

TRANSFORMATIONS IN
COMPUTER GRAPHICS

TRANSFORMATIONS IN
COMPUTER GRAPHICS

Dana Burris

Transformations in Computer Graphics

by Dana Burris

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664143

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Introduction to Transformation 1

Chapter 2 The Evolution of Computer Graphics 15

Chapter 3 Graphics System Device 31

Chapter 4 Computer Graphics Software 86

Chapter 5 Projection Transformations in Graphics 111

Chapter 6 Computer-Generated Imagery 132

Chapter 7 Workspace Management in

Computer Graphics 148

Chapter 8 Engineering Drawing 167

1

Introduction to Transformation

A transformation is the process of mapping points to other

locations.

Common transformations are Translation, Scaling and

Rotation.

3D ROTATIONS

3D rotation sequence:

• Translate the object so that the rotation axis passes

through the coordinate origin

• Rotate the object so that the axis of rotation coincides

with one of the coordinate axes

• Perform the specified rotation about the selected axis

• Apply inverse rotations to bring the rotation axis back

to its original orientation

• Apply the inverse translation to bring the rotation

axis back to its original spatial position.

Transformations in Computer Graphics

2

Process of Clipping
Clipping is the process of determining the portions of a

primitive lying within a region called the ‘clipping region’.

Types of clipping are Point clipping, Line clipping, Polygon

clipping.

Purpose of Clipping
It is for preventing:

• Activity in one window from affecting pixels in other

windows

• Mathematical overflow and underflow from primitives

passing behind the eye point or at great distances

(in 3D).

Area Clipping
• Clipping a line segment yields at most one line

segment

• Clipping a polygon can yield multiple polygons

(However, clipping a convex polygon can yield at most

one other polygon).

Rasterization
Rasterization (scan conversion) is to determine which pixels

that are inside a primitive specified by a set of vertices.

• To convert continuous geometry, inside viewing

region, into discrete pixels

• Fragments have a location (pixel location) and other

attributes such colour and texture coordinates that

are determined by interpolating values at vertices

• Pixel colours determined later using colour, texture,

and other vertex properties.

Transformations in Computer Graphics

3

LINE-DRAWING ALGORITHMS
Bresenham’s line algorithm properties:

• Only uses incremental integer calculations

• Can be adapted to display circles and other curves

• Basic idea find next pixel from current one.

AREA FILL BOUNDARY FILL
Start at an inside position and ‘paint’ the interior, pixel by

pixel, with the desired colour until the boundary colour is

encountered.

Flood fill
• Start at an inside position and ‘repaint’ all pixels

that are currently set to a certain colour with the

desired colour.

TRANSFORMATIONS IN AFFINE TRANSFORMS

Transformations are central in computer graphics. They

are used to map from one space to another along the graphics

pipeline.

AFFINE TRANSFORMS
A very good source for affine maps in Gerald Farin’s book,

“Curves and Surfaces for CAGD: A Practical Approach.” Some

of this introductory material comes from Farin’s text.

Let ∈ 3,a b E be two points in three dimensional Euclidean

space E3. Their difference;

= − ∈
� 3v b a R

is the vector from a to b in the three dimensional linear space

R3. Vectors can be added, subtracted and multiplied by

constants.

Transformations in Computer Graphics

4

Points be subtracted, but addition and scalar multiplication

of points is not defined. Points can have a vector added to

them to form another point:

= +
�
.b a v

This is a translation of point a along vector �v to point b.

Points determine position; vectors determine direction and

magnitude.

For any two points a and b there is but one vector = −
�
v b a

from a to b. However, given there are infinitely many pairs of

points that determine �v . Indeed, if = −
�
v b a and �w is any

vector, then

= + − + = −
� � �

() () .v b w a w b a

Now let …0 1, , , na a a be n + 1 points in E3. And let α α … α0 1, , , n

be n + 1 real numbers (weights) that sum to 1. We define the

barycentric (or affine) combination of these points to be

= =

= α ∈ α =� �3

0 0

, , 1.
n n

j j j j
j j

a a a E

This looks like we’ve invalidated our statement that points

can not be added, but the fact that the weights add to one

allow us to write the barycentric combination as a point plus

the sum of vectors. That is,

=

= + α −�0 0

1

().
n

j j
j

a a a a

An important special case of barycentric combinations are

convex combinations. Here we require that the weighs be non-

negative (≥ 0) as well as sum to 1.

Note that a weighted sum of points is a vector when the

weights add up to zero.

Transformations in Computer Graphics

5

Affine Maps
A map A that maps E3 into itself is called affine if it leaves

barycentric combinations invariant. That is, pretend

= =−

= α ∈ α =� �3

0

, , , 1.
n n

j j j j
j j

p a p a E

is a barycentric combination of points

…0 1, , , ,na a a

and A is an affine map. Then

=

= α ∈� 3

0

, ,
n

j j j
j

A a A pA a A E

is a barycentric combination of points.

To be more specific, let’s think of point p with coordinates

(x y z). An affine map can be represented in the familiar form

= +
�
,A pM v

where M is a 3 × 3 matrix and is a (translation) vector in R3.

Note that we write point-matrix multiplication with the point

on the left of the matrix: This seems common practice in the

computer graphics literature. Placing the point on the right

is more common in mathematical writing. It is easy to change

from one form to the other via the transpose operation. We

will write

� �
� �

= � �
� �
� �

11 12 13

21 22 23

31 32 33

()

m m m

pM x y z m m m

m m m

This is equivalent to

� � 	

� �� �

= � �� �
� �� �

� �
 �

11 21 31

12 22 32

13 23 33

.
T T

m m m x

M p m m m y

m m m z

Transformations in Computer Graphics

6

Thus the major difference is: we write points (and vectors)

as rows, others write them as columns. We will see that the

useful tranformations: translations, scale, rotation, shear,

and parallel projection are all affine maps.

Linear Interpolation
A particularly useful barycentric combination is linear

interpolation. Let ∈ 3
,a b E be two points and let the weights

be 1-t and t for some real number (parameter) t. Then the

points
= = − + ∈() (1) ,L L t t a tb t R

is called the straight line through a and b. The line L(t) is a

barycentric combination. If we restrict the parameter t to lie

between zero and one (≤ ≤0 1t), L(t) is a convex combination:

It is the line segment from a tob. Note that there is a direction

of travel implied along the line.

MATRICES
Matrices are the basic tool that transform (map) points

from E3 into E3. A matrix is an n × m array with n rows and

m columns.

You need to know how to perform matrix multiplication.

Most of our matrices will be 4 × 4, but they’ll start out as 3 ×

3.

Pretending that matrix multiplication is a collection inner

products is useful since it provides a geometric interpretation.

That is, the (i, j) element in the product AB is the inner product

of the i-th row of A with the j-th column of B. If you are

uncertain about inner products, you’ll want to read about

them.

Transformations in Computer Graphics

7

Rows and Columns
A row

= []P x y zw

should be thought of as a point (using our notational

conventions). A column

� �
� �
� �= � �
� �
� �� �

a

b
E

c

d

should be thought of as a plane. The inner (or dot, scalar,

matrix) product of them

� �
� �
� �= = + + +� �
� �
� �� �

· []

a

b
P E x y zw ax by cz dw

c

d

is a scalar (real number). If the value is zero, the point lies in

the plane.

Scales
Scaling alters the size of an object. Pretend you are given

a point = ()p x y z which is an object vertex, and let ()x y zs s s be

scale factors in x y z, respectively.
Then the point can be scaled to a new point by the

matrix

� �
� �

= � �
� �
� �

0 0

0 0 .

0 0

x

y

z

s

S s

s

In particular,

Transformations in Computer Graphics

8

� �
� �

= =� �
� �
� �

0 0

() 0 0 ().

0 0

x

y x y z

z

s

pS x y z s s x s y s z

s

To scale (enlarge or shrink) the size of an object, each object
vertex is multiplied by the scale matrix S as shown above.

The Fixed Point of a Scale
Note that the origin O = [0 0 0] is unchanged by a scale (it

is still the origin). There is always one fixed point for any

scaling operation. By default the fixed point is the origin

O = (0 0 0), but we can select an arbitrary fixed point
= []f f fF x y z by the following three step process, which will be

more completely defined below.

1. Translate = []f f fF x y z to O = [0 0 0]

2. Scale by []x y zs s s

3. Translate O = [0 0 0] to = []f f fF x y z

 The Inverse of a Scale
As long as we do not scale by zero, a scale can always be

inverted (undone) by the matrix

−

� �
� �
� �
� �

= � �
� �
� �
� �
� �

1

1
0 0

1
0 0 .

1
0 0

x

y

z

s

S
s

s

The product SS-1= S-1S=I, the 3 × 3 indentity matrix.

ROTATIONS
Rotations alter the orientation of an object: They are a

little more complex than scales. Starting in two dimensional

rotations is easiest.

Transformations in Computer Graphics

9

Rotations in Two Dimensions
A rotation moves a point along a circular path centered at

the origin (the pivot). It is a simple trigonometry problem to

show that rotating = []P x y counter-clockwise by θ radians

produces a new point ′ ′ ′= []P x y given by

′ = θ − θ

′ = θ + θ

cos sin

cos sin

x x y

y y x

For example, pretend P=[1, 1] and θ = π / 2 . Then ′ = −[11]P ,

which you should agree correctly matches the description.

Of course, we can express the rotation in matrix form

� �θ θ
� �

= − θ θ� �
� �
� �

cos sin 0

[' ' 1] [1] sin cos 0

0 0 0

x y x y

The Pivot of a Rotation
By default the pivot point is the origin o = [0 0 0], but we

can arrange for an arbitrary pivot = []p pP x y by using a three

step process similar to the one for scaling about an arbitrary

fixed point described about.

1. Translate = []p pP x y to = [00]O

2. Rotate by θ

3. Translate =0 [0 0] to = [].p pP x y

Rotations in Three Dimensions
In three dimensions points are rotated about an axis, which

is a line in three dimensional space. There are three principle

axes: the x, y, and z axes. We assume a right-handed

coordinate system, with the convention that positive rotation

is counter-clockwise.

Rotating = []P x y z about the z-axis by θ radians produces a new

point ′ ′ ′ ′= []P x y z where :

Transformations in Computer Graphics

10

′ = θ − θ

′ = θ + θ

′ =

cos sin

sin cos

x x y

y x y

z z

or in matrix notation

� �θ θ
� �

′ ′ ′ = − θ θ = =� �
� �
� �

cos sin 0

[] [] sin cos 0 [] [] .

0 0 0

z xyx y z x y z x y z R x y z R

The notations Rz and Rxy are meant to be mneumonics for

“rotate about z” and “rotate from x towards y.”

Rotating = []P x y z about the x-axis by θ radians produces a new

point ′ ′ ′ ′= []P x y z where :

′ =

′ = θ − θ

′ = θ + θ

cos sin

sin cos

x x

y y z

z y z

or in matrix notation

� �
� �

′ ′ ′ = = =� �
� �
� �

θ θ

− θ θ

1 0 0

0 cos sin

0 sin c

[] [] [] []

os

.x yzx y z x y z x y z R x y z R

Rotating = []P x y z about the y-axis by θ radians produces a new

point ′ ′ ′ ′= []P x y z where

′ = θ + θ

′ =

′ = − θ + θ

cos sin

sin c s o

x x z

y y

z x z

or in matrix notation

� �θ − θ
� �

′ ′ ′ = = =� �
� �θ θ� �

cos 1 sin

[] [] 0 1 0 [] [] .

sin 0 cos

y zxx y z x y z x y z R x y z R

Angles of rotation about the principle axes are called Euler

angles.

Transformations in Computer Graphics

11

Rotation About an Arbitrary Axis
Consider an axis through the origin determined by a unit

length direction vector = � �
�

x y zD d d d , (the completely arbitrary

case will be easily handled after translations are introduced).

We can arrange to rotate by theta radians about this axis

using a five step process.

1. Rotate = � �
�

x y zD d d d into the xz plane, call the result
′ ′ ′= � �
�

0x zD d d

2. Rotate ′ ′ ′= � �
�

0x zD d d into the z axis

3. Rotate about the z axis by θ radians

4. Invert the rotation of into ′ ′ ′= � �
�

0x zD d d the z axis

5. Invert the rotation of into = � �
�

x y zD d d d ′ ′ ′= � �
�

0 .x zD d d

This is messy and error -prone when using hand

calculation, however, if you carry it out, the result is:

()
()

()

� �+ θ − − θ − θ − θ + θ
� �
� �= − θ + θ + θ − − θ − θ
� �
� �− θ − θ − θ + θ + θ −� �

2 2

2 2

2 2

cos 1 (1 cos) sin (1 cos) sin

(1 cos) sin cos 1 (1 cos) sin .

(1 cos) sin (1 cos) sin cos 1

x x x y z z x y

x y z y y y z x

z x y y z x z z

d d d d d d d d

R d d d d d d d d

d d d d d d d d

 (1)

You should verify that this matrix reduces to rotations

about z, x, and y for appropriate choices of the direction

vector
�
D . Below, we’ll see that there are better ways to derive

this matrix.

The Inverse of a Rotation
The inverse of a rotation by θ radians can be created by –θ rotating

by radians, but this is not the best way to view it. Consider the trigonometic
identities:

−θ = θ

−θ = − θ

cos() cos

sin() sin

If you plug these into the arbitrary rotation from

equation (1), you’ll see that the inverse of R is the transpose

of R. This is an important observation.

Transformations in Computer Graphics

12

TRANSLATIONS
Translations change the position of an object. A pure (three

dimensional) translation can not be implemented using a 3×

matrix: It is an affine map. We must alter our notion of a

point P = [x y z] to accommodate translations. A three

dimensional point will be embedded in three dimensional

homogeneous space and represented as a 4-tuple Ph = [x y z w].

For now, the homogeneous coordinate w will have the fixed

value 1. This allows us to implement translations using 4 ×

4 matrices, in particular, the matrix

� �
� �
� �= � �
� �
� �� �

1 0 0 0

0 1 0 0

0 0 1 0

1x y z

T

t t t

translated the point = [1]hP x y z into the point

= + + +' [1]h x y zP x t y t z t .

 The Inverse of a Translation
To undo a translation by , ,x y zt t t use the matrix

−

� �
� �

= � �
� �− − −� �

1

1 0 0 0

0 1 0...... 0 1 0 .

1x y z

T

t t t

We can now complete scaling about an arbitrary fixed point

and rotation about an arbitrary pivot. To scale about

= []f f fF x y z use the composition of matrices

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
− − −� � � � � �� � � � � �

1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 0

1 0 0 0 1 1

x

y

z

f f f f f f

s

s

s

x y z x y z

which when multiplied out yields

Transformations in Computer Graphics

13

� �
� �
� �
� �
� �

− − −� �� �

0 0 0

0 0 0
.

0 0 0

(1) (1) (1) 1

x

y

z

f x f y f z

s

s

s

x s y s z s

So a scaled point [1]x y z becomes

� �
� �
� �′ ′ ′ = � �
� �

− − −� �� �

0 0 0

0 0 0
[1] [1]

0 0 0

(1) (1) (1) 1

x

y

z

f x f y f z

s

s
x y z x y z

s

x s y s z s

 (2)

= + − + − + −[(1) (1) (1)1]x f x y f y z f zxs x s ys y s zs z s (3)

In a similar manner you can determine that rotation about

a pivot = []r rR x y results in
′ = + − θ − − θ

′ = + − θ + − θ

()cos ()sin

()cos ()sin

r r r

r r r

x x x x y y

y y y y x x

EFFICIENCY OF MATRIX MULTIPLICATION
Now is a good time to mention the fact that it is more

efficient, in general, to form one composite transform than

to pass a sequence of points through one transform, then

another, and another, and so on.

Multiplying one point (a 4-tuple) by a transformation

(4 × 4 matrix) costs 16 multiplies and 12 additions. Therefore,

transforming an object with n vertices by one transform costs

16n multiplies and 12n additions.

On the other hand, multiplying two 4 × 4 matrices costs

64 multiplies and 48 additions. So compositing m 4 × 4

matrices together costs 64(m-1) multiplies and 48(m-1)

additions.

So consider the alternatives:

• Multiply n vertices through a sequence of m

transformations at a cost of 16n multiplies and

Transformations in Computer Graphics

14

12n adds per transform. The total cost will be 16

nm multiplies, 12nm additions.

• Form on composite matrix and pass n vertices

through it. The total cost will be 64 (m – 1) + 16n

multiplies, 48(m – 1) + 12n additions.

TRANSFORMATIONS
Objects defined in model space can be scaled, translated,

and rotated into world space and then viewed from any

position. The map from model to world to view is most often

concatenated into one single tranform so we map from a

model directly into view space without every stopping in the

world.

Next we map objects from view space into perspective

space. This involves projections: either parallel or perspective.

Note that we must stop in view space to compute the

illumination that lights bring to our view.

From perspective to clip space and from clip space through

normalized space to device space are fairly straight forward

scales and translations — we just need to be careful not to

introduce distortions by our scaling of the objects.

Non-linear Transforms
Here we want to describe perspective transforms. They

are non-linear, that is, lines do not map into lines.

Transformations in Computer Graphics

15

2

The Evolution of Computer
Graphics

CGI was first used in movies in 1973, in the science fiction

film, Westworld. The film was the story of a society in which

humans and robots were integrated, working and living

together. Its sequel, Futureworld (1976) featured the first use

of 3D wireframe imagery. The third film ever to use this

technology was Star Wars (1977), designing the Death Star

and the targeting computers in the X-wings and the

Millenium Falcon, Han Solo’s ship. Later on, The Black Hole

(1979) used raster wire-frame model rendering to create a

black hole onscreen. That same year, James Cameron’s Alien

used the raster wireframe model to render the image of

navigation monitors in the scene where the spaceship follows

a beacon for landing guidance.

Long before this, computer engineers at MIT and Cornell

were in the midst of creating the very basics that eventually

Transformations in Computer Graphics

16

enabled these filmmakers to utilize computer animation

technology. It all began in 1963.

1960s
• 1963: Ivan Sutherland presented his Ph.D.

dissertation, an interactive design on a vector graphics

display monitor with a light pen input device called

Sketchpad. This instance is often credited as the event

that marks the beginning of computer graphics.

• Jack Bresenham develops a system of drawing lines

and circles on a raster device, and Steve Coons

introduces parametric surfaces and computer-aided

geometric design concepts.

• Arthur Appel at IBM introduces hidden surface and

shadow algorithms.

• The fast Fourier transform was discovered by J. W.

Cooley and John Tukey, allowing computer engineers

to better understand signals to develop antialiasing

techniques.

• Doug Englebart develops the mouse at Xerox PARC.

• Evans & Sutherland Corps. and GE start building

flight simulators with raster graphics.

1970s
• Rendering and a reflection model were discovered and

developed by H. Gouraud and Bui Tuong Phong at

the University of Utah.

• Xerox PARC develops a “paint programme.”

• Edward Catmull introduces parametric patch

rendering, the z-buffer algorithm and texture

mapping.

Transformations in Computer Graphics

17

• Turner Whitted develops recursive ray tracing that

would become the standard for photorealism.

• Apple I and Apple II computers were the first commercially

successful options for personal computing.

• Arcade games Pong and Pac Man become popular.

1980s
• Microprocessors begin to take off but remain in early

stages of development.

• Loren Carpenter begins exploring fractals in computer

graphics.

• Adobe formed by John Warnock, who discovers

Postscript. Adobe markets Photoshop.

• Steve Cook introduces stochastic sampling.

• Character animation becomes a goal for animators.

• Video arcade games take off.

• C++, C, and MS-DOS programming gain popularity.

1990s
• Shaded raster graphics appear in films.

• Computers have 24-bit raster display and hardware

support for Gouraud shading.

• Laser printers and single-frame video recorders

become standard.

• Mosaic, the first graphical internet browser is created.

• Dynamical systems that allowed programmers to

animate collisions, friction and cause and effects are

introduced.

• Handheld computers are invented at Hewlett-Packard

and zip drives invented at Iomega.

• Nintendo 64 game console arrives on the market.

Transformations in Computer Graphics

18

• Linux and open source software emerges.

• Pixar is first studio to fully embrace an entirely

computer-generated film with Toy Story.

2000s
• Graphic software reaches a peak in quality and user

accessibility.

• PC displays support real-time texture mapping.

• Flatbed scanners, laser printers, digital video

cameras, etc., become commonplace.

• Programme language moves towards Java and C++.

• 3D modeling captures facial expressions, human face,

hair, water, and other elements formerly difficult to

render.

THE COMPUTER GRAPHICS PIPELINE

The process that goes into the production of a fully realised

3D movie character or environment is known by industry

professionals as the “computer graphics pipeline.” Even

though the process is quite complex from a technical

standpoint, it’s actually very easy to understand when

illustrated sequentially. Think of your favourite 3D movie

character.

It could be Wall-E or Buzz Lightyear, or maybe you were a

fan of Po in Kung Fu Panda. Even though these three

characters look very different, their basic production

sequence is the same.

In order to take an animated movie character from an idea

or storyboard drawing to a fully polished 3D rendering, the

character passes through six major phases:

Transformations in Computer Graphics

19

PRE-PRODUCTION
In pre-production, the overall look of a character or

environment is conceived. At the end of pre-production,

finalized design sheets will be sent to the modeling team to be

developed.

• Every Idea Counts: Dozens, or even hundreds of

drawings & paintings are created and reviewed on a

daily basis by the director, producers, and art leads.

• Colour Palette: A character’s colour scheme, or

palette, is developed in this phase, but usually not

finalized until later in the process.

• Concept Artists may work with digital sculptors to

produce preliminary digital mock-ups for promising

designs.

• Character Details are finalized, and special challenges

(like fur and cloth) are sent off to research and

development.

3D MODELLING
With the look of the character finalized, the project is now

passed into the hands of 3D modellers. The job of a modeller

is to take a two dimensional piece of concept art and translate

it into a 3D model that can be given to animators later on

down the road.

In today’s production pipelines, there are two major

techniques in the modeller’s toolset: polygonal modelling &

digital sculpting.

• Each has its own unique strengths and weaknesses,

and despite being vastly different, the two approaches

are quite complementary.

Transformations in Computer Graphics

20

• Sculpting lends itself more to organic (character)

models, while polygonal modelling is more suited for

mechanical/architectural models.

The subject of 3D modelling is far too extensive to cover in three

or four bullet points, but its something we’ll continue covering in

depth in both the blog, and in the Maya Training series.

SHADING AND TEXTURING
The next step in the visual effects pipeline is known as

shading and texturing. In this phase, materials, textures, and

colours are added to the 3D model.

• Every component of the model receives a different

shader-material to give it an appropriate look.

• Realistic materials: If the object is made of plastic, it

will be given a reflective, glossy shader. If it is made

of glass, the material will be partially transparent

and refract light like real-world glass.

• Textures and colours are added by either projecting

a two dimensional image onto the model, or by

painting directly on the surface of the model as if it

were a canvas. This is accomplished with special

software (like ZBrush) and a graphics tablet.

LIGHTING
In order for 3D scenes to come to life, digital lights must be

placed in the scene to illuminate models, exactly as lighting rigs

on a movie set would illuminate actors and actresses. This is

probably the second most technical phase of the production

pipeline (after rendering), but there’s still a good deal of artistry

involved.

Transformations in Computer Graphics

21

• Proper lighting must be realistic enough to be

believable, but dramatic enough to convey the

director’s intended mood.

• Mood Matters: Believe it or not, lighting specialists

have as much, or even more control than the texture

painters when it comes to a shot’s colour scheme,

mood, and overall atmosphere.

• Back-and-Forth: There is a great amount of

communication between lighting and texture artists.

The two departments work closely together to ensure

that materials and lights fit together properly, and that

shadows and reflections look as convincing as possible.

ANIMATION
Animation, as most of you already know, is the production

phase where artists breathe life and motion into their characters.

Animation technique for 3D films is quite different than

traditional hand drawn animation, sharing much more common

ground with stop-motion techniques:

• Rigged for Motion: 3D characters are controlled by

means of a virtual skeleton or “rig” that allows an

animator to control the model’s arms, legs, facial

expressions, and posture.

• Pose-to-Pose: Animation is typically completed pose-

to-pose. In other words, an animator will set a “key-

frame” for both the starting and finishing pose of an

action, and then tweak everything in between so that

the motion is fluid and properly timed.

Jump over to our computer animation companion site for

extensive coverage of the topic.

Transformations in Computer Graphics

22

RENDERING AND POST-PRODUCTION
The final production phase for a 3D scene is known as

rendering, which essentially refers to the translation of a 3D

scene to a finalized two dimensional image. Rendering is quite

technical, so we won’t spend too much time on it here. In

the rendering phase, all the computations that cannot be

done by your computer in real-time must be performed.

This includes, but is hardly limited to the following:

• Finalizing Lighting: Shadows and reflections must be

computed.

• Special Effects: This is typically when effects like

depth-of-field blurring, fog, smoke, and explosions

would be integrated into the scene.

• Post-processing: If brightness, colour, or contrast

needs to be tweaked, these changes would be

completed in an image manipulation software

following render time.

COMPARISON OF COLOUR MODELS

IN COMPUTER GRAPHICS

COLOUR BASICS

Transformations in Computer Graphics

23

PRIMARY COLORS AND HUE
First, “colour” refers to the human brain’s subjective

interpretation of combinations of a narrow band of

wavelengths of light. For this reason, the definition of “colour”

is not based on a strict set of physical phenomena. Therefore,

even basic concepts like “primary colours” are not clearly

defined.

