Computer Graphics
Software

Kelly Berger

COMPUTER GRAPHICS
SOFTWARE

COMPUTER GRAPHICS
SOFTWARE

Kelly Berger

B ' BIBLIOTEX

Digital Library

Computer Graphics Software
by Kelly Berger

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any
manner without the prior written permission of the copyright owner, except
for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664051

B BIBLIOTEX

Digital Library

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Introduction

Chapter 2 Computer Graphics

Chapter 3 Computer Software Generations
Chapter 4 Software Components

Chapter 5 Computer Graphics System

31

73

108

144

1

Introduction

The graphics software is the collection of programmes written
to make it convenient for a user to operate the computer graphics
system. It includes programmes to generate images on the CRT
screen, to manipulate the images, and to accomplish various types
of interaction between the user and the system. In addition to the
graphics software, there may be additional programmes for
implementing certain specialized functions related to CAD/ CAM.
These include design analysis programmes (e.g., finite-element
analysis and kinematic simulation) and manufacturing planning
programmes (e.g., automated process planning and numerical
control part programming).

The graphics software for a particular computer graphics
system is very much a function of the type of hardware used in
the system.

The software configuration of a graphics system.

The graphics software can be divided into three modules:

Computer Graphics Software

* The graphics package (the graphics system).
* The application programme

* The application database.
Functions of a Graphics Package

The graphics package must perform a variety of different
functions. These functions can be grouped into function sets. Each
set accomplishes a certain kind of interaction between the user and
the system. Some of the common function sets are:

Generation of graphic elements, Transformations, Display
control and windowing functions, Segmenting functions and User

input functions.
Applications of Computer Graphics

Computers have become a powerful tool for the rapid and
economical production of pictures. Advances in computer
technology have made interactive computer graphics a practical
tool. Today, computer graphics is used in the areas as science,
engineering, medicine, business, industry, government, art,

entertainment, advertising, education, and training.
Computer Aided Design

A major use of computer graphics is in design processes,
particularly for engineering and architectural systems. For some
design applications; objects are first displayed in a wireframe
outline form that shows the overall sham and internal features of
objects.

Software packages for CAD applications typically provide the
designer with a multi-window environment. Each window can
show enlarged sections or different views of objects. Standard
shapes for electrical, electronic, and logic circuits are often supplied

2

Computer Graphics Software

by the design package. The connections between the components

have been mad automatically.

Animations are often used in CAD applications.

Real-time animations using wire frame displays are useful
for testing performance of a vehicle.

Wire frame models allow the designer to see the interior
parts of the vehicle during motion.

When object designs are complete, realistic lighting models
and surface rendering are applied.

Manufacturing process of object can also be controlled
through CAD.

Interactive graphics methods are used to layout the
buildings.

Three-dimensional interior layouts and lighting also
provided.

With virtual-reality systems, the designers can go for a

simulated walk inside the building.

Presentation Graphics

It is used to produce illustrations for reports or to generate
slide for with projections.

Examples of presentation graphics are bar charts, line
graphs, surface graphs, pie charts and displays showing
relationships between parameters.

3-D graphics can provide more attraction to the

presentation.

Computer Art

Computer graphics methods are widely used in both fine

are and commercial art applications.

3

Computer Graphics Software

The artist uses a combination of 3D modelling packages,
texture mapping, drawing programmes and CAD software.
Pen plotter with specially designed software can create
“automatic art”.

“Mathematical Art” can be produced using mathematical
functions, fractal procedures.

These methods are also applied in commercial art.
Photorealistic techniques are used to render images of a
product.

Animations are also used frequently in advertising, and
television commercials are produced frame by frame. Film
animations require 24 frames for each second in the
animation sequence.

A common graphics method employed in many
commercials is morphing, where one object is transformed

into another.

Entertainment

CG methods are now commonly used in making motion

pictures, music videos and television shows.

Many TV series regularly employ computer graphics
method.

Graphics objects can be combined with a live action.

Education and Training

Computer-generated models of physical, financial and

economic systems are often used as educational aids.

For some training applications, special systems are
designed.

Eg. Training of ship captains, aircraft pilots etc.

4

Computer Graphics Software

Some simulators have no video screens, but most
simulators provide graphics screen for visual operation.

Some of them provide only the control panel.

Visualization

The numerical and scientific data are converted to a visual
form for analysis and to study the behaviour called
visualization.

Producing graphical representation for scientific data sets
are calls scientific visualization.

And business visualization is used to represent the data
sets related to commerce and industry.

The visualization can be either 2D or 3D.

Image Processing

Computer graphics is used to create a picture.

Image processing applies techniques to modify or interpret
existing pictures.

To apply image processing methods, the image must be
digitized first.

Medical applications also make extensive use of image
processing techniques for picture enhancements,

simulations of operations, etc.

Graphical User Interface

Nowadays software packages provide graphics user
interface (GUI) for the user to work easily.

A major component in GUI is a window.

Multiple windows can be opened at a time.

Computer Graphics Software

* To activate any one of the window, the user needs just to
check on that window.

* Menus and icons are used for fast selection of processing
operations.

* Jcons are used as shortcut to perform functions. The
advantages of icons are which takes less screen space.

e And some other interfaces like text box, buttons, and list

are also used.

Using the acm.graphics Package

A simple example of how to write graphical programmes, but
does not explain the details behind the methods it contains. The
purpose of this chapter is to give you a working knowledge of the
facilities available in the acm.graphics package and how to use

them effectively.

jova . awt Containex

T

Fig. Class Diagram for the acm.graphics Package

The class structure of acm.graphics package appears. Most of
the classes in the package are subclasses of the abstract class
GObject at the centre of the diagram. Conceptually, GObject
represents the universal class of graphical objects that can be

6

Computer Graphics Software

displayed. When you use acm.graphics, you assemble a picture
by constructing various GObjects and adding them to a GCanvas
at the appropriate locations. The general model in more detail

offer a closer look at the individual classes in the package.
The acm.graphics Model

When you create a picture using the acm.graphics package,
you do so by arranging graphical objects at various positions on a
background called a canvas. The underlying model is similar to
that of a collage in which an artist creates a composition by taking
various objects and assembling them on a background canvas. In
the world of the collage artist, those objects might be geometrical
shapes, words clipped from newspapers, lines formed from bits
of string, or images taken from magazines. In the acm.graphics

package, there are counterparts for each of these graphical objects.
The “FeltBoard” Metaphor

Another metaphor that often helps students understand the
conceptual model of the acm.graphics package is that of a felt
board —the sort one might find in an elementary school classroom.

A child creates pictures by taking shapes of coloured felt and
sticking them onto a large felt board that serves as the background
canvas for the picture as a whole.

The pieces stay where the child puts them because felt fibres
interlock tightly enough for the pieces to stick together. A physical
felt board with a red rectangle and a green oval attached. The right
side of the figure is the virtual equivalent in the acm.graphics
world.

To create the picture, you would need to create two graphical
objects—a red rectangle and a green oval—and add them to the
graphical canvas that forms the background.

7

Computer Graphics Software

800 FeltBoard

=2 M

Fig. Physical FeltBoard and its Virtual Equivalent

The code for the FeltBoard example appears. Even though you
have not yet had a chance to learn the details of the various classes
and methods used in the programme, the overall framework should
nonetheless make sense. The programme first creates a rectangle,
indicates that it should be filled rather than outlined, colours it red,
and adds it to the canvas. It then uses almost the same operations to
add a green oval. Because the oval is added after the rectangle, it
appears to be in front, obscuring part of the rectangle underneath.
This behaviour, of course, is exactly what would happen with the
physical felt board. Moreover, if you were to take the oval away by

calling

remove (oval) ;

the parts of the underlying rectangle that had previously been
obscured would reappear.

In this tutorial, the order in which objects are layered on the
canvas will be called the stacking order. (In more mathematical
descriptions, this ordering is often called z-ordering, because the
z-axis is the one that projects outward from the screen.) Whenever
a new object is added to a canvas, it appears at the front of the
stack. Graphical objects are always drawn from back to front so

that the frontmost objects overwrite those that are further back.

/ *

* File: FeltBoard.java

R —

* This programme offers a simple example of the acm.graphics
package

* that draws a red rectangle and a green oval. The
dimensions of

Computer Graphics Software

* the rectangle are chosen so that its sides are in
proportion to
* the “golden ratio” thought by the Greeks to represent
the most
* aesthetically pleasing geometry.
*/
import acm.programme.*;
import acm.graphics.*;
import java.awt.¥*;
public class FeltBoard extends GraphicsProgram {
/** Runs the programme */
public void run() {
GRect rect = new GRect (100, 50, 100, 100 / PHI);
rect.setFilled(true);
rect.setColor (Color.RED) ;
add (rect) ;
GOval oval = new GOval (150, 50 + 50 / PHI, 100, 100 /
PHI) ;
oval.setFilled(true);
oval.setColor (Color.GREEN) ;
add (oval) ;
}
/** Constant representing the golden ratio */
public static final double PHI = 1.618;
}
Programme: Code for the FeltBoard.

The Coordinate System

The acm.graphics package uses the same basic coordinate
system that traditional Java programmes do. Coordinate values
are expressed in terms of pixels, which are the individual dots that
cover the face of the screen. Each pixel in a graphics window is
identified by its x and y coordinates, with x values increasing as
you move rightward across the window and y values increasing
as you move down from the top. The point (0, 0) —which is called
the origin—is in the upper left corner of the window. This
coordinate system is illustrated by the diagram, which shows only
the red rectangle from the FeltBoard.java programme. The location
of that rectangle is (100, 50), which means that its upper left corner

9

Computer Graphics Software

is 100 pixels to the right and 50 pixels down from the origin of the
graphics window.

800 FeltBoard

. -

Increasing Value of x —%

(,

o
=)
=

4—A Jo anjep Buisealou|

Fig. The Java Coordinate System

The only difference between the coordinate systems used in
the acm.graphics package and Java’s Graphics class is that the
acm.graphics package uses doubles to represent coordinate values
instead of ints. This change makes it easier to create figures whose
locations and dimensions are produced by mathematical
calculations in which the results are typically not whole numbers.
As a simple example, the dimensions of the red rectangle are
proportional to the golden ratio, which Greek mathematicians
believed gave rise to the most pleasing aesthetic effect. The golden
ratio is approximately equal to 1.618 and is usually denoted in
mathematics by the symbol f. Because the acm.graphics package
uses doubles to specify coordinates and dimensions, the code to

generate the rectangle looks like this:
new GRect (100, 50, 100, 100 / PHI)

In the integer-based Java model, it would be necessary to
include explicit code to convert the height parameter to an int. In
addition to adding complexity to the code, forcing students to
convert coordinates to integers can introduce rounding errors that
distort the geometry of the displayed figures.

Judging from the experience of the instructors who tested the
acm.graphics package while it was in development, the change
from ints to doubles causes no confusion but instead represents

10

Computer Graphics Software

an important conceptual simplification. The only aspect of Java’s
coordinate system that students find problematic is the fact that
the origin is in a different place from what they know from
traditional Cartesian geometry. Fortunately, it doesn’t take too long

to become familiar with the Java model.

The GPoint, GDimension, and GRectangle
Classes

Although it is usually possible to specify individual values for
coordinate values, it is often convenient to encapsulate an x and a
y coordinate as a point, a width and a height value as a composite
indication of the dimensions of an object, or all four values as the
bounding rectangle for a figure. Because the coordinates are stored
as doubles in the acm.graphics package, using Java’s integer-based
Point, Dimension, and Rectangle classes would entail a loss of
precision. To avoid this problem the acm.graphics package exports
the classes GPoint, GDimension, and GRectangle, which have the
same semantics as their standard counterparts except for the fact
that their coordinates are doubles.

As an example, the declaration

GDimension goldenSize = new GDimension (100, 100 / PHI);

introduces the variable goldenSize and initializes it to a
GDimension object whose internal width and height fields are the
dimensions of the golden rectangle illustrated in the earlier
example. The advantage of encapsulating these values into objects
is that they can then be passed from one method to another using
a single variable.

The GMath Class

Computing the coordinates of a graphical design can

sometimes require the use of simple trigonometric functions.

11

Computer Graphics Software

Although functions like sin and cos are defined in Java’s standard
Math class, students find them confusing in graphical applications
because of inconsistencies in the way angles are represented. In
Java’'s graphics libraries, angles are measured in degrees; in the
Math class, angles must be given in radians. To minimize the
confusion associated with this inconsistency of representation, the
acm.graphics package includes a class called GMath, which exports
the methods. Most of these methods are simply degree-based
versions of the standard trigonometric functions, but the distance,

angle, and round methods are also worth noting.

Trigonometric Methods in Degrees

static double sinDegrees (double angle)

Returns the trigonometric sine of an angle measured in degrees.

static double cosDegrees (double angle)
Returns the trigonometric cosine of an angle measured in
degrees.
static double tanDegrees (double angle)
Returns the trigonometric tangent of an angle measured in
degrees.
static double toDegrees (double radians)

Converts an angle from radians to degrees.

static double toRadians (double degrees)

Converts an angle from degrees to radians.

Conversion Methods for Polar Coordinates

double distance (double x, double vy)

Returns the distance from the origin to the point (x, y).
double distance (double x0, double y0, double x1, double
v1l)
Returns the distance between the points (x0, y0) and (x1, y1).
double angle (double x, double vy)

Returns the angle between the origin and the point (x, y), measured
in degrees.

12

Computer Graphics Software

Convenience Method for Rounding to an Integer
static int round(double x)

Rounds a double to the nearest int (rather than to a long as in

the Math class).
Programme. Static Methods in the GMath Class

The GCanvas Class

In the acm.graphics model, pictures are created by adding
graphical objects —each of which is an instance of the GObject class
to a background canvas. That background —the analogue of the
felt board in the physical world —is provided by the GCanvas class.
The GCanvas class is a lightweight component and can be added
to any Java container in either the java.awt or javax.swingpackages,
which makes it possible to use the graphics facilities in any Java
application. For the most part, however, students in introductory
courses won't use the GCanvas class directly but will instead use
the GraphicsProgram class, which automatically creates a GCanvas
and installs it in the programme window, as illustrated in several
preceding examples. The GraphicsProgram class forwards
operations such as add andremove to the embedded GCanvas so
that students don’t need to be aware of the underlying
implementation details.

The most important methods supported by the GCanvas class.
Many of these methods are concerned with adding and removing
graphical objects. These methods are easy to understand,
particularly if you keep in mind that a GCanvas is conceptually a
container for GObject values. The container metaphor explains the
functionality provided by the add, remove, and removeAll, which
are analogous to the identically named methods in JComponent

and Container.

13

Computer Graphics Software

Constructor

new GCanvas ()

Creates a new GCanvas containing no graphical objects.

Methods to Add and Remove Graphical Objects from a
Canvas

void add(GObject gobj)
Adds a graphical object to the canvas at its internally stored

location.

void add(GObject gobj, double x, double y) or add(GObject
gobj, GPoint pt)
Adds a graphical object to the canvas at the specified location.
void remove (GObject gobij)
Removes the specified graphical object from the canvas.

void removeAll ()

Removes all graphical objects and components from the canvas.

Method to Find the Graphical Object at a Particular
Location

GObject getElementAt (double x, double v) or
getElementAt (GPoint pt)

Returns the topmost object containing the specified point, or

null if no such object exists.

Useful Methods Inherited from Superclasses

int getWidth ()

Return the width of the canvas, in pixels.
int getHeight ()

Return the height of the canvas, in pixels.
void setBackground(Color bg)

Changes the background colour of the canvas.

The add method comes in two forms, one that preserves the
internal location of the graphical object and one that takes an
explicit x and y coordinate. Each method has its uses, and it is

convenient to have both available. The first is useful particularly
14

Computer Graphics Software

when the constructor for the GObject specifies the location, as it
does, for example, in the case of the GRect class. If you wanted to
create a 100 x 60 rectangle at the point (75, 50), you could do so by

writing the following statement:
add (new GRect (75, 50, 100, 60));

The second form is particularly useful when you want to
choose the coordinates of the object in a way that depends on other
properties of the object. For example, the following code taken from

the HelloGraphicsexample centres a GLabel object in the window:

GLabel label = new GLabel (“hello, world”);
double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight () + label.getAscent()) / 2;
add (label, x, v);

Because the placement of the label depends on its dimensions,
it is necessary to create the label first and then add it to a particular
location on the canvas.

The GCanvas method getElement(x, y) returns the graphical
object on the canvas that includes the point (x, y). If there is more
than one such object, getElement returns the one that is in front of
the others in the stacking order; if there is no object at that position,
getElement returns null.

This method is useful, for example, if you need to select an
object using the mouse. Several of the most useful methods in the
GCanvas class are those that are inherited from its superclasses in
Java’'s component hierarchy. For example, if you need to determine
how big the graphical canvas is, you can call the methods getWidth
and getHeight.

Thus, if you wanted to define a GPoint variable to mark the
centre of the canvas, you could do so with the following

declaration:

GPoint centre = new GPoint (getWidth() / 2.0, getHeight ()
/ 2.0);

15

Computer Graphics Software

You can also change the background colour by calling
setBackground(bg), where bg is the new background colour for

the canvas.
The GObject Class

The GObject class represents the universe of graphical objects
that can be displayed on a GCanvas.

The GObject class itself is abstract, which means that
programmes never create instances of the GObject class directly.
Instead, programmes create instances of one of the GObject
subclasses that represent specific graphical objects such as
rectangles, ovals, and lines.

The most important such classes are the ones that appear at
the bottom of the class diagram, which are collectively called the
shape classes.

Before going into those details, however, it makes sense to
begin by describing the characteristics that are common to the

GObject class as a whole.
Methods Common to all GObject Subclasses

All GObjects —no matter what type of graphical object they
represent—share a set of common properties. For example, all
graphical objects have a location, which is the x and y coordinates
at which that object is drawn. Similarly, all graphical objects have
a size, which is the width and height of the rectangle that includes
the entire object.

Other properties common to all GObjects include their colour
and how the objects are arranged in terms of their stacking order.
Each of these properties is controlled by methods defined at the
GObject level.

16

Computer Graphics Software

Useful Methods Common to all Graphical Objects

Methods to Retrieve the Location and Size of a
Graphical Object

double getX()
Returns the x-coordinate of the object.
double getY ()
Returns the y-coordinate of the object.
double getWidth ()
Returns the width of the object.
double getHeight ()
Returns the height of the object.
GPoint getLocation()
Returns the location of this object as a GPoint.
GDimension getSize ()
Returns the size of this object as a GDimension.
GRectangle getBounds ()
Returns the bounding box of this object.

Methods to Change the Object’s Location
void setLocation (double x, double y) or setLocation (GPoint
pt)
Sets the location of this object to the specified point.
void move (double dx, double dy)

Moves the object using the displacements dx and dy.

void movePolar (double r, double theta)

Moves the object r units in direction theta, measured in degrees.

Methods to Set and Retrieve the Object’s Colour

void setColor (Colour c)

Sets the colour of the object.
Colour getColor()

Returns the object colour. If this value is null, the package uses
the colour of the container.

17

Computer Graphics Software

Methods to Change the Stacking Order

void sendToFront () or sendToBack ()
Moves this object to the front (or back) of the stacking order.
void sendForward() or sendBackward/()

Moves this object forward (or backward) one position in the

stacking order.

Method to Determine whether an Object Contains a
Particular Point

boolean contains (double x, double y) or contains (GPoint
pt)
Checks to see whether a point is inside the object.

Determining the Location and Size of a GObject

The first several methods make it possible to determine the
location and size of any GObject. The getX, getY, getWidth, and
getHeight methods return these coordinate values individually, and
the getLocation, getSize, and getBounds methods return composite

values that encapsulate that information in a single object.
Changing the Location of a GObject

The next three methods offer several techniques for changing
the location of a graphical object. The setLocation(x, y) method sets
the location to an absolute coordinate position on the screen. For

example, in the FeltBoard example, executing the statement

rect.setLocation (0, O0);

would move the rectangle to the origin in the upper left corner of
the window.

The move(dx, dy) method, by contrast, makes it possible to move
an object relative to its current location. The effect of this call is to
shift the location of the object by a specified number of pixels along
each coordinate axis. For example, the statement

oval.move (10, 0);

18

Computer Graphics Software

would move the oval 10 pixels to the right. The dx and dy

values can be negative. Calling

rect .move (0, -25);

would move the rectangle 25 pixels upward.
The movePolar(r, theta) method is useful in applications in
which you need to move a graphical object in a particular direction.
The name of the method comes from the concept of polar
coordinates in mathematics, in which a displacement is defined
by a distance r and an angle theta. Just as it is in traditional
geometry, the angle theta is measured in degrees counterclockwise

from the +x axis. Thus, the statement

rect .movePolar (10, 45);

would move the rectangle 10 pixels along a line in the 45°

direction, which is northeast.
Setting the Colour of a GObject

The acm.graphics package does not define its own notion of
colour but instead relies on the Colour class in the standard
java.awt package. The predefined colours are:

Color.BLACK

Color.DARK_GRAY

Color.GRAY

Color.LIGHT_GRAY

Color.WHITE

Color.RED

Color.YELLOW

Color.GREEN

Color.CYAN

Color.BLUE

Color.MAGENTA

Color.ORANGE

Color.PINK
19

Computer Graphics Software

It is also possible to create additional colours using the
constructors in the Colour class. In either case, you need to include
the import line

import java.awt.*;
at the beginning of your programme.

The setColor method sets the colour of the graphical object to
the specified value; the corresponding getColor method allows you
to determine what colour that object currently is. This facility allows
you to make a temporary change to the colour of a graphical object

using code that looks something like this:

Colour oldColor = gobj.getColor();
gobj.setColor (Color.RED);

and then at some later time .
gobj.setColor (oldColor);

Controlling the Stacking Order

A set of methods that make it possible to control the stacking
order. The sendToFront and sendToBack methods move the object
to the front or back of the stack, respectively. The sendForward
and sendBackward methods move the object one step forward or
backward in the stack so that it jumps ahead of or behind the
adjacent object in the stack. Changing the stacking order also
redraws the display to ensure that underlying objects are correctly
redrawn.

For example, if you add the statement;

oval.sendBackward() ;

to the end of the FeltBoard programme, the picture on the
display would change as follows:

Checking for Containment

In many applications — particularly those that involve
interactivity of the sort—it is useful to be able to tell whether a
graphical object contains a particular point. This facility is provided

20

Computer Graphics Software

by thecontains(x, y) method, which returns true if the point (x, y)
is inside the figure. For example, given a standard Java MouseEvent
e, you can determine whether the mouse is inside the rectangle

rect using the followingif statement:
if (rect.contains(e.getX (), e.get¥Y()))

Even though every GObject subclass has a contains method,
the precise definition of what it means for a point to be “inside”
the object differs depending on the class. In the case of a GOval,
for example, a point is considered to be inside the oval only if it is
mathematically contained within the elliptical shape that the GOval
draws. Points that are inside the bounding rectangle but outside
of the oval are considered to be “outside.” Thus, it is important to

keep in mind that
gobj.contains (x, V)
and

gobj.getBounds () .contains (x, V)
do not necessarily return the same answer.

The GFillable, GResizable, and GScalable
Interfaces

You have probably noticed that several of the examples you've
already seen in this tutorial include methods that do not appear.
For example, the FeltBoard programme includes calls to a setFilled
method to mark the rectangle and oval as filled rather than
outlined. It appears that the GObject class does not include a
setFilled method, which is indeed the case.

As the caption makes clear, the methods listed in that table are
the ones that are common to every GObject subclass. While it is
always possible to set the location of a graphical object, it is only
possible to fill that object if the idea of “filling” makes sense for
that class.

21

Computer Graphics Software

Filling is easily defined for geometrical shapes such as ovals,
rectangles, polygons, and arcs, but it is not clear what it might mean
to fill a line, an image, or a label. Since there are subclasses that
cannot give a meaningful interpretation to setFilled, that method
is not defined at the GObject level but is instead implemented only
for those subclasses for which filling is defined.

At the same time, it is important to define the setFilled method
so that it works the same way for any class that implements it. If
setFilled, for example, worked differently in the GRect and GOval
classes, trying to keep track of the different styles would inevitably
cause confusion. To ensure that the model for filled shapes remains
consistent, the methods that support filling are defined in an
interface called GFillable, which specifies the behaviour of any
fillable object. In addition to the setFilled method that you have
already seen, the GFillable interface defines an isFilled method that
tests whether the object is filled, a setFillColor method to set the
colour of the interior of the object, and a getFillColor method that
retrieves the interior fill colour. The setFillColor method makes it
possible to set the colour of an object’s interior independently from
the colour of its border. For example, if you changed the code from
the FeltBoard example so that the statements generating the

rectangle were

GRect rect = new GRect (100, 50, 100, 100 / PHI);
rect.setFilled(true);

rect.setColor (Color.RED);
r.setFillColor (Color .MAGENTA) ;

you would see a rectangle whose border was red and whose
interior was magenta.

In addition to the GFillable interface, the acm.graphics package
includes two interfaces that make it possible to change the size of
an object. Classes in which the dimensions are defined by a
bounding rectangle — GRect, GOval, and GImage —implement the

22

Computer Graphics Software

GResizable interface, which allows you to change the size of a
resizable object gobj by calling
gobj.setSize (newWidth, newHeight);

A much larger set of classes implements the GScalable interface,
which makes it possible to change the size of an object by
multiplying its width and height by a scaling factor. In the common
case in which you want to scale an object equally in both
dimensions, you can call

gobj.scale (sf);
which multiplies the width and height by sf. For example, you
could double the size of a scalable object by calling
gobj.scale(2);

The scale method has a two-argument form that allows you to

scale a figure independently in the x and y directions. The statement
gobj.scale (1.0, 0.5);
leaves the width of the object unchanged but halves its height.

