

APPLICATIONS OF
COMPUTER SOFTWARE

LANGUAGES

APPLICATIONS OF
COMPUTER SOFTWARE

LANGUAGES

Bill Norris

Applications of Computer Software Languages

by Bill Norris

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664013

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Introduction 1

Chapter 2 Computer Software 20

Chapter 3 Computer-aided Software Engineering 30

Chapter 4 Unified Modeling Language 45

Chapter 5 Software Progrmming 85

Chapter 6 Computer Programming Language 98

Chapter 7 Measuring Programming Language

Popularity 152

1

Introduction

The term computer language includes a wide variety of

languages used to communicate with computers. It is

broader than the more commonly-used term programming

language. Programming languages are a subset of computer

languages. For example, HTML is a markup language and a

computer language, but it is not traditionally considered a

programming language. Machine code is a computer

language. It can technically be used for programming, and

has been (e.g. the original bootstrapped for Altair BASIC),

though most would not consider it a programming language.

Computer languages can be divided into two groups:

high-level languages and low-level languages. High-level

languages are designed to be easier to use, more abstract,

and more portable than low-level languages. Syntactically

correct programs in some languages are then compiled to

low-level language and executed by the computer. Most

Applications of Computer Software Languages

2

modern software is written in a high-level language, compiled

into object code, and then translated into machine

instructions.

Computer languages could also be grouped based on

other criteria. Another distinction could be made between

human-readable and non-human-readable languages.

Human-readable languages are designed to be used directly

by humans to communicate with the computer. Non-human-

readable languages, though they can often be partially

understandable, are designed to be more compact and easily

processed, sacrificing readability to meet these ends.

TYPES OF COMPUTER LANGUAGES

Language can be categories broadly into three categories.

Machine Language

The most elementary and first type of computer, which

was invented, was machine language. Machine language was

machine dependent. A programme written in machine

language cannot be run on another type of computer without

significant alterations. Machine language is some times also

referred as the binary language i-e, the language of 0 and 1

where 0 stands for the absence of electric pulse and i stands

for the presence of electric pulse. Very few computer

programs are actually written in machine language.

Assembly Language

As computer became more popular, it became quite

apparent that machine language programming was simply

too slow slow tedious for most programmers. Assembly

languages are also called as low level language instead of

Applications of Computer Software Languages

3

using the string of members programmers began using

English like abbreviation to represent the elementary

operation. The language provided an opportunity to the

programmers to use English like words that were called

MNEMONICS.

High Level Language

The assembly languages started using English like

words,m but still it was difficult to learn these languages.

High level languages are the computer language in which

it is much easier to write a programme than the low level

language. A programme written in high level language is

just like gibing instruction to person in daily life. It was in

1957 that a high level language called FORTRAN was

developed by IBM which was specially developed for

scientist and engineers other high level languages are

COBOL which is widely used for business data processing

task.BASIC language which is developed for the beginners

in general purpose programming language. you Can use C

language for almost any programming task. PASCAL are

other high level languages which has gained widespread

acceptance.

SOFTWARE CRISIS

Indeed, the problem of trying to write an encyclopedia is

very much like writing software. Both running code and a

hypertext/encyclopedia are wonderful turn-ons for the brain,

and you want more of it the more you see, like a drug. As a

user, you want it to do everything, as a customer you don’t

really want to pay for it, and as a producer you realise how

unrealistic the customers are. Requirements will conflict in

Applications of Computer Software Languages

4

functionality vs affordability, and in completeness vs

timeliness.

DIFFERENT TYPES OF CRISIS

Chronic Software Crisis

By today’s definition, a “large” software system is a system

that contains more than 50,000 lines of high-level language

code. It’s those large systems that bring the software crisis

to light. If you’re familiar with large software development

projects, you know that the work is done in teams consisting

of project managers, requirements analysts, software

engineers, documentation experts, and programmers. With

so many professionals collaborating in an organized manner

on a project, what’s the problem? Why is it that the team

produces fewer than 10 lines of code per day over the average

lifetime of the project? And why are sixty errors found per

every thousand lines of code? Why is one of every three large

projects scrapped before ever being completed? And why is

only 1 in 8 finished software projects considered

“successful?”

• The cost of owning and maintaining software in the

1980’s was twice as expensive as developing the

software.

• During the 1990’s, the cost of ownership and

maintenance increased by 30% over the 1980’s.

• In 1995, statistics showed that half of surveyed

development projects were operational, but were not

considered successful.

• The average software project overshoots its schedule

by half.

Applications of Computer Software Languages

5

• Three quarters of all large software products delivered

to the customer are failures that are either not used

at all, or do not meet the customer’s requirements.

Software projects are notoriously behind schedule and

over budget. Over the last twenty years many different

paradigms have been created in attempt to make software

development more predictable and controllable.

While there is no single solution to the crisis, much has

been learned that can directly benefit today’s software

projects.

It appears that the Software Crisis can be boiled down to

two basic sources:

1. Software development is seen as a craft, rather than

an engineering discipline.

2. The approach to education taken by most higher

education institutions encourages that “craft”

mentality.

Software Development

Software development today is more of a craft than a

science. Developers are certainly talented and skilled, but

work like craftsmen, relying on their talents and skills and

using techniques that cannot be measured or reproduced.

On the other hand, software engineers place emphasis on

reproducible, quantifiable techniques–the marks of science.

The software industry is still many years away from becoming

a mature engineering discipline. Formal software engineering

processes exist, but their use is not widespread. A crisis

similar to the software crisis is not seen in the hardware

industry, where well documented, formal processes are tried

Applications of Computer Software Languages

6

and true, and ad hoc hardware development is unheard of.

To make matters worse, software technology is constrained

by hardware technology. Since hardware develops at a much

faster pace than software, software developers are constantly

trying to catch up and take advantage of hardware

improvements.

Management often encourages ad hoc software

development in an attempt to get products out on time for

the new hardware architectures. Design, documentation, and

evaluation are of secondary importance and are omitted or

completed after the fact. However, as the statistics show,

the ad hoc approach just doesn’t work. Software developers

have classically accepted a certain number of errors in their

work as inevitable and part of the job. That mindset becomes

increasingly unacceptable as software becomes embedded

in more and more consumer electronics. Sixty errors per

thousand lines of code is unacceptable when the code is

embedded in a toaster, automobile, ATM machine or razor

(let your imagination run free for a moment).

Computer Science and Product Orientation

Software developers pick up the ad hoc approach to

software development early in their computer science

education, where they are taught a “product orientation”

approach to software development. In the many

undergraduate computer science courses I took, the

existence of software engineering processes was never even

mentioned.

Computer science education does not provide students

with the necessary skills to become effective software

engineers. They are taught in a way that encourages them

Applications of Computer Software Languages

7

to be concerned only with the final outcome of their

assignments–whether or not the programme runs, or

whether or not it runs efficiently, or whether or not they

used the best possible algorithm. Those concerns in

themselves are not bad. But on the other hand, they should

not be the focus of a project. The focus should be on the

complete process from beginning to end and beyond. Product

orientation also leads to problems when the student enters

the work force–not having seen how processes affect the final

outcome, individual programmers tend to think their work

from day to day is too “small” to warrant the application of

formal methods.

Fully Supported Software

As we have seen, most software projects do not follow a

formal process. The result is a product that is poorly designed

and documented. Maintenance becomes problematic

because without a design and documentation, it’s difficult

or impossible to predict what sort of effect a simple change

might have on other parts of the system. Fortunately there

is an awareness of the software crisis, and it has inspired a

worldwide movement towards process improvement.

Software industry leaders are beginning to see that following

a formal software process consistently leads to better quality

products, more efficient teams and individuals, reduced

costs, and better morale.

Ratings range from Maturity Level 1, which is

characterized by ad hoc development and lack of a formal

software development process, up to Maturity Level 5, at

which an organization not only has a formal process, but

Applications of Computer Software Languages

8

also continually refines and improves it. Each maturity level

is further broken down into key process areas that indicate

the areas an organization should focus on to improve its

software process (e.g. requirement analysis, defect

prevention, or change control).

Level 5 is very difficult to attain. In early 1995, only two

projects, one at Motorola and another at Loral (the on-board

space shuttle software project), had earned Maturity Level

5. Another study showed that only 2% of reviewed projects

rated in the top two Maturity Levels, in spite of many of those

projects placing an extreme emphasis on software process

improvement.

Customers contracting large projects will naturally seek

organizations with high CMM ratings, and that has prompted

increasingly more organizations to investigate software

process improvement. Mature software is also reusable

software. Artisans are not concerned with producing

standardized products, and that is a reason why there is so

little interchangeability in software components.

Ideally, software would be standardized to such an extent

that it could be marketed as a “part”, with its own part

number and revision, just as though it were a hardware part.

The software component interface would be compatible

with any other software system. Though it would seem that

nothing less than a software development revolution could

make that happen, the National Institute of Standards and

Technology (NIST) founded the Advanced Technology

Programme (ATP), one purpose of which was to encourage

the development of standardized software components.

Applications of Computer Software Languages

9

SOFTWARE ENGINEERING

PROCESS

Software engineering process and practices are the

structures imposed on development of a software product.

There are different models of software process (software

lifecycle is a synonym) used in different organizations and

industries. RAL has identified three levels of software process

for its projects. These levels balance the different needs of

different types of projects. Scaling the process to the project

is vital to its success, too much process can be as problematic

as too little; too much process can slow down a purely R&D

exploration, too little process can slow down a large

development project with hard deliverables. The levels are

briefly identified as follows:

Level 1: R&D

• No software products delivered, pure research

• Minimal software process

Level 2: Research system

• Larger development team, informal software releases

• Moderate software process

Level 3: Delivered system

• Large software development team, formal software

releases

• More formal software process

For example, the Juneau, Alaska Winds Project has

evolved from a Level 1 to a Level 3 project over multiple years.

It started as a purely R&D effort (Level 1), expanded to a

field programme in Juneau (Level 2), and is currently running

in the field as a Operational Prototype (Level 3).

Applications of Computer Software Languages

10

The software process and software engineering practices

have become more formalized and more structured as the

project proceeded through the different levels. RAL has

evolved a set of software engineering best practices that

implement the three software process levels. These include:

source code control, nightly code builds, writing reusable

code, using different team models, commitment to deadlines,

design and code reviews, risk management, bug tracking,

software metrics, software configuration management,

requirements management.

Software configuration management (SCM) is a step up

in formality and reproducibility from source code control and

includes controlling and versioning of software releases.

Source code control is a software engineering best

practice used with RAL Level 2 and Level 3 projects. SCM is

a best practice used on a number of RAL Level 3 projects.

DESCRIPTION

Software Engineering Process

The elements of a software engineering process are

generally enumerated as:

• Marketing Requirements

• System-Level Design

• Detailed Design

• Implementation

• Integration

• Field Testing

• Support

No element of this process ought to commence before

the earlier ones are substantially complete, and whenever a

Applications of Computer Software Languages

11

change is made to some element, all dependent elements

ought to be reviewed or redone in light of that change. It’s

possible that a given module will be both specified and

implemented before its dependent modules are fully specified

— this is called advanced development or research.

It is absolutely essential that every element of the

software engineering process include several kinds

of review: peer review, mentor/management review, and

cross-disciplinary review. Software engineering elements

(whether documents or source code) must have version

numbers and auditable histories. “Checking in” a change to

an element should require some form of review, and the

depth of the review should correspond directly to the scope

of the change.

Marketing Requirements

The first step of a software engineering process is to

create a document which describes the target customers

and their reason for needing this product, and then goes

on to list the features of the product which address these

customer needs. The Marketing Requirements Document

(MRD) is the battleground where the answer to the question

“What should we build, and who will use it?” is decided.

In many failed projects, the MRD was handed down like

an inscribed stone tablet from marketing to engineering, who

would then gripe endlessly about the laws of physics and

about how they couldn’t actually build that product since

they had no ready supply of Kryptonite or whatever. The

MRD is a joint effort, with engineering not only reviewing

but also writing a lot of the text.

Applications of Computer Software Languages

12

System-Level Design

This is a high-level description of the product, in terms

of “modules” (or sometimes “programmes”) and of the

interaction between these modules. The goals of this

document are first, to gain more confidence that the product

could work and could be built, and second, to form a basis

for estimating the total amount of work it will take to build

it. The system-level design document should also outline the

system-level testing plan, in terms of customer needs and

whether they would be met by the system design being

proposed.

Detailed Design

The detailed design is where every module called out in

the system-level design document is described in detail. The

interface (command line formats, calling API, externally

visible data structures) of each module has to be completely

determined at this point, as well as dependencies between

modules. Two things that will evolve out of the detailed design

is a PERT or GANT chart showing what work has to be done

and in what order, and more accurate estimates of the time

it will take to complete each module.

Every module needs a unit test plan, which tells the

implementor what test cases or what kind of test cases they

need to generate in their unit testing in order to verify

functionality. Note that there are additional, nonfunctional

unit tests which will be discussed later.

Implementation

Every module described in the detailed design document

has to be implemented. This includes the small act of coding

Applications of Computer Software Languages

13

or programming that is the heart and soul of the software

engineering process. It’s unfortunate that this small act is

sometimes the only part of software engineering that is

taught (or learned), since it is also the only part of software

engineering which can be effectively self-taught.

A module can be considered implemented when it has

been created, tested, and successfully used by some other

module (or by the system-level testing process). Creating a

module is the old edit-compile-repeat cycle. Module testing

includes the unit level functional and regression tests called

out by the detailed design, and also performance/stress

testing, and code coverage analysis.

Integration

When all modules are nominally complete, system-level

integration can be done. This is where all of the modules

move into a single source pool and are compiled and linked

and packaged as a system. Integration can be done

incrementally, in parallel with the implementation of the

various modules, but it cannot authoritatively approach

“doneness” until all modules are substantially complete.

Integration includes the development of a system-level

test. If the built package has to be able to install itself (which

could mean just unpacking a tarball or copying files from a

CD-ROM) then there should be an automated way of doing

this, either on dedicated crash and burn systems or in

containerized/simulated environments. Sometimes, in the

middleware arena, the package is just a built source pool,

in which case no installation tools will exist and system

testing will be done on the as-built pool. Once the system

Applications of Computer Software Languages

14

has been installed (if it is installable), the automated system-

level testing process should be able to invoke every public

command and call every public entry point, with every

possible reasonable combination of arguments.

If the system is capable of creating some kind of database,

then the automated system-level testing should create one

and then use external (separately written) tools to verify the

database’s integrity. It’s possible that the unit tests will serve

some of these needs, and all unit tests should be run in

sequence during the integration, build, and packaging

process.

Field Testing

Field testing usually begins internally. That means

employees of the organization that produced the software

package will run it on their own computers. This should

ultimately include all “production level” systems — desktops,

laptops, and servers.

The statement you want to be able to make at the time

you ask customers to run a new software system (or a new

version of an existing software system) is “we run it

ourselves.” The software developers should be available for

direct technical support during internal field testing.

Ultimately it will be necessary to run the software externally,

meaning on customers’ (or prospective customers’)

computers. It’s best to pick “friendly” customers for this

exercise since it’s likely that they will find a lot of defects —

even some trivial and obvious ones — simply because their

usage patterns and habits are likely to be different from those

of your internal users.

Applications of Computer Software Languages

15

The software developers should be close to the front of

the escalation path during external field testing. Defects

encountered during field testing need to be triaged by senior

developers and technical marketers, to determine which ones

can be fixed in the documentation, which ones need to be

fixed before the current version is released, and which ones

can be fixed in the next release (or never).

Support

Software defects encountered either during field testing

or after the software has been distributed should be recorded

in a tracking system. These defects should ultimately be

assigned to a software engineer who will propose a change

to either the definition and documentation of the system, or

the definition of a module, or to the implementation of a

module. These changes should include additions to the unit

and/or system-level tests, in the form of a regression test to

show the defect and therefore show that it has been fixed

(and to keep it from recurring later).

Just as the MRD was a joint venture between engineering

and marketing, so it is that support is a joint venture between

engineering and customer service. The battlegrounds in this

venture are the bug list, the categorization of particular bugs,

the maximum number of critical defects in a shippable

software release, and so on.

SOFTWARE QUALITY ATTRIBUTE

HIGH QUALITY SOFTWARE

Developing high quality software is hard, especially when

the interpretation of term “quality” is patchy based on the

Applications of Computer Software Languages

16

environment in which it is used. In order to know if quality

has been achieved, or degraded, it has to be measured, but

determining what to measure and how is the difficult part.

Software Quality Attributes are the benchmarks that

describe system’s intended behaviour within the environment

for which it was built.

The quality attributes provide the means for measuring

the fitness and suitability of a product. Software architecture

has a profound affect on most qualities in one way or another,

and software quality attributes affect architecture. Identifying

desired system qualities before a system is built allows

system designer to mold a solution (starting with its

architecture) to match the desired needs of the system within

the context of constraints (available resources, interface with

legacy systems, etc). When a designer understands the

desired qualities before a system is built, then the likelihood

of selecting or creating the right architecture is improved.

STATEMENTS

Both statements are useless as they provide no tangible

way of measuring the behaviour of the system. The quality

attributes must be described in terms of scenarios, such as

“when 100 users initiate ‘complete payment’ transition, the

payment component, under normal circumstances, will

process the requests with an average latency of three

seconds.” This statement, or scenario, allows an architect

to make quantifiable arguments about a system.

A scenario defines the source of stimulus (users), the

actual stimulus (initiate transaction), the artifact affected

(payment component), the environment in which it exists

Applications of Computer Software Languages

17

(normal operation), the effect of the action (transaction

processed), and the response measure (within three seconds).

Writing such detailed statements is only possible when

relevant requirements have been identified and an idea of

components has been proposed.

QUALITIES

Scenarios help describe the qualities of a system, but they

don’t describe how they will be achieved. Architectural tactics

describe how a given quality can be achieved. For each quality

there may be a large set of tactics available to an architect. It

is the architect’s job to select the right tactic in light of the

needs of the system and the environment. For example, a

performance tactics may include options to develop better

processing algorithms, develop a system for parallel

processing, or revise event scheduling policy. Whatever tactic

is chosen, it must be justified and documented.

SOFTWARE QUALITIES

It would be naïve to claim that the list below is as a complete

taxonomy of all software qualities – but it’s a solid list of general

software qualities compiled from respectable sources. Domain

specific systems are likely to have an additional set of qualities

in addition to the list below. System qualities can be categorized

into four parts: runtime qualities, non-runtime qualities,

business qualities, and architecture qualities.

Each of the categories and its associated qualities are

briefly described below. Other articles on this site provide

more information about each of the software quality

attributes listed below, their applicable properties, and the

conflicts the qualities.

Applications of Computer Software Languages

18

TYPES OF SOFTARE QUALITIES

It defines six software quality attributes, also called quality

characteristics:

1. Functionality: Are the required functions available,

including interoperabilithy and security

2. Reliability: Maturity, fault tolerance and recoverability

3. Usability: How easy it is to understand, learn, operate

the software system

4. Efficiency: Performance and resource behaviour

5. Maintainability: How easy is it to modify the software

6. Portability: Can the software easily be transferred to

another environment, including installability

Product Revision

The product revision perspective identifies quality factors

that influence the ability to change the software product, these

factors are:

• Maintainability, the ability to find and fix a defect.

• Flexibility, the ability to make changes required as

dictated by the business.

• Testability, the ability to Validate the software

requirements.

Product Transition

The product transition perspective identifies quality factors

that influence the ability to adapt the software to new

environments:

• Portability, the ability to transfer the software from

one environment to another.

Applications of Computer Software Languages

19

• Reusability, the ease of using existing software

components in a different context.

• Interoperability, the extent, or ease, to which software

components work together.

Product Operations

The product operations perspective identifies quality

factors that influence the extent to which the software fulfils

its specification:

• Correctness, the functionality matches the

specification.

• Reliability, the extent to which the system fails.

• Efficiency, system resource (including cpu, disk,

memory, network) usage.

• Integrity, protection from unauthorized access.

• Usability, ease of use.

Applications of Computer Software Languages

20

2

Computer Software

Computer software, or just software, is a collection of

computer programmes and related data that provide the

instructions telling a computer what to do and how to do

it. We can also say software refers to one or more computer

programmes and data held in the storage of the computer

for some purposes. In other words software is a set of

programmes, procedures, algorithms and its documentation.

Programme software performs the function of the programme

it implements, either by directly providing instructions to

the computer hardware or by serving as input to another

piece of software. The term was coined to contrast to the

old term hardware (meaning physical devices). In contrast

to hardware, software is intangible, meaning it “cannot be

touched”. Software is also sometimes used in a more narrow

sense, meaning application software only. Sometimes the

term includes data that has not traditionally been associated

Applications of Computer Software Languages

21

with computers, such as film, tapes, and records. Examples

of computer software include:

• Application software includes end-user applications

of computers such as word processors or video games,

and ERP software for groups of users.

• Middleware controls and co-ordinates distributed

systems.

• Programming languages define the syntax and

semantics of computer programmes. For example,

many mature banking applications were written in

the COBOL language, originally invented in 1959.

Newer applications are often written in more modern

programming languages.

• System software includes operating systems, which

govern computing resources. Today large applications

running on remote machines such as Websites are

considered to be system software, because the end-

user interface is generally through a graphical user

interface, such as a web browser.

• Testware is software for testing hardware or a software

package.

• Firmware is low-level software often stored on

electrically programmable memory devices. Firmware

is given its name because it is treated like hardware

and run (“executed”) by other software programmes.

• Shrinkware is the older name given to consumer-

purchased software, because it was often sold in

retail stores in a shrink-wrapped box.

• Device drivers control parts of computers such as

disk drives, printers, CD drives, or computer monitors.

Applications of Computer Software Languages

22

• Programming tools help conduct computing tasks in

any category listed above. For programmers, these

could be tools for debugging or reverse engineering

older legacy systems in order to check source code

compatibility.

History

The first theory about software was proposed by Alan

Turing in his 1935 essay Computable numbers with an

application to the Entscheidungsproblem (Decision problem).

The term “software” was first used in print by John W.