For example, traditional “Painter’s Colours” use red, blue,

and yellow as the primary colours, “Printer’s Colours” use

cyan, yellow, and magenta, and “Light Colours” use red,

green, and blue.. “Light colours”, more formally known as

additive colours, are formed by combining red, green, and

blue light. This section refers to additive colours and refers

to red, green, and blue as the primary colours.

Hue is a term describing a pure colour, that is, a colour

not modified by tinting or shading. In additive colours, hues

are formed by combining two primary colours. When two

primary colours are combined in equal intensities, the result

is a “secondary colour”.

Colour Wheel
A colour wheel is a tool that provides a visual representation

of the relationships between all possible hues. The primary

colours are arranged around a circle at equal (120 degree)

intervals. (Warning: Colour wheels frequently depict “Painter’s

Colours” primary colours, which leads to a different set of

hues than additive colours.) The illustration shows a simple

colour wheel based on the additive colours.

Note that the position (top, right) of the starting colour,

typically red, is arbitrary, as is the order of green and blue

(clockwise, counter-clockwise). The illustration also shows

Transformations in Computer Graphics

24

the secondary colours, yellow, cyan, and magenta, located

half-way between (60 degrees) the primary colours.

Complementary Colour
The complement of a hue is the hue that is opposite it

(180 degrees) on the colour wheel. Using additive colours,

mixing a hue and its complement in equal amounts produces

white.

Tints, Shades
An illustration involving three projectors pointing to the

same spot on a screen. Each projector is capable of generating

one hue. The “intensities” of each projector are “matched”

and can be equally adjusted from zero to full. (Note: “Intensity”

is used here in the same sense as the RGB colour model.

The subject of matching, or “gamma correction”, is beyond

the level of this article.)

A shade is produced by “dimming” a hue. Painters refer to

this as “adding black”. In our illustration, one project is set

to full intensity, a second is set to some intensity between

zero and full, and third is set to zero. “Dimming” is

accomplished by decreasing each projector’s intensity setting

to the same fraction of its start setting.

In the shade example, with any fully shaded hue, that all

three projectors are set to zero intensity, resulting in black.

A tint is produced by “lightening” a hue. Painters refer to

this as “adding white”. In our illustration, one project is set

to full intensity, a second is set to some intensity between

zero and full, and third is set to zero. “Lightening” is

accomplished by increasing each projector’s intensity setting

by the same fraction from its start setting to full.

Transformations in Computer Graphics

25

In the tinting example, note that the third projector is now

contributing. When the hue is fully lightened, all three

projectors are each at full intensity, and the result is white.

Note an attribute of the total intensity in the additive model.

If full intensity for one projector is 1, then a primary colour

has a combined intensity of 1. A secondary colour has a

total intensity of 2. White has a total intensity of 3. Tinting,

or “adding white”, increases the total intensity of the hue.

While this is simply a fact, the HSL model will take this fact

into account in its design.

Tones
Tone is a general term, typically used by painters, to refer

to the effects of reducing the “colourfulness” of a hue. ;

painters refer to it as “adding gray”. Note that gray is not a

colour or even a single concept but refers to all the range of

values between black and white where all three primary

colours are equally represented. The general term is provided

as more specific terms have conflicting definitions in different

colour models. Thus, shading takes a hue towards black,

tinting takes a hue towards white, and tones cover the range

between.

Choosing a Colour Model
No one colour model is necessarily “better” than another.

Typically, the choice of a colour model is dictated by external

factors, such as a graphics tool or the need to specify colours

according to the CSS2 or CSS3 standard. The models

function, centred on the concepts of hue, shade, tint, and

tone.

Transformations in Computer Graphics

26

RGB
The RGB model’s approach to colours is important because:

• It directly reflects the physical properties of

“Truecolour” displays.

• As of 2011, most graphics tools support it, even if

they prefer another colour model.

• It is the only means of specifying a specific colour

in the CSS2 standard for Web pages.

In the model, a colour is described by specifying the

intensity levels of the colours red, green, and blue. The typical

range of intensity values for each colour, 0 - 255, is based on

taking a binary number with 32 bits and breaking it up into

four bytes of 8 bits each. 8 bits can hold a value from 0 to

255. The fourth byte is used to specify the “alpha”, or the

opacity, of the colour. Opacity comes into play when layers

with different colours are stacked. If the colour in the top

layer is less than fully opaque (alpha < 255), the colour from

underlying layers “shows through”.

In the RGB model, hues are represented by specifying one

colour as full intensity (255), a second colour with a variable

intensity, and the third colour with no intensity (0).

The following provides some examples using red as the full-

intensity and green as the partial-intensity colours; blue is

always zero:
Red Green Result
255 0 Red (255, 0, 0)
255 128 Orange (255, 128, 0)
255 255 Yellow (255, 255, 0)

Shades are created by multiplying the intensity of each

primary colour by 1 minus the shade factor, in the range 0

to 1.

Transformations in Computer Graphics

27

A shade factor of 0 does nothing to the hue, a shade factor

of 1 produces black:
new intensity = current intensity * (1 - shade factor)

The following provides examples using orange:
0 .25 .5 .75 1.0
(255, 128, 0) (192, 96, 0) (128, 64, 0) (64, 32, 0) (0, 0, 0)

Tints are created by modifying each primary colour as

follows: the intensity is increased so that the difference

between the intensity and full intensity (255) is decreased

by the tint factor, in the range 0 to 1.

A tint factor of 0 does nothing, a tint factor of 1 produces

white:
new intensity = current intensity + (255 - current intensity)
* tint factor

The following provides examples using orange:
0 .25 .5 .75 1.0

(255, 128, 0) (255, 160, 64) (255, 192, 128) (255, 224, 192) (255, 255, 255)

Tones are created by applying both a shade and a tint.

The order in which the two operations are performed does

not matter, with the following restriction: when a tint

operation is performed on a shade, the intensity of the

dominant colour becomes the “full intensity”; that is, the

intensity value of the dominant colour must be used in place

of 255.

The following provides examples using orange:
0 .25 .5 .75 1.0

0 (255, 128, 0) (192, 96, 0) (128, 64, 0) (64, 32, 0) (0, 0, 0)

.25 (255, 160, 64) (192, 144, 96) (128, 80, 32) (64, 40, 16) (0, 0, 0)

.5 (255, 192, 128) (192, 144, 96) (128, 96, 64) (64, 48, 32) (0, 0, 0)

.75 (255, 240, 192) (192, 168, 144) (128, 112, 96) (64, 56, 48) (0, 0, 0)

1.0 (255, 255, 255) (192, 192, 192) (128, 128, 128) (64, 64, 64) (0, 0, 0)

HSV
The HSV, or HSB, model describes colours in terms of hue,

saturation, and value (brightness). Note that the range of

Transformations in Computer Graphics

28

values for each attribute is arbitrarily defined by various tools

or standards. Be sure to determine the value ranges before

attempting to interpret a value.

Hue corresponds directly to the concept of hue in the

Colour Basics section. The advantages of using hue are

• The angular relationship between tones around the

colour circle is easily identified.

• Shades, tints, and tones can be generated easily

without affecting the hue.

Saturation corresponds directly to the concept of tint in

the Colour Basics section, except that full saturation

produces no tint, while zero saturation produces white, a

shade of gray, or black.

Value corresponds directly to the concept of intensity in

the Colour Basics section.

• Pure colours are produced by specifying a hue with

full saturation and value.

• Shades are produced by specifying a hue with full

saturation and less than full value.

• Tints are produced by specifying a hue with less

than full saturation and full value.

• Tones are produced by specifying a hue and both

less than full saturation and value.

• White is produced by specifying zero saturation and

full value, regardless of hue.

• Black is produced by specifying zero value,

regardless of hue or saturation.

• Shades of gray are produced by specifying zero

saturation and between zero and full value.

Transformations in Computer Graphics

29

The advantage of HSV is that each of its attributes

corresponds directly to the basic colour concepts, which

makes it conceptually simple.

The perceived disadvantage of HSV is that the saturation

attribute corresponds to tinting, so desaturated colours have

increasing total intensity. For this reason, the CSS3 standard

plans to support RGB and HSL but not HSV.

HSL
The HSL model describes colours in terms of hue,

saturation, and lightness (also called luminance). (Note: the

definition of saturation in HSL is substantially different from

HSV, and lightness is not intensity.)

• The transition from black to a hue to white is

symmetric and is controlled solely by increasing

lightness.

• Decreasing saturation transitions to a shade of gray

dependent on the lightness, thus keeping the overall

intensity relatively constant.

The properties have led to the wide use of HSL, in particular,

in the CSS3 colour model.

As in HSV, hue corresponds directly to the concept of hue

in the Colour Basics section. The advantages of using hue

are

• The angular relationship between tones around the

colour circle is easily identified.

• Shades, tints, and tones can be generated easily

without affecting the hue.

Lightness combines the concepts of shading and tinting

from the Colour Basics section. Assuming full saturation,

lightness is neutral at the midpoint value, for example 50%,

Transformations in Computer Graphics

30

and the hue displays unaltered. The midpoint, it has the

effect of shading. Zero lightness produces black. As the value

increases above 50%, it has the effect of tinting, and full

lightness produces white.

At zero saturation, lightness controls the resulting shade

of gray. A value of zero still produces black, and full lightness

still produces white. The midpoint value results in the

“middle” shade of gray, with an RGB value of.

Saturation, or the lack of it, produces tones of the reference

hue that converge on the zero-saturation shade of gray, which

is determined by the lightness. The following examples uses

the hues red, orange, and yellow at midpoint lightness with

decreasing saturation. The resulting RGB value and the total

intensity is shown.

1.0 .75 .5 .25 0

(255, 0, 0), 256 (224, 32, 32), 288 (192, 64, 64), 320 (160, 96, 96), 352 (128, 128, 128), 384

(255, 128, 0), 384 (224, 128, 32), 384 (192, 128, 64), 384 (160, 128, 96), 384 (128, 128, 128), 384

(255, 255, 0), 512 (224, 224, 32), 480 (192, 192, 64), 448 (160, 160, 96), 416 (128, 128, 128), 384

Note that the physical nature of additive colour prevents

the scheme from working exactly except for hues halfway

between the primary and secondary colours. However, the

total intensity of the tones resulting from decreasing

saturation are much closer than tinting alone, as in HSV.

Transformations in Computer Graphics

31

3

Graphics System Device

Let us consider the organization of a typical graphics

system we might use. As our initial emphasis will be on how

the applications programmer sees the system, we shall omit

details of the hardware.

The model is general enough to include workstations,

personal computers, terminals attached to a central time-

shared computer, and sophisticated image-generation

systems. In most ways, this block diagram is that of a

standard computer. How each element is specialized for

computer graphics will characterize this diagram as one of a

graphics system, rather than one of a general-purpose

computer.

THE PROCESSOR
Within the processor box, two types of processing take

place. The first is picture formation processing. In this stage,

the user programme or commands are processed. The picture

Transformations in Computer Graphics

32

is formed from the elements (lines, text) available in the

system using the desired attributes. Such as line colour and

text font. The user interface is a part of this processing. The

picture can be specified in a number of ways, such as through

an interactive menu-controlled painting programme or via a

C programme using a graphics library. The physical processor

used in this stage is often the processor in the workstation

or host computer.

Fig. The Graphic System

The second kind of processing is concerned with the display

of the picture. In a raster system, the specified primitives

must be scan converted. The screen must be refreshed to

avoid flicker. Input from the user might require objects to be

repositioned on the display. The kind of processor best suited

for these jobs is not the standard type of processor found in

most computers. Instead, special boards and chips are often

used. As we have already noted, one of the elements that

distinguishes real-time graphics systems is their use of

display processors. Since we have agreed to stay at the block-

diagram level for now, however, we shall not explore these

architectures in any detail until later.

Transformations in Computer Graphics

33

MEMORY
There are often two distinct types of memory employed in

graphics systems. For the processing of the user programme,

the memory is similar to that of a standard computer, as the

picture is formed by a standard type of arithmetic processing.

Display processing, however, requires high-speed display

memory that can be accessed by the display processor, and,

in raster systems, memory for the frame buffer. This display

memory usually is different in both its physical

characteristics and its organization from what is used by

the picture processor.

At this point, we need not consider details of how memory

can be organized. You should be aware that the way the

internals of our processor and memory boxes are organized

distinguishes a slow system from a real-time picture-

generating system, such as a flight simulator. However, from

our present perspective, we shall emphasize that all

implementations have to do the same kinds of tasks to

produce output.

OUTPUT DEVICES
Our basic system has one or more output devices. As raster

displays are the dominant type, we shall assume there is a

raster-scan CRT on our system. We shall consider the frame

buffer to be part of the display memory. In a self-contained

system such as a workstation, the display is an integral part

of the system, so the transfer of information from the

processor to the display will happen rapidly. When the display

is separate, such as with a graphics terminal, the speed of

the connection is much slower. Terminals with raster displays

usually must have their own frame buffers, so the displays

Transformations in Computer Graphics

34

can be refreshed locally. In our simple system, we might

also have other displays, such as a plotter, to allow us to

produce hardcopy.

INPUT DEVICES
A simple system may have only a keyboard to provide

whatever input is necessary. Keyboards provide digital codes

corresponding to sequences of keystrokes by a user. These

sequences are usually interpreted as codes for characters. If

individual keystrokes or groups of keystrokes are interpreted

as graphical input, the keyborad can be used as a complex

input device. For example, the “arrow” keys available on most

keyboards can be used to direct the movement of a cursor

on the screen. Most graphics systems will provide at least

one other input device. The most common are the mouse,

the lightpen, the joystick, and the data tablet. Each can

provide positional information to the system and each usually

is equipped with one or more buttons to provide signals to

the processor. From the programmer’s perspective, there

are numerous important issues with regard to the input and

output devices. We must consider how the programme can

communicate with these devices. We must decide what kinds

of input and output can be produced. We will be interested

in how to control multiple devices, so that we can choose a

particular device for our input, and can direct our output to

some group of the available output devices.

SOFTWARE THAT CREATES GRAPHIC
ORGANIZERS

You probably have a lot of software on programmes on the

computer that you use that can create Graphic Organizers.

Transformations in Computer Graphics

35

These include the Office Productivity Suite applications

(Word Processing, Spreadsheet, and Presentation Programs).

If you use Microsoft(TM) Windows, you probably have a low

end drawing programme called, “Paint.” All these programmes

can create Graphics Organizers.

If you do not have this Office Suite, we have included an

Open Source (Free) Office Suite called “Open Office.” This

programme is free to use and to share with others. Open

Office applications also can save your Graphic Organizer files

in the PDF file format. If you save Graphic Organizer files in

the PDF format, you can share them with everyone, and the

file will print exactly as you created it.

OPEN OFFICE (OPEN SOURCE)
The catch with sharing Graphic Organizers that are saved

in the PDF file format is that you cannot make changes to

them without expensive software. However, the viewer

programme that opens and prints the files is free and most

people who connect to the Internet have the Acrobat Reader

programme. We have included the latest version to save you

from having to download it from the Internet.

SOFTWARE THAT IS A GRAPHIC ORGANIZER
There are a lot of software products on the market that

are Graphic Organizers.

The majority of these products call themselves, “Mind

Mapping” software.

The competition in this market is very strong, so all vendors

seem to offer free trials of their products. It is possible that a

teacher could use a different trial version of these products

each month, and never purchase a copy.

Transformations in Computer Graphics

36

The only catch is that the formats of the various products

are proprietary. This means that you cannot open the files

you create with another company’s product.

Inspiration(TM) and Kidspiration(TM) are products that fall

into this category, and these products are often available in

school districts. Inspiration and Kidspiration are easy to use,

but low-end products.

APPLICATIONS OF COMPUTER GRAPHICS

Computers have become a powerful tool for the rapid and

economical production of pictures. Advances in computer

technology have made interactive computer graphics a

practical tool. Today, computer graphics is used in the areas

as science, engineering, medicine, business, industry,

government, art, entertainment, advertising, education, and

training.

COMPUTER AIDED DESIGN
A major use of computer graphics is in design processes,

particularly for engineering and architectural systems. For

some design applications; objects are first displayed in a

wireframe outline form that shows the overall sham and

internal features of objects.

Software packages for CAD applications typically provide

the designer with a multi-window environment. Each window

can show enlarged sections or different views of objects.

Standard shapes for electrical, electronic, and logic circuits

are often supplied by the design package. The connections

between the components have been mad automatically.

• Animations are often used in CAD applications.

Transformations in Computer Graphics

37

• Real-time animations using wire frame displays are

useful for testing performance of a vehicle.

• Wire frame models allow the designer to see the

interior parts of the vehicle during motion.

• When object designs are complete, realistic lighting

models and surface rendering are applied.

• Manufacturing process of object can also be

controlled through CAD.

• Interactive graphics methods are used to layout the

buildings.

• Three-dimensional interior layouts and lighting also

provided.

• With virtual-reality systems, the designers can go for

a simulated walk inside the building.

Presentation Graphics
• It is used to produce illustrations for reports or to

generate slide for with projections.

• Examples of presentation graphics are bar charts,

line graphs, surface graphs, pie charts and displays

showing relationships between parameters.

• 3-D graphics can provide more attraction to the

presentation.

Computer Art
• Computer graphics methods are widely used in both

fine are and commercial art applications.

• The artist uses a combination of 3D modelling

packages, texture mapping, drawing programmes and

CAD software.

Transformations in Computer Graphics

38

• Pen plotter with specially designed software can

create “automatic art”.

• “Mathematical Art” can be produced using

mathematical functions, fractal procedures.

• These methods are also applied in commercial art.

• Photorealistic techniques are used to render images

of a product.

• Animations are also used frequently in advertising,

and television commercials are produced frame by

frame. Film animations require 24 frames for each

second in the animation sequence.

• A common graphics method employed in many

commercials is morphing, where one object is

transformed into another.

Entertainment
• CG methods are now commonly used in making

motion pictures, music videos and television shows.

• Many TV series regularly employ computer graphics

method.

• Graphics objects can be combined with a live action.

Education and Training
• Computer-generated models of physical, financial and

economic systems are often used as educational aids.

• For some training applications, special systems are

designed.

Eg. Training of ship captains, aircraft pilots etc.

• Some simulators have no video screens, but most

simulators provide graphics screen for visual operation.

Some of them provide only the control panel.

Transformations in Computer Graphics

39

Visualization
• The numerical and scientific data are converted to a

visual form for analysis and to study the behaviour

called visualization.

• Producing graphical representation for scientific data

sets are calls scientific visualization.

• And business visualization is used to represent the

data sets related to commerce and industry.

• The visualization can be either 2D or 3D.

Image Processing
• Computer graphics is used to create a picture.

• Image processing applies techniques to modify or

interpret existing pictures.

• To apply image processing methods, the image must

be digitized first.

• Medical applications also make extensive use of

image processing techniques for picture

enhancements, simulations of operations, etc.

Graphical User Interface
• Nowadays software packages provide graphics user

interface (GUI) for the user to work easily.

• A major component in GUI is a window.

• Multiple windows can be opened at a time.

• To activate any one of the window, the user needs

just to check on that window.

• Menus and icons are used for fast selection of

processing operations.

• Icons are used as shortcut to perform functions. The

advantages of icons are which takes less screen space.

Transformations in Computer Graphics

40

• And some other interfaces like text box, buttons, and

list are also used.

GRAPHICS PIPELINE PERFORMANCE

Over the past few years, the hardware-accelerated

rendering pipeline has rapidly increased in complexity,

bringing with it increasingly intricate and potentially

confusing performance characteristics.

Improving performance used to mean simply reducing the

CPU cycles of the inner loops in your renderer; now it has

become a cycle of determining bottlenecks and systematically

attacking them. This loop of identification and optimization

is fundamental to tuning a heterogeneous multiprocessor

system; the driving idea is that a pipeline, by definition, is

only as fast as its slowest stage. Thus, while premature and

unfocused optimization in a single-processor system can lead

to only minimal performance gains, in a multiprocessor

system such optimization very often leads to zero gains.

Working hard on graphics optimization and seeing zero

performance improvement is no fun. The goal of this chapter

is to keep you from doing exactly that.

THE PIPELINE
The pipeline, at the very highest level, can be broken into

two parts: the CPU and the GPU. Although CPU optimization

is a critical part of optimizing your application, it will not be

the focus of this chapter, because much of this optimization

has little to do with the graphics pipeline.

The GPU, there are a number of functional units operating

in parallel, which essentially act as separate special-purpose

Transformations in Computer Graphics

41

processors, and a number of spots where a bottleneck can

occur. These include vertex and index fetching, vertex shading

(transform and lighting, or T&L), fragment shading, and raster

operations (ROP).

Methodology
Optimization without proper bottleneck identification is

the cause of much wasted development effort, and so we

formalize the process into the following fundamental

identification and optimization loop:

1. Identify the bottleneck. For each stage in the pipeline,

vary either its workload or its computational ability

(that is, clock speed). If performance varies, you’ve

found a bottleneck.

2. Optimize. Given the bottlenecked stage, reduce its

workload until performance stops improving or until

you achieve your desired level of performance.

3. Repeat. Do steps 1 and 2 again until the desired

performance level is reached.

LOCATING THE BOTTLENECK
Locating the bottleneck is half the battle in optimization,

because it enables you to make intelligent decisions about

focusing your actual optimization efforts. A flow chart

depicting the series of steps required to locate the precise

bottleneck in your application. Note that we start at the back

end of the pipeline, with the frame-buffer operations (also

called raster operations) and end at the CPU. Note also that

while any single primitive (usually a triangle), by definition,

has a single bottleneck, over the course of a frame the

bottleneck most likely changes. Thus, modifying the workload

Transformations in Computer Graphics

42

on more than one stage in the pipeline often influences

performance. For example, a low-polygon skybox is often

bound by fragment shading or frame-buffer access; a skinned

mesh that maps to only a few pixels on screen is often bound

by CPU or vertex processing. For this reason, it frequently

helps to vary workloads on an object-by-object, or material-

by-material, basis.

Fig. Bottleneck Flowchart

For each pipeline stage, we also mention the GPU clock to

which it’s tied (that is, core or memory). This information is

useful in conjunction with tools such as PowerStrip (EnTech

Taiwan 2003), which allows you to reduce the relevant clock

speed and observe performance changes in your application.

Raster Operations
The very back end of the pipeline, raster operations (often

called the ROP), is responsible for reading and writing depth

and stencil, doing the depth and stencil comparisons, reading

and writing colour, and doing alpha blending and testing. As

you can see, much of the ROP workload taxes the available

frame-buffer bandwidth. The best way to test if your

Transformations in Computer Graphics

43

application is frame-buffer-bandwidth bound is to vary the

bit depths of the colour or the depth buffers, or both. If

reducing your bit depth from 32-bit to 16-bit significantly

improves your performance, then you are definitely frame-

buffer-bandwidth bound.

Frame-buffer bandwidth is a function of GPU memory

clock, so modifying memory clocks is another technique for

helping to identify this bottleneck.

Texture Bandwidth
Texture bandwidth is consumed any time a texture fetch

request goes out to memory. Although modern GPUs have

texture caches designed to minimize extraneous memory

requests, they obviously still occur and consume a fair

amount of memory bandwidth.

Modifying texture formats can be trickier than modifying

frame-buffer formats as we did when inspecting the ROP;

instead, we recommend changing the effective texture size

by using a large amount of positive mipmap level-of-detail

(LOD) bias. This makes texture fetches access very coarse

levels of the mipmap pyramid, which effectively reduces the

texture size. If this modification causes performance to

improve significantly, you are bound by texture bandwidth.

Texture bandwidth is also a function of GPU memory clock.

Fragment Shading
Fragment shading refers to the actual cost of generating a

fragment, with associated colour and depth values. This is

the cost of running the “pixel shader” or “fragment shader.”

Note that fragment shading and frame-buffer bandwidth are

Transformations in Computer Graphics

44

often lumped together under the heading fill rate, because

both are a function of screen resolution. However, they are

two distinct stages in the pipeline, and being able to tell the

difference between the two is critical to effective optimization.

Before the advent of highly programmable fragment-

processing GPUs, it was rare to be bound by fragment

shading. It was often frame-buffer bandwidth that caused

the inevitable correlation between screen resolution and

performance. This pendulum is now starting to swing towards

fragment shading, however, as the newfound flexibility

enables developers to spend oodles of cycles making fancy

pixels.

The first step in determining if fragment shading is the

bottleneck is simply to change the resolution. Because we’ve

already ruled out frame-buffer bandwidth by trying different

frame-buffer bit depths, if adjusting resolution causes

performance to change, the culprit is most likely fragment

shading. A supplementary approach would be to modify the

length of your fragment programmes and see if this influences

performance. But be careful not to add instructions that

can easily be optimized away by a clever device driver.

Fragment-shading speed is a function of the GPU core

clock.

Vertex Processing
The vertex transformation stage of the rendering pipeline

is responsible for taking an input set of vertex attributes

(such as model-space positions, vertex normals, texture

coordinates, and so on) and producing a set of attributes

suitable for clipping and rasterization (such as homogeneous

clip-space position, vertex lighting results, texture

Transformations in Computer Graphics

45

coordinates, and more). Naturally, performance in this stage

is a function of the work done per vertex, along with the

number of vertices being processed.

With programmable transformations, determining if vertex

processing is your bottleneck is a simple matter of changing

the length of your vertex programme. If performance changes,

you are vertex-processing bound. If you’re adding

instructions, be careful to add ones that actually do

meaningful work; otherwise, the instructions may be

optimized away by the compiler or the driver. For example,

no-ops that refer to constant registers (such as adding a

constant register that has a value of zero) often cannot be

optimized away because the driver usually doesn’t know the

value of a constant at programme-compile time.

