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Designing of Algorithms

OVERVIEW

At first glance, the algorithms move-until-out and quick-

sort have little in common. One processes structures; the

other processes lists. One creates a new structure for the

generative step; the other splits up a list into three pieces

and recurs on two of them. In short, a comparison of the two

examples of generative recursion suggests that the design of

algorithms is an ad hoc activity and that it is impossible to

come up with a general design recipe. A closer look, however,

suggests a different picture.

First, even though we speak of algorithms as processes

that solve problems, they are still functions that consume

and produce data. In other words, we still choose data to

represent a problem, and we must definitely understand the

nature of our data if we wish to understand the process.
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Second, we describe the processes in terms of data, for

example, “creating a new structure” or “partitioning a list of

numbers.” Third, we always distinguish between input data

for which it is trivial to produce a solution and those for

which it is not.

Fourth, the generation of problems is the key to the design

of algorithms. Although the idea of how to generate a new

problem might be independent of a data representation, it

must certainly be implemented for whatever form of

representation we choose for our problem. Finally, once the

generated problems have been solved, the solutions must be

combined with other values. Let us examine the six general

stages of our structural design recipe in light of our

discussion:

Data Analysis and Design
The choice of a data representation for a problem often

affects our thinking about the process. Sometimes the

description of a process dictates a particular choice of

representation. On other occasions, it is possible and

worthwhile to explore alternatives. In any case, we must

analyze and define our data collections.

Contract, Purpose, Header
We also need a contract, a definition header, and a purpose

statement. Since the generative step has no connection to

the structure of the data definition, the purpose statement

should not only specify what the function does but should

also include a comment that explains in general terms how

it works.
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Function Examples
In our previous design recipes, the function examples

merely specified which output the function should produce

for some given input. For algorithms, examples should

illustrate how the algorithm proceeds for some given input.

This helps us to design, and readers to understand, the

algorithm.

For functions such as move-until-out the process is trivial

and doesn’t need more than a few words. For others,

including, quick-sort, the process relies on a non-trivial idea

for its generative step, and its explanation requires a good

example such as the one in figure.

Template
Our discussion suggests a general template for algorithms:
(define (generative-recursive-fun problem)

(cond

[(trivially-solvable? problem)

(determine-solution problem)]

[else

(combine-solutions

... problem ...

(generative-recursive-fun (generate-problem-1 problem))

.

.

.

(generative-recursive-fun (generate-problem-n

problem)))]))

DEFINITION
Each function in the template is to remind us that we need

to think about the following four questions:

1. What is a trivially solvable problem?

2. What is a corresponding solution?
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3. How do we generate new problems that are more easily

solvable than the original problem? Is there one new

problem that we generate or are there several?

4. Is the solution of the given problem the same as the

solution of (one of) the new problems? Or, do we need

to combine the solutions to create a solution for the

original problem? And, if so, do we need anything from

the original problem data?

To define the algorithm, we must express the answers to

these four questions in terms of our chosen data

representation.

TEST
Once we have a complete function, we must also test it. As

before, the goal of testing is to discover bugs and to eliminate

them. Remember that testing cannot validate that the

function works correctly for all possible inputs.

TERMINATION
Unfortunately, the standard recipe is not good enough for

the design of algorithms. Up to now, a function has always

produced an output for any legitimate input. That is, the

evaluation has always stopped. After all, by the nature of

our recipe, each natural recursion consumes an immediate

piece of the input, not the input itself. Because data is

constructed in a hierarchical manner, this means that the

input shrinks at every stage. Hence the function sooner or

later consumes an atomic piece of data and stops. With

functions based on generative recursion, this is no longer

true. The internal recursions don’t consume an immediate

component of the input but some new piece of data, which is
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generated from the input. As exercise shows, this step may

produce the input over and over again and thus prevent the

evaluation from ever producing a result. We say that the

program LOOPS or is in an INFINITE LOOP.

In addition, even the slightest mistake in translating the

process description into a function definition may cause an

infinite loop. The problem is most easily understood with an

example. Consider the following definition of smaller-items,

one of the two “problem generators” for quick-sort:
;; smaller-items: (listof number) number -> (listof number)

;; to create a list with all those numbers on alon

;; that are smaller than or equal to threshold

(define (smaller-items alon threshold)

(cond

[(empty? alon) empty]

[else (if (<= (first alon) threshold)

(cons (first alon) (smaller-items (rest alon)

threshold))

(smaller-items (rest alon) threshold))]))

Instead of < it employs <= to compare numbers. As a result,

this function produces (list 5) when applied to (list 5) and 5.

Worse, if the quick-sort function from figure is combined

with this new version of smaller-items, it doesn’t produce

any output for (list 5):
(quick-sort (list 5))

= (append (quick-sort (smaller-items 5 (list 5)))

(list 5)

(quick-sort (larger-items 5 (list 5))))

= (append

(list 5)

(quick-sort (larger-items 5 (list 5))))

The first recursive use demands that quick-sort solve the

problem of sorting (list 5)—but that is the exact problem that

we started with. Since this is a circular evaluation, (quick-

sort (list 5)) never produces a result. More generally, there is
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no guarantee that the size of the input for a recursive call

brings us closer to a solution than the original input. The

lesson from this example is that the design of algorithms

requires one more step in our design recipe: a TERMINATION

ARGUMENT, which explains why the process produces an

output for every input and how the function implements this

idea; or a warning, which explains when the process may not

terminate. For quick-sort, the argument might look like this:

At each step, quick-sort partitions the list into two sublists

using smaller -items and larger-items. Each function

produces a list that is smaller than the input (the second

argument), even if the threshold (the first argument) is an

item on the list. Hence each recursive application of quick-

sort consumes a strictly shorter list than the given one.

Eventually, quick-sort receives and returns empty.

Without such an argument an algorithm must be

considered incomplete.

A good termination argument may on occasion also reveal

additional termination cases. For example, (smaller-items N

(list N)) and (larger-items N(list N)) always produce empty for

any N. Therefore we know that quick-sort’s answer for (list

N) is (list N).

To add this knowledge to quick-sort, we simply add a cond-

clause:
(define (quick-sort alon)

(cond

[(empty? alon) empty]

[(empty? (rest alon)) alon]

[else (append

(quick-sort (smaller-items alon (first alon)))

(list (first alon))

(quick-sort (larger-items alon (first alon))))]))
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The condition (empty? (rest alon)) is one way to ask whether

alon contains one item.

EXERCISES

Exercise 1
Define the function tabulate-div, which accepts a number

n and tabulates the list of all of its divisors, starting with 1

and ending in n. A number d is a divisior of a number n if

the remainder of dividing n by d is 0, that is, (= (remainder n

d) 0) is true. The smallest divisior of any number is 1; the

largest one is the number itself.

Structural vs. Generative Recursion
The template for algorithms is so general that it even covers

functions based on structural recursion. Consider the version

with one termination clause and one generation step:
(define (generative-recursive-fun problem)

(cond

[(trivially-solvable? problem)

(determine-solution problem)]

[else

(combine-solutions

problem

(generative-recursive-fun (generate-problem problem)))]))

If we replace trivially-solvable? with empty? and generate-

problem with rest, the outline is a template for a list-

processing function:
(define (generative-recursive-fun problem)

(cond

[(empty? problem) (determine-solution problem)]

[else

(combine-solutions

problem

(generative-recursive-fun (rest problem)))]))
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MAKING CHOICES
A user cannot distinguish sort and quick-sort. Both

consume a list of numbers; both produce a list that consists

of the same numbers arranged in ascending order. To an

observer, the functions are completely equivalent. This raises

the question of which of the two a programmer should

provide. More generally, if we can develop a function using

structural recursion and an equivalent one using generative

recursion, what should we do? To understand this choice

better, let’s discuss another classical example of generative

recursion from mathematics: the problem of finding the

greatest common divisor of two positive natural numbers.

All such numbers have at least one divisor in common: 1.

On occasion, this is also the only common divisor. For

example, 2 and 3 have only 1 as common divisor because 2

and 3, respectively, are the only other divisors.

Then again, 6 and 25 are both numbers with several

divisors:

1. 6 is evenly divisible by 1, 2, 3, and 6;

2. 25 is evenly divisible by 1, 5, and 25.

Still, the greatest common divisior of 25 and 6 is 1. In

contrast, 18 and 24 have many common divisors:

1. 18 is evenly divisible by 1, 2, 3, 6, 9, and 18;

2. 24 is evenly divisible by 1, 2, 3, 4, 6, 8, 12, and 24.

The greatest common divisor is 6.

Following the design recipe, we start with a contract, a

purpose statement, and a header:
;; gcd: N[>= 1] N[>= 1] -> N

;; to find the greatest common divisior of n and m

(define (gcd n m)

...)
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The contract specifies the precise inputs: natural numbers

that are greater or equal to 1 (not 0).

Now we need to make a decision whether we want to pursue

a design based on structural or on generative recursion. Since

the answer is by no means obvious, we develop both. For the

structural version, we must consider which input the function

should process: n, m, or both. A moment’s consideration

suggests that what we really need is a function that starts

with the smaller of the two and outputs the first number

smaller or equal to this input that evenly divides both n and

m.

Finding the greatest common divisor via structural

recursion:
;; gcd-structural: N[>= 1] N[>= 1] -> N

;; to find the greatest common divisior of n and m

;; structural recursion using data definition of N[>= 1]

(define (gcd-structural n m)

(local ((define (first-divisior-<= i)

(cond

[(= i 1) 1]

[else (cond

[(and (= (remainder n i) 0)

(= (remainder m i) 0))

i]

[else (first-divisior-<= (- i 1))])])))

(first-divisior-<= (min m n))))

We use local to define an appropriate auxiliary function:

The conditions “evenly divisible” have been encoded as (=

(remainder n i) 0) and (=(remainder m i) 0). The two ensure

that i divides n and m without a remainder. Testing gcd-

structural with the examples shows that it finds the expected

answers. Although the design of gcd-structural is rather

straightforward, it is also naive. It simply tests for every
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number whether it divides both n and m evenly and returns

the first such number. For small natural numbers, this

process works just fine. Consider the following example,

however:
(gcd-structural 101135853 45014640)

The result is 177 and to get there gcd-structural had to

compare 101135676, that is, 101135853 - 177, numbers.

This is a large effort and even reasonably fast computers

spend several minutes on this task.

Exercise
Enter the definition of gcd-structural into the Definitions

window and evaluate (time (gcd-structural 101135853

45014640)) in the Interactions window. After testing gcd-

structural conduct the performance tests in the Full Scheme

language (without debugging), which evaluates expressions

faster than the lower language levels but with less protection.

Add (require-library “core.ss”) to the top of the Definitions

window. Have some reading handy! Since mathematicians

recognized the inefficiency of the “structural algorithm” a

long time ago, they studied the problem of finding divisiors

in more depth. The essential insight is that for two natural

numbers larger and smaller, their greatest common divisor

is equal to the greatest common divisior of smaller and the

remainder of larger divided into smaller. Here is how we can

put this insight into equational form:
(gcd larger smaller)

= (gcd smaller (remainder larger smaller))

Since (remainder larger smaller) is smaller than both larger

and smaller, the right-hand side use of gcd consumes smaller

first.
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Here is how this insight applies to our small example:

1. The given numbers are 18 and 24.

2. According to the mathematicians’ insight, they have

the same greatest common divisor as 18 and 6.

3. And these two have the same greatest common divisor

as 6 and 0.

And here we seem stuck because 0 is nothing expected.

But, 0 can be evenly divided by every number, so we have

found our answer: 6.

Working through the example not only explains the idea

but also suggests how to discover the case with a trivial

solution. When the smaller of the two numbers is 0, the result

is the larger number. Putting everything together, we get the

following definition:
;; gcd-generative: N[>= 1] N[>=1] -> N

;; to find the greatest common divisior of n and m

;; generative recursion: (gcd n m) = (gcd n (remainder m n))

if (<= m n)

(define (gcd-generative n m)

(local ((define (clever-gcd larger smaller)

(cond

[(= smaller 0) larger]

[else (clever-gcd smaller (remainder larger

smaller))])))

(clever-gcd (max m n) (min m n))))

The local definition introduces the workhorse of the

function: clever-gcd, a function based on generative

recursion. Its first line discovers the trivially solvable case

by comparing smaller to 0 and produces the matching

solution. The generative step uses smaller as the new first

argument and (remainder larger smaller) as the new second

argument to clever-gcd, exploiting the above equation If we

now use gcd-generative with our complex example from
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above: (gcd-generative 101135853 45014640) we see that the

response is nearly instantaneous. A hand-evaluation shows

that clever-gcd recurs only nine times before it produces the

solution: 177. In short, generative recursion has helped find

us a much faster solution to our problem.

DESIGN PROCESS
For the maximum subarray problem, if you didn’t know

any better, you’d probably implement a solution that analyzes

every possible subarray, and returns the one with the

maximum sum:
class Array

def sum

result = 0

self.each do |i|

result+=i

end

return result

end

#test every sub array - brute force!

def max_sub_array_order_ncubed

left_index = 0

right_index = 0

max_value = self[left_index..right_index].sum

for i in (0..self.length)

for j in (i..self.length)

this_value = self[i..j].sum

if (this_value > max_value)

max_value = this_value

left_index=i

right_index=j

end

end

end

return self[left_index..right_index]

end

end
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If you were a bit more clever, you might notice that self[i..j].sum

is equal toself[i..(j-1)].sum + self[j] in the innermost loop (the

sum method itself), and use an accumulator there as opposed

to calculating it each time. That takes you down from n3 to

n2 time.

But there are (at least) two other ways to solve this problem:

1. A divide and conquer approach that uses recursion

and calculates the left and right maximum contiguous

subarrays (MCS), along with the MCS that contains

the right-most element in the left side and the left-

most element in the right side. It compares the three

and returns the one with the maximum sum. This

gets us to O(n log n) time.

2. An approach I’ll call “expanding sliding window.” If

memory serves me correct, this aptly describes it or

was the way a professor of mine described it. In any

case, the “expanding sliding window” can do it in one

pass (O(n) time), at the cost of a few more variables.

Clearly, these last two approaches aren’t nearly as obvious

as the first two - so how do you devise them? I’m fairly

confident that the only reason I know about them is from a

course in algorithms where they were presented to me (and

I didn’t take the time to work-through and reimplement them

for this post). I’m not sure that TDD or just a long ponder

would have led me in that direction. (Although, one of the

solution submitters claims he TDDed the O(n) solution.)

Three thoughts in designing algorithms I use off the top of

my head are:

• There’s always brute force, but is there something

better?



Algorithm Software in Technology Design

14

• Is divide and conquer and option? If so, is it easy

enough to implement and understand?

• How can I trade space complexity for gains in time

complexity, or vice versa if the situation warrants?

AMORTIZED ANALYSIS

DEFINITION
Amortized analysis means analyzing time-averaged cost

for a sequence of operations. Motivation is that traditional

worst-case-per-operation analysis can give overly pessimistic

bound if the only way of having an expensive operation is to

have a lot of cheap ones before it.

Note: this is DIFFERENT from our usual notion of “average

case analysis” — we’re not making any assumptions about

inputs being chosen at random — we’re just averaging over

time.

The approach is going to be to somehow assign an artificial

cost to each operation in the sequence. This artificial cost is

called the _amortized cost_ of an operation. The key property

required of amortized cost is that the total real cost of the

sequence should be bounded by the total of the amortized

costs of all the operations. Then, for purposes of analyzing

an algorithm that, say, accesses a data structure, it is okay

to just use the amortized cost instead of the actual cost of

the operation. This will give you correct results.

Note: There is sometimes flexibility in the assignment of

amortized costs.

There are going to be three approaches that we call:
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The aggregate method The banker’s method (tokens in the

data structure) The physicist’s method (potential functions)

(The physicist’s method is just a slightly more formal version

of the banker’s method, as we’ll see.).

We’ll illustrate these methods through some examples.

Example1: a binary counter. Say we want to store a big

binary counter in an array A: Start all entries at 0. The

operation we are going to implement and Analyse is that of

counting.

The algorithm we’ll use for incrementing this counter is

the usual one. We toggle bit A[0]. If it changed from 0 to 1,

then we toggle bit A[1], etc. We stop when a bit changes from

0 to 1. The cost of an increment is the number of bits that

change.
�����������						���
��������������������
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � 

� � � � � � �
� � � � � � �
� � � � � �

The number of bits that change when the increment

produces a number n is at most 1+floor(lg n). (That’s just the

number of bits in the binary representation of n.) Thus, in a

sequence of n increments, worst-case cost per increment is

bounded by n(1+floor(lg n)) = O(n log n).

But, what is our *amortized* cost per increment?

Answer: 2.

Proof 1 (aggregate method): how often do we flip A[0]?

Answer: every time. how often do we flip A[1]?

Answer: every other time. How often do we flip A[2]?
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Answer: every 4th time. Etc. So, total cost spent on flipping

A[0] is n, total cost of A[1] is floor(n/2), total cost on A[2] is

floor(n/4), etc. So, the total cost is: total cost = n + floor(n/2)

+ floor(n/4) +... total cost ⇐ n + n/2 + n/4 + n/8 +... ⇐ 2n

So the total cost is 2n, which means the amortized cost of

an increment is 2.

Proof 2 (banker’s method): Let’s us a kind of accounting

trick. On every bit that is a 1, let’s keep a dollar on that bit.

So for example, if the current count is 6, we’d have:
� �

��������				 � � � �

We’ll use the convention that whenever we toggle a bit, we

must pay a dollar to do that.

Let’s say we allocate $2 to do an increment. Let’s see how

much it costs to do the increment. In general, a bunch of low

order bits change from 1 to 0, and then one bit changes from

a 0 to a 1, and the process terminates. For each of the bits

that changes from 1 to 0, we have a dollar sitting on the bit

to pay for toggling that bit. For the bit that changes from a 0

to a 1, we have to pay a dollar to toggle the bit, then put a

dollar on that bit (for future use).

Thus, having allocated $2 for the increment always

guarantees that we will have enough money to pay for the

work, no matter how costly the increment actually is. This

completes proof 2 that the amortized cost of the increment is

2.

Example 2: Implementing a FIFO queue with two stacks

Say you have a stack data type, and you need to implement

a FIFO queue. The stack has the usual POP and PUSH

operations, and the cost of each operation is 1.
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We can implement a FIFO queue using two stacks as

follows. The FIFO has two operations: ENQUEUE and

DEQUEUE: ENQUEUE(x): Push x onto stack1.

DEQUEUE(): If stack2 is empty, then we POP the entire

contents of stack1 and PUSH it into stack2. Now simply POP

from stack2 and return the result.

It’s easy to see that this algorithm is correct. Here we’ll

just worry about the running time. (I’m going to ignore the

cost of checking of stack2 is empty, and only measure the

cost in terms of the number of PUSHs and POPs that are

done.)

Claim: the amortized cost of ENQUEUE is 3 and DEQUEUE

is 1.

Proof 1 (aggregate method): As an element flows through

the two-stack data structure, it’s PUSHed at most twice and

POPPed at most twice. This shows that we can assign an

amortized cost of 4 to ENQUEUE and 0 to DEQUEUE.

To get the desired result, note that if an element is not

DEQUEUED it’s only PUSHED twice and POPPED once.

So the cost of 3 is paid for by the cost of 3 per ENQUEUE.

The last POP is paid for by the DEQUEUE (if it happens).

Proof 2 (banker’s method): Maintain a collection of tokens

on stack1. In fact, keep 2 tokens for each thing in the stack.

When we ENQUEUE, we have three tokens to work with.

We use one to push the element onto stack1, and the other

two are put on the element for future use. When we have to

move stack1 into stack2, we have enough tokens in the stack

to pay for the move (one POP and one PUSH for each element).

Finally, the last pop done by the DEQUEUE is paid for by

the 1 we allocated for it. QED.
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Example 3: doubling array

We’ll use an array to implement a stack that allows push

and pop operations. We represent the stack as an array, A[]

and an integer variable top that points to the top of the stack.

Here is a naive implementation of push and pop:

push(x): top++; A[top] = x;

pop; top—; return A[top+1]

These operations are both constant time (cost=1). The

problem is, what happens when the array gets full? To deal

with this, we keep another variable L, storing the size of the

array, and a variable k keeping count of the number of

elements of the array that are in use.

When we are about to overflow the available space (k=L),

we allocate an array twice as large, move the data over to the

new array, free the old array, and double L. This operation is

called “doubling”. It will be convenient to Analyse it as thought

it was a separate operation on the data strucure, that occurs

only when k=L.

If the stack is full, and has size L, and we apply the doubling

operation, the cost of the operation is L, because we have to

move L items into the new array. (The cost of allocating and

freeing the arrays is O(L).)

Starting from an empty stack, doing any sequence n pushes

and pops, how much does this cost?

First analysis: Total cost for pushes and pops is n.

Total cost for doubling is at worst 1 + 2 + 4 +... n/2 + n <

2n So, the total cost is 3n. Therefore we can say that the

amortized cost of an operation is 3. Second analysis: Again,

we use the financial approach. We’ll keep money lying around

the data structure in the following way.
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�������
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We’ll keep $2 on each element stored in the stack that is

Beyond The Midpoint of the current array. In the normal

case when we do a push (the array is not full), we need $1 to

do the work, and then at most $2 to put onto the the new item

we just pushed. Thus the cost is $3. (pop is even cheaper.)

Now what happens if we have to do a doubling operation?

Before doubling:
���������������
���������������
�����������������

���������������������������������
����������������

�
�

��������
�������� �������!

�"�#����$%&��'�
������������������������������

��� �����������������������������������������������������������������
������������������������������

���
��
�

��������

You can see that the money that we had on the items (L)

was sufficient to pay for all the work of doubling the array

(L). We conclude that if we allocate $3 for each operation,

we’ll never run out of money. Thus the amortized cost of an

operation is 3.
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In these examples, the financial model was not really

necessary to get the desired results. However, later we’ll see

examples where this approach is necessary.

THE PHYSICIST’S METHOD
Let’s say that instead of distributing our money all over

the data structure (as we did above), we keep it all in a piggy

bank. What’s really important is how much money is in the

piggy bank. We’ll call the amount of money in this bank the

“potential function” (Phi) for the problem.

So for the two problems above, we used the following two

potential functions:
()�*�$��#�+�,�-��"���#�%��������)#��$��#�
()�*.$#$#+�,���/��)#���0#��"����1��	
��*1� 2�+��"�1�3� 2�
()�*���1+�,��
�����)#�4��#

(Here L is the current array size, and k is the number of

elements currently in the stack.) Using this formalism we

can define the amortized cost of an operation. Say the system

changes from state S to state S’ as a result of doing some

operation.

