

ELECTRONIC
DESIGN AUTOMATION

ELECTRONIC
DESIGN AUTOMATION

Alfred Talley

Electronic Design Automation

by Alfred Talley

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984663955

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Introduction to Electronic Design Automation 1

Chapter 2 Compiler 28

Chapter 3 Scanning Electron Microscopy 56

Chapter 4 Data Analysis and Design 87

Chapter 5 Combinational Logic Design 112

Chapter 6 Conceptual Model 132

1

Introduction to Electronic Design
Automation

Electronic design automation (EDA or ECAD) is a category

of software tools for designing electronic systems such as

printed circuit boards and integrated circuits. The tools

work together in a design flow that chip designers use to

design and analyze entire semiconductor chips.

HISTORY
Early Days

Before EDA, integrated circuits were designed by hand,

and manually laid out. Some advanced shops used geometric

software to generate the tapes for the Gerber photoplotter,

but even those copied digital recordings of mechanically-

drawn components. The process was fundamentally graphic,

with the translation from electronics to graphics done

manually. The best known company from this era was

Electronic Design Automation

2

Calma, whose GDSII format survives. By the mid-70s,

developers started to automate the design, and not just the

drafting. The first placement and routing (Place and route)

tools were developed. The proceedings of the Design

Automation Conference cover much of this era. The next

era began about the time of the publication of “Introduction

to VLSI Systems” by Carver Mead and Lynn Conway in

1980. This ground breaking text advocated chip design with

programming languages that compiled to silicon.

The immediate result was a considerable increase in the

complexity of the chips that could be designed, with improved

access to design verification tools that used logic simulation.

Often the chips were easier to lay out and more likely to

function correctly, since their designs could be simulated

more thoroughly prior to construction. Although the

languages and tools have evolved, this general approach of

specifying the desired behavior in a textual programming

language and letting the tools derive the detailed physical

design remains the basis of digital IC design today. The

earliest EDA tools were produced academically. One of the

most famous was the “Berkeley VLSI Tools Tarball”, a set

of UNIX utilities used to design early VLSI systems. Still

widely used is the Espresso heuristic logic minimizer and

Magic. Another crucial development was the formation of

MOSIS, a consortium of universities and fabricators that

developed an inexpensive way to train student chip designers

by producing real integrated circuits. The basic concept was

to use reliable, low-cost, relatively low-technology IC

processes, and pack a large number of projects per wafer,

with just a few copies of each projects’ chips. Cooperating

Electronic Design Automation

3

fabricators either donated the processed wafers, or sold

them at cost, seeing the programme as helpful to their own

long-term growth.

Birth of Commercial EDA

1981 marks the beginning of EDA as an industry. For

many years, the larger electronic companies, such as Hewlett

Packard, Tektronix, and Intel, had pursued EDA internally.

In 1981, managers and developers spun out of these

companies to concentrate on EDA as a business. Daisy

Systems, Mentor Graphics, and Valid Logic Systems were

all founded around this time, and collectively referred to as

DMV. Within a few years there were many companies

specializing in EDA, each with a slightly different emphasis.

The first trade show for EDA was held at the Design

Automation Conference in 1984. In 1986, Verilog, a popular

high-level design language, was first introduced as a

hardware description language by Gateway Design

Automation. In 1987, the U.S. Department of Defense funded

creation of VHDL as a specification language. Simulators

quickly followed these introductions, permitting direct

simulation of chip designs: executable specifications. In a

few more years, back-ends were developed to perform logic

synthesis.

Current Status

Current digital flows are extremely modular (see Integrated

circuit design, Design closure, and Design flow (EDA)). The

front ends produce standardized design descriptions that

compile into invocations of “cells,”, without regard to the

cell technology. Cells implement logic or other electronic

Electronic Design Automation

4

functions using a particular integrated circuit technology.

Fabricators generally provide libraries of components for

their production processes, with simulation models that fit

standard simulation tools. Analog EDA tools are far less

modular, since many more functions are required, they

interact more strongly, and the components are (in general)

less ideal. EDA for electronics has rapidly increased in

importance with the continuous scaling of semiconductor

technology. Some users are foundry operators, who operate

the semiconductor fabrication facilities, or “fabs”, and design-

service companies who use EDA software to evaluate an

incoming design for manufacturing readiness. EDA tools

are also used for programming design functionality into

FPGAs.

Software Focuses

Design

• High-level synthesis(syn. behavioural synthesis,

algorithmic synthesis) For digital chips

• Logic synthesis translation of abstract, logical

language such as Verilog or VHDL into a discrete

netlist of logic-gates

• Schematic Capture For standard cell digital, analog,

rf like Capture CIS in Orcad by CADENCE and ISIS

in Proteus

• Layout like Layout in Orcad by Cadence, ARES in

Proteus

Design Flows

Design flows are the explicit combination of electronic

design automation tools to accomplish the design of an

Electronic Design Automation

5

integrated circuit. Moore’s law has driven the entire IC

implementation RTL to GDSII design flows from one which

uses primarily standalone synthesis, placement, and routing

algorithms to an integrated construction and analysis flows

for design closure. The challenges of rising interconnect

delay led to a new way of thinking about and integrating

design closure tools. New scaling challenges such as leakage

power, variability, and reliability will keep on challenging

the current state of the art in design closure. The RTL to

GDSII flow underwent significant changes from 1980 through

2005. The continued scaling of CMOS technologies

significantly changed the objectives of the various design

steps.

The lack of good predictors for delay has led to significant

changes in recent design flows. Challenges like leakage

power, variability, and reliability will continue to require

significant changes to the design closure process in the

future. Many factors describe what drove the design flow

from a set of separate design steps to a fully integrated

approach, and what further changes are coming to address

the latest challenges. In his keynote at the 40th Design

Automation Conference entitled The Tides of EDA, Alberto

Sangiovanni-Vincentelli distinguished three periods of EDA:

The Age of the Gods, The Age of the Heroes, and The Age

of the Men. These eras were characterized respectively by

senses, imagination, and reason. When we limit ourselves

to the RTL to GDSII flow of the CAD area, we can distinguish

three main eras in its development: the Age of Invention,

the Age of Implementation, and the Age of Integration.

Electronic Design Automation

6

• The Age of Invention: During the invention era,

routing, placement, static timing analysis and logic

synthesis were invented.

• The Age of Implementation: In the age of

implementation, these steps were drastically improved

by designing sophisticated data structures and

advanced algorithms. This allowed the tools in each

of these design steps to keep pace with the rapidly

increasing design sizes. However, due to the lack of

good predictive cost functions, it became impossible

to execute a design flow by a set of discrete steps,

no matter how efficiently each of the steps was

implemented.

• The Age of Integration: This led to the age of integration

where most of the design steps are performed in an

integrated environment, driven by a set of incremental

cost analyzers.

Simulation

• Transistor simulation – low-level transistor-simulation

of a schematic/layout’s behavior, accurate at device-

level.

• Logic simulation – digital-simulation of an RTL or

gate-netlist’s digital (boolean 0/1) behavior, accurate

at boolean-level.

• Behavioral Simulation – high-level simulation of a

design’s architectural operation, accurate at cycle-

level or interface-level.

• Hardware emulation – Use of special purpose

hardware to emulate the logic of a proposed design.

Electronic Design Automation

7

Can sometimes be plugged into a system in place of

a yet-to-be-built chip; this is called in-circuit

emulation.

• Technology CAD simulate and analyze the underlying

process technology. Electrical properties of devices

are derived directly from device physics.

• Electromagnetic field solvers, or just field solvers,

solve Maxwell’s equations directly for cases of interest

in IC and PCB design. They are known for being

slower but more accurate than the layout extraction

above.

Electronic Circuit Simulation

Electronic circuit simulation uses mathematical models

to replicate the behavior of an actual electronic device or

circuit. Simulation software allows for modeling of circuit

operation and is an invaluable analysis tool. Due to its

highly accurate modeling capability, many Colleges and

Universities use this type of software for the teaching of

electronics technician and electronics engineering

programmes.

Electronics simulation software engages the user by

integrating them into the learning experience. These kinds

of interactions actively engage learners to analyze, synthesize,

organize, and evaluate content and result in learners

constructing their own knowledge. Simulating a circuit’s

behavior before actually building it can greatly improve

design efficiency by making faulty designs known as such,

and providing insight into the behavior of electronics circuit

designs.

Electronic Design Automation

8

In particular, for integrated circuits, the tooling

(photomasks) is expensive, breadboards are impractical,

and probing the behavior of internal signals is extremely

difficult. Therefore almost all IC design relies heavily on

simulation. The most well known analog simulator is SPICE.

Probably the best known digital simulators are those based

on Verilog and VHDL. Some electronics simulators integrate

a schematic editor, a simulation engine, and on-screen

waveforms, and make “what-if” scenarios easy and instant.

They also typically contain extensive model and device

libraries. These models typically include IC specific transistor

models such as BSIM, generic components such as resistors,

capacitors, inductors and transformers, user defined models

(such as controlled current and voltage sources, or models

in Verilog-A or VHDL-AMS). Printed circuit board (PCB)

design requires specific models as well, such as transmission

lines for the traces and IBIS models for driving and receiving

electronics.

Types

While there are strictly analog electronics circuit

simulators, popular simulators often include both analog

and event-driven digital simulation capabilities, and are

known as mixed-mode simulators. This means that any

simulation may contain components that are analog, event

driven (digital or sampled-data), or a combination of both.

An entire mixed signal analysis can be driven from one

integrated schematic. All the digital models in mixed-mode

simulators provide accurate specification of propagation

time and rise/fall time delays.

Electronic Design Automation

9

The event driven algorithm provided by mixed-mode

simulators is general purpose and supports non-digital

types of data. For example, elements can use real or integer

values to simulate DSP functions or sampled data filters.

Because the event driven algorithm is faster than the

standard SPICE matrix solution, simulation time is greatly

reduced for circuits that use event driven models in place

of analog models.

Mixed-mode simulation is handled on three levels; (a)

with primitive digital elements that use timing models and

the built-in 12 or 16 state digital logic simulator, (b) with

subcircuit models that use the actual transistor topology

of the integrated circuit, and finally, (c) with In-line Boolean

logic expressions.

Exact representations are used mainly in the analysis

of transmission line and signal integrity problems where a

close inspection of an IC’s I/O characteristics is needed.

Boolean logic expressions are delay-less functions that are

used to provide efficient logic signal processing in an analog

environment. These two modeling techniques use SPICE to

solve a problem while the third method, digital primitives,

use mixed mode capability. Each of these methods has its

merits and target applications. In fact, many simulations

(particularly those which use A/D technology) call for the

combination of all three approaches. No one approach alone

is sufficient. Another type of simulation used mainly for

power electronics represent piecewise linear algorithms.

These algorithms use an analog (linear) simulation until a

power electronic switch changes its state. At this time a new

Electronic Design Automation

10

analog model is calculated to be used for the next simulation

period. This methodology both enhances simulation speed

and stability significantly.

Complexities

Often circuit simulators do not take into account the

process variations that occur when the design is fabricated

into silicon. These variations can be small, but taken together

can change the output of a chip significantly. Process

variations occur in the manufacture of circuits in silicon.

Temperature variation can also be modeled to simulate the

circuit’s performance through temperature ranges.

Analysis and Verification

• Functional verification

• Clock Domain Crossing Verification (CDC check):

Similar to linting, but these checks/tools specialize

in detecting and reporting potential issues like data

loss, meta-stability due to use of multiple clock

domains in the design.

• Formal verification, also model checking: Attempts to

prove, by mathematical methods, that the system

has certain desired properties, and that certain

undesired effects (such as deadlock) cannot occur.

• Equivalence checking: algorithmic comparison

between a chip’s RTL-description and synthesized

gate-netlist, to ensure functional equivalence at the

logical level.

• Static timing analysis: Analysis of the timing of a

circuit in an input-independent manner, hence finding

a worst case over all possible inputs.

Electronic Design Automation

11

• Physical verification, PV: checking if a design is

physically manufacturable, and that the resulting

chips will not have any function-preventing physical

defects, and will meet original specifications.

Manufacturing preparation

• Mask data preparation, MDP: generation of actual

lithography photomask used to physically

manufacture the chip.

o Resolution enhancement techniques, RET –

methods of increasing of quality of final photomask.

o Optical proximity correction, OPC – up-front

compensation for diffraction and interference effects

occurring later when chip is manufactured using

this mask.

o Mask generation – generation of flat mask image

from hierarchical design.

o Automatic test pattern generation, ATPG – generates

pattern-data to systematically exercise as many

logic-gates, and other components, as possible.

o Built-in self-test, or BIST – installs self-contained

test-controllers to automatically test a logic (or

memory) structure in the design

Companies

For more details on this topic, see List of EDA companies.

Top Companies

• $3.73 billion - Synopsys

• $2.06 billion - Cadence

• $1.18 billion - Mentor Graphics

Electronic Design Automation

12

• $233 million - Magma Design Automation

• $157 million - Zuken Inc.

Note: Market caps current as of October, 2010. EEsof

should likely be on this list, but does not have a market

cap as it is the EDA division of Agilent.

Acquisitions

Many of the EDA companies acquire small companies

with software or other technology that can be adapted to

their core business. Most of the market leaders are rather

incestuous amalgamations of many smaller companies. This

trend is helped by the tendency of software companies to

design tools as accessories that fit naturally into a larger

vendor’s suite of programmes (on digital circuitry, many

new tools incorporate analog design, and mixed systems.

This is happening because there is now a trend to place

entire electronic systems on a single chip.

COMPUTER GRAPHICS

The development of computer graphics has made

computers easier to interact with, and better for understanding

and interpreting many types of data. Developments in

computer graphics have had a profound impact on many

types of media and have revolutionized animation, movies

and the video game industry. The term computer graphics

has been used in a broad sense to describe “almost everything

on computers that is not text or sound”. Typically, the term

computer graphics refers to several different things:

• the representation and manipulation of image data

by a computer

Electronic Design Automation

13

• the various technologies used to create and

manipulate images

• the images so produced, and

• the sub-field of computer science which studies

methods for digitally synthesizing and manipulating

visual content, see study of computer graphics

Today, computers and computer-generated images touch

many aspects of daily life. Computer imagery is found on

television, in newspapers, for example in weather reports,

or for example in all kinds of medical investigation and

surgical procedures. A well-constructed graph can present

complex statistics in a form that is easier to understand

and interpret. In the media “such graphs are used to illustrate

papers, reports, thesis”, and other presentation material.

Many powerful tools have been developed to visualize data.

Computer generated imagery can be categorized into several

different types: 2D, 3D, 4D, 7D, and animated graphics. As

technology has improved, 3D computer graphics have become

more common, but 2D computer graphics are still widely

used.

Computer graphics has emerged as a sub-field of

computer science which studies methods for digitally

synthesizing and manipulating visual content. Over the

past decade, other specialized fields have been developed

like information visualization, and scientific visualization

more concerned with “the visualization of three dimensional

phenomena (architectural, meteorological, medical,

biological, etc.), where the emphasis is on realistic renderings

of volumes, surfaces, illumination sources, and so forth,

Electronic Design Automation

14

perhaps with a dynamic (time) component”. The advance in

computer graphics was to come from Ivan Sutherland. In

1961 Sutherland created another computer drawing

programme called Sketchpad. Using a light pen, Sketchpad

allowed one to draw simple shapes on the computer screen,

save them and even recall them later. The light pen itself

had a small photoelectric cell in its tip. This cell emitted

an electronic pulse whenever it was placed in front of a

computer screen and the screen’s electron gun fired directly

at it. By simply timing the electronic pulse with the current

location of the electron gun, it was easy to pinpoint exactly

where the pen was on the screen at any given moment.

Once that was determined, the computer could then draw

a cursor at that location. Sutherland seemed to find the

perfect solution for many of the graphics problems he faced.

Even today, many standards of computer graphics

interfaces got their start with this early Sketchpad

programme. One example of this is in drawing constraints.

If one wants to draw a square for example, s/he doesn’t

have to worry about drawing four lines perfectly to form the

edges of the box. One can simply specify that s/he wants

to draw a box, and then specify the location and size of the

box. The software will then construct a perfect box, with

the right dimensions and at the right location. Another

example is that Sutherland’s software modeled objects - not

just a picture of objects. In other words, with a model of

a car, one could change the size of the tires without affecting

the rest of the car. It could stretch the body of the car

without deforming the tires. These early computer graphics

were Vector graphics, composed of thin lines whereas modern

Electronic Design Automation

15

day graphics are Raster based using pixels. The difference

between vector graphics and raster graphics can be

illustrated with a shipwrecked sailor.

He creates an SOS sign in the sand by arranging rocks

in the shape of the letters “SOS.” He also has some brightly

colored rope, with which he makes a second “SOS” sign by

arranging the rope in the shapes of the letters. The rock

SOS sign is similar to raster graphics. Every pixel has to

be individually accounted for. The rope SOS sign is equivalent

to vector graphics. The computer simply sets the starting

point and ending point for the line and perhaps bend it a

little between the two end points. The disadvantages to

vector files are that they cannot represent continuous tone

images and they are limited in the number of colors available.

Raster formats on the other hand work well for continuous

tone images and can reproduce as many colors as needed.

Also in 1961 another student at MIT, Steve Russell, created

the first video game, Spacewar. Written for the DEC PDP-

1, Spacewar was an instant success and copies started

flowing to other PDP-1 owners and eventually even DEC got

a copy. The engineers at DEC used it as a diagnostic

programme on every new PDP-1 before shipping it. The

sales force picked up on this quickly enough and when

installing new units, would run the world’s first video game

for their new customers.

E. E. Zajac, a scientist at Bell Telephone Laboratory

(BTL), created a film called “Simulation of a two-giro gravity

attitude control system” in 1963. In this computer generated

film, Zajac showed how the attitude of a satellite could be

altered as it orbits the Earth. He created the animation on

Electronic Design Automation

16

an IBM 7090 mainframe computer. Also at BTL, Ken

Knowlton, Frank Sindon and Michael Noll started working

in the computer graphics field. Sindon created a film called

Force, Mass and Motion illustrating Newton’s laws of motion

in operation.

Around the same time, other scientists were creating

computer graphics to illustrate their research. At Lawrence

Radiation Laboratory, Nelson Max created the films, “Flow

of a Viscous Fluid” and “Propagation of Shock Waves in a

Solid Form.” Boeing Aircraft created a film called “Vibration

of an Aircraft.” It wasn’t long before major corporations

started taking an interest in computer graphics. TRW,

Lockheed-Georgia, General Electric and Sperry Rand are

among the many companies that were getting started in

computer graphics by the mid 1960’s. IBM was quick to

respond to this interest by releasing the IBM 2250 graphics

terminal, the first commercially available graphics computer.

Ralph Baer, a supervising engineer at Sanders Associates,

came up with a home video game in 1966 that was later

licensed to Magnavox and called the Odyssey. While very

simplistic, and requiring fairly inexpensive electronic parts,

it allowed the player to move points of light around on a

screen. It was the first consumer computer graphics product.

Also in 1966, Sutherland at MIT invented the first

computer controlled head-mounted display (HMD). Called

the Sword of Damocles because of the hardware required

for support, it displayed two separate wireframe images, one

for each eye. This allowed the viewer to see the computer

scene in stereoscopic 3D. After receiving his Ph.D. from

Electronic Design Automation

17

MIT, Sutherland became Director of Information Processing

at ARPA (Advanced Research Projects Agency), and later

became a professor at Harvard. Dave Evans was director

of engineering at Bendix Corporation’s computer division

from 1953 to 1962, after which he worked for the next five

years as a visiting professor at Berkeley. There he continued

his interest in computers and how they interfaced with

people. In 1968 the University of Utah recruited Evans to

form a computer science programme, and computer graphics

quickly became his primary interest. This new department

would become the world’s primary research center for

computer graphics. In 1967 Sutherland was recruited by

Evans to join the computer science programme at the

University of Utah. There he perfected his HMD. Twenty

years later, NASA would re-discover his techniques in their

virtual reality research.

At Utah, Sutherland and Evans were highly sought after

consultants by large companies but they were frustrated at

the lack of graphics hardware available at the time so they

started formulating a plan to start their own company. A

student by the name of Edwin Catmull started at the

University of Utah in 1970 and signed up for Sutherland’s

computer graphics class. Catmull had just come from The

Boeing Company and had been working on his degree in

physics. Growing up on Disney, Catmull loved animation

yet quickly discovered that he didn’t have the talent for

drawing. Now Catmull (along with many others) saw

computers as the natural progression of animation and

they wanted to be part of the revolution. The first animation

that Catmull saw was his own. He created an animation

Electronic Design Automation

18

of his hand opening and closing. It became one of his goals

to produce a feature length motion picture using computer

graphics. In the same class, Fred Parke created an animation

of his wife’s face.

Because of Evan’s and Sutherland’s presence, UU was

gaining quite a reputation as the place to be for computer

graphics research so Catmull went there to learn 3D

animation. As the UU computer graphics laboratory was

attracting people from all over, John Warnock was one of

those early pioneers; he would later found Adobe Systems

and create a revolution in the publishing world with his

PostScript page description language. Tom Stockham led

the image processing group at UU which worked closely

with the computer graphics lab. Jim Clark was also there;

he would later found Silicon Graphics, Inc. The first major

advance in 3D computer graphics was created at UU by

these early pioneers, the hidden-surface algorithm. In order

to draw a representation of a 3D object on the screen, the

computer must determine which surfaces are “behind” the

object from the viewer’s perspective, and thus should be

“hidden” when the computer creates (or renders) the image.

2D Computer Graphics

2D computer graphics are the computer-based generation

of digital images—mostly from two-dimensional models, such

as 2D geometric models, text, and digital images, and by

techniques specific to them. 2D computer graphics are mainly

used in applications that were originally developed upon

traditional printing and drawing technologies, such as

typography, cartography, technical drawing, advertising, etc..

Electronic Design Automation

19

In those applications, the two-dimensional image is not just

a representation of a real-world object, but an independent

artifact with added semantic value; two-dimensional models

are therefore preferred, because they give more direct control

of the image than 3D computer graphics, whose approach

is more akin to photography than to typography.

Pixel Art

Pixel art is a form of digital art, created through the use

of raster graphics software, where images are edited on the

pixel level. Graphics in most old (or relatively limited)

computer and video games, graphing calculator games, and

many mobile phone games are mostly pixel art.

