

SOFTWARE ENGINEERING
IN CONFIGURATION

MANAGEMENT

SOFTWARE ENGINEERING
IN CONFIGURATION

MANAGEMENT

Wesley Ryan

Software Engineering in Configuration Management

by Wesley Ryan

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984663986

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Introduction 1

Chapter 2 Software Architectural Design 22

Chapter 3 Software Testing 71

Chapter 4 Software Requirements Specification in

Engineering Process 84

Chapter 5 Software Life Cycle Models 112

Chapter 6 Process of Software Engineering 121

Chapter 7 Configuration in Computer Networking 132

Chapter 8 Configuration Management 155

Chapter 9 Software Development Process 162

1

Introduction

Concept

There hardly existed any specific documentation, system

design approach and related documents etc. These things

were confined to only those who developed hardware systems.

Software development plans and designs were confined to

only concepts in mind. Even after number of people jumped

in this field, because of the lack of proper development

strategies, documentations and maintenance plans, the

software system that was developed was costlier than before,

it took more time to develop the entire system (even

sometimes, it was next to impossible to predict the completion

date of the system that was under development), the lines of

codes were increased to a very large number increasing the

complexity of the project/software, as the complexity of the

software increased it also increased the number of bugs/

Software Engineering in Configuration Management

2

problems in the system. Most of the times the system that

was developed, was unusable by the customer because of

problems such as late delivery (generally very very very late)

and also because of number of bugs, there were no plans to

deal with situations where in the system was needed to be

maintained, this lead to the situation called ‘Software Crisis’.

Most of software projects, which were just concepts in brain

but had no standard methodologies, practices to follow,

experienced failure, causing loss of millions of dollars.

‘Software Crisis’ was a situation, which made people think

seriously about the software development processes, and

practices that could be followed to ensure a successful, cost-

effective system implementation, which could be delivered

on time and used by the customer. People were compelled to

think about new ideas of systematic development of software

systems.

This approach gave birth to the most crucial part of the

software development process, this part constituted the most

modern and advanced thinking and even the basics of any

project management, it needed the software development

process be given an engineering perspective thought. This

approach is called as ‘Software Engineering’. Standard

definition of ‘Software Engineering’ is ‘the application of

systematic, disciplined, quantifiable, approach to the

development, operation and maintenance of software i.e. the

application of engineering to software.’

The Software Engineering subject uses a systematic

approach towards developing any software project. It shows

how systematically and cost-effectively a software project can

be handled and successfully completed assuring higher

success rates.

Software Engineering in Configuration Management

3

Software Engineering includes planning and developing

strategies, defining time-lines and following guidelines in

order to ensure the successful completion of particular

phases, following predefined Software Development Life-

Cycles, using documentation plans for follow-ups etc. In order

to complete various phases of software development process

and providing better support for the system developed.

Software Engineering takes an all-round approach to find

out the customer’s needs and even it asks customers about

their opinions hence proceeding towards development of a

desired product. Various methodologies/practices such as

‘Waterfall Model’, ‘Spiral Model’ etc. Are developed under

Software Engineering which provides guidelines to follow

during software development ensuring on time completion

of the project.

These approaches help in dividing the software

development process into small Tasks/phases such as

requirement gathering and analysis, system design phase,

coding phase etc. That makes it very much easy to manage

the project. These methods/approaches also help in

understanding the problems faced (which occur during the

system development process and even after the deployment

of the system at customer’s site) and strategies to be followed

to take care of all the problems and providing a strong

support for the system developed (for example: the problems

with one phase are resolved in the next phase, and after

deployment of the product, problems related to the system

such as queries, bug that was not yet detected etc. which is

called support and maintenance of the system.

Software Engineering in Configuration Management

4

Software Progrmming

Software Engineering is an approach to developing software

that attempts to treat it as a formal process more like

traditional engineering than the craft that many programmers

believe it is. We talk of crafting an application, refining and

polishing it, as if it were a wooden sculpture, not a series of

logic instructions. Manufacturers cannot build complex life-

critical systems like aircraft, nuclear reactor controls, medical

systems and expect the software to be thrown together.

They require the whole process to be thoroughly managed,

so that budgets can be estimated, staff recruited, and to

minimize the risk of failure or expensive mistakes. In safety

critical areas such as aviation, space, nuclear power plants,

medicine, fire detection systems, and roller coaster rides the

cost of failure can be enormous as lives are at risk. A divide

by zero error that brings down an aircraft is just not

acceptable.

Cad Engineering
Enormous design documents- hundreds or thousands of

pages long are produced using C.A.S.E. (Computer Aided

Software Engineering) tools then converted into Design

Specification documents which are used to design code.

C.A.S.E suffers from the “not quite there yet” syndrome.

There are no systems that can take a set of design constraints

and requirements then generate code that satisfies all the

requirements and constraints. Its far too complex a process.

So the available C.A.S.E. systems manage parts of

the lifecycle process but not all of it. One distinguishing

Software Engineering in Configuration Management

5

feature of Software Engineering is the paper trail that it

produces. Designs have to be signed off by Managers and

Technical Authorities all the way from top to bottom and the

role of Quality Assurance is to check the paper trail. Many

Software Engineers would admit that their job is around 70%

paperwork and 30% code. It’s a costly way to write software

and this is why avionics in modern aircraft are so expensive.

Basic Software Components

Software can be further divided into seven layers. Firmware

can be categorized as part of hardware, part of software, or

both. The seven layers of software are (top to bottom):

Programmes; System Utilities; Command Shell; System

Services; User Interface; Logical Level; and Hardware Level.

A Graphics Engine stradles the bottom three layers.

Strictly speaking, only the bottom two levels are the

operating system, although even technical persons will often

refer to any level other than programmes as part of the

operating system (and Microsoft tried to convince the Justice

Department that their web browser application is actually a

part of their operating system). Because this technical

analysis concentrates on servers, Internet Facilities are

specifically separated out from the layers.

Human users normally interact with the operating system

indirectly, through various programmes (application and

system) and command shells (text, graphic, etc.), The

operating system provides programmes with services

thrrough system programmes and Application Programme

Interfaces (APIs).

Software Engineering in Configuration Management

6

Network and Internet Services
• Internet

• TCP/IP

• Server choices

• Tuning web servers

• DHCP

• Print serving

• File serving

• FTP

• SAMBA

• Mail Transport Agents (e-mail servers)

• Majordomo

• Application serving

Hardware Level of Operating System

Basics of Computer Hardware
• Processor

• Arithmetic and logic

• Control

• Main storage

• External storage

• Input/output overview

• Input

• Output

Processors
• CISC

• RISC

• DSP

• Hybrid

Software Engineering in Configuration Management

7

Processes and Jobs
• General information

• Linking

• Loading

• Run/execute

Buses
• Kinds of buses

• Bus standards

Memory
• Main storage

• External storage

• Buffers

• Absolute addressing

• Overlay

• Relocatable software

• Demand paging and swapping

• Programme counter relative

• Base pointers

• Indirection, pointers, and handles

• OS memory services

Memory Maps
• PC-DOS and MS-DOS memory map

• MS-DOS TSR memory map

• Mac Plus memory map

• Mac Plus video memory locations

• Mac Plus sound memory locations

Software Engineering in Configuration Management

8

Low Memory

PC-DOS and MS-DOS low memory
• BIOS Communication Area

• Reserved

• Inter-Application (User) Communication Area

• DOS Communication Area

Character codes

Logical Level of Operating System

• File systems

• Files

• Resource Manager

• Cut and paste

Graphics Engine
• Font Management

User Interface
• Command line user interfaces

• Graphic user interfaces

• Aqua

• Common Desktop Environment

• IRIX Interactive Desktop

• Macintosh Toolbox

• Motif

• Visual User Environment

• Workbench

• XFree86

• Spoken user interfaces

Software Engineering in Configuration Management

9

• Screen shots

• Event Management

• Windows

• Controls

• Menus

• Text Display and Editing

• Dialog Boxes

• Alerts

System Services

Command Shell
• Command line command shells

• DCL

• DOS

• JCL

• UNIX shells

• Scripting

• Graphic command shells

• Screen shots

System Utilities

Programmes
• Desk Accessories

Software Characteristics

Software requirement
• Microsoft Windows 98 SE, Me, NT4 (sp5+), 2000 or

XP,

Software Engineering in Configuration Management

10

• Word processing software (optional),

• Spell checker (optional),

• Spreadsheet (optional), Microsoft Excel is necessary

to generate analysis reports

• Web browser (optional), Internet Explorer 5 or

Netscape 6 or above,

• Adobe Acrobat (optional).

Hardware requirement
• PC compatible computer (Pentium II or compatible),

• CD-ROM Drive,

• SVGA or XGA (1024×768) graphic screen and card,

• Floppy drive (optional, for Ethnos input transfer),

• Printer port (parallel port RS232).

Text Analysis
• Minimum size advised for a text: less than 1 page (1

Kb),

• Maximum size advised for a single text: 5,000 pages

(50 Mb),

• Average analysis throughput: from 20,000 words/

second (Pentium III 733 MHz) to 80,000 words/second

(Pentium IV 3.2 GHz, HT) on local Web pages, for a

single processor.

Semantic Search Engine

• Automatic generation of hierarchical keywords,

• Automatic information filtering (based on a pertinence

treshold),

• Massive data analysis and information cartography

(text-mining),

Software Engineering in Configuration Management

11

• Search improvement for the references (nouns,

trademarks and proper names),

• Maximum numbers of text databases: unlimited,

• Average indexing throughput: from 1 Gb/hour

(Pentium III 733 Mhz) to 4 Gb/hour (Pentium IV 3.2

GHz, HT) on local Web pages, for a single processor.

features
• File formats converted by our linguistic softwares

(Tropes, Zoom and Index): Adobe Acrobat, ASCII, ANSI,

HTML, Macromedia Flash, Microsoft Excel, Microsoft

Powerpoint, Microsoft Word, Microsoft WordML (Word

XML), RTF, XML, SGML and Macintosh texts

• Automatic extraction of Microsoft Outlook messages

via an external utility (Zoom Semantic Search Engine)

• Automatic exportation of the results towards other

software (Zoom Semantic Search Engine)

• Indexing engine in batch mode (Acetic Index)

• Win32 Application Programming Interface (Acetic

Index)

• Real time XML output interface (Acetic Index)

• Distributed fault tolerant and load-balancing Interface

(CORBA, Acetic Index)

• Runtime, operation on Intranet, HTML generation

(contact us)

• Some features (for example, very large Text

Mining) may require the use of an additional

statistics software, of data mining software and/

or a RDBMS

Software Engineering in Configuration Management

12

Software Features

Software products
• Successful software

• Provides the required functionality

• Is usable by real (i.e. naive) users

• Is predictable, reliable and dependable

• Functions efficiently

• Has a “life-time” (measured in years)

 • Provides an appropriate user interface

 • Is accompanied by complete documentation

 • May have different configurations

 • Can be “easily” maintained

Software Consumer
• Cheap to buy

• Easy to learn

• Easy to use

• Solves the problem

• Reliable

• Powerful

• Fast

• Flexible

• Available

Requirement of Software producer
• Cheap to produce

• Well-defined behaviour

• Easy to “sell”

• Easy to maintain

Software Engineering in Configuration Management

13

• Reliable

• Easy to use

• Flexible

• Available (quick to produce)

Issue of measurement
• The issue is...how to measure these things

• Why measure at all?

• Human subjective perception is notoriously inaccurate

(how many shark attacks in the last 200 years?)

• Numbers give us a way of comparing, controlling and

predicting

• Measurements give us a way of tracking progress (and

rescheduling if necessary)

• Also provide an assessment of product quality

• Measurement is the difference between “craft” and

“engineering”

Metric

• “A quantitative measure of the degree to which a

system component or process possesses a given

attribute (IEEE)

• Hence, for each metric, we require...

• A measurable property

• A relationship between that property and what we

wish to know

• A consistent, formal, validated expression of that

relationship

• For example: who is the greatest actor of all time?

Software Engineering in Configuration Management

14

Good Metric
• Simple and computable

• Persuasive

• Consistent/objective

• Consistent in use of units/dimensions

• Programming language independent

• Gives useful feedback

Process metrics
• Measures of attributes of a process

• Attributes may relate to people (e.g. “person-hours”)...

• Or technology (e.g. “megaLOCs”)...

 • Or the product (e.g. “total cost to date”)

Measurement
• Effort, time and capital spent on various related

activities

• Number of functionalities implemented

• Number of errors remediated (of various severities)

 • Number of errors not remediated (during

development process)

 • Conformance to delivery schedule

 • Benchmarks (speed, throughput, error-rates, etc)

Hard Measure
• Abstract desiderata

• Usability

• Efficiency

• Reliability

• Maintainability

• Quality

Software Engineering in Configuration Management

15

Standard Code of Metrics
• Lines of code (LOC)

• Cyclomatic complexity (McCabe)

• Function/feature points (Albrecht/Jones)

Lines of Code
• A size-oriented metric

• Easy to measure

• Easy to compare

• Easy to differentiate wrt time, cost, etc.

• Programming language dependent (e.g. 1 OO-LOC =

3 3GL-LOC = 9 assembler-LOC)

• Meaningless in isolation

• Penalize efficient design and coding

Object-oriented Metrics
• Measures of...

• Classes

• Encapsulation

• Modularity

• Inheritance

• Abstraction

Some Object-oriented Metrics
• Chidamber and Kemerer

• Lorenz and Kidd

Chidamber and Kemerer’s
• Class-oriented metrics (Proc. OOPSLA)...

• Weighted methods per class (number of methods

weighted by static complexity)

Software Engineering in Configuration Management

16

• Depth of inheritance tree (number of ancestral classes)

• Number of children (number of immediate subcl-

asses)

• Degree of coupling (how many other classes rely on

the class, and vice versa)

• Response (number of public methods)

• Method cohesion (degree to which data

members shared by two or more methods)

Software Crisis

Indeed, the problem of trying to write an encyclopedia is

very much like writing software. Both running code and a

hypertext/encyclopedia are wonderful turn-ons for the brain,

and you want more of it the more you see, like a drug. As a

user, you want it to do everything, as a customer you don’t

really want to pay for it, and as a producer you realise how

unrealistic the customers are. Requirements will conflict in

functionality vs affordability, and in completeness vs

timeliness.

different Types of Crisis

Chronic Software Crisis
By today’s definition, a “large” software system is a system

that contains more than 50,000 lines of high-level language

code. It’s those large systems that bring the software crisis

to light. If you’re familiar with large software development

projects, you know that the work is done in teams consisting

of project managers, requirements analysts, software

engineers, documentation experts, and programmers.

Software Engineering in Configuration Management

17

With so many professionals collaborating in an organized

manner on a project, what’s the problem? Why is it that the

team produces fewer than 10 lines of code per day over the

average lifetime of the project? And why are sixty errors found

per every thousand lines of code? Why is one of every three

large projects scrapped before ever being completed? And

why is only 1 in 8 finished software projects considered

“successful?”

• The cost of owning and maintaining software in the

1980’s was twice as expensive as developing the

software.

• During the 1990’s, the cost of ownership and

maintenance increased by 30% over the 1980’s.

• In 1995, statistics showed that half of surveyed

development projects were operational, but were not

considered successful.

• The average software project overshoots its schedule

by half.

• Three quarters of all large software products delivered

to the customer are failures that are either not used

at all, or do not meet the customer’s requirements.

Software projects are notoriously behind schedule and over

budget. Over the last twenty years many different paradigms

have been created in attempt to make software development

more predictable and controllable.

While there is no single solution to the crisis, much has

been learned that can directly benefit today’s software

projects.

It appears that the Software Crisis can be boiled down to

two basic sources:

Software Engineering in Configuration Management

18

1. Software development is seen as a craft, rather than

an engineering discipline.

2. The approach to education taken by most higher

education institutions encourages that “craft”

mentality.

Software Development
Software development today is more of a craft than a

science. Developers are certainly talented and skilled, but

work like craftsmen, relying on their talents and skills and

using techniques that cannot be measured or reproduced.

On the other hand, software engineers place emphasis on

reproducible, quantifiable techniques–the marks of science.

The software industry is still many years away from becoming

a mature engineering discipline. Formal software engineering

processes exist, but their use is not widespread. A crisis

similar to the software crisis is not seen in the hardware

industry, where well documented, formal processes are tried

and true, and ad hoc hardware development is unheard of.

To make matters worse, software technology is constrained

by hardware technology. Since hardware develops at a much

faster pace than software, software developers are constantly

trying to catch up and take advantage of hardware

improvements.

Management often encourages ad hoc software

development in an attempt to get products out on time for

the new hardware architectures. Design, documentation, and

evaluation are of secondary importance and are omitted or

completed after the fact. However, as the statistics show, the

ad hoc approach just doesn’t work. Software developers have

Software Engineering in Configuration Management

19

classically accepted a certain number of errors in their work

as inevitable and part of the job. That mindset becomes

increasingly unacceptable as software becomes embedded

in more and more consumer electronics. Sixty errors per

thousand lines of code is unacceptable when the code is

embedded in a toaster, automobile, ATM machine or razor

(let your imagination run free for a moment).

Computer Science and Product Orientation
Software developers pick up the ad hoc approach to

software development early in their computer science

education, where they are taught a “product orientation”

approach to software development. In the many

undergraduate computer science courses I took, the existence

of software engineering processes was never even mentioned.

Computer science education does not provide students

with the necessary skills to become effective software

engineers. They are taught in a way that encourages them

to be concerned only with the final outcome of their

assignments–whether or not the programme runs, or whether

or not it runs efficiently, or whether or not they used the

best possible algorithm. Those concerns in themselves are

not bad. But on the other hand, they should not be the focus

of a project. The focus should be on the complete process

from beginning to end and beyond. Product orientation also

leads to problems when the student enters the work force–

not having seen how processes affect the final outcome,

individual programmers tend to think their work from day

to day is too “small” to warrant the application of formal

methods.

Software Engineering in Configuration Management

20

Fully Supported Software
As we have seen, most software projects do not follow a

formal process. The result is a product that is poorly designed

and documented. Maintenance becomes problematic because

without a design and documentation, it’s difficult or

impossible to predict what sort of effect a simple change might

have on other parts of the system. Fortunately there is an

awareness of the software crisis, and it has inspired a

worldwide movement towards process improvement. Software

industry leaders are beginning to see that following a formal

software process consistently leads to better quality products,

more efficient teams and individuals, reduced costs, and

better morale.

Ratings range from Maturity Level 1, which is characterized

by ad hoc development and lack of a formal software

development process, up to Maturity Level 5, at which an

organization not only has a formal process, but also

continually refines and improves it. Each maturity level is

further broken down into key process areas that indicate

the areas an organization should focus on to improve its

software process (e.g. requirement analysis, defect

prevention, or change control).

Level 5 is very difficult to attain. In early 1995, only two

projects, one at Motorola and another at Loral (the on-board

space shuttle software project), had earned Maturity Level

5. Another study showed that only 2% of reviewed projects

rated in the top two Maturity Levels, in spite of many of those

projects placing an extreme emphasis on software process

improvement.

Software Engineering in Configuration Management

21

Customers contracting large projects will naturally seek

organizations with high CMM ratings, and that has prompted

increasingly more organizations to investigate software

process improvement. Mature software is also reusable

software. Artisans are not concerned with producing

standardized products, and that is a reason why there is so

little interchangeability in software components.

Ideally, software would be standardized to such an extent

that it could be marketed as a “part”, with its own part

number and revision, just as though it were a hardware part.

The software component interface would be compatible with

any other software system. Though it would seem that

nothing less than a software development revolution could

make that happen, the National Institute of Standards and

Technology (NIST) founded the Advanced Technology

Programme (ATP), one purpose of which was to encourage

the development of standardized software components.

Software Engineering in Configuration Management

22

2

Software Architectural Design

Design principles are not necessarily right or wrong but

should be an accurate reflection of the fundamentals that

guide decision making in an enterprise. The following should

therefore not be seen as design principles fixed in concrete

but rather as examples of business principles.

Best practice is to define the design principle in terms of

its Benefits and rationale as well as the implication to the

enterprise and the counter argument expressing the potential

negative impact of the design principle.

Design principle

Description
All management information and business intelligence

will be sourced from a single consolidated source of

information

Software Engineering in Configuration Management

23

Benefits
• A central source of management information will

provide the enterprise with a wide breath of reporting

and analysis without being constraint by the

organisations functional structuring.

• Users will become used to a single interface to

management information allowing managers to become

familiar with the infrastructure and extracting maximum

benefit from all information available in the organisation.

• The central information will eliminate contradicting

information sources and ensure accurate reporting of

current affairs and identification of issues and

opportunities.

• Increase the flexibility and manageability of providing

information rapidly and effectively to support business

decisions.

• Use best of breed analytic functionality to support

management decision making

• Increased security in managing access to The

enterprise’s management information

Implications
• Information must be sourced to the central

information infrastructure from all the various

operational applications as close to real time as

possible

• No additional analytical modules are required for

transactional applications.

• The interface to management information and training

should be rolled out to all decision makers to

effectively access information.

Software Engineering in Configuration Management

24

Counter Argument
• The central management information might not be

adequate in situations where real time analytics of

transactional information is needed

• Information in the central information source might

not be structured for a specific requirement and the

development time might be too long to provide the

information in time for a once off request.

• The assumption cannot be made that a single tool

will satisfy all the information requirements. The

information infrastructure will therefore consist of a

variety of integrated tools.

Internationalisation

Description
Information must be structured for global deployment in

various cultures and support multi-currency, multi-language

and multi platforms

Benefits
• Flexibility to enter into other global markets

• Consistency of being able to deploy a proven business

model and then adapt to local conditions

Implications
• Applications should be much more flexible to

accommodate differences defined by different countries

• Current applications should be evaluated in terms of

internationalisation requirements.

Software Engineering in Configuration Management

25

Counter Argument
• Applications designated for use locally in South-Africa

only does not have to comply to the

internationalisation principle

• The enterprise might strategise to enter only into

markets that have a certain set of international

commonality which make the rigid application of this

principle unnecessary

• It might be too expensive to change or replace legacy

systems to adhere to the internationalisation

requirement.

Single contact database

Description
A single contact database for all business contacts e.g.

policyholders, intermediaries and service providers

Benefits
• A central source of information to manage

relationships effectively

• Have a more comprehensive view of

interrelationships between business contacts.

• More effective marketing campaign design and

management

Implication
• High levels of data integration with transactional

systems updating contact information.

• Transactional systems updating information must be

assigned with levels of trust.

Software Engineering in Configuration Management

26

• Central contact information should not.complicate

functional requirements to only view specific

relationships.

Counter Argument
• Some functional units might not want to share contact

information for the fear that it might be used wrongly

or out of context by other parts of the organisation.

Single point of authentication

Description
Access for to information should be constraint through a

single point of authentication infrastructure

Benefits
• Improved security of information

Implication
• Central management of user access to information.

Counter Argument
• The current infrastructure might not be mature

enough to implement the principle.

Data quality measurement

Description
Data quality will be measured both in quantitative and

qualitative terms eg. Audit procedures and Data quality

questionnaires

Software Engineering in Configuration Management

27

Benefits
• Improved data quality

• Accurate usage of data

• Improved management information

• Increased operational efficiency

Implication

• Bi-annually measure data through with a data quality

survey

• Audit data ownership procedures annually

• Build in data quality measures into applications

• Connect data quality results with performance incentives

Counter Argument
• Regular audits and subjective measurement

techniques e.g. surveys might be time consuming.

Formalised data exchange/enrichment

Description
All data exchange/enrichment activities are managed and

approved by the appointed data strategist and the exchange

of information must be subjected to a standardised

methodology for information exchange/enrichment.

Benefits
• Control costs associated with data exchange and

enrichment

• Protect operational data

• Improve data quality and value

• Data sharing to allow for better detection of fraud

Software Engineering in Configuration Management

28

Implication

• Development of a formal policy and methodology for

data exchange and enrichment

• Data strategist must be responsible for approving data

exchange/enrichment efforts and minimise cost.

• Identification and management of organisations that

can enrich and/or validate the enterprise data.

Counter Argument
• The formalised methodology should not become a

constraint to enrich and improve data quality.

• The enterprise might not always be in a position to

demand compliance from external parties to comply

with data sharing standards.

• Current lack of industry standards might make it

difficult to implement the principle.

Central repository of data naming standards

Description
Data names and field content must be standardised through

a central reference repository and must be accessible to the

business e.g. Street rather than str. is used to reference a street.

Benefits
• Consistency of information across all business

processes

• Usability of information increases across the

organisation.

Software Engineering in Configuration Management

29

Implication

• Alignment of all applications to support the

standardised naming standards

Counter Argument
• Difficulty to implement naming standardisation in

some applications

Align information requirements with data model

Description

All information requirements must be aligned with the

corporate data model before requesting changes to the

information architecture:

Benefits
• Integrity of transactional data model stays in tact.

• Prevent duplication of information.

Implication

• The corporate data model must be maintained to be

up to date at all times.

• In any application development life cycle it is a

condition to align the application with the corporate

data model.

Counter Argument
Data owners might not understand the data model to

update it with changes.

Software Engineering in Configuration Management

30

Information governance on all data elements

Description
All information elements must be subjected to information

architecture governance

Benefits
• Sustain data quality.

