

DIGITAL
COMPUTER SYSTEM

DIGITAL
COMPUTER SYSTEM

Daryl Hobbs

Digital Computer System

by Daryl Hobbs

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984663948

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Introduction 1

Chapter 2 Structure of Digital Systems 34

Chapter 3 Advantages of Digital Signals 52

Chapter 4 System Software 99

Chapter 5 Computer Software 111

Chapter 6 Computer-Based Serials System 130

Chapter 7 Computer Systems Architecture 145

1

Introduction

Digital computer systems consist of three distinct units.

These units are as follows:

• Input unit

• Central Processing unit

• Output unit

These units are interconnected by electrical cables to

permit communication between them. This allows the

computer to function as a system.

Input Unit

A computer must receive both data and program statements

to function properly and be able to solve problems. The method

of feeding data and programs to a computer is accomplished

 by an input device. Computer input devices read data from

a source, such as magnetic disks, and translate that data

into electronic impulses for transfer into the CPU. Some typical

input devices are a keyboard, a mouse, or a scanner.

Digital Computer System

2

Central Processing Unit

The brain of a computer system is the central processing

 unit (CPU). The CPU processes data transferred to it from

one of the various input devices. It then transfers either an

intermediate or final result of the CPU to one or more output

devices.

A central control section and work areas are required to

perform calculations or manipulate data. The CPU is the

computing center of the system. It consists of a control

section, an arithmetic-logic section as shown in figure, and

an internal storage section (main memory). Each section

within the CPU serves a specific function and has a particular

relationship with the other sections within the

Cpu.Control Section

The control section directs the flow of traffic (operations)

and data. It also maintains order within the computer. The

flow of control is indicated by dotted arrows in figure.

The control section selects one program statement at a

time from the program storage area, interprets the

 statement, and sends the appropriate electronic impulses

to the arithmetic-logic and storage sections so they can

carryout the instructions.

Digital Computer System

3

The control section does not perform actual processing

operations on the data. The control section instructs the input

device on when to start and stop transferring data to the

input storage area. It also tells the output device when to

start and stop receiving data from the output storage area.

Arithmetic-Logic Section

The arithmetic-logic section performs arithmetic operations,

such as addition, subtraction, multiplication, and division.

Through internal logic capability, it tests various conditions

encountered during processing and takes action based on

the result.As indicated by the solid arrows in figure, data

flows between the arithmetic-logic section and the

 internal storage section during processing.

Specifically, data is transferred as needed from the storage

section to the arithmetic-logic section, processed, and

 returned to internal storage. At no time does processing

take placein the storage section.

Data maybe transferred back and forth between these

two sections several times before processing is completed.

The results are then transferred from internal storage to an

output device, as indicated by the solid arrow in figure below.

The binary addition and multiplication tables are:

(

0 + 0 = 0

0 + 1 = 1

1 + 1 = 10

1 + 0 = 1

0 × 0 = 0

0 × 1 = 0

Digital Computer System

4

1 × 1 = 1

1 × 0 = 0

) (4)

Note that if carries are ignored,7 subtraction of two single-

digit binary numbers yields the same bit as addition.

Computers use high and low voltage values to express a bit,

and an array of such voltages express numbers akin to

positional notation. Logic circuits perform arithmetic

operations.

Exercise: Add twenty-five and seven in base 2. Note the

carries that might occur. Why is the result “nice”?

Solution: 25=110112 and 7=1112. We find that 110012 +

1112 = 1000002=32.

Also note that the logical operations of AND and OR are

equivalent to binary addition (again if carries are ignored).

The variables of logic indicate truth or falsehood. AÂ”B, the

AND of A and B, represents a statement that both A and B

must be true for the statement to be true.

You use this kind of statement to tell search engines that

you want to restrict hits to cases where both of the

events A and B occur. AÃ”B, the OR of A and B, yields a value

of truth if either is true.

Note that if we represent truth by a “1” and falsehood by a

“0,” binary multiplication corresponds to AND and addition

(ignoring carries) to OR. The Irish mathematician George Boole

discovered this equivalence in the mid-nineteenth century.

It laid the foundation for what we now call Boolean algebra,

which expresses as equations logical statements.

More importantly, any computer using base-2

representations and arithmetic can also easily evaluate logical

Digital Computer System

5

statements. This fact makes an integer-based computational

device much more powerful than might be apparent.

Internal Storage Section

The internal storage section is sometimes called primary

storage, main storage, or main memory, because this section

functions similar to our own human memory. The storage

section serves four purposes; three relate to retention

(holding) of data during processing.

First, as indicated by the solid arrow as shown in figure,

data is transferred from an input device to the inputstorage

area where it remains until the computers ready to process

it. Second, a workingstorage area ("scratch pad" memory)

within the storage section holds both the data being processed

and the intermediate results of the arithmetic-logic

Digital Computer System

6

operations. Third, the storage section retains the processing

results in the output storage area. From there the processing

results can be transferred to an output device. The fourth

storage section, the program storage area, contains the

program statements transferred from an input device to

process the data. Please note that the four areas (input,

working storage, output, and program storage) are NOT famed

in size or location but are determined by individual program

requirements.

Output Unit

As program statements and data are received by the CPU

from an input device, the results of the processed data are sent

from the CPU to an OUTPUT DEVICE. These results are

transferred from the output storage area onto an output

medium, such as a floppy disk, hard drive, video display, printer,

and so on.

DIGITAL SYSTEM

While the binary numeration system is an interesting

mathematical abstraction, we haven’t yet seen its practical

application to electronics. What makes binary numeration

so important to the application of digital electronics is the

ease in which bits may be represented in physical terms.

Because a binary bit can only have one of two different values,

either 0 or 1, any physical medium capable of switching

between two saturated states may be used to represent a

bit. Consequently, any physical system capable of

representing binary bits is able to represent numerical

quantities, and potentially has the ability to manipulate those

Digital Computer System

7

numbers. Electronic circuits are physical systems that lend

themselves well to the representation of binary numbers.

Transistors, when operated at their bias limits, may be in

one of two different states: either cutoff.

If a transistor circuit is designed to maximize the

probability of falling into either one of these states (and not

operating in the linear, or active, mode), it can serve as a

physical representation of a binary bit. A voltage signal

measured at the output of such a circuit may also serve as

a representation of a single bit, a low voltage representing a

binary “0” and a (relatively) high voltage representing a

binary “1.” Consider the following transistor circuit:

In this circuit, the transistor is in a state of saturation by

virtue of the applied input voltage (5 volts) through the two-

position switch. Because it’s saturated, the transistor drops

very little voltage between collector and emitter, resulting in

an output voltage of (practically) 0 volts.

If we were using this circuit to represent binary bits, we

would say that the input signal is a binary “1” and that the

output signal is a binary “0.” Any voltage close to full supply

voltage (measured in reference to ground, of course) is

Digital Computer System

8

considered a “1” and a lack of voltage is considered a “0.”

Alternative terms for these voltage levels are high (same as a

binary “1”) and low (same as a binary “0”).

A general term for the representation of a binary bit by a

circuit voltage is logic level. Moving the switch to the other

position, we apply a binary “0” to the input and receive a

binary “1” at the output:

What we’ve created here with a single transistor is a circuit

generally known as a logic gate, or simply gate. A gate is a

special type of amplifier circuit designed to accept and

generate voltage signals corresponding to binary 1’s and 0’s.

As such, gates are not intended to be used for amplifying

analog signals (voltage signals between 0 and full voltage).

Used together, multiple gates may be applied to the task of

binary number storage (memory circuits) or manipulation

(computing circuits), each gate’s output representing one bit

of a multi-bit binary number.

The gate shown here with the single transistor is known

as an inverter, or NOT gate, because it outputs the exact

opposite digital signal as what is input. For convenience,

gate circuits are generally represented by their own symbols

rather than by their constituent transistors and resistors.

Digital Computer System

9

The following is the symbol for an inverter:

An alternative symbol for an inverter is shown here:

Notice the triangular shape of the gate symbol, much

like that of an operational amplifier. As was stated before,

gate circuits actually are amplifiers. The small circle, or

“bubble” shown on either the input or output terminal is

standard for representing the inversion function. As you

might suspect, if we were to remove the bubble from the

gate symbol, leaving only a triangle, the resulting symbol

would no longer indicate inversion, but merely direct

amplification. Such a symbol and such a gate actually do

exist, and it is called a buffer, the subject of the next section.

Like an operational amplifier symbol, input and output

connections are shown as single wires, the implied reference

point for each voltage signal being “ground.” In digital gate

circuits, ground is almost always the negative connection of

a single voltage source (power supply).

Dual, or “split,” power supplies are seldom used in gate

circuitry. Because gate circuits are amplifiers, they require a

source of power to operate. Like operational amplifiers, the power

supply connections for digital gates are often omitted from the

symbol for simplicity’s sake. If we were to show all the necessary

connections needed for operating this gate, the schematic would

look something like this:

Digital Computer System

10

Power supply conductors are rarely shown in gate circuit

schematics, even if the power supply connections at each

gate are. Minimizing lines in our schematic, we get this:

“Vcc” stands for the constant voltage supplied to the

collector of a bipolar junction transistor circuit, in reference

to ground. Those points in a gate circuit marked by the label

“Vcc” are all connected to the same point, and that point is

the positive terminal of a DC voltage source, usually 5 volts.

As we will see in other sections of this chapter, there are

quite a few different types of logic gates, most of which have

multiple input terminals for accepting more than one signal.

The output of any gate is dependent on the state of its

input(s) and its logical function.

One common way to express the particular function of a

gate circuit is called a truth table. Truth tables show all

combinations of input conditions in terms of logic level states

(either “high” or “low,” “1” or “0,” for each input terminal of

the gate), along with the corresponding output logic level,

either “high” or “low.” For the inverter, or NOT, circuit just

illustrated, the truth table is very simple indeed:

Digital Computer System

11

Truth tables for more complex gates are, of course, larger

than the one shown for the NOT gate. A gate’s truth table

must have as many rows as there are possibilities for unique

input combinations. For a single-input gate like the NOT gate,

there are only two possibilities, 0 and 1. For a two input gate,

there are four possibilities (00, 01, 10, and 11), and thus four

rows to the corresponding truth table. For a three-input gate,

there are eight possibilities (000, 001, 010, 011, 100, 101,

110, and 111), and thus a truth table with eight rows are

needed. The mathematically inclined will realise that the

number of truth table rows needed for a gate is equal to 2

raised to the power of the number of input terminals.

MEMORY MANAGEMENT
The memory management subsystem is one of the most

important parts of the operating system. Since the early days

of computing, there has been a need for more memory than

exists physically in a system. Strategies have been developed

to overcome this limitation and the most successful of these

is virtual memory. Virtual memory makes the system appear

to have more memory than it actually has by sharing it between

competing processes as they need it.

Large Address Spaces

The operating system makes the system appear as if it

has a larger amount of memory than it actually has. The

Digital Computer System

12

virtual memory can be many times larger than the physical

memory in the system,

Protection

Each process in the system has its own virtual address

space. These virtual address spaces are completely separate

from each other and so a process running one application

cannot affect another. Also, the hardware virtual memory

mechanisms allow areas of memory to be protected against

writing. This protects code and data from being overwritten

by rogue applications.

Memory Mapping

Memory mapping is used to map image and data files into

a processes address space. In memory mapping, the contents

of a file are linked directly into the virtual address space of a

process.

Fair Physical Memory Allocation

The memory management subsystem allows each running

process in the system a fair share of the physical memory of

the system,

Shared Virtual Memory

Although virtual memory allows processes to have separate

(virtual) address spaces, there are times when you need

processes to share memory. For example there could be

several processes in the system running the bash command

shell.

Rather than have several copies of bash, one in each

processes virtual address space, it is better to have only one

copy in physical memory and all of the processes

Digital Computer System

13

running bash share it. Dynamic libraries are another

common example of executing code shared between several

processes.

Abstract Model of Virtual Memory

Before considering the methods that Linux uses to support

virtual memory it is useful to consider an abstract model

that is not cluttered by too much detail. As the processor

executes a programme it reads an instruction from memory

and decodes it. In decoding the instruction it may need to

fetch or store the contents of a location in memory. The

processor then executes the instruction and moves onto the

next instruction in the programme. In this way the processor

is always accessing memory either to fetch instructions or to

fetch and store data.

Demand Paging

As there is much less physical memory than virtual

memory the operating system must be careful that it does

not use the physical memory inefficiently. One way to save

physical memory is to only load virtual pages that are

currently being used by the executing programme.

For example, a database programme may be run to query

a database. In this case not all of the database needs to be

loaded into memory, just those data records that are being

examined. If the database query is a search query then it

does not make sense to load the code from the database

programme that deals with adding new records. This

technique of only loading virtual pages into memory as they

are accessed is known as demand paging.

Digital Computer System

14

Swapping

If a process needs to bring a virtual page into physical

memory and there are no free physical pages available, the

operating system must make room for this page by discarding

another page from physical memory. If the page to be

discarded from physical memory came from an image or data

file and has not been written to then the page does not need

to be saved. Instead it can be discarded and if the process

needs that page again it can be brought back into memory

from the image or data file.

However, if the page has been modified, the operating

system must preserve the contents of that page so that it

can be accessed at a later time. This type of page is known

as a dirty page and when it is removed from memory it is

saved in a special sort of file called the swap file. Accesses to

the swap file are very long relative to the speed of the

processor and physical memory and the operating system

must juggle the need to write pages to disk with the need to

retain them in memory to be used again.

Shared Virtual Memory

Virtual memory makes it easy for several processes to share

memory. All memory access are made via page tables and

each process has its own separate page table.

For two processes sharing a physical page of memory, its

physical page frame number must appear in a page table

entry in both of their page tables shows two processes that

each share physical page frame number 4. For process X this

is virtual page frame number 4 whereas for process Y this is

virtual page frame number 6. This illustrates an interesting

Digital Computer System

15

point about sharing pages: the shared physical page does

not have to exist at the same place in virtual memory for any

or all of the processes sharing it.

Processors and Memory

There are two main components which have been part of

nearly all computer systems ever designed and built. The

first is called the processor (known also as the Central

Processing Unit or CPU)and the second is called the memory.

The processor is the part of a computer system which does

the actual computing.

That is, the part which adds, subtracts, multiplies and

divides. Most processors can also compare values and

perform conditional actions as a result of such comparisons.

Many processors have instructions which perform various

types of conversions between different representations of

data. The processor itself is divided into three components

that carry out the various functions that the computer is

capable of performing. The first component of the processor

is the controller. The controller acts as a foreman that

oversees the tasks of the processor. The controller looks at

the next instruction to be executed and assigns the sub-

tasks that must be accomplished to carry out that instruction

to the other components of the processor.

Another component of the processor is the Arithmetic-Logic

Unit (ALU). This unit is the part of the processor which

performs the mathematical computations and logical tasks

that we expect a computer to be able to do. Addition,

subtraction, comparison, etc., are all carried out by the ALU.

The last component of the processor is a collection of one

or more registers. Registers are special named memory cells

Digital Computer System

16

in the processor where information is temporarily stored

during various stages of a computation. The currently

executing instruction, for example, resides in a register called

the Instruction Register. Since modern processors can

execute millions of instructions per second it is expected

that information would not stay in a register for more than a

few millionths of a second. A computer memory system is

accessed (or read) by specifying the location (called an

address) of the memory cell. The memory system then

responds by producing a copy of the contents of that cell.

The original value of the cell is not changed by this process.

This is sometimes called a non-destructive read.

A computer memory system is changed (or written) by

specifying the location of the memory cell together with the

new value for that cell. The previous value stored in the cell

is replaced by the new value.

This is sometimes called a destructive write. The values

stored in a computer memory are simply numbers. Numbers

are used to represent both data and instructions. In fact,

one cannot distinguish instructions from data when

examining the contents of a memory system.

It is up to the programmer or operating system to keep

track of which memory cells hold data and which are

programme instructions. Programs have been written which

manipulate and produce programs. Such programs treat

instructions as data.

The processor and memory unit are wired together wiring

connections called buses. A bus is a low resistance connection

consisting of 1 or more wires. There are three such

connections. The first, called the address bus, is used by the

Digital Computer System

17

processor to tell the memory system the number or location

of the memory cell the processor wishes to access. The second

bus is used to send data out to the memory. The third bus is

used to transmit data and instructions to the processor.

A typical computer might be organized as indicated in the

following diagram:

The processor contains a few memory cells, called registers,

which are used for efficient temporary storage:

Processor Registers

The Contents of a memory cell or a register is simply a

number. For purposes of illustration, suppose that each

memory cell is large enough to hold numbers up to 4 decimal

digits in size. If a memory cell holds an an instruction, use

the first two decimal digits represent the operation and the

Digital Computer System

18

remaining digits to represent the adderess or location of the

instruction operand.

Instruction Format

Using this scheme, we could set up the following operation

codes:
Operation Code Function
add 01 c(acc)=c(acc)+c(addr)
sub 02 c(acc)=c(acc)-c(addr)
load 03 c(acc)=c(addr)
store 04 c(addr)=c(acc)

These codes do not correspond to any known real computer,

but rather, they are the operation codes for a hypothetical

model computer which we will use to illustrate important

aspects of computer organization.

COMPUTER SYSTEM
In describing computer system, a distinction is often made

between computer architecture and computer organization.

Computer architecture refers to those attributes of a system

visible to a programmer, or put another way, those attributes

that have a direct impact on the logical execution of a

program. Computer organization refers to the operational

units and their interconnection that realise the architecture

specification.

Examples of architecture attributes include the instruction

set, the number of bit to represent various data types (e.g..,

numbers, and characters), I/O mechanisms, and technique

for addressing memory. Examples of organization attributes

include those hardware details transparent to the

programmer, such as control signals, interfaces between the

Digital Computer System

19

computer and peripherals, and the memory technology used.

As an example, it is an architectural design issue whether a

computer will have a multiply instruction. It is an

organizational issue whether that instruction will be

implemented by a special multiply unit or by a mechanism

that makes repeated use of the add unit of the system.

The organization decision may be bases on the anticipated

frequency of use of the multiply instruction, the relative speed

of the two approaches, and the cost and physical size of a

special multiply unit.

Historically, and still today, the distinction between

architecture and organization has been an important one.

Many computer manufacturers offer a family of computer

model, all with the same architecture but with differences in

organization. Consequently, the different models in the family

have different price and performance characteristics.

Furthermore, an architecture may survive many years, but

its organization changes with changing technology.

DEVELOPMENT OF COMPUTERS

First Generation: Vacuum Tubes

ENIAC: The ENIAC (Electronic Numerical Integrator And

Computer), designed by and constructed under the

supervision of Jonh Mauchly and John Presper Eckert at

the University of Pennsylvania, was the world’s first general-

purpose electronic digital computer.

The project was a response to U.S. wartime needs. Mauchly,

a professor of electrical engineering at the University of

Pennsylvania and Eckert, one of his graduate students,

proposed to build a general-purpose computer using vacuum

Digital Computer System

20

tubes. In 1943, this proposal was accepted by the Army,

and work began on the ENIAC.

The resulting machine was enormous, weighting 30 tons,

occupying 15,000 square feet of floor space, and containing

more than 18,000 vacuum tubes. When operating, it

consumed 140 kilowatts of power.

It was aloes substantially faster than any electronic-

mechanical computer, being capable of 5000 additions per

second. The ENIAC was decimal rather than a binary

machine. That is, numbers were represented in decimal form

and arithmetic was performed in the decimal system. Its

memory consisted of 20 “accumulators”, each capable of

holding a 10-digit decimal number.

Each digit was represented by a ring of 10 vacuum tubes.

At any time, only one vacuum tube was in the ON state,

representing one of the 10 digits.

The major drawback of the ENIAC was that it had to be

programmed manually by setting switches and plugging and

unplugging cables.

The ENIAC was completed in 1946, too late to be used in

the war effort. Instead, its first task was to perform a series

of complex calculations that were used to help determine

the feasibility of the H-bomb. The ENIAC continued to be

used until 1955.

Von Neumann Machine

The programming process could be facilitated if the

program could be represented in a form suitable for storing

in memory alongside the data. Then, a computer could get

its instructions by reading them from memory, and a program

Digital Computer System

21

could be set of altered by setting the values of a portion of

memory. This idea, known as the Stored-program concept,

is usually attributed to the ENIAC designers, most notably

the mathematician John von Neumann, who was a

consultant on the ENIAC project.

The idea was also developed at about the same time by

Turing. The first publication of the idea was in a 1945

proposal by von Neumann for a new computer, the EDVAC

(Electronic Discrete Variable Computer).

In 1946, von Neumann and his colleagues began the design

of a new stored-program computer, referred to as the IAS

computer, at the Princeton Institute for Advanced Studies.

The IAS computer, although not completed until 1952, is

the prototype of all subsequent general-purpose computers.

Figure shows the general structure of the IAS computer.

It consists of:

• A main memory, which stores both data and

instructions.

• An arithmetic-logical unit (ALU) capable of operating

on binary data.

Digital Computer System

22

• A control unit, which interprets the instructions in

memory and causes them to be executed.

• Input and output (I/O) equipment operated by the

control unit.

Commercial Computers

The 1950s saw the birth of the computer industry with two

companies, Sperry and IBM, dominating the marketplace. In

1947, Eckert and Mauchly formed the Eckert-Maunchly

computer Corporation to manufacture computers

commercially. Their first successful machine was the UNIVAC

I (Universal Automatic Computer), which was commissioned

by the Bureau of the Census for the 1950 calculations. The

Eckert-Maunchly Computer Corporation became part of the

UNIVAC division of Sperry-Rand Corporation, which went

on to build a series of successor machines.

The UNIVAC II, which had greater memory capacity and

higher performance than the UNIVAC I, was delivered in the

late 1950s and illustrates several trends that have remained

characteristic of the computer industry. First, advances in

technology allow companies to continue to build larger, more

powerful computers. Second, each company tries to make

its new machines upward compatible with the older

machines. This means that the programs written for the older

machines can be executed on the new machine. This strategy

is adopted in the hopes of retaining the customer base; that

is, when a customer decides to buy a newer machine, he is

likely to get it from the same company to avoid losing the

investment in programs.

The UNIVAC division also began development of the 1100

series of computers, which was to be its bread and butler.

Digital Computer System

23

This series illustrates a distinction that existed at one time.

The first model, the UNIVAC 1103, and its successors for

many years were primarily intended for scientific applications,

involving long and complex calculations. Other companies

concentrated on business applications, which involved

processing large amounts of text data. This split has largely

disappeared but it was evident for a number of years.

IBM, which was then the major manufacturer of punched-

card processing equipment, delivered its first electronic stored-

program computer, the 701, in 1953. The 70l was intended

primarily for scientific applications. In 1955, IBM introduced

the companion 702 product, which had a number of hardware

features that suited it to business applications. These were

the first of a long series of 700/7000 computers that

established IBM as the overwhelmingly dominant com puter

manufacturer.

Second Generation: Transistors

The first major change in the electronic computer came

with the replacement of the vacuum tube by the transistor.

The transistor is smaller, cheaper, and dissipates less heal

than a vacuum tube but can be used in the same way as a

vacuum tube to con struct computers.

Unlike the vacuum tube, which requires wires, metal

plates, a glass capsule, and a vacuum, the transistor is a

solid-state device, made from silicon. The transistor was

invented at Bell Labs in 1947 and by the 1950s had launched

an electronic revolution. It was not until the late 1950s,

however, that fully transisto rized computers were

commercially available. IBM again was not the first company

to deliver the new technology. NCR and. more successfully.

Digital Computer System

24

RCA were the front-run ners with some small transistor

machines. IBM followed shortly with the 7000 series.

The use of the transistor defines the second generation of

computers. It has become widely accepted to classify

computers into generations based on the fundamental hard

ware technology employed. Each new generation is

characterized by greater processing performance, larger

memory capacity, and smaller size than the previous one.

Third Generation:
Integrated Circuits

A single, self-contained transistor is called a discrete

component. Throughout the 1950s and early 1960s,

electronic equipment was composed largely of discrete com

ponents—transistors, resistors, capacitors, and so on.

Discrete components were manufactured separately,

packaged in their own containers, and soldered or wired

together onto circuit boards, which were then installed in

computers, oscilloscopes, and other electronic equipment.

Whenever an electronic device called for a transistor, a little

lube of metal containing a pinhead-sized piece of silicon had

to be soldered to a circuit hoard. The entire manufacturing

process, from transistor to circuit board, was expensive and

cumbersome.

These facts of life were beginning to create problems in

the computer industry. Early second-generation computers

contained about 10,000 transistors.

This figure grew to the hundreds of thousands, making the

manufacture of newer, more power ful machines increasingly

difficult. In 1958 came the achievement that revolutionized

electronics and started the era of microelectronics: the

Digital Computer System

25

invention of the integrated circuit. It is the integrated circuit

that defines the third generation of computers. Perhaps the

two most important members of the third generation are the

IBM System/360 and the DEC PDP-8.

Later Generations

Beyond the third generation there is less general agreement

on defining generations of computers. There have been a

fourth and a fifth genera tion, based on advances in integrated

circuit technology. With the introduction of large-scale

integration (LSI), more than 1000,000 components can be

placed on a single integrated circuit chip. Very-large-scale

integration (VLSI) achieved more than 1000,000,000

components per chip, and current VLSI chips can contain

more than 1000.000 components.

COMPUTERS CLASSIFICATION

AND DATA PROCESSING
Computers are classified according to their data processing

speed, amount of data that they can hold and price. Generally,

a computer with high processing speed and large internal

storage is called a big computer. Due to rapidly improving

technology, we are always confused among the categories of

computers.

Depending upon their speed and memory size, computers

are classified into following four main groups:

• Supercomputer.

• Mainframe computer.

• Mini computer.

• Microcomputer.

