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Introduction

Interactive Evolution of Particle Systems
for Computer Graphics and Animation

Content generation means creating models, levels,
textures, animations, lighting, etc. for computer graphics in
games, movies, and television. For media developers, content
generation consumes significant time and money to produce
today’s complex graphics and game content. In part to
address this problem, in the video game industry, it is
becoming increasingly popular to provide extensive character
customization tools within games and to distribute tools that
allow users to create their own content outside of the game
as well. Furthermore, there is a new trend towards content
generation tools as games themselves, that is, sandbox games
such as The Sims1, Second Life2, and Spore3. These games
feature creating houses, vehicles, clothing, and creatures as
primary game play features. Thus, there is a growing need
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for powerful and user-friendly content generation tools both
to reduce the content bottleneck and further empower users.

An emerging approach to this problem is autorated content
generation through Interactive Evolutionary Computation
(IEC), that is, automating content creation though user
interaction.

This paper presents such an automated content generation
method for particle systems, demonstrating the promise of
IEC for practical content generation.

Particle systems are ubiquitous in computer graphics for
producing animated effects such as fire, smoke, clouds,
gunfire, water, cloth, explosions, magic, lighting, electricity,
flocking, and many others. They are defined by (1) a set of
points in space and (2) a set of rules guiding their behaviour
and appearance, e.g. velocity, colour, size, shape,
transparency, rotation, etc.

Since such rule sets are often complex, creating each new
effect requires considerable mathematics and programming
knowledge. For example, consider designing a spherical flame
shield of pulsing colours effect for a futuristic video game or
movie. Alternatively, consider designing a particle weapon
effect that fires multiple curving arcs toward the target. In
current practice, the precise mechanics for either scenario
must be hand coded by a programmer. To simplify design,
particle effect packages typically provide developers with a
set of particle system classes, each suitable for a certain
type of effect. Content developers manipulate the parameters
of each particle system class by hand to produce the desired
effect. The problem is that there is no way to efficiently explore
the range of effects within each class.
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To address this problem, this paper presents a new design,
representation, and animation approach for particle systems
in which (1) artificial neural networks (ANNs) control particle
system behaviour, (2) the NeuroEvolution of Augmenting
Topologies (NEAT) method produces sophisticated particle
system behaviours by evolving increasingly complex ANNSs,
and (3) evolution is guided by user preference through an
IEC interface.

Two prototype systems are discussed, NEAT Particles, a
general-purpose particle effect generator, and NEAT
Projectiles, which is specialized to evolve particle weapon
effects for video games. Both systems interactively evolve
ANNs with NEAT to control the motion and appearance of
particles. An IEC interface provides a user-friendly method
to evolve unique content.

In this way, NEAT Particles shows how IEC can enable
practical content generation that provides an easy alternative
to current, potentially cumbersome practice. In particular,
NEAT Particles and NEAT Projectiles (1) enable users without
programming or artistic skill to evolve unique particle system
effects through a simple interface, (2) allow developers to
evolve a broad range of effects within each particle class,
and (3) serve as concept generators, enabling novel effect
types to be easily discovered.

By allowing users to evolve particle behaviour without
knowledge of physics or programming, NEAT Particles and
NEAT Projectiles are a step toward the larger goal of
automated content generation for games, simulations, and

movies.



Computer Graphics and Animation

Background

The particle systems, IEC, and NEAT, which are
components of NEAT Particles and NEAT Projectiles.

Particle Systems

The first computer-generated particle system in
commercial computer graphics, called the Genesis Effect,
appeared in Star Trek II: The Wrath of Khan. Soon after,
particle systems effects became widespread on television as
well. Nearly all modern video games include a particle system
engine; special effects in games such as magical spells and
futuristic weapons are usually implemented with particle
systems.

In addition to diffuse phenomena such as fire, smoke, and
explosions, particle systems can also model concrete objects
such as dense trees in a forest, folded cloth and fabric, and
simulated fluid motion. Realistic particle movement is often
achieved by simulating real-world physics. At a more abstract
level, particle systems can simulate animal and insect flocking
as well as swarming behaviour. The prevalence and diversity
of particle system applications demonstrates their importance
to computer graphics in modern media and games.

Interactive Evolutionary Computation (IEC)

IEC is an approach to evolutionary computation (EC) in
which human evaluation replaces the fitness function. A
typical IEC application presents to the user the current
generation of content. The user then interactively determines
which members of the population will reproduce and the
IEC application automatically generates the next generation
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of content based on the user’s input. Through repeated
rounds of content generation and fitness assignment, IEC
enables unique content to evolve that suits the user’s
preferences. In some cases such content cannot be discovered
or created in any other way.

IEC aids especially in evolving content for which fitness
functions would be difficult or impossible to formalize (e.g.
for aesthetic appeal). Thus, graphical content generation is
a common application of IEC. IEC was first introduced in
Biomorphs, which aims to illustrate theories about natural
evolution. Biomorphs are patterns encoded as Lindenmayer
Systems (Lsystems), i.e. grammars that specify the order in
which a set of replacement rules are carried out.

Representations in genetic art (i.e. IEC applied to art) often
vary, including linear or non-linear functions, fractals, and
automata. Some notable examples include (1) Mutator, a
cartoon and facial animation system, (2) SBART, a two-
dimensional art exploration tool, (3) a tool that evolves implicit
surface models such as fruits and pots, and (4) a system for
evolving quadric models used as machine components. A
progression of four user-selected parents in the evolution of
a spaceship with a genetic art tool. In the example, the user
starts by selecting a simple image that vaguely resembles
what they wish to create and continues to evolve more
complex images through selection until satisfied with the
result. The sequence of images demonstrates the potential
of IEC as an engine for content generation. These images,
from Delphi NEAT Genetic Art (DNGA), are produced by ANNs
evolved by NEAT.
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NeuroEvolution of Augmenting Topologies

The NEAT method was originally developed to solve control
and sequential decision tasks. The ANNs evolved with NEAT
can control agents that select actions based on their sensory
inputs. While previous methods that evolved ANNs (i.e.
neuroevolution methods) evolved either fixed topology
networks, or arbitrary random-topology networks, NEAT is
the first to begin evolution with a population of small, simple
networks and complexify the network topology into diverse
species over generations, leading to increasingly sophisticated
behaviour. Compared to traditional reinforcement learning
techniques, which predict the long-term reward for taking
actions in different states, the recurrent networks that evolve
in NEAT are robust in continuous domains and in domains
that require memory, making many applications possible.
In this paper, particle systems are controlled by ANNs evolved
by NEAT. NEAT is well-suited to this task because (1) it is a
proven method for evolving ANNs, and (2) it was employed
successfully in prior genetic art applications.

NEAT is based on three key principles. First, in order to
allow ANN structures to increase in complexity over
generations, a method is needed to keep track of which gene
is which. Otherwise, it is not clear in later generations which
individual is compatible with which, or how their genes
should be combined to produce offspring. NEAT solves this
problem by assigning a unique historical marking to every
new piece of network structure that appears through a
structural mutation.

The historical marking is a number assigned to each gene
corresponding to its order of appearance over the course of

6
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evolution. The numbers are inherited during crossover
unchanged, and allow NEAT to perform crossover without
the need for expensive topological analysis.

That way, genomes of different organizations and sizes stay
compatible throughout evolution, solving the previously open
problem of matching different topologies in an evolving
population.

Second, traditionally NEAT speciates the population so that
individuals compete primarily within their own niches instead
of with the population at large. This way, topological
innovations are protected and have time to optimize their
structure before competing with other niches in the
population. NEAT uses the historical markings on genes to
determine to which species different individuals belong.
However, in this work, because a human performs selection
rather than an automated process, the usual speciation
procedure in NEAT is unecessary.

Third, unlike other systems that evolve network topologies
and weights, NEAT begins with a uniform population of
simple networks with no hidden nodes. New structure is
introduced incrementally as structural mutations occur, and
only those structures survive that are found to be useful
through fitness evaluations. This way, NEAT searches
through a minimal number of weight dimensions and finds
the appropriate complexity level for the problem.

This process of complexification has important implications
for search. While it may not be practical to find a solution in
a high-dimensional space by searching in that space directly,
it may be possible to find it by first searching in lower
dimensional spaces and complexifying the best solutions into
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the high-dimensional space. For IEC, complexification means
that content can become more elaborate and intricate over
generations.

Since its inception, NEAT has been applied to a broad array
of research areas. Most notable for the approach in this paper
is NERO, an interactive, realtime war game in which ANN-
controlled soldiers are evolved. Because NEAT is a strong
method for evolving controllers for dynamic physical systems,
it can naturally be extended to evolve the motion of particles
in particle effects as well.

Approach - Neat Particles

NEAT Particles combines IEC and NEAT to enable users
to evolve complex particle systems. ANNs control particle
system behaviour, NEAT evolves the ANNs, and an IEC
interface gives the user control over evolution. NEAT Particles
consists of five major components: 1) particle systems, 2)
ANNSs, 3) physics, 4) rendering, and 5) evolution.

Particle System Representation

A particle system is specified by an absolute system position
in three-dimensional space and a set of particles. Each
individual particle is defined by its position, velocity, colour,
and size. Particle lifespan unfolds in three phases.

e At birth particles are introduced into space relative
to system position and according to a generation
shape that defines the volume within which new
particles may spawn.

e During its lifetime, each particle changes and moves
according to a set of rules, i.e. an update function.
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e Each particle dies, and is removed from the system,
when its time to live has expired.

NEAT Particles effects are divided into classes for two
primary reasons: (1) user convenience and (2) performance.
First, to evolve effects in a reasonable time frame, it is helpful
to divide the search space for the user. Second, effects may
be highly dependent upon certain variables, and unaffected
by other variables. For performance reasons, it is not feasible
to evolve all possible particle variables simultaneously. A
better approach is implemented in NEAT Particles, in which
only key variables are evolved in each particle effect class.
Five particle system classes are implemented in NEAT
Particles to facilitate evolving a variety of common types of
effects.

e The generic system models effects such as fire,
smoke, and explosions. Each particle has a position,
velocity, colour, and size.

e The plane system warps individual particles into
different shapes for bright flashes, lens flares, and
engine exhaust effects. A single particle in the plane
system is represented by four points, each of which
has position, velocity, and colour.

e The beam system models beam, laser, or electricity
effects using Bezier curves. Each particle in the beam
system is a control point for the Bezier curve,
including its position, velocity, and colour attributes.

e The rotator system models effects whose primary
behaviour is orbital rotation, common in many
applications. Each particle in a rotator system has
rotation, position, and colour attributes.
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e The trail system behaves similarly to the generic
system, but additionally drops a trail of static
particles behind each moving particle.

By providing an array of particle system classes, NEAT
Particles allows designers to evolve a substantial variety of
effects while conveniently constraining the search space
during any particular run.

Artificial Neural Network Implementation

ANNSs control particle behaviour in NEAT Particles for two
primary reasons. First, ANNs are a proven method for
autonomous control. Second, NEAT is a powerful method
for evolving ANNSs for control and sequential decision tasks.
An important question is why evolving ANNs is preferable to
directly evolving the variables of a traditional particle system
implementation. While feasible, such an approach still
ultimately relies on hand-coded rules (which constitute such
systems), which thus depend on programmers to make the
search possible. For example, in a traditional particle system
implementation, when a new effect class is needed it requires
programmers to define the effect parameters (e.g. colour
change, motion pattern physics, etc.). In contrast, in NEAT
Particles the effects of any class are represented by the same
structure: ANNs.

The ANN for each particle effect dictates the characteristics
and behaviour of the system. Therefore, each particle effect
class includes its own ANN input and output configuration.
In NEAT Particles, the ANN replaces the math and physics
rules that must be programmed in traditional particle
systems. Because special effects in most movie and game
graphics need to be visually appealing yet not necessarily

10
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physically plausible, ANNs do not need to equate to physically
realistic models. However, evolved ANN-controlled particle
behaviours (e.g. spin in a spiral while changing colour from
green to orange) are still compatible with rules in physically
accurate particle simulations such as gravity, friction, or
collision. Every particle in a system is guided by the same
ANN. However, the ANN is activated separately for each
particle. During every frame of animation in NEAT Particles
an update function is executed that (1) loads inputs, (2)
activates the ANN, and (3) reads outputs. The ANN outputs
determine particle behaviour for the current frame of
animation.

An appropriate set of inputs and outputs is associated
with each effect class as follows.

The primary inputs in NEAT Particles are position and
distance from centre of the system. The main outputs are
velocity and colour. These are good inputs and outputs
because they can encode significant variety over the long
term. However, because animation happens in real-time, the
change in position and distance from centre are small from
one frame to the next, producing incremental changes that
look smooth.

The generic particle system ANN takes the current position
of the particle (px, py, pz) and distance from the centre of the
system (dc) as inputs. Distance from centre introduces the
potential for symmetry by allowing particles to move in
relation to the system centre. The outputs are the velocity
(vx, vy, vz) and colour (R, G, B) of the particle for the next
frame of animation. The generic particle system produces
behaviours suitable for explosions, fire, and smoke effects.

11
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Each particle in the plane system consists four co-planar
points that may be warped into different shapes. Because
the corners must be coplanar for rendering purposes, the y
component of velocity for each corner is fixed. Thus, the
inputs to the plane system ANN are the position of each corner
(px, pz) and the distance from the centre of the plane (dc).
The warped quads of plane systems are commonly found in
explosions, engine thrust, and glow effects.The beam system
ANN controls directed beam effects. To produce twisting
beams, a Bezier curve is implemented with mobile control
points directed by the ANN. The inputs are the position of
each Bezier control point (px, py, pz) and distance of the
control point from a the centre of the system (dc). The outputs
are the velocity (vx, vy, vz) and colour (R, G, B) of the control
point for the next frame of animation. Beam systems produce
curving, multi-coloured beams typically found in futuristic
weapons, magic spells, lightning, and energy effects.

The rotator system enables evolving rotationbased effects.
The inputs to the ANN are particle position (px, py, pz) and
distance from the centre of the system (dc). The outputs are
rotation around the x, y, and z axes (rx, ry, rz) and colour (R,
G, B). Rotation-based particle systems are common in
explosions, halos, and energy effects.

The trail system behaves similarly to the generic system
yet provides a more complex visual effect by periodically
dropping stationary particles that shrink and fade out.
Therefore, the trail system ANN takes the same inputs and
emits the same outputs as the generic ANN. Trail systems
are convenient because they provide a computationally
inexpensive form of motion blur or visual trail behind moving

12
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objects. ANNs control particle behaviour and ANN input/
outputs divide effects into classes, which shrinks the search
space for users. While ANN topology and weights significantly
contribute to particle behaviour, activation functions within
each node play an important role as well.

Activation Functions

Unlike traditional ANNs, NEAT Particles ANN hidden nodes
and output nodes contain an activation function selected
from a set of eight possibilities. Theoretically, ANNs with a
single activation function can evolve any behaviour ; however,
multiple activation functions are preferable in NEAT Particles
because the user can obtain variety more quickly and thereby
evolve toward the intended effect sooner.

Physics

Each frame of animation, after the ANN is activated, the
velocity for each particle is determined by the outputs. To
animate a particle each frame (i.e. move the particle through
space) a linear motion model calculates the position of the
particle at time t based on time elapsed _ since the last frame
of animation:

Pt=Pt-1+V_s,
where Pt is the particle’s new position vector, Pt-1 is the
particle’s position vector in the previous animation frame, V
is the particle’s velocity vector, and s is a scaling value to
adjust the speed of animation.

Rendering
NEAT Particles renders particles to the screen with

billboarding, a technique in which two-dimensional bitmap

13
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textures are mapped onto a plane (i.e. a quad) that faces
perpendicular to the camera. The corners of the quad are
offsets from the particle position. By facing the quad toward
the camera the billboarding method convincingly conveys
the illusion of translucent three-dimensional particles in
space. The billboarding technique is implemented in NEAT
Particles because it is the most common and versatile method
to render particles. An alternative particle rendering method
is point sprites ; however, they do not allow arbitrary warping
of particle shape required for the beam and plane systems.
There are several ways to optimize particle system rendering
including level of detail (LOD), batch rendering, and GPU
acceleration. NEAT Particles is compatible with all such
methods; however they are not explored in this
implementation.

Evolution

Evolution in NEAT Particles follows a similar procedure to
other IEC applications. The user is initially presented a
population of nine randomized particle systems represented
by simple ANNs. Each individual system and its ANN can be
inspected by zooming in on the system. If the initial population
of nine systems is unsatisfactory, a new random batch of
effects can be generated by restarting evolution. The user
begins evolution by selecting a single system from the
population to spawn a new generation. A population of eight
new systems (i.e. offspring) is then generated from the ANN
of the selected system (i.e. parent) by mutating its connection
weights and possibly adding new nodes and connections.
That is, offspring complexify following the NEAT method.
Evolution proceeds with repeated rounds of selection and

14
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offspring production until the user is satisfied with the
results. If the user is unsatisfied with an entire new
generation, an undo function recalls the previous generation.
Specifically, each new generation preserves the parent exactly
and the other eight members of the population are mutated
from the parent.

For each offspring, a uniformly random number of
connections (between one and the number of connections in
the network) are mutated by a uniformly random value
between “0.5 and 0.5. Adding new nodes and connections is
controlled by separate mutation rates. The probability of
adding a new connection is 0.3 and the probability of adding
a new node is 0.2. New nodes are assigned a random
activation function and connected into the existing ANN.
These parameters were found to be effective for IEC in
preliminary experimentation.

Through complexification, particle system effects become
increasingly sophisticated as evolution progresses. Thus,
complex and unique effects are discovered that follow user
preferences. The explains evolving particle system content
for a more specialized purpose, weapons effects for video
games.

Neat Projectiles

NEAT Projectiles is an extension of NEAT Particles designed
to evolve particle weapon effects for video games. The aim is
to exhibit a concrete, practical application of NEAT Particles
that can potentially enhance content generation in existing
real-world products. NEAT Projectiles uses similar rendering,
physics, and activation functions as NEAT Particles.
Furthermore, the same IEC interface drives evolution. The

15
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major differences are (1) the projectile classes, (2) the
projectile constraints, and (3) the ANN inputs and outputs.

Projectile Classes

Three classes of weapon-like systems are implemented in
NEAT Projectiles to mirror common weapon models in video
games: (1) dumb weapons, (2) directed weapons, and (3) smart
weapons. Dumb weapons fire simple, non-target aware
projectiles and exhibit a fixed behaviour in flight. Directed
weapons fire projectiles that may be steered by the user
during flight. Smart weapons see the target; like a heat-
seeking missile, the in-flight behaviour of smart projectiles
is influenced by target motion.

Projectile Constraint

Particle weapons provide two new significant constraints
on particle motion beyond generic particle effects. First, to
avoid weapons firing backward, projectile velocity is limited
to overall forward motion. Second, evolved projectile weapons
fire in the same pattern regardless of what direction the
weapon is facing. It would not make sense for projectiles
emitted from a weapon to behave differently when a user
points the weapon in different directions. Therefore, projectile
coordinates are defined relative to the heading of the gun
when it is fired. The new projectile classes and constraint
mechanisms also influence the interpretation of NEAT
Projectiles ANNs, as explained next.

Projectile ANNs

Because there is more than one way to make particles act
as projectiles, two approaches are implemented and tested

16



Computer Graphics and Animation

in NEAT Particles: (1) the offset-constrained model and (2)
the force constrained model. In the offset-constrained model,
a 90° offset cone in front of each particle is computed in each
frame. The outputs from each particle’s ANN represent a
vector within the offset cone, which becomes the particle’s
new velocity. Offset angles are computed differently for each
weapon type. A particle fired from the dumb weapon has a
fixed offset in the direction the gun was facing on discharge.
The directed weapon allows the user to influence projectiles
while in flight; therefore particle offset is constrained to a
90° cone around the vector the weapon is currently facing.
Particles fired from the smart weapon seek their target.
Therefore, the smart particle’s offset is constrained to the
90° cone around a vector from the projectile to the target.
In the force-constrained model, the ANN is similar to that
used in the generic system of NEAT Particles; however a push
force is applied to constrain particle movement to a general
direction. The direction of the push force depends on the
weapon type. The dumb weapon projectile is pushed in the
direction of the gun when it discharges. The directed projectile
pushes in the direction the gun is currently facing. The smart
weapon pushes projectiles in the direction of the target. The
combination of constraint model, classes, and correct ANN
design minimizes defective offspring while allowing a
sufficiently large variety of unique weapons to evolve, which
is integral to efficiently producing useful content though IEC.

Experimental Results

NEAT Particles and NEAT Projectiles work in practice to
produce useful particle system content. All particle systems
reported were evolved in between five and ten minutes and

17
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between 20 and 30 user-guided generations. The starting
point is a single curving beam to the target, which is marked
with a cross. During evolution the beam splits. Finally, the
desired effect is achieved with two stylized, parallel arcs that
track the target. Preliminary testing of both NEAT Projectiles
constraint models suggests that, compared to the force-
constrained model, the offset-constrained model over-
constrains evolution. It generates less variety in evolved
weapon effects. However, unlike the force-constrained model,
it also produces no offspring that fire back at the user. Thus,
both models have their pros and cons.

Comparisons

To compare the quality of IEC particle effects to those
generated by traditional methods, two hand-coded particle
emitters were implemented with the same rendering method
as NEAT Particles. The resulting effects exhibit similar visual
quality; however, they are limited to simple behaviours
because the behavioral complexity of hand-coded particle
systems is dependent upon mathematics, physics, and
programming, which become increasingly difficult to
coordinate through hand-coded policies as more is added.
Another interesting comparison can be drawn with the IEC
fireworks application by Tsuneto, which produces a
specialized class of particle effects. In this system, fireworks
are defined by real-world attributes such as powder type,
explosive payload, number of stages, stage configuration, etc.
A rule-based physics system defines the behaviour of
fireworks based on these attributes. Through repeated
selection in an IEC interface, users can evolve fireworks to

18
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suit their preferences. Thus, unlike NEAT Particles, this
system demonstrates evolving the variables of a rule system.
In contrast, NEAT Particles evolves the behaviour rules
themselves. Both approaches offer unique advantages. The
special rule set of the fireworks application allows it to focus
on a specific class of effects. NEAT Particles in contrast can
evolve effects in a large variety of classes because of its
generality and lack of domain-specific parameters.

19
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Sketchpad and the Design Process
in Computer Graphics

Construction of a drawing with Sketchpad is itselfa model
of the design process. The locations of the points and lines
of the drawing model the variables of a design, and the
geometric constraints applied to the points and lines of the
drawing model the design constraints which limit the values
of design variables. The ability of Sketchpad to satisfy the
geometric constraints applied to the parts of a drawing models
the ability of a good designer to satisfy all the design
conditions imposed by the limitations of his materials, cost,
etc. In fact, since, designers in many fields produce nothing
themselves but a drawing of a part, design conditions may
well be thought of as applying to the drawing of a part rather
than to the part itself. When such design conditions are added
to Sketchpad’s vocabulary of constraints, the computer will
be able to assist a user not only in arriving at a nice looking
drawing, but also in arriving at a sound design.
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Present Usefulness

As more and more applications have been made, it has
become clear that the properties of Sketchpad drawings malke
them most useful in_four broad areas:

For storing and updating drawings: Each time a drawing is
made, a description of that drawing is stored in the computer
in a form that is readily transferred to magnetic tape. A library
of drawings will thus develop, parts of which may be used in
other drawings at only a fraction of the investment of time
that was put into the original drawing.

For gaining scientific or engineering understanding of operations
that can be described graphically: A drawing in the Sketchpad
system may contain explicit statements about the relations
between its parts so that as one part is changed the implications
of this change become evident throughout the drawing. For
instance, Sketchpad makes it easy to study mechanical linkages,
observing the path of some parts when others are moved.

As a topological input device for circuit simulators, etc.: Since,
the storage structure of Sketchpad reflects the topology of
any circuit or diagram, it can serve as an input for many
network or circuit simulating Programmes. The additional
effort required to draw a circuit completely from scratch with
the Sketchpad system may well be recompensed if the
properties of the circuit are obtainable through simulation
of the circuit drawn.

For highly repetitive drawings: The ability of the computer
to reproduce any drawn symbol anywhere at the press of a
button, and to recursively include subpictures within
subpictures makes it easy to produce drawings which are
composed of huge numbers of parts all similar in shape.