• Improve operational efficiency.

Implication
• Design the business process application of the data

element.

• Assign Applications sourcing the information.

• Align with corporate data model, rules, validations,

naming standard.

• Define data management policies e.g. security, back-

up, archiving/retrieval.

• Assign data ownership.

Counter Argument
• Lack training to adhere to information governance.

• Information governance is not adequately

communicated.

Data privacy and legality

Description
Client privacy must be respected and legal requirements

must be complied with, in any event of data exchange or

commerce.

Software Engineering in Configuration Management

31

Benefit
• Maintain good relationships with clients and protect

premium income

• Avoid legal costs due to mismanagement of

information resulting in lawsuits.

Implication
• The enterprise must be up to date with laws relating

to information

• Communicating The enterprise’s data policy to clients

• Legal department needs to be up to date with laws

governing information usage, commerce and

distribution

Counter Argument
• Uncertainty of what constitutes data privacy might

make it difficult to implement this principle.

Bottom line: Design principles for enterprise architecture

must provide a decision framework based on a clear rationale

defined in terms of the benefits, implications and counter

argument relating to the design principle

Unified Modeling Language (UML)

The Unified Modeling Language or UML is is a mostly

graphical modelling language that is used to express designs.

It is a standardized language in which to specify the artefacts

and components of a software system. It is important to

understand that the UML describes a notation and not a

process. It does not put forth a single method or process of

design, but rather is a standardized tool that can be used in

a design process.

Software Engineering in Configuration Management

32

State Diagram

The state diagram shows the change of an object through

time. Based upon events that occur, the state diagram shows

how the object changes from start to finish.

States are represented as a rounded rectangle with the

name of the state shown. Optionally you can include

an activity that represents a longer running task during that

state. Connecting states together are transitions. These

represent the events that cause the object to change from

one state to another. The guard clause of the label is again

mutually exclusive and must resolve itself to be

either true or false. Actions represent tasks that run causing

the transitions.

Actions are different from activities in that actions cannot

be interrupted, while an activity can be interrupted by an

incoming event. Both ultimately represent an operation on

the object being studied. For example, an operation that

sets an attribute would be considered an action, while a long

calculation might be an activity. The specific separation

between the two depends on the object and the system being

studied.

Architectural patterns
Patterns for system architecting are very much in their

infancy. They have been introduced into TOGAF essentially

to draw them to the attention of the systems architecture

community as an emerging important resource, and as a

placeholder for hopefully more rigorous descriptions and

Software Engineering in Configuration Management

33

references to more plentiful resources in future versions of

TOGAF. They have not (as yet) been integrated into TOGAF.

However, in the following, we attempt to indicate the potential

value to TOGAF, and to which parts of the TOGAF

Architecture Development Method (ADM) they might be

relevant.

Background
A “pattern” has been defined as: “an idea that has been

useful in one practical context and will probably be useful in

others” [Analysis Patterns - Reusable Object Models]. In

TOGAF, patterns are considered to be a way of putting

building blocks into context; for example, to describe a re-

usable solution to a problem. Building blocks are what you

use: patterns can tell you how you use them, when, why,

and what trade-offs you have to make in doing so. Patterns

offer the promise of helping the architect to identify

combinations of Architecture and/or Solution Building

Blocks (ABBs/SBBs) that have been proven to deliver effective

solutions in the past, and may provide the basis for effective

solutions in the future.

Content of a Pattern
Several different formats are used in the literature for

describing patterns, and no single format has achieved

widespread acceptance. However, there is broad agreement

on the types of things that a pattern should contain. The

headings which follow are taken from Pattern-Oriented

Software Architecture: A System of Patterns. The elements

described below will be found in most patterns, even if

different headings are used to describe them.

Software Engineering in Configuration Management

34

Name
A meaningful and memorable way to refer to the pattern,

typically a single word or short phrase.

Problem
A description of the problem indicating the intent in

applying the pattern - the intended goals and objectives to

be reached within the context and forces described below

(perhaps with some indication of their priorities).

Context
The preconditions under which the pattern is applicable -

a description of the initial state before the pattern is applied.

Forces
A description of the relevant forces and constraints, and

how they interact/conflict with each other and with the

intended goals and objectives. The description should clarify

the intricacies of the problem and make explicit the kinds of

trade-offs that must be considered. (The need for such trade-

offs is typically what makes the problem difficult, and

generates the need for the pattern in the first place.) The

notion of “forces” equates in many ways to the “qualities”

that architects seek to optimize, and the concerns they seek

to address, in designing architectures.

For example:

• Security, robustness, reliability, fault-tolerance

• Manageability

• Efficiency, performance, throughput, bandwidth

requirements, space utilization

• Scalability (incremental growth on-demand)

Software Engineering in Configuration Management

35

• Extensibility, evolvability, maintainability

• Modularity, independence, re-usability, openness,

composability (plug-and-play), portability

• Completeness and correctness

• Ease-of-construction

• Ease-of-use

• etc....

A description, using text and/or graphics, of how to achieve

the intended goals and objectives. The description should

identify both the solution’s static structure and its dynamic

behaviour - the people and computing actors, and their

collaborations. The description may include guidelines for

implementing the solution. Variants or specializations of the

solution may also be described.

Resulting Context
The post-conditions after the pattern has been applied.

Implementing the solution normally requires trade-offs

among competing forces. This element describes which forces

have been resolved and how, and which remain unresolved.

It may also indicate other patterns that may be applicable in

the new context. (A pattern may be one step in accomplishing

some larger goal.) Any such other patterns will be described

in detail under Related Patterns.

Examples
One or more sample applications of the pattern which

illustrate each of the other elements: a specific problem,

context, and set of forces; how the pattern is applied; and

the resulting context.

Software Engineering in Configuration Management

36

Rationale
An explanation/justification of the pattern as a whole, or

of individual components within it, indicating how the

pattern actually works, and why - how it resolves the forces

to achieve the desired goals and objectives, and why this is

“good”.

The Solution element of a pattern describes the external

structure and behaviour of the solution: the Rationale

provides insight into its internal workings.

Related Patterns
The relationships between this pattern and others.

These may be predecessor patterns, whose resulting

contexts correspond to the initial context of this one; or

successor patterns, whose initial contexts correspond to the

resulting context of this one; or alternative patterns, which

describe a different solution to the same problem, but under

different forces; or co-dependent patterns, which may/must

be applied along with this pattern.

Known Uses
Known applications of the pattern within existing systems,

verifying that the pattern does indeed describe a proven

solution to a recurring problem. Known Uses can also serve

as Examples.

Patterns may also begin with an Abstract providing an

overview of the pattern and indicating the types of

problems it addresses. The Abstract may also identify the

target audience and what assumptions are made of the

reader.

Software Engineering in Configuration Management

37

Low Level Design

The low level design document should contain a listing of

the declarations of all the classes, non-member-functions,

and class member functions that will be defined during the

implementation stage, along with the associations between

those classes and any other details of those classes (such as

member variables) that are firmly determined by the low level

design stage. The low level design document should also

describe the classes, function signatures, associations, and

any other appropriate details, which will be involved in testing

and evaluating the project according to the evaluation plan

defined in the project’s requirements document.

More importantly, each project’s low level design document

should provide a narrative describing (and comments in your

declaration and definition files should point out) how the

high level design is mapped into its detailed low-level design,

which is just a step away from the implementation itself.

This should be an English description of how you converted

the technical diagrams (and text descriptions) found in your

high level design into appropriate class and function

declarations in your low level design. You should be especially

careful to explain how the class roles and their methods were

combined in your low level design, and any changes that

you decided to make in combining and refining them.

Description
Control systems elements like Advanced Metering

Infrastructure (AMI) networks fully field wireless sensors and

controls outside a utility’s physical security perimeter, placing

them at a high risk of compromise. System attackers have

Software Engineering in Configuration Management

38

every opportunity to damage, sniff, spoof, or tamper

communications hardware platforms for malicious, hobbyist,

or incidental reasons.

This paper demonstrates the relevance of common control

systems communications hardware vulnerabilities that lead

to direct control systems compromise. The paper describes

several enabling vulnerabilities exploitable by an attacker,

the design principles that causing them to arise, the economic

and electronic design constraints that restrict their defence,

and ideas for vulnerability avoidance.

Topics include design induced vulnerabilities such as the

extraction and modification of communications device

firmware, man-in-the-middle attacks between chips of a

communications devices, circumvention of protection

measures, bus snooping, and other attacks. Specific

examples are identified in this report, ranked by attack

feasibility. Each attack was investigated against actual IEEE

802.15.4 radio architectures.

Embedded System Architecture
Standard wireless embedded implementation technol-

ogies such as IEEE 802.15.4 are generally designed to serve

specific market needs. Therefore, the market offers

components that translate such standards to mass

producible designs. Embedded wireless technologies typically,

but not always, have relatively low power consumption,

component cost, computational power requirements, design

cost, and implementation cost.

Commodity variants of components that implement

wireless technology generally have higher individual reliability

Software Engineering in Configuration Management

39

than custom designs, and a ready and willing engineer talent

pool to integrate them. Almost all such components are

designed to leverage or integrate with existing mass

production components and subcomponents such as

microcontrollers, RAM chips, ROM chips, and others.

All of the above is highly desirable. As with all such

technologies that have the potential to achieve economy of

scale in design and implementation, vulnerability generally

follows or surpasses all cost optimizations and design trade-

offs unless specifically mitigated. Such optimizations and

economies of scale can serve to broaden the impact of

overlooked security flaws, turning their advantage into a

weakness.

This paper does not attempt to cover all potential aspects

for such wireless technology implementations, much less the

entire range of implementation issues for a single technology.

We present security vulnerabilities for typical components

found in specific IEEE 802.15.4 implementations; and

abstract them to help translate real-world tactical security

vulnerabilities as recognizable design classes requiring

consideration for mitigation. This paper does not educate

the reader in the many nuances of RF design. For RF design

and implementation issues, see individual standards such

as and engineering references including, but not limited to.

We present an abstraction of monolithic vulnerable aspects

of a typical commodity IEEE 802.15.4 platform, the Telos-B

development kit.

While the Telos-B is a basic user -programmable

development kit, its architecture is close enough to most

typical applications to be considered general. This

Software Engineering in Configuration Management

40

abstraction is intended to give the reader a repeatable

context as a starting point when looking at other platform

architectures.

The RF physical, media access, link layer, and sometimes

network layers will be offloaded onto an RF component such

as the pictured CC2420. Breaking up the design lets

designers implement the RF portion of the application with

the best possible RF module for the lowest time to market

while targeting host applications to the optimal host

processor. Most standalone communications modules will

be linked to their host processor by a trivial board-level serial

bus such as SPI or I2C. In some designs the host processor

also contains the RF stack implementation, eliminating the

board-level serial bus. Components such as microcontrollers

or host processors rarely fully implement the analog portion

of an RF module.

Antennae, inbound and outbound amplifiers, RF switches,

and various filters are generally integrated separately as their

requirements vary widely across potential applications. Due

to their application orientation, host processors will have

external timing means.

In general external oscillators reduce processor chip cost

and allow the designer to scale the system to the cheapest

clock source meeting application requirements. Though

typically not used, many 802.15.4 RF modules have a

means to slave a host’s clock to the RF module to further

reduce design cost. Power is supplied to the devices as

required by the module, though often platform power

requirements are aligned to reduce component count and

subsequent cost.

Software Engineering in Configuration Management

41

Confidentiality
• Snooping Bus Traffic

• Extracting Firmware for Vulnerability Analysis

• Extracting Stored Information

• Snooping Side Channels

Integrity
• Tampering Bus Traffic

• Replacing Hardware Components

• Modifying Existing Components

• Bypassing Hardware Components

• Disrupting or Distorting Normal Hardware Operation

• Bypassing Software Components

Availability
• Jamming or Shrouding

• Alert/Condition Flooding

• Run Battery Down

PHY, Link Transceiver
The subcomponent that deals with PHY, MAC, and LINK

layer issues. Potentially executes link layer cryptography

algorithms.

Key Subcomponents: Registers, RAM, other storage, boot

loader, internal programme storage, internal timing source,

and architecture specific functionality

Key External Dependencies: RF Front End, NET & App

Controller, data bus to NET & App Controller, external timing

source, power supply, RF/EM environment, temperature

environment

Software Engineering in Configuration Management

42

Potentially Vulnerable to: DoS, Disruption, Distortion,

Spoofing, Snooping, live code injection, serial Bus tampering,

reconfiguration, firmware analysis, firmware tampering,

snooping side channels, environmental tampering, etc.

NET & APP Controller
The subcomponent that primarily focuses on executing

any higher layer network functionality. This is generally an

independent microprocessor or microcontroller that may also

run the application.

Key Subcomponents: Registers, RAM, other storage, boot

loader, internal programme storage, internal timing source,

and architecture specific functionality

Key External Dependencies: PHY, Link Transceiver,

external buses, data bus to the PHY, Link Transceiver,

external timing source, power supply, RF/EM environment,

temperature environment, external storage

Potentially Vulnerable to: DoS, Disruption, Distortion,

Spoofing, Snooping, live code injection, serial Bus Tampering,

reconfiguration, flash/RAM snooping, flash/RAM tampering,

firmware analysis, firmware tampering, snooping side

channels, environmental tampering, tampering of external

flash, etc.

Low-Level Document
On PC-class hardware, there are two basic mechanisms

for sending rendering commands to the graphics device: PIO/

MMIO (see glossary for specific definitions) and DMA. The

architecture described in this document is designed around

DMA-style hardware, but can easily be extended to

accommodate PIO/MMIO-style hardware.

Software Engineering in Configuration Management

43

• Client is a user-space X11 client which has been

linked with various modules to support hardware-

dependent direct rendering. Typical modules may

include:

– libGL.so, the standard OpenGL (or Mesa) library

with our device and operating system

independent acceleration and GLX modifications.

– libDRI.so, our device-independent, operating-

system dependent driver.

– libHW3D.so, our device-dependent driver.

• X server is a user-space X server which has been

modified with device and operating-system

independent code to support DRI. It may be linked

with other modules to support hardware-dependent

direct rendering.

Typical modules may include:

– libDRI.so, our device-independent, operating-

system dependent driver.

– libH2D.so, our device-dependent driver. This

library may provide hardware-specific 2D

rendering, and 3D initialization and finalization

routines that are not required by the client.

• Kernel Driver is a kernel-level device driver that

performs the bulk of the DMA operations and provides

interfaces for synchronization. [Note: Although the

driver functionality is hardware-dependent, the actual

implementation of the driver may be done in a generic

fashion, allowing all of the hardware-specific details

to be abstracted into libH3D.so for loading into the

Kernel Driver at DRI initialization time. An

Software Engineering in Configuration Management

44

implementation of this type is desirable since the

Kernel Driver will not then have to be updated for

each new graphics device. The details of this

implementation are discussed in an accompanying

document, but are mentioned here to avoid later

confusion.]

• PROTO is the standard X protocol transport layer (e.g.,

a named pipe for a local client).

• SAREA is a special shared-memory area that we will

implement as part of the DRI. This area will be used

to communicate information from the X server to the

client, and may also be used to share state

information with the kernel. This area should not be

confused with DMA buffers. This abstraction may be

implemented as several different physical areas.

• DMA BUFFERS are memory areas used to buffer

graphics device commands which will be sent to the

hardware via DMA. These areas are not needed if

memory-mapped IO (MMIO) is used exclusively to

access the hardware.

• IOCTL is a special interface to the kernel device driver.

Requests can be initiated by the user -space

programme, and information can be transfered to and

from the kernel. This interface incurs the overhead

of a system call and memory copy for the information

transfered. This abstract interface also includes the

ability of the kernel to signal a listening user-space

application (e.g., the X server) via I/O on a device

(which may, for example, signal the user-space

application with the SIGIO signal).

Software Engineering in Configuration Management

45

• MMIO is direct memory-mapped access to the graphics

device.

Initialization Analysis

The X server is the first application to run that is involved

with direct rendering. After initializing its own resources, it

starts the kernel device driver and waits for clients to connect.

Then, when a direct rendering client connects, SAREA is

created, the XFree86-GLX protocol is established, and other

direct rendering resources are allocated. This section

describes the operations necessary to bring the system to a

steady state.

X Server Initialization
When the X server is started, several resources in both

the X server and the kernel must be initialized if the GLX

module is loaded. Obviously, before the X server can do

anything with the 3D graphics device, it will load the GLX

module if it is specified in the XFree86 configuration file.

When the GLX module (which contains the GLX protocol

decoding and event handling routines) is loaded, the device-

independent DRI module will also be loaded. The DRI module

will then call the graphics device-dependent module

(containing both the 2D code and the 3D initialization code)

to handle the resource allocation outlined below.

X Resource Allocation Initialization
Several global X resources need to be allocated to handle

the client’s 3D rendering requests. These resources include

the frame buffer, texture memory, other ancillary buffers,

display list space, and the SAREA.

Software Engineering in Configuration Management

46

Frame 3Buffer

There are several approaches to allocating buffers in the

frame buffer: static, static with dynamic reallocation of the

unused space, and fully dynamic. Static buffer allocation is

the approach we are adopting in the sample implementation

for several reasons that will be outlined below.

Static allocation. During initialization, the resources

supported by the graphics device are statically allocated. For

example, if the device supports front, back and depth buffers

in the frame buffer, then the frame buffer is divided into four

areas. The first three are equal in size to the visible display

area and are used for the three buffers (front, back and

depth). The remaining frame buffer space remains

unallocated and can be used for hardware cursor, font and

pixmap caches, textures, pbuffers, etc.

Texture memory
Texture memory is shared among all 3D rendering clients.

On some types of graphics devices, it can be shared with

other buffers, provided that these other buffers can be “kicked

out” of the memory. On other devices, there is dedicated

texture memory, which might or might not be sharable with

other resources. Since memory is a limited resource, it would

be best if we could provide a mechanism to limit the memory

reserved for textures. However, the format of texture memory

on certain graphics devices is organized differently (banked,

tiled, etc.) than the simple linear addressing used for most

frame buffers. Therefore, the “size” of texture memory is

device-dependent. This complicates the issue of using a single

number for the size of texture memory.

Software Engineering in Configuration Management

47

Another complication is that once the X server reports that

a texture will fit in the graphics device memory, it must

continue to fit for the life of the client (i.e., the total texture

memory for a client can never get smaller). Therefore, at

initialization time, the maximum texture size and total texture

memory available will need to be determined by the device-

dependent driver. This driver will also provide a mechanism

to determine if a set of textures will fit into texture memory.

Other Ancillary Buffers
All buffers associated with a window (e.g., back, depth,

and GID) are preallocated by the static frame-buffer

allocation. Pixmap, pbuffers and other ancillary buffers are

allocated out of the memory left after this static allocation.

During X server initialization, the size off-screen memory

available for these buffers will be calculated by the device-

dependent driver. Note that pbuffers can be “kicked out” (at

least the old style could), and so they don’t require virtualization

like pixmaps and potentially the new style pbuffers.

Display Lists
For graphics devices that support display lists, the display

list memory can be managed in the same way as texture

memory. Otherwise, display lists will be held in the client

virtual-address space.

SAREA
The SAREA is shared between the clients, the X server, and

the kernel. It contains four segments that need to be shared:

a per-device global hardware lock, per-context information,

per-drawable information, and saved device state information.

Software Engineering in Configuration Management

48

• Hardware lock segment. Only one process can access

the graphics device at a time. For atomic operations

that require multiple accesses, a global hardware lock

for each graphics device is required. Since the number

of cards is known at server initialization time, the

size of this segment is fixed.

• Per-context segment. Each GLXContext is associated

with a particular drawable in the per-drawable

segment and a particular graphics device state in the

saved device state segment. Two pointers, one to the

drawable that the GLXContext is currently bound and

one to the saved device state is stored in the per-

context segment. Since the number of GLXContexts

is not known at server start up time, the size of this

segment will need to grow. It is a reasonable

assumption to limit the number of direct rendering

contexts so the size of this segment can be fixed to a

maximum. The X server is the only process that writes

to this segment and it must maintain a list of available

context slots that needs to be allocated and initialized.

• Per-drawable segment. Each drawable has certain

information that needs to be shared between the X

server and the direct rendering client:

– Buffer identification (e.g., front/back buffer)

(int32)

– Window information changed ID

– Flags (int32)

The window information changed ID signifies that the user

has either moved, unmapped or resized the window, or the

clipping information has changed and needs to be

Software Engineering in Configuration Management

49

communicated to the client via the XFree86-GLX protocol.

Since OpenGL clients can create an arbitrary number of

GLXDrawables, the size of this segment will need to grow.

As with the per-context segment, the size of this segment

can be limited to a fixed maximum. Again, the X server is the

only process that writes to this segment, and it must maintain

a list of available drawable slots that needs to be allocated

and initialized.

• Saved device state segment. Each GLXContext needs

to save the graphics hardware context when another

GLXContext has ownership of the graphics device.

This information is fixed in size for each graphics

device, but will be allocated as needed because it can

be quite large. In addition, if the graphics device can

read/write its state information via DMA, this segment

will need to be locked down during the request.

Kernel Initialization
When the X server opens the kernel device driver, the kernel

loads and initializes the driver. See the next section for more

details of the kernel device driver.

Double Buffer Optimizations
There are typically three approaches to hardware double

buffering:

1. Video Page Flipping: The video logic is updated to

refresh from a different page. This can happen very

quickly with no per pixel copying required. This forces

the entire screen region to be swapped.

2. Bitblt Double Buffering: The back buffer is stored in

offscreen memory and specific regions of the screen

Software Engineering in Configuration Management

50

can be swapped by coping data from the offscreen to

onscreen. This has a performance penality because

of the overhead of copying the swapped data, but

allows for fine grain independent control for multiple

windows.

2. Auxillary Per Pixel Control: An additional layer contains

information on a per pixel basis that is used to

determine which buffer should be displayed. Swapping

entire regions is much quicker than Bitblt Double

Buffering and fine grain independed control for

multiple windows is achieved. However, not all

hardware or modes support this method.

If the hardware support Auxillary Per Pixel Control for the

given mode, then that is the preferred method for double

buffer support. However, if the hardware doesn’t support

Auxillary Per Pixel Control, then the following combined

opproach to Video Page Flipping and Bitblt Double Buffering

is a potential optimization.

• Initialize in a Bitblt Double Buffering mode. This allows

for X Server performance to be optimized while not

double buffering is required.

• Transition to a Video Page Flipping mode for the first

window requiring double buffer support. This allows

for the fastest possible double buffer swapping at the

expense of requiring the X Server to render to both

buffers. Note, for the transition, the contents of the

front buffer will need to be copied to the back buffer

and all further rendering will need to be duplicated

in both buffers for all non-double buffered regions

while in this mode.

Software Engineering in Configuration Management

51

• Transition back to Bitblt Double Buffering mode when

additional double buffering windows are created. This

will sacrifice performance for the sake of visual

accuracy. Now all windows can be independently

swapped.

In the initial SI, only the Bitblt Double Buffering mode will

be implemented.

Kernel Driver Initialization
When the kernel device driver is opened by the X server,

the device driver might not be loaded. If not, the module is

loaded by kerneld and the initialization routine is called. In

either case, the open routine is then called and finishes

initializing the driver.

Kernel DMA Initialization
Since the 3D graphics device drivers use DMA to

communicate with the graphics device, we need to initialize

the kernel device driver that will handle these requests. The

kernel, in response to this request from the X server, allocates

the DMA buffers that will be made available to direct

rendering clients.

Kernel Interrupt Handling Initialization

Interrupts are generated in a number of situations

including when a DMA buffer has been processed by the

graphics device. To acknowledge the interrupt, the driver

must know which register to set and to what value to set it.

This information could be hard coded into the driver, or

possibly a generic interface might be able to be written. If

this is possible, the X server must provide information to

Software Engineering in Configuration Management

52

the kernel as to how to respond to interrupts from the

graphics device.

Hardware Context Switching

Since the kernel device driver must be able to handle

multiple 3D clients each with a different GLXContext, there

must be a way to save and restore the hardware graphics

context for each GLXContext when switching between them.

Space for these contexts will need to be allocated when they

are created byglXCreateContext(). If the client can use this

hardware context (e.g., for software fallbacks or window

moves), this information might be stored in the SAREA.

Client DMA wait Queues
Each direct rendering context will require a DMA wait

queue from which its DMA buffers can be dispatched. These

wait queues are allocated by the X server when a new

GLXContext is created (glXCreateContext()).

Client Initialization
This section examines what happens before the client

enters steady state behaviour. The basic sequence for direct-

rendering client initialization is that the GL/GLX library is

loaded, queries to the X server are made (e.g., to determine

the visuals/FBConfigs available and if direct rendering can

be used), drawables and GLXContexts are created, and finally

a GLXContext is associated with a drawable. This sequence

assumes that the X server has already initialized the kernel

device driver and has pre-allocated any static buffers

requested by the user at server startup (as described above).

Software Engineering in Configuration Management

53

Library Loading
When a client is loaded, the GL/GLX library will

automatically be loaded by the operating system, but the

graphics device-specific module cannot be loaded until after

the X server has informed the DRI module which driver to

load (see below). The DRI module might not be loaded until

after a direct rendering GLXContext has been requested.

