

DIGITAL ARCHITECTURE
ENGINEERING

DIGITAL ARCHITECTURE
ENGINEERING

Donald Scott

Digital Architecture Engineering

by Donald Scott

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984663979

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Computer Architecture 1

Chapter 2 Internet Architecture 27

Chapter 3 Process of Software Engineering 47

Chapter 4 Computer Arithmetic Techniques 71

Chapter 5 Designing Software 125

Chapter 6 Systems Architecture Engineering 176

1

Computer Architecture

To understand digital signal processing systems, we must

understand a little about how computers compute. The

modern definition of a computer is an electronic device that

performs calculations on data, presenting the results to

humans or other computers in a variety of (hopefully useful)

ways.

�������������	
�������������������������
��

The generic computer contains input devices (keyboard,

mouse, A/D (analog-to-digital) converter, etc.), a

computational unit, and output devices (monitors, printers,

Digital Architecture Engineering

2

D/A converters). The computational unit is the computer’s

heart, and usually consists of a central processing unit (CPU),

a memory, and an input/output (I/O) interface. What I/O

devices might be present on a given computer vary greatly.

A simple computer operates fundamentally in discrete time:

Computers are clocked devices, in which computational steps

occur periodically according to ticks of a clock. This

description belies clock speed: When you say “I have a 1

GHz computer,” you mean that your computer takes 1

nanosecond to perform each step. That is incredibly fast! A

“step” does not, unfortunately, necessarily mean a

computation like an addition; computers break such

computations down into several stages, which means that

the clock speed need not express the computational speed.

Computational speed is expressed in units of millions of

instructions/second (Mips). Your 1 GHz computer (clock

speed) may have a computational speed of 200 Mips.

Computers perform integer (discrete-valued) computations:

Computer calculations can be numeric (obeying the laws of

arithmetic), logical (obeying the laws of an algebra), or

symbolic (obeying any law you like). Each computer

instruction that performs an elementary numeric calculation

— an addition, a multiplication, or a division — does so only

for integers. The sum or product of two integers is also an

integer, but the quotient of two integers is likely to not be an

integer. How does a computer deal with numbers that have

digits to the right of the decimal point? This problem is

addressed by using the so-called floating-point representation

of real numbers. At its heart, however, this representation

relies on integer-valued computations.

Digital Architecture Engineering

3

Representing Numbers
Focusing on numbers, all numbers can represented by

the positional notation system. 2 The b-ary positional

representation system uses the position of digits ranging from

0 to b-1 to denote a number. The quantity b is known as the

base of the number system. Mathematically, positional

systems represent the positive integer n as

{ }

()

� �

�
�

� �

� �� ����� ������� � � ������ �

� � �

!

∞

=

∀ ∈< > − < >

= �

{ }

()

� �

�
�

�
�

� �� ����� ������� � � � ����� �

" � �

!

−

=−∞

∀ ∈< > − < >

= �

and we succinctly express n in base-b as nb=dNdN”1…d0. The

number 25 in base 10 equals 2 × 101 + 5 × 100, so that

thedigits representing this number are d0=5, d1=2, and all

other dk equal zero. This same number in binary (base 2)

equals 11001 (1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20) and 19

in hexadecimal (base 16). Fractions between zero and one

are represented the same way.

All numbers can be represented by their sign, integer and

fractional parts. Complex numbers can be thought of as two

real numbers that obey special rules to manipulate them.

Humans use base 10, commonly assumed to be due to us

having ten fingers. Digital computers use the base 2 or binary

number representation, each digit of which is known as a bit

(binary digit).

Digital Architecture Engineering

4

�����#$��%���
&����&�'����&�����(����&��������������������)��&��������#$�
'�����
"�*���&�"
���$��+,�
���������-����&&��	
��
����&�
"�"�
������.
���

'����&�%����&�

Here, each bit is represented as a voltage that is either “high”

or “low,” thereby representing “1” or “0,” respectively. To

represent signed values, we tack on a special bit—the sign

bit—to express the sign. The computer’s memory consists of

an ordered sequence of bytes, a collection of eight bits. A byte

can therefore represent an unsigned number ranging from 0

to255. If we take one of the bits and make it the sign bit, we

can make the same byte to represent numbers ranging from

“128to 127. But a computer cannot represent all possible real

numbers. The fault is not with the binary number system;

rather having only a finite number of bytes is the problem.

While a gigabyte of memory may seem to be a lot, it takes an

infinite number of bits to represent ð. Since we want to store

many numbers in a computer’s memory, we are restricted to

those that have a finitebinary representation.

Large integers can be represented by an ordered sequence

of bytes. Common lengths, usually expressed in terms of the

number of bits, are 16, 32, and 64. Thus, an unsigned 32-

bit number can represent integers ranging between 0

and232"1 (4,294,967,295), a number almost big enough to

enumerate every human in the world.

Digital Architecture Engineering

5

Computer Arithmetic and Logic
The binary addition and multiplication tables are:

(

0 + 0 = 0

0 + 1= 1

1 + 1 = 10

1 + 0 = 1

0 × 0 = 0

0 × 1 = 0

1 × 1 = 1

1 × 0 = 0

)

Note that if carries are ignored, subtraction of two single-

digit binary numbers yields the same bit as addition. Computers

use high and low voltage values to express a bit, and an array

of such voltages express numbers akin to positional notation.

Logic circuits perform arithmetic operations.

Buses and Architecture

Bus
A set of parallel conductors, which allow devices attached

to it to communicate with the CPU.

Digital Architecture Engineering

6

The bus consists of three main parts:

• Control lines

• Address lines

• Data lines

Control Lines
These allow the CPU to control which operations the devices

attached should perform, I.E. read or write.

Address Lines
Allows the CPU to reference certain (Memory) locations

within the device.

Data Lines
The meaningful data which is to be sent or retrieved from

a device is placed on to these lines.

 The Bus is set to run at a specified speed which is

measured in MHz.

Types of Buses

Expansion Bus

Digital Architecture Engineering

7

Expansion buses (sometimes called peripheral buses) are

buses that have connectors that allow you to add expansion

cards (peripherals) to a computer.

There are different types of standard internal buses that

are characterized by:

• Their shape

• The number of connector pins

• The type of signals (frequency, data, etc.)

ISA Bus
The original version of the ISA bus (Industry Standard

Architecture) that appeared in 1981 with PC XT was an 8-bit

bus with a clock speed of 4.77 MHz. In 1984, with the

appearance of PC AT (the Intel 286 processor), the bit was

expanded into a 16-bit bus and the clock speed went from 6

to 8 MHz and finally to 8.33 MHz, offering a maximum

transfer rate of 16 Mb/s (in practice only 8 Mb/s because

one cycle out of every two was used for addressing).

The ISA bus permitted bus mastering, i.e. it enabled

controllers connected directly to the bus to communicate

directly with the other peripherals without going through

the processor. One of the consequences of bus

mastering is direct memory access (DMA). However, the ISA

bus only allows hardware to address the first 16 megabytes

of RAM.

Up until the end of the 1990s, almost all PC computers

were equipped with the ISA bus, but it was progressively

replaced by the PCI bus, which offered a better performance.

�����/0����)12�	
�����
�

Digital Architecture Engineering

8

�����30����)12�	
�����
�

MCA Bus
The MCA bus (Micro Channel Architecture) is an improved

proprietary bus designed by IBM in 1987 to be used in their

PS/2 line of computer. This 16 to 32-bit bus was incompatible

with the ISA bus and could reach a throughput of 20 Mb/s.

EISA Bus
The EISA bus (Extended Industry Standard Architecture)

was developed in 1988 by a consortium of companies (AST,

Compaq, Epson, Hewlett-Packard, NEC, Olivetti, Tandy, Wyse

and Zenith) in order to compete with the MCA proprietary

bus that was launched by IBM the previous year. The EISA

bus used connectors that were the same size as the ISA

connector but with 4 rows of contacts instead of 2, for 32-bit

addressing. The EISA connectors were deeper and the

additional rows of contacts were placed below the rows of

ISA contacts. Thus, it was possible to plug an ISA expansion

board into an EISA connector. However, they did not plug as

deep into the connector (because of the bezels) and thus

only used the top rows (ISA) of contacts.

Local Bus
Traditional I/O buses, such as ISA, MCA our EISA buses,

are directly connected to the main bus and there are forced

to work at the same frequency. However, some I/O peripherals

need a very low bandwidth while other need higher

bandwidths. Therefore there are bottlenecks on the bus. In

Digital Architecture Engineering

9

order to solve this problem, the “local bus” architecture offers

to take advantage of the system bus, or front side bus (FSB),

by interfacing directly with it.

VLB Bus
In 1992, the VESA local bus (VLB) was developed by

the VESA (Video Electronics Standard Associationunder the

aegis of the company NEC) in order to offer a local bus

dedicated to graphics systems. The VLB is a 16-bit ISA

connector with an added 16-bit connector:

The VLB bus is a 32-bit bus initially intended to work a

bandwidth of 33 MHz (the bandwidth of the first PC 486s at

that time). The VESA local bus was used on the following 486

models (40 and 50 MHz, respectively) as well as on the very

first Pentium processors, but it was quickly replaced by the PCI

bus.

Registers

Registers are fast memory, almost always connected to

circuitry that allows various arithmetic, logical, control, and

other manipulations, as well as possibly setting internal flags.

Most early computers had only one data register that could

be used for arithmetic and logic instructions. Often there

would be additional special purpose registers set aside either

for temporary fast internal storage or assigned to logic circuits

to implement certain instructions. Some early computers had

one or two address registers that pointed to a memory location

for memory accesses (a pair of address registers typically would

Digital Architecture Engineering

10

act as source and destination pointers for memory operations).

Computers soon had multiple data registers, address registers,

and sometimes other special purpose registers. Some

computers have general purpose registers that can be used

for both data and address operations. Every digital computer

using a von Neumann architecture has a register (called the

program counter) that points to the next executable

instruction. Many computers have additional control registers

for implementing various control capabilities. Often some or

all of the internal flags are combined into a flag or status

register.

Accumulators
Accumulators are registers that can be used for arithmetic,

logical, shift, rotate, or other similar operations. The first

computers typically only had one accumulator. Many times

there were related special purpose registers that contained

the source data for an accumulator. Accumulators were

replaced with data registers and general purpose registers.

Accumulators reappeared in the first microprocessors.

• Intel 8086/80286: One word (16 bit) accumulator;

named AX (high order byte of the AX register is named

AH and low order byte of the AX register is named AL)

• Intel 80386: One double word (32 bit) accumulator;

named EAX (low order word uses the same names as

the accumulator on the Intel 8086 and 80286 [AX]

and low order and high order bytes of the low order

words of four of the registers use the same names as

the accumulator on the Intel 8086 and 80286 [AH and

AL])

Digital Architecture Engineering

11

• Mix: One accumulator; named A-register; five bytes

plus sign

Data registers
Data registers are used for temporary scratch storage of

data, as well as for data manipulations (arithmetic, logic,

etc.). In some processors, all data registers act in the same

manner, while in other processors different operations are

performed are specific registers.

• Mix: One extension register; named X-register; five

bytes plus sign; can be concatenated on the right hand

side of the A-register (accumulator)

• Motorola 680 × 0, 68300: 8 long word (32 bit) data

registers; named D0, D1, D2, D3, D4, D5, D6, and

D7

Address registers
Address registers store the addresses of specific memory

locations. Often many integer and logic operations can be

performed on address registers directly (to allow for

computation of addresses).

Sometimes the contents of address register(s) are combined

with other special purpose registers to compute the actual

physical address. This allows for the hardware

implementation of dynamic memory pages, virtual memory,

and protected memory.

The number of bits of an address register (possibly

combined with information from other registers) limits the

maximum amount of addressable memory. A 16-bit address

register can address 64K of physical memory. A 24-bit

Digital Architecture Engineering

12

address register can address address 16 MB of physical

memory. A 32-bit address register can address 4 GB of

physical memory. A 64-bit address register can address

1.8446744 x 1019 of physical memory. Addresses are always

unsigned binary numbers.

• Mix: One jump registers; named J-register; two bytes

and sign is always positive

• Motorola 680 × 0, 68300: 8 long word (32 bit) address

registers; named A0, A1, A2, A3, A4, A5, A6, and A7

(also called the stack pointer)

General purpose registers
General purpose registers can be used as either data or

address registers.

• DEC Vax: 16 word (32 bit) general purpose registers;

named R0 through R15

• IBM 360/370: 16 full word (32 bit) general purpose

registers; named 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (or 10),

B (or 11), C (or 12), D (or 13), E (or 14), and F (or 15)

• Intel 8086/80286: 8 word (16 bit) general purpose

registers; named AX, BX, CX, DX, BP, SP, SI, and DI

(high order bytes of the AX, BX, CX, and DX registers

have the names AH, BH, CH, and DH and low order

bytes of the AX, BX, CX, and DX registers have the

names AL, BL, CL, and DL)

• Intel 80386: 8 double word (32 bit) general purpose

registers; named EAX, EBX, ECX, EDX, EBP, ESP, ESI,

and EDI (low order words use the same names as the

general purpose registers on the Intel 8086 and 80286

and low order and high order bytes of the low order words

Digital Architecture Engineering

13

of four of the registers use the same names as the general

purpose registers on the Intel 8086 and 80286)

• Motorola 88100: 32 word (32 bit) general purpose

registers; named r0 through r31

Constant registers
Constant registers are special read-only registers that store

a constant. Attempts to write to a constant register are illegal

or ignored. In some RISC processors, constant registers are

used to store commonly used values (such as zero, one, or

negative one) — for example, a constant register containing

zero can be used in register to register data moves, providing

the equivalent of a clear instruction without adding one to

the instruction set. Constant registers are also often used in

floating point units to provide such value as pi or e with

additional hidden bits for greater accuracy in computations.

• Motorola 88100: r0 (general purpose register 0)

contains the constant 32 bit integer zero

Floating point registers
Floating point registers are special registers set aside for

floating point math.

Index registers
Index registers are used to provide more flexibility in

addressing modes, allowing the programmer to create a

memory address by combining the contents of an address

register with the contents of an index register (with

displacements, increments, decrements, and other options).

In some processors, there are specific index registers (or just

one index register) that can only be used only for that purpose.

Digital Architecture Engineering

14

In some processors, any data register, address register, or

general register (or some combination of the three) can be

used as an index register.

• IBM 360/370: Any of the 16 general purpose registers

may be used as an index register

• Intel 80 × 86: 7 of the 8 general purpose registers may

be used as an index register (the ESP is the exception)

• Mix: Five index registers; named I-registers I1, I2, I3,

I4, and I5; five bytes plus sign

• Motorola 680 × 0, 68300: Any of the 8 data registers

or the 8 address registers may be used as an index

register

Base registers
Base registers or segment registers are used to segment

memory. Effective addresses are computed by adding the

contents of the base or segment register to the rest of the

effective address computation. In some processors, any

register can serve as a base register. In some processors,

there are specific base or segment registers (one or more)

that can only be used for that purpose. In some processors

with multiple base or segment registers, each base or segment

register is used for different kinds of memory accesses (such

as a segment register for data accesses and a different

segment register for program accesses).

• IBM 360/370: Any of the 16 general purpose registers

may be used as a base register

• Intel 80 × 86: 6 dedicated segment registers: CS (code

segment), SS (stack segment), DS (data segment), ES

(extra segment, a second data segment register), FS

Digital Architecture Engineering

15

(third data segment register), and GS (fourth data

segment register)

• Motorola 680 × 0, 68300: Any of the 8 address registers

may be used as a base register

Control registers
Control registers control some aspect of processor

operation. The most universal control register is the program

counter.

Program counter
Almost every digital computer ever made uses a program

counter. The program counter points to the memory location

that stores the next executable instruction. Branching is

implemented by making changes to the program counter.

Some processor designs allow software to directly change

the program counter, but usually software only indirectly

changes the program counter (for example, a JUMP

instruction will insert the operand into the program counter).

An assembler has a location counter, which is an internal

pointer to the address (first byte) of the next location in storage

(for instructions, data areas, constants, etc.) while the source

code is being converted into object code.

The VAX uses the 16th of 16 general purpose registers as

the program counter (PC). Almost the entire instruction set

can directly manipulate the program counter, allowing a very

rich set of possible kinds of branching.

The program counter in System/360 and 370 machines is

contained in bits 40-63 of the program status word (PSW),

which is directly accessible by some instructions.

Digital Architecture Engineering

16

• IBM 360/370: Program counter is bits 40-63 of the

program status word (PSW)

• Intel 8086/80286: 16-bit instruction pointer (IP)

• Intel 80386: 32-bit instruction pointer (EIP)

• Motorola 680 × 0, 68300: 32-bit program counter (PC)

Processor flags
Processor flags store information about specific processor

functions. The processor flags are usually kept in a flag

register or a general status register.

This can include result flags that record the results of

certain kinds of testing, information about data that is moved,

certain kinds of information about the results of compations

or transformations, and information about some processor

states.

Closely related and often stored in the same processor word

or status register (although often in a privileged portion)

are control flags that control processor actions or processor

states or the actions of certain instructions.

• IBM 360/370: Program status word (PSW)

• Intel 8086/80286: 16-bit flag register (FLAGS); system

flags, control flag, and status flags)

• Intel 80386: 32-bit flag register (EFLAGS); system

flags, control flag, and status flags)

• Mix: An overflow toggle and a comparison indicator

• Motorola 680 × 0, 68300: 16-bit status register (SR);

high byte is system byte and requires privileged access,

low byte is user byte or condition code register (CCR)

A few typical result flags (with processors that include them):

• Auxilary carry Set if a carry out of the most significant

Digital Architecture Engineering

17

bit of a BCD operand occurs (binary coded decimal

addition). Also commonly set if a borrow occurs in a

BCD subtract. Used in Intel 80x86 [AF].

• Carry Set if a carry out of the most significant bit of

an operand occurs (addition). Also commonly set if a

borrow occurs in a subtract. Used in Digital VAX [C],

Intel 80x86 [CF], Motorola 680x0 [C], Motorola 68300

[C], Motorola M68HC16 [C].

• Comparison indicator contains one of three values:

less, equal, or greater. Used in MIX.

• Extend Set to the value of the carry bit for arithmetic

operations (used to support implementation of multi-

byte arithmetic larger than that implemented directly

by the hardware. Used in Motorola 680x0 [X], Motorola

68300 [X].

• Half carry Set if a carry out of bit 3 of an operand

occurs during BCD addition. Used in Motorola

M68HC16.

• Negative Set if the most significant bit of a result is

set. Used in Digital VAX [N], Motorola 680x0 [N],

Motorola 68300 [N], Motorola M68HC16 [N].

• Overflow Set if arithmetic overflow occurs. Used in

Digital VAX [V], Intel 80x86 [OF], Motorola 680x0 [V],

Motorola 68300 [V], Motorola M68HC16 [V].

• Overflow toggle a single bit that is either on or off. Used

in MIX.

• Parity For odd parity machines, set to make an odd

number of one bits; for an even parity machine, set to

make an even number of one bits. Used in Intel 80x86

[PF]. The IBM 360/370 has odd parity on memory.

Digital Architecture Engineering

18

• Sign Set for negative sign. Used in Intel 80x86 [SF].

• Trap Set for traps. Used in Intel 80x86 [TF].

• Zero Set if a result equals zero. Used in Digital VAX

[Z], Intel 80x86 [ZF], Motorola 680x0 [Z], Motorola

68300 [Z], Motorola M68HC16 [Z].

Some conditions are determined by combining multiple

flags. For example, if a processor has a negative flag and a

zero flag, the equivalent of a positive flag is the case of both

the negative and zero flags both simultaneously being cleared.

A few typical control flags (with processors that include

them):

• Decimal overflow trap enable Set if decimal overflow

occurs (or conversion error on a VAX). Used in Digital

VAX [DV].

• Direction flag Determines the direction of string

operations (set for autoincrement, cleared for

autodecrement). Used in Intel 80x86 [DF].

• Floating underflow trap enable Set if floating underflow

occurs. Used in Digital VAX [FU].

• Integer overflow trap enable Set if integer overflow

occurs (or conversion error on a VAX). Used in Digital

VAX [IV].

• Interupt enable Set if interrupts enabled. Used in Intel

80x86 [IF].

• i/o privilege level Used to control access to I/O

instructions and hardware (thereby seperating control

over I/O from other supervisor/user states). Two bits.

Used in Intel 80x86 [IO PL].

• Nested task flag Used in Intel 80x86 [NF].

• Resume flag Used in Intel 80x86 [RF].

Digital Architecture Engineering

19

• Virtual 8086 mode Used to switch to virtual 8086

emulation. Used in Intel 80x86 [VM].

Stack pointer
Stack pointers are used to implement a processor stack

in memory. In many processors, address registers can be

used as generic data stack pointers and queue pointers. A

specific stack pointer or address register may be hardwired

for certain instructions. The most common use is to store

return addresses, processor state information, and temporary

variables for subroutines.

• IBM 360/370: any of the 16 general purpose registers

may be used as a stack pointer

• Intel 8086/80286: dedicated stack pointer (SP)

combined with stack segment pointer (SS) to create

address of stack

• Intel 80386: dedicated stack pointer (ESP) combined

with stack segment pointer (SS) and the stack-frame

base pointer (EBP) to create address of stack

• Motorola 680x0, 68300: dedicated user stack pointer

(USP, A7) and system stack pointer (SSP, A7) for implicit

stack pointer operations, as well as allowing any of the

8 address registers to be as explicit stack pointers.

ARCHITECTURE AND STRUCTURE

The importance of having standardised networking

protocols have led to the evolution of several networking

reference models. The Open System Interconnection (OSI)

and the TCP/IP models will be looked at. These models allow

us to more easily study the structure of networks.

Digital Architecture Engineering

20

OSI Reference Model
The OSI model is based on a proposal by the International

Standards Organisation. The OSI reference model has a

layered architecture, whereby each layer encapsulates a

function of the overall complex task. The proposed model

has 7 layers. The key idea is that although data is transmitted

vertically, each layer is programmed horizontally. Each layer

ignores the complications of the lower layers and assumes

that the information it passes out is immediately seen by

destination host. At each layer, appropriate headers are

appended onto the data when sending, and are removed as

the data is decoded. Since the headers from the lower levels

are removed before the next higher level looks at the data,

the concept of horizontal coding is preserved.

�������� ���� ��	
���� �	���� ��� �
� ���������� ����
���
��������������
���������������������������

�������� �������������	���������
�������������������������
����������

�������� �������������	���� ���
����������������������������
�������
������������
�� ������������
����������
���
������� �����
������ ��� ��
��������� !����
� ��� ��
�
��� ��� ���������
����� ����
�� ��� ��� ��� �����	
�	������������ ���������� �
�

������ � ���������
������ �������� ���� ��������� ���������� ��� ���

Digital Architecture Engineering

21

�������� ����� �� �����
�� �������
�� �������� �

�����������������������������	����
��������������
���"�#�
�����

������$� ���� ���
����� �	���� %�� �������� ����� ����
�

���
�	����
�
����������
����������
����������������

��
��� ������������ �	���� �� �
� �
�� ��� ��������� ��
�����
������������������������
���������	������������������
&���������
� ���

� ������������� ��� �
����
������
�������� ����� ���
� �	���� ������ ��� ������
�
� ��
�������� ����� ��� ����������� �������� �
�� ���
���
��
��������
�����
� ������������� �
���
������ ����� ���
����������������������������	�����

������'� ����
�

���� �	��� ���������
� �
��� ��� ����
� ���
�
����
����� ��� ����������� ���
����
� �������
��
�
��(������
���������������������������������)����
������������#*��������������������������������
���������������

������+� ���� ���
�������� �	���� ��� ��� �������
� ������
��������
� ��,��
����
����������	� ������ ������� ��
������ �������� � �������
�������� ���� ������ �����
���� �������� ���� �
���
����� ������ �� ����

�������� ���������� �
����� ��� �	��
� ����� -(& �
.�������� �������� �����
��������� ���/
� ��� ���/

����������
� ����� ���
� ����
� ��������
� ����
������������������
�������
���������������

������0� ���������������	�������
����������������
�����
�������� ���������� ���������
�� 1��� �#������ ����

��
��������
���� ���������� �
���� ����
� ��� ���������� �������
�

Digital Architecture Engineering

22

(������	������1�2��%���������
	
���
��������������
����� ������ ����������
�� ���������� �	
� ��
�����
������� ��#��� ���� ���������
� �	��� ���
� ���
������
�������������
�

The TCP/IP model was born out of the U.S. Department of

Defence ARPANET. It consist of 4 layers and is named after

the two protocols used.

3 ��������	
�������	���	���������������&24 2����������
����
���� �
�

���� ��� ���
�������� �	���� 5�� ����� ���� ����
����� ����������� 6����� ���� ���������� �	��� ����
�����
����
� ��� �	��
� '"0� ��� ���� 7(� ������� �� ������

���������������
�
����
�1�2���8958���6��2�����

3 ������ ��� ���� ����
���� ������ �����
���
� ��� ���� ������ �� 	�� ���
������������������
������	����
���
������������������
�������
���� ����
�����������
����������
�
� ����
����
��
������
�����������������������������
�����������������
���
��

���� &������� 2��������)�&2*� �
� � �������
����������� ��������� ��������� ���� ����
� � �	���
����
��
��� �	�������������� ��� ���� ��������� ����������

��

��� ���������� ����� ��
������ ��

��
� ������� �����
���
�������� -�� ���� ��
��������� �&2� ��

�����
� ���
��������� ��

��
� ����� ���� �������
������ ����
�����
����������.
���%�����2��������).%2*� �
� �� ���������
������������

����������� ���
��
����������������
�������
���� ���� �&2/
�
�,�������� ��� ����� �������� ��� ��
�� ��
��������������������� ���
������	��
�����������
�����������

�������	�����,��
�"����	�,�����
�������������
���������
��������������	��
���������������������������������	�
�����
���������������
����
�

Digital Architecture Engineering

23

3 ������ �� 	
� ���� ��������� ������� ���� ��,��������� ���� ���
��������
������
�������� ��

����
�������������� ������
���� ������� ��� � ������
��������� �������� �
��� ���
������������

� �	���� ���� :��� ��� ���� �������� �	��� �
� ��
������� ��
�
� ��� ��:���� �����
� ����� ���� �������� ������
�����������������������	����������
������������� �������
�	���������
����������������������������������� �������
2��������) 2*�����������	�:���������
���������������������
�������������������
������ �� �
����	�
������ ��� ����7(
���������	���

3 �����	����������	
�������
����������� �������������&24 2������
���
�����
	��������������������
��������#�������������
��������������
���
����������������������������
����
���
���������
��������
���� 2������
����������������

Hardware Components
Here we will examine the different hardware that makes up

a network. The most basic hardware that makes up a network

is the transmission medium. The oldest and most common

transmission medium is twisted pair wires. It consists of two

insulated copper wires, typically about 1mm thick. The purpose

of twisting is to reduce electrical interference.

The bandwidth depends on the thickness of the wires and

distance travelled, but several megabytes/sec can be achieved

for a few kilometres. Twisted pair cabling comes in several

varieties, one of which is the Unshielded Twisted Pair (UTP)

category 5 cabling. Category 5 UTP wires have more twists per

centimetre than other twisted pair cabling, and has Teflon

insulation. This results in less cross talk and a better quality

signal over longer distances.

Digital Architecture Engineering

24

Coaxial cables are another popular form of transmission

medium. It has better shielding than UTP so it can span for

longer distances and at higher speeds. A coax cable is made

up of a copper core, covered by a layer of insulating material,

a braided outer conductor and finally a protective plastic

covering. For 1 kilometre cables, bandwidths of 1 to 2 Gbps

are feasible.

Fibre optic cables have a glass core centre, from which

light propagates. It is next enclosed by a cladding of glass

with a lower index of refraction than the core. This keeps the

light within the core. A plastic jacket is the last layer and is

to protect the cladding. Fibres are typically grouped into

bundles, protected by another outer sheath.

The achievable bandwidth (about 1 Gbps) of fibre is current

restricted by the ability to convert between electrical to optical

signals. Speeds of 100Gbps are feasible and terabit

performance is just a few years down the road. Fibre has

many advantages over copper. It can handle higher

bandwidths, due to lower attenuation, it only requires

repeaters every 30 km as opposed to 5 km for copper. Fibre

is also not affected by power surges, electromagnetic

interference or power failures. Fibre does not leak light and

thus is difficult to tap into. Fibre is light weight and its lower

installation cost makes it a good choice over copper.

A repeater operates at the physical layer. It regenerates a

signal received on one cable segment and retransmits it on

another cable segment. A repeater can be used to extend the

coverage of a network, and also to connect networks.

Although a network can be extended with a repeater, a

network is still constrained by the maximum permissible

Digital Architecture Engineering

25

length of that LAN. Since a repeater functions at the physical

layer, it is transparent to data flow and hence is limited to

connecting two similar networks. Repeaters also cause

problems with traffic.

If two networks are connected via a repeater, all messages

from one network is passed to the other network, regardless

of the intended recipient. If implemented without knowledge

concerning the traffic flow on each LAN, performance

problems will arise.

Bridges are more intelligent than repeaters. A bridge

connects at the data link layer, where it can examine each

frame that passes through it.

