LR Y .
B g e a8 #
s 1
— L Q A & &
e T u_n
LWL)
& _&_ L0 P —_ &
e
a..m..q.n.nﬁ##ﬂ#kd##n“#ﬁtﬁa.a.ﬂ.., ’ i
. 2
.ﬂlml _ Ia.uln.l' I.ﬂ.i.ai. = .lr.n|a| m.ml.nlﬂ .nﬂ 5 h %
= — 3 &
,.v & ..nl.w'q a'.. A=y a'ﬁ. ¢ﬂ_o e ¢‘¢. a # 2
.. | " ! ", &
a JIE JHEE L EE MOSE Tt B, 3 i1
,F...u A E—— 8 . & i e e
e ol =T WEN | BN & a e , 5
% L e B DRt N L i — .)
Al) i 0 0 o i TR
n.fu..n..u.vﬁ.o..u.#a.!q.a..?itl.v o
B L= s WL H
" -
L ...i_.nv_l
. LA N
8y o
o P ==
UL o :
»s T

2 % & 5@

4 n.nl.ﬁ.l:t = ,. LN
,..,uq##fﬁ,#a

| . W

Alfred Talley

Automation

Electronic Design

ELECTRONIC
DESIGN AUTOMATION

ELECTRONIC
DESIGN AUTOMATION

Alfred Talley

B ' BIBLIOTEX

Digital Library

Electronic Design Automation
by Alfred Talley

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any
manner without the prior written permission of the copyright owner, except
for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984663955

B BIBLIOTEX

Digital Library

Published by:
Bibliotex
Canada

Website: www.bibliotex.com

Contents

Chapter 1 Introduction to Electronic Design Automation

Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 6

Compiler

Scanning Electron Microscopy
Data Analysis and Design
Combinational Logic Design

Conceptual Model

1

28

56

87

112

132

1

Introduction to Electronic Design
Automation

Electronic design automation (EDA or ECAD) is a category
of software tools for designing electronic systems such as
printed circuit boards and integrated circuits. The tools
work together in a design flow that chip designers use to
design and analyze entire semiconductor chips.

HISTORY

Early Days

Before EDA, integrated circuits were designed by hand,
and manually laid out. Some advanced shops used geometric
software to generate the tapes for the Gerber photoplotter,
but even those copied digital recordings of mechanically-
drawn components. The process was fundamentally graphic,
with the translation from electronics to graphics done
manually. The best known company from this era was

Electronic Design Automation

Calma, whose GDSII format survives. By the mid-70s,
developers started to automate the design, and not just the
drafting. The first placement and routing (Place and route)
tools were developed. The proceedings of the Design
Automation Conference cover much of this era. The next
era began about the time of the publication of “Introduction
to VLSI Systems” by Carver Mead and Lynn Conway in
1980. This ground breaking text advocated chip design with
programming languages that compiled to silicon.

The immediate result was a considerable increase in the
complexity of the chips that could be designed, with improved
access to design verification tools that used logic simulation.
Often the chips were easier to lay out and more likely to
function correctly, since their designs could be simulated
more thoroughly prior to construction. Although the
languages and tools have evolved, this general approach of
specifying the desired behavior in a textual programming
language and letting the tools derive the detailed physical
design remains the basis of digital IC design today. The
earliest EDA tools were produced academically. One of the
most famous was the “Berkeley VLSI Tools Tarball”, a set
of UNIX utilities used to design early VLSI systems. Still
widely used is the Espresso heuristic logic minimizer and
Magic. Another crucial development was the formation of
MOSIS, a consortium of universities and fabricators that
developed an inexpensive way to train student chip designers
by producing real integrated circuits. The basic concept was
to use reliable, low-cost, relatively low-technology IC
processes, and pack a large number of projects per wafer,
with just a few copies of each projects’ chips. Cooperating

2

Electronic Design Automation

fabricators either donated the processed wafers, or sold
them at cost, seeing the programme as helpful to their own
long-term growth.

Birth of Commercial EDA

1981 marks the beginning of EDA as an industry. For
many years, the larger electronic companies, such as Hewlett
Packard, Tektronix, and Intel, had pursued EDA internally.
In 1981, managers and developers spun out of these
companies to concentrate on EDA as a business. Daisy
Systems, Mentor Graphics, and Valid Logic Systems were
all founded around this time, and collectively referred to as
DMV. Within a few years there were many companies
specializing in EDA, each with a slightly different emphasis.
The first trade show for EDA was held at the Design
Automation Conference in 1984. In 1986, Verilog, a popular
high-level design language, was first introduced as a
hardware description language by Gateway Design
Automation. In 1987, the U.S. Department of Defense funded
creation of VHDL as a specification language. Simulators
quickly followed these introductions, permitting direct
simulation of chip designs: executable specifications. In a
few more years, back-ends were developed to perform logic
synthesis.

Current Status

Current digital flows are extremely modular (see Integrated
circuit design, Design closure, and Design flow (EDA)). The
front ends produce standardized design descriptions that
compile into invocations of “cells,”, without regard to the
cell technology. Cells implement logic or other electronic

Electronic Design Automation

functions using a particular integrated circuit technology.
Fabricators generally provide libraries of components for
their production processes, with simulation models that fit
standard simulation tools. Analog EDA tools are far less
modular, since many more functions are required, they
interact more strongly, and the components are (in general)
less ideal. EDA for electronics has rapidly increased in
importance with the continuous scaling of semiconductor
technology. Some users are foundry operators, who operate
the semiconductor fabrication facilities, or “fabs”, and design-
service companies who use EDA software to evaluate an
incoming design for manufacturing readiness. EDA tools
are also used for programming design functionality into
FPGAs.

Software Focuses
Design
e High-level synthesis(syn. behavioural synthesis,
algorithmic synthesis) For digital chips
e Logic synthesis translation of abstract, logical

language such as Verilog or VHDL into a discrete
netlist of logic-gates

e Schematic Capture For standard cell digital, analog,
rf like Capture CIS in Orcad by CADENCE and ISIS
in Proteus

e Layout like Layout in Orcad by Cadence, ARES in
Proteus

Design Flows

Design flows are the explicit combination of electronic
design automation tools to accomplish the design of an
4

Electronic Design Automation

integrated circuit. Moore’s law has driven the entire IC
implementation RTL to GDSII design flows from one which
uses primarily standalone synthesis, placement, and routing
algorithms to an integrated construction and analysis flows
for design closure. The challenges of rising interconnect
delay led to a new way of thinking about and integrating
design closure tools. New scaling challenges such as leakage
power, variability, and reliability will keep on challenging
the current state of the art in design closure. The RTL to
GDSII flow underwent significant changes from 1980 through
2005. The continued scaling of CMOS technologies
significantly changed the objectives of the various design
steps.

The lack of good predictors for delay has led to significant
changes in recent design flows. Challenges like leakage
power, variability, and reliability will continue to require
significant changes to the design closure process in the
future. Many factors describe what drove the design flow
from a set of separate design steps to a fully integrated
approach, and what further changes are coming to address
the latest challenges. In his keynote at the 40th Design
Automation Conference entitled The Tides of EDA, Alberto
Sangiovanni-Vincentelli distinguished three periods of EDA:
The Age of the Gods, The Age of the Heroes, and The Age
of the Men. These eras were characterized respectively by
senses, imagination, and reason. When we limit ourselves
to the RTL to GDSII flow of the CAD area, we can distinguish
three main eras in its development: the Age of Invention,
the Age of Implementation, and the Age of Integration.

Electronic Design Automation

The Age of Invention: During the invention era,
routing, placement, static timing analysis and logic
synthesis were invented.

The Age of Implementation: In the age of
implementation, these steps were drastically improved
by designing sophisticated data structures and
advanced algorithms. This allowed the tools in each
of these design steps to keep pace with the rapidly
increasing design sizes. However, due to the lack of
good predictive cost functions, it became impossible
to execute a design flow by a set of discrete steps,
no matter how efficiently each of the steps was
implemented.

The Age of Integration: This led to the age of integration
where most of the design steps are performed in an
integrated environment, driven by a set of incremental
cost analyzers.

Simulation

Transistor simulation — low-level transistor-simulation
of a schematic/layout’s behavior, accurate at device-
level.

Logic simulation - digital-simulation of an RTL or
gate-netlist’s digital (boolean 0/ 1) behavior, accurate
at boolean-level.

Behavioral Simulation - high-level simulation of a
design’s architectural operation, accurate at cycle-
level or interface-level.

Hardware emulation — Use of special purpose
hardware to emulate the logic of a proposed design.

Electronic Design Automation

Can sometimes be plugged into a system in place of
a yet-to-be-built chip; this is called in-circuit
emulation.

e Technology CAD simulate and analyze the underlying
process technology. Electrical properties of devices
are derived directly from device physics.

e Electromagnetic field solvers, or just field solvers,
solve Maxwell’s equations directly for cases of interest
in IC and PCB design. They are known for being
slower but more accurate than the layout extraction
above.

Electronic Circuit Simulation

Electronic circuit simulation uses mathematical models
to replicate the behavior of an actual electronic device or
circuit. Simulation software allows for modeling of circuit
operation and is an invaluable analysis tool. Due to its
highly accurate modeling capability, many Colleges and
Universities use this type of software for the teaching of
electronics technician and electronics engineering
programmes.

Electronics simulation software engages the user by
integrating them into the learning experience. These kinds
of interactions actively engage learners to analyze, synthesize,
organize, and evaluate content and result in learners
constructing their own knowledge. Simulating a circuit’s
behavior before actually building it can greatly improve
design efficiency by making faulty designs known as such,
and providing insight into the behavior of electronics circuit
designs.

Electronic Design Automation

In particular, for integrated circuits, the tooling
(photomasks) is expensive, breadboards are impractical,
and probing the behavior of internal signals is extremely
difficult. Therefore almost all IC design relies heavily on
simulation. The most well known analog simulator is SPICE.
Probably the best known digital simulators are those based
on Verilog and VHDL. Some electronics simulators integrate
a schematic editor, a simulation engine, and on-screen
waveforms, and make “what-if” scenarios easy and instant.
They also typically contain extensive model and device
libraries. These models typically include IC specific transistor
models such as BSIM, generic components such as resistors,
capacitors, inductors and transformers, user defined models
(such as controlled current and voltage sources, or models
in Verilog-A or VHDL-AMS). Printed circuit board (PCB)
design requires specific models as well, such as transmission
lines for the traces and IBIS models for driving and receiving
electronics.

Types

While there are strictly analog electronics circuit
simulators, popular simulators often include both analog
and event-driven digital simulation capabilities, and are
known as mixed-mode simulators. This means that any
simulation may contain components that are analog, event
driven (digital or sampled-data), or a combination of both.
An entire mixed signal analysis can be driven from one
integrated schematic. All the digital models in mixed-mode
simulators provide accurate specification of propagation
time and rise/fall time delays.

Electronic Design Automation

The event driven algorithm provided by mixed-mode
simulators is general purpose and supports non-digital
types of data. For example, elements can use real or integer
values to simulate DSP functions or sampled data filters.
Because the event driven algorithm is faster than the
standard SPICE matrix solution, simulation time is greatly
reduced for circuits that use event driven models in place
of analog models.

Mixed-mode simulation is handled on three levels; (a)
with primitive digital elements that use timing models and
the built-in 12 or 16 state digital logic simulator, (b) with
subcircuit models that use the actual transistor topology
of the integrated circuit, and finally, (c) with In-line Boolean
logic expressions.

Exact representations are used mainly in the analysis
of transmission line and signal integrity problems where a
close inspection of an IC’s I/O characteristics is needed.
Boolean logic expressions are delay-less functions that are
used to provide efficient logic signal processing in an analog
environment. These two modeling techniques use SPICE to
solve a problem while the third method, digital primitives,
use mixed mode capability. Each of these methods has its
merits and target applications. In fact, many simulations
(particularly those which use A/D technology) call for the
combination of all three approaches. No one approach alone
is sufficient. Another type of simulation used mainly for
power electronics represent piecewise linear algorithms.
These algorithms use an analog (linear) simulation until a
power electronic switch changes its state. At this time a new

Electronic Design Automation

analog model is calculated to be used for the next simulation
period. This methodology both enhances simulation speed
and stability significantly.