Client Configuration Queries
During client initialization code, several configuration

queries are commonly made. GLX has queries for its version

number and a list of supported extensions. These requests

are made through the standard GLX protocol stream. Since

the set of supported extensions is device-dependent, similar

queries in the device-dependent driver interface (in the X

server) are provided that can be called by device-independent

code in GLX.

One of the required GLX queries from the client is for the

list of supported extended visuals (and FBConfigs in GLX

1.3). The visuals define the types of colour and ancillary

buffers that are available and are device-dependent. The X

server must provide the list of supported visuals (and

FBConfigs) via the standard protocol transport layer (e.g.,

Unix domain or TCP/IP sockets). Again, similar interfaces in

the device-dependent driver are provided that can be called

by the device-independent code in GLX. All of this information

is known at server initialization time (above).

Drawable creation
The client chooses the visual (or FBConfig) it needs and

creates a drawable using the selected visual. If the drawable

Software Engineering in Configuration Management

54

is a window, then, since we use a static resource allocation

approach, the buffers are already allocated, and no additional

frame buffer allocations are necessary at this time. However,

if a dynamic resource allocation approach is added in the

future, the buffers requested will need to be allocated.

Not all buffers need to be pre-allocated. For example,

accumulation buffers can be emulated in software and might

not be pre-allocated. If they are not, then, when the extended

visual or FBConfig is associated with the drawable, the client

library will need to allocate the accumulation buffer. In GLX

1.3, this can happen withglXCreateWindow(). For earlier

versions of GLX, this will happen when a context is made

current (below).

Pixmaps and Buffers
GLXPixmaps are created from an ordinary X11 pixmap,

which is then passed to glXCreatePixmap(). GLXPbuffers are

created directly by a GLX command. Since we are using a

static allocation scheme, we know what ancillary buffers need

to be created for these drawables. In the initial SI, these will

be handled by indirect rendering or software fallbacks.

GLXContext creation
The client must also create at least one GLXContext. The

last flag to glXCreateContext() is a flag to request direct

rendering. The first GLXContext created can trigger the library

to initialize the direct rendering interface for this client.

Several steps are required to setup the DRI. First, the DRI

library is loaded and initialized in the client and X server.

The DRI library establishes the private communication

mechanism between the client and X server (the XFree86-

Software Engineering in Configuration Management

55

GLX protocol). The X server sends the SAREA shared memory

segment ID to the client via this protocol and the client

attaches to it. Next, the X server sends the device-dependent

client side 3D graphics device driver module name to client

via the XFree86-GLX protocol, which is loaded and initialized

in the client.

The X server calls the kernel module to create a new

WaitQueue and hardware graphics context corresponding

to the new GLXContext. Finally, the client opens and

initializes the kernel driver (including a request for DMA

buffers).

Making a GLXContext current
The last stage before entering the steady state behaviour

occurs when a GLXContext is associated with a GLXDrawable

by making the context “current”. This must occur before any

3D rendering can begin. The first time a GLXDrawable is

bound to a direct rendering GLXContext it is registered with

the X server and any buffers not already allocated are now

allocated. If the GLXDrawable is a window that has not been

mapped yet, then the buffers associated with the window

are initialized to size zero. When a window is mapped, space

in the pre-allocated static buffers are initialized, or in the

case of dynamic allocation, buffers are allocated from the

available offscreen area (if possible).

For GLX 1.2 (and older versions), some ancillary buffers

(e.g., stencil or accumulation), that are not supported by the

graphics device, or unavailable due to either resource

constraints or their being turned off through X server config

options (see above), might need to be allocated.

Software Engineering in Configuration Management

56

At this point, the client can enter the steady-state by

making OpenGL calls.

Steady-state Analysis
The initial steady-state analysis presented here assumes

that the client(s) and X server have been started and have

established all necessary communication channels (e.g., the

X, GLX and XFree86-GLX protocol streams and the SAREA

segment). In the following analysis, we will impose simplifying

assumptions to help direct the analysis towards the main

line rendering case. We will then relax our initial assumptions

and describe increasingly general cases.

Single 3D Client (1 GLXContext, 1 GLXWindow),
X Server Inactive

Assume: No X server activity (including hardware cursor

movement). This is the optimized main line rendering case.

The primary goal is to generate graphics device specific

commands and stuff them in a DMA buffer as fast as possible.

Since the X server is completely inactive, any overhead due

to locking should be minimized.

Processing rendering requests
In the simplest case, rendering commands can be sent to

the graphics device by putting them in a DMA buffer. Once a

DMA buffer is full and needs to be dispatched to the graphics

device, the buffer can be handed immediately to the kernel

via an ioctl.

The kernel then schedules the DMA command buffer to

be sent to the graphics device. If the graphics device is not

busy (or the DMA input queue is not full), it can be

Software Engineering in Configuration Management

57

immediately sent to the graphics device. Otherwise, it is put

on the WaitQueue for the current context.

In hardware that can only process a single DMA buffer at

a time, when the DMA buffer has finished processing, an

IRQ is generated by the graphics device and handled by the

kernel driver.

In hardware that has a DMA input FIFO, IRQs can be

generated after each buffer, after the input FIFO is empty or

(in certain hardware) when a low-water mark has been

reached. For both types of hardware, the kernel device driver

resets the IRQ and schedules the next DMA buffer(s).

A further optimization for graphics devices that have input

FIFOs for DMA requests is that if the FIFO is not full, the

DMA request could be initiated directly from client space.

Synchronization
GLX has commands to synchronize direct rendering with

indirect rendering or with ordinary X11 operations. These

include glFlush(), glFinish(), glXWaitGL() and glXWaitX()

synchronization primitives. The kernel driver provides several

ioctls to handle each of the synchronization cases. In the

simplest case (glFlush()), any partially filled DMA buffer will

be sent to the kernel.

Since these will eventually be processed by the hardware,

the function call can return. WithglFinish(), in addition to

sending any partially filled DMA buffer to the kernel, the

kernel will block the client process until all outstanding DMA

requests have been completely processed by the graphics

device. glXWaitGL() can be implemented using glFlush(),

glXWaitX() can be implemented with XSync().

Software Engineering in Configuration Management

58

Buffer Swaps
Buffers swaps can be initiated by glXSwapBuffers(). When

a client issues this request, any partially filled DMA buffers

are sent to the kernel and all outstanding DMA buffers are

processed before the buffer swap can take place. All

subsequent rendering commands are blocked until the buffer

has been swapped, but the client is not blocked and can

continue to fill DMA buffers and send them to the kernel.

If multiple threads are rendering to a GLXDrawable, it is

the client’s responsibility to synchronize the threads. In

addition, the idea of the current buffer (e.g., front or back)

must be shared by all GLXContexts bound to a given

drawable. The X double buffer extension must also agree.

Kernel-driver Buffer Swap Ioctl

When the buffer swap ioctl is called, a special DMA buffer

with the swap command is placed into the current

GLXContext’s WaitQueue. Because of sequentiality of the

DMA buffers in the WaitQueue, all DMA buffers behind this

are blocked until all DMA buffers in front of this one have

been processed. The header information associated with this

buffer lets the scheduler know how to handle the request.

There are three ways to handle the buffer swap:

1. No vert sync: Immediately schedule the buffer swap

and allow subsequent DMA buffers in the WaitQueue

to be scheduled. With this policy there will be tearing.

In the initial SI, we will implement this policy.

2. Wait for vert sync: Wait for the vertical retrace IRQ to

schedule the buffer swap command and allow

subsequent DMA buffers in the WaitQueue to be

Software Engineering in Configuration Management

59

scheduled. With this policy, the tearing should be

reduced, but there might still be some tearing if a

DMA input FIFO is present and relatively full.

3. No tearing: Wait for vertical retrace IRQ and all DMA

buffers in the input FIFO to be processed before

scheduling the buffer swap command. Since the buffer

swap is a very fast bitblt operation, no tearing should

be present with this policy.

Software Fallbacks
Not all OpenGL graphics primitives are accelerated in all

hardware. For those not supported directly by the graphics

device, software fallbacks will be required. Mesa and SGI’s

OpenGL SI provide a mechanism to implement these

fallbacks; however, the hardware graphics context state needs

to be translated into the format required by these libraries.

The hardware graphics context state can be read from the

saved device state segment of SAREA. An implicit glFinish() is

issued before the software fallback can be initiated to ensure

that the graphics state is up to date before beginning the

software fallback. The hardware lock is required to alter any

device state.

Image Transfer Operations
Many image transfer operations are required in the client-

side direct rendering library. Initially these will be software

routines that read directly from the memory mapped graphics

device buffers (e.g., frame buffer and texture buffer). These

are device-dependent operations since the format of the

transfer might be different, though certain abstractions should

be possible (e.g., linear buffers). An optimization is to allow

Software Engineering in Configuration Management

60

the client to perform DMA directly to/from the client’s address

space. Some hardware has support for page table translation

and paging. Other hardware will require the ability to lock

down pages and have them placed contiguously in physical

memory. The X server will need to manage how the frame and

other buffers are allocated at the highest level. The layout of

these buffers is determined at X server initialization time.

Texture Management
Each GLXContext appears to own the texture memory. In

the present case, there is no contention. In subsequent cases,

hardware context switching will take care of texture swapping

as well (see below).

For a single context, the image transfer operations

described above provides the necessary interfaces to transfer

textures and subtextures to/from texture memory.

Display List Management
Display lists initially will be handled from within the client’s

virtual address space. For graphics devices that supports

display lists, they can be stored and managed the same as

texture memory.

Selection and Feedback
If there is hardware support for selection and feedback,

the rendering commands are sent to the graphics pipeline,

which returns the requested data to the client. The amount

of data can be quite large and are usually delivered to a

collection of locked-down pages via DMA. The kernel should

provide a mechanism for locking down pages in the client

address space to hold the DMA buffer.

Software Engineering in Configuration Management

61

Queries
Queries are handled similarly to selection and feedback,

but the data returned are usually much smaller. When a query

is made, the hardware graphics context state has to be read.

If the GLXContext does not currently own the graphics device,

the state can be read from the saved device state segment in

SAREA. Otherwise, the graphics pipeline is temporarily stalled,

so that the state can be read from the graphics device.

Events
GLX has a “pbuffer clobbered” event. This can only be

generated as a result of reconfiguring a drawable or creating

a new one. Since pbuffers will initially be handled by the

software, no clobbered events will be generated. However,

when they are accelerated, the X server will have to wrap the

appropriate routine to determine when the event needs to

be generated.

Single 3D Client (1 GLXContext, 1 GLXWindow),
X Server can Draw

Assume: X server can draw (e.g., 2D rendering) into other

windows, but does not move the 3D window. This is a

common case and should be optimized if possible. The only

significant different between this case and the previous case,

is that we must now lock the hardware before accessing the

graphics device directly directly from the client, X server or

kernel space.

The goal is to minimize state transitions and potentially

avoid a full hardware graphics context switch by allowing

the X server to save and restore 3D state around its access

for GUI acceleration.

Software Engineering in Configuration Management

62

Hardware Lock
Access to graphics device must be locked, either implicitly

or explicitly. Each component of the system requires the

hardware lock at some point. For the X server, the hardware

lock is required when drawing or modifying any state. It is

requested around blocks of 2D rendering, minimizing the

potential graphics hardware context switches.

In the 3D client, the hardware lock is required during the

software fallbacks (all other graphics device accesses are

handled through DMA buffers). The kernel also must request

the lock when it needs to send DMA requests to the graphics

device. The hardware lock is contained in the Hardware lock

segment of the SAREA which can be accessed by all system

components. A two-tiered locking scheme is used to minimize

the process and kernel context switches necessary to grant

the lock. The most common case, where a lock is requested

by the last process to hold the lock, does not require any

context switches. See the accompanying locks.txt file for more

information on two-tiered locking (available late February

1999).

Graphics Hardware Context Switching
In addition to locking the graphics device, a graphics

hardware context switch between the client and the X server

is required. One possible solution is to perform a full context

switch by the kernel (see the “multiple contexts” section below

for a full explanation of how a full graphics hardware context

switch is handled). However, the X server is a special case

since it knows exactly when a context switch is required and

what state needs to be saved and restored.

Software Engineering in Configuration Management

63

For the X server, the graphics hardware context switch is

required only (a) when directly accessing the graphics device

and (b) when the access changes the state of the graphics

device. When this occurs, the X server can save the graphics

device state (either via a DMA request or by reading the

registers directly) before it performs its rendering commands

and restore the graphics device state after it finishes.

Three examples will help clarify the situations where this

type of optimization can be useful. First, using a cfb/mi

routine to draw a line only accesses the frame buffer and

does not alter any graphics device state. Second, on many

vendor’s cards changing the position of the hardware cursor

does not affect the graphics device state. Third, certain

graphics devices have two completely separate pipelines for

2D and 3D commands. If no 2D and 3D state is shared, then

they can proceed independently (but usually not

simultaneously, so the hardware lock is still required).

Single 3D Client (1 GLXContext, 1 GLXWindow),
X Server Active

Assume: X server can move or resize the single 3D window.

When the X server moves or resizes the 3D window, the client

needs to stop drawing long enough for the X server to change

the window, and it also needs to request the new window

location, size and clipping information. Current 3D graphics

devices can draw using window relative coordinates, though

the window offset might not be able to be updated

asynchronously (i.e., it might only be possible to update this

information between DMA buffers). Since this is an infrequent

operation, it should be designed to have minimal impact on

the other, higher priority cases.

Software Engineering in Configuration Management

64

X Server Operations

On the X server side, when a window move is performed,

several operations must occur. First, the DMA buffers

currently being processed by the graphics device must be

completely processed before proceeding since they might

associated with the old window position (unless the graphics

device allows asynchronous window updates). Next, the X

server grabs the hardware lock and waits for the graphics

device to become quiescent.

It then issues a bitblt to move the window and all of its

associated buffers. It updates the window location in all of

the contexts associated with the window, and increments

the “Window information changed” ID in the SAREA to notify

all clients rendering to the window of the change. It can then

release the hardware lock.

Since the graphics hardware context has been updated

with the new window offset, any outstanding DMA buffers

for the context associated with the moved window will have

the new window offset and thus will render at the correct

screen location. The situation is slightly more complicated

with window resizes or changes to the clipping information.

When a window is resized or when the clipping information

changes due to another window popping up on top of the 3D

window, outstanding DMA buffers might draw outside of the

new window (if the window was made smaller). If the graphics

device supports clipping planes, then this information can be

updated in the graphics hardware context between DMA buffers.

However, for devices that only support clipping rectangles,

the outstanding DMA requests cannot be altered with the

new clipping rects.

Software Engineering in Configuration Management

65

To minimize this effect, the X server can:

• Flush the DMA buffers in all contexts’ WaitQueues

associated with the window,

• Wait for these DMA buffers to be processed by the

graphics device. However, this does not completely

solve the problem as there could be a partially filled

DMA buffer in the client(s) rendering to the window

(see below).

3D Client Operations
On the client side, during each rendering operation, the

client checks to see if it has the most current window

information. If it does, then it can proceed as normal.

However, if the X server has changed the window location,

size or clipping information, the client issues a XFree86-DRI

protocol request to get the new information.

See the accompanying XFree86-DRI.txt file for more

information on the XFree86-DRI protocol implementation.

This information will be mainly used for software fallbacks.

Since there could be several outstanding requests in the

partially filled “current” DMA buffer, the rendering commands

already in this buffer might draw outside of the window. The

simplest solution to this problem is to send an expose event

to the windows that are affected.

This could be accomplished as follows:

• Send the partially filled DMA buffer to the kernel,

• Wait for it to be processed,

• Generate a list of screen-relative rectangles for the

affected region,

• Send a request to the X server to generate an expose

event in the windows that overlap with that region.

Software Engineering in Configuration Management

66

On graphics devices that do not allow the window offset to

be updated between DMA buffers, the situation described

above will also occur for window moves. The “generate expose

events” solution also will be used to solve the problem. It is

not known at this time if any graphics devices of this type

exist.

Multiple 3D Clients
Assume: There are now multiple 3D clients, each of which

has their own GLXContext(s). As with the previous case,

multiple GLXContexts are actively used in rendering, and

this case can be handled the same as the previous one.

Finalization Analysis
This section examines what happens after exiting steady

state behaviour via destroying a rendering surface or context,

or via process termination. Process suspension and switching

virtual consoles are special cases and are dealt with in this

section.

Destroying a Drawing Surface
If the drawing surface is a window, it can be destroyed by

the window manager. When this occurs, the X server must

notify the direct rendering client that the window was

destroyed. However, before the window can be removed, the

X server must wait until all outstanding DMA buffer requests

associated with the window have been completely processed

in order to avoid rendering to the destroyed window after it

has been removed. When the client tries to draw to the

window again, it recognizes that the window is no longer

valid and cleans up its internal state associated with the

Software Engineering in Configuration Management

67

window (e.g., any local ancillary buffer), and returns an error.

GLX 1.3 uses glXDestroyWindow() to explicitly notify the

system that the window is no longer associated with GLX,

and that its resources should be freed.

Destroying a GLXContext
Since there are limited context slots available in the per-

context segment of SAREA, a GLXContext’s resources can

be freed by calling glXDestroyContext()when it is no longer

needed. If the GLXContext is current to any thread, the

context cannot be destroyed until it is no longer current.

When this happens, the X server marks the GLXContext’s

per-context slot as free, frees the saved device state, and

notifies the kernel that the WaitQueue can be freed.

Destroying Shared Resources
Texture objects and display lists can be shared by multiple

GLXContexts. When a context is destroyed in the share list,

the reference count should be decremented. If the reference

count of the texture objects and/or display lists is zero, they

can be freed as well.

Process Finalization
When a process exits, its direct rendering resources should

be freed and returned to the X server.

Graceful Termination
If the termination is expected, the resources associated

with the process are freed. The kernel reclaims its DMA

buffers from the client. The X server frees the GLXDrawables

and GLXContexts associated with the client. In the process

Software Engineering in Configuration Management

68

of freeing the GLXContexts, the X server notifies the kernel

that it should free any WaitQueues associated with the

GLXContexts it is freeing. The saved device state is freed.

The reference count to the SAREA is decremented. Finally,

any additional resources used by the GLX and XFree86-GLX

protocol streams are freed.

Unexpected Termination
Detecting the client death is the hardest part of unexpected

process termination. Once detected, the resources are freed

as in the graceful termination case outlined above. The kernel

detects when a direct rendering client process dies since it

has registered itself with the kernel exit procedure. If the

client does not hold the hardware lock, then it can proceed

as in the graceful termination case. If the hardware lock is

held, the lock is broken. The graphics device might be in an

unusable state (e.g., waiting for data during a texture upload),

and might need to be reset. After reset, the graceful

termination case can proceed.

Process Suspension
Processes can suspend themselves via a signal that cannot

be blocked, SIGSTOP. If the process holds the hardware lock

during this time, the SIGSTOP signal must be delayed until

the lock is freed. This can be handled in the kernel. As an

initial approximation, the kernel can turn off SIGSTOP for

all direct rendering clients.

Switching Virtual Consoles
XFree86 has the ability to switch to a different virtual

console when the X server is running. This action causes

Software Engineering in Configuration Management

69

the X server to draw to a copy of the frame buffer in the X

server virtual address space. For direct rendering clients,

this solution is not possible. A simple solution to use in the

initial SI is to halt all direct access to the graphics device by

grabbing the hardware lock.

In addition to switching virtual consoles, XFree86 can be

started on multiple consoles (with different displays). Initially,

only the first display will support direct rendering.

Future Enhancements

MMIO
This architecture has been designed with MMIO based 3D

solution in mind, but the initial SI will be optimized for DMA

based solutions. A more complete MMIO driven

implementation can be added later. Base support in the initial

SI that will be useful for an MMIO-only solution is

unprivileged mapping of MMIO regions and a fast two-tier

lock. Additional optimizations that will be useful are

virtualizing the hardware via a page fault mechanism and a

mechanism for updating shared library pointers directly.

Device-specific Kernel Driver
Several optimizations (mentioned above) can be added by

allowing a device-specific kernel driver to hook out certain

functions in the generic kernel driver.

Other Enhancements
We should consider additional enhancements including:

• Multiple displays and multiple screens

• More complex buffer swapping (cushion buffering,

swap every N retraces, synchronous window swapping)

Software Engineering in Configuration Management

70

Glossary

MMIO
Memory-Mapped Input-Output. In this document, we use

the term MMIO to refer to operations that access a region of

graphics card memory that has been memory-mapped into

the virtual address space, or to operations that access

graphics hardware registers via a memory-mapping of the

registers into the virtual address space (in contrast to PIO).

Note that graphics hardware “registers” may actually be

pseudo-registers that provide access to the hardware FIFO

command queue.

PIO
Programmed Input-Output. In this document, we use the

term PIO to refer specifically to operations that must use the

Intel in and out instructions (or equivalent non-Intel

instructions) to access the graphics hardware (in contrast to

using memory-mapped graphics hardware registers, which

allow for the use ofmov instructions).

Software Engineering in Configuration Management

71

3

Software Testing

A primary purpose for testing is to detect software failures

so that defects may be uncovered and corrected. The scope

of software testing often includes examination of code as well

as execution of that code in various environments and

conditions as well as examining the quality aspects of code:

does it do what it is supposed to do and do what it needs to

do. We test software because developers are unable to build

defect free software. If the development processes were

perfect, meaning no defects were produced, testing would

not be necessary. Testing by the individual who developed

the work has not proven to be a substitute to building and

following a detailed test plan.

The disadvantages of a person checking their own work

using their own documentation are as follows:

• Misunderstandings will not be detected, because the

checker will assume that what the other individual

heard from him was correct.

Software Engineering in Configuration Management

72

• Improper use of the development process may not be

detected because the individual may not understand

the process.

• The individual may be “blinded” into accepting

erroneous system specifications and coding because

he falls into the same trap during testing that led to

the introduction of the defect in the first place.

• Information services people are optimistic in their

ability to do defect-free work and thus sometimes

underestimate the need for extensive testing.

• Without a formal division between development and

test, an individual may be tempted to improve the

system structure and documentation, rather than

allocate that time and effort to the test.

Testing unveils design defects as well as data defects of any

product. All testing focuses on discovering and eliminating

defects or variances from what is expected.

Testers need to identify these two types of defects:

1. Variance from Specifications: A defect from the

perspective of the builder of the product.

2. Variance from what is Desired: A defect from a user

(or customer) perspective.

Background and Objectives
Software testing is an integral and important activity in

every software development environment. Software seems

to have has permeated almost every equipment that we use

in our daily lives. Companies that produce embedded systems

for use in health care, transportation, and other critical

segments of our society have embraced model based software

Software Engineering in Configuration Management

73

testing by integrating them into their development

environments.

• Software Testing is designed to establish that the

software is working satisfactorily as per the

requirements.

• Software Testing is a process designed to prove that

the programme is error free.

• Software The job of testing is to certify that the

software does its job correctly and can be used in

production.

Because, with these as the guidelines, one would tend to

operate the system in a normal manner to see if it works and

one would unconsciously choose such normal/correct test

data as would prevent the system from failing. Besides, it is

any way not possible to certify that a software has no errors,

simply because it is almost impossible to detect all errors. In

a way, we can say that software testing is basically a task of

locating errors. From the objective point of view, testing can

be done in two ways:

Positive Testing
Operate application or software as it should be operated.

Use proper variety of test data, including data values at

boundries to test if it fails.

Check actual test results with the expected and see:

• Does it behave normally?

• Are results correct?

• Does the software function correctly?

Software Engineering in Configuration Management

74

Negative Testing
Test for abnormal operations. Test with illegal/ abnormal

test data. Intentionally attempt to make things go wrong and

to discover/ detect and see

• Does the system fail/ crash?

• Does the programme do what it should not?

• Does it fail to do what it should?

Positive view of Negative Testing
The job of testing is to discover errors before the user does.

A good tester is one who is successfull in making the system

fail. Mentality of the tester has to be destructive – opposite

to that of the creator/ developer which should be constructive.

This chapter is designed to enable a clear understanding

and knowledge of the foundations, techniques, and tools in

the area of software testing and its practice in the industry.

The course will prepare students to be leaders in software

testing. Whether you are a developer or a tester, you must

test software. This course is a unique opportunity to learn

strengths and weaknesses of a variety of software testing

techniques.

Applications of testing techniques in health care industry

(e.g. pacemaker), nuclear industry (e.g. plant control),

aerospace industry (e.g. Mars Polar Lander), security (e.g.

smart card), automobile industry (e.g. automotive control

systems), and others will be considered.

The chapter will focus on:

• Test process and continuous quality improvement

• Test generation from requirements

• Modeling techniques: UML: FSM and Statecharts,

Combinatorial design; and others.

Software Engineering in Configuration Management

75

• Test generation from models.

• Test adequacy assessment.

• Industrial applications.

Discussion oriented lectures by the instructor, in-class

group presentations by teams, laboratory exercises using

advanced testing tools, and invited talks by experts from the

industry will be the primary mechanisms for learning and

the dissemination of knowledge.