We define the amortized cost of the operation as follows:
������0#������,���$�&�������5#&��*()�+�,
,���$�&�������()�*67+���()�*6+

This is simply the amount of additional money that we

need to maintain our piggy bank and to pay for the work.

For the counter, with the potential function given above:

amortized cost of increment ⇐ 2

For the stack, with the potential function given above:

amortized cost of pop ⇐ 3
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How is this amortized cost related to actual cost? Let’s

sum the above definition of amortized cost over all the

operations:

Sigma(amortized cost) = Sigma(actual cost) + Phi(final) -

Phi(initial) or Sigma(actual cost) = Sigma(amortized cost) +

Phi(initial) - Phi(final) If the potential is always non-negative,

and starts at zero (as it is in our examples), then Sigma(actual

cost) ⇐ Sigma(amortized cost) In this more general

framework, the potential can be negative, and may not start

at 0. So in general we have to worry about the initial and

final potentials.

Summary of using potential functions to do amortized

analysis:

• Pick a potential function that’s going to work (this is

art)

• Using your potential function, bound the amortized

cost of the operations you’re interested in.

• Bound Phi(initial) - Phi(final) In terms of (1), one

obvious point is that if the actual cost of an operation

is HIGH, and you want the amortized cost to be LOW,

then in this case the potential must DECREASE by

a lot to pay for it. This is illustrated in both of the

examples in this lecture.

We’ll see in the next lecture just how essential this

formalism is for analyzing splay trees.

DYNAMIC ARRAY
When an array becomes full, just copy the array

elements to a larger array

Array→ pointer to an array



Algorithm Software in Technology Design

22

Number → number of items in the array

Size → size of the array
���8�8�%&#*�+

�"�9$�%#��,,�6�0#��)#�
�&&���#�9#4������4��)���0#��/6�0#
���#����&&���#���"����8�%&#����9#4�����
"�##������
�����,�9#4�����
6�0#�,���/�6�0#

#����"
���#���������������
9$�%#��,�9$�%#�����
#������#��

In a sequence of operations on a data structure often the

worst case can not occur in each operation.

The worst case cost of inserting an element in a dynamic

array is N + 1.

N = size of the array before the insertion

But you can’t get two worst cases in a row!

Amortized Analysis gives the average performance of each

operation in the worst case

Three methods used in amortized analysis:

• Aggregate Method

• Accounting Method

• Potential Method

Example: Incrementing a k-bit binary counter

Let A[0..k-1] be an array of bits representing a number X

A[0] - low order bit, so
: �

;

; �
< ��;��

−

=

= �

length[A] = k

Start with X = 0
=��#�#���*�+
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;�,��
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Count bits flipped.

Worst Case.

Increment flips k bits in worst case.

Sequence of n Increment operations takes O(nk).

AGGREGATE METHOD
T(n) = all work done in worst case in sequence of n

operations Amortized cost per operation is T(n)/n
X A[4] A[3] A[2] A[1] A[0] Total Cost
0 0 0 0 0 0 0
1 0 0 0 0 1 1
2 0 0 0 1 0 3
3 0 0 0 1 1 4
4 0 0 1 0 0 7
5 0 0 1 0 1 8
6 0 0 1 1 0 10
7 0 0 1 1 1 11
8 0 1 0 0 0 15
9 0 1 0 0 1 16

A[0] flips each time Increment is called n

A[1] flips every other time:

�
�
� �
� �� �

A[1] flips every fourth time:

�
�
�
� �
� �� �

A[J] flips every 2J time:
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;
�
�
� �
� �� �

Total number of flips is:
&' �

; ;
; � ; �

� �� ��
� �

� � ∞� �

= =

� �
< =� �� �� �

So amortized cost of each operation is 2 = O(1)

ACCOUNTING METHOD
Assign an amortized cost to each operation Amortized cost

may be more or less than the actual cost. If amortized cost is

more than the actual cost of the operation assign the

difference to part of the data structure as a credit, No negative

credit allowed. Total amortized cost is ⇒ total worst case

cost.

Example - binary Counter
Amortized cost of setting bit to 1 2 units

1 unit to pay for setting bit to 1

1 unit stored with bit

Amortized cost of setting bit to 0 0 units

Only a 1-bit is set to 0,

All 1-bits have credit of one unit

This pays for setting bit to 0

Example Continued
=��#�#���*�+
;�,��
4)�&#�;���&#�'�)����������;��,,�����

��;��,�� >�����
;�,�;����
#���4)�&#

��"�;���&#�'�)�����)#�
��;��,�� �>�����
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#���=��#�#��

X A[4] A[3] A[2] A[1] A[0] Amortized cost
0 0 0 0 0 0 0
1 0 0 0 0 1 (1) 2
2 0 0 0 1 (1) 0 4
3 0 0 0 1 (1) 1 (1) 6
4 0 0 1 (1) 0 0 8
5 0 0 1 (1) 0 1 (1) 10
6 0 0 1 (1) 1 (1) 0 12
7 0 0 1 (1) 1 (1) 1 (1) 14
8 0 1 (1) 0 0 0 16
9 0 1 (1) 0 0 1 (1) 18

POTENTIAL METHOD

Assign an amortized cost to each operation: If amortized

cost is more than the actual cost of the operation assign the

difference the entire data structure as potential energy ck=

actual cost of operation k
>1
�

= amortized cost of operation k

Dk = the state of the data structure after applying k’th

operation to Dk,

Φ (Dk) = potential associated with Dk

1 1 1 � *5 + *5 +−+ Φ − Φ�

� ( )
� �

1 1 1 1 �
1 � 1 �

�

1 �
1 �

>  *5 + *5 +

 *5�+ *5 +

−

= =

=

= + Φ − Φ

= + Φ − Φ

� �

�

So if �*5 +Φ ⇒0 then �*5 + �Φ �  is an upper bound on total

cost of the algorithm

Example - binary counter

Potential = number of 1’s in the counter

if the k’th operation sets tk bits to 0 the actual cost is tk+1
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( )1 1 � 1*5 + 5 � �−Φ − Φ = −

so,

( ) ( )1 1 1 1 �  5 5 �−= + Φ − Φ =�

How to find ( )15Φ ?

DYNAMIC TABLES
Table → pointer to a table

Number → number of items in the table

Size → size of the table

AddToTable(x)

if Number == Size then

allocate NewTable with size 2*Size

insert all items from Table to newTable

free Table

Table = NewTable

Size = 2 * Size

end if

insert x into Table

Number = Number + 1

end insert

INSERTS DONE BY N ADDTOTABLE

Amortized Cost per AddToTable 3 inserts Table after moving

from size 4 to size 8 Perform 4 AddToTable operations
X X X X
X X X X Y(2) X X X
X Y(2) Y(2) X X X X Y(2) Y(2)
Y(2) X X X X Y(2) Y(2) Y(2) Y(2)

1/2 the table has 2 credits One credit per item to pay
for the move to next size table

X X X X Y Y Y Y
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TABLE EXPANSION AND CONTRACTION

Policy
When table becomes full move to table twice the size When

table contracts to 1/4 full, move to table 1/2 size Let load =

(Size of table)/ (number of items in the table) Amortized Cost:

Inserting when load ⇒ 1/2

3 units

Inserting when load < 1/2

0 units

Deleting when load > 1/2

0 units

Deleting when load ⇐ 1/2

2 units
X X X X X X X
X Y(2) X X X X

X X X (1)
X X (1) (1)
X X

LINKED LIST VS. DYNAMIC ARRAY LIST
Table. Amortized Costs Per Operation over n Operations

linked List Dynamic Array]
Insertion 1 call to new lg(n)/n call to new
set two links 3 data moves
Deletion two links 3 data moves
after find

1 delete lg(n)/n call to delete

GREEDY ALGORITHM

INTRODUCTION
Greedy algorithms are simple and straightforward. They

are shortsighted in their approach in the sense that they
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take decisions on the basis of information at hand without

worrying about the effect these decisions may have in the

future. They are easy to invent, easy to implement and most

of the time quite efficient. Many problems cannot be solved

correctly by greedy approach. Greedy algorithms are used to

solve optimization problems

GREEDY APPROACH
Greedy Algorithm works by making the decision that seems

most promising at any moment; it never reconsiders this

decision, whatever situation may arise later.

As an example consider the problem of “Making Change”.

Coins available are:

• Dollars (100 cents)

• Quarters (25 cents)

• Dimes (10 cents)

• Nickels (5 cents)

• Pennies (1 cent)

Problem Make a change of a given amount using the

smallest possible number of coins.

Informal Algorithm
• Start with nothing.

• At every stage without passing the given amount.

– Add the largest to the coins already chosen.

Formal Algorithm
Make change for n units using the least possible number

of coins.
?�:@�>A�9B@� *�+

�>�C�D���E��FE���E�FE��G22��������	
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Example Make a change for 2.89 (289 cents) here n = 2.89

and the solution contains 2 dollars, 3 quarters, 1 dime and

4 pennies. The algorithm is greedy because at every stage it

chooses the largest coin without worrying about the

consequences. Moreover, it never changes its mind in the

sense that once a coin has been included in the solution set,

it remains there.

CHARACTERISTICS AND FEATURES
To construct the solution in an optimal way. Algorithm

maintains two sets. One contains chosen items and the other

contains rejected items.

The greedy algorithm consists of four (4) function:

• A function that checks whether chosen set of items

provide a solution.

• A function that checks the feasibility of a set.

• The selection function tells which of the candidates

is the most promising.

• An objective function, which does not appear

explicitly, gives the value of a solution.

STRUCTURE GREEDY ALGORITHM
• Initially the set of chosen items is empty i.e., solution

set.
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• At each step

– item will be added in a solution set by using

selection function.

– IF the set would no longer be feasible

a) Reject items under consideration (and is

never consider again).

– ELSE IF set is still feasible THEN

a) Add the current item.

DEFINITIONS OF FEASIBILITY
A feasible set (of candidates) is promising if it can be

extended to produce not merely a solution, but an optimal

solution to the problem. In particular, the empty set is always

promising why? (because an optimal solution always exists)

Unlike Dynamic Programmeming, which solves the

subproblems bottom-up, a greedy strategy usually progresses

in a top-down fashion, making one greedy choice after

another, reducing each problem to a smaller one.

Greedy-Choice Property
The “greedy-choice property” and “optimal substructure”

are two ingredients in the problem that lend to a greedy

strategy.

Greedy-Choice Property
It says that a globally optimal solution can be arrived at

by making a locally optimal choice.

SAMPLE PROBLEM
There is a long list of stalls, some of which need to be

covered with boards. You can use up to N (1 ⇐ N ⇐ 50)
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boards, each of which may cover any number of consecutive

stalls. Cover all the necessary stalls, while covering as few

total stalls as possible.

THE IDEA
The basic idea behind greedy algorithms is to build large

solutions up from smaller ones. Unlike other approaches,

however, greedy algorithms keep only the best solution they

find as they go along.

Thus, for the sample problem, to build the answer for N =

5, they find the best solution for N = 4, and then alter it to

get a solution for N = 5. No other solution for N = 4 is ever

considered.

Greedy algorithms are fast, generally linear to quadratic

and require little extra memory. Unfortunately, they usually

aren’t correct. But when they do work, they are often easy to

implement and fast enough to execute.

PROBLEMS
There are two basic problems to greedy algorithms.

How to Build

How does one create larger solutions from smaller ones?

In general, this is a function of the problem. For the sample

problem, the most obvious way to go from four boards to five

boards is to pick a board and remove a section, thus creating

two boards from one. You should choose to remove the largest

section from any board which covers only stalls which don’t

need covering (so as to minimize the total number of stalls

covered).
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To remove a section of covered stalls, take the board which

spans those stalls, and make into two boards: one of which

covers the stalls before the section, one of which covers the

stalls after the second.

WORK

The real challenge for the Programmemer lies in the fact

that greedy solutions don’t always work. Even if they seem

to work for the sample input, random input, and all the cases

you can think of, if there’s a case where it won’t work, at

least one (if not more!) of the judges’ test cases will be of that

form. For the sample problem, to see that the greedy

algorithm described above works, consider the following:

Assume that the answer doesn’t contain the large gap

which the algorithm removed, but does contain a gap which

is smaller. By combining the two boards at the end of the

smaller gap and splitting the board across the larger gap, an

answer is obtained which uses as many boards as the original

solution but which covers fewer stalls. This new answer is

better, so therefore the assumption is wrong and we should

always choose to remove the largest gap.

If the answer doesn’t contain this particular gap but does

contain another gap which is just as large, doing the same

transformation yields an answer which uses as many boards

and covers as many stalls as the other answer. This new

answer is just as good as the original solution but no better,

so we may choose either.

Thus, there exists an optimal answer which contains the

large gap, so at each step, there is always an optimal answer

which is a superset of the current state. Thus, the final

answer is optimal.
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CONCLUSIONS
If a greedy solution exists, use it. They are easy to code,

easy to debug, run quickly, and use little memory, basically

defining a good algorithm in contest terms. The only missing

element from that list is correctness. If the greedy algorithm

finds the correct answer, go for it, but don’t get suckered

into thinking the greedy solution will work for all problems.

Algorithm
The sequence has three parts: the part which will be 1

when in sorted order, 2 when in sorted order, and 3 when in

sorted order. The greedy algorithm swaps as many as possible

of the 1’s in the 2 part with 2’s in the 1 part, as many as

possible 1’s in the 3 part with 3’s in the 1 part, and 2’s in the

3 part with 3’s in the 2 part.

Once none of these types remains, the remaining elements

out of place need to be rotated one way or the other in sets of

3. You can optimally sort these by swapping all the 1’s into

place and then all the 2’s into place.

Analysis: Obviously, a swap can put at most two elements

in place, so all the swaps of the first type are optimal. Also, it

is clear that they use different types of elements, so there is

no “interference” between those types. This means the order

does not matter.

Once those swaps have been performed, the best you can

do is two swaps for every three elements not in the correct

location, which is what the second part will achieve (for

example, all the 1’s are put in place but no others; then all

that remains are 2’s in the 3’s place and vice-versa, and

which can be swapped).
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Friendly Coins - A Counterexample [Abridged]
Given the denominations of coins for a newly founded

country, the Dairy Republic, and some monetary amount,

find the smallest set of coins that sums to that amount. The

Dairy Republic is guaranteed to have a 1 cent coin.

Algorithm: Take the largest coin value that isn’t more than

the goal and iterate on the total minus this value.

(Faulty) Analysis: Obviously, you’d never want to take a

smaller coin value, as that would mean you’d have to take

more coins to make up the difference, so this algorithm works.

Maybe not: Okay, the algorithm usually works. In fact, for

the U.S. coin system {1, 5, 10, 25}, it always yields the optimal

set. However, for other sets, like {1, 5, 8, 10} and a goal of 13,

this greedy algorithm would take one 10, and then three 1’s,

for a total of four coins, when the two coin solution {5, 8} also

exists.

Topological Sort
Given a collection of objects, along with some ordering

constraints, such as “A must be before B,” find an order of

the objects such that all the ordering constraints hold.

Algorithm: Create a directed graph over the objects, where

there is an arc from A to B if “A must be before B.” Make a

pass through the objects in arbitrary order. Each time you

find an object with in-degree of 0, greedily place it on the

end of the current ordering, delete all of its out-arcs, and

recurse on its (former) children, performing the same check.

If this algorithm gets through all the objects without putting

every object in the ordering, there is no ordering which

satisfies the constraints.
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2

Analysis of Algorithms

When analyzing a program in terms of efficiency, we want

to look at questions such as, “How long does it take for the

program to run?” and “Is there another approach that will

get the answer more quickly?” Efficiency will always be less

important than correctness; if you don’t care whether a

program works correctly, you can make it run very quickly

indeed, but no one will think it’s much of an achievement!

On the other hand, a program that gives a correct answer

after ten thousand years isn’t very useful either, so efficiency

is often an important issue.

The term “efficiency” can refer to efficient use of almost

any resource, including time, computer memory, disk space,

or network bandwidth. In this section, however, we will deal

exclusively with time efficiency, and the major question that

we want to ask about a program is, how long does it take to

perform its task?
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It really makes little sense to classify an individual program

as being “efficient” or “inefficient.” It makes more sense to

compare two (correct) programs that perform the same task

and ask which one of the two is “more efficient,” that is,

which one performs the task more quickly. However, even

here there are difficulties. The running time of a program is

not well-defined.

The run time can be different depending on the number

and speed of the processors in the computer on which it is

run and, in the case of Java, on the design of the Java Virtual

Machine which is used to interpret the program. It can

depend on details of the compiler which is used to translate

the program from high-level language to machine language.

Furthermore, the run time of a program depends on the size

of the problem which the program has to solve. It takes a

sorting program longer to sort 10000 items than it takes it

to sort 100 items. When the run times of two programs are

compared, it often happens that Program A solves small

problems faster than Program B, while Program B solves

large problems faster than Program A, so that it is simply

not the case that one program is faster than the other in all

cases.

In spite of these difficulties, there is a field of computer

science dedicated to analyzing the efficiency of programs.

The field is known as analysis of Algorithms. The focus is on

algorithms, rather than on programs as such, to avoid having

to deal with multiple implementations of the same algorithm

written in different languages, compiled with different

compilers, and running on different computers. Analysis of

Algorithms is a mathematical field that abstracts away from
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these down-and-dirty details. Still, even though it is a

theoretical field, every working programmer should be aware

of some of its techniques and results.

One of the main techniques of analysis of algorithms is

asymptotic analysis. The term “asymptotic” here means

basically “the tendency in the long run.” An asymptotic

analysis of an algorithm’s run time looks at the question of

how the run time depends on the size of the problem. The

analysis is asymptotic because it only considers what

happens to the run time as the size of the problem increases

without limit; it is not concerned with what happens for

problems of small size or, in fact, for problems of any fixed

finite size. Only what happens in the long run, as the problem

size increases without limit, is important. Showing that

Algorithm A is asymptotically faster than Algorithm B doesn’t

necessarily mean that Algorithm A will run faster than

Algorithm B for problems of size 10 or size 1000 or even size

1000000 — it only means that if you keep increasing the

problem size, you will eventually come to a point where

Algorithm A is faster than Algorithm B. An asymptotic

analysis is only a first approximation, but in practice it often

gives important and useful information.

Using this notation, we might say, for example, that an

algorithm has a running time that is O(n2) or O(n) or O(log(n)).

These notations are read “Big-Oh of n squared,” “Big-Oh of

n,” and “Big-Oh of log n” (where log is a logarithm function).

More generally, we can refer to O(f(n)) (“Big-Oh of f of n”),

where f(n) is some function that assigns a positive real

number to every positive integer n. The “n” in this notation

refers to the size of the problem. Before you can even begin



Algorithm Software in Technology Design

38

an asymptotic analysis, you need some way to measure

problem size. Usually, this is not a big issue. For example, if

the problem is to sort a list of items, then the problem size

can be taken to be the number of items in the list. When the

input to an algorithm is an integer, as in the case of an

algorithm that checks whether a given positive integer is

prime, the usual measure of the size of a problem is the

number of bits in the input integer rather than the integer

itself. More generally, the number of bits in the input to a

problem is often a good measure of the size of the problem.

To say that the running time of an algorithm is O(f(n))

means that for large values of the problem size, n, the running

time of the algorithm is no bigger than some constant times

f(n). (More rigorously, there is a number C and a positive

integer M such that whenever n is greater than M, the run

time is less than or equal to C*f(n).) The constant takes into

account details such as the speed of the computer on which

the algorithm is run; if you use a slower computer, you might

have to use a bigger constant in the formula, but changing

the constant won’t change the basic fact that the run time is

O(f(n)).

The constant also makes it unnecessary to say whether

we are measuring time in seconds, years, CPU cycles, or any

other unit of measure; a change from one unit of measure to

another is just multiplication by a constant. Note also that

O(f(n)) doesn’t depend at all on what happens for small

problem sizes, only on what happens in the long run as the

problem size increases without limit.

To look at a simple example, consider the problem of adding

up all the numbers in an array. The problem size, n, is the
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length of the array. Using A as the name of the array, the

algorithm can be expressed in Java as:
total = 0;

for (int i = 0; i < n; i++)

total = total + A[i];

This algorithm performs the same operation, total = total

+ A[i], n times. The total time spent on this operation is a*n,

where a is the time it takes to perform the operation once.

Now, this is not the only thing that is done in the algorithm.

The value of i is incremented and is compared to n each time

through the loop. This adds an additional time of b*n to the

run time, for some constant b. Furthermore, i and total both

have to be initialized to zero; this adds some constant amount

c to the running time.

The exact running time would then be (a+b)*n+c, where

the constants a, b, and c depend on factors such as how the

code is compiled and what computer it is run on. Using the

fact that c is less than or equal to c*n for any positive integer

n, we can say that the run time is less than or equal to

(a+b+c)*n. That is, the run time is less than or equal to a

constant times n. By definition, this means that the run time

for this algorithm is O(n).

If this explanation is too mathematical for you, we can

just note that for large values of n, the c in the formula

(a+b)*n+c is insignificant compared to the other term, (a+b)*n.

We say that c is a “lower order term.” When doing asymptotic

analysis, lower order terms can be discarded. A rough, but

correct, asymptotic analysis of the algorithm would go

something like this: Each iteration of the for loop takes a

certain constant amount of time. There are n iterations of

the loop, so the total run time is a constant times n, plus



Algorithm Software in Technology Design

40

lower order terms (to account for the initialization).

Disregarding lower order terms, we see that the run time is

O(n).

Note that to say that an algorithm has run time O(f(n)) is

to say that its run time is no bigger than some constant

times f(n) (for large values of n). O(f(n)) puts an upper limit

on the run time. However, the run time could be smaller,

even much smaller. For example, if the run time is O(n), it

would also be correct to say that the run time is O(n2) or

even O(n10). If the run time is less than a constant times n,

then it is certainly less than the same constant times n2 or

n10.

Of course, sometimes it’s useful to have a lower limit on

the run time. That is, we want to be able to say that the run

time is greater than or equal to some constant times f(n) (for

large values of n). The notation for this is Ω(f(n)), read “Omega

of f of n.” “Omega” is the name of a letter in the Greek

alphabet, and Ù is the upper case version of that letter. (To

be technical, saying that the run time of an algorithm is

Ω(f(n)) means that there is a positive number C and a positive

integer M such that whenever n is greater than M, the run

time is greater than or equal to C*f(n).) O(f(n)) tells you

something about the maximum amount of time that you

might have to wait for an algorithm to finish; Ω(f(n)) tells you

something about the minimum time.