21
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Ring Structure

The basic n-component element structure described by
Ross has been somewhat expanded in the implementation
of Sketchpad so that all references made to a particular n-
component element or block are collected together by a string
of pointers which originates within that block. For example,
not only may the end points of a line segment be found by
following pointers in the line block (n-component element),
but also all the line segments which terminate on a particular
point may be found by following a string of pointers which
starts within the point block. This string of pointers closes
on itself; the last pointer points back to the first, hence the
name “‘ring.” The ring points both ways to make it easy to
find both the next and the previous member of the ring in
case, as when deleting, some change must be made to them.

Basic Operations

The basic ring structure operations are:

e Inserting a new member into a ring at some specified
location on it, usually first or last.

e Removing a member from a ring.

e Putting all the members of one ring, in order, into
another at some specified location in it, usually first
or last.

¢ Performing some auxiliary operation on each member
of a ring in either forward or reverse order.

These basic ring structure operations are implemented by
short sections of Programme defined as MACRO instructions
in the compiler language. By suitable treatment of zero and
one member rings, the basic Programmes operate without

making special cases.
22
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Subroutines are used for setting up new n-component
elements in free spaces in the storage structure. As parts of
the drawing are deleted, the registers which were used to
represent them become free. New components are set up at
the end of the storage area, lengthening it, while free blocks
are allowed to accumulate. Garbage collection periodically
compacts the storage structure by removal of the free blocks.

Generic Structure, Hierarchies

The main part of Sketchpad can perform basic operations
on any drawing part, calling for help from routines specific
to particular types of parts when that is necessary. For
example, the main Programme can show any part on the
display system by calling the appropriate display subroutine.
The big power of the clear-cut separation of the general and
the specific is that it is easy to change the details of specific
parts of the Programme to get quite different results without
any need to change the general parts.

| Universe |

|Variab|es| |Ho|ders | IConstraintsl | Topos |
DeadsiiDesigs] [Porp f__|
Movings Mergers| Etc.|11 qPictures
urpicsWorks| [ Etc.
Freedoms@{Spare| |\_E‘
C__H
L1

Figure : Generic Structure. The n-component Elements for each
Point or line, etc. are Collected under the Generic Blocks
“Lines,” “Points,” etc. Shown.

In the data storage structure the separation of general
and specific is accomplished by collecting all things of one
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type together in a ring under a generic heading. The generic
heading contains all the information which makes this type
of thing different from all other types of things. Thus the
data storage structure itself contains all the specific
information. The generic blocks are further gathered together
under super-generic or generic-generic blocks.

Expanding Sketchpad

Addition of new types of things to the Sketchpad system’s
vocabulary of picture parts requires only the construction of a
new generic block (about 20 registers) and the writing of
appropriate subroutines for the new type. The subroutines might
be easy to write, as they usually are for new constraints, or difficult
to write, as for adding ellipse capability, but at least a finite, well-
defined task faces one to add a new ability to the system. Without
a generic structure it would be almost impossible to add the
instructions required to handle a new type of element.

Light Pen

In Sketchpad the light pen is time shared between the
functions of coordinate input for positioning picture parts
on the drawing and demonstrative input for pointing to
existing picture parts to make changes. Although almost any
kind of coordinate input device could be used instead of the
light pen for positioning, the demonstrative input uses the
light pen optics as a sort of analog computer to remove from
consideration all but a very few picture parts which happen
to fall within its field of view, saving considerable Programme
time. Drawing systems using storage display devices of the
Memotron type may not be practical because of the loss of
this analog computation feature.
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Pen tracking

To initially establish pen tracking, the Sketchpad user must
inform the computer of an initial pen location. This has come
to be known as “inking-up” and is done by “touching” any
existing line or spot on the display, whereupon the tracking
cross appears. If no picture has yet been drawn, the letters
INK are always displayed for this purpose. Sketchpad uses
loss of tracking as a “termination signal” to stop drawing.
The user signals that he is finished drawing by flicking the
pen too fast for the tracking Programme to follow.

Demonstrative use of Pen

During the 90% of the time that the light pen and display
system are free from the tracking chore, spots are very rapidly
displayed to exhibit the drawing being built, and thus the
lines and circles of the drawing appear. The light pen is
sensitive to these spots and reports any which fall within its
field of view.

Figure : Areas in Which Pen must lie to “aim at” Existing Drawing Parts (solid
lines).

The one-half inch diameter field of view of the light pen,
although well suited to tracking, is relatively large for pointing.
Therefore, the Sketchpad system will reject any seen part
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which is further from the centre of the light pen than some
small minimum distance; about 1/8 inch was found to be
suitable. For every kind of picture part some method must
be provided for computing its distance from the light pen
centre or indicating that this computation cannot be made.

After eliminating all parts seen by the pen which lie outside
the smaller effective field of view, the Sketchpad system
considers objects topologically related to the ones actually
seen. End points of lines and attachment points of instances
(subpictures) are especially important. One can thus aim at
the end point of a line even though only the line is displayed.
The various regions within which the pen must lie to be
considered aimed at a line segment, a circle arc, their end
points, or their intersection.

Pseudo Pen Location

When the light pen is aimed at a picture part, the exact
location of the light pen is ignored in favour of a “pseudo pen
location” exactly on the part aimed at. If no object is aimed
at, the pseudo pen location is taken to be the actual pen
location.

The pseudo pen location is displayed as a bright dot which
is used as the “point of the pencil” in all drawing operations.
As the light pen is moved into the areas outline the dot will
lock onto the existing parts of the drawing, and any moving
picture parts will jump to their new locations as the pseudo
pen location moves to lie on the appropriate picture part.
With just the basic drawing creation and manipulation

LIS

functions of “draw,” “move,” and “delete,” and the power of
the pseudo pen location and demonstrative language
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Programmes, it is possible to make fairly extensive drawings.
Most of the constructions normally provided by straight edge
and compass are available in highly accurate form. Most
important, however, the pseudo pen location and
demonstrative language give the means for entering the
topological properties of a drawing into the machine.

Display Generation

The display system, or “scope,” on the TX-2 is a ten bit per
axis electrostatic deflection system able to display spots at a
maximum rate of about 100,000 per second. The coordinates
of the spots which are to be seen on the display are stored in
a large table so that computation and display may proceed
independently. If, instead of displaying each spot
successively, the display Programme displays them in a
random order or with interlace, the flicker of the display is
reduced greatly.

Marking of Display File

Of the 36 bits available to store each display spot in the
display file, 20 give the coordinates of that spot for the display
system, and the remaining 16 give the address of the n-
component element which is responsible for adding that spot
to the display. Thus, all the spots in a line are tagged with
the ring structure address of that line, and all the spots in
an instance (sub-picture) are tagged as belonging to that
instance. The tags are used to identify the particular part of
the drawing being aimed at by the light pen. If a part of the
drawing is being moved by the light pen, its display spots
will be recomputed as quickly as possible to show it in
successive positions. The display spots for such moving parts
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are stored at the end of the display file so that the display of
the many non--moving parts need not be disturbed. Moving
parts are made invisible to the light pen.

Magnification of Pictures

The shaft position encoder knobs are used to tell the
Programme to change the display scale factor or the portion
of the page displayed. The range of magnification of 2000
available makes it possible to work, in effect, on a 7-inch
square portion of a drawing about Y4 mile on a side. For a
magnified picture, Sketchpad computes which portion(s) of
a curve will appear on the display and generates display spots
for those portions only. The “edge detection” problem is the
problem of finding suitable end points for the portion of a
curve which appears on the display. In concept the edge
detection problem is trivial. In terms of Programme time for
lines and circles the problem is a small fraction of the total
computational load of the system, but in terms of Programme
logical complexity the edge detection problem is a difficult
one. For example, the computation of the intersection of a
circle with any of the edges of the scope is easy, but
computation of the intersection of a circle with all four edges
may result in as many as eight intersections, some pairs of which
may be identical, the scope corners. Now which of these
intersections are actually to be used as starts of circle arcs?

Line and Circle Generation

All of Sketchpad’s displays are generated from straight line
segments, circle arcs, and single points.

The generation of the lines and circles is accomplished by
means of the difference equations:
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X; =X +AX Yi =YiaAy )]
for lines, and

2
X; =Xjp +§(Y -1~ Ye)

Yi = Vi _%(Xi—l -X) (2)

for circles, where subscripts i indicate successive display
spots, subscript c indicates the circle centre, and R is the
radius of the circle in Scope Units. In implementing these
difference equations in the Programme, the fullest possible
use is made of the coordinate arithmetic capability of the
TX-2 so that both the x and y equation computations are
performed in parallel on 18 bit subwords. Even so, about %
of the total Sketchpad computation time is spent in line and
circle generation. A vector and circle generating display would
materially reduce the computational load of Sketchpad.

For computers which do only one addition at a time, the

difference equations:
2
X; =X 1 +§(Y i1~ Ye)

Yi ZYi—I_%(Xi -Xc) 3)
should be used to generate circles. Equations (3) approximate
a circle well enough and are known to close exactly both in
theory and when implemented, because the xand y equations
are dissimilar.

Digits and Text

Text, to put legends on a drawing, is displayed by means
of special tables which indicate the locations of line and circle
segments to make up the letters and numbers. Each piece
of text appears as a single line of not more than 36 equally
spaced characters which can be changed by typing. Digits to
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display the value of an indicated scalar at any position and
in any size and rotation are formed from the same type face
as text. It is possible to display up to five decimal digits with
sign; binary to decimal conversion is provided, and leading
zeros are suppressed.

Subpictures, whose use was seen in the introductory
example above, are each represented in storage as a single
n-component element. A subpicture is said to be an “instance”
of its “master picture.” To display an instance, all of the lines,
text, etc. of its master picture must be shown in miniature
on the display. The instance display Programme makes use
of the line, circle, number, and text display Programmes and
itself to expand the internal structure of the instance.

Display of Abstractions

The usual picture for human consumption displays only
lines, circles, text, digits, and instances. However, certain
very useful abstractions which give the drawing the properties
desired by the user are represented in the ring structure
storage. For example, the fact that the start and end points
of a circle arc should be equidistant from the circle’s centre
point is represented in storage by a “constraint” block. To
make it possible for a user to manipulate these abstractions,
each abstraction must be able to be seen on the display if
desired.

Not only does displaying abstractions make it possible for
the human user to know that they exist, but also makes it
possible for him to aim at them with the light pen and, for
example, erase them. To avoid confusion, the display for
particular types of objects may be turned on or off selectively
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by toggle switches. Thus, for example, one can turn on display
of constraints as well as or instead of the lines and circles
which are normally seen.

X X
X—( # —x ;:)-x
X X

RoNE

X

Figure : Display of Constraints.

If their selection toggle switch is on, constraints are
displayed. The central circle and code letter are located at
the average location of the variables constrained. The four
arms of a constraint extend from the top, right side, bottom,
and left side of the circle to the first, second, third, and fourth
variables constrained, respectively. If fewer than four
variables are constrained, excess arms are omitted. The
constraints are shown applied to “dummy variables” each of
which shows as an X.

Constraint Makes
-5978 Digets UpRight

Constraint on

Scalar Value
Scalar c=ge

&
©
\%

Figure : Three Sets of Digits Displaying the Same Scalar Value.
Another abstraction that can be displayed if desired is the
value of a set of digits. For example, three sets of digits all
displaying the same scalar value, -5978. The digits themselves
may be moved, rotated, or changed in size, without changing
the value displayed. If we wish to change the value, we point

31



Computer Graphics and Animation

at its abstract display. The three sets of digits, all display the
same value, as indicated by the lines connecting them to the
#; changing this value would make all three sets of digits
change. Constraints may be applied independently to either
the position of the digits or their value as indicated by the
two constraints in the figure.

Recursive Functions

In the process of making the Sketchpad system operate, a
few very general functions were developed which make no
reference at all to the specific types of entities on which they
operate.

These general functions give the Sketchpad system the
ability to operate on a wide range of problems. The motivation
for making the functions as general as possible came from
the desire to get as much result as possible from the
programming effort involved. For example, the general
function for expanding instances makes it possible for
Sketchpad to handle any fixed geometry subpicture. The
power obtained from the small set of generalized functions
in Sketchpad is one of the most important results of the
research.

In order of historical development, the recursive functions
in use in the Sketchpad system are:

e Expansion of instances, making it possible to have
subpictures within subpictures to as many levels
as desired.

e Recursive deletion, whereby removal of certain
picture parts will remove other picture parts in order
to maintain consistency in the ring structure.
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e Recursive merging, whereby combination of two
similar picture parts forces combination of similarly
related other picture parts, making possible
application of complex definitions to an object
picture.

Recursive Deleting

If a thing upon which other things depend is deleted, the
dependent things must be deleted also. For example, if a point
is to be deleted, all lines which terminate on the point must
also be deleted. Otherwise, since, the n-component elements
for lines contain no positional information, where would these
lines end? Similarly, deletion of a variable requires deletion
of all constraints on that variable; a constraint must have
variables to act on.

Recursive Merging

If two things of the same type which are independent are
merged, a single thing of that type results, and all things which
depended on either of the merged things depend on the result”
of the merger.

For example, if two points are merged, all lines which
previously terminated on either point now terminate on the
single resulting point. In Sketchpad, if a thing is being moved
with the light pen and the termination flick of the pen is
given while aiming at another thing of the same type, the
two things will merge.

Thus, if one moves a point to another point and terminates,
the points will merge, connecting all lines which formerly
terminated on either. This makes it possible to draw closed

polygons.
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Figure : Applying a Two-constraint Definition to turn a Quadrilateral
into a Parallelogram.

If two things of the same type which do depend on other
things are merged, the things depended on by one will be forced
to merge, respectively, with the things depended on by the
other. The result” of merging two dependent things depends,
respectively, on the results” of the mergers it forces. For
example, if two lines are merged, the resultant line must
refer to only two end points, the results of merging the pairs
of end points of the original lines. All lines which terminated
on any of the four original end points now terminate on the
appropriate one of the remaining pair. More important and
useful, all constraints which applied to any of the four original

end points now apply to the appropriate one of the remaining
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pair. This makes it possible to speak of line segments as
being parallel even though (because line segments contain
no numerical information to be constrained) the parallelism
constraint must apply to their end points and not to the line
segments themselves. If we wish to make two lines both
parallel and equal in length, the steps outlined. More obscure
relationships between dependent things may be easily defined
and applied. For example, constraint complexes can be
defined to make line segments be collinear, to make a line be
tangent to a circle, or to make the values represented by two
sets of digits be equal. The “result” of a merger is a single
thing of the same type as the merged things.

Recursive display of instances

The block of registers which represents an instance is
remarkably small considering that it may generate a display
of any complexity. For the purposes of display, the instance
block makes reference to its master picture. The instance
will appear on the display as a figure geometrically similar to
its master picture at a location, size, and rotation indicated
by the four numbers which constitute the “value” of the
instance. The value of an instance is considered numerically
as a four dimensional vector. The components of this vector
are the coordinates of the centre of the instance and its actual
size as it appears on the drawing times the sine and cosine
of the rotation angle involved. In displaying an instance of a
picture, reference is made to the master picture to find out
what picture parts are to be shown. The master picture
referred to may contain instances, however, requiring further
reference, and so on until a picture is found which contains
no instances. At each stage in the recursion, any picture
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parts displayed must be relocated so that they will appear at
the correct position, size and rotation on the display. Thus,
at each stage of the recursion, some transformation is applied
to all picture parts before displaying them. If an instance is
encountered, the transformation represented by its value
must be adjoined to the existing transformation for display
of parts within it. When the expansion of an instance within
an instance is finished, the transformation must be restored
for continuation at the higher level.

Attachers and Instances

Many symbols must be integrated into the rest of the
drawing by attaching lines to the symbols at appropriate
points, or by attaching the symbols directly to each other.
For example, circuit symbols must be wired up, geometric
patterns made by fitting shapes together, or mechanisms
composed of links tied together appropriately. An instance
may have any number of attachment points, and a point
may serve as attacher for any number of instances. The light
pen has the same affinity for the attachers of an instance
that it has for the end point of a line.

An “instance-point” constraint, shown with code T, is used
to relate an instance to each of its attachment points. An
instance-point constraint is satisfied only when the point
bears the same relationship to the instance that a master
point in the master picture for that instance bears to the
master picture coordinate system.

Any point may be an attacher of an instance, but the point
must be designated as an attacher in the master drawing of
the instance. For example, when one first draws a resistor,
the ends of the resistor must be designated as attachers if
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wiring is to be attached to instances of it. At each level of
building complex pictures, the attachers must be designated
anew. Thus of the three attachers of a transistor it is possible
to select one or two to be the attachers of a flip-flop.

Line Attacher 2

Point Attacher 2

Pomt Attacher 1

-“.@" \
A. Horizontal Li

ine Attacher 1
Line

o‘"

B. Equal Leangth
Lines

Point Attacher 2
Diamond Instance

Point Attacher 1
Instance-Point Constraint
Constraints on Instance

C. Partly Flexible Arrow

Instance Attacher 2
Instance Attacher 1

D. Pre-Joined Instances

Figure : Definition Pictures to be Copied.
Building a Drawing, the Copy Function

At the start of the Sketchpad effort certain ad hoc drawing
functions were programmed as the atomic operations of the
system. Each such operation, controlled by a push button,
creates in the ring structure a specific set of new drawing
parts. For example, the “draw” button creates a line segment
and two new end points (unless the light pen happens to be
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aimed at a point in which case only one new point need be
created). Similarly, there are atomic operations for drawing
circles, applying a horizontal or vertical constraint to the
end points of a line aimed at, and for adding a “point-on-
line” constraint whenever a point is moved onto a line and
left there.

The atomic operations make it possible to create in the
ring structure new picture components and relate them
topologically. The atomic operations are, of course, limited
to creating points, lines, circles, and two or three types of
constraints. Since, implementation of the copy function it
has become possible to create in the ring structure any
predefined combination of picture parts and constraints at
the press of a button. The recursive merging function makes
it possible to relate the copied set of picture parts to any
existing parts. For example, if a line segment and its two end
points are copied into the object picture, the action of the
“draw” button may be exactly duplicated in every respect.
Along with the copied line, however, one might copy as well a
constraint, Code H, to make the line horizontal, or two
constraints to make the line both horizontal and three inches
long, or any other variation one cares to put into the ring
structure to be copied.

When one draws a definition picture to be copied, certain
portions of it to be used in relating it to other object picture
parts are designated as “attachers.” Anything at all may be
designated: for example, points, lines, circles, text, even
constraints!.

The rules used for combining points when the “draw” button
is pressed are generalized so that:
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For copying a picture, the last-designated attacher is left
moving with the light pen. The next-to-last-designated
attacher is recursively merged with whatever object the pen
is aimed at when the copying occurs, if that object is of like
type. Previously designated attachers are recursively merged
with previously designated object picture parts, if of like type,
until either the supply of designated attachers or the supply
of designated object picture parts is exhausted. The last-
designated attacher may be recursively merged with any other
object of like type when the termination flick is given.
Normally only two designated attachers are used because it
is hard to keep track of additional ones.

If the definition picture consists of two line segments, their
four end points, and a constraint, Code M, on the points
which makes the lines equal in length, with the two lines
designated as attachers, copying enables the user to make
any two lines equal in length. If the pen is aimed at a line
when “copy” is pushed, the first of the two copied lines merges
with it (taking its position and never actually being seen).
The other copied line is left moving with the light pen and
will merge with whatever other line the pen is aimed at when
termination occurs. Since, merging is recursive, the copied
equal-length constraint, Code M, will apply to the end points
of the desired pair of object picture lines.

Copying Instances

The internal structure of an instance is entirely fixed. The
internal structure of a copy, however, is entirely variable. An
instance always retains its identity as a single part of the
drawing; one can only delete an entire instance. Once a
definition picture is copied, however, the copy loses all identity
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as a unit; individual parts of it may be deleted at will. One
might expect that there was intermediate ground between
the fixed-internal-structure instance and the loose-internal-
structure copy. One might wish to produce a collection of
picture parts, some of which were fixed internally and some
of which were not. The entire range of variation between the
instance and the copy can be constructed by copying instances.

For example, the arrow can be copied into an object picture
to result in a fixed-internal-structure diamond arrowhead
with a flexible tail. As the definition is set up, drawing
diamond-arrowheaded lines is just like drawing ordinary
lines. One aims the light pen where the tail is to end, presses
“copy,” and moves off with an arrowhead following the pen.
The diamond arrowhead in this case will not rotate (constraint
Code E), and will not change size (constraint Code F).

Copying pre-joined instances can produce vast numbers
of joined instances very easily. For example, the definition,
when repetitively copied, will result in a row of joined, equal
size (constraint Code S) diamonds. In this case the instances
themselves are attachers. Although each press of the “copy”
button copies two new instances into the object picture, one
of these is merged with the last instance in the growing row.
In the final row, therefore, each instance carries all
constraints which are applied to either of the instances in
the definition. This is why only one of the instances carries
the erect constraint, Code E.

Constraint Satisfaction

The major feature which distinguishes a Sketchpad
drawing from a paper and pencil drawing is the user’s ability
to specify to Sketchpad mathematical conditions on already
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drawn parts of his drawing which will be automatically
satisfied by the computer to make the drawing take the exact
shape desired. The process of fixing up a drawing to meet
new conditions applied to it after it is already partially
complete is very much like the process a designer goes
through in turning a basic idea into a finished design. As
new requirements on the various parts of the design are
thought of, small changes are made to the size or other
properties of parts to meet the new conditions. By making
Sketchpad able to find new values for variables which satisfy
the conditions imposed, it is hoped that designers can be
relieved of the need of much mathematical detail. The effort
expended in making the definition of constraint types as
general as possible was aimed at making design constraints
as well as geometric constraints equally easy to add to the

system.
Definition of a Constraint Type

Each constraint type is entered into the system as a generic
block indicating the various properties of that particular
constraint type. The generic block tells how many variables
are constrained, which of these variables may be changed in
order to satisfy the constraint, how many degrees of freedom
are removed from the constrained variables, and a code letter
for human reference to this constraint type.

The definition of what a constraint type does is a subroutine
which will compute, for the existing values of the variables
of a particular constraint of that type, the error introduced
into the system by that particular constraint. For example,
the defining subroutine for making points have the same x
coordinate (to make a line between them vertical) computes
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the difference in their x coordinates. What could be simpler?
The computed error is a scalar which the constraint
satisfaction routine will attempt to reduce to zero by
manipulation of the constrained variables. The computation
of the error may be non--linear or time dependent, or it may
involve parameters not a part of the drawing such as the
setting of toggle switches, etc.

When the one pass method of satisfying constraints to be
described later on fails, the Sketchpad system falls back on
the reliable but slow method of relaxation to reduce the errors
indicated by various computation subroutines to smaller and
smaller values. For simple constructions such as the hexagon
illustrated, the relaxation procedure is sufficiently fast to be
useful. However, for complex systems of variables, especially
directly connected instances, relaxation is unacceptably slow.
Fortunately it is for just such directly connected instances
that the one pass method shows the most striking success.

One Pass Method

Sketchpad can often find an order in which the variables
of a drawing may be re-evaluated to completely satisfy all
the conditions on them in just one pass. For the cases in
which the one pass method works, it is far better than
relaxation: it gives correct answers at once; relaxation may
not give a correct solution in any finite time. Sketchpad can
find an order in which to re-evaluate the variables of a drawing
for most of the common geometric constructions. Ordering
is also found easily for the mechanical linkages. Ordering
cannot be found for the bridge truss problem.

The way in which the one pass method works is simple in
principle and was easy to implement as soon as the nuances
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of the ring structure manipulations were understood. To
visualize the one pass method, consider the variables of the
drawing as places and the constraints relating variables as
passages through which one might pass from one variable
to another. Variables are adjacent to each other in the maze
formed by the constraints if there is a single constraint which
constrains them both. Variables are totally unrelated if there
is no path through the constraints by which to pass from
one to the other.

Suppose that some variable can be found which has so
few constraints applying to it that it can be re-evaluated to
completely satisfy all of them. Such a variable we shall call a
“free” variable. As soon as a variable is recognized as free,
the constraints which apply to it are removed from further
consideration, because the free variable can be used to satisfy
them. Removing these constraints, however, may make
adjacent variables free. Recognition of these new variables
as free removes further constraints from consideration and
may make other adjacent variables free, and so on throughout
the maze of constraints. The manner in which freedom
spreads is much like the method used in Moore’s algorithm
to find the shortest path through a maze. Having found that
a collection of variables is free, Sketchpad will re-evaluate
them in reverse order, saving the first-found free variable
until last. In re-evaluating any particular variable, Sketchpad
uses only those constraints which were present when that
variable was found to be free.