Chapter description

Fundamentals of software testing; software test proces and

continuous quality improvement; Test generation using finite

state models, Combinatorial design, and others; Test

adequacy assessment using black box and white box criteria;

Industrial applications of model based testing. Students will

be required to form small teams of three or four, preferably

interdisciplinary, and make presentations to the class.The

work of each team will be reviewed by the instructor and

other teams.

unit testing

These type of tests are usually written by developers as

they work on code (white-box style), to ensure that the specific

function is working as expected. One function might have

multiple tests, to catch corner cases or other branches in

the code. Unit testing alone cannot verify the functionality of

a piece of software, but rather is used to assure that the

building blocks the software uses work independently of each

other.

Software Engineering in Configuration Management

76

testing in software
Unit testing is a software development process in which

the smallest testable parts of an application, called units,

are individually and independently scrutinized for proper

operation.This testing mode is a component of software

development that takes a meticulous approach to building a

product by means of continual testing and revision.

Once all of the units in a programme have been found to

be working in the most efficient and error-free manner

possible, larger components of the programme can be

evaluated by means of integration testing. Unit testing must

be done with an awareness that it may not be possible to

test a unit for every input scenario that will occur when the

programme is run in a real-world environment.

Rules

• Write the test first

• Never write a test that succeeds the first time

• Start with the null case, or something that doesn’t

work

• Don’t be afraid of doing something trivial to make the

test work

• Loose coupling and testability go hand in hand

• Use mock objects. A mock object is an object that

pretends to be a particular type, but is really just a

sink, recording the methods that have been called on

it

• A test is not a pure unit test if: It talks to the database

– It communicates across the network

– It touches the file system

Software Engineering in Configuration Management

77

– It can’t run at the same time as any of your other

unit tests

– You have to do special things to your environment

(such as editing config files) to run it. Tests that

do these things should be kept aside from the

regular unit test suit to run the test cases faster

whenever we make changes.

Unit testing deals with testing a unit as a whole. This

would test the interaction of many functions but confine the

test within one unit. The exact scope of a unit is left to

interpretation. Supporting test code, sometimes

called scaffolding, may be necessary to support an individual

test. This type of testing is driven by the architecture and

implementation teams. This focus is also called black-box

testing because only the details of the interface are visible to

the test. Limits that are global to a unit are tested here.

In the construction industry, scaffolding is a temporary,

easy to assemble and disassemble, frame placed around a

building to facilitate the construction of the building. The

construction workers first build the scaffolding and then the

building. Later the scaffolding is removed, exposing the

completed building. Similarly, in software testing, one

particular test may need some supporting software.

This software establishes an environment around the test.

Only when this environment is established can a correct

evaluation of the test take place. The scaffolding software

may establish state and values for data structures as well as

providing dummy external functions for the test. Different

scaffolding software may be needed from one test to another

test. Scaffolding software rarely is considered part of the

Software Engineering in Configuration Management

78

system. Sometimes the scaffolding software becomes larger

than the system software being tested. Usually the scaffolding

software is not of the same quality as the system software

and frequently is quite fragile. A small change in the test

may lead to much larger changes in the scaffolding.

Internal and unit testing can be automated with the help

of coverage tools. A coverage tool analyses the source code

and generates a test that will execute every alternative thread

of execution. It is still up to the programmer to combine these

test into meaningful cases to validate the result of each thread

of execution. Typically, the coverage tool is used in a slightly

different way.

First the coverage tool is used to augment the source by

placing informational prints after each line of code. Then

the testing suite is executed generating an audit trail. This

audit trail is analysed and reports the per cent of the total

system code executed during the test suite. If the coverage is

high and the untested source lines are of low impact to the

system’s overall quality, then no more additional tests are

required.

The idea behind unit testing is elegant and simple, but

can be expanded to enable sophisticated series of tests for

code validation and regression testing. A unit test is strictly

something that ‘exercises’ or runs the code under test. Many

developers manually perform unit testing on a regular basis

in the course of working on a segment of code. In other

words, it can be as simple as ‘I know the code should perform

this task when I supply this input; I’ll try it and see what

happens.’ If it doesn’t behave as expected, the developer

would likely modify the code and repeat this iterative process

Software Engineering in Configuration Management

79

until it works. The problem with doing this manually is that

it can easily overlook large ranges of values or different

combinations of inputs and it offers no insight into how much

of the code was actually executed during testing.

Additionally, it does not help us with the important task of

proving to someone else that it worked and that it

worked correctly.

The cost and time required is compounded by the reality

that one round of testing is rarely enough; besides fixing

bugs, any changes that are made to code later in the

development process may require additional investment of

time and resources to ensure it’s working properly.

Large projects typically augment manual procedures with

tools such as the Framework to automate and improve this

process. Automation mitigates risk of undetected errors,

saves costs by detecting problems early, and saves time by

keeping developers focused on the task of writing the

software, instead of performing the tests themselves.

The idea behind unit testing is that once you have a unit

that you think works, you set up a test case where you specify

some input to the unit and compare the result of your unit

with your expected result. You know about the expected

result, because you know what your unit is doing (or you

should know it).

Well, you better know what your unit is supposed to do, or

else you should not do programming in the first place...;)

Then you run the tests and the CakePHP/«insert your

framework here» test suite tells you if they passed or if not,

with some graceful message where the error occurred.

Now you have that testcase. Now you add testcases for t h

a t input and this one. The advantage of this is that once you

Software Engineering in Configuration Management

80

wrote the tests down they are there (cool, huh?) and you can

hold on to them. There is no need anymore for you to open

the browser and test everything manually again when you

change your system. Instead, you add functionality, run the

automated unit tests again, if they pass you are good to go,

if they don’t pass you broke something. Well, what if you

broke something but your tests don’t catch it? That’s

something that UT cannot do for you. You must make sure

you have a good test coverage

Typically, the order of the running of the tests should not

matter. There might be special cases, but in well over 90% it

does not. This should also be your goal, too, to have two

different problems if two test cases fail. Keep them all isolated

and you will sleep well. For most tests there is also not much

configuration to be done. You specify the input, your expected

result, crank the handle and evaluate how well you have

done. You should typically be able to group tests together,

too. When you run these groups you can get a good overview

over large components of your system.

Testing Phase

The first test in the development process is the unit test.

The source code is normally divided into modules, which in

turn are divided into smaller units called units. These units

have specific behaviour. The test done on these units of code

is called unit test. Unit test depends upon the language on

which the project is developed. Unit tests ensure that each

unique path of the project performs accurately to the

documented specifications and contains clearly defined

inputs and expected results.

Software Engineering in Configuration Management

81

���������	����
�����	�
�������������������

Phase Deliverable

Testing Regression Test

Internal Testing

Unit Testing

Application Testing

Stress Testing

Simply stated, quality is very important. Many companies

have not learned that quality is important and deliver more

claimed functionality but at a lower quality level. It is much

easier to explain to a customer why there is a missing feature

than to explain to a customer why the product lacks quality.

A customer satisfied with the quality of a product will remain

loyal and wait for new functionality in the next version.

Quality is a distinguishing attribute of a system indicating

the degree of excellence.

In many software engineering methodologies, the testing

phase is a separate phase which is performed by a different

team after the implementation is completed. There is merit

in this approach; it is hard to see one’s own mistakes, and a

fresh eye can discover obvious errors much faster than the

person who has read and re-read the material many times.

Unfortunately, delegating testing to another team leads to a

slack attitude regarding quality by the implementation team.

Alternatively, another approach is to delegate testing to the

the whole organization. If the teams are to be known as

craftsmen, then the teams should be responsible for

establishing high quality across all phases. Sometimes, an

attitude change must take place to guarantee quality.

Software Engineering in Configuration Management

82

Regardless if testing is done after-the-fact or continuously,

testing is usually based on a regression technique split into

several major focuses, namely internal, unit,application,

and stress.The testing technique is from the perspective of

the system provider.

Because it is nearly impossible to duplicate every possible

customer’s environment and because systems are released

with yet-to-be-discovered errors, the customer plays an

important, though reluctant, role in testing. As will be

established later in the thesis, in the Water Sluice

methodology this is accomplished in the alpha and beta

release of the system.

Uses
Forget for a moment that there is something called XP

(Extreme Programming) that coined the Unit Test term. The

most of the projects developed today are always under tight

development schedules and usually have only its developers

as the tester of their code. By writing the unit tests themselves

they can have a head start towards bug-free and quality code.

One will argue that if the developer is writing all the unit

tests, it is quite possible to get the set of unit tests that are

passable, because these unit tests are developed based either

on the foreknowledge of application code or the assumptions

made in the application code. However, do not be fooled with

this, imagine what will happen if developer decides to change

the application, her old test cases will break. That will force

her to either re-think her changes or re-write the unit tests.

The application architect or analyst can write all the unit

test cases upfront (Not what XP recommend, but we are not

worried about it) and test the developed code against these

Software Engineering in Configuration Management

83

cases and functionalities. The advantage is well defined

deliverable for the developer and more quantifiable progress.

A developer can also use this to disciple their work habits

e.g. she can write a set of unit test that she wants to

accomplish in a days work. Once tests ready, she can start

developing the application and check her progress against

the unit test. Now she has a metre to check her progress.

NUnit Framework
NUnit framework is port of JUnit framework from java and

Extreme Programming (XP). This is an open source product.

You can download it from http://www.nunit.org. The NUnit

framework is developed from ground up to make use of.NET

framework functionalities. It uses an Attribute based

programming model. It loads test assemblies in separate

application domain hence we can test an application without

restarting the NUnit test tools. The NUnit further watches a

file/assembly change events and reload it as soon as they

are changed. With these features in hand a developer can

perform develop and test cycles sides by side.

Before we dig deeper, we should understand what NUnit

Framework is not:

• It is not Automated GUI tester.

• It is not a scripting language, all test are written

in.NET supported language e.g. C#, VC, VB.NET, J#

etc.

• It is not a benchmark tool.

• Passing the entire unit test suite does not mean

software is production ready.

Software Engineering in Configuration Management

84

4

Software Requirements
Specification in Engineering Process

There are many good definitions of System and Software

Requirements Specifications that will provide us a good basis

upon which we can both define a great specification and

help us identify deficiencies in our past efforts. There is also

a lot of great stuff on the web about writing good

specifications. The problem is not lack of knowledge about

how to create a correctly formatted specification or even what

should go into the specification. The problem is that we don’t

follow the definitions out there.

We have to keep in mind that the goal is not to create great

specifications but to create great products and great software.

Can you create a great product without a great specification?

Absolutely! You can also make your first million through the

lottery – but why take your chances? Systems and software

these days are so complex that to embark on the design before

Software Engineering in Configuration Management

85

knowing what you are going to build is foolish and risky. The

IEEE is an excellent source for definitions of System and

Software Specifications. As designers of real-time, embedded

system software, we use IEEE STD 830-1998 as the basis

for all of our Software Specifications unless specifically

requested by our clients. Essential to having a great Software

Specification is having a great System Specification. The

equivalent IEEE standard for that is IEEE STD 1233-1998.

However, for most purposes in smaller systems, the same

templates can be used for both.

Benefits of SRS
Establish the basis for agreement between the customers

and the suppliers on what the software product is to do. The

complete description of the functions to be performed by the

software specified in the SRS will assist the potential users

to determine if the software specified meets their needs or

how the software must be modified to meet their needs

Reduce the development effort. The preparation of the SRS

forces the various concerned groups in the customer’s

organization to consider rigorously all of the requirements

before design begins and reduces later redesign, recoding,

and retesting. Careful review of the requirements in the SRS

can reveal omissions, misunderstandings, and

inconsistencies early in the development cycle when these

problems are easier to correct.

Provide a basis for estimating costs and schedules. The

description of the product to be developed as given in the

SRS is a realistic basis for estimating project costs and can

be used to obtain approval for bids or price estimates. Provide

a baseline for validation and verification. Organizations can

Software Engineering in Configuration Management

86

develop their validation and Verification plans much more

productively from a good SRS. As a part of the development

contract, the SRS provides a baseline against which

compliance can be measured.

Facilitate transfer. The SRS makes it easier to transfer the

software product to new users or new machines. Customers

thus find it easier to transfer the software to other parts of

their organization, and suppliers find it easier to transfer it

to new customers.

Serve as a basis for enhancement. Because the SRS

discusses the product but not the project that developed it,

the SRS serves as a basis for later enhancement of the

finished product. The SRS may need to be altered, but it

does provide a foundation for continued production

evaluation.

Characteristics
An SRS should be:

• Correct

• Unambiguous

• Complete

• Consistent

• Ranked for importance and/or stability

• Verifiable

• Modifiable

• Traceable

– Correct: This is like motherhood and apple pie.

Of course you want the specification to be correct.

No one writes a specification that they know is

incorrect. We like to say - “Correct and Ever

Correcting.” The discipline is keeping the

Software Engineering in Configuration Management

87

specification up to date when you find things that

are not correct.

– Unambiguous: An SRS is unambiguous if, and

only if, every requirement stated therein has only

one interpretation. Again, easier said than done.

Spending time on this area prior to releasing the

SRS can be a waste of time. But as you find

ambiguities - fix them.

– Complete: A simple judge of this is that is should

be all that is needed by the software designers

to create the software.

– Consistent: The SRS should be consistent within

itself and consistent to its reference documents.

If you call an input “Start and Stop” in one place,

don’t call it “Start/Stop” in another.

– Ranked for Importance: Very often a new system

has requirements that are really marketing wish

lists. Some may not be achievable. It is useful

provide this information in the SRS.

– Verifiable: Don’t put in requirements like - “It

should provide the user a fast response.” Another

of my favorites is - “The system should never

crash.” Instead, provide a quantitative

requirement like: “Every key stroke should provide

a user response within 100 milliseconds.”

System and Specification

Important issues are not defined up front and Mechanical,

Electronic and Software designers do not really know what

their requirements are:

Software Engineering in Configuration Management

88

• Define the functions of the system

• Define the Hardware/ Software Functional

Partitioning

• Define the Performance Specification

• Define the Hardware/ Software Performance

Partitioning

• Define Safety Requirements

• Define the User Interface (A good user’s manual is

often an overlooked part of the System specification.

Many of our customers haven’t even considered that

this is the right time to write the user’s manual.)

• Provide Installation Drawings/Instructions.

• Provide Interface Control Drawings (ICD’s, External

I/O)

One job of the System specification is to define the full

functionality of the system. In many systems we work on,

some functionality is performed in hardware and some in

software. It is the job of the System specification to define

the full functionality and like the performance requirements,

to set in motion the trade-offs and preliminary design studies

to allocate these functions to the different disciplines

(mechanical, electrical, software).

Another function of the System specification is to specify

performance. For example, if the System is required to move

a mechanism to a particular position accurate to a

repeatability of ± 1 millimeter, that is a System’s requirement.

Some portion of that repeatability specification will belong

to the mechanical hardware, some to the servo amplifier and

electronics and some to the software. It is the job of the

System specification to provide that requirement and to set

Software Engineering in Configuration Management

89

in motion the partitioning between mechanical hardware,

electronics, and software. Very often the System specification

will leave this partitioning until later when you learn more

about the system and certain factors are traded off (For

example, if we do this in software we would need to run the

processor clock at 40 mHz.

However, if we did this function in hardware, we could run

the processor clock at 12 mHz). However, for all practical

purposes, most of the systems we are involved with in small

to medium size companies, combine the software and the

systems documents. This is done primarily because most of

the complexity is in the software. When the hardware is used

to meet a functional requirement, it often is something that

the software wants to be well documented.

Very often, the software is called upon to meet the system

requirement with the hardware you have. Very often, there

is not a systems department to drive the project and the

software engineers become the systems engineers. For small

projects, this is workable even if not ideal. In this case, the

specification should make clear which requirements are

software, which are hardware, and which are mechanical.

Design and Requirement

SRS should not include any design requirements. However,

this is a difficult discipline. For example, because of the

partitioning and the particular RTOS you are using, and the

particular hardware you are using, you may require that no

task use more than 1 ms of processing prior to releasing

control back to the RTOS.

Software Engineering in Configuration Management

90

Although that may be a true requirement and it involves

software and should be tested – it is truly a design

requirement and should be included in the Software Design

Document or in the Source code. Consider the target audience

for each specification to identify what goes into what

documents.

Marketing/Product Management
Creates a product specification and gives it to Systems. It

should define everything Systems needs to specify the product

Systems/Software

Creates a Software Specification and gives it to Software.

It should define everything Software needs to develop the

software. Thus, the SRS should define everything explicitly

or (preferably) by reference that software needs to develop

the software. References should include the version number

of the target document. Also, consider using master

document tools which allow you to include other documents

and easily access the full requirements.

Requirement Engineering Process

Based on assessed user needs, the SAF User Requirements

are established and implemented into a Technical

Specification and Design baseline, in line with scientific

assessments and plans.

Software requirements engineering is the process of

determining what is to be produced in a software system. In

developing a complex software system, the requirements

engineering process has the widely recognized goal of

Software Engineering in Configuration Management

91

determining the needs for, and the intended external

behaviour, of a system design.

This process is regarded as one of the most important parts

of building a software system: “ The hardest single part of

building a software system is deciding what to build. No other

part of the conceptual work is as difficult a establishing the

detailed technical requirements, including all the interfaces

to people, to machines, and to other software systems.

Tracing the emergence of significant ideas in software

development over the years, one can observe that in the ’60s

the attention was on coding, in the ’70s on design and in the

’80s on specification. However, in the process of requirements

engineering it is often difficult to state the real ‘what’ level of

a system because one person’s ‘how’ may be another person’s

‘what’ and conversely. In this perspective, the requirements

engineer faces a complex problem, in meeting the needs of

the customer and at the same time meeting the needs of the

designer.

The four specific steps in software requirements engineering

are:

1. Requirements elicitation

2. Requirements analysis

3. Requirements specification

4. Requirements validation

Software Engineering in Configuration Management

92

Although they seem to be separate tasks, these four

processes cannot be strictly separated and performed

sequentially. Some of the requirements are implicit in the

working practices, while others may only arise when design

solutions are proposed.

Inquiry based requirements

The Inquiry-Based Requirements Analysis Model views the

analysis process as essentially inquiry-based “a series of

questions and answers designed to pinpoint where

information needs come from and when”. The Inquiry Cycle

Model, a “formal structure for describing discussion about

requirements”, addresses the case of mass-market-driven

product development, for which there may be no clear

customer authority.

The term used in this model is “stakeholder”, anyone who

shares information about the system, its implementation

constraints or problem domain. The model consists of an

integration of three phases, where the stakeholders write

down their proposed requirements, challenge them by

attaching typed annotations and then refine the requirements

when change requests are approved.

These requirements are derived from many sources and

in many formats, hence a tremendous amount of complex

raw data comprise the source material for a given

system.”AMORE is interested in modeling those vast amounts

of raw source material as requirements, and provides access

to knowledge about the problem domain, as well as tools for

the capture, modeling, analysis and manipulation of raw

requirements data.

Software Engineering in Configuration Management

93

User-development interaction
The most important aspect of user-development interaction

is the mutual learning and cooperation among them. Some

methodologies assume that the transfer of knowledge between

users and designers can be achieved in the environment of a

meeting room. At the same time, other methodologies (e.g.

PD) foster the full collaboration of stakeholders through a

process where users are directly faced with the designers’

work situation and conversely, and by the end of the

elicitation process everyone learned about real needs of users

and technical possibilities.

In this context, success in meeting the real needs of the

software system is contingent upon the ability of users to

clearly specify what their requirements are. For this reason,

requirements definition needs close interaction between

developers and end-users of the software.

It is critical that requirements engineering tools must

support collaborative development of the software

requirements negotiation. Requirements definition should

be an iterative process where, through reflection and

experience, users become familiar with the technology and

developers become familiar with the work. For example,

scenarios, prototypes or mock-ups which provide the

opportunity for the users to “experience” the new technology

and for the developers to “experience” the work practice.

TEAM ROOMS
The groupware system called Tearooms provides an

electronic equivalent of a team room for groups that are either

co-located or at a distance. More about Tearooms as a Group

Kit application may be found in Roseman and Greenberg. It

Software Engineering in Configuration Management

94

is implemented using an extended version of the groupware

toolkit GroupKit. Facilities offered by the GroupKit’s

Application Programming Interface are preserved in Team

Rooms. This enabled the developers to move the existing

GroupKit applications to TeamRooms and rapidly create new

ones. It combines the rich applications and interfaces found

in the existing real-time groupware applications, providing a

persistent work space suitable for both synchronous and

asynchronous collaboration. It encapsulates both structured

and unstructured work through its applications and also

takes into account individual and group work.

Apples are special-purpose applications, designated for

more specific needs of a group. Team Rooms supports any

type of application which can be constructed in Group Kit,

such as meeting tools, drawing tools, text editors, card games

and so on. When a user starts up the system, he or she is

prompted for a user name and a password. If he is among

the work group permitted to use the system, he or she will

be connected to the Team Rooms central server.

Elicitation

Using an elicitation method can help in producing a

consistent and complete set of security requirements.

However, brainstorming and elicitation methods used for

ordinary functional (end-user) requirements usually are not

oriented towards security requirements and do not result

in a consistent and complete set of security requirements.

The resulting system is likely to have fewer security

exposures when security requirements are elicited in a

systematic way.

Software Engineering in Configuration Management

95

Elicitation Evaluation Criteria
The following are example evaluation criteria that may be

useful in selecting an elicitation method, but certainly there

are other criteria that you could use. The main point is to use

criteria and to have a common understanding of what they mean.

• Adaptability: The method can be used to generate

requirements in multiple environments. For example,

the elicitation method works equally as well with a

software product that is near completion as with a

project in the planning stages.

• Computer-aided software engineering (CASE) tool: The

method includes a CASE tool. (The Software

Engineering Institute defines a CASE tool as “a

computer-based product aimed at supporting one or

more software engineering activities within a software

development process”)

• Stakeholder acceptance: The stakeholders are likely to

agree to the elicitation method in analyzing their

requirements. For example, the method isn’t too

invasive in a business environment.

• Easy implementation: The elicitation method isn’t

overly complex and can be properly executed easily.

• Graphical output: The method produces readily

understandable visual artifacts.

• Quick implementation: The requirements engineers and

stakeholders can fully execute the elicitation method

in a reasonable length of time.

• Shallow learning curve: The requirements engineers

and stakeholders can fully comprehend the elicitation

method within a reasonable length of time.

Software Engineering in Configuration Management

96

Data Flow Diagrams

Introduction
A data flow diagram (DFD) is a significant modeling

technique for analyzing and constructing information

processes. DFD literally means an illustration that explains

the course or movement of information in a process. DFD

illustrates this flow of information in a process based on the

inputs and outputs.

A DFD can be referred to as a Process Model. Additionally,

a DFD can be utilized to visualize data processing or a

structured design. A DFD illustrates technical or business

processes with the help of the external data stored, the data

flowing from a process to another, and the results. A designer

usually draws a context-level DFD showing the relationship

between the entities inside and outside of a system as one

single step. This basic DFD can be then disintegrated to a

lower level diagram demonstrating smaller steps exhibiting

details of the system that is being modeled.

Uses

The technique starts with an overall picture of the business

and continues by analyzing each of the functional areas of

interest. This analysis can be carried out to precisely the

level of detail required. The technique exploits a method called

top-down expansion to conduct the analysis in a targeted

way.

Software Engineering in Configuration Management

97

The result is a series of diagrams that represent the

business activities in a way that is clear and easy to

communicate. A business model comprises one or more data

flow diagrams (also known as business process diagrams).

Initially a context diagram is drawn, which is a simple

representation of the entire system under investigation. This

is followed by a level 1 diagram; which provides an overview

of the major functional areas of the business. Don’t worry

about the symbols at this stage, these are explained shortly.

Using the context diagram together with additional

information from the area of interest, the level 1 diagram

can then be drawn.

The level 1 diagram identifies the major business processes

at a high level and any of these processes can then be

analysed further - giving rise to a corresponding level 2

business process diagram. This process of more detailed

analysis can then continue ýÿC through level 3, 4 and so on.

However, most investigations will stop at level 2 and it is

very unusual to go beyond a level 3 diagram.

Identifying the existing business processes, using a

technique like data flow diagrams, is an essential precursor

to business process re-engineering, migration to new

technology, or refinement of an existing business process.

Software Engineering in Configuration Management

98

However, the level of detail required will depend on the type

of change being considered. The process model is typically

used in structured analysis and design methods. Also called

a data flow diagram (DFD), it shows the flow of information

through a system. Each process transforms inputs into

outputs.

process
The process shows a part of the system that transforms

inputs into outputs; that is, it shows how one or more inputs

are changed into outputs. Some systems analysts prefer to

use an oval or a rectangle with rounded edges, as shown in

Figure below; still others prefer to use a rectangle, as shown

in Figure. The differences between these three shapes are

purely cosmetic, though it is obviously important to use the

same shape consistently to represent all the functions in

the system. Throughout the rest of this book, we will use the

circle or bubble.

In some cases, the process will contain the name of a

person or a group of people (e.g., a department or a division

of an organization), or a computer, or a mechanical device.

That is, the process sometimes describes who or what is

carrying out the process, rather than describing what the

process is.

