Computer Graphics
In Java

COMPUTER
GRAPHICS IN JAVA

COMPUTER
GRAPHICS IN JAVA

Shannon Hale

B ' BIBLIOTEX

Digital Library

Computer Graphics in Java
by Shannon Hale

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any
manner without the prior written permission of the copyright owner, except
for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664068

B BIBLIOTEX

Digital Library

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5

Chapter 6

Chapter 7

Introduction to Computer Graphics in Java 1

Using the Graphics Package 38
Computer Graphics Software 58
Java Package 89
Distinction from Photorealistic

2D Graphics Design 118
Graphics Primitives 146
Computers and Java 162

1

Introduction to Computer Graphics
in Java

Although computer graphics is a vast field that encompasses
almost any graphical aspect, we are mainly interested in the
generation of images of 3-dimensional scenes. Computer imagery
has applications for film special effects, simulation and training,
games, medical imagery, flying logos, etc. Computer graphics relies
on an internal model of the scene, that is, a mathematical
representation suitable for graphical computations. The model
describes the 3D shapes, layout and materials of the scene.

This 3D representation then has to be projected to compute a 2D
image from a given viewpoint, this is the rendering step. Rendering
involves projecting the objects (perspective), handling visibility (which
parts of objects are hidden) and computing their appearance and
lighting interactions. Finally, for animated sequence, the motion of
objects has to be specified. We will not discuss animation in this

document.

Computer Graphics in Java

The Evolution of Computer Graphics

CGI was first used in movies in 1973, in the science fiction
film, Westworld. The film was the story of a society in which
humans and robots were integrated, working and living together.
Its sequel, Futureworld (1976) featured the first use of 3D
wireframe imagery. The third film ever to use this technology
was Star Wars (1977), designing the Death Star and the targeting
computers in the X-wings and the Millenium Falcon, Han Solo’s
ship. Later on, The Black Hole (1979) used raster wire-frame model
rendering to create a black hole onscreen. That same year, James
Cameron’s Alien used the raster wireframe model to render the
image of navigation monitors in the scene where the spaceship
follows a beacon for landing guidance.

Long before this, computer engineers at MIT and Cornell were
in the midst of creating the very basics that eventually enabled
these filmmakers to utilize computer animation technology. It all
began in 1963.

1960s

* 1963: Ivan Sutherland presented his Ph. D. dissertation, an
interactive design on a vector graphics display monitor
with a light pen input device called Sketchpad. This instance
is often credited as the event that marks the beginning of
computer graphics.

* Jack Bresenham develops a system of drawing lines and
circles on a raster device, and Steve Coons introduces
parametric surfaces and computer-aided geometric design
concepts.

* Arthur Appel at IBM introduces hidden surface and
shadow algorithms.

Computer Graphics in Java

The fast Fourier transform was discovered by]. W. Cooley
and John Tukey, allowing computer engineers to better
understand signals to develop antialiasing techniques.
Doug Englebart develops the mouse at Xerox PARC.
Evans & Sutherland Corps. and GE start building flight

simulators with raster graphics.

1970s

Rendering and a reflection model were discovered and
developed by H. Gouraud and Bui Tuong Phong at the
University of Utah.

Xerox PARC develops a “paint programme. ”

Edward Catmull introduces parametric patch rendering,
the z-buffer algorithm and texture mapping.

Turner Whitted develops recursive ray tracing that would
become the standard for photorealism.

Apple I and Apple II computers were the first commercially
successful options for personal computing.

Arcade games Pong and Pac Man become popular.

1980s

Microprocessors begin to take off but remain in early stages
of development.

Loren Carpenter begins exploring fractals in computer
graphics.

Adobe formed by John Warnock, who discovers Postscript.
Adobe markets Photoshop.

Steve Cook introduces stochastic sampling.

Character animation becomes a goal for animators.

Computer Graphics in Java

* Video arcade games take off.

e C++, C, and MS-DOS programming gain popularity.
1990s

* Shaded raster graphics appear in films.

* Computers have 24-bit raster display and hardware

support for Gouraud shading.

* Laser printers and single-frame video recorders become

standard.
* Mosaic, the first graphical internet browser is created.

* Dynamical systems that allowed programmers to animate

collisions, friction and cause and effects are introduced.

* Handheld computers are invented at Hewlett-Packard and

zip drives invented at Iomega.
* Nintendo 64 game console arrives on the market.
e Linux and open source software emerges.

* Pixar is first studio to fully embrace an entirely computer-

generated film with Toy Story.
2000s

* Graphic software reaches a peak in quality and user
accessibility.
* PC displays support real-time texture mapping.

* Flatbed scanners, laser printers, digital video cameras, etc.

, become commonplace.
* Programme language moves towards Java and C++.

* 3D modeling captures facial expressions, human face, hair,
water, and other elements formerly difficult to render.

Computer Graphics in Java

Displaying graphics on a component

Now that you have a Canvas (an area to display graphics on)
how do you actually display those graphics? With the paint()
method of the Frame class. The paint() method takes one attribute-
an instance of the Graphics class. The Graphics class contain
methods which are used for displaying graphics. The Graphics
class lets a component draw on itself.

Syntax:

public void paint(Graphics g){/ /methods for drawing graphics

here; }
Drawing Lines

To draw lines, the drawLine() method of the Graphics class is
used. This method takes four numeric attributes-the first two
indicating the x/y starting point of the line, the last two indicating
the x/y ending point of the line.

Example:

public void paint(Graphics g){//draw a line starting at point
10, 10 and ending at point 50, 50. g. drawLine(10, 10, 50, 50); }

Drawing Rectangles

To draw rectangles, the drawRect() method is used. This
method takes four numeric attributes-the first two indicating the
x/y starting point of the rectangle, the last two indicating the
width and height of the rectangle.

Example:

Public void paint(Graphics g){//draw a rectangle starting at
100, 100 width a width and height of 80 g. drawRect(100, 100, 80,
80); }.

Computer Graphics in Java

Filling a Rectangle

By default a rectangle will have no colour on the inside (it
will just look like a box). You can use the fillRect() method to
fill a rectangle. The fillRect() method has four numeric attributes
indicating the x/y starting position to begin filling and the
height and width. Set these values the same as you did for the
drawRect() method to properly fill the rectangle.

Example:

Public void paint(Graphics g){//draw a rectangle starting at
100, 100 width a width and height of 80 g. drawRect(100, 100, 80,
80); g. fillRect(100, 100, 80, 80); }.

Something’s Missing. . .

The rectangle is filled, but we didn’t set a colour for it! To do
this, we will use the setColor() method.

g. setColor(Colour. orange);
Drawing Ovals

To draw ovals, the drawOval() method is used. This method
takes four numeric attributes-the first two indicating the x/y starting
point of the oval, the last two indicating the width and height of the
oval. Fill an oval with the fillOval() method which also takes four
numeric attributes indicating the starting position to begin filling
and the height and width. Set these values the same as you did for
the drawOval() method to properly fill the oval.

Example:

public void paint(Graphics g){ g. setColor(Colour. gray);//
draw an oval starting at 20, 20 with a width and height of 100 and
fill it g. drawOval(20, 20, 100, 100); g. fillOval(20, 20, 100, 100); }

Computer Graphics in Java

Displaying Images

To display images, the Image class is used together with the
Toolkit class. Use these classes to get the image to display. Use the
drawImage() method to display the image.

Example:

public void paint(Graphics g){ Image imgl = Toolkit. get
Default Toolkit(). getlmage(“sky. jpg”);//four attributes: the
image, x/y position, an image observer g. drawlmage(imgl, 10,
10, this); }

An entire Java graphics programme:

import java. awt. ¥; class GraphicsProgram extends Canvas{
public GraphicsProgram(){ setSize(200, 200);
setBackground(Colour. white); } public static void main(String|]
argS){/ /GraphicsProgram class is now a type of canvas/ /since, it
extends the Canvas class/ /lets instantiate it GraphicsProgram GP
= new GraphicsProgram();/ /create a new frame to which we will
add a canvas Frame aFrame = new Frame(); aFrame. setSize(300,
300);/ /add the canvas aFrame. add(GP); aFrame. setVisible(true);
} public void paint(Graphics g){ g. setColor(Colour. blue); g.
drawLine(30, 30, 80, 80); g. drawRect(20, 150, 100, 100); g. fillRect(20,
150, 100, 100); g. fillOval(150, 20, 100, 100); Image img1 = Toolkit.
getDefaultToolkit(). getlmage(“sky. jpg”); g. drawlmage(img1, 140,
140, this); } }

What it will look like:

[alglx

Computer Graphics in Java

Overview of the Java 2D API Concepts

The Java 2D™ API provides two-dimensional graphics, text, and
imaging capabilities for Java™ programmes through extensions to
the Abstract Windowing Toolkit (AWT).

This comprehensive rendering package supports line art, text,
and images in a flexible, full-featured framework for developing
richer user interfaces, sophisticated drawing programmes, and
image editors. Java 2D objects exist on a plane called user coordinate
space, or just user space. When objects are rendered on a screen or a
printer, user space coordinates are transformed to device space
coordinates.

The following links are useful to start learning about the Java 2D
API:

* Graphics class.

* Graphics2D class.
The Java 2D API provides following capabilities:

* A uniform rendering model for display devices and

printers.

* A wide range of geometric primitives, such as curves,
rectangles, and ellipses, as well as a mechanism for
rendering virtually any geometric shape.

* Mechanisms for performing hit detection on shapes, text, and
images.

* A compositing model that provides control over how
overlapping objects are rendered.

* Enhanced colour support that facilitates color management.

* Support for printing complex documents.

* Control of the quality of the rendering through the use of
rendering hints.

Computer Graphics in Java

Introduction to Java2D

In Java 1. 2, the paintComponent method is supplied with a
Graphics2D object (a subclass of Graphics), which contains a much
richer set of drawing operations. It includes pen widths, dashed lines,
image and gradient colour fill patterns, the use of arbitrary local
fonts, a floating point coordinate system, and a number of coordinate
transformation operations. However, to maintain compatibility with
Swing as used in Java 1. 1, the declared type of the paintComponent
argument is Graphics, so you have to cast it to Graphics2D before
using it.

Javal.1
public void paint (Graphics g) {

// Set pen parameters
g. setColor (someColor);

g. setFont (someLimitedFont);

// Draw a shape

g. drawString(. . .);

g. drawLine(.)

g. drawRect (.); // outline

g. fillRect(.); // solid

g. drawPolygon(. . .); // outline
g. fillPolygon(. .); // solid
g. drawOval(. . .); // outline

g. filloval(. . .); // solid

- .

Java 1. 2

public void paintComponent (Graphics g) {
// Clear off-screen bitmap

super. paintComponent (g);

// Cast Graphics to Graphics2D
Graphics2D g2d = (Graphics2D)g;

// Set pen parameters

g2d. setPaint (fillColorOrPattern);
g2d. setStroke (penThicknessOrPattern);
g2d. setComposite (someAlphaComposite);
g2d. setFont (anyFont);

g2d. translate(. . .);

Computer Graphics in Java

g2d. rotate(. . .);

g2d. scale(. . .);

g2d. shear(. . .);

g2d. setTransform(someAffineTransform);
// Allocate a shape

SomeShape s = new SomeShape(. . .);
// Draw shape

g2d. draw(s); // outline

g2d. fill(s); // solid

}

Main New Features

* Colours and patterns: gradient fills, fill patterns from tiled

images, transparency.

e Local fonts.

* Pen thicknesses, dashing patterns, and segment connection

styles.

e (Coordinate transformations.

General Approach

* Cast the Graphics object to a Graphics2D object.

public void paintComponent (Graphics g) {.
super. paintComponent(g); // Typical Swing approach.
Graphics2D g2d = (Graphics2D)g;.
g2d. doSomeStuff(. . .);.

* Create a Shape object
Rectangle2D. Double rect =. . . ;
Ellipse2D. Double ellipse =. . . ;
Polygon poly =. . . ;

GeneralPath path =. . . ;
SomeShapeYouDefined shape =. . . ;// Satisfies Shape
interface.

* Optional: modify drawing parameters.

g2d. setPaint (fillColorOrPattern);
g2d. setStroke (penThicknessOrPattern);

10

Computer Graphics in Java

g2d. setComposite (someAlphaComposite);
g2d. setFont (someFont);

g2d. translate(. . .);

g2d. rotate(. . .);

g2d. scale(. . .);

g2d. shear(. . .);

g2d. setTransform(someAffineTransform);

* Draw an outlined or solid version of the Shape

g2d. draw (someShape);
g2d. f£fill (someShape);

Drawing Shapes in Java2D
Drawing Shapes: Overview

With the AWT, you generally drew a shape by calling the
drawXxx or fillXxx method of the Graphics object. In Java2D, you
generally create a Shape object, then call either the draw or fill
method of the Graphics2D object, supplying the Shape object as
an argument.

For example:

public void paintComponent (Graphics g) {

super. paintComponent (g);

Graphics2D g2d = (Graphics2D)g;

// Assume x, y, and diameter are instance variables
Ellipse2D. Double circle =

new Ellipse2D. double(x, y, diameter, diameter);
g2d. fill (circle);

}

You can still call the drawXxx methods if you like, however.
This is necessary for drawString and drawlmage, and possibly
convenient for draw3DRect. Several classes have similar versions
that store coordinates as either double precision numbers (Xxx.
Double) or single precision numbers (Xxx. Float). The idea is that
single precision coordinates might be slightly faster to manipulate

on some platforms.

11

Computer Graphics in Java

Shape Classes

Arguments to the Graphics2D draw and fill methods must
implement the Shape interface. You can create your own shapes,
of course, but following are the major built-in ones.

Except for Rectangle and Polygon, which are Java 1. 1

holdovers, these appear in the java. awt. geom package.
e Arc2D. Double, Arc2D. Float.
* Area (a shape built by adding/subtracting other shapes).
¢ CubicCurve2D. Double, CubicCurve2D. Float.
» Ellipse2D. Double, Ellipse2D. Float.
* GeneralPath (a series of connected shapes).
e Line2D. Double, Line2D. Float.
* DPolygon.
* QuadCurve2D. Double, QuadCurve2D. Float.
* Rectangle2D. Double, Rectangle?D. Float, Rectangle.
* RoundRectangle2D. Double, RoundRectangle2D. Float.

Drawing Shapes: Example Code
ShapeExample. java

import javax. swing. *;// For JPanel, etc.

import java. awt. *; // For Graphics, etc.

import java. awt. geom. *; // For Ellipse2D, etc.

/** An example of drawing/filling shapes with Java2D in
Java 1. 2.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class ShapeExample extends JPanel ({

private Ellipse2D. Double circle =

new Ellipse2D. Double (10, 10, 350, 350);

12

Computer Graphics in Java

private Rectangle2D. Double square =
new Rectangle2D. Double (10, 10, 350, 350);
public void paintComponent (Graphics g) {
clear(qg);
Graphics2D g2d = (Graphics2D)g;
g2d. £fill (circle);
g2d. draw(square);
}
// super. paintComponent clears offscreen pixmap,
// since, we’re using double buffering by default.
protected void clear (Graphics g) {
super. paintComponent (g);
}
protected Ellipse2D. Double getCircle() {
return (circle);
}
public static void main(String[] args) {
WindowUtilities. openInJFrame (new ShapeExample(), 380,
400);
}
}
WindowUtilities. java
import 3javax. swing. *;
import java. awt. *;
/** A few utilities that simplify testing of windows in
Swing.
* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/
public class WindowUtilities {
/** Tell system to use native look and feel, as in previous
* releases. Metal (Java) LAF is the default otherwise.
*/
public static void setNativeLookAndFeel () ({
try {
UIManager. setLookAndFeel (UIManager.
getSystemLookAndFeelClassName()) ;
} catch(Exception e) {
System. out. println(“Error setting native LAF: “ + e);
}
}
/** A simplified way to see a JPanel or other Container.
* Pops up a JFrame with specified Container as the content
pane.

*/

13

Computer Graphics in Java

public static JFrame openInJFrame (Container content,
int width,
int height,
String title,
Colour bgColor) {
JFrame frame = new JFrame (title);
frame. setBackground (bgColor);
content. setBackground (bgColor);
frame. setSize(width, height);
frame. setContentPane (content);
frame. addWindowListener (new ExitListener());
frame. setVisible (true);
return (frame) ;
}
/** Uses Colour. white as the background colour. */
public static JFrame openInJFrame (Container content,
int width,
int height,
String title) {
return (openIndFrame (content, width, height, title, Colour.
white));
}
/** Uses Colour. white as the background colour, and the
* name of the Container’s class as the JFrame title.
*/
public static JFrame openInJFrame (Container content,
int width,
int height) ({
return (openIndFrame (content, width, height,
content. getClass(). getName(),
Colour. white));
}
}
ExitListener. java
import java. awt. *;
import java. awt. event. *;
/** A listener that you attach to the top-level Frame or
JFrame of
* your application, so quitting the frame exits the
application.
* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/
public class ExitListener extends WindowAdapter {
public void windowClosing (WindowEvent event) {

14

Computer Graphics in Java

System. exit (0);
}
}

Drawing Shapes: Example Output

Paint Styles in Java2D

Paint Styles: Overview

When you fill a Shape, the current Paint attribute of the
Graphics2D object is used. This can be a Colour (solid colour), a
GradientPaint (gradient fill gradually combining two colours), a
TexturePaint (tiled image), or a new version of Paint that you write
yourself. Use setPaint and getPaint to change and retrieve the Paint
settings. Note that setPaint and getPaint supersede the setColor
and getColor methods that were used in Graphics.

Paint Classes

Arguments to the Graphics2D setPaint method (and return
values of getPaint) must implement the Paint interface.
Here are the major built-in Paint classes:
* Colour: Has the same constants (Colour. red, Colour. yellow,
etc.) as the AWT version, plus some extra constructors -

15

Computer Graphics in Java

* GradientPaint: Constructorstakes two points, two colours,
and optionally a boolean flag that indicates that the colour
pattern should cycle. The first colour is used at the first
point, the second colour at the second point, and points in
between are colored based on how close they are to each

of the points.

* TexturePaint: Constructor takes a Bufferedlmage and a
Rectangle?2D, maps the image to the rectangle, then tiles
the rectangle. Creating a Bufferedlmage from a GIF or
JPEG file is a pain. First load an Image normally, get its
size, create a BufferedImage that size with BufferedImage.
TYPE_INT_ARGB as the image type, get the
BufferedImage’s Graphics object via createGraphics, then
draw the Image into the BufferedImage using drawlmage.

An example of this process is shown later.
Transparency

Transparency is not set in the Paint object, rather separately

via an AlphaComposite object that is applied via setComposite.

Gradient Fills: Example Code

import java. awt. *;

/** An example of gradient fills with Java2D in Java 1.
2.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class GradientPaintExample extends ShapeExample {
// Red at (0, 0), yellow at (175, 175), changes gradually
between.

private GradientPaint gradient =

16

Computer Graphics in Java

new GradientPaint (0, 0, Colour. red, 175, 175, Colour.
yellow,

true);// true means to repeat pattern

public void paintComponent (Graphics g) ({

clear(qg);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle (g2d);

}

protected void drawGradientCircle (Graphics2D g2d) {

g2d. setPaint (gradient);

g2d. f£fill (getCircle());

g2d. setPaint (Colour. black);

g2d. draw(getCircle());

}

public static void main(String[] args) {
WindowUtilities. openInJFrame (new GradientPaintExample (),
380, 400);

}

}

Gradient Fills: Example Output

[&} GradientPaintExample =] 3

Tiled Images as Fill Patterns-Overview

To use tiled images, you create a TexturePaint object and specify
its use via the setPaint method of Graphics2D, just as with solid
colours and gradient fills. The TexturePaint constructor takes a

17

Computer Graphics in Java

BufferedImage and a Rectangle?D as arguments. The BufferedImage
specifies what to draw, and the Rectangle?D specifies where the tiling
starts. Creating a BufferedImage to hold custom drawing is relatively
straightforward: call the Bufferedlmage constructor with a width, a
height, and a type of BufferedImage. TYPE_INT_RGB, then call
createGraphics on that to get a Graphics2D with which to draw. It is
a bit harder to create one from an image file. First load an Image from
an image file, then use MediaTracker to be sure it is done loading,
then create an empty Bufferedlmage using the Image width and
height, then get the Graphics2D via createGraphics, then draw the
Image onto the BufferedImage. .

Note, however, that as of JDK1. 2beta4, tiled images fail when

used in conjunction with rotation transformations.
Tiled Images as Fill Patterns: Example Code

TiledImages. java
import javax. swing. ¥*;
import java. awt. *;
import java. awt. geom. *;
import java. awt. image. *;
/** An example of using TexturePaint to fill objects with
tiled
* images. Uses the getBufferedImage method of ImageUtilities
to
* load an Image from a file and turn that into a
BufferedImage.
*
* From tutorial on learning Java2D at
* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html
*
* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/
public class TiledImages extends JPanel ({
private String dir = System. getProperty(“user. dir”);
private String imageFilel = dir + “/images/marty. Jjpg”;
private TexturePaint imagePaintl;

18

Computer Graphics in Java

private Rectangle imageRect;
private String imageFile2 = dir + “/images/bluedrop. gif”;
private TexturePaint imagePaint2;
private int[] xPoints = { 30, 700, 400 };
private int[] yPoints = { 30, 30, 600 },;
private Polygon imageTriangle = new Polygon (xPoints,
yPoints, 3);
public TiledImages () {
BufferedImage image =
ImageUtilities. getBufferedImage (imageFilel, this);
imageRect =
new Rectangle (235, 70, image. getWidth(), image.
getHeight ());
imagePaintl =
new TexturePaint (image, imageRect);
image = ImageUtilities. getBufferedImage (imageFile2, this);
imagePaint2 =
new TexturePaint (image, new Rectangle(0, 0, 32, 32));
}
public void paintComponent (Graphics g) {
super. paintComponent (g);
Graphics2D g2d = (Graphics2D)g;
g2d. setPaint (imagePaint2);
g2d. f£fill (imageTriangle);
g2d. setPaint (Colour. blue);
g2d. setStroke(new BasicStroke(5));
g2d. draw(imageTriangle);
g2d. setPaint (imagePaintl);
g2d. f£fill (imageRect);
g2d. setPaint (Colour. black);
g2d. draw (imageRect);
}
public static void main(String[] args) {
WindowUtilities. openInJFrame (new TiledImages (), 750, 650);
}
}

ImageUtilities. Java

import java. awt. *;

import java. awt. image. *;

/** A class that simplifies a few common image operations,
in

* particular creating a BufferedImage from an image file,

19

Computer Graphics in Java

and

* using MediaTracker to wait until an image or several
images are

* done loading.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class ImageUtilities {

/** Create Image from a file, then turn that into a
BufferedImage.

*/

public static BufferedImage getBufferedImage(String
imageFile,

Component c) ({

Image image = c. getToolkit (). getImage (imageFile);
waitForImage (image, c);

BufferedImage bufferedImage =

new BufferedImage (image. getWidth(c), image. getHeight (c),
BufferedImage. TYPE_INT_RGB);

Graphics2D g2d = bufferedImage. createGraphics();

g2d. drawImage (image, 0, 0, c);

return (bufferedImage);

}

/** Take an Image associated with a file, and wait until
it 1is

* done loading. Just a simple application of MediaTracker.
* If you are loading multiple images, don’t use this

* consecutive times; instead use the version that takes
* an array of images.

*/

public static boolean waitForImage (Image image, Component

c) {

MediaTracker tracker = new MediaTracker(c);
tracker. addImage (image, O0);
try {

tracker. waitForAll();

} catch(InterruptedException ie) ({}

return(!tracker. isErrorAny());

}

/** Take some Images associated with files, and wait until
they

20

Computer Graphics in Java

* are done loading. Just a simple application of
MediaTracker.

*/

public static boolean waitForImages (Image[] images,
Component c) {

MediaTracker tracker = new MediaTracker(c);

for(int i=0; i<images. length; i++)

tracker. addImage (images[i], 0);

try {

tracker. waitForAll();

} catch(InterruptedException ie) ({}

return(!tracker. isErrorAny());

}
}

Transparency in Java2D
Transparency: Overview

Java2D permits you to assign transparency (alpha) values to
drawing operations so that the underlying graphics partially shows
through when you draw shapes or images. You set transparency
by creating an AlphaComposite object then passing it to the
setComposite method of the Graphics2D object. You create an
AlphaComposite by calling AlphaComposite. getlnstance with a
mixing rule designator and a transparency (or “alpha”) value.
There are 8 built-in mixing rules, but the one normally used for
drawing with transparency settings is AlphaComposite.
SRC_OVER. Alpha values range from 0. OF (completely
transparent) to 1. OF (completely opaque).

Transparency: Example Code

import 3javax. swing. ¥*;

import java. awt. *;

import java. awt. geom. *;

/** An illustration of the use of AlphaComposite to make
partially

* transparent drawings.
*

21

Computer Graphics in Java

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class TransparencyExample extends JPanel ({
private static int gap=10, width=60, offset=20,
deltaX=gap+width+offset;

private Rectangle

blueSquare = new Rectangle (gapt+offset, gaptoffset, width,
width),

redSquare = new Rectangle(gap, gap, width, width);
private AlphaComposite makeComposite (float alpha) {

int type = AlphaComposite. SRC_OVER;

return (AlphaComposite. getInstance(type, alpha));

}

private void drawSquares (Graphics2D g2d, float alpha) {
Composite originalComposite = g2d. getComposite();

g2d. setPaint (Colour. blue);

g2d. f£fill (blueSquare);

g2d. setComposite (makeComposite (alpha));

g2d. setPaint (Colour. red);

g2d. f£fill (redSquare);

g2d. setComposite (originalComposite);

}

public void paintComponent (Graphics g) {

super. paintComponent (g);

Graphics2D g2d = (Graphics2D)g;

for(int i=0; i<11l; i++) {

drawSquares (g2d, i*0. 1F);

g2d. translate(deltaX, 0);

}

}

public static void main(String[] args) {

String title = “Transparency example: alpha of the top
(red) ™ +

“square ranges from 0. 0 at the left to 1. 0 at “ +
“the right. Bottom (blue) square is opaque. ”;
WindowUtilities. openInJFrame (new TransparencyExample(),
ll1*deltaX + 2*gap, deltaX + 3*gap,

title, Colour. lightGray);

}

}

22

Computer Graphics in Java

Transparency: Example Output

B Tranaparency sxample: olpha of the 1op (1) 3quore raaqes iror 0.0 1 the Ieh 1o 1.0 at the right. Eonam (blus] squess it 0pagus.

Using Local Fonts in Java2D

Local Fonts: Overview

You can use the same logical font names as in Java 1. 1, namely
Serif (e. g. Times), SansSerif (e. g. Helvetica or Arial), Monospaced
(e. g. Courier), Dialog, and DialogInput. You can also use arbitrary
local fonts if you first look up the entire list, which may take a few
seconds.

Lookup the fonts via the getAvailableFontFamilyNames or
getAllFonts methods of GraphicsEnvironment. E. g. :

GraphicsEnvironment env =
GrapicsEnvironment. getLocalGraphicsEnvironment ();

Then

env. getAvailableFontFamilyNames () ;
or
env. getAllFonts(); // Much slower!

Despite a misleading description in the API, trying to use an
available local font in JDK 1. 2 without first looking up the fonts
as above gives the same result as asking for an unavailable font: a
default font instead of the actual one. Note that getAllFonts returns
an array of real Font objects that you can use like any other Font,
but is much slower. If all you need to do is tell Java to make all
local fonts available, always use getAvailableFontFamilyNames.
The best approach would be to loop down get Available Font
Family Names, checking for your name, having several backup
names to use if the first choice is not available. If you pass an
unavailable family name to the Font constructor, a default font
(SansSerif) will be used.