The bridge looks at the destination address of the incoming

frame; if the destination is for the network across the bridge,

it translates the frame, and retransmits it on the other

network. If the frame is for a destination from the source

network, the bridge repeats back the frame. There are

typically two types of bridges. Transparent bridge and

translating bridge. A transparent bridge connects two

networks that employ the same protocol at the data link layer,

whereas a translating bridge provides a connection capability

between two networks that have differing protocols at the

data link layer.

Routers operate one level higher, at the network layer. By

operating at the network layer, routers are able to make

Digital Architecture Engineering

26

decisions about how packets are routed between networks.

Although multiported bridges can be said to have routing

capabilities, this is usually for one point to point link within

a network. A router has the ability to fragment and

dynamically re-route the message across networks, making

use of the most efficient paths. Routers are known to

workstations that use their service, hence packets can be

sent directly to routers. This means that routers do not have

to examine in detail every packet it receives, and this makes

them more efficient. However, the higher functionality of

routers over bridges means that on average, routers perform

a half to two thirds more processing over bridges.

Gateways function through all layers. Essentially, gateways

perform protocol translation between networks. Gateways

are generally designed and used for LAN-WAN connections

and not for inter LAN communications.

The idea of intelligent hubs came about because running

cables all over the building made it hard to configure and

repair networks. Instead, collapse the LAN topology and put

it in a box; terminate all devices in the network at the box

using separate wires for each device. This centralised location

makes it more convenient for network configuration,

management and monitoring. Intelligent hubs are a level

above normal hubs and wiring cabinets. Intelligent hubs are

becoming key network management points as functionality

such as bridges, routers and servers are built into them.

Some intelligent hubs provide remote management

capabilities that makes it easier to diagnose problems at

distant locations and isolate faults from the rest of the

network.

Digital Architecture Engineering

27

2

Internet Architecture

Introduction

What is the Internet architecture? It is by definition a meta-

network, a constantly changing collection of thousands of

individual networks intercommunicating with a common

protocol.

The Internet’s architecture is described in its name, a short

from of the compound word “inter-networking”. This

architecture is based in the very specification of the standard

TCP/IP protocol, designed to connect any two networks which

may be very different in internal hardware, software, and

technical design. Once two networks are interconnected,

communication with TCP/IP is enabled end-to-end, so that

any node on the Internet has the near magical ability to

communicate with any other no matter where they are. This

openness of design has enabled the Internet architecture to

Digital Architecture Engineering

28

grow to a global scale. In practice, the Internet technical

architecture looks a bit like a multi-dimensional river system,

with small tributaries feeding medium-sized streams feeding

large rivers. For example, an individual’s access to the

Internet is often from home over a modem to a local Internet

service provider who connects to a regional network

connected to a national network. At the office, a desktop

computer might be connected to a local area network with a

company connection to a corporate Intranet connected to

several national Internet service providers.

In general, small local Internet service providers connect

to medium-sized regional networks which connect to large

national networks, which then connect to very large

bandwidth networks on the Internet backbone. Most Internet

service providers have several redundant network cross-

connections to other providers in order to ensure continuous

availability.

The companies running the Internet backbone operate

very high bandwidth networks relied on by governments,

corporations, large organizations, and other Internet service

providers. Their technical infrastructure often includes

global connections through underwater cables and satellite

links to enable communication between countries and

continents.

As always, a larger scale introduces new phenomena: the

number of packets flowing through the switches on the

backbone is so large that it exhibits the kind of complex

non-linear patterns usually found in natural, analog systems

like the flow of water or development of the rings of Saturn

(RFC 3439, S2.2).

Digital Architecture Engineering

29

Each communication packet goes up the hierarchy of

Internet networks as far as necessary to get to its destination

network where local routing takes over to deliver it to the

addressee.

In the same way, each level in the hierarchy pays the next

level for the bandwidth they use, and then the large backbone

companies settle up with each other. Bandwidth is priced by

large Internet service providers by several methods, such as

at a fixed rate for constant availability of a certain number of

megabits per second, or by a variety of use methods that

amount to a cost per gigabyte. Due to economies of scale

and efficiencies in management, bandwidth cost drops

dramatically at the higher levels of the architecture.

Definition of Internet

The Internet is a global network of computers. Every

computer that is connected to the Internet is considered a

part of that network. This means even your home computer.

It’s all a matter of degrees, you connect to your ISP’s network,

then your ISP connects to a larger network and so on. At the

top of the tree is the high-capacity backbones, all of these

interconnect at ‘Network Access Points’ ‘NAPs’ at important

regions around the world. The entire Internet is based on

Digital Architecture Engineering

30

agreements between these backbone providers who set in

place all the fibre optics lines and other technical aspects of

the Internet. The first high speed backbone was created by

the ‘National Science Foundation’ in 1987.

The Internet was first created by the Advanced Research

Projects Agency (ARPA) of the U.S. government in 1960’s,

and was first known as the ARPANet. At this stage the

Internet’s first computers were at academic and government

institutions. They were mainly used for accessing files and

to send email. From 1983 onwards the Internet as we know

it today started to form with the introduction of the

communication protocol TCP/IP to ARPANet.

Since 1983 the Internet has accommodated alot of changes

and continues to keep developing. The last two decades has

seen the Internet accommodate such things as network LANs

and ATM and frame switched services. The Internet continues

to evolve with it becoming available on mobile phones and

pagers and possibly on televisions in the future. The actual

term “Internet” was finally defined in 1995 by FNC (The

Federal Networking Council). The resolution created by the

The Federal Networking Council (FNC) agrees that the

following language reflects our definition of the term

“Internet”. “Internet” refers to the global information system

that,

The Evolution of the Internet
The underpinnings of the Internet are formed by the global

interconnection of hundreds of thousands of otherwise

independent computers, communications entities and

information systems. What makes this interconnection

possible is the use of a set of communication standards,

Digital Architecture Engineering

31

procedures and formats in common among the networks

and the various devices and computational facilities

connected to them. The procedures by which computers

communicate with each other are called “protocols.” While

this infrastructure is steadily evolving to include new

capabilities, the protocols initially used by the Internet

are called the “TCP/IP” protocols, named after the two

protocols that formed the principal basis for Internet

operation.

On top of this infrastructure is an emerging set of

architectural concepts and data structures for heterogeneous

information systems that renders the Internet a truly global

information system.

In essence, the Internet is an architecture, although many

people confuse it with its implementation. When the Internet

is looked at as an architecture, it manifests two different

abstractions. One abstraction deals with communications

connectivity, packet delivery and a variety of end-end

communication services. The other abstraction deals with

the Internet as an information system, independent of its

underlying communications infrastructure, which allows

creation, storage and access to a wide range of information

resources, including digital objects and related services at

various levels of abstraction.

Interconnecting computers is an inherently digital problem.

Computers process and exchange digital information,

meaning that they use a discrete mathematical “binary” or

“two-valued” language of 1s and 0s. For communication

purposes, such information is mapped into continuous

electrical or optical waveforms.

Digital Architecture Engineering

32

The use of digital signaling allows accurate regeneration

and reliable recovery of the underlying bits. We use the terms

“computer,” “computer resources” and “computation” to

mean not only traditional computers, but also devices that

can be controlled digitally over a network, information

resources such as mobile programs and other computational

capabilities.

The telephone network started out with operators who

manually connected telephones to each other through “patch

panels” that accepted patch cords from each telephone line

and electrically connected them to one another through the

panel, which operated, in effect, like a switch. The result

was called circuit switching, since at its conclusion, an

electrical circuit was made between the calling telephone

and the called telephone. Conventional circuit switching,

which was developed to handle telephone calls, is

inappropriate for connecting computers because it makes

limited use of the telecommunication facilities and takes too

long to set up connections. Although reliable enough for voice

communication, the circuit-switched voice network had

difficulty delivering digital information without errors.

For digital communications, packet switching is a better

choice, because it is far better suited to the typically “burst”

communication style of computers. Computers that

communicate typically send out brief but intense bursts of

data, then remain silent for a while before sending out the

next burst. These bursts are communicated as packets,

which are very much like electronic postcards.

The postcards, in reality packets, are relayed from

computer to computer until they reach their destination. The

Digital Architecture Engineering

33

special computers that perform this forwarding function are

called variously “packet switches” or “routers” and form the

equivalent of many bucket brigades spanning continents and

oceans, moving buckets of electronic postcards from one

computer to another. Together these routers and the

communication links between them form the underpinnings

of the Internet.

Without packet switching, the Internet would not exist, as

we now know it. Going back to the postcard analogy,

postcards can get lost. They can be delivered out of order,

and they can be delayed by varying amounts. The same is

true of Internet packets, which, on the Internet, can even be

duplicated. The Internet Protocol is the postcard layer of the

Internet. The next higher layer of protocol, TCP, takes care

of re-sending the “postcards” to recover packets that might

have been lost, and putting packets back in order if they

have become disordered in transit.

Of course, packet switching is about a billion times faster

than the postal service or a bucket brigade would be. It also

has to operate over many different communications systems,

or substrata. The authors designed the basic architecture to

be so simple and undemanding that it could work with most

communication services. Many organizations, including

commercial ones, carried out research using the TCP/IP

protocols in the 1970s. Email was steadily used over the

nascent Internet during that time and to the present. It was

not until 1994 that the general public began to be aware of

the Internet by way of the World Wide Web application,

particularly after Netscape Communications was formed and

released its browser and associated server software.

Digital Architecture Engineering

34

Thus, the evolution of the Internet was based on two

technologies and a research dream. The technologies were

packet switching and computer technology, which, in turn,

drew upon the underlying technologies of digital

communications and semiconductors. The research dream

was to share information and computational resources. But

that is simply the technical side of the story. Equally

important in many ways were the other dimensions that

enabled the Internet to come into existence and flourish.

This aspect of the story starts with cooperation and far-

sightedness in the U.S. Government, which is often derided

for lack of foresight but is a real hero in this story.

It leads on to the enthusiasm of private sector interests to

build upon the government funded developments to expand

the Internet and make it available to the general public.

Perhaps most important, it is fueled by the development of

the personal computer industry and significant changes in

the telecommunications industry in the 1980s, not the least

of which was the decision to open the long distance market

to competition.

The role of workstations, the Unix operating system and

local area networking (especially the Ethernet) are themes

contributing to the spread of Internet technology in the 1980s

into the research and academic community from which the

Internet industry eventually emerged.

Many individuals have been involved in the development

and evolution of the Internet covering a span of almost four

decades if one goes back to the early writings on the subject

of computer networking by Kleinrock, Licklider, Baran,

Roberts, and Davies. The ARPANET, described below, was

Digital Architecture Engineering

35

the first wide-area computer network. The NSFNET, which

followed more than a decade later under the leadership of

Erich Bloch, Gordon Bell, Bill Wulf and Steve Wolff, brought

computer networking into the mainstream of the research

and education communities. It is not our intent here to

attempt to attribute credit to all those whose contributions

were central to this story, although we mention a few of the

key players

Computer Network Hierarchy

Every computer that is connected to the Internet is part of

a network, even the one in your home. For example, you

may use a modem and dial a local number to connect to an

Internet Service Provider (ISP). At work, you may be part of a

local area network (LAN), but you most likely still connect to

the Internet using an ISP that your company has contracted

with. When you connect to your ISP, you become part of

their network. The ISP may then connect to a larger network

and become part of their network. The Internet is simply a

network of networks.

Most large communications companies have their own

dedicated backbones connecting various regions. In each

region, the company has a Point of Presence (POP). The POP

is a place for local users to access the company’s network,

often through a local phone number or dedicated line. The

amazing thing here is that there is no overall controlling

network. Instead, there are several high-level networks

connecting to each other through Network Access Points or

NAPs.

Digital Architecture Engineering

36

Internet Network Example
Here’s an example. Imagine that Company A is a large ISP.

In each major city, Company A has a POP. The POP in each

city is a rack full of modems that the ISP’s customers dial

into. Company A leases fibre optic lines from the phone

company to connect the POPs together.

Imagine that Company B is a corporate ISP. Company B

builds large buildings in major cities and corporations locate

their Internet server machines in these buildings. Company

B is such a large company that it runs its own fibre optic

lines between its buildings so that they are all interconnected.

In this arrangement, all of Company A’s customers can

talk to each other, and all of Company B’s customers can

talk to each other, but there is no way for Company A’s

customers and Company B’s customers to intercommunicate.

Therefore, Company A and Company B both agree to connect

to NAPs in various cities, and traffic between the two

companies flows between the networks at the NAPs.

In the real Internet, dozens of large Internet providers

interconnect at NAPs in various cities, and trillions of bytes

of data flow between the individual networks at these points.

The Internet is a collection of huge corporate networks that

agree to all intercommunicate with each other at the NAPs.

In this way, every computer on the Internet connects to every

other.

The Function of an Internet Router

All of these networks rely on NAPs, backbones and routers

to talk to each other. What is incredible about this process is

that a message can leave one computer and travel halfway

Digital Architecture Engineering

37

across the world through several different networks and arrive

at another computer in a fraction of a second!

The routers determine where to send information from

one computer to another.

Routers are specialized computers that send your messages

and those of every other Internet user speeding to their

destinations along thousands of pathways. A router has two

separate, but related, jobs:

• It ensures that information doesn’t go where it’s not

needed. This is crucial for keeping large volumes of

data from clogging the connections of “innocent

bystanders.”

• It makes sure that information does make it to the

intended destination.

In performing these two jobs, a router is extremely useful

in dealing with two separate computer networks. It joins the

two networks, passing information from one to the other. It

also protects the networks from one another, preventing the

traffic on one from unnecessarily spilling over to the other.

Regardless of how many networks are attached, the basic

operation and function of the router remains the same. Since

the Internet is one huge network made up of tens of

thousands of smaller networks, its use of routers is an

absolute necessity.

Internet Backbone
The National Science Foundation (NSF) created the first

high-speed backbone in 1987. Called NSFNET, it was a T1

line that connected 170 smaller networks together and

operated at 1.544 Mbps (million bits per second). IBM, MCI

Digital Architecture Engineering

38

and Merit worked with NSF to create the backbone and

developed a T3 (45 Mbps) backbone the following year.

Backbones are typically fibre optic trunk lines. The trunk

line has multiple fibre optic cables combined together to

increase the capacity. Fibre optic cables are designated OC

for optical carrier, such as OC-3, OC-12 or OC-48. An OC-3

line is capable of transmitting 155 Mbps while an OC-48

can transmit 2,488 Mbps (2.488 Gbps). Compare that to a

typical 56K modem transmitting 56,000 bps and you see

just how fast a modern backbone is.

Today there are many companies that operate their own

high-capacity backbones, and all of them interconnect at

various NAPs around the world. In this way, everyone on the

Internet, no matter where they are and what company they

use, is able to talk to everyone else on the planet. The entire

Internet is a gigantic, sprawling agreement between

companies to intercommunicate freely.

Internet Protocol IP Addresses

Every machine on the Internet has a unique identifying

number, called an IP Address. The IP stands for Internet

Protocol, which is the language that computers use to

communicate over the Internet. A protocol is the pre-defined

way that someone who wants to use a service talks with that

service. The “someone” could be a person, but more often it

is a computer program like a Web browser.

A typical IP address looks like this:

To make it easier for us humans to remember, IP addresses

are normally expressed in decimal format as a dotted decimal

number like the one above. But computers communicate in

Digital Architecture Engineering

39

binary form. Look at the same IP address in binary:

The four numbers in an IP address are called octets,

because they each have eight positions when viewed in binary

form. If you add all the positions together, you get 32, which

is why IP addresses are considered 32-bit numbers. Since

each of the eight positions can have two different states (1 or

zero), the total number of possible combinations per octet is

28 or 256. So each octet can contain any value between zero

and 255. Combine the four octets and you get 232 or a possible

4,294,967,296 unique values!

Out of the almost 4.3 billion possible combinations, certain

values are restricted from use as typical IP addresses. For

example, the IP address 0.0.0.0 is reserved for the default

network and the address 255.255.255.255 is used for

broadcasts.

The octets serve a purpose other than simply separating

the numbers. They are used to create classes of IP addresses

that can be assigned to a particular business, government

or other entity based on size and need. The octets are split

into two sections: Net and Host. The Net section always

contains the first octet. It is used to identify the network

that a computer belongs to. Host (sometimes referred to as

Node) identifies the actual computer on the network. The

Host section always contains the last octet. There are five IP

classes plus certain special addresses.

Domain Name System
When the Internet was in its infancy, it consisted of a small

number of computers hooked together with modems and

telephone lines. You could only make connections by

providing the IP address of the computer you wanted to

Digital Architecture Engineering

40

establish a link with. For example, a typical IP address might

be 216.27.22.162. This was fine when there were only a few

hosts out there, but it became unwieldy as more and more

systems came online.

The first solution to the problem was a simple text file

maintained by the Network Information Centre that mapped

names to IP addresses. Soon this text file became so large it

was too cumbersome to manage. In 1983, the University of

Wisconsin created the Domain Name System (DNS), which

maps text names to IP addresses automatically.

URL: Uniform Resource Locator
When you use the Web or send an e-mail message, you

use a domain name to do it. For example, the Uniform

Resource Locator (URL) “http://www.yahoo.com” contains

the domain name howstuffworks.com. So does this e-mail

address: example@yahoo.com. Every time you use a domain

name, you use the Internet’s DNS servers to translate the

human-readable domain name into the machine-readable

IP address. Top-level domain names, also called first-level

domain names, include.COM.ORG.NET.EDU and.GOV.

Within every top-level domain there is a huge list of second-

level domains.

Every name in the.COM top-level domain must be unique.

The left-most word, like www, is the host name. It specifies

the name of a specific machine (with a specific IP address) in

a domain. A given domain can, potentially, contain millions

of host names as long as they are all unique within that

domain.

DNS servers accept requests from programs and other

name servers to convert domain names into IP addresses.

Digital Architecture Engineering

41

When a request comes in, the DNS server can do one of four

things with it:

• It can answer the request with an IP address because

it already knows the IP address for the requested

domain.

• It can contact another DNS server and try to find the

IP address for the name requested. It may have to do

this multiple times.

• It can say, “I don’t know the IP address for the domain

you requested, but here’s the IP address for a DNS

server that knows more than I do.”

• It can return an error message because the requested

domain name is invalid or does not exist.

A DNS Example
Let’s say that you type the URL www.yahoo.com into your

browser. The browser contacts a DNS server to get the IP

address. A DNS server would start its search for an IP address

by contacting one of the root DNS servers. The root servers

know the IP addresses for all of the DNS servers that handle

the top-level domains (.COM.NET.ORG, etc.). Your DNS server

would ask the root for www.howstuffworks.com, and the root

would say, “I don’t know the IP address for

www.howstuffworks.com, but here’s the IP address for

the.COM DNS server.” Your name server then sends a query

to the.COM DNS server asking it if it knows the IP address

for www.howstuffworks.com. The DNS server for the COM

domain knows the IP addresses for the name servers handling

the www.yahoo.com domain, so it returns those.

Digital Architecture Engineering

42

Your name server then contacts the DNS server for

www.yahoo.com and asks if it knows the IP address for

www.yahoo.com. It actually does, so it returns the IP address

to your DNS server, which returns it to the browser, which

can then contact the server for www.yahoo.com to get a Web

page.

One of the keys to making this work is redundancy. There

are multiple DNS servers at every level, so that if one fails,

there are others to handle the requests. The other key is

caching. Once a DNS server resolves a request, it caches the

IP address it receives.

Once it has made a request to a root DNS server for

any.COM domain, it knows the IP address for a DNS server

handling the.COM domain, so it doesn’t have to bug the root

DNS servers again for that information. DNS servers can do

this for every request, and this caching helps to keep things

from bogging down.

Even though it is totally invisible, DNS servers handle

billions of requests every day and they are essential to the

Internet’s smooth functioning. The fact that this distributed

database works so well and so invisibly day in and day out is

a testimony to the design.

Internet Servers and Clients

Internet servers make the Internet possible. All of the

machines on the Internet are either servers or clients. The

machines that provide services to other machines are servers.

And the machines that are used to connect to those services

are clients. There are Web servers, e-mail servers, FTP servers

Digital Architecture Engineering

43

and so on serving the needs of Internet users all over the

world.

When you connect to www.yahoo.com to read a page, you

are a user sitting at a client’s machine. You are accessing

the yahoo Web server. The server machine finds the page

you requested and sends it to you. Clients that come to a

server machine do so with a specific intent, so clients direct

their requests to a specific software server running on the

server machine. For example, if you are running a Web

browser on your machine, it will want to talk to the Web

server on the server machine, not the e-mail server.

A server has a static IP address that does not change very

often. A home machine that is dialing up through a modem,

on the other hand, typically has an IP address assigned by

the ISP every time you dial in. That IP address is unique for

your session — it may be different the next time you dial in.

This way, an ISP only needs one IP address for each modem

it supports, rather than one for each customer.

Ports and HTTP
Any server machine makes its services available using

numbered ports — one for each service that is available on

the server. For example, if a server machine is running a

Web server and a file transfer protocol (FTP) server, the Web

server would typically be available on port 80, and the FTP

server would be available on port 21. Clients connect to a

service at a specific IP address and on a specific port number.

Once a client has connected to a service on a particular

port, it accesses the service using a specific protocol. Protocols

are often text and simply describe how the client and server

Digital Architecture Engineering

44

will have their conversation. Every Web server on the Internet

conforms to the hypertext transfer protocol (HTTP). Networks,

routers, NAPs, ISPs, DNS and powerful servers all make the

Internet possible. It is truly amazing when you realise that

all this information is sent around the world in a matter of

milliseconds! The components are extremely important in

modern life— without them, there would be no Internet. And

without the Internet, life would be very different indeed for

many of us.

Internet and World Wide Web

The Internet and the World Wide Web have a whole-to-

part relationship. The Internet is the large container, and

the Web is a part within the container. It is common in daily

conversation to abbreviate them as the “Net” and the “Web”,

and then swap the words interchangeably. But to be

technically precise, the Net is the restaurant, and the Web is

the most popular dish on the menu.

Here is the detailed explanation:

The Internet is a Big Collection of Computers and Cables.

The Internet is named for “interconnection of computer

networks”. It is a massive hardware combination of millions

of personal, business, and governmental computers, all

connected like roads and highways. The Internet started in

the 1960’s under the original name “ARPAnet”. ARPAnet was

originally an experiment in how the US military could

maintain communications in case of a possible nuclear strike.

With time, ARPAnet became a civilian experiment, connecting

university mainframe computers for academic purposes.

Digital Architecture Engineering

45

As personal computers became more mainstream in the

1980’s and 1990’s, the Internet grew exponentially as more

users plugged their computers into the massive network.

Today, the Internet has grown into a public spiderweb of

millions of personal, government, and commercial computers,

all connected by cables and by wireless signals.

No single person owns the Internet. No single government

has authority over its operations. Some technical rules and

hardware/software standards enforce how people plug into

the Internet, but for the most part, the Internet is a free and

open broadcast medium of hardware networking.

The Web Is a Big Collection of HTML Pages on the
Internet

The World Wide Web, or “Web” for short, is that large

software subset of the Internet dedicated to broadcasting

HTML pages. The Web is viewed by using free software called

web browsers. Born in 1989, the Web is based on hypertext

transfer protocol, the language which allows you and me to

“jump” (hyperlink) to any other public web page. There are

over 40 billion public web pages on the Web today.

The Internet is a worldwide network of computers that

use common communication standards and interfaces to

Digital Architecture Engineering

46

provide the physical backbone for a number of interesting

applications.

One of the most utilized of these Internet applications is

the World Wide Web. What sets the Web apart is an easy-to-

use interface to a complex network of computers and data.

Digital Architecture Engineering

47

3

Process of Software Engineering

Process

Software engineering process and practices are the

structures imposed on development of a software product.

There are different models of software process (software

lifecycle is a synonym) used in different organizations and

industries.

RAL has identified three levels of software process for its

projects. These levels balance the different needs of different

types of projects.

Scaling the process to the project is vital to its success,

too much process can be as problematic as too little; too

much process can slow down a purely R&D exploration,

too little process can slow down a large development project

with hard deliverables. The levels are briefly identified as

follows:

Digital Architecture Engineering

48

Level 1: R&D

3 5��
��������������
�������������������
����
3 ;������
������������

Level 2: Research system

3 9������������������������������
�����������
�

3 ;�������
������������

Level 3: Delivered system

3 9����
������������������������������
�����������
�

3 ;����������
������������

For example, the Juneau, Alaska Winds Project has evolved

from a Level 1 to a Level 3 project over multiple years. It

started as a purely R&D effort (Level 1), expanded to a field

programme in Juneau (Level 2), and is currently running in

the field as a Operational Prototype (Level 3).

The software process and software engineering practices

have become more formalized and more structured as the

project proceeded through the different levels. RAL has

evolved a set of software engineering best practices that

implement the three software process levels. These include:

source code control, nightly code builds, writing reusable

code, using different team models, commitment to deadlines,

design and code reviews, risk management, bug tracking,

software metrics, software configuration management,

requirements management.

Software configuration management (SCM) is a step up in

formality and reproducibility from source code control and

includes controlling and versioning of software releases.

Source code control is a software engineering best practice

used with RAL Level 2 and Level 3 projects. SCM is a best

practice used on a number of RAL Level 3 projects.

Digital Architecture Engineering

49

Description

Software Engineering Process

The elements of a software engineering process are generally

enumerated as:

3 ;��������!�,��������

3 (
���"9�����%�
���
3 %�������%�
���
3 ������������
3 ���������
3 1�������
����
3 (������

No element of this process ought to commence before the

earlier ones are substantially complete, and whenever a

change is made to some element, all dependent elements

ought to be reviewed or redone in light of that change. It’s

possible that a given module will be both specified and

implemented before its dependent modules are fully specified

— this is called advanced development or research.

It is absolutely essential that every element of the software

engineering process include several kinds of review: peer

review, mentor/management review, and cross-disciplinary

review. Software engineering elements (whether documents

or source code) must have version numbers and auditable

histories. “Checking in” a change to an element should

require some form of review, and the depth of the review

should correspond directly to the scope of the change.

Marketing Requirements
The first step of a software engineering process is to create

Digital Architecture Engineering

50

a document which describes the target customers and their

reason for needing this product, and then goes on to list

the features of the product which address these customer

needs. The Marketing Requirements Document (MRD) is

the battleground where the answer to the question “What

should we build, and who will use it?” is decided.

In many failed projects, the MRD was handed down like

an inscribed stone tablet from marketing to engineering, who

would then gripe endlessly about the laws of physics and

about how they couldn’t actually build that product since

they had no ready supply of Kryptonite or whatever. The

MRD is a joint effort, with engineering not only reviewing

but also writing a lot of the text.

System-Level Design
This is a high-level description of the product, in terms of

“modules” (or sometimes “programmes”) and of the

interaction between these modules. The goals of this

document are first, to gain more confidence that the product

could work and could be built, and second, to form a basis

for estimating the total amount of work it will take to build

it. The system-level design document should also outline the

system-level testing plan, in terms of customer needs and

whether they would be met by the system design being

proposed.

Detailed Design
The detailed design is where every module called out in

the system-level design document is described in detail. The

interface (command line formats, calling API, externally

visible data structures) of each module has to be completely

Digital Architecture Engineering

51

determined at this point, as well as dependencies between

modules. Two things that will evolve out of the detailed design

is a PERT or GANT chart showing what work has to be done

and in what order, and more accurate estimates of the time

it will take to complete each module.

Every module needs a unit test plan, which tells the

implementor what test cases or what kind of test cases they

need to generate in their unit testing in order to verify

functionality. Note that there are additional, nonfunctional

unit tests which will be discussed later.

Implementation
Every module described in the detailed design document

has to be implemented. This includes the small act of coding

or programming that is the heart and soul of the software

engineering process. It’s unfortunate that this small act is

sometimes the only part of software engineering that is taught

(or learned), since it is also the only part of software

engineering which can be effectively self-taught.

A module can be considered implemented when it has been

created, tested, and successfully used by some other module

(or by the system-level testing process). Creating a module

is the old edit-compile-repeat cycle. Module testing includes

the unit level functional and regression tests called out by

the detailed design, and also performance/stress testing, and

code coverage analysis.

Integration
When all modules are nominally complete, system-level

integration can be done. This is where all of the modules

move into a single source pool and are compiled and linked

Digital Architecture Engineering

52

and packaged as a system. Integration can be done

incrementally, in parallel with the implementation of the

various modules, but it cannot authoritatively approach

“doneness” until all modules are substantially complete.

Integration includes the development of a system-level test.

If the built package has to be able to install itself (which

could mean just unpacking a tarball or copying files from a

CD-ROM) then there should be an automated way of doing

this, either on dedicated crash and burn systems or in

containerized/simulated environments. Sometimes, in the

middleware arena, the package is just a built source pool, in

which case no installation tools will exist and system testing

will be done on the as-built pool. Once the system has been

installed (if it is installable), the automated system-level

testing process should be able to invoke every public

command and call every public entry point, with every

possible reasonable combination of arguments.

If the system is capable of creating some kind of database,

then the automated system-level testing should create one

and then use external (separately written) tools to verify the

database’s integrity. It’s possible that the unit tests will serve

some of these needs, and all unit tests should be run in

sequence during the integration, build, and packaging

process.