The algorithm for adding up the numbers in an array has

a run time that is Ω(n) as well as O(n). When an algorithm

has a run time that is both Ω(f(n)) and O(f(n)), its run time is

said to be Θ(f(n)), read “Theta of f of n.” (Theta is another

letter from the Greek alphabet.) To say that the run time of
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an algorithm is Θ(f(n)) means that for large values of n, the

run time is between a*f(n) and b*f(n), where a and b are

constants (with b greater than a, and both greater than 0).

Let’s look at another example. Consider the algorithm that

can be expressed in Java in the following method:
/**

* Sorts the n array elements A[0], A[1], ..., A[n-1] into

increasing order.

*/

public static simpleBubbleSort(int[] A, int n) {

for (int i = 0; i < n; i++) {

//Do n passes through the array...

for (int j = 0; j < n-1; j++) {

if (A[j] > A[j+1]) {

//A[j] and A[j+1] are out of order, so swap

them

int temp = A[j];

A[j] = A[j+1];

A[j+1] = temp;

}

}

}

}

Here, the parameter n represents the problem size. The

outer for loop in the method is executed n times. Each time

the outer for loop is executed, the inner for loop is exectued

n-1 times, so the if statement is executed n*(n-1) times. This

is n2-n, but since lower order terms are not significant in an

asymptotic analysis, it’s good enough to say that the if

statement is executed about n2 times. In particular, the test

A[j] > A[j+1] is executed about n2 times, and this fact by itself

is enough to say that the run time of the algorithm is Ω(n2),

that is, the run time is at least some constant times n2.

Furthermore, if we look at other operations — the assignment

statements, incrementing i and j, etc. — none of them are
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executed more than n2 times, so the run time is also O(n2),

that is, the run time is no more than some constant times

n2. Since it is both Ù(n2) and O(n2), the run time of the

simpleBubbleSort algorithm is Θ(n2).

You should be aware that some people use the notation

O(f(n)) as if it meant Θ(f(n)). That is, when they say that the

run time of an algorithm is O(f(n)), they mean to say that the

run time is about equal to a constant times f(n). For that,

they should use Θ(f(n)). Properly speaking, O(f(n)) means that

the run time is less than a constant times f(n), possibly much

less.

So far, the analysis has ignored an imp ortant detail. We

have looked at how run time depends on the problem size,

but in fact the run time usually depends not just on the size

of the problem but on the specific data that has to be

processed. For example, the run time of a sorting algorithm

can depend on the initial order of the items that are to be

sorted, and not just on the number of items.

To account for this dependency, we can consider either

the worst case run time analysis or the average case run

time analysis of an algorithm. For a worst case run time

analysis, we consider all possible problems of size n and look

at the longest possible run time for all such problems. For

an average case analysis, we consider all possible problems

of size n and look at the average of the run times for all such

problems. Usually, the average case analysis assumes that

all problems of size n are equally likely to be encountered,

although this is not always realistic — or even possible in

the case where there is an infinite number of different

problems of a given size.
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In many cases, the average and the worst case run times

are the same to within a constant multiple. This means that

as far as asymptotic analysis is concerned, they are the same.

That is, if the average case run time is O(f(n)) or Θ(f(n)), then

so is the worst case.

We will not do any rigorous mathematical analysis, but

you should be able to follow informal discussion of simple

cases such as the examples that we have looked at in this

section. Most important, though, you should have a feeling

for exactly what it means to say that the running time of an

algorithm is O(f(n)) or Θ(f(n)) for some common functions f(n).

The main point is that these notations do not tell you anything

about the actual numerical value of the running time of the

algorithm for any particular case. They do not tell you

anything at all about the running time for small values of n.

What they do tell you is something about the rate of growth

of the running time as the size of the problem increases.

Suppose you compare two algorithms that solve the same

problem. The run time of one algorithm is Θ(n2), while the

run time of the second algorithm is Θ(n3). What does this tell

you? If you want to know which algorithm will be faster for

some particular problem of size, say, 100, nothing is certain.

As far as you can tell just from the asymptotic analysis, either

algorithm could be faster for that particular case — or in any

particular case. But what you can say for sure is that if you

look at larger and larger problems, you will come to a point

where the Θ(n2) algorithm is faster than the Θ(n3) algorithm.

Furthermore, as you continue to increase the problem size,

the relative advantage of the Θ(n2) algorithm will continue to

grow. There will be values of n for which the Θ(n2) algorithm
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is a thousand times faster, a million times faster, a billion

times faster, and so on. This is because for any positive

constants a and b, the function a*n3 grows faster than the

function b*n2 as n gets larger. (Mathematically, the limit of

the ratio of a*n3 to b*n2 is infinite as n approaches infinity.)

This means that for “large” problems, a Θ(n2) algorithm

will definitely be faster than a Θ(n3) algorithm. You just don’t

know — based on the asymptotic analysis alone — exactly

how large “large” has to be.

In practice, in fact, it is likely that the Θ(n2) algorithm will

be faster even for fairly small values of n, and absent other

information you would generally prefer a Θ(n2) algorithm to

a Θ(n3) algorithm.

So, to understand and apply asymptotic analysis, it is

essential to have some idea of the rates of growth of some

common functions. For the power functions n, n2, n3, n4, ...,

the larger the exponent, the greater the rate of growth of the

function. Exponential functions such as 2n and 10n, where

the n is in the exponent, have a growth rate that is faster

than that of any power function. In fact, exponential functions

grow so quickly that an algorithm whose run time grows

exponentially is almost certainly impractical even for relatively

modest values of n, because the running time is just too

long. Another function that often turns up in asymptotic

analysis is the logarithm function, log(n). There are actually

many different logarithm functions, but the one that is

usually used in computer science is the so-called logarithm

to the base two, which is defined by the fact that log(2x) = x

for any number x. The logarithm function grows very slowly.

The growth rate of log(n) is much smaller than the growth
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rate of n. The growth rate of n*log(n) is a little larger than the

growth rate of n, but much smaller than the growth rate of

n2.

POINTS IN ALGORITHMS
• Introduction: Analysis of Selection Sort

• Introduction: Analysis of Merge Sort

• Asymptotic Notation

• Asymptotic Notation Continued

• Heapsort

• Heapsort Continued

• Priority Queues (more heaps)

• Quicksort

• Bounds on Sorting and Linear Time Sorts

• Stable Sorts and Radix Sort

• Begin Dynamic Programming

• More Dynamic Programming

• Begin Greedy Algorithms: Huffman’s Algorithm

• Dÿkstra’s Algorithm

• Beyond Asymptotic Analysis: Memory Access Time

• B-Trees

• More B-Trees: Insertion and Splitting

• Union/Find

• Warshall’s Algorithm, Floyd’s Algorithm

• Large Integer Arithmetic

• RSA Public-Key Cryptosystem

• Begin Algorithms and Structural Complexity Theory

• Continue Algorithms and Structural Complexity

Theory

• End Algorithms and Structural Complexity Theory
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• Generating Permutations and Combinations

• Exam review with sample questions and solutions.

SORTING OF ALGORITHMS

It is not always possible to say that one algorithm is better

than another, as relative performance can vary depending

on the type of data being sorted. In some situations, most of

the data are in the correct order, with only a few items needing

to be sorted. In other situations the data are completely mixed

up in a random order and in others the data will tend to be

in reverse order.

Different algorithms will perform differently according to

the data being sorted. Four common algorithms are the

exchange or bubble sort, the selection sort, the insertion

sort and the quick sort.

The selection sort is a good one to use with students. It is

intuitive and very simple to program. It offers quite good

performance, its particular strength being the small number

of exchanges needed. For a given number of data items, the

selection sort always goes through a set number of

comparisons and exchanges, so its performance is

predictable.
procedure SelectionSort (d: DataArrayType; n: integer) {n

is the number of elements}

for k = 1 to n-1 do

begin

small = k

for j = k+1 to n do

if d[ j ] < d[small] then small = j

{Swap elements k and small}

Swap(d, k, small)

end
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EXCHANGE (BUBBLE) SORT
Element 1 2 3 4 5 6 7 8 
Data 27 63 1 72 64 58 14 9 
1st pass 27 1 63 64 58 14 9 72 
2nd pass 1 27 63 58 14 9 64 72 
3rd pass 1 27 58 14 9 63 64 72... 

The first two data items (27 and 63) are compared and the

smaller one placed on the left hand side. The second and

third items (63 and 1) are then compared and the smaller

one placed on the left and so on. After all the data has been

passed through once, the largest data item (72) will have

“bubbled” through to the end of the list. At the end of the

second pass, the second largest data item (64) will be in the

second last position. For n data items, the process continues

for n-1 passes, or until no exchanges are made in a single

pass.

INSERTION SORT
Element 1 2 3 4 5 6 7 8 
Data 27 63 1 72 64 58 14 9 
1st pass 27 63 1 72 64 58 9 14 
2nd pass 27 63 1 72 64 9 14 58 
3rd pass 27 63 1 72 9 14 58 64... 

The insertion sort starts with the last two elements and

creates a correctly sorted sub-list, which in the example

contains 9 and 14. It then looks at the next element (58) and

inserts it into the sub-list in its correct position. It takes the

next element (64) and does the same, continuing until the

sub-list contains all the data.

SELECTION SORT
The selection sort marks the first element (27). It then

goes through the remaining data to find the smallest number

(1). It swaps this with the first element and the smallest
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element is now in its correct position. It then marks the

second element (63) and looks through the remaining data

for the next smallest number (9). These two numbers are

then swapped. This process continues until n-1 passes have

been made.

Element 1 2 3 4 5 6 7 8 
Data 27 63 1 72 64 58 14 9 
1st pass 1 63 27 72 64 58 14 9 
2nd pass 1 9 27 72 64 58 14 63 
3rd pass 1 9 14 72 64 58 27 63... 

QUICK SORT
Element 1 2 3 4 5 6 7 8 
Data 27 63 1 72 64 58 14 9 
1st pass 1 9 63 72 64 58 14 27 
2nd pass 1 9 14 27 64 58 72 63 
3rd pass 1 9 14 27 58 63 72 64 
4th pass 1 9 14 27 58 63 64 72 sorted! 

The quick sort takes the last element (9) and places it such

that all the numbers in the left sub-list are smaller and all

the numbers in the right sub-list are bigger. It then quick

sorts the left sub-list ({1}) and then quick sorts the right sub-

list. This is a recursive algorithm, since it is defined in terms

of itself. This reduces the complexity of programming it,

however it is the least intuitive of the four algorithms.
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3

Algorithms Computing

In mathematics, computing, and related subjects, an

algorithm is an effective method for solving a problem using

a finite sequence of instructions. Algorithms are used for

calculation, data processing, and many other fields. Each

algorithm is a list of well-defined instructions for completing

a task. Starting from an initial state, the instructions describe

a computation that proceeds through a well-defined series

of successive states, eventually terminating in a final ending

state.

The transition from one state to the next is not necessarily

deterministic; some algorithms, known as randomized

algorithms, incorporate randomness.

While there is no generally accepted formal definition of

“algorithm”, an informal definition could be “a process that

performs some sequence of operations.” For some people, a

program is only an algorithm if it stops eventually. For
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others, a program is only an algorithm if it stops before a

given number of calculation steps.

A prototypical example of an algorithm is Euclid’s algorithm

to determine the maximum common divisor of two integers.

We can derive clues to the issues involved and an informal

meaning of the word from the following quotation from Boolos

& Jeffrey:

No human being can write fast enough, or long enough, or

small enough (“smaller and smaller without limit ...you’d be

trying to write on molecules, on atoms, on electrons”) to list

all members of an enumerably infinite set by writing out

their names, one after another, in some notation. But humans

can do something equally useful, in the case of certain

enumerably infinite sets: They can give explicit instructions

for determining the nth member of the set, for arbitrary finite

n. Such instructions are to be given quite explicitly, in a

form in which they could be followed by a computing machine,

or by a human who is capable of carrying out only very

elementary operations on symbols.



Algorithm Software in Technology Design

51

The term “enumerably infinite” means “countable using

integers perhaps extending to infinity.” Thus Boolos and

Jeffrey are saying that an algorithm implies instructions for

a process that “creates” output integers from an arbitrary

“input” integer or integers that, in theory, can be chosen

from 0 to infinity.

Thus we might expect an algorithm to be an algebraic

equation such as y = m + n — two arbitrary “input variables”

mand n that produce an output y. As we see in Algorithm

characterizations — the word algorithm implies much more

than this, something on the order of (for our addition

example):

Precise instructions (in language understood by “the

computer”) for a “fast, efficient, good” process that specifies

the “moves” of “the computer” (machine or human, equipped

with the necessary internally-contained information and

capabilities) to find, decode, and then munch arbitrary input

integers/symbols m and n, symbols + and = ... and (reliably,

correctly, “effectively”) produce, in a “reasonable” time,

output-integer y at a specified place and in a specified

format.

The concept of algorithm is also used to define the notion

of decidability. That notion is central for explaining how

formal systems come into being starting from a small set of

axioms and rules. In logic, the time that an algorithm requires

to complete cannot be measured, as it is not apparently

related with our customary physical dimension. From such

uncertainties, that characterize ongoing work, stems the

unavailability of a definition of algorithm that suits both

concrete (in some sense) and abstract usage of the term.
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FORMALIZATION
Algorithms are essential to the way computers process

information. Many computer programs contain algorithms

that specify the specific instructions a computer should

perform (in a specific order) to carry out a specified task,

such as calculating employees’ paychecks or printing

students’ report cards. Thus, an algorithm can be considered

to be any sequence of operations that can be simulated by a

Turing-complete system.

Typically, when an algorithm is associated with processing

information, data is read from an input source, written to

an output device, and/or stored for further processing. Stored

data is regarded as part of the internal state of the entity

performing the algorithm. In practice, the state is stored in

one or more data structures. For any such computational

process, the algorithm must be rigorously defined: specified

in the way it applies in all possible circumstances that could

arise. That is, any conditional steps must be systematically

dealt with, case-by-case; the criteria for each case must be

clear (and computable). Because an algorithm is a precise

list of precise steps, the order of computation will always be

critical to the functioning of the algorithm.

Instructions are usually assumed to be listed explicitly,

and are described as starting “from the top” and going “down

to the bottom”, an idea that is described more formally by

flow of control. So far, this discussion of the formalization of

an algorithm has assumed the premises of imperative

programming. This is the most common conception, and it

attempts to describe a task in discrete, “mechanical” means.

Unique to this conception of formalized algorithms is the
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assignment, setting the value of a variable. It derives from

the intuition of “memory” as a scratchpad. There is an

example below of such an assignment.

TERMINATION
Some writers restrict the definition of algorithm to

procedures that eventually finish. In such a category Kleene

places the “decision procedure or decision method or algorithm

for the question”. Others, including Kleene, include

procedures that could run forever without stopping; such a

procedure has been called a “computational method” or

“calculation procedure or algorithm (and hence a calculation

problem) in relation to a general question which requires for

an answer, not yes or no, but the exhibiting of some object”.

Minsky makes the pertinent observation, in regards to

determining whether an algorithm will eventually terminate

(from a particular starting state): But if the length of the

process isn’t known in advance, then “trying” it may not be

decisive, because if the process does go on forever — then at

no time will we ever be sure of the answer.

As it happens, no other method can do any better, as was

shown by Alan Turing with his celebrated result on the

undesirability of the so-called halting. There is no algorithmic

procedure for determining of arbitrary algorithms whether

or not they terminate from given starting states. The analysis

of algorithms for their likelihood of termination is called

termination analysis.

See the examples of (im-) “proper” subtraction at partial

function for more about what can happen when an algorithm

fails for certain of its input numbers — e.g., (i) non-
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termination, (ii) production of “junk” (output in the wrong

format to be considered a number) or no number(s) at all

(halt ends the computation with no output), (iii) wrong

number(s), or (iv) a combination of these. Kleene proposed

that the production of “junk” or failure to produce a number

is solved by having the algorithm detect these instances and

produce e.g., an error message (he suggested “0”), or

preferably, force the algorithm into an endless loop. Davis

does this to his subtraction algorithm — he fixes his algorithm

in a second example so that it is proper subtraction and it

terminates Along with the logical outcomes “true” and “false”

Kleene also proposes the use of a third logical symbol “u” —

undecided — thus an algorithm will always produce

something when confronted with a “proposition”. The problem

of wrong answers must be solved with an independent “proof”

of the algorithm e.g., using induction:

EXPRESSING ALGORITHMS
Algorithms can be expressed in many kinds of notation,

including natural languages, pseudo code, flowcharts,

programming languages or control tables (processed by

interpreters). Natural language expressions of algorithms

tend to be verbose and ambiguous, and are rarely used for

complex or technical algorithms. Pseudocode, flowcharts and

control tables are structured ways to express algorithms that

avoid many of the ambiguities common in natural language

statements, while remaining independent of a particular

implementation language. Programming languages are

primarily intended for expressing algorithms in a form that

can be executed by a computer, but are often used as a way

to define or document algorithms.
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There is a wide variety of representations possible and one

can express a given Turing machine program as a sequence

of machine tables, as flowcharts, or as a form of rudimentary

machine code or assembly code called “sets of quadruples”..

Sometimes it is helpful in the description of an algorithm

to supplement small “flow charts” with natural-language and/

or arithmetic expressions written inside “block diagrams” to

summarize what the “flow charts” are accomplishing.

Representations of algorithms are generally classed into

three accepted levels of Turing machine description:

1. High-level description: “...prose to describe an

algorithm, ignoring the implementation details. At this

level we do not need to mention how the machine

manages its tape or head.”

2. Implementation description: “...prose used to define

the way the Turing machine uses its head and the

way that it stores data on its tape. At this level we do

not give details of states or transition function.”

3. Formal description: Most detailed, “lowest level”, gives

the Turing machine’s “state table”.

COMPUTER ALGORITHMS
In computer systems, an algorithm is basically an instance

of logic written in software by software developers to be

effective for the intended “target” computer(s), in order for

the software on the target machines to do something. For

instance, if a person is writing software that is supposed to

print out a PDF document located at the operating system

folder “/My Documents” at computer drive “D:” every Friday,

they will write an algorithm that specifies the following

actions: “If today’s date (computer time) is ‘Friday,’ open the
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document at ‘D:/My Documents’ and call the ‘print’ function”.

While this simple algorithm does not look into whether the

printer has enough paper or whether the document has been

moved into a different location, one can make this algorithm

more robust and anticipate these problems by rewriting it

as a formal CASE statement or as a (carefully crafted)

sequence of IF-THEN-ELSE statements. For example the

CASE statement might appear as follows (there are other

possibilities):

CASE 1: IF today’s date is NOT Friday THEN exit this CASE

instruction ELSE

CASE 2: IF today’s date is Friday AND the document is

located at ‘D:/My Documents’ AND there is paper in the

printer THEN print the document (and exit this CASE

instruction) ELSE

CASE 3: IF today’s date is Friday AND the document is

NOT located at ‘D:/My Documents’ THEN display ‘document

not found’ error message (and exit this CASE instruction) ELSE

CASE 4: IF today’s date is Friday AND the document is

located at ‘D:/My Documents’ AND there is NO paper in the

printer THEN (i) display ‘out of paper’ error message and (ii)

exit.

Note that CASE 3 includes two possibilities: (i) the

document is NOT located at ‘D:/My Documents’ AND there’s

paper in the printer OR (ii) the document is NOT located at

‘D:/My Documents’ AND there’s NO paper in the printer.

The sequence of IF-THEN-ELSE tests might look like this:

TEST 1: IF today’s date is NOT Friday THEN done ELSE

TEST 2:
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TEST 2: IF the document is NOT located at ‘D:/My

Documents’ THEN display ‘document not found’ error

message ELSE TEST 3:

TEST 3: IF there is NO paper in the printer THEN display

‘out of paper’ error message ELSE print the document.

These examples’ logic grants precedence to the instance of

“NO document at ‘D:/My Documents’ “.

Also observe that in a well-crafted CASE statement or

sequence of IF-THEN-ELSE statements the number of distinct

actions—4 in these examples: do nothing, print the document,

display ‘document not found’, display ‘out of paper’ — equals

the number of cases.

Given unlimited memory, a computational machine with

the ability to execute either a set of CASE statements or a

sequence of IF-THEN-ELSE statements is Turing complete.

Therefore, anything that is computable can be computed by

this machine. This form of algorithm is fundamental to

computer programming in all its forms.

MASTERS THEOREM

INTRODUCTION
In the analysis of algorithms, the master theorem, which

is a specific case of the Akra-Bazzi theorem, provides a

cookbook solution in asymptotic terms for recurrence

relations of types that occur in practice. It was popularized

by the canonical algorithms which introduces and proves

Nevertheless, not all recurrence relations can be solved with

the use of the master theorem.



Algorithm Software in Technology Design

58

Consider a problem that can be solved using recurrence

algorithm such as below:
procedure T(n: size of problem) defined as:

if n < k then exit

Do work of amount f(n)

T(n/b)

T(n/b)

...repeat for a total of a times...

T(n/b)

end procedure

In above algorithm we are dividing the problem in to

number of sub problems recursively, each sub problem being

of size n/b. This can be visualized as building a call tree with

each node of a tree an instance of one recursive call and its

child nodes being instance of next calls. In above example,

each node would have a number of child nodes. Each node

does amount of work that depends on size of sub problem n

passed to that instance of recursive call and given by f(n).

For example, if each recursive call is doing sorting then size

of work does by each node in the tree would be at least

O(nlog(n)). Total size of work done by entire tree is sum of

work performed by all the nodes in the tree.

Algorithm such as above can be represented as recurrence

relationship;

This recursive relationship can be successively substituted

in to itself and expanded to obtain expression for total amount

of work done[

Original Master theorem allows to easily calculate run time

of such a recursive algorithm in Big O notation without doing

expansion of above recursive relationship. A generalized form
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of Master Theorem by Akra and Bazzi introduced in 1998 is

more usable, simpler and applicable on wide number of cases

that occurs in practice.

The master theorem concerns recurrence relations of the

form:

( ) ( ) Where a 1, b>1.
n

T n aT f n
b

  
= + ≥  

  

In the application to the analysis of a recursive algorithm,

the constants and function take on the following significance:

• n is the size of the problem.

• a is the number of subproblems in the recursion.