Tukey in 1958. Colloquially, the term is often used to mean

application software. In computer science and software

engineering, software is all information processed by

computer system, programmes and data. The academic

fields studying software are computer science and software

engineering. The history of computer software is most often

traced back to the first software bug in 1946. As more and

more programmes enter the realm of firmware, and the

hardware itself becomes smaller, cheaper and faster as

predicted by Moore’s law, elements of computing first

considered to be software, join the ranks of hardware. Most

hardware companies today have more software programmers

on the payroll than hardware designers, since software

tools have automated many tasks of Printed circuit board

engineers. Just like the Auto industry, the Software industry

has grown from a few visionaries operating out of their

garage with prototypes. Steve Jobs and Bill Gates were the

Henry Ford and Louis Chevrolet of their times, who

capitalized on ideas already commonly known before they

Applications of Computer Software Languages

23

started in the business. In the case of Software development,

this moment is generally agreed to be the publication in the

1980s of the specifications for the IBM Personal Computer

published by IBM employee Philip Don Estridge. Today his

move would be seen as a type of crowd-sourcing.

Until that time, software was bundled with the hardware

by Original equipment manufacturers (OEMs) such as Data

General, Digital Equipment and IBM. When a customer

bought a minicomputer, at that time the smallest computer

on the market, the computer did not come with Pre-installed

software, but needed to be installed by engineers employed

by the OEM. Computer hardware companies not only

bundled their software, they also placed demands on the

location of the hardware in a refrigerated space called a

computer room. Most companies had their software on the

books for 0 dollars, unable to claim it as an asset (this is

similar to financing of popular music in those days). When

Data General introduced the Data General Nova, a company

called Digidyne wanted to use its RDOS operating system

on its own hardware clone. Data General refused to license

their software (which was hard to do, since it was on the

books as a free asset), and claimed their “bundling rights”.

The Supreme Court set a precedent called Digidyne v.

Data General in 1985. The Supreme Court let a 9th circuit

decision stand, and Data General was eventually forced into

licensing the Operating System software because it was

ruled that restricting the license to only DG hardware was

an illegal tying arrangement. Soon after, IBM ‘published’ its

DOS source for free, and Microsoft was born. Unable to

Applications of Computer Software Languages

24

sustain the loss from lawyer’s fees, Data General ended up

being taken over by EMC Corporation. The Supreme Court

decision made it possible to value software, and also purchase

Software patents. The move by IBM was almost a protest

at the time. Few in the industry believed that anyone would

profit from it other than IBM (through free publicity).

Microsoft and Apple were able to thus cash in on ‘soft’

products. It is hard to imagine today that people once felt

that software was worthless without a machine. There are

many successful companies today that sell only software

products, though there are still many common software

licensing problems due to the complexity of designs and

poor documentation, leading to patent trolls. With open

software specifications and the possibility of software

licensing, new opportunities arose for software tools that

then became the de facto standard, such as DOS for operating

systems, but also various proprietary word processing and

spreadsheet programmes. In a similar growth pattern,

proprietary development methods became standard Software

development methodology.

Application Software

Application software, also known as an application or an

“app”, is computer software designed to help the user to

perform singular or multiple related specific tasks. Examples

include enterprize software, accounting software, office

suites, graphics software and media players. Many

application programmes deal principally with documents.

Application software is contrasted with system software and

middleware, which manage and integrate a computer’s

Applications of Computer Software Languages

25

capabilities, but typically do not directly apply them in the

performance of tasks that benefit the user. A simple, if

imperfect, analogy in the world of hardware would be the

relationship of an electric light bulb (an application) to an

electric power generation plant (a system). The power station

merely generates electricity, not itself of any real use until

harnessed to an application like the electric light that

performs a service that benefits the user. Application software

applies the power of a particular computing platform or

system software to a particular purpose. Some apps such

as Microsoft Office are available in versions for several

different platforms; others have narrower requirements.

Terminology

In information technology, an application is a computer

programme designed to help people perform an activity. An

application thus differs from an operating system (which

runs a computer), a utility (which performs maintenance

or general-purpose chores), and a programming language

(with which computer programmes are created). Depending

on the activity for which it was designed, an application can

manipulate text, numbers, graphics, or a combination of

these elements. Some application packages offer considerable

computing power by focusing on a single task, such as word

processing; others, called integrated software, offer somewhat

less power but include several applications. User-written

software tailors systems to meet the user’s specific needs.

User-written software include spreadsheet templates, word

processor macros, scientific simulations, graphics and

animation scripts. Even email filters are a kind of user

Applications of Computer Software Languages

26

software. Users create this software themselves and often

overlook how important it is.

The delineation between system software such as

operating systems and application software is not exact,

however, and is occasionally the object of controversy. For

example, one of the key questions in the United States v.

Microsoft antitrust trial was whether Microsoft’s Internet

Explorer web browser was part of its Windows operating

system or a separable piece of application software. As

another example, the GNU/Linux naming controversy is, in

part, due to disagreement about the relationship between

the Linux kernel and the operating systems built over this

kernel. In some types of embedded systems, the application

software and the operating system software may be

indistinguishable to the user, as in the case of software

used to control a VCR, DVD player or microwave oven. The

above definitions may exclude some applications that may

exist on some computers in large organizations. For an

alternative definition of an app: see Application Portfolio

Management.

Application Software Classification

Application software falls into two general categories;

horizontal applications and vertical applications. Horizontal

Application are the most popular and its widely spread in

departments or companies. Vertical Applications are designed

for a particular type of business or for specific division in

a company. There are many types of application software:

• An application suite consists of multiple applications

bundled together. They usually have related functions,

Applications of Computer Software Languages

27

features and user interfaces, and may be able to

interact with each other, e.g. open each other’s files.

Business applications often come in suites, e.g.

Microsoft Office, OpenOffice.org and iWork, which

bundle together a word processor, a spreadsheet,

etc.; but suites exist for other purposes, e.g. graphics

or music.

• Enterprize software addresses the needs of

organization processes and data flow, often in a large

distributed environment. (Examples include financial

systems, customer relationship management (CRM)

systems and supply-chain management software).

Note that Departmental Software is a sub-type of

Enterprize Software with a focus on smaller

organizations or groups within a large organization.

(Examples include Travel Expense Management and

IT Helpdesk)

• Enterprize infrastructure software provides common

capabilities needed to support enterprize software

systems. (Examples include databases, email servers,

and systems for managing networks and security.)

• Information worker software addresses the needs of

individuals to create and manage information, often

for individual projects within a department, in contrast

to enterprize management. Examples include time

management, resource management, documentation

tools, analytical, and collaborative. Word processors,

spreadsheets, email and blog clients, personal

information system, and individual media editors

may aid in multiple information worker tasks.

Applications of Computer Software Languages

28

• Content access software is software used primarily to

access content without editing, but may include

software that allows for content editing. Such software

addresses the needs of individuals and groups to

consume digital entertainment and published digital

content. (Examples include Media Players, Web

Browsers, Help browsers and Games)

• Educational software is related to content access

software, but has the content and/or features adapted

for use in by educators or students. For example, it

may deliver evaluations (tests), track progress through

material, or include collaborative capabilities.

• Simulation software are computer software for

simulation of physical or abstract systems for either

research, training or entertainment purposes.

• Media development software addresses the needs of

individuals who generate print and electronic media

for others to consume, most often in a commercial

or educational setting. This includes Graphic Art

software, Desktop Publishing software, Multimedia

Development software, HTML editors, Digital

Animation editors, Digital Audio and Video

composition, and many others.

• Mobile applications run on hand-held devices such

as mobile phones, personal digital assistants and

enterprize digital assistants : see mobile application

development.

• Product engineering software is used in developing

hardware and software products. This includes

Applications of Computer Software Languages

29

computer aided design (CAD), computer aided

engineering (CAE), computer language editing and

compiling tools, Integrated Development

Environments, and Application Programmer

Interfaces.

• A command-driven interface is one in which you type

in commands to make the computer do something.

You have to know the commands and what they do

and they have to be typed correctly. DOS and Unix

are examples of command-driven interfaces.

• A graphical user interface (GUI) is one in which you

select command choices from various menus, buttons

and icons using a mouse. It is a user-friendly interface.

The Windows and Mac OS are both graphical user

interfaces.

Applications of Computer Software Languages

30

3

Computer-aided Software
Engineering

Computer-aided software engineering (CASE), in the field

software engineering is the scientific application of a set of

tools and methods to a software which results in high-

quality, defect-free, and maintainable software products. It

also refers to methods for the development of information

systems together with automated tools that can be used in

the software development process.

The term “computer-aided software engineering” (CASE)

can refer to the software used for the automated development

of systems software, i.e., computer code. The CASE functions

include analysis, design, and programming. CASE tools

automate methods for designing, documenting, and

producing structured computer code in the desired

programming language.

Applications of Computer Software Languages

31

Two key ideas of Computer-aided Software System

Engineering (CASE) are:

• Foster computer assistance in software development

and or software maintenance processes, and

• An engineering approach to software development and

or maintenance.

Typical CASE tools exist for configuration management,

data modeling, model transformation, refactoring, source

code generation.

INTEGRATED DEVELOPMENT ENVIRONMENT

An integrated development environment (IDE) also known

as integrated design environment or integrated debugging

environment is a software application that provides

comprehensive facilities to computer programmersfor

software development. An IDE normally consists of a:

• source code editor,

• compiler and/or interpreter,

• build automation tools, and

• debugger (usually).

IDEs are designed to maximize programmer productivity

by providing tight-knit components with similar user

interfaces. Typically an IDE is dedicated to a specific

programming language, so as to provide a feature set which

most closely matches the programming paradigms of the

language.

MODELING LANGUAGE

A modeling language is any artificial language that can

be used to express information or knowledge or systems in

Applications of Computer Software Languages

32

a structure that is defined by a consistent set of rules. The

rules are used for interpretation of the meaning of

components in the structure. A modeling language can be

graphical or textual. Graphical modeling languages use a

diagram techniques with named symbols that represent

concepts and lines that connect the symbols and that

represent relationships and various other graphical

annotation to represent constraints. Textual modeling

languages typically use standardised keywords accompanied

by parameters to make computer-interpretable expressions.

Example of graphical modelling languages in the field of

software engineering are:

• Business Process Modeling Notation (BPMN, and the

XML form BPML) is an example of a process modeling

language.

• EXPRESS and EXPRESS-G (ISO 10303-11) is an

international standard general-purpose data modeling

language.

• Extended Enterprise Modeling Language (EEML) is

commonly used for business process modeling across

layers.

• Flowchart is a schematic representation of an algorithm

or a stepwise process,

• Fundamental Modeling Concepts (FMC) modeling

language for software-intensive systems.

• IDEF is a family of modeling languages, the most

notable of which include IDEF0 for functional modeling,

IDEF1X for information modeling, and IDEF5 for

modeling ontologies.

Applications of Computer Software Languages

33

• LePUS3 is an object-oriented visual Design Description

Language and a formal specification language that is

suitable primarily for modelling large object-oriented

(Java,C++, C#) programs and design patterns.

• Specification and Description Language(SDL) is a

specification language targeted at the unambiguous

specification and description of the behaviour of reactive

and distributed systems.

• Unified Modeling Language (UML) is a general-purpose

modeling language that is an industry standard for

specifying software-intensive systems. UML 2.0, the

current version, supports thirteen different diagram

techniques, and has widespread tool support.

Not all modeling languages are executable, and for those

that are, using them doesn’t necessarily mean that

programmers are no longer needed. On the contrary,

executable modeling languages are intended to amplify the

productivity of skilled programmers, so that they can address

more difficult problems, such as parallel computing and

distributed systems.

PROGRAMMING PARADIGM

A programming paradigm is a fundamental style of

computer programming, which is not generally dictated by

the project management methodology (such as waterfall or

agile). Paradigms differ in the concepts and abstractions

used to represent the elements of a program (such as

objects, functions, variables, constraints) and the steps

that comprise a computation (such as assignations,

evaluation, continuations, data flows). Sometimes the

Applications of Computer Software Languages

34

concepts asserted by the paradigm are utilized cooperatively

in high-level system architecture design; in other cases, the

programming paradigm’s scope is limited to the internal

structure of a particular program or module.

A programming language can support multiple paradigms.

For example programs written in C++ or Object Pascal can

be purely procedural, or purely object-oriented, or contain

elements of both paradigms.

Software designers and programmers decide how to use

those paradigm elements. In object-oriented programming,

programmers can think of a program as a collection of

interacting objects, while in functional programming a

program can be thought of as a sequence of stateless function

evaluations.

When programming computers or systems with many

processors, process-oriented programming allows

programmers to think about applications as sets of

concurrent processes acting upon logically shared data

structures.

Just as different groups in software engineering advocate

different methodologies, different programming languages

advocate different programming paradigms. Some languages

are designed to support one paradigm (Smalltalk supports

object-oriented programming, Haskell supports functional

programming), while other programming languages support

multiple paradigms (such as Object Pascal, C++, C#, Visual

Basic, Common Lisp, Scheme, Python, Ruby, and Oz).

Many programming paradigms are as well known for

what methods they forbid as for what they enable. For

Applications of Computer Software Languages

35

instance, pure functional programming forbids using side-

effects;structured programming forbids using goto

statements. Partly for this reason, new paradigms are often

regarded as doctrinaire or overly rigid by those accustomed

to earlier styles. Avoiding certain methods can make it

easier to prove theorems about a program’s correctness, or

simply to understand its behavior.

Examples of high-level paradigms include:

• Aspect-oriented software development

• Domain-specific modeling

• Model-driven engineering

• Object-oriented programming methodologies

• Grady Booch’s object-oriented design (OOD), also

known as object-oriented analysis and design (OOAD).

The Booch model includes six diagrams: class, object,

state transition, interaction, module, and process.

• Search-based software engineering

• Service-oriented modeling

• Structured programming

• Top-down and bottom-up design

• Top-down programming: evolved in the 1970s by IBM

researcher Harlan Mills (and Niklaus Wirth) in

developed structured programming.

SOFTWARE FRAMEWORK

A software framework is a re-usable design for a software

system or subsystem. A software framework may include

support programs, code libraries, a scripting language, or

other software to help develop and glue together the different

Applications of Computer Software Languages

36

components of a software project. Various parts of the

framework may be exposed via an API.

Software Development
Software development is the computer programming,

documenting, testing, and bug fixing involved in creating

and maintainingapplications and frameworks involved in a

software release life cycle and resulting in a software product.

The term refers to a process of writing and maintaining the

source code, but in a broader sense of the term it includes

all that is involved between the conception of the desired

software through to the final manifestation of the software,

ideally in a planned and structured process. Therefore,

software development may include research, new

development, prototyping, modification, reuse, re-

engineering, maintenance, or any other activities that result

in software products.

Software can be developed for a variety of purposes, the

three most common being to meet specific needs of a specific

client/business (the case with custom software), to meet a

perceived need of some set of potential users (the case with

commercialand open source software), or for personal use

(e.g. a scientist may write software to automate a mundane

task). Embedded software development, that is, the

development of embedded software such as used for

controlling consumer products, requires the development

process to be integrated with the development of the

controlled physical product. System software underlies

applications and the programming process itself, and is

often developed separately.

Applications of Computer Software Languages

37

The need for better quality control of the software

development process has given rise to the discipline of

software engineering, which aims to apply the systematic

approach exemplified in the engineering paradigm to the

process of software development.

There are many approaches to software project

management, known as software development life cycle

models, methodologies, processes, or models. The waterfall

model is a traditional version, contrasted with the more

recent innovation of agile software development.

METHODOLOGIES

A software development methodology (also known as a

software development process, model, or life cycle) is a

framework that is used to structure, plan, and control the

process of developing information systems. A wide variety

of such frameworks have evolved over the years, each with

its own recognized strengths and weaknesses. There are

several different approaches to software development: some

take a more structured, engineering-based approach to

developing business solutions, whereas others may take a

more incremental approach, where software evolves as it is

developed piece-by-piece. One system development

methodology is not necessarily suitable for use by all projects.

Each of the available methodologies is best suited to specific

kinds of projects, based on various technical, organizational,

project and team considerations.

Most methodologies share some combination of the

following stages of software development:

• Analyzing the problem

Applications of Computer Software Languages

38

• Market research

• Gathering requirements for the proposed business

solution

• Devising a plan or design for the software-based

solution

• Implementation (coding) of the software

• Testing the software

• Deployment

• Maintenance and bug fixing.

These stages are often referred to collectively as the

software development lifecycle, or SDLC. Different

approaches to software development may carry out these

stages in different orders, or devote more or less time to

different stages. The level of detail of the documentation

produced at each stage of software development may also

vary. These stages may also be carried out in turn (a

“waterfall” based approach), or they may be repeated over

various cycles or iterations (a more “extreme” approach).

The more extreme approach usually involves less time spent

on planning and documentation, and more time spent on

coding and development of automated tests. More “extreme”

approaches also promote continuous testing throughout

the development lifecycle, as well as having a working (or

bug-free) product at all times. More structured or “waterfall”

based approaches attempt to assess the majority of risks

and develop a detailed plan for the software before

implementation(coding) begins, and avoid significant design

changes and re-coding in later stages of the software

development life cycle planning.

Applications of Computer Software Languages

39

There are significant advantages and disadvantages to

the various methodologies, and the best approach to solving

a problem using software will often depend on the type of

problem. If the problem is well understood and a solution

can be effectively planned out ahead of time, the more

“waterfall” based approach may work the best. If, on the

other hand, the problem is unique (at least to the

development team) and the structure of the software solution

cannot be easily envisioned, then a more “extreme”

incremental approach may work best.

Software Development Activities
IDENTIFICATION OF NEED

The sources of ideas for software products are legion.

These ideas can come from market research including the

demographics of potential new customers, existing

customers, sales prospects who rejected the product, other

internal software development staff, or a creative third party.

Ideas for software products are usually first evaluated by

marketing personnel for economic feasibility, for fit with

existing channels distribution, for possible effects on existing

product lines, required features, and for fit with the

company’s marketing objectives. In a marketing evaluation

phase, the cost and time assumptions become evaluated.

A decision is reached early in the first phase as to whether,

based on the more detailed information generated by the

marketing and development staff, the project should be

pursued further.

Students of engineering learn engineering and are rarely

exposed to finance or marketing. Students of marketing

Applications of Computer Software Languages

40

learn marketing and are rarely exposed to finance or

engineering. Most of us become specialists in just one area.

To complicate matters, few of us meet interdisciplinary

people in the workforce, so there are few roles to mimic.

Yet, software product planning is critical to the development

success and absolutely requires knowledge of multiple

disciplines.

Because software development may involve compromising

or going beyond what is required by the client, a software

development project may stray into less technical concerns

such as human resources, risk management, intellectual

property, budgeting, crisis management, etc. These processes

may also cause the role of business development to overlap

with software development.

PLANNING

Planning is an objective of each and every activity, where

we want to discover things that belong to the project. An

important task in creating a software program is extracting

therequirements or requirements analysis.

Customers typically have an abstract idea of what they

want as an end result, but do not know what software

should do. Skilled and experienced software engineers

recognize incomplete, ambiguous, or even contradictory

requirements at this point. Frequently demonstrating live

code may help reduce the risk that the requirements are

incorrect.

Once the general requirements are gathered from the

client, an analysis of the scope of the development should

be determined and clearly stated. This is often called a

Applications of Computer Software Languages

41

scope document. Certain functionality may be out of scope

of the project as a function of cost or as a result of unclear

requirements at the start of development. If the development

is done externally, this document can be considered a legal

document so that if there are ever disputes, any ambiguity

of what was promised to the client can be clarified.

DESIGNING

Once the requirements are established, the design of the

software can be established in a software design document.

This involves a preliminary, or high-level design of the main

modules with an overall picture (such as a block diagram)

of how the parts fit together. The language, operating system,

and hardware components should all be known at this time.

Then a detailed or low-level design is created, perhaps with

prototyping as proof-of-concept or to firm up requirements.

Implementation, Testing and Documenting
Implementation is the part of the process where software

engineers actually program the code for the project.

Software testing is an integral and important phase of

the software development process. This part of the process

ensures that defects are recognized as soon as possible. In

some processes, generally known as test-driven development,

tests may be developed just before implementation and

serve as a guide for the implementation’s correctness.

Documenting the internal design of software for the

purpose of future maintenance and enhancement is done

throughout development. This may also include the writing

of anAPI, be it external or internal. The software engineering

process chosen by the developing team will determine how

Applications of Computer Software Languages

42

much internal documentation (if any) is necessary. Plan-

driven models (e.g., Waterfall) generally produce more

documentation than Agile models.

DEPLOYMENT AND MAINTENANCE

Deployment starts directly after the code is appropriately

tested, approved for release, and sold or otherwise distributed

into a production environment. This may involve

installation, customization (such as by setting parameters

to the customer’s values), testing, and possibly an extended

period of evaluation.

Software training and support is important, as software

is only effective if it is used correctly. Maintaining and

enhancing software to cope with newly discovered faults or

requirements can take substantial time and effort, as missed

requirements may force redesign of the software.

Subtopics
VIEW MODEL

A view model is a framework that provides the viewpoints

on the system and its environment, to be used in thesoftware

development process. It is a graphical representation of the

underlying semantics of a view.

The purpose of viewpoints and views is to enable human

engineers to comprehend very complex systems, and to

organize the elements of the problem and the solution

around domains of expertise. In the engineering of physically

intensive systems, viewpoints often correspond to capabilities

and responsibilities within the engineering organization.

Most complex system specifications are so extensive that

no one individual can fully comprehend all aspects of the

Applications of Computer Software Languages

43

specifications. Furthermore, we all have different interests

in a given system and different reasons for examining the

system’s specifications. A business executive will ask different

questions of a system make-up than would a system

implementer. The concept of viewpoints framework, therefore,

is to provide separate viewpoints into the specification of

a given complex system. These viewpoints each satisfy an

audience with interest in some set of aspects of the system.

Associated with each viewpoint is a viewpoint language that

optimizes the vocabulary and presentation for the audience

of that viewpoint.

BUSINESS PROCESS AND DATA MODELLING

Graphical representation of the current state of

information provides a very effective means for presenting

information to both users and system developers.

• A business model illustrates the functions associated

with the business process being modeled and the

organizations that perform these functions. By

depicting activities and information flows, a foundation

is created to visualize, define, understand, and validate

the nature of a process.

• A data model provides the details of information to be

stored, and is of primary use when the final product

is the generation of computer software code for an

application or the preparation of a functional

specification to aid a computer software make-or-buy

decision.