Field Testing
Field testing usually begins internally. That means

employees of the organization that produced the software

package will run it on their own computers. This should

ultimately include all “production level” systems — desktops,

laptops, and servers.

Digital Architecture Engineering

53

The statement you want to be able to make at the time

you ask customers to run a new software system (or a new

version of an existing software system) is “we run it ourselves.”

The software developers should be available for direct

technical support during internal field testing. Ultimately it

will be necessary to run the software externally, meaning on

customers’ (or prospective customers’) computers. It’s best

to pick “friendly” customers for this exercise since it’s likely

that they will find a lot of defects — even some trivial and

obvious ones — simply because their usage patterns and

habits are likely to be different from those of your internal

users.

The software developers should be close to the front of the

escalation path during external field testing. Defects

encountered during field testing need to be triaged by senior

developers and technical marketers, to determine which ones

can be fixed in the documentation, which ones need to be

fixed before the current version is released, and which ones

can be fixed in the next release (or never).

Support
Software defects encountered either during field testing or

after the software has been distributed should be recorded

in a tracking system. These defects should ultimately be

assigned to a software engineer who will propose a change

to either the definition and documentation of the system, or

the definition of a module, or to the implementation of a

module. These changes should include additions to the unit

and/or system-level tests, in the form of a regression test to

show the defect and therefore show that it has been fixed

(and to keep it from recurring later).

Digital Architecture Engineering

54

Just as the MRD was a joint venture between engineering

and marketing, so it is that support is a joint venture between

engineering and customer service. The battlegrounds in this

venture are the bug list, the categorization of particular bugs,

the maximum number of critical defects in a shippable

software release, and so on.

Software Quality Attribute

high quality software
Developing high quality software is hard, especially when

the interpretation of term “quality” is patchy based on the

environment in which it is used. In order to know if quality

has been achieved, or degraded, it has to be measured, but

determining what to measure and how is the difficult part.

Software Quality Attributes are the benchmarks that describe

system’s intended behaviour within the environment for

which it was built.

The quality attributes provide the means for measuring

the fitness and suitability of a product. Software architecture

has a profound affect on most qualities in one way or another,

and software quality attributes affect architecture. Identifying

desired system qualities before a system is built allows system

designer to mold a solution (starting with its architecture) to

match the desired needs of the system within the context of

constraints (available resources, interface with legacy

systems, etc). When a designer understands the desired

qualities before a system is built, then the likelihood of

selecting or creating the right architecture is improved.

Digital Architecture Engineering

55

Statements
Both statements are useless as they provide no tangible

way of measuring the behaviour of the system. The quality

attributes must be described in terms of scenarios, such as

“when 100 users initiate ‘complete payment’ transition, the

payment component, under normal circumstances, will

process the requests with an average latency of three

seconds.” This statement, or scenario, allows an architect to

make quantifiable arguments about a system.

A scenario defines the source of stimulus (users), the actual

stimulus (initiate transaction), the artifact affected (payment

component), the environment in which it exists (normal

operation), the effect of the action (transaction processed),

and the response measure (within three seconds). Writing

such detailed statements is only possible when relevant

requirements have been identified and an idea of components

has been proposed.

Qualities
Scenarios help describe the qualities of a system, but they

don’t describe how they will be achieved. Architectural tactics

describe how a given quality can be achieved. For each quality

there may be a large set of tactics available to an architect. It

is the architect’s job to select the right tactic in light of the

needs of the system and the environment. For example, a

performance tactics may include options to develop better

processing algorithms, develop a system for parallel processing,

or revise event scheduling policy. Whatever tactic is chosen,

it must be justified and documented.

Digital Architecture Engineering

56

Software Qualities
It would be naïve to claim that the list below is as a complete

taxonomy of all software qualities – but it’s a solid list of general

software qualities compiled from respectable sources. Domain

specific systems are likely to have an additional set of qualities

in addition to the list below. System qualities can be categorized

into four parts: runtime qualities, non-runtime qualities, business

qualities, and architecture qualities.

Each of the categories and its associated qualities are briefly

described below. Other articles on this site provide more

information about each of the software quality attributes

listed below, their applicable properties, and the conflicts

the qualities.

Software Characteristics

Software requirement
3 ;����
����<�����
�=>�(8��;���5�$�)
�'?*���@@@����A2�
3 <���������

����
�������)�������*�
3 (�������������)�������*�
3 (����
�����)�������*�� ;����
���� 8#���� �
� ����

�	� ��

����������	
�
�������

3 <�������
���)�������*�� ��������8#�������'����5��
����+

��������
3 -�����-������)�������*�

Hardware requirement
3 2&��������������������)2������� �������������*�
3 &%"!7;�%�����
3 (BC-����AC-�)�@�$�D�0+>*��������
�������������

Digital Architecture Engineering

57

3 1����	�������)�������������8����
����������
���*�
3 2������������)������������!(���*�

Minimum advised configuration
Software Processor RAM Disk space System (3)

memory (1)

Tropes basic 200 Mhz 64 (128) Mb 16 Mb Win 98,
2000,XP

Tropes 200 Mhz 128 (256) Mb 50 Mb Win 98,
Zoom (2) 2000, XP
Ethnos 200 Mhz 128 Mb 50 Mb Win 98,

2000, XP
Acetic Index 400 Mhz 128 (256) Mb 2 Gb Win NT4

(SP6), 2000, XP, dedicated
Hardware appliance

3 .����� <�����
� �@@@� ��� A2� ��� �
� ���
��� ��� ��
����
������������'+�;�����!-;������	�
������
	
��������

����������������������
�

3 '���;����������	�!-;������C�������
��
�������
������
���
��������������
���"��������	
�
�)������
�,����
���������	��
�
*�����������
�E����

3 1��������
��E������� ���#�� ����������
�������2%1� ����

����
����	�������<�����
��@@@����A2�

Maximum volumetry
��	
���� ���
�

�����
������
�	�������

�������	�
�����

��
������
�����

#�
��&�4

��1+� 56�7�� ���� �������� ����"���&�
#�
��&���&��� ����-�� �� ����������� 0�
#�
��&�4

�� ����-�� 8����������� 6��9:�9/5�39/� 6�����
+�$�
&� '�2� ;��������� '�2� '�2�
2������)���,� ����-�� ;��������� ;��������� ;���������

By “unlimited”, we understand that the theoretical

capacity of these software packages widely exceeds what it

is possible to handle on a current computer. Your computer

Digital Architecture Engineering

58

naturally has limited capacities. For Zoom, we indicate the

theoretical maximal capacity for a single documentary base.

Knowing that you can create an unlimited number of

documentary bases. By Database size, we mean the

theoretical maximal capacity in terms of pure text indexed

by the software. Knowing that it can require terabytes of

disc space.

Languages

��������� ������������
 !�	��������"�

������#����
��������
$��
����

�������
#����
 !�	��������"�

%��
���
&�����

$
'���(�
�
�
)*�����

+����&$� <�&� <�&� <�&� <�&� <�&�
=����$� <�&� <�&� <�&� <�&� <�&�
1����&$� ;��>��������

���=������ �!�
	
������&� <�&� <�&� <�&�

.
����&�� ;��>��������
���=������ �!�

	
������&� <�&� <�&� '
�

������� ;��>��������
���=������ �!�

��>��������
���=������ �!�

<�&� 6!� <�&� 6!� <�&�

)������� ;��>��������
���=������ �!�

��>��������
���=������ �!�

<�&� 6!� <�&� 6!� '
�

3 ���
�� ������
� ��� ���� ����������F��� ��� ���
�
���� ��
1�����������������������������������8�������������
�

3 9������ ��� ���� ����
�� ��� �����
������ ������� �����
���������
����������
�

Text Analysis

3 ;�������
�F�����
����������#�����

�����������)��G�*�
3 ;#�����
�F�� ���
��� ���� �
������ ��#��� '�@@@� ���
�)'@

;�*�
3 -��������	
�
�������������������@�@@@�����
4
�����

)2������� �0���;6F*����>@�@@@�����
4
������)2������
 B� ���� C6F�� 6�*� ��� ����� <��� ���
�� ���� �
�����
�����

���

Digital Architecture Engineering

59

Semantic Search Engine

3 -����������������������������������	����
�
3 -�������� ����������� ����������)�
��� ��� � ����������

���
����*�
3 ;

���������	
�
���� �������������������	�)��#�"

������*�
3 (����������������������������������
�)����
���������

�������������
*�
3 ;#�����������
������#�����
�
������������
3 -������ ����#���� ������������ �������C�4�����)2������

 �0���;�F*� ���$�C�4�����)2������� B�����C6F��6�*���
�����<������
�������
�����������

���

Optional modules of Market
Research and advanced statistics

3 H����
��������
����	
���� ��������)8����
45���(����	*
3 7������&�������!��������������,��
��������
�)8����
4

7;!�;����*
3 2�������������)8����
42����;����*
3 ;�������������������,�����
�)8����
4&����I�*
3 %���������������)%����	
�
��(��/;��*
3 ;�����������
������
����	
����2%-�)8����
4&-2 *

Other features

3 1���������
������������	�����������
����
������
�)�����
�
E���� ��� ���#*�� -����� -������� -(& �� -5(�� 6�;9�
;��������1�
���;����
����8#�����;����
����2����������
;����
���� <����� ;����
���� <���;9�)<���� A;9*�� !�1�
A;9��(C;9����;�����
����#�

Digital Architecture Engineering

60

3 -�������� �#�������� ��� ;����
���� 7������� ��

��
� ��
���#������������	�)E����(�������(�����8�����*

3 -�������� �#��������� ��� ���� ��
���
� �����
� �����

�������)E����(�������(�����8�����*

3 ���#������������������������)-������ ���#*
3 <�����-����������2���������� ��������)-������ ���#*
3 !��������A;9�����������������)-������ ���#*
3 %�
��������� ����� �������� ��� ���"�������� �������

)&7!H-��-������ ���#*
3 !�������������������� ��������6�;9�����������)������

�
*
3 (���� ������
�)���� �#������ ���	� ����� ��#�� ;�����*� �	

��,����� ���� �
�� ��� �� ���������
���
���
�
�������� ��� ��
�������
���������4����!%H;(

Software Measurement

and Metrics

The measurement information model is a structure

linking information needs to the relevant entities and attri-

butes of concern. Entities include processes, products,

projects, and resources. The measurement information

model describes how the relevant attributes are quantified

and converted to indicators that provide a basis for decision-

making.

The selection or definition of appropriate measures to

address an information need begins with a measurable

concept: an idea of which measurable attributes are related

to an information need and how they are related. The

measurement planner defines measurement constructs that

Digital Architecture Engineering

61

link these attributes to a specifiedinformation need. Each

construct may involve several types or levels of measures.

This measurement information model (see Figure) identifies

the basic terms and concepts with which the measurement

analyst must deal. The measurement modelhelps to

determine what the measurement planner needs to specify

during measurement planning, performance, and evaluation.

Entity
An entity is an object (for example, a process, product,

project, or resource) that is to be characterized by measuring

its attributes. Typical software engineering objects can be

classified as products (e.g., design document, source code,

and test case), processes (e.g., design process, testing process,

requirements analysis process), projects, and resources (e.g.,

the programmers and the testers). An entity may have one

or more properties that are of interest to meet the information

needs. In practice, an entity can be classified into more than

one of the above categories.

Measurable attribute
An attribute is a property or characteristic of an entity that

can be distinguished quantitatively or qualitatively by human

or automated means. An entity may have many attributes,

only some of which may be of interest for measurement. The

first step in defining a specific instantiation of

the measurement information model is to select

the attributes that are most relevant to the measurement

user’s information needs. A given attribute may be

incorporated in multiple measurement constructs supporting

different information needs.

Digital Architecture Engineering

62

Base measure
A base measure is an attribute and the method for

quantifying it. A base measure is functionally independent

of other measures. A base measure captures information

about a single attribute. Data collection involves assigning

values to base measures. Specifying the expected range and/

or type of values of a base measure helps to verify the quality

of the data collected.

Measurement Method
A measurement method is a logical sequence of operations,

described generically, used in quantifying an attribute with

respect to a specified scale. The operations may involve

activities such as counting occurrences or observing the

passage of time. The same measurement method may be

applied to multiple attributes.

However, each unique combination of an attribute and a

method produces a different base measure. Some measure-

ment methods may be implemented in multiple ways.

A measurement procedure describes the specific implemen-

tation of a measurement method within a given organizatio-

nal context.

Type of Measurement Method
The type of measurement method depends on the nature

of the operations used to quantify an attribute. Two types of

method may be distinguished:

�� �!"#���	$���J���������������������������:�������
�� �"#���	$���J�������������
�������������������
�
����

�������������
������
��	���� ����������������������
�����������
�

Digital Architecture Engineering

63

Scale
A scale is an ordered set of values, continuous or discrete,

or a set of categories to which the attribute is mapped.

The measurement method maps the magnitude of the

measured attribute to a value on a scale. A unit of

measurement often is associated with a scale.

Type of Scale
The type of scale depends on the nature of the relationship

between values on the scale.

Four types of scales are commonly defined:

��� %��	����� ���� ��
�������� ����
� ��� ����������� 1��
�#������������

������������������
��	��������	���

��� ���	����� ���� ��
�������� ����
� ��� ������
�� 1��
�#����������

�����������������
�����
������	�������

�� �����$���� ���� ��
�������� ����
� ���� �,��� ��
����

�����
�������� ��� �,��� ,�������
� ��� ��������	"!���� 1��
�#������ �	�������� ������#��	� �
� ���� �������� ����
�������������������������������
���
����������������

$� &��	�'� ���� ��
�������� ����
� ���� �,��� ��
����

�����
�������� ��� �,��� ,�������
� ��� ���� �����	"!��� �����
������������ F���� �����
����
� ����������� �������	"!���� 1��
�#����������
�F������
������������������������
����97&�

The method of measurement usually affects the type

of scale that can be used reliably with a given attribute.

For example, subjective methods of measurement usually

only support ordinal or nominal scales.

Unit of Measurement
A unit of measurement is a particular quantity, defined and

adopted by convention, with which other quantities of the

Digital Architecture Engineering

64

same kind are compared in order to express their magnitude

relative to that quantity. Only quantities expressed in the

same units of measurement are directly comparable. Example

of units include the hour and the meter.

Derived measure
A derived measure is a measure that is defined as a

function of two or more base measures. Derived

measures capture information about more than oneattribute.

Simple transformations of base measures (for example,

taking the square root of a base measure) do not add

information, thus do not produce derived measures.

Normalization of data often involves converting base

measures into derived measures that can be used to compare

different entities.

Measurement Function
A measurement function is an algorithm or calculation

performed to combine two or more base measures. The scale

and unit of the derived measure depend on the scales and

units of the base measures from which it is composed as

well as how they are combined by the function.

Indicator
An indicator is an estimate or evaluation of

specified attributes derived from a model with respect to

defined information needs. Indicators are the basis for

analysis and decision-making. These are what should be

presented to measurement users.

Measurement is always based on imperfect information,

so quantifying the uncertainty, accuracy, or importance

Digital Architecture Engineering

65

of indicators is an essential component of presenting the

actual indicator value. Therefore, an interpretation of indicat-

ors is performed to provide the desired information product.

Measurement Model
A measurement model is an algorithm or calculation

combining one or more base and/or derived measures with

associated decision criteria. It is based on an understanding

of, or assumptions about, the expected relationship between

the component measures and/or their behaviour over time.

Models produce estimates or evaluations relevant to

defined information needs. The scale and measurement

method affect the choice of analysis techniques or models

used to produceindicators.

Decision Criteria
Decision criteria are numerical thresholds or targets used

to determine the need for action or further investigation, or

to describe the level of confidence in a given result. Decision

criteria help to interpret the results of measurement. Decision

criteria may be calculated or based on a conceptual

understanding of expected behaviour. Decision criteria may

be derived from historical data, plans, and heuristics, or

computed as statistical control limits or statistical confidence

limits.

Measurable concept
A measurable concept is an abstract relationship

between attributes of entities and information needs. For

example, an Information need may be the need to compare

the software development productivity of a project group

Digital Architecture Engineering

66

against a target rate. The Measurable Concept in this case

is “software development productivity rate”. To evaluate the

concept might require measuring the size of the software

products and the amount of resource applied to create the

products (depending on the chosen model of productivity).

Additional examples of Measurable Concepts include quality,

risk, performance, capability, maturity, and customer value.

Software Metrics

Effective management of any process requires

quantification, measurement, and modeling. Software metrics

provide a quantitative basis for the development and

validation of models of the software development process.

Metrics can be used to improve software productivity and

quality. This module introduces the most commonly used

software metrics and reviews their use in constructing models

Digital Architecture Engineering

67

of the software development process. Although current

metrics and models are certainly inadequate, a number of

organizations are achieving promising results through their

use. Results should improve further as we gain additional

experience with various metrics and oftware metrics are

numerical data related to software development. Metrics

strongly support software project management activities.

They relate to the four functions of management as follows:

�� (����	���� ;�����
�
�����
� � �
�
� ��� ��
�� �
��������
�������� ��������� ��
������ ���������
����������� ��
����������

�� �����)	����(�F�����
��������������
���������������:���/

�����F�����

�� *�������	����;�����
� ����
��� ���
���
� ��� �����
������
��������������������
���������������������
�

$� ����$	���� ;�����
� ��� �
���
� � ����� ���� �����

������������ ��� ��� �������	������� ������������ ������

��������������������������
��������������
���������

������������������
�

A metric quantifies a characteristic of a process or product.

Metrics can be directly observable quantities or can be derived

from one or more directly observable quantities. Examples

of raw metrics include the number of source lines of code,

number of documentation pages, number of staff-hours,

number of tests, number of requirements, etc. Examples of

derived metrics include source lines of code per staff-hour,

defects per thousand lines of code, or a cost performance

index.

The term indicator is used to denote a representation of

metric data that provides insight into an ongoing software

Digital Architecture Engineering

68

development project or process improvement activity.

Indicators are metrics in a form suitable for assessing project

behaviour or process improvement. For example, an indicator

may be the behaviour of a metric over time or the ratio of two

metrics.

Indicators may include the comparison of actual values

versus the plan, project stability metrics, or quality metrics.

Examples of indicators used on a project include actual

versus planned task completions, actual versus planned

staffing, number of trouble reports written and resolved over

time, and number of requirements changes over time.

Indicators are used in conjunction with one another to

provide a more complete picture of project or organization

behaviour. For example, a progress indicator is related to

requirements and size indicators. All three indicators should

be used and interpreted together.

Software Components

A computer system consists of three major components:

hardware, software, and humans (users, programmers,

administrators, operators, etc.). Software can be further

divided into seven layers. Firmware can be categorized as

part of hardware, part of software, or both.

The seven layers of software are (top to bottom): Programs;

System Utilities; Command Shell; System Services; User

Interface; Logical Level; and Hardware Level. A Graphics

Engine stradles the bottom three layers.

Strictly speaking, only the bottom two levels are the

operating system, although even technical persons will often

refer to any level other than programs as part of the operating

Digital Architecture Engineering

69

system (and Microsoft tried to convince the Justice

Department that their web browser application is actually a

part of their operating system). Because this technical

analysis concentrates on servers, Internet Facilities are

specifically separated out from the layers.

Examples
 The following are examples of each category:

3 (������
�� 8#����
� ��� 2�����
� �������� 	���� ����
�����

����
����
������������
�������
����
���
�������
���
������

3 ��
����+�	�	�	�
�� 8#����
� ��� (
���� .�������
� �������� ����
���	�� ���� ������ ������� ���
������ ����
�� 7�
����;�����
��� ��� ���� %�
�� -���

����
�)���������� ��	
��
�� ����*� ��� ��� ��� ���� &������� 2���
� ��� �#����
� ��
(
����.�������
�

3 *������� ������� ���� &������ (����� ��� ����;�����
���

����1����������
��������
������������	��������������
�������
������ 7��<�����
�� ���� &������ (����� �
�
�����	����������������������������1����;�����������
2�������� ;������ ���� ������� �����)&�K� ������*
���;("%7(���� H������ (����� ���.5 A���� �#����
� ��� ���
������
�	�����#�"�
����������
����
�

Digital Architecture Engineering

70

3 ��
���� ���$	��
�� 8#����
� ��� (
���� (������
� ��� �����"��
��� �
�� ,���	� ������
� ��� �������
� ��� ���
J���������������	����������;�����
��

3 +
��� ����������� .����� ����;�����
�������������-���G	/

)�������������������
����������������������
�����������
�
��:����������������������������
�����������
*�������
�������� ���
� ��� ����"��������� ��������
�� ��������

	
���
� ����/�� ��������
������� ���� �
��� ��������
�)�����
����
��������#�"�
���
����
*������;�����
���
�����������
�
�����������;�����
������H�#�����������
�����������
�
����
�� ����� ��#�
�� ������ ��#�
��
������ ��
�� ������
�
�������
�� ��� ������ �
��� ��������� �������
�
����� �	
���
�����������
�

3 ���	������$��� ��������	�����
���������9������9�������� ���
���������
	
���� �������
� ����� ������ ��������
��
����

��
������

3 ,����������$�����������	�����
���������6������9�������
���� ���������
	
���� �������
� ���� �
�� ��� ��	
����
	
���
��
�����
��
����
����������	�������������

�������
��
��������
������

3 -���	�
����	��������C�����
�8�������������
��������
��
��� ������ ��� ���� ����
�� �����
�� ����� ��	
����	� ��
��	���
�����
� ��� ���� �������� ��� ���������� ����� ������ ������

�������
�
����
�����
�����������
�����
�

Human users normally interact with the operating system

indirectly, through various programs (application and system)

and command shells (text, graphic, etc.), The operating

system provides programs with services thrrough system

programs and Application Programme Interfaces (APIs).

Digital Architecture Engineering

71

4

Computer Arithmetic Techniques

Algorithm

To make a computer do anything, you have to write a

computer programme. To write a computer programme, you

have to tell the computer, step by step, exactly what you

want it to do. The computer then “executes” the programme,

following each step mechanically, to accomplish the end goal.

When you are telling the computer what to do, you also

get to choose how it’s going to do it. That’s where computer

algorithms come in. The algorithm is the basic technique

used to get the job done. Let’s follow an example to help get

an understanding of the algorithm concept.

Let’s say that you have a friend arriving at the airport, and

your friend needs to get from the airport to your house. Here

are four different algorithms that you might give your friend

for getting to your home:

Digital Architecture Engineering

72

• The taxi algorithm:
� ��� ��� ���� �	
�� ��	��
� ���� ��	� �	
��
� ����� ��������������	�������

• The call-me algorithm:
� �����������	��	�������� �	������ ����������
� �����������������	��	��� ��	���

• The rent-a-car algorithm:
� �	��� ������������ ��� ���� ���	�� �	����	���
� ����	� �	��
� ����!� �������������� ������� ������������

• The bus algorithm:
� "��������	��	�����	���� �	��������������#$�
� ��	�%��� �������&'����	��(������
� ���� �%%� ��)����������
� �	��� �!�������������� ������������

All four of these algorithms accomplish exactly the same

goal, but each algorithm does it in completely different way.

Each algorithm also has a different cost and a different travel

time. Taking a taxi, for example, is probably the fastest way,

but also the most expensive. Taking the bus is definitely less

expensive, but a whole lot slower. You choose the algorithm

based on the circumstances. In computer programming, there

are often many different ways — algorithms — to accomplish

any given task. Each algorithm has advantages and

disadvantages in different situations. Sorting is one place

where a lot of research has been done, because computers

spend a lot of time sorting lists.

Addition and Subtraction

The table for binary addition is:
+ 0 1

Digital Architecture Engineering

73

0 0 1
1 1 10

thus, when two binary bits A and B are added, the bit of the

sum in the same place is A XOR B, and the carry is A AND B.

The exclusive OR function needs to be built from the

fundamental AND, OR, and NOT operations in most forms

of logic, and A XOR B is the same as (A OR B) AND (NOT (A

AND B)). Of course, A AND B has already been calculated,

since it is required as the carry.

Thus, a binary adder has the following logic diagram:

This involves just three gate delays: But addition requires

the propagation of carries, and thus the time required to

add two long numbers is proportional to their length in the

simplest type of adder. This can be speeded up by calculating

sums in advance with either input value of the carry, and

then selecting the right one, so that carries propagate at a

higher level over many bits at a time:

Here, a circuit that adds two binary 18-bit numbers is

shown. It is divided into three groups of six bits. Except for

the least significant group, each is added together in two

Digital Architecture Engineering

74

ways in parallel, one assuming no carry in, one assuming

that a carry in is present; the carry then selects the right

result without having to propagate through the six bits of

the next group.

If we take this kind of architecture to its ultimate

conclusion, the form of carry-select adder we obtain is also

known as the Sklansky adder, shown in a more schematic

form below:

Newer designs for addition units belonging to the parallel

prefix and flagged prefix classes have since been developed.

Parallel-prefix adders include the Brent-Kung adder, the

Kogge-Stone adder, and the Han-Carlson adder. Although

they do not improve on the speed of the Sklansky adder,

they address a limitation of real logic circuits which that

design ignores, the fact that logic gates have a limited fan-

out.

Binary Multiplication

Binary multiplication does not require much of a

multiplication table; all that is required is to make a decision

to add or not add a copy of one factor to the result, based on

whether the corresponding bit of the other factor is a one or

a zero.

Digital Architecture Engineering

75

One straightforward, although expensive in terms of the

number of gates required, way to speed up multiplication is

to perform all the multiplications of one factor by the

individual bits of the other in parallel, and then add the

results in pairs, and then the sums in pairs, so that the

number of addition stages required is proportional to the

logarithm to the base 2 of the length of the second factor.

If, at the beginning of a multiplication, one calculated three

times the multiplicand, then two bits of the multiplier at a

time, which can only have the values 00, 01, 10, or 11, could

each be used to create a partial product; this would trim

away the top layer of the addition tree, cutting the amount

of circuitry required almost in half. (It may be noted that the

NORC computer by IBM, an ambitious vacuum-tube

computer which used decimal arithmetic, calculated

multiples up to nine times the multiplicand in advance to

speed multiplication.)

While these basic concepts do play a part in performing

high-speed multiplication, they omit another factor which

has an even more dramatic effect on the speed of

multiplication, but which makes fast multiplication

somewhat more difficult to understand.

A special type of adder, called a carry-save adder, can be

used in multiplication circuits, so that carry propagation can

be avoided for all but the last addition in the additions

required to perform a multiplication. In order to use this

kind of adder, instead of adding numbers in pairs, speed can

be increased by adding numbers in groups of three. This is

because one can turn three numbers into two numbers,

having the same sum, without propagating carries through

Digital Architecture Engineering

76

the number. This is because a full adder, which takes two

bits and an incoming carry bit, and outputs a result bit and

a carry bit, can also be used as a 3-2 compressor, one type of

carry-save adder. The carry bits move to the left, but since

these bits are all shifted left independently, the delays of

carry propagation are not required.

The diagram below shows the difference between a

conventional addition circuit with carry propagation, shown

in the top half,

and the 3-2 compressor form of carry-save adder, shown in

the bottom half, and involving arguments the same number

of bits in length.

As the diagram attempts to illustrate, although carries do

not propagate in the sense of being added in to the previous

digit, they do still move one place to the left.

One can then add the two resulting numbers by means

of a conventional adder with accelerated carry propagation,

such as a carry-select adder as depicted above, or, because

carry propagation, even when accelerated, causes such a

Digital Architecture Engineering

77

large delay, one can simply use successive stages of 3-2

compression, performing conventional addition only at the

very last stage.

This technique was used to speed multiplication in the

IBM 7030 computer known as STRETCH.

Instead of simply using one carry-save adder over and over

to add one partial product after another, or to have a single

line of carry-save adders if it is desired to do successive steps

from different multiplications at once in a pipelined fashion,

if maximum speed is desired and the cost of hardware and

the number of transistors used is no object, one could, as

shown above, use several carry-save adders in parallel to

produce two results from three partial products, and then

repeat the process in successive layers until there are only

two numbers left to add in a fast carry-propagate adder. This

type of multiplication circuit is called a Wallace Tree adder,

after its inventor.

The diagram below:

illustrates how, with only two inputs left to go into a carry-

propagate adder at the end, successive layers of carry-save

Digital Architecture Engineering

78

adders increase the maximum number of possible partial

products that can be included to 3, then 4, and then 6, 9,

13, 19, 28, 42, and 63. The sequence continues: 94, 141,

211...

In the IBM System/360 Model 91, a Wallace Tree of limited

size was used, as it was necessary to be somewhat concerned

with the number of transistors to use:

Six partial products were handled by this unit, but only

twelve bits of these products were handled at a time. Thus,

it would add these six numbers together, sending the least

significant twelve bits of the final two results to a carry-

propagate adder, while the more significant bits were sent

back to be combined with the next more significant twelve

bits of the partial products being worked on.

The half adder, although it takes two inputs and provides

two outputs, has been used to improve the Wallace Tree adder

slightly.

Digital Architecture Engineering

79

One way this has been done is: when there are two left-

over values at a given stage to be added, then, they might be

put into a half adder. Although this produces two outputs,

one of those outputs will consist of carries, and will therefore

be shifted one place to the left.