• n/b is the size of each subproblem. (Here it is

assumed that all subproblems are essentially the same

size.)

• f (n) is the cost of the work done outside the recursive

calls, which includes the cost of dividing the problem

and the cost of merging the solutions to the

subproblems.

GENERIC FORM

If it is true that ( ) ( )( )logb af n O n ε−
=  for some constant ε > 0

(using Big O notation) it follows that:

( ) ( )log .b aT n n= Θ

EXAMPLE

( ) 28 1000
2

n
T n T n  

= +  
  

As one can see in the formula above, the variables get the

following values:
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( ) 2
28, 2, 1000 ,log log 8 3ba b f n n a= = = = =

Now we have to check that the following equation holds:

( ) ( )

( )

log

2 31000

b af n O n

n O n

ε

ε

−

−

=

=

If we choose ε = 1, we get:

( ) ( )2 3 1 21000n O n O n−
= =

Since this equation holds, the first case of the master

theorem applies to the given recurrence relation, thus

resulting in the conclusion:

( ) ( )log .b aT n n= Θ

If we insert the values from above, we finally get:

( ) ( )3 .T n n= Θ

Thus the given recurrence relation T(n) was in Θ(n3).

CASE 2

Generic Form
If it is true, for some constant k ≥ 0, that:

( ) ( )log logb a kf n n n= Θ

it follows that:

( ) ( )log 1log .b a kT n n n+
= Θ

Example

( ) 2 10
2

n
T n T n

  
= +  

  

As we can see in the formula above the variables get the

following values:

( ) 22, 2, 0, 10 , log log 2 1ba b k f n n a= = = = = =
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Now we have to check that the following equation holds

(in this case k=0):

( ) ( )logb af n n= Θ

If we insert the values from above, we get:

( ) ( )110n n n= Θ = Θ

Since this equation holds, the second case of the master

theorem applies to the given recurrence relation, thus

resulting in the conclusion:

( ) ( )log 1log .b a kT n n n+
= Θ

If we insert the values from above, we finally get:

( ) ( )log .T n n n= Θ

Thus the given recurrence relation T(n) was in Θ(n log n).

CASE 3

Generic Form
If it is true that:

( ) ( )( )logb af n n ε+
= Ω for some constant ε > 0

and if it is also true that:

( )
n

af cf n
b

  
≤  

  
 for some constant c < 1 and sufficiently large

n

it follows that:

( ) ( )( )T n f n= Θ

Example

( ) 22
2

n
T n T n

  
= +  
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As we can see in the formula above the variables get the

following values:

( ) 22, 2, 0, 10 , log log 2 1ba b k f n n a= = = = = =

Now we have to check that the following equation holds:

( ) ( )logb af n n ε+
= Ω

If we insert the values from above, and choose ε = 1, we

get:

( ) ( )2 1 1 2n n n+
= Ω = Ω

Since this equation holds, we have to check the second

condition, namely if it is true that:

( )
n

af cf n
b

  
≤  

  

If we insert once more the values from above, we get the

number:

2
2 2 21

2
2 2

n
cn n cn

  
≤ ⇔ ≤  

  

If we choose 
1

2
c = , it is true that:

2 21 1
1

2 2
n n≤ ∀ ≥

So it follows:

( ) ( )( ).T n f n= Θ

If we insert once more the necessary values, we get:

( ) ( )2 .T n n= Θ

Thus the given recurrence relation T(n) was in Θ(n2), that

complies with the f (n) of the original formula. (This result is
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confirmed by the exact solution of the recurrence relation,

which is T(n) = 2n2 – n, assuming T(1) = 1.)

COMPARING THE ALGORITHMS

There are two important factors when measuring the

performance of a sorting algorithm. The algorithms have to

compare the magnitude of different elements and they have

to move the different elements around. So counting the

number of comparisons and the number of exchanges or

moves made by an algorithm offer useful performance

measures.

When sorting large record structures, the number of

exchanges made may be the principal performance criterion,

since exchanging two records will involve a lot of work. When

sorting a simple array of integers, then the number of

comparisons will be more important.

It has been said that the only thing going for the bubble

(exchange) sort is its catchy name. The logic of the algorithm

is simple to understand and it is fairly easy to program. It

can also be programmed to detect when it has finished

sorting. The selection sort, by comparison, always goes

through the same amount of work regardless of the data

and the quick sort performs particularly badly with ordered

data.

However, in general the bubble sort is a very inefficient

algorithm. The insertion sort is a little better and whilst it

cannot detect that it has finished sorting, the logic of the

algorithm means that it comes to a rapid conclusion when

dealing with sorted data. The selection sort is a good one to

use with students. It is intuitive and very simple to program.
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It offers quite good performance, its particular strength being

the small number of exchanges needed. For a given number

of data items, the selection sort always goes through a set

number of comparisons and exchanges, so its performance

is predictable.

The first three algorithms all offer O(n2) performance, that

is sorting times increase with the square of the number of

elements being sorted.

That means that if you double the number of elements

being sorted, then there will be a four-fold increase in the

time taken.

Ten times more elements increases the time taken by a

factor of 100! This is not a problem with small data sets, but

with hundreds or thousands of elements, this becomes very

significant. With most large data sets, the quick sort is a

vastly superior algorithm (although as you might expect, it

is much more complex), as the table below shows.

RANDOM DATA SET: NUMBER OF
COMPARISONS MADE

Sort/Elements 50 100 200 300 400 500 
Selection Sort 1225 4950 19900 44850 79800 124750 
Exchange Sort 1410 5335 20300 45650 79866 126585 
Insertion Sort 1391 5399 20473 44449 78779 123715 
Quick Sort 399 990 1954 3384 5066 6256 

It should be pointed out that the methods above all belong

to one family, they are all internal sorting algorithms. This

means that they can only be used when the entire data

structure to be sorted can be held in the computer’s main

memory. There will be situations where this is not possible,

for example when sorting a very large transaction file which

is stored on, say, magnetic tape or disc.



Algorithm Software in Technology Design

65

DESCRIPTION

BUBBLE SORT
Exchange two adjacent elements if they are out of order.

Repeat until array is sorted. This is a slow algorithm.
#include <stdlib.h>

#include <stdio.h>

#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);

void ArraySort(int This[], CMPFUN fun_ptr, uint32 ub)

{

/* bubble sort */

uint32 indx;

uint32 indx2;

int temp;

int temp2;

int flipped;

if (ub <= 1)

return;

indx = 1;

do

{

flipped = 0;

for (indx2 = ub - 1; indx2 >= indx; —indx2)

{

temp = This[indx2];

temp2 = This[indx2 - 1];

if ((*fun_ptr)(temp2, temp) > 0)

{

This[indx2 - 1] = temp;

This[indx2] = temp2;

flipped = 1;

}

}

} while ((++indx < ub) && flipped);

}

#define ARRAY_SIZE 14

int my_array[ARRAY_SIZE];

void fill_array()
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{

int indx;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

my_array[indx] = rand();

}

/* my_array[ARRAY_SIZE - 1] = ARRAY_SIZE/3; */

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;

else

return 0;

}

int main()

{

int indx;

int indx2;

for (indx2 = 0; indx2 < 80000; ++indx2)

{

fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

for (indx=1; indx < ARRAY_SIZE; ++indx)

{

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);

return(1);

}

}

}

return(0);

}

SELECTION SORT
Find the largest element in the array, and put it in the

proper place. Repeat until array is sorted. This is also slow.
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#include <stdlib.h>

#include <stdio.h>

#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);

void ArraySort(int This[], CMPFUN fun_ptr, uint32 the_len)

{

/* selection sort */

uint32 indx;

uint32 indx2;

uint32 large_pos;

int temp;

int large;

if (the_len <= 1)

return;

for (indx = the_len - 1; indx > 0; —indx)

{

/* find the largest number, then put it at the end of

the array */

large = This[0];

large_pos = 0;

for (indx2 = 1; indx2 <= indx; ++indx2)

{

temp = This[indx2];

if ((*fun_ptr)(temp,large) > 0)

{

large = temp;

large_pos = indx2;

}

}

This[large_pos] = This[indx];

This[indx] = large;

}

}

#define ARRAY_SIZE 14

int my_array[ARRAY_SIZE];

void fill_array()

{

int indx;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

my_array[indx] = rand();
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}

/* my_array[ARRAY_SIZE - 1] = ARRAY_SIZE/3; */

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;

else

return 0;

}

int main()

{

int indx;

int indx2;

for (indx2 = 0; indx2 < 80000; ++indx2)

{

fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

for (indx=1; indx < ARRAY_SIZE; ++indx)

{

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);

return(1);

}

}

}

return(0);

}

INSERTION SORT
Scan successive elements for out of order item, then insert

the item in the proper place. Sort small array fast, big array

very slowly.
#include <stdlib.h>

#include <stdio.h>

#define uint32 unsigned int
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typedef int (*CMPFUN)(int, int);

void ArraySort(int This[], CMPFUN fun_ptr, uint32 the_len)

{

/* insertion sort */

uint32 indx;

int cur_val;

int prev_val;

if (the_len <= 1)

return;

prev_val = This[0];

for (indx = 1; indx < the_len; ++indx)

{

cur_val = This[indx];

if ((*fun_ptr)(prev_val, cur_val) > 0)

{

/* out of order: array[indx-1] > array[indx] */

uint32 indx2;

This[indx] = prev_val;/* move up the larger item

first */

/* find the insertion point for the smaller item */

for (indx2 = indx - 1; indx2 > 0;)

{

int temp_val = This[indx2 - 1];

if ((*fun_ptr)(temp_val, cur_val) > 0)

{

This[indx2—] = temp_val;

/* still out of order, move up 1 slot to make

room */

}

else

break;

}

This[indx2] = cur_val;/* insert the smaller item

right here */

}

else

{

/* in order, advance to next element */

prev_val = cur_val;

}

}
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}

#define ARRAY_SIZE 14

int my_array[ARRAY_SIZE];

uint32 fill_array()

{

int indx;

uint32 checksum = 0;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

checksum += my_array[indx] = rand();

}

return checksum;

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;

else

return 0;

}

int main()

{

int indx;

int indx2;

uint32 checksum1;

uint32 checksum2;

for (indx2 = 0; indx2 < 80000; ++indx2)

{

checksum1 = fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

for (indx=1; indx < ARRAY_SIZE; ++indx)

{

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);

return(1);

}
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}

checksum2 = 0;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

checksum2 += my_array[indx];

}

if (checksum1 != checksum2)

{

printf(“bad checksum %d %d\n”, checksum1, checksum2);

}

}

return(0);

}

QUICK SORT

Partition Array into Two Segments
The first segment all elements are less than or equal to

the pivot value. The second segment all elements are greater

or equal to the pivot value. Sort the two segments recursively.

Quicksort is fastest on average, but sometimes unbalanced

partitions can lead to very slow sorting.
#include <stdlib.h>

#include <stdio.h>

#define INSERTION_SORT_BOUND 16/* boundary point to use

insertion sort */

#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);

/* explain function

* Description:

* fixarray::Qsort() is an internal subroutine that implements

quick sort.

*

* Return Value: none

*/

void Qsort(int This[], CMPFUN fun_ptr, uint32 first, uint32

last)
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{

uint32 stack_pointer = 0;

int first_stack[32];

int last_stack[32];

for (;; {

if (last - first <= INSERTION_SORT_BOUND)

{

/* for small sort, use insertion sort */

uint32 indx;

int prev_val = This[first];

int cur_val;

for (indx = first + 1; indx <= last; ++indx){

cur_val = This[indx];

if ((*fun_ptr)(prev_val, cur_val) > 0){

/* out of order: array[indx-1] > array[indx]

*/

uint32 indx2;

This[indx] = prev_val;/* move up the larger

item first */

/* find the insertion point for the smaller

item */

for (indx2 = indx - 1; indx2 > first;)

{

int temp_val = This[indx2 - 1];

if ((*fun_ptr)(temp_val, cur_val) > 0)

{

This[indx2—] = temp_val;

/* still out of order, move up 1 slot

to make room */

}

else

break;

}

This[indx2] = cur_val;/* insert the smaller

item right here */

}

else

{

/* in order, advance to next element */

prev_val = cur_val;

}
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}

}

else

{

int pivot;

/* try quick sort */

{

int temp;

uint32 med = (first + last) >> 1;

/* Choose pivot from first, last, and median

position. */

/* Sort the three elements. */

temp = This[first];

if ((*fun_ptr)(temp, This[last]) > 0)

{

This[first] = This[last]; This[last] = temp;

}

temp = This[med];

if ((*fun_ptr)(This[first], temp) > 0)

{

This[med] = This[first]; This[first] = temp;

}

temp = This[last];

if ((*fun_ptr)(This[med], temp) > 0)

{

This[last] = This[med]; This[med] = temp;

}

pivot = This[med];

}

{

uint32 up;

{

uint32 down;

/* First and last element will be loop stopper. */

/* Split array into two partitions. */

down = first;

up = last;

for (;;)

{

do

{
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++down;

} while ((*fun_ptr)(pivot, This[down]) > 0);

do

{

—up;

} while ((*fun_ptr)(This[up], pivot) > 0);

if (up > down)

{

int temp;

/* interchange L[down] and L[up] */

temp = This[down]; This[down]= This[up]; This[up]

= temp;

}

else

break;

}

}

{

uint32 len1;/* length of first segment */

uint32 len2;/* length of second segment */

len1 = up - first + 1;

len2 = last - up;

/* stack the partition that is larger */

if (len1 >= len2)

{

first_stack[stack_pointer] = first;

last_stack[stack_pointer++] = up;

first = up + 1;

/* tail recursion elimination of

* Qsort(This,fun_ptr,up + 1,last)

*/

}

else

{

first_stack[stack_pointer] = up + 1;

last_stack[stack_pointer++] = last;

last = up;

/* tail recursion elimination of

* Qsort(This,fun_ptr,first,up)

*/

}
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}

continue;

}

/* end of quick sort */

}

if (stack_pointer > 0)

{

/* Sort segment from stack. */

first = first_stack[—stack_pointer];

last = last_stack[stack_pointer];

}

else

break;

}/* end for */

}

void ArraySort(int This[], CMPFUN fun_ptr, uint32 the_len)

{

Qsort(This, fun_ptr, 0, the_len - 1);

}

#define ARRAY_SIZE 250000

int my_array[ARRAY_SIZE];

uint32 fill_array()

{

int indx;

uint32 checksum = 0;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

checksum += my_array[indx] = rand();

}

return checksum;

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;

else

return 0;

}

int main()
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{

int indx;

uint32 checksum1;

uint32 checksum2 = 0;

checksum1 = fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

for (indx=1; indx < ARRAY_SIZE; ++indx)

{

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);

return(1);

}

}

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

checksum2 += my_array[indx];

}

if (checksum1 != checksum2)

{

printf(“bad checksum %d %d\n”, checksum1, checksum2);

return(1);

}

return(0);

}

MERGE SORT
Start from two sorted runs of length 1, merge into a single

run of twice the length. Repeat until a single sorted run is

left. Mergesort needs N/2 extra buffer. Performance is second

place on average, with quite good speed on nearly sorted

array. Mergesort is stable in that two elements that are

equally ranked in the array will not have their relative

positions flipped.
#include <stdlib.h>

#include <stdio.h>

#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);
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#define INSERTION_SORT_BOUND 8/* boundary point to use

insertion sort */

void ArraySort(int This[], CMPFUN fun_ptr, uint32 the_len)

{

uint32 span;

uint32 lb;

uint32 ub;

uint32 indx;

uint32 indx2;

if (the_len <= 1)

return;

span = INSERTION_SORT_BOUND;

/* insertion sort the first pass */

{

int prev_val;

int cur_val;

int temp_val;

for (lb = 0; lb < the_len; lb += span

{

if ((ub = lb + span) > the_len) ub = the_len;

prev_val = This[lb];

for (indx = lb + 1; indx < ub; ++indx)

{

cur_val = This[indx];

if ((*fun_ptr)(prev_val, cur_val) > 0)

{

/* out of order: array[indx-1] > array[indx]

*/

This[indx] = prev_val;/* move up the larger

item first */

/* find the insertion point for the smaller

item */

for (indx2 = indx - 1; indx2 > lb;)

{

temp_val = This[indx2 - 1];

if ((*fun_ptr)(temp_val, cur_val) > 0)

{

This[indx2—] = temp_val;

/* still out of order, move up 1 slot

to make room */

}
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else

break;

}

This[indx2] = cur_val;/* insert the smaller

item right here */

}

else

{

/* in order, advance to next element */

prev_val = cur_val;

}

}

}

}

/* second pass merge sort */

{

uint32 median;

int* aux;

aux = (int*) malloc(sizeof(int) * the_len/2);

while (span < the_len)

{

/* median is the start of second file */

for (median = span; median < the_len;)

{

indx2 = median - 1;

if ((*fun_ptr)(This[indx2], This[median]) > 0)

{

/* the two files are not yet sorted */

if ((ub = median + span) > the_len)

{

ub = the_len;

}

/* skip over the already sorted largest

elements */

while ((*fun_ptr)(This[—ub], This[indx2]) >=

0){

}

/* copy second file into buffer */

for (indx = 0; indx2 < ub; ++indx)

{

*(aux + indx) = This[++indx2];
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}

—indx;

indx2 = median - 1;

lb = median - span;

/* merge two files into one */

for (;;)

{

if ((*fun_ptr)(*(aux + indx), This[indx2])

>= 0)

{

This[ub—] = *(aux + indx);

if (indx > 0) —indx;

else

{

/* second file exhausted */

for (;;)

{

This[ub—] = This[indx2];

if (indx2 > lb) —indx2;

else goto mydone;/* done */

}

}

}

else

{

This[ub—] = This[indx2];

if (indx2 > lb) —indx2;

else

{

/* first file exhausted */

for (;;)

{

This[ub—] = *(aux + indx);

if (indx > 0) —indx;

else goto mydone;/* done */

}

}

}

}

}

mydone:
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median += span + span;

}

span += span;

}

free(aux);

}

}

#define ARRAY_SIZE 250000

int my_array[ARRAY_SIZE];

uint32 fill_array()

{

int indx;

uint32 sum = 0;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

sum += my_array[indx] = rand();

}

return sum;

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;

else

return 0;

}

int main()

{

int indx;

uint32 checksum, checksum2;

checksum = fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

checksum2 = my_array[0];

for (indx=1; indx < ARRAY_SIZE; ++indx)

{

checksum2 += my_array[indx];

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);
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return(1);

}

}

if (checksum != checksum2){

printf(“bad checksum %d %d\n”, checksum,

checksum2);

return(1);

}

return(0);

}

HEAP SORT
Form a tree with parent of the tree being larger than its

children. Remove the parent from the tree successively. On

average, Heapsort is third place in speed. Heapsort does not

need extra buffer, and performance is not sensitive to initial

distributions.
#include <stdlib.h>

#include <stdio.h>

#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);

void ArraySort(int This[], CMPFUN fun_ptr, uint32 the_len)

{

/* heap sort */

uint32 half;

uint32 parent;

if (the_len <= 1)

return;

half = the_len >> 1;

for (parent = half; parent >= 1; —parent)

{

int temp;

int level = 0;

uint32 child;

child = parent;

/* bottom-up downheap */

/* leaf-search for largest child path */

while (child <= half)

{
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++level;

child += child;

if ((child < the_len) &&

((*fun_ptr)(This[child], This[child - 1]) > 0))

++child;

}

/* bottom-up-search for rotation point */

temp = This[parent - 1];

for (;;)

{

if (parent == child)

break;

if ((*fun_ptr)(temp, This[child - 1]) <= 0)

break;

child >>= 1;

—level;

}

/* rotate nodes from parent to rotation point */

for (;level > 0; —level)

{

This[(child >> level) - 1] =

This[(child >> (level - 1)) - 1];

}

This[child - 1] = temp;

}

—the_len;

do

{

int temp;

int level = 0;

uint32 child;

/* move max element to back of array */

temp = This[the_len];

This[the_len] = This[0];

This[0] = temp;

child = parent = 1;

half = the_len >> 1;

/* bottom-up downheap */

/* leaf-search for largest child path */

while (child <= half)

{
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++level;

child += child;

if ((child < the_len) &&

((*fun_ptr)(This[child], This[child - 1]) > 0))

++child;

}

/* bottom-up-search for rotation point */

for (;;)

{

if (parent == child)

break;

if ((*fun_ptr)(temp, This[child - 1]) <= 0)

break;

child >>= 1;

—level;

}

/* rotate nodes from parent to rotation point */

for (;level > 0; —level)

{

This[(child >> level) - 1] =

This[(child >> (level - 1)) - 1];

}

This[child - 1] = temp;

} while (—the_len >= 1);

}

#define ARRAY_SIZE 250000

int my_array[ARRAY_SIZE];

void fill_array()

{

int indx;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

my_array[indx] = rand();

}

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;
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else

return 0;

}

int main()

{

int indx;

fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

for (indx=1; indx < ARRAY_SIZE; ++indx)

{

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);

return(1);

}

}

return(0);

}

SHELL SORT
Sort every Nth element in an array using insertion sort.