23

Computer Graphics in Java

Example 1—Printing Out All Local Font Names

import java. awt. *;

/** Lists the names of all available fonts with Java2D in
Java 1. 2.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class ListFonts {

public static void main(String[] args) {
GraphicsEnvironment env =

GraphicsEnvironment. getLocalGraphicsEnvironment () ;
String[] fontNames = env. getAvailableFontFamilyNames () ;
System. out. println(“Available Fonts:”);

for(int i=0; i<fontNames. length; i++)

System. out. println(“™ “ + fontNames[i]);

}

}

Example 2—Drawing with Local Fonts

Download the Source: FontExample. java (plus
GradientPaintExample. java, ShapeExample. java,
WindowUltilities. java, and ExitListener. java if you don’t have them

from the previous examples).

import java. awt. *;

/** An example of using local fonts with Java2D in Java
1. 2.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class FontExample extends GradientPaintExample {

public FontExample () {

GraphicsEnvironment env =

GraphicsEnvironment. getLocalGraphicsEnvironment ();

24

Computer Graphics in Java

env. getAvailableFontFamilyNames () ;

setFont (new Font (“Goudy Handtooled BT”, Font. PLAIN, 100));
}

protected void drawBigString(Graphics2D g2d) {

g2d. setPaint (Colour. black);

g2d. drawString(“Java 2D”, 25, 215);

}

public void paintComponent (Graphics g) {

clear(qg);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle (g2d);

drawBigString (g2d);

}

public static void main(String[] args) {
WindowUtilities. openInJFrame (new FontExample (), 380, 400);
}

}

Drawing with Local Fonts: Example Output

=4 FontExample M= E3

Stroke Styles in Java2D
Stroke Styles: Overview

In the AWT, the drawXxx methods of Graphics resulted in
solid, 1-pixel wide lines. Furthermore, drawing commands that
consisted of multiple line segments (e. g. , drawRect and
drawPolygon) had a predefined way of joining the line segments
together and terminating segments that do not join to others.
Java2D gives you much more flexibility. In addition to setting the

25

Computer Graphics in Java

pen colour or pattern (via setPaint, as discussed in the previous

section), Java2D permits you to set the pen thickness and dashing

pattern, and to specify the way line segments end and are joined

together. You do this by creating a BasicStroke object, then telling
the Graphics2D object to use it via the setStroke method.

Stroke Attributes

Arguments to setStroke must implement the Stroke interface,

and the BasicStroke class is the sole builtin class that implements
Stroke.
Here are the BasicStroke constructors:

BasicStroke(): Creates a BasicStroke with a pen width of 1.
0, the default cap style of CAP_SQUARE, and the default
join style of JOIN_MITER. See the following examples of
pen widths and cap/join styles. ® Basic Stroke(float
penWidth): Uses the specified pen width and the default
cap/join styles (CAP_SQUARE and JOIN_MITER).
BasicStroke(float penWidth, int capStyle, int joinStyle): Uses the
specified pen width, cap style, and join style. The cap style
can be one of CAP_SQUARE (make a square cap that
extends past the end point by half the pen width—this is
the default), CAP_BUTT (cut off segment exactly at end
point—use this one for dashed lines), or CAP_ROUND
(make a circular cap centered on the end point, with a
diameter of the pen width). The join style can be one of
JOIN_MITER (extend outside edges of lines until they
meet—this is the default), JOIN_BEVEL (connect outside
corners of outlines with straight line), or JOIN_ROUND
(round off corner with circle with diameter equal to the pen
width).

26

Computer Graphics in Java

* BasicStroke(float penWidth, int capStyle, int joinStyle, float
miterLimit): Same as above but you can limit how far up the
miter join can go (default is 10. 0). Stay away from this.

* BasicStroke(float penWidth, int capStyle, int joinStyle, float
miterLimit, float[] dashPattern, float dashOffset): Lets you make
dashed lines by specifying an array of opaque (entries at
even array indices) and transparent (odd indices) segments.
The offset, which is often 0. 0, specifies where to start in

the dashing pattern.
Stroke Thickness: Example Code

import java. awt. *;

/** An example of Stroke (pen) widths with Java2D in Java
1. 2.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class StrokeThicknessExample extends FontExample {
public void paintComponent (Graphics g) {

clear(qg);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle (g2d);

drawBigString (g2d);

drawThickCircleOutline (g2d);

}

protected void drawThickCircleOutline (Graphics2D g2d) ({
g2d. setPaint (Colour. blue);

g2d. setStroke(new BasicStroke(8));// 8-pixel wide pen
g2d. draw(getCircle());

}

public static void main(String[] args) {
WindowUtilities. openInJFrame (new StrokeThicknessExample (),
380, 400);

}

}

27

Computer Graphics in Java

Stroke Thickness: Example Output

QSlmkc'l'hu:l-;nce:‘.-:‘.-Ezumple

Dashed Lines: Example Code

Download the Source: DashedStrokeExample. java (plus
FontExample. java, GradientPaintExample. java, ShapeExample.
java, WindowUtilities. java, and ExitListener. java if you don’t have

them from the previous examples).

import java. awt. *;

/** An example of dashed lines with Java2D in Java 1. 2.
*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class DashedStrokeExample extends FontExample {
public void paintComponent (Graphics g) {

clear(qg);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle (g2d);

drawBigString (g2d);

drawDashedCircleOutline (g2d);

}

protected void drawDashedCircleOutline (Graphics2D g2d) {
g2d. setPaint (Colour. blue);

// 30 pixel line, 10 pixel gap, 10 pixel line, 10 pixel
gap

float[] dashPattern = { 30, 10, 10, 10 };

28

Computer Graphics in Java

g2d. setStroke(new BasicStroke (8, BasicStroke. CAP_BUTT,
BasicStroke. JOIN_MITER, 10,

dashPattern, 0));

g2d. draw(getCircle());

}

public static void main(String[] args) {

WindowUtilities. openInJFrame (new DashedStrokeExample(),
380, 400);

}
}

Dashed Lines: Example Output

B2 DashedStrokeExample M [=] E3

Line Cap and Join Styles: Example Code

Download the source: LineStyles. java (plus WindowUtilities.
java and ExitListener. java if you don’t have them from the

previous examples).
import 3javax. swing. ¥*;
import java. awt. *;
import java. awt. geom. *;
/** An example of line cap and join styles with Java2D in
Java 1. 2.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html
*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/
public class LineStyles extends JPanel {

29

Computer Graphics in Java

private GeneralPath path;

private static int x = 30, deltaX = 150, y = 300, deltayY
= 250,

thickness = 40;

private Circle pllLarge, plSmall, p2Large, p2Small, p3Large,
p3Small;

private int compositeType = AlphaComposite. SRC_OVER;
private AlphaComposite transparentComposite =
AlphaComposite. getInstance (compositeType, 0. 4F);
private int[] caps =

{ BasicStroke. CAP_SQUARE, BasicStroke. CAP_BUTT,
BasicStroke. CAP_ROUND };

private String[] capNames =

{ “CAP_SQUARE”, “CAP_BUTT”, “CAP_ROUND” };

private int[] joins =

{ BasicStroke. JOIN_MITER, BasicStroke. JOIN_ BEVEL,
BasicStroke. JOIN_ROUND };

private String[] joinNames =

{ “JOIN_MITER”, “JOIN_BEVEL”, “JOIN_ROUND” 1};
public LineStyles() {

path = new GeneralPath();

path. moveTo(x, y);

plLarge = new Circle(x, y, thickness/2);

plSmall = new Circle(x, y, 2);

path. lineTo(x + deltaX, y-deltaY);

p2Large = new Circle(x + deltaX, y-deltaY, thickness/2);
p2Small = new Circle(x + deltaX, y-deltayY, 2);
path. lineTo(x + 2*deltaX, y);

p3lLarge = new Circle(x + 2*deltaX, y, thickness/2);
p3Small = new Circle(x + 2*deltaX, y, 2);
setForeground (Colour. blue);

setFont (new Font (“SansSerif”, Font. BOLD, 20));

}

public void paintComponent (Graphics g) {

super. paintComponent (g);

Graphics2D g2d = (Graphics2D)g;

g2d. setColor(Colour. blue);

for (int i=0; i>caps. length; i++) {

BasicStroke stroke =

new BasicStroke (thickness, caps[i], Jjoins[i]);

g2d. setStroke (stroke);

g2d. draw(path);

labelEndPoints (g2d, capNames[i], JjoinNames[i]);
g2d. translate(3*x + 2*deltaX, O0);

}

30

Computer Graphics in Java

}

// Draw translucent circles to illustrate actual endpoints.
// Include text labels to shold cap/join style.
private void labelEndPoints (Graphics2D g2d,

String capLabel, String joinLabel) ({

Paint origPaint = g2d. getPaint();

Composite origComposite = g2d. getComposite();
g2d. setPaint (Colour. red);

g2d. setComposite (transparentComposite);

g2d. fill(plLarge);

g2d. fill (p2Large);

g2d. fill (p3Large);

g2d. setPaint (Colour. yellow);

g2d. setComposite (origComposite);

g2d. fill(plSmall);

g2d. fill (p2Small);

g2d. fill(p3Small);

g2d. setPaint (Colour. black);

g2d. drawString(capLabel, x + thickness-5, y + 5);
g2d. drawString(joinLabel, x + deltaX + thickness-5, y-
deltaY);

g2d. setPaint (origPaint);

}

public static void main(String[] args) {
WindowUtilities. openInJFrame (new LineStyles(),
9*x + 6*deltaX, y + 60);

}

}
class Circle extends Ellipse2D. Double {

public Circle (double centerX, double centerY, double radius)
{

super (centerX-radius, centerY-radius, 2. O*radius, 2.
O*radius);

}

}

Line Cap and Join Styles: Example Output

—)
Join Bevel in Round

Cap Butt

31

Computer Graphics in Java

Coordinate Transformations in Java2D

Java2D allows you to easily translate, rotate, scale, or shear
the coordinate system. This is very convenient: it is often much
easier to move the coordinate system than to calculate new
coordinates for each of your points. Besides, for some data
structures like ellipses and strings there is no other way to get
rotated or stretched versions. The meanings of translate, rotate,
and scale are clear: to move, to spin, or to stretch/shrink evenly
in the x and/or y direction. Shear means to stretch unevenly: an
x shear moves points to the right based on how far they are from
the y axis; a y shear moves points down based on how far they
are from the x axis.

The easiest way to picture what is happening is to imagine that
the person doing the drawing has a picture frame that he lays down
on top of a sheet of paper. The drawer always sits at the bottom of
the frame. To apply a translation, you move the frame (moving
the drawer with it), and do the drawing in the new location. You
then move the frame back to its original location, and what you
now see is the final result. Similarly, for a rotation, you spin the
frame (and the drawer), draw, then spin back to see the result.
Similarly for scaling and shears; modify the frame without touching
the underlying sheet of paper, draw, then reverse the process to
see the final result.

An outside observer watching this process would see the frame
move in the direction specified by the transformation, but see the
sheet of paper stay fixed. This is illustrated in the second column
in the diagram below. The dotted rectangle represents the frame,
while the gray rectangle represents the sheet of paper. On the other
hand, to the person doing the drawing it would appear that the
sheet of paper moved in the opposite way from that specified in

32

Computer Graphics in Java

the transformation, but that he didn’t move at all. This is illustrated
in the third column in the following diagram. The first column
illustrates the starting configuration, and the fourth illustrates the
final result. You can download the Java source code that generated
this figure: TransformExample. java generates the individual
illustrations (each cell in the table), and TransformTest. java put

them all together into a JTable inside a JFrame.

R pshes iy imsluingn. R 2: pussve taiabon. e wasibs Wamslabien aad rotolin [T
Before Transformation| Outsider's Perspective| Drawer's Perspective Final Result

Test Test
Test Test

H
i
Test I Test Test Test
LT
Test I Test
Test | Test

Fig. Visualising Transformations.

You can also perform more complex transformations (e. g. ,
creating a mirror image by flipping around a line) by directly
manipulating the underlying arrays that control the
transformations. This is a bit more complicated to envision than
the basic translation, rotation, scaling, and shear transformations.

The idea is that a new point (x,, y,) can be derived from an original
point (x;, y,) as follows:

[%] [myg my; mg, 1 [%, 1T [mpex; + my,y; + my,]
[Y2] = [m,, m, m, 11 Y1 1 =1 m; %X, + m,¥; + m,]
[1]1[001] T 1] T[[1]

Note that you can only supply six of the nine values in the
transformation array (the m , values). The bottom row is fixed at
[00 1] to guarantee that the transformations preserve
“straightness” and “parallelness” of lines. There are several ways
of supplying this array to the AffineTransform constructor. There

33

Computer Graphics in Java

are two basic ways to use transformations. You can create an
AffineTransform object, set its parameters, and then assign that
AffineTransform to the Graphics2D object via setTransform.
This is your only choice if you want to do the more complex
transformations permitted by setting explicit transformation
matrices. Alternatively, for the basic transformations you can call

translate, rotate, scale, and shear directly on the Graphics2D object.

Coordinate Translations and Rotations: Example
Code

Download the Source: RotationExample. Jjava (plusStroke
Thickness Example. 3java, Font Example. java,
GradientPaintExample. java, Shape Example. 3java, Window
Utilities. java, and ExitListener. java if you don’t have
them from the previous examples).

import java. awt. *;

/** An example of coordinate translations and

* rotations with Java2D in Java 1. 2.

*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class RotationExample extends StrokeThicknessExample
{

private Colour[] colours = { Colour. white, Colour. black
};

public void paintComponent (Graphics g) {

clear(qg);

Graphics2D g2d = (Graphics2D)g;

drawGradientCircle (g2d);

drawThickCircleOutline (g2d);

// Move the origin to the center of the circle.

g2d. translate(185. 0, 185. 0);

for (int i=0; i<16; i++) {

// Rotate the coordinate system around current

// origin, which is at the center of the circle.

g2d. rotate(Math. PI/8. 0);

34

Computer Graphics in Java

g2d. setPaint (colours[i%2]);

g2d. drawString(“Java”, 0, 0);

}

}

public static void main(String[] args) {
WindowUtilities. openInJFrame (new RotationExample (), 380,
400) ;

}

}

Coordinate Translations and Rotations: Example
Output

Shear Transformations

If you specify a non-zero x shear, then x values will be more
and more shifted to the right the farther they are away from the y
axis. For example, an x shear of 0. 1 means that the x value will be
shifted 10% of the distance the point is away from the y axis. Y
shears are similar: points are shifted down in proportion to the
distance they are away from the x axis.

Shear Transformations: Example Code

Download the source: ShearExample. java (plus WindowUtilities.
java and ExitListener. java if you don’t have them from the

previous examples).

import 3javax. swing. ¥*;
import java. awt. *;
import java. awt. geom. *;

35

Computer Graphics in Java

/** An example of shear transformations with Java2D in

Java 1. 2.
*

* From tutorial on learning Java2D at

* http://www. apl. jhu. edu/~hall/java/Java2D-Tutorial.
html

*

* 1998 Marty Hall, http://www. apl. jhu. edu/~hall/java/
*/

public class ShearExample extends JPanel ({

private static int gap=10, width=100;

private Rectangle rect = new Rectangle(gap, gap, 100,
100);

public void paintComponent (Graphics g) {

super. paintComponent (g);

Graphics2D g2d = (Graphics2D)g;

for (int i=0; i<5; i++) {

g2d. setPaint (Colour. red);

g2d. fill(rect);

// Each new square gets 0. 2 more x shear

g2d. shear (0. 2, 0. 0);

g2d. translate(2*gap + width, 0);

}

}

public static void main(String[] args) {

String title =

“Shear: x shear ranges from 0. 0 for the leftmost ‘square’
N+

“to 0. 8 for the rightmost one. ”;

WindowUtilities. openInJFrame (new ShearExample(),

20*gap + 5*width, 5*gap + width,

title);

}

}

Shear Transformations: Example Output

B4 Shear: x shear ranges from 0.0 for the leftmost ‘square’ to 0.8 for the rightmost one

36

Computer Graphics in Java

Conclusions

Requesting More Accurate Drawing: Rendering
Hints

Since, Java2D already does a lot of calculations compared to
the old AWT, there are several optional features that the designers
chose to disable by default in order to improve performance.
Turning them on results in crisper drawing, especially for rotated
text. For example, the JTable on envisioning transformations
resulted in excessively jagged text using the default settings. The
most important two settings are to turn on antialiasing (smooth
jagged lines by blending colours) and to simply request the highest-
quality rendering.

This approach is illustrated below:
RenderingHints renderHints =
new RenderingHints (RenderingHints. KEY_ANTIALIASING,
RenderingHints. VALUE_ANTIALIAS_ON);
renderHints. put (RenderingHints. KEY_RENDERING,
RenderingHints. VALUE_RENDER_QUALITY);

public void paintComponent (Graphics g) {
super. paintComponent (g);

Graphics2D g2d = (Graphics2D)g;
g2d. setRenderingHints (renderHints);

}

37

2

Using the Graphics Package

A simple example of how to write graphical programmes, but
does not explain the details behind the methods it contains. The
purpose of this chapter is to give you a working knowledge of the
facilities available in the acm.graphics package and how to use

them effectively.

T

[oare |[emoe || Gtaber || isne | coma [| ctect ||geotroon

[oomanect] | samect |

Fig. Class Diagram for the acm.graphics Package

Computer Graphics in Java

The class structure of acm.graphics package appears. Most of
the classes in the package are subclasses of the abstract class
GObject at the centre of the diagram. Conceptually, GObject
represents the universal class of graphical objects that can be
displayed.

When you use acm.graphics, you assemble a picture by
constructing various GObjects and adding them to a GCanvas
at the appropriate locations. The general model in more detail

offer a closer look at the individual classes in the package.
The acm.graphics Model

When you create a picture using the acm.graphics package,
you do so by arranging graphical objects at various positions on a
background called a canvas. The underlying model is similar to
that of a collage in which an artist creates a composition by taking
various objects and assembling them on a background canvas.

In the world of the collage artist, those objects might be
geometrical shapes, words clipped from newspapers, lines formed
from bits of string, or images taken from magazines. In the
acm.graphics package, there are counterparts for each of these

graphical objects.
The “FeltBoard” Metaphor

Another metaphor that often helps students understand the
conceptual model of the acm.graphics package is that of a felt
board —the sort one might find in an elementary school classroom.

A child creates pictures by taking shapes of coloured felt and
sticking them onto a large felt board that serves as the background
canvas for the picture as a whole.

The pieces stay where the child puts them because felt fibres
interlock tightly enough for the pieces to stick together. A physical

39

Computer Graphics in Java

felt board with a red rectangle and a green oval attached. The right
side of the figure is the virtual equivalent in the acm.graphics
world.

To create the picture, you would need to create two graphical
objects—a red rectangle and a green oval—and add them to the
graphical canvas that forms the background.
800 FeltBoard

=2 M

Fig. Physical FeltBoard and its Virtual Equivalent

The code for the FeltBoard example appears. Even though you
have not yet had a chance to learn the details of the various classes
and methods used in the programme, the overall framework should
nonetheless make sense. The programme first creates a rectangle,
indicates that it should be filled rather than outlined, colours it red,
and adds it to the canvas. It then uses almost the same operations to
add a green oval. Because the oval is added after the rectangle, it
appears to be in front, obscuring part of the rectangle underneath.
This behaviour, of course, is exactly what would happen with the
physical felt board. Moreover, if you were to take the oval away by
calling

remove (oval) ;
the parts of the underlying rectangle that had previously been
obscured would reappear.

In this tutorial, the order in which objects are layered on the
canvas will be called the stacking order. (In more mathematical
descriptions, this ordering is often called z-ordering, because the
z-axis is the one that projects outward from the screen.) Whenever
a new object is added to a canvas, it appears at the front of the

40

Computer Graphics in Java

stack. Graphical objects are always drawn from back to front so

that the frontmost objects overwrite those that are further back.
/%
* File: FeltBoard.java
*
* This programme offers a simple example of the acm.graphics
package
* that draws a red rectangle and a green oval. The
dimensions of
* the rectangle are chosen so that its sides are 1in
proportion to
* the “golden ratio” thought by the Greeks to represent
the most
* aesthetically pleasing geometry.
*/
import acm.programme.*;
import acm.graphics.*;
import java.awt.*;
public class FeltBoard extends GraphicsProgram {
/** Runs the programme */
public wvoid run() {
GRect rect = new GRect (100, 50, 100, 100 / PHI);
rect.setFilled(true);
rect.setColor (Color.RED);
add (rect) ;
GOval oval = new GOval (150, 50 + 50 / PHI, 100, 100 /
PHI);
oval.setFilled(true);
oval.setColor (Color.GREEN) ;
add (oval);
}
/** Constant representing the golden ratio */
public static final double PHI = 1.618;
}
Programme: Code for the FeltBoard.

The Coordinate System

The acm.graphics package uses the same basic coordinate
system that traditional Java programmes do. Coordinate values
are expressed in terms of pixels, which are the individual dots that
cover the face of the screen. Each pixel in a graphics window is

41

Computer Graphics in Java

identified by its x and y coordinates, with x values increasing as
you move rightward across the window and y values increasing
as you move down from the top. The point (0, 0) —which is called
the origin—is in the upper left corner of the window. This
coordinate system is illustrated by the diagram, which shows only
the red rectangle from the FeltBoard.java programme. The location
of that rectangle is (100, 50), which means that its upper left corner
is 100 pixels to the right and 50 pixels down from the origin of the

graphics window.

800 FeltBoard

. -

Increasing Value of x —%

(,

o
=
=

4—A Jo anjep Buisesalou|

Fig. The Java Coordinate System

The only difference between the coordinate systems used in
the acm.graphics package and Java’s Graphics class is that the
acm.graphics package uses doubles to represent coordinate values
instead of ints. This change makes it easier to create figures whose
locations and dimensions are produced by mathematical
calculations in which the results are typically not whole numbers.
As a simple example, the dimensions of the red rectangle are
proportional to the golden ratio, which Greek mathematicians
believed gave rise to the most pleasing aesthetic effect. The golden
ratio is approximately equal to 1.618 and is usually denoted in
mathematics by the symbol f. Because the acm.graphics package
uses doubles to specify coordinates and dimensions, the code to

generate the rectangle looks like this:
new GRect (100, 50, 100, 100 / PHI)

42

Computer Graphics in Java

In the integer-based Java model, it would be necessary to
include explicit code to convert the height parameter to an int. In
addition to adding complexity to the code, forcing students to
convert coordinates to integers can introduce rounding errors that
distort the geometry of the displayed figures.

Judging from the experience of the instructors who tested the
acm.graphics package while it was in development, the change
from ints to doubles causes no confusion but instead represents
an important conceptual simplification. The only aspect of Java’s
coordinate system that students find problematic is the fact that
the origin is in a different place from what they know from
traditional Cartesian geometry. Fortunately, it doesn’t take too long

to become familiar with the Java model.

The GPoint, GDimension, and GRectangle
Classes

Although it is usually possible to specify individual values for
coordinate values, it is often convenient to encapsulate an x and a
y coordinate as a point, a width and a height value as a composite
indication of the dimensions of an object, or all four values as the
bounding rectangle for a figure. Because the coordinates are stored
as doubles in the acm.graphics package, using Java’s integer-based
Point, Dimension, and Rectangle classes would entail a loss of
precision. To avoid this problem the acm.graphics package exports
the classes GPoint, GDimension, and GRectangle, which have the
same semantics as their standard counterparts except for the fact
that their coordinates are doubles.

As an example, the declaration

GDimension goldenSize = new GDimension (100, 100 / PHI);

introduces the variable goldenSize and initializes it to a
GDimension object whose internal width and height fields are the

43

Computer Graphics in Java

dimensions of the golden rectangle illustrated in the earlier
example. The advantage of encapsulating these values into objects
is that they can then be passed from one method to another using

a single variable.
The GMath Class

Computing the coordinates of a graphical design can
sometimes require the use of simple trigonometric functions.
Although functions like sin and cos are defined in Java’s standard
Math class, students find them confusing in graphical applications
because of inconsistencies in the way angles are represented. In
Java’'s graphics libraries, angles are measured in degrees; in the
Math class, angles must be given in radians. To minimize the
confusion associated with this inconsistency of representation, the
acm.graphics package includes a class called GMath, which exports
the methods. Most of these methods are simply degree-based
versions of the standard trigonometric functions, but the distance,

angle, and round methods are also worth noting.

Trigonometric Methods in Degrees

static double sinDegrees (double angle)

Returns the trigonometric sine of an angle measured in degrees.

static double cosDegrees (double angle)
Returns the trigonometric cosine of an angle measured in
degrees.
static double tanDegrees (double angle)
Returns the trigonometric tangent of an angle measured in
degrees.
static double toDegrees (double radians)

Converts an angle from radians to degrees.

static double toRadians (double degrees)

Converts an angle from degrees to radians.

44

Computer Graphics in Java

Conversion Methods for Polar Coordinates

double distance (double x, double vy)

Returns the distance from the origin to the point (x, y).
double distance (double x0, double y0, double x1, double
v1)
Returns the distance between the points (x0, y0) and (x1, y1).
double angle (double x, double vy)

Returns the angle between the origin and the point (x, y), measured

in degrees.

Convenience Method for Rounding to an Integer

static int round(double x)

Rounds a double to the nearest int (rather than to a long as in

the Math class).
Programme. Static Methods in the GMath Class

Useful Methods Common to all Graphical Objects

Methods to Retrieve the Location and Size of a
Graphical Object

double getX()
Returns the x-coordinate of the object.
double getY ()
Returns the y-coordinate of the object.
double getWidth ()
Returns the width of the object.
double getHeight ()
Returns the height of the object.
GPoint getLocation()
Returns the location of this object as a GPoint.
GDimension getSize()
Returns the size of this object as a GDimension.
GRectangle getBounds ()
Returns the bounding box of this object.

45

Computer Graphics in Java

Methods to Change the Object’s Location

void setLocation (double x, double y) or setLocation (GPoint
pt)
Sets the location of this object to the specified point.
void move (double dx, double dy)

Moves the object using the displacements dx and dy.

void movePolar (double r, double theta)

Moves the object r units in direction theta, measured in degrees.

Methods to Set and Retrieve the Object’s Colour

void setColor (Colour c)

Sets the colour of the object.
Colour getColor()

Returns the object colour. If this value is null, the package uses

the colour of the container.

Methods to Change the Stacking Order

void sendToFront () or sendToBack ()
Moves this object to the front (or back) of the stacking order.
void sendForward() or sendBackward/()

Moves this object forward (or backward) one position in the

stacking order.

Method to Determine whether an Object Contains a
Particular Point

boolean contains (double x, double y) or contains (GPoint pt)

Checks to see whether a point is inside the object.
Determining the Location and Size of a GObject

The first several methods make it possible to determine the
location and size of any GObject. The getX, getY, getWidth, and
getHeight methods return these coordinate values individually, and
the getLocation, getSize, and getBounds methods return composite
values that encapsulate that information in a single object.

46

Computer Graphics in Java

Changing the Location of a GObject

The next three methods offer several techniques for changing
the location of a graphical object. The setLocation(x, y) method sets
the location to an absolute coordinate position on the screen. For

example, in the FeltBoard example, executing the statement

rect.setLocation (0, O0);

would move the rectangle to the origin in the upper left corner of
the window.

The move(dx, dy) method, by contrast, makes it possible to move
an object relative to its current location. The effect of this call is to
shift the location of the object by a specified number of pixels along

each coordinate axis. For example, the statement

oval.move (10, 0);

would move the oval 10 pixels to the right. The dx and dy

values can be negative. Calling

rect .move (0, -25);

would move the rectangle 25 pixels upward.

The movePolar(r, theta) method is useful in applications in
which you need to move a graphical object in a particular direction.

The name of the method comes from the concept of polar
coordinates in mathematics, in which a displacement is defined
by a distance r and an angle theta. Just as it is in traditional
geometry, the angle theta is measured in degrees counterclockwise
from the +x axis. Thus, the statement

rect .movePolar (10, 45);

would move the rectangle 10 pixels along a line in the 45°
direction, which is northeast.