If you’re using fixed-function transformations, it’s a little

trickier. Try modifying the load by changing vertex work such

as specular lighting or texture-coordinate generation state.

Vertex processing speed is a function of the GPU core clock.

Vertex and Index Transfer
Vertices and indices are fetched by the GPU as the first

step in the GPU part of the pipeline. The performance of

vertex and index fetching can vary depending on where the

actual vertices and indices are placed. They are usually either

in system memory—which means they will be transferred to

the GPU over a bus such as AGP or PCI Express—or in local

frame-buffer memory. Often, on PC platforms especially, this

decision is left up to the device driver instead of the

application, although modern graphics APIs allow

applications to provide usage hints to help the driver choose

the correct memory type.

Transformations in Computer Graphics

46

Determining if vertex or index fetching is a bottleneck in

your application entails modifying the vertex format size.

Vertex and index fetching performance is a function of the

AGP/PCI Express rate if the data is placed in system memory;

it’s a function of the memory clock if data is placed in local

frame-buffer memory. If none of these tests influences your

performance significantly, you are primarily CPU bound. You

may verify this fact by underclocking your CPU: if

performance varies proportionally, you are CPU bound.

OPTIMIZATION
Now that we have identified the bottleneck, we must

optimize that particular stage to improve application

performance. The following tips are categorized by offending

stage.

Optimizing on the CPU
Many applications are CPU bound—sometimes for good

reason, such as complex physics or AI, and sometimes

because of poor batching or resource management. If you’ve

found that your application is CPU bound, try the following

suggestions to reduce CPU work in the rendering pipeline.

Reduce Resource Locking
Anytime you perform a synchronous operation that

demands access to a GPU resource, there is the potential to

massively stall the GPU pipeline, which costs both CPU and

GPU cycles. CPU cycles are wasted because the CPU must

sit and spin in a loop, waiting for the (very deep) GPU pipeline

to idle and return the requested resource. GPU cycles are

then wasted as the pipeline sits idle and has to refill.

Transformations in Computer Graphics

47

This locking can occur anytime you

• Lock or read from a surface you were previously

rendering to

• Write to a surface the GPU is reading from, such as

a texture or a vertex buffer.

In general, you should avoid accessing a resource the GPU

is using during rendering.

Maximize Batch Size
We can also call this tip “Minimize the Number of Batches.”

A batch is a group of primitives rendered with a single API

rendering call (for example, DrawIndexedPrimitive in DirectX

9).

The size of a batch is the number of primitives it contains.

As a wise man once said, “Batch, Batch, Batch!”. Every API

function call to draw geometry has an associated CPU cost,

so maximizing the number of triangles submitted with every

draw call will minimize the CPU work done for a given number

of triangles rendered.

Some tips to maximize the size of your batches:

• If using triangle strips, use degenerate triangles to

stitch together disjoint strips. This will enable you

to send multiple strips, provided that they share

material, in a single draw call.

• Use texture pages. Batches are frequently broken

when different objects use different textures. By

arranging many textures into a single 2D texture and

setting your texture coordinates appropriately, you

can send geometry that uses multiple textures in a

single draw call. Note that this technique can have

Transformations in Computer Graphics

48

issues with mipmapping and antialiasing. One

technique that sidesteps many of these issues is to

pack individual 2D textures into each face of a cube

map.

• Use GPU shader branching to increase batch size.

Modern GPUs have flexible vertex- and fragment-

processing pipelines that allow for branching inside

the shader. For example, if two batches are separate

because one requires a four-bone skinning vertex

shader and the other requires a two-bone skinning

vertex shader, you could instead write a vertex shader

that loops over the number of bones required,

accumulating blending weights, and then breaks out

of the loop when the weights sum to one. This way,

the two batches could be combined into one. On

architectures that don’t support shader branching,

similar functionality can be implemented, at the cost

of shader cycles, by using a four-bone vertex shader

on everything and simply zeroing out the bone

weights on vertices that have fewer than four bone

influences.

• Use the vertex shader constant memory as a lookup

table of matrices. Often batches get broken when

many small objects share all material properties but

differ only in matrix state (for example, a forest of

similar trees, or a particle system). In these cases,

you can load n of the differing matrices into the

vertex shader constant memory and store indices into

the constant memory in the vertex format for each

object. Then you would use this index to look up

Transformations in Computer Graphics

49

into the constant memory in the vertex shader and

use the correct transformation matrix, thus rendering

n objects at once.

• Defer decisions as far down in the pipeline as

possible. It’s faster to use the alpha channel of your

texture as a gloss factor, rather than break the batch

to set a pixel shader constant for glossiness.

Similarly, putting shading data in your textures and

vertices can allow for larger batch submissions.

Reducing the Cost of Vertex Transfer
Vertex transfer is rarely the bottleneck in an application,

but it’s certainly not impossible for it to happen.

If the transfer of vertices or, less likely, indices is the

bottleneck in your application, try the following:

• Use the fewest possible bytes in your vertex format.

Don’t use floats for everything if bytes would suffice

(for colours, for example).

• Generate potentially derivable vertex attributes inside

the vertex programme instead of storing them inside

the input vertex format. For example, there’s often

no need to store a tangent, binormal, and normal:

given any two, the third can be derived using a

simple cross product in the vertex programme. This

technique trades vertex-processing speed for vertex

transfer rate.

• Use 16-bit indices instead of 32-bit indices. 16-bit

indices are cheaper to fetch, are cheaper to move

around, and take less memory.

• Access vertex data in a relatively sequential manner.

Modern GPUs cache memory accesses when fetching

Transformations in Computer Graphics

50

vertices. As in any memory hierarchy, spatial locality

of reference helps maximize hits in the cache, thus

reducing bandwidth requirements.

Optimizing Vertex Processing
Vertex processing is rarely the bottleneck on modern GPUs,

but it may occur, depending on your usage patterns and

target hardware.

Try these suggestions if you’re finding that vertex processing

is the bottleneck in your application:

• Optimize for the post-T&L vertex cache. Modern

GPUs have a small first-in, first-out (FIFO) cache that

stores the result of the most recently transformed

vertices; a hit in this cache saves all transform and

lighting work, along with all work done earlier in the

pipeline. To take advantage of this cache, you must

use indexed primitives, and you must order your

vertices to maximize locality of reference over the

mesh. There are tools available—including D3DX and

NVTriStrip (NVIDIA 2003)—that can help you with

this task.

• Reduce the number of vertices processed. This is

rarely the fundamental issue, but using a simple

level-of-detail scheme, such as a set of static LODs,

certainly helps reduce vertex-processing load.

• Use vertex-processing LOD. Along with using LODs

for the number of vertices processed, try LODing the

vertex computations themselves. For example, it is

likely unnecessary to do full four-bone skinning on

distant characters, and you can probably get away

Transformations in Computer Graphics

51

with cheaper approximations for the lighting. If your

material is multipassed, reducing the number of

passes for lower LODs in the distance will also reduce

vertex-processing cost.

• Pull out per-object computations onto the CPU.

Often, a calculation that changes once per object or

per frame is done in the vertex shader for

convenience. For example, transforming a directional

light vector to eye space is sometimes done in the

vertex shader, although the result of the computation

changes only once per frame.

• Use the correct coordinate space. Frequently, choice

of coordinate space affects the number of instructions

required to compute a value in the vertex programme.

For example, when doing vertex lighting, if your

vertex normals are stored in object space and the

light vector is stored in eye space, then you will have

to transform one of the two vectors in the vertex

shader. If the light vector was instead transformed

into object space once per object on the CPU, no

per-vertex transformation would be necessary, saving

GPU vertex instructions.

• Use vertex branching to “early-out” of computations.

If you are looping over a number of lights in the

vertex shader and doing normal, low-dynamic-range,

[0..1] lighting, you can check for saturation to 1—or

if you’re facing away from the light—and then break

out of further computations. A similar optimization

can occur with skinning, where you can break when

your weights sum to 1 (and therefore all subsequent

Transformations in Computer Graphics

52

weights would be 0). Note that this depends on how

the GPU implements vertex branching, and it isn’t

guaranteed to improve performance on all

architectures.

Speeding Up Fragment Shading
If you’re using long and complex fragment shaders, it is

often likely that you’re fragment-shading bound. If so, try these

suggestions:

• Render depth first. Rendering a depth-only (no-

colour) pass before rendering your primary shading

passes can dramatically boost performance, especially

in scenes with high depth complexity, by reducing

the amount of fragment shading and frame-buffer

memory access that needs to be performed. To get

the full benefits of a depth-only pass, it’s not

sufficient to just disable colour writes to the frame

buffer; you should also disable all shading on

fragments, even shading that affects depth as well

as colour (such as alpha test).

• Help early-z optimizations throw away fragment

processing. Modern GPUs have silicon designed to

avoid shading occluded fragments, but these

optimizations rely on knowledge of the scene up to

the current point; they can be improved dramatically

by rendering in a roughly front-to-back order. Also,

laying down depth first in a separate pass can help

substantially speed up subsequent passes (where all

the expensive shading is done) by effectively reducing

their shaded-depth complexity to 1.

Transformations in Computer Graphics

53

• Store complex functions in textures. Textures can

be enormously useful as lookup tables, and their

results are filtered for free. The canonical example

here is a normalization cube map, which allows you

to normalize an arbitrary vector at high precision

for the cost of a single texture lookup.

• Move per-fragment work to the vertex shader. Just

as per-object work in the vertex shader should be

moved to the CPU instead, per-vertex computations

(along with computations that can be correctly

linearly interpolated in screen space) should be

moved to the vertex shader. Common examples

include computing vectors and transforming vectors

between coordinate systems.

• Use the lowest precision necessary. APIs such as

DirectX 9 allow you to specify precision hints in

fragment shader code for quantities or calculations

that can work with reduced precision. Many GPUs

can take advantage of these hints to reduce internal

precision and improve performance.

• Avoid excessive normalization. A common mistake

is to get “normalization-happy”: normalizing every

single vector every step of the way when performing

a calculation. Recognize which transformations

preserve length (such as transformations by an

orthonourmal basis) and which computations do not

depend on vector length (such as cube-map lookups).

• Consider using fragment shader level of detail.

Although it offers less bang for the buck than vertex

LOD (simply because objects in the distance naturally

Transformations in Computer Graphics

54

LOD themselves with respect to pixel processing, due

to perspective), reducing the complexity of the

shaders in the distance, and decreasing the number

of passes over a surface, can lessen the fragment-

processing workload.

• Disable trilinear filtering where unnecessary. Trilinear

filtering, even when not consuming extra texture

bandwidth, costs extra cycles to compute in the

fragment shader on most modern GPU architectures.

On textures where mip-level transitions are not

readily discernible, turn trilinear filtering off to save

fill rate.

• Use the simplest shader type possible. In both

Direct3D and OpenGL, there are a number of

different ways to shade fragments. For example, in

Direct3D 9, you can specify fragment shading using,

in order of increasing complexity and power, texture-

stage states, pixel shaders version 1.x (ps.1.1 –

ps.1.4), pixel shaders version 2.x., or pixel shaders

version 3.0. In general, you should use the simplest

shader type that allows you to create the intended

effect. The simpler shader types offer a number of

implicit assumptions that often allow them to be

compiled to faster native pixel-processing code by the

GPU driver. A nice side effect is that these shaders

would then work on a broader range of hardware.

Reducing Texture Bandwidth
If you’ve found that you’re memory-bandwidth bound, but

mostly when fetching from textures, consider these

optimizations:

Transformations in Computer Graphics

55

• Reduce the size of your textures. Consider your target

resolution and texture coordinates. Do your users

ever get to see your highest mip level? If not, consider

scaling back the size of your textures. This can be

especially helpful if overloaded frame-buffer memory

has forced texturing to occur from nonlocal memory

(such as system memory, over the AGP or PCI

Express bus). The NVPerfHUD tool (NVIDIA 2003) can

help diagnose this problem, as it shows the amount

of memory allocated by the driver in various heaps.

• Compress all colour textures. All textures that are

used just as decals or detail textures should be

compressed, using DXT1, DXT3, orDXT5, depending

on the specific texture’s alpha needs. This step will

reduce memory usage, reduce texture bandwidth

requirements, and improve texture cache efficiency.

• Avoid expensive texture formats if not necessary.

Large texture formats, such as 64-bit or 128-bit

floating-point formats, obviously cost much more

bandwidth to fetch from. Use these only as necessary.

• Always use mipmapping on any surface that may be

minified. In addition to improving quality by reducing

texture aliasing, mipmapping improves texture cache

utilization by localizing texture-memory access

patterns for minified textures. If you find that

mipmapping on certain surfaces makes them look

blurry, avoid the temptation to disable mipmapping

or add a large negative LOD bias. Prefer anisotropic

filtering instead and adjust the level of anisotropy

per batch as appropriate.

Transformations in Computer Graphics

56

Optimizing Frame-Buffer Bandwidth
The final stage in the pipeline, ROP, interfaces directly with

the frame-buffer memory and is the single largest consumer

of frame-buffer bandwidth. For this reason, if bandwidth is

an issue in your application, it can often be traced to the

ROP.

Here’s how to optimize for frame-buffer bandwidth:

• Render depth first. This step reduces not only

fragment-shading cost, but also frame-buffer

bandwidth cost.

• Reduce alpha blending. Note that alpha blending,

with a destination-blending factor set to anything

other than 0, requires both a read and a write to

the frame buffer, thus potentially consuming double

the bandwidth. Reserve alpha blending for only those

situations that require it, and be wary of high levels

of alpha-blended depth complexity.

• Turn off depth writes when possible. Writing depth

is an additional consumer of bandwidth, and it

should be disabled in multipass rendering (where the

final depth is already in the depth buffer); when

rendering alpha-blended effects, such as particles;

and when rendering objects into shadow maps (in

fact, for rendering into colour-based shadow maps,

you can turn off depth reads as well).

• Avoid extraneous colour-buffer clears. If every pixel

is guaranteed to be overwritten in the frame buffer

by your application, then avoid clearing colour,

because it costs precious bandwidth. Note, however,

that you should clear the depth and stencil buffers

Transformations in Computer Graphics

57

whenever you can, because many early-z

optimizations rely on the deterministic contents of a

cleared depth buffer.

• Render roughly front to back. In addition to the

fragment-shading advantages mention, there are

similar benefits for frame-buffer bandwidth. Early-z

hardware optimizations can discard extraneous

frame-buffer reads and writes. In fact, even older

hardware, which lacks these optimizations, will

benefit from this step, because more fragments will

fail the depth test, resulting in fewer colour and depth

writes to the frame buffer.

• Optimize skybox rendering. Skyboxes are often frame-

buffer-bandwidth bound, but you must decide how

to optimize them: (1) render them last, reading (but

not writing) depth, and allow the early-z optimizations

along with regular depth buffering to save bandwidth;

or (2) render the skybox first, and disable all depth

reads and writes. Which option will save you more

bandwidth is a function of the target hardware and

how much of the skybox is visible in the final frame.

If a large portion of the skybox is obscured, the first

technique will likely be better; otherwise, the second

one may save more bandwidth.

• Use floating-point frame buffers only when necessary.

These formats obviously consume much more

bandwidth than smaller, integer formats. The same

applies for multiple render targets.

• Use a 16-bit depth buffer when possible. Depth

transactions are a huge consumer of bandwidth, so

Transformations in Computer Graphics

58

using 16-bit instead of 32-bit can be a giant win,

and 16-bit is often enough for small-scale, indoor

scenes that don’t require stencil. A 16-bit depth

buffer is also often enough for render-to-texture

effects that require depth, such as dynamic cube

maps.

• Use 16-bit colour when possible. This advice is

especially applicable to render-to-texture effects,

because many of these, such as dynamic cube maps

and projected-colour shadow maps, work just fine

in 16-bit colour.

As power and programmability increase in modern GPUs,

so does the complexity of extracting every bit of performance

out of the machine. Whether your goal is to improve the

performance of a slow application or to look for areas where

you can improve image quality “for free,” a deep

understanding of the inner workings of the graphics pipeline

is required. As the GPU pipeline continues to evolve, the

fundamental ideas of optimization will still apply: first identify

the bottleneck, by varying the load or the computational

power of each unit; then systematically attack those

bottlenecks, using your understanding of how each pipeline

unit behaves.

RASTERIZATION
Rasterization is the process of converting a vertex

representation to a pixel representation; rasterization is also

called scan conversion. Included in this definition are

geometric objects such as circles where you are given a centre

and radius.

Transformations in Computer Graphics

59

In these notes we will cover:

• The digital differential analyzer (DDA) which

introduces the basic concepts for rasterization.

• Bresenham’s algorithm which improves on the DDA.

• The scan line fill for polygons.

• And, time permitting, flood and boundary fill

algorithms.

Scan conversion algorithms use incremental methods that

exploit coherence. An incremental method computes a new

value quickly from an old value, rather than computing the

new value from scratch, which can often be slow. Coherence

in space or time is the term used to denote that nearby objects

(e.g., pixels) have qualities similar to the current object.

THE DDA ALGORITHM
Let =0 0 0(,)p x y and =1 1 1(,)p x y be two endpoints of a line

segment. We will assume that these points are in device space

so that the coordinates 0 0 1 1, , ,x y x y are integers. The point-

intercept form of the equation of the line from p0 to p1 is

y = mx + b

where the slope is
−

=
−

1 0

1 0

y y
m

x x

and the y intercept is

b = y1 – mx1,

although it is not necessary to compute the y intercept.

Notice that if x is incremented to x + 1, then y changes to

y + m. Similarly, if y is incremented to y + 1, then x changes

to +
1

x
m

. Of course, the slope (or its reciprocal) often won’t be

integers. Let’s consider the two cases where these increments

occur.

Transformations in Computer Graphics

60

IMAGE RASTERIZATION
Understanding Vectors and Bitmaps

Images in Flash come in two flavours: vector images and

bitmap images. Each format has advantages and drawbacks.

You’ll learn about each format, the pros and cons of each

format, and when it is appropriate to use each format.

Vector Graphic
A vector graphic is a shape drawn with a series of points

and lines connecting the points. For example, a square

consists of four corner points with lines connecting each

point. A circle contains the same four points, but the lines

between them are curved instead of straight. A vector shape

has a fill colour and an outline (stroke) colour. Usually a

vector graphic is composed of dozens or more vector shapes

that overlap to form a picture.

Vector graphics have the advantage of being light-weight

and scalable. Under the hood, vector graphics are defined

entirely by the math describing their points and lines, so

they are not composed of resolution. As a result, vector

graphics are light-weight and can be scaled up and down in

size without losing their quality. And vector graphics can be

edited and changed at any time.

Fig. The Points and Lines that Define a Square and
a Circle Vector Image

Vector graphics have the disadvantage of being processor-

intensive in some situations. Vector graphics are rendered

Transformations in Computer Graphics

61

by the CPU at runtime and have to be re-rendered whenever

a change in the graphic occurs. For example, when a vector

graphic is used in a tween animation, or if the vector graphic

on Stage is overlapped by a tween animation, the shape is

rendered again in each frame to display the changes on the

screen. Most modern desktop and laptop computers don’t

have any problem rendering complex groups of vector

graphics, but be aware that mobile devices may display visible

performance issues.

Use vectors whenever you need to create scalable graphics,

work with editable text and shapes, or when flexible content

is required for animations.

Tip: The drawing tools in Flash Professional natively draw

vector graphics, but in many cases, it is a best practice to

publish the graphics as bitmaps in order to improve

performance.

Bitmap Graphic
A bitmap graphic is an image composed of a grid of dots

called pixels. Each pixel contains a colour. Collectively, the

grid of coloured pixels forms the image. The number of pixels

per inch defines the resolution of an image. The common

screen resolution for computer monitors is 72 dpi (dots per

inch).

Bitmap graphics have the advantage of displaying highly

detailed photographic content without the use of CPU

rendering. Once the bitmap has downloaded to the display,

it does not need to be rendered again.

Bitmap graphics have the disadvantage of producing larger

file sizes. The resolution, number of colours, compression

scheme, and dimensions of the bitmap all contribute to the

Transformations in Computer Graphics

62

file size of the image. Also, since bitmaps are defined in

resolution, they cannot be scaled to larger sizes without

incurring a loss of quality. Bitmaps are not editable in Flash;

you can use a tool such as Photoshop or Fireworks to edit

your bitmap images prior to importing them in Flash.

Use bitmaps for backgrounds and static images that don’t

need to be edited or scaled. Also, for performance reasons

and portability to mobile devices, consider using bitmaps or

rasterization techniques whenever possible.

Typical Performance Issues and their
Workarounds

Depending on the complexity of your Flash movie, you may

find that some animations and page transitions seem sluggish

or fragmented. This scenario can occur in projects when too

many overlapping vector images are redrawn in every frame.

The result can be inconsistent frame rates and intermittent

pauses in the vector rendering.

Here are a few things to consider that may improve a

project’s performance:

1. Use bitmap images for background graphics.

Animations often appear on top of larger background

graphics. Using bitmaps for the backgrounds will

help reduce the resources required to render the

graphics and minimize CPU usage.

2. Large areas of animation are more likely produce

performance issues. Try to limit the area an

animation plays to the smallest size possible.

3. Animations and complex graphics that use

transparency (alpha) require more CPU usage than

opaque graphics.

Transformations in Computer Graphics

63

4. Animations and complex graphics that use filters and

blend modes require more CPU usage than graphics

that do not. Apply filters and blend modes sparingly.

Also, try to use lower quality settings when working

with filters.

5. Avoid displaying animations that constantly idle, if

possible.

6. Use the rasterization features in Flash to convert

static graphics into bitmaps at author-time or

runtime.

 Benefits of Rasterizing Vector Graphics
Flash Professional and ActionScript 3 provide a handful

of options for converting vector graphics to bitmaps. The

benefit of using these features is that you can often avoid

the performance pitfalls described previously while leaving

your artwork editable at author-time. The result can produce

projects that require less CPU usage, smoother animation

performance and frame rate playback, and improved

performance—especially for applications being ported to

mobile devices.

GRAPHICAL I/O DEVICES

Computer graphics gives us added dimensions for

communication between the user and the machine. Complex

organizations and relationships can be conveyed clearly to

the user. But communication should be a two-way process.

It is desirable to allow the user to respond to this information.

The most common form of computer is a string of characters

printed on the page or on the surface of a CRT terminal. The

Transformations in Computer Graphics

64

corresponding form of input is also a stream of characters

coming from a keyboard. So to perform such I/O operations,

there is a need of I/O devices. The following are the I/O

devices for graphic implementation.

INPUT DEVICES
Various hardware devices have been developed to enable

the user to interact in the more natural manner. These devices

can be separated into two classes. They are Locators and

Selectors.

Locators: Locators are the devices which give position

information. The computer receives from a Locater the

coordinates for a point. Using a locator we can indicate a

position on the screen. The different locators are as

follows:

Thumbwheels: A pair of Thumbwheels such as is found

on the Tektronix 4010 graphics terminal. These are two

potentiometers mounted on the keyboard, which the user

can adjust. One potentiometer is used for x direction and

the other for the y direction. Analog-to-digital converters

change the potentiometer setting into a digital value which

the computer can read. The potentiometer settings may be

read whenever desired. The two potentiometer readings

together form the coordinates of a point.

To be useful, this scheme must also present user with

information as to which point the thumbwheels are

specifying. Some feedback mechanism is needed. This may

be in the form of a special screen cursor, that is, a special

marker placed on the screen at the point which is being

indicated. It might also be done by a pair of cross hairs which

Transformations in Computer Graphics

65

cross at the indicated point. As a thumbwheel is turned, the

marker or cross hair moves across the screen to show the

set which position is being read.

Joystick: A Joystick has two potentiometers, just as a

pair of thumbwheels. They have been attached to a single

lever. Moving the lever forward or back changes the setting

on one potentiometer. Moving it left or right changes the

setting on the other potentiometer. Thus with a joystick both

x and y coordinate positions can be simultaneously altered

by the motion of a single lever.

The potentiometer settings are processed in the same

manner as they are for thumbwheels. Some joysticks may

return to their zero position when released, whereas

thumbwheels remain at their last position until changed

joysticks are inexpensive and are quite common on displays

where only rough positioning is needed.

Mouse: A Mouse is palm-sized box with a ball on the bottom

connected to wheels for the x and y directions. These locator

devices use switches attached to wheels instead of

potentiometers. As the wheels are turned, the switches

produce pulses which may be counted. The count indicates

how much a wheel has rotated. As the mouse is pushed

across a surface, the wheels turned, proving distance and

direction information. This can then be used to alter the

position of a cursor on the screen a mouse may also come

with one or more buttons which may be sensed. There are

also mice which use photocells rather than wheels and

switches to sense position. Photocells in the bottom of the

mouse sense the movement across the grid and produce

pulses to report the motion.

Transformations in Computer Graphics

66

Tablet: A Tablet composed of a flat surface and a pen like

stylus or window like tablet cursor. The tablet is able to sense

the position of the stylus or tablet cursor on the surface. A

number of different physical principles have been employed

for the sensing of the stylus. Most do not require actual

contact between the stylus and the tablet surface, so that a

drawing or blueprint might be placed upon the surface and

the stylus used to trace it. A feedback mechanism on the

screen is not as necessary for a graphics tablet as it is for a

joystick because the user can look at the tablet to see what

position he is indicating. If tablet entries are to be coordinated

with items already on the screen, then some form of feedback,

such as a screen cursor, is useful.

Selector Device: Selector devices are used to select a

particular graphical object. A selector may pick a particular

item but provide no information about that item is located

on the screen. The different selector devices are as follows.