If the number of terms to be added in the next stage is still

not an even multiple of three, then, at least at the beginning

and end of the part added in the half adders, the number of

left-over bits will be reduced by one. This is called a Dadda

tree multiplier.

More recently, in U.S. Patent 6,065,033, assigned to the

Digital Equipment Corporation, the fact that half the input

bits are moved to the left as carry bits was noted explicitly as

a way to replace the larger tree generating the middle of the

final product by multiple trees of more equal size starting

from the middle and proceeding to the left.

As noted above, one could trim away a considerable portion

of the addition tree by using two digits of the multiplier at a

time to create one partial product. But doing this in the naive

way described above requires calculating three times the

multiplicand, which requires carry propagation.

Another idea that suggests itself is to note that either less

than half of the bits in a multiplier are 1, or less than half of

the bits in a multiplier are zero, so that in the former case,

one could include only the nonzero partial products, and in

the latter case, one would multiply by the one’s complement

of the multiplier and then make a correction. But this would

require an elaborate arrangement for routing the partial

products that would more than consume any benefits.

Digital Architecture Engineering

80

Fortunately, there is a method of achieving the same result

without having to wait for carries, known as Booth encoding.

The goal is to make it possible for each pair of bits in the

multiplier to introduce only one partial product that needs

to be added. Normally, each pair of bits calls for 0, 1, 2, or 3

times the multiplicand, and the last possibility requires carry

propagation to calculate.

Knowing that –1 is represented by a string of ones in two’s

complement arithmetic, the troublesome number 3 presents

itself to us as being equal to 4 minus 1. Four times the

multiplicand can be instantly generated by a shift. The two’s

complement of the multiplicand would require carry

propagation to produce, but just inverting all the bits of the

multiplicand gives us one less than its additive inverse.

It is possible to combine bits representing these errors,

since each time this happened, it would be in a different

digit, in a single term that could be entered into the addition

tree like a partial product. But that, alone, doesn’t eliminate

carry propagation. If we code 3 as –1 with +1 to carry into

the next pair of bits in the multiplier, then, if we find 2 there,

once again we will be stuck with 3. As it happens, though,

we have one other possible value that can be produced

without carry propagation from the multiplicand that is

useful. We can also produce –2 times the multiplicand by

both inverting it and shifting it; this time, the result will be

too small by two, and that, too, can be accounted for in the

error term.

Using the fact that –2 is also available to us in our

representation of pairs of bits, we can modify the pairs of

digits in the multiplier like this:

Digital Architecture Engineering

81

00 0
01 + 1
10 + 1 -2
11 + 1 -1

Since only –2, –1, 0, and +1 are initially and directly used

to code a pair of bits, a carry of +1 from the pair of bits to the

right will result in the possible values -1, 0, +1, and +2; no

troublesome value results that requires an additional carry.

A second step is not really needed, since one just has to

peek at the first digit of the following pair of bits to see if a

carry out would be coming; thus, Booth coding is often simply

presented in the manner in which it would be most efficient

when implemented, as a coding that goes directly from three

input bits to a signed base-4 digit:
00.0 0
00.1 + 1
01.0 + 1
01.1 + 2
10.0 - 2
10.1 - 1
11.0 - 1
11.1 0

In the table as shown here, I place a binary point between

the two bits for which a substitution is being made and the

bit that belongs to the preceding group on the right. This

serves as a reminder that the last bit encoded is to the right

of the place value of the result of the code, and also that the

rightmost pair of bits is encoded on the basis of a 0 lying to

their right. Of course, the final carry out, not apparent in

this form of the table, should not be forgotten; but it can

also be found by coding an additional leading two zero bits

appended to the multiplier.

And the digits of the multiplier as converted can be used

to determine the value of the error term. In addition to the

Digital Architecture Engineering

82

error term, it is also necessary to remember that the partial

products can be negative, and so their signs will need to be

extended; this can be done by means of extending the various

carry-save adders in the Wallace tree only one additional bit

to the left with proper organization.

An alternative version of Booth encoding that does require

generating three times the multiplicand, in return for

converting three bits of the multiplier at a time into a term

from the set {–4, –3, –2, –1, 0, +1, +2, +3, +4} has also been

used. However, if one is going to allow hard multiples of the

multiplicand, that is, multiples which require a carry-

propagate addition to produce, then, one could also generate

five times the multiplicand (5 = 4 + 1), nine times the

multiplicand (9 = 8 + 1), and even, through the use of the

same principle as underlies Booth encoding, seven times the

multiplicand (7 = 8 – 1); three times, of course, gives six and

twelve times by a shift, so, if one is willing to build three carry-

propagate adders working in parallel, one can produce all the

multiples in the set {–8, –7, –6, –5, –4, –3, –2, –1, 0, +1, +2, +3, +4,

+5, +6, +7, +8}, and encode four bits of the multiplier at a time.

If the multiples of the multiplicand are generated in

advance, and the multiplier is long enough, then one can

retire four bits of the multiplier and, using a pre-generated

multiple, following the principle used in the NORC, do so

with only a single carry-save addition.

If the multiples are not generated in advance, or when a

full-width Wallace Tree is used, it would seem that multi-bit

Booth encoding could not provide a gain in speed, because

an addition requiring carries would take as long as several

stages of carry-save addition.

Digital Architecture Engineering

83

If one is retiring the bits of the multiplier serially, to save

hardware, rather than using a full Wallace Tree, in which all

of the multiplier is retired at once, and the partial products

are then merged into half as many terms at each step, one

could retire the last few bits of the multiplier at a slower rate

while waiting for the larger multiples of the multiplicand to

become available. The Alpha 21264 multiplier unit used this

technique, using Booth encoding of bit pairs in the multiplier

until a conventional adder produced the value of three times

the multiplicand for use in later stages allowing the use of

three-bit Booth encoding of the multiplier thereafter.

Arithmetic Operations on Binary and

Hexadecimal Numbers

There are more than a few operations we can perform on

binary and hexadecimal numbers. For example we can add

subtract multiply divide and perform other arithmetic

operations.

Although you needn't become an expert at it you should

be able to in a pinch perform these operations manually

using a piece of paper and a pencil. Having just said that

you should be able to perform these operations manually

the correct way to perform such arithmetic operations is to

have a calculator which does them for you. There are several

such calculators on the market; the following table lists some

of the manufacturers who produce such devices:

Manufacturers of Hexadecimal Calculators:

• Casio

• Hewlett-Packard

Digital Architecture Engineering

84

• Sharp

• Texas Instruments.

This list is by no means exhaustive. Other calculator

manufacturers probably produce these devices as well. The

Hewlett-Packard devices are arguably the best of the bunch.

However they are more expensive than the others. Sharp

and Casio produce units which sell for well under $50. If

you plan on doing any assembly language programming at

all owning one of these calculators is essential.

Another alternative to purchasing a hexadecimal calculator

is to obtain a TSR (Terminate and Stay Resident) programme

such as SideKick which contains a built-in calculator.

However unless you already have one of these programmes

or you need some of the other features they offer such

programmes are not a particularly good value since they cost

more than an actual calculator and are not as convenient to use.

To understand why you should spend the money on a

calculator consider the following arithmetic problem:
 9h
+ 1h

The tempted to write in the answer "10h" as the solution

to this problem. But that is not correct! The correct answer

is ten which is "0Ah" not sixteen which is "10h".

A similar problem exists with the arithmetic problem:
 10h
- 1h

The probably tempted to answer "9h" even though the true

answer is "0Fh". Remember this problem is asking "what is

the difference between sixteen and one?" The answer of

course is fifteen which is "0Fh".

Digital Architecture Engineering

85

Even if the two problems above don't bother you in a

stressful situation your brain will switch back into decimal

and something else produce the incorrect result. Moral of

the story - if you must do an arithmetic computation using

hexadecimal numbers by hand take your time and be careful

about it. Either that or convert the numbers to decimal

perform the operation in decimal and convert them back to

hexadecimal.

You should never perform binary arithmetic computations.

Since binary numbers usually contain long strings of bits

there is too much of an opportunity for you to make a mistake.

Always convert binary numbers to hex perform the operation

in hex (preferably with a hex calculator) and convert the result

back to binary if necessary.

Logical Operations on Bits
There are four main logical operations we'll need to perform

on hexadecimal and binary numbers: AND OR XOR

(exclusive-or) and NOT. Unlike the arithmetic operations a

hexadecimal calculator isn't necessary to perform these

operations. It is often easier to do them by hand than to use

an electronic device to compute them. The logical AND

operation is a dyadic operation (meaning it accepts exactly

two operands). These operands are single binary (base 2)

bits.

The AND operation is:
0 and 0 = 0
0 and 1 = 0
1 and 0 = 0
1 and 1 = 1

A compact way to represent the logical AND operation is

with a truth table.

Digital Architecture Engineering

86

A truth table takes the following form:
AND Truth Table

AND 0 1

0 0 0

1 0 1

This is just like the multiplication tables you encountered

in elementary school. The column on the left and the row at

the top represent input values to the AND operation.

The value located at the intersection of the row and column

(for a particular pair of input values) is the result of logically

ANDing those two values together. In English the logical AND

operation is "If the first operand is one and the second

operand is one the result is one; otherwise the result is zero."

One significant fact to note about the logical AND operation

is that you can use it to force a zero result. If one of the

operands is zero the result is always zero regardless of the

other operand.

In the truth table above for example the row labelled with

a zero input contains only zeros and the column labelled

with a zero only contains zero results. Conversely if one

operand contains a one the result is exactly the value of the

second operand. These features of the AND operation are

very important particularly when working with bit strings

and we want to force individual bits in the string to zero. We

will investigate these uses of the logical AND operation in

the next segment.

The logical OR operation is also a dyadic operation.

Its definition is:
0 or 0 = 0
0 or 1 = 1
1 or 0 = 1
1 or 1 = 1

Digital Architecture Engineering

87

The truth table for the OR operation takes the following form:
OR Truth Table

OR 0 1

0 0 1

1 1 1

Colloquially the logical OR operation is "If the first operand

or the second operand (or both) is one the result is one;

otherwise the result is zero." This is also known as the

inclusive-OR operation.

If one of the operands to the logical-OR operation is a one

the result is always one regardless of the second operand's

value. If one operand is zero the result is always the value of

the second operand. Like the logical AND operation this is

an important side-effect of the logical-OR operation that will

prove quite useful when working with bit strings.

Note that there is a difference between this form of the

inclusive logical OR operation and the standard English

meaning. Consider the phrase "I am going to the store or I

am going to the park." Such a statement implies that the

speaker is going to the store or to the park but not to both

places. Therefore the English version of logical OR is slightly

different than the inclusive-OR operation; indeed it is closer

to the exclusive-OR operation.

The logical XOR (exclusive-or) operation is also a dyadic

operation.

It is defined as follows:
0 xor 0 = 0
0 xor 1 = 1
1 xor 0 = 1
1 xor 1 = 0

The truth table for the XOR operation takes the following

form:

Digital Architecture Engineering

88

XOR Truth Table

XOR 0 1

0 0 1

1 1 0

In English the logical XOR operation is "If the first operand

or the second operand but not both is one the result is one;

otherwise the result is zero." Note that the exclusive-or

operation is closer to the English meaning of the word "or"

than is the logical OR operation.

If one of the operands to the logical exclusive-OR operation

is a one the result is always the inverse of the other operand;

that is if one operand is one the result is zero if the other

operand is one and the result is one if the other operand is

zero. If the first operand contains a zero then the result is

exactly the value of the second operand. This feature lets

you selectively invert bits in a bit string.

The logical NOT operation is a monadic operation (meaning

it accepts only one operand).

It is:
NOT 0 = 1
NOT 1 = 0

The truth table for the NOT operation takes the following

form:
NOT Truth Table

NOT 0 1

1 0

Reasonable Operations on Binary Numbers and
Bit Strings

The logical functions work only with single bit operands.

Since the 80 × 86 uses groups of eight sixteen or thirty-two

bits we need to extend the definition of these functions to

deal with more than two bits. Logical functions on the 80x86

Digital Architecture Engineering

89

operate on a bit-by-bit (or bitwise) basis. Given two values

these functions operate on bit zero producing bit zero of the

result. They operate on bit one of the input values producing

bit one of the result etc.

For example if you want to compute the logical AND of the

following two eight-bit numbers you would perform the logical

AND operation on each column independently of the others:
1011 0101
1110 1110

1010 0100

This bit-by-bit form of execution can be easily applied to

the other logical operations as well.

The logical operations in terms of binary values, it is a

great deal easier to perform logical operations on binary

values than on values in other bases. Therefore if you want

to perform a logical operation on two hexadecimal numbers

you should convert them to binary first. This applies to most

of the basic logical operations on binary numbers (e.g. AND

OR XOR etc.).

The ability to force bits to zero or one using the logical

AND/OR operations and the ability to invert bits using the

logical XOR operation is very important when working with

strings of bits (e.g. binary numbers).

These operations let you selectively manipulate certain bits

within some value while leaving other bits unaffected. For

example if you have an eight-bit binary value 'X' and you

want to guarantee that bits four through seven contain zeros

you could logically AND the value 'X' with the binary value

0000 1111. This bitwise logical AND operation would force

the H.O. four bits to zero and pass the L.O. four bits of 'X'

Digital Architecture Engineering

90

through unchanged. Likewise you could force the L.O. bit of

'X' to one and invert bit number two of 'X' by logically ORing

'X' with 0000 0001 and logically exclusive-ORing 'X' with

0000 0100 respectively. Using the logical AND OR and XOR

operations to manipulate bit strings in this fashion is know

as masking bit strings. We use the term masking because

we can use certain values (one for AND zero for OR/XOR) to

'mask out' certain bits from the operation when forcing bits

to zero one or their inverse.

Signed and Unsigned Numbers
So far we've treated binary numbers as unsigned values.

The binary number...00000 represents zero...00001

represents one...00010 represents two and so on towards

infinity. What about negative numbers? Signed values have

been tossed around and we've mentioned the two's

complement numbering system but we haven't discussed

how to represent negative numbers using the binary

numbering system. That is what this section is all about!

To represent signed numbers using the binary numbering

system we have to place a restriction on our numbers: they

must have a finite and fixed number of bits. As far as the

80x86 goes this isn't too much of a restriction after all the

80x86 can only address a finite number of bits. For our

purposes we're going to severely limit the number of bits to

eight 16 32 or some other small number of bits.

With a fixed number of bits we can only represent a certain

number of objects. For example with eight bits we can only

represent 256 different objects. Negative values are objects

in their own right just like positive numbers. Therefore we'll

Digital Architecture Engineering

91

have to use some of the 256 different values to represent

negative numbers. In other words we've got to use up some

of the positive numbers to represent negative numbers.

To make things fair we'll assign half of the possible

combinations to the negative values and half to the positive

values. So we can represent the negative values -128..-1 and

the positive values 0..127 with a single eight bit byte. With a

16-bit word we can represent values in the range –32 768..+32

767. With a 32-bit double word we can represent values in

the range –2 147 483 648..+2 147 483 647. In general with n

bits we can represent the signed values in the range

–2**(n–1)to +2**(n–1)–1.

Exactly how do we do it? Well there are many ways but the

80x86 microprocessor uses the two's complement notation.

In the two's complement system the H.O. bit of a number is

a sign bit. If the H.O. bit is zero the number is positive; if the

H.O. bit is one the number is negative. Examples:

For 16-bit numbers:
8000h is negative because the H.O. bit is one.
100h is positive because the H.O. bit is zero.
7FFFh is positive.
0FFFFh is negative.
0FFFh is positive.

If the H.O. bit is zero then the numeral is positive and is

stored as a standard binary value. If the H.O. bit is one then

the number is negative and is stored in the two's complement

form.

To convert a positive number to its negative two's complement

form you use the following algorithm:

• Invert all the bits in the number i.e. apply the logical

NOT function.

• Add one to the inverted result.

Digital Architecture Engineering

92

For example to compute the eight bit equivalent of -5:
0000 0101 Five (in binary).
1111 1010 Invert all the bits.
1111 1011 Add one to obtain result.

If we take minus five and perform the two's complement

operation on it we get our original value 00000101 back again

just as we expect:
1111 1011 Two's complement for -5.
0000 0100 Invert all the bits.
0000 0101 Add one to obtain result (+5).

The following examples provide some positive and negative

16-bit signed values:
7FFFh: +32767
the largest 16-bit positive number.
8000h: -32768
the smallest 16-bit negative number.
4000h: +16
384.

To convert the numbers above to their negative counterpart

(i.e. to negate them) do the following:
7FFFh: 0111 1111 1111 1111 +32
767t
1000 0000 0000 0000 Invert all the
bits (8000h)
1000 0000 0000 0001 Add one (8001h or -32 767t)
8000h: 1000 0000 0000 0000 -32
768t
0111 1111 1111 1111 Invert all the bits (7FFFh)
1000 0000 0000 0000 Add one (8000h or -32768t)
4000h: 0100 0000 0000 0000 16
384t
1011 1111 1111 1111 Invert all the bits (BFFFh)
1100 0000 0000 0000 Add one (0C000h or -16 384t)

8000h inverted becomes 7FFFh. After adding one we obtain

8000h! Wait what's going on here? –(–32 768) is -32 768? Of

course not. But the value +32 768 cannot be represented

with a 16-bit signed number so we cannot negate the smallest

negative value. If you attempt this operation the 80×86

microprocessor will complain about signed arithmetic

Digital Architecture Engineering

93

overflow. Why bother with such a miserable numbering

system? Why not use the H.O. bit as a sign flag storing the

positive equivalent of the number in the remaining bits? The

answer lies in the hardware. As it turns out negating values

is the only tedious job. With the two's complement system

most other operations are as easy as the binary system. For

example suppose you were to perform the addition 5+(–5).

The result is zero.

Consider what happens when we add these two values in

the two's complement system:
00000101
11111011

1 00000000

We end up with a carry into the ninth bit and all other bits

are zero. As it turns out if we ignore the carry out of the H.O.

bit adding two signed values always produces the correct

result when using the two's complement numbering system.

This means we can use the same hardware for signed and

unsigned addition and subtraction. This wouldn't be the case

with some other numbering systems.

Except for the questions at the end of this chapter you will

not need to perform the two's complement operation by hand.

The 80x86 microprocessor provides an instruction NEG

(negate) which performs this operation for you. Furthermore

all the hexadecimal calculators will perform this operation

by pressing the change sign key (+/– or CHS). Nevertheless

performing a two's complement by hand is easy and you

should know how to do it.

Once again you should note that the data represented by

a set of binary bits depends entirely on the context. The eight

bit binary value 11000000b could represent an IBM/ASCII

Digital Architecture Engineering

94

character it could represent the unsigned decimal value 192

or it could represent the signed decimal value –64 etc. As

the programmer it is your responsibility to use this data

consistently.

Sign and Zero Extension
Since two's complement format integers have a fixed length

a small problem develops. What happens if you need to

convert an eight bit two's complement value to 16 bits? This

problem and its converse (converting a 16 bit value to eight

bits) can be accomplished via sign extension and contraction

operations. Likewise the 80x86 works with fixed length values

even when processing unsigned binary numbers. Zero

extension lets you convert small unsigned values to larger

unsigned values.

Consider the value "–64". The eight bit two's complement

value for this number is 0C0h. The 16-bit equivalent of this

number is 0FFC0h. Now consider the value "+64". The eight

and 16 bit versions of this value are 40h and 0040h. The

difference between the eight and 16 bit numbers can be

described by the rule: "If the number is negative the H.O.

byte of the 16 bit number contains 0FFh; if the number is

positive the H.O. byte of the 16 bit quantity is zero."

To sign extend a value from some number of bits to a

greater number of bits is easy just copy the sign bit into all

the additional bits in the new format. For example to sign

extend an eight bit number to a 16 bit number simply copy

bit seven of the eight bit number into bits 8..15 of the 16 bit

number. To sign extend a 16 bit number to a double word

simply copy bit 15 into bits 16..31 of the double word.

Digital Architecture Engineering

95

Sign extension is required when manipulating signed

values of varying lengths. Often you'll need to add a byte

quantity to a word quantity. You must sign extend the byte

quantity to a word before the operation takes place. Other

operations (multiplication and division in particular) may

require a sign extension to 32-bits. You must not sign extend

unsigned values.

Examples of sign extension:

Eight Bits Sixteen Bits Thirty-two Bits

80h FF80h FFFFFF80h

28h 0028h 00000028h

9Ah FF9Ah FFFFFF9Ah

7Fh 007Fh 0000007Fh

--- 1020h 00001020h

--- 8088h FFFF8088h

To extend an unsigned byte you must zero extend the value.

Zero extension is very easy - just store a zero into the H.O.

byte(s) of the smaller operand. For example to zero extend

the value 82h to 16-bits you simply add a zero to the H.O.

byte yielding 0082h.

Eight Bits Sixteen Bits Thirty-two Bits

80h 0080h 00000080h

28h 0028h 00000028h

9Ah 009Ah 0000009Ah

7Fh 007Fh 0000007Fh

--- 1020h 00001020h

--- 8088h 00008088h

Sign contraction converting a value with some number of

bits to the identical value with a fewer number of bits is a

little more troublesome. Sign extension never fails. Given an

m-bit signed value you can always convert it to an n-bit

number (where n > m) using sign extension. Unfortunately

given an n-bit number you cannot always convert it to an m-

Digital Architecture Engineering

96

bit number if m < n. For example consider the value –448.

As a 16-bit hexadecimal number its representation is

0FE40h. Unfortunately the magnitude of this number is too

great to fit into an eight bit value so you cannot sign contract

it to eight bits. This is an example of an overflow condition

that occurs upon conversion. To properly sign contract one

value to another you must look at the H.O. byte(s) that you

want to discard. The H.O. bytes you wish to remove must all

contain either zero or 0FFh. If you encounter any other values

you cannot contract it without overflow. Finally the H.O. bit

of your resulting value must match every bit you've removed

from the number.

Examples (16 bits to eight bits):

FF80h can be sign contracted to 80h

0040h can be sign contracted to 40h

FE40h cannot be sign contracted to 8 bits.

0100h cannot be sign contracted to 8 bits.

Division Arithmetic

Division is the most difficult of the basic arithmetic

operations. For a simple computer that uses a single adder

circuit for its arithmetic operations, a variant of the

conventional long division method used manually, called

nonrestoring division provides greater simplicity and speed.

This method proceeds as follows, assuming without loss

of generality (which means we can fix things by

complementing the operands and remembering what we’ve

done, if it isn’t so) that both operands are positive:

If the divisor is less than the dividend, then the quotient is

zero, the remainder is the dividend, and one is finished.

Digital Architecture Engineering

97

Otherwise, shift the divisor as many places left as is

necessary for its first one bit to be in the same position as

the first one bit in the dividend. Also, shift the number one

the same number of places left; the result is called the

quotient term.

The quotient value starts at zero: Then, do the following

until the divisor is shifted right back to its original position:

If the current value in the dividend register is positive,

and it has a one bit corresponding to the starting one bit of

the value in the divisor register (initially, the divisor as shifted

left), subtract the divisor register contents from the dividend

register, and add the quotient term to the quotient register.

If the current value in the dividend register is negative, and

it has a zero bit corresponding to the starting one bit of the

value in the divisor register, add the divisor register contents

to the dividend reigster, and subtract the quotient term from

the quotient register.

Shift the divisor register and the quotient term one place

to the right, then repeat until finished (when the quotient

term becomes zero at this step, do not repeat).

If, after the final step, the contents of the dividend register

are negative, add the original divisor to the dividend register

and subtract one from the quotient register. The dividend

register will contain the remainder, and the quotient register

the quotient.

An example of this is shown below:

Divide 10010100011 by 101101.
00010010100011 DD 0000000 Q
10110100000 DR 100000 QT
11111100000011 DD 0100000 Q
1011010000 DR 10000 QT
11111100000011 DD 0100000 Q

Digital Architecture Engineering

98

101101000 DR 1000 QT
11111100000011 DD 0100000 Q
10110100 DR 100 QT
11111110110111 DD 0011100 Q
1011010 DR 10 QT
00000000010001 DD 0011010 Q
101101 DR 1 QT
00000000010001 remainder 11010 quotient

which produces the correct result; 1187 divided by 45 gives

26 with 17 as the remainder.

Speeding up division further is also possible: One approach

would be to begin with the divisor, from which 8, 4, and 2

times the divisor can be immediately derived, and then with

one layer of addition stages, derive 3 (and hence 6 and 12)

times the divisor, 5 (and hence 10) times the divisor, and 9

times the divisor, and then with a second layer of addition

stages, derive the remaining multiples from 1 to 15 of the

divisor.

Then an assembly of adders working in parallel to

determine the largest multiple that could be subtracted from

the dividend or the remaining part of it without causing it to

go negative could generate four bits of the quotient in the

time a conventional division algorithm could generate one.

The decimal version of this technique was used in the

NORC computer, a vacuum tube computer designed for very

high-speed calculation.

Another method of division is known as SRT division. In

its original form, it was a development of nonrestoring

division. Instead of choosing, at each bit position, to add or

subtract the divisor, the option of doing nothing, and skipping

quickly over several bits in the partial remainder, is also

included.

Digital Architecture Engineering

99

Starting from the same example as given above for

nonrestoring division:

Divide 10010100011 by 101101.
00010010100011 DD 0000000 Q
10110100000 DR 100000 QT
11111100000011 DD 0100000 Q
10110100 DR 100 QT
11111110110111 DD 0011100 Q
1011010 DR 10 QT
00000000010001 remainder 11010 quotient

Thus, when the partial remainder is positive, we align the

divisor so that its first 1 bit is under the first one bit of the

partial remainder, and subtract; we add a similarly shifted 1

to the quotient.

When the partial remainder is negative, we align the divisor

so that its first 1 bit is under the first zero bit of the partial

remainder,and add; we subtract a similarly shifted 1 from

the quotient.

In the example, an immediate stop is shown when the

right answer was achieved; normally, two additional steps

would take place; first, a subtraction of the divisor, and then,

since the result is negative, an addition in the same digit

position; this is the same second chance without shifting as

is used to terminate nonrestoring division. The property of

shifting at once over multiple zeroes is no longer present in

the high-radix forms of SRT division. Thus, in radix 4 SRT

division, one might, at each step, either do nothing, add or

subtract the divisor at its current shifted position, or add or

subtract twice the divisor at its current shifted position.

Instead of a simple rule of adding to a zero, and subtracting

from a 1, a table of the first few bits of both the partial

remainder and the divisor is needed to determine the

appropriate action at each step.

Digital Architecture Engineering

100

To achieve time proportional to the logarithm of the length

of the numbers involved, a method is required that attempts

to refine an approximation of the reciprocal of the divisor.

This basic method, which uses the recurrence relation
r’ = r * (2 - r*x)

where x is the number whose reciprocal is to be found, and

r and r’ are two successive approximations to its reciprocal,

is known as Goldschmidt division, and is described in U.S.

patent 3,508,038 with inventors Goldschmidt and Powers,

assigned to IBM, and was developed for the IBM System/

360 Model 91 computer.

In the Model 91 computer, the results of floating-point

divisions were rounded instead of truncated; this was an

improvement on the behaviour of the other computers in

the System/360 line, but it was still an incompatibility; one

page claims that this was corrected in the Model 195 by

prescaling, but refers to the characteristic of the Model 91

as though it were a serious bug, producing genuinely wrong

answers, which it was not.

The recurrence relation can be made more understandable

by splitting it into two parts.

Given that r is an approximation to the reciprocal of x,

then we can consider r*x to be 1+e, where e is a small error

term reflecting the proportion by which r differs from the

real reciprocal. Thus, we can have as our first equation,

containing one multiplication,
e = r*x - 1

If r is (1+e) times the real reciprocal, (1-e) times q will be a

much closer approximation to the reciprocal, since the result

will be (1-e^2) times the real reciprocal. Thus, the second

multiplication can be part of the equation:

Digital Architecture Engineering

101

r’ = (1 - e)*r

An advantage of leaving the recurrence relation in the form

from which it was originally derived is that e is a small

quantity compared to 1+e, and so significance can be

preserved. We will see how this can be used below.

One difficulty with the use of iterative methods for division

is that they do not naturally lend themselves to producing

the most accurate result in every case, as required by the

IEEE 754 standard.

The obvious way of dealing with this is as follows: If one is

calculating a/b, one begins by approximating the reciprocal

of b.

Because the accuracy of that approximation doubles with

each iteration, there will be some excess precision available

at the final iteration.

Obtain an approximation to a/b by multiplying this result

by a at the full working precision of the calculation.

If the part of that result that needs to be rounded off to fit

the quotient into the desired format is close enough to.4999...

or.5000... to create concern (thinking of the mantissa as being

scaled so as to become an integer in its ultimate destination),

then, first replace that part by an exact.5. Multiply it by b,

the divisor. If the result is greater than a, then.5 is too high,

so round down. If the result is less than a.5 is too low, so

round up.

Because allowing a division to take a variable amount of

time could interfere with pipelining in some computer

designs, work has been done on finding improved algorithms

for IEEE 754 compliant Goldschmidt division.

A table-driven method of division for arguments of limited

width, described in a paper by Hung, Fahmy, Mencer, and

Digital Architecture Engineering

102

Flynn, can also be used to obtain an excellent initial

approximation to the reciprocal in the time required for two

multiplications; conventional techniques can then double the

precision of the approximation in each additional

multiplication time used.