Digital Computer System

26

Supercomputer

Supercomputer is the most powerful and fastest, and also

very expensive. It was developed in 1980s. It is used to process

large amount of data and to solve the complicated scientific

problems. It can perform more than one trillions calculations

per second. It has large number of processors connected

parallel.

So parallel processing is done in this computer. In a single

supercomputer thousands of users can be connected at the

same time and the supercomputer handles the work of each

user separately.

Supercomputer are mainly used for:

• Weather forecasting.

• Nuclear energy research.

• Aircraft design.

• Automotive design.

• Online banking.

• To control industrial units.

The supercomputers are used in large organizations,

research laboratories, aerospace centers, large industrial

units etc. Nuclear scientists use supercomputers to create

and analyse models of nuclear fission and fusions, predicting

the actions and reactions of millions of atoms as they interact.

The examples of supercomputers are CRAY-1, CRAY-2,

Control Data CYBER 205 and ETA A-10 etc.

Mainframe Computers

Mainframe computers are also large-scale computers but

supercomputers are larger than mainframe. These are also

Digital Computer System

27

very expensive. The mainframe computer specially requires

a very large clean room with air-conditioner.

This makes it very expensive to buy and operate. It can

support a large number of various equipments. It also has

multiple processors. Large mainframe systems can handle

the input and output requirements of several thousand of

users. For example, IBM, S/390 mainframe can support

50,000 users simultaneously. The users often access then

mainframe with terminals or personal computers. Tere are

basically two types of terminals used with mainframe

systems.

Dumb Terminal

Dumb terminal does not have its own CPU and storage

devices. This type of terminal uses the CPU and storage

devices of mainframe system. Typically, a dumb terminal

consists of monitor and a keyboard (or mouse).

Intelligent Terminal

Intelligent terminal has its own processor and can perform

some processing operations. Usually, this type of terminal

does not have its own storage. Typically, personal computrers

are used as intelligent terminals. A personal computer as an

intelligent terminal gives facility to access data and other

services from mainframe system. It also enables to store and

process data locally. The mainframe computers are specially

used as servers on the World Wide Web. The mainframe

computers are used in large organizations such as Banks,

Airlines and Universities etc. where many people (users) need

frequent access to the same data, which is usually organized

into one or more huge databases. IBM is the major

Digital Computer System

28

manufacturer of mainframe computers. The examples of

mainframes are IBM S/390, Control Data CYBER 176 and

Amdahl 580 etc.

Minicomputers

These are smaller in size, have lower processing speed and

also have lower cost than mainframe. These computers are

known as minicomputers because of their small size as

compared to other computers at that time. The capabilities

of a minicomputer are between mainframe and personal

computer. These computers are also known as midrange

computers.

The minicomputers are used in business, education and

many other government departments. Although some

minicomputers are designed for a single user but most are

designed to handle multiple terminals. Minicomputers are

commonly used as servers in network environment and

hundreds of personal computers can be connected to the

network with a minicomputer acting as server like

mainframes, minicomputers are used as web servers. Single

user minicomputers are used for sophisticated design tasks.

The first minicomputer was introduced in the mid-1960s

by Digital Equipment Corporation (DEC). After this IBM

Corporation (AS/400 computers) Data General Corporation

and Prime Computer also designed the mini computers.

Microcomputer

The microcomputers are also known as personal computers

or simply PCs. Microprocessor is used in this type of

computer. These are very small in size and cost. The IBM’s

first microcomputer was designed in 1981 and was named

Digital Computer System

29

as IBM-PC. After this many computer hardware companies

copied the design of IBM-PC. The term “PC-compatible” refers

any personal computer based on the original IBM personal

computer design. The most popular types of personal

computers are the PC and the Apple. PC and PC-compatible

computers have processors with different architectures than

processors in Apple computers. These two types of computers

also use different operating systems. PC and PC-compatible

computers use the Windows operating system while Apple

computers use the Macintosh operating system (MacOS). The

majority of microcomputers sold today are part of IBM-

compatible. However the Apple computer is neither an IBM

nor a compatible. It is another family of computers made by

Apple computer. Personal computers are available in two

models.

These are:

• Desktop PCs

• Tower PCs

A desktop personal computer is most popular model of

personal computer. The system unit of the desktop personal

computer can lie flat on the desk or table. In desktop personal

computer, the monitor is usually placed on the system unit.

Another model of the personal computer is known as tower

personal computer. The system unit of the tower PC is

vertically placed on the desk of table. Usually the system

unit of the tower model is placed on the floor to make desk

space free and user can place other devices such as printer,

scanner etc. on the desktop. Today computer tables are

available which are specially designed for this purpose. The

tower models are mostly used at homes and offices.

Digital Computer System

30

Microcomputer are further divided into following categories:

• Laptop computer

• Workstation

• Network computer

• Handheld computer

Laptop Computer

Laptop computer is also known as notebook computer. It

is small size (85-by-11 inch notebook computer and can fit

inside a briefcase. The laptop computer is operated on a

special battery and it does not have to be plugged in like

desktop computer. The laptop computer is portable and fully

functional microcomputer.

It is mostly used during journey. It can be used on your

lap in an airplane. It is because it is referred to as laptop

computer. The memory and storage capacity of laptop

computer is almost equivalent to the PC or desktop computer.

It also has the hard dist, floppy disk drive, Zip disk drive,

CD-ROM drive, CD-writer etc. it has built-in keyboard and

built-in trackball as pointing device.

Laptop computer is also available with the same processing

speed as the most powerful personal computer. It means

that laptop computer has same features as personal

computer. Laptop computers are more expensive than

desktop computers. Normally these computers are frequently

used in business travellers.

Workstations

Workstations are special single user computers having the

same features as personal computer but have the processing

Digital Computer System

31

speed equivalent to minicomputer or mainframe computer.

A workstation computer can be fitted on a desktop. Scientists,

engineers, architects and graphic designers mostly use these

computers.

Workstation computers are expensive and powerful

computers. These have advanced processors, more RAM and

storage capacity than personal computers. These are usually

used as single-user applications but these are used as servers

on computer network and web servers as well.

Network Computers

Network computers are also version of personal computers

having less processing power, memory and storage. These

are specially designed as terminals for network environment.

Some types of network computers have no storage. The

network computers are designed for network, Internet or

Intranet for data entry or to access data on the network. The

network computers depend upon the network’s server for

data storage and to use software. These computers also use

the network’s server to perform some processing tasks. In

the mid-1990s the concept of network computers became

popular among some PC manufacturers. As a result several

variations of the network computers quickly became

available.

In business, variations of the network computer are

Windows terminals, NetPCs and diskless workstations. Some

network computers are designed to access only the Internet

or to an Intranet. These devices are sometimes called Internet

PCs, Internet boxes etc. In home some network computers

do not include monitor. These are connected to home

Digital Computer System

32

television, which serves as the output devices. A popular

example of a home-based network computer is Web TV, which

enables the user to connect a television to the Internet.

The Web TV has a special set-top box used to connect to

the Internet and also provides a set of simple controls which

enable the user to navigate the Internet, send and receive e-

mails and to perform other tasks on the network while

watching television. Network computers are cheaper to

purchase and to maintain than personal computers.

Handheld Computer

In the mid 1990s, many new types of small personal

computing devices have been introduced and these are

referred to as handheld computers. These computers are

also referred to as Palmtop Computers. The handheld

computers sometimes called Mini-Notebook Computers. The

type of computer is named as handheld computer because it

can fit in one hand while you can operate it with the other

hand.

Because of its reduced size, the screen of handheld

computer is quite small. Similarly it also has small keyboard.

The handheld computers are preferred by business traveller.

Some handheld computers have a specialized keyboard.

These computers are used by mobile employees, such as

meter readers and parcel delivery people, whose jobs require

them to move from place to place.

The examples of handheld computers are:

• Personal digital assistance

• Cellular telephones

• H/PC pro devices

Digital Computer System

33

Personal Digital Assistance (PDAs)

The PDA is one of the more popular lightweight mobile

devices in use today. A PDA provides special functions such

as taking notes, organizing telephone numbers and

addresses. Most PDAs also offer a variety of other application

software such as word processing, spreadsheet and games

etc. Some PDAs include electronic books that enable users

to read a book on the PDA’s screen. Many PDAs are web-

based and users can send/receive e-mails and access the

Internet. Similarly, some PDAs also provide telephone

capabilities.

The primary input device of a PDA is the stylus. A stylus is

an electronic pen and looks like a small ballpoint pen. This

input device is used to write notes and store in the PDA by

touching the screen. Some PDAs also support voice input.

Cellular Phones

A cellular phone is a web-based telephone having features

of analog and digital devices. It is also referred to as Smart

Phone. In addition to basic phone capabilities, a cellular

phone also provides the functions to receive and send e-

mails & faxes and to access the Internet.

H/PC Pro Devices

H/PC Pro dive is new development in handheld technology.

These systems are larger than PDAs but they are not quite

as large as typical notebook PCs. These devices have features

between PDAs and notebook PCs. The H/PC Pro device

includes a full-size keyboard but it does not include disk.

These systems also have RAM with very low storage capacity

and slow speed of processor.

Digital Computer System

34

2

Structure of Digital Systems

Engineers use many methods to minimize logic functions,

in order to reduce the circuit’s complexity. When the

complexity is less, the circuit also has fewer errors and less

electronics, and is therefore less expensive. The most widely

used simplification is a minimization algorithm like the

Espresso heuristic logic minimizer within a CAD system,

although historically, binary decision diagrams, an

automatedQuine–McCluskey algorithm, truth tables,

Karnaugh maps, and Boolean algebra have been used.

Representations are crucial to an engineer’s design of

digital circuits. Some analysis methods only work with

particular representations. The classical way to represent a

digital circuit is with an equivalent set of logic gates. Another

way, often with the least electronics, is to construct an

equivalent system of electronic switches (usually transistors).

One of the easiest ways is to simply have a memory containing

Digital Computer System

35

a truth table. The inputs are fed into the address of the

memory, and the data outputs of the memory become the

outputs.

For automated analysis, these representations have digital

file formats that can be processed by computer programmes.

Most digital engineers are very careful to select computer

programmes (“tools”) with compatible file formats. To choose

representations, engineers consider types of digital systems.

Most digital systems divide into “combinational systems” and

“sequential systems.” A combinational system always

presents the same output when given the same inputs. It is

basically a representation of a set of logic functions. A

sequential system is a combinational system with some of

the outputs fed back as inputs. This makes the digital

machine perform a “sequence” of operations. The simplest

sequential system is probably a flip flop, a mechanism that

represents a binary digit or “bit”. Sequential systems are

often designed as state machines. In this way, engineers can

design a system’s gross behaviour, and even test it in a

simulation, without considering all the details of the logic

functions. Sequential systems divide into two further

subcategories. “Synchronous” sequential systems change

state all at once, when a “clock” signal changes state.

“Asynchronous” sequential systemspropagate changes

whenever inputs change. Synchronous sequential systems

are made of well-characterised asynchronous circuits such

as flip-flops, that change only when the clock changes, and

which have carefully designed timing margins.

The usual way to implement a synchronous sequential

state machine is to divide it into a piece of combinational

Digital Computer System

36

logic and a set of flip flops called a “state register.” Each time

a clock signal ticks, the state register captures the feedback

generated from the previous state of the combinational logic,

and feeds it back as an unchanging input to the

combinational part of the state machine. The fastest rate of

the clock is set by the most time-consuming logic calculation

in the combinational logic. The state register is just a

representation of a binary number. If the states in the state

machine are numbered (easy to arrange), the logic function

is some combinational logic that produces the number of

the next state.

In comparison, asynchronous systems are very hard to

design because all possible states, in all possible timings

must be considered. The usual method is to construct a table

of the minimum and maximum time that each such state

can exist, and then adjust the circuit to minimize the number

of such states, and force the circuit to periodically wait for

all of its parts to enter a compatible state (this is called “self-

resynchronisation”). Without such careful design, it is easy

to accidentally produce asynchronous logic that is “unstable”,

that is, real electronics will have unpredictable results

because of the cumulative delays caused by small variations

in the values of the electronic components. Certain circuits

(such as the synchroniser flip-flops, switchdebouncers,

arbiters, and the like which allow external unsynchronised

signals to enter synchronous logic circuits) are inherently

asynchronous in their design and must be analysed as such.

As of 2005, almost all digital machines are synchronous

designs because it is much easier to create and verify a

synchronous design—the software currently used to simulate

Digital Computer System

37

digital machines does not yet handle asynchronous designs.

However, asynchronous logic is thought to be superior, if it

can be made to work, because its speed is not constrained

by an arbitrary clock; instead, it runs at the maximum speed

of its logic gates. Building an asynchronous circuit using

faster parts makes the circuit faster. Many digital systems

are data flow machines. These are usually designed using

synchronous register transfer logic, using hardware

description languages such as VHDL or Verilog. In register

transfer logic, binary numbers are stored in groups of flip

flops called registers. The outputs of each register are a

bundle of wires called a “bus” that carries that number to

other calculations. A calculation is simply a piece of

combinational logic. Each calculation also has an output

bus, and these may be connected to the inputs of several

registers. Sometimes a register will have a multiplexer on its

input, so that it can store a number from any one of several

buses. Alternatively, the outputs of several items may be

connected to a bus through buffers that can turn off the

output of all of the devices except one. A sequential state

machine controls when each register accepts new data from

its input. In the 1980s, some researchers discovered that

almost all synchronous register-transfer machines could be

converted to asynchronous designs by using first-in-first-out

synchronisation logic. In this scheme, the digital machine is

characterised as a set of data flows. In each step of the flow,

an asynchronous “synchronisation circuit” determines when

the outputs of that step are valid, and presents a signal that

says, “grab the data” to the stages that use that stage’s inputs.

It turns out that just a few relatively simple synchronisation

Digital Computer System

38

circuits are needed. The most general-purpose register-

transfer logic machine is a computer. This is basically an

automatic binary abacus. The control unit of a computer is

usually designed as a microprogram run by a microsequencer.

A microprogram is much like a player-piano roll. Each table

entry or “word” of the microprogram commands the state of

every bit that controls the computer. The sequencer then

counts, and the count addresses the memory or

combinational logic machine that contains the microprogram.

The bits from the microprogram control the arithmetic logic

unit, memory and other parts of the computer, including the

microsequencer itself. In this way, the complex task of

designing the controls of a computer is reduced to a simpler

task of programming a collection of much simpler logic

machines.

Computer architecture is a specialised engineering activity

that tries to arrange the registers, calculation logic, buses

and other parts of the computer in the best way for some

purpose. Computer architects have applied large amounts

of ingenuity to computer design to reduce the cost and

increase the speed and immunity to programming errors of

computers. An increasingly common goal is to reduce the

power used in a battery-powered computer system, such as

a cell-phone. Many computer architects serve an extended

apprenticeship as microprogrammers. “Specialised

computers” are usually a conventional computer with a

special-purpose microprogram.

Automated design tools

To save costly engineering effort, much of the effort of

designing large logic machines has been automated. The

Digital Computer System

39

computer programmes are called “electronic design

automation tools” or just “EDA.” Simple truth table-style

descriptions of logic are often optimised with EDA that

automatically produces reduced systems of logic gates or

smaller lookup tables that still produce the desired outputs.

The most common example of this kind of software is the

Espresso heuristic logic minimizer. Most practical algorithms

for optimising large logic systems use algebraic manipulations

or binary decision diagrams, and there are promising

experiments with genetic algorithms and annealing

optimisations.

To automate costly engineering processes, some EDA can

take state tables that describe state machines and

automatically produce a truth table or a function table for

the combinational logic of a state machine. The state table is

a piece of text that lists each state, together with the

conditions controlling the transitions between them and the

belonging output signals. It is common for the function tables

of such computer-generated state-machines to be optimised

with logic-minimization software such as Minilog. Often, real

logic systems are designed as a series of sub-projects, which

are combined using a “tool flow.”

The tool flow is usually a “script,” a simplified computer

language that can invoke the software design tools in the

right order. Tool flows for large logic systems such as

microprocessors can be thousands of commands long, and

combine the work of hundreds of engineers. Writing and

debugging tool flows is an established engineering specialty

in companies that produce digital designs. The tool flow

usually terminates in a detailed computer file or set of files

Digital Computer System

40

that describe how to physically construct the logic. Often it

consists of instructions to draw the transistors and wires on

an integrated circuit or a printed circuit board.

Parts of tool flows are “debugged” by verifying the outputs

of simulated logic against expected inputs. The test tools

take computer files with sets of inputs and outputs, and

highlight discrepancies between the simulated behaviour and

the expected behaviour. Once the input data is believed

correct, the design itself must still be verified for correctness.

Some tool flows verify designs by first producing a design,

and then scanning the design to produce compatible input

data for the tool flow. If the scanned data matches the input

data, then the tool flow has probably not introduced errors.

The functional verification data are usually called “test

vectors.” The functional test vectors may be preserved and

used in the factory to test that newly constructed logic works

correctly.

However, functional test patterns don’t discover common

fabrication faults. Production tests are often designed by

software tools called “test pattern generators”. These generate

test vectors by examining the structure of the logic and

systematically generating tests for particular faults. This way

the fault coverage can closely approach 100 per cent, provided

the design is properly made testable. Once a design exists,

and is verified and testable, it often needs to be processed to

be manufacturable as well. Modern integrated circuits have

features smaller than the wavelength of the light used to

expose the photoresist. Manufacturability software adds

interference patterns to the exposure masks to eliminate

open-circuits, and enhance the masks’ contrast.

Digital Computer System

41

Design for testability

There are several reasons for testing a logic circuit. When

the circuit is first developed, it is necessary to verify that the

design circuit meets the required functional and timing

specifications. When multiple copies of a correctly designed

circuit are being manufactured, it is essential to test each

copy to ensure that the manufacturing process has not

introduced any flaws. A large logic machine (say, with more

than a hundred logical variables) can have an astronomical

number of possible states. Obviously, in the factory, testing

every state is impractical if testing each state takes a

microsecond, and there are more states than the number of

microseconds since the universe began. Unfortunately, this

ridiculous-sounding case is typical. Fortunately, large logic

machines are almost always designed as assemblies of

smaller logic machines. To save time, the smaller sub-

machines are isolated by permanently-installed “design for

test” circuitry, and are tested independently. One common

test scheme known as “scan design” moves test bits serially

(one after another) from external test equipment through

one or more serial shift registers known as “scan chains”.

Serial scans have only one or two wires to carry the data,

and minimize the physical size and expense of the

infrequently-used test logic. After all the test data bits are in

place, the design is reconfigured to be in “normal mode” and

one or more clock pulses are applied, to test for faults (e.g.,

stuck-at low or stuck-at high) and capture the test result

into flip-flops and/or latches in the scan shift register(s).

Finally, the result of the test is shifted out to the block

boundary and compared against the predicted “good

Digital Computer System

42

machine” result. In a board-test environment, serial to

parallel testing has been formalised with a standard called

“JTAG” (named after the “Joint Test Action Group” that

proposed it). Another common testing scheme provides a test

mode that forces some part of the logic machine to enter a

“test cycle.” The test cycle usually exercises large independent

parts of the machine.

Trade-offs

Several numbers determine the practicality of a system of

digital logic: cost, reliability, fanout and speed. Engineers

explored numerous electronic devices to get an ideal

combination of these traits.

Cost

The cost of a logic gate is crucial. In the 1930s, the earliest

digital logic systems were constructed from telephone relays

because these were inexpensive and relatively reliable. After

that, engineers always used the cheapest available electronic

switches that could still fulfill the requirements. The earliest

integrated circuits were a happy accident. They were

constructed not to save money, but to save weight, and permit

the Apollo Guidance Computer to control an inertial guidance

system for a spacecraft. The first integrated circuit logic gates

cost nearly $50 (in 1960 dollars, when an engineer earned

$10,000/year). To everyone’s surprise, by the time the circuits

were mass-produced, they had become the least-expensive

method of constructing digital logic. Improvements in this

technology have driven all subsequent improvements in cost.

With the rise of integrated circuits, reducing the absolute

number of chips used represented another way to save costs.

Digital Computer System

43

The goal of a designer is not just to make the simplest circuit,

but to keep the component count down. Sometimes this

results in slightly more complicated designs with respect to

the underlying digital logic but nevertheless reduces the

number of components, board size, and even power

consumption. For example, in some logic families, NAND

gates are the simplest digital gate to build. All other logical

operations can be implemented by NAND gates. If a circuit

already required a single NAND gate, and a single chip

normally carried four NAND gates, then the remaining gates

could be used to implement other logical operations like

logical and. This could eliminate the need for a separate chip

containing those different types of gates.

Reliability

The “reliability” of a logic gate describes its mean time

between failure (MTBF). Digital machines often have millions

of logic gates. Also, most digital machines are “optimised” to

reduce their cost. The result is that often, the failure of a

single logic gate will cause a digital machine to stop working.

Digital machines first became useful when the MTBF for a

switch got above a few hundred hours. Even so, many of

these machines had complex, well-rehearsed repair

procedures, and would be non-functional for hours because

a tube burned-out, or a moth got stuck in a relay. Modern

transistorised integrated circuit logic gates have MTBFs

greater than 82 billion hours (8.2×1010) hours, and need them

because they have so many logic gates.

Fanout

Fanout describes how many logic inputs can be controlled

Digital Computer System

44

by a single logic output without exceeding the current ratings

of the gate.[6] The minimum practical fanout is about five.

Modern electronic logic using CMOS transistors for switches

have fanouts near fifty, and can sometimes go much higher.

Speed

The “switching speed” describes how many times per

second an inverter (an electronic representation of a “logical

not” function) can change from true to false and back. Faster

logic can accomplish more operations in less time. Digital

logic first became useful when switching speeds got above

fifty hertz, because that was faster than a team of humans

operating mechanical calculators. Modern electronic digital

logic routinely switches at five gigahertz (5×109 hertz), and

some laboratory systems switch at more than a terahertz

(1×1012 hertz).

Logic Families

Design started with relays. Relay logic was relatively

inexpensive and reliable, but slow. Occasionally a mechanical

failure would occur. Fanouts were typically about ten, limited

by the resistance of the coils and arcing on the contacts from

high voltages. Later, vacuum tubes were used. These were

very fast, but generated heat, and were unreliable because

the filaments would burn out. Fanouts were typically five to

seven, limited by the heating from the tubes’ current. In the

1950s, special “computer tubes” were developed with filaments

that omitted volatile elements like silicon. These ran for

hundreds of thousands of hours. The first semiconductor logic

family was resistor-transistor logic. This was a thousand times

more reliable than tubes, ran cooler, and used less power, but

Digital Computer System

45

had a very low fan-in of three. Diode-transistor logic improved

the fanout up to about seven, and reduced the power. Some

DTL designs used two power-supplies with alternating layers

of NPN and PNP transistors to increase the fanout. Transistor

transistor logic (TTL) was a great improvement over these. In

early devices, fanout improved to ten, and later variations

reliably achieved twenty. TTL was also fast, with some

variations achieving switching times as low as twenty

nanoseconds. TTL is still used in some designs. Emitter

coupled logic is very fast but uses a lot of power. It was

extensively used for high-performance computers made up of

many medium-scale components (such as the Illiac IV). By

far, the most common digital integrated circuits built today

use CMOS logic, which is fast, offers high circuit density and

low-power per gate. This is used even in large, fast computers,

such as the IBM System z.

Digital Integrated Circuits

Digital integrated circuits, sometimes called an IC, chip or

microchip, are the building blocks for nearly every type of

modern electronics and electrical devices, whether for home

or office, work or pleasure.

Origin

Digital integrated circuit development was necessary to

resolve the fundamental issues of vacuum tubes, the leading

technology of the first half of the 20th century. Vacuum tubes

are bulky, fragile, power hungry, hot and failed frequently.

History

On Sept. 12, 1958, Jack Kilby successfully demonstrated

Digital Computer System

46

the first IC with a single transistor and all its components

on a single piece of germanium semiconductor material. In

the first 50 years, ICs have advanced from single transistors

to complex microprocessors with multiple CPU cores. On

Dec. 3, 2009, the Helsinki University of Technology

announced that a team of researchers had succeeded in

building the first single atom transistor, the theoretical

minimum component size. Technological alternatives such

as quantum computing evolved as semiconductor technology

approached theoretical limits.

Features

Digital integrated circuits operate based on binary

mathematics using electrical signals to represent “ones” and

“zeros.” Digital integrated circuits can perform any number

of operations, from a simple switch to a complex

microprocessor.

History of Integrated Circuits

The experiments performed on semi conductors revealed

that they can perform the variety of vacuum tube functions.

The incorporation of bulk of puny transistors on a small chip

was a major leap in manually assembling electronic

components on a really small circuit. Mass production and

efficiency of Integrated Circuits greatly replaced the discrete

transistors from many devices.

The two main features of integrated circuits like low cost

and high performance gave it edge over the discrete

transistors. The low cost is associated to the bulk production

and printing using photolithography. The material used in

constructing an IC is less than that used in discrete circuits.

Digital Computer System

47

The high performance can be contributed to the quick

switching and low power consumption.

The idea of IC was developed by the scientists working for

Royal Radar. The idea propagated further when Jack Kilby

and Robert Noyce working separately brought a remarkable

invention. The chips made by both of them were meant to

perform same functions whereas the material used was not

the same. Noyce made a silicone chip and the Kilby

manufactured a germanium chip. The development in this

field was not new it was in 1949 when the first idea related

to integrated chip came to view. From then onwards the

development and growth is continued.

Applications of Integrated Circuts

Integrated circuits today have become ubiquitous. It seems

that it was this invention which has led to the growth in

technology. This remarkable invention has helped companies

and manufacturers of electronic devices to design and

introduce new and advance products. It can be said that it

was due to the micro chips that we can use portable digital

devices today.