Light Pen: A light pen is composed of a photocell mounted

in a penlike case. This pen may be pointed at the screen on

a refresh display. The pen will send a pulse whenever the

phosphor below it is illuminated. While the image on a refresh

display may appear to be stable, it is in fact blinking on and

off faster than the eye can detect. This blinking is not too

fast for the light pen. The light pen can easily determine the

time at which phosphor is illuminated. Since, there is only

one electron beam on the refresh display, only one line

segment can be drawn at a time and no two segments are

drawn simultaneously.

When the light pen senses the phosphor beneath it being

illuminated, it can interrupt the display processor’s

Transformations in Computer Graphics

67

interpreting of the display file. The processor’s instruction

register tells which display file instruction is currently being

drawn. Once this information is extracted, the processor is

allowed to continue its display. Thus the light pen tells us

which display file instruction was being executed in order to

illuminate the phosphor at which it was pointing. By

determining which part of the picture contained the

instruction that triggered the light pen, the machine can

discover which object the user is indicating. It is often possible

to turn the interrupt mechanism on or off during the display

process and thereby select or deselect objects on the display

for sensing by the light pen.

Keyboards: An alphanumeric keyboard on a graphics

system is used primarily as a device for entering text strings.

The keyboard is an efficient device for inputting such non-

-graphic data. Cursor control keys and function keys are

common features on general purpose keyboards. Function

keys allows user to enter frequently used operations in a

single keystroke and cursor control keys can be used to

select displayed objects or co-ordinate positions by

positioning the screen cursor. Additional a numeric keypad

is often included on the keyboard for fast entry of numeric

data. The latest keyboards are coming with a facility to

perform all the operations related to multimedia and

internet browsing etc.

Trackball and Space Ball: A track ball is a ball that can

be rotated with the fingers or palm of the hand to produce

screen-cursor movement. Potentiometers, attached to the

ball, measure the amount and direction of rotation. It is a

two dimensional positioning device.

Transformations in Computer Graphics

68

A space ball provides six degrees of freedom. Unlike the

track ball, a space ball does not actually move. Strain gauges

measure the amount of pressure applied to the space ball to

provide input for spatial positioning and orientation as the

ball is pushed or pulled in various directions. Space balls

are used for three dimensional positioning and selection

operations in virtual reality systems, modelling, animation,

CAD and other applications.

Data Glove: A data glove that can be used to grasp a virtual

object. The glove is constructed with a series of sensors that

detect hand and finger motions. Electromagnetic coupling

between transmitting antennas and receiving antennas is

used to provide information about the position and

orientation of the hand. The transmitting and receiving

antennas can each be structured as a set of three mutually

perpendicular coils, forming a three dimensional co-ordinate

system. Input from the glove can be used position or

manipulate objects in a virtual scene. A two-dimensional

projection of the scene can be viewed on a video monitor, or

a three-dimensional projection can be viewed with a headset.

Digitizers: A common device for drawing, painting or

interactively selecting co-ordinate positions on an object is a

digitizer. These devices can be used to input co-ordinate

values in either a 2D or 3D space. Digitizer is used to scan

over a drawing or object and to input a set of discrete co-

ordinate positions, which can be joined with straight line

segments to approximate the curve or surface shapes. 3D

digitizers use sonic or electromagnetic transmissions to

record positions. One electromagnetic transmission method

is similar to that used in the data glove: a coupling between

Transformations in Computer Graphics

69

the transmitter and receiver is used to compute the location

of a stylus as it moves over the surface of an object.

Image Scanners: Drawings, graphs, colour and black and

white photos or text can be stored for computer processing

with an image scanner by passing an optical scanning

mechanism over the information to be stored. The gradations

of gray scale or colour are then recorded and stored in an

array. Once we have the internal representation of a picture,

we can apply transformations to rotate, scale or crop the

picture to a particular screen area. We can also apply various

image processing methods to modify the array representation

of the picture. For scanned text input, various editing

operations can be performed on the stored documents. Some

scanners are able to scan either graphical representations

or text and they come in a variety of sizes and capabilities.

Touch Panels: Touch panels allow displayed objects or

screen positions to be selected with the touch of a finger. A

typical application of touch panels is for the selection of

processing options that are represented with graphical icons.

Some systems such as plasma panels are designed with touch

screens. Other systems can be adapted for touch input by

fitting a transparent device with a touch sensing mechanism

over the video monitor screen. Touch input can be recorded

using three methods. They are

• Optical touch panels.

• Electrical touch panels.

• Acoustical touch panels.

Optical Touch Panels: They employ a line of infrared light

emitting diodes (LEDs) along one vertical edge and along one

horizontal edge of the frame. The opposite vertical and

Transformations in Computer Graphics

70

horizontal edges contain light detectors. These detectors are

used to record which beams are interrupted when the panel

is touched. The two crossing beam that are interrupted

identify the horizontal and vertical coordinates of the screen

position selected. Positions can be selected with an accuracy

of about ¼ inch.

Electrical Touch Panels: It is constructed with two

transparent plates separated by a small distance. One of the

plates is coated with a conducting material and the other

plate is coated with a resistive material. When the outer plate

is touched, it is forced into contact with the inner plate. This

contact creates a voltage drop across the resistive plate that

is converted to the coordinate values of the selected screen

position.

Acoustical Touch Panels: In these high frequency sound

waves are generated in the horizontal and vertical directions

across a glass plate. Touching the screen causes part of each

wave to be reflected from the finger to the emitters. The screen

position at the point of contact is calculated from a

measurement of the time interval between the transmission

of each wave and its reflection to the emitter.

Voice Systems
Speech recognizers are used in some graphics workstations

as input devices to accept voice command. The voice system

input can be used to initiate graphics operations or to enter

data. These systems operate by matching an input against a

predefined dictionary of words and phrases.

A dictionary is set up for a particular operator by having

the operator speak the command words to be used into the

system. Each word is spoken several times, and the system

Transformations in Computer Graphics

71

analyses the word and establishes a frequency pattern for

that word in the dictionary alone with the corresponding

function to be performed.

When a voice command is given, the system searches the

dictionary for a frequency pattern match. Voice input is

typically spoken into a microphone mounted on a headset. If

a different operator is to use the system, the dictionary must

be reestablished with that operator’s voice patterns.

OUTPUT DEVICES
Printers

Printers produce output by either impact or non--impact

methods. Impact printers press formed character faces

against an inked ribbon onto the paper. A line printer is an

example of an impact device, with the typefaces mounted on

bands, chains, drums or wheels. Non--impact printers and

plotters use laser techniques, ink-jet sprays, xerographic

processes, electrostatic methods and electro thermal methods

to get images onto the paper.

Character impact printers often have a dot-matrix print

head containing a rectangular array of protruding wire pins,

with the number of pins depending on the quality of the

printer. Individual characters or graphics patterns are

obtained by retracting certain pins so that the remaining

pins form the pattern to be printed.

In a laser device, a laser beam creates a change distribution

on a rotating drum coated with a photoelectric material. Toner

is applied to the drum and then transferred to paper. Ink-jet

methods produce output by squirting ink in horizontal rows

across a roll of a paper wrapped on a drum. The electrically

Transformations in Computer Graphics

72

charged ink stream is deflected by an electric field to produce

dot-matrix patterns.

An electrostatic device places a negative charge on the

paper, one complete row at a time along the length of the

paper. Then the paper is exposed to a toner. The toner is

positively charged and so is attracted to the negatively

charged areas, where it adheres to produce the specified

output.

We can get limited coloured ribbons. Non- impact devices

use various techniques to combine three colour pigments to

produce a range of colour patterns. Laser and xerographic

devices deposit the three pigments on separate passes; ink-

jet methods shoot the three colours simultaneously on a

single pass along each print line on the paper.

Plotters
Drafting layouts and other drawings are typically generated

with ink-jet or pen plotters. A pen plotter has one or more

pens mounted on a carriage, or crossbar that spans a sheet

of paper.

Pens with varying colours and widths are used to produce

a variety of shadings and line styles. Wet-ink, ball point and

felt tip pens are all possible choices for use with a pen plotter.

Plotter paper can lie flat or be rolled onto a drum or belt.

Crossbars can be either moveable or stationary, while the

pen moves back and forth along the bar. Either clamps, a

vacuum, or an electrostatic charge hold the paper in position.

Display Devices
In most applications of computer graphics the quality of

the displayed image is very important. A great deal of effort

Transformations in Computer Graphics

73

has been directed towards the development of high quality

computer display devices. The CRT was the only available

device capable of converting the computer’s electrical signals

into visible images at high speeds. CRT technology has

produced a range of extremely effective computer display

devices. At the same time the CRT’s peculiar characteristics

have had a significant influence on the development of

interactive computer graphics.

The CRT
The basic arrangement of CRT. At the narrow end of a

sealed conical glass tube is an electron gun that emits a

high velocity, finely focused beam of electrons. The other

end, the face of the CRT, is more or less flat and is coated on

the inside with phosphor, which glows when the electron

beam strikes it. The energy of the beam can be controlled so

as to vary the intensity of light output and when necessary

to cut off the light altogether. A yoke or system of

electromagnetic coils is mounted on the outside of the tube

at the base of the neck; it deflects the electron beam to

different parts of the tube face when currents pass through

the coils. The light output of the CRT’s phosphor falls off

rapidly after the electron beam has passed by and a steady

picture is maintained by tracing it out rapidly and repeatedly;

generally this refresh process is performed at least 30 times

a second.

Electron Gun
Electron gun makes use of electrostatic fields to focus and

accelerate the electron beam. A field is generated when two

surfaces are raised to different potentials; electrons within

Transformations in Computer Graphics

74

the field tend to travel towards the surface with the more

positive potential. The force attracting the electron is directly

proportional to the field potential.

The purpose of the electron gun in the CRT is to produce an

electron beam with the following properties:

• It must be accurately focused so that it produces a

sharp spot of light where it strikes the phosphor.

• It must have high velocity, since, the brightness of

the image depends on the velocity of the electron

beam.

• Means must be provided to control the flow of

electrons so that the intensity of the trace of the

beam can be controlled.

Electrons are generated by a cathode heated by an electric

filament. Surrounding the cathode is a cylindrical metal

control grid, with a hole at one end that allows electrons to

escape. The control grid is kept at a lower potential than the

cathode, creating an electrostatic field that directs the

electrons through a point source; this simplifies the

subsequent focusing process. By altering the control grid

potential, we can modify the rate of flow of electrons, or beam

current and can thus control the brightness of the image;

we can even cut off the flow of electrons altogether. Focusing

is achieved by a focusing structure, used to focus finely and

highly concentrated at the precise moment at which it strikes

the phosphor. An accelerating structure is generally combined

with the focusing structure. It consists of two metal plates

mounted perpendicular to the beam axis with holes at their

centres through which the beam can pass. The two plates

are maintained at a sufficiently high relative potential to

Transformations in Computer Graphics

75

accelerate the beam to the necessary velocity; accelerating

potentials of several thousand volts are not uncommon. The

resulting electron gun structure has the advantage that it

can be built as a single physical unit and mounted inside

the CRT envelope. Other types of gun exist, whose focusing

is performed by a coil mounted outside the tube; this is called

electromagnetic focusing.

The Deflection System
A set of coils or yoke, mounted at the neck of the tube,

forms part of the deflection system responsible for addressing

in the CRT. Two pairs of coils are used, one to control

horizontal deflection and the other for vertical. A primary

requirement of the deflection system is that it deflects rapidly,

since, speed of deflection determines how much information

can be displayed without flicker. To achieve fast deflection,

we must use large amplitude currents in the yoke. An

important part of the deflection system is therefore the set of

amplifiers that convert the small voltages received from the

display controller into currents of the appropriate magnitude.

The voltages used for deflection are generated by the display

controller from digital values provided by the computer. These

values normally represent coordinates that are converted

into voltages by digital to analog conversion. To draw a vector

a pair of gradually changing voltages must be generated for

the horizontal and vertical deflection coils.

Phosphors
The phosphors used in a graphic display are normally

chosen for their colour characteristics and persistence. Ideally

the persistence, measured as the time for the brightness to

Transformations in Computer Graphics

76

drop to one tenth of its initial value, should last about 100

milliseconds or less allowing refresh at 30Hz rates without

noticeable smearing as the image moves. Colour should

preferably be white, particularly for applications where dark

information appears on a light background. The phosphor

should also possess a number of other attributes: small grain

size for added resolution, high efficiency in terms of electric

energy converted to light and resistance to burning under

prolonged excitation.

In attempts to improve performance in one or another of

these respects, many different phosphors have been

produced, using various compounds of calcium, cadmium

and zinc together with traces of rare earth elements. These

phosphors are identified by a numbering system like P1, P4,

P7 etc.

Raster-scan Displays
The most common type of graphics monitor employing a

CRT is the raster scan display. In a raster-scan system, the

electron beam is swept across the screen, one row at a time

from top to bottom. As the electron beam moves across each

row, the beam intensity is turned on and off to create a

pattern of illuminated spots. Picture definition is stored in a

memory area called the refresh buffer or frame buffer. This

memory area holds the set of intensity values for all the screen

points. Stored intensity values are then retrieved from the

refresh buffer and painted on the screen one row at a time.

Each screen point is referred to as a pixel or pel (picture

element). The capability of a raster-scan system to store

intensity information for each screen point makes it well

Transformations in Computer Graphics

77

suited for the realistic display of scenes. Home televisions

and printers are examples of other systems using raster-

scan methods.

Intensity range for pixel positions depends on the capability

of the raster system. In a simple black and white system,

each screen point is either on or off, so only one bit per pixel

is needed to control the intensity of screen positions. Here 1

indicates that the electron beam is to be turned on at that

position, and value 0 indicates that the electron beam

intensity is to be off. Additional bits are needed when colour

and intensity variations can be displayed. Up to 24 bits per

pixel are included in high quality systems, which can require

several megabytes of storage for the frame buffer, depending

on the resolution of 1024 by 1024 requires 3 megabytes of

storage for the frame buffer. On a black and white system

with one bit per pixel, the frame buffer is commonly called a

bitmap. For systems with multiple bits per pixel, the frame

buffer is often referred to as a pixmap.

Refreshing on raster-scan displays is carried out at the rate

of 60 to 80 frames per second. At the end of each scan line,

the electron beam returns to the left side of the screen to

begin displaying the next scan line. The return to the left of

the screen, after refreshing each scan line, is called the

horizontal retrace of the electron beam and at the end of each

frame the electron beam returns to the left corner of the screen

to begin the next frame. On some raster-scan systems, each

frame is displayed in two passes using an interlaced refresh

procedure. In the first pass, the beam sweeps across every

other scan line from top to bottom. Then after the vertical

retrace, the beam sweeps out the remaining scan lines.

Transformations in Computer Graphics

78

Random-scan Displays
When operated as a random-scan display unit, a CRT has

the electron beam directed only to the parts of the screen

where a picture is to be drawn. Random-scan monitors draw

a picture one line at a time and for this reason are also

referred to as vector displays. A pen plotter operates in a

similar way and is an example of a random-scan, hard copy

device. Refresh rate on a random-scan system depends on

the number of lines to be displayed. Picture definition is now

stored as a set of line drawing commands in an area of

memory referred to as the refresh display file. Sometime the

refresh display file is called the display list or display

Programme or refresh buffer. To display a specified picture,

the system cycles through the set of commands in the display

file, drawing each component line in turn. After all line

drawing commands have been processed, the system cycles

back to the first line command in the list.

Colour CRT Monitors
A CRT monitor displays colour pictures by using a

combination of phosphors that emit different-coloured light.

By combining the emitted light from the different phosphors,

a range of colours can be generated. The two basic techniques

for producing colour displays with a CRT are the beam-

penetration method and the shadow-mask method.

The beam-penetration method for displaying colour

pictures has been used with random-scan monitors. Two

layers of phosphor, usually red and green are coated onto

the inside of the CRT screen, and the displayed colour

depends on how far the electron beam penetrates into the

Transformations in Computer Graphics

79

phosphor layers. A beam of slow electrons excites only the

outer red layer. A beam of very fast electrons penetrates

through the red layer and excites the inner green layer. At

intermediate beam speeds, combinations of red and green

light are emitted to show two additional colours, orange and

yellow. The speed of the electrons and hence the screen colour

at any point is controlled by the beam-acceleration voltage.

Four colours are possible, and the quality of pictures is not

as good as with other methods.

Shadow-mask methods are commonly used in raster-scan

systems because they produce a much wider range of colours

than the beam-penetration method. A shadow-mask CRT

has three phosphor colour dots at each pixel position. One

phosphor dot emits a red light, another emits a green light,

and the third emits a blue light. This type of CRT has three

electron guns, one for each colour dot and a shadow-mask

grid just behind the phosphor-coated screen. We obtain

colour variations in a shadow-mask CRT by varying the

intensity levels of the three electron beams. By turning off

the red and green guns, we get only the colour coming from

the blue phosphor. A white area is the result of activating all

three dots with equal intensity.

Direct-View StorageTubes
An alternative method for maintaining a screen image is

to store the picture information inside the CRT instead of

refreshing the screen. A direct-view storage tube (DVST)

stores the picture information as a charge distribution just

behind the phosphor-coated screen. Two electron guns are

used in a DVST. One, the primary gun, is used to store the

Transformations in Computer Graphics

80

picture pattern; the second, the flood gun, maintains the

picture display. A DVST monitor has both disadvantages and

advantages compared to the refresh CRT. Because no

refreshing is needed, very complex pictures can be displayed

at very high resolutions without flicker.

The disadvantages of DVST systems are that they ordinarily

do not display colour and that selected parts of a picture

cannot be erased. The entire screen must be erased and the

modified picture redrawn. The erasing and redrawing process

can take several seconds for a complex picture.

Flat-Panel Displays
The term flat-panel display refers to a class of video devices

that have reduced volume, weight and power requirements

compared to a CRT. Flat panel displays into two categories:

emissive displays and noon-emissive displays. The emissive

displays are devices that convert electrical energy into light.

Plasma panels, thin-film electroluminescent displays, and

light emitting diodes are examples of emissive displays. Non-

-emissive displays use optical effects to convert sunlight or

light from some other source into graphics patterns. The

most important example of a non--emissive flat-panel display

is a liquid crystal device.

Plasma panels also called gas-discharge displays are

constructed by filling the region between two glass plates

with a mixture of gases that usually includes neon. A series

of vertical conducting ribbons is placed on one glass panel,

and a set of horizontal ribbons is built into the other glass

panel. Firing voltages applied to a pair of horizontal and

vertical conductors cause the gas at the intersection of the

Transformations in Computer Graphics

81

two conductors to break down into glowing plasma of

electrons and ions. Picture definition is stored in a refresh

buffer, and the firing voltages are applied to refresh the pixel

positions 60 times per second. One disadvantage of plasma

panels has been that they were strictly monochromatic

devices, but systems have been developed that are now

capable of displaying colour and grayscale.

LCD Technology
Borrowing technology from laptop manufacturers, some

companies provide LCD (Liquid Crystal Display) displays.

LCDs have low glare flat screens and low power requirements.

The colour quality of an active matrix LCD panel actually

exceeds that of most CRT displays. At this point, how ever,

LCD screens usually are more limited in resolution than

typical CRTs and are much more expensive. There are three

basic LCD choices.

They are…….

• Passive matrix monochrome.

• Passive matrix colour.

• Active matrix colour.

In a LCD, a polarizing filter creates two separate light waves.

In a colour LCD, there is an additional filter that has three

cells per each pixels – one each for displaying red, green and

blue.

The light wave passes through a liquid crystal cell, with

each colour segment having its own cell. The liquid crystals

are rod-shaped molecules that flow like a liquid. They enable

light to pass straight through them. Although monochrome

LCDs do not have colour filters, they can have multiple cells

per pixel for controlling shades of grey.

Transformations in Computer Graphics

82

In passive matrix LCD, each cell is controlled by electrical

charges transmitted by transistors according to row and

column positions on the screen’s edge. As the cell reacts to

the pulsing charge, it twists the light wave, with stronger

charges twisting the light wave more. In an active matrix

LCD, each cell has its own transistor to charge it and twist

the light wave. This provides brighter image than passive

matrix displays because, the cell can maintain a constant,

rather than momentary charge. However, active matrix

technology uses more energy than passive matrix. With a

dedicated transistor for every cell, active matrix displays are

more difficult and expensive to produce.

In both active and passive matrix LCDs, the second

polarizing filter controls how much light passes through each

cell. Cells twist the wavelength of light that passes through

the filter at each cell, the brighter the pixel. The best colour

displays are active matrix or thin film transistor panels, in

which each pixel is controlled by three transistors for red,

green and blue.

Raster-scan Systems
Interactive raster graphics systems typically employ several

processing units. In addition to the central processing unit,

a special-purpose processor, called the video controller or

display controller is used to control the operation of the

display device. The video controller accesses the frame buffer

to refresh the screen. In addition to the video controller, more

sophisticated raster systems employ other processors as co-

processors and accelerators to implement various graphics

operations.

Transformations in Computer Graphics

83

Video Controller
Frame buffer locations, and the corresponding screen

positions, are referenced in Cartesian co-ordinates. For many

graphics monitors, the co-ordinate origin is defined at the

lower left screen corner. The screen surface is then

represented as the first quadrant of a two-dimensional

system, with positive x values increasing to the right and

positive y values increasing from bottom to top. Scan lines

are then labelled from ymax at the top of the screen to 0 at

the bottom. Along each scan line, screen pixel positions are

labelled from 0 to xmax. Two registers are used to store the

co-ordinates of the screen pixels. Initially, the x register is

set to 0 and the y register is set to ymax. The value stored in

the frame buffer for this pixel position is then retrieved and

used to set the intensity of the CRT beam. Then the x register

is incremented by 1, and the process repeated for the next

pixel on the top scan line. This procedure is repeated for

each pixel along the scan line. After the last pixel on the top

scan line has been processed, the x register is reset to 0 and

the y register is decremented by 1. Pixels along this scan

line are then processed in turn, and the procedure is repeated

for each successive scan line. After cycling through all pixels

along the bottom scan line (y = 0), the video controller resets

the registers to the first pixel position on the top scan line

and the refresh process starts over.

Raster-scan Display Processor
The organization of raster system containing a separate

display processor, sometimes referred to as a graphics

controller or display co-processor. The purpose of the display

Transformations in Computer Graphics

84

processor is to free the CPU from the graphics chores. In

addition to the system memory, a separate display processor

memory area can also be provided. A major task of the display

processor is digitizing a picture definition given in an

application Programme into a set of pixel-intensity values

for storage in the frame buffer. This digitization process is

called scan conversion.

Characters can be defined with rectangular grids. The array

size for character grids can vary from about 5 by 7 to 9 by 12

or more for higher quality displays. Display processors are

typically designed to interface with interactive input devices

such as mouse.

In an effort to reduce memory requirements in raster

systems, methods have been devised for organizing the frame

buffer as a linked list and encoding the intensity information.

One way to do this is to store each scan line as a set of

integer pairs. One number of each pair indicates an intensity

value, and the second number specifies the number of

adjacent pixels on the scan line that are to have that intensity.

This technique called run-length encoding. A similar

approach can be taken when pixel intensities change linearly.

Another approach is to encode the raster as a set of

rectangular areas (cell encoding).

Random-scan Systems
The organization of a simple random-scan system. An

application Programme is input and stored in the system

memory along with a graphics package. Graphics commands

in the application Programme are translated by the graphics

package into a display file stored in the system memory. This

Transformations in Computer Graphics

85

display file is then accessed by the display processor to refresh

the screen. The display processor cycles through each

command in the display file Programme once during every

refresh cycle. Sometimes the display processor in a random-

scan system is referred to as a display processing or a

graphics controller.

Lines are defined by the values for their co-ordinate

endpoints, and these input co-ordinate values are converted

to x and y deflection voltages. A scene is then drawn one line

at a time by positioning the beam to fill in the line between

specified endpoints.

Transformations in Computer Graphics

86

4

Computer Graphics Software

The graphics software is the collection of programmes

written to make it convenient for a user to operate the

computer graphics system. It includes programmes to

generate images on the CRT screen, to manipulate the

images, and to accomplish various types of interaction

between the user and the system. In addition to the graphics

software, there may be additional programmes for

implementing certain specialized functions related to CAD/

CAM. These include design analysis programmes (e.g., finite-

element analysis and kinematic simulation) and

manufacturing planning programmes (e.g., automated

process planning and numerical control part programming).

The graphics software for a particular computer graphics

system is very much a function of the type of hardware used

in the system.

The software configuration of a graphics system.

Transformations in Computer Graphics

87

The graphics software can be divided into three modules:

• The graphics package (the graphics system).

• The application programme

• The application database.

Functions of a Graphics Package
The graphics package must perform a variety of different

functions. These functions can be grouped into function sets.

Each set accomplishes a certain kind of interaction between

the user and the system. Some of the common function sets

are:

Generation of graphic elements, Transformations, Display

control and windowing functions, Segmenting functions and

User input functions.

USING THE ACM.GRAPHICS PACKAGE

A simple example of how to write graphical programmes,

but does not explain the details behind the methods it

contains. The purpose of this chapter is to give you a working

knowledge of the facilities available in the acm.graphics

package and how to use them effectively.

The class structure of acm.graphics package appears. Most

of the classes in the package are subclasses of the abstract

class GObject at the centre of the diagram. Conceptually,

GObject represents the universal class of graphical objects

that can be displayed. When you use acm.graphics, you

assemble a picture by constructing various GObjects and

adding them to a GCanvas at the appropriate locations. The

general model in more detail offer a closer look at the

individual classes in the package.