To divide A by B: B will be normalized before starting, so

that its value is between 1 and 2.

The first few bits of B will be used to obtain two values

from a table; one value will be an approximation to 1/B, and

the other will be the derivative of the function 1/B with

respect to B at the point indicated by the first few bits of B.

In the first multiplication time, multiply, in parallel, both

A and B by the approximation to 1/B found in the table, and

also multiply 1 plus the remaining bits of B, not used to find

a table entry, by the second table entry.

In the second multiplication time, multiply, in parallel,

both the modified A and the modified B by the product

involving the remaining bits of B.

In subsequent steps, where the modified B is 1 + epsilon,

multiply both the modified A and the modified B by 1 –

epsilon. Since 1.001 times.999 is.999999, this doubles the

precision in each step.

Basically, what is being done here is: as the reciprocal of

the divisor is being determined by repeatedly multiplying

the divisor by numbers that will bring it closer to 1, the

dividend is being multiplied, in parallel, by these numbers,

so that it does not need to be multiplied by the reciprocal of

the divisor separately, at the end of the computation. Is one

exchanging one multiplier for several? Not really, as the

reciprocal of the divisor would have to be constructed from

Digital Architecture Engineering

103

several individual multiplications if it were used explicitly.

The need for several multipliers, instead of just two, comes

from the desire to allow full pipelining.

It is the high-precision starting approximation obtained

in the first two steps that was the unique contribution of

this chapter. Producing the quotient in parallel with the

reciprocal as outlined above is also a potential feature of

hardware implementations of the methods of producing

accurate quotients by the iterative method outlined in the

IBM and Intel patents referred to above.

Thus, the procedure given in the IBM patent involves a

recurrence relation with four operations; the reciprocal of b,

approximated by r, is improved by the two-step recurrence

relation:
m = 1 - b*r
r’ = r + m*r

(note that m stands for minus epsilon) and the quotient is

improved in parallel by the operations:
s = a - b*q
q = q + s*r

By choosing an initial approximation to the reciprocal of b

that is guaranteed to be greater than 1/b rather than less

than 1/b for a divisor b whose mantissa consists entirely of

ones, the final step is guaranteed to produce a result that

will round properly. Once enough approximation steps are

performed so that the final r has the precision required, the

two steps to improve the quotient are performed one extra

time, with the second of the two steps also used to set the

condition codes for the division operation as a whole. (All the

preceding steps must be performed as round to nearest

regardless of the rounding mode that is selected.)

Digital Architecture Engineering

104

In the Intel improvement of this method, it is noted that

once epsilon, the error in an approximation to the reciprocal

of b, is known, epsilon squared can be computed directly,

instead of being discovered as the error in a subsequent step.

Thus, instead of approximating 1/(1+e) as 1-e, one can

directly calculate an infinite product yielding the reciprocal,
(1 - e) * (1 + e2) * (1 + e4) * (1 + e8)...

since,
(1 + e) * (1 - e) = 1 - e2

(1 - e2) * (1 + e2) = 1 - e4

(1 - e4) * (1 + e4) = 1 - e8

(1 - e8) * (1 + e8) = 1 - e16

and so on: if one thinks of the first term as 1-e insted of 1+e,

then all the corrections are in the same direction.

A method to obtain a further improvement in efficiency in

this type of calculation is discussed in a paper by Ercegovac,

Imbert, Matula, Muller, and Wei from Inria. It can happen

that the initial approximation to the reciprocal of the divisor

is such that as it doubles in accuracy in each step, instead

of having half the required accuracy just before the final

step, it may be short of the required accuracy by only a few

bits. In that case, instead of squaring e^n to obtain e^(2n),

one could simply look up 1 + e^(2n) in a table using the first

few bits of e, and this could be done at an early point in the

computation. Although it still takes two multiplies per

iteration, it is also still an improvement, because it now takes

only one add.

Square Root

Using the formula (a+b)^2 = a^2 + 2ab + b^2, a method for

calculating square roots by hand was devised that resembles

long division:

Digital Architecture Engineering

105

8. 4 2 6 1 4 9

71. 00 00 00 00 00 00 |
64 |
----------------------- |
7.00 | 1 6
6.56 | 4
----------------------- |
44 00 | 16 8
33 64 | 2
------------------------|
10 36 00 | 1 68 4
10 10 76 | 6
---------------------- |

25 24 00 | 16 85 2
16 85 21 | 1
------------------- |
8 38 79 00 | 1 68 52 2
6 73 29 44 | 4
----------------- |
1 55 49 56 00 | 16 85 22 8
1 51 67 06 01 | 9
----------------- |

3 82 49 99 |

To find the square root of 71, first, it is noted that 71 is

between 64 and 81. Thus, we subtract 8 squared, or 64,

from 71, and note that our square root will be 8 point

something.

In subsequent steps, what has gone before will play the

role of a in the formula above, and the next digit in the square

root will play the role of b. And, as with 8, a^2 has already

been subtracted, so, for whatever digit we choose as b, we

must be able to subtract 2ab + b^2 from what remains.

Thus, let us choose 4 as the next digit in the square root.

We will subtract 2 * 8 *.4 plus.4 squared, which is 6.56, from

the number.

On the next line, what we are dividing by (with the

allowance that the b^2 term may change what we use) is 2 *

Digital Architecture Engineering

106

8.4, which is 16.8. This goes into.44 a bit more than.02 times,

so we get 33 60 plus 04, or 33 64 to subtract.

8.42 times 2 is 16.84; this goes into.1036.006 times, and

so we get 10 10 76 to subtract. Finally, we start with 8.426 *

2, which is 16.852, and divide.002524 by it, to get 1, and so

we subtract 16 85 21.

As the last decimal place of a is one position ahead of b, if

we treat both terms as integers instead of as real numbers,

the formula becomes 20*ab+b^2, which is what is used when

this is done in a more mechanical fashion.

Other than noting that as the numbers involved keep

growing, this is not useful as a method of pseudorandom

number generation, not much more need be said.

The resemblance between this method of calculating square

roots and long division is sufficiently close that it is possible

to adapt, for example, high-radix SRT division to calculating

square roots. If the first part of the square root is determined

from a table, the 2ab term will be large enough, compared to

the b^2 term, that a modified table, giving the value of b to

try from 2a and the current remainder will keep the error

small enough so that it is always possible to proceed to the

next digit on the next step.

Another method of approximating the square root of a

number is available for computers, which is much faster for

sufficiently large numbers, or when performed in software,

known as Newton-Raphson iteration. In fact, the method of

approximating the reciprocal of a number shown above is

another example of Newton-Raphson iteration.

If r is our existing approximation, and r’ is the improved

approximation, for 1/x, the recurrence relation was:

Digital Architecture Engineering

107

r’ = r * (2 - r*x)

since if r = (1/x)*(1+e), for some small e, 2 - x*r is 1-e, and

(1+e)*(1-e) is 1 - e^2, which is much closer to one.

For square root, we get the recurrence relation:
1 x

r’ =- (— + r)
2 r

and, as x/r and r have, to the first order, equal and opposite

discrepancies from the square root of x, r’ is once again much

closer to the right answer than r.

This is the classic Newton-Raphson iteration for square

root. Given that division is slower than multiplication, can it

be improved upon?

One simple-minded approach might be to start with an

approximation to the square root, r, and an approximation

to the reciprocal of the square root, q, and also calculate y,

the reciprocal of x, at the beginning.

Then, use the pair of recurrence relations:
1

r’ = - (qx + r)
2
1

q’ = - (q + ry)
2

If q is initially the reciprocal of r, then r’ and q’ are better

approximations than r and q after the first step. Perhaps

they will continue to improve in later steps, a less elaborate

iteration which simply improves q that apparently has been

used in practice both on Burroughs and Cray machines (my

source, which claimed that, had a typographical error, and

omitted the factor of 1/2), is the following:
1

q’ = - q * (3 - x * q * q)
2

Digital Architecture Engineering

108

Let us suppose that q is equal to the true reciprocal of the

square root of x, which we will call p, times (1 + e). Since e is

small, 1/(1+e) is approximately 1-e.

Then, q * (3 - x * q * q) becomes, approximately, p * (1 + e)

* (3 – (1 + 2e)), which is p * (1 + e) * (2 – 2e), which is

approximately 2p, and, thus, half of that is a new

approximation in which the new error is of the order of the

square of the old error.

Log and Trig Functions: The CORDIC Algorithm
and Related Methods

A fast method of calculating trigonometric functions using

only shifts and adds was described in a paper which described

how it was applied to a device bearing the acronym CORDIC

as its name.

A vector (x,y) can be rotated through an angle theta by means

of the equations:
x’ = x cos(theta) - y sin(theta)
y’ = y cos(theta) + x sin(theta)

In the CORDIC algorithm, a table is required whose contents

are:
arctangent(1/2)
arctangent(1/4)
arctangent(1/8)
arctangent(1/16)
...

Beginning with suitable starting values of x and y, one

iterates through a fixed number of steps wherein one

performs either
x’ = x - y M
y’ = y + x M

or
x’ = x + y M
y’ = y - x M

Digital Architecture Engineering

109

M starts as 1/2, and is divided by two at each step, so

multiplying x and y by M is simply a shift. This enlarges the

vector (x,y) in addition to rotating it by plus or minus the

arctangent of M.

If one is calculating the sine or cosine of an angle, one

adds or subtracts the table value from the angle to bring the

result closer to zero, to decide which operation is to be

performed. Then, the starting values of x and y are chosen

so that the successive enlargements will lead, at the end, to

a vector whose length is exactly 1.

If one is trying to find an inverse trigonometric function,

the goal is instead to make y equal to zero, although striving

to make x equal to y will also work, provided one adds 45

degrees to the angle one uses as the starting point.

In that case, one wishes to find theta, so the scaling of x

and y are irrelevant; therefore, the rule about performing

either a clockwise or counterclockwise rotation at each step

is no longer required.

To find either the arcsine or arccosine, one has to first

modify the input by a calculation involving a square root, as

due to the scaling at each step, only the arctangent can be

found directly by this method.

For that method, one requires a table containing the values:
log(1 1/2)
log(1 1/2)
log(1 1/4)
log(1 1/8)
log(1 1/16)
...

and to find the logarithm of a number between 1 and 2,

one at each step chooses either to leave it alone, or add it to

itself shifted right by the number of places N that is also the

Digital Architecture Engineering

110

number of the step; the latter is done if its result is less than

or equal to 2.

Since, in this method, we don't have to worry about always

having to perform a clockwise or counterclockwise rotation

in each step, so that the scaling factor is not altered, it is

easy to adapt this method to decimal arithmetic. One can

have a table of log(2), log(1.1), log(1.01), and so on, and just

repeat the steps at each level up to nine times. This was

indeed how logarithms were calculated on the HP-35

calculator, for example.

Could one just always go through five steps for each digit?

Or six steps? That won't quite work, since however many

steps one uses, the total number of steps is either even or

odd. So one would have to go through ten steps for each

digit instead; after using arctan(0.001), the error going into

using arctan(0.0001) would be up to a factor of 1.002, not

1.001.

Given that, there is no loss using a simpler method; when

it is necessary to worry about the scale factor (it is not for

inverse trig functions, or for calculating the tangent, it is

only a concern for sine and cosine) one still can simply either

perform the calculation with the arctangent of decimal 0.1,

0.01, 0.001, 0.0001 and so on or not in up to five steps in

either direction. At the end, just calculate sqrt(x*x+y*y) to

obtain the scale factor.

Although these methods are quite rapid compared to the

conventional method of using the Taylor series to approximate

a function, they are not the fastest methods known, at least

asymptotically for numbers with very high precision. It is

possible to evaluate these elementary transcendental

Digital Architecture Engineering

111

functions, as it is possible to perform division, in a time

comparable to that required for multiplication; that is, in a

number of addition times proportional to the logarithm of

the length of the number.

Originally, CORDIC methods were applied to small

computer systems with limited hardware resources, to which

they are very well suited, but despite the possibility of better

methods in theory for the case of very high precisions, the

CORDIC methods are still useful in large computers as well,

if they calculate transcendental functions in hardware instead

of software.

They are superseded by other methods, though, for multi-

precision arithmetic, particularly in the régimes where one

would use Schönhage-Strassen multiplication.

These algorithms, as described here, require comparisons

to be made at each step, on the basis of which decisions are

made. While it would not be possible to make the exact

comparisons noted here without completing the additions,

and performing carry propagation, can comparisons of a

limited type be performed on numbers in the raw redundant

form used with carry-save adders, and, if so, can these

algorithms be modified to make use of such comparisons?

One encouraging factor is that, since multiplication is not

used, we do not necessarily have to contend with the negative

values that are required for Booth encoding.

If instead of having one binary number, we have two binary

numbers that we wish to avoid adding, and we want to say

something about their combined value by looking only at

their first few bits, we can indeed say that if both numbers

are of the form 000xxxxx, their sum is of the form 00xxxxxx.

Digital Architecture Engineering

112

But some pairs of numbers not of the form 000xxxxx will

also have sums of the form 00xxxxxx.

The modification of the CORDIC algorithms for this

situation that suggests itself is something based on using

twice as many steps, involving changes to the numbers of

half the size at each step.

The hyperbolic functions sinh and cosh are defined as:
x - x
e - e

sinh(x)= —————
2
x - x
e + e

cosh(x)= —————
2

We know that:

x + y × y

e = e * e

and so we can derive the equations,
sinh(x+y) = sinh(x)cosh(y) + cosh(x)sinh(y)
cosh(x+y) = sinh(x)sinh(y) + cosh(x)cosh(y)

Here, since cosh(x) is always greater than sinh(x), we can

choose values of y such that 1/(tanh(y)) is equal to 2, 1 1/2,

1 1/4, 1 1/8, and so on to produce sinh(x) and cosh(x) for

arbitrary values of x, starting from some fixed value of x.

Thus, for each step, we once again have:

Kn * sinh(x + yn) = sinh(x) (1 + 2–n) + cosh(x)

Kn * cosh(x + yn) = sinh(x) + cosh(x) (1 + 2–n)

where K[n] is 1/sinh(y[n]), where (1 + 2^(–n)) = 1/tanh(y[n]).

As with the trigonometric functions, sinh(–x) = -sinh(x) and

cosh(-x) = cosh(x), so, once again, we can “rotate” either

clockwise or counterclockwise at each step, and we need to

do so to keep the scaling consistent at the end if it is sinh,

Digital Architecture Engineering

113

cosh, or the exponential function we are calculating.

Since cosh(x) + sinh(x) = e^x, this can be used as an

alternative method of calculating the exponential function,

or even logarithms. To calculate logarithms, we would start

from a value for x based on the number whose logarithm we

wish, so that the test performed in each round on the current

approximation would not require scaling. Again, if the

logarithm is desired, scaling ceases to be an issue.

Logarithms
Since addition is quicker and requires less circuitry than

multiplication, some systems convert numbers to their

logarithms at the time of input, retaining them in this form

only in memory.

Occasionally, though, one has to add and subtract as well

as multiply and divide. A paper by S. C. Lee and A. D. Edgar,

“The FOCUS number system”, described a way to do this

using a relatively short look-up table. Given two numbers a

and b, and assuming without loss of generality that a is less

than b, one can easily calculate r=a/b. If one then uses r to

find (r+1)/r in a table, the value from the table can be

multiplied by b to give a+b.

This table is shorter than a lookup table for converting to

or from a logarithmic representation, because cases where a

is negligible compared to b can be omitted. A table of (r-1)/r

is also needed for subtraction.

Unfortunately, there does not seem to be a good way to

prevent errors from accumulating, so that one could adapt

this to multi-precision arithmetic. However, floating-point

numbers are used in implementations of Schönhage-Strassen

arithmetic, and so there may be possibilities in that direction.

Digital Architecture Engineering

114

Floating Point Arithmetic

Arithmetic operations on floating point numbers consist

of addition, subtraction, multiplication and division the

operations are done with algorithms similar to those used

on sign magnitude integers (because of the similarity of

representation)—example, only add numbers of the same

sign. If the numbers are of opposite sign, must do subtraction.

Addition
Example on decimal value given in scientific notation:

5�6?�@����AA�5
B 6�35�@����AA�C�

First step: align decimal points

Second step: add
5�6? @���� AA�5

B �����635 @����AA�5

5�6?�635 @����AA�5

(presumes use of infinite precision, without regard for

accuracy)third step: normalize the result (already

normalized!) example on fl pt. value given in binary:

.25 = 0 01111101 00000000000000000000000

100 = 0 10000101 10010000000000000000000

to add these fl. pt. representations.

Step1: Align radix points shifting the mantissa LEFT by 1

bit DECREASES THE EXPONENT by 1 and shifting the

mantissa RIGHT by 1 bit INCREASES THE EXPONENT by 1

we want to shift the mantissa right, because the bits that

fall off the end should come from the least significant end of

the mantissa -> choose to shift the.25, since we want to

increase it’s exponent. -> shift by

Digital Architecture Engineering

115

��������
C��������
��������� /!������&�

0 01111101 00000000000000000000000 (original value)

0 01111110 10000000000000000000000 (shifted 1 place)

(note that hidden bit is shifted into msb of mantissa)

0 01111111 01000000000000000000000 (shifted 2 places)

0 10000000 00100000000000000000000 (shifted 3 places)

0 10000001 00010000000000000000000 (shifted 4 places)

0 10000010 00001000000000000000000 (shifted 5 places)

0 10000011 00000100000000000000000 (shifted 6 places)

0 10000100 00000010000000000000000 (shifted 7 places)

0 10000101 00000001000000000000000 (shifted 8 places)

Step: Add (don’t forget the hidden bit for the 100)

������������������������������������� ���!
B������������������������������������� �6?!
������������������������������������

Step: normalize the result (get the “hidden bit” to be a 1) it

already is for this example.result is

0 10000101 10010001000000000000000

Subtraction
like addition as far as alignment of radix points then the

algorithm for subtraction of sign mag. numbers takes over

before subtracting, compare magnitudes (don’t forget the

hidden bit!) change sign bit if order of operands is

changed.don’t forget to normalize number afterward.

Multiplication
Example on decimal values given in scientific notation:

5���@����AA��
B ��?�@����AA�6

Digital Architecture Engineering

116

algorithm: multiply mantissas add exponents

5�� @���AA��
B ��? @���AA�6

��?�@ ���AA�5

example in binary: use a mantissa that is only 4 bits so that

I don’t spend all day just doing the multiplication part.

���������������
@ ���������������

mantissa multiplication: 1.0100

(don’t forget hidden bit)× 1.1100

00000

00000

10100

10100

10100

——————

1000110000

becomes 10.00110000

Add exponents: always add true exponents (otherwise the

bias gets added in twice)biased:

��������
B��������

������������������ &����$��$��
�����
"��$��&�������
��
C ���������0����������&
��$����������������������>��>���!

�����������������

true exp true exp is 5. is –67

add true exponents 5 + (–67) is–62.

Re-bias exponent:–62 + 127 is 65.

unsigned representation for 65 is 01000001. put the result

back together (and add sign bit). 1 01000001 10.00110000

Digital Architecture Engineering

117

normalize the result: (moving the radix point one place to

the left increases the exponent by 1.) 1 01000001

10.00110000 becomes 01000010 1.000110000 this is the

value stored (not the hidden bit!): 1 01000010 000110000

Division
Similar to multiplication.

True division: Do unsigned division on the mantissas (don’t

forget the hidden bit) subtract TRUE exponents The IEEE

standard is very specific about how all this is done.

Unfortunately, the hardware to do all this is pretty slow.

Some comparisons of approximate times:

2’s complement integer add1 time unit

fl. pt add 4 time units

fl. pt multiply 6 time units

fl. pt. divide 13time units

There is a faster way to do division. Its called division by

reciprocal approximation. It takes about the same time as a

fl. pt. multiply. Unfortunately, the results are not always the

same as with true division.

Division by reciprocal approximation: Instead of doing a/b

they do a × 1/b. figure out a reciprocal for b, and then use

the fl. pt. multiplication hardware. example of a result that

isn’t the same as with true division.

True division: 3/3 = 1 (exactly)

Reciprocal approx: 1/3=.33333333

3 ×.33333333 =.99999999, not 1

It is not always possible to get a perfectly accurate reciprocal.

Issues in Floating Point
Note: this discussion only touches the surface of some

Digital Architecture Engineering

118

issues that people deal with. Entire courses could probably

be taught on each of the issues.

Rounding
Arithmetic operations on fl. pt. values compute results that

cannot be represented in the given amount of precision. So,

we must round results. There are MANY ways of rounding.

They each have “correct” uses, and exist for different reasons.

The goal in a computation is to have the computer round

such that the end result is as “correct” as possible. There

are even arguments as to what is really correct.

Methods of Rounding
Round towards 0—also called truncation. Figure out how

many bits (digits) are available. Take that many bits (digits)

for the result and throw away the rest. This has the effect of

making the value represented closer to 0.

Example:

.7783 if 3 decimal places available.778

 if 2 decimal places available.77

round towards + infinity—regardless of the value, round

towards +infinity.

Example:
&�*+� �%�*������	����	�����&�+
� *�,-� �%�*������	����	����� .*�,

round towards-infinity —regardless of the value, round

towards -infinity.

Example:
&�*+� �%�*������	����	�����&�*
� *�,-� �%�*������	����	����� .*�/
����	��0����������*��������	%�����	��
�������������!	����1
�%����2

Digital Architecture Engineering

119

1.1101
|

1.11 | 10.00
———

1.001
|

1.00 | 1.01
——

round towards-infinity —
1.1101

|
1.11 | 10.00
———
1.001

|
1.00 | 1.01
——

round towards zero (TRUNCATE):
1.1101

|
1.11 | 10.00
———
1.001

 |
1.00 | 1.01
——
–1.1101

|
–10.00 | -1.11
———
–1.001

|
–1.01 | -1.00

Round Towards Nearest

Odd case: if there is anything other than 1000... to the

right of the number of digits to be kept, then rounded in

IEEE standard such that the least significant bit (to be kept)

is a zero.
1.1111

|
1.11 | 10.00

Digital Architecture Engineering

120

———
1.1101

|
1.11 | 10.00
———
1.001 (ODD CASE)

|
1.00 | 1.01
——
–1.1101 (1/4 of the way between)

|
–10.00 | -1.11
———
–1.001 (ODD CASE)

|
–1.01 | -1.00
——

Note: this is a bit different than the “round to nearest”

algorithm for the “tie” case.5) learned in elementary school

for decimal numbers.

Use of Standards

—> allows all machines following the standard to

exchange data and to calculate the exact same results.

—> IEEE fl. pt. standard sets parameters of data

representation (# bits for mantissa vs. exponent)

—> Pentium architecture follows the standard

Overflow and Underflow
Just as with integer arithmetic, floating point arithmetic

operations can cause overflow. Detection of overflow in fl.

pt. comes by checking exponents before/during

normalization. Once overflow has occurred, an infinity value

can be represented and propagated through a calculation.

Underflow occurs in fl. pt. representations when a number

is to small (close to 0) to be represented. (show number line!)

Digital Architecture Engineering

121

if a fl. pt. value cannot be normalized (getting a 1 just to the

left of the radix point would cause the exponent field to be all

0’s) then underflow occurs.

HW vs. SW computing
Floating point operations can be done by hardware

(circuitry) or by software (program code).

-> a programmer won’t know which is occurring, without

prior knowledge of the HW.

-> SW is much slower than HW. by approx. 1000 times.

A difficult (but good) exercise for students would be to

design a SW algorithm for doing fl. pt. addition using only

integer Operations.

SW to do fl. pt. operations is tedious. It takes lots of shifting

and masking to get the data in the right form to use integer

arithmetic operations to get a result—and then more shifting

and masking to put the number back into fl. pt. format. A

common thing that manufacturers used to do is to offer 2

versions of the same architecture, one with HW, and the

other with SW fl. pt. ops.

Booths Algorithm and Array Multiplier

Definition of an Algorithm
In the introduction, we gave an informal definition of an

algorithm as “a set of instructions for solving a problem”

and we illustrated this definition with a recipe, directions to

a friend’s house, and instructions for changing the oil in a

car engine. You also created your own algorithm for putting

letters and numbers in order. While these simple algorithms

Digital Architecture Engineering

122

are fine for us, they are much too ambiguous for a computer.

In order for an algorithm to be applicable to a computer, it

must have certain characteristics. We will specify these

characteristics in our formal definition of an algorithm.

An algorithm is a well-ordered collection of unambi-

guous and effectively computable operations that when

executed produces a result and halts in a finite amount of

time. With this definition, we can identify five important

characteristics of algorithms.

• Algorithms are well-ordered.

• Algorithms have unambiguous operations.

• Algorithms have effectively computable operations.

• Algorithms produce a result.

• Algorithms halt in a finite amount of time.

These characteristics need a little more explanation, so

we will look at each one in detail.

Algorithms are Well-ordered
Since an algorithm is a collection of operations or

instructions, we must know the correct order in which to

execute the instructions. If the order is unclear, we may

perform the wrong instruction or we may be uncertain which

instruction should be performed next. This characteristic is

especially important for computers. A computer can only

execute an algorithm if it knows the exact order of steps to

perform.

Algorithms have Unambiguous Operations
Each operation in an algorithm must be sufficiently clear

so that it does not need to be simplified. Given a list of

Digital Architecture Engineering

123

numbers, you can easily order them from largest to smallest

with the simple instruction “Sort these numbers.” A

computer, however, needs more detail to sort numbers. It

must be told to search for the smallest number, how to find

the smallest number, how to compare numbers together, etc.

The operation “Sort these numbers” is ambiguous to a

computer because the computer has no basic operations for

sorting.

Basic operations used for writing algorithms are known

as primitive operations or primitives.

When an algorithm is written in computer primitives, then

the algorithm is unambiguous and the computer can execute

it.

Algorithms have Effectively Computable
Operations

Each operation in an algorithm must be doable, that is,

the operation must be something that is possible to do.

Suppose you were given an algorithm for planting a garden

where the first step instructed you to remove all large stones

from the soil.

This instruction may not be doable if there is a four ton

rock buried just below ground level. For computers, many

mathematical operations such as division by zero or finding

the square root of a negative number are also impossible.

These operations are not effectively computable so they

cannot be used in writing algorithms.

Algorithms Produce a Result
In our simple definition of an algorithm, we stated that an

algorithm is a set of instructions for solving a problem. Unless

Digital Architecture Engineering

124

an algorithm produces some result, we can never be certain

whether our solution is correct.

Have you ever given a command to a computer and

discovered that nothing changed? What was your response?

You probably thought that the computer was malfunctioning

because your command did not produce any type of result.

Without some visible change, you have no way of

determining the effect of your command. The same is true

with algorithms. Only algorithms which produce results can

be verified as either right or wrong.

Algorithms Halt in a Finite Amount of Time
Algorithms should be composed of a finite number of

operations and they should complete their execution in a

finite amount of time. Suppose we wanted to write an

algorithm to print all the integers greater than 1.

Digital Architecture Engineering

125

5

Designing Software

Designing implies a special regard for the requirement of

appearance and improvement of marketability by imparting

an attractive appearance with current fashions, within the

margins of variation imposed by the requirements of use and

economy. The importance of consumer appeal in design is

shown by the recent expansion of home design software.

Home design software can assist if you are having a

problem visualizing what you so desire in your home. It is a

compelling tool used in the design planning and building of

the ultimate home. Home design software also goes beyond

what you see in planning books, by customizing your home

design to match your needs!

Before purchasing your home design software research

the different products available and their feature capabilities.

Today a lot of these programmes come with step by step

instructions, wizards, drag and drop down menus with

Digital Architecture Engineering

126

furniture (It allows you to position interior objects such as

beds, chairs and tables, appliances and more within your

floor plan creating a virtual feel for the size, layout and

function of each room), home fixtures, plants to add to plans,

decks and patios and helpful videos.

Most of them also include both a 2-D and 3-D view. Some

of the home design software successfully allows you to

visualize your plan on an actual colour photo. These software

programmes can help you create a brand new home or home

improvement remodeling to your existing home to your

wishes. After you have planned your dream house most home

design software will offer you a 3-D walk through you house.

You can now view how your design looks before implementing.

And remember changes are easy to make however you feel

necessary. If you are happy with what you see it is also

possible to print off colour images. Some home design

software is so advanced it goes as far as calculating beams

and footings etc. As in the case with purchasing all software

ensures you have a support/help centre that can assist with

any glitches. I think an appealing feature of home design

software is that it is fun to utilize, allowing for a gratifying

designing adventure.

Retail Software
Retail trading is the sale of goods in relatively small

quantities which can be fast-selling foodstuffs, toiletries,

clothing or consumer durables. Most retailing is done via

shops or stores and includes the vast numbers of retail

chains. Current trends in retailing is the optimization of

profits and fewer losses, which means it is of the utmost

importance to have the correct and necessary retail software.

Digital Architecture Engineering

127

Therefore depending on the size of the retail store, different

retail software packages are designed to suit different sized

stores.

Regardless of which retail software you purchase there are

a number of common features to look out for:

• Point of sale products: Ensure they are easy to learn

and use, up to date with up to date retail tools,

including bar codes and credit card readers, adaptable

and flexible.