Repeat using smaller N values, until N = 1. On average,

Shellsort is fourth place in speed. Shellsort may sort some

distributions slowly.
#include <stdlib.h>

#include <stdio.h>

#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);

/* Calculated from the combinations of 9 * (4^n - 2^n) + 1,

* and 4^n - 3 * 2^n + 1

*/

uint32 hop_array[] =

{

1,

5,

19,

41,

109,

209,
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505,

929,

2161,

3905,

8929,

16001,

36289,

64769,

146305,

260609,

587521,

1045505,

2354689,

4188161,

9427969,

16764929,

37730305,

67084289,

150958081,

268386305,

603906049,

1073643521,

2415771649,

0xffffffff };

void ArraySort(int This[], CMPFUN fun_ptr, uint32 the_len)

{

/* shell sort */

int level;

for (level = 0; the_len > hop_array[level]; ++level);

do

{

uint32 dist;

uint32 indx;

dist = hop_array[—level];

for (indx = dist; indx < the_len; ++indx)

{

int cur_val;

uint32 indx2;

cur_val = This[indx];

indx2 = indx;

do
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{

int early_val;

early_val = This[indx2 - dist];

if ((*fun_ptr)(early_val, cur_val) <= 0)

break;

This[indx2] = early_val;

indx2 -= dist;

} while (indx2 >= dist);

This[indx2] = cur_val;

}

} while (level >= 1);

}

#define ARRAY_SIZE 250000

int my_array[ARRAY_SIZE];

uint32 fill_array()

{

int indx;

uint32 checksum = 0;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

checksum += my_array[indx] = rand();

}

return checksum;

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;

else

return 0;

}

int main()

{

int indx;

uint32 sum1;

uint32 sum2;

sum1 = fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

for (indx=1; indx < ARRAY_SIZE; ++indx)
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{

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);

return(1);

}

}

for (indx = 0; indx < ARRAY_SIZE; ++indx)

{

sum2 += my_array[indx];

}

if (sum1 != sum2)

{

printf(“bad checksum\n”);

return(1);

}

return(0);

}

COMBO SORT
Sorting algorithms can be mixed and matched to yield the

desired properties. We want fast average performance, good

worst case performance, and no large extra storage

requirement. We can achieve the goal by starting with the

Quicksort (fastest on average). We modify Quicksort by sorting

small partitions by using Insertion Sort (best with small

partition). If we detect two partitions are badly balanced, we

sort the larger partition by Heapsort (good worst case

performance). Of course we cannot undo the bad partitions,

but we can stop the possible degenerate case from continuing

to generate bad partitions.
#include <stdlib.h>

#include <stdio.h>

#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);

void HelperHeapSort(int This[], CMPFUN fun_ptr, uint32 first,

uint32 the_len)
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{

/* heap sort */

uint32 half;

uint32 parent;

if (the_len <= 1)

return;

half = the_len >> 1;

for (parent = half; parent >= 1; —parent)

{

int temp;

int level = 0;

uint32 child;

child = parent;

/* bottom-up downheap */

/* leaf-search for largest child path */

while (child <= half)

{

++level;

child += child;

if ((child < the_len) &&

((*fun_ptr)(This[first + child], This[first + child -

1]) > 0))

++child;

}

/* bottom-up-search for rotation point */

temp = This[first + parent - 1];

for (;;)

{

if (parent == child)

break;

if ((*fun_ptr)(temp, This[first + child - 1]) <= 0)

break;

child >>= 1;

—level;

}

/* rotate nodes from parent to rotation point */

for (;level > 0; —level)

{

This[first + (child >> level) - 1] =

This[first + (child >> (level - 1)) - 1];

}
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This[first + child - 1] = temp;

}

—the_len;

do

{

int temp;

int level = 0;

uint32 child;

/* move max element to back of array */

temp = This[first + the_len];

This[first + the_len] = This[first];

This[first] = temp;

child = parent = 1;

half = the_len >> 1;

/* bottom-up downheap */

/* leaf-search for largest child path */

while (child <= half)

{

++level;

child += child;

if ((child < the_len) &&

((*fun_ptr)(This[first + child], This[first + child -

1]) > 0))

++child;

}

/* bottom-up-search for rotation point */

for (;;)

{

if (parent == child)

break;

if ((*fun_ptr)(temp, This[first + child - 1]) <= 0)

break;

child >>= 1;

—level;

}

/* rotate nodes from parent to rotation point */

for (;level > 0; —level)

{

This[first + (child >> level) - 1] =

This[first + (child >> (level - 1)) - 1];

}
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This[first + child - 1] = temp;

} while (—the_len >= 1);

}

#define INSERTION_SORT_BOUND 16/* boundary point to use

insertion sort */

/* explain function

* Description:

* fixarray::Qsort() is an internal subroutine that implements

quick sort.

*

* Return Value: none

*/

void Qsort(int This[], CMPFUN fun_ptr, uint32 first, uint32

last)

{

uint32 stack_pointer = 0;

int first_stack[32];

int last_stack[32];

for (;;)

{

if (last - first <= INSERTION_SORT_BOUND)

{

/* for small sort, use insertion sort */

uint32 indx;

int prev_val = This[first];

int cur_val;

for (indx = first + 1; indx <= last; ++indx)

{

cur_val = This[indx];

if ((*fun_ptr)(prev_val, cur_val) > 0)

{

uint32 indx2;

/* out of order */

This[indx] = prev_val;

for (indx2 = indx - 1; indx2 > first; —indx2)

{

int temp_val = This[indx2 - 1];

if ((*fun_ptr)(temp_val, cur_val) > 0)

{

This[indx2] = temp_val;

}
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else

break;

}

This[indx2] = cur_val;

}

else

{

/* in order, advance to next element */

prev_val = cur_val;

}

}

}

else

{

int pivot;

/* try quick sort */

{

int temp;

uint32 med = (first + last) >> 1;

/* Choose pivot from first, last, and median position.

*/

/* Sort the three elements. */

temp = This[first];

if ((*fun_ptr)(temp, This[last]) > 0)

{

This[first] = This[last]; This[last] = temp;

}

temp = This[med];

if ((*fun_ptr)(This[first], temp) > 0)

{

This[med] = This[first]; This[first] = temp;

}

temp = This[last];

if ((*fun_ptr)(This[med], temp) > 0)

{

This[last] = This[med]; This[med] = temp;

}

pivot = This[med];

}

{

uint32 up;
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{

uint32 down;

/* First and last element will be loop stopper. */

/* Split array into two partitions. */

down = first;

up = last;

for (;;)

{

do

{

++down;

} while ((*fun_ptr)(pivot, This[down]) > 0);

do

{

—up;

} while ((*fun_ptr)(This[up], pivot) > 0);

if (up > down)

{

int temp;

/* interchange L[down] and L[up] */

temp = This[down]; This[down]= This[up]; This[up]

= temp;

}

else

break;

}

}

{

uint32 len1;/* length of first segment */

uint32 len2;/* length of second segment */

len1 = up - first + 1;

len2 = last - up;

if (len1 >= len2)

{

if ((len1 >> 5) > len2)

{

/* badly balanced partitions, heap sort first segment

*/

HelperHeapSort(This, fun_ptr, first, len1);

}

else
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{

first_stack[stack_pointer] = first;/* stack first

segment */

last_stack[stack_pointer++] = up;

}

first = up + 1;

/* tail recursion elimination of

* Qsort(This,fun_ptr,up + 1,last)

*/

}

else

{

if ((len2 >> 5) > len1)

{

/* badly balanced partitions, heap sort second

segment */

HelperHeapSort(This, fun_ptr, up + 1, len2);

}

else

{

first_stack[stack_pointer] = up + 1;/* stack second

segment */

last_stack[stack_pointer++] = last;

}

last = up;

/* tail recursion elimination of

* Qsort(This,fun_ptr,first,up)

*/

}

}

continue;

}

/* end of quick sort */

}

if (stack_pointer > 0)

{

/* Sort segment from stack. */

first = first_stack[—stack_pointer];

last = last_stack[stack_pointer];

}

else
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break;

}/* end for */

}

void ArraySort(int This[], CMPFUN fun_ptr, uint32 the_len)

{

Qsort(This, fun_ptr, 0, the_len - 1);

}

#define ARRAY_SIZE 250000

int my_array[ARRAY_SIZE];

void fill_array()

{

int indx;

for (indx=0; indx < ARRAY_SIZE; ++indx)

{

my_array[indx] = rand();

}

}

int cmpfun(int a, int b)

{

if (a > b)

return 1;

else if (a < b)

return -1;

else

return 0;

}

int main()

{

int indx;

fill_array();

ArraySort(my_array, cmpfun, ARRAY_SIZE);

for (indx=1; indx < ARRAY_SIZE; ++indx)

{

if (my_array[indx - 1] > my_array[indx])

{

printf(“bad sort\n”);

return(1);

}

}

return(0);

}
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4

Augmenting Path Algorithms

The neat part of the Ford-Fulkerson algorithm described

above is that it gets the correct result no matter how we

solve (correctly!!) the sub-problem of finding an augmenting

path.

However, every new path may increase the flow by only

1, hence the number of iterations of the algorithm could be

very large if we carelessly choose the augmenting path

algorithm to use. The function max_flow will look like this,

regardless of the actual method we use for finding

augmenting paths:
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To keep it simple, we will use a 2-dimensional array for

storing the capacities of the residual network that we are

left with after each step in the algorithm. Initially the residual

network is just the original network. We will not store the

flows along the edges explicitly, but it’s easy to figure out

how to find them upon the termination of the algorithm: for

each edge x-y in the original network the flow is given by

the capacity of the backward edge y-x in the residual

network.

Be careful though; if the reversed arc y-x also exists in

the original network, this will fail, and it is recommended

that the initial capacity of each arc be stored somewhere,

and then the flow along the edge is the difference between

the initial and the residual capacity.

We now require an implementation for the function

find_path. The first approach that comes to mind is to use a

depth-first search (DFS), as it probably is the easiest to

implement. Unfortunately, its performance is very poor on

some networks, and normally is less preferred to the ones

discussed next.

The next best thing in the matter of simplicity is a

breadth-first search (BFS). Recall that this search usually

yields the shortest path in an un-weighted graph. Indeed,

this also applies here to get the shortest augmenting path

from the source to the sink. In the following pseudocode we

will basically: find a shortest path from the source to the

sink and compute the minimum capacity of an edge (that

could be a forward or a backward edge) along the path - the
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path capacity. Then, for each edge along the path we reduce

its capacity and increase the capacity of the reversed edge

with the path capacity.
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As we can see, this is pretty easy to implement. As for

its performance, it is guaranteed that this takes at most N *

M/2 steps, where N is the number of vertices and M is the

number of edges in the network. This number may seem

very large, but it is over-estimated for most networks. For

example, in the network we considered 3 augmenting paths

are needed which is significantly less than the upper bound

of 28. Due to the O(M) running time of BFS (implemented

with adjacency lists) the worst-case running time of the

shortest-augmenting path max-flow algorithm is O(N * M²),

but usually the algorithm performs much better than this.

Next we will consider an approach that uses a priority-

first search (PFS), that is very similar to the Dijkstra heap

method explained here. In this method the augmenting path

with a maximum path capacity is preferred. Intuitively this

would lead to a faster algorithm, since at each step we

increase the flow with the maximum possible amount.

However, things are not always so, and the BFS

implementation has better running times on some networks.

We assign as a priority to each vertex the minimum

capacity of a path (in the residual network) from the source

to that vertex. We process vertices in a greedy manner, as in

Dijkstra’s algorithm, in decreasing order of priorities. When

we get to the sink, we are done, since a path with a maximum

capacity is found. We would like to implement this with a

data structure that allows us to efficiently find the vertex
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with the highest priority and increase the priority of a vertex

(when a new better path is found) - this suggests the use of

a heap which has a space complexity proportional to the

number of vertices.

In TopCoder matches we may find it faster and easier to

implement this with a priority queue or some other data

structure that approximates one, even though the space

required might grow to being proportional with the number

of edges. This is how the following pseudocode is

implemented. We also define a structure node that has the

members vertex and prioritywith the above significance.

Another field from is needed to store the previous vertex on

the path.
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The analysis of its performance is pretty complicated,

but it may prove worthwhile to remember that with PFS at

most 2M1gU steps are required, where U is the maximum

capacity of an edge in the network.

As with BFS, this number is a lot larger than the actual

number of steps for most networks. Combine this with the

O(M 1g M)complexity of the search to get the worst-case

running time of this algorithm.

Now that we know what these methods are all about,

which of them do we choose when we are confronted with a

max-flow problem? The PFS approach seems to have a better

worst-case performance, but in practice their performance

is pretty much the same. So, the method that one is more

familiar with may prove more adequate. Personally, I prefer

the shortest-path method, as I find it easier to implement

during a contest and less error prone.

MAXIMUM FLOW PROBLEM
The maximum flow problem is again structured on a

network; but here the arc capacities, or upper bounds, are

the only relevant parameters.

The problem is to find the maximum flow possible from

some given source node to a given sink node. A network model
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is in Fig. All arc costs are zero, but the cost on the arc leaving

the sink is set to -1. Since the goal of the optimization is to

minimize cost, the maximum flow possible is delivered to the

sink node.

Fig. Network Model for the Maximum Flow Problem.

The solution to the example is in Fig. The maximum flow

from node 1 to node 8 is 30 and the flows that yield this

flow are shown on the figure. The heavy arcs on the figure

are called the minimal cut.

These arcs are the bottlenecks that are restricting the

maximum flow. The fact that the sum of the capacities of

the arcs on the minimal cut equals the maximum flow is a

famous theorem of network theory called the max flow min

cut theorem. The arcs on the minimum cut can be identified

using sensitivity analysis.

MAX-FLOW/MIN-CUT RELATED PROBLEMS
How to recognize max-flow problems? Often they are hard

to detect and usually boil down to maximizing the movement

of something from a location to another. We need to look at

the constraints when we think we have a working solution

based on maximum flow - they should suggest at least an

O(N³) approach. If the number of locations is large, another

algorithm (such as dynamic Programmeming or greedy), is
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more appropriate. The problem description might suggest

multiple sources and/or sinks. For example, in the sample

statement in the beginning of this article, the company might

own more than one factory and multiple distribution Centres.

How can we deal with this? We should try to convert this to

a network that has a unique source and sink.

In order to accomplish this we will add two “dummy”

vertices to our original network - we will refer to them as

super-source and super-sink. In addition to this we will

add an edge from the super-source to every ordinary

source (a factory). As we don’t have restrictions on the

number of trucks that each factory can send, we should

assign to each edge an infinite capacity.

Note that if we had such restrictions, we should have

assigned to each edge a capacity equal to the number of

trucks each factory could send. Likewise, we add an edge

from every ordinary sink (distribution Centres) to the super-

sink with infinite capacity.

A maximum flow in this new-built network is the solution

to the problem - the sources now become ordinary vertices,

and they are subject to the entering-flow equals leaving-flow

property. You may want to keep this in your bag of tricks,

as it may prove useful to most problems.

What if we are also given the maximum number of trucks

that can drive through each of the cities in the country (other

than the cities where the factory and the distribution Centre

are located)? In other words we have to deal with vertex-

capacities too. Intuitively, we should be able to reduce this

to maximum-flow, but we must find a way to take the

capacities from vertices and put them back on edges, where
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they belong. Another nice trick comes into play. We will build

a network that has two times more vertices than the initial

one. For each vertex we will have two nodes: an in-vertex

and an out-vertex, and we will direct each edge x-y from the

out-vertex of x to the in-vertex of y.

We can assign them the capacities from the problem

statement. Additionally we can add an edge for each vertex

from the in to the out-vertex.

The capacity this edge will be assigned is obviously the

vertex-capacity. Now we just run max-flow on this network

and compute the result. Maximum flow problems may appear

out of nowhere. Let's take this problem for instance:"You

are given the in and out degrees of the vertices of a directed

graph.

Your task is to find the edges (assuming that no edge

can appear more than once)." First, notice that we can

perform this simple test at the beginning.

We can compute the number M of edges by summing

the out-degrees or the in-degrees of the vertices. If these

numbers are not equal, clearly there is no graph that could

be built. This doesn't solve our problem, though.

There are some greedy approaches that come to mind,

but none of them work.

We will combine the tricks discussed above to give a max-

flow algorithm that solves this problem. First, build a network

that has 2 (in/out) vertices for each initial vertex. Now draw

an edge from every out vertex to every in vertex. Next, add a

super-source and draw an edge from it to every out-vertex.

Add a super-sink and draw an edge from every in vertex to

it. We now need some capacities for this to be a flow network.
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It should be pretty obvious what the intent with this

approach is, so we will assign the following capacities: for

each edge drawn from the super-source we assign a capacity

equal to the out-degree of the vertex it points to.

As there may be only one arc from a vertex to another,

we assign a 1 capacity to each of the edges that go from the

outs to the ins.

As you can guess, the capacities of the edges that enter

the super-sink will be equal to the in-degrees of the vertices.

If the maximum flow in this network equals M - the number

of edges, we have a solution, and for each edge between the

out and in vertices that has a flow along it (which is

maximum 1, as the capacity is 1) we can draw an edge

between corresponding vertices in our graph.

Note that both x-y and y-x edges may appear in the

solution. This is very similar to the maximum matching in a

bipartite graph that we will discuss later. An example is given

below where the out-degrees are (2, 1, 1, 1) and the in-

degrees (1, 2, 1, 1). Some other problems may ask to separate

two locations minimally. Some of these problems usually can

be reduced to minimum-cut in a network. Two examples will

be discussed here, but first let's take the standard min-cut

problem and make it sound more like a TopCoder problem.

We learned earlier how to find the value of the min-cut and

how to find an arbitrary min-cut. In addition to this we will

now like to have a minimum-cut with the minimum number

of edges.

An idea would be to try to modify the original network in

such a way that the minimum cut here is the minimum cut

with the minimum edges in the original one.
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Notice what happens if we multiply each edge capacity

with a constant T. Clearly, the value of the maximum flow is

multiplied by T, thus the value of the minimum cut is T times

bigger than the original. A minimum cut in the original

network is a minimum cut in the modified one as well. Now

suppose we add 1 to the capacity of each edge. Is a minimum

cut in the original network a minimum cut in this one? The

answer is no, as we can see in Figure shown below, if we

take T = 2. Why did this happen? Take an arbitrary cut. The

value of the cut will be T times the original value of the cut,

plus the number of edges in it.

Thus, a non-minimum cut in the first place could become

minimum if it contains just a few edges. This is because the

constant might not have been chosen properly in the

beginning, as is the case in the example above. We can fix

this by choosing T large enough to neutralize the difference

in the number of edges between cuts in the network.

In the above example T = 4 would be enough, but to

generalize, we take T = 10, one more than the number of

edges in the original network, and one more than the number

of edges that could possibly be in a minimum-cut. It is now

true that a minimum-cut in the new network is minimum

in the original network as well. However the converse is not

true, and it is to our advantage. Notice how the difference

between minimum cuts is now made by the number of edges

in the cut. So we just find the min-cut in this new network

to solve the problem correctly.

Let’s illustrate some more the min-cut pattern: “An

undirected graph is given. What is the minimum number of

edges that should be removed in order to disconnect the
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graph?” In other words the problem asks us to remove some

edges in order for two nodes to be separated. This should

ring a bell - a minimum cut approach might work. So far we

have only seen maximum flow in directed graphs, but now

we are facing an undirected one.

This should not be a very big problem though, as we can

direct the graph by replacing every (undirected) edge x-y with

two arcs: x-y and y-x. In this case the value of the min-cut

is the number of edges in it, so we assign a 1 capacity to

each of them. We are not asked to separate two given vertices,

but rather to disconnect optimally any two vertices, so we

must take every pair of vertices and treat them as the source

and the sink and keep the best one from these minimum-

cuts.

An improvement can be made, however. Take one vertex,

let’s say vertex numbered 1. Because the graph should be

disconnected, there must be another vertex unreachable

from it. So it suffices to treat vertex 1 as the source and

iterate through every other vertex and treat it as the sink.

What if instead of edges we now have to remove a

minimum number of vertices to disconnect the graph? Now

we are asked for a different min-cut, composed of vertices.

We must somehow convert the vertices to edges though.

Recall the problem above where we converted vertex-

capacities to edge-capacities. The same trick works here.

First “un-direct” the graph as in the previous example.

Next double the number of vertices and deal edges the

same way: an edge x-y is directed from the out-x vertex to

in-y. Then convert the vertex to an edge by adding a 1-

capacity arc from the in-vertex to the out-vertex.
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Now for each two vertices we must solve the sub-problem

of minimally separating them. So, just like before take each

pair of vertices and treat the out-vertex of one of them as

the source and the in-vertex of the other one as the sink

(this is because the only arc leaving the in-vertex is the one

that goes to the out-vertex) and take the lowest value of the

maximum flow. This time we can’t improve in the quadratic

number of steps needed, because the first vertex may be in

an optimum solution and by always considering it as the

source we lose such a case.
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5

Expressing Algorithms

Algorithms can be expressed in many kinds of notation,

including natural languages, pseudo code, flowcharts,

Programmeming languages orcontrol tables (processed by

interpreters). Natural language expressions of algorithms

tend to be verbose and ambiguous, and are rarely used for

complex or technical algorithms.

Pseudocode, flowcharts and control tables are structured

ways to express algorithms that avoid many of the

ambiguities common in natural language statements, while

remaining independent of a particular implementation

language. Programmeming languages are primarily intended

for expressing algorithms in a form that can be executed by

a computer, but are often used as a way to define or

document algorithms.

There is a wide variety of representations possible and

one can express a given Turing machine Programme as a
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sequence of machine tables (see more at finite state machine

and state transition table), as flowcharts (see more at state

diagram), or as a form of rudimentary machine code or

assembly code called “sets of quadruples”..

Sometimes it is helpful in the description of an algorithm

to supplement small “flow charts” (state diagrams) with

natural-language and/or arithmetic expressions written

inside “block diagrams” to summarize what the “flow charts”

are accomplishing.

Representations of algorithms are generally classed into

three accepted levels of Turing machine description:

• High-level description: “...prose to describe an

algorithm, ignoring the implementation details. At this

level we do not need to mention how the machine

manages its tape or head.”

• Implementation description: “...prose used to define

the way the Turing machine uses its head and the

way that it stores data on its tape. At this level we

do not give details of states or transition function.”

• Formal description: Most detailed, “lowest level”, gives

the Turing machine’s “state table”.

COMPUTER ALGORITHMS

In computer systems, an algorithm is basically an

instance of logic written in software by software developers

to be effective for the intended “target” computer(s), in order

for the software on the target machines to do something.

For instance, if a person is writing software that is supposed

to print out a PDF document located at the operating system

folder “/My Documents” at computer drive “D:” every Friday,
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they will write an algorithm that specifies the following

actions: “If today’s date (computer time) is ‘Friday,’ open the

document at ‘D:/My Documents’ and call the ‘print’

function”.

While this simple algorithm does not look into whether

the printer has enough paper or whether the document has

been moved into a different location, one can make this

algorithm more robust and anticipate these problems by

rewriting it as a formal CASE statement or as a (carefully

crafted) sequence of IF-THEN-ELSE statements. For example

the CASE statement might appear as follows (there are other

possibilities):

• Case 1: IF today’s date is NOT Friday THEN exit this

CASE instruction ELSE

• Case 2: IF today’s date is Friday AND the document

is located at ‘D:/My Documents’ AND there is paper

in the printer THEN print the document (and exit

this CASE instruction) ELSE

• Case 3: IF today’s date is Friday AND the document

is NOT located at ‘D:/My Documents’ THEN display

‘document not found’ error message (and exit this

CASE instruction) ELSE

• Case 4: IF today’s date is Friday AND the document

is located at ‘D:/My Documents’ AND there is NO

paper in the printer THEN, (i) display ‘out of paper’

error message (ii) exit. Note that CASE 3 includes

two possibilities: (i) the document is NOT located at

‘D:/My Documents’ AND there’s paper in the printer

OR (ii) the document is NOT located at ‘D:/My

Documents’ AND there’s NO paper in the printer.
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The sequence of IF-THEN-ELSE tests might look like this:

• Test 1: IF today’s date is NOT Friday THEN done

ELSE TEST 2:

• Test 2: IF the document is NOT located at ‘D:/My

Documents’ THEN display ‘document not found’ error

message ELSE TEST 3:

• Test 3: IF there is NO paper in the printer THEN

display ‘out of paper’ error message ELSE print the

document.