The methods specified by the GFillable, GResizable, and

GScalable interfaces are summarize.

Methods Defined by Interfaces

GFillable (implemented by GArc, GOval, GPen, GPolygon,
and GRect)
void setFilled(boolean fill)

Sets whether this object is filled (true means filled, false means
outlined).
boolean isFilled()
Returns true if the object is filled.
void setFillColor (Color c)
Sets the colour used to fill this object. If the colour is null, filling
uses the colour of the object.
Colour getFillColor ()

Returns the colour used to fill this object.

GResizable (implemented by GImage, GOval, and GRect)
void setSize (double width, double height)

23

Computer Graphics Software

Changes the size of this object to the specified width and height.

void setSize (GDimension size)

Changes the size of this object as specified by the GDimension

parameter.

void setBounds (double x, double y, double width, double
height)

Changes the bounds of this object as specified by the individual

parameters.

void setBounds (GRectangle bounds)

Changes the bounds of this object as specified by the

GRectangle parameter.

GScalable (implemented by GArc, GCompound, GImage, GLine,
GOval, GPolygon, and GRect)
void scale (double sf)

Resizes the object by applying the scale factor in each

dimension, leaving the location fixed.

void scale(double sx, double sy)

Scales the object independently in the x and y dimensions by

the specified scale factors.
Descriptions of the Individual Shape Classes

So far, this tutorial has looked only at methods that apply to all
GObjects, along with a few interfaces that define methods shared
by some subset of the GObject hierarchy. The most important classes
in that hierarchy are the shape classes that appear. The sections that
follow provide additional background on each of the shape classes
and include several simple examples that illustrate their use.

As you go through the descriptions of the individual shape
classes, you are likely to conclude that some of them are designed
in ways that are less than ideal for introductory students. In the
abstract, this conclusion is almost certainly correct.

For practical reasons that look beyond the introductory course,
the Java Task Force decided to implement the shape classes so that

24

Computer Graphics Software

they match their counterparts in Java’s standard Graphicsclass. In
particular, the set of shape classes corresponds precisely to the
facilities that the Graphics class offers for drawing geometrical
shapes, text strings, and images. Moreover, the constructors for
each class take the same parameters and have the same semantics
as the corresponding method in the Graphics class. Thus, the GArc
constructor —which is arguably the most counterintuitive in many
ways—has the structure it does, not because we thought that
structure was perfect, but because that is the structure used by the
drawArc method in the Graphics class. By keeping the semantics
consistent with its Java counterpart, the acm.graphicspackage
makes it easier for students to move on to the standard packages

as they learn more about programming.
The GRect Class and its Subclasses

The simplest and most intuitive of the shape classes is the GRect
class, which represents a rectangular box. This class implements
the GFillable, GResizable, and GScalable interfaces, but otherwise
includes no other methods except its constructor, which comes in

two forms. The most common form of the constructor is
new GRect (x, vy, width, height)

which defines both the location and size of the GRect. The second

form of the constructor is
new GRect (width, height)

which defines a rectangle of the specified size whose upper left
corner is at the origin. If you use this second form, you will typically
add the GRect to the canvas at a specific (x, y) location.

You have already seen one example of the use of the GRect
class in the simple FeltBoard example. A more substantive example
is the Checkerboard programme, which draws a checkerboard that
looks like this:

25

Computer Graphics Software

Checkerboard

60

Code for the Checkerboard example
/~k

* File: Checkerboard. java
* This programme draws a checkerboard. The dimensions of

* checkerboard is specified by the constants NROWS and

* NCOLUMNS, and the size of the squares is chosen so

* that the checkerboard fills the available vertical
space.

*/

import acm.programme.*;

import acm.graphics.*;

public class Checkerboard extends GraphicsProgram {
/** Runs the programme */
public wvoid run() {
double sgSize = (double) getHeight () / NROWS;
for (int 1 = 0; i < NROWS; i++) {
for (int j = 0; j < NCOLUMNS; Jj++) {
double x = j * sqgSize;
double y = 1 * sgSize;
GRect sg=new GRect (x, vy, sgSize, sqgSize);
sg.setFilled((i + J) % 2 != 0);
add (sq) ;
}
}
}
/* Private constants */
private static final int NROWS = 8; /* Number of rows */
private static final int NCOLUMNS = 8; /* Number of
columns */

}
The diagram of the graphics class hierarchy, the GRect class

has two subclasses —GRoundRect and G3DRect—that define

26

Computer Graphics Software

shapes that are essentially rectangles but differ slightly in the way
they are drawn on the screen. The GRoundRect class has rounded
corners, and the G3DRect class has beveled edges that can be
shadowed to make it appear raised or lowered.

These classes extend GRect to change their visual appearance
and to export additional method definitions that make it possible
to adjust the properties of one of these objects. For GRoundRect,
these properties specify the corner curvature; for G3DRect, the
additional methods allow the client to indicate whether the
rectangle should appear raised or lowered.

Neither of these classes are used much in practice, but they
are included in acm.graphics to ensure that it can support the full
functionality of Java’s Graphics class, which includes analogues
for both.

The GOval Class

The GOval class represents an elliptical shape and is defined
so that the parameters of its constructor match the arguments to
the drawOval method in the standard Java Graphics class. This
design is easy to understand as long as you keep in mind the fact
that Java defines the dimensions of an oval by specifying the
rectangle that bounds it. Like GRect, the GOval class implements
the GFillable, GResizable, and GScalable interfaces but otherwise
includes no methods that are specific to the class.

The GLine Class

The GLine class is used to display a straight line on the display.
The standard GLine constructor takes the x and y coordinates of
each end point. For example, to draw a line that extends diagonally
from the origin of the canvas in the upper left to the opposite corner
in the lower right, you could use the following code:

27

Computer Graphics Software

GLine diagonal = new GLine (0, 0, getWidth (), getHeight());
add (diagonal) ;

On the whole, the GLine class makes intuitive sense. There are,
however, a few points that are worth remembering:

* Calling setLocation(x, y) or move(dx, dy) on a GLine object

moves the line without changing its length or orientation.

If you need to move one of the endpoints without affecting

the other, you can do so by calling the methods
setStartPoint(x, y) or setEndPoint(x, y).

* The GLine class implements GScalable —which expands or

contracts the line relative to its starting point—but not
GFillable or GResizable.

* From a mathematical perspective, a line has no thickness
and therefore does not actually any points. In practice,
however, it is useful to define any point that is no more
than a pixel away from the line segment as being part of
the line. This definition makes it possible, for example, to
select a line segment using the mouse by looking for points
that are “close enough” to the line to be considered as being
part of it.

* As with any other GObject, applying the getWidth method
to a GLine returns its horizontal extent on the canvas. There
is no way in acm.graphics to change the thickness of a
line, which is always one pixel.

Even though the GLine class is conceptually simple, you can
nonetheless create wonderfully compelling pictures with it. For
example, shows a drawing made up entirely of GLine objects. The
programme to create this figure —which simulates the process of
stringing coloured yarn through a series of equally spaced pegs
around the border —appears.

28

Computer Graphics Software

Modern Computer Graphics
Motion Capture

Two programmes useful for the realization of a motion capture
are MotionBuilder and FaceRobot. FaceRobot is a new computer
graphics software for digital acting, intended for professional
character animators in the film and game industries. It addresses
the technical problems of creating life-like facial animation for
realistic human characters with a novel set of algorithms. For
motion capture animation, FaceRobot requires a smaller number
of markers (only 25 to 30) than traditional high-end approaches.

FaceRobot provides:

* Fast organization of the work to create a grid face -
animators can quickly import a character and immediately
proceed to realistic facial animation,

* Support the processes of creating animations of Autodesk
Maya,

* Support for motion capture and key frame animation to
achieve optimal results of the work,

* Optimize for game development.

Fig. Face Created with the Programme FaceRobot
MotionBuilder is professional 3D character animation software.
It is used for motion capture and traditional keyframe animation.
It is used in the production of games, films, and other multimedia

projects. Functionality includes real-time display and animation
29

Computer Graphics Software

tools, facial and skeletal animation, ragdoll physics, inverse

kinematics, story timeline editing etc.
Simulation of Crowd Behavior

Let us look at three programmes for simulation of collective
behaviour of graphical objects. Autodesk Kynaps is the artificial
intelligence middleware product. Its purpose is to facilitate the
implementation of the mobility function on the scene in real-time
characters who are not direct players.

Kynapse includes:

* An automatic Al data generation tool,

* A complete 3D pathfinding,

* Spatial reasoning,

* The management of dynamic and destructible terrains,

* Streaming mechanisms to handle very large terrains.

MASSIVE (Multiple Agent Simulation System in Virtual
Environment) is a high-end computer animation and artificial
intelligence software package used for generating crowd-related
visual effects for film and television. Its main feature is the ability
to quickly and easily create thousands of agents that all act as
individuals. Through the use of fuzzy logic, the software enables
every agent to respond individually to its surroundings, including
other agents. These reactions affect the agent’s behaviour, changing
how they act by controlling pre-recorded animation clips, which
can come from motion-capture sessions, or can be hand-animated

in other 3D animation software packages.

30

2

Computer Graphics

The development of computer graphics has made
computers easier to interact with, and better for
understanding and interpreting many types of data.
Developments in computer graphics have had a profound
impact on many types of media and have revolutionized
animation, movies and the video game industry. The term
computer graphics has been used in a broad sense to
describe “almost everything on computers that is not text
or sound”. Typically, the term computer graphics refers to
several different things:

e The representation and manipulation of image data
by a computer

e The various technologies used to create and
manipulate images

e The images so produced, and

Computer Graphics Software

e The sub-field of computer science which studies
methods for digitally synthesizing and manipulating
visual content, see study of computer graphics

Today, computers and computer-generated images touch
many aspects of daily life. Computer imagery is found on
television, in newspapers, for example in weather reports,
or for example in all kinds of medical investigation and
surgical procedures. A well-constructed graph can present
complex statistics in a form that is easier to understand
and interpret. In the media “such graphs are used to illustrate
papers, reports, thesis”, and other presentation material.
Many powerful tools have been developed to visualize data.
Computer generated imagery can be categorized into several
different types: 2D, 3D, 4D, 7D, and animated graphics. As
technology has improved, 3D computer graphics have become
more common, but 2D computer graphics are still widely
used.

Computer graphics has emerged as a sub-field of
computer science which studies methods for digitally
synthesizing and manipulating visual content. Over the
past decade, other specialized fields have been developed
like information visualization, and scientific visualization
more concerned with “the visualization of three dimensional
phenomena (architectural, meteorological, medical,
biological, etc.), where the emphasis is on realistic renderings
of volumes, surfaces, illumination sources, and so forth,
perhaps with a dynamic (time) component”. The advance in
computer graphics was to come from Ivan Sutherland. In
1961 Sutherland created another computer drawing

32

Computer Graphics Software

programme called Sketchpad. Using a light pen, Sketchpad
allowed one to draw simple shapes on the computer screen,
save them and even recall them later. The light pen itself
had a small photoelectric cell in its tip. This cell emitted
an electronic pulse whenever it was placed in front of a
computer screen and the screen’s electron gun fired directly
at it. By simply timing the electronic pulse with the current
location of the electron gun, it was easy to pinpoint exactly
where the pen was on the screen at any given moment.
Once that was determined, the computer could then draw
a cursor at that location. Sutherland seemed to find the
perfect solution for many of the graphics problems he faced.

Even today, many standards of computer graphics
interfaces got their start with this early Sketchpad
programme. One example of this is in drawing constraints.
If one wants to draw a square for example, s/he doesn’t
have to worry about drawing four lines perfectly to form the
edges of the box. One can simply specify that s/he wants
to draw a box, and then specify the location and size of the
box. The software will then construct a perfect box, with
the right dimensions and at the right location. Another
example is that Sutherland’s software modeled objects - not
just a picture of objects. In other words, with a model of
a car, one could change the size of the tires without affecting
the rest of the car. It could stretch the body of the car
without deforming the tires. These early computer graphics
were Vector graphics, composed of thin lines whereas modern
day graphics are Raster based using pixels. The difference
between vector graphics and raster graphics can be
illustrated with a shipwrecked sailor.

33

Computer Graphics Software

He creates an SOS sign in the sand by arranging rocks
in the shape of the letters “SOS.” He also has some brightly
colored rope, with which he makes a second “SOS” sign by
arranging the rope in the shapes of the letters. The rock
SOS sign is similar to raster graphics. Every pixel has to
be individually accounted for.

The rope SOS sign is equivalent to vector graphics. The
computer simply sets the starting point and ending point
for the line and perhaps bend it a little between the two
end points. The disadvantages to vector files are that they
cannot represent continuous tone images and they are
limited in the number of colors available. Raster formats
on the other hand work well for continuous tone images and
can reproduce as many colors as needed. Also in 1961
another student at MIT, Steve Russell, created the first
video game, Spacewar. Written for the DEC PDP-1, Spacewar
was an instant success and copies started flowing to other
PDP-1 owners and eventually even DEC got a copy. The
engineers at DEC used it as a diagnostic programme on
every new PDP-1 before shipping it. The sales force picked
up on this quickly enough and when installing new units,
would run the world’s first video game for their new

customers.

E. E. Zajac, a scientist at Bell Telephone Laboratory
(BTL), created a film called “Simulation of a two-giro gravity
attitude control system” in 1963. In this computer generated
film, Zajac showed how the attitude of a satellite could be
altered as it orbits the Earth. He created the animation on
an IBM 7090 mainframe computer. Also at BTL, Ken
Knowlton, Frank Sindon and Michael Noll started working

34

Computer Graphics Software

in the computer graphics field. Sindon created a film called
Force, Mass and Motion illustrating Newton’s laws of motion
in operation.

Around the same time, other scientists were creating
computer graphics to illustrate their research. At Lawrence
Radiation Laboratory, Nelson Max created the films, “Flow
of a Viscous Fluid” and “Propagation of Shock Waves in a
Solid Form.” Boeing Aircraft created a film called “Vibration
of an Aircraft.” It wasn’'t long before major corporations
started taking an interest in computer graphics. TRW,
Lockheed-Georgia, General Electric and Sperry Rand are
among the many companies that were getting started in
computer graphics by the mid 1960’s. IBM was quick to
respond to this interest by releasing the IBM 2250 graphics
terminal, the first commercially available graphics computer.
Ralph Baer, a supervising engineer at Sanders Associates,
came up with a home video game in 1966 that was later
licensed to Magnavox and called the Odyssey. While very
simplistic, and requiring fairly inexpensive electronic parts,
it allowed the player to move points of light around on a
screen. It was the first consumer computer graphics product.

Also in 1966, Sutherland at MIT invented the first computer
controlled head-mounted display (HMD). Called the Sword
of Damocles because of the hardware required for support,
it displayed two separate wireframe images, one for each eye.
This allowed the viewer to see the computer scene in
stereoscopic 3D. After receiving his Ph.D. from MIT, Sutherland
became Director of Information Processing at ARPA (Advanced
Research Projects Agency), and later became a professor at
Harvard. Dave Evans was director of engineering at Bendix

35

Computer Graphics Software

Corporation’s computer division from 1953 to 1962, after
which he worked for the next five years as a visiting professor
at Berkeley. There he continued his interest in computers
and how they interfaced with people. In 1968 the University
of Utah recruited Evans to form a computer science
programme, and computer graphics quickly became his
primary interest. This new department would become the
world’s primary research center for computer graphics. In
1967 Sutherland was recruited by Evans to join the computer
science programme at the University of Utah. There he
perfected his HMD. Twenty years later, NASA would re-
discover his techniques in their virtual reality research.

At Utah, Sutherland and Evans were highly sought after
consultants by large companies but they were frustrated at
the lack of graphics hardware available at the time so they
started formulating a plan to start their own company. A
student by the name of Edwin Catmull started at the
University of Utah in 1970 and signed up for Sutherland’s
computer graphics class. Catmull had just come from The
Boeing Company and had been working on his degree in
physics. Growing up on Disney, Catmull loved animation
yet quickly discovered that he didn’t have the talent for
drawing. Now Catmull (along with many others) saw
computers as the natural progression of animation and
they wanted to be part of the revolution. The first animation
that Catmull saw was his own. He created an animation
of his hand opening and closing. It became one of his goals
to produce a feature length motion picture using computer
graphics. In the same class, Fred Parke created an animation
of his wife’s face.

36

Computer Graphics Software

Because of Evan’s and Sutherland’s presence, UU was
gaining quite a reputation as the place to be for computer
graphics research so Catmull went there to learn 3D
animation. As the UU computer graphics laboratory was
attracting people from all over, John Warnock was one of
those early pioneers; he would later found Adobe Systems
and create a revolution in the publishing world with his
PostScript page description language.

Tom Stockham led the image processing group at UU
which worked closely with the computer graphics lab. Jim
Clark was also there; he would later found Silicon Graphics,
Inc. The first major advance in 3D computer graphics was
created at UU by these early pioneers, the hidden-surface
algorithm. In order to draw a representation of a 3D object
on the screen, the computer must determine which surfaces
are “behind” the object from the viewer’'s perspective, and
thus should be “hidden” when the computer creates (or
renders) the image.

Graphic Design

Graphic design is a creative process — most often involving
a client and a designer and usually completed in conjunction
with producers of form (i.e., printers, programmers,
signmakers, etc.) — undertaken in order to convey a specific
message (or messages) to a targeted audience. The term
“graphic design” can also refer to a number of artistic and
professional disciplines that focus on visual communication
and presentation. The field as a whole is also often referred
to as Visual Communication or Communication Design.
Various methods are used to create and combine words,

37

Computer Graphics Software

symbols, and images to create a visual representation of
ideas and messages. A graphic designer may use typography,
visual arts and page layout techniques to produce the final
result.

Graphic design often refers to both the process (designing)
by which the communication is created and the products
(designs) which are generated. Common uses of graphic
design include identity (logos and branding), web sites,
publications (magazines, newspapers, and books),
advertisements and product packaging. For example, a
product package might include a logo or other artwork,
organized text and pure design elements such as shapes
and color which unify the piece.

Composition is one of the most important features of
graphic design, especially when using pre-existing materials
or diverse elements. While Graphic Design as a discipline
has a relatively recent history, with the name °‘graphic
design” first coined by William Addison Dwiggins in 1922,
graphic design-like activities span the history of humankind:
from the caves of Lascaux, to Rome’s Trajan’s Column to
the illuminated manuscripts of the Middle Ages, to the
dazzling neons of Ginza.

In both this lengthy history and in the relatively recent
explosion of visual communication in the 20th and 21st
centuries, there is sometimes a blurring distinction and
over-lapping of advertising art, graphic design and fine art.
After all, they share many of the same elements, theories,
principles, practices and languages, and sometimes the
same benefactor or client. In advertising art the ultimate

38

Computer Graphics Software

objective is the sale of goods and services. In graphic design,
“the essence is to give order to information, form to ideas,
expression and feeling to artifacts that document human
experience.”

Advent of Printing

During the Tang Dynasty (618-907) between the 4th and
7th century AD, wood blocks were cut to print on textiles
and later to reproduce Buddhist texts. A Buddhist scripture
printed in 868 is the earliest known printed book. Beginning
in the 11th century, longer scrolls and books were produced
using movable type printing making books widely available
during the Song dynasty (960-1279). Sometime around
1450, Johann Gutenberg’s printing press made books widely
available in Europe. The book design of Aldus Manutius
developed the book structure which would become the
foundation of western publication design. This era of graphic
design is called Humanist or Old Style.

Emergence of the Design Industry

In late 19th century Europe, especially in the United
Kingdom, the movement began to separate graphic design
from fine art. In 1849, Henry Cole became one of the major
forces in design education in Great Britain, informing the
government of the importance of design in his Journal of
Design and Manufactures. He organized the Great Exhibition
as a celebration of modern industrial technology and
Victorian design. From 1891 to 1896, William Morris’
Kelmscott Press published books that are some of the most
significant of the graphic design products of the Arts and
Crafts movement, and made a very lucrative business of

39

Computer Graphics Software

creating books of great stylistic refinement and selling them
to the wealthy for a premium. Morris proved that a market
existed for works of graphic design in their own right and
helped pioneer the separation of design from production
and from fine art. The work of the Kelmscott Press is
characterized by its obsession with historical styles. This
historicism was, however, important as it amounted to the
first significant reaction to the stale state of nineteenth-
century graphic design. Morris’ work, along with the rest
of the Private Press movement, directly influenced Art
Nouveau and is indirectly responsible for developments in
early twentieth century graphic design in general.

Twentieth Century Design

The name “Graphic Design” first appeared in print in the
1922 essay “New Kind of Printing Calls for New Design” by
William Addison Dwiggins, an American book designer in
the early 20th century. Raffe’s Graphic Design, published
in 1927, is considered to be the first book to use “Graphic
Design” in its title. The signage in the London Underground
is a classic design example of the modern era and used a
font designed by Edward Johnston in 1916. In the 1920s,
Soviet constructivism applied ‘intellectual production’ in
different spheres of production. The movement saw
individualistic art as useless in revolutionary Russia and
thus moved towards creating objects for utilitarian purposes.
They designed buildings, theater sets, posters, fabrics,
clothing, furniture, logos, menus, etc.

Jan Tschichold codified the principles of modern
typography in his 1928 book, New Typography. He later
repudiated the philosophy he espoused in this book as

40

Computer Graphics Software

being fascistic, but it remained very influential. Tschichold,
Bauhaus typographers such as Herbert Bayer and Laszlo
Moholy-Nagy, and El Lissitzky have greatly influenced graphic
design as we know it today. They pioneered production
techniques and stylistic devices used throughout the
twentieth century. The following years saw graphic design
in the modern style gain widespread acceptance and
application. A booming post-World War II American economy
established a greater need for graphic design, mainly
advertising and packaging. The emigration of the German
Bauhaus school of design to Chicago in 1937 brought a
“mass-produced” minimalism to America; sparking a wild
fire of “modern” architecture and design. Notable names in
mid-century modern design include Adrian Frutiger, designer
of the typefaces Univers and Frutiger; Paul Rand, who, from
the late 1930s until his death in 1996, took the principles
of the Bauhaus and applied them to popular advertising
and logo design, helping to create a uniquely American
approach to European minimalism while becoming one of
the principal pioneers of the subset of graphic design known
as corporate identity; and Josef Muller-Brockmann, who
designed posters in a severe yet accessible manner typical
of the 1950s and 1970s era.

The growth of the graphic design industry has grown in
parallel with the rise of consumerism. This has raised some
concerns and criticisms, notably from within the graphic
design community with the First Things First manifesto.
First launched by Ken Garland in 1964, it was re-published
as the First Things First 2000 manifesto in 1999 in the
magazine Emigre 51 stating “We propose a reversal of

41

Computer Graphics Software

priorities in favor of more useful, lasting and democratic
forms of communication - a mindshift away from product
marketing and toward the exploration and production of a
new kind of meaning. The scope of debate is shrinking; it
must expand. Consumerism is running uncontested; it
must be challenged by other perspectives expressed, in
part, through the visual languages and resources of design.”
Both editions attracted signatures from respected design
practitioners and thinkers, for example; Rudy VanderLans,
Erik Spiekermann, Ellen Lupton and Rick Poynor. The 2000
manifesto was also notably published in Adbusters, known
for its strong critiques of visual culture.

Applications

From road signs to technical schematics, from interoffice
memorandums to reference manuals, graphic design
enhances transfer of knowledge. Readability is enhanced by
improving the visual presentation of text. Design can also
aid in selling a product or idea through effective visual
communication. It is applied to products and elements of
company identity like logos, colors, packaging, and text.
Together these are defined as branding. Branding has
increasingly become important in the range of services
offered by many graphic designers, alongside corporate
identity. Whilst the terms are often used interchangeably,
branding is more strictly related to the identifying mark or
trade name for a product or service, whereas corporate
identity can have a broader meaning relating to the structure
and ethos of a company, as well as to the company’s external
image.

42

Computer Graphics Software

Graphic designers will often form part of a team working
on corporate identity and branding projects. Other members
of that team can include marketing professionals,
communications consultants and commercial writers.
Textbooks are designed to present subjects such as
geography, science, and math. These publications have
layouts which illustrate theories and diagrams. A common
example of graphics in use to educate is diagrams of human
anatomy. Graphic design is also applied to layout and
formatting of educational material to make the information
more accessible and more readily understandable. Graphic
design is applied in the entertainment industry in decoration,
scenery, and visual story telling.

Other examples of design for entertainment purposes
include novels, comic books, DVD covers, opening credits
and closing credits in film, and programmes and props on
stage. This could also include artwork used for t-shirts and
other items screenprinted for sale. From scientific journals
to news reporting, the presentation of opinion and facts is
often improved with graphics and thoughtful compositions
of visual information - known as information design.
Newspapers, magazines, blogs, television and film
documentaries may use graphic design to inform and
entertain. With the advent of the web, information designers
with experience in interactive tools such as Adobe Flash are
increasingly being used to illustrate the background to

news stories.

