

DESIGN AND ANALYSIS
TECHNIQUES

DESIGN AND ANALYSIS
TECHNIQUES

Emil Hudson

Design and Analysis Techniques

by Emil Hudson

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664204

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Principles of Design 1

Chapter 2 Virtual Design and Construction 21

Chapter 3 Electronic Design Automation 27

Chapter 4 The Evolution of Web Design 52

Chapter 5 Multidisciplinary Design and Optimization 82

Chapter 6 Analysis of Algorithms 101

Chapter 7 Analysing Animated Cartoons and their

Evolution 127

1

Principles of Design

Generally, all the principles of design, also known as

principles of composition, apply to any piece you may create.

How you apply those principles determines how effective

your design is in conveying the desired message and how

attractive it appears. There is seldom only one correct way

to apply each principle but check your documents to see how

well you have applied each of these six principles of design.

BALANCE

Design and Analysis Techniques

2

Generally, all the principles of design, also known as

principles of composition, apply to any piece you may create.

How you apply those principles determines how effective

your design is in conveying the desired message and how

attractive it appears. There is seldom only one correct way

to apply each principle but check your documents to see how

well you have applied each of these six principles of design.

BALANCE

Visual balance comes from arranging elements on the

page so that no one section is heavier than the other. Or,

a designer may intentionally throw elements out of balance

to create tension or a certain mood. Are your page elements

all over the place are does each portion of the page balance

out the rest? If out of balance, is it done purposely and with

a specific intention in mind?

PROXIMITY/UNITY

In design, proximity or closeness creates a bond between

people and between elements on a page. How close together

or far apart elements are placed suggests a relationship (or

lack of) between otherwise disparate parts.

Design and Analysis Techniques

3

Unity is also achieved by using a third element to connect

distant parts. Are title elements together? Is contact

information all in one place? Do frames and boxes tie

together or separate related elements in your document?

ALIGNMENT

Alignment brings order to chaos. How you align type

and graphics on a page and in relation to each other can

make your layout easier or more difficult to read, foster familiarity,

or bring excitement to a stale design. Have you used a grid?

Is there a common alignment — top, bottom, left, right,

or centered — between blocks of text and graphics on the

Design and Analysis Techniques

4

page? Does your text alignment aid or hinder readability?

If certain elements are out of alignment, was it done

purposefully with a specific design goal in mind?

REPETITION/CONSISTENCY

Repeating design elements and consistent use of type

and graphics styles within a document shows a reader

where to go and helps them navigate your designs and

layouts safely. Insure that your document utilizes the

principles of repetition, consistency, and unity in page design.

Do page numbers appear in the same location from page to

page? Are major and minor headlines consistent in size,

style, or placement? Have you used a consistent graphic or

illustration style throughout?

CONTRAST

In design, big and small elements, black and white text,

squares and circles, can all create contrast in design.

Contrast helps different design elements stand out. Is there

enough contrast between your text (size and color) and

background (color and pattern) to keep text readable? Is

Design and Analysis Techniques

5

everthing all the same size even when some elements are

more important than others?

WHITE SPACE

Designs that try to cram too much text and graphics

onto the page are uncomfortable and may be impossible to

read. White space gives your design breathing room. Do you
have enough space between columns of text? Does text run
into frames or graphics? Do you have a generous margin?

You can also have too much white space if items float on

the page without any anchor.

ADDITIONAL PRINCIPLES OF DESIGN

In addition to or in place of some of these principles of

design, other designers and instructors may include

Design and Analysis Techniques

6

principles such as harmony, flow, or hierarchy. Some

principles may be combined or go by other names such as

grouping (proximity), emphasis (use of various other

principles to create a focal point). These are really different

ways of expressing the same basic good page layout practices.

BASIC PRINCIPLES OF GRAPHIC DESIGN YOU
TAKE FOR GRANTED EVERYDAY

Whether you’re designing a logo, an event announcement,

a social network banner, a letterhead, or an email
newsletter; you absolutely need to know five basic principles
of graphic design. Graphic designer and best selling author
Robin Williams explains these principles in her classic
book, The Non-Designer’s Design Book.

Today we will be providing an overview of these principles
using a few contemporary examples.

PROXIMITY

Proximity means grouping elements together so that you

guide the viewer/reader to different parts of the message.

Notice below in the template on the left, taken from Apple’s

Pages, related elements are grouped together, as opposed

to the linear arrangement of amateur designs as shown on

the right.

Design and Analysis Techniques

7

Though at first the elements may appear scattered, their

proximity adds unity and continuity to the page. Even if you

intend on sticking to templates, it still helps to know design

principles for the purposes of customizing an existing design.

ALIGNMENT

Another important design principle is aligning elements

in a visual and readable arrangement. Most amateur

designers start off by aligning everything in the center of

the page, but that’s not the only way. Again with the

“scattered” looking design, we can see the alignment of

elements that helps keep the design balanced. The top

group of text is left-aligned, and three larger text elements

are vertically aligned.

It’s important to be consistent in the alignment of

elements. When you look at the design and something

doesn’t feel right, play around with the alignment and see

if the design can be improved.

REPETITION

Like the use of repetitious hooks in a song, repeating

elements in a graphic design can be visually appealing. In

Design and Analysis Techniques

8

the two examples below, a numbered list is used, but

there’s also the repetition of the blue circles that make a

bolder statement.

In the layout on the right, the image of the sandwiched

is cropped and masked in repeating squares, as well as the

use of repeated red strokes above the word “PANE.” Repetition

puts emphasis on particular elements of a design, and it

draws the reader’s attention to those elements.

CONTRAST

Contrast between design elements can make a

presentation stand out and get noticed. Take for example

this original template from the personal graphic design site,

Canva.com. The elements of the design are grouped together,

with strong alignment and repetition of of the arrows and

bullet points. But for some purposes, the original design

could be a little flat.

Design and Analysis Techniques

9

Adding color contrast makes the design pop, and it

draws attention to important parts of the presentation and

message.

Notice another piece of contrast: the two arrows are

followed by the check in the circle, which sends a visual

message. The color of that element could also be changed

to add contrast.

WHITE SPACE

Depending on the presentation, the use of white space

can be very powerful in design. It’s useful when you want

to make a direct message, to stand out above the clutter

Design and Analysis Techniques

10

found in many graphic designs. In this Canva business card

template, the empty space helps bring clarity to the message.