Complexities

Often circuit simulators do not take into account the
process variations that occur when the design is fabricated
into silicon. These variations can be small, but taken together
can change the output of a chip significantly. Process
variations occur in the manufacture of circuits in silicon.
Temperature variation can also be modeled to simulate the
circuit’s performance through temperature ranges.

Analysis and Verification

e Functional verification

e Clock Domain Crossing Verification (CDC check):
Similar to linting, but these checks/tools specialize
in detecting and reporting potential issues like data
loss, meta-stability due to use of multiple clock
domains in the design.

e Formal verification, also model checking: Attempts to
prove, by mathematical methods, that the system
has certain desired properties, and that certain
undesired effects (such as deadlock) cannot occur.

e Equivalence checking: algorithmic comparison
between a chip’s RTL-description and synthesized
gate-netlist, to ensure functional equivalence at the
logical level.

e Static timing analysis: Analysis of the timing of a
circuit in an input-independent manner, hence finding
a worst case over all possible inputs.

10

Electronic Design Automation

e Physical verification, PV: checking if a design is

physically manufacturable, and that the resulting

chips will not have any function-preventing physical

defects, and will meet original specifications.

Manufacturing preparation

e Mask data preparation, MDP: generation of actual

lithography photomask used to physically

manufacture the chip.

(0]

Resolution enhancement techniques, RET -
methods of increasing of quality of final photomask.
Optical proximity correction, OPC - up-front
compensation for diffraction and interference effects
occurring later when chip is manufactured using
this mask.

Mask generation — generation of flat mask image
from hierarchical design.

Automatic test pattern generation, ATPG - generates
pattern-data to systematically exercise as many
logic-gates, and other components, as possible.
Built-in self-test, or BIST - installs self-contained
test-controllers to automatically test a logic (or
memory) structure in the design

Companies

For more details on this topic, see List of EDA companies.

Top Companies

e S$3.73 billion - Synopsys
$2.06 billion - Cadence
e S1.18 billion - Mentor Graphics

11

Electronic Design Automation

e $233 million - Magma Design Automation
e S157 million - Zuken Inc.

Note: Market caps current as of October, 2010. EEsof
should likely be on this list, but does not have a market
cap as it is the EDA division of Agilent.

Acquisitions

Many of the EDA companies acquire small companies
with software or other technology that can be adapted to
their core business. Most of the market leaders are rather
incestuous amalgamations of many smaller companies. This
trend is helped by the tendency of software companies to
design tools as accessories that fit naturally into a larger
vendor’s suite of programmes (on digital circuitry, many
new tools incorporate analog design, and mixed systems.
This is happening because there is now a trend to place
entire electronic systems on a single chip.

COMPUTER GRAPHICS

The development of computer graphics has made
computers easier to interact with, and better for understanding
and interpreting many types of data. Developments in
computer graphics have had a profound impact on many
types of media and have revolutionized animation, movies
and the video game industry. The term computer graphics
has been used in a broad sense to describe “almost everything
on computers that is not text or sound”. Typically, the term
computer graphics refers to several different things:

e the representation and manipulation of image data
by a computer

12

Electronic Design Automation

e the various technologies used to create and
manipulate images

e the images so produced, and

e the sub-field of computer science which studies
methods for digitally synthesizing and manipulating
visual content, see study of computer graphics

Today, computers and computer-generated images touch
many aspects of daily life. Computer imagery is found on
television, in newspapers, for example in weather reports,
or for example in all kinds of medical investigation and
surgical procedures. A well-constructed graph can present
complex statistics in a form that is easier to understand
and interpret. In the media “such graphs are used to illustrate
papers, reports, thesis”, and other presentation material.
Many powerful tools have been developed to visualize data.
Computer generated imagery can be categorized into several
different types: 2D, 3D, 4D, 7D, and animated graphics. As
technology has improved, 3D computer graphics have become
more common, but 2D computer graphics are still widely
used.

Computer graphics has emerged as a sub-field of
computer science which studies methods for digitally
synthesizing and manipulating visual content. Over the
past decade, other specialized fields have been developed
like information visualization, and scientific visualization
more concerned with “the visualization of three dimensional
phenomena (architectural, meteorological, medical,
biological, etc.), where the emphasis is on realistic renderings
of volumes, surfaces, illumination sources, and so forth,

13

Electronic Design Automation

perhaps with a dynamic (time) component”. The advance in
computer graphics was to come from Ivan Sutherland. In
1961 Sutherland created another computer drawing
programme called Sketchpad. Using a light pen, Sketchpad
allowed one to draw simple shapes on the computer screen,
save them and even recall them later. The light pen itself
had a small photoelectric cell in its tip. This cell emitted
an electronic pulse whenever it was placed in front of a
computer screen and the screen’s electron gun fired directly
at it. By simply timing the electronic pulse with the current
location of the electron gun, it was easy to pinpoint exactly
where the pen was on the screen at any given moment.
Once that was determined, the computer could then draw
a cursor at that location. Sutherland seemed to find the
perfect solution for many of the graphics problems he faced.

Even today, many standards of computer graphics
interfaces got their start with this early Sketchpad
programme. One example of this is in drawing constraints.
If one wants to draw a square for example, s/he doesn’t
have to worry about drawing four lines perfectly to form the
edges of the box. One can simply specify that s/he wants
to draw a box, and then specify the location and size of the
box. The software will then construct a perfect box, with
the right dimensions and at the right location. Another
example is that Sutherland’s software modeled objects - not
just a picture of objects. In other words, with a model of
a car, one could change the size of the tires without affecting
the rest of the car. It could stretch the body of the car
without deforming the tires. These early computer graphics
were Vector graphics, composed of thin lines whereas modern

14

Electronic Design Automation

day graphics are Raster based using pixels. The difference
between vector graphics and raster graphics can be
illustrated with a shipwrecked sailor.

He creates an SOS sign in the sand by arranging rocks
in the shape of the letters “SOS.” He also has some brightly
colored rope, with which he makes a second “SOS” sign by
arranging the rope in the shapes of the letters. The rock
SOS sign is similar to raster graphics. Every pixel has to
be individually accounted for. The rope SOS sign is equivalent
to vector graphics. The computer simply sets the starting
point and ending point for the line and perhaps bend it a
little between the two end points. The disadvantages to
vector files are that they cannot represent continuous tone
images and they are limited in the number of colors available.
Raster formats on the other hand work well for continuous
tone images and can reproduce as many colors as needed.
Also in 1961 another student at MIT, Steve Russell, created
the first video game, Spacewar. Written for the DEC PDP-
1, Spacewar was an instant success and copies started
flowing to other PDP-1 owners and eventually even DEC got
a copy. The engineers at DEC used it as a diagnostic
programme on every new PDP-1 before shipping it. The
sales force picked up on this quickly enough and when
installing new units, would run the world’s first video game
for their new customers.

E. E. Zajac, a scientist at Bell Telephone Laboratory
(BTL), created a film called “Simulation of a two-giro gravity
attitude control system” in 1963. In this computer generated
film, Zajac showed how the attitude of a satellite could be
altered as it orbits the Earth. He created the animation on

15

Electronic Design Automation

an IBM 7090 mainframe computer. Also at BTL, Ken
Knowlton, Frank Sindon and Michael Noll started working
in the computer graphics field. Sindon created a film called
Force, Mass and Motion illustrating Newton’s laws of motion

in operation.

Around the same time, other scientists were creating
computer graphics to illustrate their research. At Lawrence
Radiation Laboratory, Nelson Max created the films, “Flow
of a Viscous Fluid” and “Propagation of Shock Waves in a
Solid Form.” Boeing Aircraft created a film called “Vibration
of an Aircraft.” It wasn’t long before major corporations
started taking an interest in computer graphics. TRW,
Lockheed-Georgia, General Electric and Sperry Rand are
among the many companies that were getting started in
computer graphics by the mid 1960’s. IBM was quick to
respond to this interest by releasing the IBM 2250 graphics
terminal, the first commercially available graphics computer.
Ralph Baer, a supervising engineer at Sanders Associates,
came up with a home video game in 1966 that was later
licensed to Magnavox and called the Odyssey. While very
simplistic, and requiring fairly inexpensive electronic parts,
it allowed the player to move points of light around on a
screen. It was the first consumer computer graphics product.

Also in 1966, Sutherland at MIT invented the first
computer controlled head-mounted display (HMD). Called
the Sword of Damocles because of the hardware required
for support, it displayed two separate wireframe images, one
for each eye. This allowed the viewer to see the computer
scene in stereoscopic 3D. After receiving his Ph.D. from

16

Electronic Design Automation

MIT, Sutherland became Director of Information Processing
at ARPA (Advanced Research Projects Agency), and later
became a professor at Harvard. Dave Evans was director
of engineering at Bendix Corporation’s computer division
from 1953 to 1962, after which he worked for the next five
years as a visiting professor at Berkeley. There he continued
his interest in computers and how they interfaced with
people. In 1968 the University of Utah recruited Evans to
form a computer science programme, and computer graphics
quickly became his primary interest. This new department
would become the world’s primary research center for
computer graphics. In 1967 Sutherland was recruited by
Evans to join the computer science programme at the
University of Utah. There he perfected his HMD. Twenty
years later, NASA would re-discover his techniques in their
virtual reality research.

At Utah, Sutherland and Evans were highly sought after
consultants by large companies but they were frustrated at
the lack of graphics hardware available at the time so they
started formulating a plan to start their own company. A
student by the name of Edwin Catmull started at the
University of Utah in 1970 and signed up for Sutherland’s
computer graphics class. Catmull had just come from The
Boeing Company and had been working on his degree in
physics. Growing up on Disney, Catmull loved animation
yet quickly discovered that he didn’t have the talent for
drawing. Now Catmull (along with many others) saw
computers as the natural progression of animation and
they wanted to be part of the revolution. The first animation
that Catmull saw was his own. He created an animation

17

Electronic Design Automation

of his hand opening and closing. It became one of his goals
to produce a feature length motion picture using computer
graphics. In the same class, Fred Parke created an animation
of his wife’s face.

Because of Evan’s and Sutherland’s presence, UU was
gaining quite a reputation as the place to be for computer
graphics research so Catmull went there to learn 3D
animation. As the UU computer graphics laboratory was
attracting people from all over, John Warnock was one of
those early pioneers; he would later found Adobe Systems
and create a revolution in the publishing world with his
PostScript page description language. Tom Stockham led
the image processing group at UU which worked closely
with the computer graphics lab. Jim Clark was also there;
he would later found Silicon Graphics, Inc. The first major
advance in 3D computer graphics was created at UU by
these early pioneers, the hidden-surface algorithm. In order
to draw a representation of a 3D object on the screen, the
computer must determine which surfaces are “behind” the
object from the viewer’s perspective, and thus should be
“hidden” when the computer creates (or renders) the image.

2D Computer Graphics

2D computer graphics are the computer-based generation
of digital images—mostly from two-dimensional models, such
as 2D geometric models, text, and digital images, and by
techniques specific to them. 2D computer graphics are mainly
used in applications that were originally developed upon
traditional printing and drawing technologies, such as
typography, cartography, technical drawing, advertising, etc..

18

Electronic Design Automation

In those applications, the two-dimensional image is not just
a representation of a real-world object, but an independent
artifact with added semantic value; two-dimensional models
are therefore preferred, because they give more direct control
of the image than 3D computer graphics, whose approach
is more akin to photography than to typography.

Pixel Art

Pixel art is a form of digital art, created through the use
of raster graphics software, where images are edited on the
pixel level. Graphics in most old (or relatively limited)
computer and video games, graphing calculator games, and
many mobile phone games are mostly pixel art.