Skills

A graphic design project may involve the stylization and

presentation of existing text and either preexisting imagery
43

Computer Graphics Software

or images developed by the graphic designer. For example,
a newspaper story begins with the journalists and
photojournalists and then becomes the graphic designer’'s
job to organize the page into a reasonable layout and
determine if any other graphic elements should be required.
In a magazine article or advertisement, often the graphic
designer or art director will commission photographers or
illustrators to create original pieces just to be incorporated
into the design layout. Or the designer may utilize stock
imagery or photography. Contemporary design practice has
been extended to the modern computer, for example in the
use of WYSIWYG user interfaces, often referred to as
interactive design, or multimedia design.

Visual Arts

Before any graphic elements may be applied to a design,
the graphic elements must be originated by means of visual
art skills. These graphics are often (but not always) developed
by a graphic designer. Visual arts include works which are
primarily visual in nature using anything from traditional
media, to photography or computer generated art. Graphic
design principles may be applied to each graphic art element
individually as well as to the final composition.

Typography

Typography is the art, craft and techniques of type design,
modifying type glyphs, and arranging type. Type glyphs
(characters) are created and modified using a variety of
illustration techniques. The arrangement of type is the
selection of typefaces, point size, line length, leading (line
spacing) and letter spacing. Typography is performed by

44

Computer Graphics Software

typesetters, compositors, typographers, graphic artists, art
directors, and clerical workers. Until the Digital Age,
typography was a specialized occupation. Digitization opened
up typography to new generations of visual designers and
lay users.

Page Layout

The page layout aspect of graphic design deals with the
arrangement of elements (content) on a page, such as image
placement, and text layout and style. Beginning from early
illuminated pages in hand-copied books of the Middle Ages
and proceeding down to intricate modern magazine and
catalogue layouts, structured page design has long been a
consideration in printed material. With print media, elements
usually consist of type (text), images (pictures), and occasionally
place-holder graphics for elements that are not printed with
ink such as die/laser cutting, foil stamping or blind embossing.

Interface Design

Since the advent of the World Wide Web and computer
software development, many graphic designers have become
involved in interface design. This has included web design
and software design, when end user interactivity is a design
consideration of the layout or interface. Combining visual
communication skills with the interactive communication
skills of user interaction and online branding, graphic
designers often work with software developers and web
developers to create both the look and feel of a web site or
software application and enhance the interactive experience
of the user or web site visitor. An important aspect of
interface design is icon design.

45

Computer Graphics Software

Printmaking

Printmaking is the process of making artworks by printing
on paper and other materials or surfaces. Except in the case
of monotyping, the process is capable of producing multiples
of the same piece, which is called a print. Each piece is not
a copy but an original since it is not a reproduction of
another work of art and is technically known as an
impression. Painting or drawing, on the other hand, create
a unique original piece of artwork. Prints are created from
a single original surface, known technically as a matrix.
Common types of matrices include: plates of metal, usually
copper or zinc for engraving or etching; stone, used for
lithography; blocks of wood for woodcuts, linoleum for
linocuts and fabric plates for screen-printing. But there are
many other kinds, discussed below. Works printed from a
single plate create an edition, in modern times usually each
signed and numbered to form a limited edition. Prints may
also be published in book form, as artist’s books. A single
print could be the product of one or multiple techniques.

Tools

The mind may be the most important graphic design
tool. Aside from technology, graphic design requires judgment
and creativity. Critical, observational, quantitative and
analytic thinking are required for design layouts and
rendering. If the executor is merely following a solution (e.g.
sketch, script or instructions) provided by another designer
(such as an art director), then the executor is not usually
considered the designer. The method of presentation (e.g.
arrangement, style, medium) may be equally important to

the design. The layout is produced using external traditional
46

Computer Graphics Software

or digital image editing tools. The appropriate development
and presentation tools can substantially change how an
audience perceives a project. In the mid 1980s, the arrival
of desktop publishing and graphic art software applications
introduced a generation of designers to computer image
manipulation and creation that had previously been
manually executed. Computer graphic design enabled
designers to instantly see the effects of layout or typographic
changes, and to simulate the effects of traditional media
without requiring a lot of space. However, traditional tools
such as pencils or markers are useful even when computers
are used for finalization; a designer or art director may hand
sketch numerous concepts as part of the creative process.

Some of these sketches may even be shown to a client
for early stage approval, before the designer develops the
idea further using a computer and graphic design software
tools. Computers are considered an indispensable tool in
the graphic design industry. Computers and software
applications are generally seen by creative professionals as
more effective production tools than traditional methods.
However, some designers continue to use manual and
traditional tools for production, such as Milton Glaser. New
ideas can come by way of experimenting with tools and
methods. Some designers explore ideas using pencil and
paper. Others use many different mark-making tools and
resources from computers to sculpture as a means of
inspiring creativity. One of the key features of graphic design
is that it makes a tool out of appropriate image selection
in order to possibly convey meaning.ArtsComputers and the
Creative Process

47

Computer Graphics Software

There is some debate whether computers enhance the
creative process of graphic design. Rapid production from
the computer allows many designers to explore multiple
ideas quickly with more detail than what could be achieved
by traditional hand-rendering or paste-up on paper, moving
the designer through the creative process more quickly.
However, being faced with limitless choices does not help
isolate the best design solution and can lead to endless
iterations with no clear design outcome. A graphic designer
may use sketches to explore multiple or complex ideas
quickly without the distractions and complications of
software. Hand-rendered comps are often used to get
approval for an idea execution before a design invests time
to produce finished visuals on a computer or in paste-up.
The same thumbnail sketches or rough drafts on paper may
be used to rapidly refine and produce the idea on the
computer in a hybrid process. This hybrid process is
especially useful in logo design where a software learning
curve may detract from a creative thought process. The
traditional-design/computer-production hybrid process may
be used for freeing one’s creativity in page layout or image
development as well. In the early days of computer
publishing, many ‘traditional’ graphic designers relied on
computer-savvy production artists to produce their ideas
from sketches, without needing to learn the computer skills
themselves. However, this practice has been increasingly
less common since the advent of desktop publishing over
30 years ago. The use of computers and graphics software
is now taught in most graphic design courses.

48

Computer Graphics Software

Occupations

Graphic design career paths cover all ends of the creative
spectrum and often overlap. The main job responsibility of
a Graphic Designer is the arrangement of visual elements
in some type of media. The main job titles include graphic
designer, art director, creative director, and the entry level
production artist. Depending on the industry served, the
responsibilities may have different titles such as “DTP
Associate” or “Graphic Artist”, but despite changes in title,
graphic design principles remain consistent. The
responsibilities may come from or lead to specialized skills
such as illustration, photography or interactive design.
Today’s graduating graphic design students are normally
exposed to all of these areas of graphic design and urged
to become familiar with all of them as well in order to be
competitive. Graphic designers can work in a variety of
environments. Whilst many will work within companies
devoted specifically to the industry, such as design
consultancies or branding agencies, others may work within
publishing, marketing or other communications companies.
Increasingly, especially since the introduction of personal
computers to the industry, many graphic designers have
found themselves working within non-design oriented
organizations, as in-house designers. Graphic designers
may also work as free-lance designers, working on their own
terms, prices, ideas, etc.

A graphic designer reports to the art director, creative
director or senior media creative. As a designer becomes
more senior, they may spend less time designing media and
more time leading and directing other designers on broader

49

Computer Graphics Software

creative activities, such as brand development and corporate
identity development. As graphic designers become more
senior, they are often expected to interact more directly with
clients.

Image Types: 2D Computer Graphics

2D computer graphics are the computer-based generation
of digital images—mostly from two-dimensional models, such
as 2D geometric models, text, and digital images, and by
techniques specific to them. 2D computer graphics are
mainly used in applications that were originally developed
upon traditional printing and drawing technologies, such
as typography, cartography, technical drawing, advertising,
etc.. In those applications, the two-dimensional image is not
just a representation of a real-world object, but an
independent artifact with added semantic value; two-
dimensional models are therefore preferred, because they
give more direct control of the image than 3D computer
graphics, whose approach is more akin to photography
than to typography.

Pixel Art

Pixel art is a form of digital art, created through the use
of raster graphics software, where images are edited on the
pixel level. Graphics in most old (or relatively limited)
computer and video games, graphing calculator games, and
many mobile phone games are mostly pixel art.

Vector Graphics

Vector graphics formats are complementary to raster
graphics, which is the representation of images as an array

50

Computer Graphics Software

of pixels, as it is typically used for the representation of
photographic images Vector graphics consists in encoding
information about shapes and colors that comprise the
image, which can allow for more flexibility in rendering.
There are instances when working with vector tools and
formats is best practice, and instances when working with
raster tools and formats is best practice. There are times
when both formats come together. An understanding of the
advantages and limitations of each technology and the
relationship between them is most likely to result in efficient
and effective use of tools.

3D Computer Graphics

3D computer graphics in contrast to 2D computer
graphics are graphics that use a three-dimensional
representation of geometric data that is stored in the
computer for the purposes of performing calculations and
rendering 2D images. Such images may be for later display
or for real-time viewing. Despite these differences, 3D
computer graphics rely on many of the same algorithms as
2D computer vector graphics in the wire frame model and
2D computer raster graphics in the final rendered display.
In computer graphics software, the distinction between 2D
and 3D is occasionally blurred; 2D applications may use
3D techniques to achieve effects such as lighting, and
primarily 3D may use 2D rendering techniques. 3D computer
graphics are often referred to as 3D models. Apart from the
rendered graphic, the model is contained within the graphical
data file. However, there are differences. A 3D model is the
mathematical representation of any three-dimensional object.
A model is not technically a graphic until it is visually

51

Computer Graphics Software

displayed. Due to 3D printing, 3D models are not confined
to virtual space. A model can be displayed visually as a two-
dimensional image through a process called 3D rendering,
or used in non-graphical computer simulations and
calculations. There are some 3D computer graphics software
for users to create 3D images.

Computer Animation

Computer animation is the art of creating moving images
via the use of computers. It is a subfield of computer
graphics and animation. Increasingly it is created by means
of 3D computer graphics, though 2D computer graphics are
still widely used for stylistic, low bandwidth, and faster real-
time rendering needs. Sometimes the target of the animation
is the computer itself, but sometimes the target is another
medium, such as film. It is also referred to as CGI (Computer-
generated imagery or computer-generated imaging),
especially when used in films. Virtual entities may contain
and be controlled by assorted attributes, such as transform
values (location, orientation, and scale) stored in an object’s
transformation matrix. Animation is the change of an
attribute over time. Multiple methods of achieving animation
exist; the rudimentary form is based on the creation and
editing of keyframes, each storing a value at a given time,
per attribute to be animated. The 2D /3D graphics software
will interpolate between keyframes, creating an editable
curve of a value mapped over time, resulting in animation.

Other methods of animation include procedural and
expression-based techniques: the former consolidates related
elements of animated entities into sets of attributes, useful

52

Computer Graphics Software

for creating particle effects and crowd simulations; the
latter allows an evaluated result returned from a user-
defined logical expression, coupled with mathematics, to
automate animation in a predictable way (convenient for
controlling bone behavior beyond what a hierarchy offers
in skeletal system set up). To create the illusion of movement,
an image is displayed on the computer screen then quickly
replaced by a new image that is similar to the previous
image, but shifted slightly. This technique is identical to the
illusion of movement in television and motion pictures.

Concepts and Principles

Images are typically produced by optical devices;such as
cameras, mirrors, lenses, telescopes, microscopes, etc. and
natural objects and phenomena, such as the human eye
or water surfaces. A digital image is a representation of a
two-dimensional image in binary format as a sequence of
ones and zeros. Digital images include both vector images
and raster images, but raster images are more commonly
used.

Pixel

In digital imaging, a pixel (or picture element) is a single
point in a raster image. Pixels are normally arranged in a
regular 2-dimensional grid, and are often represented using
dots or squares. Each pixel is a sample of an original image,
where more samples typically provide a more accurate
representation of the original. The intensity of each pixel
is variable; in color systems, each pixel has typically three
components such as red, green, and blue.

53

Computer Graphics Software

Graphics

Graphics are visual presentations on some surface, such
as a wall, canvas, computer screen, paper, or stone to
brand, inform, illustrate, or entertain. Examples are
photographs, drawings, line art, graphs, diagrams,
typography, numbers, symbols, geometric designs, maps,
engineering drawings, or other images. Graphics often
combine text, illustration, and color. Graphic design may
consist of the deliberate selection, creation, or arrangement
of typography alone, as in a brochure, flier, poster, web site,
or book without any other element. Clarity or effective
communication may be the objective, association with other
cultural elements may be sought, or merely, the creation
of a distinctive style.

Rendering

Rendering is the process of generating an image from a
model (or models in what collectively could be called a scene
file), by means of computer programmes. A scene file contains
objects in a strictly defined language or data structure; it
would contain geometry, viewpoint, texture, lighting, and
shading information as a description of the virtual scene.
The data contained in the scene file is then passed to a
rendering programme to be processed and output to a
digital image or raster graphics image file. The rendering
programme is usually built into the computer graphics
software, though others are available as plug-ins or entirely
separate programmes. The term “rendering” may be by
analogy with an “artist’s rendering” of a scene. Though the
technical details of rendering methods vary, the general

54

Computer Graphics Software

challenges to overcome in producing a 2D image from a 3D
representation stored in a scene file are outlined as the
graphics pipeline along a rendering device, such as a GPU.
A GPU is a purpose-built device able to assist a CPU in
performing complex rendering calculations. If a scene is to
look relatively realistic and predictable under virtual lighting,
the rendering software should solve the rendering equation.
The rendering equation doesn’t account for all lighting
phenomena, but is a general lighting model for computer-
generated imagery. ‘Rendering’ is also used to describe the
process of calculating effects in a video editing file to produce
final video output.

3D Projection

3D projection is a method of mapping three dimensional
points to a two dimensional plane. As most current methods
for displaying graphical data are based on planar two
dimensional media, the use of this type of projection is
widespread, especially in computer graphics, engineering
and drafting.

Ray Tracing

Ray tracing is a technique for generating an image by
tracing the path of light through pixels in an image plane.
The technique is capable of producing a very high degree
of photorealism; usually higher than that of typical scanline
rendering methods, but at a greater computational cost.

Shading

Shading refers to depicting depth in 3D models or
illustrations by varying levels of darkness. It is a process

55

Computer Graphics Software

used in drawing for depicting levels of darkness on paper
by applying media more densely or with a darker shade for
darker areas, and less densely or with a lighter shade for
lighter areas. There are various techniques of shading
including cross hatching where perpendicular lines of varying
closeness are drawn in a grid pattern to shade an area. The
closer the lines are together, the darker the area appears.
Likewise, the farther apart the lines are, the lighter the area
appears. The term has been recently generalized to mean
that shaders are applied.

Texture Mapping

Texture mapping is a method for adding detail, surface
texture, or colour to a computer-generated graphic or 3D
model. Its application to 3D graphics was pioneered by Dr
Edwin Catmull in 1974. A texture map is applied (mapped)
to the surface of a shape, or polygon. This process is akin
to applying patterned paper to a plain white box.
Multitexturing is the use of more than one texture at a time
on a polygon. Procedural textures (created from adjusting
parameters of an underlying algorithm that produces an
output texture), and bitmap textures (created in an image
editing application) are, generally speaking, common methods
of implementing texture definition from a 3D animation
programme, while intended placement of textures onto a
model’s surface often requires a technique known as UV

mapping.
Anti-aliasing

Rendering resolution-independent entities (such as 3D
models) for viewing on a raster (pixel-based) device such as

56

Computer Graphics Software

a LCD display or CRT television inevitably causes aliasing
artifacts mostly along geometric edges and the boundaries
of texture details; these artifacts are informally called
“jaggies”. Anti-aliasing methods rectify such problems,
resulting in imagery more pleasing to the viewer, but can
be somewhat computationally expensive. Various anti-
aliasing algorithms (such as supersampling) are able to be
employed, then customized for the most efficient rendering
performance versus quality of the resultant imagery; a
graphics artist should consider this trade-off if anti-aliasing
methods are to be used. A pre-anti-aliased bitmap texture
being displayed on a screen (or screen location) at a resolution
different than the resolution of the texture itself (such as
a textured model in the distance from the virtual camera)
will exhibit aliasing artifacts, while any procedurally-defined
texture will always show aliasing artifacts as they are
resolution-independent; techniques such as mipmapping
and texture filtering help to solve texture-related aliasing
problems.

Volume Rendering

Volume rendering is a technique used to display a 2D
projection of a 3D discretely sampled data set. A typical 3D
data set is a group of 2D slice images acquired by a CT or
MRI scanner. Usually these are acquired in a regular pattern
(e.g., one slice every millimeter) and usually have a regular
number of image pixels in a regular pattern. This is an
example of a regular volumetric grid, with each volume
element, or voxel represented by a single value that is
obtained by sampling the immediate area surrounding the

voxel.

57

Computer Graphics Software

3D Modeling

3D modeling is the process of developing a mathematical,
wireframe representation of any three-dimensional object,
called a “3D model”, via specialized software. Models may
be created automatically or manually; the manual modeling
process of preparing geometric data for 3D computer graphics
is similar to plastic arts such as sculpting. 3D models may
be created using multiple approaches: use of NURBS curves
to generate accurate and smooth surface patches, polygonal
mesh modeling (manipulation of faceted geometry), or
polygonal mesh subdivision (advanced tessellation of
polygons, resulting in smooth surfaces similar to NURBS
models). A 3D model can be displayed as a two-dimensional
image through a process called 3D rendering, used in a
computer simulation of physical phenomena, or animated
directly for other purposes. The model can also be physically
created using 3D Printing devices.

Pioneers in Graphic Design

Charles Csuri

Charles Csuri is a pioneer in computer animation and
digital fine art and created the first computer art in 1964.
Csuri was recognized by Smithsonian as the father of digital
art and computer animation, and as a pioneer of computer
animation by the Museum of Modern Art (MoMA) and
Association for Computing Machinery-SIGGRAPH.

Donald P. Greenberg

Donald P. Greenberg is a leading innovator in computer
graphics. Greenberg has authored hundreds of articles and
served as a teacher and mentor to many prominent computer

58

Computer Graphics Software

graphic artists, animators, and researchers such as Robert
L. Cook, Marc Levoy, and Wayne Lytle. Many of his former
students have won Academy Awards for technical
achievements and several have won the SIGGRAPH
Achievement Award. Greenberg was the founding director
of the NSF Center for Computer Graphics and Scientific
Visualization.

A. Michael Noll

Noll was one of the first researchers to use a digital
computer to create artistic patterns and to formalize the
use of random processes in the creation of visual arts. He
began creating digital computer art in 1962, making him
one of the earliest digital computer artists. In 1965, Noll
along with Frieder Nake and Georg Nees were the first to
publicly exhibit their computer art. During April 1965, the
Howard Wise Gallery exhibited Noll's computer art along
with random-dot patterns by Bela Julesz.

Other Pioneers
e Jim Blinn
e Arambilet
e Benoit B. Mandelbrot
e Henri Gouraud
¢ Bui Tuong Phong
e Pierre Bézier
e Paul de Casteljau
e Daniel J. Sandin
e Alvy Ray Smith

e Ton Roosendaal

59

Computer Graphics Software

e Jvan Sutherland

e Steve Russell

Computer Graphics Study

The study of computer graphics is a sub-field of computer
science which studies methods for digitally synthesizing
and manipulating visual content. Although the term often
refers to three-dimensional computer graphics, it also
encompasses two-dimensional graphics and image
processing. As an academic discipline, computer graphics
studies the manipulation of visual and geometric information
using computational techniques. It focuses on the
mathematical and computational foundations of image
generation and processing rather than purely aesthetic
issues. Computer graphics is often differentiated from the
field of visualization, although the two fields have many

similarities.
Computer-aided Industrial Design

Computer-aided industrial design (CAID) is a subset of
computer-aided design (CAD) that includes software that
directly helps in product development. Within CAID
programmes designers have the freedom of creativity, but
typically follow a simple design methodology:

e Creating sketches, using a stylus
¢ Generating curves directly from the sketch

e Generating surfaces directly from the curves

The end result is a 3D model that projects the main
design intent the designer had in mind. The model can then
be saved in STL format to send it to a rapid prototyping

60

Computer Graphics Software

machine to create the real-life model. CAID helps the designer
to focus on the technical part of the design methodology
rather than taking care of sketching and modeling—then
contributing to the selection of a better product proposal
in less time.

Later, when the requisites and parameters of the product
have been defined by means of using CAID software, the
designer can import the result of his work into a CAD
programme (typically a Solid Modeler) for adjustments prior
to production and generation of blueprints and
manufacturing processes. What differentiates CAID from
CAD is that the former is far more conceptual and less
technical than the latter. Within a CAID programme, the
designer can express him/herself without extents, whilst in
CAD software there is always the manufacturing factor.

Electronic Design Automation

Electronic design automation (EDA or ECAD) is a category
of software tools for designing electronic systems such as
printed circuit boards and integrated circuits. The tools
work together in a design flow that chip designers use to
design and analyze entire semiconductor chips.

History

Early Days

Before EDA, integrated circuits were designed by hand,
and manually laid out. Some advanced shops used geometric
software to generate the tapes for the Gerber photoplotter,
but even those copied digital recordings of mechanically-
drawn components. The process was fundamentally graphic,

61

Computer Graphics Software

with the translation from electronics to graphics done
manually. The best known company from this era was
Calma, whose GDSII format survives. By the mid-70s,
developers started to automate the design, and not just the
drafting. The first placement and routing (Place and route)
tools were developed. The proceedings of the Design
Automation Conference cover much of this era. The next
era began about the time of the publication of “Introduction
to VLSI Systems” by Carver Mead and Lynn Conway in
1980. This ground breaking text advocated chip design with
programming languages that compiled to silicon.

The immediate result was a considerable increase in the
complexity of the chips that could be designed, with improved
access to design verification tools that used logic simulation.
Often the chips were easier to lay out and more likely to
function correctly, since their designs could be simulated
more thoroughly prior to construction. Although the
languages and tools have evolved, this general approach of
specifying the desired behavior in a textual programming
language and letting the tools derive the detailed physical
design remains the basis of digital IC design today. The
earliest EDA tools were produced academically. One of the
most famous was the “Berkeley VLSI Tools Tarball”, a set
of UNIX utilities used to design early VLSI systems. Still
widely used is the Espresso heuristic logic minimizer and
Magic. Another crucial development was the formation of
MOSIS, a consortium of universities and fabricators that
developed an inexpensive way to train student chip designers
by producing real integrated circuits. The basic concept was
to use reliable, low-cost, relatively low-technology IC

62

Computer Graphics Software

processes, and pack a large number of projects per wafer,
with just a few copies of each projects’ chips. Cooperating
fabricators either donated the processed wafers, or sold
them at cost, seeing the programme as helpful to their own
long-term growth.

Birth of Commercial EDA

1981 marks the beginning of EDA as an industry. For
many years, the larger electronic companies, such as Hewlett
Packard, Tektronix, and Intel, had pursued EDA internally.
In 1981, managers and developers spun out of these
companies to concentrate on EDA as a business. Daisy
Systems, Mentor Graphics, and Valid Logic Systems were
all founded around this time, and collectively referred to as
DMV. Within a few years there were many companies
specializing in EDA, each with a slightly different emphasis.
The first trade show for EDA was held at the Design
Automation Conference in 1984. In 1986, Verilog, a popular
high-level design language, was first introduced as a
hardware description language by Gateway Design
Automation. In 1987, the U.S. Department of Defense funded
creation of VHDL as a specification language. Simulators
quickly followed these introductions, permitting direct
simulation of chip designs: executable specifications. In a
few more years, back-ends were developed to perform logic
synthesis.

Current Status

Current digital flows are extremely modular (see Integrated
circuit design, Design closure, and Design flow (EDA)). The

front ends produce standardized design descriptions that

63

Computer Graphics Software

compile into invocations of “cells,”, without regard to the
cell technology. Cells implement logic or other electronic
functions using a particular integrated circuit technology.
Fabricators generally provide libraries of components for
their production processes, with simulation models that fit
standard simulation tools. Analog EDA tools are far less
modular, since many more functions are required, they
interact more strongly, and the components are (in general)
less ideal. EDA for electronics has rapidly increased in
importance with the continuous scaling of semiconductor
technology. Some users are foundry operators, who operate
the semiconductor fabrication facilities, or “fabs”, and design-
service companies who use EDA software to evaluate an
incoming design for manufacturing readiness. EDA tools
are also used for programming design functionality into
FPGAs.

Software Focuses
Design
e High-level synthesis(syn. behavioural synthesis,
algorithmic synthesis) For digital chips
e Logic synthesis translation of abstract, logical
language such as Verilog or VHDL into a discrete
netlist of logic-gates
e Schematic Capture For standard cell digital, analog,
rf like Capture CIS in Orcad by CADENCE and ISIS
in Proteus

e Layout like Layout in Orcad by Cadence, ARES in
Proteus

64

Computer Graphics Software

Design Flows

Design flows are the explicit combination of electronic
design automation tools to accomplish the design of an
integrated circuit. Moore’s law has driven the entire IC
implementation RTL to GDSII design flows from one which
uses primarily standalone synthesis, placement, and routing
algorithms to an integrated construction and analysis flows
for design closure. The challenges of rising interconnect
delay led to a new way of thinking about and integrating
design closure tools. New scaling challenges such as leakage
power, variability, and reliability will keep on challenging
the current state of the art in design closure. The RTL to
GDSII flow underwent significant changes from 1980 through
2005. The continued scaling of CMOS technologies
significantly changed the objectives of the various design
steps.