Vector Graphics

Vector graphics formats are complementary to raster

graphics, which is the representation of images as an array

of pixels, as it is typically used for the representation of

photographic images Vector graphics consists in encoding

information about shapes and colors that comprise the

image, which can allow for more flexibility in rendering.

There are instances when working with vector tools and

formats is best practice, and instances when working with

raster tools and formats is best practice. There are times

when both formats come together. An understanding of the

advantages and limitations of each technology and the

relationship between them is most likely to result in efficient

and effective use of tools.

3D Computer Graphics

3D computer graphics in contrast to 2D computer

graphics are graphics that use a three-dimensional

Electronic Design Automation

20

representation of geometric data that is stored in the

computer for the purposes of performing calculations and

rendering 2D images. Such images may be for later display

or for real-time viewing. Despite these differences, 3D

computer graphics rely on many of the same algorithms as

2D computer vector graphics in the wire frame model and

2D computer raster graphics in the final rendered display.

In computer graphics software, the distinction between 2D

and 3D is occasionally blurred; 2D applications may use

3D techniques to achieve effects such as lighting, and

primarily 3D may use 2D rendering techniques. 3D computer

graphics are often referred to as 3D models. Apart from the

rendered graphic, the model is contained within the graphical

data file. However, there are differences. A 3D model is the

mathematical representation of any three-dimensional object.

A model is not technically a graphic until it is visually

displayed. Due to 3D printing, 3D models are not confined

to virtual space. A model can be displayed visually as a two-

dimensional image through a process called 3D rendering,

or used in non-graphical computer simulations and

calculations. There are some 3D computer graphics software

for users to create 3D images.

Computer Animation

Computer animation is the art of creating moving images

via the use of computers. It is a subfield of computer

graphics and animation. Increasingly it is created by means

of 3D computer graphics, though 2D computer graphics are

still widely used for stylistic, low bandwidth, and faster real-

time rendering needs. Sometimes the target of the animation

Electronic Design Automation

21

is the computer itself, but sometimes the target is another

medium, such as film. It is also referred to as CGI (Computer-

generated imagery or computer-generated imaging),

especially when used in films. Virtual entities may contain

and be controlled by assorted attributes, such as transform

values (location, orientation, and scale) stored in an object’s

transformation matrix. Animation is the change of an

attribute over time. Multiple methods of achieving animation

exist; the rudimentary form is based on the creation and

editing of keyframes, each storing a value at a given time,

per attribute to be animated. The 2D/3D graphics software

will interpolate between keyframes, creating an editable

curve of a value mapped over time, resulting in animation.

Other methods of animation include procedural and

expression-based techniques: the former consolidates related

elements of animated entities into sets of attributes, useful

for creating particle effects and crowd simulations; the

latter allows an evaluated result returned from a user-

defined logical expression, coupled with mathematics, to

automate animation in a predictable way (convenient for

controlling bone behavior beyond what a hierarchy offers

in skeletal system set up). To create the illusion of movement,

an image is displayed on the computer screen then quickly

replaced by a new image that is similar to the previous

image, but shifted slightly. This technique is identical to the

illusion of movement in television and motion pictures.

Concepts and Principles

Images are typically produced by optical devices;such as

cameras, mirrors, lenses, telescopes, microscopes, etc. and

Electronic Design Automation

22

natural objects and phenomena, such as the human eye

or water surfaces. A digital image is a representation of a

two-dimensional image in binary format as a sequence of

ones and zeros. Digital images include both vector images

and raster images, but raster images are more commonly

used.

Pixel

In digital imaging, a pixel (or picture element) is a single

point in a raster image. Pixels are normally arranged in a

regular 2-dimensional grid, and are often represented using

dots or squares. Each pixel is a sample of an original image,

where more samples typically provide a more accurate

representation of the original. The intensity of each pixel

is variable; in color systems, each pixel has typically three

components such as red, green, and blue.

Graphics

Graphics are visual presentations on some surface, such

as a wall, canvas, computer screen, paper, or stone to

brand, inform, illustrate, or entertain. Examples are

photographs, drawings, line art, graphs, diagrams,

typography, numbers, symbols, geometric designs, maps,

engineering drawings, or other images. Graphics often

combine text, illustration, and color. Graphic design may

consist of the deliberate selection, creation, or arrangement

of typography alone, as in a brochure, flier, poster, web site,

or book without any other element. Clarity or effective

communication may be the objective, association with other

cultural elements may be sought, or merely, the creation

of a distinctive style.

Electronic Design Automation

23

Rendering

Rendering is the process of generating an image from a

model (or models in what collectively could be called a scene

file), by means of computer programmes. A scene file contains

objects in a strictly defined language or data structure; it

would contain geometry, viewpoint, texture, lighting, and

shading information as a description of the virtual scene.

The data contained in the scene file is then passed to a

rendering programme to be processed and output to a

digital image or raster graphics image file. The rendering

programme is usually built into the computer graphics

software, though others are available as plug-ins or entirely

separate programmes. The term “rendering” may be by

analogy with an “artist’s rendering” of a scene. Though the

technical details of rendering methods vary, the general

challenges to overcome in producing a 2D image from a 3D

representation stored in a scene file are outlined as the

graphics pipeline along a rendering device, such as a GPU.

A GPU is a purpose-built device able to assist a CPU in

performing complex rendering calculations. If a scene is to

look relatively realistic and predictable under virtual lighting,

the rendering software should solve the rendering equation.

The rendering equation doesn’t account for all lighting

phenomena, but is a general lighting model for computer-

generated imagery. ‘Rendering’ is also used to describe the

process of calculating effects in a video editing file to produce

final video output.

3D Projection

3D projection is a method of mapping three dimensional

Electronic Design Automation

24

points to a two dimensional plane. As most current methods

for displaying graphical data are based on planar two

dimensional media, the use of this type of projection is

widespread, especially in computer graphics, engineering

and drafting.

Ray Tracing

Ray tracing is a technique for generating an image by

tracing the path of light through pixels in an image plane.

The technique is capable of producing a very high degree

of photorealism; usually higher than that of typical scanline

rendering methods, but at a greater computational cost.

Shading

Shading refers to depicting depth in 3D models or

illustrations by varying levels of darkness. It is a process

used in drawing for depicting levels of darkness on paper

by applying media more densely or with a darker shade for

darker areas, and less densely or with a lighter shade for

lighter areas. There are various techniques of shading

including cross hatching where perpendicular lines of varying

closeness are drawn in a grid pattern to shade an area. The

closer the lines are together, the darker the area appears.

Likewise, the farther apart the lines are, the lighter the area

appears. The term has been recently generalized to mean

that shaders are applied.

Texture Mapping

Texture mapping is a method for adding detail, surface

texture, or colour to a computer-generated graphic or 3D

model. Its application to 3D graphics was pioneered by Dr

Electronic Design Automation

25

Edwin Catmull in 1974. A texture map is applied (mapped)

to the surface of a shape, or polygon. This process is akin

to applying patterned paper to a plain white box.

Multitexturing is the use of more than one texture at a time

on a polygon. Procedural textures (created from adjusting

parameters of an underlying algorithm that produces an

output texture), and bitmap textures (created in an image

editing application) are, generally speaking, common methods

of implementing texture definition from a 3D animation

programme, while intended placement of textures onto a

model’s surface often requires a technique known as UV

mapping.

Anti-aliasing

Rendering resolution-independent entities (such as 3D

models) for viewing on a raster (pixel-based) device such as

a LCD display or CRT television inevitably causes aliasing

artifacts mostly along geometric edges and the boundaries

of texture details; these artifacts are informally called

“jaggies”. Anti-aliasing methods rectify such problems,

resulting in imagery more pleasing to the viewer, but can

be somewhat computationally expensive. Various anti-

aliasing algorithms (such as supersampling) are able to be

employed, then customized for the most efficient rendering

performance versus quality of the resultant imagery; a

graphics artist should consider this trade-off if anti-aliasing

methods are to be used. A pre-anti-aliased bitmap texture

being displayed on a screen (or screen location) at a resolution

different than the resolution of the texture itself (such as

a textured model in the distance from the virtual camera)

Electronic Design Automation

26

will exhibit aliasing artifacts, while any procedurally-defined

texture will always show aliasing artifacts as they are

resolution-independent; techniques such as mipmapping

and texture filtering help to solve texture-related aliasing

problems.

Volume Rendering

Volume rendering is a technique used to display a 2D

projection of a 3D discretely sampled data set. A typical 3D

data set is a group of 2D slice images acquired by a CT or

MRI scanner. Usually these are acquired in a regular pattern

(e.g., one slice every millimeter) and usually have a regular

number of image pixels in a regular pattern. This is an

example of a regular volumetric grid, with each volume

element, or voxel represented by a single value that is

obtained by sampling the immediate area surrounding the

voxel.

3D Modeling

3D modeling is the process of developing a mathematical,

wireframe representation of any three-dimensional object,

called a “3D model”, via specialized software. Models may

be created automatically or manually; the manual modeling

process of preparing geometric data for 3D computer graphics

is similar to plastic arts such as sculpting. 3D models may

be created using multiple approaches: use of NURBS curves

to generate accurate and smooth surface patches, polygonal

mesh modeling (manipulation of faceted geometry), or

polygonal mesh subdivision (advanced tessellation of

polygons, resulting in smooth surfaces similar to NURBS

models). A 3D model can be displayed as a two-dimensional

Electronic Design Automation

27

image through a process called 3D rendering, used in a

computer simulation of physical phenomena, or animated

directly for other purposes. The model can also be physically

created using 3D Printing devices.

Electronic Design Automation

28

2

Compiler

A compiler is a computer programme (or set of

programmes) that transforms source code written in a

programming language (the source language) into another

computer language (the target language, often having a

binary form known as object code). The most common reason

for wanting to transform source code is to create an

executable programme.

The name “compiler” is primarily used for programmes

that translate source code from a high-level programming

language to a lower level language (e.g., assembly language

or machine code). If the compiled programme can run on

a computer whose CPU or operating system is different from

the one on which the compiler runs, the compiler is known

as a cross-compiler. A programme that translates from a

low level language to a higher level one is a decompiler. A

programme that translates between high-level languages is

Electronic Design Automation

29

usually called a language translator, source to source

translator, or language converter. A language rewriter is

usually a programme that translates the form of expressions

without a change of language.

A compiler is likely to perform many or all of the following

operations: lexical analysis, preprocessing, parsing, semantic

analysis (Syntax-directed translation), code generation, and

code optimization. Programme faults caused by incorrect

compiler behavior can be very difficult to track down and

work around; therefore, compiler implementors invest a lot

of time ensuring the correctness of their software. The term

compiler-compiler is sometimes used to refer to a parser

generator, a tool often used to help create the lexer and

parser.

History

Software for early computers was primarily written in

assembly language for many years. Higher level programming

languages were not invented until the benefits of being able

to reuse software on different kinds of CPUs started to

become significantly greater than the cost of writing a

compiler. The very limited memory capacity of early

computers also created many technical problems when

implementing a compiler. Towards the end of the 1950s,

machine-independent programming languages were first

proposed. Subsequently, several experimental compilers were

developed. The first compiler was written by Grace Hopper,

in 1952, for the A-0 programming language. The FORTRAN

team led by John Backus at IBM is generally credited as

having introduced the first complete compiler in 1957.

Electronic Design Automation

30

COBOL was an early language to be compiled on multiple

architectures, in 1960.

In many application domains the idea of using a higher

level language quickly caught on. Because of the expanding

functionality supported by newer programming languages

and the increasing complexity of computer architectures,

compilers have become more and more complex.

Early compilers were written in assembly language. The

first self-hosting compiler — capable of compiling its own

source code in a high-level language — was created for Lisp

by Tim Hart and Mike Levin at MIT in 1962. Since the 1970s

it has become common practice to implement a compiler

in the language it compiles, although both Pascal and C

have been popular choices for implementation language.

Building a self-hosting compiler is a bootstrapping problem—

the first such compiler for a language must be compiled

either by a compiler written in a different language, or (as

in Hart and Levin’s Lisp compiler) compiled by running the

compiler in an interpreter.

Compilers in Education

Compiler construction and compiler optimization are

taught at universities and schools as part of the computer

science curriculum. Such courses are usually supplemented

with the implementation of a compiler for an educational

programming language. A well-documented example is

Niklaus Wirth’s PL/0 compiler, which Wirth used to teach

compiler construction in the 1970s. In spite of its simplicity,

the PL/0 compiler introduced several influential concepts

to the field:

Electronic Design Automation

31

1. Programme development by stepwise refinement (also

the title of a 1971 paper by Wirth)

2. The use of a recursive descent parser

3. The use of EBNF to specify the syntax of a language

4. A code generator producing portable P-code

5. The use of T-diagrams in the formal description of

the bootstrapping problem

Compilation

Compilers enabled the development of programmes that

are machine-independent. Before the development of

FORTRAN (FORmula TRANslator), the first higher-level

language, in the 1950s, machine-dependent assembly

language was widely used. While assembly language

produces more reusable and relocatable programmes than

machine code on the same architecture, it has to be modified

or rewritten if the programme is to be executed on different

hardware architecture. With the advance of high-level

programming languages soon followed after FORTRAN, such

as COBOL, C, BASIC, programmers can write machine-

independent source programmes. A compiler translates the

high-level source programmes into target programmes in

machine languages for the specific hardwares. Once the

target programme is generated, the user can execute the

programme.

Structure of a Compiler

Compilers bridge source programmes in high-level

languages with the underlying hardware. A compiler requires

1) determining the correctness of the syntax of programmes,

2) generating correct and efficient object code, 3) run-time

Electronic Design Automation

32

organization, and 4) formatting output according to

assembler and/or linker conventions. A compiler consists

of three main parts: the frontend, the middle-end, and the

backend.

The front end checks whether the programme is correctly

written in terms of the programming language syntax and

semantics. Here legal and illegal programmes are recognized.

Errors are reported, if any, in a useful way. Type checking

is also performed by collecting type information. The frontend

then generates an intermediate representation or IR of the

source code for processing by the middle-end.

The middle end is where optimization takes place. Typical

transformations for optimization are removal of useless or

unreachable code, discovery and propagation of constant

values, relocation of computation to a less frequently

executed place (e.g., out of a loop), or specialization of

computation based on the context. The middle-end generates

another IR for the following backend. Most optimization

efforts are focused on this part.

The back end is responsible for translating the IR from

the middle-end into assembly code. The target instruction(s)

are chosen for each IR instruction. Variables are also selected

for the registers. Backend utilizes the hardware by figuring

out how to keep parallel FUs busy, filling delay slots, and

so on. Although most algorithms for optimization are in NP,

heuristic techniques are well-developed.

Compiler Output

One classification of compilers is by the platform on

which their generated code executes. This is known as the

Electronic Design Automation

33

target platform. A native or hosted compiler is one which

output is intended to directly run on the same type of

computer and operating system that the compiler itself

runs on. The output of a cross compiler is designed to run

on a different platform. Cross compilers are often used

when developing software for embedded systems that are

not intended to support a software development environment.

The output of a compiler that produces code for a virtual

machine (VM) may or may not be executed on the same

platform as the compiler that produced it. For this reason

such compilers are not usually classified as native or cross

compilers.

Compiled versus Interpreted Languages

Higher-level programming languages are generally divided

for convenience into compiled languages and interpreted

languages. However, in practice there is rarely anything

about a language that requires it to be exclusively compiled

or exclusively interpreted, although it is possible to design

languages that rely on re-interpretation at run time. The

categorization usually reflects the most popular or

widespread implementations of a language — for instance,

BASIC is sometimes called an interpreted language, and C

a compiled one, despite the existence of BASIC compilers

and C interpreters.

Modern trends toward just-in-time compilation and

bytecode interpretation at times blur the traditional

categorizations of compilers and interpreters. Some language

specifications spell out that implementations must include

a compilation facility; for example, Common Lisp. However,

Electronic Design Automation

34

there is nothing inherent in the definition of Common Lisp

that stops it from being interpreted. Other languages have

features that are very easy to implement in an interpreter,

but make writing a compiler much harder; for example,

APL, SNOBOL4, and many scripting languages allow

programmes to construct arbitrary source code at runtime

with regular string operations, and then execute that code

by passing it to a special evaluation function. To implement

these features in a compiled language, programmes must

usually be shipped with a runtime library that includes a

version of the compiler itself.

Hardware Compilation

The output of some compilers may target hardware at

a very low level, for example a Field Programmable Gate

Array (FPGA) or structured Application-specific integrated

circuit (ASIC). Such compilers are said to be hardware

compilers or synthesis tools because the source code they

compile effectively control the final configuration of the

hardware and how it operates; the output of the compilation

are not instructions that are executed in sequence - only

an interconnection of transistors or lookup tables. For

example, XST is the Xilinx Synthesis Tool used for configuring

FPGAs. Similar tools are available from Altera, Synplicity,

Synopsys and other vendors.

Compiler Construction

In the early days, the approach taken to compiler design

used to be directly affected by the complexity of the

processing, the experience of the person(s) designing it, and

the resources available. A compiler for a relatively simple

Electronic Design Automation

35

language written by one person might be a single, monolithic

piece of software. When the source language is large and

complex, and high quality output is required, the design

may be split into a number of relatively independent phases.

Having separate phases means development can be parceled

up into small parts and given to different people. It also

becomes much easier to replace a single phase by an

improved one, or to insert new phases later (e.g., additional

optimizations). The division of the compilation processes

into phases was championed by the Production Quality

Compiler-Compiler Project (PQCC) at Carnegie Mellon

University. This project introduced the terms front end,

middle end, and back end. All but the smallest of compilers

have more than two phases.

However, these phases are usually regarded as being

part of the front end or the back end. The point at which

these two ends meet is open to debate. The front end is

generally considered to be where syntactic and semantic

processing takes place, along with translation to a lower

level of representation (than source code). The middle end

is usually designed to perform optimizations on a form

other than the source code or machine code. This source

code/machine code independence is intended to enable

generic optimizations to be shared between versions of the

compiler supporting different languages and target

processors. The back end takes the output from the middle.

It may perform more analysis, transformations and

optimizations that are for a particular computer. Then, it

generates code for a particular processor and OS. This

front-end/middle/back-end approach makes it possible to

Electronic Design Automation

36

combine front ends for different languages with back ends

for different CPUs.

Practical examples of this approach are the GNU Compiler

Collection, LLVM, and the Amsterdam Compiler Kit, which

have multiple front-ends, shared analysis and multiple back-

ends.

One-pass versus Multi-pass Compilers

Classifying compilers by number of passes has its

background in the hardware resource limitations of

computers. Compiling involves performing lots of work and

early computers did not have enough memory to contain

one programme that did all of this work. So compilers were

split up into smaller programmes which each made a pass

over the source (or some representation of it) performing

some of the required analysis and translations. The ability

to compile in a single pass has classically been seen as a

benefit because it simplifies the job of writing a compiler

and one pass compilers generally compile faster than multi-

pass compilers. Thus, partly driven by the resource

limitations of early systems, many early languages were

specifically designed so that they could be compiled in a

single pass (e.g., Pascal).

In some cases the design of a language feature may

require a compiler to perform more than one pass over the

source. For instance, consider a declaration appearing on

line 20 of the source which affects the translation of a

statement appearing on line 10. In this case, the first pass

needs to gather information about declarations appearing

after statements that they affect, with the actual translation

Electronic Design Automation

37

happening during a subsequent pass. The disadvantage of

compiling in a single pass is that it is not possible to

perform many of the sophisticated optimizations needed to

generate high quality code. It can be difficult to count

exactly how many passes an optimizing compiler makes.

For instance, different phases of optimization may analyse

one expression many times but only analyse another

expression once.

Splitting a compiler up into small programmes is a

technique used by researchers interested in producing

provably correct compilers. Proving the correctness of a set

of small programmes often requires less effort than proving

the correctness of a larger, single, equivalent programme.

While the typical multi-pass compiler outputs machine code

from its final pass, there are several other types:

• A “source-to-source compiler” is a type of compiler

that takes a high level language as its input and

outputs a high level language. For example, an

automatic parallelizing compiler will frequently take

in a high level language programme as an input and

then transform the code and annotate it with parallel

code annotations (e.g. OpenMP) or language

constructs (e.g. Fortran’s DOALL statements).

• Stage compiler that compiles to assembly language

of a theoretical machine, like some Prolog

implementations

o This Prolog machine is also known as the Warren

Abstract Machine (or WAM).

o Bytecode compilers for Java, Python, and many

more are also a subtype of this.

Electronic Design Automation

38

• Just-in-time compiler, used by Smalltalk and Java

systems, and also by Microsoft .NET’s Common

Intermediate Language (CIL)

o Applications are delivered in bytecode, which is

compiled to native machine code just prior to

execution.

Front End

The front end analyzes the source code to build an

internal representation of the programme, called the

intermediate representation or IR. It also manages the symbol

table, a data structure mapping each symbol in the source

code to associated information such as location, type and

scope. This is done over several phases, which includes

some of the following:

1. Line reconstruction. Languages which strop their

keywords or allow arbitrary spaces within identifiers

require a phase before parsing, which converts the

input character sequence to a canonical form ready

for the parser. The top-down, recursive-descent, table-

driven parsers used in the 1960s typically read the

source one character at a time and did not require

a separate tokenizing phase. Atlas Autocode, and

Imp (and some implementations of ALGOL and Coral

66) are examples of stropped languages which

compilers would have a Line Reconstruction phase.

2. Lexical analysis breaks the source code text into

small pieces called tokens. Each token is a single

atomic unit of the language, for instance a keyword,

identifier or symbol name. The token syntax is typically

Electronic Design Automation

39

a regular language, so a finite state automaton

constructed from a regular expression can be used

to recognize it. This phase is also called lexing or

scanning, and the software doing lexical analysis is

called a lexical analyzer or scanner.

3. Preprocessing. Some languages, e.g., C, require a

preprocessing phase which supports macro

substitution and conditional compilation. Typically

the preprocessing phase occurs before syntactic or

semantic analysis; e.g. in the case of C, the

preprocessor manipulates lexical tokens rather than

syntactic forms. However, some languages such as

Scheme support macro substitutions based on

syntactic forms.

4. Syntax analysis involves parsing the token sequence

to identify the syntactic structure of the programme.

This phase typically builds a parse tree, which replaces

the linear sequence of tokens with a tree structure

built according to the rules of a formal grammar

which define the language’s syntax. The parse tree

is often analyzed, augmented, and transformed by

later phases in the compiler.