Examples and Conclusions

The library tape and thus serve to illustrate not only how
the Sketchpad system can be used, but also how it actually
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has been used so far. We conclude from these examples that
Sketchpad drawings can bring invaluable understanding to
a user.

For drawings where motion of the drawing, or analysis of
a drawn problem is of value to the user, Sketchpad excels.
For highly repetitive drawings or drawings where accuracy
is required, Sketchpad is sufficiently faster than conventional
techniques to be worthwhile. For drawings which merely
communicate with shops, it is probably better to use
conventional paper and pencil.

Patterns

The instance facility enables one to draw any symbol and
duplicate its appearance anywhere on an object drawing at
the push of a button. This facility made the hexagonal
pattern we saw. It took about one half hour to generate 900
hexagons, including the time taken to figure out how to do
it. Plotting them takes about 25 minutes. The drafting
department estimated it would take two days to produce a
similar pattern.

S v

Figure : Zig-Zag for Delay Line.

The instance facility also made it easy to produce long
lengths of the zig-zag pattern. A single “zig” was duplicated
in multiples of five and three, etc. Five hundred zigs were
generated in a single row. Four such rows were plotted one-
half inch apart to be used for producing a printed circuit
delay line. Total time taken was about 45 minutes for
constructing the figure and about 15 minutes to plot it.
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A somewhat less repetitive pattern to be used for encoding
the time in a digital clock. Each cross in the figure marks
the position of a hole. The holes are placed so that a binary
coded decimal (BCD) number will indicate the time. Total
time for placing crosses was 20 minutes, most of which was
spent trying to interpret a pencil sketch of their positions.

Figure : Binary Coded Decimal Encoder for Clock. Encoder was Plotted
Exactly 12 Inches in Diameter for Direct use as a Layout.

Linkages

Figure : Three Bar Linkage. The Paths of Four Points on the Central Link
are Traced. This is a 15 Second time Exposure of a
Moving Sketchpad Drawing.

By far the most interesting application of Sketchpad so
far has been drawing and moving linkages. The ability to
draw and then move linkages opens up a new field of graphical
manipulation that has never before been available. It is
remarkable how even a simple linkage can generate complex
motions. For example, only three moving parts. In this linkage
a central “ link is suspended between two links of different
lengths. As the shorter link rotates, the longer one oscillates
as can be seen in the multiple exposure. The motion of four
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points on the upright part of the “may be seen. To make the
three bar linkage, an instance shaped like the “was drawn
and given 6 attachers, two at its joints with the other links
and four at the places whose paths were to be observed.
Connecting the “ shaped subpicture onto a linkage composed
of three lines with fixed length created the picture shown.
The driving link was rotated by turning a knob below the
scope. Total time to construct the linkage was less than 5
minutes, but over an hour was spent playing with it.

Figure : Conic Drawing Linkage. As the “Driving Lever” is Moved, the
Point shown with a box Around it (in A) traces a Conic Section.
This Conic can be Seen in the Time Exposure (B).

A linkage that would be difficult to build physically. This
linkage is based on the complete quadrilateral. The three
circled points and the two lines which extend out of the top
of the picture to the right and left are fixed. Two moving lines
are drawn from the lower circled points to the intersections
of the long fixed lines with the driving lever. The intersection
of these two moving lines (one must be extended) has a box
around it. It can be shown theoretically that this linkage
produces a conic section which passes through the place
labeled “point on curve” and is tangent to the two lines
marked “tangent.” A time exposure of the moving point in
many positions. At first, this linkage was drawn and working
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in 15 minutes. Since, then we have rebuilt it time and again
until now we can produce it from scratch in about 3 minutes.

Dimension Lines

To make it possible to have an absolute scale in drawings,
a constraint is provided which forces the value displayed by
a set of digits to indicate the distance between two points on
the drawing.

This distance-indicating constraint is used to make the
number in a dimension line correspond to its length. Putting
in a dimension line is as easy as drawing any other line. One
points to where one end is to be left, copies the definition of
the dimension line by pressing the “copy” button, and then
moves the light pen to where the other end of the dimension
line is to be. The first dimension line took about 15 minutes
to construct, but that need never be repeated since, it is a
part of the library.

Bridges

One of the largest untapped fields for application of
Sketchpad is as an input Programme for other computation
Programmes. The ability to place lines and circles graphically,
when coupled with the ability to get accurately computed
results pictorially displayed, should bring about a revolution
in computer application. By using Sketchpad’s relaxation
procedure we were to demonstrate analysis of the force
distribution in the members of a pin connected truss.

A bridge is first drawn with enough constraints to make it
geometrically accurate. These constraints are then deleted
and each member is made to behave like a bridge beam. A
bridge beam is constrained to maintain constant length, but
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any change in length is indicated by an associated number.
Under the assumption that each bridge beam has a cross-
sectional area proportional to its length, the numbers
represent the forces in the beams.

The basic bridge beam definition (consisting of two
constraints and a number) may be copied and applied to
any desired line in a bridge picture by pointing to the line
and pressing the “copy” button.

Figure : Cantilever and Arch Bridges. The Numbers Indicate the Forces
in the Various Members as Computed by Sketchpad. Central
load is not Exactly Vertical.

Having drawn a basic bridge shape, one can experiment
with various loading conditions and supports effect of making
minor modifications is.

For example, an arch bridge supported both as a three-
hinged arch (two supports) and as a cantilever (four supports).
For nearly identical loading conditions the distribution of
forces is markedly different in these two cases.
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Artistic Drawings

\
BaZ_

Figure : Winking girl, “Nefertite,” and her Component Parts.

Sketchpad need not be applied exclusively to engineering
drawings. For example, the girl “Nefertite” can be made to
wink by changing which of the three types of eyes is placed
in position on her otherwise eyeless face. In the same way
that linkages can be made to move, a stick figure could be
made to pedal a bicycle or Nefertite’s hair could be made to
swing. The ability to make moving drawings suggests that
Sketchpad might be used for making animated cartoons.

Electrical Circuit Diagrams

Unfortunately, electrical circuits require a great many
symbols which have not yet been drawn properly with
Sketchpad and therefore are not in the library. After some
time is spent working on the basic electrical symbols it may
be easier to draw circuits. So far, however, circuit drawing
has proven difficult.

The circuits are parts of an analog switching scheme. You
can see in the figure that the more complicated circuits are
made up of simpler symbols and circuits. It is very difficult,
however, to plan far enough ahead to know what composites
of circuit symbols will be useful as subpictures of the final
circuit. The simple circuits were compounded into a big circuit
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involving about 40 transistors. Including much trial and error,
the time taken by a new user (for the big circuit not shown)
was ten hours. At the end of that time the circuit was still
not complete in every detail and he decided it would be better
to draw it by hand after all.

.~

4700>

Driver

I l r l

Figure : Circuit Diagram. These are parts of the Large
Circuit Mentioned in the Text.

Conclusions

The circuit experience points out the most important fact
about Sketchpad drawings. It is only worthwhile to make
drawings on the computer if you get something more out of
the drawing than just a drawing. In the repetitive patterns
we saw in the first examples, precision and ease of
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constructing great numbers of parts were valuable. In the
linkage examples, we were able to gain an understanding of
the behaviour of a linkage as well as its appearance. In the
bridge examples we got design answers which were worth
far more than the computer time put into them. If we had a
circuit simulation Programme connected to Sketchpad so
that we would have known whether the circuit we drew
worked, it would have been worth our while to use the
computer to draw it. We are as yet a long way from being
able to produce routine drawings economically with the
computer.

Future Work

The methods outlined in this section generalize nicely to
three dimensional drawing. In fact, the work reported in
“Sketchpad III” by Timothy Johnson will let the user
communicate solid objects to the computer. Johnson is
completely bypassing the problem of converting several two
dimensional drawings into a three dimensional shape.
Drawing will be directly in three dimensions from the start.
No two dimensional representation will ever be stored. Work
is also proceeding in direct conversion of photographs into
line drawings. Roberts reports a computer program able to
recognize simple objects in photographs well enough to
produce three dimensional line drawings for them. Roberts
is storing his drawings in the ring structure described here
so that his results will be compatible with the three
dimensional version of Sketchpad.

Major improvements to Sketchpad of the same order and
power as the existing definition copying capability can be
foreseen. At present Sketchpad is able to add defined
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relationships to an existing object drawing. A method should
be devised for defining and applying changes which involve
removing some parts of the object drawing as well as adding
new ones. Such a capability would permit one to define, for
example, what rounding off a corner means. Then, one could
round off any corner by pointing to it and applying the
definition.
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Web-based Multimedia

The evolution of the Web is sometimes described in terms
of first, second and third generation Web content. In the first
generation, the Web browser provided its users a uniform
interface to a wide variety of information on the Internet.
URIs provide a simple but universal naming scheme, and
HTTP a simple but fast transfer protocol. In theory, HTML
was designed to provide the “glue” between various
information resources in the form of hyperlinks, and as a
default document format Web servers could resort to when
other available formats were not understood by the client. In
practice, however, HTML turned out as being the format that
was also used to put the bulk of the content on the Web. A
major problem of the first generation Web content was the
fact that all this HTML content was manually written. This
proved to be too inflexible when dealing with content that is
stored in existing databases or that is subject to frequent
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changes. For larger quantities of handwritten documents,
keeping up with changing browser technology or updating
the “look and feel” proved to be hard. In the current, second
generation Web, the required flexibility is provided by a range
of technologies based on automatic generation of HTML content.

Approaches vary from filling in HTML templates with
content from a database back-end to applying CSS and XSLT
style sheets to give the content the appropriate look and feel
while storing the content itself in a form free of presentation
and browser related details.

Current trends on the Web make the flexibility provided
by the second generation Web technology even more relevant.
The PC-based Web browser is no longer the only device used
to access the Web.

Content providers need to continuously adapt their content
to take into account the significant differences among Web
access using PCs and alternative devices ranging from small-
screen mobile phones and hand-held computers to set-top
boxes for wide-screen, interactive TV. Additional flexibility is
required to take into account the different languages, cultural
backgrounds, skills and abilities of the wide variety of users
that may access their content.

By providing flexibility in terms of the presentation and
user interaction, second generation Web technology primarily
addresses the needs of human readers. In contrast, third
generation Web technology focuses on content that is both
human and machine processable. Machine-processable
content is a pre-requisite for the more intelligent services
that constitute the “Semantic Web” as envisioned by Tim

Berners-Lee and others.
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To provide real machine-processable content, next
generation Web technology primarily needs to extend
interoperability on the semantic level. Current Web
recommendations focus on either syntactic issues or on
semantics for a generic domain. Examples of such generic
domains that are covered by current W3C specifications
include the semantics of presentation (CSS, XSL), interaction
(XLink, XForms), privacy (P3P) and content rating (PICS).
The third generation, however, needs to provide
interoperability in terms of application and domain-
dependent semantics. A first step in this direction has already
been taken by W3C specifications such as XML and RDF.

New models and tools to improve the support for second
and third generation Web currently receive ample attention,
both in research and commercial environments. Most of this
attention, however, is directed towards text-oriented
applications. Multimedia content — that is, content that
seamlessly integrates multiple media types in a synchronized,
interactive presentation — has some characteristics that are
fundamentally different from text. These differences mean
that the models and tools that are developed for text cannot
be readily applied to multimedia. In this chapter we claim
that — while the need for second and third generation
multimedia content is similar to that for textual content —
the technical requirements to support this need are
substantially different.

The structure of the remainder of the article is as follows.
First, we analyse the requirements for multimedia
presentation generation, focusing on the differences between
text and multimedia document transformations. Then we
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describe the different levels of abstraction that characterize
the Cuypers multimedia presentation generation system (the
system is named after the Dutch architect who designed
several famous buildings in Amsterdam, including the
Rijksmuseum and Central Station). We discuss the use of
these abstraction levels in the context of an example scenario.
We conclude with an overview of related work and a
description of future work.

Requirements for Second Generation Multimedia
Content

Many of the advantages of generated Web content over
manually authored Web content are commonly known and
well described in the research literature. When the content
and its underlying structure are stored separately from the
details of a specific presentation of that content, tools can be
developed to automatically adapt the presentation to the
current situation, both in terms of the capabilities of the
technical infrastructure and the specific needs of the user.
These advantages not only apply to text, but perhaps even
more to multimedia.

One can argue that adaptation to the available network
bandwidth, presentation capabilities of the end-user’s
platform, preferred language and preferred media types is
even more important for complex, interactive multimedia than
for content that is mainly text-based. In this chapter, we
explain the differences between the requirements for second
generation text and multimedia content.

Standards such as SGML [SGML:ISO] and XML
[XML1:W3C] use embedded markup to encode documents
in a presentation-independent way in order to increase
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longevity, reusability and flexibility. The visual appearance
of these so-called structured documents is defined by the
specification of a style sheet. Style sheets effectively define a
mapping between the abstractions in the document structure
and those in the presentation structure.

This mapping is defined using a style sheet language. In
general, efficient run-time execution and standardization of
the style language (in order to be able to interchange
documents) is considered more important than the language’s
flexibility and expressiveness. Additionally, for most
applications, the mapping can be described, relatively
straightforwardly, in a functional way — standardized style
and transformation languages such as DSSSL [DSSSL:ISO]
and XSLT [XSLT:W3C] are functional languages.

Style sheets as described above mainly come in two
flavours: template-driven and content-driven. Template-
driven style sheets first set up the designed layout, and then
fill in the content by querying the source document or
underlying database. This works well when (a) the underlying
structure of the content is sufficiently known to allow effective
querying, (b) the structure of the generated presentations is
comparable and known in advance and (c) the presentation
structure is independent of the results returned by the query.
For example, the type and size of the information returned
by each query and the number of items queried for are
required to be known in advance.

In contrast, in content-driven style sheets the size and
global structure of the generated presentation is not known
in advance, so it cannot be defined by a template specification.
Instead, the style sheet defines a set of transformation rules
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that will be applied to the source document. Again, certain
aspects of the structure of the underlying content should be
known, this time not to allow querying, but to allow the
definition of an effective selector which determines to which
element(s) each rule applies. In content-driven style sheets,
the structure and size of the generated presentation varies
largely with the structure and size of the underlying source
document. For most textual documents, this is not a problem,
since most textual elements can be flexibly nested and
chained. Strict constraints on the size of the resulting
presentations are also rare: for online presentations,
scrollbars make the page length irrelevant, and for paged-
media, extra pages can always be added.

Today’s style languages are, however, not suited for those
rare cases that size does matter. It is, for example, extremely
hard (if not impossible) to write a style sheet that formats
this HTML paper and makes sure it exactly meets the
conference’s 10-page limit. For many text-based applications,
however, these constraints do not apply, and the techniques
described above work well. For almost all multimedia
applications, however, spatio-temporal positioning is not this
flexible. In addition, there are a number of other issues that
prevent the use of text-oriented techniques for multimedia
document generation:

Multimedia uses Different Document and
Presentation Abstractions

The separation of the document’s structure from its visual
appearance is a fundamental and well known abstraction
technique, both in database and structured document
technology. A less common distinction is that between the
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specification of the document’s visual appearance and its
realization in terms of the final-form presentation format.
For example, style languages such as XSL (and also DSSSL)
define an abstract formatting object model that can be used
to define the visual appearance of a presentation in a way
that is independent of format-specific details of the final-
form presentation. In this way, a single XSL style sheet can
be defined for a specific set of documents, and, depending
on the available back-ends for the XSL formatting model,
the same style sheet can be applied for the generation of an
online, PostScript or RTF version.

XSL style sheets essentially map document abstractions
onto presentation abstractions. For text, this works well
because on both levels, we have a commonly established set
of abstractions to work with. On the document level, chapters,
sections, headings and titles, bulleted lists, etc., are
abstractions that are frequently used across different tools.
On the presentation level, the same applies to abstractions
such as pages, columns, inline, block-level and floating
material, font families, etc. These abstractions are not only
applicable across many domains, they have also proven to
be extremely stable over time: while the majority of these
abstractions originate from the early days of printing, they
are still highly applicable to today’s online documents. Even
for text, however, transformations based on the abstract
formatting models of XSL or DSSSL are not (yet) widely used:
most tools still transform directly into target formats such
as HTML or WML, by-passing the abstract formatting model
entirely. While this may be partly because of the relative
newness of the XSL specification, another reason is that the
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advantages in terms of reuse do not always outweigh the
disadvantages in terms of decreased flexibility and increased
complexity.

For multimedia, we still lack a commonly accepted set of
abstractions, both on the document and the presentation
level. The relatively slow acceptance of abstract formatting
models for text, combined with rapidly changing multimedia
technology and the vast range of different multimedia
applications and presentation features, will make it very
unlikely that this situation is going to change in the near
future. This is highly unfortunate, because it means that a
major advantage of today’s style sheet technology — the
definition of style sheets independent from the syntactic
details of the target presentation format — cannot be applied
to multimedia.

Multimedia Document Formatting

For text, we have an established set of (complicated but)
well understood algorithms that can be used to automatically
typeset a text according to the requirements of a given layout
specification. To keep the style sheet itself as declarative as
possible, the components implementing these relatively low
level and detailed algorithms are typically part of the style
engine’s back-end application. These back-end components
typically implement kerning, hyphenation, justification, and
line and page breaking algorithms. Note that these algorithms
are based on the linear structure of the underlying text. Since
multimedia documents are not based on such a text flow,
these algorithms do not suffice for formatting multimedia
documents. For example, in text-based formatting, content
that does not fit on a single page or screen is just spread out
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over multiple pages, or rendered on a scrollable area that is
larger than the screen. These solutions are, in general, not
applicable to multimedia presentations, where the very
concept of a page or scrollbar often does not make sense.

In addition, many document-level and presentation-level
abstractions for text are also based on text flow. For example,
in a style language such as CSS, a key concept such as
relative positioning refers to the ability to specify the position
of an object relative to its default position in the text flow.
Such flow-based models are, in general, not applicable to
multimedia documents.

Multimedia Transformations

Most style and transformation languages do not support
feedback from the rendering application back into the main
transformation process. For example, information about the
precise position onto which a specific word is rendered, is
only available after the rendering application has fully
formatted the document. Consequently this type of
information is not available in the transformation process.
For text, this limitation hardly ever causes problems: due to
the flexibility of the text flow, the system can in most cases
adjust the layout to make it meet the given constraints. For
multimedia, however, the only way to determine whether a
given layout specification can be realised with respect to a
given set of constraints is to actually solve this set of
constraints. This task is typically performed not by a (high
level) transformation engine, but by a (lower level) constraint
solver implemented in the back-end. For multimedia, it is
thus of crucial importance to allow feedback from the lower
levels of the process to the higher levels.
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Functional Model of Multimedia Transformations

Transforming a presentation-independent structure to a
presentation of acceptable quality is, when compared with
text-centric presentations, relatively complex for media-
centric presentations. These mappings are often best specified
using a trial and error strategy, by backtracking over a set of
alternative presentation rules, trying out different sets of
constraints along the way. In contrast, most textual
transformations are relatively straightforward mappings that
can be better specified in a set of functional style rules. The
more complex transformations that are common in
multimedia are more conveniently expressed in a logic-based
language with built-in support for backtracking and
constraint solving.

Levels of Abstraction in Cuypers

Cuypers is a research prototype system, developed to
experiment with the generation of Web-based presentations
as an interface to semi-structured multimedia databases.
Cuypers addresses many of the issues discussed in the
previous section. First of all, it explores a set of abstractions,
both on the document and on the presentation level, that
are geared towards interactive, time-based and media centric
presentations, rather than presentations that are based on
text-flow. Second, it uses a set of easily extensible
transformation rules specified in Prolog, exploiting Prolog’s
built-in support for backtracking. Finally, it facilitates easy
feedback between the higher and lower level parts of the
transformation process by executing both within the same
environment. Instead of a strict separation between the
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transformation engine and the constraint solver, our system
uses a constraint solver embedded in Prolog, so the system
is able to backtrack when the transformation process
generates a set of insolvable constraints.

Cuypers operates in the context of the environment
depicted in Figure below. It assumes a server-side
environment containing a multimedia database management
system, an intelligent multimedia IR retrieval system, the
Cuypers generation engine itself, an off-the-shelf HTTP server,
and — optionally — an off-the-shelf streaming media server.
At the client-side, a standard Web client suffices. The focus
of this chapter is the Cuypers generation engine. Given a
rhetorical (or other type of semantic) structure and a set of
design rules, the system generates a presentation that
adheres to the limitations of the target platform and supports
the user’s preferences.
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Fig. The Environment of the Cuypers Generation Engine

The experience gained from the development of earlier
prototypes (e.g. work done by Bailey) however, proved that
for most applications, the conceptual gap between an
abstract, presentation-independent document structure and
a fully-fledged, final-form multimedia presentation is too big
to be specified by a single, direct transformation. Instead,
we take an incremental approach, and define the total
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transformation in terms of smaller steps, which each perform
a transformation to another level of abstraction. These levels
are depicted in Figure below and include the semantic,
communicative device, qualitative constraint, quantitative
constraint and final-form presentation levels, resp.

Cuypers Generation Engine

Devices
Final-form
Presentation

Semantic
Structure
Communicative
Qualitative
Constraints
Quantitative
Constraints

Multimedia IR System

HTTP Web Client

Fig. The Layers of the Cuypers Generation Engine

We describe each abstraction level and why it is needed in
the overall process. We take a bottom-up approach and start
with the final-form presentation level, which is the level that
describes the presentation as it is delivered to the client’s
browser. This is also the level readers will be most familiar
with, since it describes documents on the level of their
encoding in for example HTML [XHTML10:W3C], SMIL
[SMIL20:W3C] or SVG[SVG:W3C]. We subsequently add more
abstraction levels, and end with the highest level, the
“semantic level”, which completely abstracts from all layout
and style related information.

Final-form Presentation Level

At the lowest level of abstraction, we define the final-form
presentation, which encodes the presentation in a document
format that is readily playable by the end user’s Web browser
or media player. Examples of such formats include, HTML,
SVG, and — the focus of our current prototype — SMIL. This
level is needed to make sure that the end-user’'s Web-client
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remains independent of the abstractions we use internally
in the Cuypers system, and to make sure that the end-user
can use off-the-shelf Web clients to view the presentations
generated by our system.

Quantitative Constraints Level

To be able to generate presentations of the same
information using different document formats, we need to
abstract from the final-form presentation. On this level of
abstraction, the desired temporal and spatial layout of the
presentation is specified by a set of format-independent
constraints, from which the final-form layout can be derived
automatically.

An example of a quantitative constraint is “the x-coordinate
of the top-right corner of picture X should be at least 10
pixels smaller than, than the x-coordinate of the top-left
corner of picture Y”. Such constraints provide a first level of
abstraction, abstracting from the syntactic details of the final-
form presentation format, but also from the presentation’s
exact numeric layout specifications.

While more abstract than the final form presentation, a
specification at this level provides sufficient information for
the Cuypers system to be able to automatically generate the
final-form presentation. An off-the-shelf numeric constraint
solver is used to determine whether or not a given layout
specification can be realised, and, if so, to generate any
numeric layout specifications needed. The use of constraints
also gives the system the flexibility to automatically adapt to
small differences in screen size between, for example, two
different handhelds or mobile phones.
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In practice, larger differences cannot be solved at this level
of abstraction. The use of numeric constraints is, for example,
not sufficient to cater for the differences between the small
screen of a mobile phone versus the large screen of a desktop
web browser. Another drawback is that it is hard to specify
higher level requirements such as the fact that certain rules
should be applied consistently across the entire layout. In
addition, for some final-form formats this level of abstraction
is just too low to be useful. For example, for the relatively
flat spatial layout of a SMIL 1.0 document, the constraints
given above are well-suited. The same constraints, however,
are too low-level to generate the complex temporal hierarchy
that gives a SMIL presentation its adaptive scheduling
information. On the implementation level, numeric
constraints also have serious drawbacks. For example, when
automatic backtracking over alternative layouts is used, a
set of quantitative constraints might generate alternative
layouts which are all equal, except for one coordinate, whose
value only increases or decreases with one pixel (or other
unit) for each generated layout.