Vector Graphics

Vector graphics formats are complementary to raster
graphics, which is the representation of images as an array
of pixels, as it is typically used for the representation of
photographic images Vector graphics consists in encoding
information about shapes and colors that comprise the
image, which can allow for more flexibility in rendering.
There are instances when working with vector tools and
formats is best practice, and instances when working with
raster tools and formats is best practice. There are times
when both formats come together. An understanding of the
advantages and limitations of each technology and the
relationship between them is most likely to result in efficient
and effective use of tools.

3D Computer Graphics

3D computer graphics in contrast to 2D computer
graphics are graphics that use a three-dimensional

19

Electronic Design Automation

representation of geometric data that is stored in the
computer for the purposes of performing calculations and
rendering 2D images. Such images may be for later display
or for real-time viewing. Despite these differences, 3D
computer graphics rely on many of the same algorithms as
2D computer vector graphics in the wire frame model and
2D computer raster graphics in the final rendered display.
In computer graphics software, the distinction between 2D
and 3D is occasionally blurred; 2D applications may use
3D techniques to achieve effects such as lighting, and
primarily 3D may use 2D rendering techniques. 3D computer
graphics are often referred to as 3D models. Apart from the
rendered graphic, the model is contained within the graphical
data file. However, there are differences. A 3D model is the
mathematical representation of any three-dimensional object.
A model is not technically a graphic until it is visually
displayed. Due to 3D printing, 3D models are not confined
to virtual space. A model can be displayed visually as a two-
dimensional image through a process called 3D rendering,
or used in non-graphical computer simulations and
calculations. There are some 3D computer graphics software
for users to create 3D images.

Computer Animation

Computer animation is the art of creating moving images
via the use of computers. It is a subfield of computer
graphics and animation. Increasingly it is created by means
of 3D computer graphics, though 2D computer graphics are
still widely used for stylistic, low bandwidth, and faster real-
time rendering needs. Sometimes the target of the animation

20

Electronic Design Automation

is the computer itself, but sometimes the target is another
medium, such as film. It is also referred to as CGI (Computer-
generated imagery or computer-generated imaging),
especially when used in films. Virtual entities may contain
and be controlled by assorted attributes, such as transform
values (location, orientation, and scale) stored in an object’s
transformation matrix. Animation is the change of an
attribute over time. Multiple methods of achieving animation
exist; the rudimentary form is based on the creation and
editing of keyframes, each storing a value at a given time,
per attribute to be animated. The 2D /3D graphics software
will interpolate between keyframes, creating an editable
curve of a value mapped over time, resulting in animation.

Other methods of animation include procedural and
expression-based techniques: the former consolidates related
elements of animated entities into sets of attributes, useful
for creating particle effects and crowd simulations; the
latter allows an evaluated result returned from a user-
defined logical expression, coupled with mathematics, to
automate animation in a predictable way (convenient for
controlling bone behavior beyond what a hierarchy offers
in skeletal system set up). To create the illusion of movement,
an image is displayed on the computer screen then quickly
replaced by a new image that is similar to the previous
image, but shifted slightly. This technique is identical to the

illusion of movement in television and motion pictures.

Concepts and Principles

Images are typically produced by optical devices;such as

cameras, mirrors, lenses, telescopes, microscopes, etc. and

21

Electronic Design Automation

natural objects and phenomena, such as the human eye
or water surfaces. A digital image is a representation of a
two-dimensional image in binary format as a sequence of
ones and zeros. Digital images include both vector images
and raster images, but raster images are more commonly

used.
Pixel

In digital imaging, a pixel (or picture element) is a single
point in a raster image. Pixels are normally arranged in a
regular 2-dimensional grid, and are often represented using
dots or squares. Each pixel is a sample of an original image,
where more samples typically provide a more accurate
representation of the original. The intensity of each pixel
is variable; in color systems, each pixel has typically three
components such as red, green, and blue.

Graphics

Graphics are visual presentations on some surface, such
as a wall, canvas, computer screen, paper, or stone to
brand, inform, illustrate, or entertain. Examples are
photographs, drawings, line art, graphs, diagrams,
typography, numbers, symbols, geometric designs, maps,
engineering drawings, or other images. Graphics often
combine text, illustration, and color. Graphic design may
consist of the deliberate selection, creation, or arrangement
of typography alone, as in a brochure, flier, poster, web site,
or book without any other element. Clarity or effective
communication may be the objective, association with other
cultural elements may be sought, or merely, the creation
of a distinctive style.

22

Electronic Design Automation

Rendering

Rendering is the process of generating an image from a
model (or models in what collectively could be called a scene
file), by means of computer programmes. A scene file contains
objects in a strictly defined language or data structure; it
would contain geometry, viewpoint, texture, lighting, and
shading information as a description of the virtual scene.
The data contained in the scene file is then passed to a
rendering programme to be processed and output to a
digital image or raster graphics image file. The rendering
programme is usually built into the computer graphics
software, though others are available as plug-ins or entirely
separate programmes. The term “rendering” may be by
analogy with an “artist’s rendering” of a scene. Though the
technical details of rendering methods vary, the general
challenges to overcome in producing a 2D image from a 3D
representation stored in a scene file are outlined as the
graphics pipeline along a rendering device, such as a GPU.
A GPU is a purpose-built device able to assist a CPU in
performing complex rendering calculations. If a scene is to
look relatively realistic and predictable under virtual lighting,
the rendering software should solve the rendering equation.
The rendering equation doesn’t account for all lighting
phenomena, but is a general lighting model for computer-
generated imagery. ‘Rendering’ is also used to describe the
process of calculating effects in a video editing file to produce
final video output.

3D Projection

3D projection is a method of mapping three dimensional

23

Electronic Design Automation

points to a two dimensional plane. As most current methods
for displaying graphical data are based on planar two
dimensional media, the use of this type of projection is
widespread, especially in computer graphics, engineering
and drafting.

Ray Tracing

Ray tracing is a technique for generating an image by
tracing the path of light through pixels in an image plane.
The technique is capable of producing a very high degree
of photorealism; usually higher than that of typical scanline
rendering methods, but at a greater computational cost.

Shading

Shading refers to depicting depth in 3D models or
illustrations by varying levels of darkness. It is a process
used in drawing for depicting levels of darkness on paper
by applying media more densely or with a darker shade for
darker areas, and less densely or with a lighter shade for
lighter areas. There are various techniques of shading
including cross hatching where perpendicular lines of varying
closeness are drawn in a grid pattern to shade an area. The
closer the lines are together, the darker the area appears.
Likewise, the farther apart the lines are, the lighter the area
appears. The term has been recently generalized to mean
that shaders are applied.

Texture Mapping

Texture mapping is a method for adding detail, surface
texture, or colour to a computer-generated graphic or 3D
model. Its application to 3D graphics was pioneered by Dr

24

Electronic Design Automation

Edwin Catmull in 1974. A texture map is applied (mapped)
to the surface of a shape, or polygon. This process is akin
to applying patterned paper to a plain white box.
Multitexturing is the use of more than one texture at a time
on a polygon. Procedural textures (created from adjusting
parameters of an underlying algorithm that produces an
output texture), and bitmap textures (created in an image
editing application) are, generally speaking, common methods
of implementing texture definition from a 3D animation
programme, while intended placement of textures onto a
model’s surface often requires a technique known as UV
mapping.
Anti-aliasing

Rendering resolution-independent entities (such as 3D
models) for viewing on a raster (pixel-based) device such as
a LCD display or CRT television inevitably causes aliasing
artifacts mostly along geometric edges and the boundaries
of texture details; these artifacts are informally called
“jaggies”. Anti-aliasing methods rectify such problems,
resulting in imagery more pleasing to the viewer, but can
be somewhat computationally expensive. Various anti-
aliasing algorithms (such as supersampling) are able to be
employed, then customized for the most efficient rendering
performance versus quality of the resultant imagery; a
graphics artist should consider this trade-off if anti-aliasing
methods are to be used. A pre-anti-aliased bitmap texture
being displayed on a screen (or screen location) at a resolution
different than the resolution of the texture itself (such as
a textured model in the distance from the virtual camera)

25

Electronic Design Automation

will exhibit aliasing artifacts, while any procedurally-defined
texture will always show aliasing artifacts as they are
resolution-independent; techniques such as mipmapping
and texture filtering help to solve texture-related aliasing
problems.

Volume Rendering

Volume rendering is a technique used to display a 2D
projection of a 3D discretely sampled data set. A typical 3D
data set is a group of 2D slice images acquired by a CT or
MRI scanner. Usually these are acquired in a regular pattern
(e.g., one slice every millimeter) and usually have a regular
number of image pixels in a regular pattern. This is an
example of a regular volumetric grid, with each volume
element, or voxel represented by a single value that is
obtained by sampling the immediate area surrounding the
voxel.

3D Modeling

3D modeling is the process of developing a mathematical,
wireframe representation of any three-dimensional object,
called a “3D model”, via specialized software. Models may
be created automatically or manually; the manual modeling
process of preparing geometric data for 3D computer graphics
is similar to plastic arts such as sculpting. 3D models may
be created using multiple approaches: use of NURBS curves
to generate accurate and smooth surface patches, polygonal
mesh modeling (manipulation of faceted geometry), or
polygonal mesh subdivision (advanced tessellation of
polygons, resulting in smooth surfaces similar to NURBS
models). A 3D model can be displayed as a two-dimensional

26

Electronic Design Automation

image through a process called 3D rendering, used in a
computer simulation of physical phenomena, or animated
directly for other purposes. The model can also be physically
created using 3D Printing devices.

27

2

Compiler

A compiler is a computer programme (or set of
programmes) that transforms source code written in a
programming language (the source language) into another
computer language (the target language, often having a
binary form known as object code). The most common reason
for wanting to transform source code is to create an
executable programme.

The name “compiler” is primarily used for programmes
that translate source code from a high-level programming
language to a lower level language (e.g., assembly language
or machine code). If the compiled programme can run on
a computer whose CPU or operating system is different from
the one on which the compiler runs, the compiler is known
as a cross-compiler. A programme that translates from a
low level language to a higher level one is a decompiler. A
programme that translates between high-level languages is

Electronic Design Automation

usually called a language translator, source to source
translator, or language converter. A language rewriter is
usually a programme that translates the form of expressions
without a change of language.

A compiler is likely to perform many or all of the following
operations: lexical analysis, preprocessing, parsing, semantic
analysis (Syntax-directed translation), code generation, and
code optimization. Programme faults caused by incorrect
compiler behavior can be very difficult to track down and
work around; therefore, compiler implementors invest a lot
of time ensuring the correctness of their software. The term
compiler-compiler is sometimes used to refer to a parser
generator, a tool often used to help create the lexer and

parser.

History

Software for early computers was primarily written in
assembly language for many years. Higher level programming
languages were not invented until the benefits of being able
to reuse software on different kinds of CPUs started to
become significantly greater than the cost of writing a
compiler. The very limited memory capacity of early
computers also created many technical problems when
implementing a compiler. Towards the end of the 1950s,
machine-independent programming languages were first
proposed. Subsequently, several experimental compilers were
developed. The first compiler was written by Grace Hopper,
in 1952, for the A-O programming language. The FORTRAN
team led by John Backus at IBM is generally credited as
having introduced the first complete compiler in 1957.

29

Electronic Design Automation

COBOL was an early language to be compiled on multiple
architectures, in 1960.

In many application domains the idea of using a higher
level language quickly caught on. Because of the expanding
functionality supported by newer programming languages
and the increasing complexity of computer architectures,
compilers have become more and more complex.