5. Semantic analysis is the phase in which the compiler

adds semantic information to the parse tree and

builds the symbol table. This phase performs semantic

checks such as type checking (checking for type

errors), or object binding (associating variable and

function references with their definitions), or definite

assignment (requiring all local variables to be

initialized before use), rejecting incorrect programmes

Electronic Design Automation

40

or issuing warnings. Semantic analysis usually

requires a complete parse tree, meaning that this

phase logically follows the parsing phase, and logically

precedes the code generation phase, though it is

often possible to fold multiple phases into one pass

over the code in a compiler implementation.

Back End

The term back end is sometimes confused with code

generator because of the overlapped functionality of generating

assembly code. Some literature uses middle end to distinguish

the generic analysis and optimization phases in the back end

from the machine-dependent code generators. The main

phases of the back end include the following:

1. Analysis: This is the gathering of programme

information from the intermediate representation

derived from the input. Typical analyses are data flow

analysis to build use-define chains, dependence

analysis, alias analysis, pointer analysis, escape

analysis etc. Accurate analysis is the basis for any

compiler optimization. The call graph and control

flow graph are usually also built during the analysis

phase.

2. Optimization: the intermediate language

representation is transformed into functionally

equivalent but faster (or smaller) forms. Popular

optimizations are inline expansion, dead code

elimination, constant propagation, loop

transformation, register allocation and even automatic

parallelization.

Electronic Design Automation

41

3. Code generation: the transformed intermediate

language is translated into the output language,

usually the native machine language of the system.

This involves resource and storage decisions, such

as deciding which variables to fit into registers and

memory and the selection and scheduling of

appropriate machine instructions along with their

associated addressing modes.

Compiler analysis is the prerequisite for any compiler

optimization, and they tightly work together. For example,

dependence analysis is crucial for loop transformation. In

addition, the scope of compiler analysis and optimizations

vary greatly, from as small as a basic block to the procedure/

function level, or even over the whole programme

(interprocedural optimization). Obviously, a compiler can

potentially do a better job using a broader view. But that

broad view is not free: large scope analysis and optimizations

are very costly in terms of compilation time and memory

space; this is especially true for interprocedural analysis

and optimizations.

Interprocedural analysis and optimizations are common

in modern commercial compilers from HP, IBM, SGI, Intel,

Microsoft, and Sun Microsystems. The open source GCC

was criticized for a long time for lacking powerful

interprocedural optimizations, but it is changing in this

respect.

Another open source compiler with full analysis and

optimization infrastructure is Open64, which is used by

many organizations for research and commercial purposes.

Electronic Design Automation

42

Due to the extra time and space needed for compiler analysis

and optimizations, some compilers skip them by default.

Users have to use compilation options to explicitly tell the

compiler which optimizations should be enabled.

Compiler Correctness

Compiler correctness is the branch of software engineering

that deals with trying to show that a compiler behaves

according to its language specification. Techniques include

developing the compiler using formal methods and using

rigorous testing (often called compiler validation) on an

existing compiler.

Related Techniques

Assembly language is a type of low-level language and

a programme that compiles it is more commonly known as

an assembler, with the inverse programme known as a

disassembler.

A programme that translates from a low level language

to a higher level one is a decompiler. A programme that

translates between high-level languages is usually called a

language translator, source to source translator, language

converter, or language rewriter. The last term is usually

applied to translations that do not involve a change of

language.

International Conferences and Organizations

Every year, the European Joint Conferences on Theory

and Practice of Software (ETAPS) sponsors the International

Conference on Compiler Construction (CC), with papers

from both the academic and industrial sectors.

Electronic Design Automation

43

DEBUGGER

A debugger or debugging tool is a computer programme

that is used to test and debug other programmes (the

“target” program). The code to be examined might

alternatively be running on an instruction set simulator

(ISS), a technique that allows great power in its ability to

halt when specific conditions are encountered but which

will typically be somewhat slower than executing the code

directly on the appropriate (or the same) processor. Some

debuggers offer two modes of operation - full or partial

simulation, to limit this impact.

A “crash” happens when the programme cannot normally

continue because of a programming bug. For example, the

programme might have tried to use an instruction not

available on the current version of the CPU or attempted

to access unavailable or protected memory. When the

programme “crashes” or reaches a preset condition, the

debugger typically shows the position in the original code

if it is a source-level debugger or symbolic debugger,

commonly now seen in integrated development

environments. If it is a low-level debugger or a machine-

language debugger it shows the line in the disassembly

(unless it also has online access to the original source code

and can display the appropriate section of code from the

assembly or compilation).

Typically, debuggers also offer more sophisticated

functions such as running a programme step by step (single-

stepping or programme animation), stopping (breaking)

(pausing the programme to examine the current state) at

Electronic Design Automation

44

some event or specified instruction by means of a breakpoint,

and tracking the values of some variables. Some debuggers

have the ability to modify the state of the programme while

it is running, rather than merely to observe it. It may also

be possible to continue execution at a different location in

the programme to bypass a crash or logical error.

The importance of a good debugger cannot be overstated.

Indeed, the existence and quality of such a tool for a given

language and platform can often be the deciding factor in

its use, even if another language/platform is better-suited

to the task.. The absence of a debugger, having once been

accustomed to using one, has been said to “make you feel

like a blind man in a dark room looking for a black cat that

isn’t there”. However, software can (and often does) behave

differently running under a debugger than normally, due

to the inevitable changes the presence of a debugger will

make to a software programme’s internal timing. As a result,

even with a good debugging tool, it is often very difficult to

track down runtime problems in complex multi-threaded or

distributed systems. The same functionality which makes

a debugger useful for eliminating bugs allows it to be used

as a software cracking tool to evade copy protection, digital

rights management, and other software protection features.

It often also makes it useful as a general testing verification

tool test coverage and performance analyzer, especially if

instruction path lengths are shown. Most current

mainstream debugging engines, such as gdb and dbx provide

console-based command line interfaces. Debugger front-

ends are popular extensions to debugger engines that provide

IDE integration, programme animation, and visualization

Electronic Design Automation

45

features. Some early mainframe debuggers such as Oliver

and SIMON provided this same functionality for the IBM

System/360 and later operating systems, as long ago as the

1970s.

Language Dependency

Some debuggers operate on a single specific language

while others can handle multiple languages transparently.

For example if the main target programme is written in

COBOL but CALLs Assembler subroutines and also PL/1

subroutines, the debugger may dynamically switch modes

to accommodate the changes in language as they occur.

Memory Protection

Some debuggers also incorporate memory protection to

avoid storage violations such as buffer overflow. This may

be extremely important in transaction processing

environments where memory is dynamically allocated from

memory ‘pools’ on a task by task basis.

Hardware Support for Debugging

Most modern microprocessors have at least one of these

features in their CPU design to make debugging easier:

• hardware support for single-stepping a programme,

such as the trap flag.

• An instruction set that meets the Popek and Goldberg

virtualization requirements makes it easier to write

debugger software that runs on the same CPU as the

software being debugged; such a CPU can execute the

inner loops of the programme under test at full speed,

and still remain under the control of the debugger.

Electronic Design Automation

46

• In-System Programming allows an external hardware

debugger to re-programme a system under test (for

example, adding or removing instruction breakpoints).

Many systems with such ISP support also have other

hardware debug support.

• Hardware support for code and data breakpoints,

such as address comparators and data value

comparators or, with considerably more work involved,

page fault hardware.

• JTAG access to hardware debug interfaces such as

those on ARM architecture processors or using the

Nexus command set. Processors used in embedded

systems typically have extensive JTAG debug support.

• Microcontrollers with as few as six pins need to use

low pin-count substitutes for JTAG, such as BDM,

Spy-Bi-Wire, or DebugWire on the Atmel AVR.

DebugWire, for example, uses bidirectional signaling

on the RESET pin.

List of Debuggers

• AppPuncher Debugger — for debugging Rich Internet

Applications

• AQtime

• CA/EZTEST — was a CICS interactive test/debug

software package

• CharmDebug — a Debugger for Charm++

• CodeView

• DBG — a PHP Debugger and Profiler

• dbx

Electronic Design Automation

47

• DDD (Data Display Debugger)

• Distributed Debugging Tool (Allinea DDT)

• DDTLite — Allinea DDTLite for Visual Studio 2008

• DEBUG — the built-in debugger of DOS and Microsoft

Windows

• Debugger for MySQL

• Opera Dragonfly

• Dynamic debugging technique (DDT), and its octal

counterpart Octal Debugging Technique

• Eclipse

• Embedded System Debug Plug-in for Eclipse

• FusionDebug

• gDEBugger OpenGL, OpenGL ES and OpenCL

debugger and profiler

• GNU Debugger (GDB), GNU Binutils

• HyperDBG a kernel debugger that leverages hardware-

assisted virtualization

• Intel Debugger (IDB)

• Insight

• Parasoft Insure++

• iSYSTEM — in-circuit debugger for embedded systems

• Interactive Disassembler (IDA Pro)

• Java Platform Debugger Architecture

• Jinx — a whole-system debugger for heisenbugs. It

works transparently as a device driver.

• JSwat — open-source Java debugger

• LLDB

• MacsBug

Electronic Design Automation

48

• Nemiver — graphical C/C++ debugger for the GNOME

desktop environment

• OLIVER (CICS interactive test/debug) - a GUI

equipped instruction set simulator (ISS)

• OllyDbg

• Omniscient Debugger — Forward and backward

debugger for Java

• pydbg

• IBM Rational Purify

• RealView Debugger — Commercial debugger produced

for and designed by ARM

• sdb

• SIMMON (Simulation Monitor)

• SIMON (Batch Interactive test/debug) — a GUI

equipped instruction set simulator (ISS) for batch

• SoftICE

• TimeMachine — Forward and backward debugger

designed by Green Hills Software

• TotalView

• Lauterbach TRACE32 — in-circuit debugger for

embedded Systems

• Turbo Debugger

• Ups — C, Fortran source level debugger

• Valgrind

• VB Watch Debugger — debugger for Visual Basic 6.0

• Microsoft Visual Studio Debugger

• WinDbg

• Xdebug — PHP debugger and profiler

Electronic Design Automation

49

Debugger Front-ends

Some of the most capable and popular debuggers only

implement a simple command line interface (CLI) — often

to maximize portability and minimize resource consumption.

Debugging via a graphical user interface (GUI) can be

considered easier and more productive though. This is the

reason for GUI debugger front-ends, that allow users to

monitor and control subservient CLI-only debuggers via

graphical user interface. Some GUI debugger front-ends are

designed to be compatible with a variety of CLI-only

debuggers, while others are targeted at one specific debugger.

List of Debugger Front-ends

• Many Integrated development environments come

with integrated debuggers (or front-ends to standard

debuggers).

o Many Eclipse perspectives, e.g. the Java

Development Tools (JDT), provide a debugger front-

end.

• DDD is the standard front-end from the GNU Project.

It is a complex tool that works with most common

debuggers (GDB, jdb, Python debugger, Perl debugger,

Tcl, and others) natively or with some external

programmes (for PHP).

• GDB (the GNU debugger) GUI

o Emacs — Emacs editor with built in support for

the GNU Debugger acts as the frontend.

o KDbg — Part of the KDE development tools.

o Nemiver — A GDB frontend that integrates well in

the GNOME desktop environment.

Electronic Design Automation

50

o xxgdb — X-window frontend for GDB and dbx

debugger.

o Qt Creator — multi-platform frontend for GDB

(debugging example).

o cgdb — ncurses terminal programme that mimics

vim key mapping.

o ccdebug— A graphical GDB frontend using the Qt

toolkit.

o Padb — has a parallel front-end to GDB allowing

it to target parallel applications.

o Allinea’s DDT — a parallel and distributed front-

end to a modified version of GDB.

o Xcode — contains a GDB front-end as well.

o SlickEdit — contains a GDB front-end as well.

o Eclipse C/C++ Development Tools (CDT) — includes

visual debugging tools based on GDB.

PROFILING

In software engineering, programme profiling, software

profiling or simply profiling, a form of dynamic programme

analysis (as opposed to static code analysis), is the

investigation of a program’s behavior using information

gathered as the programme executes. The usual purpose

of this analysis is to determine which sections of a programme

to optimize - to increase its overall speed, decrease its

memory requirement or sometimes both.

• A (code) profiler is a performance analysis tool that,

most commonly, measures only the frequency and

duration of function calls, but there are other specific

Electronic Design Automation

51

types of profilers (e.g. memory profilers) in addition

to more comprehensive profilers, capable of gathering

extensive performance data.

• An instruction set simulator which is also — by

necessity — a profiler, can measure the totality of a

program’s behaviour from invocation to termination.

Gathering Programme Events

Profilers use a wide variety of techniques to collect data,

including hardware interrupts, code instrumentation,

instruction set simulation, operating system hooks, and

performance counters. The usage of profilers is ‘called out’

in the performance engineering process.

History

Performance analysis tools existed on IBM/360 and IBM/

370 platforms from the early 1970s, usually based on timer

interrupts which recorded the Programme status word (PSW)

at set timer intervals to detect “hot spots” in executing code.

This was an early example of sampling. In early 1974,

Instruction Set Simulators permitted full trace and other

performance monitoring features. Profiler-driven programme

analysis on Unix dates back to at least 1979, when Unix

systems included a basic tool “prof” that listed each function

and how much of programme execution time it used. In

1982, gprof extended the concept to a complete call graph

analysis. In 1994, Amitabh Srivastava and Alan Eustace of

Digital Equipment Corporation published a paper describing

ATOM. ATOM is a platform for converting a programme into

its own profiler. That is, at compile time, it inserts code into

Electronic Design Automation

52

the programme to be analyzed. That inserted code outputs

analysis data. This technique - modifying a programme to

analyze itself - is known as “instrumentation”. In 2004,

both the gprof and ATOM papers appeared on the list of

the 50 most influential PLDI papers of all time.

Profiler Types based on Output

Flat Profiler

Flat profilers compute the average call times, from the

calls, and do not break down the call times based on the

callee or the context.

Call-graph Profiler

Call graph profilers show the call times, and frequencies

of the functions, and also the call-chains involved based on

the callee. However context is not preserved.

Methods of Data Gathering

Event-based Profilers

The programming languages listed here have event-based

profilers:

• Java: the JVMTI (JVM Tools Interface) API, formerly

JVMPI (JVM Profiling Interface), provides hooks to

profilers, for trapping events like calls, class-load,

unload, thread enter leave.

• .NET: Can attach a profiling agent as a COM server

to the CLR. Like Java, the runtime then provides

various callbacks into the agent, for trapping events

like method JIT / enter / leave, object creation, etc.

Particularly powerful in that the profiling agent can

Electronic Design Automation

53

rewrite the target application’s bytecode in arbitrary

ways.

• Python: Python profiling includes the profile module,

hotshot (which is call-graph based), and using the

‘sys.setprofile’ function to trap events like

c_{call,return,exception},python_{call,return,exception}.

• Ruby: Ruby also uses a similar interface like Python

for profiling. Flat-profiler in profile.rb, module, and

ruby-prof a C-extension are present.

Statistical Profilers

Some profilers operate by sampling. A sampling profiler

probes the target program’s programme counter at regular

intervals using operating system interrupts. Sampling profiles

are typically less numerically accurate and specific, but

allow the target programme to run at near full speed. The

resulting data are not exact, but a statistical approximation.

The actual amount of error is usually more than one sampling

period. In fact, if a value is n times the sampling period, the

expected error in it is the square-root of n sampling periods.

In practice, sampling profilers can often provide a more

accurate picture of the target program’s execution than

other approaches, as they are not as intrusive to the target

programme, and thus don’t have as many side effects (such

as on memory caches or instruction decoding pipelines).

Also since they don’t affect the execution speed as much,

they can detect issues that would otherwise be hidden. They

are also relatively immune to over-evaluating the cost of

small, frequently called routines or ‘tight’ loops. They can

show the relative amount of time spent in user mode versus

interruptible kernel mode such as system call processing.

Electronic Design Automation

54

Still, kernel code to handle the interrupts entails a minor

loss of CPU cycles, diverted cache usage, and is unable to

distinguish the various tasks occurring in uninterruptible

kernel code (microsecond-range activity). Dedicated hardware

can go beyond this: some recent MIPS processors JTAG

interface have a PCSAMPLE register, which samples the

programme counter in a truly undetectable manner. Some

of the most commonly used statistical profilers are AMD

CodeAnalyst, Apple Inc. Shark, gprof, Intel VTune and

Parallel Amplifier (part of Intel Parallel Studio).

Instrumentation

• Manual: Performed by the programmer, e.g. by adding

instructions to explicitly calculate runtimes, simply

count events or calls to measurement APIs such as

the Application Response Measurement standard.

• Automatic source level: instrumentation added to

the source code by an automatic tool according to

an instrumentation policy.

• Compiler assisted: Example: “gcc -pg ...” for gprof,

“quantify g++ ...” for Quantify

• Binary translation: The tool adds instrumentation to

a compiled binary. Example: ATOM

• Runtime instrumentation: Directly before execution

the code is instrumented. The programme run is fully

supervised and controlled by the tool. Examples: Pin,

Valgrind

• Runtime injection: More lightweight than runtime

instrumentation. Code is modified at runtime to have

jumps to helper functions. Example: DynInst

Electronic Design Automation

55

Interpreter Instrumentation

• Interpreter debug options can enable the collection

of performance metrics as the interpreter encounters

each target statement. A bytecode, control table or

JIT interpreters are three examples that usually have

complete control over execution of the target code,

thus enabling extremely comprehensive data

collection opportunities.

Hypervisor/Simulator

• Hypervisor: Data are collected by running the (usually)

unmodified programme under a hypervisor. Example:

SIMMON

• Simulator and Hypervisor: Data collected interactively

and selectively by running the unmodified programme

under an Instruction Set Simulator. Examples: SIMON

and OLIVER.

Electronic Design Automation

56

3

Scanning Electron Microscopy

SEM Provides Topographical and Elemental
Information at Magnifications of 10x to
100,000x with Virtually Unlimited Depth of
Field.

Applications Include
• Materials evaluation

– Grain size

– Surface roughness

– Porosity

– Particle size distributions

– Material homogeneity

– Intermetallic distribution and diffusion

• Failure analysis

– Contamination location

– Mechanical damage assessment

– Electrostatic discharge effects

– Micro-crack location

Electronic Design Automation

57

• Quality Control screening

– “Good” to “bad” sample comparison

– Film and coating thickness determination

– Dimension verification

– Gate width measurement

– Mil Std. screening

Principle of Operation
A finely focused electron beam scanned across the surface

of the sample generates secondary electrons, backscattered

electrons, and characteristic X-rays. These signals are

collected by detectors to form images of the sample displayed

on a cathode ray tube screen. Features seen in the SEM

image may then be immediately analyzed for elemental

composition using EDS or WDS.

Electronic Design Automation

58

Secondary Electron Imaging: shows the topography of

surface features a few nm across. Films and stains as thin

as 20 nm produce adequate-contrast images. Materials are

viewed at useful magnifications up to 100,000x without the

need for extensive sample preparation and without damaging

the sample. Even higher magnifications and resolution are

routinely obtained by our Field Emission SEM.

Backscattered Electron Imaging: shows the spatial

distribution of elements or compounds within the top micron

of the sample. Features as small as 10 nm are resolved and

composition variations of as little as as 0.2% determined.

Data Output: is generated in real time on the CRT monitor.

Images and spectra can be printed here, recorded on CD

ROM and/or emailed for insertion into your own reports.

Field Emission
Scanning Electron Microscopy (FESEM)

Principle of Operation
A field-emission cathode in the electron gun of a scanning

electronmicroscope provides narrower probing beams at low

as well as high electronenergy, resulting in both improved

spatial resolution and minimized samplecharging and

damage. For applications which demand the highest

magnification possible.

Applications Include
• Semiconductor device cross section analyses for gate widths,

gate oxides,film thicknesses, and construction details

• Advanced coating thickness and structure uniformity

determination

Electronic Design Automation

59

• Small contamination feature geometry and elemental

composition measurement

Why Field Emission SEM?
• FESEM produces clearer, less electrostatically

distorted images withspatial resolution down to 1 1/

2 nm. That’s 3 to 6 times better than conventional

SEM.

• Smaller-area contamination spots can be examined at

electron acceleratingvoltages compatible with Energy

Dispersive X-ray Spectroscopy.

• Reduced penetration of low kinetic energy electrons

probes closer tothe immediate material surface.

• High quality, low voltage images are obtained with

negligible electrical charging of samples. (Accelerating

voltages range from 0.5 to 30 kV.)

• Need for placing conducting coatings on insulating

materials is virtually eliminated.

• For ultra-high magnification imaging.

Cross-section of a Laser Window Showing
Multiple thin Layers at 50,000x

Fig. Cross Section of Contact on Silicon

Electronic Design Automation

60

Fig. Cross Section of Via Openings

Energy Dispersive X-Ray Spectroscopy (EDS)
EDS identifies the elemental composition of materials

imaged in a Scanning Electron Microscope (SEM) for all

elements with an atomic number greater than boron. Most

elements are detected at concentrations on the order of 0.1%.

Applications Include
• Materials evaluation and identification

– Contaminants.

– Elemental diffusion profiles.

– Glassivation phosphorus content.

– Multiple spot analysis of areas from 1 micron to 10

cm in diameter.

• Failure analysis

– Contamination identification.

– Unknowns identification.

Electronic Design Automation

61

– Stringer location and identification.

• Quality control screening

– Material verification.

– Plating specification and certification.

Principle of Operation
As the electron beam of the SEM is scanned across the

sample surface, it generates X-ray fluorescence from the

atoms in its path. The energy of each X-ray photon is

characteristic of the element which produced it. The EDS

microanalysis system collects the X-rays, sorts and plots

them by energy, and automatically identifies and labels the

elements responsible for the peaks in this energy distribution.

The EDS data are typically compared with either known

or computer -generated standards to produce a full

quantitative analysis showing the sample composition.

Data output: Plots the original spectrum showing the

number of X-rays collected at each energy, as seen above.

Maps of element distributions over areas of interest and

quantitative composition tables can also be provided as

necessary.

Atomic Force Microscope/Scanning
Probe Microscopy

Atomic Force Microscopy and Scanning Probe Microscopy

(AFM/SPM) provide topographic information down to the

Angstrom level. Additional properties of the sample, such

as thermal and electrical conductivity, magnetic and electric

field strength, and sample compliance can simultaneously

be obtained using a specialty probe. Many applications

require little or no sample preparation.