Setting the Colour of a GObject

The acm.graphics package does not define its own notion of
colour but instead relies on the Colour class in the standard
java.awt package. The predefined colours are:

47

Computer Graphics in Java

Color.BLACK

Color.DARK_GRAY

Color.GRAY

Color.LIGHT_GRAY

Color WHITE

Color.RED

Color.YELLOW

Color.GREEN

Color.CYAN

Color.BLUE

Color MAGENTA

Color.ORANGE

Color.PINK

It is also possible to create additional colours using the
constructors in the Colour class. In either case, you need to include
the import line

import java.awt.*;
at the beginning of your programme.

The setColor method sets the colour of the graphical object to
the specified value; the corresponding getColor method allows you
to determine what colour that object currently is. This facility allows
you to make a temporary change to the colour of a graphical object

using code that looks something like this:

Colour oldColor = gobj.getColor();
gobj.setColor (Color.RED);

. and then at some later time .
gobj.setColor (oldColor);

Controlling the Stacking Order

A set of methods that make it possible to control the stacking
order. The sendToFront and sendToBack methods move the object
to the front or back of the stack, respectively. The sendForward

48

Computer Graphics in Java

and sendBackward methods move the object one step forward or
backward in the stack so that it jumps ahead of or behind the
adjacent object in the stack. Changing the stacking order also
redraws the display to ensure that underlying objects are correctly
redrawn.

For example, if you add the statement;

oval.sendBackward() ;

to the end of the FeltBoard programme, the picture on the

display would change as follows:
Checking for Containment

In many applications — particularly those that involve
interactivity of the sort—it is useful to be able to tell whether a
graphical object contains a particular point. This facility is provided
by thecontains(x, y) method, which returns true if the point (x, y)
is inside the figure. For example, given a standard Java MouseEvent
e, you can determine whether the mouse is inside the rectangle

rect using the followingif statement:
if (rect.contains(e.getX (), e.get¥()))

Even though every GObject subclass has a contains method,
the precise definition of what it means for a point to be “inside”
the object differs depending on the class. In the case of a GOval,
for example, a point is considered to be inside the oval only if it is
mathematically contained within the elliptical shape that the GOval
draws. Points that are inside the bounding rectangle but outside
of the oval are considered to be “outside.” Thus, it is important to
keep in mind that

gobj.contains (x, V)
and

gobj.getBounds () .contains(x, V)
do not necessarily return the same answer.

49

Computer Graphics in Java

The GFillable, GResizable, and GScalable
Interfaces

You have probably noticed that several of the examples you've
already seen in this tutorial include methods that do not appear.
For example, the FeltBoard programme includes calls to a setFilled
method to mark the rectangle and oval as filled rather than
outlined. It appears that the GObject class does not include a
setFilled method, which is indeed the case.

As the caption makes clear, the methods listed in that table are
the ones that are common to every GObject subclass. While it is
always possible to set the location of a graphical object, it is only
possible to fill that object if the idea of “filling” makes sense for
that class.

Filling is easily defined for geometrical shapes such as ovals,
rectangles, polygons, and arcs, but it is not clear what it might mean
to fill a line, an image, or a label. Since there are subclasses that
cannot give a meaningful interpretation to setFilled, that method
is not defined at the GObject level but is instead implemented only
for those subclasses for which filling is defined.

At the same time, it is important to define the setFilled method
so that it works the same way for any class that implements it. If
setFilled, for example, worked differently in the GRect and GOval
classes, trying to keep track of the different styles would inevitably
cause confusion. To ensure that the model for filled shapes remains
consistent, the methods that support filling are defined in an
interface called GFillable, which specifies the behaviour of any
fillable object. In addition to the setFilled method that you have
already seen, the GFillable interface defines an isFilled method that
tests whether the object is filled, a setFillColor method to set the
colour of the interior of the object, and a getFillColor method that

50

Computer Graphics in Java

retrieves the interior fill colour. The setFillColor method makes it
possible to set the colour of an object’s interior independently from
the colour of its border. For example, if you changed the code from
the FeltBoard example so that the statements generating the

rectangle were

GRect rect = new GRect (100, 50, 100, 100 / PHI);
rect.setFilled(true);

rect.setColor (Color.RED) ;
r.setFillColor (Color .MAGENTA) ;

you would see a rectangle whose border was red and whose
interior was magenta.

In addition to the GFillable interface, the acm.graphics package
includes two interfaces that make it possible to change the size of
an object. Classes in which the dimensions are defined by a
bounding rectangle — GRect, GOval, and GImage —implement the
GResizable interface, which allows you to change the size of a

resizable object gobj by calling

gobj.setSize (newWidth, newHeight);
A much larger set of classes implements the GScalable interface,

which makes it possible to change the size of an object by
multiplying its width and height by a scaling factor. In the common
case in which you want to scale an object equally in both

dimensions, you can call
gobj.scale (sf);
which multiplies the width and height by sf. For example, you
could double the size of a scalable object by calling
gobj.scale(2);
The scale method has a two-argument form that allows you to
scale a figure independently in the x and y directions. The statement
gobj.scale (1.0, 0.5);
leaves the width of the object unchanged but halves its height.

The methods specified by the GFillable, GResizable, and

GScalable interfaces are summarize.

51

Computer Graphics in Java

Methods Defined by Interfaces

GFillable (implemented by GArc, GOval, GPen, GPolygon,
and GRect)
void setFilled(boolean fill)

Sets whether this object is filled (true means filled, false means
outlined).
boolean isFilled()
Returns true if the object is filled.
void setFillColor (Color c)
Sets the colour used to fill this object. If the colour is null, filling
uses the colour of the object.
Colour getFillColor ()

Returns the colour used to fill this object.

GResizable (implemented by GImage, GOval, and GRect)
void setSize (double width, double height)

Changes the size of this object to the specified width and height.

void setSize (GDimension size)
Changes the size of this object as specified by the GDimension

parameter.

void setBounds (double x, double vy, double width, double
height)

Changes the bounds of this object as specified by the individual
parameters.
void setBounds (GRectangle bounds)
Changes the bounds of this object as specified by the

GRectangle parameter.

GScalable (implemented by GArc, GCompound, GImage, GLine,
GOval, GPolygon, and GRect)
void scale (double sf)

Resizes the object by applying the scale factor in each
dimension, leaving the location fixed.

void scale(double sx, double sy)

Scales the object independently in the x and y dimensions by
the specified scale factors.

52

Computer Graphics in Java

Descriptions of the Individual Shape Classes

So far, this tutorial has looked only at methods that apply to all
GObjects, along with a few interfaces that define methods shared
by some subset of the GObject hierarchy. The most important classes
in that hierarchy are the shape classes that appear. The sections that
follow provide additional background on each of the shape classes
and include several simple examples that illustrate their use.

As you go through the descriptions of the individual shape
classes, you are likely to conclude that some of them are designed
in ways that are less than ideal for introductory students. In the
abstract, this conclusion is almost certainly correct.

For practical reasons that look beyond the introductory course,
the Java Task Force decided to implement the shape classes so that
they match their counterparts in Java’s standard Graphicsclass.

In particular, the set of shape classes corresponds precisely to
the facilities that the Graphics class offers for drawing geometrical
shapes, text strings, and images. Moreover, the constructors for
each class take the same parameters and have the same semantics
as the corresponding method in the Graphics class. Thus, the GArc
constructor —which is arguably the most counterintuitive in many
ways —has the structure it does, not because we thought that
structure was perfect, but because that is the structure used by the
drawArc method in the Graphics class. By keeping the semantics
consistent with its Java counterpart, the acm.graphicspackage
makes it easier for students to move on to the standard packages
as they learn more about programming.

The GRect Class and its Subclasses

The simplest and most intuitive of the shape classes is the GRect
class, which represents a rectangular box. This class implements

53

Computer Graphics in Java

the GFillable, GResizable, and GScalable interfaces, but otherwise
includes no other methods except its constructor, which comes in

two forms. The most common form of the constructor is
new GRect (x, vy, width, height)

which defines both the location and size of the GRect. The second

form of the constructor is
new GRect (width, height)

which defines a rectangle of the specified size whose upper left
corner is at the origin. If you use this second form, you will typically
add the GRect to the canvas at a specific (x, y) location.

You have already seen one example of the use of the GRect
class in the simple FeltBoard example. A more substantive example

is the Checkerboard programme, which draws a checkerboard that
looks like this:

Checkerboard

60

Code for the Checkerboard example

* File: Checkerboard. java
* —

* This programme draws a checkerboard. The dimensions of

* checkerboard is specified by the constants NROWS and

* NCOLUMNS, and the size of the squares is chosen so

* that the checkerboard fills the available vertical
space.

*/

import acm.programme.*;

import acm.graphics.*;

public class Checkerboard extends GraphicsProgram {

54

Computer Graphics in Java

/** Runs the programme */

public void run() {
double sgSize = (double) getHeight () / NROWS;
for (int 1 = 0; 1 < NROWS; i1i++) {
for (int j = 0; J < NCOLUMNS; j++) {
double x = j * sqgSize;

double y = 1 * sgSize;
GRect sg=new GRect (x, vy, sgSize, sqgSize);
sg.setFilled((i + J) % 2 != 0);
add (sq) ;
}
}
}
/* Private constants */
private static final int NROWS = 8; /* Number of rows */
private static final dint NCOLUMNS = 8; /* Number of
columns */

}
The diagram of the graphics class hierarchy, the GRect class

has two subclasses — GRoundRect and G3DRect—that define
shapes that are essentially rectangles but differ slightly in the way
they are drawn on the screen. The GRoundRect class has rounded
corners, and the G3DRect class has beveled edges that can be
shadowed to make it appear raised or lowered. These classes
extend GRect to change their visual appearance and to export
additional method definitions that make it possible to adjust the
properties of one of these objects. For GRoundRect, these properties
specify the corner curvature; for G3DRect, the additional methods
allow the client to indicate whether the rectangle should appear
raised or lowered. Neither of these classes are used much in
practice, but they are included in acm.graphics to ensure that it
can support the full functionality of Java’s Graphics class, which
includes analogues for both.

The GOval Class

The GOval class represents an elliptical shape and is defined

so that the parameters of its constructor match the arguments to
55

Computer Graphics in Java

the drawOval method in the standard Java Graphics class. This
design is easy to understand as long as you keep in mind the fact
that Java defines the dimensions of an oval by specifying the
rectangle that bounds it.

Like GRect, the GOval class implements the GFillable,
GResizable, and GScalable interfaces but otherwise includes no

methods that are specific to the class.
The GLine Class

The GLine class is used to display a straight line on the display.
The standard GLine constructor takes the x and y coordinates of
each end point. For example, to draw a line that extends diagonally
from the origin of the canvas in the upper left to the opposite corner

in the lower right, you could use the following code:

GLine diagonal = new GLine (0, 0, getWidth(), getHeight());
add (diagonal) ;

On the whole, the GLine class makes intuitive sense. There are,
however, a few points that are worth remembering:

* Calling setLocation(x, y) or move(dx, dy) on a GLine object

moves the line without changing its length or orientation.

If you need to move one of the endpoints without affecting

the other, you can do so by calling the methods
setStartPoint(x, y) or setEndPoint(x, y).

* The GLine class implements GScalable —which expands or

contracts the line relative to its starting point—but not
GFillable or GResizable.

* From a mathematical perspective, a line has no thickness
and therefore does not actually any points. In practice,
however, it is useful to define any point that is no more
than a pixel away from the line segment as being part of
the line. This definition makes it possible, for example, to

56

Computer Graphics in Java

select a line segment using the mouse by looking for points
that are “close enough” to the line to be considered as being
part of it.

* As with any other GObject, applying the getWidth method

to a GLine returns its horizontal extent on the canvas. There
is no way in acm.graphics to change the thickness of a
line, which is always one pixel.

Even though the GLine class is conceptually simple, you can
nonetheless create wonderfully compelling pictures with it. For
example, shows a drawing made up entirely of GLine objects. The
programme to create this figure —which simulates the process of
stringing coloured yarn through a series of equally spaced pegs

around the border —appears.

57

3

Computer Graphics Software

The graphics software is the collection of programmes
written to make it convenient for a user to operate the
computer graphics system. It includes programmes to
generate images on the CRT screen, to manipulate the
images, and to accomplish various types of interaction
between the user and the system. In addition to the graphics
software, there may be additional programmes for
implementing certain specialized functions related to CAD/
CAM.

These include design analysis programmes (e.g., finite-
element analysis and kinematic simulation) and
manufacturing planning programmes (e.g., automated
process planning and numerical control part programming).

The graphics software for a particular computer graphics
system is very much a function of the type of hardware used
in the system.

Computer Graphics in Java

The software configuration of a graphics system.

The graphics software can be divided into three modules:
e The graphics package (the graphics system).
e The application programme
e The application database.

Functions of a Graphics Package

The graphics package must perform a variety of different
functions. These functions can be grouped into function sets.
Each set accomplishes a certain kind of interaction between
the user and the system. Some of the common function sets are:

Generation of graphic elements, Transformations, Display
control and windowing functions, Segmenting functions and
User input functions.

Graphical I/0 Devices

Computer graphics gives us added dimensions for
communication between the user and the machine. Complex
organizations and relationships can be conveyed clearly to
the user. But communication should be a two-way process.
It is desirable to allow the user to respond to this information.
The most common form of computer is a string of characters
printed on the page or on the surface of a CRT terminal. The
corresponding form of input is also a stream of characters
coming from a keyboard. So to perform such I/O operations,
there is a need of I/O devices. The following are the 1/O
devices for graphic implementation.

Input Devices
Various hardware devices have been developed to enable

the user to interact in the more natural manner. These

59

Computer Graphics in Java

devices can be separated into two classes. They are
Locators and Selectors.

Locators: Locators are the devices which give position
information. The computer receives from a Locater the
coordinates for a point. Using a locator we can indicate a
position on the screen. The different locators are as follows:

Thumbwheels: A pair of Thumbwheels such as is found
on the Tektronix 4010 graphics terminal. These are two
potentiometers mounted on the keyboard, which the user
can adjust. One potentiometer is used for x direction and
the other for the y direction. Analog-to-digital converters
change the potentiometer setting into a digital value which
the computer can read. The potentiometer settings may be
read whenever desired. The two potentiometer readings
together form the coordinates of a point.

To be useful, this scheme must also present user with
information as to which point the thumbwheels are
specifying. Some feedback mechanism is needed. This may
be in the form of a special screen cursor, that is, a special
marker placed on the screen at the point which is being
indicated. It might also be done by a pair of cross hairs which
cross at the indicated point. As a thumbwheel is turned, the
marker or cross hair moves across the screen to show the
set which position is being read.

Joystick: A Joystick has two potentiometers, just as a
pair of thumbwheels. They have been attached to a single
lever. Moving the lever forward or back changes the setting
on one potentiometer. Moving it left or right changes the
setting on the other potentiometer. Thus with a joystick both
x and y coordinate positions can be simultaneously altered

60

Computer Graphics in Java

by the motion of a single lever. The potentiometer settings
are processed in the same manner as they are for
thumbwheels. Some joysticks may return to their zero
position when released, whereas thumbwheels remain at
their last position until changed joysticks are inexpensive
and are quite common on displays where only rough
positioning is needed.

Mouse: A Mouse is palm-sized box with a ball on the bottom
connected to wheels for the x and y directions. These locator
devices use switches attached to wheels instead of
potentiometers. As the wheels are turned, the switches
produce pulses which may be counted. The count indicates
how much a wheel has rotated. As the mouse is pushed
across a surface, the wheels turned, proving distance and
direction information. This can then be used to alter the
position of a cursor on the screen a mouse may also come
with one or more buttons which may be sensed. There are
also mice which use photocells rather than wheels and
switches to sense position. Photocells in the bottom of the
mouse sense the movement across the grid and produce
pulses to report the motion.

Tablet: A Tablet composed of a flat surface and a pen like
stylus or window like tablet cursor. The tablet is able to sense
the position of the stylus or tablet cursor on the surface. A
number of different physical principles have been employed
for the sensing of the stylus. Most do not require actual
contact between the stylus and the tablet surface, so that a
drawing or blueprint might be placed upon the surface and
the stylus used to trace it. A feedback mechanism on the
screen is not as necessary for a graphics tablet as it is for a

61

Computer Graphics in Java

joystick because the user can look at the tablet to see what
position he is indicating. If tablet entries are to be coordinated
with items already on the screen, then some form of feedback,
such as a screen cursor, is useful.

Selector Device: Selector devices are used to select a
particular graphical object. A selector may pick a particular
item but provide no information about that item is located
on the screen. The different selector devices are as follows.

Light Pen: A light pen is composed of a photocell mounted
in a penlike case. This pen may be pointed at the screen on
a refresh display. The pen will send a pulse whenever the
phosphor below it is illuminated. While the image on a refresh
display may appear to be stable, it is in fact blinking on and
off faster than the eye can detect. This blinking is not too
fast for the light pen. The light pen can easily determine the
time at which phosphor is illuminated. Since, there is only
one electron beam on the refresh display, only one line
segment can be drawn at a time and no two segments are
drawn simultaneously.

When the light pen senses the phosphor beneath it being
illuminated, it can interrupt the display processor’s
interpreting of the display file. The processor’s instruction
register tells which display file instruction is currently being
drawn. Once this information is extracted, the processor is
allowed to continue its display. Thus the light pen tells us
which display file instruction was being executed in order to
illuminate the phosphor at which it was pointing. By
determining which part of the picture contained the
instruction that triggered the light pen, the machine can
discover which object the user is indicating. It is often possible

62

Computer Graphics in Java

to turn the interrupt mechanism on or off during the display
process and thereby select or deselect objects on the display
for sensing by the light pen.

Keyboards: An alphanumeric keyboard on a graphics
system is used primarily as a device for entering text strings.
The keyboard is an efficient device for inputting such non--
graphic data. Cursor control keys and function keys are
common features on general purpose keyboards. Function
keys allows user to enter frequently used operations in a
single keystroke and cursor control keys can be used to select
displayed objects or co-ordinate positions by positioning the
screen cursor. Additional a numeric keypad is often included
on the keyboard for fast entry of numeric data. The latest
keyboards are coming with a facility to perform all the
operations related to multimedia and internet browsing etc.

Trackball and Space Ball: A track ball is a ball that can
be rotated with the fingers or palm of the hand to produce
screen-cursor movement. Potentiometers, attached to the
ball, measure the amount and direction of rotation. It is a
two dimensional positioning device.

A space ball provides six degrees of freedom. Unlike the
track ball, a space ball does not actually move. Strain gauges
measure the amount of pressure applied to the space ball to
provide input for spatial positioning and orientation as the
ball is pushed or pulled in various directions. Space balls
are used for three dimensional positioning and selection
operations in virtual reality systems, modelling, animation,
CAD and other applications.

Data Glove: A data glove that can be used to grasp a virtual
object. The glove is constructed with a series of sensors that

63

Computer Graphics in Java

detect hand and finger motions. Electromagnetic coupling
between transmitting antennas and receiving antennas is
used to provide information about the position and
orientation of the hand. The transmitting and receiving
antennas can each be structured as a set of three mutually
perpendicular coils, forming a three dimensional co-ordinate
system. Input from the glove can be used position or
manipulate objects in a virtual scene. A two-dimensional
projection of the scene can be viewed on a video monitor, or
a three-dimensional projection can be viewed with a headset.

Digitizers: A common device for drawing, painting or
interactively selecting co-ordinate positions on an object is a
digitizer. These devices can be used to input co-ordinate
values in either a 2D or 3D space. Digitizer is used to scan
over a drawing or object and to input a set of discrete co-
ordinate positions, which can be joined with straight line
segments to approximate the curve or surface shapes. 3D
digitizers use sonic or electromagnetic transmissions to
record positions. One electromagnetic transmission method
is similar to that used in the data glove: a coupling between
the transmitter and receiver is used to compute the location
of a stylus as it moves over the surface of an object.

Image Scanners: Drawings, graphs, colour and black and
white photos or text can be stored for computer processing
with an image scanner by passing an optical scanning
mechanism over the information to be stored. The gradations
of gray scale or colour are then recorded and stored in an
array. Once we have the internal representation of a picture,
we can apply transformations to rotate, scale or crop the
picture to a particular screen area. We can also apply various

64

Computer Graphics in Java

image processing methods to modify the array representation
of the picture. For scanned text input, various editing
operations can be performed on the stored documents. Some
scanners are able to scan either graphical representations
or text and they come in a variety of sizes and capabilities.

Touch Panels: Touch panels allow displayed objects or
screen positions to be selected with the touch of a finger. A
typical application of touch panels is for the selection of
processing options that are represented with graphical icons.
Some systems such as plasma panels are designed with touch
screens. Other systems can be adapted for touch input by
fitting a transparent device with a touch sensing mechanism
over the video monitor screen. Touch input can be recorded
using three methods. They are

e Optical touch panels.
¢ Electrical touch panels.
e Acoustical touch panels.

Optical Touch Panels: They employ a line of infrared light
emitting diodes (LEDs) along one vertical edge and along one
horizontal edge of the frame. The opposite vertical and
horizontal edges contain light detectors. These detectors are
used to record which beams are interrupted when the panel
is touched. The two crossing beam that are interrupted
identify the horizontal and vertical coordinates of the screen
position selected. Positions can be selected with an accuracy
of about Y inch.

Electrical Touch Panels: It is constructed with two
transparent plates separated by a small distance. One of the
plates is coated with a conducting material and the other

plate is coated with a resistive material. When the outer plate

65

Computer Graphics in Java

is touched, it is forced into contact with the inner plate. This
contact creates a voltage drop across the resistive plate that
is converted to the coordinate values of the selected screen
position.

Acoustical Touch Panels: In these high frequency sound
waves are generated in the horizontal and vertical directions
across a glass plate. Touching the screen causes part of each
wave to be reflected from the finger to the emitters. The screen
position at the point of contact is calculated from a
measurement of the time interval between the transmission
of each wave and its reflection to the emitter.

Voice Systems

Speech recognizers are used in some graphics workstations
as input devices to accept voice command.

The voice system input can be used to initiate graphics
operations or to enter data. These systems operate by
matching an input against a predefined dictionary of words
and phrases.

A dictionary is set up for a particular operator by having
the operator speak the command words to be used into the
system. Each word is spoken several times, and the system
analyses the word and establishes a frequency pattern for
that word in the dictionary alone with the corresponding
function to be performed.

When a voice command is given, the system searches the
dictionary for a frequency pattern match. Voice input is
typically spoken into a microphone mounted on a headset. If
a different operator is to use the system, the dictionary must
be reestablished with that operator’s voice patterns.

66

Computer Graphics in Java

Output Devices
Printers

Printers produce output by either impact or non--impact
methods. Impact printers press formed character faces
against an inked ribbon onto the paper. A line printer is an
example of an impact device, with the typefaces mounted on
bands, chains, drums or wheels. Non--impact printers and
plotters use laser techniques, ink-jet sprays, xerographic
processes, electrostatic methods and electro thermal methods
to get images onto the paper.

Character impact printers often have a dot-matrix print
head containing a rectangular array of protruding wire pins,
with the number of pins depending on the quality of the
printer. Individual characters or graphics patterns are
obtained by retracting certain pins so that the remaining
pins form the pattern to be printed.

In a laser device, a laser beam creates a change distribution
on a rotating drum coated with a photoelectric material. Toner
is applied to the drum and then transferred to paper. Ink-jet
methods produce output by squirting ink in horizontal rows
across a roll of a paper wrapped on a drum. The electrically
charged ink stream is deflected by an electric field to produce
dot-matrix patterns.

An electrostatic device places a negative charge on the
paper, one complete row at a time along the length of the
paper. Then the paper is exposed to a toner. The toner is
positively charged and so is attracted to the negatively
charged areas, where it adheres to produce the specified

output.

67

Computer Graphics in Java

We can get limited coloured ribbons. Non- impact devices
use various techniques to combine three colour pigments to
produce a range of colour patterns. Laser and xerographic
devices deposit the three pigments on separate passes; ink-
jet methods shoot the three colours simultaneously on a
single pass along each print line on the paper.

Plotters

Drafting layouts and other drawings are typically generated
with ink-jet or pen plotters. A pen plotter has one or more
pens mounted on a carriage, or crossbar that spans a sheet
of paper.

Pens with varying colours and widths are used to produce
a variety of shadings and line styles. Wet-ink, ball point and
felt tip pens are all possible choices for use with a pen plotter.
Plotter paper can lie flat or be rolled onto a drum or belt.
Crossbars can be either moveable or stationary, while the
pen moves back and forth along the bar. Either clamps, a
vacuum, or an electrostatic charge hold the paper in position.

Display Devices

In most applications of computer graphics the quality of
the displayed image is very important. A great deal of effort
has been directed towards the development of high quality
computer display devices. The CRT was the only available
device capable of converting the computer’s electrical signals
into visible images at high speeds. CRT technology has
produced a range of extremely effective computer display
devices. At the same time the CRT’s peculiar characteristics
have had a significant influence on the development of
interactive computer graphics.

68

Computer Graphics in Java

The CRT

The basic arrangement of CRT. At the narrow end of a
sealed conical glass tube is an electron gun that emits a
high velocity, finely focused beam of electrons. The other
end, the face of the CRT, is more or less flat and is coated on
the inside with phosphor, which glows when the electron
beam strikes it. The energy of the beam can be controlled so
as to vary the intensity of light output and when necessary
to cut off the light altogether. A yoke or system of
electromagnetic coils is mounted on the outside of the tube
at the base of the neck; it deflects the electron beam to
different parts of the tube face when currents pass through
the coils. The light output of the CRT’s phosphor falls off rapidly
after the electron beam has passed by and a steady picture is
maintained by tracing it out rapidly and repeatedly; generally
this refresh process is performed at least 30 times a second.

Electron Gun

Electron gun makes use of electrostatic fields to focus and
accelerate the electron beam. A field is generated when two
surfaces are raised to different potentials; electrons within
the field tend to travel towards the surface with the more
positive potential. The force attracting the electron is directly
proportional to the field potential.

The purpose of the electron gun in the CRT is to produce an
electron beam with the following properties:

e [t must be accurately focused so that it produces a
sharp spot of light where it strikes the phosphor.

e It must have high velocity, since, the brightness of
the image depends on the velocity of the electron

beam.
69

Computer Graphics in Java

e Means must be provided to control the flow of
electrons so that the intensity of the trace of the
beam can be controlled.

Electrons are generated by a cathode heated by an electric
filament. Surrounding the cathode is a cylindrical metal
control grid, with a hole at one end that allows electrons to
escape. The control grid is kept at a lower potential than the
cathode, creating an electrostatic field that directs the
electrons through a point source; this simplifies the
subsequent focusing process. By altering the control grid
potential, we can modify the rate of flow of electrons, or beam
current and can thus control the brightness of the image;
we can even cut off the flow of electrons altogether. Focusing
is achieved by a focusing structure, used to focus finely and
highly concentrated at the precise moment at which it strikes
the phosphor. An accelerating structure is generally combined
with the focusing structure. It consists of two metal plates
mounted perpendicular to the beam axis with holes at their
centres through which the beam can pass. The two plates
are maintained at a sulfficiently high relative potential to
accelerate the beam to the necessary velocity; accelerating
potentials of several thousand volts are not uncommon. The
resulting electron gun structure has the advantage that it
can be built as a single physical unit and mounted inside
the CRT envelope. Other types of gun exist, whose focusing
is performed by a coil mounted outside the tube; this is called
electromagnetic focusing.

The Deflection System

A set of coils or yoke, mounted at the neck of the tube,
forms part of the deflection system responsible for addressing
70

Computer Graphics in Java

in the CRT. Two pairs of coils are used, one to control
horizontal deflection and the other for vertical. A primary
requirement of the deflection system is that it deflects rapidly,
since, speed of deflection determines how much information
can be displayed without flicker. To achieve fast deflection,
we must use large amplitude currents in the yoke. An
important part of the deflection system is therefore the set of
amplifiers that convert the small voltages received from the
display controller into currents of the appropriate magnitude.
The voltages used for deflection are generated by the display
controller from digital values provided by the computer. These
values normally represent coordinates that are converted
into voltages by digital to analog conversion. To draw a vector
a pair of gradually changing voltages must be generated for
the horizontal and vertical deflection coils.