These examples’ logic grants precedence to the instance

of “NO document at ‘D:/My Documents’ “.

DATA TYPES

Since C allows you to define new data types we shall not

be able to cover all of the possiblities, only the most important

examples. The most important of these are

File: The type which files are classified under 

Enum: Enumerated type for abstract data 

Void: The “empty” type 

Volatile: New ANSI standard type for memory mapped I/

O 

Const: New ANSI standard type for fixed data 

Struct: Groups of variables under a single name 

Union: Multi-purpose storage areas for dynamical

memory allocation

SPECIAL CONSTANT EXPRESSIONS
Constant expressions are often used without any

thought, until a programmer needs to know how to do

something special with them. Up to now the distinction
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between long and short integer types has largely been

ignored. Constant values can be declared explicitly as long

values, in fact, by placing the letter L after the constant.
long int variable = 23L;
variable = 236526598L;

Advanced programmers, writing systems software, often

find it convenient to work with hexadecimal or octal numbers

since these number bases have a special relationship to

binary. A constant in one of these types is declared by placing

either 0 (zero) or 0x in front of the appropriate value. If ddd is

a value, then:
Octal number 0ddd
Hexadecimal number 0xddd

For example:
oct_value = 077;/* 77 octal */
hex_value = 0xFFEF;/* FFEF hex */

This kind of notation has already been applied to strings

and single character constants with the backslash notation,

instead of the leading zero character:
ch = ‘\ddd’;
ch = ‘\xdd’;

The values of character constants, like these, cannot be

any greater than 255.

File: In all previous sections, the files stdin, stdout and

stderr alone have been used in programs. These special files

are always handled implicitly by functions likeprintf() and

scanf(): the programmer never gets to know that they are,

in fact, files. Programs do not have to use these functions

however: standard input/output files can be treated explicitly

by general file handling functions just as well. Files are

distinguished by filenames and by file pointers. File pointers

are variables which pass the location of files to file handling

functions; being variables, they have to be declared as being
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some data type. That type is called FILE and file pointers

have to be declared “pointer to FILE”.

For example:
FILE *fp;
FILE *fp = stdin;
FILE *fopen();

File handling functions which return file pointers must

also be declared as pointers to files. Notice that, in contrast

to all the other reserved words FILE is written in upper case:

the reason for this is that FILE is not a simple data type

such as char or int, but a structure which is only defined by

the header file stdio.h and so, strictly speaking, it is not a

reserved word itself. We shall return to look more closely at

files soon.

Enum: Abstract data are usually the realm of exclusively

high level languages such as Pascal. enum is a way of

incorporating limited “high level” data facilities into C.

Enum is short for enumerated data. The user defines a

type of data which is made up of a fixed set of words, instead

of numbers or characters. These words are given substitute

integer numbers by the compiler which are used to identify

and compare enum type data. For example:
enum countries
{
England,
Scotland,
Wales,
Eire,
Norge,
Sverige,
Danmark,
Deutschland
};
main ()
{ enum countries variable;
variable = England;
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}

Example:
/* Enumerated Data */
#include <stdio.h>

enum countries
{

England,
Ireland,
Scotland,
Wales,
Danmark,
Island,
Norge,
Sverige
};

main () /* Electronic Passport Programme */
{ enum countries birthplace, getinfo();
printf (“Insert electronic passport\n”);
birthplace = getinfo();
switch (birthplace)

{
case England: printf (“Welcome home!\n”);
break;
case Danmark:
case Norge: printf (“Velkommen til

England\n”);
break;

}
}
enum countries getinfo()/* interrogate

passport */
{
return (England);
}

/* end */

enum makes words into constant integer values for a

programmer. Data which are declared enum are not the kind

of data which it makes sense to do arithmetic with (even

integer arithmetic), so in most cases it should not be

necessary to know or even care about what numbers the

compiler gives to the words in the list. However, some

compilers allow the programmer to force particular values
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on words. The compiler then tries to give the values

successive integer numbers unless the programmer states

otherwise.

For instance:
enum planets
{
Mercury,
Venus,
Earth = 12,
Mars,
Jupiter,
Saturn,
Uranus,
Neptune,
Pluto
};

This would probably yield values Mercury = 0, Venus =

1, Earth = 12, Mars = 13, Jupiter = 14 . etc. If the user tries

to force a value which the compiler has already used then

the compiler will complain.

The following example programme listing shows two

points:

• Enum types can be local or global.

• The labels can be forced to have certain values

MACHINE LEVEL OPERATIONS

BITS AND BYTES  
Down in the depths of your computer, below even the

operating system are bits of memory. These days we are used

to working at such a high level that it is easy to forget them.

Bits (or binary digits) are the lowest level software objects in

a computer: there is nothing more primitive. For precisely

this reason, it is rare for high level languages to even
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acknowledge the existence of bits, let alone manipulate them.

Manipulating bit patterns is usually the preserve of assembly

language programmers. C, however, is quite different from

most other high level languages in that it allows a

programmer full access to bits and even provides high level

operators for manipulating them.

BIT PATTERNS
• All computer data, of any type, are bit patterns. The

only difference between a string and a floating point

variable is the way in which we choose to interpret

the patterns of bits in a computer’s memory. For the

most part, it is quite unnecessary to think of

computer data as bit patterns; systems programmers,

on the other hand, frequently find that they need to

handle bits directly in order to make efficient use of

memory when using flags. A flag is a message which

is either one thing or the other: in system terms, the

flag is said to be ‘on’ or ‘off’ or alternatively

set or cleared. The usual place to find flags is in a

status register of a CPU (central processor unit) or

in a pseudo-register (this is a status register for an

imaginary processor, which is held in memory). A

status register is a group of bits (a byte perhaps) in

which each bit signifies something special. In an

ordinary byte of data, bits are grouped together and

are interpreted to have a collective meaning; in a

status register they are thought of as being

independent. Programmers are interested to know

about the contents of bits in these registers, perhaps
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to find out what happened in a programme after some

special operation is carried out.

FLAGS, REGISTERS AND MESSAGES
A register is a place inside a computer processor chip,

where data are worked upon in some way. A status register is

a register which is used to return information to a

programmer about the operations which took place in other

registers.

Status registers contain flags which give yes or no

answers to questions concerning the other registers. In

advanced programming, there may be call for “pseudo

registers” in addition to “real” ones. A pseudo register is

merely a register which is created by the programmer in

computer memory (it does not exist inside a processor).

Messages are just like pseudo status registers: they are

collections of flags which signal special information between

different devices and/or different programs in a computer

system.

Messages do not necessarily have fixed locations: they

may be passed a parameters. Messages are a very compact

way of passing information to low level functions in a

programme. Flags, registers, pseudo-registers and messages

are all treated as bit patterns.

A programme which makes use of them must therefore

be able to assign these objects to C variables for use. A bit

pattern would normally be declared as a character or some

kind of integer type in C, perhaps with the aid of a typedef

statement.
typedef char byte;
typedef int bitpattern;
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bitpattern variable;
byte message;

The flags or bits in a register/message. have the values

1 or 0, depending upon whether they are on or off (set or

cleared). A programme can test for this by using

combinations of the operators which C provides.

BIT OPERATORS AND ASSIGNMENTS

C provides the following operators for handling bit

patterns:

<< Bit shift left (a specified number or bit positions) 

>> Bit shift right(a specified number of bit positions) 

| Bitwise Inclusive OR 

^ Bitwise Exclusive OR 

& Bitwise AND 

~ Bitwise one’s complement 

&= And assign (variable = variable & value) 

|= Exclusive OR assign (variable = variable | value) 

^= Inclusive OR assign (variable = variable ^ value) 

>>= Shift right assign (variable = variable >> value) 

<<= Shift left assign (variable = variable << value)

BIT OPERATORS

Bitwise operations are not to be confused with logical

operations (&&, ||.) A bit pattern is made up of 0s and 1s

and bitwise operators operate individually upon each bit in

the operand. Every 0 or 1 undergoes the operations

individually. Bitwise operators (AND, OR) can be used in

place of logical operators (&&,||), but they are less efficient,

because logical operators are designed to reduce the number

of comparisons made, in an expression, to the optimum: as

soon as the truth or falsity of an expression is known, a
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logical comparison operator quits. A bitwise operator would

continue operating to the last before the final result were

known.

Below is a brief summary of the operations which are

performed by the above operators on the bits of their

operands.

SHIFT OPERATIONS
Imagine a bit pattern as being represented by the

following group of boxes. Every box represents a bit; the

numbers inside represent their values. The values written

over the top are the common integer values which the whole

group of bits would have, if they were interpreted collectively

as an integer.
128 64 32 16 8 4 2 1
———————————————————————————————————————
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  = 1
———————————————————————————————————————

Shift operators move whole bit patterns left or right by

shunting them between boxes.

The syntax of this operation is:
value << number of positions
value >> number of positions

So for example, using the boxed value (1) above:
1 << 1

would have the value 2, because the bit pattern would

have been moved one place the the left:
128 64 32 16 8 4 2 1
——————————————————————————————————————
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | = 2
——————————————————————————————————————

Similarly:
1 << 4

has the value 16 because the original bit pattern is moved

by four places:
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128 64 32 16 8 4 2 1
——————————————————————————————————————
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | = 16
——————————————————————————————————————

And:
6 << 2 == 12
128 64 32 16 8 4 2 1
——————————————————————————————————————
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | = 6
——————————————————————————————————————

Shift left 2 places:
128 64 32 16 8 4 2 1
——————————————————————————————————————
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | = 12
——————————————————————————————————————

Notice that every shift left multiplies by 2 and that every

shift right would divide by two, integerwise. If a bit reaches the

edge of the group of boxes then it falls out and is lost forever.

So:
1 >> 1 == 0
2 >> 1 == 1
2 >> 2 == 0
n >> n == 0

A common use of shifting is to scan through the bits of a

bitpattern one by one in a loop: this is done by using masks.

TRUTH TABLES AND MASKING
The operations AND, OR (inclusive OR) and XOR/EOR

(exclusive OR) perform comparisons or “masking” operations

between two bits.  They are binary or dyadic operators.

Another operation called COMPLEMENT is a unary operator.

The operations performed by these bitwise operators are best

summarized bytruth tables. Truth tables indicate what the

results of all possible operations are between two single bits.

The same operation is then carried out for all the bits in the

variables which are operated upon.
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Complement ~

The complement of a number is the logical opposite of

the number. C provides a “one’s complement” operator which

simply changes all 1s into 0s and all 0s into 1s.

~1 has the value 0(for each bit)

~0 has the value 1

As a truth table this would be summarized as follows:
~value == result

0 1
1 0

AND &

This works between two values. e.g. (1 & 0)
value 1 & value 2 == result
0 0 0
0 1 0
1 0 0
1 1 1

Both value 1 AND value 2 have to be 1 in order for the

result or be 1.

OR |

This works between two values. e.g. (1 | 0)
value 1 | value 2 == result

0 0 0
0 1 1

1 0 1
1 1 1

The result is 1 if one OR the other OR both of the values

is 1.

XOR/EOR ^

Operates on two values. e.g. (1 ^ 0)
value 1 ^ value 2 == result
0 0 0

0 1 1
1 0 1

1 1 0
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The result is 1 if one OR the other (but not both) of the

values is 1.

Bit patterns and logic operators are often used to

make masks. A mask is as a thing which fits over a bit

pattern and modifies the result in order perhaps to single

out particular bits, usually to cover up part of a bit pattern.

This is particularly pertinent for handling flags, where a

programmer wishes to know if one particular flag is set or

not set and does not care about the values of the others.

This is done by deliberately inventing a value which only

allows the particular flag of interest to have a non-zero value

and then ANDing that value with the flag register. For

example: in symbolic language:
MASK = 00000001

VALUE1 = 10011011

VALUE2 = 10011100

MASK & VALUE1 == 00000001

MASK & VALUE2 == 00000000

The zeros in the mask masks off the first seven bits and

leave only the last one to reveal its true value. Alternatively,

masks can be built up by specifying several flags:
FLAG1 = 00000001
FLAG2 = 00000010
FLAG3 = 00000100
MESSAGE = FLAG1 | FLAG2 | FLAG3
MESSAGE == 00000111

It should be emphasized that these expressions are only

written in symbolic language: it is not possible to use binary

values in C. The programmer must convert to hexadecimal,

octal or denary first.

Example

A simple example helps to show how logical masks and

shift operations can be combined. The first programme gets
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a denary number from the user and converts it into binary.

The second programme gets a value from the user in binary

and converts it into hexadecimal.
/* Bit Manipulation #1 */

/* Convert denary numbers into binary */
/* Keep shifting i by one to the left */
/* and test the highest bit. This does*/
/* NOT preserve the value of i */

#include <stdio.h>
#define NUMBEROFBITS 8
main ()
{ short i,j,bit,;

short MASK = 0x80;
printf (“Enter any number less than 128: “);
scanf (“%h”, &i);
if (i > 128)

{
printf (“Too big\n”);
return (0);
}

printf (“Binary value = “);
for (j = 0; j < NUMBEROFBITS; j++)

{
bit = i & MASK;
printf (“%1d”,bit/MASK);
i <<= 1;
}

printf (“\n”);
}

/* end */
Output:
Enter any number less than 128: 56
Binary value = 00111000
Enter any value less than 128: 3
Binary value = 00000011

Example:
/* Bit Manipulation #2 */

/* Convert binary numbers into hex */
#include <stdio.h>
#define NUMBEROFBITS 8
main ()
{ short j,hex = 0;

short MASK;
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char binary[NUMBEROFBITS];
printf (“Enter an 8-bit binary number: “);
for (j = 0; j < NUMBEROFBITS; j++)

{
binary[j] = getchar();
}

for (j = 0; j < NUMBEROFBITS; j++)
{
hex <<= 1;
switch (binary[j])

{
case ‘1’: MASK = 1;
break;
case ‘0’: MASK = 0;
break;
default:printf(“Not binary\n”);

return(0);
}

hex |= MASK;
}

printf (“Hex value = %1x\n”,hex);
}

/* end */

Example:
Enter any number less than 128: 56
Binary value = 00111000
Enter any value less than 128: 3
Binary value = 00000011

FILES AND DEVICES

Files are places for reading data from or writing data to.

This includes disk files and it includes devices such as the

printer or the monitor of a computer. C treats all information

which enters or leaves a programme as though it were a

stream of bytes: a file. The most commonly used file streams

are stdin (the keyboard) andstdout (the screen), but more

sophisticated programs need to be able to read or write to

files which are found on a disk or to the printer etc. An

operating system allows a programme to see files in the
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outside world by providing a number of channels or ‘portals’

(‘inlets’ and ‘outlets’) to work through. In order to examine

the contents of a file or to write information to a file, a

programme has to open one of these portals. The reason for

this slightly indirect method of working is that channels/

portals hide operating system dependent details of filing from

the programmer. Think of it as a protocol. A programme

which writes information does no more than pass that

information to one of these portals and the operating

system’s filing subsystem does the rest. A programme which

reads data simply reads values from its file portal and does

not have to worry about how they got there. This is extremely

simple to work in practice.

To use a file then, a programme has to go through the

following routine:

• Open a file for reading or writing.

• Read or write to the file using file handling functions

provided by the standard library.

• Close the file to free the operating system “portal”

for use by another programme or file.

A programme opens a file by calling a standard library

function and is returned a file pointer, by the operating

system, which allows a programme to address that particular

file and to distinguish it from all others.

FILES GENERALLY

C provides two levels of file handling; these can be called

high level and low level. High level files are all treated as

text files. In fact, the data which go into the files are exactly

what would be seen on the screen, character by character,
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except that they are stored in a file instead. This is true

whether a file is meant to store characters, integers, floating

point types. Any file, which is written to by high level file

handling functions, ends up as a text file which could be

edited by a text editor. 

High level text files are also read back as character files,

in the same way that input is acquired from the keyboard.

This all means that high level file functions are identical in

concept to keyboard/screen input/output. The alternative

to these high level functions, is obviously low level functions.

These are more efficient, in principle, at filing data as they

can store data in large lumps, in raw memory format, without

converting to text files first. Low level input/output functions

have the disadvantage that they are less ‘programmer

friendly’ than the high level ones, but they are likely to work

faster.

FILE POSITIONS
When data are read from a file, the operating system

keeps track of the current position of a programme within

that file so that it only needs to make a standard library

call to ‘read the next part of the file’ and the operating

system obliges by reading some more and advancing its

position within the file, until it reaches the end. Each

single character which is read causes the position in a

file to be advanced by one.

Although the operating system does a great deal of hand

holding regarding file positions, a programme can control

the way in which that position changes with functions such

as ungetc() if need be. In most cases it is not necessary and
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it should be avoided, since complex movements within a file

can cause complex movements of a disk drive mechanism

which in turn can lead to wear on disks and the occurrence

of errors.

HIGH LEVEL FILE HANDLING FUNCTIONS
Most of the high level input/output functions which deal

with files are easily recognizable in that they start with the

letter ‘f’. Some of these functions will appear strikingly

familiar.

For instance:
fprintf()
fscanf()
fgets()
fputs()

These are all generalized file handling versions of the

standard input/output library. They work with generalized

files, as opposed to the specific files stdin and stdout

which printf() and scanf() use.

The file versions differ only in that they need an extra

piece of information: the file pointer to a particular portal.

This is passed as an extra parameter to the functions.

they process data in an identical way to their standard

I/O counterparts. Other filing functions will not look so

familiar.

For example:
fopen()
fclose()
getc()
ungetc();
putc()
fgetc()
fputc()
feof()



Algorithm Software in Technology Design

128

OPENING FILES

A file is opened by a call to the library function fopen():

this is available automatically when the library file <stdio.h>

is included. There are two stages to opening a file: firstly a

file portal must be found so that a programme can access

information from a file at all. Secondly the file must be

physically located on a disk or as a device or whatever.

The fopen() function performs both of these services and, if,

in fact, the file it attempts to open does not exist, that file is

created anew. The syntax of the fopen() function is:
FILE *returnpointer;
returnpointer = fopen(“filename”,”mode”);

or
FILE returnpointer;
char *fname, *mode;
returnpointer = fopen(fname,mode);

The filename is a string which provides the name of the

file to be opened. Filenames are system dependent so the

details of this must be sought from the local operating system

manual. The operation mode is also a string, chosen from

one of the following:

r Open file for reading 

w Open file for writing 

a Open file for appending 

rw Open file for reading and writing (some systems)

This mode string specifies the way in which the file will

be used. Finally, returnpointer is a pointer to a FILE

structure which is the whole object of calling this function.

If the file (which was named) opened successfully

when fopen() was called, returnpointer is a pointer to the

file portal. If the file could not be opened, this pointer is set

to the value NULL. This should be tested for, because it would
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not make sense to attempt to write to a file which could not

be opened or created, for whatever reason.

A read only file is opened, for example, with some

programme code such as:
FILE *fp;
if ((fp = fopen (“filename”,”r”)) == NULL)

{
printf (“File could not be opened\n”);
error_handler();
}

A question which springs to mind is: what happens if

the user has to type in the name of a file while the programme

is running? The solution to this problem is quite simple.

Recall the function filename() which was written in chapter

20.
char *filename() /* return filename */
{ static char *filenm = “..”;
do

{
printf (“Enter filename:”);
scanf (“%24s”,filenm);
skipgarb();
}

while (strlen(filenm) == 0);
return (filenm);
}

This function makes file opening simple. The programmer

would now write something like:

FILE *fp;

char *filename();

if ((fp = fopen (filename(),”r”)) == NULL)

{

printf (“File could not be opened\n”);

error_handler();

}
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and then the user of the programme would automatically

be prompted for a filename. Once a file has been opened, it

can be read from or written to using the other library

functions (such as fprintf() and fscanf()) and then finally the

file has to be closed again.

CLOSING A FILE
A file is closed by calling the function fclose(). fclose() has

the syntax:
int returncode;
FILE *fp;
returncode = fclose (fp);

fp is a pointer to the file which is to be closed and returncode

is an integer value which is 0 if the file was closed

successfully. fclose() prompts the file manager to finish off

its dealings with the named file and to close the portal which

the operating system reserved for it. When closing a file, a

programme needs to do something like the following:
if (fclose(fp) != 0)

{
printf (“File did not exist.\n”);
error_handler();
}

fprintf()

This is the highest level function which writes to files.

Its name is meant to signify “file-print-formatted” and it is

almost identical to its stdout counterpart printf(). The form

of the fprintf() statement is as follows:
fprintf (fp,”string”,variables);

where fp is a file pointer, string is a control string which is

to be formatted and the variables are those which are to

be substituted into the blank fields of the format string.

For example, assume that there is an open file, pointed to

by fp:
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int i = 12;
float x = 2.356;
char ch = ‘s’;
fprintf (fp, “%d %f %c”, i, x, ch);

The conversion specifiers are identical to those for printf().

In fact fprintf() is related to printf() in a very simple way: the

following two statements are identical.
printf (“Hello world %d”, 1);
fprintf (stdout,”Hello world %d”, 1);
fscanf()

The analogue of scanf() is fscanf() and, as with fprintf(),

this function differs from its standard I/O counterpart only

in one extra parameter: a file pointer. The form of

an fscanf() statement is:
FILE *fp;
int n;
n = fscanf (fp,”string”,pointers);

where n is the number of items matched in the control string

and fp is a pointer to the file which is to be read from. For

example, assuming that fp is a pointer to an open file:
int i = 10;
float x = -2.356;
char ch = ‘x’;
fscanf (fp, “%d %f %c”, &i, &x, &ch);

The remarks which were made about scanf() also apply

to this function: fscanf() is a ‘dangerous’ function in that it

can easily get out of step with the input data unless the

input is properly formatted.