The lack of good predictors for delay has led to significant
changes in recent design flows. Challenges like leakage
power, variability, and reliability will continue to require
significant changes to the design closure process in the
future. Many factors describe what drove the design flow
from a set of separate design steps to a fully integrated
approach, and what further changes are coming to address
the latest challenges. In his keynote at the 40th Design
Automation Conference entitled The Tides of EDA, Alberto
Sangiovanni-Vincentelli distinguished three periods of EDA:
The Age of the Gods, The Age of the Heroes, and The Age
of the Men. These eras were characterized respectively by
senses, imagination, and reason. When we limit ourselves
to the RTL to GDSII flow of the CAD area, we can distinguish

65

Computer Graphics Software

three main eras in its development: the Age of Invention,
the Age of Implementation, and the Age of Integration.

e The Age of Invention: During the invention era,
routing, placement, static timing analysis and logic
synthesis were invented.

e The Age of Implementation: In the age of
implementation, these steps were drastically improved
by designing sophisticated data structures and
advanced algorithms. This allowed the tools in each
of these design steps to keep pace with the rapidly
increasing design sizes. However, due to the lack of
good predictive cost functions, it became impossible
to execute a design flow by a set of discrete steps,
no matter how efficiently each of the steps was
implemented.

e The Age of Integration: This led to the age of integration
where most of the design steps are performed in an
integrated environment, driven by a set of incremental
cost analyzers.

Simulation

¢ Transistor simulation - low-level transistor-simulation
of a schematic/layout’s behavior, accurate at device-
level.

e Logic simulation - digital-simulation of an RTL or
gate-netlist’s digital (boolean 0/ 1) behavior, accurate
at boolean-level.

¢ Behavioral Simulation - high-level simulation of a
design’s architectural operation, accurate at cycle-
level or interface-level.

66

Computer Graphics Software

e Hardware emulation - Use of special purpose
hardware to emulate the logic of a proposed design.
Can sometimes be plugged into a system in place of
a yet-to-be-built chip; this is called in-circuit
emulation.

¢ Technology CAD simulate and analyze the underlying
process technology. Electrical properties of devices
are derived directly from device physics.

¢ Electromagnetic field solvers, or just field solvers, solve
Maxwell's equations directly for cases of interest in IC
and PCB design. They are known for being slower but
more accurate than the layout extraction above.

Electronic Circuit Simulation

Electronic circuit simulation uses mathematical models
to replicate the behavior of an actual electronic device or
circuit. Simulation software allows for modeling of circuit
operation and is an invaluable analysis tool. Due to its
highly accurate modeling capability, many Colleges and
Universities use this type of software for the teaching of
electronics technician and electronics engineering
programmes. Electronics simulation software engages the
user by integrating them into the learning experience. These
kinds of interactions actively engage learners to analyze,
synthesize, organize, and evaluate content and result in
learners constructing their own knowledge. Simulating a
circuit’s behavior before actually building it can greatly
improve design efficiency by making faulty designs known
as such, and providing insight into the behavior of electronics
circuit designs.

67

Computer Graphics Software

In particular, for integrated circuits, the tooling
(photomasks) is expensive, breadboards are impractical, and
probing the behavior of internal signals is extremely difficult.
Therefore almost all IC design relies heavily on simulation.
The most well known analog simulator is SPICE. Probably
the best known digital simulators are those based on Verilog
and VHDL. Some electronics simulators integrate a schematic
editor, a simulation engine, and on-screen waveforms, and
make “what-if” scenarios easy and instant. They also typically
contain extensive model and device libraries. These models
typically include IC specific transistor models such as BSIM,
generic components such as resistors, capacitors, inductors
and transformers, user defined models (such as controlled
current and voltage sources, or models in Verilog-A or VHDL-
AMYS). Printed circuit board (PCB) design requires specific
models as well, such as transmission lines for the traces and
IBIS models for driving and receiving electronics.

Types

While there are strictly analog electronics circuit
simulators, popular simulators often include both analog
and event-driven digital simulation capabilities, and are
known as mixed-mode simulators. This means that any
simulation may contain components that are analog, event
driven (digital or sampled-data), or a combination of both.
An entire mixed signal analysis can be driven from one
integrated schematic. All the digital models in mixed-mode
simulators provide accurate specification of propagation
time and rise/fall time delays.

The event driven algorithm provided by mixed-mode

simulators is general purpose and supports non-digital
68

Computer Graphics Software

types of data. For example, elements can use real or integer
values to simulate DSP functions or sampled data filters.
Because the event driven algorithm is faster than the
standard SPICE matrix solution, simulation time is greatly
reduced for circuits that use event driven models in place
of analog models. Mixed-mode simulation is handled on
three levels; (a) with primitive digital elements that use
timing models and the built-in 12 or 16 state digital logic
simulator, (b) with subcircuit models that use the actual
transistor topology of the integrated circuit, and finally, (c)
with In-line Boolean logic expressions.

Exact representations are used mainly in the analysis
of transmission line and signal integrity problems where a
close inspection of an IC’s I/O characteristics is needed.
Boolean logic expressions are delay-less functions that are
used to provide efficient logic signal processing in an analog
environment. These two modeling techniques use SPICE to
solve a problem while the third method, digital primitives,
use mixed mode capability.

Each of these methods has its merits and target
applications. In fact, many simulations (particularly those
which use A/D technology) call for the combination of all
three approaches. No one approach alone is sufficient.
Another type of simulation used mainly for power electronics
represent piecewise linear algorithms. These algorithms use
an analog (linear) simulation until a power electronic switch
changes its state. At this time a new analog model is
calculated to be used for the next simulation period. This
methodology both enhances simulation speed and stability
significantly.

69

Computer Graphics Software

Complexities

Often circuit simulators do not take into account the

process variations that occur when the design is fabricated

into silicon. These variations can be small, but taken together

can change the output of a chip significantly. Process

variations occur in the manufacture of circuits in silicon.

Temperature variation can also be modeled to simulate the

circuit’s performance through temperature ranges.

Analysis and Verification

Functional verification

Clock Domain Crossing Verification (CDC check):
Similar to linting, but these checks/tools specialize
in detecting and reporting potential issues like data
loss, meta-stability due to use of multiple clock
domains in the design.

Formal verification, also model checking: Attempts to
prove, by mathematical methods, that the system
has certain desired properties, and that certain
undesired effects (such as deadlock) cannot occur.
Equivalence checking: algorithmic comparison
between a chip’s RTL-description and synthesized
gate-netlist, to ensure functional equivalence at the
logical level.

Static timing analysis: Analysis of the timing of a
circuit in an input-independent manner, hence finding
a worst case over all possible inputs.

Physical verification, PV: checking if a design is
physically manufacturable, and that the resulting
chips will not have any function-preventing physical

defects, and will meet original specifications.
70

Computer Graphics Software

Manufacturing preparation

e Mask data preparation, MDP: generation of actual
lithography photomask used to physically

manufacture the chip.

(0}

Resolution enhancement techniques, RET -
methods of increasing of quality of final photomask.
Optical proximity correction, OPC - up-front
compensation for diffraction and interference effects
occurring later when chip is manufactured using
this mask.

Mask generation — generation of flat mask image
from hierarchical design.

Automatic test pattern generation, ATPG — generates
pattern-data to systematically exercise as many
logic-gates, and other components, as possible.
Built-in self-test, or BIST - installs self-contained
test-controllers to automatically test a logic (or
memory) structure in the design

Companies

For more details on this topic, see List of EDA companies.

Top Companies

$3.73 billion
$2.06 billion
$1.18 billion
$233 million
S$157 million

Synopsys

Cadence

Mentor Graphics

Magma Design Automation

Zuken Inc.

Note: Market caps current as of October, 2010. EEsof
should likely be on this list, but does not have a market
cap as it is the EDA division of Agilent.

71

Computer Graphics Software

Acquisitions

Many of the EDA companies acquire small companies
with software or other technology that can be adapted to
their core business. Most of the market leaders are rather
incestuous amalgamations of many smaller companies. This
trend is helped by the tendency of software companies to
design tools as accessories that fit naturally into a larger
vendor’s suite of programmes (on digital circuitry, many
new tools incorporate analog design, and mixed systems.
This is happening because there is now a trend to place
entire electronic systems on a single chip.

72

3

Computer Software Generations

First Generation

During the 1950’s the first computers were programmed by
changing the wires and set tens of dials and switches. One for every
bit sometimes these settings could be stored on paper tapes that
looked like a ticker tape from the telegraph - a punch tape - or
punched card. With these tapes and or cards the machine was told
what, how and when to do something.

To have a flawless programme a programmer needed to have
a very detailed knowledge of the computer where he or she worked
on. A small mistake caused the computer to crash.

Second Generation

Because the first generation “languages” were regarded as very
user unfriendly people set out to look for something else, faster
and easier to understand. The result was the birth of the second
generation languages (2GL) at the mid of the 1950’s. These

Computer Graphics Software

generation made use of symbols and are called assemblers. An
assembler is a programme that translates symbolic instructions to
processor instructions. (See above for an example) But deep in the
1950’s there was still not a single processor but a whole assembly
rack with umpteen tubes and or relays.

A programmer did no longer have to work with one’s and
zero’s when using an assembly language. He or she can use
symbols instead. These symbols are called mnemonics because of
the mnemonic character these symbols had (STO = store). Each
mnemonic stands for one single machine instruction.

But an assembler still works on a very low level with the

machine. For each processor a different assembler was written.
Third Generation

At the end of the 1950’s the ‘natural language’ interpreters and
compilers were made. But it took some time before the new
languages were accepted by enterprises.

About the oldest 3GL is FORTRAN (Formula Translation)
which was developed around 1953 by IBM. This is a language
primarily intended for technical and scientific purposes.
Standardization of FORTRAN started 10 years later, and a
recommendation was finally published by the International
Standardization Organization (ISO) in 1968.

Fortran 77 is now standardized

COBOL (= Common Business Oriented Language) was
developed around 1959 and is like its name says primarily used,
up till now, in the business world.

With a 3GL there was no longer a need to work in symbolics.
Instead a programmer could use a programming language what
resembled more to natural language. Be it a stripped version with
some two or three hundred ‘reserved” words. This is the period

74

Computer Graphics Software

(1970’s) were the now well known so called “high level” languages
like BASIC,PASCAL, ALGOL, FORTRAN, PL/I, and C have been

born.
Fourth Generation

A 4GL is an aid witch the end user or programmer can use to
build an application without using a third generation
programming language. Therefore knowledge of a programming
language is strictly spoken not needed.

The primary feature is that you do not indicate HOW a
computer must perform a task but WHAT it must do. In other
words the assignments can be given on a higher functional level.

A few instructions in a 4GL will do the same as hundreds of
instructions in a lower generation language like COBOLor BASIC.
Applications of 4GL’s are concentrating on the daily performed
tasks such like screen forms, requests for data, change data, and
making hard copies. In most of these cases one deals with Data
Base Management Systems (DBMS).

The main advantage of this kind of languages is that a trained
user can create an application in a much shorter time for
development and debugging than would be possible with older
generation programming language. Also a customer can be
involved earlier in the project and can actively take part in the
development of a system, by means of simulation runs, long before
the application is actually finished.

Today the disadvantage of a 4GL lays more in the technological
capacities of hardware. Since programs written in a 4GL are quite
a bit larger they are needing more disk space and demanding a
larger part of the computer’s memory capacity than 3GL’s. But
hardware of technologically high standard is made more available
every day, not necessarily cheaper, so in the long run restrictions

75

Computer Graphics Software

will disappear. Considering the arguments one can say that the
costs saved in development could now be invested in hardware
of higher performance and stimulate the development of the 4GL’s.

In the 1990’s the expectations of a 4GL language are too high.
And the use of it only will be picked up by Oracle and SUN that
have enough power to pull it through. However in most cases the
4GL environment is often misused as a documentation tool and a
version control implement. In very few cases the use of such
programs are increasing productivity. In most cases they only are
used to lay the basis for information systems. And programmers
use all kinds of libraries and toolkits to give the product its final

form.
Fifth Generation

This term is often misused by software companies that build
programming environments. Till today one can only see vague
contours. When one sees a nice graphical interface it is tempting
to call that a fifth generation. But alas changing the makeup does
not make a butterfly into an eagle.

Yes some impressions are communicated from professional
circles that are making these environments and sound promising.

But again the Fifth generation only exist in the brains of those
trying to design this generation, YET! Many attempts are made
but are stranding on the limitations of hardware, and strangely
enough on the views and insight of the use of natural language.
We need a different speak for this!

But it is a direction that will be taken by these languages: no
longer prohibiting for the use of natural language and intuitive
approach towards the programme (language) to be developed

The basis of this is laid in the 1990’s by using sound, moving
images and agents - a kind of advanced macro’s of the 1980’s.

76

Computer Graphics Software

And it is only natural that neural networks will play an
important role.

Software for the end user will be (may be) based on principles
of knowbot-agents. An autonomous self changing piece of software
that creates new agents based on the interaction of the end user
and interface. A living piece of software, as you may say. And were
human alike DNA/RNA (intelligent?) algorithms can play a big

role.

Computer Languages

Introduction

The term computer language includes a wide variety of
languages used to communicate with computers. It is broader
than the more commonly-used term programming language.
Programming languages are a subset of computer languages.

For example, HTML is a markup language and a computer
language, but it is not traditionally considered a programming
language. Machine code is a computer language. It can technically
be used for programming, and has been (e.g. the original
bootstrapped for Altair BASIC), though most would not consider
it a programming language.

Computer languages can be divided into two groups: high-
level languages and low-level languages. High-level languages are
designed to be easier to use, more abstract, and more portable than
low-level languages.

Syntactically correct programs in some languages are then
compiled to low-level language and executed by the computer.
Most modern software is written in a high-level language,
compiled into object code, and then translated into machine

instructions.

77

Computer Graphics Software

Computer languages could also be grouped based on other
criteria. Another distinction could be made between human-
readable and non-human-readable languages. Human-readable
languages are designed to be used directly by humans to
communicate with the computer. Non-human-readable languages,
though they can often be partially understandable, are designed
to be more compact and easily processed, sacrificing readability

to meet these ends.
Types of Computer Languages

Language can be categories broadly into three categories.
Machine Language

The most elementary and first type of computer, which was
invented, was machine language. Machine language was machine
dependent. A programme written in machine language cannot be
run on another type of computer without significant alterations.
Machine language is some times also referred as the binary
language i-e, the language of 0 and 1 where 0 stands for the absence
of electric pulse and i stands for the presence of electric pulse. Very

few computer programs are actually written in machine language.
Assembly Language

As computer became more popular, it became quite apparent
that machine language programming was simply too slow slow
tedious for most programmers. Assembly languages are also called
as low level language instead of using the string of members
programmers began using English like abbreviation to represent
the elementary operation. The language provided an opportunity
to the programmers to use English like words that were called
MNEMONICS.

78

Computer Graphics Software

High Level Language

The assembly languages started using English like words,m
but still it was difficult to learn these languages. High level
languages are the computer language in which it is much easier to
write a programme than the low level language. A programme
written in high level language is just like gibing instruction to
person in daily life. It was in 1957 that a high level language called
FORTRAN was developed by IBM which was specially developed
for scientist and engineers other high level languages are COBOL
which is widely used for business data processing task.BASIC
language which is developed for the beginners in general purpose
programming language. you Can use C language for almost any
programming task. PASCAL are other high level languages which

has gained widespread acceptance.
Software Crisis

Indeed, the problem of trying to write an encyclopedia is very
much like writing software. Both running code and a hypertext/
encyclopedia are wonderful turn-ons for the brain, and you want
more of it the more you see, like a drug. As a user, you want it to
do everything, as a customer you don’t really want to pay for it,
and as a producer you realise how unrealistic the customers are.
Requirements will conflict in functionality vs affordability, and in

completeness vs timeliness.

Different Types of Crisis

Chronic Software Crisis

By today’s definition, a “large” software system is a system
that contains more than 50,000 lines of high-level language code.
It’s those large systems that bring the software crisis to light. If

79

Computer Graphics Software

you're familiar with large software development projects, you
know that the work is done in teams consisting of project managers,
requirements analysts, software engineers, documentation experts,
and programmers. With so many professionals collaborating in an
organized manner on a project, what’s the problem? Why is it that
the team produces fewer than 10 lines of code per day over the
average lifetime of the project? And why are sixty errors found per
every thousand lines of code? Why is one of every three large
projects scrapped before ever being completed? And why is only
1 in 8 finished software projects considered “successful?”
* The cost of owning and maintaining software in the 1980’s
was twice as expensive as developing the software.
* During the 1990’s, the cost of ownership and maintenance
increased by 30% over the 1980’s.
* In 1995, statistics showed that half of surveyed
development projects were operational, but were not
considered successful.

* The average software project overshoots its schedule by
half.

* Three quarters of all large software products delivered to
the customer are failures that are either not used at all, or
do not meet the customer’s requirements.

Software projects are notoriously behind schedule and over
budget. Over the last twenty years many different paradigms have
been created in attempt to make software development more
predictable and controllable.

While there is no single solution to the crisis, much has been
learned that can directly benefit today’s software projects.

It appears that the Software Crisis can be boiled down to two basic

sources:

80

Computer Graphics Software

1. Software development is seen as a craft, rather than an
engineering discipline.
2. The approach to education taken by most higher education

institutions encourages that “craft” mentality.
Software Development

Software development today is more of a craft than a science.
Developers are certainly talented and skilled, but work like
craftsmen, relying on their talents and skills and using techniques
that cannot be measured or reproduced. On the other hand,
software engineers place emphasis on reproducible, quantifiable
techniques-the marks of science. The software industry is still
many years away from becoming a mature engineering discipline.
Formal software engineering processes exist, but their use is not
widespread. A crisis similar to the software crisis is not seen in the
hardware industry, where well documented, formal processes are
tried and true, and ad hoc hardware development is unheard of.
To make matters worse, software technology is constrained by
hardware technology. Since hardware develops at a much faster
pace than software, software developers are constantly trying to
catch up and take advantage of hardware improvements.

Management often encourages ad hoc software development
in an attempt to get products out on time for the new hardware
architectures. Design, documentation, and evaluation are of
secondary importance and are omitted or completed after the fact.
However, as the statistics show, the ad hoc approach just doesn’t
work. Software developers have classically accepted a certain
number of errors in their work as inevitable and part of the job.
That mindset becomes increasingly unacceptable as software

becomes embedded in more and more consumer electronics. Sixty

81

Computer Graphics Software

errors per thousand lines of code is unacceptable when the code is
embedded in a toaster, automobile, ATM machine or razor (let your

imagination run free for a moment).
Computer Science and Product Orientation

Software developers pick up the ad hoc approach to software
development early in their computer science education, where they
are taught a “product orientation” approach to software
development. In the many undergraduate computer science
courses I took, the existence of software engineering processes was
never even mentioned.

Computer science education does not provide students with
the necessary skills to become effective software engineers. They
are taught in a way that encourages them to be concerned only
with the final outcome of their assignments-whether or not the
programme runs, or whether or not it runs efficiently, or whether
or not they used the best possible algorithm. Those concerns in
themselves are not bad. But on the other hand, they should not be
the focus of a project. The focus should be on the complete process
from beginning to end and beyond. Product orientation also leads
to problems when the student enters the work force-not having
seen how processes affect the final outcome, individual
programmers tend to think their work from day to day is too
“small” to warrant the application of formal methods.

Fully Supported Software

As we have seen, most software projects do not follow a formal
process. The result is a product that is poorly designed and
documented. Maintenance becomes problematic because without
a design and documentation, it’s difficult or impossible to predict
what sort of effect a simple change might have on other parts of

82

Computer Graphics Software

the system. Fortunately there is an awareness of the software crisis,
and it has inspired a worldwide movement towards process
improvement. Software industry leaders are beginning to see that
following a formal software process consistently leads to better
quality products, more efficient teams and individuals, reduced
costs, and better morale.

Ratings range from Maturity Level 1, which is characterized
by ad hoc development and lack of a formal software development
process, up to Maturity Level 5, at which an organization not only
has a formal process, but also continually refines and improves it.
Each maturity level is further broken down into key process areas
that indicate the areas an organization should focus on to improve
its software process (e.g. requirement analysis, defect prevention,
or change control).

Level 5 is very difficult to attain. In early 1995, only two
projects, one at Motorola and another at Loral (the on-board space
shuttle software project), had earned Maturity Level 5. Another
study showed that only 2% of reviewed projects rated in the top
two Maturity Levels, in spite of many of those projects placing an
extreme emphasis on software process improvement.

Customers contracting large projects will naturally seek
organizations with high CMM ratings, and that has prompted
increasingly more organizations to investigate software process
improvement. Mature software is also reusable software. Artisans
are not concerned with producing standardized products, and that
is a reason why there is so little interchangeability in software
components.

Ideally, software would be standardized to such an extent that
it could be marketed as a “part”, with its own part number and
revision, just as though it were a hardware part.

83

Computer Graphics Software

The software component interface would be compatible with
any other software system. Though it would seem that nothing
less than a software development revolution could make that
happen, the National Institute of Standards and Technology (NIST)
founded the Advanced Technology Programme (ATP), one
purpose of which was to encourage the development of

standardized software components.
Programming Language Generations

Programming languages have been classified into several
programming language generations. Historically, this
classification was used to indicate increasing power of
programming styles. Later writers have somewhat redefined
the meanings as distinctions previously seen as important
became less significant to current practice.

Historical View of First Three Generations

The terms “first-generation” and “second-generation”
programming language were not used prior to the coining
of the term “third-generation.” In fact, none of these three
terms are mentioned in an early compendium of
programming language.

The introduction of a third generation of computer
technology coincided with the creation of a new generation
of programming languages. The marketing for this
generational shift in machines did correlate with several
important changes in what were called high level
programming languages, discussed below, giving technical
content to the second/third-generation distinction among
high level programming languages as well, and reflexively
renaming assembler languages as first-generation.

84

Computer Graphics Software

First Generation

As Grace Hopper said about coding in machine language:
“We were not programmers in those days. The word had not
yet come over from England. We were coders. The task of
encoding an algorithm wasn’t thought of as writing in a
language any more than was the task of wiring a plug-
board. But even by the early 1950s, the assembly languages
were seen as a distinct “epoch”. The distinguishing properties
of these first generation programming languages are that:

e The code can be read and written by a programmer.
To run on a computer it must be converted into a
machine readable form, a process called assembly.

e The language is specific to a particular target machine
or family of machines, directly reflecting their
characteristics like instruction sets, registers, storage
access models, etc., requiring and enabling the
programmer to manage their use.

e Some assembler languages provide a macro-facility
enabling the development of complex patterns of
machine instructions, but these are not considered
to change the basic nature of the language.

First-generation languages are sometimes used in kernels
and device drivers, but more often find use in extremely
intensive processing such as games, video editing, and
graphic manipulation/rendering.

Second Generation

Second-generation programming languages, originally just
called high level programming languages, were created to
simplify the burden of programming by making its expression

85

Computer Graphics Software

more like the normal mode of expression for thoughts used
by the programmer. They were introduced in the late 1950s,
with FORTRAN reflecting the needs of scientific programmers,
ALGOL reflecting an attempt to produce a European/
American standard view.

The most important issue faced by the developers of
second-level languages was convincing customers that the
code produced by the compilers performed well-enough to
justify abandonment of assembler programming.In view of
the widespread skepticism about the possibility of producing
efficient programmes with an automatic programming system
and the fact that inefficiencies could no longer be hidden,
we were convinced that the kind of system we had in mind
would be widely used only if we could demonstrate that it
would produce programmes almost as efficient as hand
coded ones and do so on virtually every job.The FORTRAN
compiler was seen as a tour-de-force in the production of
high-quality code, even including “... a Monte Carlo
simulation of its execution ... so as to minimize the transfers
of items between the store and the index registers Second-
generation programming languages evolved through the
decade.

FORTRAN lost some of its machine-dependent features,
like access to the lights and switches on the operator console.
Most second-generation languages employed a static storage
model in which storage for data was allocated only once,
when a programme is loaded, making recursion difficult,
but Algol evolved to provide block-structured naming
constructs and began to expand the set of features made

86

Computer Graphics Software

available to programmers, like concurrency management.

In this way (Algol 68) began the movement into a new

generation of programming languages.

Third Generation

The introduction of a third generation of computer

technology coincided with the creation of a new generation

of programming languages. The third-generation languages

emphasized:

expression of an algorithm in a way that was
independent of the characteristics of the machine on
which the algorithm would run.

the rise of strong typing — by which typed languages
deprecated or severely controlled access to the
underlying storage representation of data. Complete
prohibition of such access has never been a feature
of major-use programming languages, which generally
simply provide barriers to accidental access, e.g.
coding them as “native” methods.

block structure and automated management of
storage with a stack — introduced in the Algol family
of languages and adopted rapidly by most other major
modular languages

broad-spectrum applicability and greatly extended
functionality — which was intended to service the
needs of not only the previously separated commercial
and scientific domains. The extended functionality
often included concurrency features, creation and
reference to non-stack data,

87

Computer Graphics Software

Re-characterization of First Three Generations

Since the 1990s, some authors have recharacterized the
development of programming languages in a way that
removed the (no longer topical) distinctions between early
high-level languages like Fortran or Cobol and later ones,
like

First Generation

In this categorization, a first-generation programming
language is a machine-level programming language.

Originally, no translator was used to compile or assemble
the first-generation language. The first-generation
programming instructions were entered through the front
panel switches of the computer system.