Usually, a model is created after conducting an interview,

referred to as business analysis. The interview consists of

Applications of Computer Software Languages

44

a facilitator asking a series of questions designed to extract

required information that describes a process. The

interviewer is called a facilitator to emphasize that it is the

participants who provide the information.

The facilitator should have some knowledge of the process

of interest, but this is not as important as having a structured

methodology by which the questions are asked of the process

expert. The methodology is important because usually a

team of facilitators is collecting information across the facility

and the results of the information from all the interviewers

must fit together once completed.

The models are developed as defining either the current

state of the process, in which case the final product is called

the “as-is” snapshot model, or a collection of ideas of what

the process should contain, resulting in a “what-can-be”

model. Generation of process and data models can be used

to determine if the existing processes and information

systems are sound and only need minor modifications or

enhancements, or if re-engineering is required as a corrective

action. The creation of business models is more than a way

to view or automate your information process. Analysis can

be used to fundamentally reshape the way your business

or organization conducts its operations.

Applications of Computer Software Languages

45

4

Unified Modeling Language

The Unified Modeling Language or UML is is a mostly

graphical modelling language that is used to express designs.

It is a standardized language in which to specify the artefacts

and components of a software system. It is important to

understand that the UML describes a notation and not a

process. It does not put forth a single method or process of

design, but rather is a standardized tool that can be used in

a design process.

State Diagram

The state diagram shows the change of an object through

time. Based upon events that occur, the state diagram shows

how the object changes from start to finish.

States are represented as a rounded rectangle with the

name of the state shown. Optionally you can include

Applications of Computer Software Languages

46

an activity that represents a longer running task during that

state. Connecting states together are transitions. These

represent the events that cause the object to change from

one state to another. The guard clause of the label is again

mutually exclusive and must resolve itself to be

either true or false. Actions represent tasks that run causing

the transitions.

Actions are different from activities in that actions cannot

be interrupted, while an activity can be interrupted by an

incoming event. Both ultimately represent an operation on

the object being studied. For example, an operation that

sets an attribute would be considered an action, while a long

calculation might be an activity. The specific separation

between the two depends on the object and the system being

studied.

Architectural patterns

Patterns for system architecting are very much in their

infancy. They have been introduced into TOGAF essentially

to draw them to the attention of the systems architecture

community as an emerging important resource, and as a

placeholder for hopefully more rigorous descriptions and

references to more plentiful resources in future versions of

TOGAF. They have not (as yet) been integrated into TOGAF.

However, in the following, we attempt to indicate the potential

value to TOGAF, and to which parts of the TOGAF

Architecture Development Method (ADM) they might be

relevant.

Background

A “pattern” has been defined as: “an idea that has been

Applications of Computer Software Languages

47

useful in one practical context and will probably be useful in

others” [Analysis Patterns - Reusable Object Models]. In TOGAF,

patterns are considered to be a way of putting building blocks

into context; for example, to describe a re-usable solution to a

problem. Building blocks are what you use: patterns can tell

you how you use them, when, why, and what trade-offs you

have to make in doing so. Patterns offer the promise of helping

the architect to identify combinations of Architecture and/or

Solution Building Blocks (ABBs/SBBs) that have been proven

to deliver effective solutions in the past, and may provide the

basis for effective solutions in the future.

Content of a Pattern

Several different formats are used in the literature for

describing patterns, and no single format has achieved

widespread acceptance. However, there is broad agreement

on the types of things that a pattern should contain. The

headings which follow are taken from Pattern-Oriented

Software Architecture: A System of Patterns. The elements

described below will be found in most patterns, even if

different headings are used to describe them.

Name

A meaningful and memorable way to refer to the pattern,

typically a single word or short phrase.

Problem

A description of the problem indicating the intent in

applying the pattern - the intended goals and objectives to

be reached within the context and forces described below

(perhaps with some indication of their priorities).

Applications of Computer Software Languages

48

Context

The preconditions under which the pattern is applicable -

a description of the initial state before the pattern is applied.

Forces

A description of the relevant forces and constraints, and

how they interact/conflict with each other and with the

intended goals and objectives. The description should clarify

the intricacies of the problem and make explicit the kinds of

trade-offs that must be considered. (The need for such trade-

offs is typically what makes the problem difficult, and

generates the need for the pattern in the first place.) The

notion of “forces” equates in many ways to the “qualities”

that architects seek to optimize, and the concerns they seek

to address, in designing architectures.

For example:

• Security, robustness, reliability, fault-tolerance

• Manageability

• Efficiency, performance, throughput, bandwidth

requirements, space utilization

• Scalability (incremental growth on-demand)

• Extensibility, evolvability, maintainability

• Modularity, independence, re-usability, openness,

composability (plug-and-play), portability

• Completeness and correctness

• Ease-of-construction

• Ease-of-use

• etc....

A description, using text and/or graphics, of how to achieve

the intended goals and objectives. The description should

Applications of Computer Software Languages

49

identify both the solution’s static structure and its dynamic

behaviour - the people and computing actors, and their

collaborations. The description may include guidelines for

implementing the solution. Variants or specializations of the

solution may also be described.

Resulting Context

The post-conditions after the pattern has been applied.

Implementing the solution normally requires trade-offs

among competing forces.

This element describes which forces have been resolved

and how, and which remain unresolved. It may also indicate

other patterns that may be applicable in the new context. (A

pattern may be one step in accomplishing some larger goal.)

Any such other patterns will be described in detail under

Related Patterns.

Examples

One or more sample applications of the pattern which

illustrate each of the other elements: a specific problem,

context, and set of forces; how the pattern is applied; and

the resulting context.

Rationale

An explanation/justification of the pattern as a whole, or

of individual components within it, indicating how the pattern

actually works, and why - how it resolves the forces to achieve

the desired goals and objectives, and why this is “good”. The

Solution element of a pattern describes the external structure

and behaviour of the solution: the Rationale provides insight

into its internal workings.

Applications of Computer Software Languages

50

Related Patterns

The relationships between this pattern and others. These

may be predecessor patterns, whose resulting contexts

correspond to the initial context of this one; or successor

patterns, whose initial contexts correspond to the resulting

context of this one; or alternative patterns, which describe a

different solution to the same problem, but under different

forces; or co-dependent patterns, which may/must be applied

along with this pattern.

Known Uses

Known applications of the pattern within existing systems,

verifying that the pattern does indeed describe a proven

solution to a recurring problem. Known Uses can also serve

as Examples.

Patterns may also begin with an Abstract providing an

overview of the pattern and indicating the types of problems

it addresses. The Abstract may also identify the target

audience and what assumptions are made of the reader.

Low Level Design

The low level design document should contain a listing of

the declarations of all the classes, non-member-functions,

and class member functions that will be defined during the

implementation stage, along with the associations between

those classes and any other details of those classes (such as

member variables) that are firmly determined by the low level

design stage. The low level design document should also

describe the classes, function signatures, associations, and

any other appropriate details, which will be involved in testing

Applications of Computer Software Languages

51

and evaluating the project according to the evaluation plan

defined in the project’s requirements document.

More importantly, each project’s low level design document

should provide a narrative describing (and comments in your

declaration and definition files should point out) how the

high level design is mapped into its detailed low-level design,

which is just a step away from the implementation itself.

This should be an English description of how you converted

the technical diagrams (and text descriptions) found in your

high level design into appropriate class and function

declarations in your low level design. You should be especially

careful to explain how the class roles and their methods were

combined in your low level design, and any changes that

you decided to make in combining and refining them.

Description

Control systems elements like Advanced Metering

Infrastructure (AMI) networks fully field wireless sensors and

controls outside a utility’s physical security perimeter, placing

them at a high risk of compromise. System attackers have

every opportunity to damage, sniff, spoof, or tamper

communications hardware platforms for malicious, hobbyist,

or incidental reasons.

This paper demonstrates the relevance of common control

systems communications hardware vulnerabilities that lead

to direct control systems compromise. The paper describes

several enabling vulnerabilities exploitable by an attacker,

the design principles that causing them to arise, the economic

and electronic design constraints that restrict their defence,

and ideas for vulnerability avoidance.

Applications of Computer Software Languages

52

Topics include design induced vulnerabilities such as the

extraction and modification of communications device

firmware, man-in-the-middle attacks between chips of a

communications devices, circumvention of protection

measures, bus snooping, and other attacks. Specific

examples are identified in this report, ranked by attack

feasibility. Each attack was investigated against actual IEEE

802.15.4 radio architectures.

Embedded System Architecture

Standard wireless embedded implementation technol-

ogies such as IEEE 802.15.4 are generally designed to serve

specific market needs. Therefore, the market offers

components that translate such standards to mass

producible designs. Embedded wireless technologies typically,

but not always, have relatively low power consumption,

component cost, computational power requirements, design

cost, and implementation cost.

Commodity variants of components that implement

wireless technology generally have higher individual reliability

than custom designs, and a ready and willing engineer talent

pool to integrate them. Almost all such components are

designed to leverage or integrate with existing mass

production components and subcomponents such as

microcontrollers, RAM chips, ROM chips, and others.

All of the above is highly desirable. As with all such

technologies that have the potential to achieve economy of

scale in design and implementation, vulnerability generally

follows or surpasses all cost optimizations and design trade-

offs unless specifically mitigated. Such optimizations and

Applications of Computer Software Languages

53

economies of scale can serve to broaden the impact of

overlooked security flaws, turning their advantage into a

weakness.

This paper does not attempt to cover all potential aspects

for such wireless technology implementations, much less the

entire range of implementation issues for a single technology.

We present security vulnerabilities for typical components

found in specific IEEE 802.15.4 implementations; and

abstract them to help translate real-world tactical security

vulnerabilities as recognizable design classes requiring

consideration for mitigation. This paper does not educate

the reader in the many nuances of RF design. For RF design

and implementation issues, see individual standards such

as and engineering references including, but not limited to.

We present an abstraction of monolithic vulnerable aspects

of a typical commodity IEEE 802.15.4 platform, the Telos-B

development kit.

While the Telos-B is a basic user -programmable

development kit, its architecture is close enough to most

typical applications to be considered general. This abstraction

is intended to give the reader a repeatable context as a

starting point when looking at other platform architectures.

The RF physical, media access, link layer, and sometimes

network layers will be offloaded onto an RF component such

as the pictured CC2420. Breaking up the design lets

designers implement the RF portion of the application with

the best possible RF module for the lowest time to market

while targeting host applications to the optimal host

processor. Most standalone communications modules will

be linked to their host processor by a trivial board-level serial

Applications of Computer Software Languages

54

bus such as SPI or I2C. In some designs the host processor

also contains the RF stack implementation, eliminating the

board-level serial bus. Components such as microcontrollers

or host processors rarely fully implement the analog portion

of an RF module. Antennae, inbound and outbound

amplifiers, RF switches, and various filters are generally

integrated separately as their requirements vary widely across

potential applications. Due to their application orientation,

host processors will have external timing means.

In general external oscillators reduce processor chip cost

and allow the designer to scale the system to the cheapest

clock source meeting application requirements. Though

typically not used, many 802.15.4 RF modules have a means

to slave a host’s clock to the RF module to further reduce

design cost. Power is supplied to the devices as required by

the module, though often platform power requirements are

aligned to reduce component count and subsequent cost.

Confidentiality

• Snooping Bus Traffic

• Extracting Firmware for Vulnerability Analysis

• Extracting Stored Information

• Snooping Side Channels

Integrity

• Tampering Bus Traffic

• Replacing Hardware Components

• Modifying Existing Components

• Bypassing Hardware Components

• Disrupting or Distorting Normal Hardware Operation

• Bypassing Software Components

Applications of Computer Software Languages

55

Availability

• Jamming or Shrouding

• Alert/Condition Flooding

• Run Battery Down

PHY, Link Transceiver

The subcomponent that deals with PHY, MAC, and LINK

layer issues. Potentially executes link layer cryptography

algorithms.

Key Subcomponents: Registers, RAM, other storage, boot

loader, internal programme storage, internal timing source,

and architecture specific functionality

Key External Dependencies: RF Front End, NET & App

Controller, data bus to NET & App Controller, external timing

source, power supply, RF/EM environment, temperature

environment

Potentially Vulnerable to: DoS, Disruption, Distortion,

Spoofing, Snooping, live code injection, serial Bus tampering,

reconfiguration, firmware analysis, firmware tampering,

snooping side channels, environmental tampering, etc.

NET & APP Controller

The subcomponent that primarily focuses on executing

any higher layer network functionality. This is generally an

independent microprocessor or microcontroller that may also

run the application.

Key Subcomponents: Registers, RAM, other storage, boot

loader, internal programme storage, internal timing source,

and architecture specific functionality

Key External Dependencies: PHY, Link Transceiver,

external buses, data bus to the PHY, Link Transceiver,

Applications of Computer Software Languages

56

external timing source, power supply, RF/EM environment,

temperature environment, external storage

Potentially Vulnerable to: DoS, Disruption, Distortion,

Spoofing, Snooping, live code injection, serial Bus Tampering,

reconfiguration, flash/RAM snooping, flash/RAM tampering,

firmware analysis, firmware tampering, snooping side

channels, environmental tampering, tampering of external

flash, etc.

Low-Level Document

On PC-class hardware, there are two basic mechanisms

for sending rendering commands to the graphics device: PIO/

MMIO (see glossary for specific definitions) and DMA. The

architecture described in this document is designed around

DMA-style hardware, but can easily be extended to

accommodate PIO/MMIO-style hardware.

• Client is a user-space X11 client which has been

linked with various modules to support hardware-

dependent direct rendering. Typical modules may

include:

– libGL.so, the standard OpenGL (or Mesa) library

with our device and operating system

independent acceleration and GLX modifications.

– libDRI.so, our device-independent, operating-

system dependent driver.

– libHW3D.so, our device-dependent driver.

• X server is a user-space X server which has been

modified with device and operating-system

independent code to support DRI. It may be linked

with other modules to support hardware-dependent

direct rendering.

Applications of Computer Software Languages

57

Typical modules may include:

– libDRI.so, our device-independent, operating-

system dependent driver.

– libH2D.so, our device-dependent driver. This

library may provide hardware-specific 2D

rendering, and 3D initialization and finalization

routines that are not required by the client.

• Kernel Driver is a kernel-level device driver that

performs the bulk of the DMA operations and

provides interfaces for synchronization. [Note:

Although the driver functionality is hardware-

dependent, the actual implementation of the driver

may be done in a generic fashion, allowing all of the

hardware-specific details to be abstracted into

libH3D.so for loading into the Kernel Driver at DRI

initialization time. An implementation of this type is

desirable since the Kernel Driver will not then have

to be updated for each new graphics device. The

details of this implementation are discussed in an

accompanying document, but are mentioned here to

avoid later confusion.]

• PROTO is the standard X protocol transport layer

(e.g., a named pipe for a local client).

• SAREA is a special shared-memory area that we will

implement as part of the DRI. This area will be used

to communicate information from the X server to

the client, and may also be used to share state

information with the kernel. This area should not

be confused with DMA buffers. This abstraction may

be implemented as several different physical areas.

Applications of Computer Software Languages

58

• DMA BUFFERS are memory areas used to buffer

graphics device commands which will be sent to the

hardware via DMA. These areas are not needed if

memory-mapped IO (MMIO) is used exclusively to

access the hardware.

• IOCTL is a special interface to the kernel device

driver. Requests can be initiated by the user-space

programme, and information can be transfered to

and from the kernel. This interface incurs the

overhead of a system call and memory copy for the

information transfered. This abstract interface also

includes the ability of the kernel to signal a listening

user-space application (e.g., the X server) via I/O on

a device (which may, for example, signal the user-

space application with the SIGIO signal).

• MMIO is direct memory-mapped access to the

graphics device.

Initialization Analysis

The X server is the first application to run that is involved

with direct rendering. After initializing its own resources, it

starts the kernel device driver and waits for clients to connect.

Then, when a direct rendering client connects, SAREA is

created, the XFree86-GLX protocol is established, and other

direct rendering resources are allocated. This section

describes the operations necessary to bring the system to a

steady state.

X Server Initialization

When the X server is started, several resources in both

the X server and the kernel must be initialized if the GLX

Applications of Computer Software Languages

59

module is loaded. Obviously, before the X server can do

anything with the 3D graphics device, it will load the GLX

module if it is specified in the XFree86 configuration file.

When the GLX module (which contains the GLX protocol

decoding and event handling routines) is loaded, the device-

independent DRI module will also be loaded. The DRI module

will then call the graphics device-dependent module

(containing both the 2D code and the 3D initialization code)

to handle the resource allocation outlined below.

X Resource Allocation Initialization

Several global X resources need to be allocated to handle

the client’s 3D rendering requests. These resources include

the frame buffer, texture memory, other ancillary buffers,

display list space, and the SAREA.

Frame 3Buffer

There are several approaches to allocating buffers in the

frame buffer: static, static with dynamic reallocation of the

unused space, and fully dynamic. Static buffer allocation is

the approach we are adopting in the sample implementation

for several reasons that will be outlined below.

Static allocation. During initialization, the resources

supported by the graphics device are statically allocated. For

example, if the device supports front, back and depth buffers

in the frame buffer, then the frame buffer is divided into four

areas. The first three are equal in size to the visible display

area and are used for the three buffers (front, back and

depth). The remaining frame buffer space remains

unallocated and can be used for hardware cursor, font and

pixmap caches, textures, pbuffers, etc.

Applications of Computer Software Languages

60

Texture memory

Texture memory is shared among all 3D rendering clients.

On some types of graphics devices, it can be shared with

other buffers, provided that these other buffers can be “kicked

out” of the memory. On other devices, there is dedicated

texture memory, which might or might not be sharable with

other resources. Since memory is a limited resource, it would

be best if we could provide a mechanism to limit the memory

reserved for textures. However, the format of texture memory

on certain graphics devices is organized differently (banked,

tiled, etc.) than the simple linear addressing used for most

frame buffers. Therefore, the “size” of texture memory is

device-dependent. This complicates the issue of using a single

number for the size of texture memory.

Another complication is that once the X server reports

that a texture will fit in the graphics device memory, it must

continue to fit for the life of the client (i.e., the total texture

memory for a client can never get smaller). Therefore, at

initialization time, the maximum texture size and total

texture memory available will need to be determined by the

device-dependent driver. This driver will also provide a

mechanism to determine if a set of textures will fit into

texture memory.

Other Ancillary Buffers

All buffers associated with a window (e.g., back, depth,

and GID) are preallocated by the static frame-buffer

allocation. Pixmap, pbuffers and other ancillary buffers

are allocated out of the memory left after this static

allocation.

Applications of Computer Software Languages

61

During X server initialization, the size off-screen memory

available for these buffers will be calculated by the device-

dependent driver. Note that pbuffers can be “kicked out” (at

least the old style could), and so they don’t require virtualization

like pixmaps and potentially the new style pbuffers.

Display Lists

For graphics devices that support display lists, the display

list memory can be managed in the same way as texture

memory. Otherwise, display lists will be held in the client

virtual-address space.

SAREA

The SAREA is shared between the clients, the X server, and

the kernel. It contains four segments that need to be shared:

a per-device global hardware lock, per-context information,

per-drawable information, and saved device state information.

• Hardware lock segment. Only one process can access

the graphics device at a time. For atomic operations

that require multiple accesses, a global hardware lock

for each graphics device is required. Since the

number of cards is known at server initialization

time, the size of this segment is fixed.

• Per-context segment. Each GLXContext is associated

with a particular drawable in the per-drawable

segment and a particular graphics device state in

the saved device state segment. Two pointers, one

to the drawable that the GLXContext is currently

bound and one to the saved device state is stored in

the per-context segment. Since the number of

GLXContexts is not known at server start up time,

Applications of Computer Software Languages

62

the size of this segment will need to grow. It is a

reasonable assumption to limit the number of direct

rendering contexts so the size of this segment can

be fixed to a maximum. The X server is the only

process that writes to this segment and it must

maintain a list of available context slots that needs

to be allocated and initialized.

• Per-drawable segment. Each drawable has certain

information that needs to be shared between the X

server and the direct rendering client:

– Buffer identification (e.g., front/back buffer)

(int32)

– Window information changed ID

– Flags (int32)

The window information changed ID signifies that the user

has either moved, unmapped or resized the window, or the

clipping information has changed and needs to be

communicated to the client via the XFree86-GLX protocol.

Since OpenGL clients can create an arbitrary number of

GLXDrawables, the size of this segment will need to grow.

As with the per-context segment, the size of this segment

can be limited to a fixed maximum. Again, the X server is the

only process that writes to this segment, and it must maintain

a list of available drawable slots that needs to be allocated

and initialized.

• Saved device state segment. Each GLXContext needs

to save the graphics hardware context when another

GLXContext has ownership of the graphics device.

This information is fixed in size for each graphics

device, but will be allocated as needed because it

Applications of Computer Software Languages

63

can be quite large. In addition, if the graphics device

can read/write its state information via DMA, this

segment will need to be locked down during the

request.

Kernel Initialization

When the X server opens the kernel device driver, the kernel

loads and initializes the driver. See the next section for more

details of the kernel device driver.

Double Buffer Optimizations

There are typically three approaches to hardware double

buffering:

1. Video Page Flipping: The video logic is updated to

refresh from a different page. This can happen very

quickly with no per pixel copying required. This forces

the entire screen region to be swapped.

2. Bitblt Double Buffering: The back buffer is stored in

offscreen memory and specific regions of the screen

can be swapped by coping data from the offscreen

to onscreen. This has a performance penality because

of the overhead of copying the swapped data, but

allows for fine grain independent control for multiple

windows.

2. Auxillary Per Pixel Control: An additional layer

contains information on a per pixel basis that is used

to determine which buffer should be displayed.

Swapping entire regions is much quicker than Bitblt

Double Buffering and fine grain independed control

for multiple windows is achieved. However, not all

hardware or modes support this method.

Applications of Computer Software Languages

64

If the hardware support Auxillary Per Pixel Control for the

given mode, then that is the preferred method for double

buffer support. However, if the hardware doesn’t support

Auxillary Per Pixel Control, then the following combined

opproach to Video Page Flipping and Bitblt Double Buffering

is a potential optimization.

• Initialize in a Bitblt Double Buffering mode. This allows

for X Server performance to be optimized while not

double buffering is required.