The Flow
A flow is represented graphically by an arrow into or out

of a process. The flow is used to describe the movement of

chunks, or packets of information from one part of the system

to another part. For most of the systems that you model as a

systems analyst, the flows will indeed represent data, that

Software Engineering in Configuration Management

99

is, bits, characters, messages, floating point numbers, and

the various other kinds of information that computers can

deal with. But DFDs can also be used to model systems other

than automated, computerized systems; we may choose, for

example, to use a DFD to model an assembly line in which

there are no computerized components.

In such a case, the packets or chunks carried by the flows

will typically be physical materials; an example is shown in

Figure below. For many complex, real-world systems, the

DFD will show the flow of materials and data.

The flows in Figures are named. The name represents the

meaning of the packet that moves along the flow. A corollary

of this is that the flow carries only one type of packet, as

indicated by the flow name. The systems analyst should not

name a dataflow Apples and organes and widgets and various

other thing.

However, we will see in Part III, that there are exceptions to

this convention: it is sometimes useful to consolidate several

elementary dataflow into a consolidated flow. Thus, one might

see a single dataflow labeled vegetables instead of several

different dataflow labeled potatoes, brussel sprouts,

and peas. whether data (or material) are moving into or out

of a process (or doing both). The flow shown in Figure, for

example, clearly shows that a telephone number is being

sent into the process labeled Validate Phone Number.

Dataflows can diverge and converge in a DFD; conceptually,

this is somewhat like a major river splitting into smaller

tributaries, or tributaries joining together. However, this has

a special meaning in a typical DFD in which packets of data

are moving through the system: in the case of a diverging

Software Engineering in Configuration Management

100

flow, it means that duplicate copies of a packet of data are

being sent to different parts of the system, or that a complex

packet of data is being split into several more elementary

data packets, each of which is being sent to different parts

of the system, or that the dataflow pipeline carries items

with different values (e.g., vegetables whose values may be

“potato,” “brussel sprout,” or “lima bean”) that are being

separated. Conversely, in the case of a converging flow, it

means that several elementary packets of data are joining

together to form more complex, aggregate packets of data.

The Terminator
The next component of the DFD is a terminator; it is

graphically represented as a rectangle, as shown in Figure.

Terminators represent external entities with which the

system communicates. Typically, a terminator is a person or

a group of people, for example, an outside organization or

government agency, or a group or department that

is within the same company or organization, but outsidethe

control of the system being modeled.

In some cases, a terminator may be another system, for

example, some other computer system with which your

system will communicate.

�����������	�
�������������������������������

There are three important things that we must remember

about terminators:

1. They are outside the system we are modeling; the flows

connecting the terminators to various processes (or

Software Engineering in Configuration Management

101

stores) in our system represent the interface between

our system and the outside world.

2. As a consequence, it is evident that neither the

systems analyst nor the systems designer are in a

position to change the contents of a terminator or

the way the terminator works. In the language of

several classic textbooks on structured analysis, the

terminator is outside the domain of change. What this

means is that the systems analyst is modeling a

system with the intention of allowing the systems

designer a considerable amount of flexibility and

freedom to choose the best (or most efficient, or most

reliable, etc.) implementation possible.

3. Any relationship that exists between terminators will

not be shown in the DFD model. There may indeed

be several such relationships, but, by definition, those

relationships are not part of the system we are

studying. Conversely, if there arerelationships between

the terminators, and if it is essential for the systems

analyst to model those requirements in order to

properly document the requirements of the system,

then, by definition, the terminators are actually part

of the system and should be modeled as processes.

Entity Relationship Diagrams

Introduction
An entity can be thought of as a class of data. Each entity

has a name, a definition, a type. In addition, each entity has

a set of attributes that describe the various characteristics

of the entity. Each attribute also has a name, a definition, a

Software Engineering in Configuration Management

102

type and constraints. The attribute types are text, numeric,

binary and date types. Field and attributes are different name

for the same thing. Entity and table are different name for

the same thing. In the context of relationship diagrams, the

words entity and attributes are used. In the context of

physical database work, the words table and field are used.

An Entity-Relationship (E-R) Diagram (or E-R Model)

visually depicts an organization’s entities, the entities’

relationships to each other, and the business rules (i.e.,

cardinality and dependency) associated with the

relationships. The E-R Diagram is the picture used to

represent and test the knowledge obtained from Data

Modelling.

 The output of Data Modelling includes:

• E-R Diagram,

• Descriptions of entities and their relationships,

• Dttributes and their descriptions,

• Edit rules,

• Business rules,

• Volumetrics.

The last step in creating entity relationship diagrams is

the specification of the relationships among the entities.

Just as every object in the real world has some kind of

relationship to one or more objects so too the entities in a

database are related to other entities.

The nature of relationships between entities is usually

implied in the very definition of the entity. Despite the

obviousness of these relationships, it is important to review

all entities and specify how they relate to each other.

Software Engineering in Configuration Management

103

There are at least three types of relationships possible:

1. One to one, where one entity corresponds to exactly

another entity. For example, a table about patient’s

death has a one to one relationship with the table

“Person.”

2. One to many, where one instance of one entity can

be repeatedly used by another. For example the look

up table Gender may be repeatedly used in the table

“Patient.”

3. Many to many where one instance of both entities

can be repeatedly used by another. For example,

tables “Patient” and “Clinician” have many to many

relationships as a clinician may have many patient

and a patient may have many clinicians.

Sometimes, the relationship between two entities is not

clear. The most common cause is that a third entity is

missing. This often occurs when two entity have many to

many relationship. For example, the entity Patient and the

entity Clinician have, as mentioned earlier, many to many

relationship. It is difficult to show these relationships inside

a database in a way that can easily be manipulated.

An alternative is to show a new table that links these two

tables to each other and has one to many relationship to

each of the tables. For example, we can make a new table

called Visit. Within a visit a patients is diagnosed. Both

the patients and the clinicians identity are kept in the visit

table. The Visit table has one to many relationship with

either patient or clinician table. Sometimes, as we specify

the relationships among entities, a new entity must be

defined.

Software Engineering in Configuration Management

104

Linkages between entities are part of the business rules

that databases should capture. In our example, the business

rule for the linkage between a Clinician and a Patient is that

a clinician may have zero, one, or, more patients.

The business rule for the linkage between the Patient and

the Clinician is that a patient may have one, or, more

clinicians. Note that these are the business rules that

someone may have specified. In a different information

system someone could decide that a patient can only have

one clinician at a time, or that the number of clinicians

dealing with a patient must always be 3, or some other similar

rule. The important point is that entities can be linked to

each other, and that the nature of the linkage is part of the

business rules of the system.

In Access, a database, The line shows the relationship

between the two tables and the shared field shows the nature

of the relationship.

The arrow shows if the relationship is one to many, with

the many side shown by the direction of the arrow. As with

the specification of the entities discussed at the beginning of

this lecture, the documentation of the relationships is part

of the logical information model.

The format for documenting the linkages among entities

includes the name of both entities, the verb phrase that

describes the semantics of the linkage and the cardinality of

the linkage (i.e. whether one to one, one to many or many to

many). The statement of the cardinality can be made plain

English. All relationships must be documented before

proceeding to the physical design of the database.

Software Engineering in Configuration Management

105

Components of Entity-Relationship Diagram

Entities

An entity is a person, place, thing, event, or concept of

interest to the business or organization about which data is

likely to be kept. For example, in a school environment

possible entities might be Student, Instructor, and Class.

Entity type refers to a generic class of things such as

Company. Entity is the short form of entity-type. Entity

occurrence refers to specific instances or examples of a

type. For example, one occurrence of the entity Car is

Chevrolet Cavalier. An entity usually has attributes (i.e., data

elements) that further describe it. Each attribute is a

characteristic of the entity. An entity must possess a set of

one or more attributes that uniquely identify it (called a

primary key).

Identifying entities is the first step in Data Modelling. Start

by gathering existing information about the organization. Use

documentation that describes the information and functions

of the subject area being analysed, and interview subject

matter specialists (i.e., end-users). Derive the preliminary

entity-relationship diagram from the information gathered

by identifying objects (i.e., entities) for which information is

kept. Entities are easy to find. Look for the people, places,

things, organizations, concepts, and events that an

organization needs to capture, store, or retrieve information

about.

Types of Entities
 Different types of entities are required to provide a

complete and accurate representation of an organization’s

Software Engineering in Configuration Management

106

data and to enable the analyst to use the Entity-Relationship

Diagram as a starting point for physical database design.

Types of entities include:

• Fundamental where the entity is a base entity that

depends on no other for its existence. A fundamental

entity has a primary key that is independent of any

other entity and is typically composed of a single

attribute. Fundamental entities are real-world,

tangible objects, such as, Employee, Customer, or

Product.

• Attributive where the entity depends on another for

its existence, for example, Employee Hobby depends

on Employee. An attributive entity depends on

another entity for parts of its primary key. It can

result from breaking out a repeating group, the first

rule of normalization, or from an optional attribute.

• Associative where the entity describes a connection

between two entities with an otherwise many-to-many

relationship, for example, assignment of Employee to

Project (an Employee can be assigned to more than

one Project and a Project can be assigned to more

than one Employee). If information exists about the

relationship, this information is kept in an associative

entity. For example, the number of hours the

Employee worked on a particular Project is an

attribute of the relationship between Employee and

Project, not of either Employee or Project. An

associative entity is uniquely identified by

concatenating the primary keys of the two entities it

connects.

Software Engineering in Configuration Management

107

The common data elements are put in the supertype entity

and the specific data elements are placed with the subtype

to which they apply. For example, Employee (supertype) may

contain three subtypes, Permanent Employee, Part-time

Employee, and Temporary Employee.

All data elements of the supertype must apply to all

subtypes. Each subtype contains the same key as the

supertype.

Relationships between an entity supertype and its subtypes

are always described as “is a.” For example, Employee is a

Permanent Employee, Employee is a Part-time Employee.

Identifying Entity Supertypes/Subtypes
Entity supertypes/subtypes involve classes of entities that

are truly different, but at the same time, significantly similar.

When identifying supertypes/subtypes, look for:

• Entity types that have the same attributes,

• Entity types that participate in the same relationships,

• Occurrences of an entity that do not participate in

all the relationships in which the entity type

participates,

• Occurrences of an entity that do not have all the

attributes that the entity type has.

CATEGORIES OF ENTITIES
There are different general categories of entities:

• Physical entities are tangible and easily

understood. They generally fall into one of the

following categories:

• People, for example, doctor, patient, employee,

customer,

Software Engineering in Configuration Management

108

• Property, for example, equipment, land and buildings,

furniture and fixtures, supplies,

• Products, such as goods and services.

• Conceptual entities are not tangible and are less easily

understood. They are often defined in terms of other

entity-types.

They generally fall into one of the following categories:

– organizations, for example, corporation, church,

government,

– agreements, for example, lease, warranty,

mortgage,

– abstractions, such as strategy and blueprint.

– Event/State entities are typically incidents that

happen. They are very abstract and are often

modelled in terms of other entity-types as

anassociative entity. Examples of events are

purchase, negotiation, service call, and

deposit. Examples of states are ownership,

enrollment, and employment.

Imposter Entities

When an Entity is not an Entity
There are a number of things that may appear to be entities

about which facts are kept, but which should not be defined

as such.

These include:

• Processes,

• Calculations,

• Reports,

• Facts about entities.

Software Engineering in Configuration Management

109

Processes
Processes may actually perform actions on entities but

are not, themselves, entities. Examples are:

• Payroll deduction,

• Budgeting (an action on an organization unit).

Calculations
Calculations are derived from the attributes of an

entity. Examples are:

• Inventory level,

• Average age,

• Net worth.

Reports
Reports present facts about one or more entities. Examples

are:

• Project schedule,

• Income statement.

Facts About Entities
Facts about entities describe characteristics of an entity

and should be modelled as attributes. Examples are:

• Telephone number,

• Date of hire.

Attributes Define Entities
Collectively, attributes define an entity. An attribute is

meaningless by itself. For example, date of birth comes from

the context of the entity to which it is assigned, for example,

date of birth of an employee. Attributes are not shown on

the Entity-Relationship Model but are recorded in the

Software Engineering in Configuration Management

110

underlying data dictionary which contains the definitions of

attributes for all entities and relationships identified in the

model. An attribute should not have facts recorded about

it. In practice, however, there are exceptions.

For example, you might wish to show address as an

attribute of Customer. Address is not significant enough to

be modelled as an entity in its own right and would typically

be shown as an attribute of Customer. However, at the

detailed level, it may itself have attributes such as an indicator

for mailing address or home address.Attributes do not have

to be recognized and defined during the early stages of entity

definition. Entity definition is an iterative process, and it is

unlikely that a completely satisfactory Entity-Relationship

Model will be obtained on the first iteration.

Identifying Attributes
To identify entity attributes, examine:

• All external entities from the Context Diagram,

• The data flows passed by the external entities,

• Existing automated data,

• Each entity (i.e., generate a list of entity attributes

that describe the entity).

Attributes Versus Data Elements
Attributes have a looser description than data

elements. For instance, whereas an attribute may have only

a descriptive name, a data element needs:

• A size and range,

• A format and length,

• An accurate and detailed description,

• valid values,

Software Engineering in Configuration Management

111

• Defined edit rules.

Some attributes may be converted into many data

elements.

For instance, the attribute “address” may become four data

elements representing:

1. Street Address,

2. City/Town,

3. State/Province,

4. Postal or Zip Code.

 Additional data elements may also be defined as a result

of customer requirements. For example, the customer may

require a list of all companies by county. For the purposes of

Data Modelling, attributes and data elements are often

considered identical because attributes in the data model

typically become data elements in the database.

Relationships

A relationship is an association that exists between two

entities. For example, Instructor teaches Class or Student

attends Class. Most relationships can also be stated

inversely. For example, Class is taught by Instructor. The

relationships on an Entity-Relationship Diagram are

represented by lines drawn between the entities involved in

the association. The name of the relationship is placed either

above, below, or beside the line.

Software Engineering in Configuration Management

112

5

Software Life Cycle Models

Waterfall model

The least flexible of the life cycle models. Still it is well

suited to projects which have a well defined architecture and

established user interface and performance requirements.

The waterfall model does work for certain problem domains,

notably those where the requirements are well understood

in advance and unlikely to change significantly over the

course of development. Software products are oriented

towards customers like any other engineering products. It is

either driver by market or it drives the market. Customer

Satisfaction was the main aim in the 1980’s. Customer

Delight is today’s logo and Customer Ecstasy is the new

buzzword of the new millennium. Products which are not

customer oriented have no place in the market although they

are designed using the best technology. The front end of the

Software Engineering in Configuration Management

113

product is as crucial as the internal technology of the product.

A market study is necessary to identify a potential customer’s

need. This process is also called as market research. The

already existing need and the possible future needs that are

combined together for study. A lot of assumptions are made

during market study. Assumptions are the very important

factors in the development or start of a product’s

development.

Advantages
• Simple and easy to use.

• Easy to manage due to the rigidity of the model –

each phase has specific deliverables and a review

process.

• Phases are processed and completed one at a time.

• Works well for smaller projects where requirements

are very well understood.

Disadvantages
• Adjusting scope during the life cycle can kill a project

• No working software is produced until late during the

life cycle.

• High amounts of risk and uncertainty.

• Poor model for complex and object-oriented projects.

• Poor model for long and ongoing projects.

• Poor model where requirements are at a moderate to

high risk of changing.

Extreme programming (XP)
Is the latest incarnation of Waterfall model and is the most

recent software fad. Most postulates of Extreme programming

Software Engineering in Configuration Management

114

are pure fantasy. It has been well known for a long time

that big bang or waterfall models don’t work well on projects

with complex or shifting requirements. The same is true for

XP. Too many shops implement XP as an excuse for not

understanding the user requirements. XP try improve classic

waterfall model by trying to start coding as early as possible

but without creating a full-fledged prototype as the first stage.

In this sense it can be considered to be variant of evolutionary

prototyping (see below). Often catch phase “Emergent design”

is used instead of evolutionary prototyping.

It also introduces a very questionable idea of pair

programming as an attempt to improve extremely poor

communication between developers typical for large projects.

While communication in large projects is really critical and

attempts to improve it usually pay well, “pair programming”

is a questionable strategy.

There are two main problems here:

1 In a way it can be classified as a hidden attempt to

create one good programmer out of two mediocre. But

in reality it is creating one mediocre programmer from

two or one good. No senior developer is going to put up

with some jerk sitting on his lap asking questions about

every line. It just prevents the level of concentration

needed for high quality coding. Microsoft’s idea of having

a tester for each programmer is more realistic: one

developer writes tests.

2 The actual code to be tested. This forces each of them

to communicate and because tester has different

priorities then developer such communication brings

the developer a new and different perspective on his

Software Engineering in Configuration Management

115

code, which really improves quality. This combination

of different perspectives is a really neat idea as you

can see from the stream of Microsoft Office products

and operating systems.

 Spiral model
The spiral model is a variant of “dialectical spiral” and as

such provides useful insights into the life cycle of the system.

Can be considered as a generalization of

the prototyping model. That why it is usually implemented

as a variant of prototyping model with the first iteration being

a prototype.

The spiral model is similar to the incremental model, with

more emphases placed on risk analysis. The spiral model

has four phases: Planning, Risk Analysis, Engineering and

Evaluation.

A software project repeatedly passes through these phases

in iterations (called Spirals in this model). The baseline spiral,

starting in the planning phase, requirements are gathered

and risk is assessed.

Each subsequent spirals builds on the baseline spiral.

Requirements are gathered during the planning phase. In

the risk analysis phase, a process is undertaken to identify

risk and alternate solutions. A prototype is produced at the

end of the risk analysis phase. Software is produced in the

engineering phase, along with testing at the end of the phase.

Advantages
• High amount of risk analysis

• Good for large and mission-critical projects.

• Software is produced early in the software life cycle.

Software Engineering in Configuration Management

116

Disadvantages
• Can be a costly model to use.

• Risk analysis requires highly specific expertise.

• Project’s success is highly dependent on the risk

analysis phase.

• Doesn’t work well for smaller projects.

Evolutionary prototyping model
This is kind of mix of Waterfall model and prototyping.

Presuppose gradual refinement of the prototype until a usable

product emerge. Might be suitable in projects where the main

problem is user interface requirements, but internal

architecture is relatively well established and static. In this

case system first is coded in a scripting language and then

gradually critical components are rewritten in the lower

language.

OSS development model

It is the latest variant of evolutionary prototype model.

The “waterfall model” was probably the first published model

and as a specific model for military it was not as naive as

some proponents of other models suggest. The model was

developed to help cope with the increasing complexity of

aerospace products. The waterfall model followed a

documentation driven paradigm.

Prototyping model was probably the first realistic of early

models because many aspects of the syst4m are unclear until

a working prototype is developed. A better model, the “spiral

model” was suggested by Boehm in 1985. The spiral model

is a variant of “dialectical spiral” and as such provides useful

insights into the life cycle of the system. But it also

Software Engineering in Configuration Management

117

presuppose unlimited resources for the project. No

organization can perform more then a couple iterations

during the initial development of the system. the first

iteration is usually called prototype. Prototype based

development requires more talented managers and good

planning while waterfall model works (or does not work) with

bad or stupid managers works just fine as the success in

this model is more determined by the nature of the task in

hand then any organizational circumstances.

Like always humans are flexible and programmer in

waterfall model can use guerilla methods of enforcing a sound

architecture as manager is actually a hostage of the model

and cannot afford to look back and re-implement anything

substantial. Because the life cycle steps are described in very

general terms, the models are adaptable and their

implementation details will vary among dif ferent

organizations.

The spiral model is the most general. Most life cycle models

can in fact be derived as special instances of the spiral model.

Organizations may mix and match different life cycle models

to develop a model more tailored to their products and

capabilities.

There is nothing wrong about using waterfall model for

some components of the complex project that are relatively

well understood and straightforward. But mixing and

matching definitely needs a certain level of software

management talent.

V-Shaped Model
Just like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must

Software Engineering in Configuration Management

118

be completed before the next phase begins. Testing is

emphasized in this model more so than the waterfall model

though. The testing procedures are developed early in the

life cycle before any coding is done, during each of the phases

preceding implementation.

Requirements begin the life cycle model just like the

waterfall model. Before development is started, a system

test plan is created. The test plan focuses on meeting the

functionality specified in the requirements gathering.

The high-level design phase focuses on system architecture

and design. An integration test plan is created in this phase

as well in order to test the pieces of the software systems

ability to work together. The low-level design phase is where

the actual software components are designed, and unit tests

are created in this phase as well. The implementation phase

is, again, where all coding takes place.

Advantages
• Simple and easy to use.

• Each phase has specific deliverables.

• Higher chance of success over the waterfall model due

to the development of test plans early on during the

life cycle.

• Works well for small projects where requirements are

easily understood.

Disadvantages
• Very rigid, like the waterfall model.

• Little flexibility and adjusting scope is difficult and

expensive.

Software Engineering in Configuration Management

119

• Software is developed during the implementation

phase, so no early prototypes of the software are

produced.

• Model doesn’t provide a clear path for problems found

during testing phases.

Incremental Model
The incremental model is an intuitive approach to the

waterfall model. Multiple development cycles take place here,

making the life cycle a “multi-waterfall” cycle. Cycles are

divided up into smaller, more easily managed iterations.

Each iteration passes through the requirements, design,

implementation and testing phases. A working version of

software is produced during the first iteration, so you have

working software early on during the software life cycle.

Subsequent iterations build on the initial software produced

during the first iteration.

�������	�������
��������	
������
�

Advantages
• Generates working software quickly and early during

the software life cycle.

• More flexible – less costly to change scope and

requirements.

• Easier to test and debug during a smaller iteration.

Software Engineering in Configuration Management

120

• Easier to manage risk because risky pieces are

identified and handled during its iteration.

• Each iteration is an easily managed milestone.

Disadvantages
• Each phase of an iteration is rigid and do not overlap

each other.

• Problems may arise pertaining to system architecture

because not all requirements are gathered up front

for the entire software life cycle.

Software Engineering in Configuration Management

121

6

Process of Software Engineering

process

Software engineering process and practices are the

structures imposed on development of a software product.

There are different models of software process (software

lifecycle is a synonym) used in different organizations and

industries. RAL has identified three levels of software process

for its projects. These levels balance the different needs of

different types of projects. Scaling the process to the project

is vital to its success, too much process can be as problematic

as too little; too much process can slow down a purely R&D

exploration, too little process can slow down a large

development project with hard deliverables. The levels are

briefly identified as follows:

Level 1: R&D

• No software products delivered, pure research

Software Engineering in Configuration Management

122

• Minimal software process

Level 2: Research system

• Larger development team, informal software releases

• Moderate software process

Level 3: Delivered system

• Large software development team, formal software

releases

• More formal software process

For example, the Juneau, Alaska Winds Project has evolved

from a Level 1 to a Level 3 project over multiple years. It

started as a purely R&D effort (Level 1), expanded to a field

programme in Juneau (Level 2), and is currently running in

the field as a Operational Prototype (Level 3).

The software process and software engineering practices

have become more formalized and more structured as the

project proceeded through the different levels. RAL has

evolved a set of software engineering best practices that

implement the three software process levels.

These include: source code control, nightly code

builds, writing reusable code, using different team

models, commitment to deadlines, design and code

reviews, risk management, bug tracking, software

metr ics, software conf igurat ion management,

requirements management.

Software configuration management (SCM) is a step up in

formality and reproducibility from source code control and

includes controlling and versioning of software releases.

Source code control is a software engineering best practice

used with RAL Level 2 and Level 3 projects. SCM is a best

practice used on a number of RAL Level 3 projects.

Software Engineering in Configuration Management

123

Description

Software Engineering Process

The elements of a software engineering process are generally

enumerated as:

• Marketing Requirements

• System-Level Design

• Detailed Design

• Implementation

• Integration

• Field Testing

• Support

No element of this process ought to commence before the

earlier ones are substantially complete, and whenever a

change is made to some element, all dependent elements

ought to be reviewed or redone in light of that change. It’s

possible that a given module will be both specified and

implemented before its dependent modules are fully specified

— this is called advanced development or research.

It is absolutely essential that every element of the software

engineering process include several kinds of review: peer

review, mentor/management review, and cross-disciplinary

review. Software engineering elements (whether documents

or source code) must have version numbers and auditable

histories. “Checking in” a change to an element should

require some form of review, and the depth of the review

should correspond directly to the scope of the change.

Marketing Requirements
The first step of a software engineering process is to create

a document which describes the target customers and their

Software Engineering in Configuration Management

124

reason for needing this product, and then goes on to list the

features of the product which address these customer needs.

The Marketing Requirements Document (MRD) is the

battleground where the answer to the question “What should

we build, and who will use it?” is decided.

In many failed projects, the MRD was handed down like

an inscribed stone tablet from marketing to engineering, who

would then gripe endlessly about the laws of physics and

about how they couldn’t actually build that product since

they had no ready supply of Kryptonite or whatever. The

MRD is a joint effort, with engineering not only reviewing

but also writing a lot of the text.

System-Level Design
This is a high-level description of the product, in terms of

“modules” (or sometimes “programmes”) and of the

interaction between these modules. The goals of this

document are first, to gain more confidence that the product

could work and could be built, and second, to form a basis

for estimating the total amount of work it will take to build

it. The system-level design document should also outline the

system-level testing plan, in terms of customer needs and

whether they would be met by the system design being

proposed.