• Customer database: Accurate in storing your

customer’s details such as names and a history of

previous buying.

• Inventory control and Kiosk: This is to avoid creating

disappointment in your customer by being under

stocked at any stage, or overstocked which can be

damaging to the company. Some retail software

programmes can print sales, inventory, low-stock or

over-stock reports to keep you up to date. Some retail

software even comes with features that will remind

you when you need to re-order certain stock.

• Convenience features: With keeping to your goal of

increased sales, convenience features are an added

bonus for e.g. totally touch screen suited.

• Security features: Needs to be incorporated at each

and every level, using passwords to avoid unauthorized

staff making certain transactions, including the date,

time and name of sales person working at specific

check out location.

• Back office functions: Linked to the back office making

their functions easier and more accurate by

transporting all necessary information.

Digital Architecture Engineering

128

If you are able to implement the right retail software you

should constantly be able to view a thorough picture of your

business and ensure you are continuously on top of things.

Thus by keeping you up to date of popular products in your

store, and maybe those that are not selling so great with

your customers, allowing you to make profitable changes.

Stay neck and tie with your competitors and up with the

times, lose cash registers and join the computer revolution

with retail software, it has been determined that it does save

money.

Elements of software design

The design process can be described as the process of

choosing a representation of a solution from a set of

alternatives, given the constraints towards a set of goals. It

can be divided in two phases: diversification and convergence.

The diversification is the phase of generating alternatives.

Not necessarily documents describing a possible solution,

but, at least, on the designer’s mind.

These alternatives are the solution candidates and are

generated/obtained from knowledge, catalogs, or previous

experience. During the convergence phase, the designer

chooses the alternative (or the combination of alternatives)

that meets the intended goals.

The alternative selected will be the solution, which will

meet the constraints imposed by the problem domain. The

solution then may be described using some representation.

The representation chosen must fit its purpose: describe the

solution and the process to build the artifact that reaches

the intended goals.

Digital Architecture Engineering

129

Goals
Design begins with a need. If something is to be designed,

though to be built, it is because the outcome of the design

process will fulfill this need. In Software Engineering, the

necessity starts from a customer who specifies what are her

needs and therefore what are the goals to be achieved with

the software system to be designed.

So, the goal of the design process is to achieve a solution

that will solve the customer’s needs. In software design, goals

are also referred to as requirements. Software design is mainly

concerned on two types of requirements: functional and

nonfunctional requirements.

A functional requirement specifies the functionality that a

system will exhibit. In other words, what the system is to

perform according to the customer. For example, a functional

requirement for a sorting programme is to provide the ability

to sort integers.

Another example could be related to a software system

that manages the inventory of a movie rental store. If we

were to enumerate the functional requirements of a system

like this, among them would be: the ability to search for a

movie by its keywords, the ability to perform a movie rental,

the ability to perform a movie return, and many others.

On the other hand, a nonfunctional requirement specifies

properties or characteristics that a software system must

exhibit other than the observable behaviour [10].

Specifically, it is concerned on how the software will

function. Back to our sorting programme example, a

nonfunctional requirement is the customer’s concern with

the running time of the sorting function (e.g., it is acceptable

Digital Architecture Engineering

130

that the sorting algorithm execution time has the growth

rate of O(nlogn), where n is the size of the input). If we are

talking about the movie rental store software, one

nonfunctional requirement can be described as exposing

some system’s functions, such as the search for movie by its

keywords, to be accessible via browser to its users.

As nonfunctional requirements play an important role on

software architecture, we may return to them in the chapter

on Nonfunctional Requirements, where they will exemplified,

described, and categorized in detail, as well they will be

correlated to their imposers, the system’s stakeholders.

Constraints

A design product must be feasible. Considering this, a

design constraint is the rule, requirement, relation,

convention, or principle that define the context of design, in

order to achieve a feasible design product. Smith and Browne

gave a detailed description of the role of constraints on design

It is important to know that constraints are related to goals,

and sometimes they can even be exchanged. However, in

order to differentiate them, it is also important to understand

that are not only the goals that rule what is to be designed.

In other words, a software system may have clear goals, but

its design, or some possibilities of it, may not be feasible

because of its constraints.

In order to grasp the role of constraints in design, let us

consider two examples. In the first example, despite the

software system has a clear goal, its design is not feasible

due to some of its constraints. In the second, a software

system also has a clear goal, but just a clear design possibility

is constrained.

Digital Architecture Engineering

131

First, consider that a customer describes a simple goal to

be achieved by a system: it must be able to decide whether

its input, a description of another programme, finishes

running or not. An inexperienced software designer might

even try to find a design possibility for this requirement –

but this would be in vain. There is a theoretical constraint in

computer science, widely known as the halting problem,

which forbids a programme to decide whether or not another

programme halts after its execution, thus not allowing

achieving a solution. So, a design was not allowed due to its

constra-ints even with a clear stated goal.

Alternatives

A design alternative is a possibility of solution. Since design

problems often have multiple solutions, since design

problems often have multiple solutions, the designer is

expected to generate multiple design alternatives for a single

problem. We must understand that the designer, after

understanding the problem’s goals and constraints, has two

concerns: the alternative generation and the solution election

among the alternatives. Alternative generation poses the real

challenge for a designer. Unlike decision problems area where

decision alternatives are known or can be discovered through

search methods, design alternatives must be created. This

creation process then must be controlled by design enabling

techniques, and designer’s experiential knowledge and creative

imagination. The solution election is simply the choice of one

of the alternatives that, according to the designer, will best

solve the problem. This choice must be made employing

reasoned analysis and experience. The following subsections

better explain solutions and their representations.

Digital Architecture Engineering

132

Representations
Representations are the language of design. Although the

true product of design is a representation for artifact

construct, representing the solution is not the only purpose

of representation. It also supports the design process. This

support happens by allowing communication between

stakeholders and by serving as a record of commitments.

A design representation allows communication because it

turns alternatives into manipulable products, so they can be

described, analysed, and discussed not only by their author

but also by others. Please observe that there are multiple

dimensions to be represented on a single software design

alternative. These dimensions may comprise runtime

behaviour, structure, and relation between logical entities to

physical entities just to name a few. These dimensions are

often exhibited on different types of representations, which

later we will name them views.

In order to illustrate design representations, let us present

two dimensions of our sorting programme example by using

two different representations. The first representation, Figure

1, shows the structure from a design possibility of our

example using Unified Modeling Language. Observing this

representation, we see how the solution was decomposed,

how each class of the structure relates to each other, or even

see what points could be replaced by ready-made

components, which must implement the same interfaces

specified on the representation. One thing that must be

noticed is that this representation is not self-contained, since

knowledge on UML is needed by the reader to fully

understand this representation.

Digital Architecture Engineering

133

The second representation, Figure, shows the example’s

runtime behaviour when sorting with high level of detail.

Although we cannot see from this representation the same

information presented on the previous one, this enables us

to analyse how the programme will asymptotically behave

according the growth rate of its input. Also, we can have the

notion of how much space is needed to perform the algorithm.

Merge Sort Pseudocode:
function mergesort (m)
var list left,right,result
if length (m) ≤ 1

return m

var middle = length(m) /
for each × in m up to middle

add × to left
for each × in m aftermiddle

add × to right
left = mergesort (left)
right = mergesort (right)
result = merge(left right)
return result
function merge left,right
var list result
while length(left) and length(right)
if first(left) ≤ first(right)
append first(left) to result
left = first (left)
else
append first(right) to result
right = rest(right)
end file

Digital Architecture Engineering

134

if length(left) > 0
append rest(left) to result
if length (right) > 0
append rest (right) to result

return result

Both representations show important aspects of a system’s

design, nevertheless one involved on its development might be

interested on aspects other than its structure or algorithm

asymptotic analysis. As a matter of fact, other representations

might be wanted for other purposes and it is the role of the

design process to provide them.

Solutions
A design solution is nothing more than a description

enabling system construction that uses one or many

representations in order to expose sufficient details. Its

characteristics are listed in the following paragraphs.

Design solutions mirror the problem complexity, usually

having many attributes and interrelationships. We can

observe this characteristic, for example, when designing a

solution for managing the inventory of a DVD rental store.

Whatever the solution is, it must contain attributes such as

movies, DVDs, clients, and genres, which will represent the

elements inherent to the problem.

However, this is not enough. It must also contain relations

such as “a client can rent one or more DVDs”, “a movie have

one or more genres”, or “a DVD must contain one or more

movies”, which will behave just like the relations on the

problem domain. Consequently, when many different

attributes have different interrelationships between

themselves, complexity emerges.

Digital Architecture Engineering

135

It is difficult to validate design solutions. The complexity of

the solution renders many points of possible validation

against design goals.

The very problem resides on how well the design goals are

described. Usually, only high-level goals are specified for very

complex problems, so validation is hardened.

Modular Software Design

In order to produce programs that are readable, reliable,

and can be easily maintained or modified, one must use

modular software design. This means that, instead of having

a large collection of statements strung together in one

partition of in-line code, we segment or divide the statements

into logical groups called modules.

Each module performs one or two tasks, then passes

control to another module. By breaking up the code into

“bite-sized chunks”, so to speak, we are able to better control

the flow of data and control. This is especially true in large

software systems.

Overview of Modular Software Design
We begin with several definitions (Hint: These may be useful

to learn for a future exam) in support of a brief discussion of

software design goals. We then progress to examples of code

segmentation.

Observation
In the early days of computer programming, when people

coded programs in machine code (ones and zeroes), it was quite

difficult to determine programme function and structure from

Digital Architecture Engineering

136

looking at the code. Humans tend to look at problems solved

on a computer in a linguistic sort of way, i.e., expect some

flow of control or data to be expressed in the programming

language. Ones and zeros don’t tell us much, and they certainly

give little indication of programme structure or data/control flow.

Definition
Spaghetti code is the term used for a computer programme

that is not well structured and tends to have highly tangled

flows of data and control.

Example
Most assembly language code and machine code are good

examples of spaghetti code.

The following sample of machine code is illustrative:

110101010010001000111001001

010101001000100001011101001

000111001101110001101101010

001111010010010101011001010

001010101111110100101010001

Clearly, there is very little discernable structure in this

type of code.

Definition In programming languages, the semantic gap is

the difference between the language you use to programme

the hardware (machine code) and the language you would

like to use to programme the computer as a system. We call

the latter, more abstract language a high-level language or HLL.

Observation
Throughout the history of computing, there have been at

least hundreds of attempts to make computer programming

Digital Architecture Engineering

137

languages something like English — easy to read and

implicitly easy to understand. PASCAL is the result of one

such effort. The co-creator of PASCAL, Nicholas Wirth, wanted

to have an HLL that was easy to learn, read, and write.

So, he designed PASCAL around the following concepts:

• PASCAL should close or significantly narrow the

semantic gap.

• Every PASCAL statement should be like a clause in

an English-language sentence.

• The PASCAL programme can be thought of as

a sentence in English (namely, a concatenation of

clauses).

• Names of procedures, data structures, and variables

in PASCAL should be easily recognizable.

Remark. PASCAL facilitates modular coding via:

• Encapsulating code in PROCEDUREs and

FUNCTIONs that constitute a PROGRAMME;

• The use of BEGIN and END statements to define a

functional block of code;

• Strict variable typing (i.e., assigning datatypes such

as integer, real, or string to variables) in support of

parameter passing between procedures; and

• User-friendly syntax that narrows (but does not close)

the semantic gap.

In the 1960s and 1970s, software designers were faced

with large accumulations of spaghetti code from preceding

years. Programs were becoming more complex, and it was

more difficult to keep software running correctly. After trying

various strategies for organizing this morass of code, the

following guidelines for software development emerged:

Digital Architecture Engineering

138

3 *���	���� &������
�� ��� �
��	� �����
������� �	� ����
�
��� ������4��������� ���
�
������ ���� ������

�������

3 .��!���	����2�����
���
������������������
����������
�
3 *���	
	����;�����
���
����������� ���� �
�
����	���
���

�������)����������	����*���������
3 &��	�"	�	����2�����
� ��
�� ���� ��������	�� ��� � ��������

������
3 ��
�����.�	����������(���������
������
	�������������

�����	�� ��� ��
�� ��� ���������� �	� ���������
���
�������������

Clearly written software is often an elusive goal, because

technical programmers tend to prefer cryptic variable names

(e.g., PR2CD$ instead of clear notation such as PRICE).

Furthermore, there are many programmers who do not have

good writing skills, and definitely don’t enjoy writing

documentation. Thus, to be a good programmer, must

concentrate on improving the quality of your software not

only through careful design and programming, but also

through careful documentation. Modular code is easy to

produce from a design, but often hard to produce from

spaghetti code. We discuss this process below, where we show

general examples of code modularization. Modern software

development tools facilitate the generation of modular code,

and often check syntax of programming statements, with

some variable type checking possible. Thus, there exists a

variety of evolving techniques for software design in modular

form.

Concisely written code is important to ensuring proper

programme function. For example, if your code is so tangled

Digital Architecture Engineering

139

that you can’t determine what it does, how easy will it be for

others to understand your work? It is also important not to

create excessively complicated procedures, which are difficult

to debug and maintain, and thus tend to be unreliable.

Software reliability follows from rigorous software design,

checking one’s work, and carefully debugging and testing

the software you write in an incremental fashion.

By incremental development, we mean the construction of a

software system and testing of that software on a piece-by-

piece basis. For example, after you write the lowest-level

routines, you should test them all thoroughly before you write

the functions or procedures that call those routines.

Ease of maintenance follows directly from clarity and

concision. For example, if code can be clearly understood,

then you or others would have no trouble understanding

and modifying its functionality.

Additionally, concise code is easier to maintain because:

3 �������
���

����������#�������������	�
3 �������
���

����������	������������
���
���������	���

���������
3 %����������
��
�������������������
�������������������	�
3 (������������
���������������������
���
�)��
*����
�������

����L
3 2���������
����������� ��������� ��� �����	� ��� �������

���
�����-���������������������
����������������
��

���������

A programme produced by this method could have a

pseudocode representation similar to the following example:
PROCEDURE P1(< args >):

< procedure definition >

Digital Architecture Engineering

140

END-PROC
PROCEDURE P2(< args >):

< procedure definition >
END-PROC
PROCEDURE P3(< args >):

< procedure definition >
END-PROC
PROGRAMME Main:

< declarations and/or executable code >
P1(< args >) #execute P1
< executable code >
P2(< args >) #execute P2
< executable code >
P3(< args >) #execute P3
< executable code >

END-PROG

which portrays the modularity shown in Figure b.

There are other methods that can facilitate conversion of

spaghetti code to modularized code, which include:

3 %����������� ��������	��� �	��������� ������ �
� ����
��������
���������	������������
�,������������������
��1����#�����
��� ���� ���������� �"������ ��� ������ ���� ���� ������
�������	�;- 5�M�)2��2��2�*�� ���
���������

���	��
	���
���������� ���� ������� �������	� �����
�������� ������ ���
���
���������������
�������
����������������
������
���������/��!�	������	�����(����������
����������������
�����������������������
���������������������������
:�������������)���
���
�����������*�

3 (���������� ����� ��������� ��� �����������	�� ������ �������
���� ��������� ���� ��������� ��� ����� �������
�� ����
����
������� ���� ����� ����� ���������
�� ���� ��� �����
��������������������
�
�

3 -
���
����
�����
����������������
����	����������������
�����
��������������

��,�����������1����#��������������"
�����������
�

��������
�������
����	������������
���

Digital Architecture Engineering

141

���� �����
�������

��������
�������
�������
���������

�����!�!�� $��	�"��
���� � ���������� ���� ������
� ���
�

�������
�� ���� ������
� ��� ���� ������
���� ��� ���

��������
�������
����������
���������
�	�!��$��	�"��
�

PASCAL Procedural Organization
PASCAL supports hierarchical programme structure, in

which there is a high-level procedure, often called the main

programme or root procedure. Other procedures are

subordinate to the root procedure, and may call each other,

but usually do not call the root procedure. Each procedure

is comprised ofstatements, which are lines of code that

perform a given function.

The PASCAL language provides three methods for

encapsulating code in procedures. First, the FUNCTION

statement specifies a function that accepts values from its

argument list and returns a value or result through the

function name. Second, the PROCEDURE statement specifies

a procedure that accepts values from its argument list and

returns one or more values through its argument list.

Third, the PROGRAMME statement allows the programmer

to specify high-level source code that calls predefined

procedures to implement a structured software system. We

define these statements as follows:

!+,-+%**$������	���
�����
�
����

Purpose: The Programme statement specifies the name of

a main programme (i.e., the top-level procedure).

Syntax:
PROGRAMME programme-name (input-file , output-

file); where
programme-name denotes the name of the programme

Digital Architecture Engineering

142

input-file denotes the name of the file from which the
programme reads input

output-file denotes the filename to which the programme
writes output.

Example:
PROGRAMME Prog1 (myfile.dat, myfile.rpt);
PROGRAMME Prog1;

Notes: The input and output file names and their associated

parentheses are optional, and may or may not work with

various operating systems (e.g., DOS, UNIX, etc.)

Pascal Programs Have Three Parts
�� 2������������������
������������
������L
�� (�����������������������������
L���
�� ;�������������#�������������

Pascal procedures and functions are also organized in this

way. In this class, it is strongly recommended that you define

all subordinate procedures at the same level in the main

programme. Do not encapsulate procedures within other

procedures, but declare them only in the main programme.

In other words:
DO THIS
MAIN-PROGRAMME
Proc #1 specification

<proc-1 code>
Proc #2 specification

<proc-2 code>
Proc #3 specification

<proc-3 code>
<main-programme code>

END.

NOT THIS
MAIN-PROGRAMME

Proc #1 specification |
Proc #2 specification |
<proc-2 code> |

Digital Architecture Engineering

143

<proc-1 code> |
Proc #3 specification
<proc-3 code>

<main-programme code>
END.

The preceding pseudocode becomes difficult to interpret

visually (and, therefore, difficult to maintain) when Procedure

#2 is defined within Procedure #1. Although this is valid

from the perspective of PASCAL syntax it is not good

programming style, because it decreases readability and,

therefore, increases code maintenance cost.

Function Specification Statement
Purpose: The Function statement specifies the name of a

procedure that inputs values through its argument list and

can be thought of as returning a result through its name.

Syntax:
FUNCTION function-name (argument- 1 ..., a r g u m e n t -

N); where
function-name denotes the name of the function
argument-i denotes the name of the i-th argument of the

function.

Example:
FUNCTION sine(x);
FUNCTION Distance(x,y);

Notes: Do not try to pass output values through the

argument list of a function. This can cause problems in some

PASCAL implementations.

Procedure Specification Statement
Purpose: The Procedure statement specifies the name of a

procedure that can input and output values through its

argument list.

Syntax:
PROCEDURE proc-name (argument- 1 ..., argument-N); where

Digital Architecture Engineering

144

proc-name denotes the name of the procedure
argument-i denotes the name of the i-th

argument of the procedure.

Example:
PROCEDURE sine(x,output);
PROCEDURE Distance(x,y,output);
PROCEDURE Smile;

BEGIN...END Block Specification Statement
Purpose: The BEGIN...END statement delimits a block

of compound statements.
Syntax: BEGIN <statements> END where

statements denotes more than one Pascal
statement.

Example:
BEGIN

WRITELN(‘Hello, world’);
WRITELN(‘Second statement’);
WRITELN(‘Last statement’);

END;

Notes: In the preceding example, each statement ends with

a semicolon (;). Since the PASCAL design philosophy views

each statement as aclause, the semicolon punctuation

convention (adopted from English) is employed.

General Comments
Indentation is used to highlight and clarify programme

structure. For example, each new level of statements should

be indented two or three spaces to the right. When a block

of statements is closed (e.g., with an END statement), then

the indent shifts two or three spaces to the left. Each

statement begins on a new line, except for multiple short

assignment statements that initialize values in a

programme.

In the following section, we consider several examples of

PASCAL procedural code.

Digital Architecture Engineering

145

Writing Modular Code in PASCAL
It is not difficult to use PASCAL module specifications to

write useful programs. Here follows a simple example of the

FUNCTION construct:
PROGRAMME TestFun; {Programme specification}

VAR x: integer; {Declare variable x as
integer}

FUNCTION Xcubed(x); {Function specification}
BEGIN {Function begins here}

Xcubed:= x * x * x; {Function
definition}

END; {Function ends here}
BEGIN {Programme begins here}
x:= 4; {Assign value to x}
WRITELN(‘x3=’, Xcubed(x)); {Print value of

x^3}
END. {Programme ends here}

In the preceding PASCAL code, note that the VAR statement

specifies a variable of a given datatype. In this case, the

variable x is specified as aninteger.

Additionally, the WRITELN statement outputs the

legend x3= to the screen, followed by the value returned by

the function call Xcubed(x). If we preferred not to put the

function call in WRITELN’s argument list, we could rewrite

the preceding code as:
PROGRAMME TestFun; {Programme specification}

VAR x,y: integer; {Declare variables x,y
as integer}

FUNCTION Xcubed(x); {Function specification}
BEGIN {Function begins here}

Xcubed:= x * x * x; {Function
definition}

END; {Function ends here}
BEGIN {Programme begins here}
x:= 4 {Assign value to x}
y:= Xcubed(x); {Assign function output

to y}
WRITELN(‘x3=’, y); {Print value of y}

END. {Programme ends here}

Digital Architecture Engineering

146

Let us replicate the functionality of the preceding code by

using the PROCEDURE construct and passing the output

through a procedural argument instead of a FUNCTION

name, as follows:
PROGRAMME TestFun; {Programme specification}

VAR x,y: integer; {Declare variables x,y
as integer}

PROCEDURE Xcubed(x,y); {Function specification}
BEGIN {Function begins here}
y:= x * x * x; {Function definition -

y gets x^3}
END; {Function ends here}

BEGIN {Programme begins here}
x:= 4 {Assign value to x}
Xcubed(x,y); {Procedure call}
WRITELN(‘x3=’, y); {Print value of y =

x^3}
END. {Programme ends here}

In the preceding programs, the variables x and y have global

scope. That is, their definition as integers held throughout

the main programme and called procedures (the function

was also a called procedure).

In the following section, we shall see that there is a way to

define x and y that makes procedures and functions reusable.

This also facilitates efficiency and reliability in software

development.

PASCAL Variables and Datatypes
Programming languages use abstractions called varia-

bles to store values. Because there are many different types

of values (e.g., integer, real, string, etc.), there exists a method

called datatyping by which one such type can be assigned

to each variable.

PASCAL supports strict typing, that is, the datatype is

assigned to the variable at compile time and does not change

thereafter.

Digital Architecture Engineering

147

In PASCAL, valid datatypes that we will consider in this class

are:

3 ������������������������
����
�����������L
3 &���������������������
����
�"���0������>=$�������L
3 *������
���������������
����
�N6/����N�/L
3 ���	�����-���
������������
��
����
�N6����/L���
3 0�������-���
�����������
��
����
�)�������$�������0*��������"

�����
����� ��	�� 6�����"�����
�����
��������
� ��
��

�����

Most (but not all) compiled languages adopt the strict typing

convention, to simplify compiler design and maintenance.

However, there are some interpreted languages (e.g.,

SNOBOL) that allow flexible datatyping. This can produce

great difficulty when debugging a programme in which a given

variable’s value is type-dependent.

In PASCAL, a variable name is any string of valid PASCAL

characters. We recommend that you use the characters {A-

Z,a-z,0-9,_} for your variable names. The following example

is illustrative:
VALID NAMES INVALID NAMES
Cost, Price $amount, @price
score score+exam-grade

In each case of invalid names, reserved symbols or

characters that have multiple meanings are used in the

name string.

This is bad practice that can lead to compiler errors (i.e.,

your programme won’t compile), or can lead to confusion

when debugging or modifying programs that contain such

names.In PASCAL, variables are typed using the VAR state-

ment, which is described as follows:

Digital Architecture Engineering

148

VAR Specification Statement
Purpose: The VARiable statement specifies the name and

datatype of procedure or programme variables.
Syntax: VAR varname-1...,varname N : datatype)

; where
varname-i denotes the name of the i-th

variable in the list
datatype denotes a valid PASCAL datatype

Example:
VAR x,y,z: integer;
VAR sum,prod: real;
VAR name,ssn: string;

Notes: It is good programming style to specify only one

datatype in each VAR statement. It is also good style not to

continue VAR statements on multiple lines. This makes the

programme easier to read. We next consider the issue of scope

of variables. This issue is discussed in detail in Chapter 6 of

Koffman, the textbook for t12his class, from which we

condense the following discussion. In above, we illustrate

the following procedure nesting hierarchy:
(Nest > (Outer > Inner, Too))

The statements in each procedure operate only on local

variables. This is good programming practice, and facilitates

modularity. If we were to useglobal variables, which are

declared once at the beginning of the main programme and

then hold through all procedures, this would be bad software

engineering practice, because:

3 C����� ������
� ���� ��� �����
���� ��� ����������� ����
��	��������������������	��
�����������	����
���������

3 C�����������
���������������������������
���������	
��������������������
���"�
�����
������������
����������
������������ ���� ������� ��������������� �� �����
�������
������� �������������� ���� ������ ����� ����
���� ���

Digital Architecture Engineering

149

���	��� �
�

������ ��� � ������ �������� ���
� ����
��	
�����
� ���� �����	�� ���������	�� ��� �����������	� ��

�������

In contrast, local variables are easy to trace, since they

are defined in (and manipulated by) one module only. Since

good software engineering practice dictates that modules be

kept small, it is much easier to trace the flow of data and

control in these small modules. And, the modules can be re-

used, because all variable definitions or declarations are local

to the module. Pascal has two rules for determining the scope

of variables (area of influence of a given variable), which are:

3 &!��� �������
������� � ������� �
� ���� ������ ��� ������ ���
��������
���������

Example: A variable declared as type T in some procedure

P is available within P and all its subordinate procedures as

a variable of type T.

3 &!�����������������������������������
��������	����
������� � ���������� 2� ����
� ���� 2� ��� ��� ��
�
���������
���������
��������������������"���������������
�

Example: Suppose we have the procedural definition

hierarchy Main > (P1 > (P1a,P1b), P2)). That is, P1 and P2

are defined within Main and P1a and P1b are defined within

P1. If a variable v is declared within Main as a string but

within P1 as real, then v has the type real in P1, P1a, and

P1b. However, v retains the type string in Main and P2. Good

software engineering practice dictates that all variables be

specified locally in PASCAL, except for Main Programme

variables, which are global by default. As noted above, this

facilitates modularity and portability of PASCAL code, and

makes debugging much easier.

Digital Architecture Engineering

150

Software Development in

Life Cycle Models

The Systems Development Life Cycle (SDLC) is a

conceptual model used in project management that

describes the stages involved in

an information system development project from an initial

feasibility study through maintenance of the

completed application. Various SDLC methodologies have

been developed to guide the processes involved including

the waterfall model (the original SDLC method), rapid

application development (RAD), joint application

development (JAD), the fountain model and the spiral

model. Mostly, several models are combined into some sort

of hybrid methodology. Documentation is crucial regardless

of the type of model chosen or devised for any application,

and is usually done in parallel with the development

process.

�����*���"���
����""������.$�&�&�

Some methods work better for specific types of projects,

but in the final analysis, the most important factor for the

success of a project may be how closely particular plan was

followed. The image above is the classic Waterfall model

Digital Architecture Engineering

151

methodology, which is the first SDLC method and it describes

the various phases involved in development.

Feasibility
The feasibility study is used to determine if the project

should get the go-ahead. If the project is to proceed, the

feasibility study will produce a project plan and budget

estimates for the future stages of development.

Requirement Analysis and Design
Analysis gathers the requirements for the system. This stage

includes a detailed study of the business needs of the

organization. Options for changing the business process may

be considered. Design focuses on high level design like, what

programs are needed and how are they going to interact, low-

level design (how the individual programs are going to work),

interface design (what are the interfaces going to look like)

and data design (what data will be required). During these

phases, the software’s overall structure is defined. Analysis

and Design are very crucial in the whole development cycle.

Any glitch in the design phase could be very expensive to solve

in the later stage of the software development. Much care is

taken during this phase. The logical system of the product is

developed in this phase.

Implementation
In this phase the designs are translated into

code. Computer programs are written using a conventional

programming language or an application generator. Progra-

mming tools like Compilers, Interpreters, Debuggers are used

to generate the code. Different high level programming

Digital Architecture Engineering

152

languages like C, C++, Pascal, Java are used for coding. With

respect to the type of application, the right programming

language is chosen.

Testing
In this phase the system is tested. Normally programs are

written as a series of individual modules, these subject to

separate and detailed test. The system is then tested as a

whole. The separate modules are brought together and tested

as a complete system. The system is tested to ensure that

interfaces between modules work (integration testing), the

system works on the intended platform and with the expected

volume of data (volume testing) and that the system does

what the user requires (acceptance/beta testing).

Maintenance

Inevitably the system will need maintenance. Software will

definitely undergo change once it is delivered to the customer.

There are many reasons for the change. Change could happen

because of some unexpected input values into the system.

In addition, the changes in the system could directly affect

the software operations. The software should be developed

to accommodate changes that could happen during the post

implementation period.