For comparison alone, skipfilegarb() is written below.
skipfilegarb(fp)
FILE *fp;
{
while (getc(fp) != ‘\n’)
{
}
}
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SINGLE CHARACTER I/O
There are commonly four functions/macros which

perform single character input/output to or from files. They

are analogous to the functions/macros
getchar()
putchar()

for the standard I/O files and they are called:
getc()
ungetc();
putc()
fgetc()
fputc()
getc() and fgetc()

The difference between getc() and fgetc() will depend upon

a particular system. It might be that getc() is implemented

as a macro, whereas fgetc() is implemented as a function or

vice versa. One of these alternatives may not be present at

all in a library. Check the manual, to be sure!

Both getc() and fgetc()fetch a single character from a file:
FILE *fp;
char ch;
/* open file */
ch = getc (fp);
ch = fgetc (fp);

These functions return a character from the specified

file if they operated successfully, otherwise they

return EOF to indicate the end of a file or some other error.

Apart from this, these functions/macros are quite

unremarkable.
ungetc()

ungetc() is a function which ‘un-gets’ a character from a file.

That is, it reverses the effect of the last get operation. This

is not like writing to a file, but it is like stepping back one

position within the file. The purpose of this function is to

leave the input in the correct place for other functions in a
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programme when other functions go too far in a file. An

example of this would be a programme which looks for a

word in a text file and processes that word in some way.
while (getc(fp) != ‘‘)

{
}

The programme would skip over spaces until it found a

character and then it would know that this was the start

of a word. However, having used getc() to read the first

character of that word, the position in the file would be the

second character in the word! This means that, if another

function wanted to read that word from the beginning, the

position in the file would not be correct, because the first

character would already have been read. The solution is to

use ungetc() to move the file position back a character:
int returncode;
returncode = ungetc(fp);

The returncode is EOF if the operation was unsuccessful.
putc() and fputc()

These two functions write a single character to the output

file, pointed to by fp. As with getc(), one of these may be a

macro. The form of these statements is:
FILE *fp;
char ch;
int returncode;
returncode = fputc (ch,fp);
returncode = putc (ch,fp);

The returncode is the ascii code of the character sent, if

the operation was successful, otherwise it is EOF.
fgets() and fputs()

Just as gets() and puts() fetched and sent strings to

standard input/output files stdin and stdout,

so fgets() and fputs() send strings to generalized files. The

form of an fgets() statement is as follows:
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char *strbuff,*returnval;
int n;
FILE *fp;
returnval = fgets (strbuff,n,fp);

strbuff is a pointer to an input buffer for the string; fp is

a pointer to an open file. returnval is a pointer to a string: if

there was an error in fgets() this pointer is set to the

value NULL, otherwise it is set to the value of “strbuff”. No

more than (n-1) characters are read by fgets() so the

programmer has to be sure to set n equal to the size of the

string buffer. (One byte is reserved for the NULL terminator.)

The form of an fputs() statement is as follows:
char *str;
int returnval;
FILE *fp;
returnval = fputs (str,fp);

Where str is the NULL terminated string which is to be

sent to the file pointed to by fp. returnval is set to EOF if

there was an error in writing to the file.

PRINTER OUTPUT
Any serious application programme will have to be in full

control of the output of a programme. For instance, it may

need to redirect output to the printer so that data can be

made into hard copies. To do this, one of three things must

be undertaken:

• Stdout must be redirected so that it sends data to

the printer device. 

• A new “standard file” must be used (not all C

compilers use this method.) 

• A new file must be opened in order to write to the

printer device
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The first method is not generally satisfactory for

applications programs, because the standard

files stdin and stdout can only easily be redirected from the

operating system command line interpreter (when a

programme is run by typing its name). Examples of this are:
type file > PRN

which send a text file to the printer device. The second

method is reserved for only a few implementations of C in

which another ‘standard file’ is opened by the local operating

system and is available for sending data to the printer

stream.

This file might be called “stdprn” or “standard printer

file” and data could be written to the printer by switching

writing to the file like this:
fprintf (stdprn,”string %d.”, integer);

The final method of writing to the printer is to open a file

to the printer, personally. To do this, a programme has to

give the “filename” of the printer device.

This could be something like “PRT:” or “PRN” or “LPRT”

or whatever. The filename (actually called a pseudo device

name) is used to open a file in precisely the same way as

any other file is opened: by using a call to fopen(). fopen() then

returns a pointer to file (which is effectively “stdprn”) and

this is used to write data to a computer’s printer driver. The

programme code to do this should look something like the

following:
FILE *stdprn;
if ((stdprn = fopen(“PRT:”,”w”)) == NULL)

{
printf (“Printer busy or disconnected\n”);
error_handler;
}
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LOW LEVEL FILING OPERATIONS

Normally a programmer can get away with using the high

level input/output functions, but there may be times when

C’s predilection for handling all high level input/output as

text files, becomes a nuisance. A programme can then use a

set of low level I/O functions which are provided by the

standard library.

These are:
open()
close()
creat()
read()
write()
rename()
unlink()/remove()
lseek()

These low level routines work on the operating system’s

end of the file portals. They should be regarded as being

advanced features of the language because they are

dangerous routines for bug ridden programs.

The data which they deal with is untranslated: that is,

no conversion from characters to floating point or integers

or any type at all take place. Data are treated as a raw stream

of bytes.

Low level functions should not be used on any file at the

same time as high level routines, since high level file handling

functions often make calls to the low level functions.

Working at the low level, programs can create, delete and

rename files but they are restricted to the reading and writing

of untranslated data: there are no functions such

as fprintf() or fscanf() which make type conversions.

As well as the functions listed above a local operating

system will doubtless provide special function calls which
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enable a programmer to make the most of the facilities

offered by the particular operating environment. These

will be documented, either in a compiler manual, or in

an operating system manual, depending upon the system

concerned.

FILE DESCRIPTORS
At the low level, files are not handled using file pointers,

but with integers known as file handles or file descriptors.

A file handle is essentially the number of a particular file

portal in an array. In other words, for all the different

terminology, they describe the same thing. For example:

int fd;
Would declare a file handle or descriptor or portal or

whatever it is to be called.

open()
Open() is the low level file open function. The form of this

function call is:
int fd, mode;
char *filename;
fd = open (filename,mode);

where filename is a string which holds the name of the file

concerned, mode is a value which specifies what the file is

to be opened for and fd is either a number used to distinguish

the file from others, or -1 if an error occurred.

A programme can give more information to this function

than it can to fopen() in order to define exactly

what open() will do. The integer mode is a message or a

pseudo register which passes the necessary information

to open(), by using the following flags:
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O_RDONLY Read access only

O_WRONLY Write access only

O_RDWR Read/Write access

and on some compilers:
O_CREAT Create the file if it does not exist

O_TRUNC Truncate the file if it does exist

O_APPEND Find the end of the file before each
write

O_EXCL Exclude. Force create to fail if the file exists.

The macro definitions of these flags will be included in a

library file: find out which one and #include it in the

programme. The normal procedure is to open a file using

one of the first three modes.

For example:
#define FAILED -1
main()
{ char *filename();

int fd;
fd = open(filename(), O_RDONLY);
if (fd == FAILED)

{
printf (“File not found\n”);
error_handler (failed);
}

}

This opens up a read-only file for low level handling, with

error checking. Some systems allow a more flexible way of

opening files. The four appended modes are values which

can be bitwise ORed with one of the first three in order to

get more mileage out of open(). The bitwise OR operator is

the vertical bar “|”. For example, to emulate

the fopen() function a programme could opt to create a file if

it did not already exist:
fd = open (filename(), O_RDONLY | O_CREAT);

open() sets the file position to zero if the file is opened

successfully.
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Close()
close() releases a file portal for use by other files and brings

a file completely up to date with regard to any changes that

have been made to it. Like all other filing functions, it returns

the value 0 if it performs successfully and the value -1 if it

fails. e.g.
#define FAILED -1
if (close(fd) == FAILED)

{
printf (“ERROR!”);
}

Creat()

This function creates a new file and prepares it for access

using the low level file handling functions. If a file which

already exists is created, its contents are discarded. The form

of this function call is:
int fd, pmode;
char *filename;
fd = creat(filename,pmode);

filename must be a valid filename; pmode is a flag which

contains access-privilege mode bits (system specific

information about allowed access) and fd is a returned file

handle. In the absence of any information about pmode,

this parameter can be set to zero. Note that, the action of

creating a file opens it too. Thus after a call to creat, you

should close the file descriptor.

Read()
This function gets a block of information from a file.

The data are loaded directly into memory, as a sequence of

bytes. The user must provide a place for them (either by

making an array or by using malloc() to reserve
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space). read() keeps track of file positions automatically, so

it actually reads the next block of bytes from the current

file position. The following example reads n bytes from a

file:
int returnvalue, fd, n;
char *buffer;
if ((buffer = malloc(size)) == NULL)

{
puts (“Out of memory\n”);
error_handler ();
}

returnvalue = read (fd,buffer,n);

The return value should be checked. Its values are

defined as follows:

End of file,

-1 Error occurred 

nthe number of bytes actually read. (If all went well this

should be equal to n.)

Write()

This function is the opposite of read(). It writes a block

of n bytes from a contiguous portion of memory to a file which

was opened by open(). The form of this function is:
int returnvalue, fd, n;
char *buffer;
returnvalue = write (fd,buffer,n);

The return value should, again, be checked for errors:

-1 Error 

nNumber of bytes written

Lseek()
Low level file handing functions have their equivalent

of fseek() for finding a specific position within a file. This is

almost identical to fseek() except that it uses the file handle
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rather than a file pointer as a parameter and has a different

return value. The constants should be declared long int,

or simply long.
#define FAILED -1L
long int pos,offset,fd;
int mode,returncode;
if ((pos = fseek (fd,offset,mode)) == FAILED)

{
printf(“Error!\n”);
}

pos gives the new file position if successful, and -1 (long) if

an attempt was made to read past the end of the file. The

values which mode can take are:

0Offset measured relative to the beginning of the file. 

1Offset measured relative to the current position. 

2Offset measured relative to the end of the file.

Unlink() and Remove()
These functions delete a file from disk storage. Once

deleted, files are usually irretrievable. They return -1 if the

action failed.
#define FAILED -1
int returnvalue;
char *filename;
if (unlink (filename) == FAILED)

{
printf (“Can’t delete %s\n”,filename);
}

if (remove (filename) == FAILED)
{
printf (“Can’t delete %s\n”,filename);
}

filename is a string containing the name of the file concerned.

This function can fail if a file concerned is protected or if it

is not found or if it is a device. (It is impossible to delete the

printer!)
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Rename()
This function renames a file. The programmer specifies

two filenames: the old filename and a new file name. As

usual, it returns the value -1 if the action fails. An example

illustrates the form of the rename() call:
#define FAILED -1
char *old,*new;
if (rename(old,new) == FAILED)

{
printf (“Can’t rename %s as %s\n”,old,new);
}

rename() can fail because a file is protected or because it is

in use, or because one of the filenames given was not valid.
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6

Augmenting Data Structures

There are some Programmeming situations that can be

perfectly solved with standard data structures such as a

linked lists, hash tables, or binary search trees. Many others

require a dash of creativity. Only in rare situations will you

need to create an entirely new type of data structure,

though. 

More often, it will suffice to augment (to modify) an existing

data structure by storing additional information in it. You

can then Programme new operations for the data structure

to support the desired application. Augmenting a data

structure is not always straightforward, however, since the

added information must be updated and maintained by the

ordinary operations on the data structure.

This lecture discusses two data structures that are

constructed by augmenting red-black trees (see the previous

post on red-black trees).
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The first part of the lecture describes a data structure that

supports general order-statistic operations on a dynamic set.

It’s called dynamic order statistics. The notion of order

statistics was introduced in lecture six. In lecture six it was

shown that any order statistic could be retrieved in O(n) time

from an unordered set. In this lecture it is shown how red-

black trees can be modified so that any order statistic can

be determined in O(lg(n)) time. It presents two algorithms OS-

Select(i), which returns i-th smallest item in a dynamic set,

and OS-Rank(x), which returns rank (position) of element x

in sorted order.

The lecture continues with general methodology of how to

augment a data structure.

Augmenting a data structure can be broken into four steps:

• Choosing an underlying data structure.

• Determining additional information to be maintained

in the underlying data structure.

• Verifying that the additional information can be

maintained for the basic modifying operations (insert,

delete, rotate, etc.) on the underlying data structure.

• Developing new operations.

The second part of the lecture applies this methodology to

construct a data structure called interval trees. This data

structure maintains a dynamic set of elements, with each

element x containing an interval. Interval is simply pair of

numbers (low, high). For example, a time interval from 3

o’clock to 7 o’clock is a pair (3, 7).

Lecture gives an algorithm called Interval-Search(x), which

given a query interval x, quickly finds an interval in the set

that overlaps it. Time complexity of this algorithm is O(lg(n)).
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ABOUT LUCTURE
The lecture is motivated by two things:

• The implementation of ADTs that extend standard

ADTs by one or more additional operations;

• Application in which data “live in” various data

structures simultaneously.

Augmentation is a process by which one adds fields to the

nodes as necessary.

Augmenting a data structure can be broken into four steps:

• choosing an underlying data structure

• determining additional information to be maintained

in the underlying data structure

• verifying that the additional information can be

efficiently maintained for the basic modifying

operations on the underlying data structure

• developing new operations

DYNAMIC ORDER-STATISTIC TREES
ADT: set S; Dictionary operations (Insert, Delete, Search) +

two additional operations:

• Rank(S,x): Returns rank of node x (smallest rank is

1)

• Select(S, i): Select ith smallest element from set S

Implementation
An order-statistic tree T is simply a red-black tree with

additional information stored at each node. Besides the usual

red-black tree fields key[x], left[x], right[x],p[x] and Colour[x]

in a node x, we have another field size[x]. This field contains

the number of internal nodes in the subtree rooted at x

(including x itself), that is, the size of the subtree.
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size[x] = size[left[x]] + size[right[x]] + 1

The node of the order-statistic tree will now look as follows:

figure

There are couple of things though that we have to worry

about:

1. Can size be updated in O(log2n) time per operation?

2. Rank(x) and select(S, i) to be done in O(log2n) time.

Operations on Order-statistic trees

Insert
As we know, insertion into a red-black tree consists of two

phases. Phase 1 goes down the path from the root inserting

the new node as a child of the existing node. To maintain the

subtree sizes we simply increment size[x] for each node x on

the path traversed from the root down toward the leaves.

The new node added gets size 1. Figure illustrates Phase 1.

In the Phase 2, the only structural changes to the

underlying red-black tree are caused by rotations, of which

there are at most two.
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Rotation is a local operation and it invalidates only the two

size fields in the nodes incident on the link around which the

rotation is performed. Figure shows Left and Rightrotations.

Delete
Phase 1 splices out the node we wish to delete. To update

subtree sizes we simply traverse a path from node we wish

to delete up to the root, decrementingsize field for each node

on the path.

Figure illustrates this process.

The rotations in the Phase 2 are handled in the same

manner as for insertion.

Running time: To maintain tree sizes in the Phase 1 of

insertion or deletion we have to increment or decrement

size[x] for each node x on the path from the root down toward

the leaves. Since there are O(log2n) nodes on the traversed

path, the additional cost of maintaining the size fields is

O(log2n). Moreover, rotation is a local operation and hence



Algorithm Software in Technology Design

148

only O(1) additional time is spent updating size fields in the

Phase 2. Thus, both insertion and deletion take O(log2n) time.

Select
The procedure Select(x, i) returns a pointer to the node

containing the ith smallest key in the subtree rooted at x.
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Because each recursive call goes down one level in the

order-statistic tree, the total time for Select is at worst

proportional to the height of the tree. Since the tree is the

red-black tree, its height is O(log2n). Thus, the running time

of Select is O(log2n).

Rank
The procedure Rank(T, x) returns the position of x in the

linear order determined by an inorder tree walk of T. Let x is

a pointer to the node in the tree.
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Since each iteration of the while loop takes O(1) time and

y goes up one level in the tree with each iteration, the running

time of Rank is at worst proportional to the height of the

tree: O(log2n).



Algorithm Software in Technology Design

149

Figure illustrates the Rank procedure.

Fig. Link to our Java Applet

BINARY SEARCH TREES FOR BROWSING ADT
Dictionary + Browsing operations:

• MIN

• MAX

• Predecessor

• Successor

Implementation
The underlying data structure is a red-black tree where

besides usual red-black tree fields each node is augmented

with Min[x], Max[x], Predecessor[x] andSuccessor[x]. Figure 6

shows the augmented Red-Black tree on the input {1 2 3 4 5

6 7 8 9 10 11}.
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The data structure in Figure 6 can be looked at as a binary

search tree or a sorted linked list as shown in Figure 7. In

fact, according to Prof. Devroye, it is a smooth “marriage” of

both data structures.

When we insert or delete a node we always have to update

predecessor and successor pointers. In the Figure 8 we have

deleted a new node with a keyvalue 8. Accordingly we have

to update successor and predecessor pointers. The time it

takes to update pointers is equal to O(log2n), since we either

follow a path up the tree or down the tree. Rotation operations

take as usual O(1) time, so the running time for insertion or

deletion is O(log2n). In figure the updated pointer.

INTERVAL TREES
Interval tree is a binary search tree for intervals which are

efficient for the dictionary operations and overlap. Overlap(x,

i) for interval i and a tree rooted at x, returns a pointer to an

interval in the collection that overlaps the given interval i or
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returns NIL otherwise. The underlying data structure is a red-

black tree in which each node x contains an interval int[x] and

the key of x is a low endpoint of interval, low[int[x]].high[x] is

the high endpoint of interval. In addition, each node x contains

a value max[x] which is the maximum value of any interval

endpoint stored in the subtree rooted at x.

Operations
• Determine overlap with some interval in the tree:

return Yes or No

• Dictionary operations (Insert, Delete, Search)

Given interval i and pointer to the root x Overlap(x, i)

returns NIL if no overlap occured or pointer to the node if

there is an overlap.
TP#�&��*�E��+
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Running Time

The search for the inteval that overlaps i starts with x at

the root of the tree and proceeds downward. It terminates

when either overlapping interval is found or x becomes NIL.

Since each iteration of the basic loop takes O(1) time, and

since the height or the red-black tree is O(log2n) Overlaptakes

O(log2n) time.

Insertion of a node x into a tree consists of two phases.

During the first phase x is inserted as a child of an existing

node.

The value of max[x] can be computed in O(1) time since it

depends only on information in the other fields of x itself

and x’s children, but x’s children are both NIL. Once max[x]

is computed, the change propagates up the tree. Thus, total

time for the first phase is O(log2n). During second phase the

only structural changes are caused by rotations. Since only

two nodes change in rotation, the total time for updating the

max fields is O(log2n) per rotation. Since the number of

rotations during insertion is at most two, the total time for

insertion is O(log2n).

In the first phase of deletion, changes occur if the deleted

node is replaced by its successor, and then again when either

the deleted node or its successor is spliced out.

Propagating the updates to max caused by these changes

costs at most O(log2n) since the changes modify the tree

locally. Fixing up the red-black tree during the second

phase requires at most three rotations, and each rotation

requires at most O(log2n) time to propagate the updates

to max. Thus, like insertion, the total time for deletion is

O(log2n).
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Problem: Layout of VSLI chips

In this section we present a problem which is motivated

by automated chip design. The problem is how can we place

many printed circuits on one chip without overlapping?

To make the problem more amenable to analysis, we

assume that all n rectangles to be aligned with horizontal

axis. We also assume that we are given a configuration of the

rectangles, and our task is merely to check whether there is

any overlap between rectangles.

In the naive solution we try to remove overlapped rectangles

and place them randomly again. It takes time of Θ (n²). The

more efficient algorithm, which takes O(nlog2n) time, uses a

technique known as sweeping.

In sweeping an imaginary vertical sweep line passes

through a given set of geometric objects (rectangles), usually

from left to right. Sweeping provides a method for ordering

geometric objects, usualy by placing them into dynamic data

structure.

We sort the rectangles’ endpoints by increasing x-

coordinate and proceed from left to right. We insert y-direction

intervals into an interval tree when its left endpoint is

encountered and we delete it from interval tree when its right

endpoint is encountered. Whether two segments first become

consecutive in the total order, we check if they overlap.
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Sweepline (Turning 2-d into 1-d)
• Sort x coordinates of rectangles

• Interval tree for y direction intervals

• for i = 1 to 2n do

If ith point is start then if (a, ß) overlap some interval in

interval tree - STOP: Insert((a, ß), interval tree) endpoint then

Delete((a, ß), interval tree) a is a segment immediately above

segment i and ß is a segment immediately below segment i.

Sorting takes O(nlog2n) time using mergesort or heapsort.

Since there are 2n points the for loop iterates at most 2n

times. Each iteration takes O(log2n) time, since each red-

black tree operation takes O(log2n) time. To check if there is

an overlap takes O(1) time. Thus the total running time is

O(log2n).

B-TREES

INTRODUCTION

B-Tree is an indexing technique most commonly used in

databases and file systems where pointers to data are placed

in a balance tree structure so that all references to any data

can be accessed in an equal time frame. It is also a tree data

structure which keeps data sorted so that searching, inserting

and deleting can be done in logarithmic amortized time.

Compared to a real tree, the B-Tree has roots at the top

and leaves and nodes at the bottom. The B-Tree belongs to a

group of techniques in computer science known as self-

balancing search trees which attempts to automatically keep

the number of levels of nodes under the root small at all

times. It is the most preferred way to implement sets,
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associative arrays and other data structures that are used

in computer Programmeming languages, relationaldatabase

management systems and low level data manipulations.

In the B-Tree, the records are stored in the leaves. This is

the location where there is nothing more beyond it. The order

of the tree determines the maximum number of children per

node. Depth refers to the number of required disk access. A

B-Tree can have up to millions and billions of records

although it is not all the time that leaves necessarily contain

a record but more than half certainly do.

When decision points on the tree, which are called nodes,

are on the hard disk instead of on random access memory

(RAM), B-Tree is the preferred technique as hard disks could

work a thousand times slower compared to RAM because

processes on hard disks requires mechanical parts. On RAM,

processes are done purely in electronic media.

The nodes in a B-Tree can have a variable number of child

nodes within a range pre-defined by the system. When a

data is inserted or removed from a node, the number ofchild

nodes also changes but the pre-defined ranged should be

maintained so internal nodes may either be split or joined.

B-trees do not need frequent re-balancing as both the

upper and lower bounds on the number of child nodes are

typically fixed. As an example, a 2-3 B-Tree implementation

has internal nodes that can only have 2 or 3 child nodes.