The main benefit of programming in a first-generation
programming language is that the code a user writes can
run very fast and efficiently, since it is directly executed by
the CPU. However, machine language is a lot more difficult
to learn than higher generational programming languages,
and it is far more difficult to edit if errors occur. In addition,
if instructions need to be added into memory at some
location, then all the instructions after the insertion point
need to be moved down to make room in memory to
accommodate the new instructions. Doing so on a front
panel with switches can be very difficult.

Second Generation

Second-generation programming language is a generational
way to categorize assembly languages. The term was coined
to provide a distinction from higher level third-generation

88

Computer Graphics Software

programming languages (3GL) such as COBOL and earlier
machine code languages. Second-generation programming
languages have the following properties:

e The code can be read and written by a programmer.
To run on a computer it must be converted into a
machine readable form, a process called assembly.

e The language is specific to a particular processor
family and environment.

Second-generation languages are sometimes used in
kernels and device drivers (though C is generally employed
for this in modern kernels), but more often find use in
extremely intensive processing such as games, video editing,
graphic manipulation/rendering. One method for creating
such code is by allowing a compiler to generate a machine-
optimized assembly language version of a particular function.
This code is then hand-tuned, gaining both the brute-force
insight of the machine optimizing algorithm and the intuitive
abilities of the human optimizer.

Third Generation

A third-generation programming language (3GL) is a
refinement of a second-generation programming language.
Whereas a second generation language is more aimed to fix
logical structure to the language, a third generation language
aims to refine the usability of the language in such a way
to make it more user friendly. This could mean restructuring
categories of possible functions to make it more efficient,
condensing the overall bulk of code via classes (eg. Visual
Basic). A third generation language improves over a second
generation language by having more refinement on the

89

Computer Graphics Software

usability of the language itself from the perspective of the
user. First introduced in the late 1950s, FORTRAN, ALGOL
and COBOL are early examples of this sort of language.

Most “modern” languages (BASIC, C, C++, C#, Pascal,
and Java) are also third-generation languages.

Most 3GLs support structured programming.

Later Generations

“Generational” classification of these languages was
abandoned after the third-generation languages, with the
natural successors to the third-generation languages being
termed object-oriented. C gave rise to C++ and later to Java
and C#, Lisp to CLOS, ADA to ADA95, and even COBOL
to COBOL2002, and new languages have emerged in that
“generation” as well.

But significantly different languages and systems were
already being called fourth and fifth generation programming
languages by language communities with special interests.
The manner in which these generations have been put
forward tends to differ in character from those of earlier
generations, and they represent software points-of-view
leading away from the mainstream.

Software Developer

A software developer is a person concerned with facets
of the software development process. They can be involved
in aspects wider than design and coding, a somewhat broader
scope of computer programming or a specialty of project
managing including some aspects of software product
management. This person may contribute to the overview

90

Computer Graphics Software

of the project on the application level rather than component
level or individual programming tasks. Software developers
are often still guided by lead programmers but also
encompasses the class of freelance software developers. A
person who develops stand-alone software (that is more
than just a simple program) and got involved with all phases
of the development (design and code) is a software developer.

Many legendary software people including Peter Norton
(developer of Norton Utilities), Richard Garriott (Ultima-series
creator), Philippe Kahn (Borland key founder), started as
entrepreneurial individual or small-team software developers
before they became rich and famous. Other names which are
often used in the same close context are programmer, software
analyst and software engineer. According to developer Eric
Sink, the differences between system design, software
development and programming are more apparent. Already
in the current market place there can be found a segregation
between programmers and developers, being that one who
actually implements is not the same as the one who designs
the class structure or hierarchy. Even more so that developers
become systems architects, those who design the multi-
leveled architecture or component interactions of a large
software system. Aspects of developer’s job may include:

e Software design

e Actual core implementation (programming which is
often the most important portion of software
development)

e Other required implementations (e.g. installation,
configuration, customization, integration, data
migration)

91

Computer Graphics Software

Participation in software product definition, including
Business case or Gap analysis

Specification

Requirements analysis

Development and refinement of throw-away
simulations or prototypes to confirm requirements
Feasibility and Cost-benefit analysis, including the
choice of application architecture and framework,
leading to the budget and schedule for the project
Authoring of documentation needed by users and
implementation partners etc.

Testing, including defining/supporting acceptance
testing and gathering feedback from pre-release
testers

Participation in software release and post-release
activities, including support for product launch
evangelism (e.g. developing demonstrations and/or
samples) and competitive analysis for subsequent
product build/release cycles

Maintenance

In a large company, there may be employees whose sole

responsibility may consist of only one of the phases above.

In smaller development environments, a few, or even a

single individual might handle the complete process.

Separation of Concerns

In more mature engineering disciplines such as

mechanical, civil and electrical engineering, the designers

are separate from the implementers. That is, the engineers

who generate design documents are not the same individuals

92

Computer Graphics Software

who actually build things (such as mechanical parts, circuits,
or roads, for instance). In software engineering, it is more
common to have the architecture, design, implementation,
and test functions performed by a single individual. In
particular, the design and implementation of source code
is commonly integrated. This resembles the early phases of
industrialization in which individuals would both design
and built things. More mature organizations have separate
test groups, but the architecture, design, implementation,
and unit test functions are often performed by the same
highly trained individuals.

Software Engineering

Software engineering (SE) is a profession dedicated to
designing, implementing, and modifying software so that it
is of higher quality, more affordable, maintainable, and
faster to build. It is a “systematic approach to the analysis,
design, assessment, implementation, test, maintenance and
reengineering of software, that is, the application of engineering
to software.” The term software engineering first appeared
in the 1968 NATO Software Engineering Conference, and was
meant to provoke thought regarding the perceived “software
crisis” at the time. The IEEE Computer Society’s Software
Engineering Body of Knowledge defines “software
engineering” as the application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software, and the study of these approaches;
that is, the application of engineering to software. It is the
application of Engineering to software because it integrates
significant mathematics, computer science and practices
whose origins are in Engineering.

93

Computer Graphics Software

Software development, a much used and more generic
term, does not necessarily subsume the engineering
paradigm. Although it is questionable what impact it has
had on actual software development over the last more than
40 years, the field’s future looks bright according to Money
Magazine and Salary.com, which rated “software engineer”
as the best job in the United States in 2006.

History

When the first modern digital computers appeared in the
early 1940s, the instructions to make them operate were
wired into the machine. Practitioners quickly realized that
this design was not flexible and came up with the “stored
programmme architecture” or von Neumann architecture.
Thus the first division between “hardware” and “software”
began with abstraction being used to deal with the complexity
of computing.

Programming languages started to appear in the 1950s
and this was also another major step in abstraction. Major
languages such as Fortran, ALGOL, and COBOL were
released in the late 1950s to deal with scientific, algorithmic,
and business problems respectively. E.W. Dijkstra wrote his
seminal paper, “Go To Statement Considered Harmful”, in
1968 and David Parnas introduced the key concept of
modularity and information hiding in 1972 to help
programmers deal with the ever increasing complexity of
software systems. A software system for managing the
hardware called an operating system was also introduced,
most notably by Unix in 1969. In 1967, the Simula language
introduced the object-oriented programming paradigm.

94

Computer Graphics Software

These advances in software were met with more advances
in computer hardware. In the mid 1970s, the microcomputer
was introduced, making it economical for hobbyists to obtain
a computer and write software for it. This in turn led to the
now famous Personal Computer (PC) and Microsoft Windows.
The Software Development Life Cycle or SDLC was also
starting to appear as a consensus for centralized construction
of software in the mid 1980s. The late 1970s and early
1980s saw the introduction of several new Simula-inspired
object-oriented programming languages, including Smalltalk,
Objective-C, and C++.

Open-source software started to appear in the early 90s
in the form of Linux and other software introducing the
“bazaar” or decentralized style of constructing software.
Then the World Wide Web and the popularization of the
Internet hit in the mid 90s, changing the engineering of
software once again. Distributed systems gained sway as
away to design systems, and the Java programming language
was introduced with its own virtual machine as another
step in abstraction. Programmers collaborated and wrote
the Agile Manifesto, which favored more lightweight processes
to create cheaper and more timely software.

The current definition of software engineering is still
being debated by practitioners today as they struggle to
come up with ways to produce software that is “cheaper,
better, faster”. Cost reduction has been a primary focus of
the IT industry since the 1990s. Total cost of ownership
represents the costs of more than just acquisition. It includes
things like productivity impediments, upkeep efforts, and
resources needed to support infrastructure.

95

Computer Graphics Software

Profession

Legal requirements for the licensing or certification of
professional software engineers vary around the world. In
the UK, the British Computer Society licenses software
engineers and members of the society can also become
Chartered Engineers (CEng), while in some areas of Canada,
such as Alberta, Ontario, and Quebec, software engineers
can hold the Professional Engineer (P.Eng)designation and/
or the Information Systems Professional (I.S.P.) designation;
however, there is no legal requirement to have these
qualifications.

The IEEE Computer Society and the ACM, the two main
professional organizations of software engineering, publish
guides to the profession of software engineering.

The IEEE’s Guide to the Software Engineering Body of
Knowledge - 2004 Version, or SWEBOK, defines the field
and describes the knowledge the IEEE expects a practicing
software engineer to have. The IEEE also promulgates a
“Software Engineering Code of Ethics”.

Employment

In 2004, the U. S. Bureau of Labor Statistics counted
760,840 software engineers holding jobs in the U.S.; in the
same time period there were some 1.4 million practitioners
employed in the U.S. in all other engineering disciplines
combined.

Due to its relative newness as a field of study, formal
education in software engineering is often taught as part
of a computer science curriculum, and many software
engineers hold computer science degrees.

96

Computer Graphics Software

Many software engineers work as employees or
contractors. Software engineers work with businesses,
government agencies (civilian or military), and non-profit
organizations. Some software engineers work for themselves
as freelancers. Some organizations have specialists to
perform each of the tasks in the software development
process. Other organizations require software engineers to
do many or all of them. In large projects, people may
specialize in only one role. In small projects, people may fill
several or all roles at the same time. Specializations include:
in industry (analysts, architects, developers, testers,
technical support, middleware analysts, managers) and in
academia (educators, researchers).

Most software engineers and programmers work 40 hours
a week, but about 15 percent of software engineers and 11
percent of programmers worked more than 50 hours a week
in 2008. Injuries in these occupations are rare. However,
like other workers who spend long periods in front of a
computer terminal typing at a keyboard, engineers and
programmers are susceptible to eyestrain, back discomfort,
and hand and wrist problems such as carpal tunnel
syndrome.

Certification

The Software Engineering Institute offers certifications
on specific topics like Security, Process improvement and
Software architecture. Apple, IBM, Microsoft and other
companies also sponsor their own certification examinations.
Many IT certification programmes are oriented toward specific
technologies, and managed by the vendors of these

97

Computer Graphics Software

technologies. These certification programmes are tailored to
the institutions that would employ people who use these
technologies.

Broader certification of general software engineering skills
is available through various professional societies. As of
2006, the IEEE had certified over 575 software professionals
as a Certified Software Development Professional (CSDP).
In 2008 they added an entry-level certification known as the
Certified Software Development Associate (CSDA). In the
U.K. the British Computer Society has developed a legally
recognized professional certification called Chartered IT
Professional (CITP), available to fully qualified Members
(MBCS). In Canada the Canadian Information Processing
Society has developed a legally recognized professional
certification called Information Systems Professional (ISP).
The ACM had a professional certification programme in the
early 1980s, which was discontinued due to lack of interest.
The ACM examined the possibility of professional certification
of software engineers in the late 1990s, but eventually
decided that such certification was inappropriate for the
professional industrial practice of software engineering.

Impact of Globalization

The initial impact of outsourcing, and the relatively lower
cost of international human resources in developing third
world countries led to the dot com bubble burst of the
1990s. This had a negative impact on many aspects of the
software engineering profession. For example, some students
in the developed world avoid education related to software
engineering because of the fear of offshore outsourcing

98

Computer Graphics Software

(importing software products or services from other countries)
and of being displaced by foreign visa workers. Although
statistics do not currently show a threat to software
engineering itself; a related career, computer programming
does appear to have been affected. Nevertheless, the ability
to smartly leverage offshore and near-shore resources via
the [follow-the-sun] workflow has improved the overall
operational capability of many organizations. When North
Americans are leaving work, Asians are just arriving to
work. When Asians are leaving work, Europeans are arriving
to work. This provides a continuous ability to have human
oversight on business-critical processes 24 hours per day,
without paying overtime compensation or disrupting key
human resource sleep patterns.

Education

A knowledge of programming is a pre-requisite to
becoming a software engineer. In 2004 the IEEE Computer
Society produced the SWEBOK, which has been published
as ISO/IEC Technical Report 19759:2004, describing the
body of knowledge that they believe should be mastered by
a graduate software engineer with four years of experience.
Many software engineers enter the profession by obtaining
a university degree or training at a vocational school. One
standard international curriculum for undergraduate
software engineering degrees was defined by the CCSE, and
updated in 2004. A number of universities have Software
Engineering degree programmes; as of 2010, there were 244
Campus programmes, 70 Online programmes, 230 Masters-
level programmes, 41 Doctorate-level programmes, and 69
Certificate-level programmes in the United States.

99

Computer Graphics Software

In addition to university education, many companies
sponsor internships for students wishing to pursue careers
in information technology. These internships can introduce
the student to interesting real-world tasks that typical
software engineers encounter every day. Similar experience
can be gained through military service in software
engineering.

Comparison with Other Disciplines

Major differences between software engineering and other
engineering disciplines, according to some researchers, result
from the costs of fabrication.

Sub-disciplines
Software engineering can be divided into ten
subdisciplines. They are:

e Software requirements: The elicitation, analysis,
specification, and validation of requirements for
software.

e Software architecture: The elicitation, analysis,
specification, definition and design, and validation
and control of software architecture requirements.

e Software design: The design of software is usually
done with Computer-Aided Software Engineering
(CASE) tools and use standards for the format, such
as the Unified Modeling Language (UML).

e Software development: The construction of software
through the use of programming languages.

e Software testing

100

Computer Graphics Software

Software maintenance: Software systems often have
problems and need enhancements for a long time
after they are first completed. This subfield deals
with those problems.

Software configuration management: Since software
systems are very complex, their configuration (such
as versioning and source control) have to be managed
in a standardized and structured method.
Software engineering management: The management
of software systems borrows heavily from project
management, but there are nuances encountered in
software not seen in other management disciplines.
Software development process: The process of building
software is hotly debated among practitioners; some
of the better-known processes are the Waterfall Model,
the Spiral Model, Iterative and Incremental
Development, and Agile Development.

Software engineering tools, see Computer Aided
Software Engineering

Software quality

Related Disciplines

Software engineering is a direct subfield of computer

science and has some relations with management science.

It is also considered a part of overall systems engineering.

Systems Engineering

Systems engineers deal primarily with the overall system

design, specifically dealing more with physical aspects which

include hardware design. Those who choose to specialize

101

Computer Graphics Software

in computer hardware engineering may have some training
in software engineering.

Computer Software Engineers

Computer Software Engineers are usually systems level
(software engineering, information systems) computer science
or software level computer engineering graduates. This term
also includes general computer science graduates with a
few years of practical on the job experience involving software
engineering.

Programming Language Specification

In computing, a programming language specification is
an artifact that defines a programming language so that
users and implementors can agree on what programmes in
that language mean. A programming language specification
can take several forms, including the following:

e An explicit definition of the syntax and semantics of
the language. While syntax is commonly specified
using a formal grammar, semantic definitions may
be written in natural language (e.g., the approach
taken for the C language), or a formal semantics (e.g.,
the Standard MLand Scheme specifications).

e A description of the behavior of a translator for the
language (e.g., the C++ and Fortran). The syntax and
semantics of the language has to be inferred from
this description, which may be written in natural or
a formal language.

e A model implementation, sometimes written in the
language being specified (e.g., the Prolog). The syntax

102

Computer Graphics Software

and semantics of the language are explicit in the
behavior of the model implementation.

Syntax

Syntax in a programming language is usually described
using a combination of

e regular expressions to describe lexemes, and
e context-free grammars to describe how lexemes may
be combined to form a valid programme.

Semantics

Formulating a rigorous semantics of a large, complex,
practical programming language is a daunting task even
for experienced specialists, and the resulting
specification can be difficult for anyone but experts to
understand.

The following are some of the ways in which programming
language semantics can be described; all languages use at
least one of these description methods, and some languages
combine more than one:

e Natural language: Description by human natural
language.

e Formal semantics: Description by mathematics.

¢ Reference implementations: Description by computer
programme

e Test suites: Description by examples of programmes
and their expected behaviors. While few language
specifications start off in this form, the evolution of
some language specifications has been influenced by
the semantics of a test suite (eg, in the past the

103

Computer Graphics Software

specification of Ada has been modified to match the
behavior of the Ada Conformity Assessment Test
Suite).

Natural Language

Most widely-used languages are specified using natural
language descriptions of their semantics. This description
usually takes the form of a reference manual for the language.
These manuals can run to hundreds of pages. For example,
the print version of The Java Language Specification, 3rd Ed.
is 596 pages long. The imprecision of natural language as
a vehicle for describing programming language semantics
can lead to problems with interpreting the specification. For
example, the semantics of Java threads were specified in
English, and it was later discovered that the specification
did not provide adequate guidance for implementors.

Formal Semantics

Formal semantics are grounded in mathematics. As a
result, they can be more precise and less ambiguous than
semantics given in natural language. However, supplemental
natural language descriptions of the semantics are often
included to aid understanding of the formal definitions. For
example, The ISO Standard for Modula-2 contains both a
formal and a natural language definition on opposing pages.
Programming languages whose semantics are described
formally can reap many benefits. For example:

e Formal semantics enable mathematical proofs of
programme correctness;
e Formal semantics facilitate the design of type systems,

and proofs about the soundness of those type systems;

104

Computer Graphics Software

e Formal semantics can establish unambiguous and
uniform standards for implementations of a language.

Automatic tool support can help to realize many of these
benefits. For example, an automated theorem prover or
theorem checker can increase a programmer’s (or language
designer’s) confidence in the correctness of proofs about
programmes (or the language itself).

The power and scalability of these tools varies widely: full
formal verification is computationally intensive, rarely scales
beyond programmes containing a few hundred lines and
may require considerable manual assistance from a
programmer; more lightweight tools such as model checkers
require fewer resources and have been used on programmes
containing tens of thousands of lines; many compilers apply
static type checks to any programme they compile.

Reference Implementation

A reference implementation is a single implementation
of a programming language that is designated as
authoritative. The behavior of this implementation is held
to define the proper behavior of a programme written in the
language.

This approach has several attractive properties. First, it
is precise, and requires no human interpretation: disputes
as to the meaning of a programme can be settled simply
by executing the programme on the reference implementation
(provided that the implementation behaves deterministically
for that program). On the other hand, defining language
semantics through a reference implementation also has
several potential drawbacks.

105

Computer Graphics Software

Chief among them is that it conflates limitations of the
reference implementation with properties of the language.
For example, if the reference implementation has a bug,
then that bug must be considered to be an authoritative
behavior. Another drawback is that programmes written in
this language may rely on quirks in the reference
implementation, hindering portability across different
implementations. Nevertheless, several languages have
successfully used the reference implementation approach.
For example, the Perl interpreter is considered to define the
authoritative behavior of Perl programmes. In the case of
Perl, the Open Source model of software distribution has
contributed to the fact that nobody has ever produced
another implementation of the language, so the issues
involved in using a reference implementation to define the
language semantics are moot.

Test Suite

Defining the semantics of a programming language in
terms of a test suite involves writing a number of example
programmes in the language, and then describing how
those programmes ought to behave — perhaps by writing
down their correct outputs. The programmes, plus their
outputs, are called the “test suite” of the language. Any
correct language implementation must then produce exactly
the correct outputs on the test suite programmes.

The chief advantage of this approach to semantic
description is that it is easy to determine whether a language
implementation passes a test suite. The user can simply
execute all the programmes in the test suite, and compare

106

Computer Graphics Software

the outputs to the desired outputs. However, when used by
itself, the test suite approach has major drawbacks as well.
For example, users want to run their own programmes,
which are not part of the test suite; indeed, a language
implementation that could only run the programmes in its
test suite would be largely useless. But a test suite does
not, by itself, describe how the language implementation
should behave on any programme not in the test suite;
determining that behavior requires some extrapolation on
the implementor’s part, and different implementors may
disagree. In addition, it is difficult to use a test suite to test
behavior that is intended or allowed to be nondeterministic.
Therefore, in common practice, test suites are used only in
combination with one of the other language specification
techniques, such as a natural language description or a
reference implementation.

107

4

Software Components

A computer system consists of three major components:
hardware, software, and humans (users, programmers,
administrators, operators, etc.). Software can be further divided
into seven layers. Firmware can be categorized as part of hardware,
part of software, or both.

The seven layers of software are (top to bottom): Programs;
System Utilities; Command Shell; System Services; User Interface;
Logical Level; and Hardware Level. A Graphics Engine stradles
the bottom three layers.

Strictly speaking, only the bottom two levels are the operating
system, although even technical persons will often refer to any level
other than programs as part of the operating system (and Microsoft
tried to convince the Justice Department that their web browser
application is actually a part of their operating system). Because
this technical analysis concentrates on servers, Internet Facilities

are specifically separated out from the layers.

Computer Graphics Software

Command Shell

System Services

| User Interface
w0

= 2 Operatir;? System
38‘ Logical Level
o [Operating:

Examples

The following are examples of each category:

Programs: Examples of Programs include your word
processor, spreadsheet, graphics programs, music software,
games, etc.
System Ultilities: Examples of System Utilities include file
copy, hard drive repair, and similar items. On
the Macintosh, all the Desk Accessories (calculator, key
caps, etc.) and all of the Control Panels are examples of
System Ultilities.
Command Shell: The Command Shell on the Macintosh is
the Finder and was the first commercially available graphic
command shell. On Windows, the Command Shell is a
poorly integrated comination of the File Manager and the
Programme Manager. The command line (C:\ prompt)
of MS-DOS or Bourne Shell of UNIX are examples of the
older style text-based command shells.
System Services: Examples of System Services are built-in
data base query languages on mainframes or the
QuickTime media layer of the Macintosh.
User Interface: Until the Macintosh introduced Alan Kay’s
(inventer of the personal computer, graphic user interfaces,
object oriented programming, and software agents) ground
109

Computer Graphics Software

breaking ideas on human-computer interfaces, operating
systems didn’t include support for user interfaces (other
than simple text-based shells). The Macintosh user interface
is called the Macintosh ToolBox and provides the windows,
menus, alert boxes, dialog boxes, scroll bars, buttons,
controls, and other user interface elements shared by
almost all programs.

* Logical Level of Operating System: The Logical Level of the
operating system provides high level functions, such as
file management, internet and networking facilities, etc.

* Hardware Level of Operating System: The Hardware Level of
the operating system controls the use of physical system
resources, such as the memory manager, process manager,
disk drivers, etc.

* Graphics Engine: The Graphics Engine includes elements at
all three of the lowest levels, from physically displaying
things on the monitor to providing high level graphics
routines such as fonts and animated sprites.

Human users normally interact with the operating system
indirectly, through various programs (application and system) and
command shells (text, graphic, etc.), The operating system provides
programs with services thrrough system programs and Application
Programme Interfaces (APIs).

Software life cycle models

Waterfall model

The least flexible of the life cycle models. Still it is well suited
to projects which have a well defined architecture and established

user interface and performance requirements.

110

Computer Graphics Software

The waterfall model does work for certain problem domains,
notably those where the requirements are well understood in advance
and unlikely to change significantly over the course of development.

Software products are oriented towards customers like any
other engineering products. It is either driver by market or it drives
the market. Customer Satisfaction was the main aim in the 1980’s.
Customer Delight is today’s logo and Customer Ecstasy is the new
buzzword of the new millennium. Products which are not customer
oriented have no place in the market although they are designed
using the best technology. The front end of the product is as crucial
as the internal technology of the product.

A market study is necessary to identify a potential customer’s
need. This process is also called as market research. The already
existing need and the possible future needs that are combined
together for study.

A lot of assumptions are made during market study.
Assumptions are the very important factors in the development
or start of a product’s development. The assumptions which are
not realistic can cause a nosedive in the entire venture.

Although assumptions are conceptual, there should be a move
to develop tangible assumptions to move towards a successful
product.

Once the Market study is done, the customer’s need is given
to the Research and Development Department to develop a cost-
effective system that could potentially solve customer’s needs
better than the competitors.

Once the system is developed and tested in a hypothetical
environment, the development team takes control of it. The
development team adopts one of the software development models

to develop the proposed system and gives it to the customers.

111

Computer Graphics Software

Design
Implementation and|
Unit Testing _l

Integration and

System Testing

Fig. Waterfall Life Cycle Model.

Advantages

Simple and easy to use.

Easy to manage due to the rigidity of the model - each

phase has specific deliverables and a review process.
Phases are processed and completed one at a time.

Works well for smaller projects where requirements are

very well understood.

Disadvantages

Adjusting scope during the life cycle can kill a project

No working software is produced until late during the life
cycle.

High amounts of risk and uncertainty.

Poor model for complex and object-oriented projects.
Poor model for long and ongoing projects.

Poor model where requirements are at a moderate to high
risk of changing.

Extreme programming (XP)

Is the latest incarnation of Waterfall model and is the most

recent software fad. Most postulates of Extreme programming are

pure fantasy. It has been well known for a long time that big bang or

112

Computer Graphics Software

waterfall models don’t work well on projects with complex or
shifting requirements.