A card reader first sees the graphic element, then the

owner’s name, followed by the contact information. Elements

on the card are balanced and uncluttered.

The same goes for this the coversheet of this Pages

project proposal template. The white space provides room

for the clean font style of the title, the graphic elements,

and the grouped text. Don’t be afraid of leaving white space

in your design. As Robin Williams points out, white space

can also be a form of contrast.

Design and Analysis Techniques

11

LEARNING GRAPHIC PRINCIPLES

I’m not a graphic designer, but years ago I learned a lot

from working through the exercises of Robin

Williams’ book. Canva.com also provides several design

tutorials that cover the above basic principles and several

other design techniques. The site makes it easy for users

to customize templates and save designs for later use.

Try your hand at applying the above principles to your

next graphic design project, and let us know your thoughts,

ideas, and tips for learning graphic design.

WHAT IS GRAPHIC DESIGN?

Graphic design is the art of visual communication through

the use of images, words, and ideas to give information to

the viewers. Graphic design can be used for advertising, or

just for entertainment intended for the mind.

ALIGNMENT

Alignment in graphic design is the keeping of related

objects in line.

BALANCE

Designs in balance (or equilibrium) have their parts

arrangement planned, keeping a coherent visual pattern

(color, shape, space). “Balance” is a concept based on human

perception and the complex nature of the human senses

of weight and proportion. Humans can evaluate these visual

elements in several situations to find a sense of balance.

A design composition does not have to be symmetrical or

linear to be considered balanced, the balance is global to

Design and Analysis Techniques

12

all elements even the absence of content. In this context

perfectly symmetrical and linear compositions are not

necessarily balanced and so asymmetrical or radial

distributions of text and graphic elements can achieve

balance in a composition.

CONTRAST

Distinguishing by comparing/creating differences. Some

ways of creating contrast among elements in the design

include using contrasting colors, sizes, shapes, locations,

or relationships. For text, contrast is achieved by mixing

serif and sans-serif on the page, by using very different type

styles, or by using type in surprising or unusual ways.

Another way to describe contrast, is to say “a small object

next to a large object will look smaller”. As contrast in size

diminishes, monotony is approached.

EMPHASIS

Making a specific element stand out or draw attention

to the eye. Emphasis can be achieved in graphic design by

placing elements on the page in positions where the eye is

naturally drawn, by using other principles such as contrast,

repetition, or movement. Bold and italic type provides

emphasis for text. Graphic elements gain emphasis through

size, visual weight, color, complexity, uniqueness, placement

on the page, and other features.

GESTALT

Sometimes considered a distinct principle of design,

gestalt is the concept that “the whole is greater than the

Design and Analysis Techniques

13

sum of its parts.” Gestalt is a concept from psychology,

where theorists note the propensity of humans to

conceptually group things together to make a meaningful

whole. When viewing designs, humans apply this principle

unconsciously by seeing connections and relationships

among and between the elements in the design. The overall

perception of gestalt in a design is created through harmony,

unity, balance, proportion, proximity, and other visual cues.

Designers can use this principle to create visual connections

and relationships that clarify and strengthen the overall

“feel” and meaning of the design.

HARMONY

As with music, graphical elements can be said to be

working in harmony - the individual parts come together

as visually compelling and a meaningful whole. Disharmony

can also be used just as it is in musical compositions: to

enhance the emotional complexity, to challenge the viewer,

and to give a contrast within the overall composition.

MOVEMENT

Movement is creating an instability, making motion to

blur the image. Movement can be achieved by using graphic

elements that direct the eye in a certain direction such as

arrows that point the way overtly or a series of lines or dots

that get progressively larger or smaller, creating a more

subtle sense of movement. Movement can be accomplished

simply by using a photograph or clip art of something

moving - a runner - as opposed to something stationary -

a person standing.

Design and Analysis Techniques

14

PROPORTION

This indicates the relative visual size and weight of

particular graphical elements in a design composition.

PROXIMITY

Closeness or distance of individual design elements. Close

proximity indicates a connection.

REPETITION

Repeating a sequence; having it occur more than a few

times. In design, repetition creates visual consistency in

page designs, such as using the same style of headlines,

the same style of initial capitals, or repeating the same basic

layout from one page to another.

Excessive repetition (monotony) may lead to boredom

and uninteresting compositions. If one cannot avoid excessive

repetitions for any reason, do not forget to add some visual

breaks and white spaces where eyes can rest for a while.

RHYTHM

Successful designs have an effective ebb and flow. Text

and Graphics should seem to be paced and patterned.

Spacing is an effective application of this principle. Second,

human beings are more comfortable with variation in general.

Psychologically, most any serious lack in variation of anything

(a solid, a line, a sound, a situation) can become very

boring. Adding a little variation at non-specific intervals

(every now and again) gives most any design an interesting

appeal as long as it is not overdone. In setting type, rhythm

can be created or disrupted. Compare the gibberish strings,

Design and Analysis Techniques

15

“as erav mono ewone zenao oro remuna oravanam” and

“githol urtym reislyt quadirit”. Notice how the latter seems

to be more organic and readable than the former. This is

resultant of two things. One, the eye more easily follows

abnormalities and variation, like an ocular foothold. Too-

narrow columns result in over-hyphenation. Images that

interrupt a passage of text can break the rhythm for the

reader and they could disturb the visual appearance of the

page.

UNITY

Unity creates a feeling of wholeness. Unity is usually

achieved when the parts complement each other in a way

where they have something in common. Unity can be

achieved by use of the same color, or different tints of it,

or using a similar graphic style for illustrations.

WHITE SPACE

Areas of a design are devoid of text or graphics. White

space includes margins, gutters, space between lines of

type (leading), off-set of text from images (text wraps) and

any other part of the page that is empty. White space is

also analogous to “negative space” where “positive space”

is defined as images, blocks of text, and other graphical

elements. In graphic design, the white space, or negative

space, is considered an important element of the overall

design. It is used - and evaluated - based on the same

criteria as the rest of the elements in the design. White

space can add to or detract from the balance, unity, harmony,

rhythm, and overall success of a design. White space can

Design and Analysis Techniques

16

give emphasis, contrast, and movement. It can be used for

repetition and pattern, and work within various relationships

with other elements of the positive and negative spaces in

the design.