The discussion above can be summarized by stating that
numeric or quantitative constraints are necessary because
solving a set of quantitative constraints is the only way to
determine whether a specific layout can be realised with
respect to a specific requirements. In addition, many final-
form formats use numeric information to define the layout
presentation. For many other purposes, however, these
constraints are too low level and contain too much detail.
Qualitative constraints are introduced to solve these

problems.
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Qualitative Constraints Level

An example of a qualitative constraint is “caption X is
positioned below picture Y”, and backtracking to produce
alternatives might involve trying right or above, etc. Some
final-form formats allow specification of the document on
this level. In these cases, the Cuypers system only generates
and solves the associated numeric constraints to check
whether the presentation can be realised at all, it
subsequently discards the solution of the constraint solver
and uses the qualitative constraints directly to generate the
final form output.

In the Cuypers system, qualitative constraints also provide
a basis for defining meta-constraints. Meta-constraints are
necessary to specify more global properties of the resulting
document, and are used with Cuypers to ensure consistency
across the presentation. For example, to prevent some captions
from appearing, a designer could add a meta-constraint
specifying that all captions should appear. Meta-constraints
derive their name from the fact that they are implemented as
constraints that constrain the set of generated constraints.
While qualitative constraints solve many of the problems
associated with quantitative constraints, they are still not
suited for dealing with the relatively large differences in layout,
e.g., as in the mobile phone versus the desktop browser
example given above. Therefore, another level of abstraction
is introduced: the communicative device.

Communicative Device Level
The highest level of abstraction describing the

presentation’s layout makes use of communicative devices.
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These are similar to the patterns of multimedia and
hypermedia interface design described by in that they
describe the presentation in terms of well known spatial,
temporal and hyperlink presentation constructs. An example
of a communicative device described in is the bookshelf. This
device can be effectively used in multimedia presentations
to present a sequence of media items, especially when it is
important to communicate the order of the media items in
the sequence.

How the bookshelf determines the precise layout of a given
presentation in terms of lower level constraints can depend
on a number of issues. For example, depending on the
cultural background of the user, it may order a sequence of
images from left to right, top to bottom or vice-versa. Also
its overflow strategy, that is, what to do if there are too
many images to fit on the screen, may depend on the
preferences of the user and/or author of the document. It
may decide to add a “More info” hyperlink to the remaining
content in HTML, alternatively, it could split the
presentation up in multiple scenes that are sequentially
scheduled over time in SMIL.

Note that communicative devices,, typically deal with layout
strategies that involve multiple dimensions (including space,
time and linking), while the constraints typically do not cross
the boundaries of a single dimension. Constraints using
variables along more than one dimension are called cross-
dimensional constraints, and have previously been discussed
in. The introduction of such constraints would simplify the
definition of many communicative devices and is the subject
of further research.
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While the communicative device level is a very high-level
description of the presentation, we still need a bridge from
the domain-dependent semantics as stored in the multimedia
information retrieval system to the high-level hypermedia
presentation devices. To solve this problem, we introduce
one last level of abstraction: the semantic structure level.

Semantic Structure Level

This level completely abstracts from the presentation’s
layout and hyperlink navigation structure and describes the
presentation purely in terms of higher-level, “semantic”
relationships. In the current Cuypers system we focus on
the rhetorical aspects of the presentation, because it applies
well to the application domains for which we are currently
building prototypes (e.g. generating multimedia descriptions
of artwork for educational purposes).

Depending on the target application, however, other types
of semantic relations can be used as well. Possible
alternatives include abstractions based on the presentation’s
narrative structure for story-telling applications or
abstractions based on an explicit discourse model.

From the perspective of the Cuypers architecture, any set of
semantic relations can be chosen as long as it meets the
following two requirements:

e [t should sufficiently abstract from all presentation
details so that these can be adequately adapted by
the lower levels of the system, and

e [t should provide sufficient information so that the
relations can be used to generate an adequate set of
communicative devices that convey the intended
semantics to the end user.

69



Computer Graphics and Animation

The subdivision of the generation process in Cuypers is
based on these different levels, with an extensible set of
transformation rules to move from one level to another.

In practice, however, the transformations work by
backtracking up and down different levels, and
transformation rules may have access to information from
several steps earlier. To explain the different abstraction levels
and the associated transformation steps.

Example Scenario

We use an example scenario where the user (studying art
history) just asked the system to explain the use of the
chiaroscuro technique (strong contrast of light and dark
shading) in the paintings of Rembrandt van Rijn.

The system’s multimedia information retrieval back-end
queried its annotated multimedia database system and
retrieved five images of paintings that are annotated as using
this technique, the accompanying titles and a general textual

description of the term chiaroscuro.
Semantic Level: Rhetorical Structure

A presentation is constructed around the concept
“Examples of Chiaroscuro in the works of Rembrandt van
Rijn”, using the images as examples of the core concept, and
the text as an elaboration of the core concept.

Additionally, to preserve the ordering of the time the picture
was made, the five images are shown in a sequence relation.
The resulting
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Examples of Chiaroscuro in the Works of Rembrand’ van Rijn

Elaboration

Sequence

ERE™"H
A
- RST- Relation .

Media Content

Fig. RST Tree Representation of the Input
tree structure, using the notation common in Rhetorical
Structure Theory. The tree is encoded using a simple XML
Schema to represent RST nucleus/satellite relations.

Note that we do not expect content authors to directly use
the semantic abstractions nor the rhetoric markup during
the authoring phase. Automatic generation of these
structures, however, requires advanced knowledge of the
domain, the organization of the multimedia database, the
users and their task, and is the topic of future research. In
the current Cuypers prototype, the generation of the
rhetorical structure is simply hardwired into the server’s
multimedia information retrieval system, which is considered
to be beyond the scope of this chapter. Here, we focus on the
Cuypers presentation engine, and assume the RST structure

as the input given to the engine.
<!DOCTYPE presentation PUBLIC “-//CWI/DTD Rhetorics
1.0//EN” “rhetoric.dtd”>
<presentation xmlns="http://www.cwi.nl/~media/ns/
cuypers/rhetoric”>

<media id="title”... refs to content/metadata
database .../>

<media id="imgl" ... />

<media id="img2" ... />

<media id="img3" ... />

<media id="chiaroscuro” ... />
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<nsRelation>
<nucleus>
<mediaref idref="title”/>
</nucleus>
<satellite type="example”>
<mnRelation type="sequence”>
<nucleus>
<mediaref idref="imgl"/>
</nucleus>

<nucleus>
<mediaref idref="img5"/>
</nucleus>
</mnRelation>
</satellite>
<satellite type="elaboration”>
<mediaref idref="chiaroscuro”/>
</satellite>
</nsRelation>
</presentation>

Fig. XML Encoding of the Presentation’s Rhetorical Structure
High-level Presentation Semantics

Note that the rhetorical structure contains no information
about the spatio-temporal layout of the final-form
presentation. This information is incrementally added by the
Cuypers system, based on general design knowledge,
combined with knowledge about the underlying domain (e.g.
“17th century painting”), the task and preferences of the
end-user and the capabilities of the device that is used to
access the Web.

In the first step, the input is matched against a set of
rules designed to convert the input to a communicative device
hierarchy. Note that this is purely a design decision: in
practice, designers of a particular application will need to
extend the default rule set that comes with the Cuypers

system.
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The rules that match the input RST structure could, for
example, map the root nucleus (the label “Chiaroscuro by
Rembrandt van Rijn”) to the title of the presentation. In
addition, the rules determine that the title, elaborative text
and the example section should be visible at the same time,
as close to another as possible.

This is used by grouping these elements in a
communicative device named spatial adjacency. Because
the example section itself consisted of a sequence of images
of which the ordering should be preserved, the sequence
is mapped to a communicative device named bookshelf.
The bookshelf’s layout strategy is parameterized, in this
case the strategy is to try to achieve a left-to-right, top-to-
bottom ordering first, and to use a temporal overflow
strategy when it proves impossible to fit all images on a
single screen.

Examples of Chiaroscuro in the Works of Rembrandt van Riin

Adjacency

Bookshelf

Communicative Device

Media Content

Fig. Example Communicative Device Hierarchy

Qualitative Constraint Level

While the communicative device hierarchy, reflects the
most basic design decisions about the way the document
should be communicated to the user, the mutual
relationships among the media items have not been
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established. This is done in the qualitative constraint level,
which converts the communicative device hierarchy to a
graph structure.

Title: Examples of Chiaroscuro in the works of Rembrandt van Rijn

X:Align
Y: Below
T: During

Description

:Alig
: Belon
uring \ANEianaooo.
Yy e S
- NE, - E e
Media Content T:Before

«——» Explicit Constraints
+————» Implicit Constraints

Fig. Example Qualitative Constraint Graph

The graph structure consists of nodes and edges, where
the nodes represent the media items and the edges between
the nodes are labelled with the constraints that relate them.
Composite nodes can be used to model useful hierarchical
relationships between media items at the constraint level.
The resulting graph after backtracking over several
alternative solutions for converting the communicative device
structure. In this case, it turned out that the user’s screen
size is too small to display more than one painting at a time.
As a result, all alternatives that tried a left-to-right, top-to-
bottom ordering of the paintings failed, and the bookshelf
has resorted to its overflow strategy: it decides to show the
paintings one after the other, sequentially ordered in time.
During the time the images are shown, it makes sure that
the title and descriptive text. Also note that to define the
communicative devices in terms of qualitative constraints,
only a limited number of constraints need to be specified
directly. Most constraints can be automatically generated
by the system. For example, if the title is to be displayed
during the description, and the description is to be displayed
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during the examples, the system automatically derives that
the title is to be displayed during the examples. These
automatically generated constraints are used when checking
consistency rules such as “always show a title when displaying
something else”. In this case, the system knows that the title is
shown during the examples, even when this is not explicitly
specified by the transformation rules.

Quantitative Constraint Level

To be able to check whether a proposed multimedia layout
can be realised, all the constraints need to be resolved on
the lowest level.

Title: Examples of Chiaroscuro in the Works of Rembrandt van Rijn

|
Topleft(x,src) = Topleft(x,dst),...
Bottomleft(y,src) < Topleft(y,dst) - 10,...
Begintime(src) = Begintime(dst),...

[}
]
]
]
[}
]
]
|
]
]
]
|
‘
v
TSmeea

Gomposita e Hu/m\'
Media Gontent

Begintime(dst) = Endtime(src) + 5s,...

Description:

«~—— Explicit Constraints
777777 Implicit Constraints

Fig. Example (Partial) Quantitative Constraint Graph

For the spatial and temporal dimensions, this means that
all the qualitative constraints need to be converted into
numeric or quantitative constraints.

So if three images of a certain size are to be positioned
left of one another with a certain minimum padding, at
this point the system needs to do the associated
mathematics to find out whether and how this can be done:
it reformulates all the qualitative constraints into
numerical constraints,
fills in the actual sizes of the images and acceptable
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padding distances, and tries to solve the given set of
constraints. The conversion process involves many
quantitative constraints that are automatically
generated.

This is, however, very efficient from an implementation
point of view: the more constraints that are added, the smaller
the constraint variable domains become, and the faster a
solution will be generated.

Note that part of the information generated at this step is
only needed to make sure that layouts meet the given
constraints.

Parts of the solution itself are too low-level to be useful in
high-level formats. Other parts of the solution, however are
directly used and copied almost verbatim into the encoding
of the final-form presentation.

Final-form Generation

In the last step, the information accumulated in the
previous steps is used to generate the final presentation in
SMIL. A snapshot of the result is shown in Figure.

The resulting SMIL markup is listed. As one can see, the
encoding used for the layout specification in the head is rather
low level, and these are indeed the direct values generated
by solving the set of quantitative constraints.

In contrast, the temporal hierarchy in the body has been
generated on the basis of the qualitative (Allen) constraints,
realizing during constraints with <par> elements in SMIL,

and after constraints with<seq> elements.
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Fie Play View Comdent  Help

Qi@ a d

Examples of chiaroscuro in the works of
Rembrandt van Rijn

Chir-cbscur (French) and chiaroscuro ( takian) both
mean "ight-dark”. Both tenms are used o describe
strong contrast of light and dark shading in paintings,
dravings and prints. Although the effect had already
been used for many years, the term only came into
fashion in the late sbdeenth century. Origirally, the
word came from Haly. The painter Caravaggio
(1573-1610) made chiaroscuro his trademark.

Rerbrandt Hamensz. wan Rije Seif Portrait as the
Apostie St Paul. 1661

il 0.0 Kbps (=] ® 320/01:40.0

Fig. Snapshot of the Resulting SMIL Presentation (RealPlayer).

<?xml version="1.0"7?7>
<!DOCTYPE smil PUBLIC “-//W3C//DID SMIL 1.0//EN”
“http://www.w3.0rg/TR/REC-smil/SMIL10.dtd”>
<smil>
<head>
<meta name="generator” content="Cuypers 1.0"/>
<layout>
<root-layout 1d="root-layout” background-
colour="black”
width="400" height="690"/>
<region id="title” left="10" top="5"
width="400" height="50" fit="meet”/>
<region id="descr” left="10" top="55"
width="400" height="200" fit="meet”/>
<region id="img” left="10" top="255"
width="400" height="400" fit="meet”/>
<region id="ptitle” left="10" top="655"
width="400" height="”35" fit="meet”/>
</layout>
</head>
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<body>
<par>
<text region="title” src="...query to multimedia
database...”/>
<text region="descr” src="..."/>
<Seq>
<par dur="10"> ... 1st painting+title ... </
par>
<par dur="10"> ... 2nd painting+title ... </
par>
<par dur="10"> ... 3rd painting+title ... </
par>
<par dur="10"> ... 4th painting+title ... </
par>

<par dur="10">

<img region="img” src="..."/>
<text region="ptitle” src=".."/>
</par>
</seqg>
</par>
</body>
</smil>

Fig. SMIL Encoding of the Presentation Shown in Figure Above.

Implementation of Multimedia Presentation

To exploit the possibilities offered by on demand
multimedia presentation integration, we have integrated the

Cuypers core presentation generation engine with an off-
the-shelf HTTP server (Apache).

] ( XML/XSLT/Java Engien (Apache’s Xalan.Cocoon) Yo [
(=]

g 2e 0w 2 o Be

% @3 = 5 Cuypers Core % 2 =

@ |ES g o35 128 |2
|} B 5 5| 52 82 |zl |= 8228
s|—»| |2 23z |25% -2yl 2Ly (D|, Tl | O
“g xML)| [< |9 [& |(Prolog (Prolog)| & E &l [(SMIL) g
£

=

L . J |

Fig. The Core Cuypers Architecture and its Integration
within the Apache HTTP Server.

The server parses XML input, using the XML parser of
Apache’s Xerces framework. The result is, via the DOM
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interface, converted by a Cocoon Java servlet to an equivalent
Prolog term. This Prolog term is the actual input taken by
the core of the presentation engine, which consists of a
number of transformations written in ECLiPSe. ECLiPSe
allows the transformations to combine, within a single
runtime environment, standard Prolog rule-matching and
back-tracking with high-level constraint solving
techniques.

This allows high level transformation rules to generate
alternative layouts using lower-level sets of constraints.
Layouts with constraints that prove to be insolvable
automatically evaluate to false and cause the system to
backtrack, trying alternative layout strategies. In addition,
the layout rules can exploit Prolog’s unification mechanism
as a powerful and extensible selector mechanism, without
the need to implement a special purpose selector language
such XPath . When the constraints for a given layout can be
solved by ECLiPSe, this solution is returned back to the
servlet. The servlet converts the result back to XML (in this
case SMIL), again using Cocoon’s DOM interface.

The use of rhetorical structures as the main technique for
describing the input, and on SMIL for describing the final-
form output. The core of the Cuypers presentation engine,
however, is independent of these formats. Any input that
can be transformed to a set of communicative devices can
be supported by plugging in a rule set that transforms the
input to a set of communicative devices. The same applies to
the output format, which can be modified by adapting the
lower-level rules that use the (solved) constraints to generate

the final form output.
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The constraints we currently use for the temporal
dimension are based on the temporal relations defined by
Allen: equals, before, meets, overlaps, during, starts and
finishes, with similar relations for the spatial dimensions X
and Y. For the stacking order of the media items (the “Z”
dimension), we use above and below constraints. Properties
of these qualitative constraints, such as symmetry (A below
B <==> B above A) or transitivity (A during B and B during C
==> A during C) are described using the Constraint Handling
Rules (CHR,) library of ECLiPSe.

Related Work

Generation of synchronized multimedia presentations from
higher level descriptions is not novel in itself. Spatial and
temporal constraints for specifying multimedia are used, for
example, in the Madeus system. We share our objective to
realise cross-platform and cross-media adaptation with
preservation of the intended semantics with the ZyX
document format. While we generate the entire document
flow on the basis of a number of knowledge sources, the ZyX
approach is essentially based on augmenting an existing
document so that it can be adapted while preserving the
main information flow.

Within the Al community, a common reference architecture
for model-based multimedia presentations has been
developed. This Standard Reference Model for Intelligent
Multimedia Presentation Systems (SRM-IMMPS) is based on
the synthesis of media content, while we focus on reusing
existing content from an annotated multimedia repository.
Other relations between SRM-IMMPS and our work are
described in.
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Our work is also closely related to the work of Elisabeth
Andreé, who described the use of Al planning techniques in
combination with constraint solvers in her WIP and PPP
systems. The main contribution of our approach is that it
integrates the several processing steps into a single runtime
environment so that the system can freely backtrack across
the different levels. This allows high-level presentation
decisions to be re-evaluated as a result of constraints that
turn out to be insolvable at the lower levels (e.g. pixel level).
Nevertheless, the individual levels remain conceptually
separated, which allows the definition of small, declarative
design rules instead of the single hierarchy of planning
operators used by André. In Cuypers, semantic relations such
as the rhetoric structure are encoded as an explicit level of
abstraction, whereas these are used within WIP as implicit
design guidelines for the implementation of the generation
plan. Additionally, Cuypers uses ECLiPSe as a commonly
available, off-the-shelf logic constraint programming (CSP)
tool while WIP used a dedicated planner.

Future Work: Towards Third Generation Multimedia

Similar to third generation textual content, third generation
multimedia will focus on machine-processable content. Richly
annotated multimedia presentations will not only facilitate
intelligent Web retrieval and brokering services, but also
facilitate reuse of media content in other presentations. In
the long term, when there is a sufficient amount of annotated
multimedia available, systems such as Cuypers would be
able to operate without the multimedia database, and,
instead, operate directly on multimedia content found on
the Web.
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Note that W3C document formats such as SMIL and SVG
already anticipate this by allowing documents to contain
embedded annotations. In addition, ISO’s MPEG-4 [MPEG4]
also allows embedded annotations. It remains unclear,
however, which annotation languages are the most
appropriate, and we are currently investigating various
alternatives for the encoding of our metadata. We are
investigating not only the use of RDF-based languages such
as RDF Schema and DAMLA+OIL, but also approaches that
build directly on top of XML Schema, such as the description
schemes developed by the MPEG-7 community.

Adequately annotated multimedia is a key pre-requisite
for this multimedia variant of the Semantic Web.
Unfortunately, current multimedia authoring tools provide
little support for producing annotated multimedia
presentations.

Much of the underlying semantics of the overall multimedia
presentation and the media fragments it contains remains
implicit and is only present in the head of the author. In
contrast, in the Cuypers system, it is relatively easy to
generate such annotations automatically. Since the entire
presentation-generation process in the Cuypers system is
based on explicitly encoded knowledge, this knowledge can
be preserved and encoded as rich metadata annotations in
the final-form presentation.

Note that such metadata annotations can arise from
different knowledge sources and describe different
abstraction levels. For example, when the system is used to
generate richly annotated SMIL, the metadata section of the
SMIL document may contain metadata about the individual
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media items (as retrieved from the underlying media
database), the rhetorical structure of the overall presentation,
domain-specific knowledge of the application, etc.

It could also generate a report of the design rules and user
profiles that were used to justify the chosen end-result (e.g.
the machine-readable equivalent of “this presentation
contains much hi-end video because it is generated for users
with a broadband network environment”). This could, for
instance, be used by the browsers to help with automatic
detection of errors in the settings of the end-user’s profile.

While our future research will focus on generating richly
annotated multimedia presentations, we are also looking into
extending the Cuypers engine to generate other presentation
types, including SVG and VRML. In addition, we are currently
working on interfacing the engine with the Mirror multimedia
information retrieval system. In particular, we are working
on improving the automatic generation of the semantic
structures (such as the rhetorical structure used in the
example).

This generation process should not only take into account
a semantic model of the application domain, but also some
form of discourse model to provide guidelines on how to
convey subjects from that domain to the user.

The current implementation already uses a declarative
encoding of the design, user and platform knowledge. These
different types of knowledge are, however, still intertwined.
This part of the system needs to be redesigned to be able to
manipulate the different types of knowledge through
interfaces that are tailored to the different tasks and roles of
the users that will need to control them, and to be able to
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encode the required knowledge in a declarative and reusable

way. We expect the Semantic Web to play a key role in
achieving these goals.
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Animation

Animators are frequently given a bit of a brush off from the
rest of the entertainment community. Much of what’s animated is
aimed at children or young adults so can’t be serious according to
some. But take a close look at many animation classics, even for
children, and great animation does reverberate emotionally in the
viewer. Look at Dumbo, Pinocchio and other Disney classics.
Warner Brothers and other studios also brought engaging animated
characters to life. These days Pixar and similar 3D animation
studios are accomplishing the same thing.

Animators on visual effects projects must achieve a level of
realism beyond what happens in most animated films. One’s not
better than the other but there are differences. A visual effects
animator may have to animate a horse or other animal and make
them totally believable as the animal they are supposed to portray.
In many cases the animation may be intercut with the footage of
the real animal so the match in motion has to be spot on. Visual
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effects animators may also be called on to animate fantasy creatures
or talking, breathing characters.

A true test for a character animator is to animate a simple flour
sack drawing or model. Even without a body or face an animator
can bring life to the flour sack in such a way to convey happiness,
sadness, curiosity and other emotions.

Even though the term may be computer animation an actual
artist is the one that does the animation. The computer is just the
tool as a pencil was to pre-computer animators. Casting the right

animator can be as important as casting the right actor.
Puppets

When I worked at ILM some of the modelers were also
puppeteers. As puppeteers they were also in SAG since the actions
of a puppet was acting.

So when we did leaping laser printers or other things that
required puppeting, that was under SAG agreements. I'm
assuming the Muppets and any other key puppets would qualify.
In this case it’s still considered acting when moving an inanimate
object with hands and rods. But there is a direct connection between

the actor and the final performance.
Acting and editing

The act of editing the film of a performance can change it’s
impact.

The director guides the actor’s performance on set and selects
the most appropriate take of the action. Then in editing specific
intercutting is used to both tell the story and to emphasis the
character as desired. In the early days of film there was a classic
test done where a shot of an actor with a neutral expression was

intercut with various scenes. The audience response was the actor
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was doing a good job of showing happiness, sadness and other

emotions based solely on what it was intercut with.
Manipulation

The development of digital effects technology and artists
proficient in its use allows actual manipulation of an acting
performance. On STAR WARS: THE PHANTOM MENACE there
were scenes that George Lucas requested be modified. An actor
might have looked up in a take but the shot was run in reverse so
the actor looked downward instead since that was deemed better
for the cut. In some cases the scene was split and the sync of one
side was slipped relative to the other. This was used to shift the
timing of a reaction from one actor to another. In other cases eye
blinks were added or removed as desired. Some directors have
added tear drops or other modifications to a performance.

The point here is that even a live action performance can be
modified in post-production in an effort to create a better film
experience. What was the actor’s truth on set may not be what
appears in the final film. And in most cases the actors would
probably not be aware of it. In the future we'll likely see even more
of this as directors and studios seek to take full advantage of the
editing process. And don’t think that these types of details are
beyond the scope or budget of post-production. Visual effects is
already heavily used for things like removing wig netting, making
adjustments to makeup (to the tune of over $1 million in some
cases) and adding bruises or wounds. (That’s the real meaning of
the term “digital makeup’.) A few actor adjustment shots will be a
drop in the bucket compared to the other work already being done.
It’s possible at a future time there will be debate about the
implications of these types of modifications and what that means
to actors.
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The real process

Some actors talk or write about motion capture and 3D
animation as “painting’ in the image. Painting? Really? That would
make sense if you took a time machine back 100 years before
computers and tried to explain it I suppose. But these days it makes
as much sense as saying Michelangelo ‘doodled” the David
sculpture.