Phosphors

The phosphors used in a graphic display are normally
chosen for their colour characteristics and persistence. Ideally
the persistence, measured as the time for the brightness to
drop to one tenth of its initial value, should last about 100
milliseconds or less allowing refresh at 30Hz rates without
noticeable smearing as the image moves. Colour should
preferably be white, particularly for applications where dark
information appears on a light background. The phosphor
should also possess a number of other attributes: small grain
size for added resolution, high efficiency in terms of electric
energy converted to light and resistance to burning under
prolonged excitation.

In attempts to improve performance in one or another of
these respects, many different phosphors have been

71

Computer Graphics in Java

produced, using various compounds of calcium, cadmium
and zinc together with traces of rare earth elements. These
phosphors are identified by a numbering system like P1, P4,
P7 etc.

Raster-scan Displays

The most common type of graphics monitor employing a
CRT is the raster scan display. In a raster-scan system, the
electron beam is swept across the screen, one row at a time
from top to bottom. As the electron beam moves across each
row, the beam intensity is turned on and off to create a
pattern of illuminated spots. Picture definition is stored in a
memory area called the refresh buffer or frame buffer. This
memory area holds the set of intensity values for all the screen
points. Stored intensity values are then retrieved from the
refresh buffer and painted on the screen one row at a time.

Each screen point is referred to as a pixel or pel (picture
element). The capability of a raster-scan system to store
intensity information for each screen point makes it well
suited for the realistic display of scenes. Home televisions
and printers are examples of other systems using raster-
scan methods.

Intensity range for pixel positions depends on the capability
of the raster system. In a simple black and white system,
each screen point is either on or off, so only one bit per pixel
is needed to control the intensity of screen positions. Here 1
indicates that the electron beam is to be turned on at that
position, and value O indicates that the electron beam
intensity is to be off. Additional bits are needed when colour
and intensity variations can be displayed. Up to 24 bits per
pixel are included in high quality systems, which can require

72

Computer Graphics in Java

several megabytes of storage for the frame buffer, depending
on the resolution of 1024 by 1024 requires 3 megabytes of
storage for the frame buffer. On a black and white system
with one bit per pixel, the frame buffer is commonly called a
bitmap. For systems with multiple bits per pixel, the frame
buffer is often referred to as a pixmap.

Refreshing on raster-scan displays is carried out at the
rate of 60 to 80 frames per second. At the end of each scan
line, the electron beam returns to the left side of the screen
to begin displaying the next scan line. The return to the left
of the screen, after refreshing each scan line, is called the
horizontal retrace of the electron beam and at the end of
each frame the electron beam returns to the left corner of
the screen to begin the next frame. On some raster-scan
systems, each frame is displayed in two passes using an
interlaced refresh procedure. In the first pass, the beam
sweeps across every other scan line from top to bottom. Then
after the vertical retrace, the beam sweeps out the remaining
scan lines.

Random-scan Displays

When operated as a random-scan display unit, a CRT has
the electron beam directed only to the parts of the screen
where a picture is to be drawn. Random-scan monitors draw
a picture one line at a time and for this reason are also
referred to as vector displays. A pen plotter operates in a
similar way and is an example of a random-scan, hard copy
device. Refresh rate on a random-scan system depends on
the number of lines to be displayed. Picture definition is now
stored as a set of line drawing commands in an area of
memory referred to as the refresh display file. Sometime the

73

Computer Graphics in Java

refresh display file is called the display list or display
Programme or refresh buffer. To display a specified picture,
the system cycles through the set of commands in the display
file, drawing each component line in turn. After all line
drawing commands have been processed, the system cycles
back to the first line command in the list.

Colour CRT Monitors

A CRT monitor displays colour pictures by using a
combination of phosphors that emit different-coloured light.
By combining the emitted light from the different phosphors,
arange of colours can be generated. The two basic techniques
for producing colour displays with a CRT are the beam-
penetration method and the shadow-mask method.

The beam-penetration method for displaying colour
pictures has been used with random-scan monitors. Two
layers of phosphor, usually red and green are coated onto
the inside of the CRT screen, and the displayed colour
depends on how far the electron beam penetrates into the
phosphor layers. A beam of slow electrons excites only the
outer red layer. A beam of very fast electrons penetrates
through the red layer and excites the inner green layer. At
intermediate beam speeds, combinations of red and green
light are emitted to show two additional colours, orange and
yellow. The speed of the electrons and hence the screen colour
at any point is controlled by the beam-acceleration voltage.
Four colours are possible, and the quality of pictures is not
as good as with other methods.

Shadow-mask methods are commonly used in raster-scan
systems because they produce a much wider range of colours
than the beam-penetration method. A shadow-mask CRT

74

Computer Graphics in Java

has three phosphor colour dots at each pixel position. One
phosphor dot emits a red light, another emits a green light,
and the third emits a blue light. This type of CRT has three
electron guns, one for each colour dot and a shadow-mask
grid just behind the phosphor-coated screen. We obtain
colour variations in a shadow-mask CRT by varying the
intensity levels of the three electron beams. By turning off
the red and green guns, we get only the colour coming from
the blue phosphor. A white area is the result of activating all
three dots with equal intensity.

Direct-View StorageTubes

An alternative method for maintaining a screen image is
to store the picture information inside the CRT instead of
refreshing the screen. A direct-view storage tube (DVST)
stores the picture information as a charge distribution just
behind the phosphor-coated screen. Two electron guns are
used in a DVST. One, the primary gun, is used to store the
picture pattern; the second, the flood gun, maintains the
picture display. A DVST monitor has both disadvantages and
advantages compared to the refresh CRT. Because no
refreshing is needed, very complex pictures can be displayed
at very high resolutions without flicker.

The disadvantages of DVST systems are that they ordinarily
do not display colour and that selected parts of a picture
cannot be erased. The entire screen must be erased and the
modified picture redrawn. The erasing and redrawing process
can take several seconds for a complex picture.

Flat-Panel Displays
The term flat-panel display refers to a class of video devices

75

Computer Graphics in Java

that have reduced volume, weight and power requirements
compared to a CRT. Flat panel displays into two categories:
emissive displays and noon-emissive displays. The emissive
displays are devices that convert electrical energy into light.
Plasma panels, thin-film electroluminescent displays, and
light emitting diodes are examples of emissive displays. Non-
-emissive displays use optical effects to convert sunlight or
light from some other source into graphics patterns. The
most important example of a non--emissive flat-panel display
is a liquid crystal device.

Plasma panels also called gas-discharge displays are
constructed by filling the region between two glass plates
with a mixture of gases that usually includes neon. A series
of vertical conducting ribbons is placed on one glass panel,
and a set of horizontal ribbons is built into the other glass
panel. Firing voltages applied to a pair of horizontal and
vertical conductors cause the gas at the intersection of the
two conductors to break down into glowing plasma of
electrons and ions. Picture definition is stored in a refresh
buffer, and the firing voltages are applied to refresh the pixel
positions 60 times per second. One disadvantage of plasma
panels has been that they were strictly monochromatic
devices, but systems have been developed that are now
capable of displaying colour and grayscale.

LCD Technology

Borrowing technology from laptop manufacturers, some
companies provide LCD (Liquid Crystal Display) displays.
LCDs have low glare flat screens and low power requirements.
The colour quality of an active matrix LCD panel actually

76

Computer Graphics in Java

exceeds that of most CRT displays. At this point, however,
LCD screens usually are more limited in resolution than
typical CRTs and are much more expensive. There are three
basic LCD choices.

e Passive matrix monochrome.
e Passive matrix colour.
e Active matrix colour.

In a LCD, a polarizing filter creates two separate light waves.
In a colour LCD, there is an additional filter that has three
cells per each pixels — one each for displaying red, green and
blue.

The light wave passes through a liquid crystal cell, with
each colour segment having its own cell. The liquid crystals
are rod-shaped molecules that flow like a liquid. They enable
light to pass straight through them. Although monochrome
LCDs do not have colour filters, they can have multiple cells
per pixel for controlling shades of grey.

In passive matrix LCD, each cell is controlled by electrical
charges transmitted by transistors according to row and
column positions on the screen’s edge. As the cell reacts to
the pulsing charge, it twists the light wave, with stronger
charges twisting the light wave more. In an active matrix
LCD, each cell has its own transistor to charge it and twist
the light wave. This provides brighter image than passive
matrix displays because, the cell can maintain a constant,
rather than momentary charge. However, active matrix
technology uses more energy than passive matrix. With a
dedicated transistor for every cell, active matrix displays are
more difficult and expensive to produce.

77

Computer Graphics in Java

In both active and passive matrix LCDs, the second
polarizing filter controls how much light passes through each
cell. Cells twist the wavelength of light that passes through
the filter at each cell, the brighter the pixel. The best colour
displays are active matrix or thin film transistor panels, in
which each pixel is controlled by three transistors for red,
green and blue.

Raster-scan Systems

Interactive raster graphics systems typically employ several
processing units. In addition to the central processing unit,
a special-purpose processor, called the video controller or
display controller is used to control the operation of the
display device. The video controller accesses the frame buffer
to refresh the screen. In addition to the video controller, more
sophisticated raster systems employ other processors as co-
processors and accelerators to implement various graphics
operations.

Video Controller

Frame buffer locations, and the corresponding screen
positions, are referenced in Cartesian co-ordinates. For many
graphics monitors, the co-ordinate origin is defined at the
lower left screen corner. The screen surface is then
represented as the first quadrant of a two-dimensional
system, with positive x values increasing to the right and
positive y values increasing from bottom to top. Scan lines
are then labelled from y_ . at the top of the screen to O at
the bottom. Along each scan line, screen pixel positions are
labelled from O to x_ .. Two registers are used to store the
co-ordinates of the screen pixels. Initially, the x register is

78

Computer Graphics in Java

set to 0 and the y register is set to ymax. The value stored in
the frame buffer for this pixel position is then retrieved and
used to set the intensity of the CRT beam. Then the x register
is incremented by 1, and the process repeated for the next
pixel on the top scan line. This procedure is repeated for
each pixel along the scan line. After the last pixel on the top
scan line has been processed, the x register is reset to O and
the y register is decremented by 1. Pixels along this scan
line are then processed in turn, and the procedure is repeated
for each successive scan line. After cycling through all pixels
along the bottom scan line (y = 0), the video controller resets
the registers to the first pixel position on the top scan line
and the refresh process starts over.

Raster-scan Display Processor

The organization of raster system containing a separate
display processor, sometimes referred to as a graphics
controller or display co-processor. The purpose of the display
processor is to free the CPU from the graphics chores. In
addition to the system memory, a separate display processor
memory area can also be provided. A major task of the display
processor is digitizing a picture definition given in an
application Programme into a set of pixel-intensity values
for storage in the frame buffer. This digitization process is
called scan conversion.

Characters can be defined with rectangular grids. The array
size for character grids can vary from about 5 by 7 to 9 by 12
or more for higher quality displays. Display processors are
typically designed to interface with interactive input devices

such as mouse.

79

Computer Graphics in Java

In an effort to reduce memory requirements in raster
systems, methods have been devised for organizing the frame
buffer as a linked list and encoding the intensity information.
One way to do this is to store each scan line as a set of
integer pairs.

One number of each pair indicates an intensity value, and
the second number specifies the number of adjacent pixels
on the scan line that are to have that intensity. This technique
called run-length encoding. A similar approach can be taken
when pixel intensities change linearly. Another approach is
to encode the raster as a set of rectangular areas (cell
encoding).

Random-scan Systems

The organization of a simple random-scan system. An
application Programme is input and stored in the system
memory along with a graphics package. Graphics commands
in the application Programme are translated by the graphics
package into a display file stored in the system memory. This
display file is then accessed by the display processor to refresh
the screen. The display processor cycles through each
command in the display file Programme once during every
refresh cycle. Sometimes the display processor in a random-
scan system is referred to as a display processing or a
graphics controller.

Lines are defined by the values for their co-ordinate
endpoints, and these input co-ordinate values are converted
to x and y deflection voltages. A scene is then drawn one line
at a time by positioning the beam to fill in the line between
specified endpoints.

80

Computer Graphics in Java

Using the acm.graphics Package

A simple example of how to write graphical programmes,
but does not explain the details behind the methods it
contains. The purpose of this chapter is to give you a working
knowledge of the facilities available in the acm.graphics
package and how to use them effectively.

The class structure of acm.graphics package appears. Most
of the classes in the package are subclasses of the abstract
class GObject at the centre of the diagram. Conceptually,
GObject represents the universal class of graphical objects
that can be displayed. When you use acm.graphics, you
assemble a picture by constructing various GObjects and
adding them to a GCanvas at the appropriate locations. The
general model in more detail offer a closer look at the
individual classes in the package.

Java . Art . Container

I6 Canvasl | 6 Math | | 6 Point ”‘6 Dimensionl Ilﬁ Rectanglel

I 6 Arc ” 6Image||6|_abe| ” 6 Line “ 6 Oval ” 6 Rect ”6Po|ygon|
T 2

6 RoundRect| |6 3D Rect

Fig. Class Diagram for the acm.graphics Package

The acm.graphics Model

When you create a picture using the acm.graphics package,
you do so by arranging graphical objects at various positions
on a background called a canvas. The underlying model is
similar to that of a collage in which an artist creates a

81

Computer Graphics in Java

composition by taking various objects and assembling them
on a background canvas. In the world of the collage artist,
those objects might be geometrical shapes, words clipped
from newspapers, lines formed from bits of string, or images
taken from magazines. In the acm.graphics package, there
are counterparts for each of these graphical objects.

The “Felt Board” Metaphor

Another metaphor that often helps students understand
the conceptual model of the acm.graphics package is that of
a felt board—the sort one might find in an elementary school
classroom. A child creates pictures by taking shapes of
coloured felt and sticking them onto a large felt board that
serves as the background canvas for the picture as a whole.
The pieces stay where the child puts them because felt fibres
interlock tightly enough for the pieces to stick together. A
physical felt board with a red rectangle and a green oval
attached. The right side of the figure is the virtual equivalent
in the acm.graphics world. To create the picture, you would
need to create two graphical objects—a red rectangle and a
green oval—and add them to the graphical canvas that forms
the background.

800 FeltBoard

g

Fig. Physical Felt Board and its Virtual Equivalent

The code for the FeltBoard example appears. Even though
you have not yet had a chance to learn the details of the various
classes and methods used in the programme, the overall

82

Computer Graphics in Java

framework should nonetheless make sense. The programme
first creates a rectangle, indicates that it should be filled rather
than outlined, colours it red, and adds it to the canvas. It then
uses almost the same operations to add a green oval. Because
the oval is added after the rectangle, it appears to be in front,
obscuring part of the rectangle underneath. This behaviour, of
course, is exactly what would happen with the physical felt
board. Moreover, if you were to take the oval away by calling

remove (oval) ;

the parts of the underlying rectangle that had previously
been obscured would reappear.

In this tutorial, the order in which objects are layered on
the canvas will be called the stacking order. (In more
mathematical descriptions, this ordering is often called z-
ordering, because the z-axis is the one that projects outward
from the screen.) Whenever a new object is added to a canvas,
it appears at the front of the stack. Graphical objects are
always drawn from back to front so that the frontmost objects

overwrite those that are further back.
/ *
* File: FeltBoard. java

*

* This programme offers a simple example of the
acm.graphics package
* that draws a red rectangle and a green oval. The
dimensions of
* the rectangle are chosen so that 1its sides are in
proportion to
* the “golden ratio” thought by the Greeks to represent
the most
* aesthetically pleasing geometry.
*/
import acm.programme.*;
import acm.graphics.*;

import java.awt.*;

83

Computer Graphics in Java

public class FeltBoard extends GraphicsProgram {

/** Runs the programme */
public void run() {
GRect rect = new GRect (100, 50, 100, 100 / PHI);
rect.setFilled (true);
rect.setColor (Color.RED) ;
add (rect) ;
GOval oval = new GOval (150, 50 + 50 / PHI, 100, 100 /
PHI) ;
oval.setFilled(true);
oval.setColor (Color.GREEN) ;
add (oval) ;
}

/** Constant representing the golden ratio */
public static final double PHI = 1.618;

Programme : Code for the Felt Board.

The GCanvas Class

In the acm.graphics model, pictures are created by adding
graphical objects—each of which is an instance of the GObject
class to a background canvas. That background—the
analogue of the felt board in the physical world—is provided
by the GCanvas class. The GCanvas class is a lightweight
component and can be added to any Java container in either
the java.awt or javax.swingpackages, which makes it possible
to use the graphics facilities in any Java application. For the
most part, however, students in introductory courses won't
use the GCanvas class directly but will instead use
theGraphicsProgram class, which automatically creates a
GCanvas and installs it in the programme window, as
illustrated in several preceding examples. The
GraphicsProgram class forwards operations such as add

84

Computer Graphics in Java

andremove to the embedded GCanvas so that students don’t
need to be aware of the underlying implementation details.

The most important methods supported by the GCanvas
class. Many of these methods are concerned with adding
and removing graphical objects. These methods are easy to
understand, particularly if you keep in mind that a GCanvas
is conceptually a container for GObject values. The container
metaphor explains the functionality provided by the add,
remove, and removeAll, which are analogous to the identically
named methods in JComponent and Container.

Constructor

new GCanvas ()

Creates a new GCanvas containing no graphical objects.

Methods to Add and Remove Graphical Objects
from a Canvas

void add(GObject gobj)

Adds a graphical object to the canvas at its internally stored

location.

void add(GObject gobj, double x, double y) or add(GObject
gobj, GPoint pt)

Adds a graphical object to the canvas at the specified

location.
void remove (GObject gobij)
Removes the specified graphical object from the canvas.

void removeAll ()

Removes all graphical objects and components from the

canvas.
Method to Find the Graphical Object at a
Particular Location

GObject getElementAt (double x, double vy) or
getElementAt (GPoint pt)

85

Computer Graphics in Java

Returns the topmost object containing the specified point,
or null if no such object exists.

Useful Methods Inherited from Superclasses

int getWidth ()

Return the width of the canvas, in pixels.
int getHeight ()

Return the height of the canvas, in pixels.
void setBackground(Color bg)

Changes the background colour of the canvas.

The add method comes in two forms, one that preserves
the internal location of the graphical object and one that
takes an explicit x and y coordinate. Each method has its
uses, and it is convenient to have both available. The first is
useful particularly when the constructor for the GObject
specifies the location, as it does, for example, in the case of
the GRect class. If you wanted to create a 100 x 60 rectangle
at the point (75, 50), you could do so by writing the following

statement:
add (new GRect (75, 50, 100, 60));

The second form is particularly useful when you want to
choose the coordinates of the object in a way that depends
on other properties of the object. For example, the following
code taken from the HelloGraphicsexample centres a GLabel

object in the window:

GLabel label = new GLabel (“hello, world”);
double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight() + label.getAscent()) / 2;
add(label, x, v);

Because the placement of the label depends on its
dimensions, it is necessary to create the label first and then
add it to a particular location on the canvas.

The GCanvas method getElement(x, y) returns the
graphical object on the canvas that includes the point (x, y).

86

Computer Graphics in Java

If there is more than one such object, getElement returns
the one that is in front of the others in the stacking order; if
there is no object at that position, getElement returns null.
This method is useful, for example, if you need to select an
object using the mouse. Several of the most useful methods
in the GCanvas class are those that are inherited from its
superclasses in Java’s component hierarchy. For example,
if you need to determine how big the graphical canvas is,
you can call the methods getWidth and getHeight.

Thus, if you wanted to define a GPoint variable to mark
the centre of the canvas, you could do so with the following

declaration:

GPoint centre = new GPoint (getWidth() / 2.0, getHeight ()
/ 2.0);

You can also change the background colour by calling
setBackground(bg), where bg is the new background colour
for the canvas.

The GObject Class

The GObject class represents the universe of graphical
objects that can be displayed on a GCanvas. The GObject
class itself is abstract, which means that programmes never
create instances of the GObject class directly. Instead,
programmes create instances of one of the GObject
subclasses that represent specific graphical objects such as
rectangles, ovals, and lines.

The most important such classes are the ones that appear
at the bottom of the class diagram, which are collectively called
the shape classes. Before going into those details, however, it
makes sense to begin by describing the characteristics that
are common to the GObject class as a whole.

87

Computer Graphics in Java

Methods common to all GObject Subclasses

All GObjects—no matter what type of graphical object they
represent—share a set of common properties. For example,
all graphical objects have a location, which is the x and y
coordinates at which that object is drawn. Similarly, all
graphical objects have a size, which is the width and height
of the rectangle that includes the entire object. Other
properties common to all GObjects include their colour and
how the objects are arranged in terms of their stacking order.
Each of these properties is controlled by methods defined at
the GObject level.

88

4

Java Package

In simple it is a way of categorising the classes and interfaces.
When developing applications in Java, hundreds of classes and
interfaces will be written, therefore categorising these classes is a

must as well as makes life much easier.
Import Statements

In java if a fully qualified name, which includes the package
and the class name, is given then the compiler can easily locate
the source code or classes. Import statement is a way of giving the
proper location for the compiler to find that particular class.

For example following line would ask compiler to load all the classes
available in directory java_installation/java/io:
import java. io. *;

A Simple Case Study

For our case study we will be creating two classes. They are
Employee and EmployeeTest. First open notepad and add the

Computer Graphics in Java

following code. Remember this is the Employee class and the
class is a public class. Now save this source file with the name
Employee. java. The Employee class has four class variables
name, age, designation and salary. The class has one explicitly

defined constructor which takes a parameter.
import java. io. *;

public class Employee{

String name;

int age;

String designation;

double salary;

// This is the constructor of the class Employee
public Employee (String name) {

this. name = name;

}

// Assign the age of the Employee to the variable age.
public void empAge (int empAge) {

age = empAge;

}

/* Assign the designation to the variable designation. */
public void empDesignation (String empDesig) {
designation = empDesig;

}

/* Assign the salary to the variablesalary. */
public void empSalary (double empSalary) {

salary = empSalary;

}

/* Print the Employee details */

public void printEmployee () {

System. out. println(“Name:”+ name);

System. out. println(“Age:” + age);

System. out. println(“Designation:” + designation);
System. out. println(“Salary:” + salary);

}

}

As mentioned previously in this tutorial processing starts from
the main method. Therefore in-order for us to run this Employee
class there should be main method and objects should be created.
We will be creating a separate class for these tasks. Given below is

90

Computer Graphics in Java

the EmployeeTest class which creates two instances of the class
Employee and invokes the methods for each object to assign values
for each variable.

Save the following code in EmployeeTest. java file
import java. io. *;
public class EmployeeTest {
public static void main(String args|[]) {
/* Create two objects using constructor */
Employee empOne = new Employee (“James Smith”);
Employee empTwo = new Employee(“Mary Anne”);
// Invoking methods for each object created
empOne. empAge (26);
empOne. empDesignation (“Senior Software Engineer”);
empOne. empSalary(1000);
empOne. printEmployee();
empTwo. empAge (21);
empTwo. empDesignation (“Software Engineer”);
empTwo. empSalary(500);
empTwo. printEmployee();
}
}

Now compile both the classes and then run EmployeeTest to see the

result as follows:

C:> javac Employee. java

C:> vi EmployeeTest. java
C:> javac EmployeeTest. java
C:> java EmployeeTest
Name:James Smith

Age:26

Designation:Senior Software Engineer
Salary:1000. O

Name:Mary Anne

Age:21

Designation:Software Engineer
Salary:500. O

Fields, Methods, and Access Levels

* Java classes contain fields and methods. A field is like a C++
data member, and a method is like a C++ member function.

* Each field and method has an access level:

91

Computer Graphics in Java

- Private: Accessible only in this class.
- (package): Accessible only in this package.

- Protected: accessible only in this package and in all subclasses
of this class.

- Public: accessible everywhere this class is available

* Similarly, each class has one of two possible access levels:
- (Package): Class objects can only be declared and manipulated
by code in this package
- Public: Class objects can be declared and manipulated by code
in any package
Note: For both fields and classes, package access is the default,

and is used when no access is specified.
Simple Example Class

Here's a (partial) example class; a List is an ordered collection of items
of any type:

class List {

// £fields

private Object [] items; // store the items in an array
private int numItems;// the current # of items in the
list

// methods

// constructor function

public List ()

{
items = new Object[10];
numItems = 0;

}

// AddToEnd: add a given item to the end of the 1list
public void AddToEnd (Object ob)

{. . .1}

}

Notes:

* Object: Object-oriented programming involves inheritance.
In Java, all classes (built-in or user-defined) are (implicitly)
subclasses of Object. Using an array of Object in the List
class allows any kind of Object (an instance of any class)

92

Computer Graphics in Java

to be stored in the list. However, primitive types (int, char,
etc) cannot be stored in the list.

* Constructor Function: As in C++, constructor functions in Java:

- Are used to initialise each instance of a class.
- Have no return type (not even void).

- Can be overloaded; you can have multiple constructor
functions, each with different numbers and/or types of
arguments.

If you don’t write any constructor functions, a default (no-
argument) constructor (that doesn’t do anything) will be supplied.
If you write a constructor that takes one or more arguments, no
default constructor will be supplied (so an attempt to create a new
object without passing any arguments will cause a compile-time
error).

It is often useful to have one constructor call another (for
example, a constructor with no arguments might call a constructor
with one argument, passing a default value). The call must be the
first statement in the constructor. It is performed using this as if it
were the name of the method.

For example:
this(10);
is a call to a constructor that expects one integer argument.

* Initialisation of Fields: If you don’t initialise a field (i. e. ,
either you don’t write any constructor function, or your
constructor function just doesn’t assign a value to that
field), the field will be given a default value, depending
on its type. The values are the same as those used to
initialise newly created arrays (see the “Java vs C++”
notes).

* Access Control: Note that the access control must be
specified for every field and every method; there is no

93

Computer Graphics in Java

grouping as in C++. For example, given these declarations:
public
int x;
int y;
only x is public; y gets the default, package access.

Static Fields and Methods

* Fields and methods can be declared static (this is true in
C++, too). If a field is static, there is only one copy for the
entire class, rather than one copy for each instance of the
class. (In fact, there is a copy of the field even if there are

no instances of the class.)

For example, we could add the following field to the List class:

static int numLists = O0;

And the following statement to the List constructor:
numLists++;

Now every time a new List object is created, the numLists
variable is incremented; so it maintains a count of the total number
of Lists created during programme execution. Every instance of a
List could access this variable (could both read it and write into
it), and they would all be accessing the same variable, not their own
individual copies. A method should be made static when it does
not access any of the non-static fields of the class, and does not
call any non-static methods. (In fact, a static method cannot access
non-static fields or call non-static methods.) Methods that would
be “free” functions in C++ (i. e., not members of any class) should
be static methods in Java. Also, methods that are logically
associated with a particular class, but that only manipulate the
class’s static fields should be static.

For example, if we wanted a function to print the current value
of the numlLists field defined above, that function should be
defined as a static method of the List class.

94

Computer Graphics in Java

A public static field or method can be accessed from outside the class

using either the usual notation:
class-object. field-or-method—name

or using the class name instead of the name of the class object:
class-name. field-or-method-name

For example, if the numlLists field is public, and there is a
variable L of type List, the numLists field can be accessed using
either L. numlLists or List. numLists. Similarly, if the List class
includes a public static method PrintNumlLists, then the method
can be called using either L. PrintNumlLists() or List.
PrintNumLists(). The preferred way to access a static field or a static
method is using the class name (not using a class object). This is
because it makes it clear that the field or method being accessed is

static.

Final Fields and Methods

* Fields and methods can also be declared final. A final
method cannot be overridden in a subclass. A final field is
like a constant: once it has been given a value, it cannot be
assigned to again. For example, the constructor function
for the List class initialises the “items” field to (point to)
an array of size 10. It would probably be better to use a
constant for the initial size of the array.

