aerospace, safety, security,

industry automation and a variety of other domains.

Technical documentation has become important within such
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organizations as the basic and advanced level of information

may change over a period of time with architecture changes.

Hence, technical documentation has gained lot of importance

in recent times, especially in the software field. Often, tools

such as Doxygen, NDoc, javadoc, EiffelStudio, Sandcastle,

ROBODoc, POD, TwinText, or Universal Report can be used

to auto-generate the code documents—that is, they extract

the comments and software contracts, where available, from

the source code and create reference manuals in such

forms as text or HTML files.

Code documents are often organized into a reference

guide style, allowing a programmer to quickly look up an

arbitrary function or class. The idea of auto-generating

documentation is attractive to programmers for various

reasons. For example, because it is extracted from the

source code itself (for example, through comments), the

programmer can write it while referring to the code, and use

the same tools used to create the source code to make the

documentation. This makes it much easier to keep the

documentation up-to-date. Of course, a downside is that

only programmers can edit this kind of documentation, and

it depends on them to refresh the output (for example, by

running a cron job to update the documents nightly).

Some would characterize this as a pro rather than a con.

Donald Knuth has insisted on the fact that documentation

can be a very difficult afterthought process and has advocated

literate programming, writing at the same time and location

as the source code and extracted by automatic means.

Elucidative Programming is the result of practical

applications of Literate Programming in real programming
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contexts. The Elucidative paradigm proposes that source

code and documentation be stored separately. This paradigm

was inspired by the same experimental findings that

produced Kelp. Often, software developers need to be able

to create and access information that is not going to be part

of the source file itself. Such annotations are usually part

of several software development activities, such as code

walks and porting, where third party source code is analysed

in a functional way. Annotations can therefore help the

developer during any stage of software development where

a formal documentation system would hinder progress.

Kelp stores annotations in separate files, linking the

information to the source code dynamically.

USER DOCUMENTATION
Unlike code documents, user documents are usually far

more diverse with respect to the source code of the

programme, and instead simply describe how it is used. In

the case of a software library, the code documents and user

documents could be effectively equivalent and are worth

conjoining, but for a general application this is not often

true. Typically, the user documentation describes each

feature of the programme, and assists the user in realizing

these features.

A good user document can also go so far as to provide

thorough troubleshooting assistance. It is very important

for user documents to not be confusing, and for them to

be up to date. User documents need not be organized in

any particular way, but it is very important for them to have

a thorough index. Consistency and simplicity are also very
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valuable. User documentation is considered to constitute

a contract specifying what the software will do. API Writers

are very well accomplished towards writing good user

documents as they would be well aware of the software

architecture and programming techniques used. There are

three broad ways in which user documentation can be

organized.

1. Tutorial: A tutorial approach is considered the most

useful for a new user, in which they are guided

through each step of accomplishing particular tasks.

2. Thematic: A thematic approach, where chapters or

sections concentrate on one particular area of interest,

is of more general use to an intermediate user. Some

authors prefer to convey their ideas through a

knowledge based article to facilitating the user needs.

This approach is usually practiced by a dynamic

industry, such as Information technology, where the

user population is largely correlated with the

troubleshooting demands.

3. List or Reference: The final type of organizing principle

is one in which commands or tasks are simply listed

alphabetically or logically grouped, often via cross-

referenced indexes. This latter approach is of greater

use to advanced users who know exactly what sort of

information they are looking for.

A common complaint among users regarding software

documentation is that only one of these three approaches

was taken to the near-exclusion of the other two. It is

common to limit provided software documentation for

personal computers to online help that give only reference
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information on commands or menu items. The job of tutoring

new users or helping more experienced users get the most

out of a programme is left to private publishers, who are

often given significant assistance by the software developer.

MARKETING DOCUMENTATION
For many applications it is necessary to have some

promotional materials to encourage casual observers to

spend more time learning about the product. This form of

documentation has three purposes:-

1. To excite the potential user about the product and

instill in them a desire for becoming more involved

with it.

2. To inform them about what exactly the product does,

so that their expectations are in line with what they

will be receiving.

3. To explain the position of this product with respect

to other alternatives.

One good marketing technique is to provide clear and

memorable catch phrases that exemplify the point we wish

to convey, and also emphasize the interoperability of the

programme with anything else provided by the manufacturer.

Software Quality Assurance
Software quality assurance (SQA) consists of a means of

monitoring the software engineering processes and methods

used to ensure quality. The methods by which this is

accomplished are many and varied, and may include

ensuring conformance to one or more standards, such as

ISO 9000 or a model such as CMMI. SQA encompasses the
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entire software development process, which includes

processes such as requirements definition, software design,

coding, source code control, code reviews, change

management, configuration management, testing, release

management, and product integration.

SQA is organized into goals, commitments, abilities,

activities, measurements, and verifications. The American

Society for Quality offers a Certified Software Quality

Engineer (CSQE) certification with exams held a minimum

of twice a year.

