

DEVELOPMENT OF
COMPUTER AND

SOFTWARE ENGINEERING

DEVELOPMENT OF
COMPUTER AND

SOFTWARE ENGINEERING

Nathan Finch

Development of Computer and Software Engineering

by Nathan Finch

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664044

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Development of Computer and Software Engineering

213

Contents

Chapter 1 Software Engineering 1

Chapter 2 Development of Computer 23

Chapter 3 Development of Computer Networks 56

Chapter 4 Software Testing 99

Chapter 5 Software Progrmming 121

Chapter 6 System Development Model and

Software Engineering 178

1

Software Engineering

PROCESS

Software engineering process and practices are the

structures imposed on development of a software product.

There are different models of software process (software

lifecycle is a synonym) used in different organizations and

industries. RAL has identified three levels of software process

for its projects. These levels balance the different needs of

different types of projects. Scaling the process to the project

is vital to its success, too much process can be as problematic

as too little; too much process can slow down a purely R&D

exploration, too little process can slow down a large

development project with hard deliverables.

HIGH QUALITY SOFTWARE

Developing high quality software is hard, especially when

Development of Computer and Software Engineering

2

the interpretation of term “quality” is patchy based on the

environment in which it is used. In order to know if quality

has been achieved, or degraded, it has to be measured, but

determining what to measure and how is the difficult part.

Software Quality Attributes are the benchmarks that

describe system’s intended behaviour within the

environment for which it was built.

The quality attributes provide the means for measuring

the fitness and suitability of a product. Software architecture

has a profound affect on most qualities in one way or another,

and software quality attributes affect architecture. Identifying

desired system qualities before a system is built allows system

designer to mold a solution (starting with its architecture) to

match the desired needs of the system within the context of

constraints (available resources, interface with legacy

systems, etc). When a designer understands the desired

qualities before a system is built, then the likelihood of

selecting or creating the right architecture is improved.

STATEMENTS
Both statements are useless as they provide no tangible

way of measuring the behaviour of the system. The quality

attributes must be described in terms of scenarios, such as

“when 100 users initiate ‘complete payment’ transition, the

payment component, under normal circumstances, will

process the requests with an average latency of three

seconds.” This statement, or scenario, allows an architect to

make quantifiable arguments about a system.

A scenario defines the source of stimulus (users), the actual

stimulus (initiate transaction), the artifact affected (payment

component), the environment in which it exists (normal

Development of Computer and Software Engineering

3

operation), the effect of the action (transaction processed),

and the response measure (within three seconds). Writing

such detailed statements is only possible when relevant

requirements have been identified and an idea of components

has been proposed.

Qualities

Scenarios help describe the qualities of a system, but they

don’t describe how they will be achieved. Architectural tactics

describe how a given quality can be achieved. For each quality

there may be a large set of tactics available to an architect. It

is the architect’s job to select the right tactic in light of the

needs of the system and the environment.

For example, a performance tactics may include options

to develop better processing algorithms, develop a system

for parallel processing, or revise event scheduling policy.

Whatever tactic is chosen, it must be justified and

documented.

Software Qualities

It would be naïve to claim that the list below is as a complete

taxonomy of all software qualities – but it’s a solid list of

general software qualities compiled from respectable sources.

Domain specific systems are likely to have an additional set

of qualities in addition to the list below. System qualities

can be categorized into four parts: runtime qualities, non-

runtime qualities, business qualities, and architecture

qualities.

Each of the categories and its associated qualities are briefly

described below. Other articles on this site provide more

information about each of the software quality attributes

Development of Computer and Software Engineering

4

listed below, their applicable properties, and the conflicts

the qualities.

Types of softare qualities

It defines six software quality attributes, also called quality

characteristics:

1. Functionality: Are the required functions available,

including interoperabilithy and security

2. Reliability: Maturity, fault tolerance and recoverability

3. Usability: How easy it is to understand, learn, operate

the software system

4. Efficiency: Performance and resource behaviour

5. Maintainability: How easy is it to modify the software

6. Portability: Can the software easily be transferred to

another environment, including installability

Product Revision

The product revision perspective identifies quality factors

that influence the ability to change the software product, these

factors are:

• Maintainability, the ability to find and fix a defect.

• Flexibility, the ability to make changes required as

dictated by the business.

• Testability, the ability to Validate the software

requirements.

Product Transition

The product transition perspective identifies quality factors

that influence the ability to adapt the software to new

environments:

• Portability, the ability to transfer the software from

one environment to another.

Development of Computer and Software Engineering

5

• Reusability, the ease of using existing software

components in a different context.

• Interoperability, the extent, or ease, to which software

components work together.

Software Engineering Process
The elements of a software engineering process are generally

enumerated as:

• Marketing Requirements

• System-Level Design

• Detailed Design

• Implementation

• Integration

• Field Testing

• Support

No element of this process ought to commence before the

earlier ones are substantially complete, and whenever a

change is made to some element, all dependent elements

ought to be reviewed or redone in light of that change. It’s

possible that a given module will be both specified and

implemented before its dependent modules are fully specified

— this is called advanced development or research.

It is absolutely essential that every element of the software

engineering process include several kinds of review: peer

review, mentor/management review, and cross-disciplinary

review. Software engineering elements (whether documents

or source code) must have version numbers and auditable

histories. “Checking in” a change to an element should

require some form of review, and the depth of the review

should correspond directly to the scope of the change.

Development of Computer and Software Engineering

6

Marketing Requirements

The first step of a software engineering process is to create

a document which describes the target customers and their

reason for needing this product, and then goes on to list the

features of the product which address these customer needs.

The Marketing Requirements Document (MRD) is the

battleground where the answer to the question “What should

we build, and who will use it?” is decided.

In many failed projects, the MRD was handed down like

an inscribed stone tablet from marketing to engineering, who

would then gripe endlessly about the laws of physics and

about how they couldn’t actually build that product since

they had no ready supply of Kryptonite or whatever. The

MRD is a joint effort, with engineering not only reviewing

but also writing a lot of the text.

System-Level Design

This is a high-level description of the product, in terms of

“modules” (or sometimes “programmes”) and of the

interaction between these modules. The goals of this

document are first, to gain more confidence that the product

could work and could be built, and second, to form a basis

for estimating the total amount of work it will take to build

it. The system-level design document should also outline the

system-level testing plan, in terms of customer needs and

whether they would be met by the system design being

proposed.

Detailed Design

The detailed design is where every module called out in

the system-level design document is described in detail. The

Development of Computer and Software Engineering

7

interface (command line formats, calling API, externally

visible data structures) of each module has to be completely

determined at this point, as well as dependencies between

modules. Two things that will evolve out of the detailed design

is a PERT or GANT chart showing what work has to be done

and in what order, and more accurate estimates of the time

it will take to complete each module.

Every module needs a unit test plan, which tells the

implementor what test cases or what kind of test cases they

need to generate in their unit testing in order to verify

functionality. Note that there are additional, nonfunctional

unit tests which will be discussed later.

Implementation

Every module described in the detailed design document

has to be implemented. This includes the small act of coding

or programming that is the heart and soul of the software

engineering process. It’s unfortunate that this small act is

sometimes the only part of software engineering that is taught

(or learned), since it is also the only part of software

engineering which can be effectively self-taught.

A module can be considered implemented when it has been

created, tested, and successfully used by some other module

(or by the system-level testing process). Creating a module

is the old edit-compile-repeat cycle. Module testing includes

the unit level functional and regression tests called out by

the detailed design, and also performance/stress testing, and

code coverage analysis.

Integration

When all modules are nominally complete, system-level

Development of Computer and Software Engineering

8

integration can be done. This is where all of the modules

move into a single source pool and are compiled and linked

and packaged as a system. Integration can be done

incrementally, in parallel with the implementation of the

various modules, but it cannot authoritatively approach

“doneness” until all modules are substantially complete.

Integration includes the development of a system-level test.

If the built package has to be able to install itself (which

could mean just unpacking a tarball or copying files from a

CD-ROM) then there should be an automated way of doing

this, either on dedicated crash and burn systems or in

containerized/simulated environments. Sometimes, in the

middleware arena, the package is just a built source pool, in

which case no installation tools will exist and system testing

will be done on the as-built pool. Once the system has been

installed (if it is installable), the automated system-level

testing process should be able to invoke every public

command and call every public entry point, with every

possible reasonable combination of arguments.

If the system is capable of creating some kind of database,

then the automated system-level testing should create one

and then use external (separately written) tools to verify the

database’s integrity. It’s possible that the unit tests will serve

some of these needs, and all unit tests should be run in

sequence during the integration, build, and packaging

process.

Field Testing

Field testing usually begins internally. That means

employees of the organization that produced the software

package will run it on their own computers. This should

Development of Computer and Software Engineering

9

ultimately include all “production level” systems — desktops,

laptops, and servers.

The statement you want to be able to make at the time

you ask customers to run a new software system (or a new

version of an existing software system) is “we run it ourselves.”

The software developers should be available for direct

technical support during internal field testing. Ultimately it

will be necessary to run the software externally, meaning on

customers’ (or prospective customers’) computers. It’s best

to pick “friendly” customers for this exercise since it’s likely

that they will find a lot of defects — even some trivial and

obvious ones — simply because their usage patterns and

habits are likely to be different from those of your internal

users.

The software developers should be close to the front of the

escalation path during external field testing. Defects

encountered during field testing need to be triaged by senior

developers and technical marketers, to determine which ones

can be fixed in the documentation, which ones need to be

fixed before the current version is released, and which ones

can be fixed in the next release (or never).

Support

Software defects encountered either during field testing or

after the software has been distributed should be recorded

in a tracking system. These defects should ultimately be

assigned to a software engineer who will propose a change

to either the definition and documentation of the system, or

the definition of a module, or to the implementation of a

module. These changes should include additions to the unit

and/or system-level tests, in the form of a regression test to

Development of Computer and Software Engineering

10

show the defect and therefore show that it has been fixed

(and to keep it from recurring later).

Just as the MRD was a joint venture between engineering

and marketing, so it is that support is a joint venture between

engineering and customer service. The battlegrounds in this

venture are the bug list, the categorization of particular bugs,

the maximum number of critical defects in a shippable

software release, and so on.

Function Point Based Measure

Introduction

Function Points and the Function Point Model are

measurement tools to manage software. Function Points, with

other business measures, become Software Metrics. Function

Points measure Software size. Function Points measure

functionality by objectively measuring functional

requirements.

Function Points quantify and document assumptions in

Estimating software development. Function Points and

Function Point Analysis are objective; Function Points are

consistent, and Function Points are auditable. Function

Points are independent of technology.

Function Points even apply regardless of design. But

Function Points do not measure people directly. Function

Points is a macro tool, not a micro tool. Function Points are

the foundation of a Software Metrics programme. Software

Metrics include Function Points as a normalizing factor for

comparison. Function Points in conjunction with time yield

Productivity Software Metrics. Function Points in conjunction

with defects yield Quality Software Metrics. Function Points

Development of Computer and Software Engineering

11

with costs provide Unit Cost, Return on Investment, and

Efficiency Software Metrics, never before available.

Function Points connect Software Metrics to measure Risk.

Function Points can verify Staffing metrics. Function Points

can evaluate Build, Buy and/or Outsource decisions.

Function Points combine with SEI CMM measures, TQM

measures, Baldrige measures, ISO and/or other software

and business measures to prove overall status and value.

Doing The Right Things!

Function Points and Usage or Volume measures create

Software Metrics that demonstrate an organization’s ability

to Leverage software’s business impact. The Leverage of E

Commerce is obvious, but until now unmeasured. Function

Points support Customer Satisfaction measures to create

Value Software Metrics. Function Points and Skill measures

provide Software Metrics for Employee Service Level

Agreements to meet current and future company skill needs.

Function Points can even measure the Corporate Vision and

generate Software Metrics to report progress towards meeting

it.

Function Points, Function Point Analysis, the Function

Point Model, Supplemental Software Measures, and the

Software Metrics they generate, are only the third measure

that transcend every part of every organization. (The other

two are time and money.) Without them your organization is

only two thirds whole.

Definition

A function point is a unit of measurement to express the

amount of business functionality an information system

Development of Computer and Software Engineering

12

provides to a user. Function points are the units of measure

used by the IFPUG Functional Size Measurement Method.

The IFPUG FSM Method is an ISO recognized software

metric to size an information system based on the

functionality that is perceived by the user of the information

system, independent of the technology used to implement

the information system.

Function points were defined in 1979 in New Way of

Looking at Tools by Allan Albrecht at IBM. The functional

user requirements of the software are identified and each

one is categorized into one of five types: outputs, inquiries,

inputs, internal files, and external interfaces.

Once the function is identified and categorized into a type,

it is then assessed for complexity and assigned a number of

function points. Each of these functional user requirements

maps to an end-user business function, such as a data entry

for an Input or a user query for an Inquiry.

This distinction is important because it tends to make the

functions measured in function points map easily into user-

oriented requirements, but it also tends to hide internal

functions (e.g. algorithms), which also require resources to

implement.

Over the years there have been different approaches

proposed to deal with this perceived weakness, however there

is no ISO recognized FSM Method that includes algorithmic

complexity in the sizing result. The variations of the Albrecht

based IFPUG method designed to make up for this (and other

weaknesses) include:

• Early and easy function points: Adjusts for problem

and data complexity with two questions that yield a

Development of Computer and Software Engineering

13

somewhat subjective complexity measurement;

simplifies measurement by eliminating the need to

count data elements.

• Engineering function points: Elements (variable names)

and operators (e.g., arithmetic, equality/inequality,

Boolean) are counted. This variation highlights

computational function.

• Bang measure: Defines a function metric based on

twelve primitive (simple) counts that affect or show

Bang, defined as “the measure of true function to

be delivered as perceived by the user.” Bang measure

may be helpful in evaluating a software unit’s value

in terms of how much useful function it provides,

although there is little evidence in the literature of

such application. The use of Bang measure could

apply when re-engineering (either complete or

piecewise) is being considered, as discussed in

Maintenance of Operational Systems—An Overview.

Five Components of Function Points

Data Functions

• Internal Logical Files

• External Interface Files

Transactional Functions

• External Inputs

• External Outputs

• External Inquiries

Internal Logical Files

The first data function allows users to utilize data they are

Development of Computer and Software Engineering

14

responsible for maintaining. For example, a pilot may enter

navigational data through a display in the cockpit prior to

departure.

The data is stored in a file for use and can be modified

during the mission. Therefore the pilot is responsible for

maintaining the file that contains the navigational

information. Logical groupings of data in a system,

maintained by an end user, are referred to as Internal Logical

Files (ILF).

External Interface Files

The second Data Function a system provides an end user

is also related to logical groupings of data. In this case the

user is not responsible for maintaining the data. The data

resides in another system and is maintained by another user

or system.

The user of the system being counted requires this data

for reference purposes only. For example, it may be necessary

for a pilot to reference position data from a satellite or ground-

based facility during flight.

The pilot does not have the responsibility for updating data

at these sites but must reference it during the flight.

Groupings of data from another system that are used only

for reference purposes are defined as External Interface

Files (EIF).

The remaining functions address the user’s capability to

access the data contained in ILFs and EIFs.

This capability includes maintaining, inquiring and

outputting of data. These are referred to as Transactional

Functions.

Development of Computer and Software Engineering

15

External Input

The first Transactional Function allows a user to maintain

Internal Logical Files (ILFs) through the ability to add, change

and delete the data. For example, a pilot can add, change

and delete navigational information prior to and during the

mission.

In this case the pilot is utilizing a transaction referred to

as an External Input (EI). An External Input gives the user

the capability to maintain the data in ILF’s through adding,

changing and deleting its contents.

External Output

The next Transactional Function gives the user the ability

to produce outputs. For example a pilot has the ability to

separately display ground speed, true air speed and calibrated

air speed.

The results displayed are derived using data that is

maintained and data that is referenced. In function point

terminology the resulting display is called an External Output

(EO).

External Inquiries

The final capability provided to users through a

computerized system addresses the requirement to select

and display specific data from files. To accomplish this a

user inputs selection information that is used to retrieve

data that meets the specific criteria.

In this situation there is no manipulation of the data. It is

a direct retrieval of information contained on the files. For

example if a pilot displays terrain clearance data that was

Development of Computer and Software Engineering

16

previously set, the resulting output is the direct retrieval of

stored information. These transactions are referred to as

External Inquiries (EQ).

In addition to the five functional components described

above there are two adjustment factors that need to be

considered in Function Point Analysis.

Functional Complexity

The first adjustment factor considers the Functional

Complexity for each unique function.

Functional Complexity is determined based on the

combination of data groupings and data elements of a

particular function.

The number of data elements and unique groupings are

counted and compared to a complexity matrix that will rate

the function as low, average or high complexity.

Each of the five functional components (ILF, EIF, EI, EO

and EQ) has its own unique complexity matrix. The following

is the complexity matrix for External Outputs.

� �������	�
���������	� ������	�
���������	
� �� �� ��
��������	
� �� �� ��
�����	
� �� �� ��

����������� ����
�������� ��
������������ ��
��������� ��

Using the examples given above and their appropriate

complexity matrices, the function point count for these

functions would be:

Development of Computer and Software Engineering

17

���������
� ���

���������
�����

!���"#�
��������
�����

� � �
��������
�����

���������	�
!�$�"����#�

�� #%�	��
��#���	�

����������� �
!����

"��� �� �#� �$�� ���

%�
������ �
!����

&"�� �� �� �$�� ��

����������� �
!����'��!!�

&"� �$�� �#� �� ��

����������� ��
!����'�(������

&"� �$�� �#� �� ��

����������� �
!����'�!� ����

&"� �$�� �� �� ��

)��*�!�
+��!�
!�
+ �,�

&-� �$�� �� �� ��

����
+��!�
!�
+ �,�

&-� �$�� �� �� ��

.� �/����!�����

+��!�!�
+ �,�

&-� �$�� �� �� ��

��������
(�����(��
!�
+ �,�

&0� �$�� �� �� ��

���� �*��!1*
��!�(�*��� ���2�%
�

All of the functional components are analysed in this way

and added together to derive an Unadjusted Function Point

count.

Value Adjustment Factor

The Unadjusted Function Point count is multiplied by the

second adjustment factor called the Value Adjustment Factor.

This factor considers the system’s technical and operational

characteristics and is calculated by answering 14 questions.

The factors are:

Data Communications

The data and control information used in the application

are sent or received over communication facilities.

Distributed Data Processing

Distributed data or processing functions are a characteristic

of the application within the application boundary.

Development of Computer and Software Engineering

18

Performance

Application performance objectives, stated or approved by

the user, in either response or throughput, influence (or will

influence) the design, development, installation and support

of the application.

Heavily Used Configuration

A heavily used operational configuration, requiring special

design considerations, is a characteristic of the application.

Transaction Rate

The transaction rate is high and influences the design,

development, installation and support.

On-line Data Entry

On-line data entry and control information functions are

provided in the application.

End -User Efficiency

The on-line functions provided emphasize a design for end-

user efficiency.

On-line Update

The application provides on-line update for the internal

logical files.

Complex Processing

Complex processing is a characteristic of the application.

Reusability

The application and the code in the application have been

specifically designed, developed and supported to be usable

in other applications.

Development of Computer and Software Engineering

19

Installation Ease

Conversion and installation ease are characteristics of the

application. A conversion and installation plan and/or

conversion tools were provided and tested during the system

test phase.

Operational Ease

Operational ease is a characteristic of the application.

Effective start-up, backup and recovery procedures were

provided and tested during the system test phase.

Multiple Sites

The application has been specifically designed, developed

and supported to be installed at multiple sites for multiple

organizations.

Facilitate Change

The application has been specifically designed, developed

and supported to facilitate change. Each of these factors is

scored based on their influence on the system being counted.

The resulting score will increase or decrease the Unadjusted

Function Point count by 35%. This calculation provides us

with the Adjusted Function Point count.

Approach to Counting Function Points

There are several approaches used to count function

points. Q/P Management Group, Inc. has found that a

structured workshop conducted with people who are

knowledgeable of the functionality provided through the

application is an efficient, accurate way of collecting the

necessary data. The workshop approach allows the counter

Development of Computer and Software Engineering

20

to develop a representation of the application from a

functional perspective and educate the participants about

function points. Function point counting can be

accomplished with minimal documentation. However, the

accuracy and efficiency of the counting improves with

appropriate documentation. Examples of appropriate

documentation are:

• Design specifications

• Display designs

• Data requirements (Internal and External)

• Description of user interfaces

Function point counts are calculated during the workshop

and documented with both a diagram that depicts the

application and worksheets that contain the details of each

function discussed.

Benefits of Function Point Analysis

Organizations that adopt Function Point Analysis as a

software metric realise many benefits including: improved

project estimating; understanding project and maintenance

productivity; managing changing project requirements; and

gathering user requirements. Each of these is discussed

below. Estimating software projects is as much an art as a

science. While there are several environmental factors that

need to be considered in estimating projects, two key data

points are essential. The first is the size of the deliverable.

The second addresses how much of the deliverable can be

produced within a defined period of time.

Size can be derived from Function Points, as described

above. The second requirement for estimating is determining

Development of Computer and Software Engineering

21

how long it takes to produce a function point. This delivery

rate can be calculated based on past project performance or

by using industry benchmarks.

The delivery rate is expressed in function points per hour

(FP/Hr) and can be applied to similar proposed projects to

estimate effort (i.e. Project Hours = estimated project function

points FP/Hr). Productivity measurement is a natural output

of Function Points Analysis.

Since function points are technology independent they can

be used as a vehicle to compare productivity across dissimilar

tools and platforms. More importantly, they can be used to

establish a productivity rate (i.e. FP/Hr) for a specific tool

set and platform. Once productivity rates are established

they can be used for project estimating as described above

and tracked over time to determine the impact continuous

process improvement initiatives have on productivity.

In addition to delivery productivity, function points can be

used to evaluate the support requirements for maintaining

systems. In this analysis, productivity is determined by

calculating the number of function points one individual can

support for a given system in a year (i.e. FP/FTE year). When

compared with other systems, these rates help to identify

which systems require the most support. The resulting

analysis helps an organization develop a maintenance and

replacement strategy for those systems that have high

maintenance requirements.

Managing Change of Scope for an in-process project is

another key benefit of Function Point Analysis. Once a project

has been approved and the function point count has been

established, it becomes a relatively easy task to identify, track

Development of Computer and Software Engineering

22

and communicate new and changing requirements. As

requests come in from users for new displays or capabilities,

function point counts are developed and applied against the

rate. This result is then used to determine the impact on

budget and effort. The user and the project team can then

determine the importance of the request against its impact

on budget and schedule.

At the conclusion of the project the final function point

count can be evaluated against the initial estimate to

determine the effectiveness of requirements gathering

techniques. This analysis helps to identify opportunities to

improve the requirements definition process.

Communicating Functional Requirements was the original

objective behind the development of function points. Since it

avoids technical terminology and focuses on user

requirements it is an excellent vehicle to communicate with

users. The techniques can be used to direct customer

interviews and document the results of Joint Application

Design (JAD) sessions. The resulting documentation provides

a framework that describes user and technical requirements.

In conclusion, Function Point Analysis has proven to be an

accurate technique for sizing, documenting and communicat-

ing a system’s capabilities. It has been successfully used to

evaluate the functionality of real-time and embedded code

systems, such as robot based warehouses and avionics, as

well as traditional data processing.

Development of Computer and Software Engineering

23

2

Development of Computer

Computer Types

A computer is one of the most brilliant inventions of

mankind. Thanks to the computer technology, we were able

to achieve an efficient storage and processing of data; we

could rest our brains by employing computer memory

capacities for storage of the information.

Owing to computers, we have been able speed up daily

work, carry out critical transactions and achieve accuracy

and precision in work output. The computers of the earlier

years were of the size of a large room and were required to

consume huge amounts of electric power. However, with the

advancing technology, computers have shrunk to the size of

a small watch.

Depending on the processing powers and sizes of

computers, they have been classified under various types.

Let us look at the classification of computers. Based on the

Development of Computer and Software Engineering

24

operational principle of computers, they are categorized as

analog computers and hybrid computers.

Analog Computers

These are almost extinct today. These are different from a

digital computer because an analog computer can perform

several mathematical operations simultaneously. It uses

continuous variables for mathematical operations and utilizes

mechanical or electrical energy.

Hybrid Computers

These computers are a combination of both digital and

analog computers. In this type of computers, the digital

segments perform process control by conversion of analog

signals to digital ones.

Mainframe Computers

Large organizations use mainframes for highly critical

applications such as bulk data processing and ERP. Most of

the mainframe computers have the capacities to host multiple

operating systems and operate as a number of virtual

machines and can thus substitute for several small servers.

Microcomputers

A computer with a microprocessor and its central

processing unit is known as a microcomputer. They do not

occupy space as much as mainframes. When supplemented

with a keyboard and a mouse, microcomputers can be called

as personal computers. A monitor, a keyboard and other

similar input output devices, computer memory in the form

of RAM and a power supply unit come packaged in a

microcomputer. These computers can fit on desks or tables

Development of Computer and Software Engineering

25

and serve as the best choices for single-user tasks. Personal

computers come in a variety of forms such as desktops,

laptops and personal digital assistants. Let us look at each

of these types of computers.

Desktops

A desktop is intended to be used on a single location. The

spare parts of a desktop computer are readily available at

relative lower costs. Power consumption is not as critical as

that in laptops. Desktops are widely popular for daily use in

workplaces and households.

Laptops

Similar in operation to desktops, laptop computers are

miniaturized and optimized for mobile use. Laptops run on

a single battery or an external adapter that charges the

computer batteries. They are enabled with an inbuilt

keyboard, touch pad acting as a mouse and a liquid crystal

display. Its portability and capacity to operate on battery

power have served as a boon for mobile users.

Personal Digital Assistants (PDAs)

It is a handheld computer and popularly known as a

palmtop. It has a touch screen and a memory card for storage

of data. PDAs can also be effectively used as portable audio

players, web browsers and smart phones. Most of them can

access the Internet by means of Bluetooth or Wi-Fi

communication.

Minicomputers

In terms of size and processing capacity, minicomputers

lie in between mainframes and microcomputers.

Development of Computer and Software Engineering

26

Minicomputers are also called mid-range systems or

workstations. The term began to be popularly used in the

1960s to refer to relatively smaller third generation

computers. They took up the space that would be needed for

a refrigerator or two and used transistor and core memory

technologies. The 12-bit PDP-8 minicomputer of the Digital

Equipment Corporation was the first successful

minicomputer.

Supercomputers

The highly calculation-intensive tasks can be effectively

performed by means of supercomputers. Quantum physics,

mechanics, weather forecasting, molecular theory are best

studied by means of supercomputers. Their ability of parallel

processing and their well-designed memory hierarchy give

the supercomputers, large transaction processing powers.

Wearable Computers

A record-setting step in the evolution of computers was

the creation of wearable computers. These computers can

be worn on the body and are often used in the study of

behaviour modeling and human health. Military and health

professionals have incorporated wearable computers into

their daily routine, as a part of such studies.

When the users’ hands and sensory organs are engaged

in other activities, wearable computers are of great help in

tracking human actions. Wearable computers are

consistently in operation as they do not have to be turned

on and off and are constantly interacting with the user.

These were some of the different types of computers

available today. Looking at the rate of the advancement in

Development of Computer and Software Engineering

27

technology, we can definitely look forward to many more types

of computers in the near future.

Computer Systems Architecture
The discipline that defines the conceptual structure and

functional behaviour of a computer system. It is analogous

to the architecture of a building, determining the overall

organization, the attributes of the component parts, and

how these parts are combined.

It is related to, but dif ferent from, computer

implementation. Architecture consists of those

characteristics which affect the design and development of

software programs, whereas implementation focuses on those

characteristics which determine the relative cost and

performance of the system.

The architect’s main goal has long been to produce a

computer that is as fast as possible, within a given set of

cost constraints. Over the years, other goals have been

added, such as making it easier to run multiple programs

concurrently or improving the performance of programs

written in higher-level languages.