The integrated chip is an important component of laptops,

palm tops, MP3s, playstaions, mobile phones, net books and

an unlimited array of electronic devices. The existence of all

modern communication and electronic devices is based today

on the use of integrated circuits. This chip is small but really

Digital Computer System

48

efficient and swift when it comes to the performance. It is

due to this desirable feature that it is part of almost all cell

phones and we carry them anywhere in the world without

being worrying about performance decline.

Taxonomy of Integrated Circuits

The integrated circuits can be divided into three broad

categories like digital ICs, analog ICs and mixed signal ICs.

Digital integrated circuits contain many flip flops,

multiplexers and logic gates in a single chip comprising only

few millimeters. This small size has provided its edge over all

other technologies. Therefore, the manufactures of digital

devices now prefer it over discrete transistors. These small

chips consume less power and they are efficient. The

manufacturing of these circuits help in reducing

manufacturing cost due to the wide scale integration.

The working of the digital microchips is guided by the

binary mathematical process in the form of 1 and 0 signals.

On the contrary the analog micro circuits work by continuous

flow of signals. The various examples of analog circuits

include power management circuits, sensors and operational

amplifiers.

These integrated circuits are used for performing functions

like active filtering, demodulation, amplification and mixing. The

expertly designed analog circuits remove the need for

manufacturing an entirely new circuit from abrasion. This

provides the facility to the mobile phone manufactures to buy

and install the IC instead of preparing one. The digital and analog

circuits can be combined in on one chip to enhance the

performance.

Digital Computer System

49

Design issues in digital circuits

Digital circuits are made from analog components. The

design must assure that the analog nature of the components

doesn’t dominate the desired digital behaviour. Digital

systems must manage noise and timing margins, parasitic

inductances and capacitances, and filter power connections.

Bad designs have intermittent problems such as “glitches”,

vanishingly-fast pulses that may trigger some logic but not

others, “runt pulses” that do not reach valid “threshold”

voltages, or unexpected (“undecoded”) combinations of logic

states. Additionally, where clocked digital systems interface

to analog systems or systems that are driven from a different

clock, the digital system can be subject to metastability where

a change to the input violates the set-up time for a digital

input latch. This situation will self-resolve, but will take a

random time, and while it persists can result in invalid signals

being propagated within the digital system for a short time.

Since digital circuits are made from analog components,

digital circuits calculate more slowly than low-precision

analog circuits that use a similar amount of space and power.

However, the digital circuit will calculate more repeatably,

because of its high noise immunity. On the other hand, in

the high-precision domain (for example, where 14 or more

bits of precision are needed), analog circuits require much

more power and area than digital equivalents.

Construction

A digital circuit is often constructed from small electronic

circuits called logic gates that can be used to create

combinational logic. Each logic gate represents a function of

Digital Computer System

50

boolean logic. A logic gate is an arrangement of electrically

controlled switches, better known as transistors. Each logic

symbol is represented by a different shape. The actual set of

shapes was introduced in 1984 under IEEE\ANSI standard

91-1984. “The logic symbol given under this standard are

being increasingly used now and have even started appearing

in the literature published by manufacturers of digital

integrated circuits.” The output of a logic gate is an electrical

flow or voltage, that can, in turn, control more logic gates.

Logic gates often use the fewest number of transistors in

order to reduce their size, power consumption and cost, and

increase their reliability. Integrated circuits are the least

expensive way to make logic gates in large volumes. Integrated

circuits are usually designed by engineers using electronic

design automation software.

Another form of digital circuit is constructed from lookup

tables, (many sold as “programmable logic devices”, though

other kinds of PLDs exist). Lookup tables can perform the

same functions as machines based on logic gates, but can

be easily reprogrammed without changing the wiring. This

means that a designer can often repair design errors without

changing the arrangement of wires. Therefore, in small

volume products, programmable logic devices are often the

preferred solution. They are usually designed by engineers

using electronic design automation software. When the

volumes are medium to large, and the logic can be slow, or

involves complex algorithms or sequences, often a small

microcontroller is programmed to make an embedded

system. These are usually programmed by software

engineers.

Digital Computer System

51

When only one digital circuit is needed, and its design is

totally customised, as for a factory production line controller,

the conventional solution is a programmable logic controller,

or PLC. These are usually programmed by electricians, using

ladder logic.

Digital Computer System

52

3

Advantages of Digital Signals

The usual advantages of digital circuits when compared to

analog circuits are:

• Noise Margin (resistance to noise/robustness): Digital

circuits are less affected by noise. If the noise is below

a certain level (the noise margin), a digital circuit

behaves as if there was no noise at all. The stream of

bits can be reconstructed into a perfect replica of the

original source. However, if the noise exceeds this level,

the digital circuit cannot give correct results.

• Error Correction and Detection: Digital signals can be

regenerated to achieve lossless data transmission,

within certain limits. Analog signal transmission and

processing, by contrast, always introduces noise.

• Easily Programmable: Digital systems interface well with

computers and are easy to control with software. It is

often possible to add new features to a digital system

Digital Computer System

53

without changing hardware, and to do this remotely,

just by uploading new software. Design errors or bugs

can be worked-around with a software upgrade, after

the product is in customer hands. A digital system is

often preferred because of (re-)programmability and

ease of upgrading without requiring hardware changes.

• Cheap Electronic Circuits: More digital circuitry can

be fabricated per square millimeter of integrated-circuit

material. Information storage can be much easier in

digital systems than in analog ones. In particular, the

great noise-immunity of digital systems makes it

possible to store data and retrieve it later without

degradation. In an analog system, aging and wear and

tear will degrade the information in storage, but in a

digital system, as long as the wear and tear is below a

certain level, the information can be recovered perfectly.

Theoretically, there is no data-loss when copying digital

data. This is a great advantage over analog systems,

which faithfully reproduce every bit of noise that makes

its way into the signal.

Disadvantages

The world in which we live is analog, and signals from this

world such as light, temperature, sound, electrical

conductivity, electric and magnetic fields, and phenomena

such as the flow of time, are for most practical purposes

continuous and thus analog quantities rather than discrete

digital ones. For a digital system to do useful things in the

real world, translation from the continuous realm to the

discrete digital realm must occur, resulting in quantisation

Digital Computer System

54

errors. This problem can usually be mitigated by designing

the system to store enough digital data to represent the signal

to the desired degree of fidelity. The Nyquist-Shannon

sampling theorem provides an important guideline as to how

much digital data is needed to accurately portray a given

analog signal.

Digital systems can be fragile, in that if a single piece of

digital data is lost or misinterpreted, the meaning of large

blocks of related data can completely change. This problem

can be diminished by designing the digital system for

robustness. For example, a parity bit or other error-detecting

or error-correcting code can be inserted into the signal path

so that minor data corruptions can be detected and possibly

corrected. Digital circuits use more energy than analog

circuits to accomplish the same calculations and signal

processing tasks, thus producing more heat as well. In

portable or battery-powered systems this can be a major

limiting factor. Digital circuits are made from analog

components, and care has to be taken to all noise and timing

margins, to parasitic inductances and capacitances, to proper

filtering of power and ground connections, to electromagnetic

coupling amongst data lines. Inattention to these can cause

problems such as “glitches”, pulses do not reach valid

switching (threshold) voltages, or unexpected (“undecoded”)

combinations of logic states. A corollary of the fact that digital

circuits are made from analog components is the fact that

digital circuits are slower to perform calculations than analog

circuits that occupy a similar amount of physical space and

consume the same amount of power. However, the digital

circuit will perform the calculation with much better

Digital Computer System

55

repeatability, due to the high noise immunity of digital

circuitry.

Gates, Decoders, Multiplexers

Gates

Logic gates (or simply gates) are the fundamental building

blocks of digital circuitry. As their name implies, they function

by “opening” or “closing” to admit or reject the flow of digital

information. Gates implement electronically simple logical

opera-tions on boolean (Bool’s algebra) variables, i.e.,

variables that can have only one of two states (0/1, low/

high, false/true). From an electrical point of view and for the

TTL (transistor-transistor-logic) family of digital electronics,

any voltage in the range 0-0,7 V and in the range 2,5-5 V,

represent logic states 0 and 1, respectively. In the following

figure the accepted electronic symbols for different gates are

shown, along with their corresponding “truth tables” and

their symbolic logical expressions. All variables (X, A, B, …)

are booleans.

Digital Computer System

56

The most typical logical operations are implemented by

AND and OR gates. The logical ex-pres-sion for the AND

operation is “if A is true AND B is true then X is true”, and

for the OR operation is “if A is true OR B is true then X is

true”. The inverted logic AND and OR gates are com-mon-ly

known as NAND (Not AND) and NOR (Not OR) gates. A XOR

(Exclusive-OR) gate im-plements the logical expression “if A

is different than B then X is true”, hence sometimes this ga-

te is called “inequality comparator”.

The buffer and the inverter are not gates but their use is

closely associated with them. A buffer doesn’t change the

logic state of its input. It is only occasionally used for

increasing the fan-out, i.e., the capability of the output of

one gate to drive a number of other gates. The inverter is

much more important and it is used for inverting a logic

state, i.e., for performing the logical operation of negation

(NOT). The logical expressions for a buffer and an inverter

are “X is A” and “X is NOT A”, respectively. AND, OR, NAND

and NOR gates can have more than 2 inputs. In this case

their truth tables are extended to all inputs combinations

and their corresponding expressions as well. For example,

the logical expression for a 4-input AND is “if A is true AND

B is true AND C is true AND D is true then X is true”. The

corresponding expression for a 3-input NOR gate is “if A is

true OR B is true OR C is true then X is false”

Decoders

Decoders are circuits with two or more inputs and one or

more outputs, resulting by combining various types of gates.

Their basic function is to accept a binary word (code) as an

Digital Computer System

57

input and crea-te a different binary word as an output. A

typical decoder is the so-called full adder (3 inputs-2 outputs)

implementing the addition of two one-digit numbers (Ai, Bi)

taking into consideration the status of any previous carry

(Ci-1), resulting into the sum (Si), and generating a new carry

(Ci). The addition of two 1-digits numbers and the correspon-

ding truth table of full adder are shown below:

N full adders can be cascaded to form a unit for the addition

of two N-digits binary numbers. Decoders with any type of

truth table can be constructed by using simple or complicated

combi-nations of gates. Implementation of Bool’s algebra rules

generally simplifies the overall design. Simple and useful

decoders are the so-called “2-to-4” and “3-to-8” decoders.

Multiplexers

Generally, multiplexers are circuits behaving like a

controlled rotary switch, i.e., any one of a number of inputs

may be selected as output. In digital electronics, a multiplexer

is a combination of logic gates resulting into circuits with

two or more inputs (data inputs) and one output. The

selection of the channel to be read into the output is controlled

by supplying a specific digital word to a different set of inputs

(select inputs). A typical 4 input channels (D3-D0) digital

multi-plexer, and its corresponding truth table is shown

below:

Digital Computer System

58

The active input channel is selected by supplying the

appropriate code to select inputs (C1, C0).

Applet

With this easy to use applet you can train yourself with

some simple simulated circuits of digital gates.

You can select one out of five (sets of) circuits by clicking

on the corresponding radiobutton:

• Circuit “Gates 1” contains all 2-input gates including

a buffer and an inverter.

• Circuit “Gates 2” contains some typical examples of

gates with more than 2 inputs.

• Circuit “Full adder” contains a combination of gates

implementing the function of a full adder. In the same

circuit a 4-bit adder is implemented by cascading 4

full adder circuits.

• Circuit “Decoders” contains a 2-to-4 and a 3-to-8

decoder.

• Circuit “Multiplexer” contains a 4-input line multiplexer.

With all circuits you can change the logic state of any input

by clicking on the corresponding small buttons, of which,

each one is acting as logic state generator. Observe how the

logic state of the out-put(s) and of some “test points” of their

internal circuitry is affected by these changes and verify the

validity of the truth tables of individual gates. It is of interest

to note how a 2-input AND, OR, NAND or NOR gate can

control the “flow” of digital data supplied to one of their inputs,

Digital Computer System

59

by applying different logic states to the other input (control

input). Observe also how a XOR gate can act as a buffer or

an inverter by applying 0 or 1 to one of its inputs.

Transformers Electrical Energy

A transformer is a device that transfers electrical energy

from one circuit to another through inductively coupled

conductors — the transformer’s coils or “windings”. Except

for air-core transformers, the conductors are commonly

wound around a single iron-rich core, or around separate

but magnetically-coupled cores. A varying current in the first

or “primary” winding creates a varying magnetic field in the

core (or cores) of the transformer. This varying magnetic field

induces a varying electromotive force (EMF) or “voltage” in

the “secondary” winding. This effect is called mutual

induction.

If a load is connected to the secondary, an electric current

will flow in the secondary winding and electrical energy will

flow from the primary circuit through the transformer to the

load. In an ideal transformer, the induced voltage in the

secondary winding (VS) is in proportion to the primary voltage

(VP), and is given by the ratio of the number of turns in the

secondary to the number of turns in the prima

=
S S

P P

V N

V N

By appropriate selection of the ratio of turns, a transformer

thus allows an alternating current (AC) voltage to be “stepped

up” by making NS greater than NP, or “stepped down” by

making NS less than NP. Transformers come in a range of

sizes from a thumbnail-sized coupling transformer hidden

Digital Computer System

60

inside a stage microphone to huge units weighing hundreds

of tons used to interconnect portions of national power grids.

All operate with the same basic principles, although the

range of designs is wide. While new technologies have

eliminated the need for transformers in some electronic

circuits, transformers are still found in nearly all electronic

devices designed for household (“mains”) voltage.

Transformers are essential for high voltage power

transmission, which makes long distance transmission

economically practical.

First Steps: Experiments with Induction Coils

What would become the “transformer principle” was

revealed in 1831 by Michael Faraday in his demonstration

of electromagnetic induction, but without recognition of its

future role in manipulating EMF. The first “induction coils”

to see wide use were invented by Rev. Nicholas Callan of

Maynooth College, Ireland in 1836, one of the first researchers

to realize that the more turns the secondary winding has in

relation to the primary winding, the larger the increase in

EMF. Induction coils evolved from scientists’ and inventors’

efforts to get higher voltages from batteries.

Rather than alternating current (AC), their action relied

upon a vibrating “make-and-break” mechanism that regularly

interrupted the flow of direct current (DC) from the batteries.

Between the 1830s and the 1870s, efforts to build better

induction coils, mostly by trial and error, slowly revealed the

basic principles of transformers. Efficient, practical designs

did not appear until the 1880s, but within a decade the

“transformer” would be instrumental in the “War of Currents”,

and in seeing AC distribution systems triumph over their

Digital Computer System

61

DC counterparts, a position in which they have remained

dominant ever since.

In 1876, Russian engineer Pavel Yablochkov invented a

lighting system based on a set of induction coils where the

primary windings were connected to a source of alternating

current and the secondary windings could be connected to

several “electric candles” (arc lamps) of his own design. The

coils used in the system behaved as primitive transformers.

The patent claimed the system could “provide separate supply

to several lighting fixtures with different luminous intensities

from a single source of electric power”.

In 1878, the engineers of the Ganz Company in Hungary

assigned part of its extensive engineering works to the

manufacture of electric lighting apparatus for Austria-

Hungary, and by 1883 made over fifty installations. It offered

an entire system consisting of both arc and incandescent

lamps, generators, and other accessories. Lucien Gaulard

and John Dixon Gibbs first exhibited a device with an open

iron core called a “secondary generator” in London in 1882,

then sold the idea to the Westinghouse company in the United

States. They also exhibited the invention in Turin, Italy in

1884, where it was adopted for an electric lighting system.

Induction coils with open magnetic circuits are inefficient

for transfer of power to loads. Various methods of adjusting

the cores or bypassing magnetic flux around part of a coil

were developed, since until about 1880 the paradigm for AC

power transmission from a high voltage supply to a low voltage

load was a series circuit.

In practice, several coils with a ratio near 1:1 were

connected with their primaries in series to allow use of a

Digital Computer System

62

high voltage for transmission while presenting a low voltage

to the lamps. The inherent flaw in this method was that

turning off a single lamp affected all the others on the circuit,

and many adjustable coil designs were introduced in an effort

to accommodate this problematic characteristic of the series

circuit.

Between 1884 and 1885, Hungarian engineers

Zipernowsky, Bláthy and Déri from the Ganz company in

Budapest created the efficient “ZBD” closed-core model,

which were based on the design by Gaulard and Gibbs.

(Gaulard and Gibbs designed just an open core model). They

discovered that all former (coreless or open-core) devices were

incapable of regulating voltage, and were therefore

impracticable.

Their joint patent described a transformer with no poles

and comprised two versions of it, the “closed-core

transformer” and the “shell-core transformer. In the closed-

core transformer the iron core is a closed ring around which

the two coils are arranged uniformly.

In the shell type transformer, the copper induction cables

are passed through the core. In both designs, the magnetic

flux linking the primary and secondary coils travels (almost

entirely) in the iron core, with no intentional path through

air.

The core consists of iron cables or plates. Based on this

invention, it became possible to provide economical and cheap

lighting for industry and households.” Zipernowsky, Bláthy

and Déri discovered the mathematical formula of

transformers: Vs/Vp = Ns/Np. With this formula,

transformers became calculable and proportionable.

Digital Computer System

63

Their patent application made the first use of the word

“transformer”, a word that had been coined by Ottó Bláthy.

George Westinghouse had bought both Gaulard and Gibbs’

and the “ZBD” patents in 1885. He entrusted William Stanley

with the building of a ZBD-type transformer for commercial

use. Stanley built the core from interlocking E-shaped iron

plates. This design was first used commercially in 1886.

Early Developments and Applications

Russian engineer Mikhail Dolivo-Dobrovolsky developed

the first three-phase transformer in 1889. In 1891 Nikola

Tesla invented the Tesla coil, an air-cored, dual-tuned

resonant transformer for generating very high voltages at

high frequency. Audio frequency transformers (at the time

called repeating coils) were used by the earliest experimenters

in the development of the telephone.

Basic Principles

The transformer is based on two principles: firstly, that

an electric current can produce a magnetic field

(electromagnetism) and secondly that a changing magnetic

field within a coil of wire induces a voltage across the ends of

the coil (electromagnetic induction). Changing the current

in the primary coil changes the magnitude of the applied

magnetic field. The changing magnetic flux extends to the

secondary coil where a voltage is induced across its ends.

A simplified transformer design is shown to the left. A

current passing through the primary coil creates a magnetic

field. The primary and secondary coils are wrapped around

a core of very high magnetic permeability, such as iron; this

ensures that most of the magnetic field lines produced by

Digital Computer System

64

the primary current are within the iron and pass through

the secondary coil as well as the primary coil.

Induction law

The voltage induced across the secondary coil may be

calculated from Faraday’s law of induction, which states that:

Φ
=S S

d
V N

dt

where VS is the instantaneous voltage, NS is the number

of turns in the secondary coil and Ö equals the magnetic

flux through one turn of the coil. If the turns of the coil are

oriented perpendicular to the magnetic field lines, the flux is

the product of the magnetic field strength B and the area A

through which it cuts.

The area is constant, being equal to the cross-sectional

area of the transformer core, whereas the magnetic field varies

with time according to the excitation of the primary. Since

the same magnetic flux passes through both the primary

and secondary coils in an ideal transformer, the

instantaneous voltage across the primary winding equals
Φ

=P P
d

V N
dt

Taking the ratio of the two equations for VS and VP gives

the basic equation for stepping up or stepping down the

voltage.

Ideal Power Equation

If the secondary coil is attached to a load that allows current

to flow, electrical power is transmitted from the primary

circuit to the secondary circuit. Ideally, the transformer is

perfectly efficient; all the incoming energy is transformed

Digital Computer System

65

from the primary circuit to the magnetic field and into the

secondary circuit. If this condition is met, the incoming

electric power must equal the outgoing power.

Pincoming = IPVP = Poutgoing = ISVS

giving the ideal transformer equation

If the voltage is increased (stepped up) (VS > VP), then the

current is decreased (stepped down) (IS < IP) by the same

factor. Transformers are efficient so this formula is a

reasonable approximation.

The impedance in one circuit is transformed by the square

of the turns ratio. For example, if an impedance ZS is attached

across the terminals of the secondary coil, it appears to the

primary circuit to have an impedance of. This relationship is

reciprocal, so that the impedance ZP of the primary circuit

appears to the secondary to be.

Detailed Operation

The simplified description above neglects several practical

factors, in particular the primary current required to establish

a magnetic field in the core, and the contribution to the field

due to current in the secondary circuit.

Models of an ideal transformer typically assume a core of

negligible reluctance with two windings of zero resistance.

When a voltage is applied to the primary winding, a small

current flows, driving flux around the magnetic circuit of

the core. The current required to create the flux is termed

the magnetizing current; since the ideal core has been

assumed to have near-zero reluctance, the magnetizing

current is negligible, although still required to create the

magnetic field.

Digital Computer System

66

The changing magnetic field induces an electromotive force

(EMF) across each winding. Since the ideal windings have

no impedance, they have no associated voltage drop, and so

the voltages VP and VS measured at the terminals of the

transformer, are equal to the corresponding EMFs. The

primary EMF, acting as it does in opposition to the primary

voltage, is sometimes termed the “back EMF”. This is due to

Lenz’s law which states that the induction of EMF would

always be such that it will oppose development of any such

change in magnetic field.

Practical Considerations

Leakage Flux

The ideal transformer model assumes that all flux

generated by the primary winding links all the turns of every

winding, including itself. In practice, some flux traverses

paths that take it outside the windings. Such flux is termed

leakage flux, and results in leakage inductance in series with

the mutually coupled transformer windings.

Leakage results in energy being alternately stored in and

discharged from the magnetic fields with each cycle of the

power supply. It is not directly a power loss, but results in

inferior voltage regulation, causing the secondary voltage to

fail to be directly proportional to the primary, particularly

under heavy load. Transformers are therefore normally

designed to have very low leakage inductance. However, in

some applications, leakage can be a desirable property, and

long magnetic paths, air gaps, or magnetic bypass shunts

may be deliberately introduced to a transformer’s design to

limit the short-circuit current it will supply.

Digital Computer System

67

Leaky transformers may be used to supply loads that

exhibit negative resistance, such as electric arcs, mercury

vapour lamps, and neon signs; or for safely handling loads

that become periodically short-circuited such as electric arc

welders. Air gaps are also used to keep a transformer from

saturating, especially audio-frequency transformers in

circuits that have a direct current flowing through the

windings.

Effect of Frequency

The time-derivative term in Faraday’s Law shows that the

flux in the core is the integral of the applied voltage.

Hypothetically an ideal transformer would work with direct-

current excitation, with the core flux increasing linearly with

time. In practice, the flux would rise to the point where

magnetic saturation of the core occurs, causing a huge

increase in the magnetizing current and overheating the

transformer. All practical transformers must therefore

operate with alternating (or pulsed) current.

Transformer Universal EMF Equation

The EMF of a transformer at a given flux density increases

with frequency. By operating at higher frequencies,

transformers can be physically more compact because a given

core is able to transfer more power without reaching

saturation, and fewer turns are needed to achieve the same

impedance. However properties such as core loss and

conductor skin effect also increase with frequency. Aircraft

and military equipment employ 400 Hz power supplies which

reduce core and winding weight.

Digital Computer System

68

Operation of a transformer at its designed voltage but at a

higher frequency than intended will lead to reduced

magnetizing current; at lower frequency, the magnetizing

current will increase. Operation of a transformer at other

than its design frequency may require assessment of voltages,

losses, and cooling to establish if safe operation is practical.

For example, transformers may need to be equipped with

“volts per hertz” over-excitation relays to protect the

transformer from overvoltage at higher than rated frequency.

Knowledge of natural frequencies of transformer windings is

of importance for the determination of the transient response

of the windings to impulse and switching surge voltages.

Energy Losses

An ideal transformer would have no energy losses, and

would be 100% efficient. In practical transformers energy is

dissipated in the windings, core, and surrounding structures.

Larger transformers are generally more efficient, and those

rated for electricity distribution usually perform better than

98%.

Experimental transformers using superconducting

windings achieve efficiencies of 99.85%, While the increase

in efficiency is small, when applied to large heavily-loaded

transformers the annual savings in energy losses are

significant. A small transformer, such as a plug-in “wall-

wart” or power adapter type used for low-power consumer

electronics, may be no more than 85% efficient, with

considerable loss even when not supplying any load. Though

individual power loss is small, the aggregate losses from the

very large number of such devices are coming under increased

scrutiny.

Digital Computer System

69

The losses vary with load current, and may be expressed

as “no-load” or “full-load” loss. Winding resistance dominates

load losses, whereas hysteresis and eddy currents losses

contribute to over 99% of the no-load loss. The no-load loss

can be significant, meaning that even an idle transformer

constitutes a drain on an electrical supply, which encourages

development of low-loss transformers.

Transformer losses are divided into losses in the windings,

termed copper loss, and those in the magnetic circuit, termed

iron loss. Losses in the transformer arise from:

Winding Resistance

Current flowing through the windings causes resistive heating

of the conductors. At higher frequencies, skin effect and

proximity effect create additional winding resistance and losses.

Hysteresis Losses

Each time the magnetic field is reversed, a small amount

of energy is lost due to hysteresis within the core. For a given

core material, the loss is proportional to the frequency, and

is a function of the peak flux density to which it is subjected.

Eddy Currents

Ferromagnetic materials are also good conductors, and a

solid core made from such a material also constitutes a single

short-circuited turn throughout its entire length. Eddy

currents therefore circulate within the core in a plane normal

to the flux, and are responsible for resistive heating of the

core material. The eddy current loss is a complex function of

the square of supply frequency and inverse square of the

material thickness.