• Transition to a Video Page Flipping mode for the first

window requiring double buffer support. This allows

for the fastest possible double buffer swapping at

the expense of requiring the X Server to render to

both buffers. Note, for the transition, the contents

of the front buffer will need to be copied to the back

buffer and all further rendering will need to be

duplicated in both buffers for all non-double buffered

regions while in this mode.

• Transition back to Bitblt Double Buffering mode when

additional double buffering windows are created. This

will sacrifice performance for the sake of visual

accuracy. Now all windows can be independently

swapped.

In the initial SI, only the Bitblt Double Buffering mode will

be implemented.

Kernel Driver Initialization

When the kernel device driver is opened by the X server,

the device driver might not be loaded. If not, the module is

loaded by kerneld and the initialization routine is called. In

Applications of Computer Software Languages

65

either case, the open routine is then called and finishes

initializing the driver.

Kernel DMA Initialization

Since the 3D graphics device drivers use DMA to

communicate with the graphics device, we need to initialize

the kernel device driver that will handle these requests. The

kernel, in response to this request from the X server, allocates

the DMA buffers that will be made available to direct

rendering clients.

Kernel Interrupt Handling Initialization

Interrupts are generated in a number of situations

including when a DMA buffer has been processed by the

graphics device. To acknowledge the interrupt, the driver

must know which register to set and to what value to set it.

This information could be hard coded into the driver, or

possibly a generic interface might be able to be written. If

this is possible, the X server must provide information to

the kernel as to how to respond to interrupts from the

graphics device.

Hardware Context Switching

Since the kernel device driver must be able to handle

multiple 3D clients each with a different GLXContext, there

must be a way to save and restore the hardware graphics

context for each GLXContext when switching between them.

Space for these contexts will need to be allocated when they

are created byglXCreateContext(). If the client can use this

hardware context (e.g., for software fallbacks or window

moves), this information might be stored in the SAREA.

Applications of Computer Software Languages

66

Client DMA wait Queues

Each direct rendering context will require a DMA wait

queue from which its DMA buffers can be dispatched. These

wait queues are allocated by the X server when a new

GLXContext is created (glXCreateContext()).

Client Initialization

This section examines what happens before the client

enters steady state behaviour. The basic sequence for direct-

rendering client initialization is that the GL/GLX library is

loaded, queries to the X server are made (e.g., to determine

the visuals/FBConfigs available and if direct rendering can

be used), drawables and GLXContexts are created, and finally

a GLXContext is associated with a drawable. This sequence

assumes that the X server has already initialized the kernel

device driver and has pre-allocated any static buffers

requested by the user at server startup (as described above).

Library Loading

When a client is loaded, the GL/GLX library will

automatically be loaded by the operating system, but the

graphics device-specific module cannot be loaded until after

the X server has informed the DRI module which driver to

load (see below). The DRI module might not be loaded until

after a direct rendering GLXContext has been requested.

Client Configuration Queries

During client initialization code, several configuration

queries are commonly made. GLX has queries for its version

number and a list of supported extensions. These requests

are made through the standard GLX protocol stream. Since

Applications of Computer Software Languages

67

the set of supported extensions is device-dependent, similar

queries in the device-dependent driver interface (in the X

server) are provided that can be called by device-independent

code in GLX.

One of the required GLX queries from the client is for the

list of supported extended visuals (and FBConfigs in GLX

1.3). The visuals define the types of colour and ancillary

buffers that are available and are device-dependent. The X

server must provide the list of supported visuals (and

FBConfigs) via the standard protocol transport layer (e.g.,

Unix domain or TCP/IP sockets). Again, similar interfaces in

the device-dependent driver are provided that can be called

by the device-independent code in GLX. All of this information

is known at server initialization time (above).

Drawable creation

The client chooses the visual (or FBConfig) it needs and

creates a drawable using the selected visual. If the drawable

is a window, then, since we use a static resource allocation

approach, the buffers are already allocated, and no additional

frame buffer allocations are necessary at this time. However,

if a dynamic resource allocation approach is added in the

future, the buffers requested will need to be allocated.

Not all buffers need to be pre-allocated. For example,

accumulation buffers can be emulated in software and might

not be pre-allocated. If they are not, then, when the extended

visual or FBConfig is associated with the drawable, the client

library will need to allocate the accumulation buffer. In GLX

1.3, this can happen withglXCreateWindow(). For earlier

versions of GLX, this will happen when a context is made

current (below).

Applications of Computer Software Languages

68

Pixmaps and Buffers

GLXPixmaps are created from an ordinary X11 pixmap,

which is then passed to glXCreatePixmap(). GLXPbuffers are

created directly by a GLX command. Since we are using a

static allocation scheme, we know what ancillary buffers need

to be created for these drawables. In the initial SI, these will

be handled by indirect rendering or software fallbacks.

GLXContext creation

The client must also create at least one GLXContext. The

last flag to glXCreateContext() is a flag to request direct

rendering. The first GLXContext created can trigger the library

to initialize the direct rendering interface for this client.

Several steps are required to setup the DRI. First, the DRI

library is loaded and initialized in the client and X server.

The DRI library establishes the private communication

mechanism between the client and X server (the XFree86-

GLX protocol). The X server sends the SAREA shared memory

segment ID to the client via this protocol and the client

attaches to it. Next, the X server sends the device-dependent

client side 3D graphics device driver module name to client

via the XFree86-GLX protocol, which is loaded and initialized

in the client.

The X server calls the kernel module to create a new

WaitQueue and hardware graphics context corresponding

to the new GLXContext. Finally, the client opens and

initializes the kernel driver (including a request for DMA

buffers).

Making a GLXContext current

The last stage before entering the steady state behaviour

Applications of Computer Software Languages

69

occurs when a GLXContext is associated with a GLXDrawable

by making the context “current”. This must occur before any

3D rendering can begin. The first time a GLXDrawable is

bound to a direct rendering GLXContext it is registered with

the X server and any buffers not already allocated are now

allocated. If the GLXDrawable is a window that has not been

mapped yet, then the buffers associated with the window

are initialized to size zero. When a window is mapped, space

in the pre-allocated static buffers are initialized, or in the

case of dynamic allocation, buffers are allocated from the

available offscreen area (if possible). For GLX 1.2 (and older

versions), some ancillary buffers (e.g., stencil or

accumulation), that are not supported by the graphics device,

or unavailable due to either resource constraints or their

being turned off through X server config options (see above),

might need to be allocated. At this point, the client can enter

the steady-state by making OpenGL calls.

Steady-state Analysis

The initial steady-state analysis presented here assumes

that the client(s) and X server have been started and have

established all necessary communication channels (e.g., the

X, GLX and XFree86-GLX protocol streams and the SAREA

segment). In the following analysis, we will impose simplifying

assumptions to help direct the analysis towards the main

line rendering case. We will then relax our initial assumptions

and describe increasingly general cases.

Single 3D Client (1 GLXContext, 1 GLXWindow), X
Server Inactive

Assume: No X server activity (including hardware cursor

Applications of Computer Software Languages

70

movement). This is the optimized main line rendering case.

The primary goal is to generate graphics device specific

commands and stuff them in a DMA buffer as fast as possible.

Since the X server is completely inactive, any overhead due

to locking should be minimized.

Processing rendering requests

In the simplest case, rendering commands can be sent to

the graphics device by putting them in a DMA buffer. Once a

DMA buffer is full and needs to be dispatched to the graphics

device, the buffer can be handed immediately to the kernel

via an ioctl. The kernel then schedules the DMA command

buffer to be sent to the graphics device. If the graphics device

is not busy (or the DMA input queue is not full), it can be

immediately sent to the graphics device. Otherwise, it is put

on the WaitQueue for the current context.

In hardware that can only process a single DMA buffer at

a time, when the DMA buffer has finished processing, an

IRQ is generated by the graphics device and handled by the

kernel driver.

In hardware that has a DMA input FIFO, IRQs can be

generated after each buffer, after the input FIFO is empty or

(in certain hardware) when a low-water mark has been

reached. For both types of hardware, the kernel device driver

resets the IRQ and schedules the next DMA buffer(s).

A further optimization for graphics devices that have input

FIFOs for DMA requests is that if the FIFO is not full, the

DMA request could be initiated directly from client space.

Synchronization

GLX has commands to synchronize direct rendering with

Applications of Computer Software Languages

71

indirect rendering or with ordinary X11 operations. These

include glFlush(), glFinish(), glXWaitGL() and glXWaitX()

synchronization primitives. The kernel driver provides several

ioctls to handle each of the synchronization cases. In the

simplest case (glFlush()), any partially filled DMA buffer will

be sent to the kernel.

Since these will eventually be processed by the hardware,

the function call can return. WithglFinish(), in addition to

sending any partially filled DMA buffer to the kernel, the

kernel will block the client process until all outstanding DMA

requests have been completely processed by the graphics

device. glXWaitGL() can be implemented using glFlush(),

glXWaitX() can be implemented with XSync().

Buffer Swaps

Buffers swaps can be initiated by glXSwapBuffers(). When

a client issues this request, any partially filled DMA buffers

are sent to the kernel and all outstanding DMA buffers are

processed before the buffer swap can take place. All

subsequent rendering commands are blocked until the buffer

has been swapped, but the client is not blocked and can

continue to fill DMA buffers and send them to the kernel.

If multiple threads are rendering to a GLXDrawable, it is

the client’s responsibility to synchronize the threads. In

addition, the idea of the current buffer (e.g., front or back)

must be shared by all GLXContexts bound to a given

drawable. The X double buffer extension must also agree.

Kernel-driver Buffer Swap Ioctl

When the buffer swap ioctl is called, a special DMA buffer

with the swap command is placed into the current

Applications of Computer Software Languages

72

GLXContext’s WaitQueue. Because of sequentiality of the

DMA buffers in the WaitQueue, all DMA buffers behind this

are blocked until all DMA buffers in front of this one have

been processed. The header information associated with this

buffer lets the scheduler know how to handle the request.

There are three ways to handle the buffer swap:

1. No vert sync: Immediately schedule the buffer swap

and allow subsequent DMA buffers in the WaitQueue

to be scheduled. With this policy there will be tearing.

In the initial SI, we will implement this policy.

2. Wait for vert sync: Wait for the vertical retrace IRQ

to schedule the buffer swap command and allow

subsequent DMA buffers in the WaitQueue to be

scheduled. With this policy, the tearing should be

reduced, but there might still be some tearing if a

DMA input FIFO is present and relatively full.

3. No tearing: Wait for vertical retrace IRQ and all DMA

buffers in the input FIFO to be processed before

scheduling the buffer swap command. Since the

buffer swap is a very fast bitblt operation, no tearing

should be present with this policy.

Software Fallbacks

Not all OpenGL graphics primitives are accelerated in all

hardware. For those not supported directly by the graphics

device, software fallbacks will be required. Mesa and SGI’s

OpenGL SI provide a mechanism to implement these

fallbacks; however, the hardware graphics context state needs

to be translated into the format required by these libraries.

The hardware graphics context state can be read from the

Applications of Computer Software Languages

73

saved device state segment of SAREA. An implicit glFinish() is

issued before the software fallback can be initiated to ensure

that the graphics state is up to date before beginning the

software fallback. The hardware lock is required to alter any

device state.

Image Transfer Operations

Many image transfer operations are required in the client-

side direct rendering library. Initially these will be software

routines that read directly from the memory mapped graphics

device buffers (e.g., frame buffer and texture buffer). These

are device-dependent operations since the format of the

transfer might be different, though certain abstractions

should be possible (e.g., linear buffers). An optimization is to

allow the client to perform DMA directly to/from the client’s

address space. Some hardware has support for page table

translation and paging. Other hardware will require the ability

to lock down pages and have them placed contiguously in

physical memory.

The X server will need to manage how the frame and other

buffers are allocated at the highest level. The layout of these

buffers is determined at X server initialization time.

Texture Management

Each GLXContext appears to own the texture memory. In

the present case, there is no contention. In subsequent cases,

hardware context switching will take care of texture swapping

as well (see below).

For a single context, the image transfer operations

described above provides the necessary interfaces to transfer

textures and subtextures to/from texture memory.

Applications of Computer Software Languages

74

Display List Management

Display lists initially will be handled from within the client’s

virtual address space. For graphics devices that supports

display lists, they can be stored and managed the same as

texture memory.

Selection and Feedback

If there is hardware support for selection and feedback,

the rendering commands are sent to the graphics pipeline,

which returns the requested data to the client. The amount

of data can be quite large and are usually delivered to a

collection of locked-down pages via DMA. The kernel should

provide a mechanism for locking down pages in the client

address space to hold the DMA buffer.

Queries

Queries are handled similarly to selection and feedback,

but the data returned are usually much smaller. When a

query is made, the hardware graphics context state has to

be read. If the GLXContext does not currently own the

graphics device, the state can be read from the saved device

state segment in SAREA. Otherwise, the graphics pipeline is

temporarily stalled, so that the state can be read from the

graphics device.

Events

GLX has a “pbuffer clobbered” event. This can only be

generated as a result of reconfiguring a drawable or creating

a new one. Since pbuffers will initially be handled by the

software, no clobbered events will be generated. However,

when they are accelerated, the X server will have to wrap the

Applications of Computer Software Languages

75

appropriate routine to determine when the event needs to

be generated.

Single 3D Client (1 GLXContext, 1 GLXWindow), X
Server can Draw

Assume: X server can draw (e.g., 2D rendering) into other

windows, but does not move the 3D window. This is a

common case and should be optimized if possible. The only

significant different between this case and the previous case,

is that we must now lock the hardware before accessing the

graphics device directly directly from the client, X server or

kernel space.

The goal is to minimize state transitions and potentially

avoid a full hardware graphics context switch by allowing

the X server to save and restore 3D state around its access

for GUI acceleration.

Hardware Lock

Access to graphics device must be locked, either implicitly

or explicitly. Each component of the system requires the

hardware lock at some point. For the X server, the hardware

lock is required when drawing or modifying any state. It is

requested around blocks of 2D rendering, minimizing the

potential graphics hardware context switches.

In the 3D client, the hardware lock is required during the

software fallbacks (all other graphics device accesses are

handled through DMA buffers). The kernel also must request

the lock when it needs to send DMA requests to the graphics

device. The hardware lock is contained in the Hardware lock

segment of the SAREA which can be accessed by all system

components. A two-tiered locking scheme is used to minimize

Applications of Computer Software Languages

76

the process and kernel context switches necessary to grant

the lock. The most common case, where a lock is requested

by the last process to hold the lock, does not require any

context switches. See the accompanying locks.txt file for more

information on two-tiered locking (available late February

1999).

Graphics Hardware Context Switching

In addition to locking the graphics device, a graphics

hardware context switch between the client and the X server

is required. One possible solution is to perform a full context

switch by the kernel (see the “multiple contexts” section below

for a full explanation of how a full graphics hardware context

switch is handled). However, the X server is a special case

since it knows exactly when a context switch is required and

what state needs to be saved and restored.

For the X server, the graphics hardware context switch is

required only (a) when directly accessing the graphics device

and (b) when the access changes the state of the graphics

device. When this occurs, the X server can save the graphics

device state (either via a DMA request or by reading the

registers directly) before it performs its rendering commands

and restore the graphics device state after it finishes.

Three examples will help clarify the situations where this

type of optimization can be useful. First, using a cfb/mi

routine to draw a line only accesses the frame buffer and

does not alter any graphics device state. Second, on many

vendor’s cards changing the position of the hardware cursor

does not affect the graphics device state. Third, certain

graphics devices have two completely separate pipelines for

Applications of Computer Software Languages

77

2D and 3D commands. If no 2D and 3D state is shared, then

they can proceed independently (but usually not

simultaneously, so the hardware lock is still required).

Single 3D Client (1 GLXContext, 1 GLXWindow), X
Server Active

Assume: X server can move or resize the single 3D window.

When the X server moves or resizes the 3D window, the client

needs to stop drawing long enough for the X server to change

the window, and it also needs to request the new window

location, size and clipping information. Current 3D graphics

devices can draw using window relative coordinates, though

the window offset might not be able to be updated

asynchronously (i.e., it might only be possible to update this

information between DMA buffers). Since this is an infrequent

operation, it should be designed to have minimal impact on

the other, higher priority cases.

X Server Operations

On the X server side, when a window move is performed,

several operations must occur. First, the DMA buffers

currently being processed by the graphics device must be

completely processed before proceeding since they might

associated with the old window position (unless the graphics

device allows asynchronous window updates). Next, the X

server grabs the hardware lock and waits for the graphics

device to become quiescent.

It then issues a bitblt to move the window and all of its

associated buffers. It updates the window location in all of

the contexts associated with the window, and increments

the “Window information changed” ID in the SAREA to notify

Applications of Computer Software Languages

78

all clients rendering to the window of the change. It can then

release the hardware lock.

Since the graphics hardware context has been updated

with the new window offset, any outstanding DMA buffers

for the context associated with the moved window will have

the new window offset and thus will render at the correct

screen location. The situation is slightly more complicated

with window resizes or changes to the clipping information.

When a window is resized or when the clipping information

changes due to another window popping up on top of the 3D

window, outstanding DMA buffers might draw outside of the

new window (if the window was made smaller). If the graphics

device supports clipping planes, then this information can

be updated in the graphics hardware context between DMA

buffers.

However, for devices that only support clipping rectangles,

the outstanding DMA requests cannot be altered with the

new clipping rects.

To minimize this effect, the X server can:

• Flush the DMA buffers in all contexts’ WaitQueues

associated with the window,

• Wait for these DMA buffers to be processed by the

graphics device. However, this does not completely

solve the problem as there could be a partially filled

DMA buffer in the client(s) rendering to the window

(see below).

3D Client Operations

On the client side, during each rendering operation, the

client checks to see if it has the most current window

information. If it does, then it can proceed as normal.

Applications of Computer Software Languages

79

However, if the X server has changed the window location,

size or clipping information, the client issues a XFree86-DRI

protocol request to get the new information.

See the accompanying XFree86-DRI.txt file for more

information on the XFree86-DRI protocol implementation.

This information will be mainly used for software fallbacks.

Since there could be several outstanding requests in the

partially filled “current” DMA buffer, the rendering commands

already in this buffer might draw outside of the window. The

simplest solution to this problem is to send an expose event

to the windows that are affected.

This could be accomplished as follows:

• Send the partially filled DMA buffer to the kernel,

• Wait for it to be processed,

• Generate a list of screen-relative rectangles for the

affected region,

• Send a request to the X server to generate an expose

event in the windows that overlap with that region.

On graphics devices that do not allow the window offset to

be updated between DMA buffers, the situation described

above will also occur for window moves. The “generate expose

events” solution also will be used to solve the problem. It is

not known at this time if any graphics devices of this type

exist.

Multiple 3D Clients

Assume: There are now multiple 3D clients, each of which

has their own GLXContext(s). As with the previous case,

multiple GLXContexts are actively used in rendering, and

this case can be handled the same as the previous one.

Applications of Computer Software Languages

80

Finalization Analysis

This section examines what happens after exiting steady

state behaviour via destroying a rendering surface or context,

or via process termination. Process suspension and switching

virtual consoles are special cases and are dealt with in this

section.

Destroying a Drawing Surface

If the drawing surface is a window, it can be destroyed by

the window manager. When this occurs, the X server must

notify the direct rendering client that the window was

destroyed. However, before the window can be removed, the

X server must wait until all outstanding DMA buffer requests

associated with the window have been completely processed

in order to avoid rendering to the destroyed window after it

has been removed. When the client tries to draw to the

window again, it recognizes that the window is no longer

valid and cleans up its internal state associated with the

window (e.g., any local ancillary buffer), and returns an error.

GLX 1.3 uses glXDestroyWindow() to explicitly notify the

system that the window is no longer associated with GLX,

and that its resources should be freed.

Destroying a GLXContext

Since there are limited context slots available in the per-

context segment of SAREA, a GLXContext’s resources can

be freed by calling glXDestroyContext()when it is no longer

needed. If the GLXContext is current to any thread, the

context cannot be destroyed until it is no longer current.

When this happens, the X server marks the GLXContext’s

Applications of Computer Software Languages

81

per-context slot as free, frees the saved device state, and

notifies the kernel that the WaitQueue can be freed.

Destroying Shared Resources

Texture objects and display lists can be shared by multiple

GLXContexts. When a context is destroyed in the share list,

the reference count should be decremented. If the reference

count of the texture objects and/or display lists is zero, they

can be freed as well.

Process Finalization

When a process exits, its direct rendering resources should

be freed and returned to the X server.

Graceful Termination

If the termination is expected, the resources associated

with the process are freed. The kernel reclaims its DMA

buffers from the client. The X server frees the GLXDrawables

and GLXContexts associated with the client. In the process

of freeing the GLXContexts, the X server notifies the kernel

that it should free any WaitQueues associated with the

GLXContexts it is freeing. The saved device state is freed.

The reference count to the SAREA is decremented. Finally,

any additional resources used by the GLX and XFree86-GLX

protocol streams are freed.

Unexpected Termination

Detecting the client death is the hardest part of unexpected

process termination. Once detected, the resources are freed

as in the graceful termination case outlined above. The kernel

detects when a direct rendering client process dies since it

has registered itself with the kernel exit procedure. If the

Applications of Computer Software Languages

82

client does not hold the hardware lock, then it can proceed

as in the graceful termination case. If the hardware lock is

held, the lock is broken. The graphics device might be in an

unusable state (e.g., waiting for data during a texture upload),

and might need to be reset. After reset, the graceful

termination case can proceed.

Process Suspension

Processes can suspend themselves via a signal that cannot

be blocked, SIGSTOP. If the process holds the hardware lock

during this time, the SIGSTOP signal must be delayed until

the lock is freed. This can be handled in the kernel. As an

initial approximation, the kernel can turn off SIGSTOP for

all direct rendering clients.

Switching Virtual Consoles

XFree86 has the ability to switch to a different virtual

console when the X server is running. This action causes

the X server to draw to a copy of the frame buffer in the X

server virtual address space. For direct rendering clients,

this solution is not possible. A simple solution to use in the

initial SI is to halt all direct access to the graphics device by

grabbing the hardware lock.

In addition to switching virtual consoles, XFree86 can be

started on multiple consoles (with different displays). Initially,

only the first display will support direct rendering.