A computer system consists of four major components:

storage, processor, peripherals, and input/output

(communication). The storage system is used to keep data

and programs; the processor is the unit that controls the

operation of the system and carries out various

computations; the peripheral devices are used to

communicate with the outside world; and the input/output

system allows the previous components to communicate

with one another.

Development of Computer and Software Engineering

28

Storage

The storage or memory of a computer system holds the

data that the computer will process and the instructions

that indicate what processing is to be done. In a digital

computer, these are stored in a form known as binary,

which means that each datum or instruction is represented

by a series of bits. Bits are conceptually combined into

larger units called bytes (usually 8 bits each) and words

(usually 8 to 64 bits each). A computer will generally have

several different kinds of storage devices, each organized to

hold one or more words of data. These types include registers,

main memory, and secondary or auxiliary storage.

Registers are the fastest and most costly storage units

in a computer. Normally contained within the processing

unit, registers hold data that are involved with the

computation currently being performed.

Main memory holds the data to be processed and the

instructions that specify what processing is to be done. A

major goal of the computer architect is to increase the

effective speed and size of a memory system without incurring

a large cost penalty. Two prevalent techniques for increasing

effective speed are interleaving and caching, while virtual

memory is a popular way to increase the effective size.

Interleaving involves the use of two or more independent

memory systems, combined in a way that makes them

appear to be a single, faster system. With caching, a small,

fast memory system contains the most frequently used

words from a slower, larger main memory.

Virtual memory is a technique whereby the programmer

is given the illusion of a very large main memory, when in

Development of Computer and Software Engineering

29

fact it has only a modest size. This is achieved by placing

the contents of the large, “virtual” memory on a large but

slow auxiliary storage device, and bringing portions of it into

main memory, as required by the programs, in a way that

is transparent to the programmer.

Auxiliary memory (sometimes called secondary storage)

is the slowest, lowest-cost, and highest-capacity computer

storage area. Programs and data are kept in auxiliary memory

when not in immediate use, so that auxiliary memory is

essentially a long-term storage medium. There are two basic

types of secondary storage: sequential and direct-access.

Sequential-access secondary storage devices, of which

magnetic tape is the most common, permit data to be

accessed in a linear sequence. A direct-access device is one

whose data may be accessed in any order. Disks and drums

are the most commonly encountered devices of this type.

Memory mapping is one of the most important aspects

of modern computer memory designs. In order to understand

its function, the concept of an address space must be

considered. When a program resides in a computer’s main

memory, there is a set of memory cells assigned to the

program and its data. This is known as the program’s

logical address space. The computer’s physical address

space is the set of memory cells actually contained in the

main memory. Memory mapping is simply the method by

which the computer translates between the computer’s

logical and physical address spaces. The most

straightforward mapping scheme involves use of a bias

register. Assignment of a different bias value to each program

in memory enables the programs to coexist without

Development of Computer and Software Engineering

30

interference. Another strategy for mapping is known as

paging. This technique involves dividing both logical and

physical address spaces into equal-sized blocks called pages.

Mapping is achieved by means of a page map, which can

be thought of as a series of bias registers.

Processing

A computer’s processor (processing unit) consists of a

control unit, which directs the operation of the system, and

an arithmetic and logic unit, which performs computational

operations. The design of a processing unit involves selection

of a register set, communication paths between these

registers, and a means of directing and controlling how

these operate. Normally, a processor is directed by a program,

which consists of a series of instructions that are kept in

main memory.

Although the process of decoding and executing

instructions is often carried out by logic circuitry, the

complexity of instruction sets can lead to very large and

cumbersome circuits for this purpose. To alleviate this

problem, a technique known as microprogramming was

developed.

With microprogramming, each instruction is actually a

macrocommand that is carried out by a microprogram,

written in a microinstruction language. The

microinstructions are very simple, directing data to flow

between registers, memories, and arithmetic units.

It should be noted that microprogramming has nothing

to do with microprocessors. A microprocessor is a processor

implemented through a single, highly integrated circuit.

Development of Computer and Software Engineering

31

Peripherals and Communication

A typical computer system includes a variety of peripheral

devices such as printers, keyboards, and displays. These

devices translate electronic signals into mechanical motion

or light (or vice versa) so as to communicate with people.

There are two common approaches for connecting

peripherals and secondary storage devices to the rest of the

computer: The channel and the bus. A channel is essentially

a wire or group of wires between a peripheral device and

a memory device. A multiplexed channel allows several

devices to be connected to the same wire. A bus is a form

of multiplexed channel that can be shared by a large number

of devices. The overhead of sharing many devices means

that the bus has lower peak performance than a channel;

but for a system with many peripherals, the bus is more

economical than a large number of channels.

A computer controls the flow of data across buses or

channels by means of special instructions and other

mechanisms. The simplest scheme is known as program-

controlled input/output (I/O). Direct memory access I/O is

a technique by which the computer signals the device to

transmit a block of data, and the data are transmitted

directly to memory, without the processor needing to wait.

Interrupts are a form of signal by which a peripheral

device notifies a processor that it has completed transmitting

data. This is very helpful in a direct memory access scheme,

for the processor cannot always predict in advance how long

it will take to transmit a block of data. Architects often

design elaborate interrupt schemes to simplify the situation

where several peripherals are active simultaneously.

Development of Computer and Software Engineering

32

Digital Computer

A device that processes numerical information; more

generally, any device that manipulates symbolic information

according to specified computational procedures. The term

digital computer—or simply, computer—embraces

calculators, computer workstations, control computers

(controllers) for applications such as domestic appliances

and industrial processes, data-processing systems,

microcomputers, microcontrollers, multiprocessors, parallel

computers, personal computers, network servers, and

supercomputers.

A digital computer is an electronic computing machine

that uses the binary digits (bits) 0 and 1 to represent all

forms of information internally in digital form. Every

computer has a set of instructions that define the basic

functions it can perform. Sequences of these instructions

constitute machine-language programs that can be stored

in the computer and used to tailor it to an essentially

unlimited number of specialized applications. Calculators

are small computers specialized for mathematical

computations. General-purpose computers range from

pocket-sized personal digital assistants (notepad computers),

to medium-sized desktop computers (personal computers

and workstations), to large, powerful computers that are

shared by many users via a computer network. The vast

majority of digital computers now in use are inexpensive,

special-purpose microcontrollers that are embedded, often

invisibly, in such devices as toys, consumer electronic

equipment, and automobiles.

Development of Computer and Software Engineering

33

The main data-processing elements of a computer reside

in a small number of electronic integrated circuits (ICs) that

form a microprocessor or central processing unit (CPU).

Electronic technology allows a basic instruction such as

“add two numbers” to be executed many millions of times

per second. Other electronic devices are used for program

and data storage (memory circuits) and for communication

with external devices and human users (input-output

circuits). Nonelectronic (magnetic, optical, and mechanical)

devices also appear in computers. They are used to construct

input-output devices such as keyboards, monitors (video

screens), secondary memories, printers, sensors, and

mechanical actuators.

Information is stored and processed by computers in

fixed-sized units called words. Common word sizes are 8,

16, 32, and 64 bits. Four-bit words can be used to encode

the first 16 integers. By increasing the word size, the number

of different items that can be represented and their precision

can be made as large as desired. A common word size in

personal computers is 32 bits, which allows 232 =

4,294,967,296 distinct numbers to be represented.

Computer words can represent many different forms of

information, not just numbers. For example, 8-bit words

called characters or bytes are used to encode text symbols

(the 10 decimal digits, the 52 upper-and lowercase letters

of the English alphabet, and punctuation marks). A widely

used code of this type is ASCII (American Standard Code

for Information Interchange). Visual information can be

reduced to black and white dots (pixels) corresponding to

0’s and 1’s. Audio information can be digitized by mapping

Development of Computer and Software Engineering

34

a small element of sound into a binary word; for example,

a compact disk (CD) uses several million 16-bit words to

store an audio recording. Logical quantities encountered in

reasoning or decision making can be captured by associating

1 with true and 0 with false. Hence, most forms of information

are readily reduced to a common, numberlike binary format

suitable for processing by computer.

Logic Components

The operation of a digital computer can be viewed at

various levels of abstraction, which are characterized by

components of different complexity. These levels range from

the low, transistor level seen by an electronic circuit designer

to the high, system level seen by a computer user. A useful

intermediate level is the logic level, where the basic

components process individual bits. By using other basic

components called gates, logic circuits can be constructed

to perform many useful operations.

System Organization

An accumulator is a digital system that constitutes a

simple processor capable of executing a few instructions.

By introducing more data-processing circuits and registers,

as well as control circuits for a larger set of instructions,

a practical, general-purpose processor can be constructed.

Such a processor forms the “brain” of every computer, and

is referred to as its central processing unit. A CPU

implemented on a single integrated-circuit chip is called a

microprocessor.

A typical computer program is too large to store in the

CPU, so another component called the main memory is

Development of Computer and Software Engineering

35

used to store a program’s instructions and associated data

while they are being executed (Fig. 1). Main memory consists

of high-speed integrated circuits designed to allow storage

and retrieval of information one word at a time. All words

in main memory can be accessed with equal ease; hence

this is also called a random-access memory (RAM).

A computer program is processed by loading it into main

memory and then transferring its instructions and data one

word (or a few words) at a time to the CPU for processing.

Hence, there is a continual flow of instructions and data

words between the CPU and its main memory. As millions

of words must be transferred per second, a high-speed

communication link is needed between the CPU and main

memory. The system bus fills this role.

A computer has input-output (I/O) control circuits and

buses to connect it to external input-output devices (also

called peripherals). Typical input-output devices are a

keyboard, which is an input device, and a printer, which

is an output device. Because most computers need more

storage space than main memory can supply, they also

employ secondary memory units which form part of the

computer’s input-output subsystem. Common secondary

memory devices are hard disk drives, flexible (floppy) disk

drives, and magnetic tape units. Compared to main memory,

secondary memories employ storage media (magnetic disks

and tapes) that have higher capacity and lower cost. However,

secondary memories are also significantly slower than main

memory.

No explicit instructions are needed for input-output

operations if input-output devices share with main memory

Development of Computer and Software Engineering

36

the available memory addresses. This is known as memory-

mapped input-output, and allows load and store instructions

to be used to transfer data between the CPU and input-

output devices.

In general, a computer’s instruction set should include

a selection of instructions of the following three types: (1)

Data-transfer instructions that move data unchanged

between the CPU, main memory, and input-output devices.

(2) Data-processing instructions that perform numerical

operations such as add, subtract, multiply, and divide, as

well as nonnumerical (logical) operations, such as NOT, AND,

EXCLUSIVE-OR, and SHIFT. (3) Program-control instructions that

can change the order in which instructions are executed,

for example branch, branch-on-zero, call procedure, and

return from procedure.

The instruction unit (I unit) of a CPU, also called the

program control unit, is responsible for fetching instructions

from main memory, using the program counter as the

instruction address register. The opcode of a newly fetched

instruction I is placed in the instruction register. The opcode

is then decoded to determine the sequence of actions required

to execute I.

These may include the loading or storing of data assigned

to main memory, in which case the I unit computes all

needed addresses and issues all needed control signals to

the CPU and the system bus. Data are processed in the

CPU’s execution unit (E unit), also called the datapath,

which contains a set of registers used for temporary storage

of data operands, and an arithmetic logic unit (ALU), which

contains the main data-processing circuits.

Development of Computer and Software Engineering

37

Computer Performance

Improving computer performance

Many computer problems can be solved with free or low-

cost products or just by using a few common sense tips to

improve performance and keep your PC running for a long

time. Computers often freeze or crash when one needs them

the most; in the middle of an important presentation, a term

paper that’s due the next day, or while updating our financial

software. Many computer problems can be solved with free or

low-cost products or just by using a few common sense tips to

improve performance and keep your PC running for a long time.

• Virus Scan Programme: The most essential thing to

have is a virus scan that is run weekly. Most new

computers come with a virus scan already installed.

If the computer you are using doesn’t have a virus

scan there are free scans available online, but one

really should be installed on your computer if you

spend any time at all online. Spend the time learning

how to use your virus scanner. Find out how it’s

updated-most update automatically-and use the

options to set it up to run automatically at a set

time every week. Most computer problems can be

prevented just by having a virus scanner installed.

• Run the Scandisk programme: At least every two

months you should run a programme called

Scandisk. It is automatically on your computer.

Scandisk actually scans your files and even your hard

drive and can let you know of any problems it

discovers.

Development of Computer and Software Engineering

38

To run Scandisk, first make sure everything running in

the background on your PC is turned off. To do this press

“Ctrl-Alt-Delete” and your close programme box will appear.

Highlight each item EXCEPT “explorer” and “systray”. Click

on “End Task” to close the programme. Then go to your start

button and choose “Programmes”. Choose “Accessories” at

the top of the list. Move your cursor down to “SystemTools”

and Choose “Scandisk”. A box will appear giving your choices

of what you want your computer to scan. You can have it

scan your files only or your entire hard drive. Scanning your

hard drive will take longer.

• Run the Defragmenter programme: Another

programme that you should run about every two

months is called Disk Defragmenter. Defrag will

arrange your files better so your PC can access them

faster. It’s best to run this programme after the

Scandisk programme is finished.

To run Disk Defragmenter go back to the “System Tools”

and choose “Disk Defragmenter”. It’s best to run this

programme overnight as it takes a long time. You should not

be using these programmes while using other programmes

on your computer. If the Scandisk or Defrag programme keeps

starting over you may need to run the programmes in Safe

Mode, a special diagnostic mode. Read the manual for your

PC to find out how to put your PC into Safe Mode.

• Use a Firewall programme: For anyone on a DSL or

cable connection a personal firewall keeps viruses,

hijackers and hackers from your computer. Since you

are constantly connected to the internet by using

these connections there is a constant threat that

Development of Computer and Software Engineering

39

others may try to access your computer. There are

free firewall programmes available for download.

• Run a Spyware programme: Anyother important

rogramme is a spyware search programme. When

you download something from the internet sometimes

other software is included. This software is called

“spyware” and it can do many things to harm your

computer, including letting someone from another

website see what websites you surf in order to send

you advertising. Other spyware tries to steal your

passwords or other personal information. You should

run a spyware checker at least once a month or at

any time you are experiencing problems with your

connection or computer speed.

• Run a hi-jacker search programme: Another important

programme to have is a hi-jacker search programme.

A hi-jacker changes your homepage to a different

search engine page and can also block links to

common search pages. They are trying to force you

to use their homepage. Some of the hi-jacker’s

homepages are not pages you would like your

children to see. You should use a hi-jacker search

programme at least once a month or whenever you

are having a problem with your homepage.

• Clear your temporary files: Sometimes your

PC’s virtual memory will become full. When this

happens your computer may run slow, give you error

messages or freeze during a programme. This

happens because everything you do on your PC-every

picture on every webpage, every document you type,

Development of Computer and Software Engineering

40

every photo you change-is saved somewhere on your

PC, even after you have left that page and closed

the document. In order to erase this memory you

need to do the following steps:

– Open your internet browser. Go to “Tools”,

“Internet Options”.

– A box will pop open. It should be open to the

“General” tab.

– In the centre of the box is a section marked

“Temporary Internet Files”.

– Click on “Delete Cookies” and “Delete Files” one

at a time. This will delete the temporary files that

are clogging the PC’s memory.

• Change your history options: Another way to clean

out your computer’s memory is to change how many

days it saves visited pages. You will find a “history”

box in your internet options. It asks how many days

you wish to keep pages in history. This is the part

of the computer that saves all pages you’ve visited

for as many days as you wish. By saving these pages

for a smaller number of days you can clear up more

of your PC’s memory.

• Clean out old files: Periodically going through the files

in My Documents or other folders you have set up

and deleting or archiving them on a CD can also

help your computer’s memory and performance. Do

you really need to keep a saved copy of last

semester’s English term paper? If not, delete it. You

can also go through the programmes on your PC

from the control panel and delete those you no longer

Development of Computer and Software Engineering

41

use. Don’t delete any of the shared files, though, if

it asks, because that can cause more problems.

• Reboot the PC occasionally: The last thing that is very

important to do but seems simple is just to turn

your computer off periodically. Your PC needs to be

restarted in order to reset itself after new

programmes or equipment is installed. It also erases

the virtual memory from the last session and goes

through a self-diagnostic to look for any problems.

It sounds like a simple solution, but most problems

can be fixed simply by restarting your PC.

Computer’s Performance

Get Organized

It’s likely that more time is wasted in business trying to

hunt down a file or e-mail than anything else. There are

several reasons for this, and each has a simple fix. First is

poor folder structure. If you can’t make out your wallpaper

image because you have so many files on your desktop, you’ve

got a problem. It’s time to put those files in their proper folders.

Think about how you would organize these files if they

were paper. You might structure them by project, project

type, date, client or process of completion, for example. Don’t

be afraid to nest your folders as deep as they need to be to

make things easier to find. Also, if you find old files that you

don’t expect to use anytime soon, burn them onto a disc and

delete them from your hard drive.

This will save hard drive space and ultimately improve the

performance of your computer. A simple trick if you have a

bunch of folders or files and you want a particular folder to

Development of Computer and Software Engineering

42

always appear at the top is to start the folder name with an

underscore. For example, _Projects would appear before

Invoices. Another trick is to improve the metadata for quicker

searching in the future. Both Mac OSX and Windows Vista

offer useful systemwide search, which you can improve by

right-clicking on any file, then clicking on Properties (for

Windows) or Get Info (for Macs).

Here, you’ll want to add useful tags that you might search

by later, such as an individual’s name, client name, project

phase and so on. One final organization trick is to use Smart

Folders (Macs) or Search Folders (PCs). You create a smart

folder identifying the criteria of the files you want included.

This may mean your folder contains files opened within the

past five days, files of a certain file type, files modified by a

specific user, and so on. The criteria can be filtered by

themselves or combined to offer targeted results.

Back it Up

Beyond dumping old files, back up your system in case

you accidentally delete something or face a more serious

catastrophe. Macs and PCs both have backup software built

in. For PCs, it’s called the Backup and Restore Centre; for

Macs, it’s called Time Machine. For both of these to work,

you’ll need to buy an external hard drive so you’ll have

someplace to store the data. For most personal computers,

a 500GB to 1TB drive should offer plenty of room, and can

be had for about $100.

Slow Computer

A slow computer can make you want to pull your hair out.

The easiest way to speed it up is to reduce the number of

Development of Computer and Software Engineering

43

applications running simultaneously. Applications running

in the background sap power, so turn on your radio instead

of running your music player; close your calendar app if you’re

not using it. The next step is to defragment your hard drive.

(This is a Windows-only step since Mac OSX operates

differently and doesn’t need defragging.) Go to Accessories,

then System Tools, click Disk Defragmenter, and click

Defragment Now. This takes little bits of data scattered all

over your computer’s hard drive and reorganizes them so

your computer can find them faster.

Widgets

If you really need to look at a calendar, use Widgets (for

Macs) or Gadgets (for PCs). Widgets are small, typically single-

purpose applications that provide useful information at a

glance. So instead of firing up your Web browser to find stock

quotes, your Google AdSense balance and news headlines,

use Widgets. Mac OSX even offers a quick tool built in to the

Safari browser that allows you create a Widget by clicking on

the Open in Dashboard button (next to Forward and Back

buttons), then selecting the part of the Web page you want

to track. For example, clip part of a page on eBay to track

bidding, and you’ll never have to open your browser to keep

an eye on things.

Parts of Computer

Introduction

Look inside any computer and you will see items of

hardware. There is the motherboard, processors, disks drives,

power supply and the memory chips. Many of these items

Development of Computer and Software Engineering

44

are interchangeable which mean that the computer can be

easily upgraded with additional items of hardware, which

just plug into the main system.

Description

Opening the computer exposes both it and you to a myriad

of hazards. From nasty cuts from very sharp edges on the

sheet metal and circuit cards, to potentially lethal high voltage

inside the power supply and its power switch, there are

numerous ways to hurt or kill yourself. Over 300 volts can

be found inside the power supply of most computers. Most

colour monitors have areas of over 20,000 volts inside, even

when they are turned off and unplugged. Other computer

peripherals such as printers, scanners, etc. can also have

hazardous areas inside them.

Even with all the dangers to you, it is far more likely you

will hurt the computer, than it will hurt you. Improperly

handling or installing a card in the computer can cause

damage to it or other components. Misalignment of a card in

its socket can cause the card or motherboard, or both, to

expire the instant power is applied. Simply mishandling an

internal component can cause problems. Fingerprints on

connectors can cause intermittent trouble, simply touching

certain cards, after walking across the floor can transfer

enough static electricity to ruin or prematurely age the

component. Static electricity, even so low that you can’t feel

it, can wreck havoc with today’s large-scale microelectronics.

All computer boards should be left in their anti-static bags

until just before you install them in the computer. You should

insure your body is connected to a good ground through a

Megohm resistance. Use a professional wrist type grounding-

Development of Computer and Software Engineering

45

strap, not a homemade device. Improper grounding of you

could cause a lethal shock hazard.

In 20 years plus, in the computer business I have seen

thousands of computer problems created by the improper

handling and installation of circuit boards, hard drives, CD-

ROMs, modems, and other devices. Many computer

professionals don’t even fully understand the proper care and

handling of the parts inside a computer, and by their

ignorance, mishandle a part that should run for over ten

years and reduce its life span to less than one year.

Inside the computer,It may look like a complicated mess

of wires, and chips, but really it’s quite simple.

Computer Hardware Parts

Disks Drives

Disk drives provide a means of storing work, or data. Floppy

disks are transportable from PC to PC and come in two sizes,

Development of Computer and Software Engineering

46

31/2"and 51/4"diameter. Floppy disks provide a means of

storing work. You can write information onto the disk

and read information from the disk. Floppy disks are used

by inserting them into a disk drive.

A light on the disk drive indicates when the disk is being

accessed. Removing or inserting a disk while the drive light

is illuminated may cause damage to the disk and is likely to

result in the loss of data stored on the disk.

Hard Disks

Hard disks (or fixed disks) work on the same principle as

floppy disks but are fixed inside the PC in a sealed unit.

They can store a great deal more information than floppy

disks and range in capacity from 10Mb to several hundred

Mb. Access times (i.e. the time taken to read and write

information) for hard disks are much faster than for floppy

disks. Manufacturers often quote access times as well as

capacities for hard disks. Information is stored on disk in

the form of files. A file might be a programme or data such

as a word processor document. Files can be grouped together

on disk in directories. Hard disks are contained in an air-

sealed unit and are thus less liable to physical problems

than floppies. However the consequences of any disk failure

are much higher than for floppies so some form of backup

must be carried out regularly.

CD ROM Drives

Today, many software programmes come n CD instead of

floppy dosks. The programmes for newer software

applications are quite karge. These large programmes, which

may take as many as 20 floppy disks, can fit just fine on a

Development of Computer and Software Engineering

47

single CD, which reduces costs and makes installation much

easier. To distinguish them from music CD’s the computer

CD’s are called CD-ROMS. This stands for Compact Disk-

Read Only Memory.That is, a consumer is unable to erase or

record information or programmes onto a CD. If you want to

advantage of recording, deleting and re-recording, then you

use a a rewritable disk,(CR-RW).

Ports and Expansion Slots

Located at the rear of the PC are various sockets or ports.

These allow the keyboard and monitor to be connected. Most

PCs include a parallel port (usually used for printers) and

two serial ports (usually used for communications with other

computer systems or connecting mice and plotters).

Also included inside the system box are expansion slots.

These allow extra hardware to be added to the PC using

printed circuit boards, or cards, plugged into the expansion

slots. The slots are connected to the CPU via the bus. The

bus is a set of wires which transfers data. Think of it as a

freeway.

Motherboards

If the CPU is the brain of the computer, the motherboard

and its components are the major systems this brain uses to

control the rest of the computer. It is possibly the most

important part of the computer. Having a good understanding

of how the motherboard and its contained subsystems work

is probably the most critical part of getting a good

understanding of how PCs work. Here you can see the

connection from the power supply to the motherboard. The

power supply serves two functions. First of all it draws power

Development of Computer and Software Engineering

48

from the outlet (usually 120V AC) and translates it into voltages

the computer can use (usually 12V DC). It also runs the main

cooling fan which prevents the computer from overheating

which can be detrimental to the integrity of your data.

The motherboard is the foundation of any PC. All the critical

subsystems, including the CPU, the system chipset, the

memory, the system I/O, the expansion bus, and other critical

components run directly off the motherboard.

Likewise, the interconnections among these components

are built into the motherboard itself. It manages all

transactions of data between the CPU and the peripherals.

It houses the CPU and its second level cache, the chipset,

the BIOS, the main memory, the I/O chips, the port for the

keyboard, the serial I/O, the parallel I/O, the disks, and the

plug-in cards.

Components of a Motherboard

• CPU Socket (for processor)

• CPU fan connector

• ATX power supply connector (for plug from power

supply in computer case)

Development of Computer and Software Engineering

49

• Memory Slots (for memory modules-new mainboards

use DDR modules, previous generation uses SDRAM

modules)

• Floppy Drive Connector (for data cable to floppy drive)

• Primary IDE Connector (data cable for hard drive,

cd-drive-up to two devices)

• Secondary IDE Connector (data cable for hard drive,

cd-drive-up to two devices)

• Panel for connecting power switch, reset switch, hard

drive light, etc.

• CMOS Battery (keeps current BIOS Setup

information intact)

• Chipset (controls specific functions)

• PCI Slots (for plugin cards such as modems, network

cards, pci video cards, sound cards, etc.)

• BIOS chip

• AGP Slot (for Accelerated Graphics Port video card,

today’s standard)

• Chipset (controls specific functions)

• Connector for CDROM audio cable (for sound already

built onto main board)

• On-board Audio Jacks (line in, line out, microphone

jacks)

• Parallel Port and Serial Ports (parallel printer port

plus one or two serial ports which are hidden from

view)

• USB Ports (new mainboards use USB 2.0, older use

USB 1.1)

• Keyboard and Mouse Connectors (PS2 connectors,

one for keyboard, one for mouse)

Development of Computer and Software Engineering

50

Many mainstream PC’s today, especially lower priced ones,

have the AGP Video controller, the Audio controller, Modem

and NIC (Network Interface Card) built onto the mainboard

rather than on separate plug-in cards. On-board video uses

a portion of the memory provided by the plug-in memory

modules which is typically reserved for the rest of the system.

This type of video does not perform well when used for

high-end graphics such as games. It is possible that, even

though the video chip is built on board, the manufacturer

may have supplied an AGP slot so you can install your own

Video card. Today’s video cards contain at least 32mb of their

own memory, and may go up to as high as 256mb. The on-

board video would first need to be disabled in the BIOS/

CMOS setup routine before installing the card. If the modem,

sound, or network interface fail, or you want to upgrade them,

they can usually be disabled in the BIOS settings also,

allowing for installation of a plug-in replacement card.

Connections

Ports

• Parallel: This port is commonly used to connect a

printer.

• Serial: This port is typically used to connect an

external modem.

• Universal Serial Bus (USB): Quickly becoming the

most popular external connection, USB ports offer

power and versatility and are incredibly easy to use.

• Firewire (IEEE 1394): FireWire is a very popular

method of connecting digital-video devices, such

as camcorders or digital recorders, to your computer.

Development of Computer and Software Engineering

51

Internet/Network

• Modem: This is the standard method of connecting

to the Internet..

• Local Area Network LAN Card: This is used by many

computers, particularly those in an Ethernet office

network, to connected to each other.

• Cable Modem: Some people now use the cable-

television system in their home to connect to the

Internet.

• Digital Subscriber Line DSL Modem. This is a high-

speed connection that works over a standard

telephone line.

• Very high bit rate DSL (VDSL): A newer variation of

DSL, VDSL requires that your phone line have fibre

optic cables.

The Main Unit

The main unit contains the Central Processing Unit (CPU)

and various supporting Integrated Circuits (or chips) all of

which are fixed to a printed circuit board (PCB) called

the motherboard.