Short form: The performance of the actor is recorded and
applied in some form to a Computer Graphic (CG) animated
character.

Long form: Potentially dozens of people create a very detailed
and fully articulated CG model. Imagine making a Madam
Tussaunds wax figure but an order of magnitude more difficult.
Character/creature designers, concept artists and animators work
with the director to develop the look of the character. In some cases
a physical model is sculpted out of clay for the director to review.
Next it needs to be modeled head to toe, down to every key wrinkle
in the computer. This is part modeling and part sculpting. A type
of skeleton is built where every movable joint that is needed is
included and each joint has a specific range of motion. The irises
in the eyes can open and close, the eyes can move, the chest can
expand when breathing, nostrils flare and the tongue is configured
so that speech looks correct. In many cases muscles are built and
configured to change shape. Texture artists paint every surface of
the model, not with just one paint process but with multiple paint
versions. One paint version shows how shiny different parts of
the model are. Another is used to show dirt and still another may
be used to show the subtle skin textures and tiny wrinkles.

Fur and hair may need to be added. The angle of the hair, the
length of the hair and style of the hair have to be modeled. Another
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person may be responsible for defining where things are hard
(finger nails, shells, etc) and where things are soft and pliable on
the model. A shader writer writes specialized programming code
to make the skin look real in different types of lighting and that it
have specific translucency depending on where it is on the body.
Every major facial and phonetic expression needs to be modeled
to aid the animator in adjusting and expressing both emotion and
voice. All this is done by a team of skilled artists and technicians
who use the computer as a tool as a sculptor may use a chisel.
Every item of clothing and every prop the character handles
has to be designed and built. The motion of the clothing is setup
to be simulated. Does this clothing item behave like silk, cotton or
canvas? Dangling earrings and the hair will be programmed so
that they move in realistic manner when the character is moving.

All of that just to create the character model.
Animation Process

A good animator does act out the scene at their desk or within
their mind visualizes the performance. Unlike a live action actor,
the animator has to also observe and analyze every motion and
expression change. And not only the position but also the timing
of all of those motions need to be noted. The animator is able to
visualize the changes in slow motion, forward and backwards.
They have to translate that into key frame positions for the
animated character model. If choice of the position of the arm or
the eyebrow is wrong or if the time of those motions is wrong, the
animation won’t work. Take after take is required to refine the
animation. Any dialog is analyzed as well and the facial expression
not only has to convey characters emotion at that 1/24 second
granularity but the mouth shape, lips and tongue have to match
the correct shape for the phonetic sound created in that moment.
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Even actions like setting the feet down and walking take work
on the computer. Activities in the real world that happen naturally
take effort to do on the computer. The ground in the computer
has to be built and matched to the ground of the real location and
this is done by a person (match mover). If a foot goes too low then
it will go into the ground and if it’s too high the foot won’t make
contact with the ground.

And once the animation is done someone has to light it much
like a Director of Photography does. Someone has to render the
character and others have to composite (combine) the image with
the original image from the set. There’s an entire team of craftsmen

as big or bigger than the live action crew to make all of this happen.
Performance capture

The combination of powerful computers and digital video
cameras made it possible to do computer vision. Images and
motion could then be analyzed for scientific and medical purposes.
The visual effects industry, as usual, looked to take advantage of
these new technologies. Motion capture (MOCAP) became a way
to reasonably capture 3D motion data, especially human motion,
into the computer. This is useful for recording basic human motion
for action shots. Facial capture has been developing which makes
it possible to capture not only body motion but the entire
performance. When the motion captured includes all aspects of a
performance then the term “performance capture’ may be used
instead of motion capture.

The typical system uses multiple markers that are strategically
placed on the actor. A number of specialized cameras are placed
around on a small to medium sized stage that is lit by subdued
light. The multiple views are combined by special computer
software to yield 3D information on each joint movement. In these
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cases only the motion was captured after the main photography
had already been complete. Developments over the last few years
(VAN HELSING, etc.) have allowed the capture of an actor on the
stage or outside while being filmed at the same time. Additional
simplified motion capture processes have also been developed
(PIRATES 2, etc.) and it’s now also possible to motion capture a
number of actors at the same time. These advancements have
allowed motion capture actors more freedom and more interaction
with fellow actors. (We still use tennis balls and other references
at times. If the CG character is only 4 inches tall or is over 20 feet
tall then it can be difficult for a real actor to stand in place and
provide the correct interaction.) For interactive performance
capture actors are fitted with special suits and act with fellow actors
who will remain in the final scenes. This interaction is of course
beneficial for both the actors and the director. Another team of
visual effects artists then go through and remove the performance
actor by literally painting and restoring what would have been
behind them. This is a very labour intensive and time consuming
process since it involves hand painting frame by frame and creating
imagery that isn’t in the original. The animated character or

creature is then rendered and composited into the scene.
The problems

It might seem that once the motion data is captured it could simply
be applied to the CG model and viola - a moving character that exactly
matches the performance of the actor down to the smallest detail.
But alas, such is not the case by a long shot. If it were then many
of the animated films created today could be done using
performance capture but they aren’t. Live action and animated
movies are different art forms and what we’re seeing in some cases
is a hybrid of the two. There’s still plenty of growing pains.
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Even with improvement in the motion capture process
there is quite a bit of cleanup required. A simple motion
of an actor reaching out may have some frames where the
arm leaps up or down a few inches. There might also be
random frames where the arm goes behind the actors back
or through his body. This takes a small team of people to
go through and remove these glitches and clean up the
data such that the performance is as pure as possible. In
some cases large chunks of data may be missing which
requires an animator to fill in with the appropriate motion.
CG characters seldom match the real actor unless it’s a
digital double. Frequently the proportions are changed
such that the arms or legs maybe longer or shorter. This
means that the stride and interaction of what the actor was
doing doesn’t match what it should. The further away this
gets from the real actors body the more difficult it becomes
to use the data as it is. A Satyr has totally different leg
joints and needless to say a four-legged creature or
caterpillar can render much of at least the body motion
useless. Captured facial performance may not have much
use when the facial structure is very different such as on
an insect like creature. All this requires an animator skilled
in the understanding of motion, performance and
animation to try to retain at least a sense of what the
original actors performance was providing. In some cases
even performance capture data may become a basic
reference or simply inspiration with the brunt of the
performance created by the animator.

Eyes are the window to the soul and a key tool for the
actor but actually capturing the eyes, eye blinks and iris
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changes has not happened in a meaningful way. That
means it's up to an animator to add these types of fine,
but critical, details to complete the performance.

* In the editing and visual effects process it may be
determined that some adjustments may need to be made
for technical reasons. Placement and timing of the character
versus what the performance capture actor was doing. In
some cases it may be the directors creative call to modify
a performance once it has been reviewed with the rendered
creature in place.

The end result is it’s likely a fair bit of performance capture
undergoes some manipulation and work by animators and other
artists. In some cases it may be inappropriate to use performance
capture simply because the amount of work required is large and
the amount of the performance that can be retained is small. Each
project has to be evaluated dependent on the creature/character
and how cleanly the performance capture can be used.

So you have pure live action acting on one end of the spectrum
and pure animation from scratch on the other end. And in-between
you have a gray area. One step away from pure animation is to
use references. For DRAGONHEART the animators used both stills
and clips of Sean Connery to try to incorporate a bit of his
personality into the animated performance they were creating. For
a project like RANGO they filmed the actors going through the
scenes and the animators used this as a reference to create their
animation, trying to keep the spirit and emotion of the actors. In
some cases they probably followed the actors performance very
closely and in other cases they may have ended up deviating quite
a bit from the recorded reference. In this film the types of characters
(based on a range of animals) would make it impossible to do an
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exact match of an actor’s performance. It's up to the animator to
re-interpret and adapt the actors art form into an animated art form,
much as a screenwriter may have adapt a novel into a screenplay.
The core insight may remain the same but changes have to made

to deliver it in a different form.

THE IMPACT OF CGI ON 2D CEL ANIMATION

We proceeded as all artists did before us: with pencil and paper.
If anybody wants to be an animator, they should learn to draw
the human figure.

- Chuck Jones

If CGI competes head-on with stop-motion, it also competes
with 2D cel animation. Largely aimed at the same audience, they
are thus competing for the budgets that studios are prepared to
spend reaching that audience. There is also a more subtle form of
competition that occurs within the animation community itself,
where a relatively fixed number of practitioners have to choose
which tools they will use to realise their ideas. There is considerable
evidence of a growing drift of animators towards CGI.

As well as competing, CGI has also been used with cel
animation in a co-operative manner. In the late 1930s, Disney
developed the ‘multiplane’ camera system, an elaborate animation
stand that allowed several separated cel layers (foreground
characters and background sets), to be moved independently frame
by frame, giving a powerful illusion of three-dimensional space.
An updated version of this technique uses CGI to replace the
background layers.

Films produced using this approach are sometimes called 2D/
3D hybrids. In such films the foreground characters are handled
in a conventional 2D manner (though often using computers to
assist the animators to do tweening) but background scenery -
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buildings and trees for example as well as features such as crowds
- are modelled using 3D CGI. This is becoming an increasingly
popular way of producing ‘traditional style’ cartoons - Disney used
CGI for backgrounds and crowd scenes on Mulan (1998) for
example. Several of the forthcoming features mentioned in
Appendix 4 are of this type.

One advantage of this approach (which it shares with 3D CGI)
is that it makes it simple to adjust the position of the camera and
even move it during a shot. While the ‘multiplane’ system allowed
the camera to perform tracking and zooming shots, it could not
cope with a true pan because rotating a constant background image
introduces unacceptable perspective distortion. CGI offers much
more freedom because the background is redrawn in the proper
perspective for each frame.

Evidence for the impact of CGI on 2D cel animation is not hard
to find. The success of the four features Pixar has so far produced
(Toy Story (1995), A Bug’s Life (1998), Toy Story 2 (1999), and
Monster’s Inc. (2001)) has not been matched by Disney’s own
traditional 2D offerings. The following table shows the budgets

and world-wide gross box-office figures for the four Pixar features.

Title Date Budget World-wide Box Office
Toy Story 1995 $30 million $356 million
A Bug's Life 1998 $30 million $358 million
Toy Story 2 1999 $90 million $486 million
Monster’s Inc. 2001 $115 million $523 million

Pixar 3D CGI Animated Features since 1995

The second table shows the budgets and world-wide gross box-
office figures for the seven Disney animated feature released since
Toy Storyappeared in 1995.

Title Date Budget World-wide Box Office
The Hunchback of Notre Dame 1996 $70 million  $303 million
Hercules 1997 $70 million  $250 million
Mulan 1998 $70 million  $303 million
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Tarzan 1999 $150 million $435 million
The Emperor’s New Groove 2000 $80 million  $160 million
Atlantis: The Lost Empire 2001 $90 million  $139 million
Lilo and Stitch 2002 $80 million  $190 million

Disney 2D Animated Features since 1995

It is dangerous to read too much into these tables, but in
contrast to the Pixar figures, there has been a clear reduction in
gross box office takings for Disney’s traditional offerings over the
last few years. The apparent success of Tarzan is countered by its
very high budget, which in turn was due to the very large number
of artists (over 570 at the peak) who worked on the film. It was
from this point that Disney started making dramatic cuts in its
overheads.

In March 2002 the Wall Street Journal reported that the
company would lay off an additional 250 animators over the course
of the year. When Lilo and Stitch was released in June 2002, Thomas
Schumacher, president of Walt Disney Animation, said that Tarzan
would have been a considerably greater financial success if it been
made with the lower salaries and cost-control measures now in
place.

Tarzan generated an internal rate of return of 14 per cent on
Disney’s investment but using the new processes the return would
have been 35 per cent.

Dreamworks SKG, which commissioned and distributed Antz
(1998) and Shrek (2001), the two very successful CGI animated
features produced by PDI, has also made traditional animated
features itself in the last few years. As with Disney, these traditional
features have been failing to match the box office success of the
CGI releases, as the following tables show.

Title Date Budget World-wide Box Office
Antz 1998 $60 million $152 million
Shrek 2001 $50 million $482 million
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Dreamworks SKG (PDI) CGI Animated Features

Title Date  Budget World-wide Box Office
The Prince of Egypt 1998 $60 million $221 million
The Road to Eldorado 2000 $95 million  $75 million

Spirit: Stallion of the Cimarron 2002 $48 million ~ $97 million
Dreamworks SKG 2D Animated Features
Again it is dangerous to draw too many inferences, but there
is a pattern here too. Note that both Road to Eldorado and Spirit
are 2D /3D hybrids, using CGI for backgrounds and crowd scenes.

The Impact of CGI on
Stop-Motion Animation

Model animation, by its very process, has a slight
unpredictability and spontaneous feel to it - even the animators
cannot exactly predict where the puppet will go - and this does
give it a unique edge.

- Barry Purves

I don’t think after Jurassic Park that we can, or should, ever
accept a model-animated dinosaur again.

- Barry Purves

It should be obvious that although the success of 3D CGI
cartoons is likely to affect all conventional forms of animation, it
is with stop-motion that it competes most directly, and hence will
impact most. After all, it is already possible, using CGI, to
reproduce the vast majority of conventional stop-motion
sequences. Further, Moore’s Law continues to make CGI cheaper,
while stop-motion costs are likely to increase.

Things are rarely simple however. As was mentioned in the
introduction, the tools an artist or craftsman uses can have a
profound effect on their way of working. How do the undoubted
differences between the techniques affect the end results? And do
they affect the imagination and ideas of the people involved?
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There is quite a lot of anecdotal evidence that stop-motion
exerts particularly strong effects, both psychological and physical,
on its practitioners. Adherents feel that the limitations and
idiosyncrasies of the technique lend a very particular character to
the end-result. Following a panel discussion of stop-motion
animators, Stephen Arthur made these remarks:

Barry Purves inspired the audience with his impassioned
descriptions of the sensual art of “directing” his elaborate puppets.
He let us handle these expensive puppets: the original alien from
Mars Attacks, the statue-like figure of Achilles, and his “14-inch
Willy” (Shakespeare) from Next. It was an astonishing feeling, a
very direct connection with the “actors” in puppet animation.
Puppets are usually held intimately by the animator’s hand for
every increment — a strong contrast to the separation from the
animated flow experienced with most types of animation. I could suddenly
understand what entices so many animators into puppet animation.

Purves himself goes even further:

Because of the one-to-one relationship between an animator
and puppet in the actual process of animation, a lot of the character
and the passion of the animator himself goes straight into the
puppet and its performance. It is the most purely personal and
honest form of animation (often revealing surprising aspects of the
animator’s personality), and acting is the most undiluted, whereas
with drawn and computer animation, it is, to some extent,
animation by committee. There are, of necessity, so many more
people involved, and something really does get lost on the way.

There is a close relationship between acting and animation,
indeed it has been said that animators are often frustrated actors
who are too frightened to act in front of the camera, so they act

with a pencil or a puppet instead.
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Because successful animation requires a deep understanding
of how and why animals move, animators often take acting classes
to develop their understanding of the relationship between mind
and body. In stop-motion, the direct physical manipulation of the
puppet makes animation much more of a performance. As Peter
Lord says:

[Plasticine animation] is a technique that’s perfect for
improvisation.... You have your camera, you have your puppet,
and your animator knows the intention of the shot, but there are
so many ways you can carry it out. So it’s like any other
performance. You may know you’'ve got to keep the shot within
three seconds, and it may take you a whole day to do, say, a second
and a half, but you have so many opportunities throughout that
day to change your mind on how the shot goes. And ideas come
to you, because you've got all that time. With drawn animation,
it's like you're creating a more sophisticated flip-book, so you've
got to look through your drawings and keep going back and
adjusting. And with computers, you can keep changing the
animation and layering it..... Here, you've got a puppet and you're
just working forward, and if it doesn’t quite deliver, you start again
from the beginning. You really live in the moment, like an actor
would on a stage. Each day is a singular performance.

Supporters of stop-motion argue that CGI technology, where
the puppet is a virtual figure, seen on a computer screen and
manipulated though a mouse or keyboard, lacks this direct, tactile
approach, and hence cannot duplicate the particular qualities of
stop-motion. This need not be the case, as the following case study
shows.

The Tyrannosaur in Jurassic Park (Spielberg, 1993) was
originally intended to be filmed using a combination of a large
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‘animatronic” robot (built by Stan Winston) and conventional stop-
motion models (animated by Phil Tippet). CGI was to be used
purely for the stampede scene, which involved too many animals
to be filmed using models. The early attempts to animate a
Tyrannosaur using CGI were so impressive that Spielberg
abandoned the idea of using stop-motion, although he did retain
Tippet as a “dinosaur supervisor’. Tippet organised classes in mime
and field trips to zoos for the computer animators, but he also
invented an ingenious computer input device, the Dinosaur Input
Device or DID. He equipped the joints of a conventional ball-and-
socket stop-motion armature with encoders that allowed any
movement of the armature to be communicated to a computer. In
this way a CGI model of a dinosaur could be manipulated using
the techniques of traditional stop-motion.

The DID was short-lived - by the time work on the film was
completed the computer animators had switched back to using
mouse and keyboard - but it does serve to demonstrate that CGI
need not be an entirely “virtual” activity. CGI Animators can
physically touch and feel their creations through such exotic haptic
devices.

In any case, even when using a mouse and keyboard, aspects
of the animator’s personality still get transferred to the screen
character, as Andy Jones, animation supervisor on Final Fantasy:
The Spirits Within (Sakaguchi/Sakakibira, 2001), explains:

Roy Sato, for example, was the lead animator on Aki [Dr. Aki
Ross, one of the leading characters in the film] and you see a lot of
Roy in that character. The timing of Aki’s blinks are the same as
his....

The most obvious demonstration of the serious impact that CGI

can have on stop-motion animation lies in the contrast between
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Nightmare and Tim Burton’s subsequent film, Mars Attacks! (1996).
Though Nightmare was a stop-motion triumph, its box-office
performance was not outstanding - it cost around $23 million and
made just $57 million. Here are some statistics that may indicate
how the money was spent:

13 principle animators

100 model makers and set builders

230 sets - often 20 or 30 feet square- on 19 stages

60 characters (more than 200 puppets)

400 heads just for Jack Skellington

1 minute of film completed each week

400 frames in a typical shot (which took 10 days to shoot)

Burton originally intended the Martians inMars Attacks! to be
animated by Henry Selick using the same stop-motion techniques
they had employed on The Nightmare Before Christmas. Selick’s
company, Skellington Productions, was however still busy on
James and the Giant Peach (1996) so Burton turned to two English
model makers, lan Mackinnon and Peter Saunders, whose credits
included the creation of puppets for the Oscar-winning stop-
motion short The Sandman (Berry, 1991).

Mackinnon and Saunders organized a large team of sculptors
in Los Angeles and the U.K,, building hundreds of identical 15-
inch Martian puppets. Mackinnon was soon joined by puppet
animator Barry Purves, creator of the award-winning short films
Next and Achilles. With Purves acting as animation director,
elaborate sets were constructed and filming began. After months
of work designing Martian gestures and ways of moving, Warner
decided that blending stop-motion animation convincingly with
live-action was too challenging a task to be dealt with in the year
left before the film’s scheduled release. The model animation team

101



Computer Graphics and Animation

was dispensed with, to be replaced by CGI animators from
Industrial Light and Magic, although not all of the model work
was discarded. The movements and gestures developed by Purves’
team were adapted to the computer characters, the puppets were
digitally scanned and rendered into computer models, and scaled
up to build full-scale Martians for several of the film’s live-action
scenes.

Mars Attacks! was an expensive film to make, and not just
because of the money spent on discarded stop-motion. Unlike
Nightmare, which had no expensive stars, Mars Attacks! had a
large cast which included major stars such as Jack Nicholson, Pierce
Brosnan and Glenn Close. It also featured several large and
expensive set pieces. Eventually costing over $70 million, it failed
to recoup its costs, with a US box office gross of less than $40
million. As far as the public, critics and industry observers were
concerned however, the failure of the film was not due to the use
of CGI, but in spite of it - most felt the special effects were
outstanding.

As has been mentioned, Henry Selick was working on James
and the Giant Peach (1966) while Mars Attacks was in production.
Selick’s plan was to shoot the central character as a live action boy
and have him interact with stop-motion creations through the
entire story. When that proved too expensive he explored making
every element stop-motion. Disney felt the cost was too high, so a
compromise was reached. Of the result Selick has said:

The compromise was hard on a lot of audiences. I believe it
would have worked better either way, all stop-motion or as James
all live throughout.

Before James was released, it was widely felt at Disney that it
would do better than Nightmare. As can be seen from the figures
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in Appendix 2, it actually did much worse. The abandoning of stop-
motion on Mars Attacks! and the unexpected box-office failure of
James convinced many in the industry that CGI was the way of
the future, although Selick was still optimistic. However the
collapse of a three-picture contract with Miramax in 1997 led him
to close his studio in San Francisco and work on smaller, personal
projects. The dismal box office performance of his latest film,
Monkeybone (2000), which, like James, mixed live action and stop-
motion, has discouraged most American studios from becoming
involved with stop-action features.

The exception is Dreamworks SKG, which financed the very
successful Chicken Run (Lord/Park, 2000) as part of a 250
million dollar, five picture contract with Aardman Animation.
It is worth asking what is the secret of Aardman’s success and
whether they will be able to continue making feature-length 3D
animated films using stop-motion when everyone else has
switched to CGI.

Part of the answer surely lies in Aardman’s success with its
Wallace and Gromit series. These three half-hour films have been
extremely popular on television all over the world and, along with
Creature Comforts, account for Nick Park’s three Oscars. While
the income from these short films has been minute in comparison
with that from feature film successes like Toy Story or Chicken
Run, they have created a very large, world-wide audience that is
familiar with, and attracted to, the Aardman style. As Peter Lord
says:

We've kind of developed this style with the eyes right together
in the middle and a big wide mouth, just because that plays well.
People find that incredibly funny for some reason. Just the still
image makes them laugh, so we have to go along with that.
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As well as strong stories, the emphasis on humour is something
that Aardman shares with Pixar. Both avoid the excesses of
sentimentality characteristic of much of Disney (as well as the
saccharine songs) and the dark expressionism that characterises
much of Selick’s work. Both share a delight in visual and verbal
puns, in the spoofing of film genres and in rich visual detail.
Indeed, there is a strong affinity between the ‘look and feel’ of
Aardman’s plasticine and that of Pixar’s “virtual plastic” (it is not
just the toys in Toy Story that appear to be made from plastic, the
insects in A Bug’s Life do too). It is not surprising that both
companies have a profitable sideline in merchandise - toys, T-shirts
and mousepads, as well as books, videos and DVDs - based on
key characters such as Wallace, Gromit, Woody and Buzz.

Successful as Chicken Run was, something may have been lost
in the transition from shorts to features. The large number of
characters involved meant that puppet making became more of a
production line, with the use of moulded plastic instead of
plasticine for some chicken body parts. With so many people
working on the film (upwards of 200), keeping the animation
consistent inevitably resulted in a lessening of the stamp of
individuality that characterised the earlier, shorter pieces. As Nick
Park recalled:

I remember starting A Close Shave. There were more animators
than ever working on that one, and they were all put through
Wallace and Gromit lessons, where they learned how to move the
brows and the eyes and the mouths. We did that even more on
Chicken Run. Every Monday night, we had workshops so everyone
would handle the characters in the same way.

Aardman’s next feature for Dreamworks will be The Great
Vegetable Plot, featuring Wallace and Gromit, and is due for release
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in the autumn of 2004. The company is also busy working on a
variety of shorts, including a new series of Creature Comforts for
ITV and a series of 1-minute Wallace and Gromit episodes to be
released via the Internet.

Not everything at Aardman has been going as planned. The
second Dreamworks feature was to have been The Tortoise and
the Hare, based on Aesop’s fable.

Originally scheduled for release this summer (2002), and then
in 2003, it now looks unlikely to appear before 2005. In July 2001
Aardman announced that it had laid off 90 of the 170-strong crew
because of script problems on the film. The Hollywood Reporter
announced on June 11, 2002 that the film had ‘failed to cross the
finish line after script troubles’, implying the project had been
cancelled. Then on July 24, 2002, a spokesman for Aardman
Animations revealed that work was continuing on the script for
the film, which is now expected to have CGI animation augmenting
its stop-motion work.