MMIO

This architecture has been designed with MMIO based 3D

solution in mind, but the initial SI will be optimized for DMA

based solutions. A more complete MMIO driven

Applications of Computer Software Languages

83

implementation can be added later. Base support in the initial

SI that will be useful for an MMIO-only solution is

unprivileged mapping of MMIO regions and a fast two-tier

lock. Additional optimizations that will be useful are

virtualizing the hardware via a page fault mechanism and a

mechanism for updating shared library pointers directly.

Device-specific Kernel Driver

Several optimizations (mentioned above) can be added by

allowing a device-specific kernel driver to hook out certain

functions in the generic kernel driver.

Other Enhancements

We should consider additional enhancements including:

• Multiple displays and multiple screens

• More complex buffer swapping (cushion buffering,

swap every N retraces, synchronous window

swapping)

MMIO

Memory-Mapped Input-Output. In this document, we use

the term MMIO to refer to operations that access a region of

graphics card memory that has been memory-mapped into

the virtual address space, or to operations that access

graphics hardware registers via a memory-mapping of the

registers into the virtual address space (in contrast to PIO).

Note that graphics hardware “registers” may actually be

pseudo-registers that provide access to the hardware FIFO

command queue.

PIO

Programmed Input-Output. In this document, we use the

Applications of Computer Software Languages

84

term PIO to refer specifically to operations that must use the

Intel in and out instructions (or equivalent non-Intel

instructions) to access the graphics hardware (in contrast to

using memory-mapped graphics hardware registers, which

allow for the use ofmov instructions).

Applications of Computer Software Languages

85

5

Software Progrmming

Software Engineering is an approach to developing software

that attempts to treat it as a formal process more like

traditional engineering than the craft that many programmers

believe it is. We talk of crafting an application, refining and

polishing it, as if it were a wooden sculpture, not a series of

logic instructions. Manufacturers cannot build complex life-

critical systems like aircraft, nuclear reactor controls, medical

systems and expect the software to be thrown together.

They require the whole process to be thoroughly managed,

so that budgets can be estimated, staff recruited, and to

minimize the risk of failure or expensive mistakes. In safety

critical areas such as aviation, space, nuclear power plants,

medicine, fire detection systems, and roller coaster rides the

cost of failure can be enormous as lives are at risk. A divide

by zero error that brings down an aircraft is just not

acceptable.

Applications of Computer Software Languages

86

Cad Engineering

Enormous design documents- hundreds or thousands of

pages long are produced using C.A.S.E. (Computer Aided

Software Engineering) tools then converted into Design

Specification documents which are used to design code.

C.A.S.E suffers from the “not quite there yet” syndrome.

There are no systems that can take a set of design constraints

and requirements then generate code that satisfies all the

requirements and constraints. Its far too complex a process.

So the available C.A.S.E. systems manage parts of

the lifecycle process but not all of it. One distinguishing

feature of Software Engineering is the paper trail that it

produces.

Designs have to be signed off by Managers and Technical

Authorities all the way from top to bottom and the role of

Quality Assurance is to check the paper trail. Many Software

Engineers would admit that their job is around 70%

paperwork and 30% code. It’s a costly way to write software

and this is why avionics in modern aircraft are so expensive.

basic Software Components

Software can be further divided into seven layers. Firmware

can be categorized as part of hardware, part of software, or

both. The seven layers of software are (top to bottom):

Programmes; System Utilities; Command Shell; System

Services; User Interface; Logical Level; and Hardware Level.

A Graphics Engine stradles the bottom three layers.

Strictly speaking, only the bottom two levels are the

operating system, although even technical persons will often

refer to any level other than programmes as part of the

Applications of Computer Software Languages

87

operating system (and Microsoft tried to convince the Justice

Department that their web browser application is actually a

part of their operating system). Because this technical

analysis concentrates on servers, Internet Facilities are

specifically separated out from the layers.

Human users normally interact with the operating system

indirectly, through various programmes (application and

system) and command shells (text, graphic, etc.), The

operating system provides programmes with services

thrrough system programmes and Application Programme

Interfaces (APIs).

Network and Internet Services

• Internet

• TCP/IP

• Server choices

• Tuning web servers

• DHCP

• Print serving

• File serving

• FTP

• SAMBA

• Mail Transport Agents (e-mail servers)

• Majordomo

• Application serving

Basics of Computer Hardware

• Processor

• Arithmetic and logic

• Control

• Main storage

Applications of Computer Software Languages

88

• External storage

• Input/output overview

• Input

• Output

Processors

• CISC

• RISC

• DSP

• Hybrid

Processes and Jobs

• General information

• Linking

• Loading

• Run/execute

Buses

• Kinds of buses

• Bus standards

Memory

• Main storage

• External storage

• Buffers

• Absolute addressing

• Overlay

• Relocatable software

• Demand paging and swapping

• Programme counter relative

• Base pointers

Applications of Computer Software Languages

89

• Indirection, pointers, and handles

• OS memory services

Memory Maps

• PC-DOS and MS-DOS memory map

• MS-DOS TSR memory map

• Mac Plus memory map

• Mac Plus video memory locations

• Mac Plus sound memory locations

PC-DOS and MS-DOS low memory

• BIOS Communication Area

• Reserved

• Inter-Application (User) Communication Area

• DOS Communication Area

Logical Level of Operating System

• File systems

• Files

• Resource Manager

• Cut and paste

Graphics Engine

• Font Management

User Interface

• Command line user interfaces

• Graphic user interfaces

• Aqua

• Common Desktop Environment

• IRIX Interactive Desktop

• Macintosh Toolbox

Applications of Computer Software Languages

90

• Motif

• Visual User Environment

• Workbench

• XFree86

• Spoken user interfaces

• Screen shots

• Event Management

• Windows

• Controls

• Menus

• Text Display and Editing

• Dialog Boxes

• Alerts

Command Shell

• Command line command shells

• DCL

• DOS

• JCL

• UNIX shells

• Scripting

• Graphic command shells

• Screen shots

Programmes

• Desk Accessories

Software Characteristics

• Microsoft Windows 98 SE, Me, NT4 (sp5+), 2000 or

XP,

Applications of Computer Software Languages

91

• Word processing software (optional),

• Spell checker (optional),

• Spreadsheet (optional), Microsoft Excel is necessary

to generate analysis reports

• Web browser (optional), Internet Explorer 5 or

Netscape 6 or above,

• Adobe Acrobat (optional).

Hardware requirement

• PC compatible computer (Pentium II or compatible),

• CD-ROM Drive,

• SVGA or XGA (1024×768) graphic screen and card,

• Floppy drive (optional, for Ethnos input transfer),

• Printer port (parallel port RS232).

Text Analysis

• Minimum size advised for a text: less than 1 page (1

Kb),

• Maximum size advised for a single text: 5,000 pages

(50 Mb),

• Average analysis throughput: from 20,000 words/

second (Pentium III 733 MHz) to 80,000 words/

second (Pentium IV 3.2 GHz, HT) on local Web pages,

for a single processor.

Semantic Search Engine

• Automatic generation of hierarchical keywords,

• Automatic information filtering (based on a

pertinence treshold),

• Massive data analysis and information cartography

(text-mining),

Applications of Computer Software Languages

92

• Search improvement for the references (nouns,

trademarks and proper names),

• Maximum numbers of text databases: unlimited,

• Average indexing throughput: from 1 Gb/hour

(Pentium III 733 Mhz) to 4 Gb/hour (Pentium IV 3.2

GHz, HT) on local Web pages, for a single processor.

features

• File formats converted by our linguistic softwares

(Tropes, Zoom and Index): Adobe Acrobat, ASCII,

ANSI, HTML, Macromedia Flash, Microsoft Excel,

Microsoft Powerpoint, Microsoft Word, Microsoft

WordML (Word XML), RTF, XML, SGML and

Macintosh texts

• Automatic extraction of Microsoft Outlook messages

via an external utility (Zoom Semantic Search

Engine)

• Automatic exportation of the results towards other

software (Zoom Semantic Search Engine)

• Indexing engine in batch mode (Acetic Index)

• Win32 Application Programming Interface (Acetic

Index)

• Real time XML output interface (Acetic Index)

• Distributed fault tolerant and load-balancing

Interface (CORBA, Acetic Index)

• Runtime, operation on Intranet, HTML generation

(contact us)

• Some features (for example, very large Text Mining)

may require the use of an additional statistics

software, of data mining software and/or a RDBMS

Applications of Computer Software Languages

93

Software Features

Software products

• Successful software

• Provides the required functionality

• Is usable by real (i.e. naive) users

• Is predictable, reliable and dependable

• Functions efficiently

• Has a “life-time” (measured in years)

 • Provides an appropriate user interface

 • Is accompanied by complete documentation

 • May have different configurations

 • Can be “easily” maintained

Software Consumer

• Cheap to buy

• Easy to learn

• Easy to use

• Solves the problem

• Reliable

• Powerful

• Fast

• Flexible

• Available

Requirement of Software producer

• Cheap to produce

• Well-defined behaviour

• Easy to “sell”

• Easy to maintain

Applications of Computer Software Languages

94

• Reliable

• Easy to use

• Flexible

• Available (quick to produce)

Issue of measurement

• The issue is...how to measure these things

• Why measure at all?

• Human subjective perception is notoriously

inaccurate (how many shark attacks in the last 200

years?)

• Numbers give us a way of comparing, controlling and

predicting

• Measurements give us a way of tracking progress

(and rescheduling if necessary)

• Also provide an assessment of product quality

• Measurement is the difference between “craft” and

“engineering”

Metric
• “A quantitative measure of the degree to which a

system component or process possesses a given

attribute (IEEE)

• Hence, for each metric, we require...

• A measurable property

• A relationship between that property and what we

wish to know

• A consistent, formal, validated expression of that

relationship

• For example: who is the greatest actor of all time?

Applications of Computer Software Languages

95

Good Metric

• Simple and computable

• Persuasive

• Consistent/objective

• Consistent in use of units/dimensions

• Programming language independent

• Gives useful feedback

Process metrics

• Measures of attributes of a process

• Attributes may relate to people (e.g. “person-hours”)...

• Or technology (e.g. “megaLOCs”)...

 • Or the product (e.g. “total cost to date”)

Measurement

• Effort, time and capital spent on various related

activities

• Number of functionalities implemented

• Number of errors remediated (of various severities)

 • Number of errors not remediated (during

development process)

 • Conformance to delivery schedule

 • Benchmarks (speed, throughput, error-rates, etc)

Hard Measure

• Abstract desiderata

• Usability

• Efficiency

• Reliability

• Maintainability

• Quality

Applications of Computer Software Languages

96

Standard Code of Metrics

• Lines of code (LOC)

• Cyclomatic complexity (McCabe)

• Function/feature points (Albrecht/Jones)

Lines of Code

• A size-oriented metric

• Easy to measure

• Easy to compare

• Easy to differentiate wrt time, cost, etc.

• Programming language dependent (e.g. 1 OO-LOC =

3 3GL-LOC = 9 assembler-LOC)

• Meaningless in isolation

• Penalize efficient design and coding

Object-oriented Metrics

• Measures of...

• Classes

• Encapsulation

• Modularity

• Inheritance

• Abstraction

Some Object-oriented Metrics

• Chidamber and Kemerer

• Lorenz and Kidd

Chidamber and Kemerer’s

• Class-oriented metrics (Proc. OOPSLA)...

• Weighted methods per class (number of methods

weighted by static complexity)

Applications of Computer Software Languages

97

• Depth of inheritance tree (number of ancestral classes)

• Number of children (number of immediate subcl-

asses)

• Degree of coupling (how many other classes rely on

the class, and vice versa)

• Response (number of public methods)

• Method cohesion (degree to which data

members shared by two or more methods)

Applications of Computer Software Languages

98

6

Computer Programming Language

Computer programming (often shortened to programming

or coding) is the process of designing, writing, testing,

debugging / troubleshooting, and maintaining the source

code of computer programmes. This source code is written

in a programming language. The purpose of programming

is to create a programme that exhibits a certain desired

behaviour. The process of writing source code often requires

expertise in many different subjects, including knowledge

of the application domain, specialized algorithms and formal

logic.

Definition

Hoc and Nguyen-Xuan define computer programming as

“the process of transforming a mental plan in familiar terms

into one compatible with the computer.” Said another way,

programming is the craft of transforming requirements into

something that a computer can execute.

Applications of Computer Software Languages

99

Overview

Within software engineering, programming (the

implementation) is regarded as one phase in a software

development process. There is an ongoing debate on the

extent to which the writing of programmes is an art, a craft

or an engineering discipline. In general, good programming

is considered to be the measured application of all three,

with the goal of producing an efficient and evolvable software

solution (the criteria for “efficient” and “evolvable” vary

considerably). The discipline differs from many other

technical professions in that programmers, in general, do

not need to be licensed or pass any standardized (or

governmentally regulated) certification tests in order to call

themselves “programmers” or even “software engineers.”

However, representing oneself as a “Professional Software

Engineer” without a license from an accredited institution

is illegal in many parts of the world. However, because the

discipline covers many areas, which may or may not include

critical applications, it is debatable whether licensing is

required for the profession as a whole. In most cases, the

discipline is self-governed by the entities which require the

programming, and sometimes very strict environments are

defined (e.g. United States Air Force use of AdaCore and

security clearance). Another ongoing debate is the extent

to which the programming language used in writing computer

programmes affects the form that the final programme

takes. This debate is analogous to that surrounding the

Sapir–Whorf hypothesis in linguistics, which postulates that

a particular spoken language’s nature influences the habitual

thought of its speakers.

Applications of Computer Software Languages

100

Different language patterns yield different patterns of

thought. This idea challenges the possibility of representing

the world perfectly with language, because it acknowledges

that the mechanisms of any language condition the thoughts

of its speaker community.

History

The Antikythera mechanism from ancient Greece was a

calculator utilizing gears of various sizes and configuration

to determine its operation, which tracked the metonic cycle

still used in lunar-to-solar calendars, and which is consistent

for calculating the dates of the Olympiads. Al-Jazari built

programmable Automata in 1206. One system employed in

these devices was the use of pegs and cams placed into a

wooden drum at specific locations. which would sequentially

trigger levers that in turn operated percussion instruments.

The output of this device was a small drummer playing

various rhythms and drum patterns. The Jacquard Loom,

which Joseph Marie Jacquard developed in 1801, uses a

series of pasteboard cards with holes punched in them. The

hole pattern represented the pattern that the loom had to

follow in weaving cloth. The loom could produce entirely

different weaves using different sets of cards. Charles

Babbage adopted the use of punched cards around 1830

to control his Analytical Engine. The synthesis of numerical

calculation, predetermined operation and output, along with

a way to organize and input instructions in a manner

relatively easy for humans to conceive and produce, led to

the modern development of computer programming.

Development of computer programming accelerated through

Applications of Computer Software Languages

101

the Industrial Revolution. In the late 1880s, Herman Hollerith

invented the recording of data on a medium that could then

be read by a machine. Prior uses of machine readable

media, above, had been for control, not data. “After some

initial trials with paper tape, he settled on punched cards...”

To process these punched cards, first known as “Hollerith

cards” he invented the tabulator, and the keypunch

machines. These three inventions were the foundation of

the modern information processing industry. In 1896 he

founded the Tabulating Machine Company (which later

became the core of IBM). The addition of a control panel

(plugboard) to his 1906 Type I Tabulator allowed it to do

different jobs without having to be physically rebuilt. By the

late 1940s, there were a variety of plug-board programmable

machines, called unit record equipment, to perform data-

processing tasks (card reading). Early computer programmers

used plug-boards for the variety of complex calculations

requested of the newly invented machines. The invention

of the von Neumann architecture allowed computer

programmes to be stored in computer memory.

Early programmes had to be painstakingly crafted using

the instructions (elementary operations) of the particular

machine, often in binary notation. Every model of computer

would likely use different instructions (machine language)

to do the same task. Later, assembly languages were

developed that let the programmer specify each instruction

in a text format, entering abbreviations for each operation

code instead of a number and specifying addresses in

symbolic form (e.g., ADD X, TOTAL). Entering a programme

in assembly language is usually more convenient, faster,

Applications of Computer Software Languages

102

and less prone to human error than using machine language,

but because an assembly language is little more than a

different notation for a machine language, any two machines

with different instruction sets also have different assembly

languages. In 1954, FORTRAN was invented; it was the first

high level programming language to have a functional

implementation, as opposed to just a design on paper. (A

high-level language is, in very general terms, any

programming language that allows the programmer to write

programmes in terms that are more abstract than assembly

language instructions, i.e. at a level of abstraction “higher”

than that of an assembly language.) It allowed programmers

to specify calculations by entering a formula directly (e.g.

Y = X*2 + 5*X + 9). The programme text, or source, is

converted into machine instructions using a special

programme called a compiler, which translates the FORTRAN

programme into machine language. In fact, the name

FORTRAN stands for “Formula Translation”. Many other

languages were developed, including some for commercial

programming, such as COBOL. Programmes were mostly

still entered using punched cards or paper tape. By the

late 1960s, data storage devices and computer terminals

became inexpensive enough that programmes could be

created by typing directly into the computers. Text editors

were developed that allowed changes and corrections to be

made much more easily than with punched cards. (Usually,

an error in punching a card meant that the card had to

be discarded and a new one punched to replace it.)

As time has progressed, computers have made giant

leaps in the area of processing power. This has brought

Applications of Computer Software Languages

103

about newer programming languages that are more

abstracted from the underlying hardware. Although these

high-level languages usually incur greater overhead, the

increase in speed of modern computers has made the use

of these languages much more practical than in the past.

These increasingly abstracted languages typically are easier

to learn and allow the programmer to develop applications

much more efficiently and with less source code.

However, high-level languages are still impractical for a

few programmes, such as those where low-level hardware

control is necessary or where maximum processing speed

is vital. Throughout the second half of the twentieth century,

programming was an attractive career in most developed

countries. Some forms of programming have been

increasingly subject to offshore outsourcing (importing

software and services from other countries, usually at a

lower wage), making programming career decisions in

developed countries more complicated, while increasing

economic opportunities in less developed areas. It is unclear

how far this trend will continue and how deeply it will

impact programmer wages and opportunities.

History of programming languages

This article discusses the major developments in the

history of programming languages. For a detailed timeline

of events, see the timeline of programming languages.

Before 1940

The first programming languages predate the modern

computer. At first, the languages were codes. The Jacquard

loom, invented in 1801, used holes in punched cards to

Applications of Computer Software Languages

104

represent sewing loom arm movements in order to generate

decorative patterns automatically. During a nine-month

period in 1842-1843, Ada Lovelace translated the memoir

of Italian mathematician Luigi Menabrea about Charles

Babbage’s newest proposed machine, the Analytical Engine.

With the article, she appended a set of notes which specified

in complete detail a method for calculating Bernoulli numbers

with the Engine, recognized by some historians as the

world’s first computer programme.

Herman Hollerith realized that he could encode

information on punch cards when he observed that train

conductors encode the appearance of the ticket holders on

the train tickets using the position of punched holes on the

tickets. Hollerith then encoded the 1890 census data on

punch cards. The first computer codes were specialized for

their applications. In the first decades of the 20th century,

numerical calculations were based on decimal numbers.

Eventually it was realized that logic could be represented

with numbers, not only with words. For example, Alonzo

Church was able to express the lambda calculus in a

formulaic way. The Turing machine was an abstraction of

the operation of a tape-marking machine, for example, in

use at the telephone companies. Turing machines set the

basis for storage of programmes as data in the von Neumann

architecture of computers by representing a machine through

a finite number. However, unlike the lambda calculus,

Turing’s code does not serve well as a basis for higher-level

languages—its principal use is in rigorous analyses of

algorithmic complexity. Like many “firsts” in history, the

first modern programming language is hard to identify.

Applications of Computer Software Languages

105

From the start, the restrictions of the hardware defined the

language.

Punch cards allowed 80 columns, but some of the columns

had to be used for a sorting number on each card. FORTRAN

included some keywords which were the same as English

words, such as “IF”, “GOTO” (go to) and “CONTINUE”. The

use of a magnetic drum for memory meant that computer

programmes also had to be interleaved with the rotations

of the drum. Thus the programmes were more hardware-

dependent. To some people, what was the first modern

programming language depends on how much power and

human-readability is required before the status of

“programming language” is granted. Jacquard looms and

Charles Babbage’s Difference Engine both had simple,

extremely limited languages for describing the actions that

these machines should perform. One can even regard the

punch holes on a player piano scroll as a limited domain-

specific language, albeit not designed for human

consumption.

The 1940s

In the 1940s, the first recognizably modern, electrically

powered computers were created. The limited speed and

memory capacity forced programmers to write hand tuned

assembly language programmes. It was soon discovered

that programming in assembly language required a great

deal of intellectual effort and was error-prone. In 1948,

Konrad Zuse published a paper about his programming

language Plankalkül. However, it was not implemented in

his lifetime and his original contributions were isolated

Applications of Computer Software Languages

106

from other developments. Some important languages that

were developed in this period include:

• 1943 - Plankalkül (Konrad Zuse), designed, but

unimplemented for a half-century

• 1943 - ENIAC coding system, machine-specific codeset

appearing in 1948

• 1949 - 1954 — a series of machine-specific mnemonic

instruction sets, like ENIAC’s, beginning in 1949

with C-10 for BINAC (which later evolved into UNIVAC).

Each codeset, or instruction set, was tailored to a

specific manufacturer.

The 1950s and 1960s

In the 1950s, the first three modern programming

languages whose descendants are still in widespread use

today were designed:

• FORTRAN (1955), the “FORmula TRANslator”,

invented by John Backus et al.;

• LISP [1958], the “LISt Processor”, invented by John

McCarthy et al.;

• COBOL, the COmmon Business Oriented Language,

created by the Short Range Committee, heavily

influenced by Grace Hopper.

Another milestone in the late 1950s was the publication,

by a committee of American and European computer

scientists, of “a new language for algorithms”; the ALGOL

60 Report (the “ALGOrithmic Language”). This report

consolidated many ideas circulating at the time and featured

two key language innovations:

Applications of Computer Software Languages

107

• nested block structure: code sequences and associated

declarations could be grouped into blocks without

having to be turned into separate, explicitly named

procedures;

• lexical scoping: a block could have its own private

variables, procedures and functions, invisible to code

outside that block, i.e. information hiding.

Another innovation, related to this, was in how the

language was described:

• a mathematically exact notation, Backus-Naur Form

(BNF), was used to describe the language’s syntax.