The main unit also houses disk drives, expansion slots

and the power supply.

The CPU

The CPU (Central Processing Unit) or processor is the ‘brain’

of any computer system. In the PC it is contained on a single

Integrated Circuit or ‘chip’. The CPU processes all instructions

and data. The CPU is driven by an internal clock. Simply

speaking, every time the clock pulses the CPU processes one

instruction. Thus, the faster the clock the quicker the CPU

Development of Computer and Software Engineering

52

processes its instructions. Clock speed is measured in

MegaHertz (MHz). All the real computing work is done by

the CPU.

Memory

All PCs are fitted with a certain amount of workspace

memory called Random Access Memory (RAM).

This memory is used for storing running software and data

which the software requires, as well as theoperating

system. The contents of RAM are lost when the PC is switched

off.

This in known as volitile because it is tempory in nature.For

example, if you are running word processing software then

the software and the document you are working on are stored

in RAM. To save the document, after making any changes

you wish to keep, it is necessary to copy the document from

RAM onto disk.

RAM

Chips can be individually installed directly on th

motherboard or in the banks of several chips on a small

board that plugs into the motherboard.

The most common types of boards that hold memory chips

are called SIMMS (single inline memory modules), DIMMS

(duel inline memory modules), andRIMMS (memory modules

manufctured by Rambus, Inc.)

By contrast, another kind of memory holds its data

permanently, even when the power is turned off. This type

of memory is called non-volitile and is called ROM (read only

memory).

Development of Computer and Software Engineering

53

ROM (Read-only Memory)

They contains the commands the computer needs to

activate itself. Instructions in ROM let the computer start

when the power is turned on, and, unlike RAM, its contents

are retained even when the power is off. A Sound Card is an

expansion card that lets a computer produce sound.

Examples of practical uses for sound capabilities include

games, music applications, and interactive educational

software.

The Expansion Card is a circuit board that slides into an

expansion slot. It is used to add peripherals, such as a sound

card or modem, to the PC. An Expansion Slot is an opening

on the motherboard into which a board or card can be

inserting, expanding the capability of the computer.

The Power Supply is the vehicle through which electricity is

regulated and sent to the various components of a computer.

BIOS or CMOS setup

The motherboard contains a special chip called the BIOS,

which is short for Basic Input/Output System. Burnt onto

this chip are software instructions on how to load basic

computer hardware. Many PCs have what is called a flash

BIOS, allowing the user to update the BIOS if necessary.

The BIOS also includes a sort of diagnostic routine known

as the POST (Power On Self Test). This test ensures that the

computer meets the necessary requirements to boot up

correctly. If the computer doesn’t pass the POST you will

hear a pattern of beeps that indicate the problem

encountered. CMOS (Complementary Metal Oxide

Semiconductor) is a chip on the motherboard which stores

Development of Computer and Software Engineering

54

system information and computer settings such as date, time,

hard drive settings, boot sequence, parallel port settings,

on-board audio and video, etc. This information can be

accessed and changed through the BIOS/CMOS setup

programme which is available as the computer begins to boot

up. As the computer boots, there will typically be some text

on the screen such as “Press Del to enter Setup”. Depending

on the manufacturer, the key required to enter the BIOS

setup may be F1, F2, Del, or Esc.

Unlike earlier generations of PC’s, the user is no longer

required to go into the BIOS Setup and enter new information

such as the number of cylinders, heads, sectors, etc. when

changing IDE hard drives, for instance. These and some other

settings are now detected automatically. If the CMOS battery

dies, any changes made in the the BIOS Setup will be lost.

 After replacing the battery, the user will need to re-enter

the Setup programme and make the changes again.

Driver

After the computer boots up, the operating system begins

the process of loading into memory. Unlike the information

burnt into the BIOS and CMOS chips, Windows must detect

the hardware and load device specific files into memory that

allow the operating system to understand and communicate

with the hardware devices. As part of the Windows operating

system, Microsoft includes a great many device drivers (for

the more popular devices and peripherals). These load

automatically as the hardware is detected. However, you may

have a particular modem or sound card that isn’t included

in Windows database. While the operating system may detect

the device’s presence, it can’t assign a driver file to it, since

Development of Computer and Software Engineering

55

their isn’t one in it’s database. This is where you come in.

You will need to locate the correct driver for the version of

Windows you are using. If you have a disk that came with

the device you’ll need to use it to install the driver, provided

it was created for your version of Windows. A driver written

for Windows ’98 won’t work with XP, so you’ll have to get on

the internet and find a current one. A good site to look for

the driver is DriverGuide.com, but you’ll need to know

something about the device such as the manufacturer, model

number, etc. to get the proper driver.

Development of Computer and Software Engineering

56

3

Development of
Computer Networks

A computer network is two or more computers connected

together using a telecommunication system for the purpose

of communication and sharing resources”. Ask any computer

network expert to simplify this definition to you and you will

start a debate on how it should not be just two computers

but three. Simply put a network is a means of communication

between computers. Within a given network, computers can

send files, e-mails and other correspondence to each other.

Even things like instant messaging, is set up within a

computer’s network. There are two basic types of computer

Networks. Lan and Wan.

LAN

LAN or Local Area Network is the most common kind of

network set up. There are two ways to connect a LAN network.

Development of Computer and Software Engineering

57

The simplest and easiest way is the peer-to-peer connection

network. This is when two or more computers are directly

connected to each other. For example if there were four

computers in the network, computer 1 would be connected

to computer 2, computer 2 would be connected to computer

3 and computer 3 would be connected to computer 4.

This means each computer is dependent on the other. And

if there were a network problem with any one computer, all

of them would be affected. The other type if the client server

connection. This is the type of connection where all the

computers in a given network are connected to one central

computer. This is a more complicated network but one that

is much more efficient that peer-to-peer.

A local area network, or LAN, is a network of connected

computers in a room, building, or set of buildings. Local area

networks have been around since the beginning of computer

use. A LAN is defined as a user network whereby data is sent

at high rates between people located relatively close to each

other. LANs do not usually make use of leased communication

lines, but only means of communication that are provided

by the installer of the network.

The Internet is a wide area network, or WAN, which is

distinct from a LAN. In contrast to the term Internet, local

area networks are often called intranets, though sometimes

this term refers to a cluster of LANs associated with a

particular company or organization but not connected to the

larger Internet. A local area network uses a hub or router to

connect computers together.

The means of communication is the omnipresent Ethernet

cable or wireless wi-fi technology. These technologies offer

Development of Computer and Software Engineering

58

data transfer rates running between 10 to 10000 Mbit/s.

Larger, more important LANs have redundant lines or other

backup protocols. In networked computers, the most popular

communication protocol is TCP/IP. Smaller LANs may be

temporary and used between friends to play computer games

over the network.

Over a network, users can share files, view files, make

changes to data on other computers if permitted, play movies

or music on multiple computers at once, chat with instant

messaging, send e-mails to each other, play games, and so

on. All the advantages of the Internet apply, although they

only include others on the LAN, and the data transfer rates

are high.

Perhaps the most frequently employed use of a LAN is to

connect users to the Internet with only one connected router.

In modern times, we use broadband cable or DSL modems

to connect to the Internet, and it would be clumsy to have a

modem associated with every computer, so we simply plug

the modem into a router and link the router to computers

with Ethernet cables.

Configuring a LAN can be intimidating at first, but

contemporary operating systems have programmes that do

most of the necessary configurations automatically, so setting

up a local area network is pretty easy. A local area network

(LAN) supplies networking capability to a group of computers

in close proximity to each other such as in an office building,

a school, or a home. A LAN is useful for sharing resources

like files, printers, games or other applications. A LAN in

turn often connects to other LANs, and to the Internet or

other WAN.

Development of Computer and Software Engineering

59

Most local area networks are built with relatively

inexpensive hardware such as Ethernet cables, network

adapters, and hubs. Wireless LAN and other more advanced

LAN hardware options also exist.

Examples

The most common type of local area network is an Ethernet

LAN. The smallest home LAN can have exactly two computers;

a large LAN can accommodate many thousands of computers.

Many LANs are divided into logical groups called subnets.

An Internet Protocol (IP) “Class A” LAN can in theory

accommodate more than 16 million devices organized into

subnets.

High Performance Network

The HPN is used for the exchange of large amounts of

operational data. Two Force10 E600 Routers, interconnected

via 4-way 10-Gigabit Ethernet aggregated links, provide

connectivity between the High Performance Computing

Facility (HPCF) and the Data-Handling System (DHS). The

HPCF network nodes are connected via 10-Gigabit Ethernet

and all DHS nodes via Gigabit Ethernet aggregated links.

General Purpose Network

The GPN is used for all other traffic. It has at its core two

Foundry BigIron RX-16 routers and at the edge seven

Foundry Super-X switches. The core routers are

interconnected via 4-way 10-Gigabit Ethernet aggregated

links and have multiple Gigabit Ethernet uplinks to the edge

routers. The core also includes two further Super-X switches

that are dual-attached to the RX-16s via 10-Gigabit Ethernet.

Development of Computer and Software Engineering

60

The GPN provides connectivity to:

• The HPCF, the DHS and additional servers via Gigabit

Ethernet ports in the core.

• The user desktops and laptops via Gigabit Ethernet

ports on the edge switches.

• The firewalls (for the Wide Area Network and the

Demilitarized Zone (DMZ) via Gigabit Ethernet ports

in the core. The DMZ includes ECaccess, web servers,

the mail gateway and DNS (Domain Name Servers).

The Hardware

Both the Force10 E600 chassis are populated with 24 10-

Gigabit-Ethernet and 144 Gigabit Ethernet ports. For

resiliency there are four power supplies, two CPU modules

and nine switching fabric modules. Both the RX-16 chassis

are populated with 8 10-Gigabit Ethernet ports and 144

Gigabit Ethernet ports. For resiliency there are seven power

supplies, two CPU modules and four switching fabric

modules. The Super-X chassis each contain up to 156 Gigabit

Ethernet ports and dual power-supplies.

WAN

Definition

The wide area network, often referred to as a WAN, is a

communications network that makes use of existing

technology to connect local computer networks into a larger

working network that may cover both national and

international locations. This is in contrast to both the local

area network and the metropolitan area network, which

provides communication within a restricted geographic area.

Here is how the wide area network functions, and why it is

Development of Computer and Software Engineering

61

so important to communications today. The concept of linking

one computer network with another is often desirable,

especially for businesses that operate a number of facilities.

Beginning with the local area network and going up to the

wide area network, this is most easily accomplished by using

existing telephony technology. Essentially, fibre optics are

used to create the link between networks located in different

facilities.

Often, this means using standard phone lines, referred to

as POTS, or employing PSTN (public switched telephone

network) technology. During the 1990s, a third option, that

of ISDN (integrated services digital network) solutions for

creation a wide area network gained a great deal of popularity,

mainly because the concept made it more cost effective to

extend the network beyond national boundaries.

With coverage in a broad area, a wide area network allows

companies to make use of common resources in order to

operate. For example, many retail drugstores make use of a

wide area network as part of their support to customers who

fill prescriptions with one of their stores. Once in the common

customer database for the pharmacy, the client is free to fill

a prescription at any of the company’s locations, even while

vacationing in another state.

Companies also make good use of the wide area network

as well. Internal functions such as sales, production and

development, marketing and accounting can also be shared

with authorized locations through this sort of broad area

network application. The concept of a wide area network as

a means of taking individual location based computer

networks and using them to create a unified computer

Development of Computer and Software Engineering

62

network for the entire corporation means that employees

can work from just about anywhere. Should one facility be

damaged or rendered inaccessible due to natural disaster,

employees simply move to another location where they can

access the unified network, and keep on working.

Overview

WAN or Wide Area Network is when several LANs or

independent computers are connected to a single, wider

network. The Internet is the perfect example of WAN. E-mails,

Chat Rooms and IMs all connect to the WAN of the Internet.

WAN is much more complex and requires connecting devices

or hubs from all over the world. The term Wide Area Network

(WAN) usually refers to a network which covers a large

geographical area, and use communications circuits to

connect the intermediate nodes.

A major factor impacting WAN design and performance is

a requirement that they lease communications circuits from

telephone companies or other communications carriers.

Transmission rates are typically 2 Mbps, 34 Mbps, 45 Mbps,

155 Mbps, 625 Mbps (or sometimes considerably more).

Numerous WANs have been constructed, including public

packet networks, large corporate networks, military networks,

banking networks, stock brokerage networks, and airline

reservation networks.

Some WANs are very extensive, spanning the globe, but

most do not provide true global coverage. Organizations

supporting WANs using the Internet Protocol are known as

Network Service Providers (NSPs). These form the core of the

Internet. Wide Area Networks, or WANs, connect a

Development of Computer and Software Engineering

63

geographically diverse group of computers within a state,

country, or even across several states or countries. WANs

typically are connected by telephone lines, other types of

communication lines, or radio waves.

Quite often, smaller local area networks (LANs) are linked

together to form a WAN. This is accomplished via dedicated

private lines, leased from telecommunications firms like

Sprint and ATandT, or by Switched Multi-Megabit Data

Services (SMDS) technology, developed in 1995 to eliminate

the need for a leased line. WAN technology has been refined

over a period of several decades. It first emerged in the mid-

twentieth century with the advent of networks like ARPAnet.

Developed in 1969 by the Department of Defence, ARPAnet

and several other networks eventually evolved into the

Internet, the largest WAN in the world.

The packet switching technology most commonly used with

WANs surfaced in the 1960s, and standard packet switching

protocol, known as X.25, was developed in 1976. To increase

network speed, packet switching allows for the parceling of

data into smaller chunks, known as packets, prior to

transmission. These packets can travel independently via

alternate routes, and they are reassembled once they reach

their target.

Although X.25 remained the most popular WAN packet

switching protocol for years, other packet switching protocols

used with increasing frequency by WAN developers and

administrators include the Internet standard, Transmission

Control Protocol/Internet Protocol (TCP/IP), and Frame

Relay, used most often by WANs connected via high speed

T-1 and T-3 lines.

Development of Computer and Software Engineering

64

WANs are used for a variety of purposes. A corporation

with offices in several locations may use a WAN to form an

intranet. Quite often, the individual offices will use their own

LANs for things like internal messaging, data processing

functions, and hardware and software sharing. When these

LANs are joined together to form a WAN, similar data sharing

and messaging capabilities become possible across a much

broader geographic area.

Businesses wanting to link up with their suppliers or

distributors may create a WAN as a means of establishing

an extranet. For example, an extranet could provide a sales

representative with electronic access to information in about

the time it might take to deliver a product, or the availability

of a product.

Some WANs bring together various types of

communications, such as data, video, and voice. Some

organizations, including companies, universities, research

centres, hospitals, and libraries, use WANs to connect to the

Internet. By connecting the NSP WANs together using links

at Internet Packet Interchanges (sometimes called “peering

points”) a global communication infrastructure is formed.

NSPs do not generally handle individual customer accounts

(except for the major corporate customers), but instead deal

with intermediate organizations whom they can charge for

high capacity communications.

They generally have an agreement to exchange certain

volumes of data at a certain “quality of service” with other

NSPs.

So practically any NSP can reach any other NSP, but may

require the use of one or more other NSP networks to reach

Development of Computer and Software Engineering

65

the required destination. NSPs vary in terms of the transit

delay, transmission rate, and connectivity offered.

The characteristics of the transmission facilities lead to

an emphasis on efficiency of communications techniques in

the design of WANs.

Controlling the volume of traffic and avoiding excessive

delays is important. Since the topologies of WANs are likely

to be more complex than those of LANs, routing algorithms

also receive more emphasis.

Many WANs also implement sophisticated monitoring

procedures to account for which users consume the network

resources. This is, in some cases, used to generate billing

information to charge individual users.

The size of a network is limited due to size and distance

constraints. However networks may be connected over a high-

speed communications link (called a WAN link) to link them

together and thus becomes a WAN. WAN links are usually:

• Dial up connection

• Dedicated connection-It is a permanent full time

connection. When a dedicated connection is used,

Development of Computer and Software Engineering

66

the cable is leased rather than a part of the cable

bandwidth and the user has exclusive use.

• Switched network-Several users share the same line

or the bandwidth of the line.

There are two types of switched networks:

1. Circuit switching: This is a temporary connection

between two points such as dial-up or ISDN.

2. Packet switching: This is a connection between

multiple points. It breaks data down into small

packets to be sent across the network. A virtual

circuit can improve performance by establishing

a set path for data transmission. This will shave

some overhead of a packet switching network. A

variant of packet switching is called cell-switching

where the data is broken into small cells with a

fixed length.

Connection Technologies

• X.25-This is a set of protocols developed by the

CCITT/ITU which specifies how to connect computer

devices over an internet work. These protocols use a

great deal of error checking for use over unreliable

telephone lines. They establish a virtual

communication circuit. It uses a store and forward

method which can cause about a half second delay

in data reception when two way communications are

used. Their speed is about 64Kbps. Normally X.25

is used on packed switching PDNs (Public Data

Networks). A line must be leased from the LAN to a

PDN to connect to an X.25 network. A PAD (packet

Development of Computer and Software Engineering

67

assembler/disassembler) or an X.25 interface is used

on a computer to connect to the X.25 network. CCITT

is an abbreviation for International Telegraph and

Telephone Consultative Committee. The ITU is the

International Telecommunication Union.

• Frame Relay-devices at both sides of the connection

handle Error checking. Frame relay uses frames of

varying length and it operates at the data link layer

of the OSI model. A permanent virtual circuit (PVC)

is established between two points on the network.

Frame relay speed is between 56Kbps and

1.544Mbps. Frame relay networks provide a high-

speed connection up to 1.544Mbps using variable-

length packet switching over digital fibre-optic media.

Frame relay does not store data and has less error

checking than X.25.

• Switched Multi-megabit Data Service (SMDS)-Uses

fixed length cell switching and runs at speeds of

1.533 to 45Mbps. It provides no error checking and

assumes devices at both ends provide error checking.

• Telephone connections

– Dial up

– Leased lines: These are dedicated analog lines or

digital lines. Dedicated digital lines are called

digital data service (DDS) lines. A modem is used

to connect to analog lines, and a Channel Service

Unit/Data Service Unit or Digital Service

Unit(CSU/DSU) is used to connect to digital lines.

The DSU connects to the LAN and the CSU

connects to the line.

Development of Computer and Software Engineering

68

– T Carrier lines: Multiplexors are used to allow

several channels on one line. The T1 line is basic

T Carrier service. The available channels may be

used separately for data or voice transmissions

or they may be combined for more transmission

bandwidth.

– T1 and T3 lines are the most common lines in

use today. T1 and T2 lines can use standard

copper wire. T3 and T4 lines require fibre-optic

cable or other high-speed media. These lines may

be leased partially called fractional T1 or fractional

T3, which means a customer, can lease a certain

number of channels on the line. A CSU/DSU and

a bridge or router is required to connect to a T1

line.

– Integrated Services Digital Network (ISDN)-Comes

in two types and converts analog signals to digital

for transmission. It is a dial up service

a. Basic Rate ISDN (BRI)-Two 64Kbps B-

channels with one 16Kbps D channel. The D-

channel is used tor call control and setup.

b. Primary Rate ISDN (PRI)-23 B-channels and

one D channel. A device resembling a modem

(called an ISDN modem) is used to connect

to ISDN. The computer and telephone line are

plugged into it.

– Switched-56: A switched line similar to a leased

line where customers pay for the time they use

the line. Speed is 56Kbps. It is not dedicated and

will not work to connect a WAN.

Development of Computer and Software Engineering

69

• Asynchronous Transfer Mode (ATM): May be used over

a variety of media with both baseband and

broadband systems. It is used for audio, video, and

data. It uses fixed length data packets of 53 8 bit

bytes called cell switching. 5 bytes contain header

information. The cell contains path information that

the packet is to use. It uses hardware devices to

perform the switching of the data. Speeds from

155Mbps to 622 Mbps are achieved. Error checking

is done at the receiving device, not by ATM. A

permanent virtual connection or circuit (PVC) is

established. It may also use a switched virtual circuit

(SVC). Service classes:

– Constant bit rate for data.

– Variable bit rate for audio or video.

– Connection less for data.

– Connection oriented for data.

ATM can be embedded in other protocols such as

ATM-25, T1, T3, OC-1, OC-3, OC-12, and OC-48.

Some ATM technologies include:

– ATM-25-25Mbps speed.

– STS-3-155Mbps on fibre or category 5 cable.

– STS-12-620 Mbps on fibre cable for campus wide

network.

– STS-48-2.2 Gbps on fibre cable on a MAN.

– STS-192-8.8 Gbps on fibre cable on intercity long

distance. Phone companies normally use this.

Synchronous Optical Network (SONET)-A physical layer

standard that defines voice, data, and video delivery methods

over fibre optic media. It defines data rates in terms of optical

Development of Computer and Software Engineering

70

carrier (OC) levels. The transmission rate of OC-1 is 51.8

Mbps. Each level runs at a multiple of the first. The OC-5

data rate is 5 times 51.8 Mbps which is 259 Mbps.

SONET also defines synchronous transport signals (STS)

for copper media which use the same speed scale of OC levels.

STS-3 runs at the same speed of OC-3. Mesh or ring topology

is used to support SONET. SONET uses multiplexing. The

ITU has incorporated SONET into their Synchronous Digital

Hierarchy (SDH) recommendations.

WAN Technology Comparisons

Terms

• Circuit switching: Physical switched connection.

• Message switching: A store and forward mechanism

where messages are treated as individual units.

• Packet switching: Messages are broken down into

smaller packets with individual destination

information. Independent routing is used which

allows the packets to use any route between the

source send destination. Much RAM and processing

power is required to support this switching type.

• Data gram packet switching: Uses independent paths.

• Virtual circuit packet switching: This is used for audio

and video streaming. A set path is established

between the source and destination and a

connection-oriented service is made.

Network Distribution

Building a network consists partly of connecting the

computers:

Development of Computer and Software Engineering

71

Besides the computers, you will use other objects.

Network Cables

Cable is used to connect computers. Although we may

use wireless networking, you should always have cables with

you. The most commonly used cable is referred to as Category

5 cable RJ-45.

The ends of the cable appear as follows:

They can be in different colours:

You can purchase this cable from a general store, a

computer store, or web store on the Internet. When

purchasing it, get one with at least 6ft.

Introduction to Network Distributors

We mentioned that you could connect one computer to

another.

Development of Computer and Software Engineering

72

This can be done using their serial ports:

This is possible because almost every computer has a serial

port. If you have to connect many computers to produce a

network, this serial connection would not be practical. The

solution is to use a central object that the computers and

other resources can connect to, and then this object becomes

responsible to “distribute” or manage network traffic:

The most regularly used types of network distributors are

the hub, the router, and the switch.

Hub

A hub is rectangular box that is used as the central object

on which computers and other devices are connected. To

make this possible, a hub is equipped with small holes called

ports. Here is an example of a hub:

Development of Computer and Software Engineering

73

Although this appears with 4 ports, depending on its type,

a hub can be equipped with 4, 5, 12, or more ports. Here is

an example of a hub with 8 ports:

When configuring it, you connect an RJ-45 cable from the

network card of a computer to one port of the hub. In most

cases for a home-based or a small business network, you

may not need (or shouldn’t use) a hub.

Routers: Wired or Wireless

Like a hub, a router is another type of device that acts as

the central point among computers and other devices that

are part of a network. Here is an example of a wired router:

A router functions a little differently than a hub. In fact,

a router can be considered a little “intelligent” than the

hub. Like a hub, the computers and other devices are

connected to a router using network cables. To make this

possible, a router is equipped with holes, called ports, in

the back.

Here is an example:

Development of Computer and Software Engineering

74

Based on advances in the previous years from IEEE and

other organizations or research companies, there are wireless

routers. With this type, the computers and devices connect

to the router using microwaves (no physical cable).

Wired Network Cards: Internal

In order to connect to a network, a computer must be

equipped with a device called a network card. A network

card, or a network adapter, also called a network interface

card, or NIC, allows a computer to connect to the exterior. If

you buy a computer from one of those popular stores or big

companies on the Internet, most of their computers have a

network card tested and ready. You can reliably use it. If you

go to a store that sells or manufactures computers, you can

ask them to install or make sure that the computer has a

network card. If you have a computer that doesn’t have a

network card, you can install one. If you have a computer

that already has a network card, you can still replace it.

When it comes to their installation, there are roughly two

categories of network cards: internal and external.

An internal network card looks like a printed circuit board

with some objects “attached” or “glued” to it and it appears

as follows:

What this card looks like may not be particularly important

and it may depend on the manufacturer but some of its

Development of Computer and Software Engineering

75

aspects are particularly important. To start, there are two

types of cards and you should know which one is suited (or

which one you want to use) for your computer. One type of

NICs uses a peripheral component interconnect (PCI)

connection. Another type uses industry standard architecture

(ISA).

There are two primary ways you replace an internal

network card. In most cases, you will remove the card your

computer already has and install a new one. In some other

cases, you will only add a new card but you cannot replace

the existing one because it is part of the motherboard. The

area where you add a network card is called a slot. To proceed,

you must find out what your computer has to offer when it

comes to network cards. To do this, you have three main

alternatives. You can open the computer and examine the

available slots of your computer. They are usually located

inside of what would be considered as the back wall of the

computer. If you know where you connect the monitor, you

should be able to locate the area that has the slots.

Unfortunately, unless you have experience with this, simply

looking at the slots will not tell you what type of connection

you are dealing with.

The second alternative is to open the manual that came

with your computer (provided you haven’t thrown it away).

The manual usually lists the (types of) slots that your

computer provides and where they are located. The last

alternative to knowing the types of slots that your computer

provides is to contact the company that sold you the

computer. They usually know, as long as you give them the

model of the computer.

Development of Computer and Software Engineering

76

Once you know the type of slot available to you, you can

go on the Internet or to a computer store and buy an

appropriate network card. One of the most important

characteristics of a network card is the speed it can use to

carry information (data). The speeds are either 10 or 100Mbps

(megabits per second). When buying a network card, you

should pay attention to this. Your computer manufacturer

also may sell network cards intended for your computer.

After buying a network card intended for internal

installation, you can/must install it. The network card should

come with a manual and all (easy to follow) instructions.

You can also install the network card after setting up the

computer.

Wired Network Cards: External

We mentioned that a network card could also be used or

installed externally. This can be done using USB. Before using

it, you can purchase it from a computer store or a web store.

The device may look like this:

Here is another example:

Development of Computer and Software Engineering

77

If you buy one of these objects, its documentation will guide

you.

Wireless Network Cards

Depending on your network budget or your customer’s,

instead of using wired network cards, you can use wireless

ones. Most laptops already have a wireless card built-in so

you may not have to acquire one. Many new desktop

computers (from HP) now have built-in wireless capability.

A wireless NIC appears as its wired counterpart.

Here are two examples:

Overall, the physical installation of a wireless network card

follows the same rules as that of a wired NIC. They normally

come with easy to follow instructions but it may be a good

idea to install the wireless network adapters after installing

the wireless router. Also, it may be a good idea to purchase

the network cards and the wireless router from the same

manufacturer.

Most desktop computers (workstations) come without a

wireless network card. If you purchase a computer from one

of the big companies on the Internet, you can choose to have

it shipped with a wireless NIC. Some companies may propose

to install it before shipping the computer. If you buy a

computer from a store and if you want to use wireless

Development of Computer and Software Engineering

78

networking, you can buy a wireless network card separately.

As stated already, a wireless network card is not particularly

difficult to install.

Besides the wireless network cards that can be installed

inside the computer, you can use external cards. These are

installed using a USB port. Here is an example of a USB

adapter:

Here is another example:

These adapters, like most USB objects, are easy to connect

and use. Like the other hardware parts, when you connect

these, the computer detects them and helps you get them

ready for use. Unlike desktop computers, most laptops

nowadays come equipped with a wireless network card (in

fact most laptops today ship with both a wired and a wireless

adapters).

This means that, after purchasing or acquiring a laptop,

you should simply check whether it has a wireless adapter.