The same is true for XP. Too many shops implement XP as an
excuse for not understanding the user requirements. XP try
improve classic waterfall model by trying to start coding as early
as possible but without creating a full-fledged prototype as the
first stage. In this sense it can be considered to be variant of
evolutionary prototyping (see below). Often catch phase
“Emergent design” is used instead of evolutionary prototyping. It
also introduces a very questionable idea of pair programming as
an attempt to improve extremely poor communication between
developers typical for large projects. While communication in large
projects is really critical and attempts to improve it usually pay
well, “pair programming” is a questionable strategy.

There are two main problems here:

1. In a way it can be classified as a hidden attempt to create
one good programmer out of two mediocre. But in reality
it is creating one mediocre programmer from two or one
good. No senior developer is going to put up with some
jerk sitting on his lap asking questions about every line. It
just prevents the level of concentration needed for high
quality coding. Microsoft’s idea of having a tester for each

programmer is more realistic: one developer writes tests.

2. The actual code to be tested. This forces each of them to
communicate and because tester has different priorities
then developer such communication brings the developer
a new and different perspective on his code, which really
improves quality. This combination of different
perspectives is a really neat idea as you can see from the
stream of Microsoft Office products and operating systems.

113

Computer Graphics Software

Throwaway prototyping model

Typical implementation language is scripting language and
Unix shell (due to availability huge amount of components that

can be used for construction of the prototype).
Spiral model

The spiral model is a variant of “dialectical spiral” and as such
provides useful insights into the life cycle of the system. Can be
considered as a generalization of the proto-typing model.

That why it is usually implemented as a variant of prototyping
model with the first iteration being a prototype. The spiral model
is similar to the incremental model, with more emphases placed
on risk analysis.

The spiral model has four phases: Planning, Risk Analysis,
Engineering and Evaluation. A software project repeatedly passes
through these phases in iterations (called Spirals in this model).
The baseline spiral, starting in the planning phase, requirements
are gathered and risk is assessed.

Each subsequent spirals builds on the baseline spiral.
Requirements are gathered during the planning phase. In the risk
analysis phase, a process is undertaken to identify risk and alternate
solutions.

A prototype is produced at the end of the risk analysis phase.
Software is produced in the engineering phase, along with testing
at the end of the phase. The evaluation phase allows the customer
to evaluate the output of the project to date before the project
continues to the next spiral. In the spiral model, the angular
component represents progress, and the radius of the spiral
represents cost.

114

Computer Graphics Software

Planning Risk Analysis

equirerfients
Gathering

Evaluation Testin

Evaluation Engineering

Fig. Spiral Life Cycle Model.
Advantages

* High amount of risk analysis
* Good for large and mission-critical projects.

* Software is produced early in the software life cycle.
Disadvantages

* Can be a costly model to use.

* Risk analysis requires highly specific expertise.

* Project’s success is highly dependent on the risk analysis

phase.

* Doesn’t work well for smaller projects.
Evolutionary prototyping model

This is kind of mix of Waterfall model and prototyping.
Presuppose gradual refinement of the prototype until a usable

115

Computer Graphics Software

product emerge. Might be suitable in projects where the main
problem is user interface requirements, but internal architecture
is relatively well established and static. Can help to cope with
organizational sclerosis. One variant involves so called “binary”
software implementation model using a scripting language plus
statically typed language.

In this case system first is coded in a scripting language and
then gradually critical components are rewritten in the lower

language.
OSS development model

It is the latest variant of evolutionary prototype model. The
“waterfall model” was probably the first published model and as
a specific model for military it was not as naive as some proponents
of other models suggest.

The model was developed to help cope with the increasing
complexity of aerospace products. The waterfall model followed
a documentation driven paradigm.

Prototyping model was probably the first realistic of early
models because many aspects of the systdm are unclear until a
working prototype is developed.

A better model, the “spiral model” was suggested by Boehm
in 1985. The spiral model is a variant of “dialectical spiral” and as
such provides useful insights into the life cycle of the system.

But it also presuppose unlimited resources for the project. No
organization can perform more then a couple iterations during the
initial development of the system. the first iteration is usually called
prototype.

Prototype based development requires more talented managers
and good planning while waterfall model works (or does not work)

116

Computer Graphics Software

with bad or stupid managers works just fine as the success in this
model is more determined by the nature of the task in hand then
any organizational circumstances.

Like always humans are flexible and programmer in waterfall
model can use guerilla methods of enforcing a sound architecture
as manager is actually a hostage of the model and cannot afford
to look back and re-implement anything substantial.

Because the life cycle steps are described in very general terms,
the models are adaptable and their implementation details will
vary among different organizations.

The spiral model is the most general. Most life cycle models
can in fact be derived as special instances of the spiral model.
Organizations may mix and match different life cycle models to
develop a model more tailored to their products and capabilities.

There is nothing wrong about using waterfall model for some
components of the complex project that are relatively well
understood and straightforward. But mixing and matching

definitely needs a certain level of software management talent.

V-Shaped Model

Just like the waterfall model, the V-Shaped life cycle is a
sequential path of execution of processes. Each phase must be
completed before the next phase begins. Testing is emphasized in
this model more so than the waterfall model though.

The testing procedures are developed early in the life cycle before
any coding is done, during each of the phases preceding
implementation. Requirements begin the life cycle model just like the
waterfall model. Before development is started, a system test plan is
created. The test plan focuses on meeting the functionality specified
in the requirements gathering. The high-level design phase focuses

117

Computer Graphics Software

on system architecture and design. An integration test plan is created
in this phase as well in order to test the pieces of the software systems
ability to work together. The low-level design phase is where the actual
software components are designed, and unit tests are created in this
phase as well. The implementation phase is, again, where all coding
takes place. Once coding is complete, the path of execution continues
up the right side of the V where the test plans developed earlier are

now put to use.

Requirement [System Test System
d o Planning Testing
High Level Integration Integration
Design [Test Planning Testing

Low L_evel | | Unit T(_ast L Lnit Testing
Design Planning

3

Implementatio

Advantages

* Simple and easy to use.
* Each phase has specific deliverables.

* Higher chance of success over the waterfall model due to
the development of test plans early on during the life cycle.

* Works well for small projects where requirements are easily

understood.

Disadvantages

* Very rigid, like the waterfall model.
* Little flexibility and adjusting scope is difficult and

expensive.

* Software is developed during the implementation phase,
so no early prototypes of the software are produced.

118

Computer Graphics Software

* Model doesn’t provide a clear path for problems found

during testing phases.
Incremental Model

The incremental model is an intuitive approach to the waterfall
model. Multiple development cycles take place here, making the
life cycle a “multi-waterfall” cycle. Cycles are divided up into
smaller, more easily managed iterations.

Each iteration passes through the requirements, design,
implementation and testing phases. A working version of software
is produced during the first iteration, so you have working software
early on during the software life cycle. Subsequent iterations build

on the initial software produced during the first iteration.

Requirements—*

2

Design %
Implementation
andUnit %
Testing Integration
and System——3
Testing
Operation

Fig. Incremental Life Cycle Model.

Advantages

* Generates working software quickly and early during the

software life cycle.
* More flexible: Less costly to change scope and requirements.
* Easier to test and debug during a smaller iteration.

* Easier to manage risk because risky pieces are identified
and handled during its iteration.

* Each iteration is an easily managed milestone.

119

Computer Graphics Software

Disadvantages

* Each phase of an iteration is rigid and do not overlap each
other.

* Problems may arise pertaining to system architecture
because not all requirements are gathered up front for the

entire software life cycle.

Software Development in
Life Cycle Models

The Systems Development Life Cycle (SDLC) is a conceptual
model used in project management that describes the stages
involved in an information system development project from an
initial feasibility study through maintenance of the
completed application. Various SDLC methodologies have been
developed to guide the processes involved including the
waterfall model (the original SDLC method), rapid application
development (RAD), joint application development (JAD), the
fountain model and the spiral model. Mostly, several models
are combined into some sort of hybrid methodology.
Documentation is crucial regardless of the type of model chosen
or devised for any application, and is usually done in parallel

with the development process.

Feasibility

[| Analysis

Design

Maintain

Fig. Briefly on different Phases.

120

Computer Graphics Software

Some methods work better for specific types of projects, but
in the final analysis, the most important factor for the success of a
project may be how closely particular plan was followed. The
image above is the classic Waterfall model methodology, which is
the first SDLC method and it describes the various phases involved

in development.
Feasibility

The feasibility study is used to determine if the project should
get the go-ahead. If the project is to proceed, the feasibility study
will produce a project plan and budget estimates for the future

stages of development.
Requirement Analysis and Design

Analysis gathers the requirements for the system. This stage
includes a detailed study of the business needs of the organization.
Options for changing the business process may be considered.
Design focuses on high level design like, what programs are needed
and how are they going to interact, low-level design (how the
individual programs are going to work), interface design (what are
the interfaces going to look like) and data design (what data will be
required). During these phases, the software’s overall structure is
defined. Analysis and Design are very crucial in the whole
development cycle. Any glitch in the design phase could be very
expensive to solve in the later stage of the software development.
Much care is taken during this phase. The logical system of the
product is developed in this phase.

Implementation

In this phase the designs are translated into code. Computer

programs are written using a conventional programming language

121

Computer Graphics Software

or an application generator. Progra-mming tools like Compilers,
Interpreters, Debuggers are used to generate the code. Different
high level programming languages like C, C++, Pascal, Java are
used for coding. With respect to the type of application, the right

programming language is chosen.
Testing

In this phase the system is tested. Normally programs are
written as a series of individual modules, these subject to separate
and detailed test. The system is then tested as a whole. The separate
modules are brought together and tested as a complete system.
The system is tested to ensure that interfaces between modules
work (integration testing), the system works on the intended
platform and with the expected volume of data (volume testing)
and that the system does what the user requires (acceptance/beta

testing).
Maintenance

Inevitably the system will need maintenance. Software will
definitely undergo change once it is delivered to the customer.
There are many reasons for the change. Change could happen
because of some unexpected input values into the system. In
addition, the changes in the system could directly affect the
software operations. The software should be developed to
accommodate changes that could happen during the post

implementation period.

Description

Curtain Raiser

Like any other set of engineering products, software products
are also oriented towards the customer. It is either market driven

122

Computer Graphics Software

or it drives the market. Customer Satisfaction was the buzzword
of the 80’s. Customer Delight is today’s buzzword and Customer
Ecstasy is the buzzword of the new millennium.

Products that are not customer or user friendly have no place
in the market although they are engineered using the best
technology. The interface of the product is as crucial as the internal

technology of the product.
Market Research

A market study is made to identify a potential customer’s need.
This process is also known as market research. Here, the already
existing need and the possible and potential needs that are
available in a segment of the society are studied carefully. The
market study is done based on a lot of assumptions.

Assumptions are the crucial factors in the development or
inception of a product’s development. Unrealistic assumptions can
cause a nosedive in the entire venture.

Though assumptions are abstract, there should be a move to
develop tangible assumptions to come up with a successful

product.
Research and Development

Once the Market Research is carried out, the customer’s need
is given to the Research & Development division (R&D) to
conceptualize a cost-effective system that could potentially solve
the customer’s needs in a manner that is better than the one
adopted by the competitors at present. Once the conceptual system
is developed and tested in a hypothetical environment, the
development team takes control of it. The development
team adopts one of the software development methodologies that
is given below, develops the proposed system, and gives it to the

123

Computer Graphics Software

customer. The Sales & Marketing division starts selling the
software to the available customers and simultaneously works
to develop a niche segment that could potentially buy the software.
In addition, the division also passes the feedback from the
customers to the developers and the R&D division to make
possible value additions to the product.

While developing a software, the company outsources the non-
core activities to other companies who specialize in those activities.
This accelerates the software development process largely. Some
companies work on tie-ups to bring out a highly matured product

in a short period.
Software Development Models

The following are some basic popular models that are adopted

by many software development firms
* System Development Life Cycle (SDLC) Model
* Prototyping Model
* Rapid Application Development Model
* Component Assembly Model

System Development Life Cycle Model

A software life cycle model depicts the significant phases or
activities of a software project from conception until the product is
retired. It specifies the relationships between project phases, including
transition criteria, feedback mechanisms, milestones, baselines,
reviews, and deliverables. Typically, a life cycle model addresses the
phases of a software project: requirements phase, design phase,
implementation, integration, testing, operations and maintenance.
Much of the motivation behind utilizing a life cycle model is to provide
structure to avoid the problems of the “undisciplined hacker” or

124

Computer Graphics Software

corporate IT bureaucrat (which is probably ten times dangerous then
undisciplined hacker). As always, it's a matter of picking the right
tool for the job, rather than picking up your hammer and treating
everything as a nail.

System/Information Engineering and Modeling

As software is always of a large system (or business), work begins
by establishing the requirements for all system elements and then
allocating some subset of these requirements to software. This system
view is essential when the software must interface with other elements
such as hardware, people and other resources. System is the basic
and very critical requirement for the existence of software in any
entity. So if the system is not in place, the system should be
engineered and put in place. In some cases, to extract the maximum
output, the system should be re-engineered and spruced up. Once
the ideal system is engineered or tuned, the development team

studies the software requirement for the system.
Software Requirement Analysis

This process is also known as feasibility study. In this phase,
the development team visits the customer and studies their system.
They investigate the need for possible software automation in the
given system.

By the end of the feasibility study, the team furnishes a
document that holds the different specific recommendations for
the candidate system. It also includes the personnel assignments,
costs, project schedule, target dates etc.... The requirement
gathering process is intensified and focussed specially on software.

To understand the nature of the programme(s) to be built, the
system engineer or “Analyst” must understand the information

domain for the software, as well as required function, behaviour,

125

Computer Graphics Software

performance and interfacing. The essential purpose of this phase
is to find the need and to define the problem that needs to be

solved.
System Analysis and Design

In this phase, the software development process, the software’s
overall structure and its nuances are defined. In terms of the client/
server technology, the number of tiers needed for the package
architecture, the database design, the data structure design etc...
are all defined in this phase.

A software development model is thus created. Analysis and
Design are very crucial in the whole development cycle. Any glitch
in the design phase could be very expensive to solve in the later
stage of the software development. Much care is taken during this

phase. The logical system of the product is developed in this phase.
Code Generation

The design must be translated into a machine-readable form.
The code generation step performs this task. If the design is
performed in a detailed manner, code generation can be
accomplished without much complication. Progra-mming tools
like compilers, interpreters, debuggers etc... are used to generate
the code.

Different high level programming languages like C, C++,
Pascal, Java are used for coding. With respect to the type of
application, the right programming language is chosen.

Testing

Once the code is generated, the software programme testing
begins. Different testing methodologies are available to unravel
the bugs that were committed during the previous phases.

126

Computer Graphics Software

Different testing tools and methodologies are already available.
Some companies build their own testing tools that are tailor made

for their own development operations.
Maintenance

The software will definitely undergo change once it is delivered
to the customer. There can be many reasons for this change to occur.
Change could happen because of some unexpected input values
into the system. In addition, the changes in the system could
directly affect the software operations. The software should be
developed to accommodate changes that could happen during the

post implementation period.
Prototyping Model

This is a cyclic version of the linear model. In this model, once
the requirement analysis is done and the design for a prototype is
made, the development process gets started.

Once the prototype is created, it is given to the customer for
evaluation. The customer tests the package and gives his/her feed
back to the developer who refines the product according to the
customer’s exact expectation. After a finite number of iterations,
the final software package is given to the customer.

In this methodology, the software is evolved as a result
of periodic shuttling of information between the customer and
developer. This is the most popular development model in the
contemporary IT industry.

Most of the successful software products have been developed
using this model - as it is very difficult (even for a whiz kid!) to
comprehend all the requirements of a customer in one shot.

There are many variations of this model skewed with respect
to the project management styles of the companies. New versions

127

Computer Graphics Software

of a software product evolve as a result of prototyping. The goal
of prototyping based development is to counter the first two
limitations of the waterfall model discussed earlier. The basic idea
here is that instead of freezing the requirements before a design or
coding can proceed, a throwaway prototype is built to understand
the requirements. This prototype is developed based on the
currently known requirements. Development of the prototype
obviously undergoes design, coding and testing.

But each of these phases is not done very formally or
thoroughly. By using this prototype, the client can get an “actual
feel” of the system, since the interactions with prototype can enable
the client to better understand the requirements of the desired
system.

Prototyping is an attractive idea for complicated and large
systems for which there is no manual process or existing system
to help determining the requirements.

In such situations letting the client “plan” with the prototype
provides invaluable and intangible inputs which helps in
determining the requirements for the system. It is also an effective
method to demonstrate the feasibility of a certain approach.

This might be needed for novel systems where it is not clear
those constraints can be met or that algorithms can be developed
to implement the requirements. The process model of the
prototyping approach is shown in the figure below.

Star_t, Requirement Quick Building
Gathering Design Prototype
h
A
‘STOL Engineer |g Refining g Customer
Product Prototype Evaluation
Prototyping Model

Fig. Prototyping Model.

128

Computer Graphics Software

The basic reason for little common use of prototyping is the
cost involved in this built-it-twice approach. However, some argue
that prototyping need not be very costly and can actually reduce
the overall development cost. The prototype are usually not
complete systems and many of the details are not built in the
prototype. The goal is to provide a system with overall
functionality.

In addition, the cost of testing and writing detailed documents
are reduced. These factors helps to reduce the cost of developing
the prototype. On the other hand, the experience of developing
the prototype will very useful for developers when developing the
final system. This experience helps to reduce the cost of
development of the final system and results in a more reliable and

better designed system.
Advantages of Prototyping

Creating software using the prototype model also has its
benefits. One of the key advantages a prototype modeled software
has is the time frame of development. Instead of concentrating on
documentation, more effort is placed in creating the actual
software. This way, the actual software could be released in
advance.

The work on prototype models could also be spread to others
since there are practically no stages of work in thismodel. Everyone
has to work on the same thing and at the same time, reducing man
hours in creating a software. The work will even be faster and
efficient if developers will collaborate more regarding the status
of a specific function and develop the necessary adjustments in
time for the integration.

Another advantage of having a prototype modeled software
is that the software is created using lots of user feedbacks. In every

129

Computer Graphics Software

prototype created, users could give their honest opinion about the
software. If something is unfavorable, it can be changed. Slowly
the programme is created with the customer in mind.
* Users are actively involved in the development
* It provides a better system to users, as users have natural
tendency to change their mind in specifying requirements
and this method of developing systems supports this user
tendency.
* Since in this methodology a working model of the system
is provided, the users get a better understanding of the
system being developed.

* Errors can be detected much earlier as the system is mode

side by side.
* Quicker user feedback is available leading to better
solutions.
Disadvantages

Implementing the prototype model for creating software has
disadvantages. Since its being built out of concept, most of the
models presented in the early stage are not complete. Usually they
lack flaws that developers still need to work on them again and
again. Since the prototype changes from time to time, it's a
nightmare to create a document for this software. There are many
things that are removed, changed and added in a single update of the
prototype and documenting each of them has been proven difficult.

There is also a great temptation for most developers to create
a prototype and stick to it even though it has flaws. Since
prototypes are not yet complete software programs, there is always
a possibility of a designer flaw. When flawed software is

implemented, it could mean losses of important resources.

130

Computer Graphics Software

Lastly, integration could be very difficult for a prototype model.
This often happens when other programs are already stable. The
prototype software is released and integrated to the company’s
suite of software. But if there’s something wrong the prototype,
changes are required not only with the software. It’s also possible
that the stable software should be changed in order for them to be
integrated properly.

Prototype Models Types

There are four types of Prototype Models based on
their development planning: the Patch-Up Prototype,
Nonoperational Prototype, First-of-a-Series Prototype and Selected

Features Prototype.
Patch Up Prototype

This type of Prototype Model encourages cooperation of
different developers. Each developer will work on a specific part
of the programme. After everyone has done their part, the
programme will be integrated with each other resulting in a whole
new programme. Since everyone is working on a different field,
Patch Up Prototype is a fast development model.

If each developer is highly skilled, there is no need to overlap
in a specific function of work.

This type of software development model only needs a strong
project manager who can monitor the development of the
programme. The manager will control the work flow and ensure

there is no overlapping of functions among different developers.
Non-Operational Prototype

A non-operational prototype model is used when only a certain
part of the programme should be updated. Although it's not a fully

131

Computer Graphics Software

operational programme, the specific part of the programme will
work or could be tested as planned. The main software or
prototype is not affected at all as the dummy programme is applied
with the application.

Each developer who is assigned with different stages will have
to work with the dummy prototype. This prototype is usually
implemented when certain problems in a specific part of the
programme arises. Since the software could be in a prototype mode
for a very long time, changing and maintenance of specific parts is
very important. Slowly it has become a smart way of creating

software by introducing small functions of the software.
First of a Series Prototype

Known as a beta version, this Prototype Model could be very
efficient if properly launched. In all beta versions, the software is
launched and even introduced to the public for testing. It’s fully
functional software but the aim of being in beta version is to as for
feedbacks, suggestions or even practicing the firewall and security
of the software.

It could be very successful if the First of a Series Prototype is
properly done. But if the programme is half heartedly done, only
aiming for additional concept, it will be susceptible to different
hacks, ultimately backfiring and destroying the prototype.

Selected Features Prototype

This is another form of releasing software in beta version.
However, instead of giving the public the full version of the
software in beta, only selected features or limited access to some
important tools in the programme is introduced.

Selected Features Prototype is applied to software that are part
of a bigger suite of programs. Those released are independent of

132

Computer Graphics Software

the suite but the full version should integrate with other software.

This is usually done to test the independent feature of the software.

Rapid Application Development
(RAD) Model

The RAD modelis a linear sequential software development
process that emphasizes an extremely short development cycle. The
RAD model is a “high speed” adaptation of the linear sequential
model in which rapid development is achieved by using a component-
based construction approach. Used primarily for information systems

applications, the RAD approach encompasses the following phases:
Business Modeling

The information flow among business functions is modeled in
a way that answers the following questions:

* What information drives the business process?

* What information is generated?

* Who generates it?

* Where does the information go?

* Who processes it?
Data Modeling

The information flow defined as part of the business modeling
phase is refined into a set of data objects that are needed to support
the business. The characteristic (called attributes) of each object is
identified and the relationships between these objects are defined.

Process Modeling

The data objects defined in the data-modeling phase are
transformed to achieve the information flow necessary to
implement a business function. Processing the descriptions are
created for adding, modifying, deleting, or retrieving a data object.

133

Computer Graphics Software

Application Generation

The RAD model assumes the use of the RAD tools like VB,
VC++, Delphi etc... rather than creating software using
conventional third generation programming languages. The RAD
model works to reuse existing programme components (when
possible) or create reusable components (when necessary). In all
cases, automated tools are used to facilitate construction of the

software.
Testing and Turnover

Since the RAD process emphasizes reuse, many of the
programme components have already been tested. This minimizes

the testing and development time.
Component Assembly Model

Object technologies provide the technical framework for a
component-based process model for software engineering. The
object oriented paradigm emphasizes the creation of classes that
encapsulate both data and the algorithm that are used to
manipulate the data. If properly designed and implemented, object
oriented classes are reusable across different applicationsand
computer based system architectures. Component Assembly
Model leads to software reusability. The integration/assembly of
the already existing software components accelerate the
development process. Nowadays many component libraries are
available on the Internet. If the right components are chosen, the
integration aspect is made much simpler.

All these different software development models have their
own advantages and disadvantages. Nevertheless, in the

contemporary commercial software evelopment world, the fusion

134

Computer Graphics Software

of all these methodologies is incorporated. Timing is very crucial
in software development. If a delay happens in the development
phase, the market could be taken over by the competitor.

Also if a “bug’ filled product is launched in a short period of
time (quicker than the competitors), it may affect the reputation
of the company. So, there should be a tradeoff between the
development time and the quality of the product. Customers
don’t expect a bug free product but they expect a user-friendly
product.

Software Measurement
and Metrics

The measurement information model is a structure
linking information needs to the relevant entities and attri-butes
of concern. Entities include processes, products, projects, and
resources. The measurement information model describes how the
relevant attributes are quantified and converted to indicators that
provide a basis for decision-making.

The selection or definition of appropriate measures to address
an information need begins with a measurable concept: an idea of
which measurable attributes are related to an information need and
how they are related. The measurement planner defines measurement
constructs that link these attributes to a specifiedinformation
need. Each construct may involve several types or levels of
measures.

This measurement information model (see Figure) identifies
the basic terms and concepts with which the measurement analyst
must deal. The measurement modelhelps to determine what the
measurement planner needs to specify during measurement

planning, performance, and evaluation.

135

Computer Graphics Software

Entity

An entity is an object (for example, a process, product,
project, or resource) that is to be characterized by measuring
its attributes. Typical software engineering objects can be
classified as products (e.g., design document, source code, and
test case), processes (e.g., design process, testing process,
requirements analysis process), projects, and resources (e.g., the
programmers and the testers).

An entity may have one or more properties that are of interest
to meet the information needs. In practice, an entity can be

classified into more than one of the above categories.
Measurable attribute

An attribute is a property or characteristic of an entity that can
be distinguished quantitatively or qualitatively by human or
automated means. An entity may have many attributes, only some
of which may be of interest for measurement. The first step in
defining a specific instantiation of the measurement information
model is to select the attributes that are most relevant to the
measurement user’s information needs. A given attribute may be
incorporated in multiple measurement constructs supporting

different information needs.
Base measure

A base measure is an attribute and the method for quantifying
it. A base measure is functionally independent of other measures.
A base measure captures information about a single attribute. Data
collection involves assigning values to base measures. Specifying
the expected range and/or type of values of a base measure helps
to verify the quality of the data collected.