Nearly all subsequent programming languages have

used a variant of BNF to describe the context-free

portion of their syntax.

Algol 60 was particularly influential in the design of later

languages, some of which soon became more popular. The

Burroughs large systems were designed to be programmed

in an extended subset of Algol. Algol’s key ideas were

continued, producing ALGOL 68:

• syntax and semantics became even more orthogonal,

with anonymous routines, a recursive typing system

with higher-order functions, etc.;

• not only the context-free part, but the full language

syntax and semantics were defined formally, in terms

of Van Wijngaarden grammar, a formalism designed

specifically for this purpose.

Algol 68’s many little-used language features (e.g.

concurrent and parallel blocks) and its complex system of

syntactic shortcuts and automatic type coercions made it

Applications of Computer Software Languages

108

unpopular with implementers and gained it a reputation of

being difficult. Niklaus Wirth actually walked out of the

design committee to create the simpler Pascal language.

Some important languages that were developed in this period

include:

• 1951 - Regional Assembly Language

• 1952 - Autocode

• 1954 - FORTRAN

• 1954 - IPL (forerunner to LISP)

• 1955 - FLOW-MATIC (forerunner to COBOL)

• 1957 - COMTRAN (forerunner to COBOL)

• 1958 - LISP

• 1958 - ALGOL 58

• 1959 - FACT (forerunner to COBOL)

• 1959 - COBOL

• 1962 - APL

• 1962 - Simula

• 1962 - SNOBOL

• 1963 - CPL (forerunner to C)

• 1964 - BASIC

• 1964 - PL/I

• 1967 - BCPL (forerunner to C)

1967-1978: Establishing Fundamental Paradigms

The period from the late 1960s to the late 1970s brought

a major flowering of programming languages. Most of the

major language paradigms now in use were invented in this

period:

Applications of Computer Software Languages

109

• Simula, invented in the late 1960s by Nygaard and

Dahl as a superset of Algol 60, was the first language

designed to support object-oriented programming.

• C, an early systems programming language, was

developed by Dennis Ritchie and Ken Thompson at

Bell Labs between 1969 and 1973.

• Smalltalk (mid 1970s) provided a complete ground-

up design of an object-oriented language.

• Prolog, designed in 1972 by Colmerauer, Roussel,

and Kowalski, was the first logic programming

language.

• ML built a polymorphic type system (invented by

Robin Milner in 1973) on top of Lisp, pioneering

statically typed functional programming languages.

Each of these languages spawned an entire family of

descendants, and most modern languages count at least

one of them in their ancestry. The 1960s and 1970s also

saw considerable debate over the merits of “structured

programming”, which essentially meant programming

without the use of Goto. This debate was closely related to

language design: some languages did not include GOTO,

which forced structured programming on the programmer.

Although the debate raged hotly at the time, nearly all

programmers now agree that, even in languages that provide

GOTO, it is bad programming style to use it except in rare

circumstances. As a result, later generations of language

designers have found the structured programming debate

tedious and even bewildering. Some important languages

that were developed in this period include:

Applications of Computer Software Languages

110

• 1968 - Logo

• 1969 - B (forerunner to C)

• 1970 - Pascal

• 1970 - Forth

• 1972 - C

• 1972 - Smalltalk

• 1972 - Prolog

• 1973 - ML

• 1975 - Scheme

• 1978 - SQL (initially only a query language, later

extended with programming constructs)

The 1980s: Consolidation, Modules and
Performance

The 1980s were years of relative consolidation in

imperative languages. Rather than inventing new paradigms,

all of these movements elaborated upon the ideas invented

in the previous decade. C++ combined object-oriented and

systems programming. The United States government

standardized Ada, a systems programming language intended

for use by defense contractors. In Japan and elsewhere,

vast sums were spent investigating so-called fifth-generation

programming languages that incorporated logic programming

constructs. The functional languages community moved to

standardize ML and Lisp. Research in Miranda, a functional

language with lazy evaluation, began to take hold in this

decade.

One important new trend in language design was an

increased focus on programming for large-scale systems

Applications of Computer Software Languages

111

through the use of modules, or large-scale organizational

units of code. Modula, Ada, and ML all developed notable

module systems in the 1980s. Module systems were often

wedded to generic programming constructs—generics being,

in essence, parameterized modules.

Although major new paradigms for imperative

programming languages did not appear, many researchers

expanded on the ideas of prior languages and adapted them

to new contexts. For example, the languages of the Argus

and Emerald systems adapted object-oriented programming

to distributed systems.

The 1980s also brought advances in programming

language implementation. The RISC movement in computer

architecture postulated that hardware should be designed

for compilers rather than for human assembly programmers.

Aided by processor speed improvements that enabled

increasingly aggressive compilation techniques, the RISC

movement sparked greater interest in compilation technology

for high-level languages. Language technology continued

along these lines well into the 1990s. Some important

languages that were developed in this period include:

• 1980 - C++ (as C with classes, name changed in July

1983)

• 1983 - Objective-C

• 1983 - Ada

• 1984 - Common Lisp

• 1985 - Eiffel

• 1986 - Erlang

• 1987 - Perl

Applications of Computer Software Languages

112

• 1988 - Tcl

• 1989 - FL (Backus)

The 1990s: The Internet Age

The 1990s saw no fundamental novelty in imperative

languages, but much recombination and maturation of old

ideas. This era began the spread of functional languages.

A big driving philosophy was programmer productivity. Many

“rapid application development” (RAD) languages emerged,

which usually came with an IDE, garbage collection, and

were descendants of older languages. All such languages

were object-oriented. These included Object Pascal, Visual

Basic, and Java. Java in particular received much attention.

More radical and innovative than the RAD languages were

the new scripting languages. These did not directly descend

from other languages and featured new syntaxes and more

liberal incorporation of features.

Many consider these scripting languages to be more

productive than even the RAD languages, but often because

of choices that make small programmes simpler but large

programmes more difficult to write and maintain.

Nevertheless, scripting languages came to be the most

prominent ones used in connection with the Web. Some

important languages that were developed in this period

include:

• 1990 - Haskell

• 1991 - Python

• 1991 - Visual Basic

• 1993 - Ruby

• 1993 - Lua

Applications of Computer Software Languages

113

• 1994 - CLOS (part of ANSI Common Lisp)

• 1995 - Java

• 1995 - Delphi (Object Pascal)

• 1995 - JavaScript

• 1995 - PHP

• 1997 - Rebol

• 1999 - D

Current Trends

Programming language evolution continues, in both

industry and research. Some of the current trends include:

• Mechanisms for adding security and reliability

verification to the language: extended static checking,

information flow control, static thread safety.

• Alternative mechanisms for modularity: mixins,

delegates, aspects.

• Component-oriented software development.

• Constructs to support concurrent and distributed

programming.

• Metaprogramming, reflection or access to the abstract

syntax tree

• Increased emphasis on distribution and mobility.

• Integration with databases, including XML and

relational databases.

• Support for Unicode so that source code (programme

text) is not restricted to those characters contained

in the ASCII character set; allowing, for example, use

of non-Latin-based scripts or extended punctuation.

• XML for graphical interface (XUL, XAML).

Applications of Computer Software Languages

114

Some important languages developed during this period

include:

• 2001 - C#

• 2001 - Visual Basic .NET

• 2002 - F#

• 2003 - Scala

• 2003 - Factor

• 2006 - Windows Power Shell

• 2007 - Clojure

• 2007 - Groovy

• 2009 - Go

Prominent People in the History of Programming
Languages

• John Backus, inventor of Fortran.

• Alan Cooper, developer of Visual Basic.

• Edsger W. Dijkstra, developed the framework for

structured programming.

• James Gosling, developer of Oak, the precursor of Java.

• Anders Hejlsberg, developer of Turbo Pascal, Delphi

and C#.

• Grace Hopper, developer of Flow-Matic, influencing

COBOL.

• Kenneth E. Iverson, developer of APL, and co-developer

of J along with Roger Hui.

• Bill Joy, inventor of vi, early author of BSD Unix, and

originator of SunOS, which became Solaris.

• Alan Kay, pioneering work on object-oriented

programming, and originator of Smalltalk.

Applications of Computer Software Languages

115

• Brian Kernighan, co-author of the first book on the

C programming language with Dennis Ritchie,

coauthor of the AWK and AMPL programming

languages.

• John McCarthy, inventor of LISP.

• John von Neumann, originator of the operating system

concept.

• Dennis Ritchie, inventor of C (programming language).

Unix Operating System, Plan 9 Operating System.

• Bjarne Stroustrup, developer of C++.

• Ken Thompson, inventor of B, Go Programming

Language, Inferno Programming Language.

• Niklaus Wirth, inventor of Pascal, Modula and Oberon.

• Larry Wall, creator of Perl and Perl 6

• Guido van Rossum, creator of Python

• Yukihiro Matsumoto, creator of Ruby

MODERN PROGRAMMING
Quality Requirements

Whatever the approach to software development may be,

the final programme must satisfy some fundamental

properties. The following properties are among the most

relevant:

• Efficiency/performance: the amount of system

resources a programme consumes (processor time,

memory space, slow devices such as disks, network

bandwidth and to some extent even user interaction):

the less, the better. This also includes correct disposal

Applications of Computer Software Languages

116

of some resources, such as cleaning up temporary

files and lack of memory leaks.

• Reliability: how often the results of a programme are

correct. This depends on conceptual correctness of

algorithms, and minimization of programming

mistakes, such as mistakes in resource management

(e.g., buffer overflows and race conditions) and logic

errors (such as division by zero or off-by-one errors).

• Robustness: how well a programme anticipates

problems not due to programmer error. This includes

situations such as incorrect, inappropriate or corrupt

data, unavailability of needed resources such as

memory, operating system services and network

connections, and user error.

• Usability: the ergonomics of a program: the ease with

which a person can use the programme for its intended

purpose, or in some cases even unanticipated

purposes. Such issues can make or break its success

even regardless of other issues. This involves a wide

range of textual, graphical and sometimes hardware

elements that improve the clarity, intuitiveness,

cohesiveness and completeness of a program’s user

interface.

• Portability: the range of computer hardware and

operating system platforms on which the source code

of a programme can be compiled/interpreted and

run. This depends on differences in the programming

facilities provided by the different platforms, including

hardware and operating system resources, expected

behaviour of the hardware and operating system,

Applications of Computer Software Languages

117

and availability of platform specific compilers (and

sometimes libraries) for the language of the source

code.

• Maintainability: the ease with which a programme

can be modified by its present or future developers

in order to make improvements or customizations,

fix bugs and security holes, or adapt it to new

environments. Good practices during initial

development make the difference in this regard. This

quality may not be directly apparent to the end user

but it can significantly affect the fate of a programme

over the long term.

Readability of Source Code

In computer programming, readability refers to the

ease with which a human reader can comprehend the

purpose, control flow, and operation of source code. It

affects the aspects of quality above, including portability,

usability and most importantly maintainability. Readability

is important because programmers spend the majority of

their time reading, trying to understand and modifying

existing source code, rather than writing new source

code.

Unreadable code often leads to bugs, inefficiencies, and

duplicated code. A study found that a few simple readability

transformations made code shorter and drastically reduced

the time to understand it. Following a consistent

programming style often helps readability.

However, readability is more than just programming style.

Many factors, having little or nothing to do with the ability

Applications of Computer Software Languages

118

of the computer to efficiently compile and execute the code,

contribute to readability. Some of these factors include:

• Different indentation styles (whitespace)

• Comments

• Decomposition

• Naming conventions for objects (such as variables,

classes, procedures, etc)

Algorithmic Complexity

The academic field and the engineering practice of

computer programming are both largely concerned with

discovering and implementing the most efficient algorithms

for a given class of problem. For this purpose, algorithms

are classified into orders using so-called Big O notation,

O(n), which expresses resource use, such as execution time

or memory consumption, in terms of the size of an input.

Expert programmers are familiar with a variety of well-

established algorithms and their respective complexities

and use this knowledge to choose algorithms that are best

suited to the circumstances.

Methodologies

The first step in most formal software development

projects is requirements analysis, followed by testing to

determine value modeling, implementation, and failure

elimination (debugging). There exist a lot of differing

approaches for each of those tasks. One approach popular

for requirements analysis is Use Case analysis.

Nowadays many programmers use forms of Agile software

development where the various stages of formal software

Applications of Computer Software Languages

119

development are more integrated together into short cycles

that take a few weeks rather than years. There are many

approaches to the Software development process. Popular

modeling techniques include Object-Oriented Analysis and

Design (OOAD) and Model-Driven Architecture (MDA). The

Unified Modeling Language (UML) is a notation used for

both the OOAD and MDA. A similar technique used for

database design is Entity-Relationship Modeling (ER

Modeling). Implementation techniques include imperative

languages (object-oriented or procedural), functional

languages, and logic languages.

Measuring Language Usage

It is very difficult to determine what are the most popular

of modern programming languages. Some languages are

very popular for particular kinds of applications (e.g., COBOL

is still strong in the corporate data center, often on large

mainframes, FORTRAN in engineering applications, scripting

languages in web development, and C in embedded

applications), while some languages are regularly used to

write many different kinds of applications. Also many

applications use a mix of several languages in their

construction and use.

Methods of measuring programming language popularity

include: counting the number of job advertisements that

mention the language, the number of books teaching the

language that are sold (this overestimates the importance

of newer languages), and estimates of the number of existing

lines of code written in the language (this underestimates

the number of users of business languages such as COBOL).

Applications of Computer Software Languages

120

Debugging

Debugging is a very important task in the software

development process, because an incorrect programme can

have significant consequences for its users. Some languages

are more prone to some kinds of faults because their

specification does not require compilers to perform as much

checking as other languages. Use of a static analysis tool

can help detect some possible problems.

Debugging is often done with IDEs like Eclipse, Kdevelop,

NetBeans, Code::Blocks, and Visual Studio. Standalone

debuggers like gdb are also used, and these often provide

less of a visual environment, usually using a command line.

Programming Languages

Different programming languages support different styles

of programming (called programming paradigms). The choice

of language used is subject to many considerations, such

as company policy, suitability to task, availability of third-

party packages, or individual preference. Ideally, the

programming language best suited for the task at hand

will be selected. Trade-offs from this ideal involve finding

enough programmers who know the language to build a

team, the availability of compilers for that language, and

the efficiency with which programmes written in a given

language execute. Languages form an approximate

spectrum from “low-level” to “high-level”; “low-level”

languages are typically more machine-oriented and faster

to execute, whereas “high-level” languages are more abstract

and easier to use but execute less quickly. It is usually

easier to code in “high-level” languages than in “low-level”

Applications of Computer Software Languages

121

ones. Allen Downey, in his book How To Think Like A

Computer Scientist, writes:

The details look different in different languages, but a

few basic instructions appear in just about every language:

• input: Get data from the keyboard, a file, or some

other device.

• output: Display data on the screen or send data to

a file or other device.

• arithmetic: Perform basic arithmetical operations like

addition and multiplication.

• conditional execution: Check for certain conditions

and execute the appropriate sequence of statements.

• repetition: Perform some action repeatedly, usually

with some variation.

Many computer languages provide a mechanism to call

functions provided by libraries such as in .dlls. Provided the

functions in a library follow the appropriate run time

conventions (e.g., method of passing arguments), then these

functions may be written in any other language.

Programmers

Computer programmers are those who write computer

software. Their jobs usually involve:

• Coding

• Compilation

• Debugging

• Documentation

• Integration

• Maintenance

Applications of Computer Software Languages

122

• Requirements analysis

• Software architecture

• Software testing

• Specification

Programming Language

A programming language is an artificial language designed

to express computations that can be performed by a machine,

particularly a computer. Programming languages can be

used to create programmes that control the behavior of a

machine, to express algorithms precisely, or as a mode of

human communication. The earliest programming languages

predate the invention of the computer, and were used to

direct the behavior of machines such as Jacquard looms

and player pianos. Thousands of different programming

languages have been created, mainly in the computer field,

with many more being created every year.

Most programming languages describe computation in

an imperative style, i.e., as a sequence of commands,

although some languages, such as those that support

functional programming or logic programming, use

alternative forms of description. A programming language

is usually split into the two components of syntax (form)

and semantics (meaning) and many programming languages

have some kind of written specification of their syntax and/

or semantics. Some languages are defined by a specification

document, for example, the C programming language is

specified by an ISO Standard, while other languages, such

as Perl, have a dominant implementation that is used as

a reference.

Applications of Computer Software Languages

123

Definitions

A programming language is a notation for writing

programmes, which are specifications of a computation or

algorithm. Some, but not all, authors restrict the term

“programming language” to those languages that can express

all possible algorithms. Traits often considered important

for what constitutes a programming language include:

• Function and target: A computer programming language

is a language used to write computer programmes,

which involve a computer performing some kind of

computation or algorithm and possibly control

external devices such as printers, disk drives, robots,

and so on. For example PostScript programmes are

frequently created by another programme to control

a computer printer or display. More generally, a

programming language may describe computation

on some, possibly abstract, machine. It is generally

accepted that a complete specification for a

programming language includes a description,

possibly idealized, of a machine or processor for that

language. In most practical contexts, a programming

language involves a computer; consequently

programming languages are usually defined and

studied this way. Programming languages differ from

natural languages in that natural languages are only

used for interaction between people, while

programming languages also allow humans to

communicate instructions to machines.

• Abstractions: Programming languages usually contain

abstractions for defining and manipulating data

Applications of Computer Software Languages

124

structures or controlling the flow of execution. The

practical necessity that a programming language

support adequate abstractions is expressed by the

abstraction principle; this principle is sometimes

formulated as recommendation to the programmer to

make proper use of such abstractions.

• Expressive power: The theory of computation classifies

languages by the computations they are capable of

expressing. All Turing complete languages can

implement the same set of algorithms. ANSI/ISO

SQL and Charity are examples of languages that are

not Turing complete, yet often called programming

languages.

Markup languages like XML, HTML or troff, which define

structured data, are not generally considered programming

languages. Programming languages may, however, share

the syntax with markup languages if a computational

semantics is defined. XSLT, for example, is a Turing complete

XML dialect. Moreover, LaTeX, which is mostly used for

structuring documents, also contains a Turing complete

subset.

The term computer language is sometimes used

interchangeably with programming language. However, the

usage of both terms varies among authors, including the

exact scope of each. One usage describes programming

languages as a subset of computer languages. In this vein,

languages used in computing that have a different goal than

expressing computer programmes are generically designated

computer languages. For instance, markup languages are

Applications of Computer Software Languages

125

sometimes referred to as computer languages to emphasize

that they are not meant to be used for programming. Another

usage regards programming languages as theoretical

constructs for programming abstract machines, and

computer languages as the subset thereof that runs on

physical computers, which have finite hardware resources.

John C. Reynolds emphasizes that formal specification

languages are just as much programming languages as are

the languages intended for execution. He also argues that

textual and even graphical input formats that affect the

behavior of a computer are programming languages, despite

the fact they are commonly not Turing-complete, and

remarks that ignorance of programming language concepts

is the reason for many flaws in input formats.

Elements

All programming languages have some primitive building

blocks for the description of data and the processes or

transformations applied to them (like the addition of two

numbers or the selection of an item from a collection). These

primitives are defined by syntactic and semantic rules which

describe their structure and meaning respectively.

Syntax

A programming language’s surface form is known as its

syntax. Most programming languages are purely textual;

they use sequences of text including words, numbers, and

punctuation, much like written natural languages. On the

other hand, there are some programming languages which

are more graphical in nature, using visual relationships

between symbols to specify a programme.

Applications of Computer Software Languages

126

The syntax of a language describes the possible

combinations of symbols that form a syntactically correct

programme. The meaning given to a combination of symbols

is handled by semantics (either formal or hard-coded in a

reference implementation). Since most languages are textual,

this article discusses textual syntax. Programming language

syntax is usually defined using a combination of regular

expressions (for lexical structure) and Backus–Naur Form

(for grammatical structure). Below is a simple grammar,

based on Lisp:

expression ::= atom | list

atom ::= number | symbol

number ::= [+-]?[‘0’-’9']+

symbol ::= [‘A’-’Z’’a’-’z’].*

list ::= ‘(‘ expression* ‘)’

This grammar specifies the following:

• an expression is either an atom or a list;

• an atom is either a number or a symbol;

• a number is an unbroken sequence of one or more

decimal digits, optionally preceded by a plus or minus

sign;

• a symbol is a letter followed by zero or more of any

characters (excluding whitespace); and

• a list is a matched pair of parentheses, with zero or

more expressions inside it.

The following are examples of well-formed token sequences

in this grammar: ‘12345’, ‘()’, ‘(a b c232 (1))’

Not all syntactically correct programmes are semantically

correct. Many syntactically correct programmes are

Applications of Computer Software Languages

127

nonetheless ill-formed, per the language’s rules; and may

(depending on the language specification and the soundness

of the implementation) result in an error on translation or

execution. In some cases, such programmes may exhibit

undefined behavior. Even when a programme is well-defined

within a language, it may still have a meaning that is not

intended by the person who wrote it.

Using natural language as an example, it may not be

possible to assign a meaning to a grammatically correct

sentence or the sentence may be false:

• “Colorless green ideas sleep furiously.” is

grammatically well-formed but has no generally

accepted meaning.

• “John is a married bachelor.” is grammatically well-

formed but expresses a meaning that cannot be true.

The following C language fragment is syntactically correct,

but performs an operation that is not semantically defined

(because p is a null pointer, the operations p->real and p-

>im have no meaning):

complex *p = NULL;

complex abs_p = sqrt (p->real * p->real + p->im * p->im);

If the type declaration on the first line were omitted, the

programme would trigger an error on compilation, as the

variable “p” would not be defined. But the programme

would still be syntactically correct, since type declarations

provide only semantic information.

The grammar needed to specify a programming language

can be classified by its position in the Chomsky hierarchy.

The syntax of most programming languages can be specified

Applications of Computer Software Languages

128

using a Type-2 grammar, i.e., they are context-free grammars.

Some languages, including Perl and Lisp, contain constructs

that allow execution during the parsing phase. Languages

that have constructs that allow the programmer to alter the

behavior of the parser make syntax analysis an undecidable

problem, and generally blur the distinction between parsing

and execution. In contrast to Lisp’s macro system and Perl’s

BEGIN blocks, which may contain general computations,

C macros are merely string replacements, and do not require

code execution.