The way you check this depends on the laptop. Therefore,

check its documentation.

Development of Computer and Software Engineering

79

Network Accessories

Printers

If you attach a printer to one computer and share it, when

that computer is off, nobody can print. An alternative is to

purchase a network printer. That is, a printer that will directly

connect to the network and people can print to it any time.

There are many types of printers in this case:

• Some printers come equipped with a network card.

In this case, you can use an RJ-45 cable to connect

it to a router or a hub

• Most printers nowadays have a USB port that can

be used to connect them to a router

• Many printers come equipped with wireless capability.

This means that the computers can connect to the

printer without using a wire and they can print.

If you are using a wireless network and your printer doesn’t

have wireless capabilties, you can purchase a wireless print

server. This allows you to connect almost any type of printer,

with or without a network card, to the network. You can

purchase a wireless print server from a computer store or

from a web store. It is usually easy to install as it comes with

easy-to-follow instructions.

Internet Service Provider (ISP)

An Internet Service Provider (ISP) is a company that serves

as the intermediary between your network (or you) and the

Internet. If you plan to give access to the Internet to the

members of your network, you may need this type of

company. You can start by checking with your local telephone

company or your local TV cable company.

Development of Computer and Software Engineering

80

Firewall

Firewall is a security measure that consists of protecting

your network from intruders. This is primarily important if

you plan to connect your network to the Internet. There are

two types of firewalls: hardware and software. For a small

network, when buying a router, you can inquire as to whether

it has a built-in firewall. Many of them do. Alternatively, you

can use or configure one of the computers of your network

as a firewall.

Networking Topologies

Definition

Network topology refers to the way that your computer

network is arranged. The network can have a physical or a

logical topology. The physical topology describes the layout

of computers and where the workstations are positioned.

The logical network topology describes how the information

flows through the network.

Choosing your physical topology is important because if it

is not chosen correctly, this could cause your network to not

operate properly. There are several terms that describe the

type of physical topology that a network can have. The most

common topologies are bus, ring, star, and mesh. In a bus

topology, all of the computers are attached to a single cable

using terminators.

The terminators work to absorb the energy from the signals

in the network. The bus topology is easy to install, but it is

not reliable because a single default can bring down your

network.

Development of Computer and Software Engineering

81

In a ring topology, each computer is connected directly to

two other computers on the network. As with a bus topology,

a single fault can disrupt a ring network. This type of network

does have advantages, however, and does not require a

network server.

In a star topology, each computer is connected using its

own separate cable. This set up is more reliable than a bus

topology because its design makes it fault tolerant and

susceptible to errors. The information on the network is

transmitted from one system to another and the data flows

in one single direction. The topology is expensive to maintain

and is not reliable because removing one computer can

disrupt your entire network.

In a mesh topology, a path is present from one computer

to another computer in the network. The mesh topology is

usually used in internet structure. The mesh topology can

be complicated to construct because it has multiple

connection between locations. For every computer that you

have you will need at least one and a half connections for

each one. This contributes to the expensive structure.

In choosing a network topology, understand that each one

has its advantages and disadvantages. Research each one

and see which one fits within your budget and which one

fits your network layout. Also consider the amount of

maintenance required in each topology. When setting up a

network at home, consider a network topology that is simple

and easy to maintain. You will also want a topology that is

inexpensive to set up. If you are choosing a topology for a

business, you will want to consider a topology that is reliable

and resistant to errors. Your customers will need a network

Development of Computer and Software Engineering

82

that is free of downtime; therefore, be sure that your topology

is one that withstands disruption.

Types of Networking Topologies

Bus Topology

A bus topology is a method of transmission on networks

that uses a common vehicle for transmissions and thus it is

categorized as shared communication. Imagine a bus picking

up various people from one stop and dropping of people as it

travels and then picking a few more.

That is what happens in a bus network exactly. A bus

network uses a multi-drop transmission medium, all node

on the network share a common bus and thus share

communication. This allows only one device to transmit at a

time. A distributed access protocol determines which station

is to transmit. Data frames contain source and destination

addresses, where each station monitors the bus and copies

frames addressed to itself.

A bus topology connects each computer (nodes) to a single

segment trunk (a communication line, typically coax cable,

that is referred to as the ‘bus’. The signal travels from one

end of the bus to the other. A terminator is required at each

to absorb the signal so as it does not reflect back across the

bus. A media access method called CSMA/MA is used to

handle the collision that occur when two signals placed on

Development of Computer and Software Engineering

83

the wire at the same time. The bus topology is passive. In

other words, the computers on the bus simply ‘listen’ for a

signal; they are not responsible for moving the signal along.

However in a Bus topology only one device is allowed to

transmit at a given point of time. The DAP or the Distribute

Access Protocol has the information about which station has

to transmit the data. The data that is being transmitted have

frames that will have the source name and the network

address.

Function of Bus Topology

The bus topology connects each computer on the network

into something called the segment trunk. A bus is usually

referred to a cable that connects end to end and this is used

to transmit the signals from one end to the other end. At

every end a terminator is placed so that it understands in

which direction the data is traveling and also the terminator

is used to absorb the signals. If the terminator does not

absorb the signal then the same signal is reflected back to

the bus confusing the whole data flow. The bus is considered

to be a passive network because the computers are largely

dependant on the signal that is being transmitted.

Development of Computer and Software Engineering

84

Advantages

The advantage of the Bus network is that if one computer

fails in the network the others are still not affected and they

continue to work. Bus network is very simple and easy to set

up. If there is an urgent need to set up a network and perhaps

be used on a short term basis then the Bus network is the

best possibility. Bus networks use the least amount of cable

to set up making it cost effective.

Limitations

In the bus network you will need a network connection in

order to determine if the data is being transferred between

two nodes. If the data transfer rate is high then the Bus

network does not perform very well because the data travels

in a stream and cannot be overloaded. The bus network is a

bit challenging when you have to troubleshoot the problems.

Bus networks are not suitable as large networks as there

are limitations to the number of nodes you can set up for

one single cable. As the number of computers increase in

the network the data transfer rate goes down accordingly

and noticeably.

Conclusion

The bus networks in spite of its limitations is considered

to be the easiest and the fastest network that can be set up

compared to the other kinds of network. In bus networks

there is a collision handling system which ensures that data

travels without errors and data is delivered correctly. There

is a bus master on the network which ensures that data is

flowing in the right direction and order. All the computers

Development of Computer and Software Engineering

85

on the bus network however listen for the signals and they

do not hold the responsibility to move the signal forward.

The signal carries forward on its own. So if one computer

is not receiving any signals the signal still carries forward

without stopping at the computer that has failed. These days

bus networks are less common due to the advancement of

networks and there are much lesser complicated networks

that are easy to operate and efficient. However even these

newer technologies derive their basics from older technologies

like the Bus Topology.

Ring Topology

Definition

A ring topology is a network topology or circuit arrangement

in which each network device is attached along the same

signal path to two other devices, forming a path in the shape

of a ring. Each device in the network that is also referred to

as node handles every message that flows through the ring.

Each node in the ring has a unique address. Since in a ring

topology there is only one pathway between any two nodes,

ring networks are generally disrupted by the failure of a single

link.

Development of Computer and Software Engineering

86

The redundant topologies are used to eliminate network

downtime caused by a single point of failure. All networks

need redundancy for enhanced reliability. Network reliability

is achieved through reliable equipment and network designs

that are tolerant to failures and faults. The FDDI networks

overcome the disruption in the network by sending data on

a clockwise and a counterclockwise ring. In case there is a

break in data flow,the data is wrapped back onto the

complementary ring before it reaches the end of the cable

thereby maintaining a path to every node within the

complementary ring.

Ring network connects computers in a circle of point-to-

point connections, with no central server, such as a series of

desktop computers in an office.

Each node handles its own applications and also shares

resources over the entire network. If one node becomes

inoperative, the other nodes are still able to maintain contact

with one another. Such a network is best for decentralized

systems in which no priorities are required

Under the network, a signal is transferred sequentially via

a “token” fro one station to the next. When a station wants

to transmit, it “grabs” the token, attaches data and an address

to it, and then sends it around the ring.

The token travels along the ring until it reaches the

destination address. The receiving computer acknowledges

receipt with a return message to the sender. The sender then

Development of Computer and Software Engineering

87

releases the token for the token for use by another computer.

Each station on the ring has equal access but only one station

can talk at a time. To allow an orderly access to the ring, a

single electronic token passes from one computer to the

next around the ring as seen in (token ring). A computer can

only transmit dat

In a true ring topology, if a single computer or section of

cable fails, there is an interruption in the signal. The entire

network becomes inaccessible. Network disruption can also

occur when computers are added or removed from the

network, making it an impractical network design in

environments where there is constant change to the network.

Ring networks are most commonly wired in a star

configuration. In a Token Ring network, a multistation access

unit (MSAU) is equivalent to a hub or switch on an Ethernet

network. The MSAU performs the token circulation internally.

To create the complete ring, the ring in (RI) port on each

MSAU is connected to the ring out (RO) port on another

MSAU. The last MSAU in the ring is then connected to the

first, to complete the ring.

Token Ring Topology

Unlike Ethernet, Token Ring uses a ring topology whereby

the data is sent from one machine to the next and so on

around the ring until it ends up back where it started. It also

Development of Computer and Software Engineering

88

uses a token passing protocol which means that a machine

can only use the network when it has control of the Token,

this ensures that there are no collisions because only one

machine can use the network at any given time.

Figure below shows the basic of a Token Ring Topology.

Although 16Mbps is the standard ring speed these days (and

Fast Token Ring is being developed) we will consider a 4Mbps

Token Ring in this tutorial to explain the basic concepts.

At the start, a free Token is circulating on the ring, this is

a data frame which to all intents and purposes is an empty

vessel for transporting data. To use the network, a machine

first has to capture the free Token and replace the data with

its own message. In the example above, machine 1 wants to

send some data to machine 4, so it first has to capture the

free Token. It then writes its data and the recipient’s address

onto the Token.

The packet of data is then sent to machine 2 who reads

the address, realises it is not its own, so passes it on to

machine 3. Machine 3 does the same and passes the Token

on to machine 4. This time it is the correct address and so

number 4 reads the message. It cannot, however, release a

Development of Computer and Software Engineering

89

free Token on to the ring, it must first send the message

back to number 1 with an acknowledgement to say that it

has received the data (represented by the purple flashing

screen).

The receipt is then sent to machine 5 who checks the

address, realises that it is not its own and so forwards it on

to the next machine in the ring, number 6. Machine 6 does

the same and forwards the data to number 1, who sent the

original message. Machine 1 recognizes the address, reads

the acknowledgement from number 4 (represented by the

purple flashing screen) and then releases the free Token back

on to the ring ready for the next machine to use.

Token Ring Self Maintenance

When a Token Ring network starts up, the machines all

take part in a negotiation to decide who will control the ring,

or become the ‘Active Monitor’ to give it its proper title. This

is won by the machine with the highest MAC address who is

participating in the contention procedure, and all other

machines become ‘Standby Monitors’.

The job of the Active Monitor is to make sure that none of

the machines are causing problems on the network, and to

re-establish the ring after a break or an error has occurred.

The Active Monitor performs Ring Polling every seven seconds

and ring purges when there appears to be a problem.

The ring polling allows all machines on the network to

find out who is participating in the ring and to learn the

address of their Nearest Active Upstream Neighbour (NAUN).

Ring purges reset the ring after an interruption or loss of

data is reported. Each machine knows the address of its

Nearest Active Upstream Neighbour.

Development of Computer and Software Engineering

90

This is an important function in a Token Ring as it updates

the information required to re-establish itself when machines

enter or leave the ring. When a machine enters the ring it

performs a lobe test to verify that its own connection is

working properly, if it passes, it sends a voltage to the hub

which operates a relay to insert it into the ring.

If a problem occurs anywhere on the ring, the machine

that is immediately after the fault will cease to receive signals.

If this situation continues for a short period of time it initiates

a recovery procedure which assumes that its NAUN is at

fault, the outcome of this procedure either removes its

neighbour from the ring or it removes itself.

Token Ring Operation Using a Hub

A Token Ring hub simply changes the topology from a

physical ring to a star wired ring. The Token still circulates

around the network and is still controlled in the same

manner, however, using a hub or a switch greatly improves

reliability because the hub can automatically bypass any

ports that are disconnected or have a cabling fault.

Further advancements have been made in recent years

with regard to Token Ring technology, such as early Token

release and Token Ring switching but as this site is primarily

concerned with cabling issues we will not go into any more

detail here.

Development of Computer and Software Engineering

91

Star Topology

Star topology is the most commonly used physical

technology in Ethernets LANS, when installed, the star

topology resembles spokes I n a bicycle wheel. The star

topology is made up of a central connection point that is a

device such as a hub, switch, or router, where all the cabling

segments meet. Each host in the network is connected to

the central devices with its own cables although a physical

star topology costs more to implement than the physical

bus topology , the advantage of star topology make it worth

the additional cost.

Because each host it connected to the central device

with its own cable, when that cable has a problem, only

that host is affected, the rest of the network remains

operational this benefit is extremely important and is why

virtually every newly designed Ethernet a

central connection point might be desirable for security or

restricted access, but this is also a main disadvantage of a

star topology.if the central device fails, the whole network

become disconnected.when a star network is expanded to

include an additional networking device that is connected

for the main networking device, it is called an

extended star topology.

Description

A star topology is designed with each node (file server,

workstations, and peripherals) connected directly to a central

network hub or concentrator. Data on a star network passes

through the hub or concentrator before continuing to its

destination. The hub or concentrator manages and controls all

Development of Computer and Software Engineering

92

functions of the network. It also acts as a repeater for the data

flow. This configuration is common with twisted pair cable;

however, it can also be used with coaxial cable or fibre optic

cable. Many businesses and home networks use the star

topology. A star network features a central connection point

called a “hub” that may be an actual hub or a switch as shown

below:

Devices typically connect to the hub with Unshielded

Twisted Pair (UTP) Ethernet cables also known as RJ45

cables. Compared to the bus topology, a star network

generally requires more cable, but a failure in any star

network cable will only take down one computer’s network

access and not the entire LAN.

Star topology has the following advantages:

• Easy to manage

• Easy to locate problems (cable/workstations)

• Easier to expand than a bus or ring topology

• Easy to Install and Wire

• No disruptions to the network then connecting or

removing devices.

• Easy to detect faults and to remove parts.

Star topology has following disadvantages:

• It is susceptible to a single point of failure be it the

server or hub/switch

Development of Computer and Software Engineering

93

• With Increased devices and traffic can make the

network slow

• Requires more Cable Length.

• If the hub or concentrator fails, nodes attached are

disabled.

• More expensive than linear bus topologies because

of the cost of the concentrators.

Tree Topology

Among all the Network Topologies we can derive that the

Tree Topology is a combination of the bus and the Star

Topology. The tree like structure allows you to have many

servers on the network and you can branch out the network

in many ways.

This is particularly helpful for colleges, universities and

schools so that each of the branches can identify the relevant

systems in their own network and yet connect to the big

network in some way.

Development of Computer and Software Engineering

94

A Tree Structure suits best when the network is widely

spread and vastly divided into many branches. Like any other

topologies, the Tree Topology has its advantages and

disadvantages. A Tree Network may not suit small networks

and it may be a waste of cable to use it for small networks.

Tree Topology has some limitations and the configuration

should suit those limitations.

Benefits

A Tree Topology is supported by many network vendors

ad even hardware vendors. A point to point connection is

possible with Tree Networks. All the computers have access

to the larger and their immediate networks. Best topology

for branched out networks.

Limitations

In a Network Topology the length of the network depends

on the type of cable that is being used. The Tree Topology

network is entirely dependant on the trunk which is the main

backbone of the network. If that has to fail then the entire

network would fail. Since the Tree Topology network is big it

is difficult to configure and can get complicated after a certain

point.

The Tree Topology follows a hierarchical pattern where

each level is connected to the next higher level in a

symmetrical pattern. Each level in the hierarchy follows a

certain pattern in connecting the nodes. Like the top most

level might have only one node or two nodes and the following

level in the hierarchy might have few more nodes which work

on the point to point connectivity and the third level also

has asymmetrical node to node pattern and each of these

Development of Computer and Software Engineering

95

levels are connected to the root level in the hierarchy. A Tree

Structured network is very similar to this and that is why it

is called the Tree Topology.

Features

There will be at least three levels of hierarchy in the Tree

Network Topology and they all work based on the root node.

The Tree Topology has two kinds of topology integral in it,

the star and the linear way of connecting to nodes. The Tree

Topology functions by taking into account the total number

of nodes present in the network. It does not matter how many

nodes are there on each level. Nodes can be added to any

level of the hierarchy and there are no limitations a far as

the total number of nodes do not exceed. The higher levels

in the hierarchy are expected to perform more functions than

the lower levels in the network.

Advantages of a Tree Topology

• Point-to-point wiring for individual segments.

• Supported by several hardware and software venders.

Disadvantages of a Tree Topology

• Overall length of each segment is limited by the type

of cabling used.

• If the backbone line breaks, the entire segment goes

down.

• More difficult to configure and wire than other

topologies.

Mesh Topology

A type of network setup where each of the computers and

network devices are interconnected with one another,

Development of Computer and Software Engineering

96

allowing for most transmissions to be distributed, even if

one of the connections go down. This type of topology is not

commonly used for most computer networks as it is difficult

and expensive to have redundant connection to every

computer. However, this type of topology is commonly used

for wireless networks. The mesh topology incorporates a

unique network design in which each computer on the

network connects to every other, creating a point-to-point

connection between every device on the network.

The purpose of the mesh design is to provide a high level

of redundancy. If one network cable fails, the data always

has an alternative path to get to its destination.

As seen in the above figure, the wiring for a mesh network

can be very complicated. Further, the cabling costs associated

with the mesh topology can be high, and troubleshooting a

failed cable can be tricky. Because of this, the mesh topology

is rarely used. A variation on a true mesh topology is the

hybrid mesh. It creates a redundant point-to-point network

connection between only specific network devices.

Wireless Mesh Networks

Wireless Mesh Networks work based on the radio

frequencies and was originally developed by the army to be

Development of Computer and Software Engineering

97

able to communicate. The reliability factor is high in any

kind of Mesh Network. There are three types of wireless Mesh

Topologies.

• Fixed Wireless Connections

• Peer to Peer or Adhoc Networks

• Node to Node

Fixed Mesh Networks

The fixed Mesh Networks will work only in the specified

location and they are not mobile networks. They are meant

to be used in a limited surrounding with boundaries. The

location of nodes in affixed Mesh Network is all pre

determined and they are not interchangeable. The fixed Mesh

Network does not work on line of sight like the other types of

Mesh Networks. The total number of hops in a fixed Mesh

Network is usually fixed and also short. There may not be

many nodes as this kind of Mesh Networks exist within an

office or building. More often than not the data travels ion a

specific direction.

Peer to Peer Mobile Networks

In a peer to peer mobile network the individual devices

connect to each other using the Mesh Network. The peer

Development of Computer and Software Engineering

98

does not require connecting to the main node and they can

still communicate from one device to another device by taking

the shortest possible data transfer route. However many

experts believe that in the peer to peer Mesh Networks the

problems with scalability in terms of time taken for data

transfer is questionable. The device has to know to transmit

the data in the most optimal path and the entire data transfer

or depends on this single factor. If the device is incapable

then the whole purpose of using it in a peer to peer connection

is lost.

Development of Computer and Software Engineering

99

4

Software Testing

Introduction

Establishing Software testing Objectives is a critical part

of planning the Software testing process. Defining testing

objectives is also one of the most difficult test planning

activities. It is difficult because humans frequently do not

have a clear idea of what they want to do until they begin to

do it.

This means the best laid test plans change during test

process execution. This is a problem without a solution, but

there are some actions testers can take which will improve

test planning. The establishment of clear testing objectives

goes a long way towards offsetting future execution problems.

Before the tester can do this s/he must understand what we

mean by the word objective.

An objective is a testing “goal.” It is a statement of what

the tester wants to accomplish when implementing a specific

Development of Computer and Software Engineering

100

testing activity. Each testing activity may have several

objectives and there are two levels of objective specification.

A test plan should contain both high-level general

objectives in the overview section, and specific low-level

“provable” objectives for each particular type of testing being

implemented. The latter kind being operational goals for

specific testing tasks. A good set of operational objectives

can intuitively explain why we are executing a particular

step in the testing process.

Inputs

• System Requirements Document

• Software Design Description Document

• Risk Score Analysis Results (Task II.II)

Three methods can be used to specify test objectives. The

first is brainstorming. The test team uses “creative”

interaction to construct a list of test objectives. The second

approach is to identify “key” System functions. Next, specify

test objectives for each function. The third method is to

identify business transactions and base objectives on them.

This can also be thought of as Scenario-based as business

cycles could be used to drive the process.

Output

Statement of Test Objectives - The statement of the test

objectives is really a statement of the test requirements. It

can be created using any word processing package or spread

sheet. It can also be implemented with automated testing

tools. As an example, in SQA’s Manager product the test

objects/requirements are input as a test requirements

Development of Computer and Software Engineering

101

hierarchy and are stored in the test repository. Each branch

within the requirements tree can have sub-branches, and

sub-branches can also have sub-branches. SQA is only one

example. Other automated testing tools will have their own

type of test objectives/requirements documentation.

Unit testing

These type of tests are usually written by developers as

they work on code (white-box style), to ensure that the specific

function is working as expected. One function might have

multiple tests, to catch corner cases or other branches in

the code. Unit testing alone cannot verify the functionality of

a piece of software, but rather is used to assure that the

building blocks the software uses work independently of each

other.

Testing in software

Unit testing is a software development process in which

the smallest testable parts of an application, called units,

are individually and independently scrutinized for proper

operation.This testing mode is a component of software

development that takes a meticulous approach to building a

product by means of continual testing and revision.

Once all of the units in a programme have been found to

be working in the most efficient and error-free manner

possible, larger components of the programme can be

evaluated by means of integration testing. Unit testing must

be done with an awareness that it may not be possible to

test a unit for every input scenario that will occur when the

programme is run in a real-world environment.

Development of Computer and Software Engineering

102

Rules

• Write the test first

• Never write a test that succeeds the first time

• Start with the null case, or something that doesn’t

work

• Don’t be afraid of doing something trivial to make

the test work

• Loose coupling and testability go hand in hand

• Use mock objects. A mock object is an object that

pretends to be a particular type, but is really just a

sink, recording the methods that have been called

on it

• A test is not a pure unit test if: It talks to the

database

– It communicates across the network

– It touches the file system

– It can’t run at the same time as any of your other

unit tests

– You have to do special things to your environment

(such as editing config files) to run it. Tests that

do these things should be kept aside from the

regular unit test suit to run the test cases faster

whenever we make changes.

Unit testing deals with testing a unit as a whole. This

would test the interaction of many functions but confine the

test within one unit. The exact scope of a unit is left to

interpretation. Supporting test code, sometimes

called scaffolding, may be necessary to support an individual

test. This type of testing is driven by the architecture and

implementation teams. This focus is also called black-box

Development of Computer and Software Engineering

103

testing because only the details of the interface are visible to

the test. Limits that are global to a unit are tested here.

In the construction industry, scaffolding is a temporary,

easy to assemble and disassemble, frame placed around a

building to facilitate the construction of the building. The

construction workers first build the scaffolding and then the

building. Later the scaffolding is removed, exposing the

completed building. Similarly, in software testing, one

particular test may need some supporting software.

This software establishes an environment around the test.

Only when this environment is established can a correct

evaluation of the test take place. The scaffolding software

may establish state and values for data structures as well as

providing dummy external functions for the test. Different

scaffolding software may be needed from one test to another

test. Scaffolding software rarely is considered part of the

system. Sometimes the scaffolding software becomes larger

than the system software being tested. Usually the scaffolding

software is not of the same quality as the system software

and frequently is quite fragile. A small change in the test

may lead to much larger changes in the scaffolding.

Internal and unit testing can be automated with the help

of coverage tools. A coverage tool analyses the source code

and generates a test that will execute every alternative thread

of execution. It is still up to the programmer to combine these

test into meaningful cases to validate the result of each thread

of execution. Typically, the coverage tool is used in a slightly

different way.

First the coverage tool is used to augment the source by

placing informational prints after each line of code. Then

Development of Computer and Software Engineering

104

the testing suite is executed generating an audit trail. This

audit trail is analysed and reports the per cent of the total

system code executed during the test suite. If the coverage is

high and the untested source lines are of low impact to the

system’s overall quality, then no more additional tests are

required.

The idea behind unit testing is elegant and simple, but

can be expanded to enable sophisticated series of tests for

code validation and regression testing. A unit test is strictly

something that ‘exercises’ or runs the code under test. Many

developers manually perform unit testing on a regular basis

in the course of working on a segment of code. In other

words, it can be as simple as ‘I know the code should perform

this task when I supply this input; I’ll try it and see what

happens.’ If it doesn’t behave as expected, the developer

would likely modify the code and repeat this iterative process

until it works.

The problem with doing this manually is that it can easily

overlook large ranges of values or different combinations of

inputs and it offers no insight into how much of the code

was actually executed during testing. Additionally, it does

not help us with the important task of proving to someone

else that it worked and that it worked correctly.

The cost and time required is compounded by the reality

that one round of testing is rarely enough; besides fixing

bugs, any changes that are made to code later in the

development process may require additional investment of

time and resources to ensure it’s working properly.

Large projects typically augment manual procedures with

tools such as the Framework to automate and improve this

Development of Computer and Software Engineering

105

process. Automation mitigates risk of undetected errors,

saves costs by detecting problems early, and saves time by

keeping developers focused on the task of writing the

software, instead of performing the tests themselves.

The idea behind unit testing is that once you have a unit

that you think works, you set up a test case where you specify

some input to the unit and compare the result of your unit

with your expected result. You know about the expected

result, because you know what your unit is doing (or you

should know it).

Well, you better know what your unit is supposed to do, or

else you should not do programming in the first place...;)

Then you run the tests and the CakePHP/«insert your

framework here» test suite tells you if they passed or if not,

with some graceful message where the error occurred.

Now you have that testcase. Now you add testcases for t h

a t input and this one. The advantage of this is that once you

wrote the tests down they are there (cool, huh?) and you can

hold on to them. There is no need anymore for you to open

the browser and test everything manually again when you

change your system. Instead, you add functionality, run the

automated unit tests again, if they pass you are good to go,

if they don’t pass you broke something. Well, what if you

broke something but your tests don’t catch it? That’s

something that UT cannot do for you. You must make sure

you have a good test coverage

Typically, the order of the running of the tests should not

matter. There might be special cases, but in well over 90% it

does not. This should also be your goal, too, to have two

different problems if two test cases fail. Keep them all isolated

Development of Computer and Software Engineering

106

and you will sleep well. For most tests there is also not much

configuration to be done. You specify the input, your expected

result, crank the handle and evaluate how well you have

done. You should typically be able to group tests together,

too. When you run these groups you can get a good overview

over large components of your system.

Testing Phase

The first test in the development process is the unit test.

The source code is normally divided into modules, which in

turn are divided into smaller units called units. These units

have specific behaviour. The test done on these units of code

is called unit test. Unit test depends upon the language on

which the project is developed. Unit tests ensure that each

unique path of the project performs accurately to the

documented specifications and contains clearly defined

inputs and expected results.
� &��'��(����	���)��(�*�+��"�,��-� ����'

Phase Deliverable

Testing Regression Test

Internal Testing

Unit Testing

Application Testing

Stress Testing

Simply stated, quality is very important. Many companies

have not learned that quality is important and deliver more

claimed functionality but at a lower quality level. It is much

easier to explain to a customer why there is a missing feature

than to explain to a customer why the product lacks quality.

A customer satisfied with the quality of a product will remain

Development of Computer and Software Engineering

107

loyal and wait for new functionality in the next version.

Quality is a distinguishing attribute of a system indicating

the degree of excellence.