Despite their commitment to stop-motion, Aardman have been
experimenting with CGI, though Peter Lord has said that trying
to copy clay animation exactly using CGI would be a ‘very sterile
exercise because it is just copying’ - what interests him is “devising
a new language’ for CGI animation. As he says:

Well, there is something about working with the materials.
There is a fundamental difference between working with your
hands and your arms and your fingertips, and working on the
keyboard..... You grab the puppet with two hands, and you feel
the whole thing move, you feel the twist of the chest away from
the hips, the roll of the shoulders....

If stop-motion animation has had problems, disappointments
and failures, so has CGI animation. As well as the disappointment
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of Mars Attacks!(which had a foot in both camps), there has been
one CCl failure of truly epic proportions. Final Fantasy: The Spirits
Within (Sakaguchi/Sakakibira, 2001) had a budget of $137 million
dollars, but has so far recouped just $32 million dollars.

Final Fantasy is perhaps the most ambitious CGI feature to
date. The film, which took four years to make, put synthetic human
actors into roles that could easily have been played by real humans
and placed them in completely synthetic sets. The film, based on a
series of hugely popular, interactive, role-playing computer games,
was produced by Square, the company that produces the games,
and co-directed by Sakaguchi, the game’s originator. With world-
wide sales of the nine-part game series totalling more than 26
million units, Square must have thought it had a ready-made
potential audience of game-players familiar with the fantasy
themes, comfortable with computer graphics characters, and eager
to see the next installment.

The CGI animation has been rightly regarded as a technical
triumph, so why was Final Fantasy such a commercial failure? The
answer, at least as far as western audiences and critics were
concerned, was the weakness of the story and the lack of pace in
the way it was told. Lacking a compelling plot, the glamour that
human stars can bring to a film, and without much humour, the
film had little but its special effects to hold the attention of the
audience. As a result of its failure at the box office, Square
announced in February 2002 that it was closing the studio in
Hawaii that had created the film.

Although Disney has relied on its partner, Pixar, to produce
CGI cartoon features that it then distributes, it has made one
attempt at a (partial) CGI feature itself, Dinosaur (2000). Although
the dinosaurs in Dinosaur were created using CGI, the scenery was
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live action, with backgrounds shot all around the world. The film
made $350 million at the box-office, but it cost $200 million to make
- at one time nearly 900 people were working on it. Its poor financial
performance caused Disney to close the CGI unit it had created to
produce the film, though it has since re-opened it on a much smaller
scale. The accepted explanation for the failure of Dinosaur is the
familiar one - a poor plot - which recycles ideas from The Lion

King and Tarzan.
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Acting and Animation

There is a common saying that, “An animator is an actor who
uses a pencil and paper rather than their body to give a
performance.” Animators, by-and-large are frustrated actors who
can’t really perform physically in front of an audience for various
reasons. Many of us tend to think of ourselves as “geeks” (well,
that’s how I feel anyway). Our physical bodies are limited in what
they can do or how they look. An actor such as Robert DeNero
can portray boxing champion Rocky Marciano in one film, then a
Taxi driver, a young Sicilian mob boss, or a father-in-law in others.
He has versatility and great acting skills as well as a very good
manager. The same can be said for many other well known actors
and actresses.

Animators however, have far more versatility than could ever
be imagined by any live action actor simply because the only
limitation is their imagination. An animator can become anything

they want... anything. The only real limitation is their ability to a)
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draw, and b) animate. The two go hand-in-hand but are not
completely bound. A person with limited drawing ability will not
be able to portray a “realistic looking” human but if they know
how to animate really well, they could give their drawings some
truly exceptional character acting.

On the flip side, someone who knows how to draw
incredibly well, (let’s say like Michelangelo) but probably like
Michelangelo, can’t animate worth beans, you’d get some pretty
ugly looking movements and hence bad acting. So what is it
about acting that makes animation look so good?

Let’s go back in time just for a bit to the mid 1800’s. There was
this guy in France named Francois Delsarte. He was born in 1811
and died in 1871. He taught acting and singing and ended up
developing a theory on acting that relied on dramatic posing and
physical signals. Rather than have the actor just stand in the middle
of the stage without moving and deliver his lines such as, “My
pain is too great for me to bear!”, Francois thought it would look
great if the actor threw his arm across his forehead while thrusting
the other hand, claw-like, forward in front of him and then collapse
back against a chair or something. Oh yeah!

In 1885, 14 years after he had passed away, (dramatically, I
assume) his theories were published as the “Delsarte System of
Expression”. Many schools of acting in America adapted the
system into their training during the late 19th century. In some
early films from 1900 - 1925 you can still see some actors using his
system (they’re quite funny to watch).

In 1897, Konstantin Stanislavski, a Russian actor, set up his
acting workshops at the Moscow Theatre. Rather than just having
his actors pose to show their emotions he developed a system called
“Method Acting” whereby the actor actually felt something
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because they had “become the character”. Stanislavski wrote
several books on acting. The three which you will probably find
most useful are: “An Actor Prepares”, “Building A Character”, and
“Creating A Role”. They are excellent books to study. However,
as Stanislavski himself said, “You must not duplicate the Moscow
Art Theatre (method acting). You must create something of your
own. If you try to duplicate, that means that you merely follow
tradition. You are not going forward.”

He also said something which I feel applies equally as well to
us as animators, “ Artists must learn to think and feel for themselves
and find new forms. They must never be content with what
someone else has done.” “If something excites you, use it, apply it
to yourselves, but adapt it. Do not try to copy it. Let it make you
think further.”

This is basically the way I want you to view this book. There
will be some analysis of existing scenes from animated films,
examples of the assignments I will provide to you and suggestions
of alternate ways to approach the given scenes. Follow
Stanislavski’s advice: “If something excites you, use it, apply it to
yourselves, but adapt it. Do not try to copy it. Let it make you think
further.”

So, back to our main topic: Acting and Animation.

What is “acting”? By definition, acting or “to act” is a verb: to
move to action: ACTUATE, ANIMATE, (interesting) PERFORM,
EXECUTE, to represent an incident or an emotion by action, to
perform as an actor, to play the part of a character, assume the
character of, to behave in a certain way as to convey an emotion,
characterization, or certain actions.

So from this we know that acting is the physical performance which

conoeys:
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A character
An incident
An emotion
Certain actions

Certain behaviour

In his book, “Acting For Animators”, Ed Hooks lists “Seven Essential

Acting Concepts” as:

Thinking leads to movement and emotion.

Acting is reacting. Acting is doing.

Your character needs to have an objective.

Your character should play an action until something
happens to make them play a different action.

All action begins with movement.

Empathy is the magic key. Audiences empathize with

emotion.

A scene is a negotiation.

Frank and Ollie felt there were three very special problems in

the field of acting for animation which could not be ignored. These

were found on page 502 of “Illusion of Life”.

The animator must know what the character should do in
a particular circumstance.

They must be skilled enough as a craftsman to capture in
drawings what they know in their head.

They must be able to retain the fleeting delicate thought
of the moment over the several days it may take to animate
the scene.

Again, in the book “Illusion of Life”, on page 137, Frank and Ollie
have a list of 12 components that are found in good animation:

Inner feelings and emotions

111



Computer Graphics and Animation

* Acting with clear and definite action

* Character and personality

* Thought process through expression changes

* Ability to analyze

* C(lear staging

* Good composition

* Timing

* Solidity in drawing

* Power in drawing

e Strength in movement

* Imagination

Trying to find the moment when the audience connects with
the character on the screen. They are right there with the character,
they understand them and are concerned about what happens to
them. It is this moment when the character reaches out and touches
the audience.

Getting the audience involved requires an understanding
of the character and using feelings that are familiar with
everyone.

This doesn’t necessarily mean using sympathetic emotions
such as happiness or sadness. You can also create feelings of anger,
or fear, shock or revulsion. These are the six basic emotions.

In each of the lists above, the common thread is EMOTION.
It’s all about how you feel. How you feel about the character, how
you feel about their circumstance, how you feel about the
resolution. If you don’t “FEEL” anything, what's the point?

Think about the last time you went to a movie. What kind of
movie was it? Was it a comedy? Action/adventure? Horror,

suspense, r omance?

112



Computer Graphics and Animation

If it was a comedy, did you laugh at any point in the film? If it
was action/adventure did you feel a certain thrill during a chase
sequence? Was your heart beating faster? Were you excited? At
the horror or suspense movie, were you scared or on edge? During
the romance movie, did you feel the heartache or happiness of the
united couple at the end?

If you answered “no” to any of the above questions, the movie
was a failure and you probably should have asked for your
money back. Our choice of movie genre is based on our emotional
need at that point in time. You go to the film to feel that emotion,
if you don’t you were ripped off.

The only way you can feel an emotion is if you empathize with
the character in their situation. To empathize, the actor needs to
convey the proper actions that relay the appropriate emotion. This
is where good acting comes into play. However, do not confuse
action with acting. This goes back to our pal, Francois Delsarte back
on page 5, remember him? You don’t need to overly dramatize
the action to make the emotion read. The character must be true to

who they are.
Acting

Acting is really all about thought. If you have a character that
doesn’t think about what they are doing, you really have a puppet.
Puppets are inanimate objects that only do what the person who
is holding them, or controlling them, wants them to do.

I remember buying a stuffed doll which was also a hand
puppet for my daughter when she was 2 years old. She saw it in a
bin and fell in love with it. She named him “Charlie Dog” on the
spot. When I pulled him out of the bin I noticed that it was also a
puppet, so I stuck my hand in and started talking to Jenna in a
“Gooty” voice. She didn’t really like the idea that he could move
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and talk on his own so she grabbed him off my hand and hugged
him. The moment he came off my hand he became inanimate and
lifeless in her arms. The only time he became a “character” was
when I did the puppet thing. I had to do all the thinking for him.

After a while, Charlie Dog became the bedtime routine for
reading books and Jenna really enjoyed it.

Your animation needs to be treated in the exact same way.
Without your concious thought flowing through the drawings and
out of that character, the animation will appear lifeless. Many
animators neglect this “thought process time” for the character on
the screen.

One of the assignments I give my first year students is called
“The Phone Call” In this assignment they are to have a character
who receives a phone call from another character. The character
receiving the phone call is to pick up the phone and answer it. The
character on the other end is to say something which causes the
first character to change their emotion.

Invariably, the student will animate the scene where the
character picks up the phone with one visible emotion, then within
half a second (literally) the character changes their emotion. Twelve
frames is not enough time for the first character to have registered
who the other character is, get the message the other person is
conveying, think about it and then change their emotion. The start
of any phone call usually goes like this:

Ring, ring.

Character A picks up phone and holds it to their ear.

Character A: “Hello?”

Character B: “Hi, is this characterA?”

Character A: “Yes it is.”

Character B: “Hi Character A, this is Character B. How are

you?”
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Character A: “Oh, hi Character B, I'm fine, how are you?”

This whole conversation takes about 10 seconds total. Of course
the second and third lines could be eliminated but even then this
conversation would still take about 6 or 7 seconds.

Character A’s emotional change would take place on the last
line after they recognize who it is on the other end of the phone.
This would be about 5 seconds into the conversation.

5 seconds x 24 frames = 120 frames or 60 drawings (on two’s)
for the Character A to think about what Character B is saying and
how they will repond to it. It is this “think time” that really allows
your character to come alive to the audience.

This doesn’t mean that your character needs to be doing some
sort of action during those 120 frames. It could be a subtle as a
moving hold with an eye blink. The idea is to make the character

look as though they actually are thinking about something.
Don’t Confuse “Action” With “Acting”

Your character needs to have a purpose for moving. Action,
just for the sake of action is not a good thing. Of course on the flip
side, you can’t act something out without some form of action.
Try playing charades without moving at all. What you're really
trying to do is illustrate an idea or thought with the attitude or
actions of your character. Every action your character makes must
have a purpose or reason. Any type of movement on screen will
draw the audience’s attention because they think something is
going to happen and they follow the action. If it's distracting the
audience may miss the focal point of the scene or become confused.
You don’t want the character to act like a magician who gestures
with one hand while producing something in their other hand,
seemingly out of thin air... unless of course, the character you're
animating actually is a magician.
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Here are 12 questions the animator must ask themselves before

animating a scene:

Is the character doing what the director wants in the
sequence?

Is the character doing only one thing at a time?

Is the character putting over the story point in the scene you
are doing?

Is the character acting as if there is something going on in
his mind?

Does the character appear to be doing something on his
own?

Can the audience tell what the character is thinking?

How does what the character is doing effect what the

audience is thinking?

Does the character have appeal?

Is it passionate? Is passion going into the drawing and
coming out of the character?

Is it the simplest way to do it?

Have you made small story sketches of one important
character to be sure everything is working before you make
a lot of drawings?

Would any one else besides your mother like what you
have done?

Animations

Clutter actors have a variety of properties (position, size,

rotation in 3D space, scale, opacity) which govern their visual

appearance in the UL They may also have constraints on how they

are aligned and/or positioned relative to each other.
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The Clutter animation API provides a means of changing
properties and constraints as a function of time: moving, scaling,
rotating, changing opacity and colour, modifying postional
constraints, etc.

Clutter also makes it possible to animate non-visual properties
if desired.

High level overview

Here are the main concepts behind animation in Clutter:

* An animation changes one or more properties of one or
more actors over time: their rotation in a particular
dimension (x, y, z), scale, size, opacity etc.

* An animation has an associated timeline. Think of this as
analogous to the “thing” you’re controlling when you
watch a video on the internet: it's what you control with
the play/pause button and what is measured by the bar
showing how far through the video you are. As with the
controls on a video player, you can play/pause/skip a
Clutter timeline; you can also rewind it, loop it, and play
it backwards.

If a timeline is reversed, the progress along the timeline is still
measured the same way as it is in the forward direction: so if you
start from the end of the timeline and run it backwards for 75 per
cent of its length, the progress is reported as 0.25 (i.e. 25 per cent of
the way from the start of the timeline).

* The duration of a timeline (e.g. 500 milliseconds, 1 second,

10 seconds) specifies how long its animation will last. The
timeline can be inspected to find out how much of it has
elapsed, either as a value in milliseconds or as a fraction
(between 0 and 1) of the total length of the timeline.
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* An animation is divided into frames. The number of frames
which make up the animation isn’t constant: it depends
on various factors, like how powerful your machine is, the
state of the drivers for your hardware, and the load on he
system. So you won’t always get the same number of
frames in an animation of a particular duration.

* The change to a property in an animation occurs over the
course of the timeline: the start value of the property heads
towards some target value. When it reaches the end of the
timeline, the property should have reached the target value.

* Exactly how the property changes over the course of the

timeline is governed by an alpha.
Alphas

An alpha is generated for each frame of the animation. The
alpha varies between -1.0 and 2.0, and changes during the course
of the animation’s timeline; ideally, the value should start at 0.0
and reach 1.0 by the end of the timeline.

The alpha for any given frame of the animation is determined
by an alpha function.

Usually, the alpha function will return a value based on
progress along the timeline. However, the alpha function doesn’t
have to respect or pay attention to the timeline: it can be entirely
random if desired.

To work out the value of a property at a given frame somewhere along
the timeline for a given alpha:

* Determine the difference between the start value and the
target end value for the property.

* Multiply the difference by the alpha for the current frame.
* Add the result to the start value.
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The shape of the plot of the alpha function over time is called
its easing mode. Clutter provides various modes ranging from
CLUTTER_LINEAR (the alpha value is equal to progress along
the timeline), to modes based on various polynomial and
exponential functions, to modes providing elastic and bounce
shapes.

Most of the time, you can use the built-in Clutter easing modes
to get the kind of animation effect you want. However, in some
cases you may want to provide your own alpha function. Here’s
an example (based on the quintic ease in mode from clutter-

alpha.c):
static gdouble
_alpha_ease_in_sextic (ClutterAlpha *alpha,
gpointer dummy G_GNUC_UNUSED)
{

ClutterTimeline *timeline = clutter_alpha get_timeline
(alpha);

gdouble p = clutter_timeline get_progress (timeline);

return p * p * p * p * p * p;

}

An alpha function just has to have a specified method signature

and return a gdouble value when called. As stated above, you'd
typically base the return value on the timeline progress; the
function above shows how you get the timeline associated with

the alpha, so you can apply the alpha function to it.
Clutter’s animation API

All of the animation approaches in Clutter use the same basic
underpinnings (as explained above), but the API provides varying
levels of abstraction and/or ease of use on top of those
underpinnings.

* Implicit animations (created using clutter_actor_animate()

and related functions) are useful where you want to apply
a simple or one-off animation to an actor. They enable you
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to animate one or more properties using a single easing
mode; however, you only specify the target values for the
properties you're animating, not the start values.

* ClutterAnimator provides support for declarative
animations (defined using ClutterScript). You can animate
multiple actors with this approach, and have more control
over the easing modes used during an animation: while
implicit animations only allow a single easing mode for
all properties, ClutterAnimator supports multiple easing
modes for each property; key frames are used to indicate
where in the animation each easing mode should be
applied.

* ClutterState enables you to describe states: property values
across one or more actors, plus the easing modes used to
transition to those values. It can also be combined with
ClutterAnimator for finer grained definition of transitions
if desired.

States are particularly useful if you need actors to animate
between a known set of positions/sizes/opacities etc. during their
lifecycles (e.g. animating a list of items in a menu, or for animations
in a picture viewer where you click on thumbnails to display a

full view of a photograph).
basic principles of animation

Disney’s Twelve Basic Principles of Animation were
introduced by the Disney animators Ollie Johnston and Frank
Thomas in their 1981 book The Illusion of Life: Disney Animation.
Johnston and Thomas in turn based their book on the work of the
leading Disney animators from the 1930s onwards, and their effort
to produce more realistic animations. The main purpose of the
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principles was to produce an illusion of characters adhering to the
basic laws of physics, but they also dealt with more abstract issues,
such as emotional timing and character appeal.

The book and some of its principles have been adopted by some
traditional studios, and have been referred to by some as the “Bible
of animation.” In 1999 this book was voted number one of the “best
animation books of all time” in an online poll. Though originally
intended to apply to traditional, hand-drawn animation, the
principles still have great relevance for today’s more prevalent

computer animation.
The 12 Principles of Animation
Squash and Stretch
¢
© ¢©® © <O
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[lustration of the “squash and stretch”-principle:

Example A shows a ball bouncing with a rigid, non-dynamic
movement. In example B the ball is “squashed” at impact, and
“stretched” during fall and rebound. The movement also
accelerates during the fall, and slows down towards the apex.

The most important principle is “squash and stretch”, the
purpose of which is to give a sense of weight and flexibility to
drawn objects. It can be applied to simple objects, like a bouncing
ball, or more complex constructions, like the musculature of a
human face. Taken to an extreme point, a figure stretched or
squashed to an exaggerated degree can have a comical effect. In

realistic animation, however, the most important aspect of this
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principle is the fact that an object’s volume does not change when
squashed or stretched. If the length of a ball is stretched vertically,
its width (in three dimensions, also its depth) needs to contract

cor-respondingly horizontally.

e R

Fig. Animated sequence of a race horse galloping. Photos taken by
Eadweard Muybridge. The horse’s body demonstrates squash and stretch in
natural musculature.

Anticipation

Anticipation is used to prepare the audience for an action, and
to make the action appear more realistic. A dancer jumping off
the floor has to bend his knees first; a golfer making a swing has
to swing the club back first. The technique can also be used for
less physical actions, such as a character looking off-screen to
anticipate someone’s arrival, or attention focusing on an object that

a character is about to pick up.

Fig. Anticipation: A baseball player making a pitch prepares for the action
by moving his arm back.
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Staging

This principle is akin to staging in theatre, as it is known in
theatre and film. Its purpose is to direct the audience’s attention,
and make it clear what is of greatest importance in a scene; Johnston
and Thomas defined it as “the presentation of any idea so that it is
completely and unmistakably clear”, whether that idea is an action,
a personality, an expression, or a mood. This can be done by
various means, such as the placement of a character in the frame,
the use of light and shadow, or the angle and position of the
camera. The essence of this principle is keeping focus on what is

relevant, and avoiding unnecessary detail.
Straight Ahead Action and Pose to Pose

These are two different approaches to the actual drawing
process. “Straight ahead action” means drawing out a scene frame
by frame from beginning to end, while “pose to pose” involves
starting with drawing a few key frames, and then filling in the
intervals later. “Straight ahead action” creates a more fluid,
dynamic illusion of movement, and is better for producing realistic
action sequences.

On the other hand, it is hard to maintain proportions, and to
create exact, convincing poses along the way. “Pose to pose” works
better for dramatic or emotional scenes, where composition and
relation to the surroundings are of greater importance. A
combination of the two techniques is often used.

Computer animation removes the problems of proportion
related to “straight ahead action” drawing; however, “pose to
pose” is still used for computer animation, because of the
advantages it brings in composition. The use of computers
facilitates this method, and can fill in the missing sequences in
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between poses automatically. It is, however, still important to

oversee this process and apply the other principles discussed.
Follow Through and Overlapping Action

Follow through and overlapping action is a general heading
for two closely related techniques which help to render movement
more realistically, and help to give the impression that characters
follow the laws of physics, including the principle of inertia.
“Follow through” means that loosely tied parts of a body should
continue moving after the character has stopped and the parts
should keep moving beyond the point where the character stopped
to be “pulled back” only subsequently towards the center of mass
and/or exhibiting various degrees of oscillation damping.
“Overlapping action” is the tendency for parts of the body to move
at different rates (an arm will move on different timing of the head
and so on).

A third, related technique is “drag”, where a character starts
to move and parts of him take a few frames to catch up. These
parts can be inanimate objects like clothing or the antenna on a
car, or parts of the body, such as arms or hair. On the human body,
the torso is the core, with arms, legs, head and hair appendices
that normally follow the torso’s movement. Body parts with much
tissue, such as large stomachs and breasts, or the loose skin on a
dog, are more prone to independent movement than bonier body
parts. Again, exaggerated use of the technique can produce a
comical effect, while more realistic animation must time the actions
exactly, to produce a convincing result.

The “moving hold” animates between similar key frames, even
characters sitting still can display some sort of movement, such as
the torso moving in and out with breathing.
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Slow In and Slow Out

The movement of the human body, and most other objects,
needs time to accelerate and slow down. For this reason, animation
looks more realistic if it has more drawings near the beginning
and end of an action, emphasizing the extreme poses, and fewer
in the middle. This principle goes for characters moving between
two extreme poses, such as sitting down and standing up, but also
for inanimate, moving objects, like the bouncing ball in the above

illustration.
Arc

Most natural action tends to follow an arched trajectory, and
animation should adhere to this principle by following implied
“arcs” for greater realism. This technique can be applied to a
moving limb by rotating a joint, or a thrown object moving along
a parabolic trajectory. The exception is mechanical movement,
which typically moves in straight lines.

As an object’s speed or momentum increases, arcs tend to
flatten out in moving ahead and broaden in turns. In baseball, a
fastball would tend to move in a straighter line than other pitches;
while a figure skater moving at top speed would be unable to turn
as sharply as a slower skater, and would need to cover more
ground to complete the turn.

An object in motion that moves out of its natural arc for no
apparent reason will appear erratic rather than fluid. For example,
when animating a pointing finger, the animator should be certain
that in all drawings in between the two extreme poses, the fingertip
follows a logical arc from one extreme to the next. Traditional
animators tend to draw the arc in lightly on the paper for reference,
to be erased later.
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Secondary Action

Secondary Action: as the horse runs, its mane and tail follow
the movement of the body.

Adding secondary actions to the main action gives a scene more
life, and can help to support the main action. A person walking
can simultaneously swing his arms or keep them in his pockets,
speak or whistle, or express emotions through facial expressions.
The important thing about secondary actions is that they
emphasize, rather than take attention away from the main action.
If the latter is the case, those actions are better left out. For example,
during a dramatic movement, facial expressions will often go
unnoticed. In these cases it is better to include them at the beginning
and the end of the movement, rather than during.