DESIGN ELEMENTS AND PRINCIPLES

Visual Design elements and principles describe

fundamental ideas about the practice of good visual design.

As William Lidwell stated in Universal Principles of Design:

The best designers sometimes disregard the principles

of design. When they do so, however, there is usually some

compensating merit attained at the cost of the violation.

Unless you are certain of doing as well, it is best to abide

by the principles.

DESIGN ELEMENTS

Design elements are the basic units of a painting, drawing,

design or other visual piece and include:

COLOR

• Color can play a large role in the elements of design

 with the color wheel being used as a tool, and color

theory providing a body of practical guidance to color

mixing and the visual impacts of specific color

combination.

Uses:

• Color can aid organization so develop a color strategy

and stay consistent with those colors.

• It can give emphasis to create a hierarchy to the piece

of art

Design and Analysis Techniques

17

ATTRIBUTES

• Hue

• Values and tints and shades of colors that are created

by adding black to a color for a shade and white for

a tint. Creating a tint or shade of color reduces

the saturation.

• Saturation gives a color brightness or dullness.

SHAPE

A shape is defined as a two or more dimensional area

that stands out from the space next to or around it due

to a defined or implied boundary, or because of differences

of value, color, or texture. All objects are composed of

shapes and all other ‘Elements of Design’ are shapes in

some way.

CATEGORIES

• Mechanical Shapes or Geometric Shapes are the shapes

that can be drawn using a ruler or compass. Mechanical

shapes, whether simple or complex, produce a feeling

of control or order.

• Organic Shapes are freehand drawn shapes that are

complex and normally found in nature. Organic shapes

produce a natural feel.

TEXTURE

Meaning the way a surface feels or is perceived to feel.

Texture can be added to attract or repel interest to an

element, depending on the pleasantness of the texture.

Design and Analysis Techniques

18

Types of texture:

• Tactile texture is the actual three-dimension feel of a

surface that can be touched. Painter can use impasto to

build peaks and create texture.

• Visual texture is the illusion of the surfaces peaks and

valleys, like the tree pictured. Any texture shown in

a photo is a visual texture, meaning the paper is

smooth no matter how rough the image perceives it

to be.

Most textures have a natural touch but still seem to

repeat a motif in some way. Regularly repeating a motif will

result in a texture appearing as a pattern.

SPACE

In design, space is concerned with the area deep within

the moment of designated design, the design will take place
on.

For a two-dimensional design, space concerns creating
the illusion of a third dimension on a flat surface:

• Overlap is the effect where objects appear to be on top
of each other. This illusion makes the top element look
closer to the observer. There is no way to determine
the depth of the space, only the order of closeness.

• Shading adds gradation marks to make an object of
a two-dimensional surface seem three-dimensional.

• Highlight, Transitional Light, Core of the Shadow,
Reflected Light, and Cast Shadow give an object a

three-dimensional look.

• Linear Perspective is the concept relating to how an

object seems smaller the farther away it gets.

Design and Analysis Techniques

19

• Atmospheric Perspective is based on how air acts as

a filter to change the appearance of distance objects.

FORM

Form may be described as any three-dimensional object.

Form can be measured, from top to bottom (height), side

to side (width), and from back to front (depth). Form is also

defined by light and dark. It can be defined by the presence

of shadows on surfaces or faces of an object. There are two

types of form, geometric (man-made) and natural (organic

form). Form may be created by the combining of two or more

shapes. It may be enhanced by tone, texture and color. It

can be illustrated or constructed.

COMPUTER AIDED INDUSTRIAL DESIGN

Computer-aided industrial design (CAID) is a subset of

computer-aided design (CAD) that includes software that

directly helps in product development. Within CAID

programmes designers have the freedom of creativity, but

typically follow a simple design methodology:

• Creating sketches, using a stylus

• Generating curves directly from the sketch

• Generating surfaces directly from the curves

The end result is a 3D model that projects the main

design intent the designer had in mind. The model can then

be saved in STL format to send it to a rapid prototyping

machine to create the real-life model. CAID helps the designer

to focus on the technical part of the design methodology

rather than taking care of sketching and modeling—then

Design and Analysis Techniques

20

contributing to the selection of a better product proposal

in less time.

Later, when the requisites and parameters of the product

have been defined by means of using CAID software, the

designer can import the result of his work into a CAD

programme (typically a Solid Modeler) for adjustments prior

to production and generation of blueprints and

manufacturing processes. What differentiates CAID from

CAD is that the former is far more conceptual and less

technical than the latter. Within a CAID programme, the

designer can express him/herself without extents, whilst in

CAD software there is always the manufacturing factor.

Design and Analysis Techniques

21

2

Virtual Design and Construction

Virtual Design to Construction (VDC) is the management

of integrated multi-disciplinary performance models of

design-construction projects, including the Product (i.e.,

facilities), Work Processes and Organization of the design

- construction - operation team in order to support explicit

and public business objectives.

The theoretical basis of VDC includes:

• Engineering modeling methods: product, organization,

process

• Analysis methods (model-based): including schedule,

cost, 4D interactions and process risks, these are

termed BIM tools

• Visualization methods

• Business metrics and focus on strategic management

• Economic Impact analysis (i.e., models of both the

cost and value of capital investments)

Design and Analysis Techniques

22

VDC PROJECT MANAGER
“The production of a Building Information Model (BIM)

for the construction of a project involves the use of an

integrated multi-disciplinary performance model to

encompass the building geometry, spatial relationships,

geographic information, along with quantities and properties

of the building components. The Virtual Design to

Construction Project Manager (VDC - also known as VDCPM)

is a professional in the field of project management and

delivery.