Transformations in Computer Graphics

88

Fig. Class Diagram for the acm.graphics Package

THE ACM.GRAPHICS MODEL
When you create a picture using the acm.graphics package,

you do so by arranging graphical objects at various positions

on a background called a canvas. The underlying model is

similar to that of a collage in which an artist creates a

composition by taking various objects and assembling them

on a background canvas. In the world of the collage artist,

those objects might be geometrical shapes, words clipped

from newspapers, lines formed from bits of string, or images

taken from magazines. In the acm.graphics package, there

are counterparts for each of these graphical objects.

The “FeltBoard” Metaphor
Another metaphor that often helps students understand

the conceptual model of the acm.graphics package is that of

a felt board—the sort one might find in an elementary school

classroom. A child creates pictures by taking shapes of

coloured felt and sticking them onto a large felt board that

serves as the background canvas for the picture as a whole.

The pieces stay where the child puts them because felt fibres

interlock tightly enough for the pieces to stick together. A

Transformations in Computer Graphics

89

physical felt board with a red rectangle and a green oval

attached. The right side of the figure is the virtual equivalent

in the acm.graphics world. To create the picture, you would

need to create two graphical objects—a red rectangle and a

green oval—and add them to the graphical canvas that forms

the background.

Fig. Physical FeltBoard and its Virtual Equivalent

The code for the FeltBoard example appears. Even though

you have not yet had a chance to learn the details of the various

classes and methods used in the programme, the overall

framework should nonetheless make sense. The programme

first creates a rectangle, indicates that it should be filled rather

than outlined, colours it red, and adds it to the canvas. It

then uses almost the same operations to add a green oval.

Because the oval is added after the rectangle, it appears to be

in front, obscuring part of the rectangle underneath. This

behaviour, of course, is exactly what would happen with the

physical felt board. Moreover, if you were to take the oval away

by calling
remove(oval);

the parts of the underlying rectangle that had previously

been obscured would reappear.

 In this tutorial, the order in which objects are layered on

the canvas will be called the stacking order. (In more

mathematical descriptions, this ordering is often called z-

ordering, because the z-axis is the one that projects outward

Transformations in Computer Graphics

90

from the screen.) Whenever a new object is added to a canvas,

it appears at the front of the stack. Graphical objects are

always drawn from back to front so that the frontmost objects

overwrite those that are further back.
/*
 * File: FeltBoard.java
 * ——————————
 * This programme offers a simple example of the

acm.graphics package
 * that draws a red rectangle and a green oval. The

dimensions of
 * the rectangle are chosen so that its sides are in

proportion to
 * the “golden ratio” thought by the Greeks to represent

the most
 * aesthetically pleasing geometry.
 */

import acm.programme.*;
import acm.graphics.*;
import java.awt.*;

public class FeltBoard extends GraphicsProgram {

/** Runs the programme */
 public void run() {

GRect rect = new GRect(100, 50, 100, 100 / PHI);
rect.setFilled(true);

 rect.setColor(Color.RED);
 add(rect);

GOval oval = new GOval(150, 50 + 50 / PHI, 100, 100 /
PHI);
 oval.setFilled(true);
 oval.setColor(Color.GREEN);
 add(oval);
 }

/** Constant representing the golden ratio */
 public static final double PHI = 1.618;

}

Programme: Code for the FeltBoard.

Transformations in Computer Graphics

91

The Coordinate System
The acm.graphics package uses the same basic coordinate

system that traditional Java programmes do. Coordinate

values are expressed in terms of pixels, which are the

individual dots that cover the face of the screen. Each pixel

in a graphics window is identified by its x and y coordinates,

with x values increasing as you move rightward across the

window and y values increasing as you move down from the

top. The point (0, 0)—which is called the origin—is in the

upper left corner of the window. This coordinate system is

illustrated by the diagram, which shows only the red rectangle

from the FeltBoard.java programme. The location of that

rectangle is (100, 50), which means that its upper left corner

is 100 pixels to the right and 50 pixels down from the origin

of the graphics window.

Fig. The Java Coordinate System

The only difference between the coordinate systems used

in the acm.graphics package and Java’s Graphics class is

that the acm.graphics package uses doubles to represent

coordinate values instead of ints. This change makes it easier

to create figures whose locations and dimensions are

produced by mathematical calculations in which the results

are typically not whole numbers. As a simple example, the

dimensions of the red rectangle are proportional to the golden

Transformations in Computer Graphics

92

ratio, which Greek mathematicians believed gave rise to the

most pleasing aesthetic effect. The golden ratio is

approximately equal to 1.618 and is usually denoted in

mathematics by the symbol f. Because the acm.graphics

package uses doubles to specify coordinates and dimensions,

the code to generate the rectangle looks like this:
new GRect(100, 50, 100, 100 / PHI)

In the integer-based Java model, it would be necessary to

include explicit code to convert the height parameter to an

int. In addition to adding complexity to the code, forcing

students to convert coordinates to integers can introduce

rounding errors that distort the geometry of the displayed

figures.

Judging from the experience of the instructors who tested

the acm.graphics package while it was in development, the

change from ints to doubles causes no confusion but instead

represents an important conceptual simplification. The only

aspect of Java’s coordinate system that students find

problematic is the fact that the origin is in a different place

from what they know from traditional Cartesian geometry.

Fortunately, it doesn’t take too long to become familiar with

the Java model.

The GPoint, GDimension, and GRectangle
Classes

Although it is usually possible to specify individual values

for coordinate values, it is often convenient to encapsulate

an x and a y coordinate as a point, a width and a height

value as a composite indication of the dimensions of an object,

or all four values as the bounding rectangle for a figure.

Because the coordinates are stored as doubles in the

Transformations in Computer Graphics

93

acm.graphics package, using Java’s integer-based Point,

Dimension, and Rectangle classes would entail a loss of

precision. To avoid this problem the acm.graphics package

exports the classes GPoint, GDimension, and GRectangle,

which have the same semantics as their standard

counterparts except for the fact that their coordinates are

doubles.

As an example, the declaration
GDimension goldenSize = new GDimension(100, 100 / PHI);

introduces the variable goldenSize and initializes it to a

GDimension object whose internal width and height fields

are the dimensions of the golden rectangle illustrated in the

earlier example. The advantage of encapsulating these values

into objects is that they can then be passed from one method

to another using a single variable.

The GMath Class
Computing the coordinates of a graphical design can

sometimes require the use of simple trigonometric functions.

Although functions like sin and cos are defined in Java’s

standard Math class, students find them confusing in

graphical applications because of inconsistencies in the way

angles are represented. In Java’s graphics libraries, angles

are measured in degrees; in the Math class, angles must be

given in radians. To minimize the confusion associated with

this inconsistency of representation, the acm.graphics

package includes a class called GMath, which exports the

methods. Most of these methods are simply degree-based

versions of the standard trigonometric functions, but the

distance, angle, and round methods are also worth noting.

Transformations in Computer Graphics

94

Trigonometric Methods in Degrees
static double sinDegrees(double angle)

 Returns the trigonometric sine of an angle measured in

degrees.
static double cosDegrees(double angle)

 Returns the trigonometric cosine of an angle measured

in degrees.
static double tanDegrees(double angle)

 Returns the trigonometric tangent of an angle measured

in degrees.
static double toDegrees(double radians)

 Converts an angle from radians to degrees.
static double toRadians(double degrees)

 Converts an angle from degrees to radians.

Conversion Methods for Polar Coordinates
double distance(double x, double y)

Returns the distance from the origin to the point (x, y).
double distance(double x0, double y0, double x1, double

y1)

Returns the distance between the points (x0, y0) and (x1, y1).
double angle(double x, double y)

Returns the angle between the origin and the point (x, y),

measured in degrees.

Convenience Method for Rounding to an Integer
static int round(double x)

Rounds a double to the nearest int (rather than to a long

as in the Math class).
Programme. Static Methods in the GMath Class

THE GCANVAS CLASS
In the acm.graphics model, pictures are created by adding

graphical objects—each of which is an instance of the GObject

Transformations in Computer Graphics

95

class to a background canvas. That background—the

analogue of the felt board in the physical world—is provided

by the GCanvas class. The GCanvas class is a lightweight

component and can be added to any Java container in either

the java.awt or javax.swingpackages, which makes it possible

to use the graphics facilities in any Java application. For the

most part, however, students in introductory courses won’t

use the GCanvas class directly but will instead use the

GraphicsProgram class, which automatically creates a

GCanvas and installs it in the programme window, as

illustrated in several preceding examples. The

GraphicsProgram class forwards operations such as add

andremove to the embedded GCanvas so that students don’t

need to be aware of the underlying implementation details.

The most important methods supported by the GCanvas

class. Many of these methods are concerned with adding

and removing graphical objects. These methods are easy to

understand, particularly if you keep in mind that a GCanvas

is conceptually a container for GObject values. The container

metaphor explains the functionality provided by the add,

remove, and removeAll, which are analogous to the identically

named methods in JComponent and Container.

Constructor
new GCanvas()

Creates a new GCanvas containing no graphical objects.

Methods to Add and Remove Graphical Objects
from a Canvas

void add(GObject gobj)

Adds a graphical object to the canvas at its internally stored

location.

Transformations in Computer Graphics

96

void add(GObject gobj, double x, double y) or add(GObject
gobj, GPoint pt)

Adds a graphical object to the canvas at the specified

location.
void remove(GObject gobj)

Removes the specified graphical object from the canvas.
void removeAll()

Removes all graphical objects and components from the

canvas.

 Method to Find the Graphical Object at a
Particular Location

GObject getElementAt(double x, double y) or
getElementAt(GPoint pt)

Returns the topmost object containing the specified point,

or null if no such object exists.

Useful Methods Inherited from Superclasses
int getWidth()

Return the width of the canvas, in pixels.
int getHeight()

Return the height of the canvas, in pixels.
void setBackground(Color bg)

Changes the background colour of the canvas.

 The add method comes in two forms, one that preserves

the internal location of the graphical object and one that

takes an explicit x and y coordinate. Each method has its

uses, and it is convenient to have both available. The first is

useful particularly when the constructor for the GObject

specifies the location, as it does, for example, in the case of

the GRect class. If you wanted to create a 100 x 60 rectangle

at the point (75, 50), you could do so by writing the following

statement:
add(new GRect(75, 50, 100, 60));

Transformations in Computer Graphics

97

The second form is particularly useful when you want to

choose the coordinates of the object in a way that depends

on other properties of the object. For example, the following

code taken from the HelloGraphicsexample centres a GLabel

object in the window:
GLabel label = new GLabel(“hello, world”);
double x = (getWidth() - label.getWidth()) / 2;
double y = (getHeight() + label.getAscent()) / 2;
add(label, x, y);

Because the placement of the label depends on its

dimensions, it is necessary to create the label first and then

add it to a particular location on the canvas.

 The GCanvas method getElement(x, y) returns the

graphical object on the canvas that includes the point (x, y).

If there is more than one such object, getElement returns

the one that is in front of the others in the stacking order; if

there is no object at that position, getElement returns null.

This method is useful, for example, if you need to select an

object using the mouse. Several of the most useful methods

in the GCanvas class are those that are inherited from its

superclasses in Java’s component hierarchy. For example,

if you need to determine how big the graphical canvas is,

you can call the methods getWidth and getHeight.

Thus, if you wanted to define a GPoint variable to mark

the centre of the canvas, you could do so with the following

declaration:
GPoint centre = new GPoint(getWidth() / 2.0, getHeight()

/ 2.0);

You can also change the background colour by calling

setBackground(bg), where bg is the new background colour

for the canvas.

Transformations in Computer Graphics

98

THE GOBJECT CLASS
The GObject class represents the universe of graphical

objects that can be displayed on a GCanvas. The GObject

class itself is abstract, which means that programmes never

create instances of the GObject class directly. Instead,

programmes create instances of one of the GObject

subclasses that represent specific graphical objects such as

rectangles, ovals, and lines.

The most important such classes are the ones that appear

at the bottom of the class diagram, which are collectively

called the shape classes. Before going into those details,

however, it makes sense to begin by describing the

characteristics that are common to the GObject class as a

whole.

Methods Common to all GObject Subclasses
All GObjects—no matter what type of graphical object they

represent—share a set of common properties. For example,

all graphical objects have a location, which is the x and y

coordinates at which that object is drawn. Similarly, all

graphical objects have a size, which is the width and height

of the rectangle that includes the entire object. Other

properties common to all GObjects include their colour and

how the objects are arranged in terms of their stacking order.

Each of these properties is controlled by methods defined at

the GObject level.

Useful Methods Common to all Graphical Objects
Methods to Retrieve the Location and Size of a
Graphical Object

double getX()

Transformations in Computer Graphics

99

 Returns the x-coordinate of the object.
double getY()

 Returns the y-coordinate of the object.
double getWidth()

 Returns the width of the object.
double getHeight()

 Returns the height of the object.
GPoint getLocation()

 Returns the location of this object as a GPoint.
GDimension getSize()

 Returns the size of this object as a GDimension.
GRectangle getBounds()

 Returns the bounding box of this object.

Methods to Change the Object’s Location
void setLocation(double x, double y) or setLocation(GPoint

pt)

 Sets the location of this object to the specified point.
void move(double dx, double dy)

 Moves the object using the displacements dx and dy.
void movePolar(double r, double theta)

 Moves the object r units in direction theta, measured in

degrees.

Methods to Set and Retrieve the Object’s Colour
void setColor(Colour c)

 Sets the colour of the object.
Colour getColor()

 Returns the object colour. If this value is null, the package

uses the colour of the container.

Methods to Change the Stacking Order
void sendToFront() or sendToBack()

 Moves this object to the front (or back) of the stacking order.
void sendForward() or sendBackward()

Transformations in Computer Graphics

100

 Moves this object forward (or backward) one position in

the stacking order.

Method to Determine whether an Object
Contains a Particular Point

boolean contains(double x, double y) or contains(GPoint
pt)

 Checks to see whether a point is inside the object.

Determining the Location and Size of a GObject
The first several methods make it possible to determine

the location and size of any GObject. The getX, getY, getWidth,

and getHeight methods return these coordinate values

individually, and the getLocation, getSize, and getBounds

methods return composite values that encapsulate that

information in a single object.

Changing the Location of a GObject
The next three methods offer several techniques for

changing the location of a graphical object. The setLocation(x,

y) method sets the location to an absolute coordinate position

on the screen. For example, in the FeltBoard example,

executing the statement
rect.setLocation(0, 0);

would move the rectangle to the origin in the upper left corner

of the window.

The move(dx, dy) method, by contrast, makes it possible

to move an object relative to its current location. The effect

of this call is to shift the location of the object by a specified

number of pixels along each coordinate axis. For example,

the statement
oval.move(10, 0);

Transformations in Computer Graphics

101

would move the oval 10 pixels to the right. The dx and dy

values can be negative. Calling
rect.move(0, -25);

would move the rectangle 25 pixels upward.

The movePolar(r, theta) method is useful in applications

in which you need to move a graphical object in a particular

direction.

The name of the method comes from the concept of polar

coordinates in mathematics, in which a displacement is

defined by a distance r and an angle theta. Just as it is in

traditional geometry, the angle theta is measured in degrees

counterclockwise from the +x axis. Thus, the statement
rect.movePolar(10, 45);

would move the rectangle 10 pixels along a line in the 45°

direction, which is northeast.

Setting the Colour of a GObject
The acm.graphics package does not define its own notion

of colour but instead relies on the Colour class in the standard

java.awt package. The predefined colours are:

Color.BLACK

Color.DARK_GRAY

Color.GRAY

Color.LIGHT_GRAY

Color.WHITE

Color.RED

Color.YELLOW

Color.GREEN

Color.CYAN

Color.BLUE

Color.MAGENTA

Transformations in Computer Graphics

102

Color.ORANGE

Color.PINK

It is also possible to create additional colours using the

constructors in the Colour class. In either case, you need to

include the import line
import java.awt.*;

at the beginning of your programme.

The setColor method sets the colour of the graphical object

to the specified value; the corresponding getColor method

allows you to determine what colour that object currently is.

This facility allows you to make a temporary change to the

colour of a graphical object using code that looks something

like this:
Colour oldColor = gobj.getColor();
gobj.setColor(Color.RED);
.. . and then at some later time . . .
gobj.setColor(oldColor);

Controlling the Stacking Order
A set of methods that make it possible to control the

stacking order.

The sendToFront and sendToBack methods move the

object to the front or back of the stack, respectively. The

sendForward and sendBackward methods move the object

one step forward or backward in the stack so that it jumps

ahead of or behind the adjacent object in the stack. Changing

the stacking order also redraws the display to ensure that

underlying objects are correctly redrawn.

For example, if you add the statement;
oval.sendBackward();

to the end of the FeltBoard programme, the picture on the

display would change as follows:

Transformations in Computer Graphics

103

Checking for Containment
In many applications—particularly those that involve

interactivity of the sort—it is useful to be able to tell whether

a graphical object contains a particular point. This facility is

provided by thecontains(x, y) method, which returns true if

the point (x, y) is inside the figure. For example, given a

standard Java MouseEvent e, you can determine whether

the mouse is inside the rectangle rect using the followingif

statement:
if (rect.contains(e.getX(), e.getY()))

Even though every GObject subclass has a contains

method, the precise definition of what it means for a point to

be “inside” the object differs depending on the class. In the

case of a GOval, for example, a point is considered to be

inside the oval only if it is mathematically contained within

the elliptical shape that the GOval draws. Points that are

inside the bounding rectangle but outside of the oval are

considered to be “outside.” Thus, it is important to keep in

mind that
gobj.contains(x, y)

and
gobj.getBounds().contains(x, y)
do not necessarily return the same answer.

The GFillable, GResizable, and GScalable
Interfaces

You have probably noticed that several of the examples

you’ve already seen in this tutorial include methods that do

not appear. For example, the FeltBoard programme includes

Transformations in Computer Graphics

104

calls to a setFilled method to mark the rectangle and oval as

filled rather than outlined. It appears that the GObject class

does not include a setFilled method, which is indeed the

case.

As the caption makes clear, the methods listed in that

table are the ones that are common to every GObject

subclass. While it is always possible to set the location of a

graphical object, it is only possible to fill that object if the

idea of “filling” makes sense for that class. Filling is easily

defined for geometrical shapes such as ovals, rectangles,

polygons, and arcs, but it is not clear what it might mean to

fill a line, an image, or a label. Since there are subclasses

that cannot give a meaningful interpretation to setFilled, that

method is not defined at the GObject level but is instead

implemented only for those subclasses for which filling is

defined.

At the same time, it is important to define the setFilled

method so that it works the same way for any class that

implements it. If setFilled, for example, worked differently in

the GRect and GOval classes, trying to keep track of the

different styles would inevitably cause confusion. To ensure

that the model for filled shapes remains consistent, the

methods that support filling are defined in an interface called

GFillable, which specifies the behaviour of any fillable object.

In addition to the setFilled method that you have already

seen, the GFillable interface defines an isFilled method that

tests whether the object is filled, a setFillColor method to set

the colour of the interior of the object, and a getFillColor

method that retrieves the interior fill colour. The setFillColor

method makes it possible to set the colour of an object’s

Transformations in Computer Graphics

105

interior independently from the colour of its border. For

example, if you changed the code from the FeltBoard example

so that the statements generating the rectangle were
GRect rect = new GRect(100, 50, 100, 100 / PHI);
rect.setFilled(true);
rect.setColor(Color.RED);
r.setFillColor(Color.MAGENTA);

you would see a rectangle whose border was red and whose

interior was magenta.

In addition to the GFillable interface, the acm.graphics

package includes two interfaces that make it possible to

change the size of an object. Classes in which the dimensions

are defined by a bounding rectangle—GRect, GOval, and

GImage—implement the GResizable interface, which allows

you to change the size of a resizable object gobj by calling
gobj.setSize(newWidth, newHeight);

A much larger set of classes implements the GScalable

interface, which makes it possible to change the size of an

object by multiplying its width and height by a scaling factor.

In the common case in which you want to scale an object

equally in both dimensions, you can call
gobj.scale(sf);

which multiplies the width and height by sf. For example,

you could double the size of a scalable object by calling
gobj.scale(2);

The scale method has a two-argument form that allows

you to scale a figure independently in the x and y directions.

The statement
gobj.scale(1.0, 0.5);

leaves the width of the object unchanged but halves its height.

The methods specified by the GFillable, GResizable, and

GScalable interfaces are summarize.

Transformations in Computer Graphics

106

Methods Defined by Interfaces
GFillable (implemented by GArc, GOval, GPen, GPolygon,

and GRect)
void setFilled(boolean fill)

Sets whether this object is filled (true means filled, false

means outlined).
boolean isFilled()

Returns true if the object is filled.
void setFillColor(Color c)

Sets the colour used to fill this object. If the colour is null,

filling uses the colour of the object.
Colour getFillColor()

Returns the colour used to fill this object.
GResizable (implemented by GImage, GOval, and GRect)
void setSize(double width, double height)

Changes the size of this object to the specified width and

height.
void setSize(GDimension size)

 Changes the size of this object as specified by the

GDimension parameter.
void setBounds(double x, double y, double width, double

height)

Changes the bounds of this object as specified by the

individual parameters.
void setBounds(GRectangle bounds)

Changes the bounds of this object as specified by the

GRectangle parameter.

GScalable (implemented by GArc, GCompound, GImage, GLine,
GOval, GPolygon, and GRect)

void scale(double sf)

Resizes the object by applying the scale factor in each

dimension, leaving the location fixed.
void scale(double sx, double sy)

Scales the object independently in the x and y dimensions

by the specified scale factors.

Transformations in Computer Graphics

107

DESCRIPTIONS OF THE INDIVIDUAL SHAPE
CLASSES

So far, this tutorial has looked only at methods that apply

to all GObjects, along with a few interfaces that define

methods shared by some subset of the GObject hierarchy.

The most important classes in that hierarchy are the shape

classes that appear.

The sections that follow provide additional background on

each of the shape classes and include several simple examples

that illustrate their use.

As you go through the descriptions of the individual shape

classes, you are likely to conclude that some of them are

designed in ways that are less than ideal for introductory

students. In the abstract, this conclusion is almost certainly

correct.

For practical reasons that look beyond the introductory

course, the Java Task Force decided to implement the shape

classes so that they match their counterparts in Java’s

standard Graphicsclass.

In particular, the set of shape classes corresponds precisely

to the facilities that the Graphics class offers for drawing

geometrical shapes, text strings, and images. Moreover, the

constructors for each class take the same parameters and

have the same semantics as the corresponding method in

the Graphics class. Thus, the GArc constructor—which is

arguably the most counterintuitive in many ways—has the

structure it does, not because we thought that structure

was perfect, but because that is the structure used by the

drawArc method in the Graphics class. By keeping the

semantics consistent with its Java counterpart, the

Transformations in Computer Graphics

108

acm.graphicspackage makes it easier for students to move

on to the standard packages as they learn more about

programming.

The GRect Class and its Subclasses
The simplest and most intuitive of the shape classes is the

GRect class, which represents a rectangular box. This class

implements the GFillable, GResizable, and GScalable

interfaces, but otherwise includes no other methods except

its constructor, which comes in two forms. The most common

form of the constructor is
new GRect(x, y, width, height)

which defines both the location and size of the GRect. The

second form of the constructor is
new GRect(width, height)

which defines a rectangle of the specified size whose upper

left corner is at the origin. If you use this second form, you

will typically add the GRect to the canvas at a specific (x, y)

location.

You have already seen one example of the use of the GRect

class in the simple FeltBoard example. A more substantive

example is the Checkerboard programme, which draws a

checkerboard that looks like this:

Code for the Checkerboard example
/*
* File: Checkerboard.java

Transformations in Computer Graphics

109

* ———————————
* This programme draws a checkerboard. The dimensions of

the
* checkerboard is specified by the constants NROWS and
* NCOLUMNS, and the size of the squares is chosen so
* that the checkerboard fills the available vertical

space.
*/
import acm.programme.*;
import acm.graphics.*;

public class Checkerboard extends GraphicsProgram {

/** Runs the programme */
public void run() {

 double sqSize = (double) getHeight() / NROWS;
 for (int i = 0; i < NROWS; i++) {

for (int j = 0; j < NCOLUMNS; j++) {
double x = j * sqSize;

 double y = i * sqSize;
GRect sq=new GRect(x, y, sqSize, sqSize);
sq.setFilled((i + j) % 2 != 0);

 add(sq);
 }
 }
 }

/* Private constants */
 private static final int NROWS = 8; /* Number of

rows */
 private static final int NCOLUMNS = 8; /* Number of

columns */
}

The diagram of the graphics class hierarchy, the GRect

class has two subclasses—GRoundRect and G3DRect—that

define shapes that are essentially rectangles but differ slightly

in the way they are drawn on the screen. The GRoundRect

class has rounded corners, and the G3DRect class has

beveled edges that can be shadowed to make it appear raised

or lowered. These classes extend GRect to change their visual

appearance and to export additional method definitions that

Transformations in Computer Graphics

110

make it possible to adjust the properties of one of these

objects. For GRoundRect, these properties specify the corner

curvature; for G3DRect, the additional methods allow the

client to indicate whether the rectangle should appear raised

or lowered. Neither of these classes are used much in practice,

but they are included in acm.graphics to ensure that it can

support the full functionality of Java’s Graphics class, which

includes analogues for both.

The GOval Class
The GOval class represents an elliptical shape and is

defined so that the parameters of its constructor match the

arguments to the drawOval method in the standard Java

Graphics class. This design is easy to understand as long as

you keep in mind the fact that Java defines the dimensions

of an oval by specifying the rectangle that bounds it. Like

GRect, the GOval class implements the GFillable, GResizable,

and GScalable interfaces but otherwise includes no methods

that are specific to the class.