Only a single copy of the constant is needed for the whole class, not
one for every class instance, so it would be appropriate to make

the field static as well as final:
private static final int INITIAL_SIZE = 10;

The assignment statement in the constructor function would change

to:
items = new Object[INITIAL SIZE];

95

Computer Graphics in Java

Objects

When you look at the world around you, what do you see?
You see objects. In programming, objects are nothing more than
representations of things. It's actually pretty simple. The world
around you is a representation of stuff. You look at something,
and you can probably tell me its characteristics. It's an object. It
may be more specific than that, it might be a car object or a
keyboard object or a person object, but it is still an object. Java has
a slightly different definition but it is almost identical to a real-life
object.

Objects are key to understanding object-oriented technology.
Look around right now and you’ll find many examples of real-
world objects: your dog, your desk, your television set, your
bicycle.

Real-world objects share two characteristics: They all have state
and behaviour. Dogs have state (name, colour, breed, hungry) and
behaviour (barking, fetching, wagging tail). Bicycles also have state
(current gear, current pedal cadence, current speed) and behaviour
(changing gear, changing pedal cadence, applying brakes).
Identifying the state and behaviour for real-world objects is a great
way to begin thinking in terms of object-oriented programming.

Take a minute right now to observe the real-world objects that
are in your immediate area. For each object that you see, ask
yourself two questions: “What possible states can this object be
in?” and “What possible behaviour can this object perform?”. Make
sure to write down your observations. As you do, you'll notice
that real-world objects vary in complexity; your desktop lamp may
have only two possible states (on and off) and two possible
behaviourss (turn on, turn off), but your desktop radio might have
additional states (on, off, current volume, current station) and

96

Computer Graphics in Java

behaviour (turn on, turn off, increase volume, decrease volume,
seek, scan, and tune). You may also notice that some objects, in
turn, will also contain other objects. These real-world observations

all translate into the world of object-oriented programming.

Methods
(Behavior)

Fig. A Software Object.

Software objects are conceptually similar to real-world objects:
they too consist of state and related behaviour. An object stores its
state in fields (variables in some programming languages) and
exposes its behaviour through methods (functions in some
programming languages). Methods operate on an object’s internal state
and serve as the primary mechanism for object-to-object
communication. Hiding internal state and requiring all interaction to
be performed through an object’s methods is known as data
encapsulation —a fundamental principle of object-oriented programming.

Consider a bicycle, for example:

18 mph

/ Changa

Gears // 90 rpm
Change
Cadence

5th Gear

Fig. A Bicycle Modeled as a Software Object.

97

Computer Graphics in Java

By attributing state (current speed, current pedal cadence, and
current gear) and providing methods for changing that state, the
object remains in control of how the outside world is allowed to use
it. For example, if the bicycle only has 6 gears, a method to change
gears could reject any value that is less than 1 or greater than 6.

Bundling code into individual software objects provides a number of
benefits, including:

* Modularity: The source code for an object can be written and
maintained independently of the source code for other
objects. Once created, an object can be easily passed around
inside the system.

* Information-hiding: By interacting only with an object’s
methods, the details of its internal implementation remain
hidden from the outside world.

* Code re-use: If an object already exists (perhaps written by
another software developer), you can use that object in
your programme. This allows specialists to implement/
test/debug complex, task-specific objects, which you can
then trust to run in your own code.

* Pluggability and Debugging Ease: If a particular object turns
out to be problematic, you can simply remove it from your
application and plug in a different object as its replacement.
This is analogous to fixing mechanical problems in the real
world. If a bolt breaks, you replace it, not the entire

machine.
Methods

A Java method is a collection of statements that are grouped
together to perform an operation. When you call the System. out.
println method, for example, the system actually executes several

98

Computer Graphics in Java

statements in order to display a message on the console. Now you
will learn how to create your own methods with or without return
values, invoke a method with or without parameters, overload
methods using the same names, and apply method abstraction in

the programme design.
Creating a Method

In general, a method has the following syntax:

modifier returnValueType methodName (list of parameters) ({
// Method body;
}

A method definition consists of a method header and a method
body.
Here are all the parts of a method:
* Modifiers: The modifier, which is optional, tells the compiler
how to call the method. This defines the access type of the
method.

* Return Type: A method may return a value. The
returnValueType is the data type of the value the method
returns. Some methods perform the desired operations
without returning a value. In this case, the returnValueType
is the keyword void.

* Method Name: This is the actual name of the method. The
method name and the parameter list together constitute
the method signature.

* Parameters: A parameter is like a placeholder. When a
method is invoked, you pass a value to the parameter. This
value is referred to as actual parameter or argument. The
parameter list refers to the type, order, and number of the
parameters of a method. Parameters are optional; that is,

a method may contain no parameters.

99

Computer Graphics in Java

* Method Body: The method body contains a collection of

statements that define what the method does.

Define a Method

Modifier ReturnValue Type Method Name Formal Parameters

'

P
— Public Static Int Max{(Int Numi. IntNum2) {
J

Method
Header

Int Result;

Method |

Body If (Num 1 > Num2) Parameter List
Result = Num 1;

Else

Ret Val
Hesult:Numz/ eturn Value

Return Result :

Note: In certain other languages, methods are referred to as
procedures and functions. A method with a nonvoid return value
type is called a function; a method with a void return value type is

called a procedure.
Example

Here is the source code of the above defined method called
max().
This method takes two parameters numl and num?2 and returns the

maximum between the two:

/** Return the max between two numbers */
public static int max(int numl, int num2) {
int result;

if (numl > num2)

result = numl;
else
result = num2;

return result;

}
Calling a Method

In creating a method, you give a definition of what the method
is to do. To use a method, you have to call or invoke it. There are
two ways to call a method; the choice is based on whether the

100

Computer Graphics in Java

method returns a value or not. When a programme calls a method,
programme control is transferred to the called method. A called
method returns control to the caller when its return statement is
executed or when its method-ending closing brace is reached.

If the method returns a value, a call to the method is usually treated

as a value. For example:
int larger = max (30, 40);

If the method returns void, a call to the method must be a
statement. For example, the method println returns void. The

following call is a statement:
System. out. println(“Welcome to Javal!”);

Example

Following is the example to demonstrate how to define a method and

how to call it:

public class TestMax {
/** Main method */
public static void main(String[] args) {

int i = 5;
int j = 2;
int k = max(i, 3J);

System. out. println(“The maximum between “ + i +
“and Y + j + “ is “ + k);

}

/** Return the max between two numbers */

public static int max(int numl, +int num2) {

int result;

if (numl > num2)

result = numl;
else
result = num2;

return result;

}
This would produce following result:
The maximum between 5 and 2 is 5

This programme contains the main method and the max
method. The main method is just like any other method except

101

Computer Graphics in Java

that it is invoked by the JVM. The main method’s header is always
the same, like the one in this example, with the modifiers public
and static, return value type void, method name main, and a
parameter of the String[] type. String[] indicates that the parameter
is an array of String.

The Void Keyword

This section shows how to declare and invoke a void method.
Following example gives a programme that declares a method
named printGrade and invokes it to print the grade for a given

score.

Example

public class TestVoidMethod ({
public static void main(String[] args) {
printGrade (78. 5);

}

public static void printGrade (double score) {
if (score >= 90. 0) {

System. out. println(‘A’);

}

else if (score >= 80. 0) {
System. out. println(‘B’);

}

else if (score >= 70. 0) {
System. out. println(‘C’);

}

else if (score >= 60. 0) {
System. out. println(‘'D’);

}

else {

System. out. println(‘F’);

}

}

}

This would produce following result:
C

102

Computer Graphics in Java

Here the printGrade method is a void method. It does not
return any value. A call to a void method must be a statement. So,
it is invoked as a statement in line 3 in the main method. This

statement is like any Java statement terminated with a semicolon.
Passing Parameters by Values

When calling a method, you need to provide arguments, which
must be given in the same order as their respective parameters in
the method specification. This is known as parameter order
association.

For example, the following method prints a message n times:

public static void nPrintln(String message, int n) {
for (int i = 0; i < n; i++)
System. out. println (message);

}
Here, you can use nPrintIn(“Hello”, 3) to print “Hello” three

times. The nPrintIn(“Hello”, 3) statement passes the actual string
parameter, “Hello”, to the parameter, message; passes 3 to n; and
prints “Hello” three times. However, the statement nPrintln(3,
“Hello”) would be wrong. When you invoke a method with a
parameter, the value of the argument is passed to the parameter.
This is referred to as pass-by-value. If the argument is a variable
rather than a literal value, the value of the variable is passed to
the parameter. The variable is not affected, regardless of the
changes made to the parameter inside the method.

For simplicity, Java programmers often say passing an
argument x to a parameter y, which actually means passing the
value of x to y.

Example

Following is a programme that demonstrates the effect of
passing by value. The programme creates a method for swapping

103

Computer Graphics in Java

two variables. The swap method is invoked by passing two
arguments. Interestingly, the values of the arguments are not

changed after the method is invoked.

public class TestPassByValue {
public static void main(String[] args) {

int numl = 1;

int num2 = 2;

System. out. println(“Before swap method, numl is “ +
numl + “ and num2 is “ + num2);

// Invoke the swap method

swap (numl, num2);

System. out. println(“After swap method, numl is “ +
numl + “ and num2 is “ + num2);

}

/** Method to swap two variables */

public static void swap(int nl, int n2) {

System. out. println(“\tInside the swap method”);
System. out. println(“\t\tBefore swapping nl is “ + nl
+ Y n2 is “ + n2);

// Swap nl with n2

int temp = nl;

nl = n2;

n2 = temp;

System. out. println(“\t\tAfter swapping nl is “ + nl
+ Y n2 is “ + n2);

}

}

This would produce following result:

Before swap method, numl is 1 and num2 is 2
Inside the swap method

Before swapping nl is 1 n2 is 2

After swapping nl is 2 n2 is 1

After swap method, numl is 1 and num2 is 2

Overloading Methods

The max method that was used earlier works only with the int
data type. But what if you need to find which of two floating-point
numbers has the maximum value?

The solution is to create another method with the same name but
different parameters, as shown in the following code:

104

Computer Graphics in Java

public static double max(double numl, double num2) {
if (numl > num2)

return numl;

else

return num2;

}
If you call max with int parameters, the max method that

expects int parameters will be invoked; if you call max with double
parameters, the max method that expects double parameters will
be invoked. This is referred to as method overloading; that is, two
methods have the same name but different parameter lists within
one class. The Java compiler determines which method is used
based on the method signature. Overloading methods can make
programmes clearer and more readable. Methods that perform
closely related tasks should be given the same name.
Overloaded methods must have different parameter lists. You
cannot overload methods based on different modifiers or return
types. Sometimes there are two or more possible matches for an
invocation of a method due to similar method signature, so the
compiler cannot determine the most specific match. This is referred

to as ambiguous invocation.
The Scope of Variables

The scope of a variable is the part of the programme where
the variable can be referenced. A variable defined inside a method
is referred to as a local variable. The scope of a local variable starts
from its declaration and continues to the end of the block that
contains the variable. A local variable must be declared before it
can be used.

A parameter is actually a local variable. The scope of a method
parameter covers the entire method. A variable declared in the initial
action part of a for loop header has its scope in the entire loop. But

105

Computer Graphics in Java

a variable declared inside a for loop body has its scope limited in
the loop body from its declaration to the end of the block that

contains the variable as shown below:

Public Static Void Method 1 () {

—— For{Inti=1:i<10:i++)}{

The Scope of i E—

Int j;
The Scope of j —{ .
}

}

You can declare a local variable with the same name multiple
times in different non-nesting blocks in a method, but you cannot

declare a local variable twice in nested blocks.
Using Command-Line Arguments

Sometimes you will want to pass information into a
programme when you run it. This is accomplished by passing
command-line arguments to main(). A command-line argument
is the information that directly follows the program’s name on the
command line when it is executed. To access the command-line
arguments inside a Java programme is quite easy. They are stored

as strings in the String array passed to main().
Example

The following programme displays all of the command-line arguments
that it is called with:

class CommandLine {

public static void main(String args|[]) {
for (int i=0; i<args. length; i++) {

System. out. println(“args[“ + i + “]: “ +
args[i]);

}

}

106

Computer Graphics in Java

Try executing this programme, as shown here:

java CommandLine this is a command line 200 -100
This would produce following result:

args[0]: this

args[l]: is

args[2]: a

args[3]: command

args[4]: line

args[5]: 200

args[6]: -100

The Constructors

A constructor initialises an object when it is created. It has the
same name as its class and is syntactically similar to a method.
However, constructors have no explicit return type. Typically, you
will use a constructor to give initial values to the instance variables
defined by the class, or to perform any other startup procedures
required to create a fully formed object.

All classes have constructors, whether you define one or not,
because Java automatically provides a default constructor that
initialises all member variables to zero. However, once you define

your own constructor, the default constructor is no longer used.
Example

Here is a simple example that uses a constructor:
// A simple constructor.
class MyClass {
int x;
// Following is the constructor
MyClass () {
x = 10;
}
}

You would call constructor to initialise objects as follows:

class ConsDemo {
public static void main(String args[]) {

107

Computer Graphics in Java

MyClass t1l new MyClass();

MyClass t2 new MyClass();

System. out. println(tl. x + ™ “ + t2. x);
}

}

Most often you will need a constructor that accepts one or more
parameters. Parameters are added to a constructor in the same way
that they are added to a method:just declare them inside the

parentheses after the constructor’s name.
Example

Here is a simple example that uses a constructor:
// A simple constructor.
class MyClass {
int x;
// Following is the constructor
MyClass(int i) {
X = 1i;
}
}
You would call constructor to initialise objects as follows:

class ConsDemo ({

public static void main(String args[]) {
MyClass tl = new MyClass(10);

MyClass t2 = new MyClass(20);

System. out. println(tl. x + “ “ + t2. x);
}

}

This would produce following result:
10 20

Variable Arguments(var-args)

JDK 1. 5 enables you to pass a variable number of arguments
of the same type to a method.

The parameter in the method is declared as follows:
typeName. . . parameterName

In the method declaration, you specify the type followed by
an ellipsis (. . .) Only one variable-length parameter may be

108

Computer Graphics in Java

specified in a method, and this parameter must be the last

parameter. Any regular parameters must precede it.

Example

public class VarargsDemo {

public static wvoid main(String args[]) {

// Call method with variable args
printMax (34, 3, 3, 2, 56. 5);

printMax (new double[]{1l, 2, 3});

}

public static void printMax(double. . . numbers) {
if (numbers. length == 0) {

System. out. println(“No argument passed”);

return;

}

double result = numbers[0];

for (int i = 1; i < numbers. length; i++)

if (numbers[i] > result)

result = numbers[i];

System. out. println(“The max value is “ + result);

}
}

This would produce following result:

The max value is 56. 5
The max value is 3. 0

The finalise() Method

It is possible to define a method that will be called just before
an object’s final destruction by the garbage collector. This method
is called finalise(), and it can be used to ensure that an object
terminates cleanly.

For example, you might use finalise() to make sure that an
open file owned by that object is closed. To add a finaliser to a
class, you simply define the finalise() method. The Java runtime
calls that method whenever it is about to recycle an object of that
class. Inside the finalise() method you will specify those actions
that must be performed before an object is destroyed.

109

Computer Graphics in Java

The finalise() method has this general form:
protected void finalise()

{

// finalisation code here
}
Here, the keyword protected is a specifier that prevents access

to finalise() by code defined outside its class.
This means that you cannot know when. or even if. finalise()
will be executed. For example, if your programme ends before

garbage collection occurs, finalise() will not execute.
Naming a Method

Although a method name can be any legal identifier, code
conventions restrict method names. By convention, method names
should be a verb in lowercase or a multi-word name that begins
with a verb in lowercase, followed by adjectives, nouns, etc. In
multi-word names, the first letter of each of the second and
following words should be capitalised.

Here are some examples:

run
runFast
getBackground
getFinalData
compareTo
setX

isEmpty

Typically, a method has a unique name within its class.
However, a method might have the same name as other methods
due to method overloading.

Overloading Methods

The Java programming language supports overloading methods,
and Java can distinguish between methods with different method
signatures. This means that methods within a class can have the

110

Computer Graphics in Java

same name if they have different parameter lists (there are some
qualifications to this that will be discussed in the lesson titled
“Interfaces and Inheritance”).

Suppose that you have a class that can use calligraphy to draw
various types of data (strings, integers, and so on) and that contains
a method for drawing each data type.

It is cumbersome to use a new name for each method —for
example, drawString, drawlInteger, drawFloat, and so on.

In the Java programming language, you can use the same name
for all the drawing methods but pass a different argument list to
each method. Thus, the data drawing class might declare four

methods named draw, each of which has a different parameter list.
public class DataArtist ({

public void draw(String s) {

}

public void draw(int i) {

}

public void draw(double f) {

}

public void draw(int i, double f) {
}

}

Overloaded methods are differentiated by the number and
the type of the arguments passed into the method. In the code
sample, draw(String s) and draw(int i) are distinct and unique
methods because they require different argument types. You
cannot declare more than one method with the same name and
the same number and type of arguments, because the compiler
cannot tell them apart.

111

Computer Graphics in Java

The compiler does not consider return type when
differentiating methods, so you cannot declare two methods with
the same signature even if they have a different return type.

Note: Overloaded methods should be used sparingly, as they

can make code much less readable.
Strings

In Java strings are objects designed to represent a sequence of
characters. Because character strings are commonly used in
programmes, Java supports the ability to declare String constants
and perform concatenation of Strings directly without requiring
access to methods of the String class. This additional support
provided for Java Strings allows programmers to use Strings in a
similar manner as other common programming languages.

* A Java String is read-only and once created the contents

cannot be modified. Strings, which are widely used in Java
programming, are a sequence of characters. In the Java

programming language, strings are objects.
Creating Strings

The most direct way to create a string is to write:
String greeting = “Hello world!”;

In this case, “Hello world!” is a string literal —a series of
characters in your code that is enclosed in double quotes. Whenever
it encounters a string literal in your code, the compiler creates a
String object with its value—in this case, Hello world!. As with
any other object, you can create String objects by using the new
keyword and a constructor.

The String class has thirteen constructors that allow you to provide
the initial value of the string using different sources, such as an array of

characters:

112

Computer Graphics in Java

char[] helloArray = { ‘h’, ‘e’, ‘1’, ‘1’, ‘o', ‘. ' };
String helloString = new String(helloArray);
System. out. println(helloString);

The last line of this code snippet displays hello.

Note: The String class is immutable, so that once it is created a
String object cannot be changed. The String class has a number of
methods, some of which will be discussed below, that appear to
modify strings. Since, strings are immutable, what these methods
really do is create and return a new string that contains the result

of the operation.
String Length

Methods used to obtain information about an object are known
as accessor methods. One accessor method that you can use with
strings is the length() method, which returns the number of
characters contained in the string object.

After the following two lines of code have been executed, len equals
17:

String palindrome = “Dot saw I was Tod”;
int len = palindrome. length();

A palindrome is a word or sentence that is symmetric —it is
spelled the same forward and backward, ignoring case and
punctuation. Here is a short and inefficient programme to reverse
a palindrome string. It invokes the String method charAt(i), which

returns the i character in the string, counting from 0.

public class StringDemo {

public static void main(String[] args) {
String palindrome = “Dot saw I was Tod”;
int len = palindrome. length();

char[] tempCharArray = new char[len];
char[] charArray = new char[len];

// put original string in an

// array of chars

for (int i = 0; i < len; i++) {
tempCharArray[i] =

113

Computer Graphics in Java

palindrome. charAt (i);

}

// reverse array of chars

for (int j = 0; j < len; j++) {
charArray[j] =
tempCharArray[len-1-3j];

}

String reversePalindrome =

new String(charArray);

System. out. println(reversePalindrome);
}

}

Running the programme produces this output:
doT saw I was toD

To accomplish the string reversal, the programme had to
convert the string to an array of characters (first for loop), reverse
the array into a second array (second for loop), and then convert
back to a string. The String class includes a method, getChars(), to
convert a string, or a portion of a string, into an array of characters
so we could replace the first for loop in the programme above with
palindrome. getChars (0, len, tempCharArray, 0);

Concatenating Strings

The String class includes a method for concatenating two
strings:
stringl. concat (string2);

This returns a new string that is stringl with string? added to
it at the end.

You can also use the concat() method with string literals, as in:
“My name is “. concat (“Rumplestiltskin”);

Strings are more commonly concatenated with the + operator,
as in
“Hello, ” + ™ world” + “!”

which results in
“Hello, world!”

The + operator is widely used in print statements.

114

Computer Graphics in Java

For example:

String stringl = “saw I was “;
System. out. println(“Dot “ + stringl + “Tod”);

which prints
Dot saw I was Tod

Such a concatenation can be a mixture of any objects. For each
object that is not a String;, its toString() method is called to convert
it to a String.

Note: The Java programming language does not permit literal
strings to span lines in source files, so you must use the +
concatenation operator at the end of each line in a multi-line string.

For example:

String quote =
“"Now is the time for all good ™ +
“men to come to the aid of their country. ”;

Breaking strings between lines using the + concatenation

operator is, once again, very common in print statements.
Creating Format Strings

You have seen the use of the printf() and format() methods to
print output with formatted numbers.

The String class has an equivalent class method, format(), that
returns a String object rather than a PrintStream object. Using
String’s static format() method allows you to create a formatted
string that you can reuse, as opposed to a one-time print statement.

For example, instead of

System. out. printf (“The value of the float “ +
“variable is %f, while “ +

“the value of the ™ +

“integer variable is %d, “ +

“and the string is %s”,

floatvar, intVvar, stringVar);

you can write
String f£s;

115

Computer Graphics in Java

fs = String. format (“The value of the float ™ +
“variable is %f, while “ +

“the value of the ™ +

“integer variable is %d, “ +

“ and the string is %s”,

floatVar, intVar, stringVar);

System. out. println(fs);

String Class

The String class is commonly used for holding and
manipulating strings of text in Java programmes. It is found in the
standard java. lang package which is automatically imported, so
you don’t need to do anything special to wuse it.
In its simplest form, you use the String class by typing some text
surrounded by double quotes.

This is called a String literal.
"This is a Java String”

Anywhere you need a String object, you can type a String literal as
in:
Console. println(“Hello there!”);

Concatenation

Strings are special types of objects in that you can add them
together using the “+” operator and get a longer string that is a
concatenation of the two.

Thus, the code:

String name = “Bill”;

String introduction = “Hello there, my name is “ + name;
Console. println(introduction);

will print Hello there, my name is Bill

on the console.

String representation of Objects

All Java objects implement the method toString() which returns
a String object that best “describes” that object. For example, if you
can print out a red colour object using

116

Computer Graphics in Java

Colour colour = new Colour(255, 0, 0);
String colorStr = colour. toString();
Console. println(colorStr);

This will printout:
java. awt. Colour[r=255, g=0, b=0]

In this case you do not even need to explicitly call toStringy().
The println() method has a version that takes an Object as its
argument. This version will implicitly call toString() for you and
print the result.

This implicit conversion to a String also happens when
concatenating a String object with another object type.

For example, you could type:

Colour colour = new Colour(255, 0, 0);
String str = “My colour looks like: “ + colour;
Console. println(str);

And you would get the following on the console:
My colour looks like: java. awt. Colour[r=255, g=0, b=0]

String API

It would probably be useful for you to at least scan the API to
see what other interesting things you can do with Strings.

There are methods for:

* Getting the character at a given position within the string —
charAt().

* Seeing if a character or string exists within a string—
indexOf().

* Getting the number of characters in a string—length().

* Extracting a substring from a string —substring().

117

S

Distinction from Photorealistic 2D
Graphics Design

Not all computer graphics that appear 3D are based on
a wireframe model. 2D computer graphics with 3D
photorealistic effects are often achieved without wireframe
modeling and are sometimes indistinguishable in the final
form. Some graphic art software includes filters that can
be applied to 2D vector graphics or 2D raster graphics on
transparent layers. Visual artists may also copy or visualize
3D effects and manually render photorealistic effects without
the use of filters.

Modelling

3D Modelling

Modelling is the process of taking a shape and moulding it
into a completed 3D mesh. The most typical means of creating

Computer Graphics in Java

a 3D model is to take a simple object, called a primitive, and
extend or “grow” it into a shape that can be refined and
detailed. Primitives can be anything from a single point (called
avertex), a two-dimensional line (an edge), a curve (a spline),
to three dimensional objects (faces or polygons). Using the
specific features of your chosen 3D software, each one of
these primitives can be manipulated to produce an object.
When you create a model in 3D, you’ll usually learn one
method to create your model, and go back to it time and
again when you need to create new models. There are three
basic methods you can use to create a 3D model, and 3D
artists should understand how to create a model using each
technique.

e Spline or Patch Modelling: A spline is a curve in 3D
space defined by at least two control points. The
most common splines used in 3D art are bezier
curves and NURBS (the software Maya has a strong
NURBS modelling foundation.) Using splines to
create a model is perhaps the oldest, most traditional
form of 3D modelling available. A cage of splines is
created to form a “skeleton” of the object you want
to create. The software can then create a patch of
polygons to extend between two splines, forming a
3D skin around the shape. Spline modelling is not
used very often these days for character creation,
due to how long it takes to create good models. The
models that are produced usually aren’t useful for
animation without a lot of modification.
Spline modelling is used primarily for the creation
of hard objects, like cars, buildings, and furniture.

119

Computer Graphics in Java

Splines are extremely useful when creating these
objects, which may be a combination of angular and
curved shapes. When creating a 3D scene that
requires curved shapes, spline modelling should be
your first choice.

Box Modelling: Box modelling is possibly the most
popular technique, and bears a lot of resemblance
to traditional sculpting. In box modelling, one starts
with a primitive (usually a cube) and begins adding
detail by “slicing” the cube into pieces and extending
faces of the cube to gradually create the form you're
after. People use box modelling to create the basic
shape of the model. Once practiced, the technique
is very quick to get acceptable results. The downside
is that the technique requires a lot of tweaking of
the model along the way. Also, it is difficult to create
a model that has a surface topology that lends well
to animation. Box modelling is useful as a way to
create organic models, like characters. Box modellers
can also create hard objects like buildings, however
precise curved shapes may be more difficult to create
using this technique.

Poly Modelling/ edge Extrusion: While it’'s not the
easiest to get started with, poly modelling is perhaps
the most effective and precise technique. In poly
modelling, one creates a 3D mesh point-by-point,
face-by-face. Often one will start out with a single
quad (a 3D object consisting of 4 points) and extrude
an edge of the quad, creating a second quad attached
to the first. The 3D model is created gradually in

120

Computer Graphics in Java

this way. While poly modelling is not as fast as box
modelling, it requires less tweaking of the mesh to
get it “just right,” and you can plan out the topology
for animation ahead of time. Poly modellers use the
technique to create either organic or hard objects,
though poly modelling is best suited for organic
models.

A Workflow that Works The workflow you choose to create
a model will largely depend on how comfortable you are with
a given technique, what object you're creating, and what your
goals are for the final product. Someone who is creating an
architectural scene, for example, may create basic models
with cubes and other simple shapes to create an outline of
the finished project. Meshes can then be refined or replaced
with more detailed objects as you progress through the
project. This is an organized, well-planned way to create a
scene; it is a strategy used by professionals that makes scene
creation straightforward. Beginners, on the other hand, tend
to dive in headfirst and work on the most detailed objects
first. This is a daunting way to work, and can quickly lead to
frustration and overwhelm.

Remember, sketch first, then refine. Likewise, when
creating an organic model, beginners tend to start with the
most detailed areas first, and flesh out the remaining parts
later, a haphazard way to create a character. This may be
one reason why box modelling has grown to be so widely
popular. A modeller can easily create the complete figure
before refining the details, like eyes, lips, and ears. Perhaps
the best strategy is to use a hybrid workflow when creating
organic models. A well planned organic model is created using

121

Computer Graphics in Java

a combination of box modelling and poly modelling. The arms,
legs, and torso can be sketched out with box modelling, while
the fine details of the head, hands, and feet are poly modelled.
This is a compromise professional modellers seek which
prevents them from getting bogged down in details.