Software Project Management
Software project management is the art and science of

planning and leading software projects. It is a sub-discipline

of project management in which software projects are

planned, monitored and controlled.

The history of software project management is closely

related to the history of software. Software was developed

for dedicated purposes for dedicated machines until the

concept of object-oriented programming began to become

popular in the 1960’s, making repeatable solutions possible

for the software industry. Dedicated systems could be

adapted to other uses thanks to component-based software

engineering. Companies quickly understood the relative ease

of use that software programming had over hardware

circuitry, and the software industry grew very quickly in the

1970’s and 1980’s. To manage new development efforts,

companies applied proven project management methods,

but project schedules slipped during test runs, especially

when confusion occurred in the gray zone between the user
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specifications and the delivered software. To be able to avoid

these problems, software project management methods

focused on matching user requirements to delivered

products, in a method known now as the waterfall model.

Since then, analysis of software project management failures

has shown that the following are the most common causes:

1. Unrealistic or unarticulated project goals

2. Inaccurate estimates of needed resources

3. Badly defined system requirements

4. Poor reporting of the project’s status

5. Unmanaged risks

6. Poor communication among customers, developers,

and users

7. Use of immature technology

8. Inability to handle the project’s complexity

9. Sloppy development practices

10. Poor project management

11. Stakeholder politics

12. Commercial pressures

The first three items in the list above show the difficulties

articulating the needs of the client in such a way that

proper resources can deliver the proper project goals. Specific

software project management tools are useful and often

necessary, but the true art in software project management

is applying the correct method and then using tools to

support the method.

Without a method, tools are worthless. Since the 1960’s,

several proprietary software project management methods

have been developed by software manufacturers for their

own use, while computer consulting firms have also
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developed similar methods for their clients. Today software

project management methods are still evolving, but the

current trend leads away from the waterfall model to a more

cyclic project delivery model that imitates a Software release

life cycle.

SOFTWARE DEVELOPMENT PROCESS

A software development process is concerned primarily

with the production aspect of software development, as

opposed to the technical aspect, such as software tools.

These processes exist primarily for supporting the

management of software development, and are generally

skewed toward addressing business concerns. Many software

development processes can be run in a similar way to

general project management processes. Examples are:

• Risk management is the process of measuring or

assessing risk and then developing strategies to

manage the risk. In general, the strategies employed

include transferring the risk to another party, avoiding

the risk, reducing the negative effect of the risk, and

accepting some or all of the consequences of a

particular risk. Risk management in software project

management begins with the business case for

starting the project, which includes a cost-benefit

analysis as well as a list of fallback options for project

failure, called a contingency plan.

o A subset of risk management that is gaining more

and more attention is “Opportunity Management”,

which means the same thing, except that the
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potential risk outcome will have a positive, rather

than a negative impact. Though theoretically

handled in the same way, using the term

“opportunity” rather than the somewhat negative

term “risk” helps to keep a team focussed on

possible positive outcomes of any given risk

register in their projects, such as spin-off projects,

windfalls, and free extra resources.

• Requirements management is the process of

identifying, eliciting, documenting, analyzing, tracing,

prioritizing and agreeing on requirements and then

controlling change and communicating to relevant

stakeholders. New or altered computer system

Requirements management, which includes

Requirements analysis, is an important part of the

software engineering process; whereby business

analysts or software developers identify the needs or

requirements of a client; having identified these

requirements they are then in a position to design a

solution.

• Change management is the process of identifying,

documenting, analyzing, prioritizing and agreeing on

changes to scope (project management) and then

controlling changes and communicating to relevant

stakeholders. Change impact analysis of new or

altered scope, which includes Requirements analysis

at the change level, is an important part of the

software engineering process; whereby business

analysts or software developers identify the altered

needs or requirements of a client; having identified
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these requirements they are then in a position to re-

design or modify a solution. Theoretically, each change

can impact the timeline and budget of a software

project, and therefore by definition must include risk-

benefit analysis before approval.

• Software configuration management is the process of

identifying, and documenting the scope itself, which

is the software product underway, including all sub-

products and changes and enabling communication

of these to relevant stakeholders. In general, the

processes employed include version control, naming

convention (programming), and software archival

agreements.

• Release management is the process of identifying,

documenting, prioritizing and agreeing on releases of

software and then controlling the release schedule and

communicating to relevant stakeholders. Most

software projects have access to three software

environments to which software can be released;

Development, Test, and Production. In very large

projects, where distributed teams need to integrate

their work before release to users, there will often be

more environments for testing, called unit testing,

system testing, or integration testing, before release

to User acceptance testing (UAT).

o A subset of release management that is gaining

more and more attention is Data Management,

as obviously the users can only test based on

data that they know, and “real” data is only in

the software environment called “production”. In
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order to test their work, programmers must

therefore also often create “dummy data” or “data

stubs”. Traditionally, older versions of a

production system were once used for this

purpose, but as companies rely more and more

on outside contributors for software development,

company data may not be released to

development teams. In complex environments,

datasets may be created that are then migrated

across test environments according to a test

release schedule, much like the overall software

release schedule.