Detailed Design
The detailed design is where every module called out in

the system-level design document is described in detail. The

interface (command line formats, calling API, externally

visible data structures) of each module has to be completely

determined at this point, as well as dependencies between

Software Engineering in Configuration Management

125

modules. Two things that will evolve out of the detailed design

is a PERT or GANT chart showing what work has to be done

and in what order, and more accurate estimates of the time

it will take to complete each module.

Every module needs a unit test plan, which tells the

implementor what test cases or what kind of test cases they

need to generate in their unit testing in order to verify

functionality. Note that there are additional, nonfunctional

unit tests which will be discussed later.

Implementation
Every module described in the detailed design document

has to be implemented. This includes the small act of coding

or programming that is the heart and soul of the software

engineering process. It’s unfortunate that this small act is

sometimes the only part of software engineering that is taught

(or learned), since it is also the only part of software

engineering which can be effectively self-taught.

A module can be considered implemented when it has been

created, tested, and successfully used by some other module

(or by the system-level testing process). Creating a module

is the old edit-compile-repeat cycle. Module testing includes

the unit level functional and regression tests called out by

the detailed design, and also performance/stress testing, and

code coverage analysis.

Integration
When all modules are nominally complete, system-level

integration can be done. This is where all of the modules

move into a single source pool and are compiled and linked

and packaged as a system. Integration can be done

Software Engineering in Configuration Management

126

incrementally, in parallel with the implementation of the

various modules, but it cannot authoritatively approach

“doneness” until all modules are substantially complete.

Integration includes the development of a system-level test.

If the built package has to be able to install itself (which

could mean just unpacking a tarball or copying files from a

CD-ROM) then there should be an automated way of doing

this, either on dedicated crash and burn systems or in

containerized/simulated environments. Sometimes, in the

middleware arena, the package is just a built source pool, in

which case no installation tools will exist and system testing

will be done on the as-built pool. Once the system has been

installed (if it is installable), the automated system-level

testing process should be able to invoke every public

command and call every public entry point, with every

possible reasonable combination of arguments.

If the system is capable of creating some kind of database,

then the automated system-level testing should create one

and then use external (separately written) tools to verify the

database’s integrity. It’s possible that the unit tests will serve

some of these needs, and all unit tests should be run in

sequence during the integration, build, and packaging

process.

Field Testing
Field testing usually begins internally. That means

employees of the organization that produced the software

package will run it on their own computers. This should

ultimately include all “production level” systems — desktops,

laptops, and servers.

Software Engineering in Configuration Management

127

The statement you want to be able to make at the time

you ask customers to run a new software system (or a new

version of an existing software system) is “we run it ourselves.”

The software developers should be available for direct

technical support during internal field testing. Ultimately it

will be necessary to run the software externally, meaning on

customers’ (or prospective customers’) computers. It’s best

to pick “friendly” customers for this exercise since it’s likely

that they will find a lot of defects — even some trivial and

obvious ones — simply because their usage patterns and

habits are likely to be different from those of your internal

users.

The software developers should be close to the front of the

escalation path during external field testing. Defects

encountered during field testing need to be triaged by senior

developers and technical marketers, to determine which ones

can be fixed in the documentation, which ones need to be

fixed before the current version is released, and which ones

can be fixed in the next release (or never).

Support
Software defects encountered either during field testing or

after the software has been distributed should be recorded

in a tracking system. These defects should ultimately be

assigned to a software engineer who will propose a change

to either the definition and documentation of the system, or

the definition of a module, or to the implementation of a

module. These changes should include additions to the unit

and/or system-level tests, in the form of a regression test to

show the defect and therefore show that it has been fixed

Software Engineering in Configuration Management

128

(and to keep it from recurring later). Just as the MRD was a

joint venture between engineering and marketing, so it is

that support is a joint venture between engineering and

customer service. The battlegrounds in this venture are the

bug list, the categorization of particular bugs, the maximum

number of critical defects in a shippable software release,

and so on.

Software Quality Attribute

high quality software
Developing high quality software is hard, especially when

the interpretation of term “quality” is patchy based on the

environment in which it is used. In order to know if quality

has been achieved, or degraded, it has to be measured, but

determining what to measure and how is the difficult part.

Software Quality Attributes are the benchmarks that describe

system’s intended behaviour within the environment for

which it was built.

The quality attributes provide the means for measuring

the fitness and suitability of a product. Software architecture

has a profound affect on most qualities in one way or another,

and software quality attributes affect architecture. Identifying

desired system qualities before a system is built allows system

designer to mold a solution (starting with its architecture) to

match the desired needs of the system within the context of

constraints (available resources, interface with legacy

systems, etc). When a designer understands the desired

qualities before a system is built, then the likelihood of

selecting or creating the right architecture is improved.

Software Engineering in Configuration Management

129

Statements
Both statements are useless as they provide no tangible

way of measuring the behaviour of the system. The quality

attributes must be described in terms of scenarios, such as

“when 100 users initiate ‘complete payment’ transition, the

payment component, under normal circumstances, will

process the requests with an average latency of three

seconds.” This statement, or scenario, allows an architect to

make quantifiable arguments about a system.

A scenario defines the source of stimulus (users), the actual

stimulus (initiate transaction), the artifact affected (payment

component), the environment in which it exists (normal

operation), the effect of the action (transaction processed),

and the response measure (within three seconds). Writing

such detailed statements is only possible when relevant

requirements have been identified and an idea of components

has been proposed.

Qualities
Scenarios help describe the qualities of a system, but they

don’t describe how they will be achieved. Architectural tactics

describe how a given quality can be achieved. For each quality

there may be a large set of tactics available to an architect. It

is the architect’s job to select the right tactic in light of the

needs of the system and the environment.

For example, a performance tactics may include options

to develop better processing algorithms, develop a system

for parallel processing, or revise event scheduling policy.

Whatever tactic is chosen, it must be justified and

documented.

Software Engineering in Configuration Management

130

Software Qualities
It would be naïve to claim that the list below is as a complete

taxonomy of all software qualities – but it’s a solid list of general

software qualities compiled from respectable sources. Domain

specific systems are likely to have an additional set of qualities

in addition to the list below. System qualities can be categorized

into four parts: runtime qualities, non-runtime qualities,

business qualities, and architecture qualities.

Each of the categories and its associated qualities are briefly

described below. Other articles on this site provide more

information about each of the software quality attributes

listed below, their applicable properties, and the conflicts

the qualities.

types of softare qualities
It defines six software quality attributes, also called quality

characteristics:

1. Functionality: Are the required functions available,

including interoperabilithy and security

2. Reliability: Maturity, fault tolerance and recoverability

3. Usability: How easy it is to understand, learn, operate

the software system

4. Efficiency: Performance and resource behaviour

5. Maintainability: How easy is it to modify the software

6. Portability: Can the software easily be transferred to

another environment, including installability

Product Revision
The product revision perspective identifies quality factors

that influence the ability to change the software product, these

factors are:

Software Engineering in Configuration Management

131

• Maintainability, the ability to find and fix a defect.

• Flexibility, the ability to make changes required as

dictated by the business.

• Testability, the ability to Validate the software

requirements.

Product Transition
The product transition perspective identifies quality factors

that influence the ability to adapt the software to new

environments:

• Portability, the ability to transfer the software from

one environment to another.

• Reusability, the ease of using existing software

components in a different context.

• Interoperability, the extent, or ease, to which software

components work together.

Product Operations
The product operations perspective identifies quality factors

that influence the extent to which the software fulfils its

specification:

• Correctness, the functionality matches the

specification.

• Reliability, the extent to which the system fails.

• Efficiency, system resource (including cpu, disk,

memory, network) usage.

• Integrity, protection from unauthorized access.

• Usability, ease of use.

Software Engineering in Configuration Management

132

7

Configuration in Computer
Networking

Setting up network components for FTP is not trivial for

use outside your LAN (Local Area Network). Since so many

firewalls and routers exist, it is impractical to give detailed

step-by-step instructions suitable for every user. It is

important to understand the basics of the FTP protocol in

order to configure FileZilla and the routers and/or firewalls

involved. This documentation describes the history of the

FTP and how some aspects of the protocol work. Reading it

carefully will save you a lot of trouble setting up FTP.

Background

In the fast living world of the internet, the File Transfer

Protocol is not just old, it’s ancient. Early drafts of the protocol

go back as far as 1971, and the current specifications are

from 1985. The protocol might even be older than you!

Software Engineering in Configuration Management

133

Back then, the Internet was mainly used by universities

and research centres. The community was small, many users

knew each other and all were collaborating together. The

internet was a friendly, trusting place. Security was not much

of a concern. A lot has changed since then. The Internet is

now ubiquitous, with millions of users communicating with

each other in many different ways. It is also a more hostile

place. The availability and openness has attracted malicious

users who exploit design limitations, incomplete

implementations, bugs, and the inexperience of other users.

A well-known software company located in Redmond, WA

certainly played a part in this.

Several attempts have been made to address these

problems:

• NAT (Network Address Translation) routers. Many

hosts and routers on the internet use the IPv4

protocol. The number of hosts connected to the

internet has reached IPV4’s design limit for the

number of addresses (IPv6 is designed to relieve this).

NAT routers allow multiple systems within a LAN to

connect to the outside world with one external IP

address.

• Personal firewalls try to protect personal computers

from attacks by malicious users.

Unfortunately, both NAT and personal firewalls conflict with

FTP more often than not. To make things worse, some are

themselves flawed, causing additional problems regarding FTP.

Technical Background
What distinguishes FTP from most other protocols is the

use of secondary connections for file transfers. When you

Software Engineering in Configuration Management

134

connect to an FTP server, you are actually making two

connections. First, the so-called control connection is

established, over which FTP commands and their replies are

transferred. Then, in order to transfer a file or a directory

listing, the client sends a particular command over the control

connection to establish the data connection.

The data connection can be established two different ways,

using active mode or passive mode.

In passive mode, which is recommended, the client sends

the PASV command to the server, and the server responds

with an address. The client then issues a command to transfer

a file or to get a directory listing, and establishes a secondary

connection to the address returned by the server.

In active mode, the client opens a socket on the local

machine and tells its address to the server using the PORT

command. Once the client issues a command to transfer a

file or listing, the server will connect to the address provided

by the client.

In both cases, the actual file or listing is then transferred

over the data connection.

Generally, establishing outgoing connections requires less

configuration on the routers/firewalls involved than

establishing incoming connections. In passive mode, the

connection is outgoing on the client side and incoming on

the server side and in active mode this is reversed. Note that

the only differences are in establishing a connection. Once

established, the connection can be used for uploads or

downloads.

A common network setup might look like this:

Software Engineering in Configuration Management

135

In passive mode, the router and firewall on the server side

need to be configured to accept and forward incoming

connections. On the client side, however, only outgoing

connections need to be allowed (which will already be the

case most of the time). Analogously, in active mode, the router

and firewall on the client side need to be configured to accept

and forward incoming connections. Only outgoing

connections have to be allowed on the server side.

Since in most cases one server provides a service for many

users, it is much easier to configure the router and firewall

on the server side once for passive mode than to configure

the client’s router/firewall for each individual client in active

mode. Therefore, passive mode is recommended in most

cases.

NAT Routers
Most broadband users will have a NAT (Network Address

Translation) router between their computer and the internet.

This may be a standalone router device (perhaps a wireless

router), or be built into a DSL or cable modem. In a NAT

environment, all systems behind the NAT router form a Local

Area Network (LAN), and each system in the LAN has a local

IP address (recognizable as four small numbers separated

by dots). The NAT router itself has a local IP address as well.

In addition, the NAT router also has an external IP address

by which it is known to the Internet. An example system

might look like this:

Software Engineering in Configuration Management

136

The internal IP addresses are only valid inside the LAN,

since they would make little sense to a remote system. Think

about a server behind a NAT router. Imagine what might

happen if a client requests passive mode, but the server

doesn’t know the external IP address of the NAT router. If

the server sends its internal address to the client, two things

could happen:

• If the client is not behind a NAT, the client would

abort since the address is invalid.

• If the client is behind a NAT, the address given by

the server might be the same as a system in the

client’s own LAN.

Obviously, in both cases passive mode would be impossible.

So if a server is behind a NAT router, it needs to know the

external IP address of the router in passive mode. In this

case, the server sends the router’s external address to the

client. The client then establishes a connection to the NAT

router, which in turn routes the connection to the server.

Firewalls
Personal firewalls are installed on many systems to protect

users from security vulnerabilities in the operating system

or applications running on it. Over the internet, malware

Software Engineering in Configuration Management

137

such as worms try to exploit these flaws to infect your system.

Firewalls can help to prevent such an infection. However,

firewalls and other security applications can sometimes

interfere with non-malicious file transfers.

Especially if using FTP, firewall users might occasionally

see messages like this from their firewall:
Trojan Netbus blocked on port 12345 used by FileZilla.exe

In many cases, this is a false alarm. Any program can

choose any port it wants for communication over the internet.

FileZilla, then, might choose a port that is coincidentally also

the default port of a trojan or some other malware being

tracked by your firewall. FileZilla is clean of malware as long

as it is downloaded from the official website.

TCP/IP Protocol Architecture

While there is no universal agreement about how to

describe TCP/IP with a layered model, it is generally viewed

as being composed of fewer layers than the seven used in

the OSI model. Most descriptions of TCP/IP define three to

five functional levels in the protocol architecture.

����������������������������������	�
���	����	�����

Software Engineering in Configuration Management

138

As in the OSI model, data is passed down the stack when

it is being sent to the network, and up the stack when it is

being received from the network. The four-layered structure

of TCP/IP is seen in the way data is handled as it passes

down the protocol stack from the Application Layer to the

underlying physical network. Each layer in the stack adds

control information to ensure proper delivery. This control

information is called a header because it is placed in front of

the data to be transmitted. Each layer treats all of the

information it receives from the layer above as data and places

its own header in front of that information. The addition of

delivery information at every layer is called encapsulation.

When data is received, the opposite happens. Each layer

strips off its header before passing the data on to the layer

above. As information flows back up the stack, information

received from a lower layer is interpreted as both a header

and data.

��������� ����!�	���
������

Each layer has its own independent data structures.

Conceptually, a layer is unaware of the data structures used

by the layers above and below it. In reality, the data structures

Software Engineering in Configuration Management

139

of a layer are designed to be compatible with the structures

used by the surrounding layers for the sake of more efficient

data transmission. Still, each layer has its own data structure

and its own terminology to describe that structure.

The terms used by different layers of TCP/IP to refer to

the data being transmitted. Applications using TCP refer to

data as a stream, while applications using the User Datagram

Protocol (UDP) refer to data as a message. TCP calls data a

segment, and UDP calls its data structure a packet. The

Internet layer views all data as blocks called datagrams. TCP/

IP uses many different types of underlying networks, each of

which may have a different terminology for the data it

transmits. Most networks refer to transmitted data as packets

or frames.

��������� ����"���	�����

Network Access Layer
The Network Access Layer is the lowest layer of the TCP/

IP protocol hierarchy. The protocols in this layer provide the

means for the system to deliver data to the other devices on

a directly attached network. It defines how to use the network

to transmit an IP datagram.

Software Engineering in Configuration Management

140

Unlike higher-level protocols, Network Access Layer

protocols must know the details of the underlying network

(its packet structure, addressing, etc.) to correctly format

the data being transmitted to comply with the network

constraints. The TCP/IP Network Access Layer can

encompass the functions of all three lower layers of the OSI

reference Model (Network, Data Link, and Physical).

The Network Access Layer is often ignored by users. The

design of TCP/IP hides the function of the lower layers, and

the better known protocols (IP, TCP, UDP, etc.) are all higher-

level protocols. As new hardware technologies appear, new

Network Access protocols must be developed so that TCP/IP

networks can use the new hardware. Consequently, there

are many access protocols- one for each physical network

standard.

Functions performed at this level include encapsulation

of IP datagrams into the frames transmitted by the network,

and mapping of IP addresses to the physical addresses used

by the network. One of TCP/IP’s strengths is its universal

addressing scheme. The IP address must be converted into

an address that is appropriate for the physical network over

which the datagram is transmitted.

Two examples of RFCs that define network access layer

protocols are:

• RFC 826, Address Resolution Protocol (ARP), which

maps IP addresses to Ethernet addresses

• RFC 894, A Standard for the Transmission of IP

Datagrams over Ethernet Networks, which specifies

how IP datagrams are encapsulated for transmission

over Ethernet networks.

Software Engineering in Configuration Management

141

Internet Layer
The layer above the Network Access Layer in the protocol

hierarchy is the Internet Layer. The Internet Protocol, RFC

791, is the heart of TCP/IP and the most important protocol

in the Internet Layer. IP provides the basic packet delivery

service on which TCP/IP networks are built. All protocols, in

the layers above and below IP, use the Internet Protocol to

deliver data. All TCP/IP data flows through IP, incoming and

outgoing, regardless of its final destination.

Internet Protocol
The Internet Protocol is the building block of the Internet.

Its functions include:

• Defining the datagram, which is the basic unit of

transmission in the Internet

• Defining the Internet addressing scheme

• Moving data between the Network Access Layer and

the Host-to-Host Transport Layer

• Routing datagrams to remote hosts

• Performing fragmentation and re-assembly of

datagrams.

Before describing these functions in more detail, let’s look

at some of IP’s characteristics. First, IP is a connectionless

protocol. This means that IP does not exchange control

information (called a “handshake”) to establish an end-to-

end connection before transmitting data. In contrast, a

connection-oriented protocol exchanges control information

with the remote system to verify that it is ready to receive

data before any data is sent. When the handshaking is

successful, the systems are said to have established a

Software Engineering in Configuration Management

142

connection. Internet Protocol relies on protocols in other layers

to establish the connection if they require connection-oriented

service.

IP also relies on protocols in the other layers to provide

error detection and error recovery. The Internet Protocol is

sometimes called an unreliable protocol because it contains

no error detection and recovery code. This is not to say that

the protocol cannot be relied on-quite the contrary. IP can

be relied upon to accurately deliver your data to the connected

network, but it doesn’t check whether that data was correctly

received. Protocols in other layers of the TCP/IP architecture

provide this checking when it is required.

The Datagram
The TCP/IP protocols were built to transmit data over the

ARPANET, which was a packet switching network. A packet

is a block of data that carries with it the information necessary

to deliver it-in a manner similar to a postal letter, which has

an address written on its envelope. A packet switching

network uses the addressing information in the packets to

switch packets from one physical network to another, moving

them towards their final destination. Each packet travels

the network independently of any other packet.

The datagram is the packet format defined by Internet

Protocol. A pictorial representation of an IP datagram. The first

five or six 32-bit words of the datagram are control information

called the header. By default, the header is five words long; the

sixth word is optional. Because the header’s length is variable,

it includes a field called Internet Header Length (IHL) that

indicates the header’s length in words. The header contains

all the information necessary to deliver the packet.

Software Engineering in Configuration Management

143

������������ ���#����$������

The Internet Protocol delivers the datagram by checking

the Destination Address in word 5 of the header. The

Destination Address is a standard 32-bit IP address that

identifies the destination network and the specific host on

that network. If the Destination Address is the address of a

host on the local network, the packet is delivered directly to

the destination. If the Destination Address is not on the local

network, the packet is passed to a gateway for delivery.

Gateways are devices that switch packets between the

different physical networks. Deciding which gateway to use

is called routing. IP makes the routing decision for each

individual packet.

Malicious Routers, Firewalls and

Data Sabotage

Some routers and firewalls pretend to be smart. They

analyse connections and, if they think they detect FTP, they

silently change the data exchanged between client and server.

If the user has not explicitly enabled this feature, this

Software Engineering in Configuration Management

144

behaviour is essentially data sabotage and can cause various

problems. For an example, imagine a client behind a NAT

router trying to connect to the server. Let’s further assume

that this client does not know it is behind a NAT and wants

to use active mode. So it sends the PORT command with the

user’s local, un-routable IP address to the server:
PORT 10,0,0,1,12,34

This command tells the server to connect to the address

10.0.0.1 on port 12*256+34 = 3106

The NAT router sees this and silently changes the

command to include the external IP address. At the same

time, the NAT router will also create a temporary port

forwarding for the FTP session, possibly on a different port

even:
PORT 123,123,123,123,24,55

The above command tells the server to connect to the

address 123.123.123.123 on port 24*256+55 = 6199

With this behaviour, a NAT router allows an improperly

configured client to use active mode.

So why is this behaviour bad? Essentially, it can cause a

number of problems if it is enabled by default, without explicit

user consent. The FTP connections in their most basic form

appear to work, but as soon as there’s some deviation from

the basic case, everything will fail, leaving the user stumped:

• The NAT router blindly assumes some connection

uses FTP based on criteria like target ports or the

initial server response:

(a) The used protocol is detected as FTP, yet there

is no guarantee that this is true (a false positive).

Though unlikely, it is conceivable that a future

revision of the FTP protocol might change the

Software Engineering in Configuration Management

145

syntax of the PORT command. A NAT router

modifying the PORT command would then silently

change things it does not support and thus break

the connection.

(B) The router’s protocol detection can fail to

recognize an FTP connection (a false negative).

Say the router only looks at the target port, and

if it is 21, it detects it as FTP. As such, active

mode connections with an improperly configured

client to servers running on port 21 will work,

but connections to other servers on non-standard

ports will fail.

• Obviously, a NAT router can no longer tamper with

the connection as soon as an encrypted FTP session

is used, again leaving the user clueless why it works

for normal FTP but not for encrypted FTP.

• Say a client behind a NAT router sends “PORT

10,0,0,1,12,34”. How does the NAT router know the

client is improperly configured? It is also possible

that the client is properly configured, yet merely

wants to initiate an FXP (server-to-server) transfer

between the server it is connected to and another

machine in the server’s own local network.

Therefore, having protocol specific features enabled in a

NAT router by default can create significant problems. The

solution to all this, then, is to know your router’s settings,

and to know the configuration abilities of a router before you

set it up. A good NAT router should always be fully protocol-

agnostic. The exception is if you as the user have explicitly

enabled this feature, knowing all its consequences. The

Software Engineering in Configuration Management

146

combination of a NAT router on the client side with active

mode, the same applies to a server behind a NAT router and

the reply to the PASV command.

Setting up FileZilla Client
If you’re running FileZilla 3, it’s recommended you run

the network configuration wizard. It will guide you through

the necessary steps and can test your configuration after

set-up.

Obviously, if you want to connect to any server, you need

to tell your firewall that FileZilla should be allowed to open

connections to other servers. Most normal FTP servers use

port 21, SFTP servers use port 22 and FTP over SSL/TLS

(implicit mode) use port 990 by default. These ports are not

mandatory, however, so it’s best to allow outgoing connections

to arbitrary remote ports. Since many servers on the internet

are misconfigured and don’t support both transfer modes,

it’s recommended that you configure both transfer modes

on your end.

Passive Mode
In passive mode, the client has no control over what port

the server chooses for the data connection. Therefore, in order

to use passive mode, you’ll have to allow outgoing connections

to all ports in your firewall.

Active Mode
In active mode, the client opens a socket and waits for the

server to establish the transfer connection.

By default, FileZilla Client asks the operating system for

the machine’s IP address and for the number of a free port.

Software Engineering in Configuration Management

147

This configuration can only work if you are connected to the

internet directly without any NAT router, and if you have set

your firewall to allow incoming connections on all ports

greater than 1024.

If you have a NAT router, you need to tell FileZilla your

external IP address in order for active mode connections to

work with servers outside your local network:

• If you have a fixed external IP address, you can enter

it in FileZilla’s configuration dialog.

• If you have a dynamic IP address, you can authorize

FileZilla to obtain your external IP address from a

special website. This will occur automatically each

time FileZilla is started. No information will be

submitted to the website (regardless of FileZilla

version).

If in doubt, use the second option.

If you do not want to allow incoming connections on all

ports, or if you have a NAT router, you need to tell FileZilla to

use a specific range of ports for active mode connections.

You will have to open these ports in your firewall. If you have

a NAT router, you need to forward these ports to the local

machine FileZilla is installed on. Depending on your router

model, you can either forward a range of ports or you need

to forward all ports individually.

Valid ports can be from 1 to 65535; however, ports less

than 1024 are reserved for other protocols. It is best to choose

ports greater than or equal to 50000 for active mode FTP.

Due to the nature of TCP (the underlying transport protocol),

a port cannot be reused immediately after each connection.

Therefore, the range of ports should not be too small to

Software Engineering in Configuration Management

148

prevent the failure of transfers of multiple small files. A range

of 50 ports should be sufficient in most cases.

Setting up and testing FileZilla Server
Setting up the server is very similar to setting up the client,

with the main difference being that the roles of active and

passive mode are reversed.

A common mistake, especially by users with NAT routers,

is in testing the server. If you are within your local network,

you can only test using the local IP address of the server.

Using the external address from the inside will probably fail,

and one of the following may happen:

• It actually works (surprisingly- and it probably

means something else is wrong...)