In many software engineering methodologies, the testing

phase is a separate phase which is performed by a different

team after the implementation is completed. There is merit

in this approach; it is hard to see one’s own mistakes, and

a fresh eye can discover obvious errors much faster than

the person who has read and re-read the material many

times.

Unfortunately, delegating testing to another team leads to

a slack attitude regarding quality by the implementation

team. Alternatively, another approach is to delegate testing

to the the whole organization. If the teams are to be known

as craftsmen, then the teams should be responsible for

establishing high quality across all phases. Sometimes, an

attitude change must take place to guarantee quality.

Regardless if testing is done after-the-fact or continuously,

testing is usually based on a regression technique split into

several major focuses, namely internal, unit,application,

and stress.The testing technique is from the perspective of

the system provider.

Because it is nearly impossible to duplicate every possible

customer’s environment and because systems are released

with yet-to-be-discovered errors, the customer plays an

important, though reluctant, role in testing. As will be

established later in the thesis, in the Water Sluice

methodology this is accomplished in the alpha and beta

release of the system.

Development of Computer and Software Engineering

108

Uses

Forget for a moment that there is something called XP

(Extreme Programming) that coined the Unit Test term. The

most of the projects developed today are always under tight

development schedules and usually have only its developers

as the tester of their code. By writing the unit tests themselves

they can have a head start towards bug-free and quality code.

One will argue that if the developer is writing all the unit

tests, it is quite possible to get the set of unit tests that are

passable, because these unit tests are developed based either

on the foreknowledge of application code or the assumptions

made in the application code. However, do not be fooled with

this, imagine what will happen if developer decides to change

the application, her old test cases will break. That will force

her to either re-think her changes or re-write the unit tests.

The application architect or analyst can write all the unit

test cases upfront (Not what XP recommend, but we are not

worried about it) and test the developed code against these

cases and functionalities. The advantage is well defined

deliverable for the developer and more quantifiable progress.

A developer can also use this to disciple their work habits

e.g. she can write a set of unit test that she wants to

accomplish in a days work. Once tests ready, she can start

developing the application and check her progress against

the unit test. Now she has a metre to check her progress.

NUnit Framework

NUnit framework is port of JUnit framework from java and

Extreme Programming (XP). This is an open source product.

You can download it from http://www.nunit.org. The NUnit

Development of Computer and Software Engineering

109

framework is developed from ground up to make use of.NET

framework functionalities. It uses an Attribute based

programming model. It loads test assemblies in separate

application domain hence we can test an application without

restarting the NUnit test tools. The NUnit further watches a

file/assembly change events and reload it as soon as they

are changed. With these features in hand a developer can

perform develop and test cycles sides by side.

Need for Software testing
A primary purpose for testing is to detect software failures

so that defects may be uncovered and corrected. The scope

of software testing often includes examination of code as well

as execution of that code in various environments and

conditions as well as examining the quality aspects of code:

does it do what it is supposed to do and do what it needs to

do. We test software because developers are unable to build

defect free software. If the development processes were

perfect, meaning no defects were produced, testing would

not be necessary. Testing by the individual who developed

the work has not proven to be a substitute to building and

following a detailed test plan.

The disadvantages of a person checking their own work

using their own documentation are as follows:

• Misunderstandings will not be detected, because the

checker will assume that what the other individual

heard from him was correct.

• Improper use of the development process may not

be detected because the individual may not

understand the process.

Development of Computer and Software Engineering

110

• The individual may be “blinded” into accepting

erroneous system specifications and coding because

he falls into the same trap during testing that led to

the introduction of the defect in the first place.

• Information services people are optimistic in their

ability to do defect-free work and thus sometimes

underestimate the need for extensive testing.

• Without a formal division between development and

test, an individual may be tempted to improve the

system structure and documentation, rather than

allocate that time and effort to the test.

Testing unveils design defects as well as data defects of any

product. All testing focuses on discovering and eliminating

defects or variances from what is expected.

Testers need to identify these two types of defects:

1. Variance from Specifications: A defect from the

perspective of the builder of the product.

2. Variance from what is Desired: A defect from a user

(or customer) perspective.

Background and Objectives

Software testing is an integral and important activity in every

software development environment. Software seems to have

has permeated almost every equipment that we use in our

daily lives. Companies that produce embedded systems for

use in health care, transportation, and other critical segments

of our society have embraced model based software testing by

integrating them into their development environments.

• Software Testing is designed to establish that the

software is working satisfactorily as per the

requirements.

Development of Computer and Software Engineering

111

• Software Testing is a process designed to prove that

the programme is error free.

• Software The job of testing is to certify that the

software does its job correctly and can be used in

production.

Because, with these as the guidelines, one would tend to

operate the system in a normal manner to see if it works and

one would unconsciously choose such normal/correct test

data as would prevent the system from failing. Besides, it is

any way not possible to certify that a software has no errors,

simply because it is almost impossible to detect all errors. In

a way, we can say that software testing is basically a task of

locating errors. From the objective point of view, testing can

be done in two ways:

Positive Testing

Operate application or software as it should be operated.

Use proper variety of test data, including data values at

boundries to test if it fails.

Check actual test results with the expected and see:

• Does it behave normally?

• Are results correct?

• Does the software function correctly?

Negative Testing

Test for abnormal operations. Test with illegal/ abnormal

test data. Intentionally attempt to make things go wrong and

to discover/ detect and see

• Does the system fail/ crash?

• Does the programme do what it should not?

• Does it fail to do what it should?

Development of Computer and Software Engineering

112

Positive view of Negative Testing

The job of testing is to discover errors before the user does.

A good tester is one who is successfull in making the system

fail. Mentality of the tester has to be destructive – opposite

to that of the creator/ developer which should be constructive.

This chapter is designed to enable a clear understanding

and knowledge of the foundations, techniques, and tools in

the area of software testing and its practice in the industry.

The course will prepare students to be leaders in software

testing. Whether you are a developer or a tester, you must

test software. This course is a unique opportunity to learn

strengths and weaknesses of a variety of software testing

techniques.

Applications of testing techniques in health care industry

(e.g. pacemaker), nuclear industry (e.g. plant control),

aerospace industry (e.g. Mars Polar Lander), security (e.g.

smart card), automobile industry (e.g. automotive control

systems), and others will be considered.

The chapter will focus on:

• Test process and continuous quality improvement

• Test generation from requirements

• Modeling techniques: UML: FSM and Statecharts,

Combinatorial design; and others.

• Test generation from models.

• Test adequacy assessment.

• Industrial applications.

Discussion oriented lectures by the instructor, in-class

group presentations by teams, laboratory exercises using

advanced testing tools, and invited talks by experts from the

Development of Computer and Software Engineering

113

industry will be the primary mechanisms for learning and

the dissemination of knowledge.

Chapter description

Fundamentals of software testing; software test proces and

continuous quality improvement; Test generation using finite

state models,

Combinatorial design, and others; Test adequacy

assessment using black box and white box criteria; Industrial

applications of model based testing. Students will be required

to form small teams of three or four, preferably

interdisciplinary, and make presentations to the class.The

work of each team will be reviewed by the instructor and

other teams.

Test Approach

Inclusions

The contents of this release are as follows:

Phase 1 Deliverables

• New and revised Transaction Processing with

automated support

• New Customer Query Processes and systems

• Revised Inter-Office Audit process

• Relocate Exceptions to Head Office

• New centralised Agency Management system

• Revised Query Management process

• Revised Retrievals process

• New International Reconciliation process

• New Account Reconciliation process

Development of Computer and Software Engineering

114

Exclusions

When the scope of each Phase has been agreed and signed

off, no further inclusions will be considered for inclusion in

this release, except:

• Where there is the express permission and agreement

of the Business Analyst and the System Test Controller;

• Where the changes/inclusions will not require

significant effort on behalf of the test team (i.e.

requiring extra preparation - new test conditions etc.)

and will not adversely affect the test schedule.

Specific Exclusions

• Cash management is not included in this phase

• Sign On/Sign Off functions are excluded - this will

be addressed by existing processes

• The existing Special Order facility will not be replaced

• Foreign Currency Transactions

• International Data Exchanges

• Accounting or reporting of Euro transactions

Testing Process

• Organise Project involves creating a System Test Plan,

Schedule and Test Approach, and requesting/

assigning resources.

• Design/Build System Test involves identifying Test

Cycles, Test Cases, Entrance and Exit Criteria,

Expected Results, etc. In general, test conditions/

expected results will be identified by the Test Team

in conjunction with the Project Business Analyst or

Business Expert. The Test Team will then identify

Test Cases and the Data required. The Test

Development of Computer and Software Engineering

115

conditions are derived from the Business Design and

the Transaction Requirements Documents

• Design/Build Test Procedures includes setting up

procedures such as Error Management systems and

Status reporting, and setting up the data tables for

the Automated Testing Tool.

• Build Test Environment includes requesting/building

hardware, software and data set-ups.

• Execute Project Integration Test - See Section 3 - Test

Phases and Cycles

• Execute Operations Acceptance Test - See Section 3

- Test Phases and Cycles

• Signoff - Signoff happens when all pre-defined exit

criteria have been achieved. See Section 2.4.

Exclusions

SQA will not deal directly with the business design

regarding any design/ functional issues/ queries. The

development team is the supplier to SQA - if design/

functional issues arise they should be resolved by the

development team and its suppliers.

Testing Scope

Outlined below are the main test types that will be

performed for this release. All system test plans and

conditions will be developed from the functional specification

and the requirements catalogue.

Functional Testing

The objective of this test is to ensure that each element of

the application meets the functional requirements of the

business as outlined in the:

Development of Computer and Software Engineering

116

• Requirements Catalogue

• Business Design Specification

• Year 2000 Development Standards

• Other functional documents produced during the

course of the project i.e. resolution to issues/change

requests/feedback.

This stage will also include Validation Testing - which is

intensive testing of the new Front end fields and screens.

Windows GUI Standards; valid, invalid and limit data input;

screen and field look and appearance, and overall consistency

with the rest of the application.

The third stage includes Specific Functional testing - these

are low-level tests which aim to test the individual processes

and data flows.

Integration Testing

This test proves that all areas of the system interface with

each other correctly and that there are no gaps in the data

flow. Final Integration Test proves that system works as

integrated unit when all the fixes are complete.

Business (User) Acceptance Test

This test, which is planned and executed by the Business

Representative(s), ensures that the system operates in the

manner expected, and any supporting material such as

procedures, forms etc. are accurate and suitable for the

purpose intended. It is high level testing, ensuring that there

are no gaps in functionality.

Performance Testing

These tests ensure that the system provides acceptable

response times.

Development of Computer and Software Engineering

117

Regression Testing

A Regression test will be performed after the release of each

Phase to ensure that:

• There is no impact on previously released software,

and

• To ensure that there is an increase in the

functionality and stability of the software.

The regression testing will be automated using the

automated testing tool.

Bash and Multi-User Testing

Multi-user testing will attempt to prove that it is possible

for an acceptable number of users to work with the system

at the same time. The object of Bash testing is an ad-hoc

attempt to break the system.

Technical Testing

Technical Testing will be the responsibility of the

Development Team.

Operations Acceptance Testing (OAT)

This phase of testing is to be performed by the Systems

Installation and Support group, prior to implementing the

system in a live site. The SIS team will define their own testing

criteria, and carry out the tests.

System Test Entrance/Exit Criteria

Entrance Criteria

The Entrance Criteria specified by the system test controller,

should be fulfilled before System Test can commence. In the

Development of Computer and Software Engineering

118

event, that any criterion has not been achieved, the System

Test may commence if Business Team and Test Controller

are in full agreement that the risk is manageable.

• All developed code must be unit tested. Unit and

Link Testing must be completed and signed off by

development team.

• System Test plans must be signed off by Business

Analyst and Test Controller.

• All human resources must be assigned and in place.

• All test hardware and environments must be in place,

and free for System test use.

• The Acceptance Tests must be completed, with a pass

rate of not less than 80%.

Acceptance Tests

25 test cases will be performed for the acceptance tests.

To achieve the acceptance criteria 20 of the 25 cases should

be completed successfully - i.e. a pass rate of 80% must be

achieved before the software will be accepted for System Test

proper to start. This means that any errors found during

acceptance testing should not prevent the completion of 80%

of the acceptance test applications.

Resumption Criteria

In the event that system testing is suspended resumption

criteria will be specified and testing will not re-commence

until the software reaches these criteria.

Exit Criteria

The Exit Criteria detailed below must be achieved before

the Phase 1 software can be recommended for promotion to

Development of Computer and Software Engineering

119

Operations Acceptance status. Furthermore, I recommend

that there be a minimum 2 days effort Final Integration testing

AFTER the final fix/change has been retested.

• All High Priority errors from System Test must be

fixed and tested

• If any medium or low-priority errors are outstanding

- the implementation risk must be signed off as

acceptable by Business Analyst and Business Expert

• Project Integration Test must be signed off by Test

Controller and Business Analyst.

• Business Acceptance Test must be signed off by

Business Expert.

Completion Criteria

A completion criterion is the standard by which a test

objective is measured. Completion criteria can be either

quantitative or qualitative. The important point is that the

test team must some how be able to determine when a test

objective has been satisfied. One or more completion criteria

must be specified for each test objective.

Output

Statement of Objective Completion Criteria - The important

consideration is that each requirement and how it is validated

is documented. Test requirements are completely useless

unless they can be satisfied. Important test metrics that

should be calculated and reported are the percentage of test

requirements that have be covered by test cases, and the

percentage of test requirements that have been successfully

validated. The statement of objective completion criteria does

not have to be a separate document. It can simply be an

Development of Computer and Software Engineering

120

addendum to the statement of test objectives. For example,

if using SQA’s Manager product, The description field that is

included for each requirement could contain a statement of

the requirement’s validation rule(s). The test objectives should

be prioritized based on the risk analysis findings.

Priority should be assigned using this scale:

• High: Most important tests: must be executed

• Medium: Second-level objectives: should be executed

only after high-priority tests

• Low: Least important: should be tested last and only

if there is enough time

• High and Medium: test objectives should be assigned

more resources than Low priority objectives.

• Output: Prioritized Test Objectives

• Manual: Test objectives should be implemented

manually in the form of quality checklists, with one

or more checklist items satisfying a specific objective.

(Single checklist items can also satisfy more than

one objective, as is the case for the date field

objectives).

• Automated: Test objectives should be translated into

an appropriate form for the automated test tool being

used. For example, when using SQA TeamTest Test

Manager a test requirements hierarchy would be

created. Automated test requirements would be

stored in the tool’s test repository and would be used

as the basis for constructing automated test scripts.

Development of Computer and Software Engineering

121

5

Software Progrmming

Software Engineering is an approach to developing software

that attempts to treat it as a formal process more like

traditional engineering than the craft that many programmers

believe it is. We talk of crafting an application, refining and

polishing it, as if it were a wooden sculpture, not a series of

logic instructions. Manufacturers cannot build complex life-

critical systems like aircraft, nuclear reactor controls, medical

systems and expect the software to be thrown together.

They require the whole process to be thoroughly managed,

so that budgets can be estimated, staff recruited, and to

minimize the risk of failure or expensive mistakes. In safety

critical areas such as aviation, space, nuclear power plants,

medicine, fire detection systems, and roller coaster rides the

cost of failure can be enormous as lives are at risk. A divide

by zero error that brings down an aircraft is just not

acceptable.

Development of Computer and Software Engineering

122

Cad Engineering

Enormous design documents- hundreds or thousands of

pages long are produced using C.A.S.E. (Computer Aided

Software Engineering) tools then converted into Design

Specification documents which are used to design code.

C.A.S.E suffers from the “not quite there yet” syndrome.

There are no systems that can take a set of design constraints

and requirements then generate code that satisfies all the

requirements and constraints. Its far too complex a process.

So the available C.A.S.E. systems manage parts of

the lifecycle process but not all of it. One distinguishing

feature of Software Engineering is the paper trail that it

produces.

Designs have to be signed off by Managers and Technical

Authorities all the way from top to bottom and the role of

Quality Assurance is to check the paper trail. Many Software

Engineers would admit that their job is around 70%

paperwork and 30% code. It’s a costly way to write software

and this is why avionics in modern aircraft are so expensive.

Software Crisis

Indeed, the problem of trying to write an encyclopedia is

very much like writing software. Both running code and a

hypertext/encyclopedia are wonderful turn-ons for the brain,

and you want more of it the more you see, like a drug. As a

user, you want it to do everything, as a customer you don’t

really want to pay for it, and as a producer you realise how

unrealistic the customers are. Requirements will conflict in

functionality vs affordability, and in completeness vs

timeliness.

Development of Computer and Software Engineering

123

Different Types of Crisis

Chronic Software Crisis

By today’s definition, a “large” software system is a system

that contains more than 50,000 lines of high-level language

code. It’s those large systems that bring the software crisis

to light. If you’re familiar with large software development

projects, you know that the work is done in teams consisting

of project managers, requirements analysts, software

engineers, documentation experts, and programmers.

With so many professionals collaborating in an organized

manner on a project, what’s the problem? Why is it that the

team produces fewer than 10 lines of code per day over the

average lifetime of the project? And why are sixty errors found

per every thousand lines of code? Why is one of every three

large projects scrapped before ever being completed? And why

is only 1 in 8 finished software projects considered “successful?”

• The cost of owning and maintaining software in the

1980’s was twice as expensive as developing the

software.

• During the 1990’s, the cost of ownership and

maintenance increased by 30% over the 1980’s.

• In 1995, statistics showed that half of surveyed

development projects were operational, but were not

considered successful.

• The average software project overshoots its schedule

by half.

• Three quarters of all large software products delivered

to the customer are failures that are either not used

at all, or do not meet the customer’s requirements.

Development of Computer and Software Engineering

124

Software projects are notoriously behind schedule and over

budget. Over the last twenty years many different paradigms

have been created in attempt to make software development

more predictable and controllable.

While there is no single solution to the crisis, much has

been learned that can directly benefit today’s software

projects.

It appears that the Software Crisis can be boiled down to

two basic sources:

1. Software development is seen as a craft, rather than

an engineering discipline.

2. The approach to education taken by most higher

education institutions encourages that “craft”

mentality.

Software Development

Software development today is more of a craft than a

science. Developers are certainly talented and skilled, but

work like craftsmen, relying on their talents and skills and

using techniques that cannot be measured or reproduced.

On the other hand, software engineers place emphasis on

reproducible, quantifiable techniques–the marks of science.

The software industry is still many years away from becoming

a mature engineering discipline.

Formal software engineering processes exist, but their use

is not widespread. A crisis similar to the software crisis is

not seen in the hardware industry, where well documented,

formal processes are tried and true, and ad hoc hardware

development is unheard of. To make matters worse, software

technology is constrained by hardware technology. Since

Development of Computer and Software Engineering

125

hardware develops at a much faster pace than software,

software developers are constantly trying to catch up and

take advantage of hardware improvements.

Management often encourages ad hoc software

development in an attempt to get products out on time for

the new hardware architectures. Design, documentation, and

evaluation are of secondary importance and are omitted or

completed after the fact. However, as the statistics show, the

ad hoc approach just doesn’t work. Software developers have

classically accepted a certain number of errors in their work

as inevitable and part of the job. That mindset becomes

increasingly unacceptable as software becomes embedded

in more and more consumer electronics. Sixty errors per

thousand lines of code is unacceptable when the code is

embedded in a toaster, automobile, ATM machine or razor

(let your imagination run free for a moment).

Computer Science and Product Orientation

Software developers pick up the ad hoc approach to

software development early in their computer science

education, where they are taught a “product orientation”

approach to software development. In the many

undergraduate computer science courses I took, the existence

of software engineering processes was never even mentioned.

Computer science education does not provide students

with the necessary skills to become effective software

engineers. They are taught in a way that encourages them

to be concerned only with the final outcome of their

assignments–whether or not the programme runs, or whether

or not it runs efficiently, or whether or not they used the

Development of Computer and Software Engineering

126

best possible algorithm. Those concerns in themselves are

not bad. But on the other hand, they should not be the focus

of a project. The focus should be on the complete process

from beginning to end and beyond. Product orientation also

leads to problems when the student enters the work force–

not having seen how processes affect the final outcome,

individual programmers tend to think their work from day

to day is too “small” to warrant the application of formal

methods.

Fully Supported Software

As we have seen, most software projects do not follow a

formal process. The result is a product that is poorly designed

and documented. Maintenance becomes problematic because

without a design and documentation, it’s difficult or

impossible to predict what sort of effect a simple change might

have on other parts of the system. Fortunately there is an

awareness of the software crisis, and it has inspired a

worldwide movement towards process improvement. Software

industry leaders are beginning to see that following a formal

software process consistently leads to better quality products,

more efficient teams and individuals, reduced costs, and

better morale.

Ratings range from Maturity Level 1, which is characterized

by ad hoc development and lack of a formal software

development process, up to Maturity Level 5, at which an

organization not only has a formal process, but also

continually refines and improves it. Each maturity level is

further broken down into key process areas that indicate

the areas an organization should focus on to improve its

software process (e.g. requirement analysis, defect

Development of Computer and Software Engineering

127

prevention, or change control). Level 5 is very difficult to

attain. In early 1995, only two projects, one at Motorola and

another at Loral (the on-board space shuttle software project),

had earned Maturity Level 5. Another study showed that

only 2% of reviewed projects rated in the top two Maturity

Levels, in spite of many of those projects placing an extreme

emphasis on software process improvement.

Customers contracting large projects will naturally seek

organizations with high CMM ratings, and that has prompted

increasingly more organizations to investigate software

process improvement. Mature software is also reusable

software. Artisans are not concerned with producing

standardized products, and that is a reason why there is so

little interchangeability in software components.

Ideally, software would be standardized to such an extent

that it could be marketed as a “part”, with its own part

number and revision, just as though it were a hardware part.

The software component interface would be compatible with

any other software system. Though it would seem that

nothing less than a software development revolution could

make that happen, the National Institute of Standards and

Technology (NIST) founded the Advanced Technology

Programme (ATP), one purpose of which was to encourage

the development of standardized software components.

Extreme Programming (XP)
Is the latest incarnation of Waterfall model and is the most

recent software fad. Most postulates of Extreme programming

are pure fantasy. It has been well known for a long time

that big bang or waterfall models don’t work well on projects

with complex or shifting requirements. The same is true for

Development of Computer and Software Engineering

128

XP. Too many shops implement XP as an excuse for not

understanding the user requirements. XP try improve classic

waterfall model by trying to start coding as early as possible

but without creating a full-fledged prototype as the first stage.

In this sense it can be considered to be variant of evolutionary

prototyping (see below). Often catch phase “Emergent design”

is used instead of evolutionary prototyping.

It also introduces a very questionable idea of pair

programming as an attempt to improve extremely poor

communication between developers typical for large projects.

While communication in large projects is really critical and

attempts to improve it usually pay well, “pair programming”

is a questionable strategy.

There are two main problems here:

1 In a way it can be classified as a hidden attempt to

create one good programmer out of two mediocre. But

in reality it is creating one mediocre programmer from

two or one good. No senior developer is going to put up

with some jerk sitting on his lap asking questions about

every line. It just prevents the level of concentration

needed for high quality coding. Microsoft’s idea of having

a tester for each programmer is more realistic: one

developer writes tests.

2 The actual code to be tested. This forces each of them

to communicate and because tester has different

priorities then developer such communication brings

the developer a new and different perspective on his

code, which really improves quality. This

combination of different perspectives is a really neat

idea as you can see from the stream of Microsoft

Office products and operating systems.

Development of Computer and Software Engineering

129

Spiral model

The spiral model is a variant of “dialectical spiral” and as

such provides useful insights into the life cycle of the system.

Can be considered as a generalization of the prototyping

model. That why it is usually implemented as a variant of

prototyping model with the first iteration being a prototype.

The spiral model is similar to the incremental model, with

more emphases placed on risk analysis. The spiral model

has four phases: Planning, Risk Analysis, Engineering and

Evaluation. A software project repeatedly passes through

these phases in iterations (called Spirals in this model). The

baseline spiral, starting in the planning phase, requirements

are gathered and risk is assessed.

Each subsequent spirals builds on the baseline spiral.

Requirements are gathered during the planning phase. In

the risk analysis phase, a process is undertaken to identify

risk and alternate solutions. A prototype is produced at the

end of the risk analysis phase. Software is produced in the

engineering phase, along with testing at the end of the phase.

Advantages

• High amount of risk analysis

• Good for large and mission-critical projects.

• Software is produced early in the software life cycle.

Disadvantages

• Can be a costly model to use.

• Risk analysis requires highly specific expertise.

• Project’s success is highly dependent on the risk

analysis phase.

• Doesn’t work well for smaller projects.

Development of Computer and Software Engineering

130

Evolutionary prototyping model

This is kind of mix of Waterfall model and prototyping.

Presuppose gradual refinement of the prototype until a usable

product emerge. Might be suitable in projects where the main

problem is user interface requirements, but internal

architecture is relatively well established and static. In this

case system first is coded in a scripting language and then

gradually critical components are rewritten in the lower

language.

OSS development model

It is the latest variant of evolutionary prototype model.

The “waterfall model” was probably the first published model

and as a specific model for military it was not as naive as

some proponents of other models suggest. The model was

developed to help cope with the increasing complexity of

aerospace products. The waterfall model followed a

documentation driven paradigm.

Prototyping model was probably the first realistic of early

models because many aspects of the syst4m are unclear until

a working prototype is developed. A better model, the “spiral

model” was suggested by Boehm in 1985. The spiral model

is a variant of “dialectical spiral” and as such provides useful

insights into the life cycle of the system. But it also

presuppose unlimited resources for the project. No

organization can perform more then a couple iterations

during the initial development of the system. the first

iteration is usually called prototype. Prototype based

development requires more talented managers and good

planning while waterfall model works (or does not work) with

Development of Computer and Software Engineering

131

bad or stupid managers works just fine as the success in

this model is more determined by the nature of the task in

hand then any organizational circumstances.

Like always humans are flexible and programmer in

waterfall model can use guerilla methods of enforcing a sound

architecture as manager is actually a hostage of the model

and cannot afford to look back and re-implement anything

substantial. Because the life cycle steps are described in very

general terms, the models are adaptable and their

implementation details will vary among dif ferent

organizations.

The spiral model is the most general. Most life cycle models

can in fact be derived as special instances of the spiral model.

Organizations may mix and match different life cycle models

to develop a model more tailored to their products and

capabilities.

There is nothing wrong about using waterfall model for

some components of the complex project that are relatively

well understood and straightforward. But mixing and

matching definitely needs a certain level of software

management talent.

V-Shaped Model

Just like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must

be completed before the next phase begins. Testing is

emphasized in this model more so than the waterfall model

though. The testing procedures are developed early in the

life cycle before any coding is done, during each of the phases

preceding implementation.

Development of Computer and Software Engineering

132

Requirements begin the life cycle model just like the

waterfall model. Before development is started, a system

test plan is created. The test plan focuses on meeting the

functionality specified in the requirements gathering.

The high-level design phase focuses on system architecture

and design. An integration test plan is created in this phase

as well in order to test the pieces of the software systems

ability to work together.

The low-level design phase is where the actual software

components are designed, and unit tests are created in this

phase as well. The implementation phase is, again, where all

coding takes place.

Advantages

• Simple and easy to use.

• Each phase has specific deliverables.

• Higher chance of success over the waterfall model

due to the development of test plans early on during

the life cycle.

• Works well for small projects where requirements are

easily understood.

Disadvantages

• Very rigid, like the waterfall model.

• Little flexibility and adjusting scope is difficult and

expensive.

• Software is developed during the implementation

phase, so no early prototypes of the software are

produced.

• Model doesn’t provide a clear path for problems found

during testing phases.

Development of Computer and Software Engineering

133

Software Requirements Specification

There are many good definitions of System and Software

Requirements Specifications that will provide us a good basis

upon which we can both define a great specification and

help us identify deficiencies in our past efforts. There is also

a lot of great stuff on the web about writing good

specifications. The problem is not lack of knowledge about

how to create a correctly formatted specification or even what

should go into the specification. The problem is that we don’t

follow the definitions out there.