Electronic Design Automation

62

Principle of Operation
The Atomic Force Microcope uses a physical probe raster

scanning across the sample using piezoelectric ceramics. A

feedback loop is used to maintain a constant interaction

between the probe and the sample. The position of the probe

and the feedback signal are electronically recorded to produce

a three dimensional map of the surface or other information

depending on the specialty probe used.

Data Output: is either a three dimensional image of the

surface or a line profile with height measurements. The

surface roughness parameters of Ra or RMS are also available

with either of the above outputs.

Other types of feature analysis include Partical Grain Size

Analysis, Bearing Ratio, Fractal Dimension, Power Spectrum,

and Fast Fourier Transform.

Applications Include
• Materials Evaluation

– Surface roughness on implanted silicon wafers.

– Thermal properties such as thermal conductivity,

glass transition temperature (Tg), and melting

temperature of various phases of a blended polymer

measured down to the nanometer scale.

– Surface profiles and magnetic field mapping of

recording media or reading heads.

– Nanomechanical testing.

• Failure Analysis

– Rapid hot-spot analysis of powered electronic devices.

– Defect analysis of compact disk stampers.

• Quality Control

– Surface profiles of thin film and coatings.

Electronic Design Automation

63

– Metrology of semiconductor devices and compact

disks.

– Surface finish of substrates for thin film deposition.

SPM Techniques
• Magnetic Force Microscopy: Digital Video Disc Surface

(10 microns)

Wavelength Dispersive X-Ray Spectrometry
(WDS)

WDS identifies the elemental composition of materials

imaged in the SEM with an order of magnitude better spectral

resolution, sensitivity and ability to determine concentratins

of light elements than is achievable with EDS. Most elements

are detected below 0.1% and some as low as a few ppm.

Applications Include
• Identification of spectrally overlapped elements, such

as

– S in the presence of Pb or Mo.

– W or Ta in Si, or N in Ti.

– Br in Al, common in semiconductor device failure.

• Detection of low concentration species (down to 100

or even 10 ppm)

Electronic Design Automation

64

– P or S in metals.

– Contaminants in precious metal catalysts.

– Trace heavy metal contamination.

– Performance-degrading impurities in high

temperature solder alloys.

• Analysis of low atomic number elements

– Composition of advanced ceramics and composites.

– B in BPSG films (sensitivity to 2000 ppm).

– Oxidation and corrosion of metals.

– Characterization of biomedical and organically

modified materials.

Principle of Operation
The characteristic X-ray photons excited by the electron

beam are sorted using a diffracting crystal, whose angular

placement relative to the sample and photodetector is a

unique measure of their wavelengths. As with EDS, the

resulting spectral distribution is automatically compared with

those from actual standards or synthetic X-ray fluorescence

spectra of material formulations.

WDS vs. EDS
X-ray microanalysis in the scanning electron microscope

is accomplished using EDS and/or WDS. EDS is more

commonly applied due to its simplicity and speed, while WDS

offers an important and often critical refinement of EDS data

by providing

• Analysis for light elements with at least an order of

magnitude higher sensitivity than available (ultrathin

X-ray window) EDS instruments.

Electronic Design Automation

65

• Resolution of severely overlapped spectrum peaks for

improved element specificity.

• Lowered detection limits over the entire periodic table.

• More accurate quantitative analyses.

Scanning Auger Microanalysis (SAM)
SAM provides elemental and chemical composition for all

elements with an atomic number greater than helium. Its

sampling depth of 2-3 nm allows films as thin as a few

monolayers to be analyzed. Auger also produces images of

the distributions of elements along the surface and produces

profiles of composition vs. depth from 1 to 2000 nm.

Applications Include
• Materials evaluation and identification

– Surface contaminants

– Surface homogeneity

– Diffusion profiles

– Particle sizes

– Catalyst degradation

– Interfaces

• Failure Analysis

– Corrosion characterization

– Stain identification

Electronic Design Automation

66

– Lifted lead bond evaluation

– Material delamination analysis

– Metal embrittlement evaluation

• Quality control screening

– “Good” to “bad” sample comparison.

– Material and plating/coating thickness

determination.

– Surface process modification.

Principle of Operation
The sample is scanned with a focused beam of about 5 kV

electrons, causing low energy Auger electrons to be ejected

from its surface. The kinetic energies of these Auger electrons

provide an analysis for the chemical elements present in the

top few atomic layers. An auxiliary argon ion beam may be

used to remove near-surface layers by “sputtering” to expose

a fresh surface for analysis, producing a profile showing the

dependence of sample composition on depth.

Fourier Transform Infrared Spectroscopy (FTIR)
FTIR spectroscopy is used primarily for qualitative and

quantitative analysis of organic compounds, and also for

determining the chemical structure of many inorganics.

FTIR analysis applications include:

• Materials Evaluation and Identification

Electronic Design Automation

67

– Organic compounds

– Structure of many inorganic compounds

– Deformulations

– Forensics

– Material homogeneity

• Failure analysis

– Micro-contamination identification

– Adhesive performance

– Material delamination

– Corrosion chemistry.

• Quality control screening

– “Good” to “bad” sample comparison

– Evaluation of cleaning procedure effectiveness

– Comparison of materials from different lots or

vendors.

Principle of Operation
Because chemical bonds absorb infrared energy at specific

frequencies (or wavelengths), the basic structure of

compounds can be determined by the spectral locations of

their IR absorptions. The plot of a compound’s IR

transmission vs. frequency is its “fingerprint”, which when

compared to reference spectra identifies the material. FTIR

spectrometers offer speed and sensitivity impossible to

Electronic Design Automation

68

achieve with earlier wavelength-dispersive instruments. This

capability allows rapid analysis of micro-samples down to

the nanogram level in some cases, making the FTIR

unmatched as a problem-solving tool in organic analysis.

The FTIR microscope accessory (shown in the photo above)

allows spectra from a few nanograms of material to be

obtained quickly, with little sample preparation, resulting in

more data at lower cost. In some cases, thin films of residue

are identified with a sensitivity that rivals or even exceeds

electron or ion beam-based surface analysis techniques.

There are few sample constraints; solids, liquids and gases

can be accommodated. Many contaminants present on

reflective surfaces such as solder pads or printed circuitry

are readily analyzed in situ using the FTIR microscope in

reflectance mode.

More information on infrared spectroscopy:

Basic theory of infrared spectroscopy

Identifying organic structure by FTIR.

Differential Scanning Calorimetry (DSC)
Differential Scanning Calorimetry, DSC, is a thermo

analytical technique in which the difference in the amount

of heat required to increase the temperature of a sample and

reference are measured as a function of temperature.

Both the sample and reference are maintained at nearly

the same temperature throughout the experiment. Generally,

the temperature programme for a DSC analysis is designed

such that the sample holder temperature increases linearly

as a function of time. Only a few milligrams of material are

required to run the analysis.

Electronic Design Automation

69

Principle of Operation
When a sample undergoes a physical transformation such

as a phase transition, more or less heat will need to flow to it

than to the reference (typically an empty sample pan) to

maintain both at the same temperature. Whether more or

less heat must flow to the sample depends on whether the

process is exothermic or endothermic.

For example, as a solid sample melts to a liquid it will

require more heat flowing to the sample to increase its

temperature at the same rate as the reference. This is due to

the absorption of heat by the sample as it undergoes the

endothermic phase transition from solid to liquid.

Likewise, as the sample undergoes exothermic processes

(such as crystallization) less heat is required to raise the

sample temperature.

By observing the difference in heat flow between the sample

and reference, differential scanning calorimeters are able to

measure the amount of heat absorbed or released during

such transitions. DSC may also be used to observe more

subtle phase changes, such as glass transitions.

Applications
DSC is commonly used to measure a variety of properties

in both organic and inorganic materials, from metals and

simple compounds to polymers and pharmaceuticals. The

properties measured include:

• Glass transitions

• Phase changes

• Melting

• Crystallization

Electronic Design Automation

70

• Product stability

• Cure/cure kinetics

• Oxidative stability

• Heat capacity and heat of fusion measurements

Outline of Analytical Imaging
Facility Capabilities

The Analytical Imaging Facility provides a comprehensive

light and electron microscope imaging facility dedicated to

bringing state of the art methods in modern imaging to

biomedical scientists with all levels of expertise. The AIF

staff has been cross-trained to offer a seamless transition

from classical histology, to high resolution light microscope

imaging in 3D, to state of the art electron microscopy.

This unified approach facilitates the efficient and

appropriate complementary use of these methods in research.

For the infrequent user, the AIF provides a completely assisted

technical support service. For the trained microscopist, the

AIF is an available equipment resource. A significant effort

Electronic Design Automation

71

is devoted to training investigators who require microscopy

techniques to advance their projects.

The Services
Transmission Electron Microscopy

JEOL 1200EX. This instrument offers the highest basic

performance as a 120 kv transmission electron microscope

employing a uniquely designed 3-stage 6-lens imaging

system. It offers operational ease, excellent image quality and

high resolution at low to high magnifications. It is equipped

with side entry goniometer stage, minimum dose system,

bottom mounted high resolution Gatan video camera and

side mounted wide angle Gatan video camera.

JEOL 100CXII. This high performance 100 kv

transmission electron microscope features a cool beam

electron gun, high image contrast, high-speed cascade

differential evacuation, optimum underfocus system using

an image wobbler and a side entry goniometer.

Cryo Transmission Electron Microscopy for
Single Molecule Imaging

The College, HHMI and NIH (by way of an awarded Shared

Instrumentation Grant) have supported establishing a full

Cryo EM programme. The technology spans the resolution

range from electron microscopy to X-ray crystalography and

allows for imaging of single molecules in their hydrated state.

Scanning Electron Microscopy
JEOL 6400. This high performance Scanning Electron

Microscope operates with accelerating voltage from 0.2 kv to

35 kv utilizing a high brightness LaB6 filament. It offers full

Electronic Design Automation

72

keyboard operation, framestore with digital image processing

and digital image capture on a PC running analy SIS software.

Specimen Preparation for Electron Microscopy

The staff of the AIF offer full service sample preparation

for many standard and state of the art EM techniques. These

include:

• Embedding: utilizing either epoxy or acrylic resins at

ambient or low temperatures.

• Thin Sectioning: with a Reichert Ultracut E or Leica

UCT ultramicrotome.

• Negative Staining.

• Freeze Fracture using a Cressington CFE-50 Freeze

Etch Unit.

• Immunogold Labeling following pre or post embedding

protocols.

• Critical Point Drying with a Tousimis Samdri 790

Critical Point Dryer and Sputter Coating using a

Denton Sputter Coater for preparing cells and tissues

for SEM Imaging.

• Cryoultramicrotomy utilizing a Leica UCT

cryoultramicrotome for optimizing epitope availability

and morphological preservation for immunogold

labeling.

• Slam Freeze Cryofixation using a Life Cell CF100 Slam

Electronic Design Automation

73

Freezer, which can be followed by High Resolution

Rotary Shadowing in a Cressington CFE-50 equipped

with e-beam guns for platinum or tungsten-tantalum

evaporation. Slam Freezing followed by rotary

shadowing is a powerful technique to obtain high

resolution images of cells or macromolecules in 3-D,

that have been frozen in the hydrated state.

• Slam Freeze Cryofixation using a Life Cell CF100 Slam

Freezer followed by Freeze Substitution and Low

Temperature Embedding in a Bal Tec FSU-010 Freeze

Substitution Unit. Freeze Substitution is an alternative

method for optimizing epitope preservation for

immunogold labeling.

Photographic Documentation for Electron
Microscopy

The AIF offers a photographic service for producing high

quality electron micrographs on conventional photographic

paper or high resolution scanning and direct digital printing

for poster, lecture, web and journal publication.

Light Microscopy
Routine light microscopy

A Zeiss AxioSkop II with optics for brightfield, darkfield

(through the condenser or via true oblique illumination),

phase contrast, Nomarski, polarized light and epi-

fluorescence with1.25X through 100X objectives serves as

the “routine” microscope. Images are recorded with a colour

Zeiss AxioCam.

To meet the growing demand for imaging of live material,

epecially of eGFP or other fluorescently tagged cells, or of

Electronic Design Automation

74

cells in culture dishes, the AIF has Olympus inverted

microscopes with a wide array of optics and photography

options. On other inverted systems in the AIF researchers

continue to use video digitizing technology for imaging motile

cells in phase contrast.

Stereo Dissection Microscope
Lower magnification imaging is achieved with a Zeiss SV11

(“STEMI”) with a Retiga 1300 digital camera, optical tunable

filter for colour imaging and IP Lab for image capture. Reflected

light is provided either by a ring illuminator or by two point

illumination, transmitted light is provided with a continuously

adjustable 100% transmittance to darkfield slider and epi-

illumination for fluorescence is provided by a mercury arc

lamp with filters for dapi, CFP, GFP, YFP or rhodamine/RFP.

BioRad Radiance 2000 Laser Scanning Confocal
Microscope

Thin optical sections of much higher resolution than

normal epi-fluorescence can be obtained from live or fixed

cultured cells, vibratome sections, or intact tissue with

colocalization of up to three different fluorescent probes and

one reflectant probe. Collected images can be reconstructed

in 3D, enhanced, or analyzed using a variety of techniques.

Data can be readily ported to other platforms for analysis or

for final presentation.

Leica SP2 AOBS Laser Scanning Confocal
Microscope

True spectral imaging with thin optical sections of much

higher resolution than normal epi-fluorescence can be

Electronic Design Automation

75

obtained from cultured cells, vibratome sections, or intact

tissue with simultaneous colocalization of multiple

fluorescent probes, reflectance and transmitted light.

Collected images can be reconstructed in 3D, enhanced, or

analyzed using a variety of techniques. Data can be readily

ported to other platforms for analysis or for final

presentation. This instrument also has powerful capabilities

for FRAP, FRET and time lapse applications

Leica SP5 AOBS Laser Scanning Confocal
Microscope

Newer model of SP2. Arriving late December 2007.

Zeiss Live/DUO Confocal Microscope
High speed confocal microscope designed specifically for

photoactivation or bleaching via a separate scanner than

the imaging path. This confocal with a 100 mW laser at 489

nm and 50 mW lasers at 405 and 561 nm will be used

primarily for live cell applications.

PerkinElmer UltraVIEW RS-3 Spinning Disk
Laser Confocal Microscope

Preferable for imaging live cell cultures due to reduced

phototoxcity, thin optical sections may be imaged as time

lapse volumes. The 9 fps full field 12 bits imaging system

has laser lines at 488, 568 and 647 nm for exciting three

popular ranges of fluorescent probes, a piezo for high speed

and reproducable Z axis control, environmental control and

Nikon optics.

Expected move to new satellite facility on second floor of

Michael F. Price Centre for Genetic and Translational

Electronic Design Automation

76

Medicine in the Harold and Muriel Block Research Pavilion

in January/February 2008.

Multi Photon Confocal Microscopy
Multi-photon microscopy relies on excitation of

fluorophores or harmonic generation by femptosecond

pulses of highly concentrated long wavelength light.

Practically, this allows for imaging multiple fluorescent

wavelengths deep in live tissue. The system reduces bleaching

and other problems endemic to epi-fluorescent microscopy,

may be more sensitive due to its lack of a confocal pinhole,

and solves other problems of light scatter. The instrument is

at the centre of the intravital imaging programme at AECOM.

FRET
Fluorescence Resonance Energy Transfer, the transfer of

energy from a donor fluorophore within 7 nm of an acceptor

fluorophore, can be used to measure binding interactions

between and within molecules. The AIF provides acceptor

bleaching for FRET imaging and measurements on three

confocal microscopes and ratio FRET with widefield

microscopy. Widefield FLIM in the time domain using a

gated cooled CCD camera with LaVision software may be

available.

TIRF
Total Internal Reflection Fluorescent microscopy provides

excitation of fluorophores only within 100 nm of the subtrate.

Therefore, only molecules immediately apposed to the

coverslip are excited and imaged. Objective illuminated TIRF

is provided on an Olympus IX71 with either a 60X or 100X

Electronic Design Automation

77

N.A. 1.45 or a 100X N.A. 1.65 with capability to do TIRF/

FRET using probes over the visible spectrum from CFP

through red. Image collection and automated shuttering are

provided with an Andor EM camera and Uniblitz shutters

running under IPLab.

D.I.C. (Nomarski), Darkfield, Phase Contrast,
IRM, and Epifluorescence with Digital Imaging

Four inverted microscope stations for high spatial

resolution, wide dynamic range (low light to bright light) with

time lapse and deconvolution capabilities. 12 bit Cooke

Sensicam QE cooled CCD cameras mounted on high

efficiency throughput Olympus IX70 or IX81 inverted

microscopes with state of the art infinity corrected optics.

May be used to collect multiple fluorescent probes and

transmitted light (brightfield, phase contrast or Nomarski)

images with IPLab software running on PCs. Environmental

chambers for the Olympus microscopes are available for in

vivo work.

Many applications including spot photometry. Also, focus

motors for collection of serial sections for deconvolution.

Deconvolution produces images that are confocal-like in their

resolution but may have a benefit of imaging weak signal or

a wide dynamic range. Standard fluorescent filters include

Electronic Design Automation

78

FITC, rhodamine, Cy3, Cy5, Dapi, GFP, CFP, YFP among

others more esoteric ones and a 50/50 mirror for IRM.

Exhaustive Photon Reassignment (EPR)
EPR deconvolution complements the other deconvolution

techniques offered at the AIF by providing preservation of

the total energy of the sampled volume for quantitative

analysis of very dim specimens. Automated imaging of

multiply probed serial optical sections is performed with a

piezo controller and a Photometrics 15 bit cooled CCD camera

on a high efficiency upright Olympus microscope. This is a

specialty technique to image single or few molecules with

precise locating within 70 nm.

Microinjection
Microinjection is a method to deliver solutions (proteins,

DNA or RNA, other chemicals) directly into individual cells in

culture. The AIF has two automated Eppendorf systems for

use on any inverted microscopes in the Facility including the

confocal, multirphoton, and other digital imaging systems.

Motion Analysis
High speed (200 FPS under bright illumination), real time

(30 FPS video), or time lapse (approx. 100 ms to hours)

imaging with fluorescence and transmitted light can be

performed on inverted microscopes with temperature

regulated environmental chambers.

Images can be made into movies for video or web

presentations. Sophisticated morphometric measurements

may be made over time. Quantification of images includes

intensity changes of fluorescence, changes in cell or particle

Electronic Design Automation

79

velocity, direction, shape and size over time and schematic

visualization of such changes. In some cases, volume

changes can be measured.

Volume Rendering and 3D Quantitation
For 3D rendering or reconstructions the staff operate and

train Imaris Bitplane, Voxx, a number of plugins within ImageJ

and Volocity. The staff train investigators in more simple 3D

imaging and quantitation via analysis of serial sections with

ImageJ and I.P. Lab including the authoring of scripts for

automation and result reporting.

Single Photon Uncaging
Uncaging is the activation by removing a photo-labile

blocking group from DNA, RNA, protein or small molecules.

The uncaging station consists of an Olympus IX70, two Hg

arc lamps for UV uncaging and epifluorescence, UV corrected

and phase contrast optics for uncaging and viewing cell

behaviour, shutters for high speed and timed uncaging and

image collection, and a Cooke Sensicam for recording

uncaged fluorescence. This system shares a microscope with

a microinjection apparatus for ease of loading cells for live

experiments. A 337 nm laser with has been purchased for

the system and is under development on a separate

microscope stand in the Biophotonics Innovation Laboratory.

Hard Copy and Presentation
On all imaging platforms, digitized picture files are in

standard formats and can be converted easily to other

formats; data can be exported to other computer systems or

reproduced on a variety of hard copy devices.

Electronic Design Automation

80

Adobe Photoshop CS is most widely used for figure

preparation and we are happy to assist. A Fujix Pictrography

3000 colour printer makes continuous tone output at 400

PPI indistinguishable from real photographs.

Standard laser printing can be used for draft grayscale as

well as for crisp graphs and text. Both still images and moving

sequences can be prepared for web presentation. The AIF

maintains in its inventory tools for video; however, use is by

special appointment as video is being phased out.

HIGH-THROUGHPUT CRYO-TRANSMISSION
ELECTRON MICROSCOPE (TEM)

Scientific Drivers

Future advances in the biosciences will depend heavily on

the ability to link cell biology and structural biology through

a comprehensive understanding of the structure and function

of individual molecular machinery.

For instance, membrane proteins account for

approximately 20-30% of the proteome and form the

responsive interface between cellular and sub-cellular

compartments and their environment. Thus, one of the great

challenges of cell biology, proteomics and structural biology

Electronic Design Automation

81

is atomic-resolution structure determination of membrane

protein complexes and dynamic macromolecular

assemblies, including whole viruses.

A high-throughput cryo-TEM platform is the only possible

tool for elucidating the three-dimension- al structure of entire

cells with sufficient resolution to examine the arrangement

and interactions of internal macromolecular complexes.

Examples of the types of work that this facility will enable

include:

• Determining how the 3-D biology of the human islet/

beta cell relates to the development, physiology and

dysfunction of the human endocrine pancreas and

its role in diabetes.

• Characterising caveolae—which have been linked to

cancer, cholesterol regulation and muscular

dystrophy—by using electron tomography and

immunolabelling methods. Revealing the structure of

membrane proteins for the design of new and highly

specific drugs. With the ability to probe the molecular

basis of disease.

Capabilities and the National Research Capacity
The cryo-TEM facility at the University of Queens-land is

the only fully established life-sciences facility in Australia or

New Zealand capable of collecting and processing atomic-

resolution images at low temperatures (-160ºC), as well as

undertaking 3-D electron tomography of organelles, cells and

tissues at ambient and low temperatures.

As such, it is one of only a handful of such facilities in the

world. The NCRIS investment will build on the flagship FEI

Electronic Design Automation

82

Tecnai F30 microscope to create a high-throughput platform

capable of the high output essential to make genuine inroads

into key questions in molecular biology, medicine and

biotechnology. The completed system will offer Australian

researchers a quantum leap in technology and productivity

for the emerging techiques of electron tomography, electron

crystallography and single particle analysis.

The high-throughput system will be sited in custom-built

laboratories within the Australian Institute for Bioengineering

and Nanotechnology (AIBN) and the Queensland Biosciences

Precinct (QBP). Practically, this is necessary to build on the

previous investments in the FEI Tecnai F30 and associated

sample prepara- tion and screening equipment and

laboratories.