• The router blocks access to its own external address

from the inside, due to identifying it as a possible

attack

• The router forwards the connection to your ISP,

which then blocks it as a possible attack

Software Engineering in Configuration Management

149

Even if the test works, there is no guarantee that an

external user can really connect to your server and transfer

files. The only reliable way to test your server is to try

connecting from an external system, outside of your LAN.

Active Mode
Make sure FileZilla Server is allowed to establish outgoing

connections to arbitrary ports, since the client controls which

port to use.

On the local end of the connection, FileZilla Server tries to

use a port one less than that of the control connection (e.g.

port 20 if server is listening on port 21). However, this is not

always possible- so don’t rely on it.

Passive Mode
The server configuration is very similar to client

configuration for active mode. In passive mode, the server

opens a socket and waits for the client to connect to it.

By default, FileZilla Server asks the operating system for

the machine’s IP address, and for a free port number. This

configuration can only work if you are connected to the

internet directly without any NAT router and if you have set

your firewall to allow incoming connections on all ports

greater than 1024.

If you have a NAT router, you need to tell FileZilla Server

your external IP address or passive mode connections will

not work with clients outside your local network:

• If you have a fixed external IP address, you can enter

it in the configuration dialog of FileZilla Server.

• If you have a dynamic IP address, you can let

FileZilla Server obtain your external IP address from

Software Engineering in Configuration Management

150

a special website automatically. Except your version

of FileZilla Server, no information will be submitted

to that website.

If in doubt, use the second option. If you do not want to

allow incoming connections on all ports, or if you have a

NAT router, you need to tell FileZilla Server to use a specific

range of ports for passive mode connections. You will have

to open these ports in your firewall. If you have a NAT router,

you need to forward these ports to the local machine FileZilla

Server is installed on. Depending on your router model, you

can either forward a range of ports or you need to forward all

ports individually.

Valid ports can be from 1 to 65535, however ports less than

1024 are reserved for other protocols. It is best to choose ports

>= 50000 for passive mode FTP. Due to the nature of TCP (the

underlying transport protocol), a port cannot be reused

immediately after each connection. Hence the range of ports

should not be too small or transfers of multiple small files can

fail. A range of 50 ports should be sufficient in most cases.

Software Engineering in Configuration Management

151

Troubleshooting
The following are a few troubleshooting suggestions:

Unfortunately, many personal firewalls and consumer

routers are flawed or in some cases, even actively sabotage

FTP (e.g. SMC Barricade V1.2). First of all, as with all software,

you should keep everything updated. This includes the

firewall software as well as the firmware version of your router.

If that does not help, you might want to try to uninstall

your firewall to see what happens. Simply disabling your

firewall might not work, as some firewalls cannot be fully

disabled.

If possible, try to connect directly to the internet without a

router.

If you are trying to setup a server and it works fine within

your LAN but is not reachable from the outside, try changing

the listening port. Some ISPs don’t like their customers to

host servers and they may block ports with numbers under

1024. Another issue may occur if you are hosting an FTP

server on default port 21. There might be a firewall at the

ISP side of your connection which can do odd things like

changing the port for PASV commands. Try using another

non-default port for your FTP server.

If you encounter “cannot open data connection” on a

random basis (i.e., the ftp client can connect to the ftp server

without problem for many connections until it encounters

this problem), one possible reason may be that your client

PC anti-virus software is configured to block outgoing

connections on certain ranges of ports. When your ftp

connections are running in pasv mode, the client-side

outgoing ports are selected randomly and some of those

Software Engineering in Configuration Management

152

randomly selected ports may be blocked by the anti-virus

software. To identify this problem, read your anti-virus log

on the client. In general, any software that can block certain

ranges of outgoing ports (such as PC firewalls) can cause

similar FTP grief.

Timeouts on Large Files
If you can transfer small files without any issues, but

transfers of larger files end with a timeout, a broken router

and/or firewall exists between the client and the server and

is causing a problem.

FTP uses two TCP connections: a control connection to

submit commands and receive replies, and a data connection

for actual file transfers. It is the nature of FTP that during a

transfer the control connection stays completely idle.

The TCP specifications do not set a limit on the amount of

time a connection can stay idle. Unless explicitly closed, a

connection is assumed to remain alive indefinitely. However,

many routers and firewalls automatically close idle

connections after a certain period of time. Worse, they often

don’t notify the user, but just silently drop the connection.

For FTP, this means that during a long transfer the control

connection can get dropped because it is detected as idle,

but neither client nor server are notified. So when all data

has been transferred, the server assumes the control

connection is alive and it sends the transfer confirmation

reply. Likewise, the client thinks the control connection is

alive and it waits for the reply from the server. But since the

control connection got dropped without notification, the reply

never arrives and eventually the connection will timeout.

Software Engineering in Configuration Management

153

In an attempt to solve this problem, the TCP specifications

include a way to send keep-alive packets on otherwise idle

TCP connections, to tell all involved parties that the

connection is still alive and needed. However, the TCP

specifications also make it very clear that these keep-alive

packets should not be sent more often than once every two

hours. Therefore, with added tolerance for network latency,

connections can stay idle for up to 2 hours and 4 minutes.

However, many routers and firewalls drop connections that

have been idle for less than 2 hours and 4 minutes. This

violates the TCP specifications (RFC 5382 makes this

especially clear). In other words, all routers and firewalls

that are dropping idle connections too early cannot be used

for long FTP transfers. Unfortunately manufacturers of

consumer-grade router and firewall vendors do not care about

specifications... all they care about is getting your money

(and only deliver barely working lowest quality junk). To solve

this problem, you need to uninstall affected firewalls and

replace faulty routers with better-quality ones.

Setting up FileZilla Server with Windows
Firewall

If you are having problems with setting up FileZilla Server

to run behind Windows Firewall (specifically, it fails on “List”

and the client receives a “Failed to receive directory listing”

error), you must add the FileZilla Server application to

Windows Firewall’s Exceptions list. To do this, follow these

steps:

1. Open Windows Firewall under Control Panel.

2. If using Vista, click “Change Settings”

Software Engineering in Configuration Management

154

3. Select the “Exceptions” tab.

4. Click “Add program...”

5. Do NOT select “FileZilla Server Interface” from the

list, instead click on “Browse...”

6. Locate the directory you installed FileZilla Server to

(normally “C:\Program Files\FileZilla Server\”)

7. Double click or select “FileZilla server.exe” and press

open (Once again, NOT “FileZilla Server

Interface.exe”)

8. Select “FileZilla server.exe” from the list and click

“Ok”

9. Verify that “FileZilla server.exe” is added to the

exceptions list and that it has a check mark in the

box next to it

10.Press “Ok” to close the window

Passive mode should now work. If you are still having

problems connecting (from another computer or outside the

network), check your router settings or try to add the port

number in the Windows Firewall settings located in the

Exceptions tab.

Software Engineering in Configuration Management

155

8

Configuration Management

Configuration management is a process for maintaining

computer systems, servers, and software in a desired,

consistent state. It’s a way to make sure that a system

performs as it’s expected to as changes are made over time.

Managing IT system configurations involves defining a

system's desired state—like server configuration—then

building and maintaining those systems. Closely related to

configuration assessments and drift analyses, configuration

management uses both to identify systems to update,

reconfigure, or patch.

Why manage configurations? Configuration management

keeps you from making small or large changes that go

undocumented. Misconfigurations like these were identified

in our State of Kubernetes Security report as a leading cause

of security incidents among containerized or Kubernetes-

orchestrated environments.

Software Engineering in Configuration Management

156

Misconfigurations can lead to poor performance,

inconsistencies, or noncompliance and negatively impact

business operations and security. When undocumented

changes are made across many systems and applications, it

adds to instability and downtime.

Manually identifying systems that require attention,

determining remediation steps, prioritizing actions, and

validating completion are too complicated to perform in large

environments.

But without documentation, maintenance, and a change

control process, system administrators and software

developers could end up not knowing what’s on a server or

which software has been updated.

Configuration management systems let you consistently

define system settings, as well as build and maintain those

systems according to those baseline settings. Configuration

management helps users and administrators know where

certain services exist and what the current state of

applications are.

Proper configuration management tools:

• Classify and manage systems by groups and

subgroups.

• Centrally modify base configurations.

• Roll out new settings to all applicable systems.

• Automate system identification, patches, and updates

• Identify outdated, poor performing, and noncompliant

configurations.

• Prioritize actions.

• Access and apply prescriptive remediation.

Software Engineering in Configuration Management

157

Configuration management benefits

Think of it like this. If you keep up with the small things,

you can avoid more complicated, expensive repairs in the

future. Configuration management is about preventing

issues so you don’t have to deal with as many problems

later.

For example, you can make sure that your test and

production environments match. That way, you’ll have fewer

problems with applications once they’ve been deployed than

you would if these environments weren’t exactly the same.

With configuration management, you can accurately

replicate an environment with the correct configurations and

software because you know what exists in the original

environment.

Automating configuration management

The role of configuration management is to maintain

systems in a desired state. Traditionally, this was handled

manually or with custom scripting by system administrators.

Automation is the use of software to perform tasks, such as

configuration management, in order to reduce cost,

complexity, and errors.

Through automation, a configuration management tool can

provision a new server within minutes with less room for

error. You can also use automation to maintain a server in

the desired state, such as your standard operating

environment (SOE), without the provisioning scripts needed

previously.

Software Engineering in Configuration Management

158

Configuration management tools

They also help you to keep track of the state of your

resources, and keep you from repeating tasks, like installing

the same package twice.

Improve system recovery after a critical event with

automated configuration management. If a server goes down

for an unknown reason, you can deploy a new one quickly

and have a record of any changes or updates that occurred

so you can identify the source of the problem.

Your configuration management tools can also help you

to run an audit of your system so you can more quickly

identify where the problem is coming from.

Git
Git is the industry-leading version control system to track

code changes. Adding configuration management data

alongside code in a Git repository provides a holistic version

control view of an entire project. Git is a foundational tool in

higher-level configuration management. The following list of

other configuration management tools is designed to be stored

in a Git repository and leverage Git version control tracking.

Docker
Docker introduced containerization that is an advanced

form of configuration management -- like a configuration

lockdown. Docker is based on configuration files called

Dockerfiles, which contain a list of commands that are

evaluated to reconstruct the expected snapshot of operating

system state. Docker creates containers from these

Dockerfiles that are snapshots of a preconfigured application.

Software Engineering in Configuration Management

159

Dockerfiles are committed to a Git repository for version

tracking and need additional configuration management to

deploy them to infrastructure.

Terraform
Terraform is an open source configuration management

platform by HasiCorp. Terraform uses IaC to provision and

manage clusters, cloud infrastructure, or services. Terraform

supports Amazon Web Services (AWS), Microsoft Azure, and

other cloud platforms. Each cloud platform has its own

representation and interface for common infrastructure

components like servers, databases, and queues. Terraform

built an abstraction layer of configuration tools for cloud

platforms that enable teams to write files that are

reproducible definitions of their infrastructure.

Ansible, Salt Stack, Chef, Puppet
Ansible, Salt Stack, and Chef are IT automation

frameworks. These frameworks automate many traditional

system administrators' processes. Each framework uses a

series of configuration data files -- usually YAML or XML --

that are evaluated by an executable.

The configuration data files specify a sequence of actions

to take to configure a system. The actions are then run by

the executable. The executable differs in language between

the systems -- Ansible and Salt Stack are Python based and

Chef is Ruby. This workflow is similar to running ad-hoc

shell scripts but offers a more structured and refined

experience through the respective platforms ecosystems.

These tools are what will bring enable the automation needed

to achieve CI/CD.

Software Engineering in Configuration Management

160

How configuration management fits with

DevOps, CI/CD and agile

Configuration data has historically been hard to wrangle

and can easily become an afterthought. It's not really code

so it’s not immediately put in version control and it’s not

first-class data so It isn’t stored in a primary database.

Traditional and small scale system administration is usually

done with a collection of scripts and ad-hoc processes.

Configuration data can be overlooked at times, but it is critical

to system operation. The rise of cloud infrastructures has

led to the development and adoption of new patterns of

infrastructure management. Complex, cloud-based system

architectures are managed and deployed through the use of

configuration data files. These new cloud platforms allow

teams to specify the hardware resources and network

connections they need provisioned through human and

machine readable data files like YAML. The data files are

then read and the infrastructure is provisioned in the cloud.

This pattern is called infrastructure as code (IaC).

DevOps configuration management
In the early years of internet application development,

hardware resources and systems administration were

primarily performed manually. System administrators

wrangled configuration data while manually provisioning and

managing hardware resources based on configuration data.

Configuration management is a key part of a DevOps

lifecycle. DevOps configuration is the evolution and

automation of the systems administration role, bringing

automation to infrastructure management and deployment.

Software Engineering in Configuration Management

161

DevOps configuration also brings system administration

responsibility under the umbrella of software engineering.

Enterprises today utilize it to empower software engineers to

request and provision needed resources on demand. This

removes a potential organizational dependency bottleneck

of a software development team waiting for resources from a

separate system administration team.

CI/CD configuration management
CI/CD configuration management utilizes pull request-

based code review workflows to automate deployment of code

changes to a live software system. This same flow can be

applied to configuration changes. CI/CD can be set up so

that approved configuration change requests can immediately

be deployed to a running system. A perfect example of this

process is a GitOps workflow.

Agile configuration management
Configuration management enables agile teams to clearly

triage and prioritize configuration work. Examples of

configuration work are chores and tasks like:

• Update the production SSL certificates

• Add a new database endpoint

• Change the password for dev, staging, and production

email services.

• Add API keys for a new third-party integration

Once a configuration management platform is in place,

teams have visibility into the work required for configuration

tasks. Configuration management work can be identified as

dependencies for other work and properly addressed as part

of agile sprints.

Software Engineering in Configuration Management

162

9

Software Development Process

A software development process, also known as a software

development lifecycle, is a structure imposed on the

development of a software product. Similar terms include

software life cycle and software process. There are several

models for such processes, each describing approaches to a

variety of tasks or activities that take place during the process.

Some people consider a lifecycle model a more general term

and a software development process a more specific term.

For example, there are many specific software development

processes that ‘fit’ the spiral lifecycle model.

Overview
The large and growing body of software development

organizations implement process methodologies. Many of

them are in the defense industry, which in the U.S. requires

a rating based on ‘process models’ to obtain contracts. The

international standard for describing the method of selecting,

Software Engineering in Configuration Management

163

implementing and monitoring the life cycle for software is

ISO 12207. A decades-long goal has been to find repeatable,

predictable processes that improve productivity and quality.

Some try to systematize or formalize the seemingly unruly

task of writing software. Others apply project management

techniques to writing software. Without project management,

software projects can easily be delivered late or over budget.

With large numbers of software projects not meeting their

expectations in terms of functionality, cost, or delivery

schedule, effective project management appears to be lacking.

Organizations may create a Software Engineering Process

Group (SEPG), which is the focal point for process

improvement. Composed of line practitioners who have varied

skills, the group is at the center of the collaborative effort of

everyone in the organization who is involved with software

engineering process improvement.

Software Development Activities

Planning
The important task in creating a software product is

extracting the requirements or requirements analysis.

Customers typically have an abstract idea of what they want

as an end result, but not what software should do.

Incomplete, ambiguous, or even contradictory requirements

are recognized by skilled and experienced software engineers

at this point. Frequently demonstrating live code may help

reduce the risk that the requirements are incorrect. Once

the general requirements are gathered from the client, an

analysis of the scope of the development should be

determined and clearly stated. This is often called a scope

Software Engineering in Configuration Management

164

document. Certain functionality may be out of scope of the

project as a function of cost or as a result of unclear

requirements at the start of development. If the development

is done externally, this document can be considered a legal

document so that if there are ever disputes, any ambiguity

of what was promised to the client can be clarified.

Implementation, Testing and Documenting
Implementation is the part of the process where software

engineers actually programme the code for the project.

Software testing is an integral and important part of the

software development process. This part of the process

ensures that defects are recognized as early as possible.

Documenting the internal design of software for the purpose

of future maintenance and enhancement is done throughout

development. This may also include the writing of an API, be

it external or internal. It is very important to document

everything in the project.

Deployment and Maintenance
Deployment starts after the code is appropriately tested,

is approved for release and sold or otherwise distributed into

a production environment. Software Training and Support

is important and a lot of developers fail to realize that. It

would not matter how much time and planning a development

team puts into creating software if nobody in an organization

ends up using it. People are often resistant to change and

avoid venturing into an unfamiliar area, so as a part of the

deployment phase, it is very important to have training

classes for new clients of your software. Maintaining and

enhancing software to cope with newly discovered problems

Software Engineering in Configuration Management

165

or new requirements can take far more time than the initial

development of the software. It may be necessary to add code

that does not fit the original design to correct an unforeseen

problem or it may be that a customer is requesting more

functionality and code can be added to accommodate their

requests. If the labor cost of the maintenance phase exceeds

25% of the prior-phases’ labor cost, then it is likely that the

overall quality of at least one prior phase is poor. In that

case, management should consider the option of rebuilding

the system (or portions) before maintenance cost is out of

control.

Software Development Models
Several models exist to streamline the development

process. Each one has its pros and cons, and it’s up to the

development team to adopt the most appropriate one for the

project. Sometimes a combination of the models may be more

suitable.

Waterfall Model
The waterfall model shows a process, where developers

are to follow these phases in order:

1. Requirements specification (Requirements analysis)

2. Software Design

3. Integration

4. Testing (or Validation)

5. Deployment (or Installation)

6. Maintenance

In a strict Waterfall model, after each phase is finished, it

proceeds to the next one. Reviews may occur before moving

to the next phase which allows for the possibility of changes

Software Engineering in Configuration Management

166

(which may involve a formal change control process). Reviews

may also be employed to ensure that the phase is indeed

complete; the phase completion criteria are often referred to

as a “gate” that the project must pass through to move to

the next phase. Waterfall discourages revisiting and revising

any prior phase once it’s complete. This “inflexibility” in a

pure Waterfall model has been a source of criticism by

supporters of other more “flexible” models.

Spiral Model
The key characteristic of a Spiral model is risk management

at regular stages in the development cycle. In 1988, Barry

Boehm published a formal software system development

“spiral model”, which combines some key aspect of the

waterfall model and rapid prototyping methodologies, but

provided emphasis in a key area many felt had been neglected

by other methodologies: deliberate iterative risk analysis,

particularly suited to large-scale complex systems. The Spiral

is visualized as a process passing through some number of

iterations, with the four quadrant diagram representative of

the following activities:

1. formulate plans to: identify software targets, selected

to implement the programme, clarify the project

development restrictions;

2. Risk analysis: an analytical assessment of selected

programmes, to consider how to identify and eliminate

risk;

3. the implementation of the project: the implementation

of software development and verification;

Risk-driven spiral model, emphasizing the conditions of

options and constraints in order to support software reuse,

Software Engineering in Configuration Management

167

software quality can help as a special goal of integration into

the product development. However, the spiral model has some

restrictive conditions, as follows:

1. The spiral model emphasizes risk analysis, and thus

requires customers to accept this analysis and act

on it. This requires both trust in the developer as

well as the willingness to spend more to fix the issues,

which is the reason why this model is often used for

large-scale internal software development.

2. If the implementation of risk analysis will greatly affect

the profits of the project, the spiral model should not

be used.

3. Software developers have to actively look for possible risks,

and analyze it accurately for the spiral model to work.

The first stage is to formulate a plan to achieve the

objectives with these constraints, and then strive to find and

remove all potential risks through careful analysis and, if

necessary, by constructing a prototype. If some risks can

not be ruled out, the customer has to decide whether to

terminate the project or to ignore the risks and continue

anyway. Finally, the results are evaluated and the design of

the next phase begins.

Iterative and Incremental Development
Iterative development prescribes the construction of

initially small but ever larger portions of a software project

to help all those involved to uncover important issues early

before problems or faulty assumptions can lead to disaster.

Iterative processes are preferred by commercial developers

because it allows a potential of reaching the design goals of a

customer who does not know how to define what they want.

Software Engineering in Configuration Management

168

Agile Development
Agile software development uses iterative development as

a basis but advocates a lighter and more people-centric

viewpoint than traditional approaches. Agile processes use

feedback, rather than planning, as their primary control

mechanism. The feedback is driven by regular tests and

releases of the evolving software.

There are many variations of agile processes:

• In Extreme Programming (XP), the phases are carried

out in extremely small (or “continuous”) steps

compared to the older, “batch” processes. The

(intentionally incomplete) first pass through the steps

might take a day or a week, rather than the months

or years of each complete step in the Waterfall model.

First, one writes automated tests, to provide concrete

goals for development. Next is coding (by a pair of

programmers), which is complete when all the tests

pass, and the programmers can’t think of any more

tests that are needed. Design and architecture emerge

out of refactoring, and come after coding. Design is

done by the same people who do the coding. (Only

the last feature — merging design and code — is

common to all the other agile processes.) The

incomplete but functional system is deployed or

demonstrated for (some subset of) the users (at least

one of which is on the development team). At this

point, the practitioners start again on writing tests

for the next most important part of the system.

• Scrum

Software Engineering in Configuration Management

169

Process Improvement Models

Capability Maturity Model Integration
The Capability Maturity Model Integration (CMMI) is one

of the leading models and based on best practice. Independent

assessments grade organizations on how well they follow their

defined processes, not on the quality of those processes or

the software produced. CMMI has replaced CMM.

ISO 9000
ISO 9000 describes standards for a formally organized

process to manufacture a product and the methods of

managing and monitoring progress. Although the standard

was originally created for the manufacturing sector, ISO 9000

standards have been applied to software development as well.

Like CMMI, certification with ISO 9000 does not guarantee

the quality of the end result, only that formalized business

processes have been followed.

ISO 15504
ISO 15504, also known as Software Process Improvement

Capability Determination (SPICE), is a “framework for the

assessment of software processes”. This standard is aimed at

setting out a clear model for process comparison. SPICE is used

much like CMMI. It models processes to manage, control, guide

and monitor software development. This model is then used to

measure what a development organization or project team

actually does during software development. This information

is analyzed to identify weaknesses and drive improvement. It

also identifies strengths that can be continued or integrated

into common practice for that organization or team.

Software Engineering in Configuration Management

170

Formal Methods
Formal methods are mathematical approaches to solving

software (and hardware) problems at the requirements,

specification and design levels. Examples of formal methods

include the B-Method, Petri nets, Automated theorem

proving, RAISE and VDM. Various formal specification

notations are available, such as the Z notation. More

generally, automata theory can be used to build up and

validate application behaviour by designing a system of finite

state machines.

Finite state machine (FSM) based methodologies allow

executable software specification and by-passing of

conventional coding. Formal methods are most likely to be

applied in avionics software, particularly where the software

is safety critical. Software safety assurance standards, such

as DO178B demand formal methods at the highest level of

categorization (Level A). Formalization of software

development is creeping in, in other places, with the

application of Object Constraint Language (and

specializations such as Java Modeling Language) and

especially with Model-driven architecture allowing execution

of designs, if not specifications.

Another emerging trend in software development is to write

a specification in some form of logic (usually a variation of

FOL), and then to directly execute the logic as though it were

a programme. The OWL language, based on Description Logic,

is an example. There is also work on mapping some version

of English (or another natural language) automatically to and

from logic, and executing the logic directly. Examples are

Attempto Controlled English, and Internet Business Logic,

Software Engineering in Configuration Management

171

which does not seek to control the vocabulary or syntax. A

feature of systems that support bidirectional English-logic

mapping and direct execution of the logic is that they can be

made to explain their results, in English, at the business or

scientific level. The Government Accountability Office, in a

2003 report on one of the Federal Aviation Administration’s

air traffic control modernization programmes, recommends

following the agency’s guidance for managing major

acquisition systems by

• establishing, maintaining, and controlling an accurate,

valid, and current performance measurement baseline,

which would include negotiating all authorized,

unpriced work within 3 months;

• conducting an integrated baseline review of any major

contract modifications within 6 months; and

• preparing a rigorous life-cycle cost estimate, including

a risk assessment, in accordance with the Acquisition

System Toolset’s guidance and identifying the level of

uncertainty inherent in the estimate.

Microarchitecture
In computer engineering, microarchitecture (sometimes

abbreviated to μarch or uarch), also called computer

organization, is the way a given instruction set architecture

(ISA) is implemented on a processor. A given ISA may be

implemented with different microarchitectures.

Implementations might vary due to different goals of a given

design or due to shifts in technology. Computer architecture

is the combination of microarchitecture and instruction set

design.

Software Engineering in Configuration Management

172

Relation to Instruction Set Architecture
The ISA is roughly the same as the programming model of

a processor as seen by an assembly language programmer

or compiler writer. The ISA includes the execution model,

processor registers, address and data formats among other

things. The microarchitecture includes the constituent parts

of the processor and how these interconnect and interoperate

to implement the ISA. The microarchitecture of a machine is

usually represented as (more or less detailed) diagrams that

describe the interconnections of the various

microarchitectural elements of the machine, which may be

everything from single gates and registers, to complete

arithmetic logic units (ALU)s and even larger elements. These

diagrams generally separate the data path (where data is

placed) and the control path (which can be said to steer the

data).