Early compilers were written in assembly language. The
first self-hosting compiler — capable of compiling its own
source code in a high-level language — was created for Lisp
by Tim Hart and Mike Levin at MIT in 1962. Since the 1970s
it has become common practice to implement a compiler
in the language it compiles, although both Pascal and C
have been popular choices for implementation language.
Building a self-hosting compiler is a bootstrapping problem—
the first such compiler for a language must be compiled
either by a compiler written in a different language, or (as
in Hart and Levin’s Lisp compiler) compiled by running the
compiler in an interpreter.

Compilers in Education

Compiler construction and compiler optimization are
taught at universities and schools as part of the computer
science curriculum. Such courses are usually supplemented
with the implementation of a compiler for an educational
programming language. A well-documented example is
Niklaus Wirth’s PL/0 compiler, which Wirth used to teach
compiler construction in the 1970s. In spite of its simplicity,
the PL/0 compiler introduced several influential concepts
to the field:

30

Electronic Design Automation

1. Programme development by stepwise refinement (also
the title of a 1971 paper by Wirth)

The use of a recursive descent parser
The use of EBNF to specify the syntax of a language

A code generator producing portable P-code

ok W

The use of T-diagrams in the formal description of
the bootstrapping problem

Compilation

Compilers enabled the development of programmes that
are machine-independent. Before the development of
FORTRAN (FORmula TRANSslator), the first higher-level
language, in the 1950s, machine-dependent assembly
language was widely used. While assembly language
produces more reusable and relocatable programmes than
machine code on the same architecture, it has to be modified
or rewritten if the programme is to be executed on different
hardware architecture. With the advance of high-level
programming languages soon followed after FORTRAN, such
as COBOL, C, BASIC, programmers can write machine-
independent source programmes. A compiler translates the
high-level source programmes into target programmes in
machine languages for the specific hardwares. Once the
target programme is generated, the user can execute the
programine.

Structure of a Compiler

Compilers bridge source programmes in high-level
languages with the underlying hardware. A compiler requires
1) determining the correctness of the syntax of programmes,
2) generating correct and efficient object code, 3) run-time

31

Electronic Design Automation

organization, and 4) formatting output according to
assembler and/or linker conventions. A compiler consists
of three main parts: the frontend, the middle-end, and the
backend.

The front end checks whether the programme is correctly
written in terms of the programming language syntax and
semantics. Here legal and illegal programmes are recognized.
Errors are reported, if any, in a useful way. Type checking
is also performed by collecting type information. The frontend
then generates an intermediate representation or IR of the
source code for processing by the middle-end.

The middle end is where optimization takes place. Typical
transformations for optimization are removal of useless or
unreachable code, discovery and propagation of constant
values, relocation of computation to a less frequently
executed place (e.g., out of a loop), or specialization of
computation based on the context. The middle-end generates
another IR for the following backend. Most optimization
efforts are focused on this part.

The back end is responsible for translating the IR from
the middle-end into assembly code. The target instruction(s)
are chosen for each IR instruction. Variables are also selected
for the registers. Backend utilizes the hardware by figuring
out how to keep parallel FUs busy, filling delay slots, and
so on. Although most algorithms for optimization are in NP,
heuristic techniques are well-developed.

Compiler Output

One classification of compilers is by the platform on
which their generated code executes. This is known as the

32

Electronic Design Automation

target platform. A native or hosted compiler is one which
output is intended to directly run on the same type of
computer and operating system that the compiler itself
runs on. The output of a cross compiler is designed to run
on a different platform. Cross compilers are often used
when developing software for embedded systems that are
not intended to support a software development environment.
The output of a compiler that produces code for a virtual
machine (VM) may or may not be executed on the same
platform as the compiler that produced it. For this reason
such compilers are not usually classified as native or cross

compilers.
Compiled versus Interpreted Languages

Higher-level programming languages are generally divided
for convenience into compiled languages and interpreted
languages. However, in practice there is rarely anything
about a language that requires it to be exclusively compiled
or exclusively interpreted, although it is possible to design
languages that rely on re-interpretation at run time. The
categorization usually reflects the most popular or
widespread implementations of a language — for instance,
BASIC is sometimes called an interpreted language, and C
a compiled one, despite the existence of BASIC compilers
and C interpreters.

Modern trends toward just-in-time compilation and
bytecode interpretation at times blur the traditional
categorizations of compilers and interpreters. Some language
specifications spell out that implementations must include
a compilation facility; for example, Common Lisp. However,

33

Electronic Design Automation

there is nothing inherent in the definition of Common Lisp
that stops it from being interpreted. Other languages have
features that are very easy to implement in an interpreter,
but make writing a compiler much harder; for example,
APL, SNOBOL4, and many scripting languages allow
programmes to construct arbitrary source code at runtime
with regular string operations, and then execute that code
by passing it to a special evaluation function. To implement
these features in a compiled language, programmes must
usually be shipped with a runtime library that includes a
version of the compiler itself.

Hardware Compilation

The output of some compilers may target hardware at
a very low level, for example a Field Programmable Gate
Array (FPGA) or structured Application-specific integrated
circuit (ASIC). Such compilers are said to be hardware
compilers or synthesis tools because the source code they
compile effectively control the final configuration of the
hardware and how it operates; the output of the compilation
are not instructions that are executed in sequence - only
an interconnection of transistors or lookup tables. For
example, XST is the Xilinx Synthesis Tool used for configuring
FPGAs. Similar tools are available from Altera, Synplicity,
Synopsys and other vendors.

Compiler Construction

In the early days, the approach taken to compiler design
used to be directly affected by the complexity of the
processing, the experience of the person(s) designing it, and
the resources available. A compiler for a relatively simple

34

Electronic Design Automation

language written by one person might be a single, monolithic
piece of software. When the source language is large and
complex, and high quality output is required, the design
may be split into a number of relatively independent phases.
Having separate phases means development can be parceled
up into small parts and given to different people. It also
becomes much easier to replace a single phase by an
improved one, or to insert new phases later (e.g., additional
optimizations). The division of the compilation processes
into phases was championed by the Production Quality
Compiler-Compiler Project (PQCC) at Carnegie Mellon
University. This project introduced the terms jfront end,
middle end, and back end. All but the smallest of compilers
have more than two phases.

However, these phases are usually regarded as being
part of the front end or the back end. The point at which
these two ends meet is open to debate. The front end is
generally considered to be where syntactic and semantic
processing takes place, along with translation to a lower
level of representation (than source code). The middle end
is usually designed to perform optimizations on a form
other than the source code or machine code. This source
code/machine code independence is intended to enable
generic optimizations to be shared between versions of the
compiler supporting different languages and target
processors. The back end takes the output from the middle.
It may perform more analysis, transformations and
optimizations that are for a particular computer. Then, it
generates code for a particular processor and OS. This
front-end/middle/back-end approach makes it possible to

35

Electronic Design Automation

combine front ends for different languages with back ends
for different CPUs.

Practical examples of this approach are the GNU Compiler
Collection, LLVM, and the Amsterdam Compiler Kit, which
have multiple front-ends, shared analysis and multiple back-
ends.

One-pass versus Multi-pass Compilers

Classifying compilers by number of passes has its
background in the hardware resource limitations of
computers. Compiling involves performing lots of work and
early computers did not have enough memory to contain
one programme that did all of this work. So compilers were
split up into smaller programmes which each made a pass
over the source (or some representation of it) performing
some of the required analysis and translations. The ability
to compile in a single pass has classically been seen as a
benefit because it simplifies the job of writing a compiler
and one pass compilers generally compile faster than multi-
pass compilers. Thus, partly driven by the resource
limitations of early systems, many early languages were
specifically designed so that they could be compiled in a
single pass (e.g., Pascal).

In some cases the design of a language feature may
require a compiler to perform more than one pass over the
source. For instance, consider a declaration appearing on
line 20 of the source which affects the translation of a
statement appearing on line 10. In this case, the first pass
needs to gather information about declarations appearing
after statements that they affect, with the actual translation

36

Electronic Design Automation

happening during a subsequent pass. The disadvantage of
compiling in a single pass is that it is not possible to
perform many of the sophisticated optimizations needed to
generate high quality code. It can be difficult to count
exactly how many passes an optimizing compiler makes.
For instance, different phases of optimization may analyse
one expression many times but only analyse another

expression once.

Splitting a compiler up into small programmes is a
technique used by researchers interested in producing
provably correct compilers. Proving the correctness of a set
of small programmes often requires less effort than proving
the correctness of a larger, single, equivalent programme.
While the typical multi-pass compiler outputs machine code
from its final pass, there are several other types:

e A “source-to-source compiler” is a type of compiler
that takes a high level language as its input and
outputs a high level language. For example, an
automatic parallelizing compiler will frequently take
in a high level language programme as an input and
then transform the code and annotate it with parallel
code annotations (e.g. OpenMP) or language
constructs (e.g. Fortran’s DOALL statements).

e Stage compiler that compiles to assembly language
of a theoretical machine, like some Prolog
implementations
o This Prolog machine is also known as the Warren

Abstract Machine (or WAM).
o Bytecode compilers for Java, Python, and many
more are also a subtype of this.
37

Electronic Design Automation

e Just-in-time compiler, used by Smalltalk and Java

systems, and also by Microsoft .NET's Common
Intermediate Language (CIL)

o Applications are delivered in bytecode, which is

compiled to native machine code just prior to

execution.

Front End

The front end analyzes the source code to build an

internal representation of the programme, called the

intermediate representation or IR. It also manages the symbol

table, a data structure mapping each symbol in the source

code to associated information such as location, type and

scope. This is done over several phases, which includes

some of the following:

1.

Line reconstruction. Languages which strop their
keywords or allow arbitrary spaces within identifiers
require a phase before parsing, which converts the
input character sequence to a canonical form ready
for the parser. The top-down, recursive-descent, table-
driven parsers used in the 1960s typically read the
source one character at a time and did not require
a separate tokenizing phase. Atlas Autocode, and
Imp (and some implementations of ALGOL and Coral
66) are examples of stropped languages which
compilers would have a Line Reconstruction phase.
Lexical analysis breaks the source code text into
small pieces called tokens. Each token is a single
atomic unit of the language, for instance a keyword,
identifier or symbol name. The token syntax is typically

38

Electronic Design Automation

a regular language, so a finite state automaton
constructed from a regular expression can be used
to recognize it. This phase is also called lexing or
scanning, and the software doing lexical analysis is
called a lexical analyzer or scanner.

Preprocessing. Some languages, e.g., C, require a
preprocessing phase which supports macro
substitution and conditional compilation. Typically
the preprocessing phase occurs before syntactic or
semantic analysis; e.g. in the case of C, the
preprocessor manipulates lexical tokens rather than
syntactic forms. However, some languages such as
Scheme support macro substitutions based on
syntactic forms.

Syntax analysis involves parsing the token sequence
to identify the syntactic structure of the programme.
This phase typically builds a parse tree, which replaces
the linear sequence of tokens with a tree structure
built according to the rules of a formal grammar
which define the language’s syntax. The parse tree
is often analyzed, augmented, and transformed by
later phases in the compiler.

Semantic analysis is the phase in which the compiler
adds semantic information to the parse tree and
builds the symbol table. This phase performs semantic
checks such as type checking (checking for type
errors), or object binding (associating variable and
function references with their definitions), or definite
assignment (requiring all local variables to be

initialized before use), rejecting incorrect programmes

39

Electronic Design Automation

or issuing warnings. Semantic analysis usually
requires a complete parse tree, meaning that this
phase logically follows the parsing phase, and logically
precedes the code generation phase, though it is
often possible to fold multiple phases into one pass

over the code in a compiler implementation.

Back End

The term back end is sometimes confused with code

generator because of the overlapped functionality of generating

assembly code. Some literature uses middle end to distinguish

the generic analysis and optimization phases in the back end

from the machine-dependent code generators. The main

phases of the back end include the following;:

1.

Analysis: This is the gathering of programme
information from the intermediate representation
derived from the input. Typical analyses are data flow
analysis to build use-define chains, dependence
analysis, alias analysis, pointer analysis, escape
analysis etc. Accurate analysis is the basis for any
compiler optimization. The call graph and control
flow graph are usually also built during the analysis
phase.