We have to keep in mind that the goal is not to create great

specifications but to create great products and great software.

Can you create a great product without a great specification?

Absolutely! You can also make your first million through the

lottery – but why take your chances? Systems and software

these days are so complex that to embark on the design before

knowing what you are going to build is foolish and risky.

The IEEE is an excellent source for definitions of System

and Software Specifications. As designers of real-time,

embedded system software, we use IEEE STD 830-1998 as

the basis for all of our Software Specifications unless

specifically requested by our clients. Essential to having a

great Software Specification is having a great System

Specification. The equivalent IEEE standard for that is IEEE

STD 1233-1998. However, for most purposes in smaller

systems, the same templates can be used for both.

Benefits of SRS

Establish the basis for agreement between the customers

and the suppliers on what the software product is to do. The

Development of Computer and Software Engineering

134

complete description of the functions to be performed by

the software specified in the SRS will assist the potential

users to determine if the software specified meets their

needs or how the software must be modified to meet their

needs.

Reduce the development effort. The preparation of the SRS

forces the various concerned groups in the customer’s

organization to consider rigorously all of the requirements

before design begins and reduces later redesign, recoding,

and retesting. Careful review of the requirements in the SRS

can reveal omissions, misunderstandings, and

inconsistencies early in the development cycle when these

problems are easier to correct.

Provide a basis for estimating costs and schedules. The

description of the product to be developed as given in the

SRS is a realistic basis for estimating project costs and can

be used to obtain approval for bids or price estimates. Provide

a baseline for validation and verification. Organizations can

develop their validation and Verification plans much more

productively from a good SRS. As a part of the development

contract, the SRS provides a baseline against which

compliance can be measured.

Facilitate transfer. The SRS makes it easier to transfer the

software product to new users or new machines. Customers

thus find it easier to transfer the software to other parts of

their organization, and suppliers find it easier to transfer it

to new customers.

Serve as a basis for enhancement. Because the SRS

discusses the product but not the project that developed it,

the SRS serves as a basis for later enhancement of the

Development of Computer and Software Engineering

135

finished product. The SRS may need to be altered, but it

does provide a foundation for continued production

evaluation.

Characteristics

An SRS should be:

• Correct

• Unambiguous

• Complete

• Consistent

• Ranked for importance and/or stability

• Verifiable

• Modifiable

• Traceable

– Correct: This is like motherhood and apple pie.

Of course you want the specification to be correct.

No one writes a specification that they know is

incorrect. We like to say - “Correct and Ever

Correcting.” The discipline is keeping the

specification up to date when you find things that

are not correct.

– Unambiguous: An SRS is unambiguous if, and

only if, every requirement stated therein has only

one interpretation. Again, easier said than done.

Spending time on this area prior to releasing the

SRS can be a waste of time. But as you find

ambiguities - fix them.

– Complete: A simple judge of this is that is should

be all that is needed by the software designers

to create the software.

Development of Computer and Software Engineering

136

– Consistent: The SRS should be consistent within

itself and consistent to its reference documents.

If you call an input “Start and Stop” in one place,

don’t call it “Start/Stop” in another.

– Ranked for Importance: Very often a new system

has requirements that are really marketing wish

lists. Some may not be achievable. It is useful

provide this information in the SRS.

– Verifiable: Don’t put in requirements like - “It

should provide the user a fast response.” Another

of my favorites is - “The system should never

crash.” Instead, provide a quantitative

requirement like: “Every key stroke should provide

a user response within 100 milliseconds.”

Architectural design principles
Design principles are not necessarily right or wrong but

should be an accurate reflection of the fundamentals that

guide decision making in an enterprise. The following should

therefore not be seen as design principles fixed in concrete

but rather as examples of business principles. Best practice

is to define the design principle in terms of its Benefits and

rationale as well as the implication to the enterprise and the

counter argument expressing the potential negative impact

of the design principle.

Design principle

Description

All management information and business intelligence

will be sourced from a single consolidated source of

information.

Development of Computer and Software Engineering

137

Benefits

• A central source of management information will

provide the enterprise with a wide breath of reporting

and analysis without being constraint by the

organisations functional structuring.

• Users will become used to a single interface to

management information allowing managers to

become familiar with the infrastructure and

extracting maximum benefit from all information

available in the organisation.

• The central information will eliminate contradicting

information sources and ensure accurate reporting

of current affairs and identification of issues and

opportunities.

• Increase the flexibility and manageability of providing

information rapidly and effectively to support

business decisions.

• Use best of breed analytic functionality to support

management decision making

• Increased security in managing access to The

enterprise’s management information

Implications

• Information must be sourced to the central

information infrastructure from all the various

operational applications as close to real time as

possible

• No additional analytical modules are required for

transactional applications.

Development of Computer and Software Engineering

138

• The interface to management information and

training should be rolled out to all decision makers

to effectively access information.

Counter Argument

• The central management information might not be
adequate in situations where real time analytics of
transactional information is needed

• Information in the central information source might
not be structured for a specific requirement and the
development time might be too long to provide the
information in time for a once off request.

• The assumption cannot be made that a single tool
will satisfy all the information requirements. The
information infrastructure will therefore consist of a

variety of integrated tools.

Internationalisation

Description

Information must be structured for global deployment in

various cultures and support multi-currency, multi-language

and multi platforms

Benefits

• Flexibility to enter into other global markets

• Consistency of being able to deploy a proven business

model and then adapt to local conditions

Implications

• Applications should be much more flexible to

accommodate differences defined by different

countries

Development of Computer and Software Engineering

139

• Current applications should be evaluated in terms

of internationalisation requirements.

Counter Argument

• Applications designated for use locally in South-Africa

only does not have to comply to the internationalisation

principle

• The enterprise might strategise to enter only into

markets that have a certain set of international

commonality which make the rigid application of this

principle unnecessary

• It might be too expensive to change or replace legacy

systems to adhere to the internationalisation

requirement.

Single contact database

Description

A single contact database for all business contacts e.g.

policyholders, intermediaries and service providers

Benefits

• A central source of information to manage

relationships effectively

• Have a more comprehensive view of

interrelationships between business contacts.

• More effective marketing campaign design and

management

Implication

• High levels of data integration with transactional

systems updating contact information.

Development of Computer and Software Engineering

140

• Transactional systems updating information must be

assigned with levels of trust.

• Central contact information should not.complicate

functional requirements to only view specific

relationships.

Counter Argument

• Some functional units might not want to share

contact information for the fear that it might be used

wrongly or out of context by other parts of the

organisation.

Single point of authentication

Description

Access for to information should be constraint through a

single point of authentication infrastructure

Benefits

• Improved security of information

Implication

• Central management of user access to information.

Counter Argument

• The current infrastructure might not be mature

enough to implement the principle.

Data quality measurement

Description

Data quality will be measured both in quantitative and

qualitative terms eg. Audit procedures and Data quality

questionnaires

Development of Computer and Software Engineering

141

Benefits

• Improved data quality

• Accurate usage of data

• Improved management information

• Increased operational efficiency

Implication

• Bi-annually measure data through with a data

quality survey

• Audit data ownership procedures annually

• Build in data quality measures into applications

• Connect data quality results with performance

incentives

Counter Argument

• Regular audits and subjective measurement

techniques e.g. surveys might be time consuming.

Formalised data exchange/enrichment

Description

All data exchange/enrichment activities are managed and

approved by the appointed data strategist and the exchange

of information must be subjected to a standardised

methodology for information exchange/enrichment.

Benefits

• Control costs associated with data exchange and

enrichment

• Protect operational data

• Improve data quality and value

• Data sharing to allow for better detection of fraud

Development of Computer and Software Engineering

142

Implication

• Development of a formal policy and methodology for

data exchange and enrichment

• Data strategist must be responsible for approving

data exchange/enrichment efforts and minimise cost.

• Identification and management of organisations that

can enrich and/or validate the enterprise data.

Counter Argument

• The formalised methodology should not become a

constraint to enrich and improve data quality.

• The enterprise might not always be in a position to

demand compliance from external parties to comply

with data sharing standards.

• Current lack of industry standards might make it

difficult to implement the principle.

Central repository of data naming standards

Description

Data names and field content must be standardised through

a central reference repository and must be accessible to the

business e.g. Street rather than str. is used to reference a street.

Benefits

• Consistency of information across all business

processes

• Usability of information increases across the

organisation.

Implication

• Alignment of all applications to support the

standardised naming standards

Development of Computer and Software Engineering

143

Counter Argument

• Difficulty to implement naming standardisation in

some applications

Align information requirements with data model

Description

All information requirements must be aligned with the

corporate data model before requesting changes to the

information architecture:

Benefits

• Integrity of transactional data model stays in tact.

• Prevent duplication of information.

Implication

• The corporate data model must be maintained to be

up to date at all times.

• In any application development life cycle it is a

condition to align the application with the corporate

data model.

Counter Argument

Data owners might not understand the data model to

update it with changes.

Information governance on all data elements

Description

All information elements must be subjected to information

architecture governance

Benefits

• Sustain data quality.

Development of Computer and Software Engineering

144

• Improve operational efficiency.

Implication

• Design the business process application of the data
element.

• Assign Applications sourcing the information.
• Align with corporate data model, rules, validations,

naming standard.
• Define data management policies e.g. security, back-

up, archiving/retrieval.

• Assign data ownership.

Counter Argument

• Lack training to adhere to information governance.

• Information governance is not adequately

communicated.

Data privacy and legality

Description

Client privacy must be respected and legal requirements

must be complied with, in any event of data exchange or

commerce.

Benefit

• Maintain good relationships with clients and protect

premium income

• Avoid legal costs due to mismanagement of

information resulting in lawsuits.

Implication

• The enterprise must be up to date with laws relating

to information

Development of Computer and Software Engineering

145

• Communicating The enterprise’s data policy to

clients

• Legal department needs to be up to date with laws

governing information usage, commerce and

distribution

Counter Argument

• Uncertainty of what constitutes data privacy might

make it difficult to implement this principle.

Bottom line: Design principles for enterprise architecture

must provide a decision framework based on a clear rationale

defined in terms of the benefits, implications and counter

argument relating to the design principle

Unified Modeling Language (UML)
The Unified Modeling Language or UML is is a mostly

graphical modelling language that is used to express designs.

It is a standardized language in which to specify the artefacts

and components of a software system. It is important to

understand that the UML describes a notation and not a

process. It does not put forth a single method or process of

design, but rather is a standardized tool that can be used in

a design process.

State Diagram

The state diagram shows the change of an object through

time. Based upon events that occur, the state diagram shows

how the object changes from start to finish.

Development of Computer and Software Engineering

146

States are represented as a rounded rectangle with the

name of the state shown. Optionally you can include

an activity that represents a longer running task during that

state. Connecting states together are transitions. These

represent the events that cause the object to change from

one state to another. The guard clause of the label is again

mutually exclusive and must resolve itself to be

either true or false. Actions represent tasks that run causing

the transitions.

Actions are different from activities in that actions cannot

be interrupted, while an activity can be interrupted by an

incoming event. Both ultimately represent an operation on

the object being studied. For example, an operation that

sets an attribute would be considered an action, while a long

calculation might be an activity. The specific separation

between the two depends on the object and the system being

studied.

Architectural patterns

Patterns for system architecting are very much in their

infancy. They have been introduced into TOGAF essentially

to draw them to the attention of the systems architecture

community as an emerging important resource, and as a

placeholder for hopefully more rigorous descriptions and

references to more plentiful resources in future versions of

TOGAF. They have not (as yet) been integrated into TOGAF.

However, in the following, we attempt to indicate the potential

value to TOGAF, and to which parts of the TOGAF

Architecture Development Method (ADM) they might be

relevant.

Development of Computer and Software Engineering

147

Background

A “pattern” has been defined as: “an idea that has been

useful in one practical context and will probably be useful in

others” [Analysis Patterns - Reusable Object Models]. In

TOGAF, patterns are considered to be a way of putting

building blocks into context; for example, to describe a re-

usable solution to a problem. Building blocks are what you

use: patterns can tell you how you use them, when, why,

and what trade-offs you have to make in doing so. Patterns

offer the promise of helping the architect to identify

combinations of Architecture and/or Solution Building

Blocks (ABBs/SBBs) that have been proven to deliver effective

solutions in the past, and may provide the basis for effective

solutions in the future.

Content of a Pattern

Several different formats are used in the literature for

describing patterns, and no single format has achieved

widespread acceptance. However, there is broad agreement

on the types of things that a pattern should contain. The

headings which follow are taken from Pattern-Oriented

Software Architecture: A System of Patterns. The elements

described below will be found in most patterns, even if

different headings are used to describe them.

Name

A meaningful and memorable way to refer to the pattern,

typically a single word or short phrase.

Problem

A description of the problem indicating the intent in

Development of Computer and Software Engineering

148

applying the pattern - the intended goals and objectives to

be reached within the context and forces described below

(perhaps with some indication of their priorities).

Context

The preconditions under which the pattern is applicable -

a description of the initial state before the pattern is applied.

Forces

A description of the relevant forces and constraints, and

how they interact/conflict with each other and with the

intended goals and objectives. The description should clarify

the intricacies of the problem and make explicit the kinds of

trade-offs that must be considered. (The need for such trade-

offs is typically what makes the problem difficult, and

generates the need for the pattern in the first place.) The

notion of “forces” equates in many ways to the “qualities”

that architects seek to optimize, and the concerns they seek

to address, in designing architectures.

For example:

• Security, robustness, reliability, fault-tolerance

• Manageability

• Efficiency, performance, throughput, bandwidth

requirements, space utilization

• Scalability (incremental growth on-demand)

• Extensibility, evolvability, maintainability

• Modularity, independence, re-usability, openness,

composability (plug-and-play), portability

• Completeness and correctness

• Ease-of-construction

Development of Computer and Software Engineering

149

• Ease-of-use

• etc....

A description, using text and/or graphics, of how to achieve

the intended goals and objectives. The description should

identify both the solution’s static structure and its dynamic

behaviour - the people and computing actors, and their

collaborations. The description may include guidelines for

implementing the solution. Variants or specializations of the

solution may also be described.

Resulting Context

The post-conditions after the pattern has been applied.

Implementing the solution normally requires trade-offs

among competing forces. This element describes which forces

have been resolved and how, and which remain unresolved.

It may also indicate other patterns that may be applicable in

the new context. (A pattern may be one step in accomplishing

some larger goal.) Any such other patterns will be described

in detail under Related Patterns.

Examples

One or more sample applications of the pattern which

illustrate each of the other elements: a specific problem,

context, and set of forces; how the pattern is applied; and

the resulting context.

Rationale

An explanation/justification of the pattern as a whole, or

of individual components within it, indicating how the pattern

actually works, and why - how it resolves the forces to achieve

the desired goals and objectives, and why this is “good”. The

Development of Computer and Software Engineering

150

Solution element of a pattern describes the external structure

and behaviour of the solution: the Rationale provides insight

into its internal workings.

Related Patterns

The relationships between this pattern and others. These

may be predecessor patterns, whose resulting contexts

correspond to the initial context of this one; or successor

patterns, whose initial contexts correspond to the resulting

context of this one; or alternative patterns, which describe a

different solution to the same problem, but under different

forces; or co-dependent patterns, which may/must be applied

along with this pattern.

Known Uses

Known applications of the pattern within existing systems,

verifying that the pattern does indeed describe a proven

solution to a recurring problem. Known Uses can also serve

as Examples.

Patterns may also begin with an Abstract providing an

overview of the pattern and indicating the types of problems

it addresses. The Abstract may also identify the target

audience and what assumptions are made of the reader.

Low Level Design

The low level design document should contain a listing of

the declarations of all the classes, non-member-functions,

and class member functions that will be defined during the

implementation stage, along with the associations between

those classes and any other details of those classes (such as

member variables) that are firmly determined by the low level

Development of Computer and Software Engineering

151

design stage. The low level design document should also

describe the classes, function signatures, associations, and

any other appropriate details, which will be involved in testing

and evaluating the project according to the evaluation plan

defined in the project’s requirements document.

More importantly, each project’s low level design document

should provide a narrative describing (and comments in your

declaration and definition files should point out) how the

high level design is mapped into its detailed low-level design,

which is just a step away from the implementation itself.

This should be an English description of how you converted

the technical diagrams (and text descriptions) found in your

high level design into appropriate class and function

declarations in your low level design. You should be especially

careful to explain how the class roles and their methods were

combined in your low level design, and any changes that

you decided to make in combining and refining them.

Description

Control systems elements like Advanced Metering

Infrastructure (AMI) networks fully field wireless sensors and

controls outside a utility’s physical security perimeter, placing

them at a high risk of compromise. System attackers have

every opportunity to damage, sniff, spoof, or tamper

communications hardware platforms for malicious, hobbyist,

or incidental reasons.

This paper demonstrates the relevance of common control

systems communications hardware vulnerabilities that lead

to direct control systems compromise. The paper describes

several enabling vulnerabilities exploitable by an attacker,

Development of Computer and Software Engineering

152

the design principles that causing them to arise, the economic

and electronic design constraints that restrict their defence,

and ideas for vulnerability avoidance.

Topics include design induced vulnerabilities such as the

extraction and modification of communications device

firmware, man-in-the-middle attacks between chips of a

communications devices, circumvention of protection

measures, bus snooping, and other attacks. Specific

examples are identified in this report, ranked by attack

feasibility. Each attack was investigated against actual IEEE

802.15.4 radio architectures.

Embedded System Architecture

Standard wireless embedded implementation technol-

ogies such as IEEE 802.15.4 are generally designed to serve

specific market needs. Therefore, the market offers

components that translate such standards to mass

producible designs. Embedded wireless technologies typically,

but not always, have relatively low power consumption,

component cost, computational power requirements, design

cost, and implementation cost.

Commodity variants of components that implement

wireless technology generally have higher individual reliability

than custom designs, and a ready and willing engineer talent

pool to integrate them. Almost all such components are

designed to leverage or integrate with existing mass

production components and subcomponents such as

microcontrollers, RAM chips, ROM chips, and others.

All of the above is highly desirable. As with all such

technologies that have the potential to achieve economy of

Development of Computer and Software Engineering

153

scale in design and implementation, vulnerability generally

follows or surpasses all cost optimizations and design trade-

offs unless specifically mitigated. Such optimizations and

economies of scale can serve to broaden the impact of

overlooked security flaws, turning their advantage into a

weakness.

This paper does not attempt to cover all potential aspects

for such wireless technology implementations, much less the

entire range of implementation issues for a single technology.

We present security vulnerabilities for typical components

found in specific IEEE 802.15.4 implementations; and

abstract them to help translate real-world tactical security

vulnerabilities as recognizable design classes requiring

consideration for mitigation. This paper does not educate

the reader in the many nuances of RF design. For RF design

and implementation issues, see individual standards such

as and engineering references including, but not limited to.

We present an abstraction of monolithic vulnerable aspects

of a typical commodity IEEE 802.15.4 platform, the Telos-B

development kit.

While the Telos-B is a basic user -programmable

development kit, its architecture is close enough to most

typical applications to be considered general. This abstraction

is intended to give the reader a repeatable context as a

starting point when looking at other platform architectures.

The RF physical, media access, link layer, and sometimes

network layers will be offloaded onto an RF component such

as the pictured CC2420. Breaking up the design lets

designers implement the RF portion of the application with

the best possible RF module for the lowest time to market

Development of Computer and Software Engineering

154

while targeting host applications to the optimal host

processor. Most standalone communications modules will

be linked to their host processor by a trivial board-level serial

bus such as SPI or I2C. In some designs the host processor

also contains the RF stack implementation, eliminating the

board-level serial bus. Components such as microcontrollers

or host processors rarely fully implement the analog portion

of an RF module.

Antennae, inbound and outbound amplifiers, RF switches,

and various filters are generally integrated separately as their

requirements vary widely across potential applications. Due

to their application orientation, host processors will have

external timing means.

In general external oscillators reduce processor chip cost

and allow the designer to scale the system to the cheapest

clock source meeting application requirements. Though

typically not used, many 802.15.4 RF modules have a means

to slave a host’s clock to the RF module to further reduce

design cost. Power is supplied to the devices as required by

the module, though often platform power requirements are

aligned to reduce component count and subsequent cost.

Confidentiality

• Snooping Bus Traffic

• Extracting Firmware for Vulnerability Analysis

• Extracting Stored Information

• Snooping Side Channels

Integrity

• Tampering Bus Traffic

• Replacing Hardware Components

Development of Computer and Software Engineering

155

• Modifying Existing Components

• Bypassing Hardware Components

• Disrupting or Distorting Normal Hardware Operation

• Bypassing Software Components

Availability

• Jamming or Shrouding

• Alert/Condition Flooding

• Run Battery Down

PHY, Link Transceiver

The subcomponent that deals with PHY, MAC, and LINK

layer issues. Potentially executes link layer cryptography

algorithms.

Key Subcomponents: Registers, RAM, other storage, boot

loader, internal programme storage, internal timing source,

and architecture specific functionality

Key External Dependencies: RF Front End, NET & App

Controller, data bus to NET & App Controller, external timing

source, power supply, RF/EM environment, temperature

environment

Potentially Vulnerable to: DoS, Disruption, Distortion,

Spoofing, Snooping, live code injection, serial Bus tampering,

reconfiguration, firmware analysis, firmware tampering,

snooping side channels, environmental tampering, etc.

NET & APP Controller

The subcomponent that primarily focuses on executing

any higher layer network functionality. This is generally an

independent microprocessor or microcontroller that may also

run the application.

Development of Computer and Software Engineering

156

Key Subcomponents: Registers, RAM, other storage, boot

loader, internal programme storage, internal timing source,

and architecture specific functionality

Key External Dependencies: PHY, Link Transceiver,

external buses, data bus to the PHY, Link Transceiver,

external timing source, power supply, RF/EM environment,

temperature environment, external storage

Potentially Vulnerable to: DoS, Disruption, Distortion,

Spoofing, Snooping, live code injection, serial Bus Tampering,

reconfiguration, flash/RAM snooping, flash/RAM tampering,

firmware analysis, firmware tampering, snooping side

channels, environmental tampering, tampering of external

flash, etc.

Low-Level Document

On PC-class hardware, there are two basic mechanisms

for sending rendering commands to the graphics device: PIO/

MMIO (see glossary for specific definitions) and DMA. The

architecture described in this document is designed around

DMA-style hardware, but can easily be extended to

accommodate PIO/MMIO-style hardware.

• Client is a user-space X11 client which has been

linked with various modules to support hardware-

dependent direct rendering. Typical modules may

include:

– libGL.so, the standard OpenGL (or Mesa) library

with our device and operating system

independent acceleration and GLX modifications.

– libDRI.so, our device-independent, operating-

system dependent driver.

– libHW3D.so, our device-dependent driver.

Development of Computer and Software Engineering

157

• X server is a user-space X server which has been

modified with device and operating-system

independent code to support DRI. It may be linked

with other modules to support hardware-dependent

direct rendering.

Typical modules may include:

– libDRI.so, our device-independent, operating-

system dependent driver.

– libH2D.so, our device-dependent driver. This

library may provide hardware-specific 2D

rendering, and 3D initialization and finalization

routines that are not required by the client.

• Kernel Driver is a kernel-level device driver that

performs the bulk of the DMA operations and

provides interfaces for synchronization. [Note:

Although the driver functionality is hardware-

dependent, the actual implementation of the driver

may be done in a generic fashion, allowing all of the

hardware-specific details to be abstracted into

libH3D.so for loading into the Kernel Driver at DRI

initialization time. An implementation of this type is

desirable since the Kernel Driver will not then have

to be updated for each new graphics device. The

details of this implementation are discussed in an

accompanying document, but are mentioned here to

avoid later confusion.]

• PROTO is the standard X protocol transport layer

(e.g., a named pipe for a local client).

• SAREA is a special shared-memory area that we will

implement as part of the DRI. This area will be used

Development of Computer and Software Engineering

158

to communicate information from the X server to

the client, and may also be used to share state

information with the kernel. This area should not

be confused with DMA buffers. This abstraction may

be implemented as several different physical areas.

• DMA BUFFERS are memory areas used to buffer
graphics device commands which will be sent to the
hardware via DMA. These areas are not needed if
memory-mapped IO (MMIO) is used exclusively to
access the hardware.

• IOCTL is a special interface to the kernel device
driver. Requests can be initiated by the user-space
programme, and information can be transfered to
and from the kernel. This interface incurs the
overhead of a system call and memory copy for the
information transfered. This abstract interface also
includes the ability of the kernel to signal a listening
user-space application (e.g., the X server) via I/O on
a device (which may, for example, signal the user-
space application with the SIGIO signal).

• MMIO is direct memory-mapped access to the

graphics device.

Initialization Analysis

The X server is the first application to run that is involved

with direct rendering. After initializing its own resources, it

starts the kernel device driver and waits for clients to connect.

Then, when a direct rendering client connects, SAREA is

created, the XFree86-GLX protocol is established, and other

direct rendering resources are allocated. This section

describes the operations necessary to bring the system to a

steady state.

Development of Computer and Software Engineering

159

X Server Initialization

When the X server is started, several resources in both

the X server and the kernel must be initialized if the GLX

module is loaded. Obviously, before the X server can do

anything with the 3D graphics device, it will load the GLX

module if it is specified in the XFree86 configuration file.

When the GLX module (which contains the GLX protocol

decoding and event handling routines) is loaded, the device-

independent DRI module will also be loaded. The DRI module

will then call the graphics device-dependent module

(containing both the 2D code and the 3D initialization code)

to handle the resource allocation outlined below.

X Resource Allocation Initialization

Several global X resources need to be allocated to handle

the client’s 3D rendering requests. These resources include

the frame buffer, texture memory, other ancillary buffers,

display list space, and the SAREA.

Frame 3Buffer

There are several approaches to allocating buffers in the

frame buffer: static, static with dynamic reallocation of the

unused space, and fully dynamic. Static buffer allocation is

the approach we are adopting in the sample implementation

for several reasons that will be outlined below.

Static allocation. During initialization, the resources

supported by the graphics device are statically allocated. For

example, if the device supports front, back and depth buffers

in the frame buffer, then the frame buffer is divided into four

areas. The first three are equal in size to the visible display

area and are used for the three buffers (front, back and

Development of Computer and Software Engineering

160

depth). The remaining frame buffer space remains

unallocated and can be used for hardware cursor, font and

pixmap caches, textures, pbuffers, etc.

Texture memory

Texture memory is shared among all 3D rendering clients.

On some types of graphics devices, it can be shared with

other buffers, provided that these other buffers can be “kicked

out” of the memory. On other devices, there is dedicated

texture memory, which might or might not be sharable with

other resources. Since memory is a limited resource, it would

be best if we could provide a mechanism to limit the memory

reserved for textures. However, the format of texture memory

on certain graphics devices is organized differently (banked,

tiled, etc.) than the simple linear addressing used for most

frame buffers. Therefore, the “size” of texture memory is

device-dependent. This complicates the issue of using a single

number for the size of texture memory.

Another complication is that once the X server reports

that a texture will fit in the graphics device memory, it must

continue to fit for the life of the client (i.e., the total texture

memory for a client can never get smaller). Therefore, at

initialization time, the maximum texture size and total

texture memory available will need to be determined by the

device-dependent driver. This driver will also provide a

mechanism to determine if a set of textures will fit into

texture memory.

Other Ancillary Buffers

All buffers associated with a window (e.g., back, depth,

and GID) are preallocated by the static frame-buffer

Development of Computer and Software Engineering

161

allocation. Pixmap, pbuffers and other ancillary buffers are

allocated out of the memory left after this static allocation.

During X server initialization, the size off-screen memory

available for these buffers will be calculated by the device-

dependent driver. Note that pbuffers can be “kicked out” (at

least the old style could), and so they don’t require virtualization

like pixmaps and potentially the new style pbuffers.

Display Lists

For graphics devices that support display lists, the display

list memory can be managed in the same way as texture

memory. Otherwise, display lists will be held in the client

virtual-address space.