It can make the difference between a completed
character, and one that is never fleshed out beyond the
head. Beginners would be wise to follow this advice. Mesh
Topology Another aspect of proper workflow is creating a
model with an ideal 3D mesh topology. Topology
optimization is usually associated with creating models
used in animation. Models created without topology that
flows in a smooth, circular pattern, may not animate
correctly, which is why it is important to plan ahead when
creating any 3D object that will be used for animation.
The most frequently discussed topology is the proper
creation or placement of edgeloops. An edgeloop is a ring
of polygons placed in an area where the model may deform,
as in the case of animation.

These rings of polygons are usually placed around areas
where muscles might be, such as in the shoulder or elbow.
Edegeloop placement is critical when creating faces. When
edgeloops are ignored, models will exhibit “tearing” when
animated, and the model will need to be reworked or scrapped
altogether in favour of a properly-planned model. Next Steps
The next step to creating great models is simply to practice
and examine the work of artists you admire. Some of the
best 3D modellers are also fantastic pencil-and-paper artists.
It will be well worth your time to practice drawing, whether
you're a character creator or a wanna-be architect.

122

Computer Graphics in Java

Good modelling requires a lot of dedication. You’'ll need to
thoroughly understand the software you're using, and the
principles of good 3D model creation laid out aboe. Character
artists will need to learn proportion and anatomy. The model
describes the process of forming the shape of an object. The
two most common sources of 3D models are those that an
artist or engineer originates on the computer with some kind
of 3D modelling tool, and models scanned into a computer
from real-world objects. Models can also be produced
procedurally or via physical simulation. Basically, a 3D model
is formed from points called vertices (or vertexes) that define
the shape and form polygons. A polygon is an area formed
from at least three vertexes (a triangle). A four-point polygon
is a quad, and a polygon of more than four points is an n-
gort The overall integrity of the model and its suitability to
use in animation depend on the structure of the polygons.

Layout and Animation

Before rendering into an image, objects must be placed
(laid out) in a scene. This defines spatial relationships between
objects, including location and size. Animation refers to the
temporal description of an object, i.e. how it moves and
deforms over time. Popular methods include keyframing,
inverse kinematics, and motion capture. These techniques
are often used in combination. As with modelling, physical
simulation also specifies motion.

3D Rendering

For those of us used to working in Photoshop and
Mlustrator it is important to realise that all that work is 2D,
or two-dimensional. Photographs of real objects or painting

123

Computer Graphics in Java

them from scratch in Painter, they are still 2D. This is because
we are either working with a pixel representation or flat
objects, like lines, text, paths, etc.

This is true even if we are attempting to simulate a 3D
look. In 3D work, or three dimensions, we are producing a
description of real objects with depth, scenes comprising
many objects and the spatial relationships between them,
along with the required lighting arrangements and viewing
characteristics. The end result of 3D work is still usually
2D. This is either a still image or an animation, but it’s still
made up of pixels. In an ideal world our output would be
three-dimensional too, as in a holographic projection or even
a sculpture. This is a limitation of the output technologies
that we have to work with at present, rather than an inherent
characteristic of 3D work. Since, 3D printers exist (they are
actually more like a numerically controlled milling machine
in some ways), as do using LCD shutter glasses for direct 3D
display, working completely in 3D is possible, just not the
normal use.

Deep down, usually buried deep inside the software, our
3D work consists of rather mathematical descriptions of our
scenes, such as place a sphere of radius k, with it’s centre at
x, Yy, z point in space with a surface texture like stone.
Thankfully, we rarely have to deal with the numerical level
unless we choose to. There are good reasons to dive down to
the numerical level at times, such as exact placement. 3D
software is largely click and drag operation these days for
most common operations. It is important to remember that
we are trying to represent things in the three-dimensional
world that we are used to living in. Just as navigating around

124

Computer Graphics in Java

the real world can get you lost, so is it easy to become
disoriented in 3D software.

Keeping Oriented in 3D

In 3D software the convention is to use a set of three
coordinates, x, y and z. Co-ordinates can be absolute or
relative. Absolute coordinates apply to the entire world that
we are creating in the computer. Everything is specified
relative to a universal origin, the centre of your digital
universe, with coordinates of 0,0,0. Positive x values may lie
to the right, negative ones to the left. Positive y values may
be up and negative ones down from the origin. Positive z
may be in front of and negative ones behind the origin.
Absolute coordinates are used to position objects in our scene,
to place cameras and lights, etc. Relative coordinates have
their origin somewhere other than the world origin. For
instance, in creating an object made up of many parts it
may be more convenient to think in terms of positions relative
to what you wish to consider the centre of the object.

How the software works can have an impact on how easy
it is to keep oriented. Some Programmes, like Bryce, display
only one window, so you only have one view of your objects/
scene at a time. Other Programmes, like Vue d’Esprit or
Lightwave, by default give you four views: a front, left and
top view plus the view through the main camera. This last
solution is generally preferred but does tend to work best
when you are using a large, high-resolution screen. This is
why most of the consumer level Programmes use the one
view approach, assuming home users have small screens,
whilst professional software takes the four-view approach.

125

Computer Graphics in Java

The Stages of 3D Work

The following are the main stages of creating a 3D worl:
e Create objects;
e Place objects in relation to each other in scene;
¢ Place light sources;
¢ Place the camera or observer;
e Add textures to objects;
e Add atmospheric effects;
¢ Render to produce a final image or animation movie.

The exact order of this sequence is partly up to you and
partly a function of the software that you are using. For
instance, some software separates the creation of objects
and their placing in the scene (as in Lightwave), others
combine this into one step (as in Bryce). Likewise, sometimes
the textures are placed on objects when you create them.

But they can also be added at the scene creation stage.
Each person gradually finds their own order of working that
suits their needs and the needs of the specific project. For
projects involving many people there may be different
order, or indeed some stages my be performed in parallel,
than for projects where you are doing the whole thing. The
order of steps can affect the performance
of your software. The sequence given tends to produce the
least delays with most software, for reasons that will become
clear as we progress through this series.

Creating objects and placing them in the scene is often
called ‘modelling’. This is because in creating an object and
then a scene we are building a ‘model’ of it in the computer.
Some software even separates the modelling function from
the rest of the software by splitting the process into two

126

Computer Graphics in Java

Programmes. It is quite possible to do the modelling in on
manufacturer’s Programme and the rest of the process in
another. I quite frequently use three different Programmes
for this process, making use of the strengths of each, these
being Poser and Byrce and Lightwave.

Light sources and a camera are necessary if you are to see
anything of the wonderful model you have created. Light
sources and cameras can be treated in much the same way
as any other object. Light sources will have their own, special
characteristics though, like the type of light source, whether
it casts shadows, its colour, etc. The camera also has special
characteristics, like its field of view, resolution of the resulting
image(s), etc.

Rendering is the process of determining what the scene
looks like from the camera position taking into account all
the characteristics of the objects, light sources and their
interaction. Rendering is usually a time consuming process
for any scene of reasonable complexity. This can vary from a
‘go get a cup of coffee’ to Tunch’ up to a whole week, or more.
This is one reason why high complexity rendering of still
images or animations tends to require fast computers and
lots of memory. One reason that the order with which you
create your image(s) is important is that you will usually do
lots of little test renders along the way. Thus you want to
leave the details which really slow the rendering down to as
late in the sequence as possible.

Why Would We Want to Use 3D

We need to represent solid objects, whether in a still image
for an ad or an animation to go in a movie. Since, real world
objects are 3D, there will be times when a 3D representation

127

Computer Graphics in Java

is needed. Sure, we can paint or airbrush a 3D approximation
but it will have a particular look, assuming that we have the
skill level to create it. Working with 3D software creates a
different look.

This can vary from one with a very computer feel to a
photorealistic one, depending on the software and what we
do with it.

The major advantage of working with 3D software is that
it is easy to produce changes. To change the viewpoint
only requires that we move the camera and render. To
change the lighting or reposition objects is equally easy. So
having created a scene once, we can produce many different
images from it. This is like photographing a real scene in
everything from wide-angle to close-up, and from different
positions.

3D software gives you flexibility. This very flexibility allows
you to re-purpose images. You may do an illustration for a
magazine ad and then the client comes back and wants an
animation for a TV ad, or the web. Once you have built the
models, you can re-use them repeatedly

PR W e

Computer Graphics in Java

This screen grab of the old Metacreation’s Infiniti-D 4.5
shows a four window, working environment. Three windows
give front, top and side views whilst the fourth shows the
camera view. This type of display, common to most of the
higher-end 3D packages, works best on a high resolution,
large screen.

d

.

00.00-00.00 Lo~ &

The single view at atimedisplay, like this one from Bryce,
works well on smaller displays. Usually keyboard shortcuts
or button sallow you to switch between views. Whilstnot as
convenient as the four-window display it is quite workable.
It seems natural once you get used to it

This simple cartoon bird was created out of basic object
types and rendered in Infiniti-D 4.5.A background image was
used.

129

Computer Graphics in Java

What Sorts of Objects

In most real scenes, the objects that we might want to
incorporate will be complex. Unfortunately most 3D modellers
and renderers don’t support basic object types like ‘tree’,
‘car’, ‘person’ or ‘house’. Such complex objects have to be
created out of the actual object types that the renderer
supports. The usual basic objects types are flat objects, like
planes and polygons, and 3D objects like spheres, cylinders,
cones, etc. Of course, you can also obtain libraries of already
created objects. Some 3D Programmes come with lots of
these, others few. There are web sites where people place
free ‘models’ that you can download. There are also companies
that specialise in creating ‘models’ that you can buy.

Polygons, for reasons that will become clearer later in this
series, are the mainstay of most 3D modellers and renderers.
A polygon is simply a shape made up of a number of straight
lines, joined together to define a closed shape. The points
that define the end of each line are called a vertex. Different
Programmes allow variations on the basic polygon. Some
Programmes require that polygons be totally flat, that all the
vertices lie in a flat plane. Others allow curved polygons.
Some require all polygons to have either three or four sides.
Others allow you to construct polygons with greater numbers
of sides. Many of these latter ones will actually subdivide the
polygon into three or four sided ones before rendering, though
this is usually hidden from the user. One major advantage
of three sided polygons, triangles, is that they have to be
flat. Only four sided or higher polygons can have some
vertices not in the same plane as the others. A variation on
the polygon that you find in most 3D software is the infinite

130

Computer Graphics in Java

plane. As its name implies this plane is a flat surface that
stretches off into infinity. Infinite planes are useful for things
like water levels, cloud layers, etc.

Polygons are defined by the x, y, z coordinates of their
vertices. It is not unusual to be required to define the vertices
of a polygon in a particular order, such as clockwise or
anticlockwise when looking at the front face of the polygon.
Some software requires this to be able to calculate the surface
normal. Surface normals are incredibly important in 3D work
as they are used to work out how much light is hitting a
surface, and thus it’s colour. The surface normal points up
from the surface of the polygon. Some software treats
polygons as single sided, other software as double sided. 3D
software that has single sided polygons will not display them
if you are looking at their back surface. With such software
if you want a bowl, for example, you have to define polygons
forming both the inside and outside surfaces. Software that
uses double sided polygons does not have this requirement,
one layer of polygons can represent both the inside, and
outside surfaces, though this is not natural, since, the bowl
walls would have no thickness.

Basic 3D objects, like spheres, cylinders, boxes and cones
are also incredibly useful. We can construct planets from
spheres and tree trunks from cylinders, for instance. Since,
these are the basic forms used in the construction of most
man-made, and many natural, objects, they are
indispensable. Many Programmes, when you use one of these,
create the basic object at a standard size. You can then
usually modify the object by stretching it into the form you
want. Other Programmes allow you to stretch out the shape

131

Computer Graphics in Java

when you insert it into the scene. This stretching process
allows you to create oval footballs from a sphere, a rectangular
building from a square cube and a long spear from a squat
cylinder. Most software gives you the choice of doing this
either by typing in numbers or by clicking and dragging.
This stage of modifying the shape of your objects is usually
much easy if you can easily switch between different views
of the object, like front, side and top, either through having
multiple views open at once or by switching views in the one

mig

Boxes, spheres, cylinders, cones, polygons and text objects

window.

are the basic construction components available in most 3D
software, as shown in this render done with Newtek’s Inspire
3D. In some Programmes all these objects are constructed
out of polygons, in others they are primitive objects that are
rendered directly. If you examine the edges of the sphere
and cone you can see that they are constructed out of

polygons.
Creating Composite Objects

If all objects are treated as individual ones, you end up
with a heap of them to try to manage. Since, most basic
objects will actually be used to construct more complex
objects it is useful to be able to group objects together that
form parts of a whole. Thus we might create an object ‘person’

132

Computer Graphics in Java

with parts ‘head’, ‘body’, ‘arm12, ‘arm22, ‘legl2 and ‘leg22.
Then ‘legl12 consists of ‘upper’, lower’ and ‘foot’. And so on.
Building up complex objects out of hierarchies of other parts
makes life a lot easier. If you want to move a whole object
you can simply select the top level and move it, knowing
that all the component parts will move too. Otherwise you
would have to separately select every component and move
them, and hope you didn’t forget some small parts.

Object hierarchies are most flexible when you can give
names to each component part. Such hierarchies are also
essential to making character animation easier. Some
Programmes allow you to readily display object hierarchies
in a diagram form that shows the relationships between parts,
similar to the folder hierarchy views that most operating
systems allow. Software that doesn’t do this is certainly
harder to use for some things.

W View bmers e

3 fie vert Arrange Render windaws hels
Dl@ig) ol sl iiel sfealEnal il siolo s Eevieeiap
x

s B i

e Disle e ls 310 sl

[

ir—.-r.:u_m

This screen grab, from Ray Dream Studio, shows a cartoon
bird and it’s hierarchical construction. Unfortunately too few
Programmes provide this sort of display.

Another type of object related to the above is a polygon
mesh. A mesh is a set of polygons which are joined together
to represent a surface of some complexity. A good example
of this is the polygon mesh that Bryce 3D uses to represent

133

Computer Graphics in Java

the shape of the landscape. The process of creating a polygon
mesh usually does not require that the user manually
position each vertex of each polygon in the mesh. Various
other convenient methods are available. We’ll examine these
in later chapter.

This close-up of part of a bird model in Ray Dream Studio
shows how this Programme tessellates spheres into polygonal
meshes.

There Differences of Approach

There are two choices the software developers have to
make: what primitive objects are to be supported; and what
rendering method is to be used? These two questions are
interrelated.

The rendering method determines what actual primitive
objects the software works with to create images. How we
want the user interface to be will determine what primitive
objects are available to the user. For a number of reasons
that we will examine in the next part of the course, certain

134

Computer Graphics in Java

rendering techniques can only actually support polygons,
whilst others can actually handle spheres, cylinders, etc.
So a Programme that has to use polygons for rendering
will convert a sphere into a polygonal approximation, in a
process called tessellation, before actually rendering an
image. This creates more primitive objects to render but
allows the renderer to be highly optimised for the handling
of polygons. A Programme which can directly support
spheres, say, does not have to do this conversion and thus
renders fewer objects in your scene but requires specialised
Programme code for each object type it supports.

Another use for polygon meshes is to represent irregular
objects, like this landscape in Bryce 3D.

These internal differences in approach are what make some
3D packages good for some types of work and others more
suitable for others. Some will handle transparent objects
superbly, other handle interior lighting well, for example.
Some will make dealing with certain types of objects easy,
whereas others make those objects hard but others easy. It
is for these reasons that many people working with 3D

135

Computer Graphics in Java

software will use a number of packages for different parts of
the process. Whilst this is certainly not necessary, it can be
a useful approach. It’s the same as people using Painter for
some things and Photoshop for others, sometimes switching
backwards and forwards between the two.

—

Ty

The designers of 3D software have to make a complex set
of choices based on their priorities. These choices lead to the
differences in single or double sided polygons, whether
tessellation is done and what types of rendering options are
available, to pick just three.

Some choices will speed up the execution of the Programme
whilst others will slow it down. These tradeoffs account for
the huge variety that we encounter in 3D Programmes.

Distinction from Photorealistic 2D Graphics

Not all computer graphics that appear 3D are based on a
wireframe model. 2D computer graphics with 3D
photorealistic effects are often achieved without wireframe

136

Computer Graphics in Java

modelling and are sometimes indistinguishable in the final
form. Some graphic art software includes filters that can be
applied to 2D vector graphics or 2D raster graphics on
transparent layers. Visual artists may also copy or visualize
3D effects and manually render photorealistic effects without
the use of filters.

3D Modeling

In 3D computer graphics, 3D modeling (also known as
meshing) is the process of developing a mathematical
representation of any three-dimensional surface of object
(either inanimate or living) via specialized software. The
product is called a 3D model. It can be displayed as a two-
dimensional image through a process called 3D rendering
or used in a computer simulation of physical phenomena.
The model can also be physically created using 3D Printing
devices. Models may be created automatically or manually.
The manual modeling process of preparing geometric data
for 3D computer graphics is similar to plastic arts such as
sculpting.

Models

3D models represent a 3D object using a collection of
points in 3D space, connected by various geometric entities
such as triangles, lines, curved surfaces, etc. Being a
collection of data (points and other information), 3D models
can be created by hand, algorithmically (procedural
modeling), or scanned. 3D models are widely used anywhere
in 3D graphics. Actually, their use predates the widespread
use of 3D graphics on personal computers. Many computer
games used pre-rendered images of 3D models as sprites

137

Computer Graphics in Java

before computers could render them in real-time. Today, 3D
models are used in a wide variety of fields. The medical
industry uses detailed models of organs. The movie industry
uses them as characters and objects for animated and real-
life motion pictures.

The video game industry uses them as assets for
computer and video games. The science sector uses them
as highly detailed models of chemical compounds. The
architecture industry uses them to demonstrate proposed
buildings and landscapes through Software Architectural
Models. The engineering community uses them as designs
of new devices, vehicles and structures as well as a host
of other uses. In recent decades the earth science
community has started to construct 3D geological models
as a standard practice.

Representation
Almost all 3D models can be divided into two categories.

¢ Solid - These models define the volume of the object
they represent (like a rock). These are more realistic,
but more difficult to build. Solid models are mostly
used for nonvisual simulations such as medical and
engineering simulations, for CAD and specialized
visual applications such as ray tracing and
constructive solid geometry

e Shell/boundary - these models represent the surface,
e.g. the boundary of the object, not its volume (like
an infinitesimally thin eggshell). These are easier to
work with than solid models. Almost all visual models
used in games and film are shell models.

138

Computer Graphics in Java

Because the appearance of an object depends largely on
the exterior of the object, boundary representations are
common in computer graphics. Two dimensional surfaces
are a good analogy for the objects used in graphics, though
quite often these objects are non-manifold. Since surfaces
are not finite, a discrete digital approximation is required:
polygonal meshes (and to a lesser extent subdivision surfaces)
are by far the most common representation, although point-
based representations have been gaining some popularity
in recent years. Level sets are a useful representation for
deforming surfaces which undergo many topological changes
such as fluids. The process of transforming representations
of objects, such as the middle point coordinate of a sphere
and a point on its circumference into a polygon
representation of a sphere, is called tessellation. This step
is used in polygon-based rendering, where objects are broken
down from abstract representations (“primitives”) such as
spheres, cones etc., to so-called meshes, which are nets of
interconnected triangles. Meshes of triangles (instead of e.g.
squares) are popular as they have proven to be easy to
render using scanline rendering. Polygon representations
are not used in all rendering techniques, and in these cases
the tessellation step is not included in the transition from

abstract representation to rendered scene.
Modeling Processes

There are five popular ways to represent a model:

e Polygonal modeling - Points in 3D space, called
vertices, are connected by line segments to form
a polygonal mesh. Used, for example, by Blender.

139

Computer Graphics in Java

The vast majority of 3D models today are built as
textured polygonal models, because they are
flexible and because computers can render them
so quickly. However, polygons are planar and can
only approximate curved surfaces using many
polygons.

NURBS modeling - NURBS Surfaces are defined by
spline curves, which are influenced by weighted
control points. The curve follows (but does not
necessarily interpolate) the points. Increasing the
weight for a point will pull the curve closer to that
point. NURBS are truly smooth surfaces, not
approximations using small flat surfaces, and so are
particularly suitable for organic modeling. Maya,
Rhino 3d and solidThinking are the most well-known
commercial programmes which use NURBS natively.
Splines & Patches modeling - Like NURBS, Splines
and Patches depend on curved lines to define the
visible surface. Patches fall somewhere between
NURBS and polygons in terms of flexibility and ease
of use.

Primitives modeling - This procedure takes geometric
primitives like balls, cylinders, cones or cubes as
building blocks for more complex models. Benefits
are quick and easy construction and that the forms
are mathematically defined and thus absolutely
precise, also the definition language can be much
simpler. Primitives modeling is well suited for technical
applications and less for organic shapes. Some 3D
software can directly render from primitives (like

140

Computer Graphics in Java

POV-Ray), others use primitives only for modeling
and convert them to meshes for further operations
and rendering.

Sculpt modeling - Still fairly new method of modeling
3D sculpting has become very popular in the few
short years it has been around. There are 2 types
of this currently, Displacement which is the most
widely used among applications at this moment, and
volumetric. Displacement uses a dense model (often
generated by Subdivision surfaces of a polygon control
mesh) and stores new locations for the vertex positions
through use of a 32bit image map that stores the
adjusted locations. Volumetric which is based loosely
on Voxels has similar capabilities as displacement
but does not suffer from polygon stretching when
there are not enough polygons in a region to achieve
a deformation. Both of these methods allow for very
artistic exploration as the model will have a new
topology created over it once the models form and
possibly details have been sculpted. The new mesh
will usually have the original high resolution mesh
information transferred into displacement data or
normal map data if for a game engine.

The modeling stage consists of shaping individual objects

that are later used in the scene. There are a number of

modeling techniques, including:

constructive solid geometry
implicit surfaces

subdivision surfaces

141

Computer Graphics in Java

Modeling can be performed by means of a dedicated
programme (e.g., formeZ, Maya, 3DS Max, Blender,
Lightwave, Modo, solidThinking) or an application component
(Shaper, Lofter in 3DS Max) or some scene description
language (as in POV-Ray). In some cases, there is no strict
distinction between these phases; in such cases modeling
is just part of the scene creation process (this is the case,
for example, with Caligari trueSpace and Realsoft 3D).
Complex materials such as blowing sand, clouds, and liquid
sprays are modeled with particle systems, and are a mass
of 3D coordinates which have either points, polygons, texture
splats, or sprites assigned to them. Sculpt

Scene Setup

Scene setup involves arranging virtual objects, lights,
cameras and other entities on a scene which will later be
used to produce a still image or an animation. Lighting is
an important aspect of scene setup. As is the case in real-
world scene arrangement, lighting is a significant
contributing factor to the resulting aesthetic and visual
quality of the finished work. As such, it can be a difficult
art to master. Lighting effects can contribute greatly to the
mood and emotional response effected by a scene, a fact
which is well-known to photographers and theatrical lighting
technicians. It is usually desirable to add color to a model’'s
surface in a user controlled way prior to rendering. Most
3D modeling software allows the user to color the model’s
vertices, and that color is then interpolated across the
model’s surface during rendering. This is often how models
are colored by the modeling software while the model is
being created. The most common method of adding color

142

Computer Graphics in Java

information to a 3D model is by applying a 2D texture image
to the model's surface through a process called texture
mapping. Texture images are no different than any other
digital image, but during the texture mapping process,
special pieces of information (called texture coordinates or
UV coordinates) are added to the model that indicate which
parts of the texture image map to which parts of the 3D
model’s surface. Textures allow 3D models to look
significantly more detailed and realistic than they would
otherwise.

Other effects, beyond texturing and lighting, can be done
to 3D models to add to their realism. For example, the
surface normals can be tweaked to affect how they are lit,
certain surfaces can have bump mapping applied and any
other number of 3D rendering tricks can be applied. 3D
models are often animated for some uses. They can
sometimes be animated from within the 3D modeler that
created them or else exported to another programme.

If used for animation, this phase usually makes use of
a technique called “keyframing”, which facilitates creation
of complicated movement in the scene. With the aid of
keyframing, one needs only to choose where an object stops
or changes its direction of movement, rotation, or scale,
between which states in every frame are interpolated. These
moments of change are known as keyframes. Often extra
data is added to the model to make it easier to animate.
For example, some 3D models of humans and animals have
entire bone systems so they will look realistic when they
move and can be manipulated via joints and bones, in a
process known as skeletal animation.

143

Computer Graphics in Java

Compared to 2D Methods

3D photorealistic effects are often achieved without
wireframe modeling and are sometimes indistinguishable in
the final form. Some graphic art software includes filters
that can be applied to 2D vector graphics or 2D raster
graphics on transparent layers. Advantages of wireframe 3D
modeling over exclusively 2D methods include:

e Flexibility, ability to change angles or animate images
with quicker rendering of the changes;

e Ease of rendering, automatic calculation and rendering
photorealistic effects rather than mentally visualizing
or estimating;

e Accurate photorealism, less chance of human error in
misplacing, overdoing, or forgetting to include a visual
effect.

Disadvantages compare to 2D photorealistic rendering
may include a software learning curve and difficulty achieving
certain photorealistic effects. Some photorealistic effects
may be achieved with special rendering filters included in
the 3D modeling software. For the best of both worlds, some
artists use a combination of 3D modeling followed by editing
the 2D computer-rendered images from the 3D model.

3D Model Market

3CT (3D Catalog Technology) has revolutionized the 3D

model market by offering quality 3D model libraries free of

charge for professionals using various CAD programmes.

Some believe that this uprising technology is gradually

eroding the traditional “buy and sell” or “object for object

exchange” markets although the quality of the products do
144

Computer Graphics in Java

not match those sold on specialized 3d marketplaces. A
large market for 3D models (as well as 3D-related content,
such as textures, scripts, etc.) still exists - either for individual
models or large collections. Online marketplaces for 3D
content allow individual artists to sell content that they
have created. Often, the artists’ goal is to get additional
value out of assets they have previously created for projects.
By doing so, artists can earn more money out of their old
content, and companies can save money by buying pre-
made models instead of paying an employee to create one
from scratch. These marketplaces typically split the sale
between themselves and the artist that created the asset,
often in a roughly 50-50 split. In most cases, the artist
retains ownership of the 3d model; the customer only buys
the right to use and present the model.

Human Models

The first widely available commercial application of human
Virtual Models appeared in 1998 on the Lands’ End web
site. The human Virtual Models were created by the company
My Virtual Model Inc. and enabled users to create a model
of themselves and try on 3D clothing. There are several
modern programmes that allow for the creation of virtual
human models (Poser being one example).

145

6

Graphics Primitives

Introduction

A basic nondivisible graphical element for input or out-
put within a computer-graphics system. Typical output
primitives are polyline, polymarker, and fill area. Clipping of
an output primitive cannot be guaranteed to produce an-
other output primitive. Output primitives have attributes
such as line style and pattern associated with them. Typical
input primitives are locator, choice, and valuator. Input primi-
tives often have a style of echoing associated with them. The
purpose of graphics system is to make programming easier
for the user. Graphics system includes special Hardware for
output and input of representating pictures and software
routines for performing the basic graphics operations. Some
common operations are Moving the Pen (or electron beam),
Drawing a line, Writing a character or a string of text, chang-
ing the line style.

Computer Graphics in Java

Display Devices

Computer graphics images are composed of a finite num-
ber of picture elements or pixels. Each pixel requires at least
one bit of intensity information, light or dark. Many software
applications include graphics components. Such programmes
are said to support graphics. For example, certain word pro-
cessors support graphics because they let you draw or import
pictures. All CAD/CAM systems support graphics. Some da-
tabase management systems and spreadsheet programmes
support graphics because they let you display data in the
form of graphs and charts. Such applications are often re-
ferred to as business graphics. If we actually stored the infor-
mation for each pixel in the computer’s memory, a lot of
memory may be required. The Portion of the memory which is
used to hold the pixels is called “Frame Buffer”. The memory
is usually scanned and displayed by direct memory access that
is special hardware independent of the central processor.