Scientifically, this builds on the unparalleled experience

within the Centre for Microscopy and Microanalysis in cryo-

electron microscopy, particularly the recent developments

in rapid image-processing pipelines for single particle

analysis, electron crystallography and electron

tomography.

Moreover, it provides easy access for the approximately

1000 researchers from the Institute for Molecular

Bioscience, the new AIBN and the Queensland Brain

Institute (QBI).

Nature and Level of Demand
Since commissioning of the Tecnai F30, more than 120

national and international research projects have been

undertaken and the instrument is presently near fully

usage.

Electronic Design Automation

83

Given the proximity to major existing and new research

centres in biosciences and nanotechnology, demand is

expected to rapidly increase with the new high-throughput

capability. Expected usage is approximately 20 projects (3000

hours) per annum.

Understanding how the SEM Works and how to
use
it on a College Level

• Electron Source

• Electromagnetic Lens

• Electron Optical Column

• Ray Diagrams

• Electron Beam/Specimen Interactions

• Vacuum

• Specimen Chamber

• Specimen Preparation

The electron beam comes from a filament, made of various

types of materials. The most common is the Tungsten hairpin

gun. This filament is a loop of tungsten which functions as

the cathode. A voltage is applied to the loop, causing it to heat

up. The anode, which is positive with respect to the filament,

forms powerful attractive forces for electrons. This causes

electrons to accelerate toward the anode. Some accelerate right

by the anode and on down the column, to the sample. Other

examples of filaments are Lanthanum Hexaboride filaments

and field emission guns.

Electronic Design Automation

84

Fig. Forces in a Cylindrical Magnetic Lens

Fig. Beam’s Path through the Column

A beam of electrons is generated in the electron gun, located

at the top of the column, which is pictured to the left. This

beam is attracted through the anode, condensed by a

condenser lens, and focused as a very fine point on the sample

by the objective lens. The scan coils are energized (by varying

the voltage produced by the scan generator) and create a

magnetic field which deflects the beam back and forth in a

controlled pattern.

Electronic Design Automation

85

The varying voltage is also applied to the coils around the

neck of the Cathode-ray tube (CRT) which produces a pattern

of light deflected back and forth on the surface of the CRT.

The pattern of deflection of the electron beam is the same as

the pattern of deflection of the spot of light on the CRT.

Fig. SEM Ray Diagrams

The electron beam hits the sample, producing secondary

electrons from the sample. These electrons are collected by

Electronic Design Automation

86

a secondary detector or a backscatter detector, converted to

a voltage, and amplified. The amplified voltage is applied to

the grid of the CRT and causes the intensity of the spot of

light to change. The image consists of thousands of spots of

varying intensity on the face of a CRT that correspond to the

topography of the sample.

These schematics show the ray traces for two probe-

forming lens focusing conditions: small working distance (left)

and large working distance (right). Both conditions have the

same condenser lens strength and aperture size. However,

as the sample is moved further from the lens, the following

occurs:

• The working distance S is increased.

• The demagnification decreases.

• The spot size increases.

• The divergence angle alpha is decreased.

The decrease in demagnification is obtained when the lens

current is decreased, which in turn increases the focal length

f of the lens.

The resolution of the specimen is decreased with an

increased working distance, because the spot size is

increased. Conversely, the depth of field is increased with

an increased working distance, because the divergence

angle is smaller.

Electronic Design Automation

87

4

Data Analysis and Design

The choice of a data representation for a problem often

affects our thinking about the process. Sometimes the

description of a process dictates a particular choice of

representation. On other occasions, it is possible and

worthwhile to explore alternatives. In any case, we must

Analyse and define our data collections.

Contract, Purpose, Header

We also need a contract, a definition header, and a

purpose statement. Since the generative step has no

connection to the structure of the data definition, the

purpose statement should not only specify what the function

does but should also include a comment that explains in

general terms how it works.

Function Examples

In our previous design recipes, the function examples

Electronic Design Automation

88

merely specified which output the function should produce for

some given input. For algorithms, examples should illustrate

how the algorithm proceeds for some given input. This helps

us to design, and readers to understand, the algorithm. For

functions such as move-until-out the process is trivial and

doesn’t need more than a few words.

Template

Our discussion suggests a general template for

algorithms:
(define (generative-recursive-fun problem)
cond
[(trivially-solvable? problem)
(determine-solution problem)]
[else
(combine-solutions
... problem...

(generative-recursive-fun (generate-problem-
1 problem))

(generative-recursive-fun (generate-
problem-n problem)))]))

ANALYSIS OF ALGORITHMS

PROGRAMS

When analyzing a Programme in terms of efficiency, we

want to look at questions such as, “How long does it take

for the Programme to run?” and “Is there another approach

that will get the answer more quickly?” Efficiency will always

be less important than correctness; if you don’t care whether

a Programme works correctly, you can make it run very

quickly indeed, but no one will think it’s much of an

achievement! On the other hand, a Programme that gives a

correct answer after ten thousand years isn’t very useful

either, so efficiency is often an important issue.

Electronic Design Automation

89

The term “efficiency” can refer to efficient use of almost

any resource, including time, computer memory, disk space,

or network bandwidth. In this section, however, we will deal

exclusively with time efficiency, and the major question that

we want to ask about a Programme is, how long does it take

to perform its task?

It really makes little sense to classify an individual

Programme as being “efficient” or “inefficient.” It makes more

sense to compare two (correct) Programmes that perform

the same task and ask which one of the two is “more

efficient,” that is, which one performs the task more quickly.

However, even here there are difficulties.

The running time of a Programme is not well-defined.

The run time can be different depending on the number and

speed of the processors in the computer on which it is run

and, in the case of Java, on the design of the Java Virtual

Machine which is used to interpret the Programme.

It can depend on details of the compiler which is used to

translate the Programme from high-level language to

machine language. Furthermore, the run time of a

Programme depends on the size of the problem which the

Programme has to solve. It takes a sorting Programme longer

to sort 10000 items than it takes it to sort 100 items. When

the run times of two Programmes are compared, it often

happens that Programme A solves small problems faster than

Programme B, while Programme B solves large problems

faster than Programme A, so that it is simply not the case

that one Programme is faster than the other in all cases.

In spite of these difficulties, there is a field of computer

science dedicated to analyzing the efficiency of Programmes.

Electronic Design Automation

90

The field is known as Analysis of Algorithms. The focus is

on algorithms, rather than on Programmes as such, to avoid

having to deal with multiple implementations of the same

algorithm written in different languages, compiled with

different compilers, and running on different computers.

Analysis of Algorithms is a mathematical field that abstracts

away from these down-and-dirty details.

Still, even though it is a theoretical field, every working

Programmemer should be aware of some of its techniques

and results. This section is a very brief introduction to some

of those techniques and results. Because this is not a

mathematics book, the treatment will be rather informal.

One of the main techniques of analysis of algorithms is

asymptotic analysis. The term “asymptotic” here means

basically “the tendency in the long run.” An asymptotic

analysis of an algorithm’s run time looks at the question of

how the run time depends on the size of the problem.

The analysis is asymptotic because it only considers what

happens to the run time as the size of the problem increases

without limit; it is not concerned with what happens for

problems of small size or, in fact, for problems of any fixed

finite size. Only what happens in the long run, as the problem

size increases without limit, is important.

Showing that Algorithm A is asymptotically faster than

Algorithm B doesn’t necessarily mean that Algorithm A will

run faster than Algorithm B for problems of size 10 or size

1000 or even size 1000000 — it only means that if you keep

increasing the problem size, you will eventually come to a

point where Algorithm A is faster than Algorithm B. An

asymptotic analysis is only a first approximation, but in

Electronic Design Automation

91

practice it often gives important and useful information.

Using this notation, we might say, for example, that an

algorithm has a running time that is O(n2) or O(n) or O(log(n)).

These notations are read “Big-Oh of n squared,” “Big-Oh of

n,” and “Big-Oh of log n” (where log is a logarithm function).

More generally, we can refer to O(f(n)) (“Big-Oh of f of n”),

where f(n) is some function that assigns a positive real

number to every positive integer n. The “n” in this notation

refers to the size of the problem.

Before you can even begin an asymptotic analysis, you

need some way to measure problem size. Usually, this is

not a big issue. For example, if the problem is to sort a list

of items, then the problem size can be taken to be the

number of items in the list. When the input to an algorithm

is an integer, as in the case of an algorithm that checks

whether a given positive integer is prime, the usual measure

of the size of a problem is the number of bits in the input

integer rather than the integer itself. More generally, the

number of bits in the input to a problem is often a good

measure of the size of the problem.

To say that the running time of an algorithm is O(f(n))

means that for large values of the problem size, n, the

running time of the algorithm is no bigger than some

constant times f(n). (More rigorously, there is a number C

and a positive integer M such that whenever n is greater

than M, the run time is less than or equal to C*f(n).) The

constant takes into account details such as the speed of the

computer on which the algorithm is run; if you use a slower

computer, you might have to use a bigger constant in the

formula, but changing the constant won’t change the basic

Electronic Design Automation

92

fact that the run time is O(f(n)). The constant also makes it

unnecessary to say whether we are measuring time in

seconds, years, CPU cycles, or any other unit of measure; a

change from one unit of measure to another is just

multiplication by a constant. Note also that O(f(n)) doesn’t

depend at all on what happens for small problem sizes, only

on what happens in the long run as the problem size

increases without limit. To look at a simple example, consider

the problem of adding up all the numbers in an array. The

problem size, n, is the length of the array. Using A as the

name of the array, the algorithm can be expressed in Java

as:
total = 0;
for (int i = 0; i < n; i++)
total = total + A[i];

This algorithm performs the same operation, total = total

+ A[i], n times. The total time spent on this operation is a*n,

where a is the time it takes to perform the operation once.

Now, this is not the only thing that is done in the algorithm.

The value of i is incremented and is compared to n each

time through the loop.

This adds an additional time of b*n to the run time, for

some constant b. Furthermore, i and total both have to be

initialized to zero; this adds some constant amount c to the

running time.

The exact running time would then be (a+b)*n+c, where

the constants a, b, and c depend on factors such as how

the code is compiled and what computer it is run on. Using

the fact that c is less than or equal to c*n for any positive

integer n, we can say that the run time is less than or equal

to (a+b+c)*n. That is, the run time is less than or equal to a

Electronic Design Automation

93

constant times n. By definition, this means that the run time

for this algorithm is O(n).

If this explanation is too mathematical for you, we can

just note that for large values of n, the c in the formula

(a+b)*n+c is insignificant compared to the other term,

(a+b)*n. We say that c is a “lower order term.” When doing

asymptotic analysis, lower order terms can be discarded. A

rough, but correct, asymptotic analysis of the algorithm

would go something like this: Each iteration of the for loop

takes a certain constant amount of time. There are n

iterations of the loop, so the total run time is a constant

times n, plus lower order terms (to account for the

initialization). Disregarding lower order terms, we see that

the run time is O(n).

Note that to say that an algorithm has run time O(f(n)) is

to say that its run time is no bigger than some constant

times f(n) (for large values of n). O(f(n)) puts an upper limit

on the run time. However, the run time could be smaller,

even much smaller. For example, if the run time is O(n), it

would also be correct to say that the run time is O(n2) or

even O(n10). If the run time is less than a constant times n,

then it is certainly less than the same constant times n2 or

n10.

Of course, sometimes it’s useful to have a lower limit on

the run time. That is, we want to be able to say that the run

time is greater than or equal to some constant times f(n) (for

large values of n). The notation for this is Ω(f(n)), read “Omega

of f of n.” “Omega” is the name of a letter in the Greek

alphabet, and Ω is the upper case version of that letter. (To

be technical, saying that the run time of an algorithm is

Electronic Design Automation

94

Ω(f(n)) means that there is a positive number C and a positive

integer M such that whenever n is greater than M, the run

time is greater than or equal to C*f(n).) O(f(n)) tells you

something about the maximum amount of time that you

might have to wait for an algorithm to finish; Ω(f(n)) tells

you something about the minimum time.

The algorithm for adding up the numbers in an array

has a run time that is Ω(n) as well as O(n). When an algorithm

has a run time that is both Ω(f(n)) and O(f(n)), its run time is

said to be Θ(f(n)), read “Theta of f of n.” (Theta is another

letter from the Greek alphabet.) To say that the run time of

an algorithm is Θ(f(n)) means that for large values of n, the

run time is between a*f(n) and b*f(n), where a and b are

constants (with b greater than a, and both greater than 0).

Let’s look at another example. Consider the algorithm

that can be expressed in Java in the following method:
/**
* Sorts the n array elements A[0], A[1]..., A [n - 1]
into increasing order.
*/
public static simpleBubbleSort(int[] A, int n) {
for (int i = 0; i < n; i++) {

// Do n passes through the array...
for (int j = 0; j < n-1; j++) {
if (A[j] > A[j+1]) {

// A[j] and A[j+1] are out of order, so swap them
int temp = A[j];
A[j] = A[j+1];
A[j+1] = temp;

}
}

}
}

Here, the parameter n represents the problem size. The

outer for loop in the method is executed n times. Each time

the outer for loop is executed, the inner for loop is exectued

Electronic Design Automation

95

n-1 times, so the if statement is executed n*(n-1) times. This

is n2-n, but since lower order terms are not significant in

an asymptotic analysis, it’s good enough to say that the if

statement is executed about n2 times.

In particular, the test A[j] > A[j+1] is executed about

n2times, and this fact by itself is enough to say that the run

time of the algorithm is W(n2), that is, the run time is at

least some constant times n2. Furthermore, if we look at

other operations — the assignment statements, incrementing

i and j, etc. — none of them are executed more than n2 times,

so the run time is also O(n2), that is, the run time is no

more than some constant times n2. Since it is both W(n2)

and O(n2), the run time of the simpleBubbleSort algorithm

is Q(n2).

You should be aware that some people use the notation

O(f(n)) as if it meant Θ(f(n)). That is, when they say that the

run time of an algorithm is O(f(n)), they mean to say that

the run time is about equal to a constant times f(n). For

that, they should use Θ(f(n)). Properly speaking, O(f(n)) means

that the run time is less than a constant times f(n), possibly

much less.

So far, the analysis has ignored an important detail. We

have looked at how run time depends on the problem size,

but in fact the run time usually depends not just on the

size of the problem but on the specific data that has to be

processed. For example, the run time of a sorting algorithm

can depend on the initial order of the items that are to be

sorted, and not just on the number of items.

To account for this dependency, we can consider either

the worst case run time analysis or the average case run

Electronic Design Automation

96

time analysis of an algorithm. For a worst case run time

analysis, we consider all possible problems of size n and look

at the longest possible run time for all such problems. For

an average case analysis, we consider all possible problems

of size n and look at the average of the run times for all

such problems. Usually, the average case analysis assumes

that all problems of size n are equally likely to be

encountered, although this is not always realistic — or even

possible in the case where there is an infinite number of

different problems of a given size.

In many cases, the average and the worst case run times

are the same to within a constant multiple. This means that

as far as asymptotic analysis is concerned, they are the same.

That is, if the average case run time is O(f(n)) or Θ(f(n)), then

so is the worst case. However, later in the book, we will

encounter a few cases where the average and worst case

asymptotic analyses differ.

So, what do you really have to know about analysis of

algorithms to read the rest of this book? We will not do any

rigorous mathematical analysis, but you should be able to

follow informal discussion of simple cases such as the

examples that we have looked at in this section.

Most important, though, you should have a feeling for

exactly what it means to say that the running time of an

algorithm is O(f(n)) or Θ(f(n)) for some common functions f(n).

The main point is that these notations do not tell you

anything about the actual numerical value of the running

time of the algorithm for any particular case.

They do not tell you anything at all about the running

time for small values of n. What they do tell you is something

Electronic Design Automation

97

about the rate of growth of the running time as the size of

the problem increases.

Suppose you compare two algorithms that solve the same

problem. The run time of one algorithm is Θ(n2), while the

run time of the second algorithm is Θ(n3). What does this

tell you? If you want to know which algorithm will be faster

for some particular problem of size, say, 100, nothing is

certain. As far as you can tell just from the asymptotic

analysis, either algorithm could be faster for that particular

case — or in any particular case. But what you can say for

sure is that if you look at larger and larger problems, you

will come to a point where the Θ(n2) algorithm is faster than

the Θ(n3) algorithm. Furthermore, as you continue to

increase the problem size, the relative advantage of the Θ(n2)

algorithm will continue to grow. There will be values of n for

which the Θ(n2) algorithm is a thousand times faster, a

million times faster, a billion times faster, and so on. This is

because for any positive constants a and b, the function a*n3

grows faster than the function b*n2 as n gets larger.

(Mathematically, the limit of the ratio of a*n3 to b*n2 is infinite

as n approaches infinity.)

This means that for “large” problems, a Θ(n2) algorithm

will definitely be faster than a Θ(n3) algorithm. You just don’t

know — based on the asymptotic analysis alone — exactly

how large “large” has to be. In practice, in fact, it is likely

that the Θ(n2) algorithm will be faster even for fairly small

values of n, and absent other information you would

generally prefer a Θ(n2) algorithm to a Θ(n3) algorithm.

So, to understand and apply asymptotic analysis, it is

essential to have some idea of the rates of growth of some

Electronic Design Automation

98

common functions. For the power functions n, n2, n3, n4...,

the larger the exponent, the greater the rate of growth of the

function.

Exponential functions such as 2n and 10n, where the n

is in the exponent, have a growth rate that is faster than

that of any power function. In fact, exponential functions

grow so quickly that an algorithm whose run time grows

exponentially is almost certainly impractical even for

relatively modest values of n, because the running time is

just too long.

Another function that often turns up in asymptotic

analysis is the logarithm function, log(n). There are actually

many different logarithm functions, but the one that is

usually used in computer science is the so-called logarithm

to the base two, which is defined by the fact that log(2x) = x

for any number x. (Usually, this function is written log2(n),

but I will leave out the subscript 2, since I will only use the

base-two logarithm in this book.)

The logarithm function grows very slowly. The growth

rate of log(n) is much smaller than the growth rate of n. The

growth rate of n*log(n) is a little larger than the growth rate

of n, but much smaller than the growth rate of n2.

POINTS

• Introduction: Analysis of Selection Sort

• Introduction: Analysis of Merge Sort

• Asymptotic Notation

• Asymptotic Notation Continued

• Heapsort

• Heapsort Continued

Electronic Design Automation

99

• Priority Queues (more heaps)

• Quicksort

• Bounds on Sorting and Linear Time Sorts

• Stable Sorts and Radix Sort

• Begin Dynamic Programmeming

• More Dynamic Programmeming

• Begin Greedy Algorithms: Huffman’s Algorithm

• Dÿkstra’s Algorithm

• Beyond Asymptotic Analysis: Memory Access Time

• B-Trees

• More B-Trees: Insertion and Splitting

• Union/Find

• Warshall’s Algorithm, Floyd’s Algorithm

• Large Integer Arithmetic

• RSA Public-Key Cryptosystem

• Begin Algorithms and Structural Complexity Theory

• Continue Algorithms and Structural Complexity

Theory

• End Algorithms and Structural Complexity Theory

• Generating Permutations and Combinations

• Exam review with sample questions and solutions

AUGMENTING-PATH ALGORITHMS

The neat part of the Ford-Fulkerson algorithm described

above is that it gets the correct result no matter how we

solve (correctly!!) the sub-problem of finding an augmenting

path. However, every new path may increase the flow by only

1, hence the number of iterations of the algorithm could be

Electronic Design Automation

100

very large if we carelessly choose the augmenting path

algorithm to use. The function max_flow will look like this,

regardless of the actual method we use for finding

augmenting paths:
int max_flow()

result = 0
while (true)

// the function find_path returns the path
capacity of the

augmenting path found
path_capacity = find_path()
// no augmenting path found
if (d = 0) exit while
else result += path_capacity

end while
return result

To keep it simple, we will use a 2-dimensional array for

storing the capacities of the residual network that we are

left with after each step in the algorithm. Initially the residual

network is just the original network. We will not store the

flows along the edges explicitly, but it’s easy to figure out

how to find them upon the termination of the algorithm: for

each edge x-y in the original network the flow is given by

the capacity of the backward edge y-x in the residual

network. Be careful though; if the reversed arc y-x also exists

in the original network, this will fail, and it is recommended

that the initial capacity of each arc be stored somewhere,

and then the flow along the edge is the difference between

the initial and the residual capacity.

We now require an implementation for the function

find_path. The first approach that comes to mind is to use a

depth-first search (DFS), as it probably is the easiest to

implement. Unfortunately, its performance is very poor on

some networks, and normally is less preferred to the ones

Electronic Design Automation

101

discussed next. The next best thing in the matter of simplicity

is a breadth-first search (BFS). Recall that this search usually

yields the shortest path in an un-weighted graph. Indeed,

this also applies here to get the shortest augmenting path

from the source to the sink. In the following pseudocode we

will basically: find a shortest path from the source to the

sink and compute the minimum capacity of an edge (that

could be a forward or a backward edge) along the path - the

path capacity. Then, for each edge along the path we reduce

its capacity and increase the capacity of the reversed edge

with the path capacity.
int bfs()

queue Q
push source to Q
mark source as visited
keep an array from with the

semnification: from[x] is the
previous vertex visited in the shortest

path from the source to x;
initialize from with -1 (or any other

sentinel value)
while Q is not empty

where = pop from Q
for each vertex next adjacent to where
if next is not visited and

capacity[where][next] > 0
push next to Q
mark next as visited
from[next] = where
if next = sink

exit while loop
end for

end while
// we compute the path capacity
where = sink, path_cap = infinity
while from[where] > -1

prev = from[where]// the previous vertex
path_cap = min(path_cap,
capacity[prev][where])

where = prev

Electronic Design Automation

102

end while
// we update the residual network; if no

path is found the while
loop will not be entered
where = sink

while from[where] > -1
prev = from[where]
capacity[prev][where] -= path_capacity

capacity[where][prev] +=
path_capacity

where = prev
end while
// if no path is found, path_cap is infinity

 if path_cap = infinity
return 0

else return path_cap

As we can see, this is pretty easy to implement. As for

its performance, it is guaranteed that this takes at most N *

M/2 steps, where N is the number of vertices and M is the

number of edges in the network. This number may seem

very large, but it is over-estimated for most networks. For

example, in the network we considered 3 augmenting paths

are needed which is significantly less than the upper bound

of 28. Due to the O(M) running time of BFS (implemented

with adjacency lists) the worst-case running time of the

shortest-augmenting path max-flow algorithm is O(N * M²),

but usually the algorithm performs much better than this.