SAREA

The SAREA is shared between the clients, the X server, and

the kernel. It contains four segments that need to be shared:

a per-device global hardware lock, per-context information,

per-drawable information, and saved device state information.

• Hardware lock segment. Only one process can access

the graphics device at a time. For atomic operations

that require multiple accesses, a global hardware lock

for each graphics device is required. Since the

number of cards is known at server initialization

time, the size of this segment is fixed.

• Per-context segment. Each GLXContext is associated

with a particular drawable in the per-drawable

segment and a particular graphics device state in

the saved device state segment. Two pointers, one

to the drawable that the GLXContext is currently

bound and one to the saved device state is stored in

Development of Computer and Software Engineering

162

the per-context segment. Since the number of

GLXContexts is not known at server start up time,

the size of this segment will need to grow. It is a

reasonable assumption to limit the number of direct

rendering contexts so the size of this segment can

be fixed to a maximum. The X server is the only

process that writes to this segment and it must

maintain a list of available context slots that needs

to be allocated and initialized.

• Per-drawable segment. Each drawable has certain

information that needs to be shared between the X

server and the direct rendering client:

– Buffer identification (e.g., front/back buffer)

(int32)

– Window information changed ID

– Flags (int32)

The window information changed ID signifies that the user

has either moved, unmapped or resized the window, or the

clipping information has changed and needs to be

communicated to the client via the XFree86-GLX protocol.

Since OpenGL clients can create an arbitrary number of

GLXDrawables, the size of this segment will need to grow.

As with the per-context segment, the size of this segment

can be limited to a fixed maximum. Again, the X server is the

only process that writes to this segment, and it must maintain

a list of available drawable slots that needs to be allocated

and initialized.

• Saved device state segment. Each GLXContext needs

to save the graphics hardware context when another

GLXContext has ownership of the graphics device.

Development of Computer and Software Engineering

163

This information is fixed in size for each graphics

device, but will be allocated as needed because it

can be quite large. In addition, if the graphics device

can read/write its state information via DMA, this

segment will need to be locked down during the

request.

Kernel Initialization

When the X server opens the kernel device driver, the kernel

loads and initializes the driver. See the next section for more

details of the kernel device driver.

Double Buffer Optimizations

There are typically three approaches to hardware double

buffering:

1. Video Page Flipping: The video logic is updated to

refresh from a different page. This can happen very

quickly with no per pixel copying required. This forces

the entire screen region to be swapped.

2. Bitblt Double Buffering: The back buffer is stored in

offscreen memory and specific regions of the screen

can be swapped by coping data from the offscreen

to onscreen. This has a performance penality because

of the overhead of copying the swapped data, but

allows for fine grain independent control for multiple

windows.

2. Auxillary Per Pixel Control: An additional layer

contains information on a per pixel basis that is used

to determine which buffer should be displayed.

Swapping entire regions is much quicker than Bitblt

Double Buffering and fine grain independed control

Development of Computer and Software Engineering

164

for multiple windows is achieved. However, not all

hardware or modes support this method.

If the hardware support Auxillary Per Pixel Control for the

given mode, then that is the preferred method for double

buffer support. However, if the hardware doesn’t support

Auxillary Per Pixel Control, then the following combined

opproach to Video Page Flipping and Bitblt Double Buffering

is a potential optimization.

• Initialize in a Bitblt Double Buffering mode. This allows

for X Server performance to be optimized while not

double buffering is required.

• Transition to a Video Page Flipping mode for the first

window requiring double buffer support. This allows

for the fastest possible double buffer swapping at

the expense of requiring the X Server to render to

both buffers. Note, for the transition, the contents

of the front buffer will need to be copied to the back

buffer and all further rendering will need to be

duplicated in both buffers for all non-double buffered

regions while in this mode.

• Transition back to Bitblt Double Buffering mode when

additional double buffering windows are created. This

will sacrifice performance for the sake of visual

accuracy. Now all windows can be independently

swapped.

In the initial SI, only the Bitblt Double Buffering mode will

be implemented.

Kernel Driver Initialization

When the kernel device driver is opened by the X server,

the device driver might not be loaded. If not, the module is

Development of Computer and Software Engineering

165

loaded by kerneld and the initialization routine is called. In

either case, the open routine is then called and finishes

initializing the driver.

Kernel DMA Initialization

Since the 3D graphics device drivers use DMA to

communicate with the graphics device, we need to initialize

the kernel device driver that will handle these requests. The

kernel, in response to this request from the X server, allocates

the DMA buffers that will be made available to direct

rendering clients.

Kernel Interrupt Handling Initialization

Interrupts are generated in a number of situations

including when a DMA buffer has been processed by the

graphics device. To acknowledge the interrupt, the driver

must know which register to set and to what value to set it.

This information could be hard coded into the driver, or

possibly a generic interface might be able to be written. If

this is possible, the X server must provide information to

the kernel as to how to respond to interrupts from the

graphics device.

Hardware Context Switching

Since the kernel device driver must be able to handle

multiple 3D clients each with a different GLXContext, there

must be a way to save and restore the hardware graphics

context for each GLXContext when switching between them.

Space for these contexts will need to be allocated when they

are created byglXCreateContext(). If the client can use this

hardware context (e.g., for software fallbacks or window

moves), this information might be stored in the SAREA.

Development of Computer and Software Engineering

166

Client DMA wait Queues

Each direct rendering context will require a DMA wait

queue from which its DMA buffers can be dispatched. These

wait queues are allocated by the X server when a new

GLXContext is created (glXCreateContext()).

Client Initialization

This section examines what happens before the client

enters steady state behaviour. The basic sequence for direct-

rendering client initialization is that the GL/GLX library is

loaded, queries to the X server are made (e.g., to determine

the visuals/FBConfigs available and if direct rendering can

be used), drawables and GLXContexts are created, and finally

a GLXContext is associated with a drawable. This sequence

assumes that the X server has already initialized the kernel

device driver and has pre-allocated any static buffers

requested by the user at server startup (as described above).

Library Loading

When a client is loaded, the GL/GLX library will

automatically be loaded by the operating system, but the

graphics device-specific module cannot be loaded until after

the X server has informed the DRI module which driver to

load (see below). The DRI module might not be loaded until

after a direct rendering GLXContext has been requested.

Client Configuration Queries

During client initialization code, several configuration

queries are commonly made. GLX has queries for its version

number and a list of supported extensions. These requests

are made through the standard GLX protocol stream. Since

Development of Computer and Software Engineering

167

the set of supported extensions is device-dependent, similar

queries in the device-dependent driver interface (in the X

server) are provided that can be called by device-independent

code in GLX.

One of the required GLX queries from the client is for the

list of supported extended visuals (and FBConfigs in GLX

1.3). The visuals define the types of colour and ancillary

buffers that are available and are device-dependent. The X

server must provide the list of supported visuals (and

FBConfigs) via the standard protocol transport layer (e.g.,

Unix domain or TCP/IP sockets). Again, similar interfaces in

the device-dependent driver are provided that can be called

by the device-independent code in GLX. All of this information

is known at server initialization time (above).

Drawable creation

The client chooses the visual (or FBConfig) it needs and

creates a drawable using the selected visual. If the drawable

is a window, then, since we use a static resource allocation

approach, the buffers are already allocated, and no additional

frame buffer allocations are necessary at this time. However,

if a dynamic resource allocation approach is added in the

future, the buffers requested will need to be allocated.

Not all buffers need to be pre-allocated. For example,

accumulation buffers can be emulated in software and might

not be pre-allocated. If they are not, then, when the extended

visual or FBConfig is associated with the drawable, the client

library will need to allocate the accumulation buffer. In GLX

1.3, this can happen withglXCreateWindow(). For earlier

versions of GLX, this will happen when a context is made

current (below).

Development of Computer and Software Engineering

168

Pixmaps and Buffers

GLXPixmaps are created from an ordinary X11 pixmap,

which is then passed to glXCreatePixmap(). GLXPbuffers are

created directly by a GLX command. Since we are using a

static allocation scheme, we know what ancillary buffers need

to be created for these drawables. In the initial SI, these will

be handled by indirect rendering or software fallbacks.

GLXContext creation

The client must also create at least one GLXContext. The

last flag to glXCreateContext() is a flag to request direct

rendering. The first GLXContext created can trigger the library

to initialize the direct rendering interface for this client. Several

steps are required to setup the DRI. First, the DRI library is

loaded and initialized in the client and X server. The DRI library

establishes the private communication mechanism between

the client and X server (the XFree86-GLX protocol). The X

server sends the SAREA shared memory segment ID to the

client via this protocol and the client attaches to it. Next, the

X server sends the device-dependent client side 3D graphics

device driver module name to client via the XFree86-GLX

protocol, which is loaded and initialized in the client.

The X server calls the kernel module to create a new

WaitQueue and hardware graphics context corresponding

to the new GLXContext. Finally, the client opens and

initializes the kernel driver (including a request for DMA

buffers).

Making a GLXContext current

The last stage before entering the steady state behaviour

occurs when a GLXContext is associated with a GLXDrawable

Development of Computer and Software Engineering

169

by making the context “current”. This must occur before any

3D rendering can begin. The first time a GLXDrawable is

bound to a direct rendering GLXContext it is registered with

the X server and any buffers not already allocated are now

allocated. If the GLXDrawable is a window that has not been

mapped yet, then the buffers associated with the window

are initialized to size zero. When a window is mapped, space

in the pre-allocated static buffers are initialized, or in the

case of dynamic allocation, buffers are allocated from the

available offscreen area (if possible).

For GLX 1.2 (and older versions), some ancillary buffers

(e.g., stencil or accumulation), that are not supported by the

graphics device, or unavailable due to either resource

constraints or their being turned off through X server config

options (see above), might need to be allocated.

At this point, the client can enter the steady-state by

making OpenGL calls.

Steady-state Analysis

The initial steady-state analysis presented here assumes

that the client(s) and X server have been started and have

established all necessary communication channels (e.g., the

X, GLX and XFree86-GLX protocol streams and the SAREA

segment). In the following analysis, we will impose simplifying

assumptions to help direct the analysis towards the main

line rendering case. We will then relax our initial assumptions

and describe increasingly general cases.

Single 3D Client (1 GLXContext, 1 GLXWindow),
X Server Inactive

Assume: No X server activity (including hardware cursor

Development of Computer and Software Engineering

170

movement). This is the optimized main line rendering case.

The primary goal is to generate graphics device specific

commands and stuff them in a DMA buffer as fast as possible.

Since the X server is completely inactive, any overhead due

to locking should be minimized.

Processing rendering requests

In the simplest case, rendering commands can be sent to

the graphics device by putting them in a DMA buffer. Once a

DMA buffer is full and needs to be dispatched to the graphics

device, the buffer can be handed immediately to the kernel

via an ioctl.

The kernel then schedules the DMA command buffer to

be sent to the graphics device. If the graphics device is not

busy (or the DMA input queue is not full), it can be

immediately sent to the graphics device. Otherwise, it is put

on the WaitQueue for the current context.

In hardware that can only process a single DMA buffer at

a time, when the DMA buffer has finished processing, an

IRQ is generated by the graphics device and handled by the

kernel driver.

In hardware that has a DMA input FIFO, IRQs can be

generated after each buffer, after the input FIFO is empty

or (in certain hardware) when a low-water mark has been

reached. For both types of hardware, the kernel device

driver resets the IRQ and schedules the next DMA

buffer(s).

A further optimization for graphics devices that have input

FIFOs for DMA requests is that if the FIFO is not full, the

DMA request could be initiated directly from client space.

Development of Computer and Software Engineering

171

Synchronization

GLX has commands to synchronize direct rendering with

indirect rendering or with ordinary X11 operations. These

include glFlush(), glFinish(), glXWaitGL() and glXWaitX()

synchronization primitives. The kernel driver provides several

ioctls to handle each of the synchronization cases. In the

simplest case (glFlush()), any partially filled DMA buffer will

be sent to the kernel.

Since these will eventually be processed by the hardware,

the function call can return. WithglFinish(), in addition to

sending any partially filled DMA buffer to the kernel, the

kernel will block the client process until all outstanding DMA

requests have been completely processed by the graphics

device. glXWaitGL() can be implemented using glFlush(),

glXWaitX() can be implemented with XSync().

Buffer Swaps

Buffers swaps can be initiated by glXSwapBuffers(). When

a client issues this request, any partially filled DMA buffers

are sent to the kernel and all outstanding DMA buffers are

processed before the buffer swap can take place.

All subsequent rendering commands are blocked until

the buffer has been swapped, but the client is not blocked

and can continue to fill DMA buffers and send them to the

kernel.

If multiple threads are rendering to a GLXDrawable, it is

the client’s responsibility to synchronize the threads. In

addition, the idea of the current buffer (e.g., front or back)

must be shared by all GLXContexts bound to a given

drawable. The X double buffer extension must also agree.

Development of Computer and Software Engineering

172

Kernel-driver Buffer Swap Ioctl

When the buffer swap ioctl is called, a special DMA buffer

with the swap command is placed into the current

GLXContext’s WaitQueue. Because of sequentiality of the

DMA buffers in the WaitQueue, all DMA buffers behind this

are blocked until all DMA buffers in front of this one have

been processed. The header information associated with this

buffer lets the scheduler know how to handle the request.

There are three ways to handle the buffer swap:

1. No vert sync: Immediately schedule the buffer swap

and allow subsequent DMA buffers in the WaitQueue

to be scheduled. With this policy there will be tearing.

In the initial SI, we will implement this policy.

2. Wait for vert sync: Wait for the vertical retrace IRQ

to schedule the buffer swap command and allow

subsequent DMA buffers in the WaitQueue to be

scheduled. With this policy, the tearing should be

reduced, but there might still be some tearing if a

DMA input FIFO is present and relatively full.

3. No tearing: Wait for vertical retrace IRQ and all DMA

buffers in the input FIFO to be processed before

scheduling the buffer swap command. Since the

buffer swap is a very fast bitblt operation, no tearing

should be present with this policy.

Software Fallbacks

Not all OpenGL graphics primitives are accelerated in all

hardware. For those not supported directly by the graphics

device, software fallbacks will be required. Mesa and SGI’s

OpenGL SI provide a mechanism to implement these

Development of Computer and Software Engineering

173

fallbacks; however, the hardware graphics context state needs

to be translated into the format required by these libraries.

The hardware graphics context state can be read from the

saved device state segment of SAREA. An implicit glFinish() is

issued before the software fallback can be initiated to ensure

that the graphics state is up to date before beginning the

software fallback. The hardware lock is required to alter any

device state.

Image Transfer Operations

Many image transfer operations are required in the client-

side direct rendering library. Initially these will be software

routines that read directly from the memory mapped graphics

device buffers (e.g., frame buffer and texture buffer). These

are device-dependent operations since the format of the

transfer might be different, though certain abstractions

should be possible (e.g., linear buffers). An optimization is to

allow the client to perform DMA directly to/from the client’s

address space. Some hardware has support for page table

translation and paging. Other hardware will require the ability

to lock down pages and have them placed contiguously in

physical memory.

The X server will need to manage how the frame and other

buffers are allocated at the highest level. The layout of these

buffers is determined at X server initialization time.

Texture Management

Each GLXContext appears to own the texture memory. In

the present case, there is no contention. In subsequent cases,

hardware context switching will take care of texture swapping

as well (see below).

Development of Computer and Software Engineering

174

For a single context, the image transfer operations

described above provides the necessary interfaces to transfer

textures and subtextures to/from texture memory.

Display List Management

Display lists initially will be handled from within the client’s

virtual address space. For graphics devices that supports

display lists, they can be stored and managed the same as

texture memory.

Selection and Feedback

If there is hardware support for selection and feedback,

the rendering commands are sent to the graphics pipeline,

which returns the requested data to the client. The amount

of data can be quite large and are usually delivered to a

collection of locked-down pages via DMA. The kernel should

provide a mechanism for locking down pages in the client

address space to hold the DMA buffer.

Queries

Queries are handled similarly to selection and feedback,

but the data returned are usually much smaller. When a

query is made, the hardware graphics context state has to

be read. If the GLXContext does not currently own the

graphics device, the state can be read from the saved device

state segment in SAREA. Otherwise, the graphics pipeline is

temporarily stalled, so that the state can be read from the

graphics device.

Events

GLX has a “pbuffer clobbered” event. This can only be

generated as a result of reconfiguring a drawable or creating

Development of Computer and Software Engineering

175

a new one. Since pbuffers will initially be handled by the

software, no clobbered events will be generated. However,

when they are accelerated, the X server will have to wrap the

appropriate routine to determine when the event needs to

be generated.

Single 3D Client (1 GLXContext, 1 GLXWindow),
X Server can Draw

Assume: X server can draw (e.g., 2D rendering) into other

windows, but does not move the 3D window. This is a

common case and should be optimized if possible. The only

significant different between this case and the previous case,

is that we must now lock the hardware before accessing the

graphics device directly directly from the client, X server or

kernel space.

The goal is to minimize state transitions and potentially

avoid a full hardware graphics context switch by allowing

the X server to save and restore 3D state around its access

for GUI acceleration.

Hardware Lock

Access to graphics device must be locked, either implicitly

or explicitly. Each component of the system requires the

hardware lock at some point. For the X server, the hardware

lock is required when drawing or modifying any state. It is

requested around blocks of 2D rendering, minimizing the

potential graphics hardware context switches.

In the 3D client, the hardware lock is required during the

software fallbacks (all other graphics device accesses are

handled through DMA buffers). The kernel also must request

the lock when it needs to send DMA requests to the graphics

Development of Computer and Software Engineering

176

device. The hardware lock is contained in the Hardware lock

segment of the SAREA which can be accessed by all system

components. A two-tiered locking scheme is used to minimize

the process and kernel context switches necessary to grant

the lock. The most common case, where a lock is requested

by the last process to hold the lock, does not require any

context switches. See the accompanying locks.txt file for more

information on two-tiered locking (available late February

1999).

Graphics Hardware Context Switching

In addition to locking the graphics device, a graphics

hardware context switch between the client and the X server

is required. One possible solution is to perform a full context

switch by the kernel (see the “multiple contexts” section below

for a full explanation of how a full graphics hardware context

switch is handled). However, the X server is a special case

since it knows exactly when a context switch is required and

what state needs to be saved and restored.

For the X server, the graphics hardware context switch is

required only (a) when directly accessing the graphics device

and (b) when the access changes the state of the graphics

device. When this occurs, the X server can save the graphics

device state (either via a DMA request or by reading the

registers directly) before it performs its rendering commands

and restore the graphics device state after it finishes.

Three examples will help clarify the situations where this

type of optimization can be useful. First, using a cfb/mi

routine to draw a line only accesses the frame buffer and

does not alter any graphics device state. Second, on many

vendor’s cards changing the position of the hardware cursor

Development of Computer and Software Engineering

177

does not affect the graphics device state. Third, certain

graphics devices have two completely separate pipelines for

2D and 3D commands. If no 2D and 3D state is shared, then

they can proceed independently (but usually not

simultaneously, so the hardware lock is still required).

Development of Computer and Software Engineering

178

6

System Development Model and
Software Engineering

It specifies the relationships between project phases,
including transition criteria, feedback mechanisms,
milestones, baselines, reviews, and deliverables. Typically, a
life cycle model addresses the phases of a software project:
requirements phase, design phase, implementation,
integration, testing, operations and maintenance. Much of
the motivation behind utilizing a life cycle model is to provide
structure to avoid the problems of the “undisciplined hacker”
or corporate IT bureaucrat (which is probably ten times
dangerous then undisciplined hacker). As always, it’s a
matter of picking the right tool for the job, rather than picking

up your hammer and treating everything as a nail.

Component Assembly Model
Object technologies provide the technical framework for a

component-based process model for software engineering.

Development of Computer and Software Engineering

179

The object oriented paradigm emphasizes the creation of

classes that encapsulate both data and the algorithm that

are used to manipulate the data. If properly designed and

implemented, object oriented classes are reusable across

different applicationsand computer based system

architectures.

Component Assembly Model leads to software reusability.

The integration/assembly of the already existing software

components accelerate the development process. Nowadays

many component libraries are available on the Internet. If

the right components are chosen, the integration aspect is

made much simpler.

All these different software development models have their

own advantages and disadvantages. Nevertheless, in the

contemporary commercial software evelopment world,

the fusion of all these methodologies is incorporated. Timing

is very crucial in software development. If a delay happens

in the development phase, the market could be taken over

by the competitor. Also if a ‘bug’ filled product is launched in

a short period of time (quicker than the competitors), it may

affect the reputation of the company. So, there should be a

tradeoff between the development time and the quality of

the product. Customers don’t expect a bug free product but

they expect a user-friendly product.

System/Information Engineering and
Modeling

As software is always of a large system (or business), work

begins by establishing the requirements for all system

elements and then allocating some subset of these

requirements to software. This system view is essential when

Development of Computer and Software Engineering

180

the software must interface with other elements such as

hardware, people and other resources.

System is the basic and very critical requirement for the

existence of software in any entity. So if the system is not in

place, the system should be engineered and put in place. In

some cases, to extract the maximum output, the system

should be re-engineered and spruced up. Once the ideal

system is engineered or tuned, the development team studies

the software requirement for the system.

Software Requirement Analysis

This process is also known as feasibility study. In this

phase, the development team visits the customer and studies

their system. They investigate the need for possible software

automation in the given system. By the end of the feasibility

study, the team furnishes a document that holds the

different specific recommendations for the candidate system.

It also includes the personnel assignments, costs, project

schedule, target dates etc....

The requirement gathering process is intensified and

focussed specially on software. To understand the nature of

the programme(s) to be built, the system engineer or “Analyst”

must understand the information domain for the software,

as well as required function, behaviour, performance and

interfacing. The essential purpose of this phase is to find the

need and to define the problem that needs to be solved.

System Analysis and Design

In this phase, the software development process, the

software’s overall structure and its nuances are defined. In

terms of the client/server technology, the number of tiers

Development of Computer and Software Engineering

181

needed for the package architecture, the database design,

the data structure design etc... are all defined in this phase.

A software development model is thus created. Analysis

and Design are very crucial in the whole development cycle.

Any glitch in the design phase could be very expensive to

solve in the later stage of the software development. Much

care is taken during this phase. The logical system of the

product is developed in this phase.

Code Generation

The code generation step performs this task. If the design

is performed in a detailed manner, code generation can be

accomplished without much complication. Progra-mming

tools like compilers, interpreters, debuggers etc... are used

to generate the code. Different high level programming

languages like C, C++, Pascal, Java are used for coding. With

respect to the type of application, the right programming

language is chosen.

Testing

Once the code is generated, the software programme testing

begins. Different testing methodologies are available to

unravel the bugs that were committed during the previous

phases. Different testing tools and methodologies are already

available. Some companies build their own testing tools that

are tailor made for their own development operations.

Maintenance

The software will definitely undergo change once it is

delivered to the customer. There can be many reasons for

this change to occur. Change could happen because of some

Development of Computer and Software Engineering

182

unexpected input values into the system. In addition, the

changes in the system could directly affect the software

operations. The software should be developed to

accommodate changes that could happen during the post

implementation period.

Prototyping Model

This is a cyclic version of the linear model. In this model,

once the requirement analysis is done and the design for a

prototype is made, the development process gets started.

Once the prototype is created, it is given to the customer for

evaluation. The customer tests the package and gives his/

her feed back to the developer who refines the product

according to the customer’s exact expectation. After a finite

number of iterations, the final software package is given to

the customer.

In this methodology, the software is evolved as a result

of periodic shuttling of information between the customer

and developer. This is the most popular development model in

the contemporary IT industry. Most of the successful software

products have been developed using this model - as it is very

difficult (even for a whiz kid!) to comprehend all the

requirements of a customer in one shot. There are many

variations of this model skewed with respect to the project

management styles of the companies. New versions of a

software product evolve as a result of prototyping.

The goal of prototyping based development is to counter

the first two limitations of the waterfall model discussed

earlier. The basic idea here is that instead of freezing the

requirements before a design or coding can proceed, a

throwaway prototype is built to understand the requirements.

Development of Computer and Software Engineering

183

This prototype is developed based on the currently known

requirements. Development of the prototype obviously

undergoes design, coding and testing.

But each of these phases is not done very formally or

thoroughly. By using this prototype, the client can get an

“actual feel” of the system, since the interactions with

prototype can enable the client to better understand the

requirements of the desired system. Prototyping is an

attractive idea for complicated and large systems for which

there is no manual process or existing system to help

determining the requirements.

The basic reason for little common use of prototyping is

the cost involved in this built-it-twice approach. However,

some argue that prototyping need not be very costly and can

actually reduce the overall development cost. The prototype

are usually not complete systems and many of the details

are not built in the prototype.

The goal is to provide a system with overall functionality.

In addition, the cost of testing and writing detailed documents

are reduced. These factors helps to reduce the cost of

developing the prototype. On the other hand, the experience

of developing the prototype will very useful for developers

when developing the final system. This experience helps to

reduce the cost of development of the final system and results

in a more reliable and better designed system.

Advantages of Prototyping

Creating software using the prototype model also has its

benefits. One of the key advantages a prototype modeled

software has is the time frame of development. Instead of

concentrating on documentation, more effort is placed in

Development of Computer and Software Engineering

184

creating the actual software. This way, the actual software

could be released in advance. The work on prototype models

could also be spread to others since there are practically no

stages of work in thismodel. Everyone has to work on the

same thing and at the same time, reducing man hours in

creating a software. The work will even be faster and efficient

if developers will collaborate more regarding the status of a

specific function and develop the necessary adjustments in

time for the integration.

Another advantage of having a prototype modeled software

is that the software is created using lots of user feedbacks.

In every prototype created, users could give their honest

opinion about the software. If something is unfavorable, it

can be changed. Slowly the programme is created with the

customer in mind.

• Users are actively involved in the development

• It provides a better system to users, as users have

natural tendency to change their mind in specifying

requirements and this method of developing systems

supports this user tendency.

• Since in this methodology a working model of the

system is provided, the users get a better

understanding of the system being developed.

• Errors can be detected much earlier as the system

is mode side by side.

• Quicker user feedback is available leading to better

solutions.

Disadvantages

Implementing the prototype model for creating software

has disadvantages. Since its being built out of concept, most

Development of Computer and Software Engineering

185

of the models presented in the early stage are not complete.

Usually they lack flaws that developers still need to work on

them again and again. Since the prototype changes from time

to time, it’s a nightmare to create a document for this

software. There are many things that are removed, changed

and added in a single update of the prototype and

documenting each of them has been proven difficult.

There is also a great temptation for most developers to

create a prototype and stick to it even though it has flaws.

Since prototypes are not yet complete software programmes,

there is always a possibility of a designer flaw. When flawed

software is implemented, it could mean losses of important

resources.

Lastly, integration could be very difficult for a

prototype model. This often happens when other programmes

are already stable. The prototype software is released and

integrated to the company’s suite of software. But if there’s

something wrong the prototype, changes are required not

only with the software. It’s also possible that the stable

software should be changed in order for them to be integrated

properly.

Prototype Models Types

There are four types of Prototype Models based on

their development planning: the Patch-Up Prototype,

Nonoperational Prototype, First-of-a-Series Prototype and

Selected Features Prototype.

Patch Up Prototype

This type of Prototype Model encourages cooperation of

different developers. Each developer will work on a specific

Development of Computer and Software Engineering

186

part of the programme. After everyone has done their part,

the programme will be integrated with each other resulting

in a whole new programme. Since everyone is working on a

different field, Patch Up Prototype is a fast develo-

pment model. If each developer is highly skilled, there is no

need to overlap in a specific function of work. This type of

software development model only needs a strong project

manager who can monitor the development of the

programme. The manager will control the work flow and

ensure there is no overlapping of functions among different

developers.

Non-Operational Prototype

A non-operational prototype model is used when only a

certain part of the programme should be updated. Although

it’s not a fully operational programme, the specific part of

the programme will work or could be tested as planned. The

main software or prototype is not affected at all as the dummy

programme is applied with the application. Each developer

who is assigned with different stages will have to work with

the dummy prototype.