Digital Computer System

70

Magnetostriction

Magnetic flux in a ferromagnetic material, such as the core,

causes it to physically expand and contract slightly with each

cycle of the magnetic field, an effect known as

magnetostriction. This produces the buzzing sound

commonly associated with transformers, and in turn causes

losses due to frictional heating in susceptible cores.

Mechanical Losses

In addition to magnetostriction, the alternating magnetic

field causes fluctuating electromagnetic forces between the

primary and secondary windings. These incite vibrations

within nearby metalwork, adding to the buzzing noise, and

consuming a small amount of power.

Stray Losses

Leakage inductance is by itself lossless, since energy

supplied to its magnetic fields is returned to the supply with

the next half-cycle. However, any leakage flux that intercepts

nearby conductive materials such as the transformer’s

support structure will give rise to eddy currents and be

converted to heat.

Equivalent Circuit

The physical limitations of the practical transformer may

be brought together as an equivalent circuit model built

around an ideal lossless transformer. Power loss in the

windings is current-dependent and is represented as in-series

resistances RP and RS. Flux leakage results in a fraction of

the applied voltage dropped without contributing to the

mutual coupling, and thus can be modeled as reactances of

Digital Computer System

71

each leakage inductance XP and XS in series with the

perfectly-coupled region.

Iron losses are caused mostly by hysteresis and eddy

current effects in the core, and are proportional to the square

of the core flux for operation at a given frequency. Since the

core flux is proportional to the applied voltage, the iron loss

can be represented by a resistance RC in parallel with the

ideal transformer.

A core with finite permeability requires a magnetizing

current IM to maintain the mutual flux in the core. The

magnetizing current is in phase with the flux; saturation

effects cause the relationship between the two to be non-

linear, but for simplicity this effect tends to be ignored in

most circuit equivalents.

With a sinusoidal supply, the core flux lags the induced

EMF by 90° and this effect can be modeled as a magnetizing

reactance (reactance of an effective inductance) XM in parallel

with the core loss component. RC and XM are sometimes

together termed the magnetizing branch of the model. If the

secondary winding is made open-circuit, the current I0 taken

by the magnetizing branch represents the transformer’s no-

load current.

The secondary impedance RS and XS is frequently moved

(or “referred”) to the primary side after multiplying the

components by the impedance scaling factor. The resulting

model is sometimes termed the “exact equivalent circuit”,

though it retains a number of approximations, such as an

assumption of linearity.

Analysis may be simplified by moving the magnetizing

branch to the left of the primary impedance, an implicit

Digital Computer System

72

assumption that the magnetizing current is low, and then

summing primary and referred secondary impedances,

resulting in so-called equivalent impedance. The parameters

of equivalent circuit of a transformer can be calculated from

the results of two transformer tests: open-circuit test and

short-circuit test.

Types

A wide variety of transformer designs are used for different

applications, though they share several common features.

Important common transformer types include:

Autotransformer

An autotransformer has only a single winding with two

end terminals, plus a third at an intermediate tap point. The

primary voltage is applied across two of the terminals, and

the secondary voltage taken from one of these and the third

terminal. The primary and secondary circuits therefore have

a number of windings turns in common. Since the volts-

per-turn is the same in both windings, each develops a voltage

in proportion to its number of turns. An adjustable

autotransformer is made by exposing part of the winding

coils and making the secondary connection through a sliding

brush, giving a variable turns ratio.

Polyphase Transformers

For three-phase supplies, a bank of three individual single-

phase transformers can be used, or all three phases can be

incorporated as a single three-phase transformer. In this case,

the magnetic circuits are connected together, the core thus

containing a three-phase flow of flux.

Digital Computer System

73

A number of winding configurations are possible, giving

rise to different attributes and phase shifts. One particular

polyphase configuration is the zigzag transformer, used for

grounding and in the suppression of harmonic currents.

Leakage Transformers

A leakage transformer, also called a stray-field transformer,

has a significantly higher leakage inductance than other

transformers, sometimes increased by a magnetic bypass or

shunt in its core between primary and secondary, which is

sometimes adjustable with a set screw.

This provides a transformer with an inherent current

limitation due to the loose coupling between its primary and

the secondary windings. The output and input currents are

low enough to prevent thermal overload under all load

conditions – even if the secondary is shorted.

Leakage transformers are used for arc welding and high

voltage discharge lamps (neon lamps and cold cathode

fluorescent lamps, which are series-connected up to 7.5 kV

AC). It acts then both as a voltage transformer and as a

magnetic ballast. Other applications are short-circuit-proof

extra-low voltage transformers for toys or doorbell

installations.

Resonant Transformers

A resonant transformer is a kind of the leakage transformer.

It uses the leakage inductance of its secondary windings in

combination with external capacitors, to create one or more

resonant circuits. Resonant transformers such as the Tesla

coil can generate very high voltages, and are able to provide

much higher current than electrostatic high-voltage

Digital Computer System

74

generation machines such as the Van de Graaff generator.

One of the applications of the resonant transformer is for

the CCFL inverter. Another application of the resonant

transformer is to couple between stages of a superheterodyne

receiver, where the selectivity of the receiver is provided by

tuned transformers in the intermediate-frequency amplifiers.

Audio Transformers

Audio transformers are those specifically designed for use

in audio circuits. They can be used to block radio frequency

interference or the DC component of an audio signal, to split

or combine audio signals, or to provide impedance matching

between high and low impedance circuits, such as between

a high impedance tube (valve) amplifier output and a low

impedance loudspeaker, or between a high impedance

instrument output and the low impedance input of a mixing

console.

Such transformers were originally designed to connect

different telephone systems to one another while keeping

their respective power supplies isolated, and are still

commonly used to interconnect professional audio systems

or system components.

Being magnetic devices, audio transformers are

susceptible to external magnetic fields such as those

generated by AC current-carrying conductors. “Hum” is a

term commonly used to describe unwanted signals

originating from the “mains” power supply (typically 50 or

60 Hz). Audio transformers used for low-level signals, such

as those from microphones, often included shielding to

protect against extraneous magnetically-coupled signals.

Digital Computer System

75

Instrument Transformers

Instrument transformers are used for measuring voltge,

current, power and energy in electrical systems, and for

protection and control. Where a voltage or current is too

large to be conveniently measured by an instrument, it can

be scaled down to a standardized low value. Instrument

transformers isolate measurement and control circuitry from

the high currents or voltages present on the circuits being

measured or controlled.

A current transformer is a transformer designed to provide

a current in its secondary coil proportional to the current

flowing in its primary coil. Voltage transformers (VTs), also

referred to as “potential transformers” (PTs), are used in high-

voltage circuits. They are designed to present a negligible

load to the supply being measured, to allow protective relay

equipment to be operated at lower voltages, and to have a

precise winding ratio for accurate metering.

Classification

Transformers can be classified in different ways:

• By power capacity: from a fraction of a volt-ampere

(VA) to over a thousand MVA;

• By frequency range: power-, audio-, or radio

frequency;

• By voltage class: from a few volts to hundreds of

kilovolts;

• By cooling type: air cooled, oil filled, fan cooled, or

water cooled;

• By application: such as power supply, impedance

matching, output voltage and current stabilizer, or

circuit isolation;

Digital Computer System

76

• By end purpose: distribution, rectifier, arc furnace,

amplifier output;

• By winding turns ratio: step-up, step-down, isolating

(equal or near-equal ratio), variable.

Laminated Steel Cores

Transformers for use at power or audio frequencies

typically have cores made of high permeability silicon steel.

The steel has a permeability many times that of free space,

and the core thus serves to greatly reduce the magnetizing

current, and confine the flux to a path which closely couples

the windings.

Early transformer developers soon realized that cores

constructed from solid iron resulted in prohibitive eddy-

current losses, and their designs mitigated this effect with

cores consisting of bundles of insulated iron wires. Later

designs constructed the core by stacking layers of thin steel

laminations, a principle that has remained in use. Each

lamination is insulated from its neighbors by a thin non-

conducting layer of insulation. The universal transformer

equation indicates a minimum cross-sectional area for the

core to avoid saturation.

The effect of laminations is to confine eddy currents to

highly elliptical paths that enclose little flux, and so reduce

their magnitude. Thinner laminations reduce losses, but are

more laborious and expensive to construct. Thin laminations

are generally used on high frequency transformers, with some

types of very thin steel laminations able to operate up to

10 kHz.

One common design of laminated core is made from

interleaved stacks of E-shaped steel sheets capped with I-

Digital Computer System

77

shaped pieces, leading to its name of “E-I transformer”. Such

a design tends to exhibit more losses, but is very economical

to manufacture. The cut-core or C-core type is made by

winding a steel strip around a rectangular form and then

bonding the layers together. It is then cut in two, forming

two C shapes, and the core assembled by binding the two C

halves together with a steel strap. They have the advantage

that the flux is always oriented parallel to the metal grains,

reducing reluctance.

A steel core’s remanence means that it retains a static

magnetic field when power is removed. When power is then

reapplied, the residual field will cause a high inrush current

until the effect of the remaining magnetism is reduced,

usually after a few cycles of the applied alternating current.

Overcurrent protection devices such as fuses must be

selected to allow this harmless inrush to pass. On

transformers connected to long, overhead power transmission

lines, induced currents due to geomagnetic disturbances

during solar storms can cause saturation of the core and

operation of transformer protection devices.

Distribution transformers can achieve low no-load losses

by using cores made with low-loss high-permeability silicon

steel or amorphous (non-crystalline) metal alloy. The higher

initial cost of the core material is offset over the life of the

transformer by its lower losses at light load.

Solid Cores

Powdered iron cores are used in circuits (such as switch-

mode power supplies) that operate above main frequencies

and up to a few tens of kilohertz. These materials combine

Digital Computer System

78

high magnetic permeability with high bulk electrical

resistivity. For frequencies extending beyond the VHF band,

cores made from non-conductive magnetic ceramic materials

called ferrites are common. Some radio-frequency

transformers also have movable cores (sometimes called

‘slugs’) which allow adjustment of the coupling coefficient

(and bandwidth) of tuned radio-frequency circuits.

Toroidal Cores

Toroidal transformers are built around a ring-shaped core,

which, depending on operating frequency, is made from a

long strip of silicon steel or permalloy wound into a coil,

powdered iron, or ferrite. A strip construction ensures that

the grain boundaries are optimally aligned, improving the

transformer’s efficiency by reducing the core’s reluctance.

The closed ring shape eliminates air gaps inherent in the

construction of an E-I core. The cross-section of the ring is

usually square or rectangular, but more expensive cores with

circular cross-sections are also available. The primary and

secondary coils are often wound concentrically to cover the

entire surface of the core. This minimizes the length of wire

needed, and also provides screening to minimize the core’s

magnetic field from generating electromagnetic interference.

Toroidal transformers are more efficient than the cheaper

laminated E-I types for a similar power level. Other

advantages compared to E-I types, include smaller size (about

half), lower weight (about half), less mechanical hum (making

them superior in audio amplifiers), lower exterior magnetic

field (about one tenth), low off-load losses (making them more

efficient in standby circuits), single-bolt mounting, and

greater choice of shapes.

Digital Computer System

79

The main disadvantages are higher cost and limited power

capacity. Ferrite toroidal cores are used at higher frequencies,

typically between a few tens of kilohertz to a megahertz, to

reduce losses, physical size, and weight of switch-mode power

supplies.

A drawback of toroidal transformer construction is the

higher cost of windings. As a consequence, toroidal

transformers are uncommon above ratings of a few kVA.

Small distribution transformers may achieve some of the

benefits of a toroidal core by splitting it and forcing it open,

then inserting a bobbin containing primary and secondary

windings.

Air Cores

A physical core is not an absolute requisite and a

functioning transformer can be produced simply by placing

the windings in close proximity to each other, an arrangement

termed an “air-core” transformer. The air which comprises

the magnetic circuit is essentially lossless, and so an air-

core transformer eliminates loss due to hysteresis in the core

material.

The leakage inductance is inevitably high, resulting in very

poor regulation, and so such designs are unsuitable for use

in power distribution. They have however very high

bandwidth, and are frequently employed in radio-frequency

applications, for which a satisfactory coupling coefficient is

maintained by carefully overlapping the primary and

secondary windings.

Windings

The conducting material used for the windings depends

Digital Computer System

80

upon the application, but in all cases the individual turns

must be electrically insulated from each other to ensure that

the current travels throughout every turn. For small power

and signal transformers, in which currents are low and the

potential difference between adjacent turns is small, the coils

are often wound from enameled magnet wire, such as

Formvar wire. Larger power transformers operating at high

voltages may be wound with copper rectangular strip

conductors insulated by oil-impregnated paper and blocks

of pressboard. High-frequency transformers operating in the

tens to hundreds of kilohertz often have windings made of

braided Litz wire to minimize the skin-effect and proximity

effect losses. Large power transformers use multiple-stranded

conductors as well, since even at low power frequencies non-

uniform distribution of current would otherwise exist in high-

current windings.

Each strand is individually insulated, and the strands are

arranged so that at certain points in the winding, or

throughout the whole winding, each portion occupies

different relative positions in the complete conductor. The

transposition equalizes the current flowing in each strand of

the conductor, and reduces eddy current losses in the winding

itself. The stranded conductor is also more flexible than a

solid conductor of similar size, aiding manufacture.

For signal transformers, the windings may be arranged in

a way to minimize leakage inductance and stray capacitance

to improve high-frequency response. This can be done by

splitting up each coil into sections, and those sections placed

in layers between the sections of the other winding. This is

known as a stacked type or interleaved winding.

Digital Computer System

81

Both the primary and secondary windings on power

transformers may have external connections, called taps, to

intermediate points on the winding to allow selection of the

voltage ratio. The taps may be connected to an automatic

on-load tap changer for voltage regulation of distribution

circuits. Audio-frequency transformers, used for the

distribution of audio to public address loudspeakers, have

taps to allow adjustment of impedance to each speaker.

A centre-tapped transformer is often used in the output

stage of an audio power amplifier in a push-pull circuit.

Modulation transformers in AM transmitters are very

similar.

Certain transformers have the windings protected by epoxy

resin. By impregnating the transformer with epoxy under a

vacuum, one can replace air spaces within the windings with

epoxy, thus sealing the windings and helping to prevent the

possible formation of corona and absorption of dirt or water.

This produces transformers more suited to damp or dirty

environments, but at increased manufacturing cost.

Digital signals

introduction

Definition of a system

Digital Computer System

82

The fundamental model of communications is portrayed

in Figure 1. In this fundamental model, each message-bearing

signal, exemplified by s(t), is analog and is a function of time.

A system operates on zero, one, or several signals to produce

more signals or to simply absorb them (Figure above). In

electrical engineering, we represent a system as a box,

receiving input signals (usually coming from the left) and

producing from them new output signals.

This graphical representation is known as a block diagram.

We denote input signals by lines having arrows pointing into

the box, output signals by arrows pointing away. As typified

by the communications model, how information flows, how

it is corrupted and manipulated, and how it is ultimately

received is summarized by interconnecting block diagrams:

The outputs of one or more systems serve as the inputs to

others.

In the communications model, the source produces a

signal that will be absorbed by the sink. Examples of time-

domain signals produced by a source are music, speech,

and characters typed on a keyboard. Signals can also be

functions of two variables—an image is a signal that

depends on two spatial variables—or more—television

pictures (video signals) are functions of two spatial

variables and time.

Thus, information sources produce signals. In physical

systems, each signal corresponds to an electrical voltage or

current. To be able to design systems, we must understand

electrical science and technology. However, we first need to

understand the big picture to appreciate the context in which

the electrical engineer works.

Digital Computer System

83

In communication systems, messages—signals produced

by sources—must be recast for transmission. The block

diagram has the message s(t) passing through a block

labeled transmitter that produces the signal x(t). In the case

of a radio transmitter, it accepts an input audio signal and

produces a signal that physically is an electromagnetic wave

radiated by an antenna and propagating as Maxwell’s

equations predict.

In the case of a computer network, typed characters are

encapsulated in packets, attached with a destination address,

and launched into the Internet. From the communication

systems “big picture” perspective, the same block diagram

applies although the systems can be very different.

In any case, the transmitter should not operate in such a

way that the message s(t) cannot be recovered from x(t). In

the mathematical sense, the inverse system must exist, else

the communication system cannot be considered reliable.

(It is ridiculous to transmit a signal in such a way that no

one can recover the original. However, clever systems exist

that transmit signals so that only the “in crowd” can recover

them. Such crytographic systems underlie secret

communications.)

Transmitted signals next pass through the next stage, the

evil channel. Nothing good happens to a signal in a channel:

It can become corrupted by noise, distorted, and attenuated

among many possibilities. The channel cannot be escaped

(the real world is cruel), and transmitter design and receiver

design focus on how best to jointly fend off the channel’s

effects on signals. The channel is another system in our block

diagram, and produces r(t), the signal received by the

Digital Computer System

84

receiver. If the channel were benign (good luck finding such

a channel in the real world), the receiver would serve as the

inverse system to the transmitter, and yield the message with

no distortion.

However, because of the channel, the receiver must do its

best to produce a received message s(t) that resembles s(t)

as much as possible. Shannon showed in his 1948 paper

that reliable—for the moment, take this word to mean error-

free—digital communication was possible over arbitrarily

noisy channels. It is this result that modern communications

systems exploit, and why many communications systems

are going“digital. Finally, the received message is passed to

the information sink that somehow makes use of the

message. In the communications model, the source is a

system having no input but producing an output; a sink has

an input and no output.

Understanding signal generation and how systems work

amounts to understanding signals, the nature of the

information they represent, how information is transformed

between analog and digital forms, and how information can

be processed by systems operating on information-bearing

signals.

This understanding demands two different fields of

knowledge. One is electrical science: How are signals

represented and manipulated electrically? The second is

signal science: What is the structure of signals, no matter

what their source, what is their information content, and

what capabilities does this structure force upon

communication systems?

Digital Computer System

85

Logic signal voltage levels

Logic gate circuits are designed to input and output only

two types of signals: “high” (1) and “low” (0), as represented

by a variable voltage: full power supply voltage for a “high”

state and zero voltage for a “low” state. In a perfect world, all

logic circuit signals would exist at these extreme voltage

limits, and never deviate from them (i.e., less than full voltage

for a “high,” or more than zero voltage for a “low”). However,

in reality, logic signal voltage levels rarely attain these perfect

limits due to stray voltage drops in the transistor circuitry,

and so we must understand the signal level limitations of

gate circuits as they try to interpret signal voltages lying

somewhere between full supply voltage and zero.

TTL gates operate on a nominal power supply voltage of 5

volts, +/- 0.25 volts. Ideally, a TTL “high” signal would be

5.00 volts exactly, and a TTL “low” signal 0.00 volts exactly.

However, real TTL gate circuits cannot output such perfect

voltage levels, and are designed to accept “high” and “low”

signals deviating substantially from these ideal values.

“Acceptable” input signal voltages range from 0 volts to 0.8

volts for a “low” logic state, and 2 volts to 5 volts for a “high”

logic state. “Acceptable” output signal voltages (voltage levels

guaranteed by the gate manufacturer over a specified range

of load conditions) range from 0 volts to 0.5 volts for a “low”

logic state, and 2.7 volts to 5 volts for a “high” logic state:

If a voltage signal ranging between 0.8 volts and 2 volts

were to be sent into the input of a TTL gate, there would be

no certain response from the gate. Such a signal would be

considered uncertain, and no logic gate manufacturer would

Digital Computer System

86

guarantee how their gate circuit would interpret such a signal.

As you can see, the tolerable ranges for output signal levels

are narrower than for input signal levels, to ensure that any

TTL gate outputting a digital signal into the input of another

TTL gate will transmit voltages acceptable to the receiving

gate. The difference between the tolerable output and input

ranges is called the noise margin of the gate. For TTL gates,

the low-level noise margin is the difference between 0.8 volts

and 0.5 volts (0.3 volts), while the high-level noise margin is

the difference between 2.7 volts and 2 volts (0.7 volts). Simply

put, the noise margin is the peak amount of spurious or

“noise” voltage that may be superimposed on a weak gate

output voltage signal before the receiving gate might interpret

it wrongly:

CMOS gate circuits have input and output signal

specifications that are quite different from TTL. For a CMOS

gate operating at a power supply voltage of 5 volts, the

acceptable input signal voltages range from 0 volts to 1.5

volts for a “low” logic state, and 3.5 volts to 5 volts for a

“high” logic state. “Acceptable” output signal voltages (voltage

levels guaranteed by the gate manufacturer over a specified

range of load conditions) range from 0 volts to 0.05 volts for

a “low” logic state, and 4.95 volts to 5 volts for a “high” logic

state: It should be obvious from these figures that CMOS

gate circuits have far greater noise margins than TTL: 1.45

volts for CMOS low-level and high-level margins, versus a

maximum of 0.7 volts for TTL. In other words, CMOS circuits

can tolerate over twice the amount of superimposed “noise”

voltage on their input lines before signal interpretation errors

will result.

Digital Computer System

87

CMOS noise margins widen even further with higher

operating voltages. Unlike TTL, which is restricted to a power

supply voltage of 5 volts, CMOS may be powered by voltages

as high as 15 volts (some CMOS circuits as high as 18 volts).

Shown here are the acceptable “high” and “low” states, for

both input and output, of CMOS integrated circuits operating

at 10 volts and 15 volts, respectively:

The margins for acceptable “high” and “low” signals may

be greater than what is shown in the previous illustrations.

What is shown represents “worst-case” input signal

performance, based on manufacturer’s specifications. In

practice, it may be found that a gate circuit will tolerate “high”

signals of considerably less voltage and “low” signals of

considerably greater voltage than those specified here.

Conversely, the extremely small output margins shown —

guaranteeing output states for “high” and “low” signals to

within 0.05 volts of the power supply “rails” — are optimistic.

Such “solid” output voltage levels will be true only for

conditions of minimum loading. If the gate is sourcing or

sinking substantial current to a load, the output voltage will

not be able to maintain these optimum levels, due to internal

channel resistance of the gate’s final output MOSFETs.

Within the “uncertain” range for any gate input, there will

be some point of demarcation dividing the gate’s actual “low”

input signal range from its actual “high” input signal range.

That is, somewhere between the lowest “high” signal voltage

level and the highest “low” signal voltage level guaranteed by

the gate manufacturer, there is a threshold voltage at which

the gate will actually switch its interpretation of a signal from

“low” or “high” or visa-versa. For most gate circuits, this

Digital Computer System

88

unspecified voltage is a single point: In the presence of AC

“noise” voltage superimposed on the DC input signal, a single

threshold point at which the gate alters its interpretation of

logic level will result in an erratic output:

If this scenario looks familiar to you, it’s because you

remember a similar problem with (analog) voltage comparator

op-amp circuits. With a single threshold point at which an

input causes the output to switch between “high” and “low”

states, the presence of significant noise will cause erratic

changes in the output:

The solution to this problem is a bit of positive feedback

introduced into the amplifier circuit. With an op-amp, this

is done by connecting the output back around to the non-

inverting (+) input through a resistor.

In a gate circuit, this entails redesigning the internal gate

circuitry, establishing the feedback inside the gate package

rather than through external connections. A gate so designed

is called a Schmitt trigger. Schmitt triggers interpret varying

input voltages according to two threshold voltages: a positive-

going threshold (VT+), and a negative-going threshold (VT–):

Schmitt trigger gates are distinguished in schematic

diagrams by the small “hysteresis” symbol drawn within

them, reminiscent of the B-H curve for a ferromagnetic

material. Hysteresis engendered by positive feedback within

the gate circuitry adds an additional level of noise immunity

to the gate’s performance.

Schmitt trigger gates are frequently used in applications

where noise is expected on the input signal line(s), and/or

where an erratic output would be very detrimental to system

performance. The differing voltage level requirements of TTL

Digital Computer System

89

and CMOS technology present problems when the two types

of gates are used in the same system.

Although operating CMOS gates on the same 5.00 volt

power supply voltage required by the TTL gates is no problem,

TTL output voltage levels will not be compatible with CMOS

input voltage requirements. Take for instance a TTL NAND

gate outputting a signal into the input of a CMOS inverter

gate. Both gates are powered by the same 5.00 volt supply

(Vcc). If the TTL gate outputs a “low” signal (guaranteed to be

between 0 volts and 0.5 volts), it will be properly interpreted

by the CMOS gate’s input as a “low” (expecting a voltage

between 0 volts and 1.5 volts):

However, if the TTL gate outputs a “high” signal (guaranteed

to be between 5 volts and 2.7 volts), it might not be properly

interpreted by the CMOS gate’s input as a “high” (expecting

a voltage between 5 volts and 3.5 volts):

Given this mismatch, it is entirely possible for the TTL

gate to output a valid “high” signal (valid, that is, according

to the standards for TTL) that lies within the “uncertain”

range for the CMOS input, and may be (falsely) interpreted

as a “low” by the receiving gate. An easy “fix” for this problem

is to augment the TTL gate’s “high” signal voltage level by

means of a pullup resistor:

Something more than this, though, is required to interface

a TTL output with a CMOS input, if the receiving CMOS gate

is powered by a greater power supply voltage:

There will be no problem with the CMOS gate interpreting

the TTL gate’s “low” output, of course, but a “high” signal

from the TTL gate is another matter entirely. The guaranteed

output voltage range of 2.7 volts to 5 volts from the TTL gate

Digital Computer System

90

output is nowhere near the CMOS gate’s acceptable range of

7 volts to 10 volts for a “high” signal.

If we use an open-collector TTL gate instead of a totem-

pole output gate, though, a pullup resistor to the 10 volt Vdd

supply rail will raise the TTL gate’s “high” output voltage to

the full power supply voltage supplying the CMOS gate. Since

an open-collector gate can only sink current, not source

current, the “high” state voltage level is entirely determined

by the power supply to which the pullup resistor is attached,

thus neatly solving the mismatch problem:

Due to the excellent output voltage characteristics of CMOS

gates, there is typically no problem connecting a CMOS

output to a TTL input. The only significant issue is the current

loading presented by the TTL inputs, since the CMOS output

must sink current for each of the TTL inputs while in the

“low” state.