Optimization: the intermediate language
representation is transformed into functionally
equivalent but faster (or smaller) forms. Popular
optimizations are inline expansion, dead code
elimination, constant propagation, loop
transformation, register allocation and even automatic
parallelization.

40

Electronic Design Automation

3. Code generation: the transformed intermediate
language is translated into the output language,
usually the native machine language of the system.
This involves resource and storage decisions, such
as deciding which variables to fit into registers and
memory and the selection and scheduling of
appropriate machine instructions along with their
associated addressing modes.

Compiler analysis is the prerequisite for any compiler
optimization, and they tightly work together. For example,
dependence analysis is crucial for loop transformation. In
addition, the scope of compiler analysis and optimizations
vary greatly, from as small as a basic block to the procedure/
function level, or even over the whole programme
(interprocedural optimization). Obviously, a compiler can
potentially do a better job using a broader view. But that
broad view is not free: large scope analysis and optimizations
are very costly in terms of compilation time and memory
space; this is especially true for interprocedural analysis
and optimizations.

Interprocedural analysis and optimizations are common
in modern commercial compilers from HP, IBM, SGI, Intel,
Microsoft, and Sun Microsystems. The open source GCC
was criticized for a long time for lacking powerful
interprocedural optimizations, but it is changing in this
respect.

Another open source compiler with full analysis and
optimization infrastructure is Open64, which is used by
many organizations for research and commercial purposes.

41

Electronic Design Automation

Due to the extra time and space needed for compiler analysis
and optimizations, some compilers skip them by default.
Users have to use compilation options to explicitly tell the
compiler which optimizations should be enabled.

Compiler Correctness

Compiler correctness is the branch of software engineering
that deals with trying to show that a compiler behaves
according to its language specification. Techniques include
developing the compiler using formal methods and using
rigorous testing (often called compiler validation) on an
existing compiler.

Related Techniques

Assembly language is a type of low-level language and
a programme that compiles it is more commonly known as
an assembler, with the inverse programme known as a
disassembler.

A programme that translates from a low level language
to a higher level one is a decompiler. A programme that
translates between high-level languages is usually called a
language translator, source to source translator, language
converter, or language rewriter. The last term is usually
applied to translations that do not involve a change of
language.

International Conferences and Organizations

Every year, the European Joint Conferences on Theory
and Practice of Software (ETAPS) sponsors the International
Conference on Compiler Construction (CC), with papers
from both the academic and industrial sectors.

42

Electronic Design Automation

DEBUGGER

A debugger or debugging tool is a computer programime
that is used to test and debug other programmes (the
“target” program). The code to be examined might
alternatively be running on an instruction set simulator
(ISS), a technique that allows great power in its ability to
halt when specific conditions are encountered but which
will typically be somewhat slower than executing the code
directly on the appropriate (or the same) processor. Some
debuggers offer two modes of operation - full or partial

simulation, to limit this impact.

A “crash” happens when the programme cannot normally
continue because of a programming bug. For example, the
programme might have tried to use an instruction not
available on the current version of the CPU or attempted
to access unavailable or protected memory. When the
programme “crashes” or reaches a preset condition, the
debugger typically shows the position in the original code
if it is a source-level debugger or symbolic debugger,
commonly now seen in integrated development
environments. If it is a low-level debugger or a machine-
language debugger it shows the line in the disassembly
(unless it also has online access to the original source code
and can display the appropriate section of code from the
assembly or compilation).

Typically, debuggers also offer more sophisticated
functions such as running a programme step by step (single-
stepping or programme animation), stopping (breaking)
(pausing the programme to examine the current state) at

43

Electronic Design Automation

some event or specified instruction by means of a breakpoint,
and tracking the values of some variables. Some debuggers
have the ability to modify the state of the programme while
it is running, rather than merely to observe it. It may also
be possible to continue execution at a different location in
the programme to bypass a crash or logical error.

The importance of a good debugger cannot be overstated.
Indeed, the existence and quality of such a tool for a given
language and platform can often be the deciding factor in
its use, even if another language/platform is better-suited
to the task.. The absence of a debugger, having once been
accustomed to using one, has been said to “make you feel
like a blind man in a dark room looking for a black cat that
isn’t there”. However, software can (and often does) behave
differently running under a debugger than normally, due
to the inevitable changes the presence of a debugger will
make to a software programme’s internal timing. As a result,
even with a good debugging tool, it is often very difficult to
track down runtime problems in complex multi-threaded or
distributed systems. The same functionality which makes
a debugger useful for eliminating bugs allows it to be used
as a software cracking tool to evade copy protection, digital
rights management, and other software protection features.
It often also makes it useful as a general testing verification
tool test coverage and performance analyzer, especially if
instruction path lengths are shown. Most current
mainstream debugging engines, such as gdb and dbx provide
console-based command line interfaces. Debugger front-
ends are popular extensions to debugger engines that provide
IDE integration, programme animation, and visualization

44

Electronic Design Automation

features. Some early mainframe debuggers such as Oliver
and SIMON provided this same functionality for the IBM
System /360 and later operating systems, as long ago as the
1970s.

Language Dependency

Some debuggers operate on a single specific language
while others can handle multiple languages transparently.
For example if the main target programme is written in
COBOL but CALLs Assembler subroutines and also PL/1
subroutines, the debugger may dynamically switch modes
to accommodate the changes in language as they occur.

Memory Protection

Some debuggers also incorporate memory protection to
avoid storage violations such as buffer overflow. This may
be extremely important in transaction processing
environments where memory is dynamically allocated from
memory ‘pools’ on a task by task basis.

Hardware Support for Debugging

Most modern microprocessors have at least one of these
features in their CPU design to make debugging easier:

e hardware support for single-stepping a programme,
such as the trap flag.

e An instruction set that meets the Popek and Goldberg
virtualization requirements makes it easier to write
debugger software that runs on the same CPU as the
software being debugged; such a CPU can execute the
inner loops of the programme under test at full speed,
and still remain under the control of the debugger.

45

Electronic Design Automation

In-System Programming allows an external hardware
debugger to re-programme a system under test (for
example, adding or removing instruction breakpoints).
Many systems with such ISP support also have other
hardware debug support.

Hardware support for code and data breakpoints,
such as address comparators and data value
comparators or, with considerably more work involved,
page fault hardware.

JTAG access to hardware debug interfaces such as
those on ARM architecture processors or using the
Nexus command set. Processors used in embedded
systems typically have extensive JTAG debug support.
Microcontrollers with as few as six pins need to use
low pin-count substitutes for JTAG, such as BDM,
Spy-Bi-Wire, or DebugWire on the Atmel AVR.
DebugWire, for example, uses bidirectional signaling
on the RESET pin.

List of Debuggers

AppPuncher Debugger — for debugging Rich Internet
Applications

AQtime

CA/EZTEST — was a CICS interactive test/debug
software package

CharmDebug — a Debugger for Charm++
CodeView

DBG — a PHP Debugger and Profiler

dbx

46

Electronic Design Automation

DDD (Data Display Debugger)
Distributed Debugging Tool (Allinea DDT)
DDTLite — Allinea DDTLite for Visual Studio 2008

DEBUG — the built-in debugger of DOS and Microsoft
Windows

Debugger for MySQL

Opera Dragonily

Dynamic debugging technique (DDT), and its octal
counterpart Octal Debugging Technique

Eclipse

Embedded System Debug Plug-in for Eclipse
FusionDebug

gDEBugger OpenGL, OpenGL ES and OpenCL
debugger and profiler

GNU Debugger (GDB), GNU Binutils

HyperDBG a kernel debugger that leverages hardware-
assisted virtualization

Intel Debugger (IDB)

Insight

Parasoft Insure++

iSYSTEM — in-circuit debugger for embedded systems
Interactive Disassembler (IDA Pro)

Java Platform Debugger Architecture

Jinx — a whole-system debugger for heisenbugs. It
works transparently as a device driver.

JSwat — open-source Java debugger
LLDB
MacsBug

47

Electronic Design Automation

Nemiver — graphical C/C++ debugger for the GNOME
desktop environment

OLIVER (CICS interactive test/debug) - a GUI
equipped instruction set simulator (ISS)

OllyDbg

Omniscient Debugger — Forward and backward
debugger for Java

pydbg

IBM Rational Purify

RealView Debugger — Commercial debugger produced
for and designed by ARM

sdb

SIMMON (Simulation Monitor)

SIMON (Batch Interactive test/debug) — a GUI
equipped instruction set simulator (ISS) for batch
SoftICE

TimeMachine — Forward and backward debugger
designed by Green Hills Software

TotalView

Lauterbach TRACE32 — in-circuit debugger for
embedded Systems

Turbo Debugger

Ups — C, Fortran source level debugger

Valgrind

VB Watch Debugger — debugger for Visual Basic 6.0
Microsoft Visual Studio Debugger

WinDbg

Xdebug — PHP debugger and profiler

48

Electronic Design Automation

Debugger Front-ends

Some of the most capable and popular debuggers only
implement a simple command line interface (CLI) — often
to maximize portability and minimize resource consumption.
Debugging via a graphical user interface (GUI) can be
considered easier and more productive though. This is the
reason for GUI debugger front-ends, that allow users to
monitor and control subservient CLI-only debuggers via
graphical user interface. Some GUI debugger front-ends are
designed to be compatible with a variety of CLI-only
debuggers, while others are targeted at one specific debugger.

List of Debugger Front-ends

e Many Integrated development environments come
with integrated debuggers (or front-ends to standard
debuggers).

o Many Eclipse perspectives, e.g. the Java
Development Tools (JDT), provide a debugger front-
end.

e DDD is the standard front-end from the GNU Project.
It is a complex tool that works with most common
debuggers (GDB, jdb, Python debugger, Perl debugger,
Tcl, and others) natively or with some external
programmes (for PHP).

e GDB (the GNU debugger) GUI
o Emacs — Emacs editor with built in support for

the GNU Debugger acts as the frontend.

o KDbg — Part of the KDE development tools.

o Nemiver — A GDB frontend that integrates well in
the GNOME desktop environment.

49

Electronic Design Automation

xxgdb — X-window frontend for GDB and dbx
debugger.

Qt Creator — multi-platform frontend for GDB
(debugging example).

cgdb — ncurses terminal programme that mimics
vim key mapping.

ccdebug— A graphical GDB frontend using the Qt
toolkit.

Padb — has a parallel front-end to GDB allowing
it to target parallel applications.

Allinea’s DDT — a parallel and distributed front-
end to a modified version of GDB.

Xcode — contains a GDB front-end as well.
SlickEdit — contains a GDB front-end as well.
Eclipse C/C++ Development Tools (CDT) — includes
visual debugging tools based on GDB.

PROFILING

In software engineering, programme profiling, software

profiling or simply profiling, a form of dynamic programme

analysis (as opposed to static code analysis), is the

investigation of a program’s behavior using information

gathered as the programme executes. The usual purpose

of this analysis is to determine which sections of a programme

to optimize - to increase its overall speed, decrease its

memory requirement or sometimes both.

e A (code) profiler is a performance analysis tool that,

most commonly, measures only the frequency and
duration of function calls, but there are other specific

50

Electronic Design Automation

types of profilers (e.g. memory profilers) in addition
to more comprehensive profilers, capable of gathering
extensive performance data.

e An instruction set simulator which is also — by
necessity — a profiler, can measure the totality of a

program’s behaviour from invocation to termination.

Gathering Programme Events

Profilers use a wide variety of techniques to collect data,
including hardware interrupts, code instrumentation,
instruction set simulation, operating system hooks, and
performance counters. The usage of profilers is ‘called out’
in the performance engineering process.