Transformations in Computer Graphics

111

5

Projection Transformations in
Graphics

The desired modelview matrix so that the correct modelling

and viewing transformations are applied. The desired

projection matrix, which is also used to transform the vertices

in your scene. Before you issue any of the transformation

commands, remember to call;

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

so that the commands affect the projection matrix rather than

the modelview matrix and so that you avoid compound

projection transformations. Since each projection

transformation command completely describes a particular

transformation, typically you don’t want to combine a projection

transformation with another transformation.

The purpose of the projection transformation is to define a

viewing volume, which is used in two ways. The viewing

Transformations in Computer Graphics

112

volume determines how an object is projected onto the screen

(that is, by using a perspective or an orthographic projection),

and it defines which objects or portions of objects are clipped

out of the final image. You can think of the viewpoint we’ve

been talking about as existing at one end of the viewing

volume. At this point, you might want to reread “A Simple

Example: Drawing a Cube” for its overview of all the

transformations, including projection transformations.

PERSPECTIVE PROJECTION
The most unmistakable characteristic of perspective

projection is foreshortening: the farther an object is from

the camera, the smaller it appears in the final image. This

occurs because the viewing volume for a perspective

projection is a frustum of a pyramid (a truncated pyramid

whose top has been cut off by a plane parallel to its base).

Objects that fall within the viewing volume are projected

towards the apex of the pyramid, where the camera or

viewpoint is. Objects that are closer to the viewpoint appear

larger because they occupy a proportionally larger amount

of the viewing volume than those that are farther away, in

the larger part of the frustum. This method of projection is

commonly used for animation, visual simulation, and any

other applications that strive for some degree of realism

because it’s similar to how our eye (or a camera) works.

The command to define a frustum, glFrustum(), calculates

a matrix that accomplishes perspective projection and

multiplies the current projection matrix (typically the identity

matrix) by it. Recall that the viewing volume is used to clip

objects that lie outside of it; the four sides of the frustum, its

Transformations in Computer Graphics

113

top, and its base correspond to the six clipping planes of the

viewing. Objects or parts of objects outside these planes are

clipped from the final image. Note that glFrustum() doesn’t

require you to define a symmetric viewing volume.

Fig. Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble

bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and

multiplies the current matrix by it. The frustum’s viewing

volume is defined by the parameters: (left, bottom, -near) and

(right, top, -near) specify the (x, y, z) coordinates of the lower-

left and upper-right corners of the near clipping plane; near

and far give the distances from the viewpoint to the near and

far clipping planes. They should always be positive.

The frustum has a default orientation in three-dimensional

space. You can perform rotations or translations on the

projection matrix to alter this orientation, but this is tricky

and nearly always avoidable.

Advanced
Also, the frustum doesn’t have to be symmetrical, and its

axis isn’t necessarily aligned with the z-axis. For example,

you can use glFrustum() to draw a picture as if you were

looking through a rectangular window of a house, where the

Transformations in Computer Graphics

114

window was above and to the right of you. Photographers

use such a viewing volume to create false perspectives. You

might use it to have the hardware calculate images at much

higher than normal resolutions, perhaps for use on a printer.

For example, if you want an image that has twice the

resolution of your screen, draw the same picture four times,

each time using the frustum to cover the entire screen with

one-quarter of the image. After each quarter of the image is

rendered, you can read the pixels back to collect the data for

the higher-resolution image.

Although it’s easy to understand conceptually, glFrustum()

isn’t intuitive to use. Instead, you might try the Utility Library

routine gluPerspective(). This routine creates a viewing

volume of the same shape asglFrustum() does, but you specify

it in a different way. Rather than specifying corners of the

near clipping plane, you specify the angle of the field of view

in the y direction and the aspect ratio of the width to height

(x/y). These two parameters are enough to determine an

untruncated pyramid along the line of sight. You also specify

the distance between the viewpoint and the near and far

clipping planes, thereby truncating the pyramid. Note that

gluPerspective() is limited to creating frustums that are

symmetric in both the x- and y-axes along the line of sight,

but this is usually what you want.

Fig. Perspective Viewing Volume Specified by gluPerspective()

Transformations in Computer Graphics

115

void gluPerspective(GLdouble fovy, GLdouble aspect,

GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum

and multiplies the current matrix by it. Fovy is the angle of the

field of view in the x-z plane; its value must be in the range

[0.0,180.0]. Aspect is the aspect ratio of the frustum, its width

divided by its height. Near and far values the distances

between the viewpoint and the clipping planes, along the

negative z-axis. They should always be positive.

Just as with glFrustum(), you can apply rotations or

translations to change the default orientation of the viewing

volume created by gluPerspective(). With no such

transformations, the viewpoint remains at the origin, and

the line of sight points down the negative z-axis.

With gluPerspective(), you need to pick appropriate values

for the field of view, or the image may look distorted. For

example, suppose you’re drawing to the entire screen, which

happens to be 11 inches high. If you choose a field of view of

90 degrees, your eye has to be about 7.8 inches from the

screen for the image to appear undistorted. (This is the

distance that makes the screen subtend 90 degrees.) If your

eye is farther from the screen, as it usually is, the perspective

doesn’t look right. If your drawing area occupies less than

the full screen, your eye has to be even closer. To get a perfect

field of view, figure out how far your eye normally is from the

screen and how big the window is, and calculate the angle

the window subtends at that size and distance. It’s probably

smaller than you would guess. Another way to think about

it is that a 94-degree field of view with a 35-millimeter camera

requires a 20-millimeter lens, which is a very wide-angle lens.

Transformations in Computer Graphics

116

The preceding paragraph mentions inches and millimeters

- do these really have anything to do with OpenGL? The

answer is, in a word, no. The projection and other

transformations are inherently unitless. If you want to think

of the near and far clipping planes as located at 1.0 and 20.0

meters, inches, kilometres, or leagues, it’s up to you. The

only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.

Orthographic Projection
With an orthographic projection, the viewing volume is a

rectangular parallelepiped, or more informally. Unlike

perspective projection, the size of the viewing volume doesn’t

change from one end to the other, so distance from the camera

doesn’t affect how large an object appears. This type of

projection is used for applications such as creating

architectural blueprints and computer-aided design, where

it’s crucial to maintain the actual sizes of objects and angles

between them as they’re projected.

Fig. Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel

viewing volume. As with glFrustum(), you specify the corners

of the near clipping plane and the distance to the far clipping

plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Transformations in Computer Graphics

117

Creates a matrix for an orthographic parallel viewing volume

and multiplies the current matrix by it. (left, bottom, -near)

and (right, top, -near) are points on the near clipping plane

that are mapped to the lower-left and upper-right corners of

the viewport window, respectively. (left, bottom,

-far) and (right, top, -far) are points on the far clipping plane

that are mapped to the same respective corners of the viewport.

Both near and far can be positive or negative.

With no other transformations, the direction of projection

is parallel to the z-axis, and the viewpoint faces towards the

negative z-axis. Note that this means that the values passed

in for far and near are used as negative z values if these

planes are in front of the viewpoint, and positive if they’re

behind the viewpoint.

For the special case of projecting a two-dimensional image

onto a two-dimensional screen, use the Utility Library routine

gluOrtho2D(). This routine is identical to the three-

dimensional version, glOrtho(), except that all the

z coordinates for objects in the scene are assumed to lie

between -1.0 and 1.0. If you’re drawing two-dimensional

objects using the two-dimensional vertex commands, all the

z coordinates are zero; thus, none of the objects are clipped

because of their z values.

void gluOrtho2D(GLdouble left, GLdouble right,

GLdouble bottom, GLdouble top);

Creates a matrix for projecting two-dimensional coordinates

onto the screen and multiplies the current projection matrix by

it. The clipping region is a rectangle with the lower-left corner

at (left, bottom) and the upper-right corner at (right, top).

Transformations in Computer Graphics

118

Viewing Volume Clipping
After the vertices of the objects in the scene have been

transformed by the modelview and projection matrices, any

primitives that lie outside the viewing volume are clipped.

The six clipping planes used are those that define the sides

and ends of the viewing volume.

You can specify additional clipping planes and locate them

wherever you choose. Keep in mind that OpenGL reconstructs

the edges of polygons that get clipped.

2D TRANSFORMATIONS

Transformaions are a fundamental part of computer

graphics. Transformations are used to position objects, to

shape objects, to change viewing positions, and even to

change how something is viewed (e.g. the type of perspective

that is used).

In 3D graphics, we must use 3D transformations. However,

3D transformations can be quite confusing so it helps to

first start with 2D.

There are 4 main types of transformations that one can

perform in 2 dimensions:

• Translations

• Scaling

• Rotation

• Shearing.

Transformations in Computer Graphics

119

These basic transformations can also be combined to

obtain more complex transformations. In order to make the

representation of these complex transformations easier to

understand and more efficient, we introduce the idea of

homogeneous coordinates.

REPRESENTATION OF POINTS/OBJECTS
A point p in 2D is represented as a pair of numbers:

p = (x, y) where x is the x-coordinate of the point p and y is

the y-coordinate of p. 2D objects are often represented as a

set of points (vertices), {p1, p2,..., pn}, and an associated set

of edges {e1, e2,..., em}. An edge is defined as a pair of points

e = {pi, pj}. What are the points and edges of the triangle

below?

We can also write points in vector/matrix notation as

� �
= � �
� �� �

x
p

y

TRANSLATIONS
Assume you are given a point at (x,y)=(2,1). Where

will the point be if you move it 3 units to the right and

1 unit up? Ans: (x’,y’) = (5,2). How was this obtained?

(x’, y’) = (x+3,y+1). That is, to move a point by some amount

dx to the right and dy up, you must add dx to the

x-coordinate and add dy to the y-coordinate.

Transformations in Computer Graphics

120

What was the required transformation to move the green

triangle to the red triangle? Here the green triangle is

represented by 3 points

triangle = { p1=(1, 0), p2=(2, 0), p3=(1.5, 2)}

What are the points and edges in this picture of a house?

What are the transformation is required to move this house

so that the peak of the roof is at the origin? What is required

to move the house as shown in animation?

Matrix/Vector Representation of Translations
A translation can also be represented by a pair of numbers,

t = (tx,ty) where tx is the change in the x-coordinate and ty is

the change in y coordinate. To translate the point

p by t, we simply add to obtain the new (translated) point

q = p + t.

+� � � � � �
= + = + =� � � � � �

+� � � � � �� � � � � �

x x

y y

x t x t
q p t

y t y t

Transformations in Computer Graphics

121

SCALING

The scaling for the x dimension does not have to be the

same as the y dimension. If these are different, then the

object is distorted. What is the scaling in each dimension of

the pictures below?

And if we double the size, where is the resulting object? In

the pictures above, the scaled object is always shifted to the

right.

This is because it is scaled with respect to the origin. That

is, the point at the origin is left fixed. Thus scaling by more

than 1 moves the object away from the origin and scaling of

less than 1 moves the object towards the origin. This can be

seen in the animation below.

Transformations in Computer Graphics

122

This is because of how basic scaling is done. The above

objects have been scaled simply by multiplying each of its

points by the appropriate scaling factor. For example, the

point p=(1.5,2) has been scaled by 2 along x and .5 along y.

Thus, the new point is q = (2×1.5, .5×2) = (1, 1).

Matrix/Vector Representation of Scaling
Scaling transformations are represented by matrices. For

example, the above scaling of 2 and .5 is represented as a

matrix:

Scale matrix:
� � � �

= =� � � �
� � � �� � � �

0 2 0

0 0 .5

sx
s

sy

New point:
� � � � � �

= × = =� � � � � �
� � � � � �� � � � � �

0

0

sx x sx x
q s p

sy y sy y

Scaling about a Particular Point
What do we do if we want to scale the objects about their

centre as show below?

Transformations in Computer Graphics

123

ROTATION
Below, we see objects that have been rotate by 25 degrees.

Again, we see that basic rotations are with respect to the

origin:

Matrix/Vector Representation of Rotation
Counterclockwise rotation of a degrees

=
� �
� �
−� �� �

cos() sin()

sin() cos()

a a

a a

SHEAR

Matrix/Vector Representation of Shear

shear along x axis =
� �
� �
� �� �

1

0 1

shearx

shear along y axis =
� �
� �
� �� �

1 0

1shearx

Transformations in Computer Graphics

124

Combining Transformations
We saw that the basic scaling and rotating transformations

are always with respect to the origin. To scale or rotate about

a particular point (the fixed point) we must first translate

the object so that the fixed point is at the origin. We then

perform the scaling or rotation and then the inverse of the

original translation to move the fixed point back to its original

position.

For example, if we want to scale the triangle by 2 in each

direction about the point fp = (1.5, 1), we first translate all

the points of the triangle by T = (–1.5, 1), scale by 2 (S), and

then translate back by -T=(1.5, 1). Mathematically this looks

like

	
−� � � � � � � � � �
= = + +� �� � � � � � � � � �� �−� � � � � � � � � �� � � � � � � � � �
 �

2 1

2 1

2 0 1.5 1.5

0 2 1 1

x x
q

x y

2D MODELLING TRANSFORMATIONS

Modelling transformations are the mechanism used to

compose an image from modelling primitives. The modelling

proimitives are defined in their own modelling coordinate

system and then placed in the final scene by using modelling

transformations.

We can change the Camera position or World Coordinate

Window to scale or move an entire image, but we may want

to only change a particular part of the image.

Example: We might want to translate and scale the tall

house but not change the short house. We can’t do this by

modifying the window, so we want to apply transformations

to the individual objects in the scene.

Transformations in Computer Graphics

125

Possible modelling transformations include the following:

• Change size of object: Scaling

• Move object: Translation

• Rotate object: Rotation.

2D TRANSLATION
Translation is a simple straight line movement of the object.

(old coordinates are (x, y) and the new coordinates are (x’, y’))

x’ = x + Tx

y’ = y + Ty

For a complex object such as a polygon, add the translation

distances (Tx, Ty) for each endpoint of the object. For a circle

or ellipse:

xc’ = xc + Tx

yc’ = yc + Ty

2D ROTATION
Example of a 2D rotation through an angle w where the

coordinates x, y go into x’, y’. Note that w is positive for a

counterclockwise rotation and that that rotation is about

the origin (0, 0).

Transformations in Computer Graphics

126

 Derive the Formula for Rotation
(old coordinates are (x, y) and the new coordinates are (x’,

y’))

θ = initial angle,

φ = angle of rotation.

x = r cos θ

y = r sin θ

x’ = r cos (θ + φ) = r cos θ cos φ – r sin θ sin φ

y’ = r sin (θ + w) = r sin θ cos φ + r cos θ sin φ

Hence:

x’ = x cos θ – y sin θ

y’ = y cos φ + x sin φ

What if we want to rotate about another point rather than

the origin, e.g., the centre of an object? Then we have the

same problem as with scaling. A solution to this problem is

to perform several transformations rather tnan just one.

Now we could apply the 3 transformations to the object

one at a time. But this is inefficient, especially when the

object has many points. It would be nice to be able to compose

the transformations into one and then apply this total

transformation to the object.

2D SCALING
Scaling alters the size of the object. Sx and Sy are the

scaling factors:

Transformations in Computer Graphics

127

(old coordinates are (x, y) and the new coordinates are (x’,

y’))

x’ = x * Sx

y’ = y * Sy

If Si > 1.0 then the object becomes larger. If Si < 1.0, then

the object becomes smaller. If Sx = Sy then we have uniform

scaling and it maintains the relative proportions of the object.

If Sx <> Sy then we have differential scaling and it deforms

the object.

Examples of Scaling with the object symmetrical about

origin (0, 0). Example of Scaling with the object not

symmetrical about the origin (0, 0). Note that this produces

both a translation and size change.

WINDOWING AND TRANSFORMATION

The ODB_Rip has the ability to apply both windowing and

transformations to the input data.

WINDOWING
When the step to rasterize has been selected, the library

generates a computes a bounding box for the input data

based on the profile associated with that step. Note that when

opening the ODB++ file, the function returns the extents

box for each of the steps found in the ODB++ file.

Transformations in Computer Graphics

128

However using the -extents argument in the setup function

allows the calling programme to define a different data

window as shown below:

TRANSFORMATIONS
Mirroring and Rotation

Once the extents are known (whether computed from the

profile or specified in the setup function) it is then possible

to apply scaling, rotation and mirroring to the selected

window. Note that all transformations are applied using the

centre of the window as a reference point.

Scaling
It is possible to perform scaling independently in X and Y

if this is required.

Only after all the transformations are applied are the bands

defined.

Transformations in Computer Graphics

129

3D TRANSFORMATION

In 3D graphics, transformation is often used to operate on

vertices and vectors. It is also used to convert them in one

space to another. Transformation is performed via

multiplication with a matrix. There are typically three types

of primitive transformation that can be performed on vertices:

translation (where it lies in space relative to the origin),

rotation (its direction in relation to the x, y, z frame), and

scaling (its distance from origin). In addition to those,

projection transformation is used to go from view space to

projection space. The D3DX library contains APIs that can

conveniently construct a matrix for many purposes such as

translation, rotation, scaling, world-to-view transformation,

view-to-projection transformation, etc. An application can

then use these matrices to transform vertices in its scene. A

basic understanding of matrix transformations is required.

We will briefly look at some examples below.

TRANSLATION
Translation refers to moving or displacing for a certain

distance in space. In 3D, the matrix used for translation has

the form:

 1 0 0 0

 0 1 0 0

 0 0 1 0

 a b c 1

where (a, b, c) is the vector that defines the direction and

distance to move. For example, to move a vertex -5 unit along

the X axis (negative X direction), we can multiply it with this

matrix:

Transformations in Computer Graphics

130

 1 0 0 0

 0 1 0 0

 0 0 1 0

 -5 0 0 1

If we apply this to a cube object centred at origin, the result

is that the box is moved 5 units towards the negative X axis,

after translation is applied.

The Effect of Translation

In 3D, a space is typically defined by an origin and three

unique axes from the origin: X, Y and Z. There are several

spaces commonly used in computer graphics: object space,

world space, view space, projection space, and screen space.

ROTATION
Rotation refers to rotating vertices about an axis going

through the origin. Three such axes are the X, Y, and Z axes

in the space. An example in 2D would be rotating the vector

[1 0] 90 degrees counter-clockwise. The result from the

rotation is the vector [0 1]. The matrix used for rotating ?

degrees clockwise about the Y axis looks like this:

cos? 0 -sin? 0

0 1 0 0

sin? 0 cos? 0

0 0 0 1

Figure shows the effect of rotating a cube centred at origin

for 45 degrees about the Y axis.

Transformations in Computer Graphics

131

 SCALING
Scaling refers to enlarging or shrinking the size of vector

components along axis directions. For example, a vector can

be scaled up along all directions or scaled down along the X

axis only. To scale, we usually apply the scaling matrix below:

 p 0 0 0

 0 q 0 0

 0 0 r 0

 0 0 0 1

Where p, q, and r are the scaling factor along the X, Y, and

Z direction, respectively. The effect of scaling by 2 along the

X axis and scaling by 0.5 along the Y axis.

Transformations in Computer Graphics

132

6

Computer-Generated Imagery

Computer-generated imagery (CGI) is the application of

the field of computer graphics or, more specifically, 3D

computer graphics to special effects in art, films, television

programmes, commercials, simulators and simulation

generally, and printed media. The visual scenes may be

either dynamic or static.

The term computer animation refers to dynamic CGI

rendered as a movie. The term virtual world refers to agent-

based, interactive environments. 3D computer graphics

software is used to make computer-generated imagery for

movies, etc. Recent availability of CGI software and increased

computer speeds have allowed individual artists and small

companies to produce professional grade films, games, and

fine art from their home computers. This has brought about

an Internet subculture with its own set of global celebrities,

clichés, and technical vocabulary.

Transformations in Computer Graphics

133

STATIC IMAGES AND LANDSCAPES

Not only do animated images form part of computer-

generated imagery, natural looking landscapes, such as

fractal landscapes are also generated via computer

algorithms. A simple way to generate fractal surfaces is to

use an extension of the triangular mesh method, relying on

the construction of some special case of a de Rham curve,

e.g. midpoint displacement. For instance, the algorithm

may start with a large triangle, then recursively zoom in by

dividing it into 4 smaller Sierpinski triangles, then interpolate

the height of each point from its nearest neighbors. The

creation of a Brownian surface may be achieved not only

by adding noise as new nodes are created, but by adding

additional noise at multiple levels of the mesh. Thus a

topographical map with varying levels of height can be

created using relatively straightforward fractal algorithms.

Some typical, and easy to programme fractals used in CGI

are the plasma fractal and the more dramatic fault fractal.

A large number of specific techniques have been researched

and developed to produce highly focused computer-generated

effects, e.g. the use of specific models to represent the

chemical weathering of stones to model erosion and produce

an “aged appearance” for a given stone-based surface.

ARCHITECTURAL SCENES

Modern architects use services from computer graphic

firms to create 3-dimensional models for both customers

and builders. These computer generated models can be

more accurate than traditional drawings. Architectural

Transformations in Computer Graphics

134

animation (which provides animated movies of buildings,

rather than interactive images) can also be used to see the

possible relationship a building will have in relation to the

environment and its surrounding buildings. The rendering

of architectural spaces without the use of paper and pencil

tools is now a widely accepted practice with a number of

computer -assisted architectural design systems.

Architectural modeling tools allow an architect to visualize

a space and perform “walk throughs” in an interactive

manner, thus providing “interactive environments” both at

the urban and building levels. Specific applications in

architecture not only include the specification of building

structures such as walls and windows, and walk-throughs,

but the effects of light and how sunlight will affect a specific

design at different times of the day. Architectural modeling

tools have now become increasingly internet-based. However,

the quality of internet-based systems still lags those of

sophisticated inhouse modeling systems. In some

applications, computer-generated images are used to “reverse

engineer” historical buildings. For instance, a computer-

generated reconstruction of the monastery at Georgenthal

in Germany was derived from the ruins of the monastery,

yet provides the viewer with a “look and feel” of what the

building would have looked like in its day.

ANATOMICAL MODELS

Computer generated models used in skeletal animation

are not always anatomically correct, however, organizations

such as the Scientific Computing and Imaging Institute

have developed anatomically correct computer-based models.

Transformations in Computer Graphics

135

Computer generated anatomical models can be used both

for instructional and operational purposes. To date, a large

body of artist produced medical images continue to be used

by medical students, such as images by Frank Netter, e.g.

Cardiac images. However, a number of online anatomical

models are becoming available. A single patient X-ray is not

a computer generated image, even in the case of digitized

x-rays. However, in applications which involve CT scans a

three dimensional model is automatically produced from a

large number of single slice x-rays, producing “computer

generated image”. Applications involving magnetic resonance

imaging also bring together a number of “snapshots” (in this

case via magnetic pulses) to produce a composite, internal

image. In modern medical applications, patient specific

models are constructed in “computer assisted surgery”. For

instance, in total knee replacement, the construction of a

detailed patient specific model can be used to carefully plan

the surgery. These three dimensional models are usually

extracted from multiple CT scans of the appropriate parts

of the patient’s own anatomy. Such models can also be used

for planning aortic valve implantations, one of the common

procedures for treating heart disease. Given that the shape,

diameter and position of the coronary openings can vary

greatly from patient to patient, the extraction (from CT

scans) of a model that closely resembles a patient’s valve

anatomy can be highly beneficial in planning the procedure.

GENERATING CLOTH AND SKIN IMAGES

Models of cloth generally fall into three groups: the

geometric-mechanical structure at yarn crossings, secondly

Transformations in Computer Graphics

136

the mechanics of continuous elastic sheets and thirdly the

geometric macroscopic features of cloth. To date, making

the clothing of a digital character automatically fold in a

natural way remains a challenge for many animators. In

addition to their use in film, advertising and other modes

of public display, computer generated images of clothing are

now routinely used by top fashion design firms. The challenge

in rendering human skin images involves three levels of

realism: photo realism in that it should look like real skin

at the static level; physical realism in that it should closely

simulate real skin’s movements and functional realism in

that it should act like real skin in response to actions.

INTERACTIVE SIMULATION AND

VISUALIZATION

Interactive visualization is a general term that applies to

the rendering of data that may vary dynamically and allowing

a user to view the data from multiple perspectives. The

applications areas may vary significantly, ranging from the

visualization of the flow patterns in fluid dynamics to specific

computer aided design applications. The data rendered may

correspond to specific visual scenes that change as the user

interacts with the system, e.g. simulators such as flight

simulators make extensive use of CGI techniques for

representing the world. At the abstract level an interactive

visualization process involves a ‘data pipeline in which the

raw data is managed and filtered to a form that makes it

suitable for rendering. This is often called the “visualization

data”. The visualization data is then mapped to a

Transformations in Computer Graphics

137

“visualization representation” that can be fed to a rendering

system. This is usually called a “renderable representation”.

This representation is then rendered as a displayable image.

As the user interacts with the system, e.g. by using joystick

controls to change their position within the virtual world,

the raw data is fed through the pipeline to create a new

rendered image, often making real-time computational

efficiency a key consideration in such applications.