When the CMOS gate in question is powered by a voltage

source in excess of 5 volts (Vcc), though, a problem will result.

The “high” output state of the CMOS gate, being greater than

5 volts, will exceed the TTL gate’s acceptable input limits for

a “high” signal. A solution to this problem is to create an

“open-collector” inverter circuit using a discrete NPN

transistor, and use it to interface the two gates together:

The “Rpullup” resistor is optional, since TTL inputs

automatically assume a “high” state when left floating, which

is what will happen when the CMOS gate output is “low”

and the transistor cuts off. Of course, one very important

consequence of implementing this solution is the logical

inversion created by the transistor: when the CMOS gate

outputs a “low” signal, the TTL gate sees a “high” input; and

Digital Computer System

91

when the CMOS gate outputs a “high” signal, the transistor

saturates and the TTL gate sees a “low” input. So long as

this inversion is accounted for in the logical scheme of the

system, all will be well.

Concept of information

The concept of information is central to communication.

There is no precise definition of the word “information”. So,

instead of information, we deal with “message”. Message is

defined as the physical manifestation of information as

produced by the source

Analog

An analog message is a physical quantity that varies with

time usually in a smooth and continuous fashion.

Examples of analog messages are:

• The acoustic pressure produced when you speak

• The angular position of an aircraft gyro

• The light intensity at some point in a television image.

Digital

A digital message is an ordered sequence of symbols

selected from a finite set of discrete elements.

Examples of digital messages are:

• Letters printed on this page

• Listing of hourly temperature readings

• The keys you press at a computer terminal.

Whether the message is analog or digital, it needs to be

converted into an electrical signal. (There are only few

messages, which are inherently electrical.)

Digital Computer System

92

Input and Output

The input transducer converts the message to an electrical

signal say a voltage or current. Another transducer at the

destination converts the output signal to the desired message

form.

Illustration

The transducers in a voice communication system could

be microphone at the input and a loudspeaker at the output.

Communication system with input and output transducers

Step,Ramp, and Impulse Functions

Because of the very high switching rate and relatively low

signal strength found on data, address, and other buses

within a computer, direct extension of the buses beyond the

confines of the main circuit board or plug-in boards would

pose serious problems. First, long runs of electrical

conductors, either on printed circuit boards or through

cables, act like receiving antennas for electrical noise radiated

by motors, switches, and electronic circuits:

Digital Computer System

93

Such noise becomes progressively worse as the length

increases, and may eventually impose an unacceptable error

rate on the bus signals. Just a single bit error in transferring

an instruction code from memory to a microprocessor chip

may cause an invalid instruction to be introduced into the

instruction stream, in turn causing the computer to totally

cease operation. A second problem involves the distortion of

electrical signals as they pass through metallic conductors.

Signals that start at the source as clean, rectangular pulses

may be received as rounded pulses with ringing at the rising

and falling edges:

These effects are properties of transmission through

metallic conductors, and become more pronounced as the

conductor length increases. To compensate for distortion,

signal power must be increased or the transmission rate

decreased. Special amplifier circuits are designed for

transmitting direct (unmodulated) digital signals through

cables. For the relatively short distances between components

on a printed circuit board or along a computer backplane,

the amplifiers are in simple IC chips that operate from

standard +5v power. The normal output voltage from the

amplifier for logic ‘1’ is slightly higher than the minimum

needed to pass the logic ‘1’ threshold. Correspondingly for

logic ‘0’, it is slightly lower. The difference between the actual

output voltage and the threshold value is referred to as the

Digital Computer System

94

noise margin, and represents the amount of noise voltage

that can be added to the signal without creating an error:

Transmission over Medium Distances

Computer peripherals such as a printer or scanner

generally include mechanisms that cannot be situated within

the computer itself. Our first thought might be just to extend

the computer’s internal buses with a cable of sufficient length

to reach the peripheral. Doing so, however, would expose all

bus transactions to external noise and distortion even though

only a very small percentage of these transactions concern

the distant peripheral to which the bus is connected.

If a peripheral can be located within 20 feet of the computer,

however, relatively simple electronics may be added to make

data transfer through a cable efficient and reliable. To

accomplish this, a bus interface circuit is installed in the

computer:

Digital Computer System

95

It consists of a holding register for peripheral data, timing

and formatting circuitry for external data transmission, and

signal amplifiers to boost the signal sufficiently for

transmission through a cable. When communication with the

peripheral is necessary, data is first deposited in the holding

register by the microprocessor. This data will then be

reformatted, sent with error-detecting codes, and transmitted

at a relatively slow rate by digital hardware in the bus interface

circuit. In addition, the signal power is greatly boosted before

transmission through the cable. These steps ensure that the

data will not be corrupted by noise or distortion during its

passage through the cable. In addition, because only data

destined for the peripheral is sent, the party-line transactions

taking place on the computer’s buses are not unnecessarily

exposed to noise. Data sent in this manner may be transmitted

in byte-serial format if the cable has eight parallel channels

(at least 10 conductors for half-duplex operation), or in bit-

serial format if only a single channel is available.

Transmission over Long Distances

When relatively long distances are involved in reaching a

peripheral device, driver circuits must be inserted after the

bus interface unit to compensate for the electrical effects of

long cables:

Digital Computer System

96

This is the only change needed if a single peripheral is

used. However, if many peripherals are connected, or if other

computer stations are to be linked, a local area network (LAN)

is required, and it becomes necessary to drastically change

both the electrical drivers and the protocol to send messages

through the cable. Because multiconductor cable is

expensive, bit-serial transmission is almost always used when

the distance exceeds 20 feet.

In either a simple extension cable or a LAN, a balanced

electrical system is used for transmitting digital data through

the channel. This type of system involves at least two wires

per channel, neither of which is a ground. Note that a

common ground return cannot be shared by multiple

channels in the same cable as would be possible in an

unbalanced system.

The basic idea behind a balanced circuit is that a digital

signal is sent on two wires simultaneously, one wire

expressing a positive voltage image of the signal and the other

a negative voltage image. When both wires reach the

destination, the signals are subtracted by a summing

amplifier, producing a signal swing of twice the value found

on either incoming line. If the cable is exposed to radiated

electrical noise, a small voltage of the same polarity is added

to both wires in the cable. When the signals are subtracted

by the summing amplifier, the noise cancels and the signal

emerges from the cable without noise:

A great deal of technology has been developed for LAN

systems to minimize the amount of cable required and

maximize the throughput. The costs of a LAN have been

concentrated in the electrical interface card that would be

Digital Computer System

97

installed in PCs or peripherals to drive the cable, and in the

communications software, not in the cable itself (whose cost

has been minimized). Thus, the cost and complexity of a

LAN are not particularly affected by the distance between

stations.

Transmission over Distances (greater than 4000
feet)

Data communications through the telephone network can

reach any point in the world. The volume of overseas fax

transmissions is increasing constantly, and computer

networks that link thousands of businesses, governments,

and universities are pervasive. Transmissions over such

distances are not generally accomplished with a direct-wire

digital link, but rather with digitally-modulated analog carrier

signals. This technique makes it possible to use existing

analog telephone voice channels for digital data, although at

considerably reduced data rates compared to a direct digital

link.

Transmission of data from your personal computer to a

timesharing service over phone lines requires that data

signals be converted to audible tones by a modem. An audio

sine wave carrier is used, and, depending on the baud rate

and protocol, will encode data by varying the frequency,

Digital Computer System

98

phase, or amplitude of the carrier. The receiver’s modem

accepts the modulated sine wave and extracts the digital

data from it. Several modulation techniques typically used

in encoding digital data for analog transmission are shown

below:

Similar techniques may be used in digital storage devices

such as hard disk drives to encode data for storage using an

analog medium.

Digital Computer System

99

4

System Software

System software is computer software designed to operate

the computer hardware and to provide a platform for running

application software. The most basic types of system software

are:

• The computer BIOS and device firmware, which

provide basic functionality to operate and control the

hardware connected to or built into the computer.

• The operating system (prominent examples being

Microsoft Windows, Mac OS X and Linux), which

allows the parts of a computer to work together by

performing tasks like transferring data between

memory and disks or rendering output onto a display

device. It also provides a platform to run high-level

system software and application software.

• Utility software, which helps to analyze, configure,

optimize and maintain the computer.

Digital Computer System

100

In some publications, the term system software is also

used to designate software development tools (like a compiler,

linker or debugger). Computer purchasers seldom buy a

computer primarily because of its system software (But

purchasers of devices like mobile phones because of there

system software, as is the case with the iPhone, as the

system software of such devices is difficult for the end-user

to modify). Rather, system software serves as a useful (even

necessary) level of infrastructure code, generally built-in or

pre-installed. In contrast to system software, software that

allows users to do things like create text documents, play

games, listen to music, or surf the web is called application

software.

Types of System Software Programmes

System software helps use the operating system and

computer system. It includes diagnostic tools, compilers,

servers, windowing systems, utilities, language translator,

data communication programmes, database systems and

more. The purpose of system software is to insulate the

applications programmer as much as possible from the

complexity and specific details of the particular computer

being used, especially memory and other hardware features,

and such accessory devices as communications, printers,

readers, displays, keyboards, etc. Specific kinds of system

software include:

• Loaders

• Linkers

• Utility software

• Desktop environment / Graphical user interface

Digital Computer System

101

• Shells

• BIOS

• Hypervisors

• Boot loaders

• Database Management Systems(SQL, NoSQL)

If system software is stored on non-volatile memory such

as integrated circuits, it is usually termed firmware.

ENTERPRIZE SOFTWARE

Enterprize software, also known as enterprize application

software (EAS), is software used in organizations, such as

in a business or government, as opposed to software chosen

by individuals (for example, retail software). Enterprize

software is an integral part of a (Computer Based) Information

System. Services provided by enterprize software are typically

business-oriented tools such as online shopping and online

payment processing, interactive product catalogue,

automated billing systems, security, content management,

IT service management, customer relationship management,

resource planning, business intelligence, HR management,

manufacturing, application integration, and forms

automation.

Definitions

While there is no single, widely accepted list of enterprize

software characteristics, this section is intended to

summarize definitions from multiple sources. Enterprize

software describes a collection of computer programmes

with common business applications, tools for modeling how

the entire organization works, and development tools for

Digital Computer System

102

building applications unique to the organization. The software

is intended to solve an enterprize-wide problem (rather than

a departmental problem) and often written using an

Enterprize Software Architecture. Enterprize level software

aims to improve the enterprize’s productivity and efficiency

by providing business logic support functionality. Capterra

broadly defines enterprize software in the following manner:

• Targets any type of organization — corporations,

partnerships, sole proprietorships, nonprofits,

government agencies — but does not directly target

consumers.

• Targets any industry.

• Targets both large and small organizations — from

Fortune 500 to “mom and pop” businesses.

• Includes function-specific (Accounting, HR, Supply

Chain, etc.) and industry-specific (Manufacturing,

Retail, Healthcare, etc.) solutions.

Due to the cost of building or buying what is often non-

free proprietary software, only large enterprizes attempt to

implement such enterprize software that models the entire

business enterprize and is the core IT system of governing

the enterprize and the core of communication within the

enterprize. As business enterprizes have similar departments

and systems in common, enterprize software is often available

as a suite of programmes that have attached enterprize

development tools to customize the programmes to the

specific enterprize. Generally, these tools are complex

enterprize programming tools that require specialist

capabilities. Thus, one often sees job listings for a

Digital Computer System

103

programmer who is required to have specific knowledge of

a particular set of enterprize tools, such as “must be an SAP

developer”. Characteristics of enterprize software are

performance, scalability, and robustness. Enterprize software

typically has interfaces to other enterprize software (for

example LDAP to directory services) and is centrally managed

(a single admin page for example).

Enterprize Application Software

Enterprize application software is application software

that performs business functions such as order processing,

procurement, production scheduling, customer information

management, and accounting. It is typically hosted on servers

and provides simultaneous services to a large number of

users, typically over a computer network. This is in contrast

to a single-user application that is executed on a user’s

personal computer and serves only one user at a time.

Types

• Enterprize software can be designed and implemented

by an information technology (IT) group within a

company.

• It may also be purchased from an independent

enterprize software developer, that often installs and

maintains the software for their customers.

Installation, customization, and maintenance can also

be outsourced to an IT consulting company.

• Another model is based on a concept called on-

demand software, or Software as a Service (SaaS).

The on-demand model of enterprize software is made

possible through the widespread distribution of

Digital Computer System

104

broadband access to the Internet. Software as a

Service vendors maintain enterprize software on

servers within their own company data center and

then provide access to the software to their enterprize

customers via the Internet.

Enterprize software is often categorized by the business

function that it automates - such as accounting software

or sales force automation software. Similarly for industries

- for example, there are enterprize systems devised for the

health care industry, or for manufacturing enterprizes.

Developers

Major organizations in the enterprize software field include

SAP, IBM, BMC Software, HP Software Division, Redwood

Software, UC4 Software, JBoss (Red Hat), Microsoft, Adobe

Systems, Oracle Corporation, Inquest Technologies,

Computer Associates, and ASG Software Solutions but there

are thousands of competing vendors.

Criticism

The word enterprize can have various connotations.

Sometimes the term is used merely as a synonym for

organization, whether it be very large (e.g., a corporation

with thousands of employees), very small (a sole

proprietorship), or an intermediate size. Often the term is

used only to refer to very large organizations, although it

has become a corporate-speak buzzword and may be heard

in other uses. Some enterprize software vendors using the

latter definition develop highly complex products that are

often overkill for smaller organizations, and the application

Digital Computer System

105

of these can be a very frustrating task. Thus, sometimes

“enterprize” might be used sarcastically to mean overly

complex software. The adjective “enterprizey” is sometimes

used to make this sarcasm explicit. In this usage, the term

“enterprizey” is intended to go beyond the concern of “overkill

for smaller organizations” to imply the software is overly

complex even for large organizations and simpler solutions

are available.

ACCOUNTING SOFTWARE

Accounting software is application software that records

and processes accounting transactions within functional

modules such as accounts payable, accounts receivable,

payroll, and trial balance. It functions as an accounting

information system. It may be developed in-house by the

company or organization using it, may be purchased from

a third party, or may be a combination of a third-party

application software package with local modifications. It

varies greatly in its complexity and cost. The market has

been undergoing considerable consolidation since the mid

1990s, with many suppliers ceasing to trade or being bought

by larger groups.

Modules

Accounting software is typically composed of various

modules, different sections dealing with particular areas of

accounting. Among the most common are:

Core Modules

• Accounts receivable—where the company enters

money received

Digital Computer System

106

• Accounts payable—where the company enters its

bills and pays money it owes

• General ledger—the company’s “books”

• Billing—where the company produces invoices to

clients/customers

• Stock/Inventory—where the company keeps control

of its inventory

• Purchase Order—where the company orders inventory

• Sales Order—where the company records customer

orders for the supply of inventory

• Cash Book—where the company records collection

and payment

Non Core Modules

• Debt Collection—where the company tracks attempts

to collect overdue bills (sometimes part of accounts

receivable)

• Electronic payment processing

• Expense—where employee business-related expenses

are entered

• Inquiries—where the company looks up information

on screen without any edits or additions

• Payroll—where the company tracks salary, wages,

and related taxes

• Reports—where the company prints out data

• Timesheet—where professionals (such as attorneys

and consultants) record time worked so that it can

be billed to clients

• Purchase Requisition—where requests for purchase

orders are made, approved and tracked

Digital Computer System

107

(Different vendors will use different names for these

modules)

Implementations

In many cases, implementation (i.e. the installation and

configuration of the system at the client) can be a bigger

consideration than the actual software chosen when it comes

down to the total cost of ownership for the business. Most

midmarket and larger applications are sold exclusively

through resellers, developers and consultants. Those

organizations generally pass on a license fee to the software

vendor and then charge the client for installation,

customization and support services. Clients can normally

count on paying roughly 50-200% of the price of the software

in implementation and consulting fees. Other organizations

sell to, consult with and support clients directly, eliminating

the reseller.

Categories

Personal Accounting

Mainly for home users that use accounts payable type

accounting transactions, managing budgets and simple

account reconciliation at the inexpensive end of the market.

Low End

At the low end of the business markets, inexpensive

applications software allows most general business

accounting functions to be performed. Suppliers frequently

serve a single national market, while larger suppliers offer

separate solutions in each national market. Many of the low

end products are characterized by being “single-entry”

Digital Computer System

108

products, as opposed to double-entry systems seen in many

businesses. Some products have considerable functionality

but are not considered GAAP or IFRS/FASB compliant.

Some low-end systems do not have adequate security nor

audit trails.

Mid Market

The mid-market covers a wide range of business software

that may be capable of serving the needs of multiple national

accountancy standards and allow accounting in multiple

currencies. In addition to general accounting functions, the

software may include integrated or add-on management

information systems, and may be oriented towards one or

more markets, for example with integrated or add-on project

accounting modules. Software applications in this market

typically include the following features:

• Industry-standard robust databases

• Industry-standard reporting tools

• Tools for configuring or extending the application (eg

an SDK, access to programme code.

High End

The most complex and expensive business accounting

software is frequently part of an extensive suite of software

often known as Enterprize resource planning or ERP software.

These applications typically have a very long implementation

period, often greater than six months. In many cases, these

applications are simply a set of functions which require

significant integration, configuration and customization to

even begin to resemble an accounting system. The advantage

of a high-end solution is that these systems are designed

Digital Computer System

109

to support individual company specific processes, as they

are highly customizable and can be tailored to exact business

requirements. This usually comes at a significant cost in

terms of money and implementation time.

Vertical Market

Some business accounting software is designed for specific

business types. It will include features that are specific to

that industry. The choice of whether to purchase an industry-

specific application or a general-purpose application is often

very difficult. Concerns over a custom-built application or

one designed for a specific industry include:

• Smaller development team

• Increased risk of vendor business failing

• Reduced availability of support

This can be weighed up against:

• Less requirement for customization

• Reduced implementation costs

• Reduced end-user training time and costs

Some important types of vertical accounting software

are:

• Banking

• Construction

• Medical

• Nonprofit

• Point of Sale (Retail)

• Daycare accounting (a.k.a. Child care management

software)

Digital Computer System

110

Hybrid Solutions

As technology improves, software vendors have been

able to offer increasingly advanced software at lower prices.

This software is suitable for companies at multiple stages

of growth. Many of the features of Mid Market and High End

software (including advanced customization and extremely

scalable databases) are required even by small businesses

as they open multiple locations or grow in size. Additionally,

with more and more companies expanding overseas or

allowing workers to home office, many smaller clients have

a need to connect multiple locations. Their options are to

employ software-as-a-service or another application that

offers them similar accessibility from multiple locations

over the internet. Bob Frankston has noted that his VisiCalc

wasn’t an early accounting programme and that software

that “overly tuned for such function (Javelin, Lotus Improv,

etc.) completely failed.”

Digital Computer System

111

5

Computer Software

Computer software, or just software, is a collection of

computer programmes and related data that provide the

instructions telling a computer what to do and how to do

it. We can also say software refers to one or more computer

programmes and data held in the storage of the computer

for some purposes. In other words software is a set of

programmes, procedures, algorithms and its documentation.

Programme software performs the function of the programme

it implements, either by directly providing instructions to

the computer hardware or by serving as input to another

piece of software. The term was coined to contrast to the

old term hardware (meaning physical devices). In contrast

to hardware, software is intangible, meaning it “cannot be

touched”. Software is also sometimes used in a more narrow

sense, meaning application software only. Sometimes the

term includes data that has not traditionally been associated

Digital Computer System

112

with computers, such as film, tapes, and records. Examples

of computer software include:

• Application software includes end-user applications

of computers such as word processors or video games,

and ERP software for groups of users.

• Middleware controls and co-ordinates distributed

systems.

• Programming languages define the syntax and

semantics of computer programmes. For example,

many mature banking applications were written in

the COBOL language, originally invented in 1959.

Newer applications are often written in more modern

programming languages.

• System software includes operating systems, which

govern computing resources. Today large applications

running on remote machines such as Websites are

considered to be system software, because the end-

user interface is generally through a graphical user

interface, such as a web browser.

• Testware is software for testing hardware or a software

package.

• Firmware is low-level software often stored on

electrically programmable memory devices. Firmware

is given its name because it is treated like hardware

and run (“executed”) by other software programmes.

• Shrinkware is the older name given to consumer-

purchased software, because it was often sold in

retail stores in a shrink-wrapped box.

• Device drivers control parts of computers such as

disk drives, printers, CD drives, or computer monitors.

Digital Computer System

113

• Programming tools help conduct computing tasks in

any category listed above. For programmers, these

could be tools for debugging or reverse engineering

older legacy systems in order to check source code

compatibility.

History

The first theory about software was proposed by Alan

Turing in his 1935 essay Computable numbers with an

application to the Entscheidungsproblem (Decision problem).

The term “software” was first used in print by John W.

Tukey in 1958. Colloquially, the term is often used to mean

application software. In computer science and software

engineering, software is all information processed by

computer system, programmes and data. The academic

fields studying software are computer science and software

engineering. The history of computer software is most often

traced back to the first software bug in 1946. As more and

more programmes enter the realm of firmware, and the

hardware itself becomes smaller, cheaper and faster as

predicted by Moore’s law, elements of computing first

considered to be software, join the ranks of hardware. Most

hardware companies today have more software programmers

on the payroll than hardware designers, since software

tools have automated many tasks of Printed circuit board

engineers. Just like the Auto industry, the Software industry

has grown from a few visionaries operating out of their

garage with prototypes. Steve Jobs and Bill Gates were the

Henry Ford and Louis Chevrolet of their times, who

capitalized on ideas already commonly known before they

Digital Computer System

114

started in the business. In the case of Software development,

this moment is generally agreed to be the publication in the

1980s of the specifications for the IBM Personal Computer

published by IBM employee Philip Don Estridge. Today his

move would be seen as a type of crowd-sourcing.

Until that time, software was bundled with the hardware

by Original equipment manufacturers (OEMs) such as Data

General, Digital Equipment and IBM. When a customer

bought a minicomputer, at that time the smallest computer

on the market, the computer did not come with Pre-installed

software, but needed to be installed by engineers employed

by the OEM. Computer hardware companies not only

bundled their software, they also placed demands on the

location of the hardware in a refrigerated space called a

computer room. Most companies had their software on the

books for 0 dollars, unable to claim it as an asset (this is

similar to financing of popular music in those days). When

Data General introduced the Data General Nova, a company

called Digidyne wanted to use its RDOS operating system

on its own hardware clone. Data General refused to license

their software (which was hard to do, since it was on the

books as a free asset), and claimed their “bundling rights”.

The Supreme Court set a precedent called Digidyne v.

Data General in 1985. The Supreme Court let a 9th circuit

decision stand, and Data General was eventually forced into

licensing the Operating System software because it was

ruled that restricting the license to only DG hardware was

an illegal tying arrangement. Soon after, IBM ‘published’ its

DOS source for free, and Microsoft was born. Unable to

sustain the loss from lawyer’s fees, Data General ended up

Digital Computer System

115

being taken over by EMC Corporation. The Supreme Court

decision made it possible to value software, and also purchase

Software patents. The move by IBM was almost a protest

at the time. Few in the industry believed that anyone would

profit from it other than IBM (through free publicity).

Microsoft and Apple were able to thus cash in on ‘soft’

products. It is hard to imagine today that people once felt

that software was worthless without a machine. There are

many successful companies today that sell only software

products, though there are still many common software

licensing problems due to the complexity of designs and

poor documentation, leading to patent trolls. With open

software specifications and the possibility of software

licensing, new opportunities arose for software tools that

then became the de facto standard, such as DOS for operating

systems, but also various proprietary word processing and

spreadsheet programmes. In a similar growth pattern,

proprietary development methods became standard Software

development methodology.

Overview

Software includes all the various forms and roles that

digitally stored data may have and play in a computer (or

similar system), regardless of whether the data is used as

code for a CPU, or other interpreter, or whether it represents

other kinds of information. Software thus encompasses a

wide array of products that may be developed using different

techniques such as ordinary programming languages,

scripting languages, microcode, or an FPGA configuration.

The types of software include web pages developed in

languages and frameworks like HTML, PHP, Perl, JSP,

Digital Computer System

116

ASP.NET, XML, and desktop applications like OpenOffice.org,

Microsoft Word developed in languages like C, C++, Java,

C#, or Smalltalk. Application software usually runs on an

underlying software operating systems such as Linux or

Microsoft Windows. Software (or firmware) is also used in

video games and for the configurable parts of the logic

systems of automobiles, televisions, and other consumer

electronics. Computer software is so called to distinguish

it from computer hardware, which encompasses the physical

interconnections and devices required to store and execute

(or run) the software. At the lowest level, executable code

consists of machine language instructions specific to an

individual processor. A machine language consists of groups

of binary values signifying processor instructions that change

the state of the computer from its preceding state.

Programmes are an ordered sequence of instructions for

changing the state of the computer in a particular sequence.

It is usually written in high-level programming languages

that are easier and more efficient for humans to use (closer

to natural language) than machine language. High-level

languages are compiled or interpreted into machine language

object code. Software may also be written in an assembly

language, essentially, a mnemonic representation of a

machine language using a natural language alphabet.

Assembly language must be assembled into object code via

an assembler.

Types of Software

Practical computer systems divide software systems into

three major classes: system software, programming software

Digital Computer System

117

and application software, although the distinction is

arbitrary, and often blurred.

System Software

System software provides the basic functions for computer

usage and helps run the computer hardware and system.