Description

Curtain Raiser
Like any other set of engineering products, software

products are also oriented towards the customer. It is either

market driven or it drives the market. Customer Satisfaction

Digital Architecture Engineering

153

was the buzzword of the 80’s. Customer Delight is today’s

buzzword and Customer Ecstasy is the buzzword of the new

millennium.

Products that are not customer or user friendly have no

place in the market although they are engineered using the

best technology. The interface of the product is as crucial as

the internal technology of the product.

Market Research
A market study is made to identify a potential customer’s

need. This process is also known as market research. Here,

the already existing need and the possible and potential needs

that are available in a segment of the society are studied

carefully. The market study is done based on a lot of

assumptions.

Assumptions are the crucial factors in the development or

inception of a product’s development. Unrealistic

assumptions can cause a nosedive in the entire venture.

Though assumptions are abstract, there should be a move

to develop tangible assumptions to come up with a successful

product.

Research and Development
Once the Market Research is carried out, the customer’s

need is given to the Research & Development division (R&D)

to conceptualize a cost-effective system that could potentially

solve the customer’s needs in a manner that is better than

the one adopted by the competitors at present. Once the

conceptual system is developed and tested in a hypothetical

environment, the development team takes control of it. The

development team adopts one of the software development

Digital Architecture Engineering

154

methodologies that is given below, develops the proposed

system, and gives it to the customer.

The Sales & Marketing division starts selling the

software to the available customers and simultaneously

works to develop a niche segment that could potentially buy

the software. In addition, the division also passes

the feedback from the customers to the developers and the

R&D division to make possible value additions to the product.

While developing a software, the company outsources the

non-core activities to other companies who specialize in those

activities. This accelerates the software development process

largely. Some companies work on tie-ups to bring out a highly

matured product in a short period.

Software Development Models

The following are some basic popular models that are

adopted by many software development firms

3 (
����%�����������9����&	����)(%9&*�;�����
3 2�����	�����;�����
3 !����-����������%�����������;�����
3 &���������-

����	�;�����

System Development Life Cycle Model
A software life cycle model depicts the significant phases or

activities of a software project from conception until the product

is retired. It specifies the relationships between project phases,

including transition criteria, feedback mechanisms, milestones,

baselines, reviews, and deliverables. Typically, a life cycle model

addresses the phases of a software project: requirements phase,

design phase, implementation, integration, testing, operations

Digital Architecture Engineering

155

and maintenance. Much of the motivation behind utilizing a

life cycle model is to provide structure to avoid the problems of

the “undisciplined hacker” or corporate IT bureaucrat (which

is probably ten times dangerous then undisciplined hacker).

As always, it’s a matter of picking the right tool for the job,

rather than picking up your hammer and treating everything

as a nail.

System/Information Engineering and Modeling
As software is always of a large system (or business), work

begins by establishing the requirements for all system elements

and then allocating some subset of these requirements to

software. This system view is essential when the software must

interface with other elements such as hardware, people and

other resources. System is the basic and very critical

requirement for the existence of software in any entity. So if

the system is not in place, the system should be engineered

and put in place. In some cases, to extract the maximum

output, the system should be re-engineered and spruced up.

Once the ideal system is engineered or tuned, the development

team studies the software requirement for the system.

Software Requirement Analysis
This process is also known as feasibility study. In this

phase, the development team visits the customer and studies

their system. They investigate the need for possible software

automation in the given system.

By the end of the feasibility study, the team furnishes a

document that holds the different specific recommendations

for the candidate system. It also includes the personnel

assignments, costs, project schedule, target dates etc.... The

Digital Architecture Engineering

156

requirement gathering process is intensified and focussed

specially on software. To understand the nature of the

programme(s) to be built, the system engineer or “Analyst”

must understand the information domain for the software,

as well as required function, behaviour, performance and

interfacing. The essential purpose of this phase is to find the

need and to define the problem that needs to be solved.

System Analysis and Design
In this phase, the software development process, the

software’s overall structure and its nuances are defined. In

terms of the client/server technology, the number of tiers

needed for the package architecture, the database design,

the data structure design etc... are all defined in this phase.

A software development model is thus created. Analysis

and Design are very crucial in the whole development cycle.

Any glitch in the design phase could be very expensive to

solve in the later stage of the software development. Much

care is taken during this phase. The logical system of the

product is developed in this phase.

Code Generation
The design must be translated into a machine-readable

form. The code generation step performs this task. If the

design is performed in a detailed manner, code generation

can be accomplished without much complication. Progra-

mming tools like compilers, interpreters, debuggers etc...

are used to generate the code.

Different high level programming languages like C, C++,

Pascal, Java are used for coding. With respect to the type of

application, the right programming language is chosen.

Digital Architecture Engineering

157

Testing

Once the code is generated, the software programme testing

begins. Different testing methodologies are available to

unravel the bugs that were committed during the previous

phases. Different testing tools and methodologies are already

available. Some companies build their own testing tools that

are tailor made for their own development operations.

Maintenance

The software will definitely undergo change once it is

delivered to the customer. There can be many reasons for

this change to occur. Change could happen because of some

unexpected input values into the system. In addition, the

changes in the system could directly affect the software

operations. The software should be developed to

accommodate changes that could happen during the post

implementation period.

Prototyping Model
This is a cyclic version of the linear model. In this model,

once the requirement analysis is done and the design for a

prototype is made, the development process gets started.

Once the prototype is created, it is given to the customer

for evaluation. The customer tests the package and gives

his/her feed back to the developer who refines the product

according to the customer’s exact expectation. After a finite

number of iterations, the final software package is given to

the customer.

In this methodology, the software is evolved as a result

of periodic shuttling of information between the customer

and developer. This is the most popular development model in

Digital Architecture Engineering

158

the contemporary IT industry. Most of the successful software

products have been developed using this model - as it is very

difficult (even for a whiz kid!) to comprehend all the

requirements of a customer in one shot.

There are many variations of this model skewed with

respect to the project management styles of the companies.

New versions of a software product evolve as a result of

prototyping.

The goal of prototyping based development is to counter

the first two limitations of the waterfall model discussed

earlier.

The basic idea here is that instead of freezing the

requirements before a design or coding can proceed, a

throwaway prototype is built to understand the requirements.

This prototype is developed based on the currently known

requirements. Development of the prototype obviously

undergoes design, coding and testing.

But each of these phases is not done very formally or

thoroughly. By using this prototype, the client can get an

“actual feel” of the system, since the interactions with

prototype can enable the client to better understand the

requirements of the desired system.

Prototyping is an attractive idea for complicated and large

systems for which there is no manual process or existing

system to help determining the requirements.

In such situations letting the client “plan” with the

prototype provides invaluable and intangible inputs which

helps in determining the requirements for the system. It is

also an effective method to demonstrate the feasibility of a

certain approach.

Digital Architecture Engineering

159

This might be needed for novel systems where it is not

clear those constraints can be met or that algorithms can be

developed to implement the requirements. The process model

of the prototyping approach is shown in the figure below.

�����.�
�
�������-
����

The basic reason for little common use of prototyping is

the cost involved in this built-it-twice approach. However,

some argue that prototyping need not be very costly and can

actually reduce the overall development cost. The prototype

are usually not complete systems and many of the details

are not built in the prototype. The goal is to provide a system

with overall functionality.

In addition, the cost of testing and writing detailed

documents are reduced. These factors helps to reduce the

cost of developing the prototype. On the other hand, the

experience of developing the prototype will very useful for

developers when developing the final system. This experience

helps to reduce the cost of development of the final system

and results in a more reliable and better designed system.

Advantages of Prototyping
Creating software using the prototype model also has its

benefits. One of the key advantages a prototype modeled

software has is the time frame of development. Instead of

concentrating on documentation, more effort is placed in

creating the actual software. This way, the actual software

Digital Architecture Engineering

160

could be released in advance. The work on prototype models

could also be spread to others since there are practically no

stages of work in thismodel. Everyone has to work on the

same thing and at the same time, reducing man hours in

creating a software. The work will even be faster and efficient

if developers will collaborate more regarding the status of a

specific function and develop the necessary adjustments in

time for the integration.

Another advantage of having a prototype modeled software

is that the software is created using lots of user feedbacks.

In every prototype created, users could give their honest

opinion about the software. If something is unfavorable, it

can be changed. Slowly the programme is created with the

customer in mind.

3 .
��
����������	����������������������������
3 ���������
���������
	
��������
��
��
��
��
����������

�������	������������������������
�����	������,��������

������
����������������������
	
���
�
������
����
��
��
�������	�

3 (�����������
�����������	�����������������������
	
���
�
� ���������� ���� �
��
� ���� � ������� �����
������� ��� ���

	
��������������������

3 8����
����������������������������
�����
	
�����
�����

�����	�
����

3 J������� �
��� �������� �
� ������� ������� ��� ������

�������
�

Disadvantages
Implementing the prototype model for creating software

has disadvantages. Since its being built out of concept, most

Digital Architecture Engineering

161

of the models presented in the early stage are not complete.

Usually they lack flaws that developers still need to work on

them again and again. Since the prototype changes from time

to time, it’s a nightmare to create a document for this

software. There are many things that are removed, changed

and added in a single update of the prototype and

documenting each of them has been proven difficult.

There is also a great temptation for most developers to

create a prototype and stick to it even though it has flaws.

Since prototypes are not yet complete software programs,

there is always a possibility of a designer flaw. When flawed

software is implemented, it could mean losses of important

resources.

Lastly, integration could be very difficult for a

prototype model. This often happens when other programs

are already stable. The prototype software is released and

integrated to the company’s suite of software. But if there’s

something wrong the prototype, changes are required not

only with the software. It’s also possible that the stable

software should be changed in order for them to be integrated

properly.

Prototype Models Types
There are four types of Prototype Models based on

their development planning: the Patch-Up Prototype,

Nonoperational Prototype, First-of-a-Series Prototype and

Selected Features Prototype.

Patch Up Prototype
This type of Prototype Model encourages cooperation of

different developers. Each developer will work on a specific

Digital Architecture Engineering

162

part of the programme. After everyone has done their part,

the programme will be integrated with each other resulting

in a whole new programme. Since everyone is working on a

dif ferent field, Patch Up Prototype is a fast

development model. If each developer is highly skilled, there

is no need to overlap in a specific function of work.

This type of software development model only needs a

strong project manager who can monitor the development of

the programme. The manager will control the work flow and

ensure there is no overlapping of functions among different

developers.

Non-Operational Prototype
A non-operational prototype model is used when only a

certain part of the programme should be updated. Although

it’s not a fully operational programme, the specific part of

the programme will work or could be tested as planned. The

main software or prototype is not affected at all as the dummy

programme is applied with the application.

Each developer who is assigned with different stages will

have to work with the dummy prototype. This prototype is

usually implemented when certain problems in a specific

part of the programme arises. Since the software could be in

a prototype mode for a very long time, changing and

maintenance of specific parts is very important. Slowly it

has become a smart way of creating software by introducing

small functions of the software.

First of a Series Prototype
Known as a beta version, this Prototype Model could be

very efficient if properly launched. In all beta versions, the

Digital Architecture Engineering

163

software is launched and even introduced to the public for

testing. It’s fully functional software but the aim of being in

beta version is to as for feedbacks, suggestions or even

practicing the firewall and security of the software.

It could be very successful if the First of a Series Prototype

is properly done. But if the programme is half heartedly done,

only aiming for additional concept, it will be susceptible to

different hacks, ultimately backfiring and destroying the

prototype.

Selected Features Prototype

This is another form of releasing software in beta version.

However, instead of giving the public the full version of the

software in beta, only selected features or limited access to

some important tools in the programme is introduced.

Selected Features Prototype is applied to software that are

part of a bigger suite of programs. Those released are

independent of the suite but the full version should integrate

with other software. This is usually done to test the

independent feature of the software.

Rapid Application Development
(RAD) Model

The RAD modelis a linear sequential software development

process that emphasizes an extremely short development

cycle.

The RAD model is a “high speed” adaptation of the linear

sequential model in which rapid development is achieved by

using a component-based construction approach. Used

primarily for information systems applications, the RAD

approach encompasses the following phases:

Digital Architecture Engineering

164

Business Modeling

The information flow among business functions is modeled

in a way that answers the following questions:

3 <�������������������
�������
���

������

O
3 <���������������
���������O�
3 <����������
���O�
3 <��������
������������������O
3 <��������

�
���O

Data Modeling

The information flow defined as part of the business

modeling phase is refined into a set of data objects that are

needed to support the business. The characteristic (called

attributes) of each object is identified and the relationships

between these objects are defined.

Process Modeling
The data objects defined in the data-modeling phase are

transformed to achieve the information flow necessary to

implement a business function. Processing the descriptions

are created for adding, modifying, deleting, or retrieving a

data object.

Application Generation
The RAD model assumes the use of the RAD tools like VB,

VC++, Delphi etc... rather than creating software using

conventional third generation programming languages. The

RAD model works to reuse existing programme components

(when possible) or create reusable components (when

necessary). In all cases, automated tools are used to facilitate

construction of the software.

Digital Architecture Engineering

165

Testing and Turnover
Since the RAD process emphasizes reuse, many of the

programme components have already been tested. This

minimizes the testing and development time.

Component Assembly Model
Object technologies provide the technical framework for a

component-based process model for software engineering.

The object oriented paradigm emphasizes the creation of

classes that encapsulate both data and the algorithm that

are used to manipulate the data. If properly designed and

implemented, object oriented classes are reusable across

different applicationsand computer based system

architectures. Component Assembly Model leads to software

reusability. The integration/assembly of the already existing

software components accelerate the development process.

Nowadays many component libraries are available on the

Internet. If the right components are chosen, the integration

aspect is made much simpler.

All these different software development models have their

own advantages and disadvantages. Nevertheless, in the

contemporary commercial software evelopment world,

the fusion of all these methodologies is incorporated. Timing

is very crucial in software development.

If a delay happens in the development phase, the market

could be taken over by the competitor. Also if a ‘bug’ filled

product is launched in a short period of time (quicker than

the competitors), it may affect the reputation of the company.

So, there should be a tradeoff between the development time

and the quality of the product. Customers don’t expect a

bug free product but they expect a user-friendly product.

Digital Architecture Engineering

166

Software life cycle models

Waterfall model
The least flexible of the life cycle models. Still it is well

suited to projects which have a well defined architecture and

established user interface and performance requirements.

The waterfall model does work for certain problem

domains, notably those where the requirements are well

understood in advance and unlikely to change significantly

over the course of development.

Software products are oriented towards customers like any

other engineering products. It is either driver by market or it

drives the market. Customer Satisfaction was the main aim

in the 1980’s. Customer Delight is today’s logo and Customer

Ecstasy is the new buzzword of the new millennium. Products

which are not customer oriented have no place in the market

although they are designed using the best technology. The

front end of the product is as crucial as the internal

technology of the product.

A market study is necessary to identify a potential

customer’s need. This process is also called as market

research. The already existing need and the possible future

needs that are combined together for study.

A lot of assumptions are made during market study.

Assumptions are the very important factors in the

development or start of a product’s development. The

assumptions which are not realistic can cause a nosedive in

the entire venture.

Although assumptions are conceptual, there should be a

move to develop tangible assumptions to move towards a

Digital Architecture Engineering

167

successful product. Once the Market study is done, the

customer’s need is given to the Research and Development

Department to develop a cost-effective system that could

potentially solve customer’s needs better than the

competitors.

Once the system is developed and tested in a hypothetical

environment, the development team takes control of it. The

development team adopts one of the software development

models to develop the proposed system and gives it to the

customers.

�����D����"����E�"��	�����-
����

Advantages
3 (����������
	�����
��
3 8
	� ��� ����� ���� ��� ���� �������	� ��� ���� ������ P� ���

��
���
�
������������������
�����������������

�
3 2�
�
���������

����������������������������
3 <���
� ����� ����
������ ���:���
� ������ ��,��������
� ��

���	�����������
�����

Disadvantages
3 -�:�
�����
����������������������	����������������:���
3 5����������
��������
�����������������������������������

�	����

Digital Architecture Engineering

168

3 6���������
������
��������������	�
3 2��������������������#������:���"������������:���
�
3 2���������������������������������:���
�
3 2������������������,��������
����������������������

��
�������������

Extreme programming (XP)
Is the latest incarnation of Waterfall model and is the most

recent software fad. Most postulates of Extreme programming

are pure fantasy. It has been well known for a long time

that big bang or waterfall models don’t work well on projects

with complex or shifting requirements.

The same is true for XP. Too many shops implement XP as

an excuse for not understanding the user requirements. XP

try improve classic waterfall model by trying to start coding

as early as possible but without creating a full-fledged

prototype as the first stage. In this sense it can be considered

to be variant of evolutionary prototyping (see below). Often

catch phase “Emergent design” is used instead of evolutionary

prototyping. It also introduces a very questionable idea of

pair programming as an attempt to improve extremely poor

communication between developers typical for large projects.

While communication in large projects is really critical and

attempts to improve it usually pay well, “pair programming”

is a questionable strategy.

There are two main problems here:

�� � ����	������������

������
������������������������
��H�����������	
��� �
� ������������������������������� ����� ����������
������5��
���������������� �
������� ���������������
���

Digital Architecture Engineering

169

:����
������������
����
�����,��
����
����������	������� �
:�
�� �������
� ���� ������ ��� ������������� ������� ���� ����
,����	���������;����
���/
�����������������
�����������
�����������
����������
������������������������
���
�
�

�� ���� ����� ����� ��� ��� ��
��������
� �����
� ������� ����� ��
����������� ��� ����
�� ��
���� �
� ���������� ���������

���������������
����������������������
��������������
���������������������
�������������
�����������������	
�������
� ,����	�� ���
� ����������� ��� ���������
���
�������
� �
�� ����	����� ����
�	������
��� ��������

��������;����
����7�������������
�������������
	
���
�

Throwaway prototyping model
Typical implementation language is scripting language and

Unix shell (due to availability huge amount of components

that can be used for construction of the prototype).

Spiral model
The spiral model is a variant of “dialectical spiral” and as

such provides useful insights into the life cycle of the system.

Can be considered as a generalization of the proto-

typing model.

That why it is usually implemented as a variant of

prototyping model with the first iteration being a prototype.

The spiral model is similar to the incremental model, with

more emphases placed on risk analysis.

The spiral model has four phases: Planning, Risk Analysis,

Engineering and Evaluation. A software project repeatedly

passes through these phases in iterations (called Spirals in

this model). The baseline spiral, starting in the planning

phase, requirements are gathered and risk is assessed.

Digital Architecture Engineering

170

Each subsequent spirals builds on the baseline spiral.

Requirements are gathered during the planning phase. In the

risk analysis phase, a process is undertaken to identify risk

and alternate solutions.

A prototype is produced at the end of the risk analysis phase.

Software is produced in the engineering phase, along with

testing at the end of the phase. The evaluation phase allows

the customer to evaluate the output of the project to date

before the project continues to the next spiral. In the spiral

model, the angular component represents progress, and the

radius of the spiral represents cost.

�����1������E�"��	�����-
����

Advantages
3 6���������������
����	
�

3 C������������������

���"�����������:���
�
3 (��������
�������������	��������
�������������	����

Digital Architecture Engineering

171

Disadvantages
3 &��������
��	�����������
��
3 !�
����	
�
���,����
������	�
���������#�����
��
3 2��:���/
�
����

� �
������	�������������� ���� ��
����	
�

��
��
3 %��
�/����������������
���������:���
�

Evolutionary prototyping model
This is kind of mix of Waterfall model and prototyping.

Presuppose gradual refinement of the prototype until a usable

product emerge. Might be suitable in projects where the main

problem is user interface requirements, but internal

architecture is relatively well established and static. Can help

to cope with organizational sclerosis. One variant involves

so called “binary” software implementation model using a

scripting language plus statically typed language.

In this case system first is coded in a scripting language

and then gradually critical components are rewritten in the

lower language.

OSS development model
It is the latest variant of evolutionary prototype model.

The “waterfall model” was probably the first published model

and as a specific model for military it was not as naive as

some proponents of other models suggest.

The model was developed to help cope with the increasing

complexity of aerospace products. The waterfall model

followed a documentation driven paradigm.

Prototyping model was probably the first realistic of early

models because many aspects of the syst4m are unclear until

Digital Architecture Engineering

172

a working prototype is developed. A better model, the “spiral

model” was suggested by Boehm in 1985. The spiral model

is a variant of “dialectical spiral” and as such provides useful

insights into the life cycle of the system.

But it also presuppose unlimited resources for the project.

No organization can perform more then a couple iterations

during the initial development of the system. the first iteration

is usually called prototype.

Prototype based development requires more talented

managers and good planning while waterfall model works

(or does not work) with bad or stupid managers works just

fine as the success in this model is more determined by the

nature of the task in hand then any organizational

circumstances.

Like always humans are flexible and programmer in

waterfall model can use guerilla methods of enforcing a

sound architecture as manager is actually a hostage of the

model and cannot afford to look back and re-implement

anything substantial.

Because the life cycle steps are described in very general

terms, the models are adaptable and their implementation

details will vary among different organizations.

The spiral model is the most general. Most life cycle models

can in fact be derived as special instances of the spiral model.

Organizations may mix and match different life cycle models

to develop a model more tailored to their products and

capabilities.

There is nothing wrong about using waterfall model for

some components of the complex project that are relatively

well understood and straightforward. But mixing and

Digital Architecture Engineering

173

matching definitely needs a certain level of software

management talent.

V-Shaped Model
Just like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must

be completed before the next phase begins. Testing is

emphasized in this model more so than the waterfall model

though.

The testing procedures are developed early in the life cycle

before any coding is done, during each of the phases preceding

implementation. Requirements begin the life cycle model just

like the waterfall model. Before development is started, a system

test plan is created. The test plan focuses on meeting the

functionality specified in the requirements gathering. The high-

level design phase focuses on system architecture and design.

An integration test plan is created in this phase as well in order

to test the pieces of the software systems ability to work together.

The low-level design phase is where the actual software

components are designed, and unit tests are created in this

phase as well. The implementation phase is, again, where all

coding takes place. Once coding is complete, the path of

execution continues up the right side of the V where the test

plans developed earlier are now put to use.

Digital Architecture Engineering

174

Advantages
3 (����������
	�����
��
3 8�����
���
�
������������������
�
3 6���������������
����

������������������������������

���������������������
�����
����	���������������������	����
3 <���
����������
�������:���
���������,��������
�����
��	

�����
�����

Disadvantages
3 B��	�������������������������������
3 9������ ���#������	� ��� �:�
�����
����� �
� ���������� ��

�#���
����
3 (������� �
� ���������� ������� ���� �������������� ��
��

��������	�������	��
��������
�������������������
3 ;����� ���
�/�� �������� � ����� ���� ���� �������
� �����

���������
�������
�
�

Incremental Model
The incremental model is an intuitive approach to the

waterfall model. Multiple development cycles take place here,

making the life cycle a “multi-waterfall” cycle. Cycles are

divided up into smaller, more easily managed iterations.

Each iteration passes through the requirements, design,

implementation and testing phases. A working version of

software is produced during the first iteration, so you have

working software early on during the software life cycle.

Subsequent iterations build on the initial software produced

during the first iteration.

Digital Architecture Engineering

175

�����)�����������E�"��	�����-
����

Advantages
3 C������
���������
�������,�����	�������	�����������

�������������	����
3 .�������/	"����9�

���
��	����������
����������,��������
�
3 8
���������
�������������������
���������������
3 8
���� �������� ��
�� ����
�� ��
�	� �����
� ��� ����������

�������������������
����������
3 8�������������
����
��	�����������
�����

Disadvantages
3 8�����
�����������������
���������������������������

������
3 2������
� �	� ��
�� ���������� ���
	
���� �����������

����
�����������,��������
����������������������������
�������
�������������	����

Digital Architecture Engineering

176

6

Systems Architecture Engineering

Systems engineering is an interdisciplinary field of

engineering that focuses on how complex engineering projects

should be designed and managed over the life cycle of the

project. Issues such as logistics, the coordination of different

teams, and automatic control of machinery become more

difficult when dealing with large, complex projects. Systems

engineering deals with work-processes and tools to handle

such projects, and it overlaps with both technical and human-

centered disciplines such as control engineering, industrial

engineering, organizational studies, and project management.

History
The term systems engineering can be traced back to Bell

Telephone Laboratories in the 1940s. The need to identify

and manipulate the properties of a system as a whole, which

in complex engineering projects may greatly differ from the

sum of the parts’ properties, motivated the Department of

Digital Architecture Engineering

177

Defense, NASA, and other industries to apply the discipline.

When it was no longer possible to rely on design evolution to

improve upon a system and the existing tools were not

sufficient to meet growing demands, new methods began to

be developed that addressed the complexity directly. The

evolution of systems engineering, which continues to this

day, comprises the development and identification of new

methods and modeling techniques. These methods aid in

better comprehension of engineering systems as they grow

more complex. Popular tools that are often used in the

systems engineering context were developed during these

times, including USL, UML, QFD, and IDEF0. In 1990, a

professional society for systems engineering, the National

Council on Systems Engineering (NCOSE), was founded by

representatives from a number of U.S. corporations and

organizations. NCOSE was created to address the need for

improvements in systems engineering practices and

education.

As a result of growing involvement from systems engineers

outside of the U.S., the name of the organization was changed

to the International Council on Systems Engineering

(INCOSE) in 1995. Schools in several countries offer graduate

programmes in systems engineering, and continuing

education options are also available for practicing engineers.

Concept
Systems engineering signifies both an approach and, more

recently, a discipline in engineering. The aim of education in

systems engineering is to simply formalize the approach and

in doing so, identify new methods and research opportunities

similar to the way it occurs in other fields of engineering. As

Digital Architecture Engineering

178

an approach, systems engineering is holistic and

interdisciplinary in flavour.

Origins and Traditional Scope
The traditional scope of engineering embraces the design,

development, production and operation of physical systems,

and systems engineering, as originally conceived, falls within

this scope. “Systems engineering”, in this sense of the term,

refers to the distinctive set of concepts, methodologies,

organizational structures (and so on) that have been

developed to meet the challenges of engineering functional

physical systems of unprecedented complexity. The Apollo

programme is a leading example of a systems engineering

project.

The use of the term “ system engineer “ has evolved over

time to embrace a wider, more holistic concept of “systems”

and of engineering processes. This evolution of the definition

has been a subject of ongoing controversy [9], and the term

continues to be applied to both the narrower and broader

scope.

Holistic View
Systems engineering focuses on analyzing and eliciting

customer needs and required functionality early in the

development cycle, documenting requirements, then

proceeding with design synthesis and system validation while

considering the complete problem, the system lifecycle. Oliver

et al. claim that the systems engineering process can be

decomposed into

• a Systems Engineering Technical Process, and

• a Systems Engineering Management Process.

Digital Architecture Engineering

179

Within Oliver’s model, the goal of the Management Process

is to organize the technical effort in the lifecycle, while the

Technical Process includes assessing available information,

defining effectiveness measures, to create a behaviour model,

create a structure model, perform trade-off analysis, and create

sequential build & test plan. Depending on their application,

although there are several models that are used in the

industry, all of them aim to identify the relation between the

various stages mentioned above and incorporate feedback.

Examples of such models include the Waterfall model and

the VEE model.

Interdisciplinary Field
System development often requires contribution from

diverse technical disciplines. By providing a systems (holistic)

view of the development effort, systems engineering helps

mold all the technical contributors into a unified team effort,

forming a structured development process that proceeds from

concept to production to operation and, in some cases, to

termination and disposal. This perspective is often replicated

in educational programmes in that systems engineering

courses are taught by faculty from other engineering

departments which, in effect, helps create an interdisciplinary

environment.

Managing Complexity
The need for systems engineering arose with the increase

in complexity of systems and projects, in turn exponentially

increasing the possibility of component friction, and therefore

the reliability of the design. When speaking in this context,

complexity incorporates not only engineering systems, but

Digital Architecture Engineering

180

also the logical human organization of data. At the same

time, a system can become more complex due to an increase

in size as well as with an increase in the amount of data,

variables, or the number of fields that are involved in the

design. The International Space Station is an example of such

a system. The development of smarter control algorithms,

microprocessor design, and analysis of environmental

systems also come within the purview of systems engineering.

Systems engineering encourages the use of tools and methods

to better comprehend and manage complexity in systems.

Some examples of these tools can be seen here:

• System model, Modeling, and Simulation,

• System architecture,

• Optimization,

• System dynamics,

• Systems analysis,

• Statistical analysis,

• Reliability analysis, and

• Decision making

Taking an interdisciplinary approach to engineering

systems is inherently complex since the behaviour of and

interaction among system components is not always

immediately well defined or understood.

Defining and characterizing such systems and subsystems

and the interactions among them is one of the goals of

systems engineering. In doing so, the gap that exists between

informal requirements from users, operators, marketing

organizations, and technical specifications is successfully

bridged.

Digital Architecture Engineering

181

Scope
One way to understand the motivation behind systems

engineering is to see it as a method, or practice, to identify

and improve common rules that exist within a wide variety

of systems. Keeping this in mind, the principles of systems

engineering — holism, emergent behaviour, boundary, et al.