COMPUTER ANIMATION

While computer generated images of landscapes may be

static, the term computer animation only applies to dynamic

images that resemble a movie. However, in general the term

computer animation refers to dynamic images that do not

allow user interaction, and the term virtual world is used

for the interactive animated environments. Computer

animation is essentially a digital successor to the art of stop

motion animation of 3D models and frame-by-frame

animation of 2D illustrations. Computer generated

animations are more controllable than other more physically

based processes, such as constructing miniatures for effects

shots or hiring extras for crowd scenes, and because it

allows the creation of images that would not be feasible

using any other technology. It can also allow a single graphic

artist to produce such content without the use of actors,

expensive set pieces, or props. To create the illusion of

movement, an image is displayed on the computer screen

and repeatedly replaced by a new image that is similar to

the previous image, but advanced slightly in the time domain

(usually at a rate of 24 or 30 frames/second). This technique

Transformations in Computer Graphics

138

is identical to how the illusion of movement is achieved with

television and motion pictures.

VIRTUAL WORLDS

A virtual world is a simulated environment, which allows

user to interact with animated characters, or interact with

other users through the use of animated characters known

as avatars. Virtual worlds are intended for its users to

inhabit and interact, and the term today has become largely

synonymous with interactive 3D virtual environments, where

the users take the form of avatars visible to others graphically.

These avatars are usually depicted as textual, two-

dimensional, or three-dimensional graphical representations,

although other forms are possible (auditory and touch

sensations for example). Some, but not all, virtual worlds

allow for multiple users.

3D Modeling
In 3D computer graphics, 3D modeling (also known as

meshing) is the process of developing a mathematical

representation of any three-dimensional surface of object

(either inanimate or living) via specialized software. The

product is called a 3D model. It can be displayed as a two-

dimensional image through a process called 3D rendering

or used in a computer simulation of physical phenomena.

The model can also be physically created using 3D Printing

devices. Models may be created automatically or manually.

The manual modeling process of preparing geometric data

for 3D computer graphics is similar to plastic arts such as

sculpting.

Transformations in Computer Graphics

139

MODELS

3D models represent a 3D object using a collection of

points in 3D space, connected by various geometric entities

such as triangles, lines, curved surfaces, etc. Being a

collection of data (points and other information), 3D models

can be created by hand, algorithmically (procedural

modeling), or scanned. 3D models are widely used anywhere

in 3D graphics. Actually, their use predates the widespread

use of 3D graphics on personal computers. Many computer

games used pre-rendered images of 3D models as sprites

before computers could render them in real-time. Today, 3D

models are used in a wide variety of fields. The medical

industry uses detailed models of organs. The movie industry

uses them as characters and objects for animated and real-

life motion pictures. The video game industry uses them as

assets for computer and video games. The science sector

uses them as highly detailed models of chemical compounds.

The architecture industry uses them to demonstrate

proposed buildings and landscapes through Software

Architectural Models. The engineering community uses them

as designs of new devices, vehicles and structures as well

as a host of other uses. In recent decades the earth science

community has started to construct 3D geological models

as a standard practice.

REPRESENTATION
Almost all 3D models can be divided into two categories.

• Solid - These models define the volume of the object

they represent (like a rock). These are more realistic,

Transformations in Computer Graphics

140

but more difficult to build. Solid models are mostly

used for nonvisual simulations such as medical and

engineering simulations, for CAD and specialized

visual applications such as ray tracing and

constructive solid geometry

• Shell/boundary - these models represent the surface,

e.g. the boundary of the object, not its volume (like

an infinitesimally thin eggshell). These are easier to

work with than solid models. Almost all visual models

used in games and film are shell models.

Because the appearance of an object depends largely on

the exterior of the object, boundary representations are

common in computer graphics. Two dimensional surfaces

are a good analogy for the objects used in graphics, though

quite often these objects are non-manifold. Since surfaces

are not finite, a discrete digital approximation is required:

polygonal meshes (and to a lesser extent subdivision surfaces)

are by far the most common representation, although point-

based representations have been gaining some popularity

in recent years. Level sets are a useful representation for

deforming surfaces which undergo many topological changes

such as fluids. The process of transforming representations

of objects, such as the middle point coordinate of a sphere

and a point on its circumference into a polygon

representation of a sphere, is called tessellation. This step

is used in polygon-based rendering, where objects are broken

down from abstract representations (“primitives”) such as

spheres, cones etc., to so-called meshes, which are nets of

interconnected triangles. Meshes of triangles (instead of e.g.

squares) are popular as they have proven to be easy to

Transformations in Computer Graphics

141

render using scanline rendering. Polygon representations

are not used in all rendering techniques, and in these cases

the tessellation step is not included in the transition from

abstract representation to rendered scene.

MODELING PROCESSES

There are five popular ways to represent a model:

• Polygonal modeling - Points in 3D space, called

vertices, are connected by line segments to form a

polygonal mesh. Used, for example, by Blender. The

vast majority of 3D models today are built as textured

polygonal models, because they are flexible and

because computers can render them so quickly.

However, polygons are planar and can only

approximate curved surfaces using many polygons.

• NURBS modeling - NURBS Surfaces are defined by

spline curves, which are influenced by weighted

control points. The curve follows (but does not

necessarily interpolate) the points. Increasing the

weight for a point will pull the curve closer to that

point. NURBS are truly smooth surfaces, not

approximations using small flat surfaces, and so are

particularly suitable for organic modeling. Maya,

Rhino 3d and solidThinking are the most well-known

commercial programmes which use NURBS natively.

• Splines & Patches modeling - Like NURBS, Splines

and Patches depend on curved lines to define the

visible surface. Patches fall somewhere between NURBS

and polygons in terms of flexibility and ease of use.

Transformations in Computer Graphics

142

• Primitives modeling - This procedure takes geometric

primitives like balls, cylinders, cones or cubes as

building blocks for more complex models. Benefits

are quick and easy construction and that the forms

are mathematically defined and thus absolutely

precise, also the definition language can be much

simpler. Primitives modeling is well suited for technical

applications and less for organic shapes. Some 3D

software can directly render from primitives (like

POV-Ray), others use primitives only for modeling

and convert them to meshes for further operations

and rendering.

• Sculpt modeling - Still fairly new method of modeling

3D sculpting has become very popular in the few

short years it has been around. There are 2 types

of this currently, Displacement which is the most

widely used among applications at this moment, and

volumetric. Displacement uses a dense model (often

generated by Subdivision surfaces of a polygon control

mesh) and stores new locations for the vertex positions

through use of a 32bit image map that stores the

adjusted locations. Volumetric which is based loosely

on Voxels has similar capabilities as displacement

but does not suffer from polygon stretching when

there are not enough polygons in a region to achieve

a deformation. Both of these methods allow for very

artistic exploration as the model will have a new

topology created over it once the models form and

possibly details have been sculpted. The new mesh

will usually have the original high resolution mesh

Transformations in Computer Graphics

143

information transferred into displacement data or

normal map data if for a game engine.

The modeling stage consists of shaping individual objects

that are later used in the scene. There are a number of

modeling techniques, including:

• constructive solid geometry

• implicit surfaces

• subdivision surfaces

Modeling can be performed by means of a dedicated

programme (e.g., form•Z, Maya, 3DS Max, Blender,

Lightwave, Modo, solidThinking) or an application component

(Shaper, Lofter in 3DS Max) or some scene description

language (as in POV-Ray). In some cases, there is no strict

distinction between these phases; in such cases modeling

is just part of the scene creation process (this is the case,

for example, with Caligari trueSpace and Realsoft 3D).

Complex materials such as blowing sand, clouds, and liquid

sprays are modeled with particle systems, and are a mass

of 3D coordinates which have either points, polygons, texture

splats, or sprites assigned to them. Sculpt

SCENE SETUP

Scene setup involves arranging virtual objects, lights,

cameras and other entities on a scene which will later be

used to produce a still image or an animation. Lighting is

an important aspect of scene setup. As is the case in real-

world scene arrangement, lighting is a significant

contributing factor to the resulting aesthetic and visual

quality of the finished work. As such, it can be a difficult

Transformations in Computer Graphics

144

art to master. Lighting effects can contribute greatly to the

mood and emotional response effected by a scene, a fact

which is well-known to photographers and theatrical lighting

technicians. It is usually desirable to add color to a model’s

surface in a user controlled way prior to rendering. Most

3D modeling software allows the user to color the model’s

vertices, and that color is then interpolated across the

model’s surface during rendering. This is often how models

are colored by the modeling software while the model is

being created. The most common method of adding color

information to a 3D model is by applying a 2D texture image

to the model’s surface through a process called texture

mapping. Texture images are no different than any other

digital image, but during the texture mapping process,

special pieces of information (called texture coordinates or

UV coordinates) are added to the model that indicate which

parts of the texture image map to which parts of the 3D

model’s surface. Textures allow 3D models to look

significantly more detailed and realistic than they would

otherwise.

Other effects, beyond texturing and lighting, can be done

to 3D models to add to their realism. For example, the

surface normals can be tweaked to affect how they are lit,

certain surfaces can have bump mapping applied and any

other number of 3D rendering tricks can be applied. 3D

models are often animated for some uses. They can

sometimes be animated from within the 3D modeler that

created them or else exported to another programme.

If used for animation, this phase usually makes use of

a technique called “keyframing”, which facilitates creation

Transformations in Computer Graphics

145

of complicated movement in the scene. With the aid of

keyframing, one needs only to choose where an object stops

or changes its direction of movement, rotation, or scale,

between which states in every frame are interpolated. These

moments of change are known as keyframes.

Often extra data is added to the model to make it easier

to animate. For example, some 3D models of humans and

animals have entire bone systems so they will look realistic

when they move and can be manipulated via joints and

bones, in a process known as skeletal animation.

COMPARED TO 2D METHODS

3D photorealistic effects are often achieved without

wireframe modeling and are sometimes indistinguishable in

the final form. Some graphic art software includes filters

that can be applied to 2D vector graphics or 2D raster

graphics on transparent layers. Advantages of wireframe 3D

modeling over exclusively 2D methods include:

• Flexibility, ability to change angles or animate images

with quicker rendering of the changes;

• Ease of rendering, automatic calculation and rendering

photorealistic effects rather than mentally visualizing

or estimating;

• Accurate photorealism, less chance of human error in

misplacing, overdoing, or forgetting to include a visual

effect.

Disadvantages compare to 2D photorealistic rendering

may include a software learning curve and difficulty achieving

Transformations in Computer Graphics

146

certain photorealistic effects. Some photorealistic effects

may be achieved with special rendering filters included in

the 3D modeling software. For the best of both worlds, some

artists use a combination of 3D modeling followed by editing

the 2D computer-rendered images from the 3D model.

3D MODEL MARKET

3CT (3D Catalog Technology) has revolutionized the 3D

model market by offering quality 3D model libraries free of

charge for professionals using various CAD programmes.

Some believe that this uprising technology is gradually

eroding the traditional “buy and sell” or “object for object

exchange” markets although the quality of the products do

not match those sold on specialized 3d marketplaces. A

large market for 3D models (as well as 3D-related content,

such as textures, scripts, etc.) still exists - either for individual

models or large collections. Online marketplaces for 3D

content allow individual artists to sell content that they

have created.

Often, the artists’ goal is to get additional value out of

assets they have previously created for projects. By doing

so, artists can earn more money out of their old content,

and companies can save money by buying pre-made models

instead of paying an employee to create one from scratch.

These marketplaces typically split the sale between

themselves and the artist that created the asset, often in

a roughly 50-50 split. In most cases, the artist retains

ownership of the 3d model; the customer only buys the right

to use and present the model.

Transformations in Computer Graphics

147

HUMAN MODELS

The first widely available commercial application of human

Virtual Models appeared in 1998 on the Lands’ End web

site. The human Virtual Models were created by the company

My Virtual Model Inc. and enabled users to create a model

of themselves and try on 3D clothing. There are several

modern programmes that allow for the creation of virtual

human models (Poser being one example).

Transformations in Computer Graphics

148

7

Workspace Management in
Computer Graphics

The Blender GUI is made up of one or more screens, each

of which can be divided into sections and subsections that

can be of any type of Blender’s views or window-types. Each

window-type’s own GUI elements can be controlled with the

same tools that manipulate 3D view. For example, one can

zoom in and out of GUI-buttons in the same way one zooms

in and out in the 3D viewport. The GUI viewport and screen

layout is fully user-customizable. It is possible to set up the

interface for specific tasks such as video editing or UV mapping

or texturing by hiding features not utilized for the task.

HARDWARE REQUIREMENTS

Blender has very low hardware requirements compared

to other 3D suites. However, for advanced effects and high-

poly models, a powerful system is needed.

Transformations in Computer Graphics

149

FILE FORMAT
Blender features an internal file system that allows one

to pack multiple scenes into a single file (called a “.blend”

file).

• All of Blender’s “.blend” files are forward, backward,

and cross-platform compatible with other versions of

Blender.

• Snapshot “.blend” files can be auto-saved periodically

by the program, making it easier to survive a

programme crash.

• All scenes, objects, materials, textures, sounds,

images, post-production effects for an entire animation

can be stored in a single “.blend” file. Data loaded

from external sources, such as images and sounds,

can also be stored externally and referenced through

either an absolute or relative pathname. Likewise,

“.blend” files themselves can also be used as libraries

of Blender assets.

• Interface configurations are retained in the “.blend”

files, such that what you save is what you get upon

load. This file can be stored as “user defaults” so this

screen configuration, as well as all the objects stored

in it, is used every time you load Blender.

The actual “.blend” file is similar to the EA Interchange

File Format, starting with its own header (for example

BLENDER_v248) that specifies the version, endianness and

pointer size, followed by a collection of binary chunks storing

the data blocks, and all the type and struct definitions also

known as DNA. Although it is hard to read and convert a

Transformations in Computer Graphics

150

“.blend” file to another format using external tools, the

readblend utility can do this. Dozens of import/export scripts

that run inside Blender itself, accessing the object data via

API, make it possible to inter-operate with other 3D tools.

Jeroen Bakker documented the Blender file format to

allow inter-operation with other tooling. The document can

be found at mystery of the blend. A DNA structure browser

is also available on this site.

Blender organizes data as various kinds of “data blocks”,

such as Objects, Meshes, Lamps, Scenes, Materials, Images

and so on. An object in Blender consists of multiple data

blocks - for example, a polygon mesh has at least an Object

and Mesh data block, and usually also a Material. This

allows various data blocks to refer to each other; there may

be, for example, multiple Objects that refer to the same

Mesh, allowing the mesh to be duplicated while only keeping

one copy of the mesh data in memory, and allowing

subsequent editing of all duplicated meshes at the same

time. Data block relationships can also be changed manually.

Data blocks can also be referred to in other .blend files,

allowing the use of .blend files as reusable object libraries.

COMPARISON WITH OTHER 3D SOFTWARE

Blender is a dominant open source product with a range

of features comparable to mid- to high-range commercial,

proprietary software. In 2010, CGenie classed Blender as

a fledgling product with the majority of its users being

“hobbyists” rather than students or professionals but with

its high standards rising year on year. They also reported

Transformations in Computer Graphics

151

that users thought Blender needed more development and

required more compatibility with other programmes.

In 2007, TDT3D considered that Blender’s interface was

not up to industry standards but was nevertheless suited

to fast workflow and was sometimes more intuitive. Poor

documentation was also criticized although there is

community support through an online wiki, and a range of

books published both by the Blender Foundation and

independently.

In 2010, Blender 2.5 Beta was released for open-testing.

Featuring a completely redesigned and greatly simplified

user interface, it aims to improve work flow and ease of use.

Although not yet fully featured, Blender 2.5 is in its final

stages of development and its animation system is considered

by early users to be as good or better than some professional

packages.

DEVELOPMENT

Since the opening of the source, Blender has experienced

significant refactoring of the initial codebase and major

additions to its feature set. Recent improvements include

an animation system refresh; a stack-based modifier system;

an updated particle system (which can also be used to

simulate hair and fur); fluid dynamics; soft-body dynamics;

GLSL shaders support in the game engine; advanced UV

unwrapping; a fully-recoded render pipeline, allowing

separate render passes and “render to texture”; node-based

material editing and compositing; Projection painting.

Transformations in Computer Graphics

152

Part of these developments were fostered by Google’s

Summer of Code program, in which the Blender Foundation

has participated since 2005. The current release version is

2.49b. Primarily, the last release, 2.48a was an update to

reflect many of the Blender Game Engine changes made

throughout the Yo Frankie! project; including real-time

shading, many real-time GLSL materials, and updates to

the physics components. Version 2.48a also made changes

to the animation systems, adds wind simulation, and fixes

a number of backlogged bugs.

Blender 2.5 is currently in the test version release cycle,

beginning with the release of Alpha 0 version on 24 November

2009, and currently 2.56 Beta as of the 30th of December.

New features currently in 2.56 include:

• New user interface

• New animation system, which allows almost any value

to be animated

• Re-written, Python 3.x scripting API

• Smoke simulation

• Ocean simulation

• Updated toolset, with improved implementation

• Approximate indirect lighting

• Volume rendering

• Ray tracing optimizations, rendering some scenes

“up to 10x faster”

• Solidify modifier

• Sculpt brush and stroke upgrade

• Add-on system

Transformations in Computer Graphics

153

• Custom keyboard shortcuts

• Spline IK

• Color management

• Fluid particles (smoothed-particle hydrodynamics)

• Network render

• Deep shadow maps

• Dynamic paint system

SUPPORT

In the month following the release of Blender v2.44, it

was downloaded 800,000 times; this worldwide user base

forms the core of the support mechanisms for the program.

Most users learn Blender through community tutorials and

discussion forums on the internet such as Blender Artists

(previously known as elYsiun); however, another learning

method is to download and inspect ready-made Blender

models. Numerous other sites, for example BlenderArt

Magazine—a free, downloadable magazine with each issue

handling a particular area in 3D development—and

BlenderNation, provide information on everything

surrounding Blender, showcase new techniques and features,

and provide tutorials and other guides.

USE IN THE MEDIA INDUSTRY

Blender started out as an inhouse tool for a Dutch

commercial animation company, NeoGeo. Blender has been

used for television commercials in several parts of the world

including Australia, Iceland, Brazil, Russia and Sweden.

Transformations in Computer Graphics

154

The first large professional project that used Blender was

Spider-Man 2, where it was primarily used to create animatics

and pre-visualizations for the storyboard department.

“As an animatic artist working in the storyboard

department of Spider-Man 2, I used Blender’s 3D modeling

and character animation tools to enhance the storyboards,

re-creating sets and props, and putting into motion action

and camera moves in 3D space to help make Sam Raimi’s

vision as clear to other departments as possible.” - Anthony

Zierhut, Animatic Artist, Los Angeles.

The French-language film Friday or Another Day (Vendredi

ou un autre jour) was the first 35 mm feature film to use

Blender for all the special effects, made on GNU/Linux

workstations. It won a prize at the Locarno International

Film Festival. The special effects were by Digital Graphics

of Belgium. Blender has also been used for shows on the

History Channel, alongside many other professional 3D

graphics programmes. Tomm Moore’s The Secret of Kells,

which was partly produced in Blender by the Belgian studio

Digital Graphics, has been nominated for an Oscar in the

category ‘Best Animated Feature Film’.

ELEPHANTS DREAM (OPEN MOVIE

PROJECT: ORANGE)

In September 2005, some of the most notable Blender

artists and developers began working on a short film using

primarily free software, in an initiative known as the Orange

Movie Project hosted by the Netherlands Media Art Institute

(NIMk). The resulting film, Elephants Dream, premiered on

Transformations in Computer Graphics

155

March 24, 2006. In response to the success of Elephants

Dream, the Blender Foundation founded the Blender Institute

to do additional projects with two announced projects: Big

Buck Bunny, also known as “Project Peach” (a ‘furry and

funny’ short open animated film project) and Yo Frankie,

also known as Project Apricot (an open game in collaboration

with CrystalSpace which reused some of the assets created

during Project Peach).

BIG BUCK BUNNY (OPEN MOVIE PROJECT:

PEACH)

On October 1, 2007, a new team started working on a

second open project, “Peach”, for the production of the

short movie Big Buck Bunny. This time, however, the creative

concept was totally different. Instead of the deep and mystical

style of Elephants Dream, things are more “funny and

furry” according to the official site[The movie had its premiere

on April 10, 2008.

YO FRANKIE! (OPEN GAME PROJECT:

APRICOT)

Apricot is a project for production of a game based on

the universe and characters of the Peach movie (Big Buck

Bunny) using free software. The game is titled Yo Frankie.

The project started February 1, 2008, and development was

completed at the end of July 2008. A finalized product was

expected at the end of August; however, the release was

delayed. The game was released on December 9, 2008,

Transformations in Computer Graphics

156

under either the GNU GPL or LGPL, with all content being

licensed under Creative Commons Attribution 3.0.

PLUMÍFEROS

Plumíferos, a commercial animated feature film created

entirely in Blender, was premiered in February 2010 in

Argentina. Its main characters are anthropomorphic talking

animals.

SINTEL (OPEN MOVIE PROJECT: DURIAN)

The Blender Foundation announced its newest Open

Movie, codenamed Project Durian (in keeping with the

tradition of fruits as code names). It was this time chosen

to make a fantasy action epic of about twelve minutes in

length, starring a female teenager and a young dragon as

the main characters. The film premiered online on September

30 2010.

Geist3D
Geist3D is a free software programme for real time

modelling and rendering three-dimensional graphics and

animations. At this time Geist3D is only available for the

Microsoft Windows operating system. Geist3D began as a

Ph.D. research project at the University of Victoria in 2001.

It was originally designed as a robotics simulation tool, but

over the past five years it has grown into a more general

graphics engine that computes rigid body physics, generates

planetary-sized terrain and renders skeletal based

characters. Geist3D also provides a combination of Petri

Transformations in Computer Graphics

157

nets and Lua scripts as a programming language to interpret

virtual sensor input and control the parameters of a

simulation. The editor has a comprehensive user interface

to construct 3D models, Petri nets, Lua scripts and OpenGL

2.0 shading language programmes using drag-and-drop

operations and integrated source code editors.

K-3D
K-3D is a free 3D modelling and animation software.

Despite its name it is not a KDE application. It features a

plug-in-oriented procedural engine for all of its content. K-

3D supports polygonal modelling, and includes basic tools

for NURBS, patches, curves and animation.

MAIN FEATURES

K-3D’s interface uses platform’s look-and-feel, and it’s

consistent with other applications that already exists.

Because of this new artists will find K-3D easy to understand,

and professionals feel right at home. K-3D is intuitive,

consistent, and discoverable. K-3D features procedural and

parametric work-flows. Properties can be adjusted

interactively and results appear immediately. The powerful,

node-based visualization pipeline allows more possibilities

than traditional modifier stacks or histories. Selection flows

from one modifier to the next. Industrial-strength standards

form the foundation on which K-3D builds - including

native RenderMan(TM) support that integrates tightly with

the K-3D user interface. K-3D supports a node-based

visualization pipeline, thus allowing the connection of

multiple bodies. Work on one side of a model, show the

Transformations in Computer Graphics

158

other side mirrored, and see the end result welded together

as a subdivision surface in real-time. Using K-3D, complex

work-flows are easy to create and understand. Go back,

modify the beginning of a work-flow, and watch as changes

propagate automatically to the end.

MeshLab
MeshLab, is a free 3D mesh processing software program;

MeshLab, started in late 2005, is an open-source general-

purpose system aimed to help the processing of the typical

not-so-small unstructured 3D models that arise in the

pipeline of processing of the data coming from 3D scanning.

MeshLab is oriented to the management and processing of

unstructured large meshes and provides a set of tools for

editing, cleaning, healing, inspecting, rendering and

converting these kinds of meshes.

The automatic mesh cleaning filters includes removal of

duplicated, unreferenced vertices, non manifold edges,

vertices and null faces. Remeshing tools support high quality

simplification based on quadric error measure, various kinds

of subdivision surfaces and two surface reconstruction

algorithms from point clouds based on the ball-pivoting

technique and on the Poisson surface reconstruction

approach. For the removal of noise, usually present in

acquired surfaces, MeshLab supports various kinds of

smoothing filters and tools for curvature analysis and

visualization. It includes a tool for the registration of multiple

range maps based on the Iterative Closest Point algorithm.

MeshLab also includes an interactive direct paint-on-mesh

system that allows to interactively change the color of a

Transformations in Computer Graphics

159

mesh, to define selections and to directly smooth out noise

and small features. MeshLab is available for most platforms,

including Windows, Linux and Mac OS X. The system

supports input/output in the following formats: PLY, STL,

OFF, OBJ, 3DS, VRML 2.0, U3D, X3D and COLLADA.

MeshLab allows also to directly import the point clouds

reconstructed using Photosynth to further process and

reconstruction. MeshLab is used in various academic and

research contexts, like microbiology, Cultural heritage,

surface reconstruction and desktop manufacturing.

Misfit Model 3d
Misfit Model 3d is a 3D computer graphics editor that

works with triangle-based models. It is designed to be easy

to use and easy to extend with plugins and scripts. Misfit

Model 3d is free software and distributed under GNU General

Public License.

FEATURES

• Multi-level undo

• Skeletal animation

• Simple texturing

• Scripting

• Command-line batch processing

• Plugin system for adding new model and image filters

SUPPORTED FILE FORMATS

• MilkShape 3D (ms3d)

• Wavefront (.obj)

Transformations in Computer Graphics

160

• LightWave 3D Object (lwo)

• Quake II model (md2)

• Quake III Arena model (md3)

• Caligari trueSpace (cob)

• AutoCAD (dxf)

OpenFX
OpenFX is also the name of an 2D image plugin standard

used by several image processing packages in motion picture

effects. http://openfx.sourceforge.net. Possibly this page

needs to be split and disambiguated.

OpenFX is an Open-Source, free modeling and animation

studio, distributed under the GNU General Public License,

created by Dr. Stuart Ferguson. He made the decision to

release the source code to the public in the middle of 1999

and released a stable version a year and a half later. The

product, formerly named SoftF/X, was renamed to OpenFX.