It includes a combination of the following:

• Device drivers

• Operating systems

• Servers

• Utilities

• Window systems

System software is responsible for managing a variety of

independent hardware components, so that they can work

together harmoniously. Its purpose is to unburden the

application software programmer from the often complex

details of the particular computer being used, including

such accessories as communications devices, printers, device

readers, displays and keyboards, and also to partition the

computer’s resources such as memory and processor time

in a safe and stable manner.

Programming Software

Programming software usually provides tools to assist a

programmer in writing computer programmes, and software

using different programming languages in a more convenient

way. The tools include:

• Compilers

• Debuggers

• Interpreters

Digital Computer System

118

• Linkers

• Text editors

An Integrated development environment (IDE) is a

single application that attempts to manage all these

functions..

Application Software

Application software is developed to aid in any task that

benefits from computation.

It is a broad category, and encompasses software of

many kinds, including the internet browser being used to

display this page.

This category includes:

• Business software

• Databases

• Decision making software

• Educational software

• Image editing

• Industrial automation

• Mathematical software

• Medical software

• Molecular modeling software

• Quantum chemistry and solid state physics software

• Simulation software

• Spreadsheets

• Telecommunications (i.e., the Internet and everything

that flows on it)

• Video games

• Word processing

Digital Computer System

119

Software Topics

Architecture

Users often see things differently than programmers.

People who use modern general purpose computers (as

opposed to embedded systems, analog computers and

supercomputers) usually see three layers of software

performing a variety of tasks: platform, application, and

user software.

• Platform software: Platform includes the firmware,

device drivers, an operating system, and typically a

graphical user interface which, in total, allow a user

to interact with the computer and its peripherals

(associated equipment). Platform software often comes

bundled with the computer. On a PC you will usually

have the ability to change the platform software.

• Application software: Application software or

Applications are what most people think of when

they think of software. Typical examples include office

suites and video games. Application software is often

purchased separately from computer hardware.

Sometimes applications are bundled with the

computer, but that does not change the fact that they

run as independent applications. Applications are

usually independent programmes from the operating

system, though they are often tailored for specific

platforms. Most users think of compilers, databases,

and other “system software” as applications.

• User-written software: End-user development tailors

systems to meet users’ specific needs. User software

Digital Computer System

120

include spreadsheet templates and word processor

templates. Even email filters are a kind of user

software. Users create this software themselves and

often overlook how important it is. Depending on how

competently the user-written software has been

integrated into default application packages, many

users may not be aware of the distinction between

the original packages, and what has been added by

co-workers.

Documentation

Most software has software documentation so that the

end user can understand the programme, what it does, and

how to use it. Without clear documentation, software can

be hard to use—especially if it is very specialized and relatively

complex like Photoshop or AutoCAD. Developer

documentation may also exist, either with the code as

comments and/or as separate files, detailing how the

programmes works and can be modified.

Library

An executable is almost always not sufficiently complete

for direct execution. Software libraries include collections

of functions and functionality that may be embedded in

other applications. Operating systems include many standard

Software libraries, and applications are often distributed

with their own libraries.

Standard

Since software can be designed using many different

programming languages and in many different operating

systems and operating environments, software standard is

Digital Computer System

121

needed so that different software can understand and

exchange information between each other. For instance, an

email sent from a Microsoft Outlook should be readable

from Yahoo! Mail and vice versa.

Execution

Computer software has to be “loaded” into the computer’s

storage (such as the hard drive or memory). Once the

software has loaded, the computer is able to execute the

software. This involves passing instructions from the

application software, through the system software, to the

hardware which ultimately receives the instruction as

machine code. Each instruction causes the computer to

carry out an operation – moving data, carrying out a

computation, or altering the control flow of instructions.

Data movement is typically from one place in memory to

another. Sometimes it involves moving data between memory

and registers which enable high-speed data access in the

CPU. Moving data, especially large amounts of it, can be

costly. So, this is sometimes avoided by using “pointers” to

data instead. Computations include simple operations such

as incrementing the value of a variable data element. More

complex computations may involve many operations and

data elements together.

Quality and Reliability

Software quality is very important, especially for

commercial and system software like Microsoft Office,

Microsoft Windows and Linux. If software is faulty (buggy),

it can delete a person’s work, crash the computer and do

other unexpected things. Faults and errors are called “bugs.”

Digital Computer System

122

Many bugs are discovered and eliminated (debugged) through

software testing. However, software testing rarely – if ever –

eliminates every bug; some programmers say that “every

programme has at least one more bug” (Lubarsky’s Law).

All major software companies, such as Microsoft, Novell and

Sun Microsystems, have their own software testing

departments with the specific goal of just testing. Software

can be tested through unit testing, regression testing and

other methods, which are done manually, or most commonly,

automatically, since the amount of code to be tested can

be quite large. For instance, NASA has extremely rigorous

software testing procedures for many operating systems

and communication functions. Many NASA based operations

interact and identify each other through command

programmes called software. This enables many people who

work at NASA to check and evaluate functional systems

overall. Programmes containing command software enable

hardware engineering and system operations to function

much easier together.

License

The software’s license gives the user the right to use the

software in the licensed environment. Some software comes

with the license when purchased off the shelf, or an OEM

license when bundled with hardware. Other software comes

with a free software license, granting the recipient the rights

to modify and redistribute the software. Software can also

be in the form of freeware or shareware.

Patents

Software can be patented in some but not all countries;

Digital Computer System

123

however, software patents can be controversial in the software

industry with many people holding different views about it.

The controversy over software patents is about specific

algorithms or techniques that the software contains, which

may not be duplicated by others and considered intellectual

property and copyright infringement depending on the

severity.

Design and Implementation

Design and implementation of software varies depending

on the complexity of the software. For instance, design and

creation of Microsoft Word software will take much more

time than designing and developing Microsoft Notepad

because of the difference in functionalities in each one.

Software is usually designed and created (coded/written/

programmed) in integrated development environments (IDE)

like Eclipse, Emacs and Microsoft Visual Studio that can

simplify the process and compile the programme. As noted

in different section, software is usually created on top of

existing software and the application programming interface

(API) that the underlying software provides like GTK+,

JavaBeans or Swing. Libraries (APIs) are categorized for

different purposes. For instance, JavaBeans library is used

for designing enterprize applications, Windows Forms library

is used for designing graphical user interface (GUI)

applications like Microsoft Word, and Windows

Communication Foundation is used for designing web

services.

Underlying computer programming concepts like

quicksort, hashtable, array, and binary tree can be useful

Digital Computer System

124

to creating software. When a programme is designed, it

relies on the API. For instance, if a user is designing a

Microsoft Windows desktop application, he/she might use

the .NET Windows Forms library to design the desktop

application and call its APIs like Form1.Close() and

Form1.Show() to close or open the application and write the

additional operations him/herself that it need to have.

Without these APIs, the programmer needs to write these

APIs him/herself. Companies like Sun Microsystems, Novell,

and Microsoft provide their own APIs so that many

applications are written using their software libraries that

usually have numerous APIs in them.

Computer software has special economic characteristics

that make its design, creation, and distribution different

from most other economic goods. A person who creates

software is called a programmer, software engineer, software

developer, or code monkey, terms that all have a similar

meaning.

Industry and Organizations

A great variety of software companies and programmers

in the world comprise a software industry . Software can

be quite a profitable industry: Bill Gates, the founder of

Microsoft was the richest person in the world in 2009

largely by selling the Microsoft Windows and Microsoft Office

software products. The same goes for Larry Ellison, largely

through his Oracle database software. Through time the

software industry has become increasingly specialized. Non-

profit software organizations include the Free Software

Foundation, GNU Project and Mozilla Foundation. Software

Digital Computer System

125

standard organizations like the W3C, IETF develop software

standards so that most software can interoperate through

standards such as XML, HTML, HTTP or FTP. Other well-

known large software companies include Novell, SAP,

Symantec, Adobe Systems, and Corel, while small companies

often provide innovation.

APPLICATION SOFTWARE

Application software, also known as an application or an

“app”, is computer software designed to help the user to

perform singular or multiple related specific tasks. Examples

include enterprize software, accounting software, office

suites, graphics software and media players. Many

application programmes deal principally with documents.

Application software is contrasted with system software and

middleware, which manage and integrate a computer’s

capabilities, but typically do not directly apply them in the

performance of tasks that benefit the user. A simple, if

imperfect, analogy in the world of hardware would be the

relationship of an electric light bulb (an application) to an

electric power generation plant (a system). The power station

merely generates electricity, not itself of any real use until

harnessed to an application like the electric light that

performs a service that benefits the user. Application software

applies the power of a particular computing platform or

system software to a particular purpose. Some apps such

as Microsoft Office are available in versions for several

different platforms; others have narrower requirements.

Terminology

In information technology, an application is a computer

Digital Computer System

126

programme designed to help people perform an activity. An

application thus differs from an operating system (which

runs a computer), a utility (which performs maintenance

or general-purpose chores), and a programming language

(with which computer programmes are created). Depending

on the activity for which it was designed, an application can

manipulate text, numbers, graphics, or a combination of

these elements. Some application packages offer considerable

computing power by focusing on a single task, such as word

processing; others, called integrated software, offer somewhat

less power but include several applications. User-written

software tailors systems to meet the user’s specific needs.

User-written software include spreadsheet templates, word

processor macros, scientific simulations, graphics and

animation scripts. Even email filters are a kind of user

software. Users create this software themselves and often

overlook how important it is.

The delineation between system software such as

operating systems and application software is not exact,

however, and is occasionally the object of controversy. For

example, one of the key questions in the United States v.

Microsoft antitrust trial was whether Microsoft’s Internet

Explorer web browser was part of its Windows operating

system or a separable piece of application software. As

another example, the GNU/Linux naming controversy is, in

part, due to disagreement about the relationship between

the Linux kernel and the operating systems built over this

kernel. In some types of embedded systems, the application

software and the operating system software may be

indistinguishable to the user, as in the case of software

Digital Computer System

127

used to control a VCR, DVD player or microwave oven. The

above definitions may exclude some applications that may

exist on some computers in large organizations. For an

alternative definition of an app: see Application Portfolio

Management.

Application Software Classification

Application software falls into two general categories;

horizontal applications and vertical applications. Horizontal

Application are the most popular and its widely spread in

departments or companies. Vertical Applications are designed

for a particular type of business or for specific division in

a company. There are many types of application software:

• An application suite consists of multiple applications

bundled together. They usually have related functions,

features and user interfaces, and may be able to

interact with each other, e.g. open each other’s files.

Business applications often come in suites, e.g.

Microsoft Office, OpenOffice.org and iWork, which

bundle together a word processor, a spreadsheet,

etc.; but suites exist for other purposes, e.g. graphics

or music.

• Enterprize software addresses the needs of

organization processes and data flow, often in a large

distributed environment. (Examples include financial

systems, customer relationship management (CRM)

systems and supply-chain management software).

Note that Departmental Software is a sub-type of

Enterprize Software with a focus on smaller

organizations or groups within a large organization.

Digital Computer System

128

(Examples include Travel Expense Management and

IT Helpdesk)

• Enterprize infrastructure software provides common

capabilities needed to support enterprize software

systems. (Examples include databases, email servers,

and systems for managing networks and security.)

• Information worker software addresses the needs of

individuals to create and manage information, often

for individual projects within a department, in contrast

to enterprize management. Examples include time

management, resource management, documentation

tools, analytical, and collaborative. Word processors,

spreadsheets, email and blog clients, personal

information system, and individual media editors

may aid in multiple information worker tasks.

• Content access software is software used primarily to

access content without editing, but may include

software that allows for content editing. Such software

addresses the needs of individuals and groups to

consume digital entertainment and published digital

content. (Examples include Media Players, Web

Browsers, Help browsers and Games)

• Educational software is related to content access

software, but has the content and/or features adapted

for use in by educators or students. For example, it

may deliver evaluations (tests), track progress through

material, or include collaborative capabilities.

• Simulation software are computer software for

simulation of physical or abstract systems for either

research, training or entertainment purposes.

Digital Computer System

129

• Media development software addresses the needs of

individuals who generate print and electronic media

for others to consume, most often in a commercial

or educational setting. This includes Graphic Art

software, Desktop Publishing software, Multimedia

Development software, HTML editors, Digital

Animation editors, Digital Audio and Video

composition, and many others.

• Mobile applications run on hand-held devices such

as mobile phones, personal digital assistants and

enterprize digital assistants : see mobile application

development.

• Product engineering software is used in developing

hardware and software products. This includes

computer aided design (CAD), computer aided

engineering (CAE), computer language editing and

compiling tools, Integrated Development Environments,

and Application Programmer Interfaces.

• A command-driven interface is one in which you type

in commands to make the computer do something.

You have to know the commands and what they do

and they have to be typed correctly. DOS and Unix

are examples of command-driven interfaces.

• A graphical user interface (GUI) is one in which you

select command choices from various menus, buttons

and icons using a mouse. It is a user-friendly interface.

The Windows and Mac OS are both graphical user

interfaces.

Applications can also be classified by computing platform.

Digital Computer System

130

6

Computer-Based Serials System

Basically, designing a computer-based serials system

follows the prescribed pattern: the establishment of

requirements, the provision of forms and the determination

of the manual and machine procedures that will satisfy the

requirements. In fact, the primary requirement of the serials

system is to provide users with an accurate and current file

of the library's serials holdings including all the necessary

bibliographic information. In the instance we shall discuss,

the file will be a union catalogue containing the data required

on all serials in both the general library and the branch

libraries.

The data in this file should be available not only in the

general library but also in branches and to other possible

users. Second, the system should be able to provide the

means whereby the user as well as the library staff may

request and receive within a reasonable time special

Digital Computer System

131

catalogues or reports of the serials holdings by such

categories as call number, language, and subject; and it

should also provide special listings by publishers, vendors,

types of serials, status (such as active, inactive), and by all

condition of receipt (gift, purchase, or exchange). Third, the

system should be able to guarantee that all issues not

received by the library will be claimed promptly and on a

set schedule and also that the renewal of all serial

subscriptions will be controlled by the system. Fourth, the

system should be able to predict the time of receipt of a

journal issue with accuracy thereby establishing a positive

control over the timely receipt of all issues. Fifth, the system

must be able to maintain and control all the accounting

records necessary for its own internal use and be able to

report to the comptroller the information required for

payment of invoices. Sixth, the system should be able to

provide the binding department with necessary information

and records for those journals that are to be bound. It also

should be able to provide such information and records on

a scheduled basis in order to maintain an even workload

for the binding staff. Seventh, the serials system should

have the ability to handle the many changes that occur in

the various serials titles.

SERIAL RECORD LOAD SYSTEM

The next phase of the serials automation system consists

of designing the programme required initially to load and

format the serials records. Serial Record Load System,

illustrates the generalized system. Requirements of the

system are : (i) to produce a report for verification of each

serials record loaded to date and arranged in Dewey call-

Digital Computer System

132

number sequence; (ii) to produce a report for verification

of each serials record loaded in the current run; and (iii)

to produce a report of any record or records containing

erroneous information (errors, duplicated records).

Inputs to the system are : (i) a paper tape containing new

serials records; and (ii) A paper tape containing corrections,

additions, and deletions to be made in existing computer

records. The first requirement of the programme is to produce

a report listing each error found in the editing procedure.

Based on the editing report the data processing operator

will correct the errors (as described previously) and will re-

enter the corrections into the computer in a later run of

the translate and edit programme. The second requirement

is to assemble the input data into proper format as developed

for the master serials record. Master Serials Record, shows

the layout of the computer record which consists of five

sections. The first section of the record is fixed in length

and contains the majority of the data characterizes as

"basic identification and control data."

The second section is fixed in length and contains the

accounting data including a five-year historical record of

the payment of each serial subscription. (A five-year average

of the increase in serials cost should permit forecasting of

serials budgets with a high degree of reliability.) The third

section of the master serials record, variable in length,

contains bibliographical information on each title. This

includes the official entry, all subject entries, selected added

entries, title changes, and all notes. Each of these items is

variable in length and each field, except the official entry

Digital Computer System

133

field, may contain more than one entry. For example, there

might be two or three subject entries for a particular title.

The fourth section, variable in length, is the claiming and

receipt section. This portion of the record is generated

internally by the check-in programme at the time it forecasts

the receipt of each issue of a title. The fifth section, variable

in length, contains the binding information, the greater

portion of which is created by the check-in programme at

the time the updated information is received by the computer.

Thus, the inputs to the programme are (i) paper tape of

new serials records; and (ii) paper tape of correction records.

Output of the programme are : (i) serials transactions file

on magnetic tape containing the new titles that have been

loaded during a given run plus corrections to previous titles

that were loaded at an earlier date and (ii) the editing report

indicating what errors the computer has found during the

edit process. Functions of the programme are : (i) to read

in the data from the paper-tape reader (since the codes that

are produced by the paper-tape typewriter are not the same

as the code structure used in the computer, the characters

on this tape must be translated into the appropriate machine

language); and (ii) to edit each field of the serials record to

make sure that it conforms to the requirements of length

and content of the field and that the information as presented

is valid. For example, under the area LIB (library) it is

possible that the operator type a code that is not a valid

departmental code— or in typing the MAIN ENTRY an invalid

character was used or for an active serial the FREQ

(frequency) code was omitted. Thus each item on the form,

Digital Computer System

134

where it is possible, will be edited for validity and

completeness. The requirement of the programme is to sort

the new serial record file into Dewey call-number sequence.

Input to the programme is the serials transactions file

produced in the translate and edit programme and containing

new and corrected serials records. Output of the programme

is a sorted serials transactions file containing new and

corrected serials records in Dewey call-number sequence.

Function of the programme is to sort the records contained

in the magnetic-tape files into a desired order or sequence.

Requirements of the programme are : (i) to generate a

new master serials record file; (ii) to make corrections to

existing records; and (iii) to eliminate duplicate records.

Inputs to the programme are : (i) sorted serials transactions

file of new and corrected serials record; and (ii) a sorted

master file of existing serials records.

Outputs of the programme are:

(i) a magnetic tape file containing all records, existing

and new,

(ii) a printed listing of new and corrected titles loaded in

this run, and

(iii) a printed listing of erroneous records.

Functions of the programme are: (i) to merge old and new

records on the two input tapes into one output master file;

and (ii) to correct any record in the old tape file prior to

generating the new tape file.

CATALOGUE REPORT GENERATOR SYSTEM

The catalogue report generator system allows flexibility

to the library staff and to the user by obtaining information

Digital Computer System

135

from the system in the sequence and in the format wanted.

This system is a medium by which users can exploit the

informational potentialities of the serials control system.

Generalized Systems Chart of the Catalogue Report Generator

System, outlines the programmes and their interrelationships

required in the preparation of specified printed catalogues

and reports. Requirements of the system are : (i) to provide

the user with an accurate and current catalogue of the

serials holdings containing the necessary bibliographic

information; Serials Catalogue) and (ii) to provide the means

whereby the user as well as staff members may request and

receive special catalogues or reports of the serials holdings

within a reasonable time.

Serials Listing by Subject; Serials Listing by Call No;

Serials Listing Departmental Libraries- Arch). Inputs to the

system are: (i) the master magnetic tape file of serial records

and (ii) the data control punched cards for selection of data

and desired sequence and format of the report. Outputs of

the system are printed catalogues or reports. When printout

of these catalogues or reports is required, it is only necessary

for the serials librarian to indicate this by the appropriate

code in a control card. The generator system based on this

code will automatically select from the master record the

data required for the printing of a given list.

The requirement of the programme is selection of desired

information from the master file by means of the data

control cards. Inputs of the programme are : (i) a the

master file of serials records and (b) data control card for

each item of information that is to appear in a given report.

The output of the programme is a magnetic-tape file

Digital Computer System

136

containing information for each of the requested reports,

or catalogues, or both. Functions of the programme are

: (i) stripping from the master serials record file the data

required for the printing of catalogues or special reports

as specified by the data control cards; and (ii) formatting

such information and transferring the resulting record to

an output work tape.

The requirement of this programme is to sort each of the

report work tapes into desired sequence specified by the

sort control card. Inputs to the programme are : (i) the

report work tapes created by the catalogue report generator

programme; and (ii) the sort control cards that define the

order in which records are to appear. The output of the

programme is a file of the records to be printed as a report

or catalogue.

The requirement of the programme is to print in desired

format any standard catalogues or special reports. Inputs

to the programme are : (i) the sorted report file; and (ii) the

print control card that defines the format in which the

information is to appear.

OPERATING SYSTEMS

So far we have described in some detail the systems for

compiling the original input to the serials system for setting

up the master record file and for correcting this file and for

setting up the reporting system required to produce the

necessary reports or catalogues.

The primary purpose of the serials operating systems is

to provide efficient and accurate control of all records and

the transactions.

Digital Computer System

137

Systems charts of the monthly and weekly operating

systems, outline the programmes and their interrelationships

that are necessary to fulfil the following requirements:

1. Predict the time of receipt of the journal thereby

establishing a positive control over the timely receipt

of all issues.

2. Guarantee that all issues not received by the library

will be claimed promptly and on a set schedule and

that the renewal of all serials will be controlled by the

system.

3. Maintain and control the accounting records necessary

for the serials system internally as well as report to

the comptroller the information required for payment

of invoices.

4. Handle the many changes that occur in the various

serials titles.

5. Provide the binding department with the necessary

information and records for those titles that are to be

bound.

In fact, Outputs of the operating systems are : (i) an

updated master file of all serials records; (ii) punched control

cards anticipating receipt of issues; (iii) reports for controlling,

claiming, renewals, and binding; and (iv) statistical and

accounting reports. The operated systems work within three

time frames: monthly, weekly, and daily. We shall now

review functions that are performed by both the computer

and the clerical.

OPERATING FUNCTIONS

This section describes the function of the staff of the

Digital Computer System

138

serials system and the data processing operator in

maintaining records.

1. Check-in: When an issue is received, the serials clerk

removes from the punched-card file the corresponding

check-in card for the particular volume and issue. In

the case of an irregular publication it is necessary to

record on the check-in card (if not there already) the

volume and issue number, adding the month and year

of publication. The clerk marks the call number on

the issue and checks for changes such as title and

frequency in the journal. If variations are not found,

the check-in card and is forwarded to the data

processing operator.

If changes have occurred, they are recorded on the

serials control record worksheet, indicating the call

number and the changes in the appropriate fields. The

check-in card and the worksheet are forwarded to the

data processing operator who, using the auxiliary

punched-card reader attached to the paper-tape

typewriter, enters the check-in card data into the

paper tape.

The call number, issue, month, and year are punched

into the paper tape as input to the weekly run of the

check-in programme. If corrections or changes to a

given title are made, the data processing operator

holds these until the end of the day or week when the

correction tape for input to the translate and edit

programme is produced.

2. Ordering of New Serial Titles : On receipt of the first

issue of a new title the serials librarian prepares a

Digital Computer System

139

serials control record worksheet that is forwarded to

the data processing operator for entry of the new title

into the system.

3. Renewal of Subscriptions : The renewal control cards

and the renewal reports are received from the computer.

The renewal punched card is filed. The renewal report

is verified and two copies forwarded to the supplier

or the publisher for the renewal of the indicated titles.

When the invoice, the invoice is received, the renewal

control card for each title on the invoice, the invoice

number, and the amount of the renewal are posted

to the renewal control card.

The renewal control report is checked for each title

and the renewal control card is then forwarded to the

data processing operator. The operator duplicates the

prepunched information on the renewal control card

and key punches the new information (invoice date

and number and renewal cost) and simultaneously

produces a punched paper tape with this information.

This is accomplished by using a key punch that is

cabled to the paper-tape typewriter.

4. Binding Control : On receipt of the binding control list

and the control cards the binding department uses

the control list as its worksheet for the coming month.

The journals are taken from the shelves and checked

for completeness. Binding orders are then prepared

for the completed volumes. It is the responsibility of

the binding clerk to submit correction reports for any

issues or indexes found missing.

Digital Computer System

140

5. Claiming of Serial Issues: The weekly run of the check-

in programme prints out the claim notices. These

notices are reviewed prior to mailing because notice

may have been received from the supplier or publisher

that item will be delayed. In such event the computer

record is updated. If the claim is routine, the notice

is forwarded to the supplier. On receipt of the claimed

issue the check-in card for that issue is removed from

the file and forwarded to the data processing operator.

The monthly run of the check-in programme is the key

to the successful fulfilment of the operating system. It is

the function of this programme to forecast the transactions

that are to occur within the serials system for the coming

month and to produce the reports and control cards that

are needed to handle successfully these transactions. The

monthly run of the check-in programme has specific

functions that must be performed.

1. A forecasting must be made of the issues to be received

for each of the active during the coming month. Utilizing

the FREQ (frequency) data in conjunction with the

months of publication data (JFM....field) the programme

will determine whether an issue is to be received or

claimed; the check-in programme will determine, when

possible, the volume and issue numbers to received

in the coming period. A control card will be punched

for each issue to be received. Simultaneously the

programme will post in the waiting receipt and claims

section of the master record the control data for each

particular issue. The check-in cards will be filed in the

serials department awaiting receipt of the issue.

Digital Computer System

141

2. A listing must be produced of all titles whose

subscriptions are to be renewed during the second

month following the monthly run. (For example, during

the June run the computer will forecast those titles

to be renewed during August of that year.) This

programme determines the renewal date by utilizing

the date of last renewal found in the DATE SUBS

START (date subscription start field and the period of

the last subscription from the SUBS LGT (subscription

length) field, both found in the accounting data section

of the master record. The renewal report is produced

by vendor or by publisher showing the titles that

should be renewed in the period. The report contains

the call number, the title, the last renewal date, the

subscription length, and the estimated price of renewal.