Each microarchitectural element is in turn represented

by a schematic describing the interconnections of logic gates

used to implement it. Each logic gate is in turn represented

by a circuit diagram describing the connections of the

transistors used to implement it in some particular logic

family. Machines with different microarchitectures may have

the same instruction set architecture, and thus be capable

of executing the same programmes. New microarchitectures

and/or circuitry solutions, along with advances in

semiconductor manufacturing, are what allows newer

generations of processors to achieve higher performance while

using the same ISA. In principle, a single microarchitecture

could execute several different ISAs with only minor changes

to the microcode.

Software Engineering in Configuration Management

173

Aspects of Microarchitecture
The pipelined datapath is the most commonly used

datapath design in microarchitecture today. This technique

is used in most modern microprocessors, microcontrollers,

and DSPs. The pipelined architecture allows multiple

instructions to overlap in execution, much like an assembly

line. The pipeline includes several different stages which are

fundamental in microarchitecture designs. Some of these

stages include instruction fetch, instruction decode, execute,

and write back. Some architectures include other stages such

as memory access. The design of pipelines is one of the central

microarchitectural tasks. Execution units are also essential

to microarchitecture. Execution units include arithmetic logic

units (ALU), floating point units (FPU), load/store units,

branch prediction, and SIMD. These units perform the

operations or calculations of the processor. The choice of the

number of execution units, their latency and throughput is

a central microarchitectural design task. The size, latency,

throughput and connectivity of memories within the system

are also microarchitectural decisions. System-level design

decisions such as whether or not to include peripherals, such

as memory controllers, can be considered part of the

microarchitectural design process. This includes decisions

on the performance-level and connectivity of these

peripherals. Unlike architectural design, where achieving a

specific performance level is the main goal, microarchitectural

design pays closer attention to other constraints. Since

microarchitecture design decisions directly affect what goes

into a system, attention must be paid to such issues as:

• Chip area/cost

Software Engineering in Configuration Management

174

• Power consumption

• Logic complexity

• Ease of connectivity

• Manufacturability

• Ease of debugging

• Testability

Microarchitectural Concepts
In general, all CPUs, single-chip microprocessors or multi-

chip implementations run programmes by performing the

following steps:

1. Read an instruction and decode it

2. Find any associated data that is needed to process

the instruction

3. Process the instruction

4. Write the results out

Complicating this simple-looking series of steps is the fact

that the memory hierarchy, which includes caching, main

memory and non-volatile storage like hard disks, (where the

programme instructions and data reside) has always been

slower than the processor itself. Step (2) often introduces a

lengthy (in CPU terms) delay while the data arrives over the

computer bus. A considerable amount of research has been

put into designs that avoid these delays as much as possible.

Over the years, a central goal was to execute more

instructions in parallel, thus increasing the effective

execution speed of a programme. These efforts introduced

complicated logic and circuit structures. Initially these

techniques could only be implemented on expensive

mainframes or supercomputers due to the amount of circuitry

Software Engineering in Configuration Management

175

needed for these techniques. As semiconductor

manufacturing progressed, more and more of these

techniques could be implemented on a single semiconductor

chip. What follows is a survey of micro-architectural

techniques that are common in modern CPUs.

Instruction Set Choice
Instruction sets have shifted over the years, from originally

very simple to sometimes very complex (in various respects).

In recent years, load-store architectures, VLIW and EPIC

types have been in fashion. Architectures that are dealing

with data parallelism include SIMD and Vectors. Some labels

used to denote classes of CPU architectures are not

particularly descriptive, especially so the CISC label; many

early designs retroactively denoted “CISC” are in fact

significantly simpler than modern RISC processors (in several

respects). However, the choice of instruction set architecture

may greatly affect the complexity of implementing high

performance devices.

The prominent strategy, used to develop the first RISC

processors, was to simplify instructions to a minimum of

individual semantic complexity combined with high encoding

regularity and simplicity. Such uniform instructions were

easily fetched, decoded and executed in a pipelined fashion

and a simple strategy to reduce the number of logic levels in

order to reach high operating frequencies; instruction cache-

memories compensated for the higher operating frequency

and inherently low code density while large register sets were

used to factor out as much of the (slow) memory accesses as

possible.

Software Engineering in Configuration Management

176

Instruction Pipelining
One of the first, and most powerful, techniques to improve

performance is the use of the instruction pipeline. Early

processor designs would carry out all of the steps above for

one instruction before moving onto the next. Large portions

of the circuitry were left idle at any one step; for instance,

the instruction decoding circuitry would be idle during

execution and so on. Pipelines improve performance by

allowing a number of instructions to work their way through

the processor at the same time. In the same basic example,

the processor would start to decode (step 1) a new instruction

while the last one was waiting for results. This would allow

up to four instructions to be “in flight” at one time, making

the processor look four times as fast.

Although any one instruction takes just as long to complete

(there are still four steps) the CPU as a whole “retires”

instructions much faster and can be run at a much higher

clock speed. RISC make pipelines smaller and much easier

to construct by cleanly separating each stage of the

instruction process and making them take the same amount

of time — one cycle. The processor as a whole operates in an

assembly line fashion, with instructions coming in one side

and results out the other. Due to the reduced complexity of

the Classic RISC pipeline, the pipelined core and an

instruction cache could be placed on the same size die that

would otherwise fit the core alone on a CISC design. This

was the real reason that RISC was faster. Early designs like

the SPARC and MIPS often ran over 10 times as fast as Intel

and Motorola CISC solutions at the same clock speed and

price. Pipelines are by no means limited to RISC designs. By

Software Engineering in Configuration Management

177

1986 the top-of-the-line VAX implementation (VAX 8800) was

a heavily pipelined design, slightly predating the first

commercial MIPS and SPARC designs. Most modern CPUs

(even embedded CPUs) are now pipelined, and microcoded

CPUs with no pipelining are seen only in the most area-

constrained embedded processors. Large CISC machines,

from the VAX 8800 to the modern Pentium 4 and Athlon,

are implemented with both microcode and pipelines.

Improvements in pipelining and caching are the two major

microarchitectural advances that have enabled processor

performance to keep pace with the circuit technology on

which they are based.

Cache
It was not long before improvements in chip manufacturing

allowed for even more circuitry to be placed on the die, and

designers started looking for ways to use it. One of the most

common was to add an ever-increasing amount of cache

memory on-die. Cache is simply very fast memory, memory

that can be accessed in a few cycles as opposed to “many”

needed to talk to main memory. The CPU includes a cache

controller which automates reading and writing from the

cache, if the data is already in the cache it simply “appears,”

whereas if it is not the processor is “stalled” while the cache

controller reads it in. RISC designs started adding cache in

the mid-to-late 1980s, often only 4 KB in total. This number

grew over time, and typical CPUs now have at least 512 KB,

while more powerful CPUs come with 1 or 2 or even 4, 6, 8 or

12 MB, organized in multiple levels of a memory hierarchy.

Generally speaking, more cache means more performance,

Software Engineering in Configuration Management

178

due to reduced stalling. Caches and pipelines were a perfect

match for each other. Previously, it didn’t make much sense

to build a pipeline that could run faster than the access

latency of off-chip memory. Using on-chip cache memory

instead, meant that a pipeline could run at the speed of the

cache access latency, a much smaller length of time. This

allowed the operating frequencies of processors to increase

at a much faster rate than that of off-chip memory.

Branch Prediction
One barrier to achieving higher performance through

instruction-level parallelism stems from pipeline stalls and

flushes due to branches. Normally, whether a conditional

branch will be taken isn’t known until late in the pipeline as

conditional branches depend on results coming from a

register. From the time that the processor’s instruction

decoder has figured out that it has encountered a conditional

branch instruction to the time that the deciding register value

can be read out, the pipeline needs to be stalled for several

cycles, or if it’s not and the branch is taken, the pipeline

needs to be flushed. As clock speeds increase the depth of

the pipeline increases with it, and some modern processors

may have 20 stages or more. On average, every fifth

instruction executed is a branch, so without any intervention,

that’s a high amount of stalling. Techniques such as branch

prediction and speculative execution are used to lessen these

branch penalties. Branch prediction is where the hardware

makes educated guesses on whether a particular branch will

be taken. In reality one side or the other of the branch will

be called much more often than the other. Modern designs

have rather complex statistical prediction systems, which

Software Engineering in Configuration Management

179

watch the results of past branches to predict the future with

greater accuracy. The guess allows the hardware to prefetch

instructions without waiting for the register read. Speculative

execution is a further enhancement in which the code along

the predicted path is not just prefetched but also executed

before it is known whether the branch should be taken or

not. This can yield better performance when the guess is

good, with the risk of a huge penalty when the guess is bad

because instructions need to be undone.

Superscalar
Even with all of the added complexity and gates needed to

support the concepts outlined above, improvements in

semiconductor manufacturing soon allowed even more logic

gates to be used. In the outline above the processor processes

parts of a single instruction at a time. Computer programmes

could be executed faster if multiple instructions were

processed simultaneously. This is what superscalar

processors achieve, by replicating functional units such as

ALUs. The replication of functional units was only made

possible when the die area of a single-issue processor no

longer stretched the limits of what could be reliably

manufactured. By the late 1980s, superscalar designs started

to enter the market place. In modern designs it is common

to find two load units, one store (many instructions have no

results to store), two or more integer math units, two or more

floating point units, and often a SIMD unit of some sort. The

instruction issue logic grows in complexity by reading in a

huge list of instructions from memory and handing them off

to the different execution units that are idle at that point.

The results are then collected and re-ordered at the end.

Software Engineering in Configuration Management

180

Out-of-order Execution
The addition of caches reduces the frequency or duration

of stalls due to waiting for data to be fetched from the memory

hierarchy, but does not get rid of these stalls entirely. In

early designs a cache miss would force the cache controller

to stall the processor and wait. Of course there may be some

other instruction in the programme whose data is available

in the cache at that point. Out-of-order execution allows that

ready instruction to be processed while an older instruction

waits on the cache, then re-orders the results to make it

appear that everything happened in the programmed order.

This technique is also used to avoid other operand

dependency stalls, such as an instruction awaiting a result

from a long latency floating-point operation or other multi-

cycle operations.

Register Renaming
Register renaming refers to a technique used to avoid

unnecessary serialized execution of programme instructions

because of the reuse of the same registers by those

instructions. Suppose we have two groups of instruction that

will use the same register. One set of instructions is executed

first to leave the register to the other set, but if the other set

is assigned to a different similar register, both sets of

instructions can be executed in parallel.

Multiprocessing and Multithreading
Computer architects have become stymied by the growing

mismatch in CPU operating frequencies and DRAM access

times. None of the techniques that exploited instruction-level

parallelism within one programme could make up for the

Software Engineering in Configuration Management

181

long stalls that occurred when data had to be fetched from

main memory. Additionally, the large transistor counts and

high operating frequencies needed for the more advanced

ILP techniques required power dissipation levels that could

no longer be cheaply cooled. For these reasons, newer

generations of computers have started to exploit higher levels

of parallelism that exist outside of a single programme or

programme thread. This trend is sometimes known as

throughput computing. This idea originated in the mainframe

market where online transaction processing emphasized not

just the execution speed of one transaction, but the capacity

to deal with massive numbers of transactions. With

transaction-based applications such as network routing and

web-site serving greatly increasing in the last decade, the

computer industry has re-emphasized capacity and

throughput issues. One technique of how this parallelism is

achieved is through multiprocessing systems, computer

systems with multiple CPUs. Once reserved for high-end

mainframes and supercomputers, small scale (2-8)

multiprocessors servers have become commonplace for the

small business market. For large corporations, large scale

(16-256) multiprocessors are common. Even personal

computers with multiple CPUs have appeared since the

1990s.

With further transistor size reductions made available with

semiconductor technology advances, multicore CPUs have

appeared where multiple CPUs are implemented on the same

silicon chip. Initially used in chips targeting embedded

markets, where simpler and smaller CPUs would allow

multiple instantiations to fit on one piece of silicon. By 2005,

Software Engineering in Configuration Management

182

semiconductor technology allowed dual high-end desktop

CPUs CMP chips to be manufactured in volume. Some

designs, such as Sun Microsystems’ UltraSPARC T1 have

reverted back to simpler (scalar, in-order) designs in order to

fit more processors on one piece of silicon.

Another technique that has become more popular recently

is multithreading. In multithreading, when the processor has

to fetch data from slow system memory, instead of stalling

for the data to arrive, the processor switches to another

programme or programme thread which is ready to execute.

Though this does not speed up a particular program/thread,

it increases the overall system throughput by reducing the

time the CPU is idle. Conceptually, multithreading is

equivalent to a context switch at the operating system level.

The difference is that a multithreaded CPU can do a thread

switch in one CPU cycle instead of the hundreds or thousands

of CPU cycles a context switch normally requires. This is

achieved by replicating the state hardware (such as the

register file and programme counter) for each active thread.

A further enhancement is simultaneous multithreading. This

technique allows superscalar CPUs to execute instructions

from different programmes/threads simultaneously in the

same cycle.

Operating System
An operating system (OS) is software, consisting of

programmes and data, that runs on computers and manages

computer hardware resources and provides common services

for efficient execution of various application software. For

hardware functions such as input and output and memory

allocation, the operating system acts as an intermediary

Software Engineering in Configuration Management

183

between application programmes and the computer

hardware, although the application code is usually executed

directly by the hardware and will frequently call the OS or

be interrupted by it. Operating systems are found on almost

any device that contains a computer—from cellular phones

and video game consoles to supercomputers and web servers.

Examples of popular modern operating systems for personal

computers are (in alphabetical order): GNU/Linux, Mac OS

X, Microsoft Windows and Unix

Types of Operating Systems
Real-time Operating System: It is a multitasking operating

system that aims at executing real-time applications. Real-

time operating systems often use specialized scheduling

algorithms so that they can achieve a deterministic nature

of behaviour. The main object of real-time operating systems

is their quick and predictable response to events. They either

have an event-driven or a time-sharing design. An event-

driven system switches between tasks based on their

priorities while time-sharing operating systems switch tasks

based on clock interrupts. Multi-user and Single-user

Operating Systems: The operating systems of this type allow

a multiple users to access a computer system concurrently.

Time-sharing system can be classified as multi-user systems

as they enable a multiple user access to a computer through

the sharing of time. Single-user operating systems, as

opposed to a multi-user operating system, are usable by a

single user at a time. Being able to have multiple accounts

on a Windows operating system does not make it a multi-

user system. Rather, only the network administrator is the

real user. But for a Unix-like operating system, it is possible

Software Engineering in Configuration Management

184

for two users to login at a time and this capability of the OS

makes it a multi-user operating system. Multi-tasking and

Single-tasking Operating Systems: When a single programme

is allowed to run at a time, the system is grouped under a

single-tasking system, while in case the operating system

allows the execution of multiple tasks at one time, it is

classified as a multi-tasking operating system. Multi-tasking

can be of two types namely, pre-emptive or co-operative. In

pre-emptive multitasking, the operating system slices the

CPU time and dedicates one slot to each of the programmes.

Unix-like operating systems such as Solaris and Linux

support pre-emptive multitasking. Cooperative multitasking

is achieved by relying on each process to give time to the

other processes in a defined manner. MS Windows prior to

Windows 95 used to support cooperative multitasking.

Distributed Operating System: An operating system that

manages a group of independent computers and makes them

appear to be a single computer is known as a distributed

operating system. The development of networked computers

that could be linked and communicate with each other, gave

rise to distributed computing. Distributed computations are

carried out on more than one machine. When computers in

a group work in cooperation, they make a distributed system.

Embedded System: The operating systems designed for being

used in embedded computer systems are known as embedded

operating systems. They are designed to operate on small

machines like PDAs with less autonomy. They are able to

operate with a limited number of resources. They are very

compact and extremely efficient by design. Windows CE and

Minix 3 are some examples of embedded operating systems.

Software Engineering in Configuration Management

185

Summary
Early computers were built to perform a series of single

tasks, like a calculator. Operating systems did not exist in

their modern and more complex forms until the early 1960s.

Some operating system features were developed in the 1950s,

such as monitor programmes that could automatically run

different application programmes in succession to speed up

processing. Hardware features were added that enabled use

of runtime libraries, interrupts, and parallel processing. When

personal computers by companies such as Apple Inc., Atari,

IBM and Amiga became popular in the 1980s, vendors added

operating system features that had previously become widely

used on mainframe and mini computers. Later, many features

such as graphical user interface were developed specifically

for personal computer operating systems. An operating

system consists of many parts. One of the most important

components is the kernel, which controls low-level processes

that the average user usually cannot see: it controls how

memory is read and written, the order in which processes

are executed, how information is received and sent by devices

like the monitor, keyboard and mouse, and decides how to

interpret information received from networks. The user

interface is a component that interacts with the computer

user directly, allowing them to control and use programmes.

The user interface may be graphical with icons and a desktop,

or textual, with a command line. Application programming

interfaces provide services and code libraries that let

applications developers write modular code reusing well

defined programming sequences in user space libraries or in

the operating system itself. Which features are considered

Software Engineering in Configuration Management

186

part of the operating system is defined differently in various

operating systems. For example, Microsoft Windows considers

its user interface to be part of the operating system, while

many versions of Linux do not.

History
In the early 1950s, a computer could execute only one

programme at a time. Each user had sole use of the computer

and would arrive at a scheduled time with programme and

data on punched paper cards and tape. The programme

would be loaded into the machine, and the machine would

be set to work until the programme completed or crashed.

Programmes could generally be debugged via a front panel

using toggle switches and panel lights. It is said that Alan

Turing was a master of this on the early Manchester Mark 1

machine, and he was already deriving the primitive

conception of an operating system from the principles of the

Universal Turing machine.

Later machines came with libraries of software, which

would be linked to a user’s programme to assist in operations

such as input and output and generating computer code

from human-readable symbolic code. This was the genesis

of the modern-day operating system. However, machines still

ran a single job at a time. At Cambridge University in England

the job queue was at one time a washing line from which

tapes were hung with different colored clothes-pegs to

indicate job-priority.

Mainframes
Through the 1950s, many major features were pioneered

in the field of operating systems, including batch processing,

Software Engineering in Configuration Management

187

input/output interrupt, buffering, multitasking, spooling,

runtime libraries, link-loading, and programmes for sorting

records in files. These features were included or not included

in application software at the option of application

programmers, rather than in a separate operating system

used by all applications. In 1959 the SHARE Operating

System was released as an integrated utility for the IBM 704,

and later in the 709 and 7090 mainframes. During the 1960s,

IBM’s OS/360 introduced the concept of a single OS spanning

an entire product line, which was crucial for the success of

the System/360 machines. IBM’s current mainframe

operating systems are distant descendants of this original

system and applications written for OS/360 can still be run

on modern machines. In the mid-’70s, MVS, a descendant

of OS/360, offered the first implementation of using RAM as

a transparent cache for data. OS/360 also pioneered the

concept that the operating system keeps track of all of the

system resources that are used, including programme and

data space allocation in main memory and file space in

secondary storage, and file locking during update. When the

process is terminated for any reason, all of these resources

are re-claimed by the operating system.

The alternative CP-67 system for the S/360-67 started a

whole line of IBM operating systems focused on the concept

of virtual machines. Other operating systems used on IBM S/

360 series mainframes included systems developed by IBM:

COS/360 (Compatabililty Operating System), DOS/360 (Disk

Operating System), TSS/360 (Time Sharing System), TOS/

360 (Tape Operating System), BOS/360 (Basic Operating

System), and ACP (Airline Control Programme), as well as a

Software Engineering in Configuration Management

188

few non-IBM systems: MTS (Michigan Terminal System) and

MUSIC (Multi-User System for Interactive Computing). Control

Data Corporation developed the SCOPE operating system in

the 1960s, for batch processing. In cooperation with the

University of Minnesota, the KRONOS and later the NOS

operating systems were developed during the 1970s, which

supported simultaneous batch and timesharing use. Like

many commercial timesharing systems, its interface was an

extension of the Dartmouth BASIC operating systems, one of

the pioneering efforts in timesharing and programming

languages. In the late 1970s, Control Data and the University

of Illinois developed the PLATO operating system, which used

plasma panel displays and long-distance time sharing

networks. Plato was remarkably innovative for its time,

featuring real-time chat, and multi-user graphical games.

Burroughs Corporation introduced the B5000 in 1961 with

the MCP, (Master Control Programme) operating system. The

B5000 was a stack machine designed to exclusively support

high-level languages with no machine language or assembler,

and indeed the MCP was the first OS to be written exclusively

in a high-level language – ESPOL, a dialect of ALGOL. MCP

also introduced many other ground-breaking innovations,

such as being the first commercial implementation of virtual

memory. During development of the AS400, IBM made an

approach to Burroughs to licence MCP to run on the AS400

hardware. This proposal was declined by Burroughs management

to protect its existing hardware production. MCP is still in use

today in the Unisys ClearPath/MCP line of computers.

UNIVAC, the first commercial computer manufacturer,

produced a series of EXEC operating systems. Like all early

Software Engineering in Configuration Management

189

main-frame systems, this was a batch-oriented system that

managed magnetic drums, disks, card readers and line

printers. In the 1970s, UNIVAC produced the Real-Time Basic

(RTB) system to support large-scale time sharing, also

patterned after the Dartmouth BC system. General Electric

and MIT developed General Electric Comprehensive Operating

Supervisor (GECOS), which introduced the concept of ringed

security privilege levels. After acquisition by Honeywell it was

renamed to General Comprehensive Operating System (GCOS).

Digital Equipment Corporation developed many operating

systems for its various computer lines, including TOPS-10

and TOPS-20 time sharing systems for the 36-bit PDP-10 class

systems. Prior to the widespread use of UNIX, TOPS-10 was a

particularly popular system in universities, and in the early

ARPANET community. In the late 1960s through the late

1970s, several hardware capabilities evolved that allowed

similar or ported software to run on more than one system.

Early systems had utilized microprogramming to implement

features on their systems in order to permit different

underlying architecture to appear to be the same as others in

a series. In fact most 360s after the 360/40 (except the 360/

165 and 360/168) were microprogrammed implementations.

But soon other means of achieving application compatibility

were proven to be more significant. The enormous investment

in software for these systems made since 1960s caused most

of the original computer manufacturers to continue to develop

compatible operating systems along with the hardware. The

notable supported mainframe operating systems include:

• Burroughs MCP – B5000, 1961 to Unisys Clearpath/

MCP, present.

Software Engineering in Configuration Management

190

• IBM OS/360 – IBM System/360, 1966 to IBM z/OS,

present.

• IBM CP-67 – IBM System/360, 1967 to IBM z/VM,

present.

• UNIVAC EXEC 8 – UNIVAC 1108, 1967, to OS 2200

Unisys Clearpath Dorado, present.

Microcomputers
The first microcomputers did not have the capacity or need

for the elaborate operating systems that had been developed

for mainframes and minis; minimalistic operating systems

were developed, often loaded from ROM and known as

Monitors. One notable early disk-based operating system was

CP/M, which was supported on many early microcomputers

and was closely imitated in MS-DOS, which became wildly

popular as the operating system chosen for the IBM PC (IBM’s

version of it was called IBM DOS or PC DOS), its successors

making Microsoft. In the ’80s Apple Computer Inc. (now Apple

Inc.) abandoned its popular Apple II series of microcomputers

to introduce the Apple Macintosh computer with an

innovative Graphical User Interface (GUI) to the Mac OS.

The introduction of the Intel 80386 CPU chip with 32-bit

architecture and paging capabilities, provided personal

computers with the ability to run multitasking operating

systems like those of earlier minicomputers and mainframes.

Microsoft responded to this progress by hiring Dave Cutler,

who had developed the VMS operating system for Digital

Equipment Corporation. He would lead the development of

the Windows NT operating system, which continues to serve

as the basis for Microsoft’s operating systems line. Steve Jobs,

a co-founder of Apple Inc., started NeXT Computer Inc., which

Software Engineering in Configuration Management

191

developed the Unix-like NEXTSTEP operating system.

NEXTSTEP would later be acquired by Apple Inc. and used,

along with code from FreeBSD as the core of Mac OS X.

The GNU project was started by activist and programmer

Richard Stallman with the goal of a complete free software

replacement to the proprietary UNIX operating system. While

the project was highly successful in duplicating the

functionality of various parts of UNIX, development of the

GNU Hurd kernel proved to be unproductive. In 1991, Finnish

computer science student Linus Torvalds, with cooperation

from volunteers collaborating over the Internet, released the

first version of the Linux kernel. It was soon merged with the

GNU user space components and system software to form a

complete operating system. Since then, the combination of

the two major components has usually been referred to as

simply “Linux” by the software industry, a naming convention

that Stallman and the Free Software Foundation remain

opposed to, preferring the name GNU/Linux. The Berkeley

Software Distribution, known as BSD, is the UNIX derivative

distributed by the University of California, Berkeley, starting

in the 1970s. Freely distributed and ported to many

minicomputers, it eventually also gained a following for use

on PCs, mainly as FreeBSD, NetBSD and OpenBSD.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Introduction
	Chapter 2 Software Architectural Design
	Chapter 3 Software Testing
	Chapter 4 Software Requirements Specification in Engineering Process
	Chapter 5 Software Life Cycle Models
	Chapter 6 Process of Software Engineering
	Chapter 7 Configuration in Computer Networking
	Chapter 8 Configuration Management
	Chapter 9 Software Development Process