Timing

Timing refers to the number of drawings or frames for a given
action, which translates to the speed of the action on film. On a
purely physical level, correct timing makes objects appear to obey
the laws of physics; for instance, an object’s weight determines how
it reacts to an impetus, like a push. Timing is critical for establishing

a character’s mood, emotion, and reaction. It can also be a device

to communicate aspects of a character’s personality.
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Exaggeration

Exaggeration is an effect especially useful for animation, as
perfect imitation of reality can look static and dull in cartoons. The
level of exaggeration depends on whether one seeks realism or a
particular style, like a caricature or the style of a specific artist. The
classical definition of exaggeration, employed by Disney, was to
remain true to reality, just presenting it in a wilder, more extreme
form.

Other forms of exaggeration can involve the supernatural or
surreal, alterations in the physical features of a character; or elements
in the storyline itself. It is important to employ a certain level of
restraint when using exaggeration. If a scene contains several
elements, there should be a balance in how those elements are
exaggerated in relation to each other, to avoid confusing or

overawing the viewer.
Solid Drawing

The principle of solid drawing means taking into account forms
in three-dimensional space, or giving them volume and weight.
The animator needs to be a skilled artist and has to understand
the basics of three-dimensional shapes, anatomy, weight, balance,
light and shadow, etc. For the classical animator, this involved
taking art classes and doing sketches from life.

One thing in particular that Johnston and Thomas warned
against was creating “twins”: characters whose left and right sides
mirrored each other, and looked lifeless. Modern-day computer
animators draw less because of the facilities computers give them,
yet their work benefits greatly from a basic understanding of
animation principles, and their additions to basic computer

animation.
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Appeal

Appeal in a cartoon character corresponds to what would be
called charisma in an actor. A character who is appealing is not
necessarily sympathetic - villains or monsters can also be appealing
- the important thing is that the viewer feels the character is real
and interesting. There are several tricks for making a character
connect better with the audience; for likable characters a
symmetrical or particularly baby-like face tends to be effective. A
complicated or hard to read face will lack appeal, it may more
accurately be described as “captivation” in the composition of the

pose, or the character design.

Inverting Animations

Problem

You want to have an animation exactly mirroring another one

that you just played.
Solution

Reverse the direction of the ClutterTimeline associated with
the animation.

For example, here’s how to invert an implicit animation which
moves an actor along the x axis. The direction of the animation is
inverted when the movement along the x axis is completed; it is
also inverted if the mouse button is pressed on the actor.

First, set up the animation:

ClutterAnimation *animation;

/*

* animate actor to x = 300.0;

* the implicit animation functions return a ClutterAnimation
* which we can use to invert the timeline

*/
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animation = clutter_actor animate (actor,
CLUTTER _EASE_IN_OUT_ CUBIC,
2000,
“x”, 300.0,
NULL) ;

/* callback for when the animation completes */
g_signal_connect (animation,
“completed”,
G_CALLBACK (_animation_done_cb),
NULL) ;
/*
* callback for when the mouse button is pressed on the
actor;
* note the animation is passed as user data, so we can
* get at the timeline
*/
g_signal_ connect (actor,
“button-press-event”,
G_CALLBACK (_on_click_cb),
animation);

Next, add a function for inverting the timeline:
static void
_invert_timeline (ClutterTimeline *timeline)

{

ClutterTimelineDirection direction =
clutter timeline_get_direction (timeline);

if (direction == CLUTTER_TIMELINE FORWARD)

direction = CLUTTER_TIMELINE_BACKWARD;

else

direction = CLUTTER_TIMELINE_FORWARD;

clutter_timeline_set_direction (timeline, direction);

}
Then add a function which calls _invert_timeline when the

animation completes. More importantly, the callback should stop
emission of the “completed” signal by the animation. This prevents
the ClutterAnimation underlying the implicit animation from being

unreferenced; which in turn allows it to be inverted:
static void
_animation _done_cb (ClutterAnimation *animation,
gpointer user_data)

{
/* stop the completed signal before the ClutterAnimation

is unreferenced */
g_signal_stop_emission_by name (animation, “completed”);
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/* invert the timeline associated with the animation */

ClutterTimeline *timeline = clutter_ animation_get_timeline
(animation);

_invert_timeline (timeline);

}
Finally, the click callback function uses the same

_invert_timeline function if the animation is playing; but if the

animation is stopped, it will start it instead:

static void
_on_click_cb (ClutterActor *actor,
ClutterEvent *event,
gpointer user_data)
{
ClutterAnimation *animation = (ClutterAnimation
*)user_data;
ClutterTimeline *timeline = clutter_ animation _get_timeline
(animation) ;
if (clutter_timeline_is_playing (timeline))

{

_invert_timeline (timeline);

}

else

{

clutter_timeline_start (timeline);
}
}

Discussion

If you are using ClutterAnimator rather than implicit
animations, clutter_animator_get_timeline() enables you to get the
underlying timeline; you could then use the techniques shown
above to invert it.

ClutterState enables a different approach to “inverting” an
animation: rather than having a single animation which you invert,
you would define two or more keys for an actor (or set of actors)
and transition between them. For the example above, you would
define two keys: one for the actor’s initial position; and a second
for the actor at x = 300.0. You would also define the transition
between them: 2000 milliseconds with a CLUTTER_EASE_IN_
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OUT_CUBIC easing mode.

With the states defined, you would then use
clutter_state_set_state() inside callbacks to animate the actor between
the two xpositions. Behind the scenes, ClutterState would handle

the animations and timelines for you.

Fading an actor out of or into view

Problem

You want to animate an actor so that it fades out of or into

view.
Solution

Animate the actor’s opacity property.
You can do this using any of the approaches provided by the
animation API. Here’s how to fade out an actor (until it’s

completely transparent) using implicit animations:

/* fade out actor over 4000 milliseconds */
clutter_actor_animate (actor,
CLUTTER_EASE_OUT_CUBIC,

4000,

“opacity”, O,

NULL) ;

Here’s an example of a rectangle fading out using this
animation:

CLUTTER_EASE_OUT_CUBIC is one of the Clutter easing
modes.

Here’s an example of the transitions you could use to fade an

actor in and out using ClutterState:

ClutterState *transitions = clutter_state_new ();

/* all transitions last for 2000 milliseconds */
clutter_state_set_duration (transitions, NULL, NULL, 2000);
/* transition from any state to “fade-out” state */
clutter state_set (transitions,

NULL, /* from state (NULL means “any”) */

“fade-out”,/* to state */
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actor, “opacity”, CLUTTER _EASE_OUT_QUAD, O,

NULL) ;

/* transition from any state to “fade-in” state */

clutter_state_set (transitions, NULL, “fade-in”,

actor, “opacity”, CLUTTER_EASE_OUT_QUAD, 255,

NULL) ;

/* put the actor into the “fade-out” state with no animation
*/

clutter_state_warp_to_state (transitions, “fade-out”);

You would then trigger an animated state change as events

occur in the application (e.g. mouse button clicks):
clutter_state_set_state (transitions, “fade-in”);

Here’s an example of this animation fading in then out again:
Note

ClutterState is most useful where you need to animate an actor
backwards and forwards between multiple states (e.g. fade an actor
in and out of view). Where you just want to fade an actor in or out

once, clutter_actor_animate() is adequate.
Discussion

Reducing an actor’s transparency to zero does not make it
inactive: the actor will still be reactive even if it’s not visible
(responding to key events, mouse clicks etc.).

To make it really “disappear”, you could wuse
clutter_actor_hide() once you’d made the actor fully

transparent.
Purpose of Dialogue and Animation

Dialogue can be the trickiest part of a script. Lucky for us, Jean
Ann Wright continues her series of articles on writing for television
animation and this month tells us how to tame the words of

animated actors.
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When Batman kicks butt, no words are needed. Justice League

and all related characters are trademarks.
The Purpose of Dialogue

When Batman kicks butt, he doesn’t need a lot of dialogue to
dump the dumbdumbs. At its best animation is all about action
and movement; it explores space and time. You want to show, not
tell, your story. There are cartoons with no dialogue at all! But three
dialogue blocks per page and no more than three short sentences
per block are normal. Generally, in animation dialogue should be
used only after you've tried all other methods of communication.
Silence can accompany discoveries, revelations and deep emotions.
Dialogue is used to reveal the characters. It provides direction,
moving the story along and advancing the plot. It discloses
information. It provides conflict. And it sets the spirit or mood of
the story, whether it's a comedy or drama.

Revealing Character

Sometimes only dialogue can expose the real motivations and
secrets of a character in all their complexity. It's especially effective

when it exposes the character in an entirely new way from what
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we as an audience expect. We use dialogue to establish
relationships. Dialogue reflects feelings and attitudes.

Be sure you know your characters. Each character has his own
agenda, often hidden. What is really being said? Which character
is driving each scene? Your characters can be driving the action
directly or indirectly. Direct dialogue drives people apart. Indirect
dialogue draws people together. Characters may talk around a
problem as we often do in real life. There may be subtext. But
because younger kids probably won’t understand subtlety, writing
targeted at preschoolers should say what it means. Writing will
also be more direct in shorter cartoons, as there simply is not time
for many shadings.

A longer story digs deeper. To do this try using questions in
order to get beneath the surface. Dialogue should never be
interchangeable between characters. It should be dialogue that only
that character would say. The words should be words that this
character would use. Each character should have a different
rhythm, perhaps a different sentence length. Dialogue reveals
education, cultural and ethnic background, age. Use wording and
colorful expressions that are individual to that one character.

Unique phrases can serve as a character signature.
Moving the Story Along

A good animation story has to keep moving. Dialogue
shouldn’t slow it down. It should serve the plot. Dialogue is one
way to tell the story, but the dialogue should always disclose tidbits
that the characters must tell each other, not just information that
you as a writer want the audience to know. Characters make
discoveries about what’s happening and discover secrets about
each other.
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Information and Conflict

All the exposition doesn’t have to come right away. We want
to know what happened before the story started that’s motivating
our characters now.

But information can come out throughout the story. Conflict
in dialogue or tension between views is a good way to get
information out and keep it interesting. Do be clear enough so that
your young viewers understand, but don’t say everything. Leave
enough unsaid that the audience becomes involved and wants to

know more.
The Mood of the Story

Set the tone of the story right away. This is especially important
in comedy, so that we know that it's OK to laugh. The type of

dialogue must be appropriate for the genre of that specific series.
Characteristics of Dialogue

Good dialogue has a beat, a rhythm, a melody. It's affected by
time, place, the weather, etc. It's intangible, like mist, and it depends
upon your characters and who they are, their relationships, the
situation, the genre, the world of that series, the target age of your
audience, the length of the script, and who you are as you're
writing the dialogue. Keep it simple; less is more.

For young children keep the words simple enough that
they’ll understand.

Dialogue sounds like real talk, but it isnt. It's the essence
of real talk with thematic content and an ongoing exchange of
power. It must always be easily understandable and clear. You
might want to repeat important story points, especially for
preschoolers, but repeat with a twist.
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Comedy Dialogue

The best comedy comes out of character. Be sure you have
funny, exaggerated characters, reacting to a funny situation, and
speaking in a funny way. Reactions are all-important to comedy.
And so is timing! Try to avoid straight lines wherever you can.
Use dialogue that plays off the situation.

If there’s a fire, “Let’s hot foot it out of here!” Then play the
next line off of that. A straight man can serve as a foil for the one-
liners. Insults can be funny. Comedy dialogue develops with a
setup and then a surprise punch line. The punch line comes at the
end of a speech. Comedy scenes usually go out on a laugh line (a
button).

Fig. Homer Simpson’s

Writing the Dialogue

If you can listen to tapes of your established characters in
advance, do it. Your story should be set up in the first few words
of dialogue. From the start, keep in mind your final end point, and
build the dialogue towards the climax. Write less than you think
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you need. See and hear it as you write. Act it out in character. You'll
want to add a new dimension with your dialogue, but don’t make
it so different that it doesn’t sound like the established characters.
Write the dialogue so that the actor can contribute something with
his voice (a gulp, an excited squeal, a drawl). Think of Homer
Simpson’s “Doh!” Give your actors attitude, emotion, special
phrasing. Character sneezes, etc. should be written with the
dialogue so they’re not missed during the recording session. If
you're writing only one line for an incidental character, make that
one line a jewel...really memorable. Keep your language
appropriate for that series. If you're writing an original script,
decide ahead of time whether you want your language up-to-date
and fresh or classic for a longer shelf life for that show. Dialogue
for children can be whimsical and full of contradictions and non-

sense. Be original and clever!
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Traditional Animation

Traditional animation, also referred to as classical
animation, cel animation, or hand-drawn animation, is the
oldest and historically the most popular form of animation.
In a traditionally-animated cartoon, each frame is drawn by
hand. The term “traditional animation” is often used in
contrast with the now more commonly used computer

animation.

Process

Storyboards

Traditionally-animated productions, just like other forms
of animation, usually begin life as a storyboard, which is
a script of sorts written with images as well as words,
similar to a giant comic strip. The images allow the animation
team to plan the flow of the plot and the composition of the
imagery. The storyboard artists will have regular meetings
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with the director, and may have to redraw or “re-board” a
sequence many times before it meets final approval.

Voice Recording

Before true animation begins, a preliminary soundtrack
or “scratch track” is recorded, so that the animation may
be more precisely synchronized to the soundtrack. Given
the slow, methodical manner in which traditional animation
is produced, it is almost always easier to synchronize
animation to a pre-existing soundtrack than it is to
synchronize a soundtrack to pre-existing animation. A
completed cartoon soundtrack will feature music, sound
effects, and dialogue performed by voice actors. However,
the scratch track used during animation typically contains
just the voices, any vocal songs that the characters must
sing along to, and temporary musical score tracks; the final
score and sound effects are added in post-production. In
the case of most pre-1930 sound animated cartoons, the
sound was post-synched; that is, the sound track was
recorded after the film elements were finished by watching
the film and performing the dialogue, music, and sound
effects required. Some studios, most notably Fleischer
Studios, continued to post-synch their cartoons through
most of the 1930s, which allowed for the presence of the
“muttered ad-libs” present in many Popeye the Sailor and
Betty Boop cartoons.

Animatic
Often, an animatic or story reel is made after the

soundtrack is created, but before full animation begins. An
animatic typically consists of pictures of the storyboard
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synchronized with the soundtrack. This allows the animators
and directors to work out any script and timing issues that
may exist with the current storyboard. The storyboard and
soundtrack are amended if necessary, and a new animatic
may be created and reviewed with the director until the
storyboard is perfected. Editing the film at the animatic
stage prevents the animation of scenes that would be edited
out of the film; as traditional animation is a very expensive
and time-consuming process, creating scenes that will
eventually be edited out of the completed cartoon is strictly
avoided.

In the mid 1970s, these were known as videomatics and
used primarily for test commercial projects. Advertising
agencies today employ the use of animatics to test their
commercials before they are made into full up spots.
Animatics use drawn artwork, with moving pieces (for
example, an arm that reaches for a product, or a head that
turns). Video storyboards are similar to animatics, but do
not have moving pieces. Photomatics are another option
when creating test spots, but instead of using drawn artwork,
there is a shoot in which hundreds of digital photographs
are taken. The large amount of images to choose from may
make the process of creating a test commercial a bit easier,
as opposed to creating an animatic, because changes to
drawn art take time and money. Photomatics generally cost
more than animatics, as they require a shoot and on-
camera talent.

Design and Timing

Once the animatic has been approved, it and the

storyboards are sent to the design departments. Character
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designers prepare model sheets for all important characters
and props in the film. These model sheets will show how
a character or object looks from a variety of angles with a
variety of poses and expressions, so that all artists working
on the project can deliver consistent work. Sometimes,
small statues known as maquettes may be produced, so
that an animator can see what a character looks like in
three dimensions. At the same time, the background stylists
will do similar work for the settings and locations in the
project, and the art directors and colour stylists will determine
the art style and colour schemes to be used. While design
is going on, the timing director (who in many cases will be
the main director) takes the animatic and analyzes exactly
what poses, drawings, and lip movements will be needed
on what frames. An exposure sheet (or X-sheet for short) is
created; this is a printed table that breaks down the action,
dialogue, and sound frame-by-frame as a guide for the
animators. If a film is based more strongly in music, a bar
sheet may be prepared in addition to or instead of an X-
sheet. Bar sheets show the relationship between the on-
screen action, the dialogue, and the actual musical notation
used in the score.

Layout

Layout begins after the designs are completed and
approved by the director. The layout process is the same
as the blocking out of shots by a cinematographer on a live-
action film. It is here that the background layout artists
determine the camera angles, camera paths, lighting, and
shading of the scene. Character layout artists will determine
the major poses for the characters in the scene, and will
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make a drawing to indicate each pose. For short films,
character layouts are often the responsibility of the director.
The layout drawings and storyboards are then spliced,
along with the audio and an animatic is formed(not to be
confused by its predecessor the leica reel).The term
“animatic” was originally coined by Disney animation studios.

Animation

Once the Animatic is finally approved by the director,
animation begins. In the traditional animation process,
animators will begin by drawing sequences of animation on
sheets of transparent paper perforated to fit the peg bars
in their desks, often using coloured pencils, one picture or
“frame” at a time. A key animator or lead animator will draw
the key drawings in a scene, using the character layouts
as a guide. The key animator draws enough of the frames
to get across the major points of the action; in a sequence
of a character jumping across a gap, the key animator may
draw a frame of the character as he is about to leap, two
or more frames as the character is flying through the air,
and the frame for the character landing on the other side
of the gap. Timing is important for the animators drawing
these frames; each frame must match exactly what is going
on in the soundtrack at the moment the frame will appear,
or else the discrepancy between sound and visual will be
distracting to the audience. For example, in high-budget
productions, extensive effort is given in making sure a
speaking character’'s mouth matches in shape the sound
that character’s actor is producing as he or she speaks.
While working on a scene, a key animator will usually
prepare a pencil test of the scene. A pencil test is a preliminary
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version of the final animated scene; the pencil drawings are
quickly photographed or scanned and synced with the
necessary soundtracks. This allows the animation to be
reviewed and improved upon before passing the work on to
his assistant animators, who will go add details and some
of the missing frames in the scene. The work of the assistant
animators is reviewed, pencil-tested, and corrected until
the lead animator is ready to meet with the director and
have his scene sweatboxed, or reviewed by the director,
producer, and other key creative teamm members. Similar to
the storyboarding stage, an animator may be required to
re-do a scene many times before the director will approve
it. In high-budget animated productions, often each major
character will have an animator or group of animators solely
dedicated to drawing that character.

The group will be made up of one supervising animator,
a small group of key animators, and a larger group of
assistant animators. For scenes where two characters
interact, the key animators for both characters will decide
which character is “leading” the scene, and that character
will be drawn first. The second character will be animated
to react to and support the actions of the “leading” character.
Once the key animation is approved, the lead animator
forwards the scene on to the clean-up department, made up
of the clean-up animators and the inbetweeners. The clean-
up animators take the lead and assistant animators’ drawings
and trace them onto a new sheet of paper, taking care in
including all of the details present on the original model
sheets, so that it appears that one person animated the
entire film. The inbetweeners will draw in whatever frames
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are still missing in between the other animators’ drawings.
This procedure is called tweening. The resulting drawings
are again pencil-tested and sweatboxed until they meet
approval. At each stage during pencil animation, approved
artwork is spliced into the Leica reel. This process is the
same for both character animation and special effects
animation, which on most high-budget productions are done
in separate departments. Effects animators animate anything
that moves and is not a character, including props, vehicles,
machinery and phenomena such as fire, rain, and explosions.

Sometimes, instead of drawings, a number of special
processes are used to produce special effects in animated
films; rain, for example, has been created in Disney animated
films since the late-1930s by filming slow-motion footage
of water in front of a black background, with the resulting
film superimposed over the animation.

Pencil Test

After all the drawings are cleaned-up, they are then
photographed on an animation camera, usually on black,
and white film stock. Nowadays, pencil tests can be made
using a video camera, and computer software.

Backgrounds

While the animation is being done, the background artists
will paint the sets over which the action of each animated
sequence will take place. These backgrounds are generally
done in gouache or acrylic paint, although some animated
productions have used backgrounds done in watercolour,
oil paint, or even crayon. Background artists follow very
closely the work of the background layout artists and colour
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stylists (which is usually compiled into a workbook for their
use), so that the resulting backgrounds are harmonious in
tone with the character designs.

Traditional Ink-and-paint and Camera

When an entire sequence has been transferred to cels,
the photography process begins. Each cel involved in a
frame of a sequence is laid on top of each other, with the
background at the bottom of the stack. A piece of glass is
lowered onto the artwork in order to flatten any irregularities,
and the composite image is then photographed by a special
animation camera, also called rostrum camera. The cels are
removed, and the process repeats for the next frame until
each frame in the sequence has been photographed. Each
cel has registration holes, small holes along the top or
bottom edge of the cel, which allow the cel to be placed on
corresponding peg bars before the camera to ensure that
each cel aligns with the one before it; if the cels are not
aligned in such a manner, the animation, when played at
full speed, will appear “jittery.” Sometimes, frames may
need to be photographed more than once, in order to
implement superimpositions and other camera effects. Pans
are created by either moving the cels or backgrounds one
step at a time over a succession of frames (the camera does
not pan; it only zooms in and out). As the scenes come out
of final photography, they are spliced into the Leica reel,
taking the place of the pencil animation. Once every sequence
in the production has been photographed, the final film is
sent for development and processing, while the final music
and sound effects are added to the soundtrack. Again,
editing in the traditional live-action sense is generally not
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done in animation, but if it is required it is done at this
time, before the final print of the film is ready for duplication
or broadcast. Among the most common types of animation
rostrum cameras was the Oxberry. Such cameras were
always made of black anodized aluminum, and commonly
had 2 pegbars, one at the top and one at the bottom of the
lightbox. The Oxberry Master Series had four pegbars, two
above and two below, and sometimes used a “floating pegbar”
as well. The height of the column on which the camera was
mounted determined the amount of zoom achievable on a
piece of artwork. Such cameras were massive mechanical
affairs which might weigh close to a ton and take hours to
break down or set up. In the later years of the animation
rostrum camera, stepper motors controlled by computers
were attached to the various axes of movement of the
camera, thus saving many hours of hand cranking by human
operators. A notable early use of computer cameras was in
Star Wars (1977), using the Dykstra system at Lucas’ Sun
Valley facility. Gradually, motion control techniques were
adopted throughout the industry. While several computer
camera software packages became available in the early
1980s, the Tondreau System became one of the most widely
adopted. Digital ink and paint processes gradually made
these traditional animation techniques and equipment
obsolete.

Digital Ink and Paint

The current process, termed “digital ink and paint,” is
the same as traditional ink and paint until after the animation
drawings are completed; instead of being transferred to
cels, the animators’ drawings are scanned into a computer,
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where they are coloured and processed using one or more
of a variety of software packages. The resulting drawings
are composited in the computer over their respective
backgrounds, which have also been scanned into the
computer (if not digitally painted), and the computer outputs
the final film by either exporting a digital video file, using
a video cassette recorder, or printing to film using a high-
resolution output device.

Use of computers allows for easier exchange of artwork
between departments, studios, and even countries and
continents (in most low-budget animated productions, the
bulk of the animation is actually done by animators working
in other countries, including South Korea, Japan, Singapore,
Mexico, and India). The last major feature film to use
traditional ink and paint was Studio Ghibli’'s Princess
Mononoke (1997); the last major animation production to
use the traditional process is Cartoon Network’s series Ed
Edd n Eddy (1999-2009), although it was forced to switch
to digital paint in 2004. Minor productions such as Hair
High (2004) by Bill Plympton have used traditional cels long
after the introduction of digital techniques.

Digital ink and paint has been in use at Walt Disney
Feature Animation since 1989, where it was used for the
final rainbow shot in The Little Mermaid. All subsequent
Disney animated features were digitally inked-and-painted,
using Disney’s proprietary CAPS (Computer Animation
Production System) technology, developed primarily by Pixar
(the last Disney feature using CAPS was Home on the Range).
Most other studios use one of a number of other high-end
software packages such as Toon Boom Harmony, Toonz,
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Animo, and even consumer-level applications such as Adobe
Flash, Toon Boom Studio and TVPaint.

Computers and Digital Video Cameras

Computers and digital video cameras can also be used
as tools in traditional cel animation without affecting the
film directly, assisting the animators in their work and
making the whole process faster and easier. Doing the
layouts on a computer is much more effective than doing
it by traditional methods. Additionally, video cameras give
the opportunity to see a “preview” of the scenes and how
they will look when finished, enabling the animators to
correct and improve upon them without having to complete
them first. This can be considered a digital form of pencil
testing.