The VDC is retained by a design build team on the

clients’ behalf from the pre-design phase through certificate

of occupancy in order to develop and to track the object

oriented BIM against predicted and measured performance

objectives. The VDC manages the project delivery through

multi-disciplinary building information models that drive

analysis, schedules, take-off, and logistics. The VDC is

skilled in the use of BIM as a tool to manage and assess

the technology, staff, and procedural needs of a project. In

short the VDC is a contemporary project managing architect

who is equipped to deal with the current evolution of project

delivery. The VDC acts as a conduit to bridge time tested

construction knowledge to digital analysis and

representation. VDC position avoids the well intentioned

failures created by competent managers who lack the

knowledge to implement the technology for which they are

entrusted. Recent economic conditions have placed a spot

light on industry wide deficiency in the organization of

architectural staff, the lack of interoperability of project

generated information, and the amount of non-beneficial

Design and Analysis Techniques

23

redundancy which eventually finds its way to the client

through an inferior project with increased cost. The VDC

fulfills a critical role in contemporary project delivery in part

due to the single platform integration of sketch tools,

massing, solid modeling, analysis, & rendering organized

within a singular object change engine. Available technology

removes the need for digital redundancies and file

conversions at each stage of design. Information can be

tracked and managed from inception to project delivery with

the use of a qualified VDC who secures the clients return

on investment by tracking stated project performance

objectives. The development of virtual design tools from

1957 to 2007 has created a digital landfill of applications,

many whose continued use has hindered progress all the

while accelerating Architect, Engineering, Contractor costs

without increased accuracy, efficiency, or integration of

disciplines.”

VDC MANAGED BIM PROJECT MODEL
“Virtual Design to Construction BIM models are virtual

because they show computer-based descriptions of the

project. The BIM project model emphasizes those aspects

of the project that can be designed and managed, i.e., the

product (typically a building or plant), the organization that

will define, design, construct and operate it, and the process

that the organization teams will follow, or POP. These models

are logically integrated in the sense that they all can access

shared data, and if a user highlights or changes an aspect

of one, the integrated models can highlight or change the

dependent aspects of related models. The models are multi-

Design and Analysis Techniques

24

disciplinary in the sense that they represent the Architect,

Engineering, contractor (AEC) and Owner of the project, as

well as relevant sub disciplines. The models are performance

models in the sense that they predict some aspects of

project performance, track many that are relevant, and can

show predicted and measured performance in relationship

to stated project performance objectives. Some companies

now practice the first steps of BIM modeling, and they

consistently find that they improve business performance

by doing so.”

CONSTRUCTION INDUSTRY BIM TOOLS

AND METHODOLOGIES UTILIZED BY VDC

BIM SOFTWARE TOOLS
• ArchiCAD from Graphisoft

• Building Explorer

• Autodesk Navisworks JetStream 4D

• Autodesk Revit

• Autodesk AutoCAD Civil 3D

• Tekla Structures from Tekla Corporation

• Advance Concrete

• Advance Steel

• Microstation

VDC RELATED METHODOLOGIES
• Semantic integration

• Learning-by-doing

• Deductive-nomological model

Design and Analysis Techniques

25

• Scientific evidence

• Hypothesis

• Qualitative research

• Quantitative research

• Case-based reasoning

• Action research

• Power of a method

• Upper ontology within the Ontology domain

• Schema representation

• Work breakdown structure

• Object-oriented programming

3D FLOOR PLAN
A 3D floor plan, or 3D floorplan, is a virtual model of

a building floor plan, depicted from a birds eye view, utilized

within the building industry to better convey archtitectural

plans. Usually built to scale, a 3D floor plan must include
walls and a floor and typically includes exterior wall
fenestrations, windows, and doorways. It does not include
a ceiling so as not to obstruct the view. Other common
attributes may be added, but are not required, such as
cabinets, flooring, bathroom fixtures, paint color, wall tile,
and other interior finishes. Furniture may be added to

assist in communicating proper home staging and interior

design.

PURPOSE
3D floor plans assist real estate marketers and architects

in explaining floor plans to clients. Their simplicity allows

individuals unfamiliar with conventional floor plans to

Design and Analysis Techniques

26

understand difficult architectural concepts. This allows

architects and homeowners to literally see design elements

prior to construction and alter design elements during the

design phase. 3D floorplans are often commissioned by

architects, builders, hotels, universities, real estate agents,

and property owners to assist in relating their floor plans

to clients.

CONSTRUCTION
A 3d floor plan is built utilizing advanced 3d rendering

software, the same type of software used to create major

animated motion pictures. Through complex lighting, staging,

camera, and rendering techniques 3D floorplans appear to

be real photographs rather than digital representations of

the buildings they are modeled after.

Design and Analysis Techniques

27

3

Electronic Design Automation

Electronic design automation (EDA or ECAD) is a category

of software tools for designing electronic systems such as

printed circuit boards and integrated circuits. The tools

work together in a design flow that chip designers use to

design and analyze entire semiconductor chips.

HISTORY

EARLY DAYS
Before EDA, integrated circuits were designed by hand,

and manually laid out. Some advanced shops used geometric

software to generate the tapes for the Gerber photoplotter,

but even those copied digital recordings of mechanically-

drawn components. The process was fundamentally graphic,

with the translation from electronics to graphics done

manually. The best known company from this era was

Calma, whose GDSII format survives. By the mid-70s,

Design and Analysis Techniques

28

developers started to automate the design, and not just the

drafting. The first placement and routing (Place and route)

tools were developed. The proceedings of the Design

Automation Conference cover much of this era. The next

era began about the time of the publication of “Introduction

to VLSI Systems” by Carver Mead and Lynn Conway in

1980. This ground breaking text advocated chip design with

programming languages that compiled to silicon.

The immediate result was a considerable increase in

the complexity of the chips that could be designed, with

improved access to design verification tools that used logic

simulation. Often the chips were easier to lay out and more

likely to function correctly, since their designs could be

simulated more thoroughly prior to construction. Although

the languages and tools have evolved, this general approach

of specifying the desired behavior in a textual programming

language and letting the tools derive the detailed physical

design remains the basis of digital IC design today. The

earliest EDA tools were produced academically. One of the

most famous was the “Berkeley VLSI Tools Tarball”, a set

of UNIX utilities used to design early VLSI systems. Still

widely used is the Espresso heuristic logic minimizer and

Magic. Another crucial development was the formation of

MOSIS, a consortium of universities and fabricators that

developed an inexpensive way to train student chip

designers by producing real integrated circuits. The basic

concept was to use reliable, low-cost, relatively low-

technology IC processes, and pack a large number of

projects per wafer, with just a few copies of each projects’

chips. Cooperating fabricators either donated the processed

Design and Analysis Techniques

29

wafers, or sold them at cost, seeing the programme as

helpful to their own long-term growth.

BIRTH OF COMMERCIAL EDA
1981 marks the beginning of EDA as an industry. For

many years, the larger electronic companies, such as Hewlett

Packard, Tektronix, and Intel, had pursued EDA internally.