PROJECT PLANNING, MONITORING AND

CONTROL

The purpose of project planning is to identify the scope

of the project, estimate the work involved, and create a

project schedule. Project planning begins with requirements

that define the software to be developed. The project plan

is then developed to describe the tasks that will lead to

completion.

The purpose of project monitoring and control is to keep

the team and management up to date on the project’s

progress. If the project deviates from the plan, then the

project manager can take action to correct the problem.

Project monitoring and control involves status meetings to

gather status from the team. When changes need to be

made, change control is used to keep the products up to

date.
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ISSUE

In computing, the term issue is a unit of work to

accomplish an improvement in a system. An issue could be

a bug, a requested feature, task, missing documentation,

and so forth. The word “issue” is popularly misused in lieu

of “problem.” This usage is probably related. For example,

OpenOffice.org used to call their modified version of BugZilla

IssueZilla. As of September 2010, they call their system

Issue Tracker. Problems occur from time to time and fixing

them in a timely fashion is essential to achieve correctness

of a system and avoid delayed deliveries of products.

SEVERITY LEVELS

Issues are often categorized in terms of severity levels.

Different companies have different definitions of severities,

but some of the most common ones are:

• Critical

• High - The bug or issue affects a crucial part of a

system, and must be fixed in order for it to resume

normal operation.

• Medium - The bug or issue affects a minor part of a

system, but has some impact on its operation. This

severity level is assigned when a non-central

requirement of a system is affected.

• Low - The bug or issue affects a minor part of a

system, and has very little impact on its operation.

This severity level is assigned when a non-central

requirement of a system (and with lower importance)

is affected.
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• Cosmetic - The system works correctly, but the

appearance does not match the expected one. For

example: wrong colors, too much or too little spacing

between contents, incorrect font sizes, typos, etc. This

is the lowest priority issue.

In many software companies, issues are often investigated

by Quality Assurance Analysts when they verify a system

for correctness, and then assigned to the developer(s) that

are responsible for resolving them. They can also be assigned

by system users during the User Acceptance Testing (UAT)

phase.

Issues are commonly communicated using Issue or Defect

Tracking Systems. In some other cases, emails or instant

messengers are used.

PHILOSOPHY

As a subdiscipline of project management, some regard

the management of software development akin to the

management of manufacturing, which can be performed by

someone with management skills, but no programming

skills. John C. Reynolds rebuts this view, and argues that

software development is entirely design work, and compares

a manager who cannot programme to the managing editor

of a newspaper who cannot write.

User experience design
User eXperience Design (UXD) is a subset of the field of

experience design that pertains to the creation of the

architecture and interaction models that affect user
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experience of a device or system. The scope of the field is

directed at affecting “all aspects of the user’s interaction

with the product: how it is perceived, learned, and used.”

THE DESIGNERS

This field has its roots in human factors and ergonomics,

a field that since the late 1940s has been focusing on the

interaction between human users, machines and the

contextual environments to design systems that address

the user’s experience. The term also has a more recent

connection to user-centered design principles and also

incorporates elements from similar user-centered design

fields.

As with the fields mentioned above, user experience

design is a highly multi-disciplinary field, incorporating

aspects of psychology, anthropology, sociology, computer

science, graphic design, industrial design and cognitive

science. Depending on the purpose of the product, UX may

also involve content design disciplines such as

communication design, instructional design, or game design.

The subject matter of the content may also warrant

collaboration with a Subject Matter Expert (SME) on planning

the UX from various backgrounds in business, government,

or private groups.

THE DESIGN

User experience design incorporates most or all of the

above disciplines to positively impact the overall experience

a person has with a particular interactive system, and its
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provider. User experience design most frequently defines a

sequence of interactions between a user (individual person)

and a system, virtual or physical, designed to meet or

support user needs and goals, primarily, while also satisfying

systems requirements and organizational objectives.

Typical outputs include:

• Site Audit (usability study of existing assets)

• Flows and Navigation Maps

• User stories or Scenarios

• Persona (Fictitious users to act out the scenarios)

• Site Maps and Content Inventory

• Wireframes (screen blueprints or storyboards)

• Prototypes (For interactive or in-the-mind simulation)

• Written specifications (describing the behavior or

design)

• Graphic mockups (Precise visual of the expected end

result)

BENEFITS

User experience design is integrated into software

development and other forms of application development to

inform feature requirements and interaction plans based

upon the user’s goals. New introduction of software must

keep in mind the dynamic pace of technology advancement

and the need for change. The benefits associated with

integration of these design principles include:

• Avoiding unnecessary product features

• Simplifying design documentation and customer-

facing technical publications
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• Improving the usability of the system and therefore

its acceptance by customers

• Expediting design and development through detailed

and properly conceived guidelines

• Incorporating business and marketing goals while

catering to the user.
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