Next we will consider an approach that uses a priority-

first search (PFS), that is very similar to the Dijkstra heap

method explained here. In this method the augmenting path

with a maximum path capacity is preferred. Intuitively this

would lead to a faster algorithm, since at each step we

increase the flow with the maximum possible amount.

However, things are not always so, and the BFS

implementation has better running times on some networks.

Electronic Design Automation

103

We assign as a priority to each vertex the minimum

capacity of a path (in the residual network) from the source

to that vertex. We process vertices in a greedy manner, as in

Dijkstra’s algorithm, in decreasing order of priorities. When

we get to the sink, we are done, since a path with a maximum

capacity is found. We would like to implement this with a

data structure that allows us to efficiently find the vertex

with the highest priority and increase the priority of a vertex

(when a new better path is found) - this suggests the use of

a heap which has a space complexity proportional to the

number of vertices.

In TopCoder matches we may find it faster and easier to

implement this with a priority queue or some other data

structure that approximates one, even though the space

required might grow to being proportional with the number

of edges. This is how the following pseudocode is

implemented. We also define a structure node that has the

members vertex and prioritywith the above significance.

Another field from is needed to store the previous vertex on

the path.
int pfs()
priority queue PQ
push node(source, infinity, -1) to PQ
keep the array from as in bfs()
// if no augmenting path is found, path_cap

will remain 0
path_cap = 0
while PQ is not empty

node aux = pop from PQ
where = aux.vertex, cost = aux.priority
if we already visited where continue
from[where] = aux.from
if where = sink

path_cap = cost
exit while loop

Electronic Design Automation

104

mark where as visited
for each vertex next adjacent to where

if capacity[where][next] > 0
new_cost = min(cost,

capacity[where][next])
push node(next, new_cost, where) to

PQ
end for

end while
// update the residual network
where = sink
while from[where] > -1

prev = from[where]
capacity[prev][where] -= path_cap
capacity[where][prev] += path_cap
where = prev

end while
return path_cap

The analysis of its performance is pretty complicated,

but it may prove worthwhile to remember that with PFS at

most 2M1gU steps are required, where U is the maximum

capacity of an edge in the network. As with BFS, this number

is a lot larger than the actual number of steps for most

networks. Combine this with the O(M 1g M)complexity of the

search to get the worst-case running time of this algorithm.

Now that we know what these methods are all about,

which of them do we choose when we are confronted with a

max-flow problem? The PFS approach seems to have a better

worst-case performance, but in practice their performance

is pretty much the same. So, the method that one is more

familiar with may prove more adequate. Personally, I prefer

the shortest-path method, as I find it easier to implement

during a contest and less error prone.

MAXIMUM FLOW PROBLEM

The maximum flow problem is again structured on a

network; but here the arc capacities, or upper bounds, are

Electronic Design Automation

105

the only relevant parameters. The problem is to find the

maximum flow possible from some given source node to a

given sink node. A network model is in Fig. All arc costs are

zero, but the cost on the arc leaving the sink is set to -1.

Since the goal of the optimization is to minimize cost, the

maximum flow possible is delivered to the sink node.

����������	
��������	������������������	�����

The solution to the example is in Fig. The maximum flow

from node 1 to node 8 is 30 and the flows that yield this

flow are shown on the figure. The heavy arcs on the figure

are called the minimal cut.

These arcs are the bottlenecks that are restricting the

maximum flow. The fact that the sum of the capacities of

the arcs on the minimal cut equals the maximum flow is a

famous theorem of network theory called the max flow min

cut theorem. The arcs on the minimum cut can be identified

using sensitivity analysis.

MAX-FLOW/MIN-CUT RELATED PROBLEMS

How to recognize max-flow problems? Often they are hard

to detect and usually boil down to maximizing the movement

of something from a location to another. We need to look at

the constraints when we think we have a working solution

based on maximum flow - they should suggest at least an

Electronic Design Automation

106

O(N³) approach. If the number of locations is large, another

algorithm (such as dynamic Programmeming or greedy), is

more appropriate.

The problem description might suggest multiple sources

and/or sinks. For example, in the sample statement in the

beginning of this article, the company might own more than

one factory and multiple distribution Centres. How can we

deal with this? We should try to convert this to a network

that has a unique source and sink.

In order to accomplish this we will add two “dummy”

vertices to our original network - we will refer to them as

super-source and super-sink. In addition to this we will

add an edge from the super-source to every ordinary

source (a factory). As we don’t have restrictions on the

number of trucks that each factory can send, we should

assign to each edge an infinite capacity.

Note that if we had such restrictions, we should have

assigned to each edge a capacity equal to the number of

trucks each factory could send. Likewise, we add an edge

from every ordinary sink (distribution Centres) to the super-

sink with infinite capacity.

A maximum flow in this new-built network is the solution

to the problem - the sources now become ordinary vertices,

and they are subject to the entering-flow equals leaving-flow

property. You may want to keep this in your bag of tricks,

as it may prove useful to most problems.

What if we are also given the maximum number of trucks

that can drive through each of the cities in the country (other

than the cities where the factory and the distribution Centre

are located)? In other words we have to deal with vertex-

Electronic Design Automation

107

capacities too. Intuitively, we should be able to reduce this

to maximum-flow, but we must find a way to take the

capacities from vertices and put them back on edges, where

they belong.

Another nice trick comes into play. We will build a

network that has two times more vertices than the initial

one. For each vertex we will have two nodes: an in-vertex

and an out-vertex, and we will direct each edge x-y from the

out-vertex of x to the in-vertex of y.

We can assign them the capacities from the problem

statement. Additionally we can add an edge for each vertex

from the in to the out-vertex.

The capacity this edge will be assigned is obviously the

vertex-capacity. Now we just run max-flow on this network

and compute the result. Maximum flow problems may appear

out of nowhere. Let's take this problem for instance:"You

are given the in and out degrees of the vertices of a directed

graph.

Your task is to find the edges (assuming that no edge

can appear more than once)." First, notice that we can

perform this simple test at the beginning.

We can compute the number M of edges by summing

the out-degrees or the in-degrees of the vertices. If these

numbers are not equal, clearly there is no graph that could

be built. This doesn't solve our problem, though.

There are some greedy approaches that come to mind,

but none of them work.

We will combine the tricks discussed above to give a max-

flow algorithm that solves this problem. First, build a network

that has 2 (in/out) vertices for each initial vertex. Now draw

Electronic Design Automation

108

an edge from every out vertex to every in vertex. Next, add a

super-source and draw an edge from it to every out-vertex.

Add a super-sink and draw an edge from every in vertex to

it. We now need some capacities for this to be a flow network.

It should be pretty obvious what the intent with this

approach is, so we will assign the following capacities: for

each edge drawn from the super-source we assign a capacity

equal to the out-degree of the vertex it points to.

As there may be only one arc from a vertex to another,

we assign a 1 capacity to each of the edges that go from the

outs to the ins.

As you can guess, the capacities of the edges that enter

the super-sink will be equal to the in-degrees of the vertices.

If the maximum flow in this network equals M - the number

of edges, we have a solution, and for each edge between the

out and in vertices that has a flow along it (which is

maximum 1, as the capacity is 1) we can draw an edge

between corresponding vertices in our graph.

Note that both x-y and y-x edges may appear in the

solution. This is very similar to the maximum matching in a

bipartite graph that we will discuss later. An example is given

below where the out-degrees are (2, 1, 1, 1) and the in-

degrees (1, 2, 1, 1). Some other problems may ask to separate

two locations minimally. Some of these problems usually can

be reduced to minimum-cut in a network. Two examples will

be discussed here, but first let's take the standard min-cut

problem and make it sound more like a TopCoder problem.

We learned earlier how to find the value of the min-cut and

how to find an arbitrary min-cut. In addition to this we will

now like to have a minimum-cut with the minimum number

Electronic Design Automation

109

of edges. An idea would be to try to modify the original

network in such a way that the minimum cut here is the

minimum cut with the minimum edges in the original one.

Notice what happens if we multiply each edge capacity

with a constant T. Clearly, the value of the maximum flow is

multiplied by T, thus the value of the minimum cut is T times

bigger than the original. A minimum cut in the original

network is a minimum cut in the modified one as well. Now

suppose we add 1 to the capacity of each edge. Is a minimum

cut in the original network a minimum cut in this one? The

answer is no, as we can see in Figure shown below, if we

take T = 2. Why did this happen? Take an arbitrary cut. The

value of the cut will be T times the original value of the cut,

plus the number of edges in it.

Thus, a non-minimum cut in the first place could become

minimum if it contains just a few edges. This is because the

constant might not have been chosen properly in the

beginning, as is the case in the example above. We can fix

this by choosing T large enough to neutralize the difference

in the number of edges between cuts in the network.

In the above example T = 4 would be enough, but to

generalize, we take T = 10, one more than the number of

edges in the original network, and one more than the number

of edges that could possibly be in a minimum-cut. It is now

true that a minimum-cut in the new network is minimum

in the original network as well. However the converse is not

true, and it is to our advantage. Notice how the difference

between minimum cuts is now made by the number of edges

in the cut. So we just find the min-cut in this new network

to solve the problem correctly.

Electronic Design Automation

110

Let’s illustrate some more the min-cut pattern: “An

undirected graph is given. What is the minimum number of

edges that should be removed in order to disconnect the

graph?” In other words the problem asks us to remove some

edges in order for two nodes to be separated. This should

ring a bell - a minimum cut approach might work. So far we

have only seen maximum flow in directed graphs, but now

we are facing an undirected one.

This should not be a very big problem though, as we can

direct the graph by replacing every (undirected) edge x-y with

two arcs: x-y and y-x. In this case the value of the min-cut

is the number of edges in it, so we assign a 1 capacity to

each of them. We are not asked to separate two given vertices,

but rather to disconnect optimally any two vertices, so we

must take every pair of vertices and treat them as the source

and the sink and keep the best one from these minimum-

cuts.

An improvement can be made, however. Take one

vertex, let’s say vertex numbered 1. Because the graph

should be disconnected, there must be another vertex

unreachable from it. So it suffices to treat vertex 1 as the

source and iterate through every other vertex and treat it

as the sink.

What if instead of edges we now have to remove a

minimum number of vertices to disconnect the graph? Now

we are asked for a different min-cut, composed of vertices.

We must somehow convert the vertices to edges though.

Recall the problem above where we converted vertex-

capacities to edge-capacities. The same trick works here.

First “un-direct” the graph as in the previous example.

Electronic Design Automation

111

Next double the number of vertices and deal edges the

same way: an edge x-y is directed from the out-x vertex to

in-y. Then convert the vertex to an edge by adding a 1-

capacity arc from the in-vertex to the out-vertex.

Now for each two vertices we must solve the sub-problem

of minimally separating them. So, just like before take each

pair of vertices and treat the out-vertex of one of them as

the source and the in-vertex of the other one as the sink

(this is because the only arc leaving the in-vertex is the one

that goes to the out-vertex) and take the lowest value of the

maximum flow. This time we can’t improve in the quadratic

number of steps needed, because the first vertex may be in

an optimum solution and by always considering it as the

source we lose such a case.

Electronic Design Automation

112

5

Combinational Logic Design

INTRODUCTION
Combinational logic is probably the easiest circuitry to

design. The outputs from a combinational logic circuit depend

only on the current inputs. The circuit has no remembrance

of what it did at any time in the past. Much of logic design

involves connecting simple, easily understood circuits to

construct a larger circuit that performs a much more

complicated function. Several simple, often-used

combinational logic circuits are the following:

Analysis Procedure
The bulk of the Combinational Analysis module is accessed

through a single window of that name allowing you to view

truth tables and Boolean expressions. This window can be

opened in two ways.

Electronic Design Automation

113

Via the Window Menu
Select Combinational Analysis, and the current

Combinational Analysis window will appear. If you haven’t

viewed the window before, the opened window will represent

no circuit at all. Only one Combinational Analysis window

exists within Logisim, no matter how many projects are open.

There is no way to have two different analysis windows open

at once.

Via the Project Menu
From a window for editing circuits, you can also request

that Logisim analyze the current circuit by selecting the

Analyze Circuit option from the Project menu. Before Logisim

opens the window, it will compute Boolean expressions and

a truth table corresponding to the circuit and place them

there for you to view. For the analysis to be successful, each

input must be attached to an input pin, and each output

must be attached to an output pin. Logisim will only analyze

circuits with at most eight of each type, and all should be

single-bit pins. Otherwise, you will see an error message and

the window will not open.

In constructing Boolean expressions corresponding to a

circuit, Logisim will first attempt to construct a Boolean

expressions corresponding exactly to the gates in the circuit.

But if the circuit uses some non-gate components (such as a

multiplexer), or if the circuit is more than 100 levels deep

(unlikely), then it will pop up a dialog box telling you that

deriving Boolean expressions was impossible, and Logical

will instead derive the expressions based on the truth table,

which will be derived by quietly trying each combination of

inputs and reading the resulting outputs.

Electronic Design Automation

114

After analyzing a circuit, there is no continuing relationship

between the circuit and the Combinational Analysis window.

That is, changes to the circuit will not be reflected in the

window, nor will changes to the Boolean expressions and/or

truth table in the window be reflected in the circuit. Of course,

you are always free to analyze a circuit again; and, as we will

see later, you can replace the circuit with a circuit

corresponding to what appears in the Combinational Analysis

window.

Limitations
Logical will not attempt to detect sequential circuits: If

you tell it to analyze a sequential circuit, it will still create a

truth table and corresponding Boolean expressions, although

these will not accurately summarize the circuit behavior. (In

fact, detecting sequential circuits is provably impossible, as

it would amount to solving the Halting Problem. Of course,

you might hope that Logical would make at least some

attempt - perhaps look for flip-flops or cycles in the wires -

but it does not.) As a result, the Combinational Analysis

system should not be used indiscriminately: Only use it when

you are indeed sure that the circuit you are analyzing is

indeed combinational!

Design Procedure
Logic circuits for digital systems may be combinational or

sequential. A combinational circuit consists of logic gates

whose outputs at any time are determined by combining the

values of the applied inputs using logic operations. A

combinational circuit performs an operation that can be

specified logically by a set of Boolean expression. In addition

Electronic Design Automation

115

to using logic gates, sequential circuits employ elements that

store bit values. Sequential circuit outputs are a function of

inputs and the bit value in storage elements. These values,

in turn, are a function of previously applied inputs and stored

values. As a consequence, the outputs of a sequential circuit

depend not only on the presently applied values of the inputs,

but also on pas inputs, and the behavior of the circuit must

be specified by a sequence in time of inputs and internal

stored bit values. A combinational circuit consists of input

variables, output variables, logic gates and interconnections.

The interconnected logic gates accept signals from the inputs

and generate signals at the output. The n input variables

come from the environment of the circuit, and the m output

variables are available for use by the environment. Each input

and output variable exists physically as a binary signal that

represents logic 1 or logic 0.

For n input variables, there are 2^n possible binary input

combinations. For each binary combination of the input

variables, there is one possible binary value on each output.

Thus, a combinational circuit can be specified by a truth

table that lists the output values for each combination of the

input variables. A combinational circuit can also be described

by m Boolean function, one for each output variable. Each

such function is expressed as function of the n input

variables.

Combinational Circuit Design
The design of combinational circuit starts from a

specification of the problem and culminates in a logic diagram

or set of Boolean equations from which the logic diagram

can be obtained.

Electronic Design Automation

116

The procedure involves the following steps:

1. From the specifications of the circuit, determine the

required number of inputs and outputs, and assign a

letter symbol to each.

2. Derive the truth table that defines the required relation

ship between inputs and outputs.

3. Obtain the simplified Boolean functions of each

outputs as function of the input variables.

4. Draw the logic diagram.

5. Verify the correctness of the design.

Binary Adder-subtractor

Half Adder/Subtractor
This figure shows the configuration for a Half Adder/

Subtractor. The first logic gate which is a XOR allows the

circuit to do the complement of the binary bit when we want

to do a subtraction. In the case that is needed to implement

a addition the XOR keep the number the same.

Table. Truth Table.

Electronic Design Automation

117

A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Full Adder/Subtractor

Full Adder Circuit
This circuit adds two binary one bit numbers. Also, it

manages a carry that could come from another circuit.

[(AA)’*(BB)’]’ = A+B

Electronic Design Automation

118

X Y Z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

This figure shows the configuration for a Full Adder/

Subtractor. The box with the name of “Full Adder” has all

the logic to do the addition and subtraction depending of the

inputs that it receives. The XOR gate that is outside the box

allows the circuit to do the complement of the binary bit

when we want to do a subtraction. In the case that is needed

to implement an addition the XOR keep the number the same.

In the previous graph the internal logic for the box “Full

Adder” is shown.

3-bit Adder/Subtractor
The 3-bit adder/Subtractor was implemented with three

Full adder circuits and three XOR gates outside which

Electronic Design Automation

119

implemented the operation (addition/subtraction) selected by

the user. In this circuit, we have three inputs for the first

three bits binary number and three inputs for the second

three bits binary number. When the addition is selected the

XOR gates keep the binary numbers the same and add them

together. On the other hand, when a subtraction is selected

the XOR gates complement the second number which is

represented with a “Y” and after that, the Full Adder circuit

adds both numbers together. The 3-bit Adder/Subtractor

circuit has four outputs. The first three outputs represent the

three bits that were the result of the subtraction or addition.

The last bit represents a carry.

Binary Multiplier
Binary multiplication uses the same technique as decimal

multiplication. In fact, binary multiplication is much easier

because each digit we multiply by is either zero or one.

Consider the simple problem of multiplying 1102 by 102. We

can use this problem to review some terminology and

illustrate the rules for binary multiplication.
1. First, we note that 1102 is our multiplicand and

102 is our multiplier.
 110
 x 10

2. We begin by multiplying 1102 by the
rightmost digit of our multiplier which is 0.
Any number times zero is zero, so we just
write zeros below.

 110
 x 10
 000

3. Now we multiply the multiplicand by the next
digit of our multiplier which is 1. To perform
this multiplication, we just need to copy the
multiplicand and shift it one column to the left
as we do in decimal multiplication.

 110
 x 10
 000
 110

4. Now we add our results together. The product
of our multiplication is 11002.

 110
 x 10
 000
 110
 1100

When performing binary multiplication, remember the

following rules:

Electronic Design Automation

120

1. Copy the multiplicand when the multiplier digit is 1.

Otherwise, write a row of zeros.

2. Shift your results one column to the left as you move

to a new multiplier digit.

3. Add the results together using binary addition to find

the product.

Magnitude Comparator

74L85 4-Bit Magnitude Comparator

Statistics
11 inputs; 3 outputs; 33 gates;

Function
The 74L85 magnitude comparator can be functionally

modeled as above. This is a simplification of implementing a

magnitude comparator by a carry function with an inverted

input bus as shown.

Electronic Design Automation

121

Using this concept, common elements of the three

comparator functions A < B, A > B, and A = B are combined

to construct the model shown above, which maps directly

onto the gate-level realization of the 74L85.

Decoders

Introduction
In both the multiplexer and the demultiplexer, part of the

circuits decode the address inputs, i.e. it translates a binary

number of n digits to 2n outputs, one of which (the one that

corresponds to the value of the binary number) is 1 and the

others of which are 0. It is sometimes advantageous to

separate this function from the rest of the circuit, since it is

useful in many other applications. Thus, we obtain a new

combinatorial circuit that we call the decoder.

It has the following truth table (for n = 3):

a2 a1 a0 | d7 d6 d5 d4 d3 d2 d1 d0

—————————————————

0 0 0 | 0 0 0 0 0 0 0 1

0 0 1 | 0 0 0 0 0 0 1 0

Electronic Design Automation

122

0 1 0 | 0 0 0 0 0 1 0 0

0 1 1 | 0 0 0 0 1 0 0 0

1 0 0 | 0 0 0 1 0 0 0 0

1 0 1 | 0 0 1 0 0 0 0 0

1 1 0 | 0 1 0 0 0 0 0 0

1 1 1 | 1 0 0 0 0 0 0 0

Here is the circuit diagram for the decoder:

Electronic Design Automation

123

Decoder Generation

X86’s decoder is generated using an ISA description like

all the other ISAs, although how it does that is a bit different.

Most of the instructions for most of the other ISAs are defined

by passing chunks of code that perform the instruction into

an instruction format. The format is basically a template

which puts wraps that bit of code in the structure needed to

support it and you have your instruction object. Because

almost all of the instructions in x86 are microcoded and many

can be encoded in multiple ways and hence appear in the

decoder more than once, and because the same non-trivial

decoding rules apply to many different instructions, X86 uses

the decoder as a layer of indirection and defines the majority

of its instructions elsewhere.

X86 almost exclusively uses only two different instruction

formats, Inst and MultiInst. MultiInst is just a compact way

of describing multiple related Insts. An Inst essentially selects

Electronic Design Automation

124

an instruction like XOR and provides a specification for its

operands. Inside the instruction format, the instruction name

and operand specification are passed to a python function

called “specializeInst” which figures out what to do with it. If

the operand specification describes more than one version

of the instruction, for instance one that uses memory and

one that uses registers, the instruction’s information is

passed into another function, “doSplitDecode”, which

separates out those versions and passes each individually

back through the same system. This goes on until the

instructions have been fully split out and code has been

generated to figure out what version to use. As a nice bonus,

the MultiInst format doesn’t add much complexity to this

model since it can simply jump right into do Split Decode

and continue as normal. There is one additional format for

string instructions that works similar to MultiInst, except

instead of specializing the instruction based on its operands,

it specializes it based on its prefixes. At this point, the code

for selecting the right version of an instruction is put into

the C++ decoder function. Almost all of this function is built

this way, with the minor exception of small bits of logic that

glue everything together and make large scale distinctions

the number of opcode bytes.

3 to 8 Decoder
The 3 to 8 decoder unit takes 3 address lines as input and

outputs 8 address enable lines. Which of the 8 output is

enabled is dependant upon the configuration of the 3 address

line. If A0, A1, and A2 are all 0, then address 0 is enabled. If

A0=0, A1=1, A2=0, then address 3 is enables. With 3 address

lines, the number of words that can be addressed is 8 (2^3=8).

Electronic Design Automation

125

Encoders
An encoder is a circuit that changes a set of signals into a

code. Lets begin making a 2-to-1 line encoder truth table by

reversing the 1-to-2 decoder truth table.