— can be applied to any system, complex or otherwise,

provided systems thinking is employed at all levels. Besides

defense and aerospace, many information and technology

based companies, software development firms, and industries

in the field of electronics & communications require systems

engineers as part of their team. An analysis by the INCOSE

Systems Engineering center of excellence (SECOE) indicates

that optimal effort spent on systems engineering is about

15-20% of the total project effort. At the same time, studies

have shown that systems engineering essentially leads to

reduction in costs among other benefits. However, no

quantitative survey at a larger scale encompassing a wide

variety of industries has been conducted until recently. Such

studies are underway to determine the effectiveness and

quantify the benefits of systems engineering. Systems

engineering encourages the use of modeling and simulation

to validate assumptions or theories on systems and the

interactions within them.

Use of methods that allow early detection of possible

failures, in safety engineering, are integrated into the design

process. At the same time, decisions made at the beginning

of a project whose consequences are not clearly understood

can have enormous implications later in the life of a system,

and it is the task of the modern systems engineer to explore

Digital Architecture Engineering

182

these issues and make critical decisions. There is no method

which guarantees that decisions made today will still be valid

when a system goes into service years or decades after it is

first conceived but there are techniques to support the

process of systems engineering. Examples include the use

of soft systems methodology, Jay Wright Forrester’s System

dynamics method and the Unified Modeling Language (UML),

each of which are currently being explored, evaluated and

developed to support the engineering decision making

process.

Education
Education in systems engineering is often seen as an

extension to the regular engineering courses, reflecting the

industry attitude that engineering students need a

foundational background in one of the traditional engineering

disciplines (e.g. automotive engineering, mechanical

engineering, industrial engineering, computer engineering,

electrical engineering) plus practical, real-world experience

in order to be effective as systems engineers. Undergraduate

university programmes in systems engineering are rare.

INCOSE maintains a continuously updated Directory of

Systems Engineering Academic Programmes worldwide. As

of 2006, there are about 75 institutions in United States

that offer 130 undergraduate and graduate programmes in

systems engineering. Education in systems engineering can

be taken as SE-centric or Domain-centric.

• SE-centric programmes treat systems engineering as

a separate discipline and all the courses are taught

focusing on systems engineering practice and

techniques.

Digital Architecture Engineering

183

• Domain-centric programmes offer systems engineering

as an option that can be exercised with another

major field in engineering.

Both these patterns cater to educate the systems engineer

who is able to oversee interdisciplinary projects with the depth

required of a core-engineer.

Systems Engineering Topics
Systems engineering tools are strategies, procedures, and

techniques that aid in performing systems engineering on a

project or product. The purpose of these tools vary from

database management, graphical browsing, simulation, and

reasoning, to document production, neutral import/export

and more.

System
There are many definitions of what a system is in the field

of systems engineering. Below are a few authoritative

definitions:

• ANSI/EIA-632-1999: “An aggregation of end products

and enabling products to achieve a given purpose.”

• IEEE Std 1220-1998: “A set or arrangement of

elements and processes that are related and whose

behaviour satisfies customer/operational needs and

provides for life cycle sustainment of the products.”

• ISO/IEC 15288:2008: “A combination of interacting

elements organized to achieve one or more stated

purposes.”

• NASA Systems Engineering Handbook: “(1) The

combination of elements that function together to

Digital Architecture Engineering

184

produce the capability to meet a need. The elements

include all hardware, software, equipment, facilities,

personnel, processes, and procedures needed for this

purpose. (2) The end product (which performs

operational functions) and enabling products (which

provide life-cycle support services to the operational

end products) that make up a system.”

• INCOSE Systems Engineering Handbook:

“homogeneous entity that exhibits predefined

behaviour in the real world and is composed of

heterogeneous parts that do not individually exhibit

that behaviour and an integrated configuration of

components and/or subsystems.”

• INCOSE: “A system is a construct or collection of

different elements that together produce results not

obtainable by the elements alone. The elements, or

parts, can include people, hardware, software,

facilities, policies, and documents; that is, all things

required to produce systems-level results. The results

include system level qualities, properties,

characteristics, functions, behaviour and

performance. The value added by the system as a

whole, beyond that contributed independently by the

parts, is primarily created by the relationship among

the parts; that is, how they are interconnected.”

The Systems Engineering Process
Depending on their application, tools are used for various

stages of the systems engineering process:

Digital Architecture Engineering

185

Using Models
Models play important and diverse roles in systems

engineering. A model can be defined in several ways, including:

• An abstraction of reality designed to answer specific

questions about the real world

• An imitation, analogue, or representation of a real

world process or structure; or

• A conceptual, mathematical, or physical tool to assist

a decision maker.

Together, these definitions are broad enough to encompass

physical engineering models used in the verification of a

system design, as well as schematic models like a functional

flow block diagram and mathematical (i.e., quantitative)

models used in the trade study process. This section focuses

on the last. The main reason for using mathematical models

and diagrams in trade studies is to provide estimates of

system effectiveness, performance or technical attributes,

and cost from a set of known or estimable quantities.

Typically, a collection of separate models is needed to provide

all of these outcome variables. The heart of any mathematical

model is a set of meaningful quantitative relationships among

its inputs and outputs. These relationships can be as simple

as adding up constituent quantities to obtain a total, or as

complex as a set of differential equations describing the

trajectory of a spacecraft in a gravitational field. Ideally, the

relationships express causality, not just correlation.

Tools for Graphic Representations
Initially, when the primary purpose of a systems engineer

is to comprehend a complex problem, graphic representations

Digital Architecture Engineering

186

of a system are used to communicate a system’s functional

and data requirements. Common graphical representations

include:

• Functional Flow Block Diagram (FFBD)

• VisSim

• Data Flow Diagram (DFD)

• N2 (N-Squared) Chart

• IDEF0 Diagram

• UML Use case diagram

• UML Sequence diagram

• USL Function Maps and Type Maps.

• Enterprize Architecture frameworks, like TOGAF,

MODAF, Zachman Frameworks etc.

A graphical representation relates the various subsystems

or parts of a system through functions, data, or interfaces.

Any or each of the above methods are used in an industry

based on its requirements. For instance, the N2 chart may

be used where interfaces between systems is important. Part

of the design phase is to create structural and behavioural

models of the system. Once the requirements are understood,

it is now the responsibility of a systems engineer to refine

them, and to determine, along with other engineers, the best

technology for a job.

At this point starting with a trade study, systems

engineering encourages the use of weighted choices to

determine the best option. A decision matrix, or Pugh method,

is one way (QFD is another) to make this choice while

considering all criteria that are important. The trade study

in turn informs the design which again affects the graphic

Digital Architecture Engineering

187

representations of the system (without changing the

requirements). In an SE process, this stage represents the

iterative step that is carried out until a feasible solution is

found. A decision matrix is often populated using techniques

such as statistical analysis, reliability analysis, system

dynamics (feedback control), and optimization methods. At

times a systems engineer must assess the existence of feasible

solutions, and rarely will customer inputs arrive at only one.

Some customer requirements will produce no feasible

solution. Constraints must be traded to find one or more

feasible solutions.

The customers’ wants become the most valuable input to

such a trade and cannot be assumed. Those wants/desires

may only be discovered by the customer once the customer

finds that he has overconstrained the problem. Most

commonly, many feasible solutions can be found, and a

sufficient set of constraints must be defined to produce an

optimal solution.

This situation is at times advantageous because one can

present an opportunity to improve the design towards one

or many ends, such as cost or schedule. Various modeling

methods can be used to solve the problem including

constraints and a cost function. Systems Modeling Language

(SysML), a modeling language used for systems engineering

applications, supports the specification, analysis, design,

verification and validation of a broad range of complex

systems. Universal Systems Language (USL) is a systems

oriented object modeling language with executable (computer

independent) semantics for defining complex systems,

including software.

Digital Architecture Engineering

188

Related Fields and Sub-fields
Many related fields may be considered tightly coupled to

systems engineering. These areas have contributed to the

development of systems engineering as a distinct entity.

Cognitive Systems Engineering
Cognitive systems engineering (CSE) is a specific approach

to the description and analysis of human-machine systems

or sociotechnical systems. The three main themes of CSE

are how humans cope with complexity, how work is

accomplished by the use of artefacts, and how human-

machine systems and socio-technical systems can be

described as joint cognitive systems.

CSE has since its beginning become a recognised scientific

discipline, sometimes also referred to as Cognitive

Engineering. The concept of a Joint Cognitive System (JCS)

has in particular become widely used as a way of

understanding how complex socio-technical systems can be

described with varying degrees of resolution. The more than

20 years of experience with CSE has been described

extensively.

Configuration Management
Like systems engineering, Configuration Management as

practiced in the defence and aerospace industry is a broad

systems-level practice. The field parallels the taskings of

systems engineering; where systems engineering deals with

requirements development, allocation to development items

and verification, Configuration Management deals with

requirements capture, traceability to the development item,

and audit of development item to ensure that it has achieved

Digital Architecture Engineering

189

the desired functionality that systems engineering and/or

Test and Verification Engineering have proven out through

objective testing.

Control Engineering
Control engineering and its design and implementation of

control systems, used extensively in nearly every industry,

is a large sub-field of systems engineering. The cruise control

on an automobile and the guidance system for a ballistic

missile are two examples. Control systems theory is an active

field of applied mathematics involving the investigation of

solution spaces and the development of new methods for the

analysis of the control process.

Industrial Engineering
Industrial engineering is a branch of engineering that

concerns the development, improvement, implementation

and evaluation of integrated systems of people, money,

knowledge, information, equipment, energy, material and

process. Industrial engineering draws upon the principles

and methods of engineering analysis and synthesis, as well

as mathematical, physical and social sciences together with

the principles and methods of engineering analysis and design

to specify, predict and evaluate the results to be obtained

from such systems.

Interface Design
Interface design and its specification are concerned with

assuring that the pieces of a system connect and inter-

operate with other parts of the system and with external

systems as necessary. Interface design also includes assuring

Digital Architecture Engineering

190

that system interfaces be able to accept new features,

including mechanical, electrical and logical interfaces,

including reserved wires, plug-space, command codes and

bits in communication protocols. This is known as

extensibility. Human-Computer Interaction (HCI) or Human-

Machine Interface (HMI) is another aspect of interface design,

and is a critical aspect of modern systems engineering.

Systems engineering principles are applied in the design of

network protocols for local-area networks and wide-area

networks.

Mechatronic Engineering
Mechatronic engineering, like Systems engineering, is a

multidisciplinary field of engineering that uses dynamical

systems modeling to express tangible constructs. In that

regards it is almost indistinguishable from Systems

Engineering, but what sets it apart is the focus on smaller

details rather than larger generalizations and relationships.

As such, both fields are distinguished by the scope of their

projects rather than the methodology of their practice.

Operations Research
Operations research supports systems engineering. The

tools of operations research are used in systems analysis,

decision making, and trade studies. Several schools teach

SE courses within the operations research or industrial

engineering department, highlighting the role systems

engineering plays in complex projects. Operations research,

briefly, is concerned with the optimization of a process under

multiple constraints.

Digital Architecture Engineering

191

Performance Engineering
Performance engineering is the discipline of ensuring a

system will meet the customer’s expectations for performance

throughout its life. Performance is usually defined as the

speed with which a certain operation is executed or the

capability of executing a number of such operations in a

unit of time. Performance may be degraded when an

operations queue to be executed is throttled when the

capacity is of the system is limited. For example, the

performance of a packet-switched network would be

characterised by the end-to-end packet transit delay or the

number of packets switched within an hour. The design of

high-performance systems makes use of analytical or

simulation modeling, whereas the delivery of high-

performance implementation involves thorough performance

testing. Performance engineering relies heavily on statistics,

queueing theory and probability theory for its tools and

processes.

Programme Management and Project
Management

Programme management (or programme management) has

many similarities with systems engineering, but has broader-

based origins than the engineering ones of systems

engineering. Project management is also closely related to

both programme management and systems engineering.

Proposal Engineering
Proposal engineering is the application of scientific and

mathematical principles to design, construct, and operate a

cost-effective proposal development system. Basically,

Digital Architecture Engineering

192

proposal engineering uses the “systems engineering process”

to create a cost effective proposal and increase the odds of a

successful proposal.

Reliability Engineering
Reliability engineering is the discipline of ensuring a system

will meet the customer’s expectations for reliability

throughout its life; i.e. it will not fail more frequently than

expected. Reliability engineering applies to all aspects of the

system.

It is closely associated with maintainability, availability

and logistics engineering. Reliability engineering is always a

critical component of safety engineering, as in failure modes

and effects analysis (FMEA) and hazard fault tree analysis,

and of security engineering. Reliability engineering relies

heavily onstatistics, probability theory and reliability theory

for its tools and processes.

Safety Engineering
The techniques of safety engineering may be applied by

non-specialist engineers in designing complex systems to

minimize the probability of safety-critical failures. The

“System Safety Engineering” function helps to identify “safety

hazards” in emerging designs, and may assist with techniques

to “mitigate” the effects of (potentially) hazardous conditions

that cannot be designed out of systems.

Security Engineering
Security engineering can be viewed as an interdisciplinary

field that integrates the community of practice for control

systems design, reliability, safety and systems engineering.

Digital Architecture Engineering

193

It may involve such sub-specialties as authentication of

system users, system targets and others: people, objects and

processes.

Software Engineering
From its beginnings, software engineering has helped

shape modern systems engineering practice. The techniques

used in the handling of complexes of large software-intensive

systems has had a major effect on the shaping and reshaping

of the tools, methods and processes of SE.

Systems Architecture
A system architecture or systems architecture is the

conceptual model that defines the structure, behaviour, and

more views of a system. An architecture description is a

formal description and representation of a system, organized

in a way that supports reasoning about the structure of the

system which comprises system components, the externally

visible properties of those components, the relationships (e.g.

the behaviour) between them, and provides a plan from which

products can be procured, and systems developed, that will

work together to implement the overall system. The language

for architecture description is called the architecture

description language (ADL).

Overview
There is no universally agreed definition of which aspects

constitute a system architecture, and various organizations

define it in different ways, including:

• The fundamental organization of a system, embodied

in its components, their relationships to each other

Digital Architecture Engineering

194

and the environment, and the principles governing

its design and evolution.

• The composite of the design architectures for products

and their life cycle processes.

• A representation of a system in which there is a

mapping of functionality onto hardware and software

components, a mapping of the software architecture

onto the hardware architecture, and human

interaction with these components.

• An allocated arrangement of physical elements which

provides the design solution for a consumer product

or life-cycle process intended to satisfy the

requirements of the functional architecture and the

requirements baseline.

• An architecture is the most important, pervasive,

top-level, strategic inventions, decisions, and their

associated rationales about the overall structure (i.e.,

essential elements and their relationships) and

associated characteristics and behaviour.

• A description of the design and contents of a computer

system. If documented, it may include information

such as a detailed inventory of current hardware,

software and networking capabilities; a description

of long-range plans and priorities for future purchases,

and a plan for upgrading and/or replacing dated

equipment and software.

• A formal description of a system, or a detailed plan

of the system at component level to guide its

implementation.

Digital Architecture Engineering

195

• The structure of components, their interrelationships,

and the principles and guidelines governing their

design and evolution over time.

A system architecture can best be thought of as a set of

representations of an existing (or To Be Created) system. It

is used to convey the informational content of the elements

comprising a system, the relationships among those

elements, and the rules governing those relationships. The

architectural components and set of relationships between

these components that an architecture describes may consist

of hardware, software, documentation, facilities, manual

procedures, or roles played by organizations or people.

A system architecture is primarily concerned with the

internal interfaces among the system’s components or

subsystems, and the interface between the system and its

external environment, especially the user. (In the specific

case of computer systems, this latter, special interface, is

known as the computer human interface, AKA human

computer interface, or CHI; formerly called the man-machine

interface.) A system architecture can be contrasted with

system architecture engineering, which is the method and

discipline for effectively implementing the architecture of a

system:

• It is a method because a sequence of steps is

prescribed to produce or change the architecture of

a system within a set of constraints.

• It is a discipline because a body of knowledge is used

to inform practitioners as to the most effective way

to architect the system within a set of constraints.

Digital Architecture Engineering

196

History
It is important to keep in mind that the modern systems

architecture did not appear out of nowhere. Systems

architecture depends heavily on practices and techniques

which were developed over thousands of years in many other

fields most importantly being, perhaps, civil architecture.

Prior to the advent of digital computers, the electronics and

other engineering disciplines used the term system as it is

still commonly used today. However, with the arrival of digital

computers and the development of software engineering as

a separate discipline, it was often necessary to distinguish

among engineered hardware artifacts, software artifacts, and

the combined artifacts. A programmable hardware artifact,

or computing machine, that lacks its software programme is

impotent; even as a software artifact, or programme, is equally

impotent unless it can be used to alter the sequential states

of a suitable (hardware) machine. However, a hardware

machine and its software programme can be designed to

perform an almost illimitable number of abstract and physical

tasks. Within the computer and software engineering

disciplines (and, often, other engineering disciplines, such

as communications), then, the term system came to be

defined as containing all of the elements necessary (which

generally includes both hardware and software) to perform

a useful function.

Consequently, within these engineering disciplines, a

system generally refers to a programmable hardware machine

and its included programme. And a systems engineer is

defined as one concerned with the complete device, both

hardware and software and, more particularly, all of the

Digital Architecture Engineering

197

interfaces of the device, including that between hardware

and software, and especially between the complete device

and its user (the CHI). The hardware engineer deals (more or

less) exclusively with the hardware device; the software

engineer deals (more or less) exclusively with the software

programme; and the systems engineer is responsible for

seeing that the software programme is capable of properly

running within the hardware device, and that the system

composed of the two entities is capable of properly interacting

with its external environment, especially the user, and

performing its intended function. By analogy, then, a systems

architecture makes use of elements of both software and

hardware and is used to enable design of such a composite

system. A good architecture may be viewed as a ‘partitioning

scheme,’ or algorithm, which partitions all of the system’s

present and foreseeable requirements into a workable set of

cleanly bounded subsystems with nothing left over. That is,

it is a partitioning scheme which is exclusive, inclusive, and

exhaustive.

A major purpose of the partitioning is to arrange the

elements in the sub systems so that there is a minimum of

communications needed among them. In both software and

hardware, a good sub system tends to be seen to be a

meaningful “object”. Moreover, a good architecture provides

for an easy mapping to the user’s requirements and the

validation tests of the user’s requirements. Ideally, a mapping

also exists from every least element to every requirement

and test. A robust architecture is said to be one that exhibits

an optimal degree of fault-tolerance, backward compatibility,

forward compatibility, extensibility, reliability,

Digital Architecture Engineering

198

maintainability, availability, serviceability, usability, and such

other quality attributes as necessary and/or desirable.

Types of Systems Architectures
Several types of systems architectures (underlain by the

same fundamental principles) have been identified as follows:

• Collaborative Systems (such as the Internet, intelligent

transportation systems, and joint air defense systems)

• Manufacturing Systems

• Social Systems

• Software and Information Technology Systems

• Strategic Systems Architecture

Systems Architect
In systems engineering, the systems architect is the high-

level designer of a system to be implemented. The systems

architect establishes the basic structure of the system, defining

the essential core design features and elements that provide

the framework for all that follows, and are the hardest to

change later. The systems architect provides the engineering

view of the users’ vision for what the system needs to be and

do, and the paths along which it must be able to evolve, and

strives to maintain the integrity of that vision as it evolves

during detailed design and implementation.

Overview
In systems engineering, the systems architect is

responsible for:

• Interfacing with the user(s) and sponsor(s) and all

other stakeholders in order to determine their

(evolving) needs.

Digital Architecture Engineering

199

• Generating the highest level of system requirements,

based on the user’s needs and other constraints

such as cost and schedule.

• Ensuring that this set of high level requirements is

consistent, complete, correct, and operationally

defined.

• Performing cost-benefit analyses to determine whether

requirements are best met by manual, software, or

hardware functions; making maximum use of

commercial off-the-shelf or already developed

components.

• Developing partitioning algorithms (and other

processes) to allocate all present and foreseeable

requirements into discrete partitions such that a

minimum of communications is needed among

partitions, and between the user and the system.

• Partitioning large systems into (successive layers of)

subsystems and components each of which can be

handled by a single engineer or team of engineers or

subordinate architect.

• Interfacing with the design and implementation

engineers, or subordinate architects, so that any

problems arising during design or implementation

can be resolved in accordance with the fundamental

architectural concepts, and user needs and

constraints.

• Ensuring that a maximally robust architecture is

developed.

• Generating a set of acceptance test requirements,

together with the designers, test engineers, and the

Digital Architecture Engineering

200

user, which determine that all of the high level

requirements have been met, especially for the

computer-human-interface.

• Generating products such as sketches, models, an

early user guide, and prototypes to keep the user and

the engineers constantly up to date and in agreement

on the system to be provided as it is evolving.

• Ensuring that all architectural products and products

with architectural input are maintained in the most

current state and never allowed to become obsolete.

Main Topics of Systems Architect
Large systems architecture was developed as a way to

handle systems too large for one person to conceive of, let

alone design. Systems of this size are rapidly becoming the

norm, so architectural approaches and architects are

increasingly needed to solve the problems of large systems.

Users and Sponsors
Engineers as a group do not have a reputation for

understanding and responding to human needs comfortably

or for developing humanly functional and aesthetically

pleasing products. Architects are expected to understand

human needs and develop humanly functional and

aesthetically pleasing products. A good architect is a

translator between the user/sponsor and the engineers—

and even among just engineers of different specialities. A

good architect is also the principal keeper of the user’s vision

of the end product— and of the process of deriving

requirements from and implementing that vision.

Digital Architecture Engineering

201

Determining what the users/sponsors actually need, rather

than what they say they want, is not engineering. An architect

does not follow an exact procedure. S/he communicates with

users/sponsors in a highly interactive way— together they

extract the true requirements necessary for the engineered

system. The architect must remain constantly in

communication with the end users. Therefore, the architect

must be intimately familiar with the user’s environment and

problem. (The engineer need only be very knowledgeable of

the potential engineering solution space.)

High Level Requirements
The user/sponsor should view the architect as the user’s

representative and provide all input through the architect.

Direct interaction with project engineers is generally

discouraged as the chance of mutual misunderstanding is

very high. The user requirements’ specification should be a

joint product of the user and architect: the user brings his

needs and wish list, the architect brings knowledge of what

is likely to prove doable within cost and time constraints.

When the user needs are translated into a set of high level

requirements is also the best time to write the first version

of the acceptance test, which should, thereafter, be religiously

kept up to date with the requirements. That way, the user

will be absolutely clear about what s/he is getting. It is also

a safeguard against untestable requirements,

misunderstandings, and requirements creep. The

development of the first level of engineering requirements is

not a purely analytical exercise and should also involve both

the architect and engineer. If any compromises are to be

made— to meet constraints like cost, schedule, power, or

Digital Architecture Engineering

202

space, the architect must ensure that the final product and

overall look and feel do not stray very far from the user’s

intent. The engineer should focus on developing a design

that optimizes the constraints but ensures a workable and

reliable product.

The architect is primarily concerned with the comfort and

usability of the product; the engineer is primarily concerned

with the producibility and utility of the product. The provision

of needed services to the user is the true function of an

engineered system. However, as systems become ever larger

and more complex, and as their emphases move away from

simple hardware and software components, the narrow

application of traditional systems development principles is

found to be insufficient— the application of the more general

principles of systems, hardware, and software architecture

to the design of (sub)systems is seen to be needed. An

architecture is also a simplified model of the finished end

product— its primary function is to define the parts and

their relationships to each other so that the whole can be

seen to be a consistent, complete, and correct representation

of what the user had in mind— especially for the computer-

human-interface. It is also used to ensure that the parts fit

together and relate in the desired way.

It is necessary to distinguish between the architecture of

the user’s world and the engineered systems architecture.

The former represents and addresses problems and solutions

in the user’s world. It is principally captured in the computer-

human-interfaces (CHI) of the engineered system. The

engineered system represents the engineering solutions—

how the engineer proposes to develop and/or select and

Digital Architecture Engineering

203

combine the components of the technical infrastructure to

support the CHI. In the absence of an experienced architect,

there is an unfortunate tendency to confuse the two

architectures. But— the engineer thinks in terms of hardware

and software and the technical solution space, whereas the

user may be thinking in terms of solving a problem of getting

people from point A to point B in a reasonable amount of

time and with a reasonable expenditure of energy, or of getting

needed information to customers and staff. A systems

architect is expected to combine knowledge of both the

architecture of the user’s world and of (all potentially useful)

engineering systems architectures. The former is a joint

activity with the user; the latter is a joint activity with the

engineers. The product is a set of high level requirements

reflecting the user’s requirements which can be used by the

engineers to develop systems design requirements. Because

requirements evolve over the course of a project, especially a

long one, an architect is needed until the system is accepted

by the user: the architect is the best insurance that all

changes and interpretations made during the course of

development do not compromise the user’s viewpoint.

Cost/Benefit Analyses
Most engineers are specialists. They know the applications

of one field of engineering science intimately, apply their

knowledge to practical situations— that is, solve real world

problems, evaluate the cost/benefits of various solutions

within their specialty, and ensure the correct operation of

whatever they design. Architects are generalists. They are

not expected to be experts in any one technology but are

expected to be knowledgeable of many technologies and able

Digital Architecture Engineering

204

to judge their applicability to specific situations. They also

apply their knowledge to practical situations, but evaluate

the cost/benefits of various solutions using different

technologies, for example, hardware versus software versus

manual, and assure that the system as a whole performs

according to the user’s expectations. Many commercial-off-

the-shelf or already developed hardware and software

components may be selected independently according to

constraints such as cost, response, throughput, etc. In some

cases, the architect can already assemble the end system

unaided. Or, s/he may still need the help of a hardware or

software engineer to select components and to design and

build any special purpose function. The architects (or

engineers) may also enlist the aid of specialists— in safety,

security, communications, special purpose hardware,

graphics, human factors, test and evaluation, quality control,

RMA, interface management, etc. An effective systems

architectural team must have immediate access to specialists

in critical specialties.,

Partitioning and Layering
An architect planning a building works on the overall

design, making sure it will be pleasing and useful to its

inhabitants. While a single architect by himself may be

enough to build a single-family house, many engineers may

be needed, in addition, to solve the detailed problems that

arise when a novel high-rise building is designed. If the job

is large and complex enough, parts of the architecture may

be designed as independent components. That is, if we are

building a housing complex, we may have one architect for

the complex, and one for each type of building, as part of an

Digital Architecture Engineering

205

architectural team. Large automation systems also require

an architect and much engineering talent. If the engineered

system is large and complex enough, the systems architect

may defer to a hardware architect and a software architect

for parts of the job, although they all may be members of a

joint architectural team. The architect should sub-allocate

the system requirements to major components or subsystems

that are within the scope of a single hardware or software

engineer, or engineering manager and team. But the architect

must never be viewed as an engineering supervisor. (If the

item is sufficiently large and/or complex, the chief architect

will sub-allocate portions to more specialized architects.)

Ideally, each such component/subsystem is a sufficiently

stand-alone object that it can be tested as a complete

component, separate from the whole, using only a simple

testbed to supply simulated inputs and record outputs. That

is, it is not necessary to know how an air traffic control system

works in order to design and build a data management

subsystem for it.

It is only necessary to know the constraints under which

the subsystem will be expected to operate. A good architect

ensures that the system, however complex, is built upon

relatively simple and “clean” concepts for each (sub)system

or layer and is easily understandable by everyone, especially

the user, without special training. The architect will use a

minimum of heuristics to ensure that each partition is well

defined and clean of kludges, work-arounds, short-cuts, or

confusing detail and exceptions. As user needs evolve, (once

the system is fielded and in use), it is a lot easier subsequently

to evolve a simple concept than one laden with exceptions,

Digital Architecture Engineering

206

special cases, and lots of “fine print.” Layering the

architecture is important for keeping the architecture

sufficiently simple at each layer so that it remains

comprehensible to a single mind. As layers are ascended,

whole systems at lower layers become simple components at

the higher layers, and may disappear altogether at the highest

layers.

Acceptance Test
The acceptance test is a principal responsibility of the

systems architect. It is the chief means by which the architect

will prove to the user that the system is as originally planned

and that all subordinate architects and engineers have met

their objectives.

Communications with Users and Engineers
A building architect uses sketches, models, and drawings.

An automation systems (or software or hardware) architect

should use sketches, models, and prototypes to discuss

different solutions and results with users, engineers, and

other architects. An early, draft version of the user’s manual

is invaluable, especially in conjunction with a prototype. A

set of (engineering) requirements as a sole, or even principal,

means of communicating with the users is explicitly to be

avoided.

Nevertheless, it is important that a workable, well written

set of requirements, or specification, be created which is

understandable to the customer (so that they can properly

sign off on it). But it must use precise and unambiguous

language so that designers and other implementers are left

in no doubt as to meanings or intentions. In particular, all

Digital Architecture Engineering

207

requirements must be testable, and the initial draft of the

test plan should be developed contemporaneously with the

requirements. All stakeholders should sign off on the

acceptance test descriptions, or equivalent, as the sole

determinant of the satisfaction of the requirements, at the

outset of the programme.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Computer Architecture
	Chapter 2 Internet Architecture
	Chapter 3 Process of Software Engineering
	Chapter 4 Computer Arithmetic Techniques
	Chapter 5 Designing Software
	Chapter 6 Systems Architecture Engineering