To keep the B-tree well balanced, all leaf nodes are required

to be of the same depth. The depth only increases very slowly

and infrequently.

Searching in a B-Tree structure starts from the root and

traversed from top to bottom. Insertion is done by looking
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for a node where a new leaf or element should be. If there is

still room or the maximum legal number of elements is not

exceeded, insertion takes place. Otherwise, the leaf node

splits into another tow nodes. Deletion in a B-Tree has two

strategies. The first involves locating the item to be deleted

and immediately doing the action then restructuring the tree.

The second involves doing a traversing down the tree and

laying out the restructure before deleting.

In a file system, a file may contain any number of B-Trees

and each B-Tree must have a unique name composed of any

string of characters. Each B-Tree names is saved in the file

an item containing the number of the rood node of the B-

Tree. Searching, inserting and deleting through the B-Tree

starts from the root node.

The B-Tree was created by Rudolf Bayer and Ed McCreight.

The B in the B-Tree has ambiguous meaning. Some say it

stands for Bayer while others say it stands for Balanced and

still there are other who consider it to stand for Boeing where

both men were working for Boeing Scientific Research Labs

at the time they created the B-tree.

B-Tree structures support various basic dynamic set

operations including Search, Predecessor, Successor,

Minimum, Maximum, Insert, and Delete in time proportional

to the height of the tree. Ideally, a tree will be balanced and

the height will be log n where n is the number of nodes in the

tree.

To ensure that the height of the tree is as small as possible

and therefore provide the best running time, a balanced tree

structure like a red-black tree, AVL tree, or b-tree must be

used.
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When working with large sets of data, it is often not possible

or desirable to maintain the entire structure in primary

storage (RAM). Instead, a relatively small portion of the data

structure is maintained in primary storage, and additional

data is read from secondary storage as needed. Unfortunately,

a magnetic disk, the most common form of secondary storage,

is significantly slower than random access memory (RAM).

In fact, the system often spends more time retrieving data

than actually processing data.

B-trees are balanced trees that are optimized for situations

when part or all of the tree must be maintained in secondary

storage such as a magnetic disk. Since disk accesses are

expensive (time consuming) operations, a b-tree tries to

minimize the number of disk accesses. For example, a b-

tree with a height of 2 and a branching factor of 1001 can

store over one billion keys but requires at most two disk

accesses to search for any node.

STRUCTURE OF B-TREES
Unlike a binary-tree, each node of a b-tree may have a

variable number of keys and children. The keys are stored in

non-decreasing order. Each key has an associated child that

is the root of a subtree containing all nodes with keys less

than or equal to the key but greater than the preceeding

key. A node also has an additional rightmost child that is

the root for a subtree containing all keys greater than any

keys in the node.

A b-tree has a minumum number of allowable children for

each node known as the minimization factor. If t is this

minimization factor, every node must have at least t - 1 keys.

Under certain circumstances, the root node is allowed to
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violate this property by having fewer than t - 1 keys. Every

node may have at most 2t - 1keys or, equivalently, 2t children.

Since each node tends to have a large branching factor (a

large number of children), it is typically neccessary to traverse

relatively few nodes before locating the desired key. If access

to each node requires a disk access, then a b-tree will

minimize the number of disk accesses required. The

minimzation factor is usually chosen so that the total size of

each node corresponds to a multiple of the block size of the

underlying storage device. This choice simplifies and

optimizes disk access. Consequently, a b-tree is an ideal data

structure for situations where all data cannot reside in

primary storage and accesses to secondary storage are

comparatively expensive (or time consuming).

Height of B-Trees
For n greater than or equal to one, the height of an n-key

b-tree T of height h with a minimum degree t greater than or

equal to 2,

�
� �A &�'
�
+

≤

For a proof of the above inequality, refer to Cormen,

Leiserson, and Rivest pages 383-384.

The worst case height is O(log n). Since the “branchiness”

of a b-tree can be large compared to many other balanced

tree structures, the base of the logarithm tends to be large;

therefore, the number of nodes visited during a search tends

to be smaller than required by other tree structures. Although

this does not affect the asymptotic worst case height, b-trees

tend to have smaller heights than other trees with the same

asymptotic height.
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OPERATIONS ON B-TREES
The algorithms for the search, create, and insert operations

are shown below. Note that these algorithms are single pass;

in other words, they do not traverse back up the tree. Since

b-trees strive to minimize disk accesses and the nodes are

usually stored on disk, this single-pass approach will reduce

the number of node visits and thus the number of disk

accesses. Simpler double-pass approaches that move back

up the tree to fix violations are possible.

Since all nodes are assumed to be stored in secondary

storage (disk) rather than primary storage (memory), all

references to a given node be be preceeded by a read operation

denoted by Disk-Read.

Similarly, once a node is modified and it is no longer

needed, it must be written out to secondary storage with a

write operation denoted by Disk-Write. The algorithms below

assume that all nodes referenced in parameters have already

had a corresponding Disk-Read operation. New nodes are

created and assigned storage with the Allocate-Node call. The

implementation details of the Disk-Read, Disk-Write, and

Allocate-Node functions are operating system and

implementation dependent.

B-Tree-Search(x, k)
��←��
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The search operation on a b-tree is analogous to a search

on a binary tree. Instead of choosing between a left and a

right child as in a binary tree, a b-tree search must make an

n-way choice.

The correct child is chosen by performing a linear search

of the values in the node. After finding the value greater than

or equal to the desired value, the child pointer to the

immediate left of that value is followed. If all values are less

than the desired value, the rightmost child pointer is followed.

Of course, the search can be terminated as soon as the

desired node is found. Since the running time of the search

operation depends upon the height of the tree, B-Tree-Search

is O(logt n).

B-Tree-Create(T)
�����&&���#�9��#*+
&#�"������8LM@
��������
5��1�I���#*�+
�����8��←��

The B-Tree-Create operation creates an empty b-tree by

allocating a new root node that has no keys and is a leaf

node. Only the root node is permitted to have these properties;

all other nodes must meet the criteria outlined previously.

The B-Tree-Create operation runs in time O(1).

B-Tree-Split-Child(x, i, y)
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If is node becomes “too full,” it is necessary to perform a

split operation.

The split operation moves the median key of node x into

its parent y where x is the ith child of y.

A new node, z, is allocated, and all keys in x right of the

median key are moved to z. The keys left of the median key

remain in the original node x. The new node, z, becomes the

child immediately to the right of the median key that was

moved to the parent y, and the original node, x, becomes the

child immediately to the left of the median key that was moved

into the parent y.

The split operation transforms a full node with 2t - 1 keys

into two nodes with t - 1 keys each. Note that one key is

moved into the parent node.

The B-Tree-Split-Child algorithm will run in time O(t) where

t is constant.

B-Tree-Insert(T, k)
��←������8�
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B-Tree-Insert-Nonfull(x, k)
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To perform an insertion on a b-tree, the appropriate node

for the key must be located using an algorithm similiar to B-

Tree-Search.

Next, the key must be inserted into the node. If the node is

not full prior to the insertion, no special action is required;

however, if the node is full, the node must be split to make

room for the new key.

Since splitting the node results in moving one key to the

parent node, the parent node must not be full or another

split operation is required.
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This process may repeat all the way up to the root and

may require splitting the root node. This approach requires

two passes.

The first pass locates the node where the key should be

inserted; the second pass performs any required splits on

the ancestor nodes.

Since each access to a node may correspond to a costly

disk access, it is desirable to avoid the second pass by

ensuring that the parent node is never full.  To accomplish

this, the presented algorithm splits any full nodes

encountered while descending the tree. Although this

approach may result in unecessary split operations, it

guarantees that the parent never needs to be split and

eliminates the need for a second pass up the tree.

Since a split runs in linear time, it has little effect on the

O(t logt n) running time of B-Tree-Insert.

Splitting the root node is handled as a special case since a

new root must be created to contain the median key of the

old root. Observe that a b-tree will grow from the top.

B-Tree-Delete
Deletion of a key from a b-tree is possible; however, special

care must be taken to ensure that the properties of a b-tree

are maintained.

Several cases must be considered. If the deletion reduces

the number of keys in a node below the minimum degree of

the tree, this violation must be corrected by combining several

nodes and possibly reducing the height of the tree. If the key

has children, the children must be rearranged.
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EXAMPLES

Sample B-Tree

Searching a B-Tree for Key 21

Inserting Key 33 into a B-Tree (w/ Split)

APPLICATIONS

Databases
A database is a collection of data organized in a fashion

that facilitates updating, retrieving, and managing the data.

The data can consist of anything, including, but not limited

to names, addresses, pictures, and numbers. Databases are

commonplace and are used everyday. For example, an airline



Algorithm Software in Technology Design

165

reservation system might maintain a database of available

flights, customers, and tickets issued. A teacher might

maintain a database of student names and grades.

Because computers excel at quickly and accurately

manipulating, storing, and retrieving data, databases are

often maintained electronically using a database

management system. Database management systems are

essential components of many everyday business operations.

Database products like Microsoft SQL Server, Sybase

Adaptive Server, IBM DB2, and Oracle serve as a foundation

for accounting systems, inventory systems, medical

recordkeeping sytems, airline reservation systems, and

countless other important aspects of modern businesses.

It is not uncommon for a database to contain millions of

records requiring many gigabytes of storage. For examples,

TELSTRA, an Australian telecommunications company,

maintains a customer billing database with 51 billion rows

(yes, billion) and 4.2 terabytes of data. In order for a database

to be useful and usable, it must support the desired

operations, such as retrieval and storage, quickly.

Because databases cannot typically be maintained entirely

in memory, b-trees are often used to index the data and to

provide fast access.

For example, searching an unindexed and unsorted

database containing n key values will have a worst case

running time ofO(n); if the same data is indexed with a b-

tree, the same search operation will run in O(log n).

To perform a search for a single key on a set of one million

keys (1,000,000), a linear search will require at most

1,000,000 comparisons. If the same data is indexed with a
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b-tree of minimum degree 10, 114 comparisons will be

required in the worst case. Clearly, indexing large amounts

of data can significantly improve search performance.

Although other balanced tree structures can be used, a b-

tree also optimizes costly disk accesses that are of concern

when dealing with large data sets.

Concurrent Access to B-Trees
Databases typically run in multiuser environments where

many users can concurrently perform operations on the

database. Unfortunately, this common scenario introduces

complications. For example, imagine a database storing bank

account balances. Now assume that someone attempts to

withdraw $40 from an account containing $60. First, the

current balance is checked to ensure sufficent funds.

After funds are disbursed, the balance of the account is

reduced. This approach works flawlessly until concurrent

transactions are considered. Suppose that another person

simultaneously attempts to withdraw $30 from the same

account. At the same time the account balance is checked

by the first person, the account balance is also retrieved for

the second person.

Since neither person is requesting more funds than are

currently available, both requests are satisfied for a total of

$70. After the first person's transaction, $20 should remain

($60 - $40), so the new balance is recorded as $20. Next, the

account balance after the second person's transaction, $30

($60 - $30), is recorded overwriting the $20 balance.

Unfortunately, $70 have been disbursed, but the account

balance has only been decreased by $30. Clearly, this
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Behaviour is undesirable, and special precautions must be

taken. A b-tree suffers from similar problems in a multiuser

environment. If two or more processes are manipulating the

same tree, it is possible for the tree to become corrupt and

result in data loss or errors.

The simplest solution is to serialize access to the data

structure. In other words, if another process is using the

tree, all other processes must wait. Although this is feasible

in many cases, it can place an unecessary and costly limit

on performance because many operations actually can be

performed concurrently without risk.Locking, introduced by

Gray and refined by many others, provides a mechanism for

controlling concurrent operations on data structures in order

to prevent undesirable side effects and to ensure consistency.

For a detailed discussion of this and other concurrency

control mechanisms

BINOMIAL

WHAT IS A BINOMIAL EXPERIMENT
A binomial experiment has the following characteristics:

• The experiment involves repeated trials.

• Each trial has only two possible outcomes - a success

or a failure.

• The probability that a particular outcome will occur

on any given trial is constant.

• All of the trials in the experiment are independent.

A series of coin tosses is a perfect example of a binomial

experiment. Suppose we toss a coin three times. Each coin

flip represents a trial, so this experiment would have 3 trials.
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Each coin flip also has only two possible outcomes - a

Head or a Tail. We could call a Head a success; and a Tail, a

failure.

The probability of a success on any given coin flip would

be constant (i.e., 50%). And finally, the outcome on any coin

flip is not affected by previous or succeeding coin flips; so

the trials in the experiment are independent.

BINOMIAL DISTRIBUTION
A binomial distribution is a probability distribution. It

refers to the probabilities associated with the number of

successes in a binomial experiment.

For example, suppose we toss a coin three times and

suppose we define Heads as a success. This binomial

experiment has four possible outcomes: 0 Heads, 1 Head, 2

Heads, or 3 Heads. The probabilities associated with each

possible outcome are an example of a binomial distribution,

as shown below.
Outcome,x Binomial probability, Cumulative probability,
P(X = x) P(X < x)
0 Heads 0.125 0.125
1 Head 0.375 0.500

2 Heads 0.375 0.875

3 Heads 0.125 1.000

NUMBER OF TRIALS
The number of trials refers to the number of attempts in a

binomial experiment. The number of trials is equal to the

number of successes plus the number of failures.

Suppose that we conduct the following binomial

experiment. We flip a coin and count the number of Heads.

In this experiment, Heads would be classified as success;
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tails, as failure. If we flip the coin 3 times, then 3 is the

number of trials. If we flip it 20 times, then 20 is the number

of trials.

NUMBER OF SUCCESSES

Each trial in a binomial experiment can have one of two

outcomes. The experimenter classifies one outcome as a

success; and the other, as a failure. The number of successes

in a binomial experient is the number of trials that result in

an outcome classified as a success.

PROBABILITY OF SUCCESS ON SINGLE TRIAL

In a binomial experiment, the probability of success on

any individual trial is constant. For example, the probability

of getting Heads on a single coin flip is always 0.50. If “getting

Heads” is defined as success, the probability of success on a

single trial would be 0.50.

BINOMIAL PROBABILITY
A binomial probability refers to the probability of getting

EXACTLY n successes in a specific number of trials. For

instance, we might ask: What is the probability of getting

EXACTLY 2 Heads in 3 coin tosses. That probability (0.375)

would be an example of a binomial probability.

CUMULATIVE BINOMIAL PROBABILITY
Cumulative binomial probability refers to the probability

that the value of a binomial random variable falls within a

specified range.

The probability of getting AT MOST 2 Heads in 3 coin tosses

is an example of a cumulative probability. It is equal to the
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probability of getting 0 heads (0.125) plus the probability of

getting 1 head (0.375) plus the probability of getting 2 heads

(0.375).

Thus, the cumulative probability of getting AT MOST 2

Heads in 3 coin tosses is equal to 0.875.

Notation associated with cumulative binomial probability

is best explained through illustration. The probability of

getting FEWER THAN 2 successes is indicated by P(X < 2);

the probability of getting AT MOST 2 successes is indicated

by P(X < 2); the probability of getting AT LEAST 2 successes

is indicated by P(X > 2); the probability of getting MORE THAN

2 successes is indicated by P(X > 2).

RELATION BETWEEN BINOMIAL
AND NORMAL DISTRIBUTIONS

When the number of trials is large and when the probability

of success is not extreme (i.e., neither close to 0 nor close to

1), then the normal distribution may be used to very closely

approximate results from the binomial distribution.

Note: When the number of trials is greater than 20,000,

the Binomial Calculator uses a normal distribution to

estimate the cumulative binomial probability.

In most cases, this yields very good results - often accurate

to the third decimal place.

BINOMIAL DISTRIBUTION: PROBLEMS

Question
• Suppose you toss a fair coin 12 times. What is the

probability of getting exactly 7 Heads. 
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Solution
We know the following:

• The number of trials is 12.

• The number of success is 7 (since we define getting

a Head as success).

• The probability of success (i.e., getting a Head) on

any single trial is 0.5.

Therefore, we plug those numbers into the Binomial

Calculator and hit the Calculate button. The calculator

reports that the binomial probability is 0.193.

That is the probability of getting EXACTLY 7 Heads in 12

coin tosses. (The calculator also reports the cumulative

probability - the probability of getting AT MOST 7 heads in

12 coin tosses. The cumulative probability is 0.806.)

Question
• Suppose the probability that a college freshman will

graduate is 0.6 Three sisters (triplets) enter college

at the same time. What is the probability that at

most 2 sisters will graduate? 

Solution
We know the following:

• The number of trials is 3 (because we have 3 sisters).

• The number of successes is 2.

• The probability of success for any individual sister

is 0.6.

Therefore, we plug those numbers into the Binomial

Calculator and hit the Calculate button. The calculator
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reports that the cumulative binomial probability is 0.784.

That is the probability that 2 or fewer sisters will graduate is

0.784. (Note that the calculator also displays the binomial

probability - the probability that EXACTLY 2 sisters graduate.

The binomial probability is 0.432.)

INSTRUCTIONS
A “Begin” button will appear on the left when the applet is

finished loading. This may take a minute or two depending

on the speed of your internet connection and computer.

Please be patient. If no begin button appears, it is probably

because your browser does not support Java 1.1.

SETTING UP CONDITIONS
Press the “Begin” button to start the applet in another

window.

This Java applet shows how the binomial distribution can

be approximated by the normal distribution. The initial values

are for a binomial distribution with the parameters N = 8

and p = 0.5 where N is the number of trials and p is the

probability of success on each trial. You can change the values

of N and p and see the result (Hit the enter or tab key after

changing a value).

You can use this applet to calculate the probability of

obtaining a given number of successes. For example, to

calculate the probability of exactly 6 successes out of 8 trials

with p = 0.50, enter 6 in both the “from” and “to” fields and

hit the “Enter” key. The actual binomial probability is 0.1094

and the approximation based on the normal distribution is

0.1059.
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Note that the normal approximation computes the area

between 5.5 and 6.5 since the probability of getting a value

of exactly 6 in a continuous distribution is nil.

Similarly, to approximate the probability of from 0 to 6

successes, you enter 0 in the “from” field and 6 in the “to”

field.

The area from below 6.5 is computed.

BINOMIAL PROBABILITIES
• Exact binomial probabilities

• Approximation via the normal distribution

• Approximation via the Poisson Distribution

The logic and computational details of binomial

probabilities are described earlier.

This will calculate and/or estimate binomial probabilities

for situations of the general”k out of n” type, where k is the

number of times a binomial outcome is observed or stipulated

to occur, p is the probability that the outcome will occur on

any particular occasion,q is the complementary probability

(1-p) that the outcome will not occur on any particular

occasion, and n is the number of occasions.

For example: In 100 tosses of a coin, with 60 “heads”

outcomes observed or stipulated to occur among the 100

tosses,
n = 100 [the number of opportunities for a head to occur]

k = 60 [the stipulated number of heads]

p =.5 [the probability that a head will occur on any
particular toss]

q =.5 [the probability that a head will not occur on any
particular toss]
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Method 1
If n ≤ 1000, exact binomial probabilities will be calculated

through repeated applications of the standard binomial

formulaQ

( ) ( )
( )( )1 � 1

1�$� �" �
�W� � .

1W � 1 W
−

=
−

In principle, Method 1 is preferable in all cases, since it

involves direct calculation of exact binomial probabilities.

Its limitation is that it is not computationally feasible with

very large samples. The Programmeming on this page is

capable of performing the calculation up through n=1000.

Method 2

If np ≥ 5 and nq ≥ 5, binomial probabilities will be estimated

by way of the binomial approximation of the normal

distribution, according to the formulaQ

( )1 � F
0

− ±
=

σ

where:

• M = np [the mean of the binomial sampling

distribution]

• σ = sqrt[npq] [the standard deviation of the binomial

sampling distribution]

Method 3

If ne”150 and the mean (np) and variance (npq) of the

binomial sampling distribution are within 10% of each other,

binomial probabilities will be estimated through repeated

applications of the Poisson probability function

where:

e = the base of the natural logarithms; and
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M = np [the mean of the binomial sampling distribution]

The defining characteristic of a Poisson distribution is that

its mean and variance are identical. In a binomial sampling

distribution, this condition is approximated as p becomes

very small, providing that n is relatively large. The

Programmeming on this page permits the Poisson procedure

to be performed whenever np and npq are within 10% of

each other, providing that ne”150. Do keep in mind, however,

that the results of the Poisson procedure are only

approximations of the true binomial probabilities, valid only

in the degree that the binomial mean and variance are very

close.

HEAPS

A heap is a complete tree with an ordering-relation R

holding between each node and its descendant. Examples

for R: smaller-than, bigger-than

ASSUMPTION
In what follows, R is the relation ‘bigger-than’, and the

trees have degree 2.

ADDING AN ELEMENT
• Add a node to the tree
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• Move the elements in the path from the root to the

new node one position down, if they are smaller than

the new element

• Insert the new element to the vacant node

• A complete tree of n nodes has depth &�'�� 	� � log n

O(log), hence the time complexity is O(log n)

DELETING AN ELEMENT

• Delete the value from the root node, and delete the

last node while saving its value.
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• As long as the saved value is smaller than a child of

the vacant node, move up into the vacant node the

largest value of the children.

• Insert the saved value into the vacant node

• The time complexity is O(log n)

INITIALIZATION

Brute Force
Given a sequence of n values e1..., en, repeatedly use the

insertion module on the n given values.

• Level h in a complete tree has at most 2h–1 = O(2n)

elements

• Levels 1..., h – 1 have 20 + 21 +... + 2h–2 = O(2h)

elements

• Each element requires O(log n) time. Hence, brute

force initialization requires O(n log n) time.

Efficient
• Insert the n elements e1..., en into a complete tree
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• For each node, starting from the last one and ending

at the root, reorganize into a heap the subtree whose

root node is given. The reorganization is performed

by interchanging the new element with the child of

greater value, until the new element is greater than

its children.
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• The time complexity is O(0 * (n/2) + 1 * (n/4) + 2 *

(n/8) +... + (log n) * 1) = O(n(0. 2–1 + 1... 2–2 + 2. 2-3

+... + (log n).2- log n)) = O(n)

since the following equalities holds.

( ) ( )

( )

( ) ( )[ ]

1 � 1 �

1 � 1 �

1 � 1 �

1 �

1 � � 1 � 1 � � 1
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� 1 �
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APPLICATIONS

Priority Queue
A dynamic set in which elements are deleted according to

a given ordering-relation.

Heap Sort
Build a heap from the given set (O(n)) time, then repeatedly

remove the elements from the heap (O(n log n)).
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