This truth table is a little short. A complete truth table

would be

One question we need to answer is what to do with those

other inputs? Do we ignore them? Do we have them generate

an additional error output? In many circuits this problem is

solved by adding sequential logic in order to know not just

what input is active but also which order the inputs became

active.

A more useful application of combinational encoder design

is a binary to 7-segment encoder. The seven segments are

given according

Our truth table is:

Electronic Design Automation

126

Deciding what to do with the remaining six entries of the

truth table is easier with this circuit. This circuit should not

be expected to encode an undefined combination of inputs,

so we can leave them as “don’t care” when we design the

circuit. The boolean equations are;

and the circuit is;

Electronic Design Automation

127

Electronic Design Automation

128

Introduction
A multiplexer is a combinatorial circuit that is given a certain

number (usually a power of two) data inputs, let us say 2n,

and n address inputs used as a binary number to select one

of the data inputs. The multiplexer has a single output, which

has the same value as the selected data input. In other words,

the multiplexer works like the input selector of a home music

system. Only one input is selected at a time, and the selected

input is transmitted to the single output. While on the music

system, the selection of the input is made manually, the

multiplexer chooses its input based on a binary number, the

address input. The truth table for a multiplexer is huge for all

but the smallest values of n. We therefore use an abbreviated

version of the truth table in which some inputs are replaced

by ‘-’ to indicate that the input value does not matter. Here is

such an abbreviated truth table for n = 3. The full truth table

would have 2(3 + 23) = 2048rows.
a2 a1 a0 d7 d6 d5 d4 d3 d2 d1 d0 | x
- - - - - - - - - - - --- -
0 0 0 - - - - - - - 0 | 0
0 0 0 - - - - - - - 1 | 1
0 0 1 - - - - - - 0 - | 0
0 0 1 - - - - - - 1 - | 1
0 1 0 - - - - - 0 - - | 0
0 1 0 - - - - - 1 - - | 1
0 1 1 - - - - 0 - - - | 0
0 1 1 - - - - 1 - - - | 1
1 0 0 - - - 0 - - - - | 0
1 0 0 - - - 1 - - - - | 1
1 0 1 - - 0 - - - - - | 0
1 0 1 - - 1 - - - - - | 1
1 1 0 - 0 - - - - - - | 0
1 1 0 - 1 - - - - - - | 1
1 1 1 0 - - - - - - - | 0
1 1 1 1 - - - - - - - | 1

We can abbreviate this table even more by using a letter to

indicate the value of the selected input, like this:

Electronic Design Automation

129

a2 a1 a0 d7 d6 d5 d4 d3 d2 d1 d0 | x
- - - - - - - - - - - --- -
0 0 0 - - - - - - - c | c
0 0 1 - - - - - - c - | c
0 1 0 - - - - - c - - | c
0 1 1 - - - - c - - - | c
1 0 0 - - - c - - - - | c
1 0 1 - - c - - - - - | c
1 1 0 - c - - - - - - | c
1 1 1 c - - - - - - - | c

The same way we can simplify the truth table for the

multiplexer, we can also simplify the corresponding circuit.

Indeed, our simple design method would yield a very large

circuit. The simplified circuit looks like this:

Electronic Design Automation

130

A multiplexer performs the function of selecting the input

on any one of ‘n’ input lines and feeding this input to one

output line. Multiplexers are used as one method of reducing

the number of integrated circuit packages required by a

particular circuit design. This in turn reduces the cost of the

system.

Assume that we have four lines, C0, C1, C2 and C3, which

are to be multiplexed on a single line, Output (f). The four

input lines are also known as the Data Inputs. Since there

are four inputs, we will need two additional inputs to the

multiplexer, known as the Select Inputs, to select which of

the C inputs is to appear at the output. Call these select

lines A and B.

The gate implementation of a 4-line to 1-line multiplexer is

shown below:

Electronic Design Automation

131

The circuit symbol for the above multiplexer is:

4 Input Multiplexer
The multiplexer concept is not limited to two data inputs. If

we add a second addressing input, B, we can control as many

as four data inputs, as shown to the left. A third and fourth

addressing input will allow the multiplexer to control eight or

sixteen inputs, respectively. Inputs A and B are the addressing

inputs to this multiplexer. They select which of the four data

inputs will be transmitted to the final output, X. If the data

inputs are to be multiplexed for transmission to a distant

location, the inputs must cycle through all four possible

addresses more than twice for each single cycle of each of the

data inputs. Otherwise the input data cannot be reconstructed

accurately at the receiving end.

Electronic Design Automation

132

6

Conceptual Model

A mental model captures ideas in a problem domain,

while a conceptual model represents ‘concepts’ (entities)

and relationships between them. A Conceptual model in the

field of computer science is also known as a domain model.

Conceptual modeling should not be confused with other

modeling disciplines such as data modelling, logical modelling

and physical modelling. The conceptual model is explicitly

chosen to be independent of design or implementation

concerns, for example, concurrency or data storage. The

aim of a conceptual model is to express the meaning of

terms and concepts used by domain experts to discuss the

problem, and to find the correct relationships between

different concepts. The conceptual model attempts to clarify

the meaning of various, usually ambiguous terms, and

ensure that problems with different interpretations of the

terms and concepts cannot occur. Such differing

Electronic Design Automation

133

interpretations could easily cause confusion amongst

stakeholders, especially those responsible for designing and

implementing a solution, where the conceptual model

provides a key artifact of business understanding and clarity.

Once the domain concepts have been modeled, the model

becomes a stable basis for subsequent development of

applications in the domain. The concepts of the conceptual

model can be mapped into physical design or implementation

constructs using either manual or automated code generation

approaches. The realization of conceptual models of many

domains can be combined to a coherent platform. A

conceptual model can be described using various notations,

such as UML or OMT for object modelling, or IE or IDEF1X

for Entity Relationship Modelling. In UML notation, the

conceptual model is often described with a class diagram

in which classes represent concepts, associations represent

relationships between concepts and role types of an

association represent role types taken by instances of the

modelled concepts in various situations. In ER notation, the

conceptual model is described with an ER Diagram in which

entities represent concepts, cardinality and optionality

represent relationships between concepts. Regardless of the

notation used, it is important not to compromise the richness

and clarity of the business meaning depicted in the

conceptual model by expressing it directly in a form

influenced by design or implementation concerns.

REQUIREMENTS ANALYSIS

Requirements analysis in systems engineering and

software engineering, encompasses those tasks that go into

Electronic Design Automation

134

determining the needs or conditions to meet for a new or

altered product, taking account of the possibly conflicting

requirements of the various stakeholders, such as

beneficiaries or users. Requirements analysis is critical to

the success of a development project. Requirements must

be documented, actionable, measurable, testable, related to

identified business needs or opportunities, and defined to

a level of detail sufficient for system design. Requirements

can be architectural, structural, behavioural, functional,

and non-functional.

Overview

Conceptually, requirements analysis includes three types

of activity:

• Eliciting requirements: the task of communicating

with customers and users to determine what their

requirements are. This is sometimes also called

requirements gathering.

• Analyzing requirements: determining whether the

stated requirements are unclear, incomplete,

ambiguous, or contradictory, and then resolving these

issues.

• Recording requirements: Requirements might be

documented in various forms, such as natural-

language documents, use cases, user stories, or

process specifications.

Requirements analysis can be a long and arduous process

during which many delicate psychological skills are involved.

New systems change the environment and relationships

between people, so it is important to identify all the

Electronic Design Automation

135

stakeholders, take into account all their needs and ensure

they understand the implications of the new systems.

Analysts can employ several techniques to elicit the

requirements from the customer. Historically, this has

included such things as holding interviews, or holding focus

groups (more aptly named in this context as requirements

workshops) and creating requirements lists. More modern

techniques include prototyping, and use cases. Where

necessary, the analyst will employ a combination of these

methods to establish the exact requirements of the

stakeholders, so that a system that meets the business

needs is produced.

Requirements Engineering

Systematic requirements analysis is also known as

requirements engineering. It is sometimes referred to loosely

by names such as requirements gathering, requirements

capture, or requirements specification. The term requirements

analysis can also be applied specifically to the analysis

proper, as opposed to elicitation or documentation of the

requirements, for instance. Requirements Engineering can

be divided into discrete chronological steps:

• Requirements elicitation,

• Requirements analysis and negotiation,

• Requirements specification,

• System modeling,

• Requirements validation,

• Requirements management.

Requirement engineering according to Laplante (2007) is

“a subdiscipline of systems engineering and software

Electronic Design Automation

136

engineering that is concerned with determining the goals,

functions, and constraints of hardware and software

systems.” In some life cycle models, the requirement

engineering process begins with a feasibility study activity,

which leads to a feasibility report. If the feasibility study

suggests that the product should be developed, then

requirement analysis can begin. If requirement analysis

precedes feasibility studies, which may foster outside the

box thinking, then feasibility should be determined before

requirements are finalized.

Requirements Analysis Topics

See Stakeholder analysis for a discussion of business

uses. Stakeholders (SH) are people or organizations (legal

entities such as companies, standards bodies) which have

a valid interest in the system. They may be affected by it

either directly or indirectly. A major new emphasis in the

1990s was a focus on the identification of stakeholders. It

is increasingly recognized that stakeholders are not limited

to the organization employing the analyst. Other stakeholders

will include:

• anyone who operates the system (normal and

maintenance operators)

• anyone who benefits from the system (functional,

political, financial and social beneficiaries)

• anyone involved in purchasing or procuring the

system. In a mass-market product organization,

product management, marketing and sometimes sales

act as surrogate consumers (mass-market customers)

to guide development of the product

Electronic Design Automation

137

• organizations which regulate aspects of the system

(financial, safety, and other regulators)

• people or organizations opposed to the system

(negative stakeholders; see also Misuse case)

• organizations responsible for systems which interface

with the system under design

• those organizations who integrate horizontally with

the organization for whom the analyst is designing

the system

Stakeholder Interviews

Stakeholder interviews are a common technique used in

requirement analysis. Though they are generally idiosyncratic

in nature and focused upon the perspectives and perceived

needs of the stakeholder, very often without larger enterprize

or system context, this perspective deficiency has the general

advantage of obtaining a much richer understanding of the

stakeholder’s unique business processes, decision-relevant

business rules, and perceived needs.

Consequently this technique can serve as a means of

obtaining the highly focused knowledge that is often not

elicited in Joint Requirements Development sessions, where

the stakeholder’s attention is compelled to assume a more

cross-functional context. Moreover, the in-person nature of

the interviews provides a more relaxed environment where

lines of thought may be explored at length.

Joint Requirements Development (JRD) Sessions

Requirements often have cross-functional implications

that are unknown to individual stakeholders and often

missed or incompletely defined during stakeholder interviews.

Electronic Design Automation

138

These cross-functional implications can be elicited by

conducting JRD sessions in a controlled environment,

facilitated by a trained facilitator, wherein stakeholders

participate in discussions to elicit requirements, analyze

their details and uncover cross-functional implications. A

dedicated scribe and Business Analyst should be present

to document the discussion. Utilizing the skills of a trained

facilitator to guide the discussion frees the Business Analyst

to focus on the requirements definition process. JRD Sessions

are analogous to Joint Application Design Sessions. In the

former, the sessions elicit requirements that guide design,

whereas the latter elicit the specific design features to be

implemented in satisfaction of elicited requirements.

Contract-Style Requirement Lists

One traditional way of documenting requirements has

been contract style requirement lists. In a complex system

such requirements lists can run to hundreds of pages. An

appropriate metaphor would be an extremely long shopping

list. Such lists are very much out of favour in modern

analysis; as they have proved spectacularly unsuccessful

at achieving their aims; but they are still seen to this day.

Strengths

• Provides a checklist of requirements.

• Provide a contract between the project sponsor(s)

and developers.

• For a large system can provide a high level description.

Weaknesses

• Such lists can run to hundreds of pages. It is virtually

Electronic Design Automation

139

impossible to read such documents as a whole and

have a coherent understanding of the system.

• Such requirements lists abstract all the requirements

and so there is little context

• This abstraction makes it impossible to see how the

requirements fit or work together.

• This abstraction makes it difficult to prioritize

requirements properly; while a list does make it easy

to prioritize each individual item, removing one item

out of context can render an entire use case or

business requirement useless.

• This abstraction increases the likelihood of

misinterpreting the requirements; as more people

read them, the number of (different) interpretations

of the envisioned system increase.

• This abstraction means that it’s extremely difficult

to be sure that you have the majority of the

requirements. Necessarily, these documents speak

in generality; but the devil, as they say, is in the

details.

• These lists create a false sense of mutual

understanding between the stakeholders and

developers.

• These contract style lists give the stakeholders a false

sense of security that the developers must achieve

certain things. However, due to the nature of these

lists, they inevitably miss out crucial requirements

which are identified later in the process. Developers

can use these discovered requirements to renegotiate

the terms and conditions in their favour.

Electronic Design Automation

140

• These requirements lists are no help in system design,

since they do not lend themselves to application.

Alternative to Requirement Lists

As an alternative to the large, pre-defined requirement

lists Agile Software Development uses User stories to define

a requirement in every day language.

Measurable Goals

Best practices take the composed list of requirements

merely as clues and repeatedly ask “why?” until the actual

business purposes are discovered. Stakeholders and

developers can then devise tests to measure what level of

each goal has been achieved thus far. Such goals change

more slowly than the long list of specific but unmeasured

requirements. Once a small set of critical, measured goals

has been established, rapid prototyping and short iterative

development phases may proceed to deliver actual

stakeholder value long before the project is half over.

Prototypes

In the mid-1980s, prototyping was seen as the best

solution to the requirements analysis problem. Prototypes

are Mockups of an application. Mockups allow users to

visualize an application that hasn’t yet been constructed.

Prototypes help users get an idea of what the system will

look like, and make it easier for users to make design

decisions without waiting for the system to be built. Major

improvements in communication between users and

developers were often seen with the introduction of

prototypes. Early views of applications led to fewer changes

later and hence reduced overall costs considerably. However,

Electronic Design Automation

141

over the next decade, while proving a useful technique,

prototyping did not solve the requirements problem:

• Managers, once they see a prototype, may have a

hard time understanding that the finished design

will not be produced for some time.

• Designers often feel compelled to use patched together

prototype code in the real system, because they are

afraid to ‘waste time’ starting again.

• Prototypes principally help with design decisions and

user interface design. However, they can not tell you

what the requirements originally were.

• Designers and end-users can focus too much on user

interface design and too little on producing a system

that serves the business process.

• Prototypes work well for user interfaces, screen layout

and screen flow but are not so useful for batch or

asynchronous processes which may involve complex

database updates and/or calculations.

Prototypes can be flat diagrams (often referred to as

wireframes) or working applications using synthesized

functionality. Wireframes are made in a variety of graphic

design documents, and often remove all color from the

design (i.e. use a greyscale color palette) in instances where

the final software is expected to have graphic design applied

to it. This helps to prevent confusion over the final visual

look and feel of the application.

Use Cases

A use case is a technique for documenting the potential

requirements of a new system or software change. Each use

Electronic Design Automation

142

case provides one or more scenarios that convey how the

system should interact with the end-user or another system

to achieve a specific business goal. Use cases typically avoid

technical jargon, preferring instead the language of the end-

user or domain expert. Use cases are often co-authored by

requirements engineers and stakeholders. Use cases are

deceptively simple tools for describing the behaviour of

software or systems. A use case contains a textual description

of all of the ways which the intended users could work with

the software or system. Use cases do not describe any

internal workings of the system, nor do they explain how

that system will be implemented. They simply show the

steps that a user follows to perform a task. All the ways

that users interact with a system can be described in this

manner.

Software Requirements Specification

A software requirements specification (SRS) is a complete

description of the behaviour of the system to be developed.

It includes a set of use cases that describe all of the

interactions that the users will have with the software. Use

cases are also known as functional requirements. In addition

to use cases, the SRS also contains nonfunctional (or

supplementary) requirements. Non-functional requirements

are requirements which impose constraints on the design

or implementation (such as performance requirements,

quality standards, or design constraints). Recommended

approaches for the specification of software requirements

are described by IEEE 830-1998. This standard describes

possible structures, desirable contents, and qualities of a

software requirements specification.

Electronic Design Automation

143

Types of Requirements

Requirements are categorized in several ways. The following

are common categorizations of requirements that relate to

technical management:Customer Requirements Statements

of fact and assumptions that define the expectations of the

system in terms of mission objectives, environment,

constraints, and measures of effectiveness and suitability

(MOE/MOS). The customers are those that perform the eight

primary functions of systems engineering, with special

emphasis on the operator as the key customer. Operational

requirements will define the basic need and, at a minimum,

answer the questions posed in the following listing:

• Operational distribution or deployment: Where will

the system be used?

• Mission profile or scenario: How will the system

accomplish its mission objective?

• Performance and related parameters: What are the

critical system parameters to accomplish the mission?

• Utilization environments: How are the various system

components to be used?

• Effectiveness requirements: How effective or efficient

must the system be in performing its mission?

• Operational life cycle: How long will the system be in

use by the user?

• Environment: What environments will the system be

expected to operate in an effective manner?

Architectural Requirements

Architectural requirements explain what has to be done

by identifying the necessary system architecture of a system.

Electronic Design Automation

144

Structural Requirements

Structural requirements explain what has to be done by

identifying the necessary structure of a system.

Behavioural Requirements

Behavioural requirements explain what has to be done

by identifying the necessary behaviour of a system.

Functional Requirements

Functional requirements explain what has to be done by

identifying the necessary task, action or activity that must

be accomplished. Functional requirements analysis will be

used as the toplevel functions for functional analysis.

Non-functional Requirements

Non-functional requirements are requirements that

specify criteria that can be used to judge the operation of

a system, rather than specific behaviours.

Performance Requirements

The extent to which a mission or function must be

executed; generally measured in terms of quantity, quality,

coverage, timeliness or readiness. During requirements

analysis, performance (how well does it have to be done)

requirements will be interactively developed across all

identified functions based on system life cycle factors; and

characterized in terms of the degree of certainty in their

estimate, the degree of criticality to system success, and

their relationship to other requirements.

Design Requirements

The “build to,” “code to,” and “buy to” requirements for

Electronic Design Automation

145

products and “how to execute” requirements for processes

expressed in technical data packages and technical manuals.

Derived Requirements

Requirements that are implied or transformed from

higher-level requirement. For example, a requirement for

long range or high speed may result in a design requirement

for low weight.

Allocated Requirements

A requirement that is established by dividing or otherwise

allocating a high-level requirement into multiple lower-level

requirements. Example: A 100-pound item that consists of

two subsystems might result in weight requirements of 70

pounds and 30 pounds for the two lower-level items. Well-

known requirements categorization models include FURPS

and FURPS+, developed at Hewlett-Packard.

Requirements Analysis Issues

Stakeholder Issues

Steve McConnell, in his book Rapid Development, details

a number of ways users can inhibit requirements gathering:

• Users do not understand what they want or users

don’t have a clear idea of their requirements

• Users will not commit to a set of written requirements

• Users insist on new requirements after the cost and

schedule have been fixed

• Communication with users is slow

• Users often do not participate in reviews or are

incapable of doing so

• Users are technically unsophisticated

Electronic Design Automation

146

• Users do not understand the development process

• Users do not know about present technology

This may lead to the situation where user requirements

keep changing even when system or product development

has been started.

Engineer/Developer Issues

Possible problems caused by engineers and developers

during requirements analysis are:

• Technical personnel and end-users may have different

vocabularies. Consequently, they may wrongly believe

they are in perfect agreement until the finished

product is supplied.

• Engineers and developers may try to make the

requirements fit an existing system or model, rather

than develop a system specific to the needs of the

client.

• Analysis may often be carried out by engineers or

programmers, rather than personnel with the people

skills and the domain knowledge to understand a

client’s needs properly.

Attempted Solutions

One attempted solution to communications problems

has been to employ specialists in business or system analysis.

Techniques introduced in the 1990s like prototyping, Unified

Modeling Language (UML), use cases, and Agile software

development are also intended as solutions to problems

encountered with previous methods. Also, a new class of

application simulation or application definition tools have

Electronic Design Automation

147

entered the market. These tools are designed to bridge the

communication gap between business users and the IT

organization — and also to allow applications to be ‘test

marketed’ before any code is produced. The best of these

tools offer:

• electronic whiteboards to sketch application flows

and test alternatives

• ability to capture business logic and data needs

• ability to generate high fidelity prototypes that closely

imitate the final application

• interactivity

• capability to add contextual requirements and other

comments

• ability for remote and distributed users to run and

interact with the simulation

ARCHITECTURE DESCRIPTION LANGUAGE

Different communities use the term architecture

description language. Some important communities are the

system engineering community, the software engineering

community and the enterprize modelling and engineering

community In the system engineering community, an

Architecture Description Language (ADL) is a language and/

or conceptual model used to describe and represent system

architectures. In the software engineering community, an

Architecture Description Language (ADL) is a computer

language used to describe and represent software

architectures. This means in case of technical architecture,

the architecture must be communicated to software

developers. With functional architecture, the software

Electronic Design Automation

148

architecture is communicated with stakeholders and

enterprize engineers. By the software engineering community

several ADLs have been developed, such as Acme (developed

by CMU), AADL (standardized by SAE), C2 (developed by

UCI), Darwin (developed by Imperial College London), and

Wright (developed by CMU). The Final Committee Draft of

ISO/IEC 42010, now titled ‘Systems and software engineering

— Architecture Description’, defines an Architecture

Description Language:

form of expression used for the description of architectures

The enterprize modelling and engineering community

have also developed architecture description languages

catered for at the enterprize level. Examples include

ArchiMate (now an Open Group standard), DEMO, ABACUS

(developed by the University of Technology, Sydney) etc.

These languages do not necessarily refer to software

components, etc. Most of them, however, refer to an

application architecture as the architecture that is

communicated to the software engineers. Most of the writing

below refers primarily to the perspective from the software

engineering community.

Introduction

A standard notation (ADL) for representing architectures

helps promote mutual communication, the embodiment of

early design decisions, and the creation of a transferable

abstraction of a system. Architectures in the past were

largely represented by box-and-line drawing annotated with

such things as the nature of the component, properties,

semantics of connections, and overall system behaviour.

Electronic Design Automation

149

ADLs result from a linguistic approach to the formal

representation of architectures, and as such they address

its shortcomings. Also important, sophisticated ADLs allow

for early analysis and feasibility testing of architectural

design decisions.