At this point, programme also produces a control card

for each item being renewed. The control card contains

the call number and short title. The programme also

posts to the accounting data control section the renewal

cost incurred.

3. A binding report is necessary for those titles with

sufficient consecutive issues to warrant binding into

a physical volume. A control card is produced for each

volume to be bound and an indication is made in the

binding control section of the master record that an

order has been issued for binding.

4. Accounting reports are required for the financial control

of the system. These reports are based on

encumbrances incurred by each fund and department

account. In order to obtain a net balance for each fund

Digital Computer System

142

and department account at the end of each month the

encumbrances are adjusted to actual cost on receipt

of invoices.

5. The programme must generate monthly statistics of

the number of new titles added and their cost, the

number of renewals and the estimated cost of renewals,

the number of issues received, the number of bound

volumes added to the serials collection, and other

statistical information.

For all titles frequency of receipt is irregular the check-

in programme will, on the receipt of an issue, produce a

check-in card for the next arrival. This card contains only

the call number and the short title of the issue and, if

possible, the volume and the issue number but not the

month or year. Remember, at end of each week all input

paper tapes for the serials system are forwarded to the

computer centre for entry into the weekly run of the check-

in programme. These tapes are processed through the

translate and edit programme. The output of this translate

and edit programme. The output of this sort programme,

arranged by call number and type of transaction, is the

input to the weekly run of the check-in programme.

The function of the check-in programme is to post all

transactions that have occurred to the serials master record

file. The primary output of the weekly check-in programme

is the claim notices. During the weekly run the programme

audits each record, comparing the date of a forecasted

arrival in the WAITING RECEIPT sector of the record to the

CLAIM CTL (claim control) date. If the issue is overdue, a

Digital Computer System

143

claim is issued. If a subsequent published issue is received

prior to the receipt of an earlier published issue, a claim

is issued is received, the WAITING RECEIPT sector of the

record is cleared and the issue is posted to the binding

control section of the record. The output of the weekly run

is the updated serials master control file that is always the

source of all printed reports. A critical operation within the

serials system is the check-in and claiming of journal issues.

There is an alternative to the punched card, paper-tape

check-in and claiming operations in the computer-based

serials system.

The direct use of the punched from the check-in file as

input to the weekly run of the check-in programme could

be a more efficient way to update the master serials record

file. If the punched cards produced by the computer for the

check-in operation contained the required information for

check-in, the intermediate step of paper tape might well be

eliminated.

If this were done, no translate programme would be

necessary because punched cards do not require this. This

phase of the weekly programme would only require a card-

to-tape utility programme. Another alternative could be

that instead of punched cards, a monthly printout listing

of expected journal issues could be used. After a journal

issue is received, it could be crossed off the printed list,

marked, and sent to the shelves. At the end of the month

the printout would be sent to the claiming subsystem for

processing. Those titles not crossed off would require a

claims notice. The initial notice, both to the vendor and the

Digital Computer System

144

computer record, would be produced on the paper-tape

typewriter.

Subsequent claim notices would be issued by the claims

programme under computer control. Updating the computer

record with information about the issues that have been

received would be accomplished by the computer not being

notified. If no notice were received, programming would

provide for the computer record to be updated automatically

on the assumption that the issue had been received.

Digital Computer System

145

7

Computer Systems Architecture

The discipline that defines the conceptual structure and

functional behaviour of a computer system. It is analogous

to the architecture of a building, determining the overall

organization, the attributes of the component parts, and

how these parts are combined. It is related to, but different

from, computer implementation. Architecture consists of

those characteristics which affect the design and

development of software programs, whereas implementation

focuses on those characteristics which determine the relative

cost and performance of the system. The architect’s main

goal has long been to produce a computer that is as fast

as possible, within a given set of cost constraints. Over the

years, other goals have been added, such as making it

easier to run multiple programs concurrently or improving

the performance of programs written in higher-level

languages.

Digital Computer System

146

A computer system consists of four major components:

storage, processor, peripherals, and input/output

(communication). The storage system is used to keep data

and programs; the processor is the unit that controls the

operation of the system and carries out various

computations; the peripheral devices are used to

communicate with the outside world; and the input/output

system allows the previous components to communicate

with one another.

�������
The storage or memory of a computer system holds the

data that the computer will process and the instructions

that indicate what processing is to be done. In a digital

computer, these are stored in a form known as binary,

which means that each datum or instruction is represented

by a series of bits. Bits are conceptually combined into

larger units called bytes (usually 8 bits each) and words

(usually 8 to 64 bits each). A computer will generally have

several different kinds of storage devices, each organized to

hold one or more words of data. These types include registers,

main memory, and secondary or auxiliary storage.

Registers are the fastest and most costly storage units

in a computer. Normally contained within the processing

unit, registers hold data that are involved with the

computation currently being performed.

Main memory holds the data to be processed and the

instructions that specify what processing is to be done. A

major goal of the computer architect is to increase the

effective speed and size of a memory system without incurring

Digital Computer System

147

a large cost penalty. Two prevalent techniques for increasing

effective speed are interleaving and caching, while virtual

memory is a popular way to increase the effective size.

Interleaving involves the use of two or more independent

memory systems, combined in a way that makes them

appear to be a single, faster system. With caching, a small,

fast memory system contains the most frequently used

words from a slower, larger main memory.

Virtual memory is a technique whereby the programmer

is given the illusion of a very large main memory, when in

fact it has only a modest size. This is achieved by placing

the contents of the large, “virtual” memory on a large but

slow auxiliary storage device, and bringing portions of it into

main memory, as required by the programs, in a way that

is transparent to the programmer.

Auxiliary memory (sometimes called secondary storage)

is the slowest, lowest-cost, and highest-capacity computer

storage area. Programs and data are kept in auxiliary memory

when not in immediate use, so that auxiliary memory is

essentially a long-term storage medium. There are two basic

types of secondary storage: sequential and direct-access.

Sequential-access secondary storage devices, of which

magnetic tape is the most common, permit data to be

accessed in a linear sequence. A direct-access device is one

whose data may be accessed in any order. Disks and drums

are the most commonly encountered devices of this type.

Memory mapping is one of the most important aspects

of modern computer memory designs. In order to understand

its function, the concept of an address space must be

Digital Computer System

148

considered. When a program resides in a computer’s main

memory, there is a set of memory cells assigned to the

program and its data. This is known as the program’s

logical address space. The computer’s physical address

space is the set of memory cells actually contained in the

main memory. Memory mapping is simply the method by

which the computer translates between the computer’s

logical and physical address spaces. The most

straightforward mapping scheme involves use of a bias

register. Assignment of a different bias value to each program

in memory enables the programs to coexist without

interference.

Another strategy for mapping is known as paging. This

technique involves dividing both logical and physical address

spaces into equal-sized blocks called pages. Mapping is

achieved by means of a page map, which can be thought

of as a series of bias registers.

	��
������
A computer’s processor (processing unit) consists of a

control unit, which directs the operation of the system, and

an arithmetic and logic unit, which performs computational

operations. The design of a processing unit involves selection

of a register set, communication paths between these

registers, and a means of directing and controlling how

these operate. Normally, a processor is directed by a program,

which consists of a series of instructions that are kept in

main memory.

Although the process of decoding and executing

instructions is often carried out by logic circuitry, the

Digital Computer System

149

complexity of instruction sets can lead to very large and

cumbersome circuits for this purpose. To alleviate this

problem, a technique known as microprogramming was

developed. With microprogramming, each instruction is

actually a macrocommand that is carried out by a

microprogram, written in a microinstruction language. The

microinstructions are very simple, directing data to flow

between registers, memories, and arithmetic units.

It should be noted that microprogramming has nothing

to do with microprocessors. A microprocessor is a processor

implemented through a single, highly integrated circuit.

	���	
������ ����
������
�����
A typical computer system includes a variety of peripheral

devices such as printers, keyboards, and displays. These

devices translate electronic signals into mechanical motion

or light (or vice versa) so as to communicate with people.

There are two common approaches for connecting

peripherals and secondary storage devices to the rest of the

computer: The channel and the bus. A channel is essentially

a wire or group of wires between a peripheral device and

a memory device. A multiplexed channel allows several

devices to be connected to the same wire. A bus is a form

of multiplexed channel that can be shared by a large number

of devices. The overhead of sharing many devices means

that the bus has lower peak performance than a channel;

but for a system with many peripherals, the bus is more

economical than a large number of channels.

A computer controls the flow of data across buses or

channels by means of special instructions and other

Digital Computer System

150

mechanisms. The simplest scheme is known as program-

controlled input/output (I/O). Direct memory access I/O is

a technique by which the computer signals the device to

transmit a block of data, and the data are transmitted

directly to memory, without the processor needing to wait.

Interrupts are a form of signal by which a peripheral

device notifies a processor that it has completed transmitting

data. This is very helpful in a direct memory access scheme,

for the processor cannot always predict in advance how long

it will take to transmit a block of data. Architects often

design elaborate interrupt schemes to simplify the situation

where several peripherals are active simultaneously.

��������
��	����
A device that processes numerical information; more

generally, any device that manipulates symbolic information

according to specified computational procedures. The term

digital computer—or simply, computer—embraces

calculators, computer workstations, control computers

(controllers) for applications such as domestic appliances

and industrial processes, data-processing systems,

microcomputers, microcontrollers, multiprocessors, parallel

computers, personal computers, network servers, and

supercomputers.

A digital computer is an electronic computing machine

that uses the binary digits (bits) 0 and 1 to represent all

forms of information internally in digital form. Every

computer has a set of instructions that define the basic

functions it can perform. Sequences of these instructions

constitute machine-language programs that can be stored

Digital Computer System

151

in the computer and used to tailor it to an essentially

unlimited number of specialized applications. Calculators

are small computers specialized for mathematical

computations. General-purpose computers range from

pocket-sized personal digital assistants (notepad computers),

to medium-sized desktop computers (personal computers

and workstations), to large, powerful computers that are

shared by many users via a computer network. The vast

majority of digital computers now in use are inexpensive,

special-purpose microcontrollers that are embedded, often

invisibly, in such devices as toys, consumer electronic

equipment, and automobiles.

The main data-processing elements of a computer reside

in a small number of electronic integrated circuits (ICs) that

form a microprocessor or central processing unit (CPU).

Electronic technology allows a basic instruction such as

“add two numbers” to be executed many millions of times

per second. Other electronic devices are used for program

and data storage (memory circuits) and for communication

with external devices and human users (input-output

circuits). Nonelectronic (magnetic, optical, and mechanical)

devices also appear in computers. They are used to construct

input-output devices such as keyboards, monitors (video

screens), secondary memories, printers, sensors, and

mechanical actuators.

Information is stored and processed by computers in

fixed-sized units called words. Common word sizes are 8,

16, 32, and 64 bits. Four-bit words can be used to encode

the first 16 integers. By increasing the word size, the number

of different items that can be represented and their precision

Digital Computer System

152

can be made as large as desired. A common word size in

personal computers is 32 bits, which allows 232 =

4,294,967,296 distinct numbers to be represented.

Computer words can represent many different forms of

information, not just numbers. For example, 8-bit words

called characters or bytes are used to encode text symbols

(the 10 decimal digits, the 52 upper-and lowercase letters

of the English alphabet, and punctuation marks). A widely

used code of this type is ASCII (American Standard Code

for Information Interchange). Visual information can be

reduced to black and white dots (pixels) corresponding to

0’s and 1’s. Audio information can be digitized by mapping

a small element of sound into a binary word; for example,

a compact disk (CD) uses several million 16-bit words to

store an audio recording. Logical quantities encountered in

reasoning or decision making can be captured by associating

1 with true and 0 with false. Hence, most forms of information

are readily reduced to a common, numberlike binary format

suitable for processing by computer.

����
�
��	������
The operation of a digital computer can be viewed at

various levels of abstraction, which are characterized by

components of different complexity. These levels range from

the low, transistor level seen by an electronic circuit designer

to the high, system level seen by a computer user. A useful

intermediate level is the logic level, where the basic

components process individual bits. By using other basic

components called gates, logic circuits can be constructed

to perform many useful operations.

Digital Computer System

153

������� ������������
An accumulator is a digital system that constitutes a

simple processor capable of executing a few instructions.

By introducing more data-processing circuits and registers,

as well as control circuits for a larger set of instructions,

a practical, general-purpose processor can be constructed.

Such a processor forms the “brain” of every computer, and

is referred to as its central processing unit. A CPU

implemented on a single integrated-circuit chip is called a

microprocessor.

A typical computer program is too large to store in the

CPU, so another component called the main memory is

used to store a program’s instructions and associated data

while they are being executed (Fig. 1). Main memory consists

of high-speed integrated circuits designed to allow storage

and retrieval of information one word at a time. All words

in main memory can be accessed with equal ease; hence

this is also called a random-access memory (RAM).

A computer program is processed by loading it into main

memory and then transferring its instructions and data one

word (or a few words) at a time to the CPU for processing.

Hence, there is a continual flow of instructions and data

words between the CPU and its main memory. As millions

of words must be transferred per second, a high-speed

communication link is needed between the CPU and main

memory. The system bus fills this role.

A computer has input-output (I/O) control circuits and

buses to connect it to external input-output devices (also

called peripherals). Typical input-output devices are a

Digital Computer System

154

keyboard, which is an input device, and a printer, which

is an output device. Because most computers need more

storage space than main memory can supply, they also

employ secondary memory units which form part of the

computer’s input-output subsystem. Common secondary

memory devices are hard disk drives, flexible (floppy) disk

drives, and magnetic tape units. Compared to main memory,

secondary memories employ storage media (magnetic disks

and tapes) that have higher capacity and lower cost. However,

secondary memories are also significantly slower than main

memory.

No explicit instructions are needed for input-output

operations if input-output devices share with main memory

the available memory addresses. This is known as memory-

mapped input-output, and allows load and store instructions

to be used to transfer data between the CPU and input-

output devices. In general, a computer’s instruction set

should include a selection of instructions of the following

three types: (1) Data-transfer instructions that move data

unchanged between the CPU, main memory, and input-

output devices. (2) Data-processing instructions that perform

numerical operations such as add, subtract, multiply, and

divide, as well as nonnumerical (logical) operations, such

as NOT, AND, EXCLUSIVE-OR, and SHIFT. (3) Program-control

instructions that can change the order in which instructions

are executed, for example branch, branch-on-zero, call

procedure, and return from procedure.

The instruction unit (I unit) of a CPU, also called the

program control unit, is responsible for fetching instructions

Digital Computer System

155

from main memory, using the program counter as the

instruction address register. The opcode of a newly fetched

instruction I is placed in the instruction register. The opcode

is then decoded to determine the sequence of actions required

to execute I. These may include the loading or storing of

data assigned to main memory, in which case the I unit

computes all needed addresses and issues all needed control

signals to the CPU and the system bus. Data are processed

in the CPU’s execution unit (E unit), also called the datapath,

which contains a set of registers used for temporary storage

of data operands, and an arithmetic logic unit (ALU), which

contains the main data-processing circuits.

��	�������

���
�������	�
�
���������������

Some practitioners of computer architecture at companies

such as Intel and AMD use more fine distinctions:

• Macroarchitecture-architectural layers that are more

abstract than microarchitecture, e.g. ISA

• ISA (Instruction Set Architecture)-as defined above

• Assembly ISA-a smart assembler may convert an

abstract assembly language common to a group of

machines into slightly different machine language for

different implementations

• Programmer Visible Macroarchitecture-higher level

language tools such as compilers may define a

consistent interface or contract to programmers using

them, abstracting differences between underlying ISA,

UISA, and microarchitectures. E.g. the C, C++, or

Digital Computer System

156

Java standards define different Programmer Visible

Macroarchitecture-although in practice the C

microarchitecture for a particular computer includes.

• UISA (Microcode Instruction Set Architecture)-a family

of machines with dif ferent hardware level

microarchitectures may share a common microcode

architecture, and hence a UISA.

• Pin Architecture-the set of functions that a

microprocessor is expected to provide, from the point

of view of a hardware platform. E.g. the x86 A20M,

FERR/IGNNE or FLUSH pins, and the messages that

the processor is expected to emit after completing a

cache invalidation so that external caches can be

invalidated. Pin architecture functions are more flexible

than ISA functions-external hardware can adapt to

changing encodings, or changing from a pin to a

message-but the functions are expected to be provided

in successive implementations even if the manner of

encoding them changes.

������������
The exact form of a computer system depends on the

constraints and goals for which it was optimized. Computer

architectures usually trade off standards, cost, memory

capacity, latency and throughput. Sometimes other

considerations, such as features, size, weight, reliability,

expandability and power consumption are factors as well.

The most common scheme carefully chooses the

bottleneck that most reduces the computer’s speed. Ideally,

the cost is allocated proportionally to assure that the data

Digital Computer System

157

rate is nearly the same for all parts of the computer, with

the most costly part being the slowest. This is how skillful

commercial integrators optimize personal computers.

	��������
�
Computer performance is often described in terms of

clock speed (usually in MHz or GHz). This refers to the

cycles per second of the main clock of the CPU. However,

this metric is somewhat misleading, as a machine with a

higher clock rate may not necessarily have higher

performance. As a result manufacturers have moved away

from clock speed as a measure of performance.

Computer performance can also be measured with the

amount of cache a processor has. If the speed, MHz or GHz,

were to be a car then the cache is like the gas tank. No

matter how fast the car goes, it will still need to get gas.

The higher the speed, and the greater the cache, the faster

a processor runs.

Modern CPUs can execute multiple instructions per clock

cycle, which dramatically speeds up a program. Other factors

influence speed, such as the mix of functional units, bus

speeds, available memory, and the type and order of

instructions in the programs being run.

There are two main types of speed, latency and

throughput. Latency is the time between the start of a

process and its completion. Throughput is the amount of

work done per unit time. Interrupt latency is the guaranteed

maximum response time of the system to an electronic

event (e.g. when the disk drive finishes moving some data).

Performance is affected by a very wide range of design

Digital Computer System

158

choices — for example, pipelining a processor usually makes

latency worse (slower) but makes throughput better.

Computers that control machinery usually need low interrupt

latencies. These computers operate in a real-time

environment and fail if an operation is not completed in a

specified amount of time. For example, computer-controlled

anti-lock brakes must begin braking almost immediately

after they have been instructed to brake.

The performance of a computer can be measured using

other metrics, depending upon its application domain. A

system may be CPU bound (as in numerical calculation),

I/O bound (as in a webserving application) or memory

bound (as in video editing). Power consumption has become

important in servers and portable devices like laptops.

Benchmarking tries to take all these factors into account

by measuring the time a computer takes to run through

a series of test programs. Although benchmarking shows

strengths, it may not help one to choose a computer. Often

the measured machines split on different measures. For

example, one system might handle scientific applications

quickly, while another might play popular video games more

smoothly. Furthermore, designers have been known to add

special features to their products, whether in hardware or

software, which permit a specific benchmark to execute

quickly but which do not offer similar advantages to other,

more general tasks.

	�����
�����	����
Power consumption is another design criterion that factors

in the design of modern computers. Power efficiency can

Digital Computer System

159

often be traded for performance or cost benefits. With the

increasing power density of modern circuits as the number

of transistors per chip scales (Moore’s Law), power efficiency

has increased in importance. Recent processor designs such

as the Intel Core 2 put more emphasis on increasing power

efficiency. Also, in the world of embedded computing, power

efficiency has long been and remains the primary design

goal next to performance.

�������� ����
�
��
���
�����������
�����
�

Digital electronics are systems that represent signals as

discrete levels, rather than as a continuous range. In most

cases the number of states is two, and these states are

represented by two voltage levels: one near to zero volts and

one at a higher level depending on the supply voltage in use.

These two levels are often represented as “Low” and “High.”

The fundamental advantage of digital techniques stem

from the fact it is easier to get an electronic device to switch

into one of a number of known states than to accurately

reproduce a continuous range of values.

Digital electronics are usually made from large assemblies

of logic gates, simple electronic representations of Boolean

logic functions.

����������
One advantage of digital circuits when compared to analog

circuits is that signals represented digitally can be

transmitted without degradation due to noise. For example,

a continuous audio signal, transmitted as a sequence of 1s

Digital Computer System

160

and 0s, can be reconstructed without error provided the

noise picked up in transmission is not enough to prevent

identification of the 1s and 0s. An hour of music can be

stored on a compact disc as about 6 billion binary digits.

In a digital system, a more precise representation of a

signal can be obtained by using more binary digits to

represent it. While this requires more digital circuits to

process the signals, each digit is handled by the same kind

of hardware. In an analog system, additional resolution

requires fundamental improvements in the linearity and

noise charactersitics of each step of the signal chain.

Computer-controlled digital systems can be controlled

by software, allowing new functions to be added without

changing hardware. Often this can be done outside of the

factory by updating the product’s software. So, the product’s

design errors can be corrected after the product is in a

customer’s hands.

Information storage can be easier in digital systems than

in analog ones. The noise-immunity of digital systems permits

data to be stored and retrieved without degradation. In an

analog system, noise from aging and wear degrade the

information stored. In a digital system, as long as the total

noise is below a certain level, the information can be

recovered perfectly.

�������������
In some cases, digital circuits use more energy than

analog circuits to accomplish the same tasks, thus producing

more heat. In portable or battery-powered systems this can

limit use of digital systems.

Digital Computer System

161

For example, battery-powered cellular telephones often

use a low-power analog front-end to amplify and tune in

the radio signals from the base station. However, a base

station has grid power and can use power-hungry, but very

flexible software radios. Such base stations can be easily

reprogrammed to process the signals used in new cellular

standards.

Digital circuits are sometimes more expensive, especially

in small quantities.

The sensed world is analog, and signals from this world

are analog quantities. For example, light, temperature,

sound, electrical conductivity, electric and magnetic fields

are analog. Most useful digital systems must translate from

continuous analog signals to discrete digital signals. This

causes quantization errors.

Quantization error can be reduced if the system stores

enough digital data to represent the signal to the desired

degree of fidelity. The Nyquist-Shannon sampling theorem

provides an important guideline as to how much digital data

is needed to accurately portray a given analog signal.

In some systems, if a single piece of digital data is lost

or misinterpreted, the meaning of large blocks of related

data can completely change. Because of the cliff effect, it

can be difficult for users to tell if a particular system is right

on the edge of failure, or if it can tolerate much more noise

before failing.

Digital fragility can be reduced by designing a digital

system for robustness. For example, a parity bit or other

error management method can be inserted into the signal

Digital Computer System

162

path. These schemes help the system detect errors, and

then either correct the errors, or at least ask for a new copy

of the data. In a state-machine, the state transition logic

can be designed to catch unused states and trigger a reset

sequence or other error recovery routine.

Embedded software designs that employ Immunity Aware

Programming, such as the practice of filling unused program

memory with interrupt instructions that point to an error

recovery routine. This helps guard against failures that

corrupt the microcontroller’s instruction pointer which could

otherwise cause random code to be executed.

Digital memory and transmission systems can use

techniques such as error detection and correction to use

additional data to correct any errors in transmission and

storage.

On the other hand, some techniques used in digital

systems make those systems more vulnerable to single-bit

errors. These techniques are acceptable when the underlying

bits are reliable enough that such errors are highly unlikely.

A single-bit error in audio data stored directly as linear

pulse code modulation (such as on a CD-ROM) causes, at

worst, a single click. Instead, many people use audio

compression to save storage space and download time, even

though a single-bit error may corrupt the entire song.

������� ������� ��� ��������
��
����
Digital circuits are made from analog components. The

design must assure that the analog nature of the components

doesn’t dominate the desired digital behaviour. Digital

Digital Computer System

163

systems must manage noise and timing margins, parasitic

inductances and capacitances, and filter power connections.

Bad designs have intermittent problems such as

“glitches”, vanishingly-fast pulses that may trigger some

logic but not others, “runt pulses” that do not reach valid

“threshold” voltages, or unexpected (“undecoded”)

combinations of logic states.

Since digital circuits are made from analog components,

digital circuits calculate more slowly than low-precision

analog circuits that use a similar amount of space and

power. However, the digital circuit will calculate more

repeatably, because of its high noise immunity. On the

other hand, in the high-precision domain (for example,

where 14 or more bits of precision are needed), analog

circuits require much more power and area than digital

equivalents.

������
����
A digital circuit is often constructed from small electronic

circuits called logic gates. Each logic gate represents a

function of boolean logic. A logic gate is an arrangement of

electrically controlled switches.

The output of a logic gate is an electrical flow or voltage,

that can, in turn, control more logic gates. Logic gates often

use the fewest number of transistors in order to reduce

their size, power consumption and cost, and increase their

reliability.

Integrated circuits are the least expensive way to make

logic gates in large volumes. Integrated circuits are usually

Digital Computer System

164

designed by engineers using electronic design automation

software.

Another form of digital circuit is constructed from lookup

tables, (many sold as “programmable logic devices”, though

other kinds of PLDs exist). Lookup tables can perform the

same functions as machines based on logic gates, but can

be easily reprogrammed without changing the wiring. This

means that a designer can often repair design errors without

changing the arrangement of wires. Therefore, in small

volume products, programmable logic devices are often the

preferred solution. They are usually designed by engineers

using electronic design automation software.

When the volumes are medium to large, and the logic

can be slow, or involves complex algorithms or sequences,

often a small microcontroller is programmed to make an

embedded system. These are usually programmed by

software engineers.

When only one digital circuit is needed, and its design

is totally customized, as for a factory production line

controller, the conventional solution is a programmable

logic controller, or PLC. These are usually programmed by

electricians, using ladder logic.

����
����� ��� �������� �������
Engineers use many methods to minimize logic functions,

in order to reduce the circuit’s complexity. When the

complexity is less, the circuit also has fewer errors and less

electronics, and is therefore less expensive.