In 1981, managers and developers spun out of these

companies to concentrate on EDA as a business. Daisy

Systems, Mentor Graphics, and Valid Logic Systems were

all founded around this time, and collectively referred to as

DMV. Within a few years there were many companies

specializing in EDA, each with a slightly different emphasis.

The first trade show for EDA was held at the Design

Automation Conference in 1984. In 1986, Verilog, a popular

high-level design language, was first introduced as a

hardware description language by Gateway Design

Automation. In 1987, the U.S. Department of Defense funded

creation of VHDL as a specification language. Simulators

quickly followed these introductions, permitting direct

simulation of chip designs: executable specifications. In a

few more years, back-ends were developed to perform logic

synthesis.

CURRENT STATUS
Current digital flows are extremely modular (see Integrated

circuit design, Design closure, and Design flow (EDA)). The

front ends produce standardized design descriptions that

compile into invocations of “cells,”, without regard to the cell

technology. Cells implement logic or other electronic functions

Design and Analysis Techniques

30

using a particular integrated circuit technology. Fabricators

generally provide libraries of components for their production
processes, with simulation models that fit standard simulation
tools. Analog EDA tools are far less modular, since many
more functions are required, they interact more strongly,
and the components are (in general) less ideal. EDA for
electronics has rapidly increased in importance with the
continuous scaling of semiconductor technology. Some users
are foundry operators, who operate the semiconductor

fabrication facilities, or “fabs”, and design-service companies

who use EDA software to evaluate an incoming design for

manufacturing readiness. EDA tools are also used for

programming design functionality into FPGAs.

SOFTWARE FOCUSES

DESIGN
• High-level synthesis(syn. behavioural synthesis,

algorithmic synthesis) For digital chips

• Logic synthesis translation of abstract, logical
language such as Verilog or VHDL into a discrete
netlist of logic-gates

• Schematic Capture For standard cell digital, analog,
rf like Capture CIS in Orcad by CADENCE and ISIS
in Proteus

• Layout like Layout in Orcad by Cadence, ARES in

Proteus

DESIGN FLOWS
Design flows are the explicit combination of electronic

design automation tools to accomplish the design of an

Design and Analysis Techniques

31

integrated circuit. Moore’s law has driven the entire IC

implementation RTL to GDSII design flows from one which

uses primarily standalone synthesis, placement, and routing

algorithms to an integrated construction and analysis flows

for design closure. The challenges of rising interconnect

delay led to a new way of thinking about and integrating

design closure tools. New scaling challenges such as leakage

power, variability, and reliability will keep on challenging

the current state of the art in design closure. The RTL to

GDSII flow underwent significant changes from 1980 through

2005. The continued scaling of CMOS technologies

significantly changed the objectives of the various design

steps.

The lack of good predictors for delay has led to

significant changes in recent design flows. Challenges

like leakage power, variability, and reliability will continue

to require significant changes to the design closure process

in the future. Many factors describe what drove the design

flow from a set of separate design steps to a fully integrated

approach, and what further changes are coming to address

the latest challenges. In his keynote at the 40th Design

Automation Conference entitled The Tides of EDA, Alberto

Sangiovanni-Vincentelli distinguished three periods of

EDA: The Age of the Gods, The Age of the Heroes, and

The Age of the Men. These eras were characterized

respectively by senses, imagination, and reason. When

we limit ourselves to the RTL to GDSII flow of the CAD

area, we can distinguish three main eras in its

development: the Age of Invention, the Age of

Implementation, and the Age of Integration.

Design and Analysis Techniques

32

• The Age of Invention: During the invention era,

routing, placement, static timing analysis and logic

synthesis were invented.

• The Age of Implementation: In the age of

implementation, these steps were drastically improved

by designing sophisticated data structures and

advanced algorithms. This allowed the tools in each

of these design steps to keep pace with the rapidly

increasing design sizes. However, due to the lack of

good predictive cost functions, it became impossible

to execute a design flow by a set of discrete steps,

no matter how efficiently each of the steps was

implemented.

• The Age of Integration: This led to the age of integration

where most of the design steps are performed in an

integrated environment, driven by a set of incremental

cost analyzers.

SIMULATION
• Transistor simulation – low-level transistor-simulation

of a schematic/layout’s behavior, accurate at device-

level.

• Logic simulation – digital-simulation of an RTL or

gate-netlist’s digital (boolean 0/1) behavior, accurate

at boolean-level.

• Behavioral Simulation – high-level simulation of a

design’s architectural operation, accurate at cycle-

level or interface-level.

• Hardware emulation – Use of special purpose

hardware to emulate the logic of a proposed design.

Design and Analysis Techniques

33

Can sometimes be plugged into a system in place of

a yet-to-be-built chip; this is called in-circuit

emulation.

• Technology CAD simulate and analyze the underlying

process technology. Electrical properties of devices

are derived directly from device physics.

• Electromagnetic field solvers, or just field solvers,

solve Maxwell’s equations directly for cases of interest

in IC and PCB design. They are known for being

slower but more accurate than the layout extraction

above.

ELECTRONIC CIRCUIT SIMULATION
Electronic circuit simulation uses mathematical models

to replicate the behavior of an actual electronic device or

circuit. Simulation software allows for modeling of circuit

operation and is an invaluable analysis tool. Due to its

highly accurate modeling capability, many Colleges and

Universities use this type of software for the teaching of

electronics technician and electronics engineering

programmes.

Electronics simulation software engages the user by

integrating them into the learning experience. These kinds

of interactions actively engage learners to analyze,

synthesize, organize, and evaluate content and result in

learners constructing their own knowledge. Simulating a

circuit’s behavior before actually building it can greatly

improve design efficiency by making faulty designs known

as such, and providing insight into the behavior of

electronics circuit designs.

Design and Analysis Techniques

34

In particular, for integrated circuits, the tooling

(photomasks) is expensive, breadboards are impractical,

and probing the behavior of internal signals is extremely

difficult. Therefore almost all IC design relies heavily on

simulation. The most well known analog simulator is SPICE.

Probably the best known digital simulators are those based

on Verilog and VHDL. Some electronics simulators integrate

a schematic editor, a simulation engine, and on-screen

waveforms, and make “what-if” scenarios easy and instant.