History

Performance analysis tools existed on IBM /360 and IBM/
370 platforms from the early 1970s, usually based on timer
interrupts which recorded the Programme status word (PSW)
at set timer intervals to detect “hot spots” in executing code.
This was an early example of sampling. In early 1974,
Instruction Set Simulators permitted full trace and other
performance monitoring features. Profiler-driven programme
analysis on Unix dates back to at least 1979, when Unix
systems included a basic tool “prof” that listed each function
and how much of programme execution time it used. In
1982, gprof extended the concept to a complete call graph
analysis. In 1994, Amitabh Srivastava and Alan Eustace of
Digital Equipment Corporation published a paper describing
ATOM. ATOM is a platform for converting a programme into
its own profiler. That is, at compile time, it inserts code into

51

Electronic Design Automation

the programme to be analyzed. That inserted code outputs
analysis data. This technique - modifying a programme to
analyze itself - is known as “instrumentation”. In 2004,
both the gprof and ATOM papers appeared on the list of
the 50 most influential PLDI papers of all time.

Profiler Types based on Output
Flat Profiler

Flat profilers compute the average call times, from the
calls, and do not break down the call times based on the
callee or the context.

Call-graph Profiler

Call graph profilers show the call times, and frequencies
of the functions, and also the call-chains involved based on
the callee. However context is not preserved.

Methods of Data Gathering
Event-based Profilers

The programming languages listed here have event-based
profilers:

e Java: the JVMTI (JVM Tools Interface) API, formerly
JVMPI (JVM Profiling Interface), provides hooks to
profilers, for trapping events like calls, class-load,
unload, thread enter leave.

e .NET: Can attach a profiling agent as a COM server
to the CLR. Like Java, the runtime then provides
various callbacks into the agent, for trapping events
like method JIT / enter / leave, object creation, etc.
Particularly powerful in that the profiling agent can

52

Electronic Design Automation

rewrite the target application’s bytecode in arbitrary
ways.

e Python: Python profiling includes the profile module,
hotshot (which is call-graph based), and using the
‘sys.setprofile’ function to trap events like
c_{call,return,exception},python_{call,return,exception}.

e Ruby: Ruby also uses a similar interface like Python
for profiling. Flat-profiler in profile.rb, module, and
ruby-prof a C-extension are present.

Statistical Profilers

Some profilers operate by sampling. A sampling profiler
probes the target program’s programme counter at regular
intervals using operating system interrupts. Sampling profiles
are typically less numerically accurate and specific, but
allow the target programme to run at near full speed. The
resulting data are not exact, but a statistical approximation.
The actual amount of error is usually more than one sampling
period. In fact, if a value is n times the sampling period, the
expected error in it is the square-root of n sampling periods.
In practice, sampling profilers can often provide a more
accurate picture of the target program’s execution than
other approaches, as they are not as intrusive to the target
programme, and thus don’t have as many side effects (such
as on memory caches or instruction decoding pipelines).
Also since they don’t affect the execution speed as much,
they can detect issues that would otherwise be hidden. They
are also relatively immune to over-evaluating the cost of
small, frequently called routines or ‘tight’ loops. They can
show the relative amount of time spent in user mode versus
interruptible kernel mode such as system call processing.

53

Electronic Design Automation

Still, kernel code to handle the interrupts entails a minor
loss of CPU cycles, diverted cache usage, and is unable to
distinguish the various tasks occurring in uninterruptible
kernel code (microsecond-range activity). Dedicated hardware
can go beyond this: some recent MIPS processors JTAG
interface have a PCSAMPLE register, which samples the
programme counter in a truly undetectable manner. Some
of the most commonly used statistical profilers are AMD
CodeAnalyst, Apple Inc. Shark, gprof, Intel VTune and
Parallel Amplifier (part of Intel Parallel Studio).

Instrumentation

e Manual: Performed by the programmer, e.g. by adding
instructions to explicitly calculate runtimes, simply
count events or calls to measurement APIs such as
the Application Response Measurement standard.

e Automatic source level: instrumentation added to
the source code by an automatic tool according to
an instrumentation policy.

e Compiler assisted: Example: “gcc -pg ...” for gprof,
“‘quantify g++ ...” for Quantify

e Binary translation: The tool adds instrumentation to
a compiled binary. Example: ATOM

e Runtime instrumentation: Directly before execution
the code is instrumented. The programme run is fully
supervised and controlled by the tool. Examples: Pin,
Valgrind

e Runtime injection: More lightweight than runtime
instrumentation. Code is modified at runtime to have
jumps to helper functions. Example: DynInst

54

Electronic Design Automation

Interpreter Instrumentation

Interpreter debug options can enable the collection
of performance metrics as the interpreter encounters
each target statement. A bytecode, control table or
JIT interpreters are three examples that usually have
complete control over execution of the target code,
thus enabling extremely comprehensive data
collection opportunities.

Hypervisor/Simulator

Hypervisor: Data are collected by running the (usually)
unmodified programme under a hypervisor. Example:
SIMMON

Simulator and Hypervisor: Data collected interactively
and selectively by running the unmodified programme
under an Instruction Set Simulator. Examples: SIMON
and OLIVER.

55

3

Scanning Electron Microscopy

SEM Provides Topographical and Elemental
Information at Magnifications of 10x to
100,000x with Virtually Unlimited Depth of
Field.
Applications Include

e Materials evaluation
Grain size

Surface roughness

Porosity
— Particle size distributions

Material homogeneity
Intermetallic distribution and diffusion

e Failure analysis

Contamination location

— Mechanical damage assessment

Electrostatic discharge effects

Micro-crack location

Electronic Design Automation

e Quality Control screening

— “Good” to “bad” sample comparison

— Film and coating thickness determination
Dimension verification

Gate width measurement
Mil Std. screening

Principle of Operation

A finely focused electron beam scanned across the surface
of the sample generates secondary electrons, backscattered
electrons, and characteristic X-rays. These signals are
collected by detectors to form images of the sample displayed
on a cathode ray tube screen. Features seen in the SEM
image may then be immediately analyzed for elemental
composition using EDS or WDS.

Electronic Design Automation

Secondary Electron Imaging: shows the topography of
surface features a few nm across. Films and stains as thin
as 20 nm produce adequate-contrast images. Materials are
viewed at useful magnifications up to 100,000x without the
need for extensive sample preparation and without damaging
the sample. Even higher magnifications and resolution are
routinely obtained by our Field Emission SEM.

Backscattered Electron Imaging: shows the spatial
distribution of elements or compounds within the top micron
of the sample. Features as small as 10 nm are resolved and
composition variations of as little as as 0.2% determined.

Data Output: is generated in real time on the CRT monitor.
Images and spectra can be printed here, recorded on CD
ROM and/or emailed for insertion into your own reports.

Field Emission
Scanning Electron Microscopy (FESEM)

Principle of Operation

A field-emission cathode in the electron gun of a scanning
electronmicroscope provides narrower probing beams at low
as well as high electronenergy, resulting in both improved
spatial resolution and minimized samplecharging and
damage. For applications which demand the highest
magnification possible.

Applications Include
e Semiconductor device cross section analyses for gate widths,
gate oxides,film thicknesses, and construction details
e Advanced coating thickness and structure uniformity
determination

58

Electronic Design Automation

Small contamination feature geometry and elemental
composition measurement

Why Field Emission SEM?

FESEM produces clearer, less electrostatically
distorted images withspatial resolution down to 1 1/
2 nm. That’'s 3 to 6 times better than conventional
SEM.

Smaller-area contamination spots can be examined at
electron acceleratingvoltages compatible with Energy
Dispersive X-ray Spectroscopy.

Reduced penetration of low kinetic energy electrons
probes closer tothe immediate material surface.

High quality, low voltage images are obtained with
negligible electrical charging of samples. (Accelerating
voltages range from 0.5 to 30 kV.)

Need for placing conducting coatings on insulating
materials is virtually eliminated.

For ultra-high magnification imaging.

Cross-section of a Laser Window Showing
Multiple thin Layers at 50,000x

e R O R S e e

e e ——

FPhotoMet

Fig. Cross Section of Contact on Silicon

59

Electronic Design Automation

PhotoMet

Fig. Cross Section of Via Openings

FhotoMet

Energy Dispersive X-Ray Spectroscopy (EDS)

EDS identifies the elemental composition of materials
imaged in a Scanning Electron Microscope (SEM) for all
elements with an atomic number greater than boron. Most
elements are detected at concentrations on the order of 0.1%.
Applications Include

e Materials evaluation and identification
Contaminants.

Elemental diffusion profiles.

Glassivation phosphorus content.

Multiple spot analysis of areas from 1 micron to 10
cm in diameter.
e Failure analysis

— Contamination identification.

— Unknowns identification.

60

Electronic Design Automation

— Stringer location and identification.
* Quality control screening
— Material verification.
— Plating specification and certification.

Principle of Operation

As the electron beam of the SEM is scanned across the
sample surface, it generates X-ray fluorescence from the
atoms in its path. The energy of each X-ray photon is
characteristic of the element which produced it. The EDS
microanalysis system collects the X-rays, sorts and plots
them by energy, and automatically identifies and labels the
elements responsible for the peaks in this energy distribution.

The EDS data are typically compared with either known
or computer-generated standards to produce a full
quantitative analysis showing the sample composition.

Data output: Plots the original spectrum showing the
number of X-rays collected at each energy, as seen above.
Maps of element distributions over areas of interest and
quantitative composition tables can also be provided as

necessary.

Atomic Force Microscope/Scanning
Probe Microscopy

Atomic Force Microscopy and Scanning Probe Microscopy
(AFM/SPM) provide topographic information down to the
Angstrom level. Additional properties of the sample, such
as thermal and electrical conductivity, magnetic and electric
field strength, and sample compliance can simultaneously
be obtained using a specialty probe. Many applications
require little or no sample preparation.

61

Electronic Design Automation

Principle of Operation

The Atomic Force Microcope uses a physical probe raster
scanning across the sample using piezoelectric ceramics. A
feedback loop is used to maintain a constant interaction
between the probe and the sample. The position of the probe
and the feedback signal are electronically recorded to produce
a three dimensional map of the surface or other information
depending on the specialty probe used.

Data Output: is either a three dimensional image of the
surface or a line profile with height measurements. The
surface roughness parameters of Ra or RMS are also available
with either of the above outputs.

Other types of feature analysis include Partical Grain Size
Analysis, Bearing Ratio, Fractal Dimension, Power Spectrum,
and Fast Fourier Transform.

Applications Include
e Materials Evaluation

— Surface roughness on implanted silicon wafers.

— Thermal properties such as thermal conductivity,
glass transition temperature (Tg), and melting
temperature of various phases of a blended polymer
measured down to the nanometer scale.

— Surface profiles and magnetic field mapping of
recording media or reading heads.

— Nanomechanical testing.

e Failure Analysis
— Rapid hot-spot analysis of powered electronic devices.
— Defect analysis of compact disk stampers.
¢ Quality Control
— Surface profiles of thin film and coatings.
62

Electronic Design Automation

— Metrology of semiconductor devices and compact
disks.
— Surface finish of substrates for thin film deposition.

SPM Techniques
e Magnetic Force Microscopy: Digital Video Disc Surface
(10 microns)

Wavelength Dispersive X-Ray Spectrometry
(WDS)

WDS identifies the elemental composition of materials
imaged in the SEM with an order of magnitude better spectral
resolution, sensitivity and ability to determine concentratins
of light elements than is achievable with EDS. Most elements
are detected below 0.1% and some as low as a few ppm.

Applications Include
e Identification of spectrally overlapped elements, such
as
— S in the presence of Pb or Mo.
— Wor Ta in Si, or N in Ti.
— Br in Al, common in semiconductor device failure.
e Detection of low concentration species (down to 100
or even 10 ppm)

63

Electronic Design Automation

P or S in metals.

Contaminants in precious metal catalysts.

Trace heavy metal contamination.

Performance-degrading impurities in high
temperature solder alloys.
e Analysis of low atomic number elements

Composition of advanced ceramics and composites.
B in BPSG films (sensitivity to 2000 ppm).
— Oxidation and corrosion of metals.