Techniques

The Cel & Limited Animation

The cel is an important innovation to traditional
animation, as it allows some parts of each frame to be
repeated from frame to frame, thus saving labor. A simple
example would be a scene with two characters on screen,
one of which is talking and the other standing silently.
Since the latter character is not moving, it can be displayed
in this scene using only one drawing, on one cel, while
multiple drawings on multiple cels will be used to animate
the speaking character. For a more complex example,
consider a sequence in which a girl sets a plate upon a
table. The table will stay still for the entire sequence, so it
can be drawn as part of the background. The plate can be
drawn along with the character as the character places it
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on the table. However, after the plate is on the table, the
plate will no longer move, although the girl will continue
to move as she draws her arm away from the plate. In this
example, after the girl puts the plate down, the plate can
then be drawn on a separate cel from the girl.

Further frames will feature new cels of the girl, but the
plate does not have to be redrawn as it is not moving; the
same cel of the plate can be used in each remaining frame
that it is still upon the table. The cel paints were actually
manufactured in shaded versions of each colour to
compensate for the extra layer of cel added between the
image and the camera, in this example the still plate would
be painted slightly brighter to compensate for being moved
one layer down. In very early cartoons made before the use
of the cel, such as Gertie the Dinosaur (1914), the entire
frame, including the background and all characters and
items, were drawn on a single sheet of paper, then
photographed. Everything had to be redrawn for each frame
containing movements. This led to a “jittery” appearance;
imagine seeing a sequence of drawings of a mountain, each
one slightly different from the one preceding it.

The pre-cel animation was later improved by using
techniques like the slash and tear system invented by Raoul
Barre; the background and the animated objects were drawn
on separate papers. A frame was made by removing all the
blank parts of the papers where the objects were drawn
before being placed on top of the backgrounds and finally
photographed. The cel animation process was invented by
Earl Hurd and John Bray in 1915. In lower-budget
productions, this “shortcut” is used in a greater capacity.
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For example, in a scene in which a man is sitting in a chair
and talking, the chair and the body of the man may be the
same in every frame; only his head is redrawn, or perhaps
even his head stays the same while only his mouth moves.
This is known as limited animation. The process was
popularized in theatrical cartoons by United Productions of
America and used in most television animation, especially
that of Hanna-Barbera. The end result does not look very
lifelike, but is inexpensive to produce, and therefore allows
cartoons to be made on small television budgets.

“Shooting on Twos”

Moving characters are often shot “on twos”, that is to
say, one drawing is shown for every two frames of film
(which usually runs at 24 frames per second), meaning
there are only 12 drawings per second. Even though the
image update rate is low, the fluidity is satisfactory for most
subjects. However, when a character is required to perform
a quick movement, it is usually necessary to revert to
animating “on ones”, as “twos” are too slow to convey the
motion adequately. A blend of the two techniques keeps the
eye fooled without unnecessary production cost. Animation
for television is usually produced on tight budgets. In addition
to the use of limited animation techniques, television
animation may be shot on “threes”, or even “fours”, i.e.
three or four frames per drawing. This translates to only
eight or six drawings per second.

Animation Loops

Creating animation loops or animation cycles is a labor-
saving technique for animating repetitive motions, such as
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a character walking or a breeze blowing through the trees.
In the case of walking, the character is animated taking a
step with his right foot, then a step with his left foot. The
loop is created so that, when the sequence repeats, the
motion is seamless. However, since an animation loop
essentially uses the same bit of animation over and over
again, it is easily detected and can in fact become distracting
to an audience. In general, they are used only sparingly by
productions with moderate or high budgets. Ryan Larkin’s
1969 Academy Award nominated National Film Board of
Canada short Walking makes creative use of loops. In
addition, a promotional music video featuring the Soul
Coughing song “Circles” poked fun at animation loops as
they are often seen in The Flintstones, in which Fred and
Barney, supposedly walking in a house, wonder why they
keep passing the same table and vase over and over again.

Multiplane Camera

The multiplane camera is a tool used to add depth to
scenes in 2D animated movies, called the multiplane effect
or the parallax process. The art is placed on different layers
of glass plates, and as the camera moves vertically towards
or away from the artwork levels, the camera’s viewpoint
appears to move through the various layers of artwork in
3D space. The panorama views in Pinocchio are examples
of the effects a multiplane camera can achieve. Different
versions of the camera have been made through time, but
the most famous is the one developed by the Walt Disney
studio beginning with their 1937 short The Old Mill. Another
one, the “Tabletop”, was developed by Fleischer Studios.
The Tabletop, first used in 1934’s Poor Cinderella, used
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miniature sets made of paper cutouts placed in front of the
camera on a rotating platform, with the cels between them.
By rotating the entire setup one frame at a time in accordance
with the cel animation, realistic panoramas could be created.
Ub Iwerks and Don Bluth also built multiplane cameras for
their studios.

Xerography

Applied to animation by Ub Iwerks at the Walt Disney
studio during the late 1950s, the electrostatic copying
technique called xerography allowed the drawings to be
copied directly onto the cels, eliminating much of the “inking”
portion of the ink-and-paint process. This saved time and
money, and it also made it possible to put in more details
and to control the size of the xeroxed objects and characters
(this replaced the little known, and seldom used,
photographic lines technique at Disney, used to reduce the
size of animation when needed). At first it resulted in a more
sketchy look, but the technique was improved upon over
time. The xerographic method was first tested by Disney in
a few scenes of Sleeping Beauty, and was first fully used
in the short film Goliath II, while the first feature entirely
using this process was One Hundred and One Dalmatians
(1961). The graphic style of this film was strongly influenced
by the process. Some hand inking was still used together
with xerography in this and subsequent films when distinct
coloured lines were needed. Later, coloured toners became
available, and several distinct line colours could be used,
even simultaneously. For instance, in The Rescuers the
characters outlines are gray. White and blue toners were
used for special effects, such as snow and water.
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APT Process

Invented by Dave Spencer for the 1985 Disney film The
Black Cauldron, the APT (Animation Photo Transfer) process
was a technique for transferring the animators’ art onto
cels. Basically, the process was a modification of a repro-
photographic process; the artists’ work were photographed
on high-contrast “litho” film, and the image on the resulting
negative was then transferred to a cel covered with a layer
of light sensitive dye. The cel was exposed through the
negative. Chemicals were then used to remove the unexposed
portion. Small and delicate details were still inked by hand
if needed. Spencer received an Academy Award for Technical
Achievement for developing this process.

Cel Overlay

A cel overlay is a cel with inanimate objects used to give
the impression of a foreground when laid on top of a ready
frame. This creates the illusion of depth, but not as much
as a multiplane camera would. A special version of cel
overlay is called line overlay, made to complete the
background instead of making the foreground, and was
invented to deal with the sketchy appearance of xeroxed
drawings. The background was first painted as shapes and
figures in flat colours, containing rather few details. Next,
a cel with detailed black lines was laid directly over it, each
line drawn to add more information to the underlying shape
or figure and give the background the complexity it needed.
In this way, the visual style of the background will match
that of the xeroxed character cels. As the xerographic process
evolved, line overlay was left behind.
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Computers and Traditional Animation

The methods mentioned above describe the techniques
of an animation process that originally depended on cels
in its final stages, but painted cels are rare today as the
computer moves into the animation studio, and the outline
drawings are usually scanned into the computer and filled
with digital paint instead of being transferred to cels and
then coloured by hand. The drawings are composited in a
computer programme on many transparent “layers” much
the same way as they are with cels, and made into a
sequence of images which may then be transferred onto film
or converted to a digital video format. It is now also possible
for animators to draw directly into a computer using a
graphics tablet, Cintiq or a similar device, where the outline
drawings are done in a similar manner as they would be
on paper. The Goofy short How To Hook Up Your Home
Theater (2007) represented Disney’s first project based on
the paperless technology available today.

Some of the advantages are the possibility and potential
of controlling the size of the drawings while working on
them, drawing directly on a multiplane background and
eliminating the need of photographing line tests and
scanning. Though traditional animation is now commonly
done with computers, it is important to differentiate
computer-assisted traditional animation from 3D computer
animation, such as Toy Story and ReBoot. However, often
traditional animation and 3D computer animation will be
used together, as in Don Bluth’s Titan A.E. and Disney’s
Tarzan and Treasure Planet. Most anime still use traditional
animation today. DreamWorks executive Jeffrey Katzenberg
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coined the term “tradigital animation” to describe films
produced by his studio which incorporated elements of
traditional and computer animation equally, such as Spirit:
Stallion of the Cimarron and Sinbad: Legend of the Seven
Seas. Interestingly, many modern video games such as
Viewtiful Joe, The Legend of Zelda: The Wind Waker and
others use “cel-shading” animation filters to make their full
3D animation appear as though it were drawn in a traditional
cel style. This technique was also used in the animated
movie Appleseed, and cel-shaded 3D animation is typically
integrated with cel animation in Disney films and in many
television shows, such as the Fox animated series Futurama.

Rotoscoping

Rotoscoping is a method of traditional animation invented
by Max Fleischer in 1915, in which animation is “traced”
over actual film footage of actors and scenery. Traditionally,
the live action will be printed out frame by frame and
registered. Another piece of paper is then placed over the
live action printouts and the action is traced frame by frame
using a lightbox. The end result still looks hand drawn but
the motion will be remarkably lifelike. Waking Life is a full-
length, rotoscoped animated movie, as is American Pop by
Ralph Bakshi. The popular music video for A-ha’s song
“Take On Me” also featured rotoscoped animation, along
with live action. In most cases, rotoscoping is mainly used
to aid the animation of realistically rendered human beings,
as in Snow White and the Seven Dwarfs, Peter Pan, and
Sleeping Beauty. A method related to conventional
rotoscoping was later invented for the animation of solid
inanimate objects, such as cars, boats, or doors. A small
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live action model of the required object was built and painted
white, while the edges of the model were painted with thin
black lines. The object was then filmed as required for the
animated scene by moving the model, the camera, or a
combination of both, in real time or using stop-motion
animation. The film frames were then printed on paper,
showing a model made up of the painted black lines.

After the artists had added details to the object not
present in the live-action photography of the model, it was
xeroxed onto cels. A notable example is Cruella de Vil’s car
in Disney’s One Hundred and One Dalmatians. The process
of transferring 3D objects to cels was greatly improved in
the 1980s when computer graphics advanced enough to
allow the creation of 3D computer generated objects that
could be manipulated in any way the animators wanted,
and then printed asoutlines on paper before being copied
onto cels using Xerography or the APT process. This
technique was used in Disney films such as Oliver and
Company (1988) and The Little Mermaid (1989). This process
has more or less been superseded by the use of cel-shading.
Related to rotoscoping are the methods of vectorizing live-
action footage, in order to achieve a very graphical look, like
in Richard Linklater’s film A Scanner Darkly; and motion-
capturing actor’s movements to use the data in 3D-
animation, as in Robert Zemeckis’s 2004 film The Polar
Express.

Live-action Hybrids

Similar to the computer animation and traditional
animation hybrids described above, occasionally a production
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will marry both live-action and animated footage. The live-
action parts of these productions are usually filmed first,
the actors pretending that they are interacting with the
animated characters, props, or scenery; animation will then
be added into the footage later to make it appear as if it
has always been there. Like rotoscoping, this method is
rarely used, but when it is, it can be done to terrific effect,
immersing the audience in a fantasy world where humans
and cartoons co-exist. Early examples include the silent Out
of the Inkwell (begun in 1919) cartoons by Max Fleischer
and Walt Disney’s Alice Comedies (begun in 1923). Live-
action and animation were later combined to successful
effect in features such as The Three Caballeros (1944),
Anchors Aweigh (1945), Song of the South (1946), Mary
Poppins (1964), Bedknobs and Broomsticks (1971), Heavy
Traffic (1973), Coonskin (1975) Pete’s Dragon (1977), Who
Framed Roger Rabbit (1988), Rock-a-Doodle (1992), Cool
World (1992), The Pagemaster (1994) Space Jam (1996), and
Looney Tunes: Back In Action (2003). Other significant live-
action hybrids include the music video for Paula Abdul’s hit
song “Opposites Attract” and numerous television
commercials, including those for cereals such as Frosted
Flakes, Honey Nut Cheerios, Trix, and Rice Krispies.

Special Effects Animation

Besides traditional animated characters, objects and
backgrounds, many other techniques are used to create
special elements such as smoke, lightning and “magic”, and
to give the animation in general a distinct visual appearance.
Notable examples can be found in movies such as Fantasia,
Wizards, The Lord of the Rings, The Little Mermaid, The
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Secret of NIMH and The Thief and the Cobbler. Today the
special effects are mostly done with computers, but earlier
they had to be done by hand. To produce these effects, the
animators used different techniques, such as drybrush,
airbrush, charcoal, grease pencil, backlit animation or, during
shooting, the cameraman used multiple exposures with
diffusing screens, filters or gels. For instance, the Nutcracker
Suite segment in Fantasia has a fairy sequence where stippled
cels are used, creating a soft pastel look.

Limited Animation

Limited animation is a process of making animated
cartoons that does not redraw entire frames but variably
reuses common parts between frames. One of its major
trademarks is the stylized design in all forms and shapes,
which in the early days was referred to as modern design.
The short cartoons and feature films of Walt Disney from
the 1930s and 1940s are widely acclaimed for depicting
animated simulations of reality, with exquisite detail in
every frame. However, this style of animation is very time-
consuming and expensive. “Limited” animation creates an
image that uses abstract art, symbolism, and fewer drawings
to create the same effect, but at a much lower production
cost. This style of animation depends upon animators’ skill
in emulating change without additional drawings; improper
use of limited animation can be easily recognized as
unnatural. It also encourages the animators to indulge in
artistic styles that are not necessarily bound to the limits
of the real world. The result is a new artistic style that could
not have developed if animation was solely devoted to
producing simulations of reality. Without limited animation,

158



Computer Graphics and Animation

such ground-breaking films as Yellow Submarine, Chuck
Jones’ The Dot and the Line, and many others could never
have been produced. The process of limited animation mainly
aims at reducing the overall number of drawings. Film is
projected at 24 frames per second. For movements in normal
speed, most animation in general is done “on twos,” meaning
12 drawings per second are recorded meaning that each
drawing uses two frames of film. Faster movements may
demand animation “on ones,” while characters that do not
move may be done with a single drawing (a “hold”) for a
certain amount of time. It is said that the Disney average
was about 18 drawings per second, pretending that all
characters of a scene share the same sheet of paper. Limited
animation mainly reduces the number of inbetweens, the
drawings between the keyframes which define a movement,
and can cause stuttering if inbetweens are poorly setup.
Overall, the use of limited animation does not necessarily
imply lower quality as it allows the use of many timesaving
techniques that can improve the quality and flow of the
keyframes and overall presentation of an animation.

History

The use of budget-cutting animation measures in
animation dates at least to the 1930s; a handful of the
Bosko cartoons in the early years of the Looney Tunes series
used several visible tricks to give the shorts the comparable
appearance of the Disney shorts of the same era, even
though they were produced on a budget of just over half
of their Disney counterparts. The 1942 Merrie Melodies
short “The Dover Boys” was a particular early prototype of
the use of limited animation, though pressure from Warner
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Bros. curtailed much further use of the technique. Limited
animation was originally founded as an artistic device, though
it was soon used widely as a cost-cutting measure rather
than an aesthetic method. The UPA studio made the first
serious effort to abandon the keyframe heavy approach
perfected by Disney. Their first effort at limited animation,
Gerald McBoing-Boing, won an Oscar, and it provided the
impetus for this animation method to be accepted at the
major Hollywood cartoon studios, including Warner Brothers
and MGM. However, the real attraction of limited animation
was the reduction in costs: because limited animation does
not require as many drawings as fully keyframed animations,
it is much less expensive to produce. The 1950s saw all of
the major cartoon studios change their style to limited
animation, to the point where painstaking detail in animation
occurred only rarely. Limited animation techniques in
America were used during the 1960s and 1970s to produce
a great number of inexpensive Saturday morning cartoons.
Such TV series as Clutch Cargo are known for being produced
on extremely low budgets, with camera tricks used in place
of actual animation. Despite the low quality of the animation,
the TV cartoon studios Hanna-Barbera, Jay Ward and
Filmation thrived during this period. The desire of the time
to emulate full animation with limited animation led to
many highly apparent visual issues.

Techniques

These techniques used to produce cartoons on a reduced
budget included:

e cels and sequences of cels were used repeatedly —
animators only had to draw a character walking once.
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characters are split up into different levels: only
portions of a character, such as the mouth or an arm,
would be animated on top of a static cel.

clever choice of camera angles and editing.

use of camera techniques such as panning to suggest
movement. A famous implementation of this is the
“crash” technique, which involves the camera shaking
rapidly back and forth to simulate a shock wave.

“smear animation:” movement is rapid and portrayed
in only three frames: the beginning state, the ending
state, and a “blur” frame similar to that of a picture
taken with a camera that had a low shutter speed.

cel reversal (simply using a mirror image of the cell to
represent the opposite angle). Many cartoon characters
are drawn symmetrically to expedite this technique.

the visual elements were made subsidiary to audio
elements, so that verbal humor and voice talent became
more important factors for success (“talking heads”).

silhouette helped avoid having to keep track of shading
on an animated character or object.

sliding a cel across a background to suggest movement.

Stock footage: sequences that are reused frequently.
This is the case of the character transformations in
the Magical girls subgenre of Japanese anime series.
Filmation used this strategy for much of its
productions.

extensive recaps of previous episodes or segments, to
cut down on the amount of new material necessary
(used often in serials).
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e The most egregious case of limited animation, known
as Syncro-Vox, involved pasting a film of the moving
lips of a real-life person over a still frame of an
“animated” character to give the appearance that the
character is doing the talking. Cambria Studios held
a patent on the technology, and as such, it was
primarily used on their productions, such as Clutch
Cargo.

Examples

Animated cartoons which made use of limited animation
include Gerald McBoing-Boing, Rooty Toot Toot, Mister
Magoo, The Rocky and Bullwinkle Show, The Pink Panther,
Clutch Cargo, and Kinnikuman. In recent years, nostalgia
for the 1970s, combined with technologies such as Adobe
Flash, have led to a revival of the genre of limited animation.
Also, some modern graphic styles naturally translate into
limited animation. Much of Japanese animation (anime)
makes use of techniques adapted from limited animation.
Osamu Tezuka started to use this technique in Astro Boy
in order to save money and time. However, the technique
is now combined with manga styles and aesthetics, and is
a very distinct style.

Limited animation in anime is frequently used in action
scenes such as mecha battles or transformation scenes.
Limited animation is seen most frequently in television
serials, but the aesthetic is so grounded in the medium that
even bigger-budget feature films make use of it. Most
Japanese animation is significantly less expensive than its
American counterparts as a result, with Hayao Miyazaki’'s
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Ponyo (the most expensive Japanese animated feature film
yet produced) costing only $34,000,000.

Rotoscoping

Rotoscoping is an animation technique in which
animators trace over live-action film movement, frame by
frame, for use in animated films. Originally, recorded live-
action film images were projected onto a frosted glass panel
and re-drawn by an animator. This projection equipment
is called a rotoscope, although this device has been replaced
by computers in recent years. In the visual effects industry,
the term rotoscoping refers to the technique of manually
creating a matte for an element on a live-action plate so it
may be composited over another background.

History

The technique was invented by Max Fleischer, who used
it in his series Out of the Inkwell starting around 1915, with
his brother Dave Fleischer dressed in a clown outfit as the
live-film reference for the character Koko the Clown. Max
patented the method in 1917. Fleischer used rotoscoping
in a number of his later cartoons, most notably the Cab
Calloway dance routines in three Betty Boop cartoons from
the early 1930s, and the animation of Gulliver in Gulliver’s
Travels (1939). The Fleischer studio’s most effective use of
rotoscoping was in their series of action-oriented Superman
cartoons, in which Superman and the other animated figures
displayed very realistic movement. Leon Schlesinger
Productions, which produced the Looney Tunes and Merrie
Melodies for Warner Bros., producing cartoons geared more
towards exaggerated comedy, used rotoscoping only
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occasionally. Walt Disney and his animators employed it in
Snow White and the Seven Dwarfs in 1937. Rotoscoping was
also used in many of Disney’s subsequent animated feature
films with human characters, such as Cinderella in 1950.
From the latter film onwards, the rotoscope was used mainly
for studying human and animal motion, rather than actual
tracing. Rotoscoping was used extensively in China’s first
animated feature film, Princess Iron Fan (1941), which was
released under very difficult conditions during the Second
Sino-Japanese War and World War II. It was used extensively
in the Soviet Union, where it was known as “Eclair”, from
the late 1930s to the 1950s; its historical use was enforced
as a realization of Socialist Realism. Most of the films
produced with it were adaptations of folk tales or poems -
for example, The Night Before Christmas or The Tale of the
Fisherman and the Fish. Only in the early 1960s, after the
Khrushchev Thaw, did animators start to explore very
different aesthetics. The film crew on the Beatles animated
film Yellow Submarine employed rotoscoping in numerous
instances, most notably the sequence for “Lucy in the Sky
with Diamonds.” Ralph Bakshi used the technique quite
extensively in his animated movies Wizards (1977), The
Lord of the Rings (1978), American Pop (1981), and Fire and
Ice (1983). Bakshi first turned to rotoscoping because he
was refused by 20th Century Fox for a $50,000 budget
increase to finish Wizards, and thus had to resort to the
rotoscope technique to finish the battle sequences.
Rotoscoping was also used in Heavy Metal (1981), three of
a-ha’s music videos, “Take on Me” (1985), “The Sun Always
Shines on T.V.” (1985), and “Train of Thought” (1986), and
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Don Bluth’s Titan A.E. (2000). While rotoscoping is generally
known to bring a sense of realism to larger budget animated
films, the American animation company Filmation, known
for its budget-cutting limited TV animation, was also notable
for its heavy usage of rotoscope to good effect in series such
as Flash Gordon, Blackstar, and He-Man and the Masters
of the Universe. Smoking Car Productions invented a digital
rotoscoping process in 1994 for the creation of its critically-
acclaimed adventure video game, The Last Express. The
process was awarded U.S. Patent 6,061,462, Digital Cartoon
and Animation Process.

In the mid-1990s, Bob Sabiston, an animator and
computer scientist veteran of the MIT Media Lab, developed
a computer-assisted “interpolated rotoscoping” process
which he used to make his award-winning short film “Snack
and Drink.” Director Richard Linklater subsequently
employed Sabiston’s artistry and his proprietary Rotoshop
software in the full-length feature films Walking Life (2001)
and A Scanner Darkly (2006). Linklater licensed the same
proprietary rotoscoping process for the look of both films.
Linklater is the first director to use digital rotoscoping to
create an entire feature film. Additionally, a 2005-08
advertising campaign by Charles Schwab uses Sabiston’s
rotoscoping work for a series of television spots, under the
tagline “Talk to Chuck.”

Technique

Rotoscope output can have slight deviations from the
true line that differ from frame to frame, which when
animated cause the animated line to shake unnaturally, or
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“boil”. Avoiding boiling requires considerable skill in the
person performing the tracing, though causing the “boil”
intentionally is a stylistic technique sometimes used to
emphasize the surreal quality of rotoscoping, as in the
music video “Take on Me” and animated TV series Delta
State. Rotoscoping (often abbreviated as “roto”) has often
been used as a tool for visual effects in live-action movies.
By tracing an object, a silhouette (called a matte) is created
that can be used to extract that object from a scene for use
on a different background. While blue and green screen
techniques have made the process of layering subjects in
scenes easier, rotoscoping still plays a large role in the
production of visual effects imagery.

Rotoscoping in the digital domain is often aided by motion
tracking and onion-skinning software. Rotoscoping is often
used in the preparation of garbage mattes for other matte-
pulling processes. Rotoscoping has also been used to allow
a special visual effect (such as a glow, for example) to be
guided by the matte or rotoscoped line. One classic use of
traditional rotoscoping was in the original three Star Wars
films, where it was used to create the glowing lightsaber
effect, by creating a matte based on sticks held by the
actors. To achieve this, editors traced a line over each frame
with the prop, then enlarged each line and added the glow.
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