They also typically contain extensive model and device

libraries. These models typically include IC specific transistor

models such as BSIM, generic components such as resistors,

capacitors, inductors and transformers, user defined models

(such as controlled current and voltage sources, or models

in Verilog-A or VHDL-AMS). Printed circuit board (PCB)

design requires specific models as well, such as transmission

lines for the traces and IBIS models for driving and receiving

electronics.

TYPES
While there are strictly analog electronics circuit

simulators, popular simulators often include both analog

and event-driven digital simulation capabilities, and are

known as mixed-mode simulators. This means that any

simulation may contain components that are analog, event

driven (digital or sampled-data), or a combination of both.

An entire mixed signal analysis can be driven from one

integrated schematic. All the digital models in mixed-mode

simulators provide accurate specification of propagation

time and rise/fall time delays.

Design and Analysis Techniques

35

The event driven algorithm provided by mixed-mode

simulators is general purpose and supports non-digital

types of data. For example, elements can use real or integer

values to simulate DSP functions or sampled data filters.

Because the event driven algorithm is faster than the

standard SPICE matrix solution, simulation time is greatly

reduced for circuits that use event driven models in place

of analog models. Mixed-mode simulation is handled on
three levels; (a) with primitive digital elements that use
timing models and the built-in 12 or 16 state digital logic
simulator, (b) with subcircuit models that use the actual
transistor topology of the integrated circuit, and finally, (c)
with In-line Boolean logic expressions.

Exact representations are used mainly in the analysis
of transmission line and signal integrity problems where a
close inspection of an IC’s I/O characteristics is needed.
Boolean logic expressions are delay-less functions that are
used to provide efficient logic signal processing in an analog
environment. These two modeling techniques use SPICE to
solve a problem while the third method, digital primitives,
use mixed mode capability. Each of these methods has its
merits and target applications. In fact, many simulations
(particularly those which use A/D technology) call for the

combination of all three approaches. No one approach alone

is sufficient. Another type of simulation used mainly for

power electronics represent piecewise linear algorithms.

These algorithms use an analog (linear) simulation until a

power electronic switch changes its state. At this time a new

analog model is calculated to be used for the next simulation

period. This methodology both enhances simulation speed

and stability significantly.

Design and Analysis Techniques

36

COMPLEXITIES
Often circuit simulators do not take into account the

process variations that occur when the design is fabricated

into silicon. These variations can be small, but taken together

can change the output of a chip significantly. Process

variations occur in the manufacture of circuits in silicon.

Temperature variation can also be modeled to simulate the

circuit’s performance through temperature ranges.

ANALYSIS AND VERIFICATION
• Functional verification

• Clock Domain Crossing Verification (CDC check):

Similar to linting, but these checks/tools specialize
in detecting and reporting potential issues like data
loss, meta-stability due to use of multiple clock
domains in the design.

• Formal verification, also model checking: Attempts to
prove, by mathematical methods, that the system
has certain desired properties, and that certain
undesired effects (such as deadlock) cannot occur.

• Equivalence checking: algorithmic comparison
between a chip’s RTL-description and synthesized
gate-netlist, to ensure functional equivalence at the
logical level.

• Static timing analysis: Analysis of the timing of a
circuit in an input-independent manner, hence finding
a worst case over all possible inputs.

• Physical verification, PV: checking if a design is
physically manufacturable, and that the resulting

chips will not have any function-preventing physical

defects, and will meet original specifications.

Design and Analysis Techniques

37

MANUFACTURING PREPARATION
• Mask data preparation, MDP: generation of actual

lithography photomask used to physically
manufacture the chip.

o Resolution enhancement techniques, RET –
methods of increasing of quality of final photomask.

o Optical proximity correction, OPC – up-front
compensation for diffraction and interference effects
occurring later when chip is manufactured using
this mask.

o Mask generation – generation of flat mask image
from hierarchical design.

o Automatic test pattern generation, ATPG – generates
pattern-data to systematically exercise as many
logic-gates, and other components, as possible.

o Built-in self-test, or BIST – installs self-contained
test-controllers to automatically test a logic (or

memory) structure in the design

COMPANIES
For more details on this topic, see List of EDA companies.

TOP COMPANIES
• $3.73 billion - Synopsys

• $2.06 billion - Cadence

• $1.18 billion - Mentor Graphics

• $233 million - Magma Design Automation

• $157 million - Zuken Inc.

Note: Market caps current as of October, 2010. EEsof

should likely be on this list, but does not have a market

cap as it is the EDA division of Agilent.

Design and Analysis Techniques

38

ACQUISITIONS
Many of the EDA companies acquire small companies

with software or other technology that can be adapted to

their core business. Most of the market leaders are rather

incestuous amalgamations of many smaller companies. This
trend is helped by the tendency of software companies to
design tools as accessories that fit naturally into a larger
vendor’s suite of programmes (on digital circuitry, many
new tools incorporate analog design, and mixed systems.
This is happening because there is now a trend to place
entire electronic systems on a single chip.

COMPUTER GRAPHICS
The development of computer graphics has made

computers easier to interact with, and better for
understanding and interpreting many types of data.
Developments in computer graphics have had a profound
impact on many types of media and have revolutionized
animation, movies and the video game industry. The term
computer graphics has been used in a broad sense to
describe “almost everything on computers that is not text
or sound”. Typically, the term computer graphics refers to

several different things:

• the representation and manipulation of image data

by a computer

• the various technologies used to create and

manipulate images

• the images so produced, and

• the sub-field of computer science which studies

methods for digitally synthesizing and manipulating

visual content.

Design and Analysis Techniques

39

Today, computers and computer-generated images touch

many aspects of daily life. Computer imagery is found on

television, in newspapers, for example in weather reports,

or for example in all kinds of medical investigation and

surgical procedures. A well-constructed graph can present

complex statistics in a form that is easier to understand

and interpret. In the media “such graphs are used to illustrate

papers, reports, thesis”, and other presentation material.

Many powerful tools have been developed to visualize data.

Computer generated imagery can be categorized into several

different types: 2D, 3D, 4D, 7D, and animated graphics. As

technology has improved, 3D computer graphics have become

more common, but 2D computer graphics are still widely

used.