Raster Display

A raster display refresh system includes a charge coupled
device (CCD) circulating refresh memory for maintaining a
display of information on a cathode ray tube (CRT) screen.
The X and Y address of picture elements to be changed are
stored in raster scan sequence in a small random access
memory (RAM). Whenever a picture element address in the
data register of the RAM equals the X and Y screen address
of the scanning beam of the CRT, a corresponding new pic-
ture element signal stored in the RAM is substituted for the
old picture element signal previously circulating the CCD
refresh memory.

147

Computer Graphics in Java

e In raster display, the frame buffer may be examined
to determine what is currently being displayed.

e Surface lines are displayed on raster display devices.

e Images may be displayed on television style picture
tubes.

e The raster terminal can also display colour images.

Line—ABS—2 g g g 1000
(0.2,0.2) 00100
—>_ 00001

User Programme Buffer Display Display

Fig. Raster Display System

Disadvantages

e Cost of the required memory
e Time which may be required to alter every pixel
whenever the image is changed.

Plotting System

e A pen is lowered on to paper and moved under the
direction of a vector generation algorithm.

e Once the line is drawn, the ink on the paper
remembers it. And the computer need not consider

it further.
LINE ABS -2
0.2.0.2)
User Program
Plotter
Fig. Plotting system
Disadvantages

1. Once a line drawn, it cannot be easily removed. If
we wish to change the picture we must get a fresh

paper and redraw the picture.
148

Computer Graphics in Java

2. This can be time consuming and use lot of paper.
DVST (Direct View Storage Tubes)

A cathode-ray tube in which secondary emission of elec-
trons from a storage grid is used to provide an intensely
bright display for long and controllable periods of time. Also
known as display storage tube; viewing storage tube. This is
the first CRT display produced by Tektronix.

The terminal use special cathode ray tubes called DVST,
behave same way as plotter. An electron beam is directed at
the surface of the screen. It has good resolution and low
cost.

Deflection system
Cathode

N

X N
_lm L
Contrlol Grid Focussing¢

Accelerating system
system.

Phosphor
on inner surface.

The position of the beam is controlled by electronic or
magnetic fields with in the tube. Once the screen phosphors
of this special tube have been illuminated by the electron
beam, they stay lit. It has good resolution and low cost.

LINE ABS -2 /
(0.2.0.2)

User program DVST Display

Fig. Direct View Storage Tube System

149

Computer Graphics in Java

Disadvantages

One cannot alter a DVST image except by erasing the
entire screen and drawing it again. This can be done faster
than on a plotter. But the process is still time-consuming
making interaction difficult.

Apart from this, there are many other disadvantage such
as:

1. Ordinary do not display colour

2. Selected part of the picture can’t be erased

3 To eliminate a picture section, the entire screen must

be erased

Plasma Panel

A display device which stores the image, but allows se-
lective erasing is the Plasma Panel. The Plasma panel con-
tains a gas at low pressure sandwiched between horizontal
and vertical grids of find wires. A large voltage between hori-
zontal and vertical wire will cause the gas to glow as it does
in a neon street sign. A lower voltage will not start a glow but
will maintain aglow once started. Plasma panels are very
durable and are often used for military applications and
PLATO educational system.

LINE ABS -2 /
02.02)

User Program Plasma Panel

Fig. Plasma Panel System
Liquid Crystal Display

It is less bulky than CRTs, because of its low voltage and
power requirements, it is lighter in weight. In a liquid crystal

150

Computer Graphics in Java

display, light is either transmitted or blocked depending upon
the orientation of molecules in the liquid crystal.

An electrical signal can be used to change the molecular
orientation, turning a pixel ON or OFF. The material is sand-
wiched between horizontal and vertical grids of electrodes
which are used to select the pixel.

LINE REL -2 | gﬁ‘j}
0.202) >

User Program LCD

Fig. Liquid Crystal Display System
Liquid Crystal Displays (LCDs) are used to in flat-panel
monitors and high-end flat-panel television. Recently, the
market for LCDs has exploded as flat screen monitors and
televisions have become popular consumer electronics de-

vices.
Vector Refresh Display

The vector refresh display stores the image in the
computer’s memory, but it tries to be much more efficient
about than a raster display. To specify a line segment, all
that is required is the coordinates of its endpoints. The vec-
tor refresh display stores only the commands necessary for
drawing the line segments. The input to the vector genera-
tor is saved instead of the output. These commands are saved
in separate file called as “Display file”. They are examined

151

Computer Graphics in Java

and the lines are drawn using a vector generation algorithm.
They are usually implemented in hardware.

Refresh Displays allow real-time alteration of the image.
The disadvantage is the images formed are composed of line
segments, not surfaces and a complex display may flicker
because it will take a long time to analyse and draw it.

LINE ABS -2 4.(2.o.2.o,z%
0.2.0.2) /

User Program Display File Display Processor Display

DISPLAY FILE

The concept of display file provides an interface between

A 4

the image specification process and the image display pro-
cess. It also defines a compact description of the image. The
display-file idea may be applied to devices other than re-
fresh displays. The proc file system is sometimes referred to
as a process information pseudo-file system. It does not con-
tain “real” files but rather runtime system information (e.g.
system memory, devices mounted, hardware configuration,
etc). For this reason it can be regarded as a control and
information center for the kernel.

In fact, quite a lot of system utilities are simply calls to
files in this directory. For example, the command Ismod,
which lists the modules loaded by the kernel, is basically
the same as ‘cat/proc/modules’ while Ispci, which lists de-
vices connected to the PCI bus of the system, is the same as
‘cat/proc/pci’. By altering files located in this directory you
can change kernel parameters while the system is running.
Such files are sometimes called pseudo display files or
metafiles.

152

Computer Graphics in Java

Primitive Operations

Most graphics system offer set of graphics primitive op-
erations. The first primitive command is drawing a line seg-
ment. The final point of the last segment becomes the first
point of the next segment. To avoid specifying this point twice,
the system can keep track of the correct pen or electron
bean position.

LINE- ABS-2(x, y) is called an absolute line command
because the actual coordinates of the final position are

/ xy)

Fig. The Absolute Line Command

passed.

There is also a relative line command. Here we can specify
how far to move from the current position.

yar

Fig. The Relative Line Command

LINE-REL-2(DX, DY)

Suppose (XC,YC) denote current position.

LINE-REL-2(DX, DY) is same as

LINE-ABS-2(DX + XC, DY+ YC)

The above procedures are fine for producing a connected
string of line segments. We can also draw two disconnected
segment by the same mechanism if we picture these two
segments as connected by a middle segment which happens
to be invisible. We can construct a line drawing by a series of

153

Computer Graphics in Java

line and move commands. Path relative to working directory
does not start with a slash.

Example. If ‘Is’ shows “terosdir”, you can use a relative
path. To change directory to “terosdir”, under current direc-

tory:

$ cd terosdir

Absolute path starts with a slash “/”. The first slash in
path refers to topmost directory, the root directory, whose
name is simply “/”. You can go up to root directory “/” by
commanding ‘cd..” many times, then finally checking path
with ‘pwd’.

Change directory to etc, that is under the root dir “/”.

With absolute path, working directory does not matter.
$ cd/etc
Final slash after path does not mean anything, and these

two commands mean exactly the same:

$ cd terosdir/
$ cd terosdir

The Display File Interpreter

The Display file will contain the information necessary to
construct the picture. The information will be in the form of
“Draw a line” or “Move the pen”. Saving instruction is less
storage than saving the picture itself. Display file interpreter
is used to convert these instructions into actual images.
These instructions can be thought of as a programme for
creating the image. In some graphics system there is a sepa-
rate computer called display processor, which is located in
the graphics terminal. In other systems, the behaviour of a
display processor is simulated.

Our display-file interpreter serves as an interface between
our graphics programme and the display device. The Dis-

154

Computer Graphics in Java

play file instruction may actually be saved in a file either for
display later or for transfer to another machine. Such files of
imaging instructions are sometimes called Meta files.

User Program ‘>< Display <—> Interpreter Display
file

Fig. Display File and Interpreter

Normalized Device Co-ordinates

The device independence units are called the normalized
device co-ordinates. In this, the screen measures one unit
wide and one high. The lower left corner of the screen is the
origin and the upper left corner is the point (1.1). The Point

(.5,.5) is in the corner of the screen.
(0,1)

(1.1

(0,1) (1,1)

Fig. Normalized Device Coordinates.

e Suppose that of the actual display the index of the
leftmost pixel is WIDTH-START and that there are
WIDTH pixels in the horizontal direction.

e Suppose also that the bottom most pixel is HEIGHT-
START and the member of pixels in the vertical
direction is HEIGHT.

e In the normalized coordinates the screen is one unit
wide, but in the actual co-ordinates it is width units
wide. So the normalized x position should be
multiplied by WIDTH/1 to convert to actual screen
units.

155

Computer Graphics in Java

e At position X = O in normalized we should get X =
WIDTH, in actual screen co-ordinates, so the
conversion formula should be

X = WIDTH * X + WIDTH-START
Similarly for vertical direction,
Y, = HEIGHT *Y_+ HEIGHT-START

e If we have a display which is not square, we can
either use the displays full height or width in the
conversion formula. If we use full dimension, the
image will be stretched or squashed. If we use a
square area of the display the image is correctly
proportioned.

Display file structure

Each display file command contains two parts:
e Operation code which indicates what kind of
command.
e Operands which are the coordinates of a point (x,
y).
The display file is made up of a series of instructions.
Three arrays are used for representing display file commands.
They are:
DF-OP—one of the operation code
DF-X-one for the x-coordinate
DY-Y-one for the y-coordinate
We must assign meaning to the possible operation codes
before we can proceed to interpret them. Only two possible in-
structions are available. They are, MOVE and LINE commands.
Opcode 1-Move command
Opcode 2-Line command

156

Computer Graphics in Java

Example

A command to move to position x = 0.3 andy = 0.7

DF-OPI[3] «1;

DF-X][3] « 0.3;

DF-Y[3] « 0.7;

Let us develop the algorithm for inserting display file in-
struction. Line arguments require two endpoints for their
specification, but we shall enter only one end point and as-
sume that the other endpoint is the current pen position.
We will therefore need variables DF-PEN-Y to keep track of
the current pen position.

We will need to know this position for the conversion of
relative commands to absolute commands. We shall also need
a variable FREE to indicate where the next free cell of the
display file is located. These variables, together with the dis-
play file itself, are used by several different routines and
must be maintained between accesses. They are therefore
presented as global variables.

The first algorithm we will consider actually puts an in-
struction into display file.

5,4
1 03 07 a5
2 05 08

(37

Algorithm PUT_POINT (OP, X, Y)

Arguments OP, X, Y the instruction to be entered.
Global DF-OP, DF-X, DF-Y the three display file

157

Computer Graphics in Java

arrays.
FREE the position of the next free cell.

Constant DFSIZE the length of the display-file ar-

rays.

BEGIN

IF FREE > DFSIZE THEN RETURN ERROR
“DISPLAY FILEFULL”;

DF-OP [FREE]« OP;

DF-X [FREE] « X

DF-Y [FREE] « Y;

FREE < FREE + 1;

RETURN;

END;

This algorithm stores the operation code and the coordi-
nates of the specified position in the display file. The pointer
FREE to the next free cell is incremented so that it will be in
the correct position for the next entry. = We also wish to
access in the display file. We isolate the accessing mecha-
nism in a separate routine so that any changes in the data
structure used for the display file will not affect the rest of
our graphics package.

Algorithm

GET-POINT (NTH, OP, X, Y) retrieve the NTH instruction
from the display file.
Arguments NTH the number of the desired instruction
OP, X, Y the instruction to be returned
Global arrays DF-OP, DF-X, DF-Y the display file
BEGIN
OP« DF-OP[NTH];

158

Computer Graphics in Java

X« DF-X[NTH];
Y« DF-Y[NTH];
RETURN;

END:;

Our MOVE and LINE instructions must update the cur-
rent pen position and enter a command into the display file.
If the update of the pen position is done first then the new
pen position will serve as the operand for the display file
instruction.

IT will prove convenient to have a separate routine which
takes the operation code and the pen position and enters
them onto the display file as an instruction.

Algorithm

DISPLAY-FILE-ENTER (OP) combines operation and po-
sition to form an instruction and save it in the display file.
Argument OP the operation to be entered
Global DF-PEN-X, DF=PEN-Y the current pen
position
BEGIN
PUT-POINT (OP,DF-PEN-X,DF-PEN-Y);
RETURN;
END;

Using DISPLAY-FILE-ENTER to place instructions
in the displayfile, the absolute MOVE routine becomes the
following;:

Algorithm MOVE-ABS-2(X,Y)

Arguments X, Y the point to which to move the pen
GlobalDF_PEN-X, DF-PEN-Y the current
pen position

159

Computer Graphics in Java

BEGIN
DF-PEN-X «X;
DF-PEN-Y «Y;
DISPLAY-FILE-ENTER(1);
RETURN;

END;

The point (DF-PEN-X, DF-PEN-Y) is keeping track of
where we wish the pen to go. By setting (DF-PEN-X, DF-
PEN-Y) to (X,Y), we are saying the pen is to be at position
(X.Y). The algorithm for entering a LINE command is similar.

Algorithm

MOVE-ABS-2(X.,Y)

Arguments (X,Y) user routine to save a command to
draw a line.

Arguments XY the points where to draw the line

Global DF-PEN-X, DF-PEN-Y the current pen posi-
tion

BEGIN
DF-PEN-X«X;
DF-PEN-Y« Y;
DISPLAY-FILE-ENTER (2);
RETURN;

END;

Again by changing DF-PEN-X and DF-PEN-Y we indicate
that the pen will be placed at (X,Y) but by entering an opera-
tion code of 2 instead of 1, we instruct the interpreter to
draw a line as the pen is moved. We can also write algorithm
for the relative commands.

Algorithm MOVE-REL-2(DX, DY) user routine to save a
command to move the pen

160

Computer Graphics in Java

Arguments DX, DY the change in the pen position
Global DF-PEN-X, DF-PEN-Y the current pen position
BEGIN
DF-PEN-X « DF-PEN-X + DX;
DF-PEN-Y « DF-PEN-Y +Y;
DISPLAY-FILE-ENTER (1);
RETURN;
END;

Algorithm

LINE-REL-2(DX, DY) user routine to save a command to
draw a line
Arguments DX, DY the change over which to draw a

line
Global DF-PEN-X, DF-PEN-Y the current pen position
BEGIN
DF-PEN-X <« DF-PEN-X + DX;
DF-PEN-Y <« DF-PEN-Y + DY;
DISPLAY-FILE-ENTER (2);
RETURN;
END;

The relative LINE and MOVE routines act like the abso-
lute routines in that they will tell where the pen is to be
placed and how it is to get there. They differ in that the new
pen position is calculated as an offset to the old pen posi-
tion.

161

7

Computers and Java

Central Processing Unit, or CPU. In a modern desktop
computer, the CPU is a single “chip” on the order of one square
inch in size. The job of the CPU is to execute programmess.

A programme is simply a list of unambiguous instructions
meant to be followed mechanically by a computer. A computer is
built to carry out instructions that are written in a very simple type
of language called machine language. Each type of computer has
its own machine language, and the computer can directly execute
a programme only if the programme is expressed in that language.
(It can execute programmes written in other languages if they are
first translated into machine language.)

When the CPU executes a programme, that programme is
stored in the computer’s main memory (also called the RAM or
random access memory). In addition to the programme, memory
can also hold data that is being used or processed by the

programme. Main memory consists of a sequence of locations.

Computer Graphics in Java

These locations are numbered, and the sequence number of a
location is called its address.

An address provides a way of picking out one particular piece
of information from among the millions stored in memory. When
the CPU needs to access the programme instruction or data in a
particular location, it sends the address of that information as a
signal to the memory; the memory responds by sending back the
data contained in the specified location. The CPU can also store
information in memory by specifying the information to be stored
and the address of the location where it is to be stored.

On the level of machine language, the operation of the CPU is
fairly straightforward (although it is very complicated in detail).
The CPU executes a programme that is stored as a sequence of
machine language instructions in main memory. It does this by
repeatedly reading, or fetching, an instruction from memory and
then carrying out, or executing, that instruction. This process-fetch
an instruction, execute it, fetch another instruction, execute it, and
so on forever is called the fetch-and-execute cycle.

The details of the fetch-and-execute cycle are not terribly
important, but there are a few basic things you should know. The
CPU contains a few internal registers, which are small memory
units capable of holding a single number or machine language
instruction. The CPU uses one of these registers — the programme
counter, or PC—to keep track of where it is in the programme it is
executing.

The PC stores the address of the next instruction that the
CPU should execute. At the beginning of each fetch-and-execute
cycle, the CPU checks the PC to see which instruction it should
fetch. During the course of the fetch-and-execute cycle, the
number in the PC is updated to indicate the instruction that is

163

Computer Graphics in Java

to be executed in the next cycle. (Usually, but not always, this
is just the instruction that sequentially follows the current
instruction in the programme.)

A computer executes machine language programmes
mechanically —that is without understanding them or thinking
about them —simply because of the way it is physically put
together. This is not an easy concept. A computer is a machine
built of millions of tiny switches called transistors, which have the
property that they can be wired together in such a way that an
output from one switch can turn another switch on or off.

As a computer computes, these switches turn each other on or
off in a pattern determined both by the way they are wired together
and by the programme that the computer is executing.

Machine language instructions are expressed as binary
numbers. A binary number is made up of just two possible digits,
zero and one. So, a machine language instruction is just a sequence
of zeros and ones. Each particular sequence encodes some
particular instruction. The data that the computer manipulates is
also encoded as binary numbers. A computer can work directly
with binary numbers because switches can readily represent such
numbers: Turn the switch on to represent a one; turn it off to
represent a zero. Machine language instructions are stored in
memory as patterns of switches turned on or off. When a machine
language instruction is loaded into the CPU, all that happens is
that certain switches are turned on or off in the pattern that encodes
that particular instruction.

The CPU is built to respond to this pattern by executing the
instruction it encodes; it does this simply because of the way all
the other switches in the CPU are wired together. So, you should
understand this much about how computers work: Main memory

164

Computer Graphics in Java

holds machine language programmes and data. These are encoded
as binary numbers. The CPU fetches machine language instructions
from memory one after another and executes them.

It does this mechanically, without thinking about or
understanding what it does —and therefore the programme it executes
must be perfect, complete in all details, and unambiguous because
the CPU can do nothing but execute it exactly as written. Here is a

schematic view of this first-stage understanding of the computer:

Memory

00101110 | (Location O}
11010011 | (Location 1}
(

(

Data to Memory | 01010011

50010000
CPU < 10111111

Data from Memory 5750110

Location 2)

Location 3)

11101001
Program o 00000111
Counter: - Agdres‘\Squtr 10100110

1011100001 Dgata g | 00010001

00111110 | (Location 10)

Computer Architecture

To understand digital signal processing systems, we must
understand a little about how computers compute. The modern
definition of a computer is an electronic device that performs
calculations on data, presenting the results to humans or other

computers in a variety of (hopefully useful) ways.

Organization of a Simple Computer

CPU |¢——

Memory

[Keyboard || CRT |[Disks][Network]

Fig. Generic Computer Hardware Organization.

165

Computer Graphics in Java

The generic computer contains input devices (keyboard, mouse,
A/D (analog-to-digital) converter, etc.), a computational unit, and
output devices (monitors, printers, D/A converters). The
computational unit is the computer’s heart, and usually consists
of a central processing unit (CPU), a memory, and an input/output
(I/O) interface. What I/O devices might be present on a given
computer vary greatly.

A simple computer operates fundamentally in discrete time:
Computers are clocked devices, in which computational steps occur
periodically according to ticks of a clock. This description belies
clock speed: When you say “I have a1 GHz computer, ” you mean
that your computer takes 1 nanosecond to perform each step. That
is incredibly fast! A “step” does not, unfortunately, necessarily
mean a computation like an addition; computers break such
computations down into several stages, which means that the clock
speed need not express the computational speed. Computational
speed is expressed in units of millions of instructions/second
(Mips). Your 1 GHz computer (clock speed) may have a
computational speed of 200 Mips.

Computers perform integer (discrete-valued) computations:
Computer calculations can be numeric (obeying the laws of
arithmetic), logical (obeying the laws of an algebra), or symbolic
(obeying any law you like). Each computer instruction that
performs an elementary numeric calculation — an addition, a
multiplication, or a division — does so only for integers. The sum
or product of two integers is also an integer, but the quotient of
two integers is likely to not be an integer. How does a computer
deal with numbers that have digits to the right of the decimal point?
This problem is addressed by using the so-called floating-point
representation of real numbers. At its heart, however, this

representation relies on integer-valued computations.

166

Computer Graphics in Java

Representing Numbers

Focusing on numbers, all numbers can represented by the
positional notation system. 2 The b-ary positional representation
system uses the position of digits ranging from 0 to b-1 to denote
a number. The quantity b is known as the base of the number
system. Mathematically, positional systems represent the positive
integer n as

vdy,dy e<apply >{0,..,b—-1}.</apply >
(
Sl

k=0
)

and we succinctly express n in base-b as n,=dydy;...d,. The
number 25 in base 10 equals 2 x 10! + 5 x 10Y, so that thedigits
representing this number are d;=5, d,=2, and all other d, equal zero.
This same number in binary (base 2) equals 11001 (1 x 24+ 1 x 23+
0x 22+ 0 x 21+ 1 x 29) and 19 in hexadecimal (base 16). Fractions
between zero and one are represented the same way.

vdy,dy e<apply >{0,..,b—1}.</apply >

(

-1
(= 3 ()

k=—oo
)

All numbers can be represented by their sign, integer and
fractional parts. Complex numbers can be thought of as two real
numbers that obey special rules to manipulate them.

Humans use base 10, commonly assumed to be due to us
having ten fingers. Digital computers use the base 2 or binary
number representation, each digit of which is known as a bit (binary
digit).

167

Computer Graphics in Java

Number Representations on Computer
[d.[dsfds[d[ds[dyd[d]
Unsigned 8-bit Integer
|S |d6| d5|d4| d3|d2 |d1|do |
Signed 8-bit Integer
Bl s |
Exponent Mantissa
Floating Point

Fig. The Various ways Numbers are Represented in binary are I[llustrated.
The Number of Bytes for the Exponent and Mantissa Components of floating
Point Numbers Varies.

Here, each bit is represented as a voltage that is either “high”
or “low, ” thereby representing “1” or “0, ” respectively. To
represent signed values, we tack on a special bit— the sign bit—to
express the sign. The computer’s memory consists of an ordered
sequence of bytes, a collection of eight bits.

A byte can therefore represent an unsigned number ranging
from 0 t0255. If we take one of the bits and make it the sign bit, we
can make the same byte to represent numbers ranging from “128to
127. But a computer cannot represent all possible real numbers.
The fault is not with the binary number system; rather having only
a finite number of bytes is the problem. While a gigabyte of
memory may seem to be a lot, it takes an infinite number of bits to
represent 0.

Since we want to store many numbers in a computer’s memory,
we are restricted to those that have a finitebinary representation.
Large integers can be represented by an ordered sequence of bytes.
Common lengths, usually expressed in terms of the number of bits,
are 16, 32, and 64. Thus, an unsigned 32-bit number can represent
integers ranging between 0 and232"1 (4, 294, 967, 295), a number

almost big enough to enumerate every human in the world.

168

Computer Graphics in Java

Computer Arithmetic and Logic

The binary addition and multiplication tables are:

(

0+0=0
0+1=1
1+1=10
1+0=1
0x0=0
0x1=0
1x1=1
1x0=0

)

Note that if carries are ignored, subtraction of two single-digit
binary numbers yields the same bit as addition. Computers use
high and low voltage values to express a bit, and an array of such
voltages express numbers akin to positional notation. Logic circuits

perform arithmetic operations.
Processors and Memory

There are two main components which have been part of nearly
all computer systems ever designed and built. The first is called
the processor (known also as the Central Processing Unit or
CPU)and the second is called the memory.

The processor is the part of a computer system which does the
actual computing. That is, the part which adds, subtracts, multiplies
and divides.

Most processors can also compare values and perform
conditional actions as a result of such comparisons. Many
processors have instructions which perform various types of
conversions between different representations of data.

169

Computer Graphics in Java

The processor itself is divided into three components that carry
out the various functions that the computer is capable of
performing. The first component of the processor is the controller.
The controller acts as a foreman that oversees the tasks of the
processor. The controller looks at the next instruction to be executed
and assigns the sub-tasks that must be accomplished to carry out
that instruction to the other components of the processor.

Another component of the processor is the Arithmetic-Logic
Unit (ALU). This unit is the part of the processor which performs
the mathematical computations and logical tasks that we expect a
computer to be able to do. Addition, subtraction, comparison, etc.
, are all carried out by the ALU.

The last component of the processor is a collection of one or
more registers. Registers are special named memory cells in the
processor where information is temporarily stored during various
stages of a computation. The currently executing instruction, for
example, resides in a register called the Instruction Register. Since
modern processors can execute millions of instructions per second
it is expected that information would not stay in a register for more
than a few millionths of a second.

A computer memory system is accessed (or read) by specifying
the location (called an address) of the memory cell. The memory
system then responds by producing a copy of the contents of that
cell. The original value of the cell is not changed by this process.
This is sometimes called a non-destructive read.

A typical computer might be organized as indicated in the following
diagram:

A computer memory system is changed (or written) by
specifying the location of the memory cell together with the new
value for that cell. The previous value stored in the cell is replaced
by the new value. This is sometimes called a destructive write.

170

Computer Graphics in Java

Processor Memory

Controller addr Programs
Data out
» Data
‘Data in
inst. in

The values stored in a computer memory are simply numbers.
Numbers are used to represent both data and instructions. In fact,
one cannot distinguish instructions from data when examining the
contents of a memory system. It is up to the programmer or
operating system to keep track of which memory cells hold data
and which are programme instructions. Programs have been
written which manipulate and produce programs. Such programs
treat instructions as data.

The processor and memory unit are wired together wiring
connections called buses. A bus is a low resistance connection
consisting of 1 or more wires. There are three such connections.
The first, called the address bus, is used by the processor to tell
the memory system the number or location of the memory cell the
processor wishes to access. The second bus is used to send data
out to the memory. The third bus is used to transmit data and
instructions to the processor. The processor contains a few memory
cells, called registers, which are used for efficient temporary
storage:

Processor Registers

The Contents of a memory cell or a register is simply a
number. For purposes of illustration, suppose that each
memory cell is large enough to hold numbers up to 4 decimal
digits in size. If a memory cell holds an an instruction, use the

171

Computer Graphics in Java

first two decimal digits represent the operation and the
remaining digits to represent the adderess or location of the

instruction operand.

Accumulator

Program Counter

Instruction Register

Condition Code

Instruction format

Operation Address

Using this scheme, we could set up the following operation codes:
Operation CodeFunction
add Olc(acc)=c(acc)+c(addr)
sub 02c (acc)=c(acc)-c(addr)
load 03c(acc)=c(addr)
store 04c(addr)=c(acc)

These codes do not correspond to any known real computer,
but rather, they are the operation codes for a hypothetical model
computer which we will use to illustrate important aspects of
computer organization.

Simple Programs

Perhaps the shortest useful programme we might write would
move a value from one memory cell to another.

This could be modeled by the | expression:
q=:r

172

Computer Graphics in Java

To accomplish this task, it is necessary to first load the value
of r into the accumulator and then store the accumulator in the

memory cell q.

loadr
storeq

Consider a programme which computes the following expression:
c =:a +b
loada
addb
storec

It is possible to write a programme which will automatically
translate from the J version of this programme to the symbolic form
of the machine instructions shown above.

Such a programme, which translates from the | notation, c=:a+b to

the machine language:

loada
addb
storec

is called a] compiler.

The programme must be stored in memory before it may be
executed. Since we don’t know exactly where in memory we wish
to put either the programme or the data items a, b or ¢, we can
only partially translate the programme into machine readable form

as:

oplocation
03a
01lb
O04c

The memory system is a collection of memory cells, each having
a number or address.