Semantics

The term semantics refers to the meaning of languages,

as opposed to their form (syntax).

Static Semantics

The static semantics defines restrictions on the structure

of valid texts that are hard or impossible to express in

standard syntactic formalisms. For compiled languages,

static semantics essentially include those semantic rules

that can be checked at compile time. Examples include

checking that every identifier is declared before it is used

(in languages that require such declarations) or that the

labels on the arms of a case statement are distinct. Many

important restrictions of this type, like checking that

identifiers are used in the appropriate context (e.g. not

adding a integer to a function name), or that subroutine

calls have the appropriate number and type of arguments

can be enforced by defining them as rules in a logic called

a type system. Other forms of static analyses like data flow

analysis may also be part of static semantics. Newer

Applications of Computer Software Languages

129

programming languages like Java and C# have definite

assignment analysis, a form of data flow analysis, as part

of their static semantics.

Dynamic Semantics

Once data has been specified, the machine must be

instructed to perform operations on the data. For example,

the semantics may define the strategy by which expressions

are evaluated to values, or the manner in which control

structures conditionally execute statements. The dynamic

semantics (also known as execution semantics) of a language

defines how and when the various constructs of a language

should produce a programme behavior. There are many

ways of defining execution semantics. Natural language is

often used to specify the execution semantics of languages

commonly used in practice. A significant amount of academic

research went into formal semantics of programming

languages, which allow execution semantics to be specified

in a formal manner. Results from this field of research have

seen limited application to programming language design

and implementation outside academia.

Type System

A type system defines how a programming language

classifies values and expressions into types, how it can

manipulate those types and how they interact. The goal of

a type system is to verify and usually enforce a certain level

of correctness in programmes written in that language by

detecting certain incorrect operations. Any decidable type

system involves a trade-off: while it rejects many incorrect

programmes, it can also prohibit some correct, albeit unusual

Applications of Computer Software Languages

130

programmes. In order to bypass this downside, a number

of languages have type loopholes, usually unchecked casts

that may be used by the programmer to explicitly allow a

normally disallowed operation between different types. In

most typed languages, the type system is used only to type

check programmes, but a number of languages, usually

functional ones, infer types, relieving the programmer from

the need to write type annotations. The formal design and

study of type systems is known as type theory.

Typed versus untyped languages: A language is typed if

the specification of every operation defines types of data to

which the operation is applicable, with the implication that

it is not applicable to other types. For example, the data

represented by “this text between the quotes” is a string.

In most programming languages, dividing a number by a

string has no meaning. Most modern programming languages

will therefore reject any programme attempting to perform

such an operation. In some languages, the meaningless

operation will be detected when the programme is compiled

(“static” type checking), and rejected by the compiler, while

in others, it will be detected when the programme is run

(“dynamic” type checking), resulting in a runtime exception.

A special case of typed languages are the single-type

languages. These are often scripting or markup languages,

such as REXX or SGML, and have only one data type—most

commonly character strings which are used for both symbolic

and numeric data. In contrast, an untyped language, such

as most assembly languages, allows any operation to be

performed on any data, which are generally considered to

be sequences of bits of various lengths. High-level languages

Applications of Computer Software Languages

131

which are untyped include BCPL and some varieties of

Forth. In practice, while few languages are considered typed

from the point of view of type theory (verifying or rejecting

all operations), most modern languages offer a degree of

typing. Many production languages provide means to bypass

or subvert the type system.

Static versus dynamic typing: In static typing all

expressions have their types determined prior to the

programme being run (typically at compile-time). For

example, 1 and (2+2) are integer expressions; they cannot

be passed to a function that expects a string, or stored in

a variable that is defined to hold dates.

Statically typed languages can be either manifestly typed

or type-inferred. In the first case, the programmer must

explicitly write types at certain textual positions (for example,

at variable declarations). In the second case, the compiler

infers the types of expressions and declarations based on

context.

Most mainstream statically typed languages, such as

C++, C# and Java, are manifestly typed. Complete type

inference has traditionally been associated with less

mainstream languages, such as Haskell and ML. However,

many manifestly typed languages support partial type

inference; for example, Java and C# both infer types in

certain limited cases.

Dynamic typing, also called latent typing, determines the

type-safety of operations at runtime; in other words, types

are associated with runtime values rather than textual

expressions. As with type-inferred languages, dynamically

Applications of Computer Software Languages

132

typed languages do not require the programmer to write

explicit type annotations on expressions. Among other things,

this may permit a single variable to refer to values of

different types at different points in the programme

execution. However, type errors cannot be automatically

detected until a piece of code is actually executed, potentially

making debugging more difficult. Ruby, Lisp, JavaScript,

and Python are dynamically typed.

Weak and strong typing: Weak typing allows a value of

one type to be treated as another, for example treating a

string as a number. This can occasionally be useful, but

it can also allow some kinds of programme faults to go

undetected at compile time and even at runtime.

Strong typing prevents the above. An attempt to perform

an operation on the wrong type of value raises an error.

Strongly typed languages are often termed type-safe or safe.

An alternative definition for “weakly typed” refers to

languages, such as Perl and JavaScript, which permit a

large number of implicit type conversions. In JavaScript, for

example, the expression 2 * x implicitly converts x to a

number, and this conversion succeeds even if x is null,

undefined, an Array, or a string of letters. Such implicit

conversions are often useful, but they can mask

programming errors. Strong and static are now generally

considered orthogonal concepts, but usage in the literature

differs. Some use the term strongly typed to mean strongly,

statically typed, or, even more confusingly, to mean simply

statically typed. Thus C has been called both strongly typed

and weakly, statically typed.

Applications of Computer Software Languages

133

Standard Library and Run-time System

Most programming languages have an associated core

library (sometimes known as the ‘standard library’, especially

if it is included as part of the published language standard),

which is conventionally made available by all

implementations of the language. Core libraries typically

include definitions for commonly used algorithms, data

structures, and mechanisms for input and output.

A language’s core library is often treated as part of the

language by its users, although the designers may have

treated it as a separate entity. Many language specifications

define a core that must be made available in all

implementations, and in the case of standardized languages

this core library may be required. The line between a language

and its core library therefore differs from language to

language. Indeed, some languages are designed so that the

meanings of certain syntactic constructs cannot even be

described without referring to the core library. For example,

in Java, a string literal is defined as an instance of the

java.lang.String class; similarly, in Smalltalk, an anonymous

function expression (a “block”) constructs an instance of

the library’s BlockContext class. Conversely, Scheme

contains multiple coherent subsets that suffice to construct

the rest of the language as library macros, and so the

language designers do not even bother to say which portions

of the language must be implemented as language constructs,

and which must be implemented as parts of a library.

Design and Implementation

Programming languages share properties with natural

Applications of Computer Software Languages

134

languages related to their purpose as vehicles for

communication, having a syntactic form separate from its

semantics, and showing language families of related

languages branching one from another. But as artificial

constructs, they also differ in fundamental ways from

languages that have evolved through usage. A significant

difference is that a programming language can be fully

described and studied in its entirety, since it has a precise

and finite definition. By contrast, natural languages have

changing meanings given by their users in different

communities. While constructed languages are also artificial

languages designed from the ground up with a specific

purpose, they lack the precise and complete semantic

definition that a programming language has.

Many languages have been designed from scratch, altered

to meet new needs, combined with other languages, and

eventually fallen into disuse. Although there have been

attempts to design one “universal” programming language

that serves all purposes, all of them have failed to be

generally accepted as filling this role. The need for diverse

programming languages arises from the diversity of contexts

in which languages are used:

• Programmes range from tiny scripts written by

individual hobbyists to huge systems written by

hundreds of programmers.

• Programmers range in expertise from novices who

need simplicity above all else, to experts who may be

comfortable with considerable complexity.

• Programmes must balance speed, size, and simplicity

Applications of Computer Software Languages

135

on systems ranging from microcontrollers to

supercomputers.

• Programmes may be written once and not change for

generations, or they may undergo continual

modification.

• Finally, programmers may simply differ in their tastes:

they may be accustomed to discussing problems and

expressing them in a particular language.

One common trend in the development of programming

languages has been to add more ability to solve problems

using a higher level of abstraction. The earliest programming

languages were tied very closely to the underlying hardware

of the computer.

As new programming languages have developed, features

have been added that let programmers express ideas that

are more remote from simple translation into underlying

hardware instructions. Because programmers are less tied

to the complexity of the computer, their programmes can

do more computing with less effort from the programmer.

This lets them write more functionality per time unit. Natural

language processors have been proposed as a way to

eliminate the need for a specialized language for

programming.

However, this goal remains distant and its benefits are

open to debate. Edsger W. Dijkstra took the position that

the use of a formal language is essential to prevent the

introduction of meaningless constructs, and dismissed

natural language programming as “foolish”. Alan Perlis was

similarly dismissive of the idea. Hybrid approaches have

Applications of Computer Software Languages

136

been taken in Structured English and SQL. A language’s

designers and users must construct a number of artifacts

that govern and enable the practice of programming. The

most important of these artifacts are the language

specification and implementation.

Specification

The specification of a programming language is intended

to provide a definition that the language users and the

implementors can use to determine whether the behavior

of a programme is correct, given its source code. A

programming language specification can take several forms,

including the following:

• An explicit definition of the syntax, static semantics,

and execution semantics of the language. While syntax

is commonly specified using a formal grammar,

semantic definitions may be written in natural

language (e.g., as in the C language), or a formal

semantics (e.g., as in Standard ML and Scheme

specifications).

• A description of the behavior of a translator for the

language (e.g., the C++ and Fortran specifications).

The syntax and semantics of the language have to

be inferred from this description, which may be written

in natural or a formal language.

• A reference or model implementation, sometimes

written in the language being specified (e.g., Prolog

or ANSI REXX). The syntax and semantics of the

language are explicit in the behavior of the reference

implementation.

Applications of Computer Software Languages

137

Implementation

An implementation of a programming language provides

a way to execute that programme on one or more

configurations of hardware and software. There are, broadly,

two approaches to programming language implementation:

compilation and interpretation. It is generally possible to

implement a language using either technique. The output

of a compiler may be executed by hardware or a programme

called an interpreter. In some implementations that make

use of the interpreter approach there is no distinct boundary

between compiling and interpreting. For instance, some

implementations of BASIC compile and then execute the

source a line at a time. Programmes that are executed

directly on the hardware usually run several orders of

magnitude faster than those that are interpreted in software.

One technique for improving the performance of interpreted

programmes is just-in-time compilation. Here the virtual

machine, just before execution, translates the blocks of

bytecode which are going to be used to machine code, for

direct execution on the hardware.

Usage

Thousands of different programming languages have been

created, mainly in the computing field. Programming

languages differ from most other forms of human expression

in that they require a greater degree of precision and

completeness. When using a natural language to

communicate with other people, human authors and

speakers can be ambiguous and make small errors, and

still expect their intent to be understood. However, figuratively

Applications of Computer Software Languages

138

speaking, computers “do exactly what they are told to do”,

and cannot “understand” what code the programmer

intended to write. The combination of the language definition,

a programme, and the program’s inputs must fully specify

the external behavior that occurs when the programme is

executed, within the domain of control of that programme.

A programming language provides a structured mechanism

for defining pieces of data, and the operations or

transformations that may be carried out automatically on

that data. A programmer uses the abstractions present in

the language to represent the concepts involved in a

computation.

These concepts are represented as a collection of the

simplest elements available (called primitives). Programming

is the process by which programmers combine these

primitives to compose new programmes, or adapt existing

ones to new uses or a changing environment. Programmes

for a computer might be executed in a batch process without

human interaction, or a user might type commands in an

interactive session of an interpreter. In this case the

“commands” are simply programmes, whose execution is

chained together. When a language is used to give commands

to a software application (such as a shell) it is called a

scripting language.

Measuring Language Usage

It is difficult to determine which programming languages

are most widely used, and what usage means varies by

context. One language may occupy the greater number of

programmer hours, a different one have more lines of code,

Applications of Computer Software Languages

139

and a third utilize the most CPU time. Some languages are

very popular for particular kinds of applications. For example,

COBOL is still strong in the corporate data center, often on

large mainframes; FORTRAN in scientific and engineering

applications; C in embedded applications and operating

systems; and other languages are regularly used to write

many different kinds of applications.

Various methods of measuring language popularity, each

subject to a different bias over what is measured, have been

proposed:

• counting the number of job advertisements that

mention the language

• the number of books sold that teach or describe the

language

• estimates of the number of existing lines of code

written in the language—which may underestimate

languages not often found in public searches

• counts of language references (i.e., to the name of the

language) found using a web search engine.

Combining and averaging information from various

internet sites, langpop.com claims that in 2008 the 10

most cited programming languages are (in alphabetical

order): C, C++, C#, Java, JavaScript, Perl, PHP, Python,

Ruby, and SQL.

Taxonomies

There is no overarching classification scheme for

programming languages. A given programming language

does not usually have a single ancestor language. Languages

commonly arise by combining the elements of several

Applications of Computer Software Languages

140

predecessor languages with new ideas in circulation at the

time. Ideas that originate in one language will diffuse

throughout a family of related languages, and then leap

suddenly across familial gaps to appear in an entirely

different family. The task is further complicated by the fact

that languages can be classified along multiple axes.

For example, Java is both an object-oriented language

(because it encourages object-oriented organization) and a

concurrent language (because it contains built-in constructs

for running multiple threads in parallel). Python is an object-

oriented scripting language. In broad strokes, programming

languages divide into programming paradigms and a

classification by intended domain of use. Traditionally,

programming languages have been regarded as describing

computation in terms of imperative sentences, i.e. issuing

commands. These are generally called imperative

programming languages. A great deal of research in

programming languages has been aimed at blurring the

distinction between a programme as a set of instructions

and a programme as an assertion about the desired answer,

which is the main feature of declarative programming. More

refined paradigms include procedural programming, object-

oriented programming, functional programming, and logic

programming; some languages are hybrids of paradigms or

multi-paradigmatic. An assembly language is not so much

a paradigm as a direct model of an underlying machine

architecture. By purpose, programming languages might be

considered general purpose, system programming languages,

scripting languages, domain-specific languages, or

concurrent/distributed languages (or a combination of these).

Applications of Computer Software Languages

141

Some general purpose languages were designed largely with

educational goals. A programming language may also be

classified by factors unrelated to programming paradigm.

For instance, most programming languages use English

language keywords, while a minority do not. Other languages

may be classified as being esoteric or not.

HISTORY

Early developments

The first programming languages predate the modern

computer. The 19th century had “programmable” looms

and player piano scrolls which implemented what are today

recognized as examples of domain-specific languages. By

the beginning of the twentieth century, punch cards encoded

data and directed mechanical processing. In the 1930s and

1940s, the formalisms of Alonzo Church’s lambda calculus

and Alan Turing’s Turing machines provided mathematical

abstractions for expressing algorithms; the lambda calculus

remains influential in language design. In the 1940s, the

first electrically powered digital computers were created.

The first high-level programming language to be designed

for a computer was Plankalkül, developed for the German

Z3 by Konrad Zuse between 1943 and 1945. However, it was

not implemented until 1998 and 2000. Programmers of

early 1950s computers, notably UNIVAC I and IBM 701,

used machine language programmes, that is, the first

generation language (1GL). 1GL programming was quickly

superseded by similarly machine-specific, but mnemonic,

second generation languages (2GL) known as assembly

Applications of Computer Software Languages

142

languages or “assembler”. Later in the 1950s, assembly

language programming, which had evolved to include the

use of macro instructions, was followed by the development

of “third generation” programming languages (3GL), such

as FORTRAN, LISP, and COBOL. 3GLs are more abstract

and are “portable”, or at least implemented similarly on

computers that do not support the same native machine

code. Updated versions of all of these 3GLs are still in

general use, and each has strongly influenced the

development of later languages. At the end of the 1950s,

the language formalized as ALGOL 60 was introduced, and

most later programming languages are, in many respects,

descendants of Algol. The format and use of the early

programming languages was heavily influenced by the

constraints of the interface.

Refinement

The period from the 1960s to the late 1970s brought the

development of the major language paradigms now in use,

though many aspects were refinements of ideas in the very

first Third-generation programming languages:

• APL introduced array programming and influenced

functional programming.

• PL/I (NPL) was designed in the early 1960s to

incorporate the best ideas from FORTRAN and

COBOL.

• In the 1960s, Simula was the first language designed

to support object-oriented programming; in the mid-

1970s, Smalltalk followed with the first “purely” object-

oriented language.

Applications of Computer Software Languages

143

• C was developed between 1969 and 1973 as a system

programming language, and remains popular.

• Prolog, designed in 1972, was the first logic

programming language.

• In 1978, ML built a polymorphic type system on top

of Lisp, pioneering statically typed functional

programming languages.

Each of these languages spawned an entire family of

descendants, and most modern languages count at least

one of them in their ancestry.

The 1960s and 1970s also saw considerable debate over

the merits of structured programming, and whether

programming languages should be designed to support it.

Edsger Dijkstra, in a famous 1968 letter published in the

Communications of the ACM, argued that GOTO statements

should be eliminated from all “higher level” programming

languages.

The 1960s and 1970s also saw expansion of techniques

that reduced the footprint of a programme as well as improved

productivity of the programmer and user. The card deck for

an early 4GL was a lot smaller for the same functionality

expressed in a 3GL deck.

Consolidation and Growth

The 1980s were years of relative consolidation. C++

combined object-oriented and systems programming. The

United States government standardized Ada, a systems

programming language derived from Pascal and intended

for use by defense contractors. In Japan and elsewhere,

vast sums were spent investigating so-called “fifth generation”

Applications of Computer Software Languages

144

languages that incorporated logic programming constructs.

The functional languages community moved to standardize

ML and Lisp. Rather than inventing new paradigms, all of

these movements elaborated upon the ideas invented in the

previous decade.

One important trend in language design for programming

large-scale systems during the 1980s was an increased

focus on the use of modules, or large-scale organizational

units of code. Modula-2, Ada, and ML all developed notable

module systems in the 1980s, although other languages,

such as PL/I, already had extensive support for modular

programming. Module systems were often wedded to generic

programming constructs.

The rapid growth of the Internet in the mid-1990s created

opportunities for new languages. Perl, originally a Unix

scripting tool first released in 1987, became common in

dynamic websites. Java came to be used for server-side

programming, and bytecode virtual machines became

popular again in commercial settings with their promise of

“Write once, run anywhere” (UCSD Pascal had been popular

for a time in the early 1980s). These developments were not

fundamentally novel, rather they were refinements to existing

languages and paradigms, and largely based on the C family

of programming languages.

Programming language evolution continues, in both

industry and research. Current directions include security

and reliability verification, new kinds of modularity (mixins,

delegates, aspects), and database integration such as

Microsoft’s LINQ. The 4GLs are examples of languages which

Applications of Computer Software Languages

145

are domain-specific, such as SQL, which manipulates and

returns sets of data rather than the scalar values which are

canonical to most programming languages. Perl, for example,

with its ‘here document’ can hold multiple 4GL programmes,

as well as multiple JavaScript programmes, in part of its

own perl code and use variable interpolation in the ‘here

document’ to support multi-language programming.

Programming Language Generations

Programming languages have been classified into several

programming language generations. Historically, this

classification was used to indicate increasing power of

programming styles. Later writers have somewhat redefined

the meanings as distinctions previously seen as important

became less significant to current practice.

Historical View of First Three Generations

The terms “first-generation” and “second-generation”

programming language were not used prior to the coining

of the term “third-generation.” In fact, none of these three

terms are mentioned in an early compendium of

programming language.The introduction of a third generation

of computer technology coincided with the creation of a new

generation of programming languages. The marketing for

this generational shift in machines did correlate with several

important changes in what were called high level

programming languages, discussed below, giving technical

content to the second/third-generation distinction among

high level programming languages as well, and reflexively

renaming assembler languages as first-generation.

Applications of Computer Software Languages

146

First Generation

As Grace Hopper said about coding in machine language:

“We were not programmers in those days. The word had not

yet come over from England. We were coders.

The task of encoding an algorithm wasn’t thought of as

writing in a language any more than was the task of wiring

a plug-board. But even by the early 1950s, the assembly

languages were seen as a distinct “epoch”. The distinguishing

properties of these first generation programming languages

are that:

• The code can be read and written by a programmer.

To run on a computer it must be converted into a

machine readable form, a process called assembly.

• The language is specific to a particular target machine

or family of machines, directly reflecting their

characteristics like instruction sets, registers, storage

access models, etc., requiring and enabling the

programmer to manage their use.

• Some assembler languages provide a macro-facility

enabling the development of complex patterns of

machine instructions, but these are not considered

to change the basic nature of the language.

First-generation languages are sometimes used in kernels

and device drivers, but more often find use in extremely

intensive processing such as games, video editing, and

graphic manipulation/rendering.

Second Generation

Second-generation programming languages, originally just

called high level programming languages, were created to

Applications of Computer Software Languages

147

simplify the burden of programming by making its expression

more like the normal mode of expression for thoughts used

by the programmer. They were introduced in the late 1950s,

with FORTRAN reflecting the needs of scientific programmers,

ALGOL reflecting an attempt to produce a European/

American standard view.

The most important issue faced by the developers of

second-level languages was convincing customers that the

code produced by the compilers performed well-enough to

justify abandonment of assembler programming.In view of

the widespread skepticism about the possibility of producing

efficient programmes with an automatic programming system

and the fact that inefficiencies could no longer be hidden,

we were convinced that the kind of system we had in mind

would be widely used only if we could demonstrate that it

would produce programmes almost as efficient as hand

coded ones and do so on virtually every job.The FORTRAN

compiler was seen as a tour-de-force in the production of

high-quality code, even including “… a Monte Carlo

simulation of its execution … so as to minimize the transfers

of items between the store and the index registers Second-

generation programming languages evolved through the

decade.

FORTRAN lost some of its machine-dependent features,

like access to the lights and switches on the operator console.

Most second-generation languages employed a static storage

model in which storage for data was allocated only once,

when a programme is loaded, making recursion difficult,

but Algol evolved to provide block-structured naming

Applications of Computer Software Languages

148

constructs and began to expand the set of features made

available to programmers, like concurrency management.

In this way (Algol 68) began the movement into a new

generation of programming languages.