This prototype is usually implemented when certain

problems in a specific part of the programme arises. Since

the software could be in a prototype mode for a very long

time, changing and maintenance of specific parts is very

important. Slowly it has become a smart way of creating

software by introducing small functions of the software.

First of a Series Prototype

Known as a beta version, this Prototype Model could be

very efficient if properly launched. In all beta versions, the

Development of Computer and Software Engineering

187

software is launched and even introduced to the public for

testing. It’s fully functional software but the aim of being in

beta version is to as for feedbacks, suggestions or even

practicing the firewall and security of the software.

It could be very successful if the First of a Series Prototype

is properly done. But if the programme is half heartedly

done, only aiming for additional concept, it will be

susceptible to different hacks, ultimately backfiring and

destroying the prototype.

Selected Features Prototype

This is another form of releasing software in beta version.

However, instead of giving the public the full version of the

software in beta, only selected features or limited access to

some important tools in the programme is introduced.

Selected Features Prototype is applied to software that are

part of a bigger suite of programmes. Those released are

independent of the suite but the full version should integrate

with other software. This is usually done to test the

independent feature of the software.

Rapid Application Development

The RAD model is a “high speed” adaptation of the linear

sequential model in which rapid development is achieved by

using a component-based construction approach. Used

primarily for information systems applications, the RAD

approach encompasses the following phases:

Business Modeling

The information flow among business functions is modeled

in a way that answers the following questions:

Development of Computer and Software Engineering

188

• What information drives the business process?

• What information is generated?

• Who generates it?

• Where does the information go?

• Who processes it?

Data Modeling

The information flow defined as part of the business

modeling phase is refined into a set of data objects that are

needed to support the business. The characteristic (called

attributes) of each object is identified and the relationships

between these objects are defined.

Process Modeling

The data objects defined in the data-modeling phase are

transformed to achieve the information flow necessary to

implement a business function. Processing the descriptions are

created for adding, modifying, deleting, or retrieving a data object.

Application Generation

The RAD model assumes the use of the RAD tools like VB,

VC++, Delphi etc... rather than creating software using

conventional third generation programming languages. The

RAD model works to reuse existing programme components

(when possible) or create reusable components (when

necessary). In all cases, automated tools are used to facilitate

construction of the software.

Testing and Turnover

Since the RAD process emphasizes reuse, many of the

programme components have already been tested. This

minimizes the testing and development time.

Development of Computer and Software Engineering

189

System and Specification

Important issues are not defined up front and Mechanical,

Electronic and Software designers do not really know what

their requirements are:

• Define the functions of the system

• Define the Hardware/ Software Functional

Partitioning

• Define the Performance Specification

• Define the Hardware/ Software Performance

Partitioning

• Define Safety Requirements

• Define the User Interface (A good user’s manual is

often an overlooked part of the System specification.

Many of our customers haven’t even considered that

this is the right time to write the user’s manual.)

• Provide Installation Drawings/Instructions.

• Provide Interface Control Drawings (ICD’s, External

I/O)

One job of the System specification is to define the full

functionality of the system. In many systems we work on,

some functionality is performed in hardware and some in

software. It is the job of the System specification to define

the full functionality and like the performance requirements,

to set in motion the trade-offs and preliminary design studies

to allocate these functions to the different disciplines

(mechanical, electrical, software).

Another function of the System specification is to specify

performance. For example, if the System is required to move

a mechanism to a particular position accurate to a

repeatability of ± 1 millimeter, that is a System’s requirement.

Development of Computer and Software Engineering

190

Some portion of that repeatability specification will belong

to the mechanical hardware, some to the servo amplifier and

electronics and some to the software. It is the job of the

System specification to provide that requirement and to set

in motion the partitioning between mechanical hardware,

electronics, and software.

Very often the System specification will leave this

partitioning until later when you learn more about the system

and certain factors are traded off (For example, if we do this

in software we would need to run the processor clock at 40

mHz.

However, if we did this function in hardware, we could run

the processor clock at 12 mHz). However, for all practical

purposes, most of the systems we are involved with in small

to medium size companies, combine the software and the

systems documents.

This is done primarily because most of the complexity is

in the software. When the hardware is used to meet a

functional requirement, it often is something that the software

wants to be well documented.

Very often, the software is called upon to meet the system

requirement with the hardware you have. Very often, there

is not a systems department to drive the project and the

software engineers become the systems engineers. For small

projects, this is workable even if not ideal. In this case, the

specification should make clear which requirements are

software, which are hardware, and which are mechanical.

Design and Requirement

SRS should not include any design requirements. However,

this is a difficult discipline. For example, because of the

Development of Computer and Software Engineering

191

partitioning and the particular RTOS you are using, and the

particular hardware you are using, you may require that no

task use more than 1 ms of processing prior to releasing

control back to the RTOS.

Although that may be a true requirement and it involves

software and should be tested – it is truly a design

requirement and should be included in the Software Design

Document or in the Source code. Consider the target audience

for each specification to identify what goes into what

documents.

Marketing/Product Management

Creates a product specification and gives it to Systems. It

should define everything Systems needs to specify the product

Systems/Software

Creates a Software Specification and gives it to Software.

It should define everything Software needs to develop the

software. Thus, the SRS should define everything explicitly

or (preferably) by reference that software needs to develop

the software.

References should include the version number of the target

document. Also, consider using master document tools which

allow you to include other documents and easily access the

full requirements.

Requirement Engineering Process
Based on assessed user needs, the SAF User Requirements

are established and implemented into a Technical

Specification and Design baseline, in line with scientific

assessments and plans.

Development of Computer and Software Engineering

192

Software requirements engineering is the process of

determining what is to be produced in a software system. In

developing a complex software system, the requirements

engineering process has the widely recognized goal of

determining the needs for, and the intended external

behaviour, of a system design.

This process is regarded as one of the most important parts

of building a software system: “ The hardest single part of

building a software system is deciding what to build. No other

part of the conceptual work is as difficult a establishing the

detailed technical requirements, including all the interfaces

to people, to machines, and to other software systems.

Tracing the emergence of significant ideas in software

development over the years, one can observe that in the ’60s

the attention was on coding, in the ’70s on design and in the

’80s on specification. However, in the process of requirements

engineering it is often difficult to state the real ‘what’ level of

a system because one person’s ‘how’ may be another person’s

‘what’ and conversely. In this perspective, the requirements

engineer faces a complex problem, in meeting the needs of

the customer and at the same time meeting the needs of the

designer.

The four specific steps in software requirements engineering

are:

Development of Computer and Software Engineering

193

1. Requirements elicitation

2. Requirements analysis

3. Requirements specification

4. Requirements validation

Although they seem to be separate tasks, these four

processes cannot be strictly separated and performed

sequentially. Some of the requirements are implicit in the

working practices, while others may only arise when design

solutions are proposed.

Inquiry based requirements

The Inquiry-Based Requirements Analysis Model views the

analysis process as essentially inquiry-based “a series of

questions and answers designed to pinpoint where

information needs come from and when”. The Inquiry Cycle

Model, a “formal structure for describing discussion about

requirements”, addresses the case of mass-market-driven

product development, for which there may be no clear

customer authority.

The term used in this model is “stakeholder”, anyone who

shares information about the system, its implementation

constraints or problem domain. The model consists of an

integration of three phases, where the stakeholders write

down their proposed requirements, challenge them by

attaching typed annotations and then refine the requirements

when change requests are approved.

These requirements are derived from many sources and

in many formats, hence a tremendous amount of complex

raw data comprise the source material for a given

system.”AMORE is interested in modeling those vast amounts

Development of Computer and Software Engineering

194

of raw source material as requirements, and provides access

to knowledge about the problem domain, as well as tools for

the capture, modeling, analysis and manipulation of raw

requirements data.

User-development interaction

The most important aspect of user-development interaction

is the mutual learning and cooperation among them. Some

methodologies assume that the transfer of knowledge between

users and designers can be achieved in the environment of a

meeting room. At the same time, other methodologies (e.g.

PD) foster the full collaboration of stakeholders through a

process where users are directly faced with the designers’

work situation and conversely, and by the end of the

elicitation process everyone learned about real needs of users

and technical possibilities.

In this context, success in meeting the real needs of the

software system is contingent upon the ability of users to

clearly specify what their requirements are. For this reason,

requirements definition needs close interaction between

developers and end-users of the software.

It is critical that requirements engineering tools must

support collaborative development of the software

requirements negotiation. Requirements definition should

be an iterative process where, through reflection and

experience, users become familiar with the technology and

developers become familiar with the work. For example,

scenarios, prototypes or mock-ups which provide the

opportunity for the users to “experience” the new technology

and for the developers to “experience” the work practice.

Development of Computer and Software Engineering

195

Team Rooms

The groupware system called Tearooms provides an electronic

equivalent of a team room for groups that are either co-located

or at a distance. More about Tearooms as a Group Kit application

may be found in Roseman and Greenberg. It is implemented

using an extended version of the groupware toolkit GroupKit.

Facilities offered by the GroupKit’s Application Programming

Interface are preserved in Team Rooms. This enabled the

developers to move the existing GroupKit applications to

TeamRooms and rapidly create new ones. It combines the rich

applications and interfaces found in the existing real-time

groupware applications, providing a persistent work space

suitable for both synchronous and asynchronous collaboration.

It encapsulates both structured and unstructured work through

its applications and also takes into account individual and group

work. Apples are special-purpose applications, designated for

more specific needs of a group. Team Rooms supports any

type of application which can be constructed in Group Kit,

such as meeting tools, drawing tools, text editors, card games

and so on. When a user starts up the system, he or she is

prompted for a user name and a password. If he is among the

work group permitted to use the system, he or she will be

connected to the Team Rooms central server.

Elicitation

Using an elicitation method can help in producing a

consistent and complete set of security requirements.

However, brainstorming and elicitation methods used for

ordinary functional (end-user) requirements usually are not

oriented towards security requirements and do not result in

Development of Computer and Software Engineering

196

a consistent and complete set of security requirements. The

resulting system is likely to have fewer security exposures

when security requirements are elicited in a systematic way.

Elicitation Evaluation Criteria

The following are example evaluation criteria that may be

useful in selecting an elicitation method, but certainly there

are other criteria that you could use. The main point is to use

criteria and to have a common understanding of what they mean.

• Adaptability: The method can be used to generate

requirements in multiple environments. For example,

the elicitation method works equally as well with a

software product that is near completion as with a

project in the planning stages.

• Computer-aided software engineering (CASE) tool: The

method includes a CASE tool. (The Software

Engineering Institute defines a CASE tool as “a

computer-based product aimed at supporting one or

more software engineering activities within a software

development process”)

• Stakeholder acceptance: The stakeholders are likely

to agree to the elicitation method in analyzing their

requirements. For example, the method isn’t too

invasive in a business environment.

• Easy implementation: The elicitation method isn’t

overly complex and can be properly executed easily.

• Graphical output: The method produces readily

understandable visual artifacts.

• Quick implementation: The requirements engineers

and stakeholders can fully execute the elicitation

method in a reasonable length of time.

Development of Computer and Software Engineering

197

• Shallow learning curve: The requirements engineers

and stakeholders can fully comprehend the elicitation

method within a reasonable length of time.

Data Flow Diagrams

Introduction

A data flow diagram (DFD) is a significant modeling

technique for analyzing and constructing information

processes. DFD literally means an illustration that explains

the course or movement of information in a process. DFD

illustrates this flow of information in a process based on the

inputs and outputs. A DFD can be referred to as a Process

Model. Additionally, a DFD can be utilized to visualize data

processing or a structured design. A DFD illustrates technical

or business processes with the help of the external data

stored, the data flowing from a process to another, and the

results. A designer usually draws a context-level DFD

showing the relationship between the entities inside and

outside of a system as one single step. This basic DFD can

be then disintegrated to a lower level diagram demonstrating

smaller steps exhibiting details of the system that is being

modeled.

Uses

The technique starts with an overall picture of the business

and continues by analyzing each of the functional areas of

interest. This analysis can be carried out to precisely the

level of detail required. The technique exploits a method called

top-down expansion to conduct the analysis in a targeted

way.

Development of Computer and Software Engineering

198

The result is a series of diagrams that represent the

business activities in a way that is clear and easy to

communicate. A business model comprises one or more data

flow diagrams (also known as business process diagrams).

Initially a context diagram is drawn, which is a simple

representation of the entire system under investigation. This

is followed by a level 1 diagram; which provides an overview

of the major functional areas of the business. Don’t worry

about the symbols at this stage, these are explained shortly.

Using the context diagram together with additional

information from the area of interest, the level 1 diagram

can then be drawn.

The level 1 diagram identifies the major business processes

at a high level and any of these processes can then be

analysed further - giving rise to a corresponding level 2

business process diagram. This process of more detailed

analysis can then continue ýÿC through level 3, 4 and so on.

However, most investigations will stop at level 2 and it is

very unusual to go beyond a level 3 diagram.

Identifying the existing business processes, using a

technique like data flow diagrams, is an essential precursor

to business process re-engineering, migration to new

technology, or refinement of an existing business process.

Development of Computer and Software Engineering

199

However, the level of detail required will depend on the type

of change being considered.

The process model is typically used in structured analysis

and design methods. Also called a data flow diagram (DFD),

it shows the flow of information through a system. Each

process transforms inputs into outputs.

process

The process shows a part of the system that transforms

inputs into outputs; that is, it shows how one or more inputs

are changed into outputs. Some systems analysts prefer to

use an oval or a rectangle with rounded edges, as shown in

Figure below; still others prefer to use a rectangle, as shown

in Figure. The differences between these three shapes are

purely cosmetic, though it is obviously important to use the

same shape consistently to represent all the functions in

the system. Throughout the rest of this book, we will use the

circle or bubble.

In some cases, the process will contain the name of a

person or a group of people (e.g., a department or a division

of an organization), or a computer, or a mechanical device.

That is, the process sometimes describes who or what is

carrying out the process, rather than describing what the

process is.

The Flow

A flow is represented graphically by an arrow into or out

of a process. The flow is used to describe the movement of

chunks, or packets of information from one part of the system

to another part. For most of the systems that you model as a

systems analyst, the flows will indeed represent data, that

Development of Computer and Software Engineering

200

is, bits, characters, messages, floating point numbers, and

the various other kinds of information that computers can

deal with. But DFDs can also be used to model systems other

than automated, computerized systems; we may choose, for

example, to use a DFD to model an assembly line in which

there are no computerized components.

In such a case, the packets or chunks carried by the flows

will typically be physical materials; an example is shown in

Figure below. For many complex, real-world systems, the

DFD will show the flow of materials and data.

The flows in Figures are named. The name represents the

meaning of the packet that moves along the flow. A corollary

of this is that the flow carries only one type of packet, as

indicated by the flow name. The systems analyst should not

name a dataflow Apples and organes and widgets and various

other thing.

However, we will see in Part III, that there are exceptions to

this convention: it is sometimes useful to consolidate several

elementary dataflow into a consolidated flow. Thus, one might

see a single dataflow labeled vegetables instead of several

different dataflow labeled potatoes, brussel sprouts,

and peas. whether data (or material) are moving into or out

of a process (or doing both). The flow shown in Figure, for

example, clearly shows that a telephone number is being

sent into the process labeled Validate Phone Number.

Dataflows can diverge and converge in a DFD; conceptually,

this is somewhat like a major river splitting into smaller

tributaries, or tributaries joining together. However, this has

a special meaning in a typical DFD in which packets of data

are moving through the system: in the case of a diverging

Development of Computer and Software Engineering

201

flow, it means that duplicate copies of a packet of data are

being sent to different parts of the system, or that a complex

packet of data is being split into several more elementary

data packets, each of which is being sent to different parts

of the system, or that the dataflow pipeline carries items

with different values (e.g., vegetables whose values may be

“potato,” “brussel sprout,” or “lima bean”) that are being

separated. Conversely, in the case of a converging flow, it

means that several elementary packets of data are joining

together to form more complex, aggregate packets of data.

The Terminator

The next component of the DFD is a terminator; it is

graphically represented as a rectangle, as shown in Figure.

Terminators represent external entities with which the

system communicates. Typically, a terminator is a person or

a group of people, for example, an outside organization or

government agency, or a group or department that

is within the same company or organization, but outsidethe

control of the system being modeled.

In some cases, a terminator may be another system, for

example, some other computer system with which your

system will communicate.

��)'�)��+��(� �	�+��
����������3������4������5

There are three important things that we must remember

about terminators:

1. They are outside the system we are modeling; the

flows connecting the terminators to various processes

Development of Computer and Software Engineering

202

(or stores) in our system represent the interface

between our system and the outside world.

2. As a consequence, it is evident that neither the

systems analyst nor the systems designer are in a

position to change the contents of a terminator or

the way the terminator works. In the language of

several classic textbooks on structured analysis, the

terminator is outside the domain of change. What

this means is that the systems analyst is modeling

a system with the intention of allowing the systems

designer a considerable amount of flexibility and

freedom to choose the best (or most efficient, or most

reliable, etc.) implementation possible.

3. Any relationship that exists between terminators will

not be shown in the DFD model. There may indeed

be several such relationships, but, by definition,

those relationships are not part of the system we

are studying. Conversely, if there arerelationships

between the terminators, and if it is essential for

the systems analyst to model those requirements in

order to properly document the requirements of the

system, then, by definition, the terminators are

actually part of the system and should be modeled

as processes.

Entity Relationship Diagrams

Introduction

An entity can be thought of as a class of data. Each entity

has a name, a definition, a type. In addition, each entity has

a set of attributes that describe the various characteristics

Development of Computer and Software Engineering

203

of the entity. Each attribute also has a name, a definition, a

type and constraints. The attribute types are text, numeric,

binary and date types. Field and attributes are different name

for the same thing. Entity and table are different name for

the same thing. In the context of relationship diagrams, the

words entity and attributes are used. In the context of

physical database work, the words table and field are used.

An Entity-Relationship (E-R) Diagram (or E-R Model)

visually depicts an organization’s entities, the entities’

relationships to each other, and the business rules (i.e.,

cardinality and dependency) associated with the

relationships. The E-R Diagram is the picture used to

represent and test the knowledge obtained from Data

Modelling.

 The output of Data Modelling includes:

• E-R Diagram,

• Descriptions of entities and their relationships,

• Dttributes and their descriptions,

• Edit rules,

• Business rules,

• Volumetrics.

The last step in creating entity relationship diagrams is

the specification of the relationships among the entities.

Just as every object in the real world has some kind of

relationship to one or more objects so too the entities in a

database are related to other entities.

The nature of relationships between entities is usually

implied in the very definition of the entity. Despite the

obviousness of these relationships, it is important to review

all entities and specify how they relate to each other.

Development of Computer and Software Engineering

204

There are at least three types of relationships possible:

1. One to one, where one entity corresponds to exactly

another entity. For example, a table about patient’s

death has a one to one relationship with the table

“Person.”

2. One to many, where one instance of one entity can

be repeatedly used by another. For example the look

up table Gender may be repeatedly used in the table

“Patient.”

3. Many to many where one instance of both entities

can be repeatedly used by another. For example,

tables “Patient” and “Clinician” have many to many

relationships as a clinician may have many patient

and a patient may have many clinicians.

Sometimes, the relationship between two entities is not

clear. The most common cause is that a third entity is

missing. This often occurs when two entity have many to

many relationship. For example, the entity Patient and the

entity Clinician have, as mentioned earlier, many to many

relationship. It is difficult to show these relationships inside

a database in a way that can easily be manipulated.

An alternative is to show a new table that links these two

tables to each other and has one to many relationship to

each of the tables.

For example, we can make a new table called Visit. Within

a visit a patients is diagnosed. Both the patients and the

clinicians identity are kept in the visit table. The Visit table

has one to many relationship with either patient or clinician

table. Sometimes, as we specify the relationships among

entities, a new entity must be defined.

Development of Computer and Software Engineering

205

Linkages between entities are part of the business rules

that databases should capture. In our example, the business

rule for the linkage between a Clinician and a Patient is that

a clinician may have zero, one, or, more patients.

The business rule for the linkage between the Patient and

the Clinician is that a patient may have one, or, more

clinicians. Note that these are the business rules that

someone may have specified. In a different information

system someone could decide that a patient can only have

one clinician at a time, or that the number of clinicians

dealing with a patient must always be 3, or some other similar

rule. The important point is that entities can be linked to

each other, and that the nature of the linkage is part of the

business rules of the system.

In Access, a database, The line shows the relationship

between the two tables and the shared field shows the nature

of the relationship.

The arrow shows if the relationship is one to many, with

the many side shown by the direction of the arrow. As with

the specification of the entities discussed at the beginning of

this lecture, the documentation of the relationships is part

of the logical information model.

The format for documenting the linkages among entities

includes the name of both entities, the verb phrase that

describes the semantics of the linkage and the cardinality of

the linkage (i.e. whether one to one, one to many or many to

many).

The statement of the cardinality can be made plain

English. All relationships must be documented before

proceeding to the physical design of the database.

Development of Computer and Software Engineering

206

Components of Entity-Relationship Diagram

Entities

An entity is a person, place, thing, event, or concept of

interest to the business or organization about which data is

likely to be kept. For example, in a school environment

possible entities might be Student, Instructor, and Class.

Entity type refers to a generic class of things such as

Company. Entity is the short form of entity-type. Entity

occurrence refers to specific instances or examples of a

type. For example, one occurrence of the entity Car is

Chevrolet Cavalier. An entity usually has attributes (i.e., data

elements) that further describe it. Each attribute is a

characteristic of the entity. An entity must possess a set of

one or more attributes that uniquely identify it (called a

primary key).

Identifying entities is the first step in Data Modelling. Start

by gathering existing information about the organization. Use

documentation that describes the information and functions

of the subject area being analysed, and interview subject

matter specialists (i.e., end-users). Derive the preliminary

entity-relationship diagram from the information gathered

by identifying objects (i.e., entities) for which information is

kept. Entities are easy to find. Look for the people, places,

things, organizations, concepts, and events that an

organization needs to capture, store, or retrieve information

about.

Types of Entities

 Different types of entities are required to provide a

complete and accurate representation of an organization’s

Development of Computer and Software Engineering

207

data and to enable the analyst to use the Entity-Relationship

Diagram as a starting point for physical database design.

Types of entities include:

• Fundamental where the entity is a base entity that

depends on no other for its existence. A fundamental

entity has a primary key that is independent of any

other entity and is typically composed of a single

attribute. Fundamental entities are real-world,

tangible objects, such as, Employee, Customer, or

Product.

• Attributive where the entity depends on another for

its existence, for example, Employee Hobby depends

on Employee. An attributive entity depends on

another entity for parts of its primary key. It can

result from breaking out a repeating group, the first

rule of normalization, or from an optional attribute.

• Associative where the entity describes a connection

between two entities with an otherwise many-to-

many relationship, for example, assignment of

Employee to Project (an Employee can be assigned

to more than one Project and a Project can be

assigned to more than one Employee). If information

exists about the relationship, this information is kept

in an associative entity. For example, the number

of hours the Employee worked on a particular Project

is an attribute of the relationship between Employee

and Project, not of either Employee or Project. An

associative entity is uniquely identified by

concatenating the primary keys of the two entities it

connects.

Development of Computer and Software Engineering

208

The common data elements are put in the supertype entity

and the specific data elements are placed with the subtype

to which they apply. For example, Employee (supertype) may

contain three subtypes, Permanent Employee, Part-time

Employee, and Temporary Employee.

All data elements of the supertype must apply to all

subtypes. Each subtype contains the same key as the

supertype.

Relationships between an entity supertype and its subtypes

are always described as “is a.” For example, Employee is a

Permanent Employee, Employee is a Part-time Employee.

Identifying Entity Supertypes/Subtypes

Entity supertypes/subtypes involve classes of entities that

are truly different, but at the same time, significantly similar.

When identifying supertypes/subtypes, look for:

• Entity types that have the same attributes,

• Entity types that participate in the same

relationships,

• Occurrences of an entity that do not participate in

all the relationships in which the entity type

participates,

• Occurrences of an entity that do not have all the

attributes that the entity type has.

Categories of Entities

There are different general categories of entities:

• Physical entities are tangible and easily

understood. They generally fall into one of the

following categories:

Development of Computer and Software Engineering

209

• People, for example, doctor, patient, employee,

customer,

• Property, for example, equipment, land and buildings,

furniture and fixtures, supplies,

• Products, such as goods and services.

• Conceptual entities are not tangible and are less

easily understood. They are often defined in terms

of other entity-types.

They generally fall into one of the following categories:

– organizations, for example, corporation, church,

government,

– agreements, for example, lease, warranty,

mortgage,

– abstractions, such as strategy and blueprint.

– Event/State entities are typically incidents that

happen. They are very abstract and are often

modelled in terms of other entity-types as

anassociative entity. Examples of events are

purchase, negotiation, service call, and

deposit. Examples of states are ownership,

enrollment, and employment.

Imposter Entities

When an Entity is not an Entity

There are a number of things that may appear to be entities

about which facts are kept, but which should not be defined

as such.

These include:

• Processes,

Development of Computer and Software Engineering

210

• Calculations,

• Reports,

• Facts about entities.

Processes

Processes may actually perform actions on entities but

are not, themselves, entities. Examples are:

• Payroll deduction,

• Budgeting (an action on an organization unit).

Calculations

Calculations are derived from the attributes of an

entity. Examples are:

• Inventory level,

• Average age,

• Net worth.

Reports

Reports present facts about one or more entities. Examples

are:

• Project schedule,

• Income statement.

Facts About Entities

Facts about entities describe characteristics of an entity

and should be modelled as attributes. Examples are:

• Telephone number,

• Date of hire.

Attributes Define Entities

Collectively, attributes define an entity. An attribute is

meaningless by itself. For example, date of birth comes from

Development of Computer and Software Engineering

211

the context of the entity to which it is assigned, for example,

date of birth of an employee. Attributes are not shown on

the Entity-Relationship Model but are recorded in the

underlying data dictionary which contains the definitions of

attributes for all entities and relationships identified in the

model. An attribute should not have facts recorded about

it. In practice, however, there are exceptions.

For example, you might wish to show address as an

attribute of Customer. Address is not significant enough to

be modelled as an entity in its own right and would typically

be shown as an attribute of Customer. However, at the

detailed level, it may itself have attributes such as an indicator

for mailing address or home address.Attributes do not have

to be recognized and defined during the early stages of entity

definition. Entity definition is an iterative process, and it is

unlikely that a completely satisfactory Entity-Relationship

Model will be obtained on the first iteration.

Identifying Attributes

To identify entity attributes, examine:

• All external entities from the Context Diagram,

• The data flows passed by the external entities,

• Existing automated data,

• Each entity (i.e., generate a list of entity attributes

that describe the entity).

Attributes Versus Data Elements

Attributes have a looser description than data

elements. For instance, whereas an attribute may have only

a descriptive name, a data element needs:

Development of Computer and Software Engineering

212

• A size and range,

• A format and length,

• An accurate and detailed description,

• valid values,

• Defined edit rules.

Some attributes may be converted into many data

elements.

For instance, the attribute “address” may become four data

elements representing:

1. Street Address,

2. City/Town,

3. State/Province,

4. Postal or Zip Code.

 Additional data elements may also be defined as a result

of customer requirements. For example, the customer may

require a list of all companies by county. For the purposes of

Data Modelling, attributes and data elements are often

considered identical because attributes in the data model

typically become data elements in the database.

Relationships

A relationship is an association that exists between two

entities. For example, Instructor teaches Class or Student

attends Class. Most relationships can also be stated

inversely. For example, Class is taught by Instructor. The

relationships on an Entity-Relationship Diagram are

represented by lines drawn between the entities involved in

the association. The name of the relationship is placed either

above, below, or beside the line.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Software Engineering
	Chapter 2 Development of Computer
	Chapter 3 Development of Computer Networks
	Chapter 4 Software Testing
	Chapter 5 Software Progrmming
	Chapter 6 System Development Model and Software Engineering