Computer graphics has emerged as a sub-field of

computer science which studies methods for digitally

synthesizing and manipulating visual content. Over the

past decade, other specialized fields have been developed

like information visualization, and scientific visualization

more concerned with “the visualization of three dimensional

phenomena (architectural, meteorological, medical,

biological, etc.), where the emphasis is on realistic renderings

of volumes, surfaces, illumination sources, and so forth,

perhaps with a dynamic (time) component”. The advance in

computer graphics was to come from Ivan Sutherland. In

1961 Sutherland created another computer drawing

programme called Sketchpad. Using a light pen, Sketchpad

allowed one to draw simple shapes on the computer screen,

save them and even recall them later. The light pen itself

had a small photoelectric cell in its tip. This cell emitted

Design and Analysis Techniques

40

an electronic pulse whenever it was placed in front of a

computer screen and the screen’s electron gun fired directly

at it. By simply timing the electronic pulse with the current

location of the electron gun, it was easy to pinpoint exactly

where the pen was on the screen at any given moment.

Once that was determined, the computer could then draw

a cursor at that location. Sutherland seemed to find the

perfect solution for many of the graphics problems he faced.

Even today, many standards of computer graphics

interfaces got their start with this early Sketchpad

programme. One example of this is in drawing constraints.

If one wants to draw a square for example, s/he doesn’t

have to worry about drawing four lines perfectly to form the

edges of the box. One can simply specify that s/he wants

to draw a box, and then specify the location and size of the

box. The software will then construct a perfect box, with

the right dimensions and at the right location. Another

example is that Sutherland’s software modeled objects - not

just a picture of objects. In other words, with a model of

a car, one could change the size of the tires without affecting

the rest of the car. It could stretch the body of the car

without deforming the tires. These early computer graphics

were Vector graphics, composed of thin lines whereas modern

day graphics are Raster based using pixels. The difference

between vector graphics and raster graphics can be

illustrated with a shipwrecked sailor.

He creates an SOS sign in the sand by arranging rocks

in the shape of the letters “SOS.” He also has some brightly

colored rope, with which he makes a second “SOS” sign by

arranging the rope in the shapes of the letters. The rock

Design and Analysis Techniques

41

SOS sign is similar to raster graphics. Every pixel has to

be individually accounted for. The rope SOS sign is equivalent

to vector graphics. The computer simply sets the starting

point and ending point for the line and perhaps bend it a

little between the two end points. The disadvantages to

vector files are that they cannot represent continuous tone

images and they are limited in the number of colors available.

Raster formats on the other hand work well for continuous

tone images and can reproduce as many colors as needed.

Also in 1961 another student at MIT, Steve Russell, created

the first video game, Spacewar. Written for the DEC PDP-

1, Spacewar was an instant success and copies started

flowing to other PDP-1 owners and eventually even DEC got

a copy. The engineers at DEC used it as a diagnostic

programme on every new PDP-1 before shipping it. The

sales force picked up on this quickly enough and when

installing new units, would run the world’s first video game

for their new customers.

E. E. Zajac, a scientist at Bell Telephone Laboratory

(BTL), created a film called “Simulation of a two-giro gravity

attitude control system” in 1963. In this computer generated

film, Zajac showed how the attitude of a satellite could be

altered as it orbits the Earth. He created the animation on

an IBM 7090 mainframe computer. Also at BTL, Ken

Knowlton, Frank Sindon and Michael Noll started working

in the computer graphics field. Sindon created a film called

Force, Mass and Motion illustrating Newton’s laws of motion

in operation.

Around the same time, other scientists were creating

computer graphics to illustrate their research. At Lawrence

Design and Analysis Techniques

42

Radiation Laboratory, Nelson Max created the films, “Flow

of a Viscous Fluid” and “Propagation of Shock Waves in a

Solid Form.” Boeing Aircraft created a film called “Vibration

of an Aircraft.” It wasn’t long before major corporations

started taking an interest in computer graphics. TRW,

Lockheed-Georgia, General Electric and Sperry Rand are

among the many companies that were getting started in

computer graphics by the mid 1960’s. IBM was quick to

respond to this interest by releasing the IBM 2250 graphics

terminal, the first commercially available graphics computer.

Ralph Baer, a supervising engineer at Sanders Associates,

came up with a home video game in 1966 that was later

licensed to Magnavox and called the Odyssey. While very

simplistic, and requiring fairly inexpensive electronic parts,

it allowed the player to move points of light around on a

screen. It was the first consumer computer graphics product.

Also in 1966, Sutherland at MIT invented the first

computer controlled head-mounted display (HMD). Called

the Sword of Damocles because of the hardware required

for support, it displayed two separate wireframe images, one

for each eye. This allowed the viewer to see the computer

scene in stereoscopic 3D. After receiving his Ph.D. from

MIT, Sutherland became Director of Information Processing

at ARPA (Advanced Research Projects Agency), and later

became a professor at Harvard. Dave Evans was director

of engineering at Bendix Corporation’s computer division

from 1953 to 1962, after which he worked for the next five

years as a visiting professor at Berkeley. There he continued

his interest in computers and how they interfaced with

people. In 1968 the University of Utah recruited Evans to

Design and Analysis Techniques

43

form a computer science programme, and computer graphics

quickly became his primary interest. This new department

would become the world’s primary research center for

computer graphics. In 1967 Sutherland was recruited by

Evans to join the computer science programme at the

University of Utah. There he perfected his HMD. Twenty

years later, NASA would re-discover his techniques in their

virtual reality research.

At Utah, Sutherland and Evans were highly sought after

consultants by large companies but they were frustrated at

the lack of graphics hardware available at the time so they

started formulating a plan to start their own company. A

student by the name of Edwin Catmull started at the

University of Utah in 1970 and signed up for Sutherland’s

computer graphics class. Catmull had just come from The

Boeing Company and had been working on his degree in

physics. Growing up on Disney, Catmull loved animation

yet quickly discovered that he didn’t have the talent for

drawing. Now Catmull (along with many others) saw

computers as the natural progression of animation and

they wanted to be part of the revolution. The first animation

that Catmull saw was his own. He created an animation

of his hand opening and closing. It became one of his goals

to produce a feature length motion picture using computer

graphics. In the same class, Fred Parke created an animation

of his wife’s face.