Third Generation

The introduction of a third generation of computer

technology coincided with the creation of a new generation

of programming languages. The third-generation languages

emphasized:

• expression of an algorithm in a way that was

independent of the characteristics of the machine on

which the algorithm would run.

• the rise of strong typing – by which typed languages

deprecated or severely controlled access to the

underlying storage representation of data. Complete

prohibition of such access has never been a feature

of major-use programming languages, which generally

simply provide barriers to accidental access, e.g.

coding them as “native” methods.

• block structure and automated management of

storage with a stack – introduced in the Algol family

of languages and adopted rapidly by most other major

modular languages

• broad-spectrum applicability and greatly extended

functionality – which was intended to service the

needs of not only the previously separated commercial

and scientific domains. The extended functionality

often included concurrency features, creation and

reference to non-stack data,

Applications of Computer Software Languages

149

Re-characterization of First Three Generations

Since the 1990s, some authors have recharacterized the

development of programming languages in a way that

removed the (no longer topical) distinctions between early

high-level languages like Fortran or Cobol and later ones,

like

First Generation

In this categorization, a first-generation programming

language is a machine-level programming language.

Originally, no translator was used to compile or assemble

the first-generation language. The first-generation

programming instructions were entered through the front

panel switches of the computer system.

The main benefit of programming in a first-generation

programming language is that the code a user writes can

run very fast and efficiently, since it is directly executed by

the CPU. However, machine language is a lot more difficult

to learn than higher generational programming languages,

and it is far more difficult to edit if errors occur. In addition,

if instructions need to be added into memory at some

location, then all the instructions after the insertion point

need to be moved down to make room in memory to

accommodate the new instructions. Doing so on a front

panel with switches can be very difficult.

Second Generation

Second-generation programming language is a generational

way to categorize assembly languages. The term was coined

to provide a distinction from higher level third-generation

Applications of Computer Software Languages

150

programming languages (3GL) such as COBOL and earlier

machine code languages. Second-generation programming

languages have the following properties:

• The code can be read and written by a programmer.

To run on a computer it must be converted into a

machine readable form, a process called assembly.

• The language is specific to a particular processor

family and environment.

Second-generation languages are sometimes used in

kernels and device drivers (though C is generally employed

for this in modern kernels), but more often find use in

extremely intensive processing such as games, video editing,

graphic manipulation/rendering. One method for creating

such code is by allowing a compiler to generate a machine-

optimized assembly language version of a particular function.

This code is then hand-tuned, gaining both the brute-force

insight of the machine optimizing algorithm and the intuitive

abilities of the human optimizer.

Third Generation

A third-generation programming language (3GL) is a

refinement of a second-generation programming language.

Whereas a second generation language is more aimed to fix

logical structure to the language, a third generation language

aims to refine the usability of the language in such a way

to make it more user friendly. This could mean restructuring

categories of possible functions to make it more efficient,

condensing the overall bulk of code via classes (eg. Visual

Basic). A third generation language improves over a second

generation language by having more refinement on the

Applications of Computer Software Languages

151

usability of the language itself from the perspective of the

user.

First introduced in the late 1950s, FORTRAN, ALGOL

and COBOL are early examples of this sort of language.

Most “modern” languages (BASIC, C, C++, C#, Pascal,

and Java) are also third-generation languages.

Most 3GLs support structured programming.

Later Generations

“Generational” classification of these languages was

abandoned after the third-generation languages, with the

natural successors to the third-generation languages being

termed object-oriented. C gave rise to C++ and later to Java

and C#, Lisp to CLOS, ADA to ADA95, and even COBOL

to COBOL2002, and new languages have emerged in that

“generation” as well.

But significantly different languages and systems were

already being called fourth and fifth generation programming

languages by language communities with special interests.

The manner in which these generations have been put

forward tends to differ in character from those of earlier

generations, and they represent software points-of-view

leading away from the mainstream.

Applications of Computer Software Languages

152

7

Measuring Programming
Language Popularity

It is difficult to determine which programming languages

are most widely used, and what usage means varies by

context. One language may occupy the greater number of

programmer hours, a different one have more lines of code,

and a third utilize the most CPU time. Some languages are

very popular for particular kinds of applications. For example,

COBOL is still strong in the corporate data center, often on

large mainframes; FORTRAN in engineering applications; C

in embedded applications and operating systems; and other

languages are regularly used to write many different kinds

of applications. Various methods of measuring language

popularity, each subject to a different bias over what is

measured, have been proposed:

• counting the number of job advertisements that

mention the language

Applications of Computer Software Languages

153

• the number of books sold that teach or describe the

language

• estimates of the number of existing lines of code

written in the language—which may underestimate

languages not often found in public searches

• counts of language references (i.e., to the name of the

language) found using a web search engine.

• counting the number of projects in that language on

SourceForge and FreshMeat.

• counting lines of code in a GNU/Linux Distribution

One organization tracking the popularity of programming

languages is Tiobe. Their monthly Programming Community

Index has been published since 2001, and shows the top

10 languages’ popularity graphically, the top 20 languages

with a rating and delta, and the top 50 languages’ ratings.

The numbers are based on searching the Web with certain

phrases that include language names and counting the

numbers of hits returned.

Combining and averaging information from various

internet sites, langpop.com claims that in 2008 the 10

most cited programming languages are (in alphabetical

order): C, C++, C#, Java, JavaScript, Perl, PHP, Python,

Ruby, and SQL.

The Language Popularity Index is based on a similar

approach, however in a totally transparent way: counts for

all {search engine, language} pairs are published. A tool for

grabbing counts from search engines is provided as well,

so the rankings can be reproduced and verified.

Applications of Computer Software Languages

154

The web site Programming Language Popularity aggregates

statistics and charts on language popularity across a number

of methodologies.

Programmer

A programmer, computer programmer or coder is someone

who writes computer software. The term computer

programmer can refer to a specialist in one area of computer

programming or to a generalist who writes code for many

kinds of software. One who practices or professes a formal

approach to programming may also be known as a

programmer analyst. A programmer’s primary computer

language (C, C++, Java, Lisp, Delphi etc.) is often prefixed

to the above titles, and those who work in a web environment

often prefix their titles with web. The term programmer can

be used to refer to a software developer, software engineer,

computer scientist, or software analyst. However, members

of these professions typically possess other software

engineering skills, beyond programming; for this reason,

the term programmer is sometimes considered an insulting

or derogatory oversimplification of these other professions.

This has sparked much debate amongst developers, analysts,

computer scientists, programmers, and outsiders who

continue to be puzzled at the subtle differences in the

definitions of these occupations.

Ada Lovelace is popularly credited as history’s first

programmer. She was the first to express an algorithm

intended for implementation on a computer, Charles

Babbage’s analytical engine, in October 1842. Her work

never ran, though that of Konrad Zuse did in 1941. The

Applications of Computer Software Languages

155

ENIAC programming team, consisting of Kay McNulty, Betty

Jennings, Betty Snyder, Marlyn Wescoff, Fran Bilas and

Ruth Lichterman were the first working programmers.

In 2009, the government of Russia decreed a professional

annual holiday known as Programmers’ Day to be celebrated

on September 13 (September 12 in leap year). It had also

been an unofficial international holiday before that.

Nature of the Work

Some of this section is from the Occupational Outlook

Handbook, 2006–07 Edition, which is in the public domain

as a work of the United States Government. Computer

programmers write, test, debug, and maintain the detailed

instructions, called computer programmes, that computers

must follow to perform their functions. Programmers also

conceive, design, and test logical structures for solving

problems by computer. Many technical innovations in

programming — advanced computing technologies and

sophisticated new languages and programming tools —

have redefined the role of a programmer and elevated much

of the programming work done today. Job titles and

descriptions may vary, depending on the organization.

Programmers work in many settings, including corporate

information technology departments, big software companies,

and small service firms.

Many professional programmers also work for consulting

companies at client’ sites as contractors. Licensing is not

typically required to work as a programmer, although

professional certifications are commonly held by

programmers. Programming is widely considered a profession

Applications of Computer Software Languages

156

(although some[who?] authorities disagree on the grounds

that only careers with legal licensing requirements count

as a profession).

Programmers’ work varies widely depending on the type

of business they are writing programmes for. For example,

the instructions involved in updating financial records are

very different from those required to duplicate conditions

on an aircraft for pilots training in a flight simulator. Although

simple programmes can be written in a few hours,

programmes that use complex mathematical formulas whose

solutions can only be approximated or that draw data from

many existing systems may require more than a year of

work. In most cases, several programmers work together as

a team under a senior programmer’s supervision.

Software Developer

A software developer is a person concerned with facets

of the software development process. They can be involved

in aspects wider than design and coding, a somewhat

broader scope of computer programming or a specialty of

project managing including some aspects of software

product management. This person may contribute to the

overview of the project on the application level rather than

component level or individual programming tasks. Software

developers are often still guided by lead programmers but

also encompasses the class of freelance software developers.

A person who develops stand-alone software (that is more

than just a simple program) and got involved with all

phases of the development (design and code) is a software

developer.

Applications of Computer Software Languages

157

Many legendary software people including Peter Norton

(developer of Norton Utilities), Richard Garriott (Ultima-series

creator), Philippe Kahn (Borland key founder), started as

entrepreneurial individual or small-team software developers

before they became rich and famous. Other names which

are often used in the same close context are programmer,

software analyst and software engineer. According to

developer Eric Sink, the differences between system design,

software development and programming are more apparent.

Already in the current market place there can be found a

segregation between programmers and developers, being

that one who actually implements is not the same as the

one who designs the class structure or hierarchy. Even

more so that developers become systems architects, those

who design the multi-leveled architecture or component

interactions of a large software system. Aspects of developer’s

job may include:

• Software design

• Actual core implementation (programming which is

often the most important portion of software

development)

• Other required implementations (e.g. installation,

configuration, customization, integration, data

migration)

• Participation in software product definition, including

Business case or Gap analysis

• Specification

• Requirements analysis

• Development and refinement of throw-away

simulations or prototypes to confirm requirements

Applications of Computer Software Languages

158

• Feasibility and Cost-benefit analysis, including the

choice of application architecture and framework,

leading to the budget and schedule for the project

• Authoring of documentation needed by users and

implementation partners etc.

• Testing, including defining/supporting acceptance

testing and gathering feedback from pre-release

testers

• Participation in software release and post-release

activities, including support for product launch

evangelism (e.g. developing demonstrations and/or

samples) and competitive analysis for subsequent

product build/release cycles

• Maintenance

In a large company, there may be employees whose sole

responsibility may consist of only one of the phases above.

In smaller development environments, a few, or even a

single individual might handle the complete process.

Separation of Concerns

In more mature engineering disciplines such as

mechanical, civil and electrical engineering, the designers

are separate from the implementers. That is, the engineers

who generate design documents are not the same individuals

who actually build things (such as mechanical parts, circuits,

or roads, for instance). In software engineering, it is more

common to have the architecture, design, implementation,

and test functions performed by a single individual. In

particular, the design and implementation of source code

is commonly integrated. This resembles the early phases of

Applications of Computer Software Languages

159

industrialization in which individuals would both design

and built things. More mature organizations have separate

test groups, but the architecture, design, implementation,

and unit test functions are often performed by the same

highly trained individuals.

Software Engineering

Software engineering (SE) is a profession dedicated to

designing, implementing, and modifying software so that it

is of higher quality, more affordable, maintainable, and

faster to build. It is a “systematic approach to the analysis,

design, assessment, implementation, test, maintenance and

reengineering of software, that is, the application of

engineering to software.” The term software engineering

first appeared in the 1968 NATO Software Engineering

Conference, and was meant to provoke thought regarding

the perceived “software crisis” at the time. The IEEE

Computer Society’s Software Engineering Body of Knowledge

defines “software engineering” as the application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software, and

the study of these approaches; that is, the application of

engineering to software. It is the application of Engineering

to software because it integrates significant mathematics,

computer science and practices whose origins are in

Engineering.

Software development, a much used and more generic

term, does not necessarily subsume the engineering

paradigm. Although it is questionable what impact it has

had on actual software development over the last more than

Applications of Computer Software Languages

160

40 years, the field’s future looks bright according to Money

Magazine and Salary.com, which rated “software engineer”

as the best job in the United States in 2006.

History

When the first modern digital computers appeared in the

early 1940s, the instructions to make them operate were

wired into the machine. Practitioners quickly realized that

this design was not flexible and came up with the “stored

programme architecture” or von Neumann architecture.

Thus the first division between “hardware” and “software”

began with abstraction being used to deal with the complexity

of computing.

Programming languages started to appear in the 1950s

and this was also another major step in abstraction. Major

languages such as Fortran, ALGOL, and COBOL were

released in the late 1950s to deal with scientific, algorithmic,

and business problems respectively. E.W. Dijkstra wrote his

seminal paper, “Go To Statement Considered Harmful”, in

1968 and David Parnas introduced the key concept of

modularity and information hiding in 1972 to help

programmers deal with the ever increasing complexity of

software systems. A software system for managing the

hardware called an operating system was also introduced,

most notably by Unix in 1969. In 1967, the Simula language

introduced the object-oriented programming paradigm.

These advances in software were met with more advances

in computer hardware. In the mid 1970s, the microcomputer

was introduced, making it economical for hobbyists to obtain

a computer and write software for it. This in turn led to the

Applications of Computer Software Languages

161

now famous Personal Computer (PC) and Microsoft Windows.

The Software Development Life Cycle or SDLC was also

starting to appear as a consensus for centralized construction

of software in the mid 1980s. The late 1970s and early

1980s saw the introduction of several new Simula-inspired

object-oriented programming languages, including Smalltalk,

Objective-C, and C++.

Open-source software started to appear in the early 90s

in the form of Linux and other software introducing the

“bazaar” or decentralized style of constructing software.

Then the World Wide Web and the popularization of the

Internet hit in the mid 90s, changing the engineering of

software once again. Distributed systems gained sway as

a way to design systems, and the Java programming language

was introduced with its own virtual machine as another

step in abstraction. Programmers collaborated and wrote

the Agile Manifesto, which favored more lightweight processes

to create cheaper and more timely software.

The current definition of software engineering is still

being debated by practitioners today as they struggle to

come up with ways to produce software that is “cheaper,

better, faster”. Cost reduction has been a primary focus of

the IT industry since the 1990s. Total cost of ownership

represents the costs of more than just acquisition. It includes

things like productivity impediments, upkeep efforts, and

resources needed to support infrastructure.

Profession

Legal requirements for the licensing or certification of

professional software engineers vary around the world. In

Applications of Computer Software Languages

162

the UK, the British Computer Society licenses software

engineers and members of the society can also become

Chartered Engineers (CEng), while in some areas of Canada,

such as Alberta, Ontario, and Quebec, software engineers

can hold the Professional Engineer (P.Eng)designation and/

or the Information Systems Professional (I.S.P.) designation;

however, there is no legal requirement to have these

qualifications.

The IEEE Computer Society and the ACM, the two main

professional organizations of software engineering, publish

guides to the profession of software engineering. The IEEE’s

Guide to the Software Engineering Body of Knowledge - 2004

Version, or SWEBOK, defines the field and describes the

knowledge the IEEE expects a practicing software engineer

to have. The IEEE also promulgates a “Software Engineering

Code of Ethics”.

Employment

In 2004, the U. S. Bureau of Labor Statistics counted

760,840 software engineers holding jobs in the U.S.; in the

same time period there were some 1.4 million practitioners

employed in the U.S. in all other engineering disciplines

combined. Due to its relative newness as a field of study,

formal education in software engineering is often taught as

part of a computer science curriculum, and many software

engineers hold computer science degrees.

Many software engineers work as employees or

contractors. Software engineers work with businesses,

government agencies (civilian or military), and non-profit

organizations. Some software engineers work for themselves

Applications of Computer Software Languages

163

as freelancers. Some organizations have specialists to

perform each of the tasks in the software development

process. Other organizations require software engineers to

do many or all of them. In large projects, people may

specialize in only one role. In small projects, people may fill

several or all roles at the same time. Specializations include:

in industry (analysts, architects, developers, testers,

technical support, middleware analysts, managers) and in

academia (educators, researchers). Most software engineers

and programmers work 40 hours a week, but about 15

percent of software engineers and 11 percent of programmers

worked more than 50 hours a week in 2008. Injuries in

these occupations are rare. However, like other workers who

spend long periods in front of a computer terminal typing

at a keyboard, engineers and programmers are susceptible

to eyestrain, back discomfort, and hand and wrist problems

such as carpal tunnel syndrome.

Certification

The Software Engineering Institute offers certifications

on specific topics like Security, Process improvement and

Software architecture. Apple, IBM, Microsoft and other

companies also sponsor their own certification examinations.

Many IT certification programmes are oriented toward specific

technologies, and managed by the vendors of these

technologies. These certification programmes are tailored to

the institutions that would employ people who use these

technologies.

Broader certification of general software engineering skills

is available through various professional societies. As of

Applications of Computer Software Languages

164

2006, the IEEE had certified over 575 software professionals

as a Certified Software Development Professional (CSDP).

In 2008 they added an entry-level certification known as the

Certified Software Development Associate (CSDA). In the

U.K. the British Computer Society has developed a legally

recognized professional certification called Chartered IT

Professional (CITP), available to fully qualified Members

(MBCS). In Canada the Canadian Information Processing

Society has developed a legally recognized professional

certification called Information Systems Professional (ISP).

The ACM had a professional certification programme in the

early 1980s, which was discontinued due to lack of interest.

The ACM examined the possibility of professional certification

of software engineers in the late 1990s, but eventually

decided that such certification was inappropriate for the

professional industrial practice of software engineering.

Impact of Globalization

The initial impact of outsourcing, and the relatively lower

cost of international human resources in developing third

world countries led to the dot com bubble burst of the

1990s. This had a negative impact on many aspects of the

software engineering profession. For example, some students

in the developed world avoid education related to software

engineering because of the fear of offshore outsourcing

(importing software products or services from other countries)

and of being displaced by foreign visa workers. Although

statistics do not currently show a threat to software

engineering itself; a related career, computer programming

does appear to have been affected. Nevertheless, the ability

Applications of Computer Software Languages

165

to smartly leverage offshore and near-shore resources via

the [follow-the-sun] workflow has improved the overall

operational capability of many organizations. When North

Americans are leaving work, Asians are just arriving to

work. When Asians are leaving work, Europeans are arriving

to work. This provides a continuous ability to have human

oversight on business-critical processes 24 hours per day,

without paying overtime compensation or disrupting key

human resource sleep patterns.

Education

A knowledge of programming is a pre-requisite to

becoming a software engineer. In 2004 the IEEE Computer

Society produced the SWEBOK, which has been published

as ISO/IEC Technical Report 19759:2004, describing the

body of knowledge that they believe should be mastered by

a graduate software engineer with four years of experience.

Many software engineers enter the profession by obtaining

a university degree or training at a vocational school. One

standard international curriculum for undergraduate

software engineering degrees was defined by the CCSE, and

updated in 2004. A number of universities have Software

Engineering degree programmes; as of 2010, there were 244

Campus programmes, 70 Online programmes, 230 Masters-

level programmes, 41 Doctorate-level programmes, and 69

Certificate-level programmes in the United States.

In addition to university education, many companies

sponsor internships for students wishing to pursue careers

in information technology. These internships can introduce

the student to interesting real-world tasks that typical

Applications of Computer Software Languages

166

software engineers encounter every day. Similar experience

can be gained through military service in software

engineering.

Comparison with Other Disciplines

Major differences between software engineering and other

engineering disciplines, according to some researchers, result

from the costs of fabrication.

Sub-disciplines

Software engineering can be divided into ten

subdisciplines. They are:

• Software requirements: The elicitation, analysis,

specification, and validation of requirements for

software.

• Software architecture: The elicitation, analysis,

specification, definition and design, and validation

and control of software architecture requirements.

• Software design: The design of software is usually

done with Computer-Aided Software Engineering

(CASE) tools and use standards for the format, such

as the Unified Modeling Language (UML).

• Software development: The construction of software

through the use of programming languages.

• Software testing

• Software maintenance: Software systems often have

problems and need enhancements for a long time

after they are first completed. This subfield deals

with those problems.

• Software configuration management: Since software

Applications of Computer Software Languages

167

systems are very complex, their configuration (such

as versioning and source control) have to be managed

in a standardized and structured method.

• Software engineering management: The management

of software systems borrows heavily from project

management, but there are nuances encountered in

software not seen in other management disciplines.

• Software development process: The process of building

software is hotly debated among practitioners; some

of the better-known processes are the Waterfall Model,

the Spiral Model, Iterative and Incremental

Development, and Agile Development.

• Software engineering tools, see Computer Aided

Software Engineering

• Software quality

Related Disciplines

Software engineering is a direct subfield of computer

science and has some relations with management science.

It is also considered a part of overall systems engineering.

Systems Engineering

Systems engineers deal primarily with the overall system

design, specifically dealing more with physical aspects which

include hardware design. Those who choose to specialize

in computer hardware engineering may have some training

in software engineering.

Computer Software Engineers

Computer Software Engineers are usually systems level

(software engineering, information systems) computer science

Applications of Computer Software Languages

168

or software level computer engineering graduates. This term

also includes general computer science graduates with a

few years of practical on the job experience involving software

engineering.

serve as input to an interpreter. When a piece of computer

hardware can interpret a programming language directly,

that language is called machine code. A so-called native code

compiler is one that compiles a programme into machine

code. Actual compilation is often separated into multiple

passes, like code generation (often in for of assembler

language), assembling (generating native code), linking,

loading and execution.

If a compiler of a given high level language produces

another high level language it is called translator (source

to source translation), which is often useful to add extensions

to existing languages or to exploit good and portable

implementation of other language (for example C), simplifying

development. Many combinations of interpretation and

compilation are possible, and many modern programming

language implementations include elements of both. For

example, the Smalltalk programming language is

conventionally implemented by compilation into bytecode,

which is then either interpreted or compiled by a virtual

machine (most popular ways is to use JIT or AOT compiler

compilation). This implementation strategy has been copied

by many languages since Smalltalk pioneered it in the

1970s and 1980s.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Introduction
	Chapter 2 Computer Software
	Chapter 3 Computer-aided Software Engineering
	Chapter 4 Unified Modeling Language
	Chapter 5 Software Progrmming
	Chapter 6 Computer Programming Language
	Chapter 7 Measuring Programming Language Popularity