The most widely used simplification is a minimization

algorithm like the Espresso heuristic logic minimizer within

Digital Computer System

165

a CAD system, although historically, binary decision

diagrams, an automated Quine–McCluskey algorithm, truth

tables, Karnaugh Maps, and Boolean algebra have been

used.

Representations are crucial to an engineer’s design of

digital circuits. Some analysis methods only work with

particular representations.

The classical way to represent a digital circuit is with an

equivalent set of logic gates. Another way, often with the

least electronics, is to construct an equivalent system of

electronic switches (usually transistors). One of the easiest

ways is to simply have a memory containing a truth table.

The inputs are fed into the address of the memory, and the

data outputs of the memory become the outputs.

For automated analysis, these representations have digital

file formats that can be processed by computer programs.

Most digital engineers are very careful to select computer

programs (“tools”) with compatible file formats.

To choose representations, engineers consider types of

digital systems. Most digital systems divide into

“combinational systems” and “sequential systems.” A

combinational system always presents the same output

when given the same inputs. It is basically a representation

of a set of logic functions, as already discussed.

A sequential system is a combinational system with

some of the outputs fed back as inputs. This makes the

digital machine perform a “sequence” of operations. The

simplest sequential system is probably a flip flop, a

mechanism that represents a binary digit or “bit”.

Digital Computer System

166

Sequential systems are often designed as state machines.

In this way, engineers can design a system’s gross behaviour,

and even test it in a simulation, without considering all the

details of the logic functions.

Sequential systems divide into two further subcategories.

“Synchronous” sequential systems change state all at once,

when a “clock” signal changes state. “Asynchronous”

sequential systems propagate changes whenever inputs

change. Synchronous sequential systems are made of well-

characterized asynchronous circuits such as flip-flops, that

change only when the clock changes, and which have

carefully designed timing margins.

The usual way to implement a synchronous sequential

state machine is divide it into a piece of combinational logic

and a set of flip flops called a “state register.” Each time

a clock signal ticks, the state register captures the feedback

generated from the previous state of the combinational

logic, and feeds it back as an unchanging input to the

combinational part of the state machine. The fastest rate

of the clock is set by the most time-consuming logic

calculation in the combinational logic.

The state register is just a representation of a binary

number. If the states in the state machine are numbered

(easy to arrange), the logic function is some combinational

logic that produces the number of the next state.

In comparison, asynchronous systems are very hard to

design because all possible states, in all possible timings

must be considered. The usual method is to construct a

table of the minimum and maximum time that each such

Digital Computer System

167

state can exist, and then adjust the circuit to minimize the

number of such states, and force the circuit to periodically

wait for all of its parts to enter a compatible state. (This

is called “self-resynchronization.”) Without such careful

design, it is easy to accidentally produce asynchronous

logic that is “unstable”, that is, real electronics will have

unpredictable results because of the cumulative delays

caused by small variations in the values of the electronic

components. Certain circuits (such as the synchronizer flip-

flops, switch debouncers, and the like which allow external

unsynchronized signals to enter synchronous logic circuits)

are inherently asynchronous in their design and must be

analyzed as such.

As of 2005, almost all digital machines are synchronous

designs because it is much easier to create and verify a

synchronous design—the software currently used to simulate

digital machines does not yet handle asynchronous designs.

However, asynchronous logic is thought to be superior, if

it can be made to work, because its speed is not constrained

by an arbitrary clock; instead, it simply runs at the maximum

speed permitted by the propagation rates of the logic gates

from which it is constructed. Building an asynchronous

circuit using faster parts implicitly makes the circuit “go”

faster.

More generally, many digital systems are data flow

machines. These are usually designed using synchronous

register transfer logic, using hardware description languages

such as VHDL or Verilog.

In register transfer logic, binary numbers are stored in

groups of flip flops called registers. The outputs of each

Digital Computer System

168

register are a bundle of wires called a “bus” that carries that

number to other calculations. A calculation is simply a

piece of combinational logic. Each calculation also has an

output bus, and these may be connected to the inputs of

several registers. Sometimes a register will have a multiplexer

on its input, so that it can store a number from any one

of several buses. Alternatively, the outputs of several items

may be connected to a bus through buffers that can turn

off the output of all of the devices except one. A sequential

state machine controls when each register accepts new data

from its input.

In the 1980s, some researchers discovered that almost

all synchronous register-transfer machines could be

converted to asynchronous designs by using first-in-first-

out synchronization logic. In this scheme, the digital machine

is characterized as a set of data flows. In each step of the

flow, an asynchronous “synchronization circuit” determines

when the outputs of that step are valid, and presents a

signal that says, “grab the data” to the stages that use that

stage’s inputs. It turns out that just a few relatively simple

synchronization circuits are needed.

The most general-purpose register-transfer logic machine

is a computer. This is basically an automatic binary abacus.

The control unit of a computer is usually designed as a

microprogram run by a microsequencer. A microprogram is

much like a player-piano roll. Each table entry or “word”

of the microprogram commands the state of every bit that

controls the computer. The sequencer then counts, and the

count addresses the memory or combinational logic machine

that contains the microprogram. The bits from the

Digital Computer System

169

microprogram control the arithmetic logic unit, memory

and other parts of the computer, including the

microsequencer itself.

In this way, the complex task of designing the controls

of a computer is reduced to a simpler task of programming

a relatively independent collection of much simpler logic

machines.

Computer architecture is a specialized engineering activity

that tries to arrange the registers, calculation logic, buses

and other parts of the computer in the best way for some

purpose. Computer architects have applied large amounts

of ingenuity to computer design to reduce the cost and

increase the speed and immunity to programming errors of

computers. An increasingly common goal is to reduce the

power used in a battery-powered computer system, such as

a cell-phone. Many computer architects serve an extended

apprenticeship as microprogrammers.

“Specialized computers” are usually a conventional

computer with a special-purpose microprogram.

���������� ������� �����
To save costly engineering effort, much of the effort of

designing large logic machines has been automated. The

computer programs are called “electronic design automation

tools” or just “EDA.” Simple truth table-style descriptions

of logic are often optimized with EDA that automatically

produces reduced systems of logic gates or smaller lookup

tables that still produce the desired outputs. The most

common example of this kind of software is the Espresso

heuristic logic minimizer.

Digital Computer System

170

Most practical algorithms for optimizing large logic

systems use algebraic manipulations or binary decision

diagrams, and there are promising experiments with genetic

algorithms and annealing optimizations.

To automate costly engineering processes, some EDA

can take state tables that describe state machines and

automatically produce a truth table or a function table for

the combinatorial part of a state machine. The state table

is a piece of text that lists each state, together with the

conditions controlling the transitions between them and the

belonging output signals.

It is common for the function tables of such computer-

generated state-machines to be optimized with logic-

minimization software such as Minilog.

Often, real logic systems are designed as a series of sub-

projects, which are combined using a “tool flow.” The tool

flow is usually a “script,” a simplified computer language

that can invoke the software design tools in the right order.

Tool flows for large logic systems such as microprocessors

can be thousands of commands long, and combine the work

of hundreds of engineers.

Writing and debugging tool flows is an established

engineering speciality in companies that produce digital

designs. The tool flow usually terminates in a detailed

computer file or set of files that describe how to physically

construct the logic. Often it consists of instructions to draw

the transistors and wires on an integrated circuit or a

printed circuit board.

Digital Computer System

171

Parts of tool flows are “debugged” by verifying the outputs

of simulated logic against expected inputs. The test tools

take computer files with sets of inputs and outputs, and

highlight discrepancies between the simulated behaviour

and the expected behaviour.

Once the input data is believed correct, the design itself

must still be verified for correctness. Some tool flows verify

designs by first producing a design, and then scanning the

design to produce compatible input data for the tool flow.

If the scanned data matches the input data, then the tool

flow has probably not introduced errors.

The functional verification data are usually called “test

vectors.” The functional test vectors may be preserved and

used in the factory to test that newly constructed logic

works correctly. However, functional test patterns don’t

discover common fabrication faults. Production tests are

often designed by software tools called “test pattern

generators.” These generate test vectors by examining the

structure of the logic and systematically generating tests for

particular faults. This way the fault coverage can closely

approach 100%, provided the design is properly made

testable.

Once a design exists, and is verified and testable, it often

needs to be processed to be manufacturable as well. Modern

integrated circuits have features smaller than the wavelength

of the light used to expose the photoresist. Manufacturability

software adds interference patterns to the exposure masks

to eliminate open-circuits, and enhance the masks’ resolution

and contrast.

Digital Computer System

172

����������������������
A large logic machine (say,. with more than a hundred

logical variables) can have an astronomical number of

possible states. Obviously, in the factory, testing every state

is impractical if testing each state takes a microsecond, and

there are more states than the number of microseconds

since the universe began. Unfortunately, this ridiculous-

sounding case is typical.

Fortunately, large logic machines are almost always

designed as assemblies of smaller logic machines. To save

time, the smaller sub-machines are isolated by permanently-

installed “design for test” circuitry, and are tested

independently.

One common test scheme known as “scan design” moves

test bits serially (one after another) from external test

equipment through one or more serial shift registers known

as “scan chains”. Serial scans have only one or two wires

to carry the data, and minimize the physical size and expense

of the infrequently-used test logic.

After all the test data bits are in place, the design is

reconfigured to be in “normal mode” and one or more clock

pulses are applied, to test for faults (e.g. stuck-at low or

stuck-at high) and capture the test result into flip-flops

and/or latches in the scan shift register(s). Finally, the

result of the test is shifted out to the block boundary and

compared against the predicted “good machine” result.

In a board-test environment, serial to parallel testing has

been formalized with a standard called “JTAG” (named after

the “Joint Test Action Group” that proposed it).

Digital Computer System

173

Another common testing scheme provides a test mode

that forces some part of the logic machine to enter a “test

cycle.” The test cycle usually exercises large independent

parts of the machine.

����������
Several numbers determine the practicality of a system

of digital logic. Engineers explored numerous electronic

devices to get an ideal combination of fanout, speed, low

cost and reliability.

The cost of a logic gate is crucial. In the 1930s, the

earliest digital logic systems were constructed from telephone

relays because these were inexpensive and relatively reliable.

After that, engineers always used the cheapest available

electronic switches that could still fulfil the requirements.

The earliest integrated circuits were a happy accident.

They were constructed not to save money, but to save

weight, and permit the Apollo Guidance Computer to control

an inertial guidance system for a spacecraft. The first

integrated circuit logic gates cost nearly $50 (in 1960 dollars,

when an engineer earned $10,000/year). To everyone’s

surprise, by the time the circuits were mass-produced, they

had become the least-expensive method of constructing

digital logic. Improvements in this technology have driven

all subsequent improvements in cost.

With the rise of integrated circuits, reducing the absolute

number of chips used represented another way to save

costs. The goal of a designer is not just to make the simplest

circuit, but to keep the component count down. Sometimes

this results in slightly more complicated designs with respect

Digital Computer System

174

to the underlying digital logic but nevertheless reduces the

number of components, board size, and even power

consumption.

For example, in some logic families, NAND gates are the

simplest digital gate to build. All other logical operations

can be implemented by NAND gates. If a circuit already

required a single NAND gate, and a single chip normally

carried four NAND gates, then the remaining gates could

be used to implement other logical operations like logical

and. This could eliminate the need for a separate chip

containing those different types of gates.

The “reliability” of a logic gate describes its mean time

between failure (MTBF). Digital machines often have millions

of logic gates. Also, most digital machines are “optimized”

to reduce their cost. The result is that often, the failure of

a single logic gate will cause a digital machine to stop

working.

Digital machines first became useful when the MTBF for

a switch got above a few hundred hours. Even so, many

of these machines had complex, well-rehearsed repair

procedures, and would be nonfunctional for hours because

a tube burned-out, or a moth got stuck in a relay. Modern

transistorized integrated circuit logic gates have MTBFs of

nearly a trillion (1×1012) hours, and need them because they

have so many logic gates.

Fanout describes how many logic inputs can be controlled

by a single logic output. The minimum practical fanout is

about five. Modern electronic logic using CMOS transistors

for switches have fanouts near fifty, and can sometimes go

Digital Computer System

175

much higher. The “switching speed” describes how many

times per second an inverter (an electronic representation

of a “logical not” function) can change from true to false and

back. Faster logic can accomplish more operations in less

time. Digital logic first became useful when switching speeds

got above fifty hertz, because that was faster than a team

of humans operating mechanical calculators. Modern

electronic digital logic routinely switches at five gigahertz

(5×109 hertz), and some laboratory systems switch at more

than a terahertz (1×1012 hertz).

����
���������
Design started with relays. Relay logic was relatively

inexpensive and reliable, but slow. Occasionally a mechanical

failure would occur. Fanouts were typically about ten, limited

by the resistance of the coils and arcing on the contacts

from high voltages.

Later, vacuum tubes were used. These were very fast,

but generated heat, and were unreliable because the

filaments would burn out. Fanouts were typically five to

seven, limited by the heating from the tubes’ current. In the

1950s, special “computer tubes” were developed with

filaments that omitted volatile elements like silicon. These

ran for hundreds of thousands of hours.

The first semiconductor logic family was Resistor-

transistor logic. This was a thousand times more reliable

than tubes, ran cooler, and used less power, but had a very

low fan-in of three. Diode-transistor logic improved the

fanout up to about seven, and reduced the power. Some

DTL designs used two power-supplies with alternating layers

Digital Computer System

176

of NPN and PNP transistors to increase the fanout. Transistor

logic (TTL) was a great improvement over these. In early

devices, fanout improved to ten, and later variations reliably

achieved twenty. TTL was also fast, with some variations

achieving switching times as low as twenty nanoseconds.

TTL is still used in some designs.

Another contender was emitter coupled logic. This is very

fast but uses a lot of power. It’s now used mostly in radio-

frequency circuits.

Modern integrated circuits mostly use variations of CMOS,

which is acceptably fast, very small and uses very little

power. Fanouts of forty or more are possible, with some

speed penalty.

�������
�����
�����

It is possible to construct non-electronic digital

mechanisms. In principle, any technology capable of

representing discrete states and representing logic operations

could be used to build mechanical logic. MIT students

Erlyne Gee, Edward Hardebeck, Danny Hillis (co-author of

The Connection Machine), Margaret Minsky and brothers

Barry and Brian Silverman, built two working computers

from Tinker toys, string, a brick, and a sharpened pencil.

The Tinkertoy computer is supposed to be in the Houston

Museum of Natural Science.

Hydraulic, pneumatic and mechanical versions of logic

gates exist and are used in situations where electricity

cannot be used. The first two types are considered under

the heading of fluidics. One application of fluidic logic is in

military hardware that is likely to be exposed to a nuclear

Digital Computer System

177

electromagnetic pulse (nuclear EMP, or NEMP) that would

destroy electrical circuits.

Mechanical logic is frequently used in inexpensive

controllers, such as those in washing machines. Famously,

the first computer design, by Charles Babbage, was designed

to use mechanical logic. Mechanical logic might also be

used in very small computers that could be built by

nanotechnology.

Another example is that if two particular enzymes are

required to prevent the construction of a particular protein,

this is the equivalent of a biological “NAND” gate.

��
����������	�����
The discovery of superconductivity has enabled the

development of Rapid Single Flux Quantum (RSFQ) circuit

technology, which uses Josephson junctions instead of

transistors. Most recently, attempts are being made to

construct purely optical computing systems capable of

processing digital information using nonlinear optical

elements.

���������������������
�
Boolean algebra (or Boolean logic) is a logical calculus

of truth values, developed by George Boole in the 1990s.

It resembles the algebra of real numbers, but with the

numeric operations of multiplication xy, addition x + y, and

negation “x replaced by the respective logical operations of

conjunction x’”y, disjunction x(“y, and complement ¬x. The

Boolean operations are these and all other operations that

can be built from these, such as x’”(y(“z). These turn out

to coincide with the set of all operations on the set {0,1} that

Digital Computer System

178

take only finitely many arguments; there are 22n such

operations when there are n arguments.

The laws of Boolean algebra can be defined axiomatically

as certain equations called axioms together with their logical

consequences called theorems, or semantically as those

equations that are true for every possible assignment of 0

or 1 to their variables. The axiomatic approach is sound and

complete in the sense that it proves respectively neither

more nor fewer laws than the semantic approach.

������
Boolean algebra is the algebra of two values. These are

usually taken to be 0 and 1, as we shall do here, although

F and T, false and true, etc. are also in common use. For

the purpose of understanding Boolean algebra any Boolean

domain of two values will do.

Regardless of nomenclature, the values are customarily

thought of as essentially logical in character and are therefore

referred to as truth values, in contrast to the natural numbers

or the reals which are considered numerical values. On the

other hand the algebra of the integers modulo 2, while

ostensibly just as numeric as the integers themselves, was

shown to constitute exactly Boolean algebra, originally by

I.I. Zhegalkin in 1927 and rediscovered independently in

the west by Marshall Stone in 1936. So in fact there is some

ambiguity in the true nature of Boolean algebra: it can be

viewed as either logical or numeric in character.

More generally Boolean algebra is the algebra of values

from any Boolean algebra as a model of the laws of Boolean

algebra. For example the bit vectors of a given length, as

Digital Computer System

179

with say 32-bit computer words, can be combined with

Boolean operations in the same way as individual bits,

thereby forming a 232-element Boolean algebra under those

operations. Any such combination applies the same Boolean

operation to all bits simultaneously.

This passage from the Boolean algebra of 0 and 1 to

these more general Boolean algebras is the Boolean

counterpart of the passage from the algebra of the ring of

integers to the algebra of commutative rings in general. The

two-element Boolean algebra is the prototypical Boolean

algebra in the same sense as the ring of integers is the

prototypical commutative ring. Boolean logic as the subject

matter of this article is independent of the choice of Boolean

algebra (the same equations hold of every nontrivial Boolean

algebra); hence, there is no need here to consider any

Boolean algebra other than the two-element one. The article

on Boolean algebra (structure) treats Boolean algebras

themselves.

���������������������������
	�
	��������
����������

A simple indicator of a CPU’s performance is the frequency

f of its central timing signal (clock), measured in millions

of clock signals issued per second or megahertz (MHz). The

clock frequency depends on the integrated-circuit technology

used; frequencies of several hundred megahertz are

achievable with current technology. Each clock signal triggers

execution of a basic instruction such as a fixed-point

addition; hence, the time required to execute such an

instruction (the clock cycle time) is 1/f microseconds.

Digital Computer System

180

Complex instructions like multiplication or operations on

floating-point numbers require several clock cycles to

complete their execution. Another measure of CPU

performance is the (average) instruction execution rate,

measured in millions of instructions per second (MIPS).

Instruction execution time is strongly affected by the

time to move instructions or data between the CPU and

main memory. The time required by the CPU to access a

word in main memory is typically about five times longer

than the CPU’s clock cycle time. This disparity in speed has

existed since the earliest computers despite efforts to develop

memory circuits that would be fast enough to keep up with

the fastest CPUs. Maximum performance requires the CPU

to be supplied with a steady flow of instructions that need

to be executed. This flow is disrupted by branch instructions,

which account for 20% or more of the instructions in a

typical program.

To deal with the foregoing issues, various performance-

enhancing features have been incorporated into the design

of computers. The communication bottleneck between the

CPU and main memory is reduced by means of a cache,

which is a special memory unit inserted between the two

units. The cache is smaller than main memory but can be

accessed more rapidly, and is often placed on the same

integrated-circuit chip as the CPU. Its effect is to reduce

the average time required by the CPU to send information

to or receive information from the memory subsystem. Special

logic circuits support the complex flow of information among

main memory, the cache, and the registers of the CPU.

However, the cache is largely invisible to the programs being

Digital Computer System

181

executed. The instruction execution rate can be increased

by executing several instructions concurrently. One approach

is to employ several E units that are tailored to different

instruction types. Examples are an integer unit designed

to execute fixed-point instructions and a floating-point unit

designed for floating-point instructions. The CPU can then

execute a fixed-point instruction and a floating-point

instruction at the same time. Processors that execute several

instructions in parallel in this way are called superscalar.

Another speedup technique called pipelining allows

several instructions to be processed simultaneously in special

circuits called pipelines. Execution of an instruction is

broken into several consecutive steps, each of which can

be assigned to a separate stage of the pipeline. This makes

it possible for an n-stage E unit to overlap the execution

of up to n different instructions. A pipeline processing

circuit resembles an assembly line on which many products

are in various stages of manufacture at the same time. The

ability of a CPU to execute several instructions at the same

time by using multiple or pipelined E units is highly

dependent on the availability of instructions of the right

type at the right time in the program being executed. A

useful measure of the performance of a CPU that employs

internal parallelism is the average number of clock cycles

per instruction (CPI) needed to execute a representative set

of programs.

��
�� ���� ���
�
A software implementation of a complex operation like

multiply is slower than the corresponding hardware

Digital Computer System

182

implementation. Consequently, as advances in IC technology

lowered the cost of hardware circuits, instruction sets tended

to increase in size and complexity. By the mid-1980s, many

microprocessors had instructions of several hundred

different types, characterized by diverse formats, memory

addressing modes, and execution times. The heterogeneous

instruction sets of these complex instruction set computers

(CISCs) have some disadvantages. Complex instructions

require more processing circuits, which tend to make CISCs

large and expensive. Moreover, the decoding and execution

of complex instruction can slow down the processing of

simple instructions.

To address the defects of CISCs, a new class of fast

computers referred to as reduced instruction set computers

(RISCs) was introduced. RISCs are characterized by fast,

efficient—but not necessarily small—instruction sets. The

following features are common to most RISCs: (1) All

instructions are of fixed length and have just a few opcode

formats and addressing modes. (2) The only instructions

that address memory are load and store instructions; all

other instructions require their operands to be placed in

CPU registers. (3) The fetching and processing of most

instructions is overlapped in pipelined fashion. In computer

engineering, computer architecture is the conceptual design

and fundamental operational structure of a computer system.

It is a blueprint and functional description of requirements

and design implementations for the various parts of a

computer, focusing largely on the way by which the central

processing unit (CPU) performs internally and accesses

addresses in memory.

Digital Computer System

183

It may also be defined as the science and art of selecting

and interconnecting hardware components to create

computers that meet functional, performance and cost goals.

��	����� ��

���
�����
��	������ ��� �����
�
������������
���������

• Instruction set architecture, or ISA, is the abstract

image of a computing system that is seen by a machine

language (or assembly language) programmer,

including the instruction set, word size, memory

address modes, processor registers, and address and

data formats.

• Microarchitecture, also known as Computer

organization is a lower level, more concrete and

detailed, description of the system that involves how

the constituent parts of the system are interconnected

and how they interoperate in order to implement the

ISA. The size of a computer’s cache for instance, is

an organizational issue that generally has nothing

to do with the ISA.

• System Design which includes all of the other hardware

components within a computing system such as:

1. system interconnects such as computer buses and

switches

2. memory controllers and hierarchies

3. CPU off-load mechanisms such as direct memory

access

4. issues like multi-processing.

Once both ISA and microarchitecture have been specified,

the actual device needs to be designed into hardware.

Digital Computer System

184

This design process is called implementation.

Implementation is usually not considered architectural

definition, but rather hardware design engineering.

��	������������
����������
��������������
������
���� �����������������
���	��
��

• Logic Implementation-design of blocks defined in the

microarchitecture at (primarily) the register-transfer

and gate levels.

• Circuit Implementation-transistor-level design of basic

elements (gates, multiplexers, latches etc) as well as

of some larger blocks (ALUs, caches etc) that may be

implemented at this level, or even (partly) at the

physical level, for performance reasons.

• Physical Implementation-physical circuits are drawn

out, the different circuit components are placed in a

chip floor-plan or on a board and the wires connecting

them are routed.

For CPUs, the entire implementation process is often

called CPU design.

More specific usages of the term include more general

wider-scale hardware architectures, such as cluster

computing and Non-Uniform Memory Access (NUMA)

architectures.

������
The term “architecture” in computer literature can be

traced to the work of Lyle R. Johnson and Frederick P.

Brooks, Jr., members in 1959 of the Machine Organization

department in IBM’s main research centre. Johnson had

the opportunity to write a proprietary research

Digital Computer System

185

communication about Stretch, an IBM-developed

supercomputer for Los Alamos Scientific Laboratory. In

attempting to characterize his chosen level of detail for

discussing the luxuriously embellished computer, he noted

that his description of formats, instruction types, hardware

parameters, and speed enhancements was at the level of

“system architecture” – a term that seemed more useful

than “machine organization.” Subsequently, Brooks, one of

the Stretch designers by writing, “Computer architecture,

like other architecture, is the art of determining the needs

of the user of a structure and then designing to meet those

needs as effectively as possible within economic and

technological constraints.”

Brooks went on to play a major role in the development

of the IBM System/360 line of computers, where

“architecture” gained currency as a noun with the definition

“what the user needs to know.” Later the computer world

would employ the term in many less-explicit ways.

The first mention of the term architecture in the referred

computer literature is in a 1964 article describing the IBM

System/360. The article defines architecture as the set of

“attributes of a system as seen by the programmer, i.e., the

conceptual structure and functional behaviour, as distinct

from the organization of the data flow and controls, the

logical design, and the physical implementation.”

In the definition, the programmer perspective of the

computer’s functional behaviour is key. The conceptual

structure part of an architecture description makes the

functional behaviour comprehensible, and extrapolatable to

Digital Computer System

186

a range of Use cases. Only later on did ‘internals’ such as

“the way by which the CPU performs internally and accesses

addresses in memory,” mentioned above, slip into the

definition of computer architecture.

	Cover

	Title Page

	Copyright

	Contents
	Chapter 1 Introduction
	Chapter 2 Structure of Digital Systems
	Chapter 3 Advantages of Digital Signals
	Chapter 4 System Software
	Chapter 5 Computer Software
	Chapter 6 Computer-Based Serials System
	Chapter 7 Computer Systems Architecture