Characterization of biomedical and organically
modified materials.

Principle of Operation

The characteristic X-ray photons excited by the electron
beam are sorted using a diffracting crystal, whose angular
placement relative to the sample and photodetector is a
unique measure of their wavelengths. As with EDS, the
resulting spectral distribution is automatically compared with
those from actual standards or synthetic X-ray fluorescence
spectra of material formulations.

WDS vs. EDS
X-ray microanalysis in the scanning electron microscope
is accomplished using EDS and/or WDS. EDS is more
commonly applied due to its simplicity and speed, while WDS
offers an important and often critical refinement of EDS data
by providing
e Analysis for light elements with at least an order of
magnitude higher sensitivity than available (ultrathin
X-ray window) EDS instruments.

64

Electronic Design Automation

e Resolution of severely overlapped spectrum peaks for
improved element specificity.

e Lowered detection limits over the entire periodic table.

e More accurate quantitative analyses.

Scanning Auger Microanalysis (SAM)

SAM provides elemental and chemical composition for all
elements with an atomic number greater than helium. Its
sampling depth of 2-3 nm allows films as thin as a few
monolayers to be analyzed. Auger also produces images of
the distributions of elements along the surface and produces
profiles of composition vs. depth from 1 to 2000 nm.

Applications Include
e Materials evaluation and identification
Surface contaminants

Surface homogeneity

Diffusion profiles

Particle sizes

Catalyst degradation
Interfaces

e Failure Analysis
— Corrosion characterization

— Stain identification

65

Electronic Design Automation

— Lifted lead bond evaluation
— Material delamination analysis
— Metal embrittlement evaluation
e Quality control screening
— “Good” to “bad” sample comparison.
— Material and plating/coating thickness
determination.
— Surface process modification.

Principle of Operation

The sample is scanned with a focused beam of about 5 kV
electrons, causing low energy Auger electrons to be ejected
from its surface. The kinetic energies of these Auger electrons
provide an analysis for the chemical elements present in the
top few atomic layers. An auxiliary argon ion beam may be
used to remove near-surface layers by “sputtering” to expose
a fresh surface for analysis, producing a profile showing the
dependence of sample composition on depth.

lon .'
Beam &ctron
bea

- |

Fourier Transform Infrared Spectroscopy (FTIR)
FTIR spectroscopy is used primarily for qualitative and
quantitative analysis of organic compounds, and also for
determining the chemical structure of many inorganics.
FTIR analysis applications include:
e Materials Evaluation and Identification

66

Electronic Design Automation

Organic compounds
— Structure of many inorganic compounds
Deformulations

Forensics

Material homogeneity

e Failure analysis
— Micro-contamination identification

Adhesive performance
Material delamination

Corrosion chemistry.
e Quality control screening

— “Good” to “bad” sample comparison

— Evaluation of cleaning procedure effectiveness

— Comparison of materials from different lots or
vendors.

Principle of Operation

Because chemical bonds absorb infrared energy at specific
Jrequencies (or wavelengths), the basic structure of
compounds can be determined by the spectral locations of
their IR absorptions. The plot of a compound’s IR
transmission vs. frequency is its “fingerprint”, which when
compared to reference spectra identifies the material. FTIR
spectrometers offer speed and sensitivity impossible to

67

Electronic Design Automation

achieve with earlier wavelength-dispersive instruments. This
capability allows rapid analysis of micro-samples down to
the nanogram level in some cases, making the FTIR
unmatched as a problem-solving tool in organic analysis.

The FTIR microscope accessory (shown in the photo above)
allows spectra from a few nanograms of material to be
obtained quickly, with little sample preparation, resulting in
more data at lower cost. In some cases, thin films of residue
are identified with a sensitivity that rivals or even exceeds
electron or ion beam-based surface analysis techniques.

There are few sample constraints; solids, liquids and gases
can be accommodated. Many contaminants present on
reflective surfaces such as solder pads or printed circuitry
are readily analyzed in situ using the FTIR microscope in
reflectance mode.

More information on infrared spectroscopy:

Basic theory of infrared spectroscopy

Identifying organic structure by FTIR.

Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry, DSC, is a thermo
analytical technique in which the difference in the amount
of heat required to increase the temperature of a sample and
reference are measured as a function of temperature.

Both the sample and reference are maintained at nearly
the same temperature throughout the experiment. Generally,
the temperature programme for a DSC analysis is designed
such that the sample holder temperature increases linearly
as a function of time. Only a few milligrams of material are

required to run the analysis.

68

Electronic Design Automation

Principle of Operation

When a sample undergoes a physical transformation such
as a phase transition, more or less heat will need to flow to it
than to the reference (typically an empty sample pan) to
maintain both at the same temperature. Whether more or
less heat must flow to the sample depends on whether the
process is exothermic or endothermic.

For example, as a solid sample melts to a liquid it will
require more heat flowing to the sample to increase its
temperature at the same rate as the reference. This is due to
the absorption of heat by the sample as it undergoes the
endothermic phase transition from solid to liquid.

Likewise, as the sample undergoes exothermic processes
(such as crystallization) less heat is required to raise the
sample temperature.

By observing the difference in heat flow between the sample
and reference, differential scanning calorimeters are able to
measure the amount of heat absorbed or released during
such transitions. DSC may also be used to observe more
subtle phase changes, such as glass transitions.

Applications

DSC is commonly used to measure a variety of properties
in both organic and inorganic materials, from metals and
simple compounds to polymers and pharmaceuticals. The
properties measured include:

¢ Glass transitions

e Phase changes

e Melting

¢ Crystallization

69

Electronic Design Automation

e Product stability
e Cure/cure kinetics
e Oxidative stability

e Heat capacity and heat of fusion measurements

ADSC trace of poly(ethylene terephthalate), PET
1. Glass transition at 348 K.
2. Crystallization at 418 K.
3. Melting at 526 K.
4. Decomposition above 650K.

3

“Fj}\f_/q\’\

300 400 500 600 700 8OO
Temperature (K)

—= Exotherm

Outline of Analytical Imaging
Facility Capabilities

The Analytical Imaging Facility provides a comprehensive
light and electron microscope imaging facility dedicated to
bringing state of the art methods in modern imaging to
biomedical scientists with all levels of expertise. The AIF
staff has been cross-trained to offer a seamless transition
from classical histology, to high resolution light microscope
imaging in 3D, to state of the art electron microscopy.

[

This unified approach facilitates the efficient and
appropriate complementary use of these methods in research.
For the infrequent user, the AIF provides a completely assisted
technical support service. For the trained microscopist, the
AIF is an available equipment resource. A significant effort

70

Electronic Design Automation

is devoted to training investigators who require microscopy
techniques to advance their projects.

The Services
Transmission Electron Microscopy

JEOL 1200EX. This instrument offers the highest basic
performance as a 120 kv transmission electron microscope
employing a uniquely designed 3-stage 6-lens imaging
system. It offers operational ease, excellent image quality and
high resolution at low to high magnifications. It is equipped
with side entry goniometer stage, minimum dose system,
bottom mounted high resolution Gatan video camera and
side mounted wide angle Gatan video camera.

JEOL 100CXII. This high performance 100 kv
transmission electron microscope features a cool beam
electron gun, high image contrast, high-speed cascade
differential evacuation, optimum underfocus system using
an image wobbler and a side entry goniometer.

Cryo Transmission Electron Microscopy for
Single Molecule Imaging

The College, HHMI and NIH (by way of an awarded Shared
Instrumentation Grant) have supported establishing a full
Cryo EM programme. The technology spans the resolution
range from electron microscopy to X-ray crystalography and
allows for imaging of single molecules in their hydrated state.

Scanning Electron Microscopy

JEOL 6400. This high performance Scanning Electron
Microscope operates with accelerating voltage from 0.2 kv to
35 kv utilizing a high brightness LaB6 filament. It offers full

71

Electronic Design Automation

keyboard operation, framestore with digital image processing
and digital image capture on a PC running analy SIS software.

Specimen Preparation for Electron Microscopy

The staff of the AIF offer full service sample preparation
for many standard and state of the art EM techniques. These

include:
B —
| YT 7 gt
= O e
- ,4:‘- “Nem—r
o e

e
-y

e Embedding: utilizing either epoxy or acrylic resins at
ambient or low temperatures.

e Thin Sectioning: with a Reichert Ultracut E or Leica
UCT ultramicrotome.

e Negative Staining.

e Freeze Fracture using a Cressington CFE-50 Freeze
Etch Unit.

e mmunogold Labeling following pre or post embedding
protocols.

e (ritical Point Drying with a Tousimis Samdri 790
Critical Point Dryer and Sputter Coating using a
Denton Sputter Coater for preparing cells and tissues
for SEM Imaging.

¢ Cryoultramicrotomy utilizing a Leica UCT
cryoultramicrotome for optimizing epitope availability
and morphological preservation for immunogold
labeling.

¢ Slam Freeze Cryofixation using a Life Cell CF100 Slam

72

Electronic Design Automation

Freezer, which can be followed by High Resolution
Rotary Shadowing in a Cressington CFE-50 equipped
with e-beam guns for platinum or tungsten-tantalum
evaporation. Slam Freezing followed by rotary
shadowing is a powerful technique to obtain high
resolution images of cells or macromolecules in 3-D,
that have been frozen in the hydrated state.

¢ Slam Freeze Cryofixation using a Life Cell CF100 Slam
Freezer followed by Freeze Substitution and Low
Temperature Embedding in a Bal Tec FSU-010 Freeze
Substitution Unit. Freeze Substitution is an alternative
method for optimizing epitope preservation for
immunogold labeling.

Photographic Documentation for Electron
Microscopy

The AIF offers a photographic service for producing high
quality electron micrographs on conventional photographic
paper or high resolution scanning and direct digital printing
for poster, lecture, web and journal publication.

Light Microscopy
Routine light microscopy

A Zeiss AxioSkop II with optics for brightfield, darkfield
(through the condenser or via true oblique illumination),
phase contrast, Nomarski, polarized light and epi-
fluorescence with1.25X through 100X objectives serves as
the “routine” microscope. Images are recorded with a colour
Zeiss AxioCam.

To meet the growing demand for imaging of live material,
epecially of eGFP or other fluorescently tagged cells, or of

73

Electronic Design Automation

cells in culture dishes, the AIF has Olympus inverted
microscopes with a wide array of optics and photography
options. On other inverted systems in the AIF researchers
continue to use video digitizing technology for imaging motile
cells in phase contrast.

Stereo Dissection Microscope

Lower magnification imaging is achieved with a Zeiss SV11
(“STEMI”) with a Retiga 1300 digital camera, optical tunable
filter for colour imaging and IP Lab for image capture. Reflected
light is provided either by a ring illuminator or by two point
illumination, transmitted light is provided with a continuously
adjustable 100% transmittance to darkfield slider and epi-
illumination for fluorescence is provided by a mercury arc
lamp with filters for dapi, CFP, GFP, YFP or rhodamine/RFP.

BioRad Radiance 2000 Laser Scanning Confocal
Microscope

Thin optical sections of much higher resolution than
normal epi-fluorescence can be obtained from live or fixed
cultured cells, vibratome sections, or intact tissue with
colocalization of up to three different fluorescent probes and
one reflectant probe. Collected images can be reconstructed
in 3D, enhanced, or analyzed using a variety of techniques.
Data can be readily ported to other platforms for analysis or
for final presentation.

Leica SP2 AOBS Laser Scanning Confocal
Microscope

True spectral imaging with thin optical sections of much
higher resolution than normal epi-fluorescence can be

74

Electronic Design Automation

obtained from cultured cells, vibratome sections, or intact
tissue with simultaneous colocalization of multiple
fluorescent probes, reflectance and transmitted light.
Collected images can be reconstructed in 3D, enhanced, or
analyzed using a variety of techniques. Data can be readily
ported to other platforms for analysis or for final
presentation. This instrument also has powerful capabilities
for FRAP, FRET and time lapse applications

Leica SP5 AOBS Laser Scanning Confocal
Microscope
Newer model of SP2. Arriving late December 2007 .