The OpenFX featureset includes a full renderer and

raytracing engine, NURBS support, kinematics-based

animation, morphing, and an extensive plugin API. Plugin

capabilities include image post processor effects such as

lens flare, fog and depth of field. Animation effects such as

explosions, waves and dissolves add to the flexibility of the

program. Version 2.0 also features support for modern

graphics cards with hardware GPU acceleration.

OpenFX supports the Win32 platform, including Windows

95, NT, 98, ME, 2000 and XP. It can run under Unix-based

platforms by using the Wine compatibility layer.

Transformations in Computer Graphics

161

Seamless3d
Seamless3d is open source 3D modeling software free

and available for all under the MIT license. The models for

the virtual reality world, Techuelife Island were created

using Seamless3d technology. Techuelife Island is showcased

by Blaxxun as an example of what is possible when using

the interactive multi-user Blaxxun platform.

Many Seamless3d tutorials have been translated to

French.

HISTORY

In 2001 Seamless3d was made freely available online as

a C++ library. The library centered around the creation of

animated single mesh avatars for the Blaxxun 3d multi-

user platform. It allowed the user to create smooth shaped

triangle meshes and join different meshes together with

tangent matching surfaces at the joining edges using a C++

compiler. By February 2003 Seamless3d had been

transformed into a GUI based 3d modelling application with

a file format designed around VRML format. This allowed

Seamless3d files to be edited using VrmlPad utilising its

syntax checking.

In 2005 a script compiler was developed and in May

2006 Seamless3d was able to act as a web browser for

seamless3d files containing complex scripted animations.

In 2006 a set of specialised nodes for creating simple

shapes such as: Sphere, Cylinder, Cone, Torus, Box and

Bezier Lathe were added to make Seamless3d easier for the

novice to quickly make simple models.

Transformations in Computer Graphics

162

In 2007 the animation interface was greatly simplified

by the introduction of a specialised control panel called the

Anim bar. Towards the end of 2007 NURBS were introduced

for making shapes and for synthesizing sounds.

In 2010 NURBS control point animation, NURBS stitching

and a number of other features to aid making movies were

introduced.

BUILD NODE TECHNOLOGY

Seamless3d can be used as a mesh editor and an

animator, however its key feature is its build node technology.

Build nodes allow the user to perform a sequence of complex

operations in real time whenever a control point in the 3d

window is dragged.

NURBS SURFACE POLY EDITING (NSPE)

NSPE allows the user to hand edit the polygons on

NURBS surfaces. This includes being able to drag the vertices

anywhere along the NURBS surface as well as join the

vertices together, break the vertices apart and color them.

NSPE has a significant advantage over simply converting a

NURBS surface to a polygon mesh for editing because NSPE

lets the user be able continue to modify the NURBS surface

for the hand edited polygon structure.

Because NSPE ensures that when a polygon’s vertex is

dragged it will always be on the NURBS surface, NSPE

greatly helps the user to avoid unintentionally changing the

shape of the model when optimizing for real time animation.

Transformations in Computer Graphics

163

FUSING NURBS SURFACES

By including a FuseSurface feature designed for fusing

2 NURBS surfaces together, Seamless3d allows for the

creation of smooth continuous curvy models made from

multiple NURBS surfaces.

SEAMLESSSCRIPT
Seamless3d has its own built in script compiler which

compiles SeamlessScript (a very fast light weight scripting

language) into native machine code. SeamlessScript is

designed to look and feel a lot like JavaScript while being

able to be compiled by a standard C++ compiler. This allows

the user to develop complex animation sequences using a

C++ IDE which gives the user access to professional

debugging aids such as single step execution.

SEAMLESS3D CHAT
The Multi-User Seamless3d chat server designed for 3D

World Wide Web browsing is open source under the MIT

license and can be compiled for both Linux and Windows.

Currently the Seamless3d modeller is used as the 3D chat

client.

An online Seamless3d chat server has been in continuous

service since April 2009. The general public can freely use

it for their own custom made worlds and avatars.

FEATURES

• Exports to VRML, X3D (including H-Anim), OBJ and

POV-Ray formats

Transformations in Computer Graphics

164

• Imports VRML and X3D VRML Classic formats

• Imports Canal/Blaxxun Avatar Studio avatars

• Imports H-Anim

• Imports and Exports Biovision Hierarchy Motion

Capture (BVH) files

• Support for FFmpeg which allows for the creation of

AVI, MPG, MP4 and FLV movie formats

• Transform hierarchies

• Morphing

• Skinned animation

• Texture mapping

• JPEG and PNG texture formats (and BMP when using

DirectX)

• Béziers & NURBS lathes and NURBS patches

• Tangent matched NURBS Surface Fusion

• Nurbs Surface Poly Modeling (NSPE)

• Software robot demonstration help

• Scripting

• Key-frame based and Script based animation

• Sound synthesis using NURBS

• Seamless3d files are a compact human readable text

format

• Multi-User 3D chat web browsing

Wings 3D
Wings 3D is a free, open source, subdivision modeler

inspired by Nendo and Mirai from Izware. Wings 3D is

named after the winged-edge data structure it uses internally

to store coordinate and adjacency data, and is commonly

referred to by its users simply as Wings. Wings 3D is

Transformations in Computer Graphics

165

available for most platforms, including Windows, Linux and

Mac OS X, using the Erlang environment.

Wings 3D can be used to model and texture low to mid-

range polygon models. Wings does not support animations

and has only basic OpenGL rendering facilities, although

it can export to external rendering software such as POV-

Ray and YafRay. Still, Wings is often used in combination

with other software, whereby models made in Wings are

exported to applications more specialized in rendering and

animation such as Blender.

INTERFACE

Wings 3D uses context sensitive menus as opposed to

a highly graphical, icon oriented interface. Modeling is done

using the mouse and keyboard to select and modify different

aspects of a model’s geometry in four different selection

modes: Vertex, Edge, Face and Body. Because of Wings’

context sensitive design, each selection mode has its own

set of mesh tools. Many of these tools offer both basic and

advanced uses, allowing users to specify vectors and points

to change how a tool will affect their model. Wings also

allows you to add textures and materials to your models,

and has built-in AutoUV mapping facilities.

FEATURES

• A wide variety of Selection and Modeling Tools

• Modeling Tool support for Magnets and Vector

Operations

Transformations in Computer Graphics

166

• Customizable Hotkeys and Interface

• Tweak Mode lets you make quick adjustments to a

mesh

• Assign and edit Lighting, Materials, Textures, and

Vertex Colours

• AutoUV Mapping

• Ngon mesh support

• A Plugin Manager for adding and removing plugins

• Import and Export in many popular formats

SUPPORTED FILE FORMATS

Wings loads and saves models in its own format (.wings),

but also supports several standard 3D formats as well.

Transformations in Computer Graphics

167

8

Engineering Drawing

An engineering drawing, a type of technical drawing, is

created within the technical drawing discipline, and used

to fully and clearly define requirements for engineered items.

OVERVIEW

Engineering drawings are usually created in accordance

with standardized conventions for layout, nomenclature,

interpretation, appearance (such as typefaces and line styles),

size, etc. One such standardized convention is called GD&T.

Each field in the Fields of engineering will have its own set

of requirements for the producing drawings in terms line

weight, symbols, and technical jargon. Some fields of

engineering have no GD&T requirements. The purpose of

such a drawing is to accurately and unambiguously capture

all the geometric features of a product or a component. The

end goal of an engineering drawing is to convey all the

Transformations in Computer Graphics

168

required information that will allow a manufacturer to

produce that component. Engineering drawings used to be

created by hand using tools such as pencils, ink,

straightedges, T-squares, French curves, triangles, rulers,

scales, and erasers. Today they are usually done

electronically with computer-aided design (CAD).

The drawings are still often referred to as “blueprints”

or “bluelines”, although those terms are anachronistic from

a literal perspective, since most copies of engineering

drawings that were formerly made using a chemical-printing

process that yielded graphics on blue-colored paper or,

alternatively, of blue-lines on white paper, have been

superseded by more modern reproduction processes that

yield black or multicolour lines on white paper.

The more generic term “print” is now in common usage

in the U.S. to mean any paper copy of an engineering

drawing.

The process of producing engineering drawings, and the

skill of producing them, is often referred to as technical

drawing or drafting, although technical drawings are also

required for disciplines that would not ordinarily be thought

of as parts of engineering.

ENGINEERING DRAWINGS:

COMMON FEATURES

Drawings convey the following critical information:

• Geometry – the shape of the object; represented as

views; how the object will look when it is viewed from

various angles, such as front, top, side, etc.

Transformations in Computer Graphics

169

• Dimensions – the size of the object is captured in

accepted units.

• tolerances – the allowable variations for each

dimension.

• Material – represents what the item is made of.

• Finish – specifies the surface quality of the item,

functional or cosmetic. For example, a mass-marketed

product usually requires a much higher surface

quality than, say, a component that goes inside

industrial machinery.

LINE STYLES AND TYPES
A variety of line styles graphically represent physical

objects. Types of lines include the following:

• visible – are continuous lines used to depict edges

directly visible from a particular angle.

• hidden – are short-dashed lines that may be used to

represent edges that are not directly visible.

• center – are alternately long- and short-dashed lines

that may be used to represent the axes of circular

features.

• cutting plane – are thin, medium-dashed lines, or

thick alternately long- and double short-dashed that

may be used to define sections for section views.

• section – are thin lines in a pattern (pattern determined

by the material being “cut” or “sectioned”) used to

indicate surfaces in section views resulting from

“cutting.” Section lines are commonly referred to as

“cross-hatching.”

Transformations in Computer Graphics

170

• phantom - (not shown) are alternately long- and double

short-dashed thin lines used to represent a feature

or component that is not part of the specified part

or assembly. E.g. billet ends that may be used for

testing, or the machined product that is the focus

of a tooling drawing.

Lines can also be classified by a letter classification in

which each line is given a letter.

• Type A lines show the outline of the feature of an

object. They are the thickest lines on a drawing and

done with a pencil softer than HB.

• Type B lines are dimension lines and are used for

dimensioning, projecting, extending, or leaders. A

harder pencil should be used, such as a 2H.

• Type C lines are used for breaks when the whole

object is not shown. They are freehand drawn and

only for short breaks. 2H pencil

• Type D lines are similar to Type C, except they are

zigzagged and only for longer breaks. 2H pencil

• Type E lines indicate hidden outlines of internal

features of an object. They are dotted lines. 2H pencil

• Type F lines are Type F[typo] lines, except they are

used for drawings in electrotechnology. 2H pencil

• Type G lines are used for centre lines. They are

dotted lines, but a long line of 10–20 mm, then a gap,

then a small line of 2 mm. 2H pencil

• Type H lines are the same as Type G, except that

every second long line is thicker. They indicate the

cutting plane of an object. 2H pencil

Transformations in Computer Graphics

171

• Type K lines indicate the alternate positions of an

object and the line taken by that object. They are

drawn with a long line of 10–20 mm, then a small

gap, then a small line of 2 mm, then a gap, then

another small line. 2H pencil.

MULTIPLE VIEWS AND PROJECTIONS
In most cases, a single view is not sufficient to show all

necessary features, and several views are used. Types of

views include the following:

Orthographic Projection
The orthographic projection shows the object as it looks

from the front, right, left, top, bottom, or back, and are

typically positioned relative to each other according to the

rules of either first-angle or third-angle projection.

• First angle projection is the ISO standard and is

primarily used in Europe. The 3D object is projected

into 2D “paper” space as if you were looking at an

X-ray of the object: the top view is under the front

view, the right view is at the left of the front view.

• Third angle projection is primarily used in the United

States and Canada, where it is the default projection

system according to BS 8888:2006, the left view is

placed on the left and the top view on the top.

Not all views are necessarily used, and determination of

what surface constitutes the front, back, top and bottom

varies depending on the projection used.

Transformations in Computer Graphics

172

Auxiliary Projection
An auxiliary view is an orthographic view that is projected

into any plane other than one of the six principal views.

These views are typically used when an object contains

some sort of inclined plane. Using the auxiliary view allows

for that inclined plane (and any other significant features)

to be projected in their true size and shape. The true size

and shape of any feature in an engineering drawing can

only be known when the Line of Sight (LOS) is perpendicular

to the plane being referenced.

Isometric Projection
The isometric projection show the object from angles in

which the scales along each axis of the object are equal.

Isometric projection corresponds to rotation of the object by

± 45° about the vertical axis, followed by rotation of

approximately ± 35.264° [= arcsin(tan(30°))] about the horizontal

axis starting from an orthographic projection view. “Isometric”

comes from the Greek for “same measure”. One of the things

that makes isometric drawings so attractive is the ease with

which 60 degree angles can be constructed with only a compass

and straightedge. Isometric projection is a type of axonometric

projection. The other two types of axonometric projection are:

• Dimetric projection

• Trimetric projection

Oblique Projection
An oblique projection is a simple type of graphical

projection used for producing pictorial, two-dimensional

images of three-dimensional objects:

Transformations in Computer Graphics

173

• it projects an image by intersecting parallel rays

(projectors)

• from the three-dimensional source object with the

drawing surface (projection plan).

In both oblique projection and orthographic projection,

parallel lines of the source object produce parallel lines in

the projected image.

Perspective
Perspective is an approximate representation on a flat

surface, of an image as it is perceived by the eye. The two

most characteristic features of perspective are that objects

are drawn:

• Smaller as their distance from the observer increases

• Foreshortened: the size of an object’s dimensions

along the line of sight are relatively shorter than

dimensions across the line of sight.

SECTION VIEWS
Projected views (either Auxiliary or Orthographic) which

show a cross section of the source object along the specified

cut plane. These views are commonly used to show internal

features with more clarity than may be available using

regular projections or hidden lines. In assembly drawings,

hardware components (e.g. nuts, screws, washers) are

typically not sectioned.

SCALE
Plans are usually “scale drawings”, meaning that the

plans are drawn at specific ratio relative to the actual size

Transformations in Computer Graphics

174

of the place or object. Various scales may be used for

different drawings in a set. For example, a floor plan may

be drawn at 1:50 (1:48 or 1/4"=1'-0") whereas a detailed

view may be drawn at 1:25 (1:24 or 1/2"=1'-0"). Site plans

are often drawn at 1:200 or 1:100.

SHOWING DIMENSIONS
The required sizes of features are conveyed through use

of dimensions. Distances may be indicated with either of two

standardized forms of dimension: linear and ordinate.

• With linear dimensions, two parallel lines, called

“extension lines,” spaced at the distance between two

features, are shown at each of the features. A line

perpendicular to the extension lines, called a

“dimension line,” with arrows at its endpoints, is

shown between, and terminating at, the extension

lines. The distance is indicated numerically at the

midpoint of the dimension line, either adjacent to it,

or in a gap provided for it.

• With ordinate dimensions, one horizontal and one

vertical extension line establish an origin for the

entire view. The origin is identified with zeroes placed

at the ends of these extension lines. Distances along

the x- and y-axes to other features are specified

using other extension lines, with the distances

indicated numerically at their ends.

Sizes of circular features are indicated using either

diametral or radial dimensions. Radial dimensions use an

“R” followed by the value for the radius; Diametral dimensions

use a circle with forward-leaning diagonal line through it,

Transformations in Computer Graphics

175

called the diameter symbol, followed by the value for the

diameter. A radially-aligned line with arrowhead pointing to

the circular feature, called a leader, is used in conjunction

with both diametral and radial dimensions. All types of

dimensions are typically composed of two parts: the nominal

value, which is the “ideal” size of the feature, and the

tolerance, which specifies the amount that the value may

vary above and below the nominal.

• Geometric dimensioning and tolerancing is a method

of specifying the functional geometry of an object.

SIZES OF DRAWINGS
Sizes of drawings typically comply with either of two

different standards, ISO (World Standard) or ANSI/ASME

Y14 (American), according to the following tables:

ISO A Drawing Sizes (mm)
A4 210 X 297

A3 297 X 420

A2 420 X 594

A1 594 X 841

A0 841 X 1189

ANSI/ASME Drawing Sizes (Inches)
A8.5" X 11"

B11" X 17"

C17" X 22"

D22" X 34"

E34" X 44"

Transformations in Computer Graphics

176

Other U.S. Drawing Sizes
D1 24" X 36"

E1 30" X 42"

The metric drawing sizes correspond to international

paper sizes. These developed further refinements in the

second half of the twentieth century, when photocopying

became cheap. Engineering drawings could be readily

doubled (or halved) in size and put on the next larger (or,

respectively, smaller) size of paper with no waste of space.

And the metric technical pens were chosen in sizes so that

one could add detail or drafting changes with a pen width

changing by approximately a factor of the square root of 2.

A full set of pens would have the following nib sizes: 0.13,

0.18, 0.25, 0.35, 0.5, 0.7, 1.0, 1.5, and 2.0 mm. However,

the International Organization for Standardization (ISO)

called for four pen widths and set a colour code for each:

0.25 (white), 0.35 (yellow), 0.5 (brown), 0.7 (blue); these nibs

produced lines that related to various text character heights

and the ISO paper sizes. All ISO paper sizes have the same

aspect ratio, one to the square root of 2, meaning that a

document designed for any given size can be enlarged or

reduced to any other size and will fit perfectly. Given this

ease of changing sizes, it is of course common to copy or

print a given document on different sizes of paper, especially

within a series, e.g. a drawing on A3 may be enlarged to

A2 or reduced to A4. The U.S. customary “A-size” corresponds

to “letter” size, and “B-size” corresponds to “ledger” or

“tabloid” size. There were also once British paper sizes,

which went by names rather than alphanumeric

Transformations in Computer Graphics

177

designations. American National Standards Institute (ANSI)

Y14.2, Y14.3, and Y14.5 are standards that are commonly

used in the U.S.

TECHNICAL LETTERING
Technical lettering is the process of forming letters,

numerals, and other characters in technical drawing. It is

used to describe, or provide detailed specifications for, an

object. With the goals of legibility and uniformity, styles are

standardized and lettering ability has little relationship to

normal writing ability. Engineering drawings use a Gothic

sans-serif script, formed by a series of short strokes. Lower

case letters are rare in most drawings of machines.

EXAMPLE OF AN ENGINEERING DRAWING
Here is an example of an engineering drawing (an isometric

view of the same object is shown above). The different line

types are colored for clarity.

• Black = object line and hatching

• Red = hidden line

• Blue = center line of piece or opening

• Magenta = phantom line or cutting plane line

Sectional views are indicated by the direction of arrows,

as in the example above.

Computational Geometry
Computational geometry is a branch of computer science

devoted to the study of algorithms which can be stated in

terms of geometry. Some purely geometrical problems arise

out of the study of computational geometric algorithms, and

Transformations in Computer Graphics

178

such problems are also considered to be part of

computational geometry. The main impetus for the

development of computational geometry as a discipline was

progress in computer graphics and computer-aided design

and manufacturing (CAD/CAM), but many problems in

computational geometry are classical in nature, and may

come from mathematical visualization. Other important

applications of computational geometry include robotics

(motion planning and visibility problems), geographic

information systems (GIS) (geometrical location and search,

route planning), integrated circuit design (IC geometry design

and verification), computer-aided engineering (CAE)

(programming of numerically controlled (NC) machines).

The main branches of computational geometry are:

• Combinatorial computational geometry, also called

algorithmic geometry, which deals with geometric

objects as discrete entities. A groundlaying book in

the subject by Preparata and Shamos dates the first

use of the term “computational geometry” in this

sense by 1975.

• Numerical computational geometry, also called machine

geometry, computer-aided geometric design (CAGD),

or geometric modeling, which deals primarily with

representing real-world objects in forms suitable for

computer computations in CAD/CAM systems. This

branch may be seen as a further development of

descriptive geometry and is often considered a branch

of computer graphics or CAD. The term

“computational geometry” in this meaning has been

in use since 1971.

Transformations in Computer Graphics

179

COMBINATORIAL COMPUTATIONAL

GEOMETRY

The primary goal of research in combinatorial

computational geometry is to develop efficient algorithms

and data structures for solving problems stated in terms

of basic geometrical objects: points, line segments, polygons,

polyhedra, etc.

Some of these problems seem so simple that they were

not regarded as problems at all until the advent of computers.

Consider, for example, the Closest pair problem:

• Given n points in the plane, find the two with the

smallest distance from each other.

One could compute the distances between all the pairs

of points, of which there are n(n-1)/2, then pick the pair

with the smallest distance. This brute-force algorithm takes

O(n2) time; i.e. its execution time is proportional to the

square of the number of points. A classic result in

computational geometry was the formulation of an algorithm

that takes O(n log n). Randomized algorithms that take O(n)

expected time, as well as a deterministic algorithm that

takes O(n log log n) time, have also been discovered.

Computational geometry focuses heavily on computational

complexity since the algorithms are meant to be used on

very large datasets containing tens or hundreds of millions

of points.

For large data sets, the difference between O(n2) and O(n

log n) can be the difference between days and seconds of

computation.

Transformations in Computer Graphics

180

PROBLEM CLASSES
The core problems in computational geometry may be

classified in different ways, according to various criteria.

The following general classes may be distinguished.

Static Problems
In the problems of this category, some input is given and

the corresponding output needs to be constructed or found.

Some fundamental problems of this type are:

• Convex hull: Given a set of points, find the smallest

convex polyhedron/polygon containing all the points.

• Line segment intersection: Find the intersections

between a given set of line segments.

• Delaunay triangulation

• Voronoi diagram: Given a set of points, partition the

space according to which points is closest to the

given points.

• Linear programming

• Closest pair of points: Given a set of points, find the

two with the smallest distance from each other.

• Euclidean shortest path: Connect two points in a

Euclidean space (with polyhedral obstacles) by a

shortest path.

• Polygon triangulation: Given a polygon, partition its

interior into triangles

• Mesh generation

The computational complexity for this class of problems

is estimated by the time and space (computer memory)

required to solve a given problem instance.

Transformations in Computer Graphics

181

Geometric Query Problems
In geometric query problems, commonly known as

geometric search problems, the input consists of two parts:

the search space part and the query part, which varies over

the problem instances. The search space typically needs to

be preprocessed, in a way that multiple queries can be

answered efficiently.

Some fundamental geometric query problems are:

• Range searching: Preprocess a set of points, in order

to efficiently count the number of points inside a

query region.

• Point location: Given a partitioning of the space into

cells, produce a data structure that efficiently tells

in which cell a query point is located.

• Nearest neighbor: Preprocess a set of points, in order

to efficiently find which point is closest to a query

point.

• Ray tracing: Given a set of objects in space, produce

a data structure that efficiently tells which object a

query ray intersects first.

If the search space is fixed, the computational complexity

for this class of problems is usually estimated by:

• the time and space required to construct the data

structure to be searched in

• the time (and sometimes an extra space) to answer

queries.

For the case when the search space is allowed to vary,

see “Dynamic problems”.

Transformations in Computer Graphics

182

Dynamic Problems
Yet another major class is the dynamic problems, in

which the goal is to find an efficient algorithm for finding

a solution repeatedly after each incremental modification of

the input data (addition or deletion input geometric elements).

Algorithms for problems of this type typically involve dynamic

data structures. Any of the computational geometric

problems may be converted into a dynamic one, at the cost

of increased processing time. For example, the range

searching problem may be converted into the dynamic range

searching problem by providing for addition and/or deletion

of the points. The dynamic convex hull problem is to keep

track of the convex hull, e.g., for the dynamically changing

set of points, i.e., while the input points are inserted or

deleted.

The computational complexity for this class of problems

is estimated by:

• the time and space required to construct the data

structure to be searched in

• the time and space to modify the searched data

structure after an incremental change in the search

space

• the time (and sometimes an extra space) to answer

a query.

Variations
Some problems may be treated as belonging to either of

the categories, depending on the context. For example,

consider the following problem.

Transformations in Computer Graphics

183

• Point in polygon: Decide whether a point is inside or

outside a given polygon.

In many applications this problem is treated as a single-

shot one, i.e., belonging to the first class. For example, in

many applications of computer graphics a common problem

is to find which area on the screen is clicked by a mouse

cursor. However in some applications the polygon in question

is invariant, while the point represents a query. For example,

the input polygon may represent a border of a country and

a point is a position of an aircraft, and the problem is to

determine whether the aircraft violated the border. Finally,

in the previously mentioned example of computer graphics,

in CAD applications the changing input data are often

stored in dynamic data structures, which may be exploited

to speed-up the point-in-polygon queries. In some contexts

of query problems there are reasonable expectations on the

sequence of the queries, which may be exploited either for

efficient data structures or for tighter computational

complexity estimates. For example, in some cases it is

important to know the worst case for the total time for the

whole sequence of N queries, rather than for a single query.

NUMERICAL COMPUTATIONAL GEOMETRY

This branch is also known as geometric modelling and

computer-aided geometric design (CAGD). Core problems

are curve and surface modelling and representation. The

most important instruments here are parametric curves

and parametric surfaces, such as Bezier curves, spline

curves and surfaces. An important non-parametric approach

is the level set method.

Transformations in Computer Graphics

184

Application areas include shipbuilding, aircraft, and

automotive industries. The modern ubiquity and power of

computers means that even perfume bottles and shampoo

dispensers are designed using techniques unheard of by

shipbuilders of 1960s.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Introduction to Transformation
	Chapter 2 The Evolution of Computer Graphics
	Chapter 3 Graphics System Device
	Chapter 4 Computer Graphics Software
	Chapter 5 Projection Transformations in Graphics
	Chapter 6 Computer-Generated Imagery
	Chapter 7 Workspace Management in Computer Graphics
	Chapter 8 Engineering Drawing