Characteristics

There is a large variety in ADLs developed by either

academic or industrial groups. Many languages were not

intended to be an ADL, but they turn out to be suitable for

representing and analyzing an architecture. In principle

ADLs differ from requirements languages, because ADLs

are rooted in the solution space, whereas requirements

describe problem spaces. They differ from programming

languages, because ADLs do not bind architectural

abstractions to specific point solutions. Modeling languages

represent behaviours, where ADLs focus on representation

of components. However, there are domain specific modeling

languages (DSMLs) that focus on representation of

components.

Minimal Requirements

The language must:

• Be suitable for communicating an architecture to all

interested parties

• Support the tasks of architecture creation, refinement

and validation

• Provide a basis for further implementation, so it

must be able to add information to the ADL

specification to enable the final system specification

to be derived from the ADL

Electronic Design Automation

150

• Provide the ability to represent most of the common

architectural styles

• Support analytical capabilities or provide quick

generating prototype implementations

ADLs have in common:

• Graphical syntax with often a textual form and a

formally defined syntax and semantics

• Features for modeling distributed systems

• Little support for capturing design information, except

through general purpose annotation mechanisms

• Ability to represent hierarchical levels of detail

including the creation of substructures by

instantiating templates

ADLs differ in their ability to:

• Handle real-time constructs, such as deadlines and

task priorities, at the architectural level

• Support the specification of different architectural

styles. Few handle object oriented class inheritance

or dynamic architectures

• Support analysis

• Handle different instantiations of the same

architecture, in relation to product line architectures

Positive Elements of ADL

• ADLs represent a formal way of representing

architecture

• ADLs are intended to be both human and machine

readable

Electronic Design Automation

151

• ADLs support describing a system at a higher level

than previously possible

• ADLs permit analysis of architectures – completeness,

consistency, ambiguity, and performance

• ADLs can support automatic generation of software

systems

Negative Elements of ADL

• There is not universal agreement on what ADLs should

represent, particularly as regards the behaviour of

the architecture

• Representations currently in use are relatively difficult

to parse and are not supported by commercial tools

• Most ADLs tend to be very vertically optimized toward

a particular kind of analysis

Common Concepts of Architecture

The ADL community generally agrees that Software

Architecture is a set of components and the connections

among them. But there are different kind of architectures

like :

Object Connection Architecture

• Configuration consists of the interfaces and

connections of an object-oriented system

• Interfaces specify the features that must be provided

by modules conforming to an interface

• Connections represented by interfaces together with

call graph

• Conformance usually enforced by the programming

language

Electronic Design Automation

152

o Decomposition - associating interfaces with unique

modules

o Interface conformance - static checking of syntactic

rules

o Communication integrity - visibility between

modules

Interface Connection Architecture

• Expands the role of interfaces and connections

o Interfaces specify both “required” and “provided”

features

o Connections are defined between “required” features

and “provided” features

• Consists of interfaces, connections and constraints

o Constraints restrict behaviour of interfaces and

connections in an architecture

o Constraints in an architecture map to requirements

for a system

Most ADLs implement an interface connection

architecture.

Architecture vs. Design

So what is the difference between architecture and design?

Architecture casts non-functional decisions and partitions

functional requirements, whereas design specifies or derives

functional requirements. The process of defining an

architecture may use heuristics or iterative improvements;

this may require going a level deeper to validate the choices,

so the architect often has to do a high-level design to

validate the partitioning.

Electronic Design Automation

153

DATA MODELS

Introduction
• A data model is mathematical formalism consisting

of two parts.

– A notation for describing data,

– A set of operations used to manipulate that data.

• A data model is a way of organizing a collection of

facts pertaining to a system under investigation.

• Data models provide a way of thinking about the

world, a way of organizing the phenomena that

interest us.

• They can be thought of as an abstract language, a

collection of words along with a grammar by which

we describe our subject.

– By choosing a language, we pay the price of being

constrained to form expressions whose words are

limited to those in the language and whose sentence

structure is governed by the languages grammar.

– We are not free to use random collections of

symbols for words nor can we put the words

together in any ad hoc fashion.

• A major benefit we receive by following a data model

stems from the theoretical foundation of the model.

– From the theory emerges the power of analysis,

the ability to extract inferences and to create

deductions that emerge from the raw data.

• Different models provide different conceptualizations

of the world; they have different outlooks and different

perspectives.

Electronic Design Automation

154

• DBMSs are seen to be composed of three levels of

abstraction:

– Physical: This is the implementation of the database

in a digital computer. It is concerned with things like

storage structures and access method data structures.

– Conceptual: This is the expression of the database

designers model of the real world in the language

of the data model.

– View: Different user groups can be given access

to different portions of the database. A user groups

portion of the database is called their view.

TYPES OF DATA MODELS

Common Data Models
• This will presents an overview of most common data

models:

Entity-Relationship Model
• The Entity-Relationship (ER) model is generally

attributed to (Chen 1976).

• The ER model envisions the world as comprised of

entities that are associated with each other by

relationships. All of the entities of a particular type

are collected together into entity sets.

• Entity sets and relationships can be depicted

graphically in an ER-diagram.

Entities
• Entities are distinguishable real-world objects such

as employees, maps, airplanes, or bus schedules.

Electronic Design Automation

155

– Distinguishable means that all entities can be

uniquely identified.

– Entities have common attributes that define what

it means to be such an entity.

– Any particular real-world object does not

necessarily have a single or best representation

as an entity.

• For any given real-world object, different modelers can

choose different sets of attributes of the object that

are of interest to their particular situation.

• This results in the same object being modeled

differently.

• Entities are collected into entity sets.

– Entity sets are depicted as rectangles in ER

diagrams.

– Their attributes are depicted as ellipses attached

to the rectangles by lines.

Relationships
• A relationship is a list of entity sets.

– Notation: two entity sets A and B that stand in

relationship r is written A r B. See the next bullet

for examples.

• Types of relationships:

– Aggregating relationships:

– One-one: if A r B and r is one-one then each

entity of B is in relationship with at most one

entity of A and vice-versa.

– For example, if CAPTAIN commands VESSEL

and commands is one-one then, in our model,

Electronic Design Automation

156

each vessel has at most one captain and each

captain commands at most one vessel at a time.

– Many-one: if A r B and r is many-one then

each entity of A is in relationship with at most

one entity of B but not vice-versa.

– For example, if CREW assigned-to VESSEL and

assigned-to is many-one then, in our model, a

vessel has many crew members but a crew

member is assigned to only one vessel.

– Many-many: if A r B and r is many-many then

each entity of A can be in relationship with

any number of B entities and vice-versa.

– For example, if VESSEL patrols REGION and

patrols is many-many then, in our model, a

vessel patrols many regions and a region is

patrolled by many ships.

– Isa (read is a) relationships: if A is a B then A

is a specialization of B, or, conversely, B is a

generalization of A.

– For example, if CAPTAIN is a CREW then, in

our model, captains have all the attributes of

crew members but not vice versa.

– The is a relationship allows hierarchies to be

established among entity sets.

• A Relationship is depicted by a lozenge with lines

connecting it to the relevant entity sets.

• The Entity-Relationship model lacks an underlying

formalism and is, therefore, used more for general

conceptualization than for creating physical

models

Electronic Design Automation

157

– (Indeed, some authors do not acknowledge the ER

model as a data model at all).

– It is not uncommon for a conceptual design to be

expressed in the ER model and then translated

into another model for implementation.

Network Model
• The network data model is based upon the concept

of a structure such as is found in programming

languages like C or Pascal.

– ER entities can be modeled as structures with the

entitys attributes corresponding to the structures

fields.

– Entities are distinguished by their location, i.e.,

the physical address of the structure that is

holding them. Thus, two structures of identical

value represent two separate entities.

• Entity sets can be implemented as files whose records

match the structures.

• Relationships are created with explicit linkages (viz.

pointers) from structure to structure.

• Codasyl is an example of a DBMS based on the

network model.

• The network model has neither formal semantics nor

a high-level query language. Database manipulation

was done via custom programmes often written in

COBOL.

• Network model databases are hand-coded and,

therefore, can be very efficient in their space

utilization and query execution times; all the

Electronic Design Automation

158

relationships are hardwired or pre computed and

built into the structure of the database itself.

• The price for such performance is inflexibility and

great difficulty of use (among many other things).

Relational Model
• The relational model was introduced by Codd and has

been the inspiration of an entire generation of

database management systems that are based on the

concept of a relation which is a set of tuples.

Tuples
• A tuple is a set of facts that are related to each other

in some way (perhaps only by the fact theyve been

put together in a set).

• Each fact in a tuple is a datum whose value comes

from a specified domain (e.g., the domain of all

integers, the domain of all character strings of length

255 or less, etc.)

• Formally, let D1,..., Dn be n sets of values constituting

n domains (n is usually greater than zero but that is

not strictly necessary). A tuple t is a set of values t =

{d1,..., dn}, such that d1 is an element of D1,..., and

dn is an element of Dn. The domains are called

attributes.

Relations
• Formally, let D1,..., Dn be n domains. A relation R is

a set of tuples over the Cartesian product D1 x... x

Dn.

• In English, a relation is a (possibly complete) subset

Electronic Design Automation

159

of all the possible tuples formed by the Cartesian

product of the domains.

• Since tuples are sets (of values) and a relation is also

a set (of tuples), relations are sets of sets.

– A file is a list of records

– A table is a list of rows

– A relation is a set of tuples.

• Relations are naturally represented as tables.

– Tables are not relations because relations cannot

have duplicate tuples and there is no such

stricture on tables. However, it is perhaps

convenient to think about relations as tables so

long as the distinction remains clear.

– Most (if not all) commercial relational DBMSs

violate this principle: they allow duplicate tuples.

• The use of relations as a data modeling tool becomes

apparent when we have a relation, say, OUR_DEM

with fields {quadname, zone_code, mappingcenter}.

– It happens that the USGS has a digital elevation

model named Placitas NM in UTM zone 13 that

was created by the Forest Service Mapping Center.

– Then, the presence of a tuple in the OUR_DEM

relation whose

– Quadname attribute has the value Placitas NM

and

– Zone_code attribute has the value 13, and

– Mappingcenter attribute has the value FS,

– Indicates that we have the Placitas DEM in our

possession.

Electronic Design Automation

160

Tuples, Relations and Keys
• Relations are sets of tuples: Consequently, no two

tuples that are elements of the same relation can have

identical values for all their attributes. That is to say,

there are no duplicate tuples in a relation.

• All tuples in a relation can be distinguished by the

values of their attributes.

– Any set of attributes whose values necessarily

uniquely identify a tuple are said to be a key.

• Database designers choose some attribute set to be a

key for their databases relations.

– This key is known as the primary key.

• If the primary key of one table appears as an attribute

of a different relation, the key is known as a foreign

key in the other relation.

• A key uniquely identifies its tuple. Therefore, a tuples

key is often used as a surrogate for the entire tuple.

Relationships
• Not surprisingly, the relational model represents

relationships with relations.

• Key attributes are denoted in bold face.

• If you wish to work with these examples, you can

download either:

– The Microsoft Access97.mdb file by SAVING the

files at:

– ASCII text for the tables by clicking their names

below.

– The attribute names are on the first row,

character strings are delimited with double

quotes (“) and the fields are comma delimited.

Electronic Design Automation

161

• Aggregating relationships are represented by

embedding the primary key of one relation into

another relation as a foreign key:

– One-one: if A r B and r is one-one then the primary

key of A can be embedded in B or vice versa or

both.

– For example, suppose CAPTAIN commands

VESSEL and that commands is one-one.

– Suppose further that cptn_name is the primary

key of CAPTAIN and vessel_name is the primary

key of VESSEL.

– Then, CAPTAIN could have an attribute

commands whose value is that of vessel_name

for the vessel that captain commands.

– It is equally reasonable to have an attribute

commanded by in VESSEL whose value is that

of name for the captain commanding the vessel.

– Many-one: if A r B and r is many-one then the

primary key of B can be embedded in A but

not vice versa.

– For example, suppose CREW assigned-to VESSEL

and assigned-to is many-one.

– Suppose further that crew_name is the primary

key of CREW and vessel_name is the primary key

of VESSEL.

– Then, CREW could have an attribute assigned_to

whose value is that of vessel_name for the vessel

this crew member serves on.

– However, VESSEL cannot have an attribute roster

because roster would have to be a set (many crew

Electronic Design Automation

162

members per vessel) and the relational model

stipulates that all domains are atomic; no

collections.

– Many-many: if A r B and r is many-many then

neither primary key can be embedded the other

table. Again, the difficult lies in the atomicity

rule for domains. So, for a many-many

relationship, we must create a separate relation

whose attributes include but are not limited to

the primary keys from A and B.

– For example, if VESSEL patrols REGION and

patrols is many-many.

– Suppose further that vessel_name is the primary

key of VESSEL and region_name is the primary

key of REGION. Then we have a third relation

PATROLS with attributes vessel_name and

region_name.

– such relations are sometimes called join supports

– such relations are no different in any way from

any other relation is a relationships are handled

as the other relationships:

– One-one: Suppose CAPTAIN isa CREW.

– Then there is a one-one relationship between

CAPTAIN and CREW so the primary key of CREW

can be used as the key in CAPTAIN.

– The one-one nature of this relationship indicates

that the two tuples really give details of the same

entity; they are sort of like a single tuple that has

been split in two.

– Many-one: Suppose we are modeling WWII

Electronic Design Automation

163

combat vessels, known collectively as “ship(s)

of the line” (SOTL). It happens that a ship

design can be used as the plan for many

individual vessels (obviously).

– The design is known as a class and the vessels

made to that design are said to belong to that

class.

– For example, the USS Missouri belongs to the Iowa

class of battleships.

– We model this relationship with a relation SOTL

which has a single tuple for each class of warship.

Thus, VESSEL isaSOTL.

– The SOTL relation has attributes that are common

to all ships of the line. For WWII vessels, this might

include attributes such as the number of primary

guns, size of the primary guns, etc.

– The tuple in SOTL for the Iowa battleships gives

information that is common to all Iowa class

battleships (e.g., nine 16-inch guns, etc.).

– The tuple in VESSEL for the USS Missouri holds

the information specific to that vessel including

the fact it belongs in the Iowa class.

– Therefore, the primary key of SOTL is embedded

in VESSEL, not vice versa.

– Compare many-one is a relationships with one-

one is a relationships.

– Ullman restricts relationships to be one-one.

Query Languages
• Codd invented two early languages for dealing with

relations: one was algebraic and the other was based

Electronic Design Automation

164

on first-order predicate logic. These languages have

the same expressive power.

– Relational Algebra

– [An] algebraic notation where queries are expressed

by applying specialized operators to relations

– See for a presentation of the relational algebra.

– Relational Calculus

– [A] logical notation where queries are expressed

by writing logical formulas that the tuples in the

answer must satisfy.

– See for a presentation of the relational calculus.

• The most common commercial query language is the

Structured Query Language, or SQL.

– Despite its reputation as a relational query

language, SQL does not fully support the relational

model (it includes things that are not in the model

and omits things that are.

3.6. Relational Database Management System

(RDBMS)

• A relational database management system is a DBMS

based on the relational model as defined.

• There is no commercially available DBMS that fully

implements the relational model as defined. Some are

coming closer. Not everyone agrees that this strict lack

of conformance is a Bad Thing.

Advantages of the Relational Model
• Codd presents many advantages of the relational

model. Some of them are highlighted below:

• The relational model is truly a mathematically

Electronic Design Automation

165

complete data model. This solid theoretical

underpinning is responsible for

– Ad hoc query languages whose queries can be

automatically compiled, executed, and optimized

without resorting to programming

– Correctness: The semantics of the relational

algebra are sound and complete

– Predictable: the consistent semantics enables users

to easily anticipate the result of a given query

• Adaptability: Making a change in the structure of the

tables in the network model requires programmatic

making changes to all the databases queries. As a

result, the network model is inflexible in the extreme.

– The relational model cleanly separates the logical

from the physical model and this decoupling

mitigates or eliminates these problems.

– Also, the relational models integrity constraints are

very helpful in ensuring that structural changes

did not adversely effect the meaning of the

database.

• Multiple views: it is straightforward to present

different user groups different views of the same

database.

• Concurrency: A full theory of transaction concurrency

control exists which depends upon the theoretical

formalisms of the relational model.

– This theory guarantees the correct execution of

concurrent queries (indeed, it defines what is

correct).

Electronic Design Automation

166

Object Model
• The word object is similar to the Entity-Relationship

concept of an entity although object is more general.

– I recommend taking object in the spirit of objects

in the physical world.

– Objects are things but they are not limited to

physical, tangible things. For example, data

structures (e.g., a hash table) can be objects.

– All objects are distinct and, like the network model,

are made distinct by an identifying attribute, the

object ID.

• Like the other models, the object model assumes that

objects can conceptually be collected together into

meaningful groups. These groups are called classes.

• An object grouping is meaningful because objects of

the same class must have common attributes,

behaviours, and relationships with other objects.

• Unlike entity sets and relations, classes do not actually

hold the objects of that class.

– Classes are purely conceptual.

– There is nothing in the object model that is

equivalent to either a entity set or a relation (there

could be but its not required by the model).

• Like the network model, the relationships among

objects are specified via a physical link (pointer)

between objects.

• According to Rumbaugh et al. (1991), The object model

describes the structure of objects in a system their

identity, their relationships to other objects, their

attributes, and their operations.

Electronic Design Automation

167

• The DARPA Open OODB project proposes the following

as the essential features of the OO data model:

– Object identity: The ability of the system to

distinguish between two different objects that have

the same state. The state of an object can be

shared by several objects via object identity.

– Encapsulation: a kind of abstraction that enforces

a clean separation between the external interface

(behaviour) of an object and its internal

implementation. Encapsulation requires that all

access (or interaction) with objects be done by

invoking the services provided by their external

interface.

– Complex state: The ability to define data types

whose implementation has a nested structure. The

state of an object could be built from records of

primitive types, other objects, or [collections] of

objects.

– Type extensibility: The ability to define new data

types from previously defined types by enhancing

or changing the structure or behaviour of the

types. Type inheritance is a mechanism used to

define new types by enhancing already existing

behaviour.

– Genericity: The types of the object data model with

which the object query language collaborates must

be generic. That is, as a new type is added to the

system, it must be queriable.

• There is no universally agreed upon object data model

but The Object-Oriented Database System Manifesto

Electronic Design Automation

168

(Atkinson, et al. 1989) gives a framework being

considered from which to derive a standard.

• According to Rao, The object-oriented database

(OODB) paradigm is the combination of object-oriented

programming language (OOPL) systems and persistent

systems.

The power of the OODB comes from the seamless

treatment of both persistent data, as found in

databases, and transient data, as found in executing

programmes.

– Note that the emphasis with OODB, like the

network model, is towards programmers, not end

users.

– This point is further emphasized by the primary

interface to OODBs being OOPLs.

• I suggest for a good introduction to object-oriented

design and analysis.

Inheritance (isa) Relationships and Typing
• Many object-oriented models take classes to be a

typing mechanism (for example, Eiffel and C++.

• The type of an object is its class; an object is an

instance of its class.

– For example, the number 2.3 is an instance of the

class of rational numbers.

• Interpreting classes to be types implies the inherent

ability of users to create their own data domains.

• Inheritance can be viewed from two perspectives:

– Incremental: the process of adding attributes and

functions to an existing class (the base class).

Electronic Design Automation

169

– New attributes/functions can added to the New

class that were not in the base class.

– This is a technique for code reuse.

– No typing information is implied by this

relationship.

– For example, suppose that there is a class

PERSISTENT that has the functionality of

automatically storing its objects in a database. Any

class that inherits PERSISTENT magically gains

the ability to do likewise.

– Subtyping: a technique for arranging class

definitions in a hierarchy satisfying the

condition that members of the subclass are also

members of the superclass.

– Subtyping constitutes the isa relationship.

– Old attributes/functions can change type so long

as the new type is more specific (it inherited

either directly or indirectly) than the original base

class.

– Old attributes/functions cannot be removed.

– Old functions can be provided with new

implementations so long as the interface to the

function remains unchanged (or is changed via

specialization as indicated above)

• Various object models span the gambit of inheritance

relationships:

– Full repeated multiple inheritance.

– Single inheritance.

– No inheritance.

Electronic Design Automation

170

Encapsulation
• Objects encapsulate their attributes and the

behaviours.

This implies:

– There is no interaction with an object that does

Not go through a publicly published interface

– Objects manipulate their own state; the definition

of class includes the object’s behaviour manifested

as functions and procedures.

– An objects state cannot be manipulated by

anything external to them (at least, not without

permission).

• For example, in a non object-oriented language such

as C, let’s say a programmer writes a procedure to

change the values of a structure holding the position

of a graphics primitive.

– In an object-oriented language, the programmer

creates a graphics primitive class that has its

positional information along with an internal

procedure that changes its own position.

– The programmer sends a message to the object

requesting it to change its own position.

• The advantage of encapsulation is that the

implementation of any behaviour can be changed

without effecting any other class in the system. This

helps de-couple the classes and reduces the

complexity of the system.

Comparison to the Relational Model
The object model differs from the relational model in (at

least) the following ways:

Electronic Design Automation

171

• The object model allows complex objects to be attribute

domains; this is prohibited in the relational model.

• The only complex type available in the relational model

is the relation.

a. The object model restricts all system entities to be

objects which is a more general concept than a

relation (relations can be objects but not all objects

are relations).

• The relational model allows no duplicate tuples and,

consequently, entities are identified by their attribute

values.

a. The object model assumes the existence of an

object ID which uniquely identifies its object and

is, possibly, invisible to the user.

• Objects are instances of classes and classes constitute

the typing system of the model.

a. There is no concept of class-level typing in the

relational model; everything is a relation.

b. The relational model supports user-defined

domains but this is applied at the attribute level

whereas, with the object model, the class is also

a type.

c. The equivalent in the relational world would be

for relations to constitute types, as well.

• There is no generally accepted formal object model.

a. The relational model is well-defined, sound, and

complete.

– Relations hold all tuples. There is no equivalent

for objects; there is no set or anything else that

contains all the objects of a class.

Electronic Design Automation

172

– There are many higher-order, non-programming

query languages for the relational model. There

are few equivalents for the object model.

– The object model is aimed more at programmers

than at end users; the reverse is true of the

relational model.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Introduction to Electronic Design Automation
	Chapter 2 Compiler
	Chapter 3 Scanning Electron Microscopy
	Chapter 4 Data Analysis and Design
	Chapter 5 Combinational Logic Design
	Chapter 6 Conceptual Model