Zeiss Live/DUO Confocal Microscope

High speed confocal microscope designed specifically for
photoactivation or bleaching via a separate scanner than
the imaging path. This confocal with a 100 mW laser at 489
nm and 50 mW lasers at 405 and 561 nm will be used
primarily for live cell applications.

PerkinElmer UltraVIEW RS-3 Spinning Disk
Laser Confocal Microscope

Preferable for imaging live cell cultures due to reduced
phototoxcity, thin optical sections may be imaged as time
lapse volumes. The 9 fps full field 12 bits imaging system
has laser lines at 488, 568 and 647 nm for exciting three
popular ranges of fluorescent probes, a piezo for high speed
and reproducable Z axis control, environmental control and
Nikon optics.

Expected move to new satellite facility on second floor of
Michael F. Price Centre for Genetic and Translational

75

Electronic Design Automation

Medicine in the Harold and Muriel Block Research Pavilion
in January/February 2008.

Multi Photon Confocal Microscopy

Multi-photon microscopy relies on excitation of
fluorophores or harmonic generation by femptosecond
pulses of highly concentrated long wavelength light.

Practically, this allows for imaging multiple fluorescent
wavelengths deep in live tissue. The system reduces bleaching
and other problems endemic to epi-fluorescent microscopy,
may be more sensitive due to its lack of a confocal pinhole,
and solves other problems of light scatter. The instrument is
at the centre of the intravital imaging programme at AECOM.

FRET

Fluorescence Resonance Energy Transfer, the transfer of
energy from a donor fluorophore within 7 nm of an acceptor
fluorophore, can be used to measure binding interactions
between and within molecules. The AIF provides acceptor
bleaching for FRET imaging and measurements on three
confocal microscopes and ratio FRET with widefield
microscopy. Widefield FLIM in the time domain using a
gated cooled CCD camera with LaVision software may be
available.

TIRF

Total Internal Reflection Fluorescent microscopy provides
excitation of fluorophores only within 100 nm of the subtrate.
Therefore, only molecules immediately apposed to the
coverslip are excited and imaged. Objective illuminated TIRF
is provided on an Olympus IX71 with either a 60X or 100X

76

Electronic Design Automation

N.A. 1.45 or a 100X N.A. 1.65 with capability to do TIRF/
FRET using probes over the visible spectrum from CFP
through red. Image collection and automated shuttering are
provided with an Andor EM camera and Uniblitz shutters
running under IPLab.

D.I.C. (Nomarski), Darkfield, Phase Contrast,
IRM, and Epifluorescence with Digital Imaging
Four inverted microscope stations for high spatial
resolution, wide dynamic range (low light to bright light) with
time lapse and deconvolution capabilities. 12 bit Cooke
Sensicam QE cooled CCD cameras mounted on high
efficiency throughput Olympus IX70 or IX81 inverted
microscopes with state of the art infinity corrected optics.

" i
P

May be used to collect multiple fluorescent probes and
transmitted light (brightfield, phase contrast or Nomarski)
images with IPLab software running on PCs. Environmental
chambers for the Olympus microscopes are available for in
vivo work.

Many applications including spot photometry. Also, focus
motors for collection of serial sections for deconvolution.
Deconvolution produces images that are confocal-like in their
resolution but may have a benefit of imaging weak signal or
a wide dynamic range. Standard fluorescent filters include

77

Electronic Design Automation

FITC, rhodamine, Cy3, Cy5, Dapi, GFP, CFP, YFP among
others more esoteric ones and a 50/50 mirror for IRM.

Exhaustive Photon Reassignment (EPR)

EPR deconvolution complements the other deconvolution
techniques offered at the AIF by providing preservation of
the total energy of the sampled volume for quantitative
analysis of very dim specimens. Automated imaging of
multiply probed serial optical sections is performed with a
piezo controller and a Photometrics 15 bit cooled CCD camera
on a high efficiency upright Olympus microscope. This is a
specialty technique to image single or few molecules with
precise locating within 70 nm.

Microinjection

Microinjection is a method to deliver solutions (proteins,
DNA or RNA, other chemicals) directly into individual cells in
culture. The AIF has two automated Eppendorf systems for
use on any inverted microscopes in the Facility including the
confocal, multirphoton, and other digital imaging systems.

Motion Analysis

High speed (200 FPS under bright illumination), real time
(30 FPS video), or time lapse (approx. 100 ms to hours)
imaging with fluorescence and transmitted light can be
performed on inverted microscopes with temperature
regulated environmental chambers.

Images can be made into movies for video or web
presentations. Sophisticated morphometric measurements
may be made over time. Quantification of images includes
intensity changes of fluorescence, changes in cell or particle

78

Electronic Design Automation

velocity, direction, shape and size over time and schematic
visualization of such changes. In some cases, volume
changes can be measured.

Volume Rendering and 3D Quantitation

For 3D rendering or reconstructions the staff operate and
train Imaris Bitplane, Voxx, a number of plugins within ImageJ
and Volocity. The staff train investigators in more simple 3D
imaging and quantitation via analysis of serial sections with
Imaged and I.P. Lab including the authoring of scripts for
automation and result reporting.

Single Photon Uncaging

Uncaging is the activation by removing a photo-labile
blocking group from DNA, RNA, protein or small molecules.
The uncaging station consists of an Olympus IX70, two Hg
arc lamps for UV uncaging and epifluorescence, UV corrected
and phase contrast optics for uncaging and viewing cell
behaviour, shutters for high speed and timed uncaging and
image collection, and a Cooke Sensicam for recording
uncaged fluorescence. This system shares a microscope with
a microinjection apparatus for ease of loading cells for live
experiments. A 337 nm laser with has been purchased for
the system and is under development on a separate
microscope stand in the Biophotonics Innovation Laboratory.

Hard Copy and Presentation

On all imaging platforms, digitized picture files are in
standard formats and can be converted easily to other
formats; data can be exported to other computer systems or
reproduced on a variety of hard copy devices.

79

Electronic Design Automation

\ | P 9
Adobe Photoshop CS is most widely used for figure

preparation and we are happy to assist. A Fujix Pictrography
3000 colour printer makes continuous tone output at 400
PPI indistinguishable from real photographs.

Standard laser printing can be used for draft grayscale as
well as for crisp graphs and text. Both still images and moving
sequences can be prepared for web presentation. The AIF
maintains in its inventory tools for video; however, use is by
special appointment as video is being phased out.

HIGH-THROUGHPUT CRYO-TRANSMISSION
ELECTRON MICROSCOPE (TEM)

Scientific Drivers

Future advances in the biosciences will depend heavily on
the ability to link cell biology and structural biology through
a comprehensive understanding of the structure and function
of individual molecular machinery.

For instance, membrane proteins account for
approximately 20-30% of the proteome and form the
responsive interface between cellular and sub-cellular
compartments and their environment. Thus, one of the great
challenges of cell biology, proteomics and structural biology

80

Electronic Design Automation

is atomic-resolution structure determination of membrane
protein complexes and dynamic macromolecular
assemblies, including whole viruses.

A high-throughput cryo-TEM platform is the only possible
tool for elucidating the three-dimension- al structure of entire
cells with sufficient resolution to examine the arrangement
and interactions of internal macromolecular complexes.
Examples of the types of work that this facility will enable
include:

¢ Determining how the 3-D biology of the human islet/
beta cell relates to the development, physiology and
dysfunction of the human endocrine pancreas and
its role in diabetes.

e Characterising caveolae—which have been linked to
cancer, cholesterol regulation and muscular
dystrophy—by using electron tomography and
immunolabelling methods. Revealing the structure of
membrane proteins for the design of new and highly
specific drugs. With the ability to probe the molecular
basis of disease.

Capabilities and the National Research Capacity

The cryo-TEM facility at the University of Queens-land is
the only fully established life-sciences facility in Australia or
New Zealand capable of collecting and processing atomic-
resolution images at low temperatures (-160°C), as well as
undertaking 3-D electron tomography of organelles, cells and
tissues at ambient and low temperatures.

As such, it is one of only a handful of such facilities in the
world. The NCRIS investment will build on the flagship FEI

81

Electronic Design Automation

Tecnai F30 microscope to create a high-throughput platform
capable of the high output essential to make genuine inroads
into key questions in molecular biology, medicine and
biotechnology. The completed system will offer Australian
researchers a quantum leap in technology and productivity
for the emerging techiques of electron tomography, electron
crystallography and single particle analysis.

The high-throughput system will be sited in custom-built
laboratories within the Australian Institute for Bioengineering
and Nanotechnology (AIBN) and the Queensland Biosciences
Precinct (QBP). Practically, this is necessary to build on the
previous investments in the FEI Tecnai F30 and associated
sample prepara- tion and screening equipment and
laboratories.

Scientifically, this builds on the unparalleled experience
within the Centre for Microscopy and Microanalysis in cryo-
electron microscopy, particularly the recent developments
in rapid image-processing pipelines for single particle
analysis, electron crystallography and electron
tomography.

Moreover, it provides easy access for the approximately
1000 researchers from the Institute for Molecular
Bioscience, the new AIBN and the Queensland Brain
Institute (QBI).

Nature and Level of Demand

Since commissioning of the Tecnai F30, more than 120
national and international research projects have been
undertaken and the instrument is presently near fully

usage.

82

Electronic Design Automation

Given the proximity to major existing and new research
centres in biosciences and nanotechnology, demand is
expected to rapidly increase with the new high-throughput
capability. Expected usage is approximately 20 projects (3000

hours) per annum.

Understanding how the SEM Works and how to
use
it on a College Level

e Electron Source

e Electromagnetic Lens

¢ FElectron Optical Column

e Ray Diagrams

e Electron Beam/Specimen Interactions

e Vacuum

e Specimen Chamber

e Specimen Preparation

The electron beam comes from a filament, made of various
types of materials. The most common is the Tungsten hairpin
gun. This filament is a loop of tungsten which functions as
the cathode. A voltage is applied to the loop, causing it to heat
up. The anode, which is positive with respect to the filament,
forms powerful attractive forces for electrons. This causes
electrons to accelerate toward the anode. Some accelerate right
by the anode and on down the column, to the sample. Other
examples of filaments are Lanthanum Hexaboride filaments
and field emission guns.

83

Electronic Design Automation

Filament Heating Supply

Filament

Grid Cap

Bi
(cylinder) . B

Resistor

High Voltage
Supply

Equipotentials Emission
Current

Anode .
Plate,

Fig. Forces in a Cylindrical Magnetic Lens

N AN -
Flectron Beam Bisa dim:twn'in
the plane, ¥y is L
Bp L A to the plane.
B\ { A
/_,’ By
_— ; B. "B Two components to
electrons spiraling down the axis L J the B field:
Nonaxial electrons will experience a force both down By = longitudinal component
the axis and one radial to it. Only electrons traveling (down the axis)
down the axis feel equal radial fmﬁumall. sides of By radial comp i
the lens. Thelmequal .forl:e fdtbythef]ff—a.ms (perpendicular to azis)
electrons causes spiralling about the optic axis.

Fig. Beam's Path through the Column

Abeam of electrons is generated in the electron gun, located
at the top of the column, which is pictured to the left. This
beam is attracted through the anode, condensed by a
condenser lens, and focused as a very fine point on the sample
by the objective lens. The scan coils are energized (by varying
the voltage produced by the scan generator) and create a
magnetic field which deflects the beam back and forth in a
controlled pattern.

84

Electronic Design Automation

[4]

Electron

beam \‘

Condenser

lens \

Condenser
aperture

The varying voltage is also applied to the coils around the
neck of the Cathode-ray tube (CRT) which produces a pattern
of light deflected back and forth on the surface of the CRT.
The pattern of defl