The following diagram illustrates the organization of memory:

0 1 2 3 45 6 7 8 9 n—1

Suppose we decide to locate the above programme beginning

in memory cell 4. Since the programme takes 3 cells we might put
173

Computer Graphics in Java

the data in the first free cell after the last instruction in the

programme which means that we could define:

Symbol Location
a7
b8
c9

The final translated programme then looks like:

Machine Language Programme

location operation address
04 03 07
05 01 o8
06 04 09

A programme which translates from the symbolic form for a

programme:

loada
addb
storec

to the machine language form is called a symbolic assembler,

or simply an assembler.
How the Computer Executes a Programme

We next focus on how a computer executes such a programme.

Recall the organization of the processor:

Accumulator

Program Counter

Instruction Register

Condition Code

174

Computer Graphics in Java

The programme counter register always contains the location
of the next instruction to be processed.

To get started executing this programme we somehow have
to set the contents of the programme counter (pc) to 4 because this
is the location of the first instruction of our programme. The
following flow chart best explains how the processor executes a

programme.
Executing a Programme

To illustrate the various steps in the processor flow chart we
give the following trace of the execution of Programme.

Step 0 Set initial value for the pc:
pc04
ir?
acc?
Step 1 (fetch):
pc04
ir0307
ac?
Step 2 (increment pc):
pc05
ir0307
ac?
Step 3 (execute):
pc05
ir0307
ac22 (here we are supposing that C(07) has been set

to 22 somehow and also suppose C(08) has been
set to 3)

Step 4 (fetch):
pc05
ir0108
acc22
Step 5 (increment pc):
pc06
ir0108

175

Computer Graphics in Java

acc22
Step 6 (execute):
pc06
ir0108
acc25
Step 7 (fetch):
pc06
ir0409
acc25
Step 8 (increment pc):
pc07
ir0409
acc25
Step 9 (execute):
pc07
ir0409
acc25 (contents of 09 changed to 25)
Step 10 (fetch):
pc07
ir0022
acc25
Step 11 (increment pc):
pc08
ir0022
acc25
Step 12 (execute):
pc08
ir0022
acc25
Of course, at this point we have a problem since the ir does

not contain an instruction.

176

Computer Graphics in Java

This means we need some kind of more elaborate setup for placing
programs in memory and starting and stopping programs. These are

some of the tasks performed by a computer operating system.

Processor Flow Chart

Set initial pc value

L.
>

Y

Fetch Instruction
C(ir) = C (C(pc))

Y

Increment pc
C(pc) = C (pc) +1

Y

Execute Instruction
Ececute C (ir)

Asynchronous Eve nts: Polling Loops
and Interrupts

The CPU spends almost all of its time fetching instructions from
memory and executing them. However, the CPU and main
memory are only two out of many components in a real computer
system.

A complete system contains other devices such as:

* A hard disk for storing programmes and data files. (Note
that main memory holds only a comparatively small
amount of information, and holds it only as long as the
power is turned on. A hard disk is used for permanent
storage of larger amounts of information, but programmes
have to be loaded from disk into main memory before they

can actually be executed.).

177

Computer Graphics in Java

* A keyboard and mouse for user input.

* A monitor and printer which can be used to display the
computer’s output.

* An audio output device that allows the computer to play

sounds.

* A network interface that allows the computer to
communicate with other computers that are connected to
it on a network, either wirelessly or by wire.

* A scanner that converts images into coded binary numbers
that can be stored and manipulated on the computer.

The list of devices is entirely open ended, and computer
systems are built so that they can easily be expanded by adding
new devices. Somehow the CPU has to communicate with and
control all these devices. The CPU can only do this by executing
machine language instructions (which is all it can do, period). The
way this works is that for each device in a system, there is a device
driver, which consists of software that the CPU executes when it
has to deal with the device. Installing a new device on a system
generally has two steps: plugging the device physically into the
computer, and installing the device driver software. Without the
device driver, the actual physical device would be useless, since,
the CPU would not be able to communicate with it.

A computer system consisting of many devices is typically
organised by connecting those devices to one or more busses.
A bus is a set of wires that carry various sorts of information
between the devices connected to those wires. The wires carry
data, addresses, and control signals. An address directs the data
to a particular device and perhaps to a particular register or
location within that device. Control signals can be used, for

example, by one device to alert another that data is available

178

Computer Graphics in Java

for it on the data bus. A fairly simple computer system might
be organised like this:

Now, devices such as keyboard, mouse, and network interface
can produce input that needs to be processed by the CPU. How does
the CPU know that the data is there? One simple idea, which turns
out to be not very satisfactory, is for the CPU to keep checking for
incoming data over and over. Whenever it finds data, it processes
it. This method is called polling, since, the CPU polls the input
devices continually to see whether they have any input data to
report. Unfortunately, although polling is very simple, it is also very
inefficient. The CPU can waste an awful lot of time just waiting for input.

To avoid this inefficiency, interrupts are often used instead of
polling. An interrupt is a signal sent by another device to the CPU.
The CPU responds to an interrupt signal by putting aside whatever
itis doing in order to respond to the interrupt. Once it has handled
the interrupt, it returns to what it was doing before the interrupt
occurred. For example, when you press a key on your computer
keyboard, a keyboard interrupt is sent to the CPU. The CPU
responds to this signal by interrupting what it is doing, reading
the key that you pressed, processing it, and then returning to the
task it was performing before you pressed the key.

CPU Empty Slot
for Future
Memory | Expansion
Y Y
Input/ Data Bus
Output Address Bus
Controller Control Bus
Video |Keyboard Network
Controller Interface
and
Monitor Y Y L
Network Cable

179

Computer Graphics in Java

Again, you should understand that this is a purely mechanical
process: A device signals an interrupt simply by turning on a wire.
The CPU is built so that when that wire is turned on, the CPU
saves enough information about what it is currently doing so that
it can return to the same state later. This information consists of
the contents of important internal registers such as the programme
counter. Then the CPU jumps to some predetermined memory
location and begins executing the instructions stored there. Those
instructions make up an interrupt handler that does the processing
necessary to respond to the interrupt. (This interrupt handler is
part of the device driver software for the device that signalled the
interrupt.) At the end of the interrupt handler is an instruction
that tells the CPU to jump back to what it was doing; it does that
by restoring its previously saved state.

Interrupts allow the CPU to deal with asynchronous events.
In the regular fetch-and-execute cycle, things happen in a
predetermined order; everything that happens is “synchronised”
with everything else. Interrupts make it possible for the CPU to
deal efficiently with events that happen “asynchronously, ” that
is, at unpredictable times.

As another example of how interrupts are used, consider what
happens when the CPU needs to access data that is stored on the
hard disk. The CPU can access data directly only if it is in main
memory. Data on the disk has to be copied into memory before it
can be accessed. Unfortunately, on the scale of speed at which the
CPU operates, the disk drive is extremely slow. When the CPU
needs data from the disk, it sends a signal to the disk drive telling
it to locate the data and get it ready. (This signal is sent
synchronously, under the control of a regular programme.) Then,
instead of just waiting the long and unpredictable amount of time

180

Computer Graphics in Java

that the disk drive will take to do this, the CPU goes on with some
other task. When the disk drive has the data ready, it sends an
interrupt signal to the CPU. The interrupt handler can then read
the requested data.

Now, you might have noticed that all this only makes sense if
the CPU actually has several tasks to perform. If it has nothing
better to do, it might as well spend its time polling for input or
waiting for disk drive operations to complete. All modern
computers use multitasking to perform several tasks at once. Some
computers can be used by several people at once. Since, the CPU
is so fast, it can quickly switch its attention from one user to another,
devoting a fraction of a second to each user in turn. This application
of multitasking is called timesharing. But a modern personal
computer with just a single user also uses multitasking. For
example, the user might be typing a paper while a clock is
continuously displaying the time and a file is being downloaded
over the network.

Each of the individual tasks that the CPU is working on is called
a thread. (Or a process; there are technical differences between
threads and processes, but they are not important here, since, it is
threads that are used in Java.) Many CPUs can literally execute
more than one thread simultaneously —such CPUs contain
multiple “cores, ” each of which can run a thread —but there is
always a limit on the number of threads that can be executed at
the same time. Since, there are often more threads than can be
executed simultaneously, the computer has to be able switch its
attention from one thread to another, just as a timesharing
computer switches its attention from one user to another.

In general, a thread that is being executed will continue to run until
one of several things happens:

181

Computer Graphics in Java

* The thread might voluntarily yield control, to give other

threads a chance to run.

* The thread might have to wait for some asynchronous
event to occur. For example, the thread might request some
data from the disk drive, or it might wait for the user to
press a key. While it is waiting, the thread is said to be
blocked, and other threads, if any, have a chance to run.
When the event occurs, an interrupt will “wake up” the
thread so that it can continue running.

* The thread might use up its allotted slice of time and be
suspended to allow other threads to run. Not all computers
can “forcibly” suspend a thread in this way; those that can
are said to use preemptive multitasking. To do preemptive
multitasking, a computer needs a special timer device that
generates an interrupt at regular intervals, such as 100
times per second. When a timer interrupt occurs, the CPU
has a chance to switch from one thread to another, whether
the thread that is currently running likes it or not. All
modern desktop and laptop computers use preemptive
multitasking.

Ordinary users, and indeed ordinary programmers, have no
need to deal with interrupts and interrupt handlers. They can
concentrate on the different tasks or threads that they want the
computer to perform; the details of how the computer manages to
get all those tasks done are not important to them. In fact, most
users, and many programmers, can ignore threads and
multitasking altogether.

However, threads have become increasingly important as
computers have become more powerful and as they have begun
to make more use of multitasking and multiprocessing. In fact, the

182

Computer Graphics in Java

ability to work with threads is fast becoming an essential job skill
for programmers. Fortunately, Java has good support for threads,
which are built into the Java programming language as a
fundamental programming concept.

Just as important in Java and in modern programming in general
is the basic concept of asynchronous events. While programmers
don’t actually deal with interrupts directly, they do often find
themselves writing event handlers, which, like interrupt handlers,
are called asynchronously when specific events occur. Such “event-
driven programming” has a very different feel from the more
traditional straight-through, synchronous programming.

By the way, the software that does all the interrupt handling,
handles communication with the user and with hardware devices,
and controls which thread is allowed to run is called the operating
system. The operating system is the basic, essential software
without which a computer would not be able to function. Other
programmes, such as word processors and World Wide Web
browsers, are dependent upon the operating system. Common
operating systems include Linux, Windows XP, Windows Vista,
and Mac OS.

JDBC Product Components

JDBC includes four components:

* The IDBC API : The JDBC™ API provides programmatic
access to relational data from the Java™ programming
language. Using the JDBC API, applications can execute
SQL statements, retrieve results, and propagate changes
back to an underlying data source. The JDBC API can also
interact with multiple data sources in a distributed,

heterogeneous environment.

183

Computer Graphics in Java

The JDBC API is part of the Java platform, which includes
the Java™ Standard Edition (Java™ SE) and the Java™
Enterprise Edition (Java™ EE). The JDBC 4. 0 API is divided
into two packages: java. sql and javax. sql. Both packages are
included in the Java SE and Java EE platforms.

* JDBC Driver Manager: The JDBC DriverManager class
defines objects which can connect Java applications to a
JDBC driver. DriverManager has traditionally been the
backbone of the JDBC architecture. It is quite small and
simple.

The Standard Extension packages javax. naming and javax.
sql let you use a DataSource object registered with a Java
Naming and Directory Interface™ (JNDI) naming service to
establish a connection with a data source. You can use
either connecting mechanism, but using a DataSource

object is recommended whenever possible.

* JDBC Test Suite: The JDBC driver test suite helps you to
determine that JDBC drivers will run your programme.
These tests are not comprehensive or exhaustive, but they
do exercise many of the important features in the JDBC
APL

* JDBC-ODBC Bridge: The Java Software bridge provides
JDBC access via ODBC drivers. Note that you need to load
ODBC binary code onto each client machine that uses this
driver. As a result, the ODBC driver is most appropriate
on a corporate network where client installations are not a
major problem, or for application server code written in
Java in a three-tier architecture.

This Trail uses the first two of these four JDBC components to

connect to a database and then build a java programme that uses

184

Computer Graphics in Java

SQL commands to communicate with a test Relational Database.
The last two components are used in specialised environments to
test web applications, or to communicate with ODBC-aware
DBMSs.

JDBC Architecture

Two-tier and Three-tier Processing Models

The JDBC API supports both two-tier and three-tier processing
models for database access.

In the two-tier model, a Java applet or application talks directly
to the data source. This requires a JDBC driver that can
communicate with the particular data source being accessed. A
user’s commands are delivered to the database or other data source,
and the results of those statements are sent back to the user. The
data source may be located on another machine to which the user
is connected via a network.

This is referred to as a client/server configuration, with the
user’s machine as the client, and the machine housing the data
source as the server. The network can be an intranet, which, for
example, connects employees within a corporation, or it can be

the Internet.

Java Application

JDBC

Client Machine

DBMS-Proprietary Protocol

.- Database Server

Fig. Two-tier Architecture for Data Access.

In the three-tier model, commands are sent to a “middle tier”
of services, which then sends the commands to the data source.
The data source processes the commands and sends the results
back to the middle tier, which then sends them to the user. MIS

185

Computer Graphics in Java

directors find the three-tier model very attractive because the
middle tier makes it possible to maintain control over access and
the kinds of updates that can be made to corporate data. Another
advantage is that it simplifies the deployment of applications.
Finally, in many cases, the three-tier architecture can provide

performance advantages.

Java Appletor
HTML Browser Client Machine (GUI)

Http,Rmi,Corba,or Other Calls

Application Servell gerver Machine
(Java) (Business Logic)
JDBC

Dbms-Proprietary Protocol

w Database Server

Fig. Three-tier Architecture for Data Access.

Until recently, the middle tier has often been written in
languages such as C or C++, which offer fast performance.
However, with the introduction of optimising compilers that
translate Java bytecode into efficient machine-specific code and
technologies such as Enterprise JavaBeans™, the Java platform is
fast becoming the standard platform for middle-tier development.
This is a big plus, making it possible to take advantage of Java’s
robustness, multithreading, and security features.

With enterprises increasingly using the Java programming
language for writing server code, the JDBC APl is being used more
and more in the middle tier of a three-tier architecture. Some of
the features that make JDBC a server technology are its support
for connection pooling, distributed transactions, and disconnected
rowsets. The JDBC API is also what allows access to a data source
from a Java middle tier.

186

Computer Graphics in Java

A Relational Database Overview

A database is a means of storing information in such a way
that information can be retrieved from it. In simplest terms, a
relational database is one that presents information in tables with
rows and columns. A table is referred to as a relation in the sense
that it is a collection of objects of the same type (rows). Data in a
table can be related according to common keys or concepts, and
the ability to retrieve related data from a table is the basis for the
term relational database. A Database Management System (DBMS)
handles the way data is stored, maintained, and retrieved. In the
case of a relational database, a Relational Database Management
System (RDBMS) performs these tasks. DBMS as used in this book
is a general term that includes RDBMS.

Integrity Rules

Relational tables follow certain integrity rules to ensure that the
data they contain stay accurate and are always accessible. First, the
rows in a relational table should all be distinct. If there are duplicate
rows, there can be problems resolving which of two possible
selections is the correct one. For most DBMSs, the user can specify
that duplicate rows are not allowed, and if that is done, the DBMS
will prevent the addition of any rows that duplicate an existing row.

A second integrity rule of the traditional relational model is
that column values must not be repeating groups or arrays. A third
aspect of data integrity involves the concept of a null value. A
database takes care of situations where data may not be available
by using a null value to indicate that a value is missing. It does not
equate to a blank or zero. A blank is considered equal to another
blank, a zero is equal to another zero, but two null values are not

considered equal.

187

Computer Graphics in Java

When each row in a table is different, it is possible to use one
or more columns to identify a particular row. This unique column
or group of columns is called a primary key. Any column that is
part of a primary key cannot be null; if it were, the primary key
containing it would no longer be a complete identifier. This rule is
referred to as entity integrity.

The Employees table illustrates some of these relational
database concepts. It has five columns and six rows, with each row
representing a different employee. The primary key for this table
would generally be the employee number because each one is
guaranteed to be different. (A number is also more efficient than a
string for making comparisons.) It would also be possible to use
First Name and Last_ Name because the combination of the two

also identifies just one row in our sample database.
Table. Employees Table

Employee_Number First Name Last_Name Date_of_Birth Car_Number

10001 Axel Washington 28-Aug-43 5
10083 Arvid Sharma 24-Nov-54 null
10120 Jonas Ginsberg 01-Jan-69 null
10005 Florence Wojokowski 04-Jul-71 12
10099 Sean Washington 21-Sep-66 null
10035 Elizabeth Yamaguchi 24-Dec-59 null

Using the last name alone would not work because there are
two employees with the last name of “Washington. ” In this
particular case the first names are all different, so one could
conceivably use that column as a primary key, but it is best to avoid
using a column where duplicates could occur. If Elizabeth
Yamaguchi gets a job at this company and the primary key is
First_ Name, the RDBMS will not allow her name to be added (if it
has been specified that no duplicates are permitted). Because there
is already an Elizabeth in the table, adding a second one would
make the primary key useless as a way of identifying just one row.

188

Computer Graphics in Java

Note that although using First_Name and Last_Name is a unique
composite key for this example, it might not be unique in a larger
database. Note also that the Employee table assumes that there

can be only one car per employee.
Select Statements

SQL is a language designed to be used with relational
databases. There is a set of basic SQL commands that is considered
standard and is used by all RDBMSs. For example, all RDBMSs
use the SELECT statement.

A SELECT statement, also called a query, is used to get
information from a table. It specifies one or more column headings,
one or more tables from which to select, and some criteria for
selection. The RDBMS returns rows of the column entries that
satisfy the stated requirements.

A SELECT statement such as the following will fetch the first and

last names of employees who have company cars:

SELECT First_Name, Last_Name
FROM Employees
WHERE Car_ Number IS NOT NULL

The result set (the set of rows that satisty the requirement of
not having null in the Car_Number column) follows. The first name
and last name are printed for each row that satisfies the
requirement because the SELECT statement (the first line) specifies
the columns First Name and Last Name. The FROM clause (the
second line) gives the table from which the columns will be

selected.
Flirst Name Last_ Name
Axel Washington
Florence Wojokowski

The following code produces a result set that includes the
whole table because it asks for all of the columns in the table

189

Computer Graphics in Java

Employees with no restrictions (no WHERE clause). Note that

SELECT * means “SELECT all columns. ”

SELECT *
FROM Employees

Where Clauses

The WHERE clause in a SELECT statement provides the criteria
for selecting values. For example, in the following code fragment,
values will be selected only if they occur in a row in which the

column Last_Name begins with the string “Washington’.
SELECT First_Name, Last_Name

FROM Employees

WHERE Last_Name LIKE ‘Washington%’

The keyword LIKE is used to compare strings, and it offers
the feature that patterns containing wildcards can be used. For
example, in the code fragment above, there is a percent sign (%) at
the end of “Washington’, which signifies that any value containing
the string “Washington” plus zero or more additional characters
will satisfy this selection criterion. So “Washington’ or
‘Washingtonian” would be matches, but “Washing” would not be.
The other wildcard used in LIKE clauses is an underbar (_), which

stands for any one character. For example,
WHERE Last_Name LIKE ‘Ba_man’

would match ‘Batman’, ‘Barman’, ‘“Badman’, ‘Balman’,
‘Bagman’, ‘Bamman’, and so on.

The code fragment below has a WHERE clause that uses the
equal sign (=) to compare numbers. It selects the first and last name

of the employee who is assigned car 12.
SELECT First_Name, Last_Name

FROM Employees

WHERE Car_Number = 12

The next code fragment selects the first and last names of
employees whose employee number is greater than 10005:

190

Computer Graphics in Java

SELECT First_Name, Last_Name
FROM Employees
WHERE Employee_Number > 10005

WHERE clauses can get rather elaborate, with multiple
conditions and, in some DBMSs, nested conditions.

This overview will not cover complicated WHERE clauses, but
the following code fragment has a WHERE clause with two
conditions; this query selects the first and last names of employees
whose employee number is less than 10100 and who do not have

a company car.

SELECT First_Name, Last_Name
FROM Employees
WHERE Employee_ Number < 10100 and Car_ Number IS NULL

A special type of WHERE clause involves a join, which is

explained in the next section.
Joins

A distinguishing feature of relational databases is that it is
possible to get data from more than one table in what is called a
join. Suppose that after retrieving the names of employees who
have company cars, one wanted to find out who has which car,
including the make, model, and year of car.

This information is stored in another table, Cars:

Cars Table

Car_Number Make Model Year
5 Honda Civic DX 1996
12 Toyota Corolla 1999

There must be one column that appears in both tables in order
to relate them to each other. This column, which must be the
primary key in one table, is called the foreign key in the other table.
In this case, the column that appears in two tables is Car_Number,
which is the primary key for the table Cars and the foreign key in
the table Employees.

191

Computer Graphics in Java

If the 1996 Honda Civic were wrecked and deleted from the
Cars table, then Car_ Number 5 would also have to be removed
from the Employees table in order to maintain what is called
referential integrity. Otherwise, the foreign key column
(Car_Number) in the Employees table would contain an entry that
did not refer to anything in Cars. A foreign key must either be
null or equal to an existing primary key value of the table to which
it refers. This is different from a primary key, which may not be
null. There are several null values in the Car_ Number column in the
table Employees because it is possible for an employee not to have a
company car. The following code asks for the first and last names of
employees who have company cars and for the make, model, and
year of those cars. Note that the FROM clause lists both Employees
and Cars because the requested data is contained in both tables.

Using the table name and a dot (.) before the column name

indicates which table contains the column.

SELECT Employees. First_Name, Employees. Last_Name,
Cars. Make, Cars. Model, Cars. Year

FROM Employees, Cars

WHERE Employees. Car_ Number = Cars. Car_Number

This returns a result set that will look similar to the following:

First Name Last Name Make Model Year
Axel Washington Honda Civic DX 1996
Florence Wojokowski Toyota Corolla 1999

Common SGQL Commands

SQL commands are divided into categories, the two main ones
being Data Manipulation Language (DML) commands and Data
Definition Language (DDL) commands. DML commands deal with
data, either retrieving it or modifying it to keep it up-to-date. DDL
commands create or change tables and other database objects such

as views and indexes.

192

Computer Graphics in Java

A list of the more common DML commands follows:

* Select—used to query and display data from a database.
The SELECT statement specifies which columns to include
in the result set. The vast majority of the SQL commands

used in applications are SELECT statements.

* Insert—adds new rows to a table. INSERT is used to
populate a newly created table or to add a new row (or
rows) to an already-existing table.

* Delete—removes a specified row or set of rows from a table

* Update—changes an existing value in a column or group
of columns in a table.

The more common DDL commands follow:

* Create Table: Creates a table with the column names the
user provides. The user also needs to specify a type for
the data in each column. Data types vary from one RDBMS
to another, so a user might need to use metadata to
establish the data types used by a particular database.
CREATE TABLE is normally used less often than the data
manipulation commands because a table is created only
once, whereas adding or deleting rows or changing
individual values generally occurs more frequently.

* Drop Table: Deletes all rows and removes the table
definition from the database. A JDBC API implementation
is required to support the DROP TABLE command as
specified by SQL92, Transitional Level. However, support
for the CASCADE and RESTRICT options of DROP
TABLE is optional. In addition, the behaviour of DROP
TABLE is implementation-defined when there are views
or integrity constraints defined that reference the table
being dropped.

193

Computer Graphics in Java

e Alter Table: Adds or removes a column from a table. It also
adds or drops table constraints and alters column

attributes.
Result Sets and Cursors

The rows that satisfy the conditions of a query are called the
result set. The number of rows returned in a result set can be zero,
one, or many.

A user can access the data in a result set one row at a time, and
a cursor provides the means to do that. A cursor can be thought of
as a pointer into a file that contains the rows of the result set, and
that pointer has the ability to keep track of which row is currently
being accessed. A cursor allows a user to process each row of a
result set from top to bottom and consequently may be used for
iterative processing. Most DBMSs create a cursor automatically
when a result set is generated.

Earlier JDBC API versions added new capabilities for a result
set’s cursor, allowing it to move both forward and backward and
also allowing it to move to a specified row or to a row whose

position is relative to another row.
Transactions

When one user is accessing data in a database, another user
may be accessing the same data at the same time. If, for instance,
the first user is updating some columns in a table at the same time
the second user is selecting columns from that same table, it is
possible for the second user to get partly old data and partly
updated data.

For this reason, DBMSs use transactions to maintain data in a
consistent state (data consistency) while allowing more than one
user to access a database at the same time (data concurrency).

194

Computer Graphics in Java

A transaction is a set of one or more SQL statements that make
up a logical unit of work. A transaction ends with either a commit
or a rollback, depending on whether there are any problems with
data consistency or data concurrency. The commit statement makes
permanent the changes resulting from the SQL statements in the
transaction, and the rollback statement undoes all changes resulting
from the SQL statements in the transaction.

A lock is a mechanism that prohibits two transactions from
manipulating the same data at the same time. For example, a table
lock prevents a table from being dropped if there is an
uncommitted transaction on that table. In some DBMSs, a table
lock also locks all of the rows in a table. A row lock prevents two
transactions from modifying the same row, or it prevents one
transaction from selecting a row while another transaction is still

modifying it.
Stored Procedures

A stored procedure is a group of SQL statements that can be
called by name. In other words, it is executable code, a mini-
programme, that performs a particular task that can be invoked
the same way one can call a function or method. Traditionally,
stored procedures have been written in a DBMS-specific
programming language.

The latest generation of database products allows stored
procedures to be written using the Java programming language
and the JDBC API. Stored procedures written in the Java
programming language are bytecode portable between DBMSs.
Once a stored procedure is written, it can be used and reused
because a DBMS that supports stored procedures will, as its name
implies, store it in the database.

195

Computer Graphics in Java

The following code is an example of how to create a very simple
stored procedure using the Java programming language. Note that
the stored procedure is just a static Java method that contains
normal JDBC code. It accepts two input parameters and uses them
to change an employee’s car number.

Do not worry if you do not understand the example at this
point. The code example below is presented only to illustrate what
a stored procedure looks like. You will learn how to writ tcode it

following.

import java. sql. *;

public class UpdateCar ({

public static void UpdateCarNum(int carNo, int empNo)
throws SQLException ({

Connection con = null;
PreparedStatement pstmt = null;
try {

con = DriverManager. getConnection (
“jdbc:default:connection”);

pstmt = con. prepareStatement (
“UPDATE EMPLOYEES “ +

“SET CAR_NUMBER = ? “ +

“WHERE EMPLOYEE_ NUMBER = ?”);
pstmt. setInt (1, carNo);

pstmt. setInt (2, empNo);

pstmt. executeUpdate();

}

finally {

if (pstmt !'= null) pstmt. close();
}

}

}

Metadata

Databases store user data, and they also store information
about the database itself. Most DBMSs have a set of system tables,
which list tables in the database, column names in each table,
primary keys, foreign keys, stored procedures, and so forth.

196

Computer Graphics in Java

Each DBMS has its own functions for getting information
about table layouts and database features. JDBC provides the
interface DatabaseMetaData, which a driver writer must
implement so that its methods return information about the
driver and/or DBMS for which the driver is written. For example,
a large number of methods return whether or not the driver
supports a particular functionality. This interface gives users and
tools a standardised way to get metadata.

In general, developers writing tools and drivers are the ones

most likely to be concerned with metadata.

197

	Cover

	Title Page

	Copyright

	Contents
	Chapter 1 Introduction to Computer Graphics in Java
	Chapter 2 Using the Graphics Package
	Chapter 3 Computer Graphics Software
	Chapter 4 Java Package
	Chapter 5 Distinction from Photorealistic 2D Graphics Design
	Chapter 6 Graphics Primitives
	Chapter 7 Computers and Java