136

Computer Graphics Software

Measurement Method

A measurement method is a logical sequence of operations,
described generically, used in quantifying an attribute with respect
to a specified scale. The operations may involve activities such as
counting occurrences or observing the passage of time. The same
measurement method may be applied to multiple attributes.

However, each unique combination of an attribute and a
method produces a different base measure. Some measure-ment
methods may be implemented in multiple ways. A measurement
procedure describes the specific implemen-tation of a measurement

method within a given organizatio-nal context.
Type of Measurement Method

The type of measurement method depends on the nature of
the operations used to quantify an attribute. Two types of method
may be distinguished:

1. Subjective: Quantification involving human judgment

2. Objective: Quantification based on numerical rules such as

counting. These rules may be implemented via human or

automated means.
Scale

A scale is an ordered set of values, continuous or discrete, or a
set of categories to which the attribute is mapped. The
measurement method maps the magnitude of the measured
attribute to a value on a scale. A unit of measurement often is

associated with a scale.
Type of Scale

The type of scale depends on the nature of the relationship
between values on the scale.

137

Computer Graphics Software

Four types of scales are commonly defined:

1. Nominal: The measurement values are categorical. For
example, the classification of defects by their type.

2. Ordinal: The measurement values are rankings. For

example, the assignment of defects to a severity level.

3. Interval: The measurement values have equal distances
corresponding to equal quantities of the attribute. For
example, cyclomatic complexity has the minimum value
of one, but each increment represents an additional path.

4. Ratio: The measurement values have equal distances
corresponding to equal quantities of the attribute where
the value of zero corresponds to none of theattribute. For
example, the size of a software component in terms of LOC.

The method of measurement usually affects the type

of scale that can be used reliably with a given attribute.

For example, subjective methods of measurement usually only

support ordinal or nominal scales.
Unit of Measurement

A unit of measurement is a particular quantity, defined and
adopted by convention, with which other quantities of the same
kind are compared in order to express their magnitude relative to
that quantity. Only quantities expressed in the same units of
measurement are directly comparable. Example of units include

the hour and the meter.
Derived measure

A derived measure is a measure that is defined as a function
of two or more base measures. Derived measures capture

information about more than oneattribute. Simple transformations

138

Computer Graphics Software

of base measures (for example, taking the square root of a base
measure) do not add information, thus do not produce derived
measures.

Normalization of data often involves converting base
measures into derived measures that can be used to compare

different entities.
Measurement Function

A measurement function is an algorithm or calculation
performed to combine two or more base measures. The scale and
unit of the derived measure depend on the scales and units of
the base measures from which it is composed as well as how they

are combined by the function.
Indicator

An indicator is an estimate or evaluation of specified
attributes derived from a model with respect to
defined information needs.

Indicators are the basis for analysis and decision-making. These
are what should be presented to measurement users.

Measurement is always based on imperfect information, so
quantifying the wuncertainty, accuracy, or importance
of indicators is an essential component of presenting the
actual indicator value. Therefore, an interpretation of indicat-ors

is performed to provide the desired information product.
Measurement Model

A measurement model is an algorithm or calculation
combining one or more base and/or derived measures with
associated decision criteria. It is based on an understanding of, or
assumptions about, the expected relationship between the

139

Computer Graphics Software

component measures and/or their behaviour over time. Models
produce estimates or evaluations relevant to defined information
needs. The scale and measurement method affect the choice of

analysis techniques or models used to produceindicators.
Decision Criteria

Decision criteria are numerical thresholds or targets used to
determine the need for action or further investigation, or to describe
the level of confidence in a given result.

Decision criteria help to interpret the results of
measurement. Decision criteria may be calculated or based on a
conceptual understanding of expected behaviour. Decision
criteria may be derived from historical data, plans, and heuristics,
or computed as statistical control limits or statistical confidence

limits.
Measurable concept

A measurable conceptis an abstract relationship
between attributes of entities and information needs. For example,
an Information need may be the need to compare the software
development productivity of a project group against a target
rate.

The Measurable Concept in this case is “software development
productivity rate”. To evaluate the concept might require
measuring the size of the software products and the amount of
resource applied to create the products (depending on the chosen
model of productivity).

Additional examples of Measurable Concepts include quality,

risk, performance, capability, maturity, and customer value.

140

Computer Graphics Software

;Information 1
i Need Product |}
Interpretition

Meaurable Derived Derived
Concept Measure Measure

Measurement
Function

™~

Ease Measur% Base Measurel

Measurement |Measurement|
Method Method

3 1 H
Entity | Attribute | [Attribute | §

Measurement Information Model

Software Metrics

Effective management of any process requires quantification,
measurement, and modeling. Software metrics provide a
quantitative basis for the development and validation of models
of the software development process. Metrics can be used to
improve software productivity and quality. This module
introduces the most commonly used software metrics and reviews
their use in constructing models of the software development
process.

Although current metrics and models are certainly inadequate,
anumber of organizations are achieving promising results through
their use. Results should improve further as we gain additional
experience with various metrics and oftware metrics are numerical
data related to software development. Metrics strongly support

software project management activities.

141

Computer Graphics Software

They relate to the four functions of management as follows:

1. Planning: Metrics serve as a basis of cost estimating,
training planning, resource planning, scheduling, and
budgeting.

2. Organizing: Size and schedule metrics influence a project’s
organization.

3. Controlling: Metrics are used to status and track software
development activities for compliance to plans.

4. Improving: Metrics are used as a tool for process
improvement and to identify where improvement efforts
should be concentrated and measure the effects of process
improvement efforts.

A metric quantifies a characteristic of a process or product.
Metrics can be directly observable quantities or can be derived from
one or more directly observable quantities. Examples of raw metrics
include the number of source lines of code, number of
documentation pages, number of staff-hours, number of tests,
number of requirements, etc. Examples of derived metrics include
source lines of code per staff-hour, defects per thousand lines of
code, or a cost performance index.

The term indicator is used to denote a representation of metric
data that provides insight into an ongoing software development
project or process improvement activity. Indicators are metrics in
a form suitable for assessing project behaviour or process
improvement. For example, an indicator may be the behaviour of
a metric over time or the ratio of two metrics.

Indicators may include the comparison of actual values versus
the plan, project stability metrics, or quality metrics. Examples of
indicators used on a project include actual versus planned task
completions, actual versus planned staffing, number of trouble

142

Computer Graphics Software

reports written and resolved over time, and number of
requirements changes over time. Indicators are used in conjunction
with one another to provide a more complete picture of project or
organization behaviour. For example, a progress indicator is related
to requirements and size indicators. All three indicators should be

used and interpreted together.

143

S

Computer Graphics System

Let us consider the organization of a typical graphics system
we might use. As our initial emphasis will be on how the
applications programmer sees the system, we shall omit details of

the hardware.

- =
d—. }—Processot] %

s | L
Memory | N

Fig. The Graphic System

The model is general enough to include workstations, personal
computers, terminals attached to a central time-shared computer,
and sophisticated image-generation systems. In most ways, this

Computer Graphics Software

block diagram is that of a standard computer. How each element
is specialized for computer graphics will characterize this diagram
as one of a graphics system, rather than one of a general-purpose

computer.
The Processor

Within the processor box, two types of processing take place.
The first is picture formation processing. In this stage, the user
programme or commands are processed. The picture is formed
from the elements (lines, text) available in the system using the
desired attributes. Such as line colour and text font. The user
interface is a part of this processing. The picture can be specified
in a number of ways, such as through an interactive menu-
controlled painting programme or via a C programme using a
graphics library. The physical processor used in this stage is often
the processor in the workstation or host computer.

The second kind of processing is concerned with the display
of the picture. In a raster system, the specified primitives must be
scan converted. The screen must be refreshed to avoid flicker. Input
from the user might require objects to be repositioned on the
display. The kind of processor best suited for these jobs is not the
standard type of processor found in most computers. Instead,
special boards and chips are often used. As we have already noted,
one of the elements that distinguishes real-time graphics systems
is their use of display processors. Since we have agreed to stay at
the block-diagram level for now, however, we shall not explore
these architectures in any detail until later.

Memory

There are often two distinct types of memory employed in
graphics systems. For the processing of the user programme, the

145

Computer Graphics Software

memory is similar to that of a standard computer, as the picture is
formed by a standard type of arithmetic processing. Display
processing, however, requires high-speed display memory that can
be accessed by the display processor, and, in raster systems,
memory for the frame buffer.

This display memory usually is different in both its physical
characteristics and its organization from what is used by the picture
processor. At this point, we need not consider details of how
memory can be organized.

You should be aware that the way the internals of our processor
and memory boxes are organized distinguishes a slow system from
a real-time picture-generating system, such as a flight simulator.
However, from our present perspective, we shall emphasize that
all implementations have to do the same kinds of tasks to produce

output.
Output Devices

Our basic system has one or more output devices. As raster
displays are the dominant type, we shall assume there is a raster-
scan CRT on our system. We shall consider the frame buffer to be
part of the display memory. In a self-contained system such as a
workstation, the display is an integral part of the system, so the
transfer of information from the processor to the display will
happen rapidly.

When the display is separate, such as with a graphics
terminal, the speed of the connection is much slower. Terminals
with raster displays usually must have their own frame buffers,
so the displays can be refreshed locally. In our simple system,
we might also have other displays, such as a plotter, to allow us
to produce hardcopy.

146

Computer Graphics Software

Input Devices

A simple system may have only a keyboard to provide
whatever input is necessary. Keyboards provide digital codes
corresponding to sequences of keystrokes by a user. These
sequences are usually interpreted as codes for characters. If
individual keystrokes or groups of keystrokes are interpreted as
graphical input, the keyborad can be used as a complex input
device. For example, the “arrow” keys available on most keyboards
can be used to direct the movement of a cursor on the screen. Most
graphics systems will provide at least one other input device. The
most common are the mouse, the lightpen, the joystick, and the
data tablet. Each can provide positional information to the system
and each usually is equipped with one or more buttons to provide
signals to the processor. From the programmer’s perspective, there
are numerous important issues with regard to the input and output
devices. We must consider how the programme can communicate
with these devices. We must decide what kinds of input and output
can be produced. We will be interested in how to control multiple
devices, so that we can choose a particular device for our input,
and can direct our output to some group of the available output

devices.

Historical Background of
Computer Graphics

Today there are very few aspects of our lives not affected by
computers. Practically every cash or monetary transaction that
takes place daily involves a computer. In many cases, the same is
true of computer graphics. Whether you see them on television, in
newspapers, in weather reports or while at the doctor’s surgery,

computer images are all around you.

147

Computer Graphics Software

“A picture is worth a thousand words” is a well-known saying,
and highlights the advantages and benefits of the visual
presentation of our data. We are able to obtain a comprehensive
overall view of our data and also study features and areas of
particular interest.

A well-chosen graph is able to transform a complex table of
numbers into meaningful results. Such graphs are used to illustrate
papers, reports, and theses, as well as providing the basis for
presentation material in the form of slides and overhead
transparencies. A range of tools and facilities are available to enable
users to visualise their data, and this document provides a brief
summary and overview. Computer graphics are used in many
disciplines and subjects but for the purpose of this document, we

will split the topic of computer graphics into the following fields:
Charting

One of the prime uses for graphical software at the University
is to produce graphs and charts. Everyone has data of one kind or
another, whether on paper, in the computer, or just in the mind.
We often need to know the significance and properties of the data,
or to be able to compare different parts of it against other data sets.

One of the simplest aspects of data display is the production
of charts. This is where you would want to put your data into a
graphical form to show relationships and comparisons between
sets of values.

There may be a number of reasons why you would want to put your
data into a chart:

* To illustrate differences between different sets of data,

* To show trends between two variables,

* To show patterns of behaviour in one variable.

148

Computer Graphics Software

There are basically two broad areas of graphs:

* Presentation charts and graphs of the kind used to illustrate
a few principal points. We see these on news and current
affairs programmes on television. A bar chart or a pie chart
is used to indicate results of data obtained so far and the
general trends. They are often liberally decorated with
bright colours to increase their visual appeal and
attractiveness to the viewers and to hold their attention.
They are used for visual impact and getting a simple point
over clearly and effectively.

* Scientific charts and graphs are more concerned with
ensuring that the detail in the data is represented accurately
and faithfully. We may have some results obtained from
experimental measurements and wish to display them. We
may want to compare the results from the data
measurements with the results we would expect according
to a particular theoretical model. We may want to draw a
curve through the data points (i.e. interpolate the data) and
display this along with the original points.

The aims of the two are different, and so the facilities you will
want from your charting package will also be different.
Presentation charting has more to do with impressive presentation
graphics where the aim is to put a salient point across to an
audience. As a result the priority with this sort of charting is not
always accuracy of representation. You want charts with strong
colours, an impressive look and special effects. The effect of a
presentation can be enhanced by using 3D graphs, adding pictures
to the graph, or using pictograms. These sorts of charts are rarely
produced in isolation but as part of a general presentation.
Therefore, some presentation packages also have their own

149

Computer Graphics Software

charting module for this purpose. Word and PowerPoint use a
module called Microsoft Graph and Excel’s charting module has
some very powerful presentation graphics features. Origin and
Gsharp, both dedicated charting packages, also provide
professional presentation charting facilities on the PC systems.
Gsharp is also available on the UNIX systems.

In scientific charting you want to display data as accurately as
possible in order to analyse it graphically or demonstrate clearly
your comparisons and results. As this sort of charting is done
mainly for analysis, it is rarely an isolated activity but is often done
alongside detailed numerical analysis of your data. Two of the most
powerful charting packages available are Origin on the PC network
and Gsharp on the PC and UNIX systems. Also, many numerical
analysis packages have their own charting modules integrated with
the rest of the package. It is clear that your choice of charting
programme will depend very much on what purpose you want
the chart to fulfil, and also what other programmes you are already
using. On the whole, if you are already using a programme that
has its own charting module, use that. The table below gives some
rough guidelines on your choice of charting PC package, with the
packages increasing in facilities and complexity going down the table.

Requirement Choice

Simple bar, column, line or Microsoft Graph in Word,
pie charts to integrate in a Charting Module in Excel
word processor

Charts for use in Microsoft Graph in Word or
a presentation PowerPoint, Charting Module in Excel,
Origin

Raw data requiring good quality Origin, Gsharp

scientific charting

Data requiring simple Charting Module in Excel,
mathematical or statistical Origin, Gsharp

analysis

Complicated statistical analysis Graphics module in SPSS

and good quality scientific charts

150

Computer Graphics Software

Presentations

Presentation software is used to create material used in
presentations, such as OHP transparencies and 35mm slides. The
term is also commonly used when a presentation is given using
the output from a computer screen. The use of presentation
software is becoming of increasing importance as higher standards
become expected in courses and presentations. This will often
include making use of colour, graphics and the University logo.

Course materials produced using presentation packages can
be delivered in a number of ways. The simplest way is to print the
material on a laser printer and then use a photocopier to produce
overhead projector (OHP) acetates (first making sure that the
photocopier can accept acetates). You can also use the output
services produced by Information Systems Services and University
Media Services to produce colour output or output on 35mm slides.

Alternatively you can give a desktop presentation using OHP
projection tablets or projection systems to deliver a presentation
using the output from a computer system directly. The simplest
presentation software is a word processor. Word processing
packages such as Word, which can produce text in a variety of
sizes, can be used to create OHP transparencies.

Specialist presentation packages, such as PowerPoint, provide
a wider range of facilities than word processors and, in general,
are easier to use for the production of presentation materials.
PowerPoint is a presentation software programme that helps you
quickly and easily create professional quality presentations.

Presentations can be transferred onto paper, overheads or
35mm slides, or they can be shown on a video screen or
computer monitor. PowerPoint’s printing options include

formats ranging from audience handouts to speaker’s notes.

151

Computer Graphics Software

Graphics Pipeline Performance

Over the past few years, the hardware-accelerated rendering
pipeline has rapidly increased in complexity, bringing with it
increasingly intricate and potentially confusing performance
characteristics.

Improving performance used to mean simply reducing the
CPU cycles of the inner loops in your renderer; now it has become
a cycle of determining bottlenecks and systematically attacking
them.

This loop of identification and optimization is fundamental to
tuning a heterogeneous multiprocessor system; the driving idea
is that a pipeline, by definition, is only as fast as its slowest stage.
Thus, while premature and unfocused optimization in a single-
processor system can lead to only minimal performance gains,
in a multiprocessor system such optimization very often leads to
zero gains.

Working hard on graphics optimization and seeing zero
performance improvement is no fun. The goal of this chapter is to

keep you from doing exactly that.
The Pipeline

The pipeline, at the very highest level, can be broken into two
parts: the CPU and the GPU. Although CPU optimization is a
critical part of optimizing your application, it will not be the focus
of this chapter, because much of this optimization has little to do
with the graphics pipeline.

The GPU, there are a number of functional units operating in
parallel, which essentially act as separate special-purpose
processors, and a number of spots where a bottleneck can occur.
These include vertex and index fetching, vertex shading

152

Computer Graphics Software

(transform and lighting, or T&L), fragment shading, and raster
operations (ROP).

Methodology

Optimization without proper bottleneck identification is the
cause of much wasted development effort, and so we formalize
the process into the following fundamental identification and
optimization loop:

1. Identify the bottleneck. For each stage in the pipeline, vary
either its workload or its computational ability (that is,
clock speed). If performance varies, you've found a
bottleneck.

2. Optimize. Given the bottlenecked stage, reduce its
workload until performance stops improving or until you
achieve your desired level of performance.

3. Repeat. Do steps 1 and 2 again until the desired

performance level is reached.
Locating the Bottleneck

Locating the bottleneck is half the battle in optimization,
because it enables you to make intelligent decisions about focusing
your actual optimization efforts. A flow chart depicting the series
of steps required to locate the precise bottleneck in your
application. Note that we start at the back end of the pipeline, with
the frame-buffer operations (also called raster operations) and end
at the CPU. Note also that while any single primitive (usually a
triangle), by definition, has a single bottleneck, over the course of
a frame the bottleneck most likely changes. Thus, modifying the
workload on more than one stage in the pipeline often influences
performance. For example, a low-polygon skybox is often bound

153

Computer Graphics Software

by fragment shading or frame-buffer access; a skinned mesh that
maps to only a few pixels on screen is often bound by CPU or vertex
processing. For this reason, it frequently helps to vary workloads

on an object-by-object, or material-by-material, basis.

Vary Frame
Run App Buffer
Bandwidth
~F Texture
L Vary Texture " FP Yes)
Size/Filtering Varies % Bandwidh
Limited
No
L Vary o FPS Yes Fregment
Resolution Varies.? Limited
. No
T Vartex
L Vary Vertex ~FP Yes
Instructions Jaries 7 Trai;sizce)m
No
o AGP
L Vary Vertex - FPS Yes Transfer
Size/AGP Ratd Varies 7 imited
-

Fig. Bottleneck Flowchart

rame Buffel
Bandwidth
imited

For each pipeline stage, we also mention the GPU clock to
which it’s tied (that is, core or memory). This information is useful
in conjunction with tools such as PowerStrip (EnTech Taiwan 2003),
which allows you to reduce the relevant clock speed and observe

performance changes in your application.
Raster Operations

The very back end of the pipeline, raster operations (often
called the ROP), is responsible for reading and writing depth and
stencil, doing the depth and stencil comparisons, reading and
writing colour, and doing alpha blending and testing. As you can
see, much of the ROP workload taxes the available frame-buffer
bandwidth. The best way to test if your application is frame-buffer-
bandwidth bound is to vary the bit depths of the colour or the
depth buffers, or both. If reducing your bit depth from 32-bit to
16-bit significantly improves your performance, then you are
definitely frame-buffer-bandwidth bound.

154

Computer Graphics Software

Frame-buffer bandwidth is a function of GPU memory clock,
so modifying memory clocks is another technique for helping to
identify this bottleneck.

Texture Bandwidth

Texture bandwidth is consumed any time a texture fetch
request goes out to memory. Although modern GPUs have texture
caches designed to minimize extraneous memory requests, they
obviously still occur and consume a fair amount of memory
bandwidth.

Modifying texture formats can be trickier than modifying
frame-buffer formats as we did when inspecting the ROP; instead,
we recommend changing the effective texture size by using a large
amount of positive mipmap level-of-detail (LOD) bias. This makes
texture fetches access very coarse levels of the mipmap pyramid,
which effectively reduces the texture size. If this modification
causes performance to improve significantly, you are bound by
texture bandwidth.

Texture bandwidth is also a function of GPU memory clock.
Fragment Shading

Fragment shading refers to the actual cost of generating a
fragment, with associated colour and depth values. This is the cost
of running the “pixel shader” or “fragment shader.” Note that
fragment shading and frame-buffer bandwidth are often lumped
together under the heading fill rate, because both are a function of
screen resolution. However, they are two distinct stages in the
pipeline, and being able to tell the difference between the two is
critical to effective optimization.

Before the advent of highly programmable fragment-
processing GPUs, it was rare to be bound by fragment shading. It

155

Computer Graphics Software

was often frame-buffer bandwidth that caused the inevitable
correlation between screen resolution and performance. This
pendulum is now starting to swing towards fragment shading,
however, as the newfound flexibility enables developers to spend
oodles of cycles making fancy pixels.

The first step in determining if fragment shading is the
bottleneck is simply to change the resolution. Because we’ve
already ruled out frame-buffer bandwidth by trying different
frame-buffer bit depths, if adjusting resolution causes performance
to change, the culprit is most likely fragment shading. A
supplementary approach would be to modify the length of your
fragment programmes and see if this influences performance. But
be careful not to add instructions that can easily be optimized away
by a clever device driver.

Fragment-shading speed is a function of the GPU core clock.
Vertex Processing

The vertex transformation stage of the rendering pipeline is
responsible for taking an input set of vertex attributes (such as
model-space positions, vertex normals, texture coordinates, and
so on) and producing a set of attributes suitable for clipping and
rasterization (such as homogeneous clip-space position, vertex
lighting results, texture coordinates, and more). Naturally,
performance in this stage is a function of the work done per vertex,
along with the number of vertices being processed.

With programmable transformations, determining if vertex
processing is your bottleneck is a simple matter of changing the
length of your vertex programme. If performance changes, you
are vertex-processing bound.

If you're adding instructions, be careful to add ones that
actually do meaningful work; otherwise, the instructions may be

156

Computer Graphics Software

optimized away by the compiler or the driver. For example, no-
ops that refer to constant registers (such as adding a constant
register that has a value of zero) often cannot be optimized away
because the driver usually doesn’t know the value of a constant at
programme-compile time.

If you're using fixed-function transformations, it’s a little
trickier. Try modifying the load by changing vertex work such as
specular lighting or texture-coordinate generation state. Vertex

processing speed is a function of the GPU core clock.
Vertex and Index Transfer

Vertices and indices are fetched by the GPU as the first step in
the GPU part of the pipeline. The performance of vertex and index
fetching can vary depending on where the actual vertices and
indices are placed. They are usually either in system memory —
which means they will be transferred to the GPU over a bus such
as AGP or PCI Express—or in local frame-buffer memory. Often,
on PC platforms especially, this decision is left up to the device
driver instead of the application, although modern graphics APIs
allow applications to provide usage hints to help the driver choose
the correct memory type.

Determining if vertex or index fetching is a bottleneck in your
application entails modifying the vertex format size.

Vertex and index fetching performance is a function of the
AGP/PCI Express rate if the data is placed in system memory; it’s
a function of the memory clock if data is placed in local frame-
buffer memory.

If none of these tests influences your performance significantly,
you are primarily CPU bound. You may verify this fact by
underclocking your CPU: if performance varies proportionally, you
are CPU bound.

157

Computer Graphics Software

Optimization

Now that we have identified the bottleneck, we must optimize
that particular stage to improve application performance. The

following tips are categorized by offending stage.
Optimizing on the CPU

Many applications are CPU bound —sometimes for good
reason, such as complex physics or Al, and sometimes because of
poor batching or resource management. If you've found that your
application is CPU bound, try the following suggestions to reduce
CPU work in the rendering pipeline.

Reduce Resource Locking

Anytime you perform a synchronous operation that demands
access to a GPU resource, there is the potential to massively stall
the GPU pipeline, which costs both CPU and GPU cycles. CPU
cycles are wasted because the CPU must sit and spin in a loop,
waiting for the (very deep) GPU pipeline to idle and return the
requested resource. GPU cycles are then wasted as the pipeline
sits idle and has to refill.

This locking can occur anytime you

* Lock or read from a surface you were previously rendering

to

* Write to a surface the GPU is reading from, such as a
texture or a vertex buffer.
In general, you should avoid accessing a resource the GPU is

using during rendering.
Maximize Batch Size

We can also call this tip “Minimize the Number of Batches.” A
batch is a group of primitives rendered with a single API rendering

158

Computer Graphics Software

call (for example, DrawIndexedPrimitive in DirectX 9). The size of
a batch is the number of primitives it contains.

As a wise man once said, “Batch, Batch, Batch!”. Every API
function call to draw geometry has an associated CPU cost, so
maximizing the number of triangles submitted with every draw
call will minimize the CPU work done for a given number of
triangles rendered.

Some tips to maximize the size of your batches:

* If using triangle strips, use degenerate triangles to stitch
together disjoint strips. This will enable you to send
multiple strips, provided that they share material, in a
single draw call.

* Use texture pages. Batches are frequently broken when
different objects use different textures. By arranging many
textures into a single 2D texture and setting your texture
coordinates appropriately, you can send geometry that uses
multiple textures in a single draw call. Note that this
technique can have issues with mipmapping and
antialiasing. One technique that sidesteps many of these
issues is to pack individual 2D textures into each face of a

cube map.

* Use GPU shader branching to increase batch size. Modern
GPUs have flexible vertex- and fragment-processing
pipelines that allow for branching inside the shader. For
example, if two batches are separate because one requires
a four-bone skinning vertex shader and the other requires
a two-bone skinning vertex shader, you could instead
write a vertex shader that loops over the number of bones
required, accumulating blending weights, and then breaks
out of the loop when the weights sum to one. This way,

159

Computer Graphics Software

the two batches could be combined into one. On
architectures that don’t support shader branching, similar
functionality can be implemented, at the cost of shader
cycles, by using a four-bone vertex shader on everything
and simply zeroing out the bone weights on vertices that
have fewer than four bone influences.

* Use the vertex shader constant memory as a lookup table
of matrices. Often batches get broken when many small
objects share all material properties but differ only in matrix
state (for example, a forest of similar trees, or a particle
system). In these cases, you can load n of the differing
matrices into the vertex shader constant memory and store
indices into the constant memory in the vertex format for
each object. Then you would use this index to look up into
the constant memory in the vertex shader and use the correct
transformation matrix, thus rendering n objects at once.

* Defer decisions as far down in the pipeline as possible. It’s
faster to use the alpha channel of your texture as a gloss factor,
rather than break the batch to set a pixel shader constant for
glossiness. Similarly, putting shading data in your textures

and vertices can allow for larger batch submissions.
Reducing the Cost of Vertex Transfer

Vertex transfer is rarely the bottleneck in an application, but
it's certainly not impossible for it to happen.
If the transfer of vertices or, less likely, indices is the bottleneck in
your application, try the following:
* Use the fewest possible bytes in your vertex format. Don’t
use floats for everything if bytes would suffice (for colours,
for example).

160

Computer Graphics Software

* Generate potentially derivable vertex attributes inside the
vertex programme instead of storing them inside the input
vertex format. For example, there’s often no need to store
a tangent, binormal, and normal: given any two, the third
can be derived using a simple cross product in the vertex
programme. This technique trades vertex-processing speed
for vertex transfer rate.

* Use 16-bit indices instead of 32-bit indices. 16-bit indices
are cheaper to fetch, are cheaper to move around, and take
less memory.

* Access vertex data in a relatively sequential manner.
Modern GPUs cache memory accesses when fetching
vertices. As in any memory hierarchy, spatial locality of
reference helps maximize hits in the cache, thus reducing

bandwidth requirements.
Optimizing Vertex Processing

Vertex processing is rarely the bottleneck on modern GPUs,
but it may occur, depending on your usage patterns and target
hardware. Try these suggestions if you’re finding that vertex processing
is the bottleneck in your application:

* Optimize for the post-T&L vertex cache. Modern GPUs
have a small first-in, first-out (FIFO) cache that stores the
result of the most recently transformed vertices; a hit in
this cache saves all transform and lighting work, along with
all work done earlier in the pipeline. To take advantage of
this cache, you must use indexed primitives, and you must
order your vertices to maximize locality of reference over
the mesh. There are tools available —including D3DX and
NVTriStrip (NVIDIA 2003) —that can help you with this

task.
161

Computer Graphics Software

* Reduce the number of vertices processed. This is rarely
the fundamental issue, but using a simple level-of-detail
scheme, such as a set of static LODs, certainly helps reduce
vertex-processing load.

* Use vertex-processing LOD. Along with using LODs for
the number of vertices processed, try LODing the vertex
computations themselves. For example, it is likely
unnecessary to do full four-bone skinning on distant
characters, and you can probably get away with cheaper
approximations for the lighting. If your material is
multipassed, reducing the number of passes for lower
LODs in the distance will also reduce vertex-processing

cost.

* Pull out per-object computations onto the CPU. Often, a
calculation that changes once per object or per frame is
done in the vertex shader for convenience. For example,
transforming a directional light vector to eye space is
sometimes done in the vertex shader, although the result
of the computation changes only once per frame.

* Use the correct coordinate space. Frequently, choice of
coordinate space affects the number of instructions
required to compute a value in the vertex programme. For
example, when doing vertex lighting, if your vertex
normals are stored in object space and the light vector is
stored in eye space, then you will have to transform one
of the two vectors in the vertex shader. If the light vector
was instead transformed into object space once per object
on the CPU, no per-vertex transformation would be

necessary, saving GPU vertex instructions.

162

Computer Graphics Software

* Use vertex branching to “early-out” of computations. If you
are looping over a number of lights in the vertex shader and
doing normal, low-dynamic-range, [0..1] lighting, you can
check for saturation to 1—or if you're facing away from the
light—and then break out of further computations. A similar
optimization can occur with skinning, where you can break
when your weights sum to 1 (and therefore all subsequent
weights would be 0). Note that this depends on how the GPU
implements vertex branching, and it isn’t guaranteed to

improve performance on all architectures.
Speeding Up Fragment Shading

If you're using long and complex fragment shaders, it is often likely

that you're fragment-shading bound. If so, try these suggestions:

* Render depth first. Rendering a depth-only (no-colour)
pass before rendering your primary shading passes can
dramatically boost performance, especially in scenes with
high depth complexity, by reducing the amount of
fragment shading and frame-buffer memory access that
needs to be performed. To get the full benefits of a depth-
only pass, it’s not sufficient to just disable colour writes to
the frame buffer; you should also disable all shading on
fragments, even shading that affects depth as well as colour
(such as alpha test).

* Help early-z optimizations throw away fragment processing.
Modern GPUs have silicon designed to avoid shading
occluded fragments, but these optimizations rely on
knowledge of the scene up to the current point; they can be
improved dramatically by rendering in a roughly front-to-
back order. Also, laying down depth first in a separate pass

163

Computer Graphics Software

can help substantially speed up subsequent passes (where
all the expensive shading is done) by effectively reducing
their shaded-depth complexity to 1.

Store complex functions in textures. Textures can be
enormously useful as lookup tables, and their results are
filtered for free. The canonical example here is a
normalization cube map, which allows you to normalize
an arbitrary vector at high precision for the cost of a single
texture lookup.

Move per-fragment work to the vertex shader. Just as per-
object work in the vertex shader should be moved to the
CPU instead, per-vertex computations (along with
computations that can be correctly linearly interpolated in
screen space) should be moved to the vertex shader.
Common examples include computing vectors and

transforming vectors between coordinate systems.

Use the lowest precision necessary. APIs such as DirectX 9
allow you to specify precision hints in fragment shader
code for quantities or calculations that can work with
reduced precision. Many GPUs can take advantage of these
hints to reduce internal precision and improve
performance.

Avoid excessive normalization. A common mistake is to
get “normalization-happy”: normalizing every single vector
every step of the way when performing a calculation.
Recognize which transformations preserve length (such as
transformations by an orthonourmal basis) and which
computations do not depend on vector length (such as
cube-map lookups).

164

Computer Graphics Software

* Consider using fragment shader level of detail. Although
it offers less bang for the buck than vertex LOD (simply
because objects in the distance naturally LOD themselves
with respect to pixel processing, due to perspective),
reducing the complexity of the shaders in the distance, and
decreasing the number of passes over a surface, can lessen
the fragment-processing workload.

* Disable trilinear filtering where unnecessary. Trilinear
filtering, even when not consuming extra texture
bandwidth, costs extra cycles to compute in the fragment
shader on most modern GPU architectures. On textures
where mip-level transitions are not readily discernible, turn
trilinear filtering off to save fill rate.

* Use the simplest shader type possible. In both Direct3D
and OpenGL, there are a number of different ways to shade
fragments. For example, in Direct3D 9, you can specify
fragment shading using, in order of increasing complexity
and power, texture-stage states, pixel shaders version 1.x
(ps.1.1 - ps.1.4), pixel shaders version 2.x., or pixel shaders
version 3.0. In general, you should use the simplest shader
type that allows you to create the intended effect. The
simpler shader types offer a number of implicit
assumptions that often allow them to be compiled to faster
native pixel-processing code by the GPU driver. A nice side
effect is that these shaders would then work on a broader
range of hardware.

Reducing Texture Bandwidth
If you've found that you're memory-bandwidth bound, but mostly

when fetching from textures, consider these optimizations:

165

Computer Graphics Software

* Reduce the size of your textures. Consider your target
resolution and texture coordinates. Do your users ever get
to see your highest mip level? If not, consider scaling back
the size of your textures. This can be especially helpful if
overloaded frame-buffer memory has forced texturing to
occur from nonlocal memory (such as system memory,
over the AGP or PCI Express bus). The NVPerfHUD tool
(NVIDIA 2003) can help diagnose this problem, as it shows
the amount of memory allocated by the driver in various
heaps.

* Compress all colour textures. All textures that are used
just as decals or detail textures should be compressed,
using DXT1, DXT3, orDXT5, depending on the specific
texture’s alpha needs. This step will reduce memory usage,
reduce texture bandwidth requirements, and improve
texture cache efficiency.

* Avoid expensive texture formats if not necessary. Large
texture formats, such as 64-bit or 128-bit floating-point
formats, obviously cost much more bandwidth to fetch
from. Use these only as necessary.

* Always use mipmapping on any surface that may be
minified. In addition to improving quality by reducing
texture aliasing, mipmapping improves texture cache
utilization by localizing texture-memory access patterns for
minified textures. If you find that mipmapping on certain
surfaces makes them look blurry, avoid the temptation to
disable mipmapping or add a large negative LOD bias.
Prefer anisotropic filtering instead and adjust the level of
anisotropy per batch as appropriate.

166

Computer Graphics Software

Optimizing Frame-Buffer Bandwidth

The final stage in the pipeline, ROP, interfaces directly with
the frame-buffer memory and is the single largest consumer of
frame-buffer bandwidth. For this reason, if bandwidth is an issue
in your application, it can often be traced to the ROP.

Here’s how to optimize for frame-buffer bandwidth:

* Render depth first. This step reduces not only fragment-

shading cost, but also frame-buffer bandwidth cost.

* Reduce alpha blending. Note that alpha blending, with a
destination-blending factor set to anything other than 0,
requires both a read and a write to the frame buffer, thus
potentially consuming double the bandwidth. Reserve
alpha blending for only those situations that require it, and
be wary of high levels of alpha-blended depth complexity.

* Turn off depth writes when possible. Writing depth is an
additional consumer of bandwidth, and it should be
disabled in multipass rendering (where the final depth is
already in the depth buffer); when rendering alpha-
blended effects, such as particles; and when rendering
objects into shadow maps (in fact, for rendering into
colour-based shadow maps, you can turn off depth reads
as well).

* Avoid extraneous colour-buffer clears. If every pixel is
guaranteed to be overwritten in the frame buffer by your
application, then avoid clearing colour, because it costs
precious bandwidth. Note, however, that you should clear
the depth and stencil buffers whenever you can, because
many early-z optimizations rely on the deterministic contents
of a cleared depth buffer.

167

Computer Graphics Software

* Render roughly front to back. In addition to the fragment-
shading advantages mention, there are similar benefits for
frame-buffer bandwidth. Early-z hardware optimizations
can discard extraneous frame-buffer reads and writes. In
fact, even older hardware, which lacks these optimizations,
will benefit from this step, because more fragments will fail
the depth test, resulting in fewer colour and depth writes

to the frame buffer.

* Optimize skybox rendering. Skyboxes are often frame-
buffer-bandwidth bound, but you must decide how to
optimize them: (1) render them last, reading (but not
writing) depth, and allow the early-z optimizations along
with regular depth buffering to save bandwidth; or (2)
render the skybox first, and disable all depth reads and
writes. Which option will save you more bandwidth is a
function of the target hardware and how much of the
skybox is visible in the final frame. If a large portion of
the skybox is obscured, the first technique will likely be
better; otherwise, the second one may save more
bandwidth.

* Use floating-point frame buffers only when necessary.
These formats obviously consume much more bandwidth
than smaller, integer formats. The same applies for multiple
render targets.

* Use a 16-bit depth buffer when possible. Depth transactions
are a huge consumer of bandwidth, so using 16-bit instead
of 32-bit can be a giant win, and 16-bit is often enough for
small-scale, indoor scenes that don’t require stencil. A 16-
bit depth buffer is also often enough for render-to-texture
effects that require depth, such as dynamic cube maps.

168

Computer Graphics Software

* Use 16-bit colour when possible. This advice is especially
applicable to render-to-texture effects, because many of
these, such as dynamic cube maps and projected-colour
shadow maps, work just fine in 16-bit colour.

As power and programmability increase in modern GPUs, so
does the complexity of extracting every bit of performance out of
the machine. Whether your goal is to improve the performance of
a slow application or to look for areas where you can improve
image quality “for free,” a deep understanding of the inner
workings of the graphics pipeline is required. As the GPU pipeline
continues to evolve, the fundamental ideas of optimization will
still apply: first identify the bottleneck, by varying the load or the
computational power of each unit; then systematically attack those
bottlenecks, using your understanding of how each pipeline unit

behaves.

Drawing, Painting and Design

Drawing and painting software is available on most platforms
at the University. However, there are many differences between
software intended primarily for drawing and that intended for
painting. Drawing software will provide the user with a set of
‘entities” used to construct the drawing (an entity is a drawing
element such as a line, circle, or text string). Drawing entities can
range from simple lines, points and curves in 2D to their
equivalents in 3D and may include 3D surfaces. Advanced versions
of drawing packages used for design are referred to as Computer
Aided Design (CAD) systems. Painting software tends to work on
a conceptually lower layer. Whilst it may provide some entities
for constructing geometric shapes (these tend to be 2D geometric

169

Computer Graphics Software

shapes), a painting package will also provide control over

individual pixels in the image, i.e. it provides direct control over

the bitmap. It is worth remembering that opening any image in a

painting package causes it to become pixelated.

The following packages are available on the ISS NT Cluster Desktop:

Paint Very basic painting programme. Can create simple
pictures and edit bitmaps. Only possible to read in and
save files in a BMP format.

Picture Publisher Painting package used to edit and create
pictures. Can read in and save files in a number of different

formats.

Paint Shop Pro Recommended as the main painting
package on the desktop. Used to edit and create pictures.
Can read in and save files in a number of different formats.
CorelDraw Recommended as the main drawing package
on the desktop. Useful for editing vector graphics.Can read
in and save files in both vector and bitmap formats.
Micrografx Designer Drawing package used for technical

drawing.

The following drawing and painting software is available on the Suns:

Island Paint Painting programme that provides tools for
creating and editing images formed by monochrome and
colour bitmaps. Several painting tools can be used to create
geometric and freehand shapes. Scanned images and clip
art can also be imported.

Island Draw 2D drawing package.

Island Paint General purpose CAD system in use in
engineering, and allows 3D solid modelling as well as 2D/
3D draughting. An extension, AEC, for architectural and

construction applications, is also available.
170

Computer Graphics Software

Computer Aided Design and Drawing

CAD systems provide drawing entities with powerful
construction, editing and database techniques. CAD data can also
be output and read in by other applications software for analysing
the CAD model. For example, a CAD system could be used to
generate a 3D model which could then be read into a finite element
analysis package. A common requirement in engineering design
is to produce a drawing which is a schematic layout of components,
and which accurately reflects the relative sizes and relationships
of these parts. Engineering drawing and draughting is a specialist
area with its own set of procedures and practices which have
become de facto standards in the engineering industry. Manual
methods are now being replaced by computer-assisted methods,
and the software that is used to enable these drawings to be
produced embodies the functions and capabilities that are required.

CAD applications are very powerful tools that can be used by
a designer. The speed and ease with which a drawing can be
prepared and modified using a computer have a tremendous
advantage over hand-based drawing techniques. CAD-based
drawings can be created very easily using the drawing primitives
made available by the software (2D/3D lines, arcs, curves, 3D
surfaces, text etc.). The drawing can be shared by a number of
designers over a computer network who could all be specialists in
particular design areas and located at different sites. CAD also
allows drawings to be rapidly edited and modified, any number
of times.

Drawings can also be linked into databases that could hold
material specifications, material costs etc., thereby providing a
comprehensive surveillance from design through to

manufacturing. In engineering applications, CAD system

171

Computer Graphics Software

specifications can be passed through to numerically controlled
(NC) machines to manufacture parts directly.

For creating three-dimensional objects, most CAD systems will
provide 3D primitives (such as boundary representations of
spheres, cubes, surfaces of revolution and surface patches). They
may also provide a solid modelling facility through Constructive
Solid Geometry (CSG). Using CSG, basic 3D solids (usually cubes,
spheres, wedges, cones, cylinders and tori) more complex
composite solids can be created using three basic operations:
joining (union) solids, removing (subtraction) solids and finding
the common volume (intersection) of solids. With solid modelling,
mass properties of solids (e.g. moments of inertia, principal
moments etc.) can be quickly calculated.

There is virtually no limit to the kind of drawings and models
that can be prepared using a CAD system: if it can be created by
hand, a CAD system will allow it to be drawn and modelled. Some
of the applications where CAD is used are: architectural and
interior design, almost all engineering disciplines (e.g. electronic,
chemical, civil, mechanical, automotive and aerospace),
presentation drawings, topographic maps, musical scores, technical
illustration, company logos and line drawing for fine art.

Most CAD models can be enhanced for further understanding
and presentation by the use of advanced rendering animation
techniques (by adding material specifications, light sources and
camera motion paths to the model) to produce realistic images and
interactive motion through the model. AutoCad is the primary
general purpose CAD system in use in engineering, and allows
3D solid modelling as well as 2D/3D draughting. An extension,
AEC, for architectural and construction applications, is also
available.

172

Computer Graphics Software

Scientific Visualisation

Scientific Visualisation is concerned with exploring data and
information graphically - as a means of gaining insight into and
understanding the data. By displaying multi-dimensional data in
an easily-understandable form on a 2D screen, it enables insights
into 3D and higher dimensional data and data sets that were not
formerly possible. The difference between scientific visualisation
and presentation graphics is that the latter is primarily concerned
with the communication of information and results that are already
understood. In scientific visualisation we are seeking to understand
the data.

The recent upsurge of interest in scientific visualisation has
been brought about principally by the provision of powerful and
high-level tools coupled with the availability of powerful
workstations, excellent colour graphics, and access to
supercomputers if required. This symbiosis provides a powerful
and flexible environment for visualising all kinds and quantities
of data.

This was once regarded as the exclusive domain of expert
system and application programmers who could write the large
programmes required, incorporate the algorithms for the graphics,
get rid of the bugs in the resulting programme (a non-trivial and
time-consuming task), and then process the data. Most of this now
comes already available “off the shelf” - all the users have to do is
activate it and plug in their data sets.

Visualisation tools range from lower-level presentation
packages, through turnkey graphics packages and libraries, to
higher-level application builders. The former are used for simple
and modest requirements on small to medium sized data sets and

are often used on PCs. The second take larger and more complex

173

Computer Graphics Software

data sets and have a variety of facilities for analysis and
presentation of the data in two and three dimensions. The latter
enable users to specify their requirements in terms of their
application and ‘build” a customised system out of pre-defined
components supplied by the software. This can usually be done
visually on the screen and then the data can be read in, processed
and viewed. You can interact with it by changing parameters or

altering values.
Presentation Packages

Many spreadsheet packages for the PC have the facilities for
doing elementary 2D graphics, i.e. to take a table of X, Y data and
show it in visual form on X, Y axes. This enables us to see the overall
form of the data much more easily than looking at the table of
numbers.

It also enables us to identify any kinks or unusual features and
even missing or incorrect data. These facilities are also available
in PC graphics packages such as Origin - this is menu-driven and
allows users to read in data and select the options required without

any programming knowledge.
Turnkey Graphics Packages and Libraries

Turnkey graphics packages include the Uniras interactive
modules Unigraph, Unimap and Gsharp. Unigraph is used for
scientific graphing and charting in two and three dimensions.
Unimap is used for mapping, contouring and surface drawing.
Gsharp is used for both. All these programmes contain advanced
facilities for processing data and for the selection of curve and
surface requirements. No programming knowledge or experience
is required; the user interacts with the modules via menus on the

screen.

174

Computer Graphics Software

Application Builders

These are large systems which contain a wide variety of pre-
defined functions and facilities. Building an application consists
of visually selecting the iconised functions on the screen,
connecting them together by ‘pipes” and then activating the
network to read in the data and feed it through the interconnected
modules. Many state-of-the-art functions for graphics, imaging,
rendering, interfacing and displaying are contained in the system.
Users can extend the functions available by writing their own
modules and adding them to the system.

Examples of visualisation application builders are AVS/
Express and IRIS Explorer. AVS/Express is an advanced interactive
visualisation environment for scientists and engineers. AVS/
Express supports geometric, image and volume datasets. Modules
can be dynamically added, connected and deleted. Modules have
control panels for interactive control of input parameters in the
form of on-screen sliders, file browsers, dials and buttons. AVS/
Express has a wide range of data input, filter, mapper and renderer
modules. Examples of mappers include isosurfaces of a 3D field,
2D slices of a 3D data volume and 3D meshes from 2D elevation
datasets. Multiple visualisation techniques can be selected to suit
the problem being studied. User-written programmes or
subroutines in FORTRAN or C can be easily converted into AVS/
Express modules which can then be integrated into networks using
the network editor.

IRIS Explorer provides similar visualisation and analysis
functionality. With IRIS Explorer, users view data and create
applications by visually connecting software modules into flow
chart configurations called module maps. Modules, the building
blocks of IRIS Explorer, perform specific programme functions such

175

Computer Graphics Software

as data reading, data analysis, image processing, geometric and

volume rendering and many other tasks.
Desktop Mapping and GIS

Graphs which are maps, or have a cartographic component, are
a special case of a 2D graph which requires some special techniques.
Many people who are not geographers require this form of graph.
Mapping and GIS are two areas that benefit greatly from computer
processing of images. It has been estimated that 85% of all the
information used by private and public sector organisations contains
some sort of geographic element such as street addresses, cities,
states, postcodes or even telephone numbers with area codes. Any
of these geographic components can be used to help visualise and
summarise the data on a map display, enabling you to see patterns
and relationships in the data quickly and easily.

Maplnfo Professional is a comprehensive desktop mapping
tool, available on the PC network, that enables you to create maps,
create thematic maps, integrate tabular data onto maps, as well as
perform complex geographic analysis such as redistricting and
buffering, linking to your remote data, dragging and dropping map
objects into your applications, and much more. A GIS
(Geographical Information System) is a system for sorting,
manipulating, analysing and displaying information with a
significant spatial (map-related) content. ArcView and ArcInfo are
the two packages available in this category. ArcView is a leading
software package for GIS and mapping. It gives you the power to
visualise, explore, query and analyse data geographically. ArcView
also has three add-on packages - Spatial, Network and 3D Analyst
- for more complicated queries. ArcView is available on the NT
Cluster Desktop and on the Sun workstations. Arclnfo is an
advanced GIS that gives users of geographic data one of the best

176

Computer Graphics Software

geoprocessing systems available at present. It integrates the modern
principles of software engineering, database management and
cartographic theory. Users are advised that this is a very
comprehensive GIS package and requires familiarity with and
understanding of GIS concepts. Arclnfo is available on the Sun

workstations.
Subroutine Libraries for Graphics

Uniras and OpenGL are subroutine libraries which are
available at Leeds. The former is available on both the Sun and
the Silicon Graphics workstations whilst the latter is only available
on the Silicon Graphics workstations. Both libraries have at least
FORTRAN and C bindings. This means that users have to embed
their graphics requirements into their own application programmes
and write their own programme code to do this.

In contrast, the interactive modules of Uniras (e.g. Gsharp or
Unigraph) work entirely off data sets - you do not need to write a
programme. If you have a pre-existing applications programme
for which you require graphical output, it may be easier just to
produce a data file from the execution of this programme and then
read this data file into a software package.

It only becomes necessary to write your own programme (or
extend your existing programme to include calls to graphics library
routines) if you have to embed your graphics requirements to make
them an integral part of your application environment, or (in the
case of Uniras) you need the more advanced library functions

which are not available in the interactive modules.
Multimedia

There is joint provision for networked colour printing, graphics,
slides and video by Information Systems Services and the Print &
Copy Bureau.

177

Computer Graphics Software

On-line Services: Printers, Slide Makers and
Scanners

A4 monochrome (black and white) and colour postscript
printers are available on the network. Users can send electronic
picture and text information for direct output on to paper or OHP
foil. Additional printing facilities are provided by Media Services
where users can also discuss converting draft electronic

information into pre-designed images with design staff.
Computer-Based Video Production

Data can be displayed or animated in real-time on a high-
powered workstation. However, the audience is clearly limited to
those who can sit at the workstation. For research seminars,
conference presentations, and grant proposals it is often more
useful to be able to record the real-time image sequences on video
tape and present them to the audience via a video player or video
projector. To ensure such presentations are effective, they have to
be at a professional standard of presentation. All of us have become
unconsciously accustomed to a high quality of presentation from
watching programmes on television. Anything less than this
immediately looks inferior and can often reflect on the content of

what is being presented.

178

	Cover

	Title Page

	Copyright

	Contents
	Chapter 1 Introduction
	Chapter 2 Computer Graphics
	Chapter 3 Computer Software Generations
	Chapter 4 Software Components
	Chapter 5 Computer Graphics System