Because of Evan’s and Sutherland’s presence, UU was

gaining quite a reputation as the place to be for computer

graphics research so Catmull went there to learn 3D

animation. As the UU computer graphics laboratory was

Design and Analysis Techniques

44

attracting people from all over, John Warnock was one of

those early pioneers; he would later found Adobe Systems

and create a revolution in the publishing world with his

PostScript page description language. Tom Stockham led

the image processing group at UU which worked closely

with the computer graphics lab. Jim Clark was also there;

he would later found Silicon Graphics, Inc. The first major

advance in 3D computer graphics was created at UU by

these early pioneers, the hidden-surface algorithm. In order

to draw a representation of a 3D object on the screen, the

computer must determine which surfaces are “behind” the

object from the viewer’s perspective, and thus should be

“hidden” when the computer creates (or renders) the image.

IMAGE TYPES

2D COMPUTER GRAPHICS
2D computer graphics are the computer-based generation

of digital images—mostly from two-dimensional models, such

as 2D geometric models, text, and digital images, and by

techniques specific to them. 2D computer graphics are mainly

used in applications that were originally developed upon

traditional printing and drawing technologies, such as

typography, cartography, technical drawing, advertising, etc..

In those applications, the two-dimensional image is not just

a representation of a real-world object, but an independent

artifact with added semantic value; two-dimensional models

are therefore preferred, because they give more direct control

of the image than 3D computer graphics, whose approach

is more akin to photography than to typography.

Design and Analysis Techniques

45

PIXEL ART
Pixel art is a form of digital art, created through the use

of raster graphics software, where images are edited on the

pixel level. Graphics in most old (or relatively limited)

computer and video games, graphing calculator games, and

many mobile phone games are mostly pixel art.

VECTOR GRAPHICS
Vector graphics formats are complementary to raster

graphics, which is the representation of images as an array

of pixels, as it is typically used for the representation of

photographic images Vector graphics consists in encoding

information about shapes and colors that comprise the

image, which can allow for more flexibility in rendering.

There are instances when working with vector tools and

formats is best practice, and instances when working with

raster tools and formats is best practice. There are times

when both formats come together. An understanding of the

advantages and limitations of each technology and the

relationship between them is most likely to result in efficient

and effective use of tools.

3D COMPUTER GRAPHICS
3D computer graphics in contrast to 2D computer

graphics are graphics that use a three-dimensional

representation of geometric data that is stored in the

computer for the purposes of performing calculations and

rendering 2D images. Such images may be for later display

or for real-time viewing. Despite these differences, 3D

computer graphics rely on many of the same algorithms as

Design and Analysis Techniques

46

2D computer vector graphics in the wire frame model and

2D computer raster graphics in the final rendered display.

In computer graphics software, the distinction between 2D

and 3D is occasionally blurred; 2D applications may use

3D techniques to achieve effects such as lighting, and

primarily 3D may use 2D rendering techniques. 3D computer

graphics are often referred to as 3D models. Apart from the

rendered graphic, the model is contained within the graphical

data file. However, there are differences. A 3D model is the

mathematical representation of any three-dimensional object.

A model is not technically a graphic until it is visually

displayed. Due to 3D printing, 3D models are not confined

to virtual space. A model can be displayed visually as a two-

dimensional image through a process called 3D rendering,

or used in non-graphical computer simulations and

calculations. There are some 3D computer graphics software

for users to create 3D images.

COMPUTER ANIMATION
Computer animation is the art of creating moving images

via the use of computers. It is a subfield of computer

graphics and animation. Increasingly it is created by means

of 3D computer graphics, though 2D computer graphics are

still widely used for stylistic, low bandwidth, and faster real-

time rendering needs. Sometimes the target of the animation

is the computer itself, but sometimes the target is another

medium, such as film. It is also referred to as CGI (Computer-

generated imagery or computer-generated imaging),

especially when used in films. Virtual entities may contain

and be controlled by assorted attributes, such as transform

Design and Analysis Techniques

47

values (location, orientation, and scale) stored in an object’s

transformation matrix. Animation is the change of an

attribute over time. Multiple methods of achieving animation

exist; the rudimentary form is based on the creation and

editing of keyframes, each storing a value at a given time,

per attribute to be animated. The 2D/3D graphics software

will interpolate between keyframes, creating an editable

curve of a value mapped over time, resulting in animation.

Other methods of animation include procedural and

expression-based techniques: the former consolidates related

elements of animated entities into sets of attributes, useful

for creating particle effects and crowd simulations; the

latter allows an evaluated result returned from a user-

defined logical expression, coupled with mathematics, to

automate animation in a predictable way (convenient for

controlling bone behavior beyond what a hierarchy offers

in skeletal system set up). To create the illusion of movement,

an image is displayed on the computer screen then quickly

replaced by a new image that is similar to the previous

image, but shifted slightly. This technique is identical to the

illusion of movement in television and motion pictures.

CONCEPTS AND PRINCIPLES
Images are typically produced by optical devices;such as

cameras, mirrors, lenses, telescopes, microscopes, etc. and

natural objects and phenomena, such as the human eye or

water surfaces. A digital image is a representation of a two-

dimensional image in binary format as a sequence of ones

and zeros. Digital images include both vector images and

raster images, but raster images are more commonly used.

Design and Analysis Techniques

48

PIXEL
In digital imaging, a pixel (or picture element) is a single

point in a raster image. Pixels are normally arranged in a

regular 2-dimensional grid, and are often represented using

dots or squares. Each pixel is a sample of an original image,

where more samples typically provide a more accurate

representation of the original. The intensity of each pixel

is variable; in color systems, each pixel has typically three

components such as red, green, and blue.

GRAPHICS
Graphics are visual presentations on some surface, such

as a wall, canvas, computer screen, paper, or stone to

brand, inform, illustrate, or entertain. Examples are

photographs, drawings, line art, graphs, diagrams,

typography, numbers, symbols, geometric designs, maps,

engineering drawings, or other images. Graphics often

combine text, illustration, and color. Graphic design may

consist of the deliberate selection, creation, or arrangement

of typography alone, as in a brochure, flier, poster, web site,

or book without any other element. Clarity or effective

communication may be the objective, association with other

cultural elements may be sought, or merely, the creation

of a distinctive style.

RENDERING
Rendering is the process of generating an image from a

model (or models in what collectively could be called a scene

file), by means of computer programmes. A scene file contains

objects in a strictly defined language or data structure; it

Design and Analysis Techniques

49

would contain geometry, viewpoint, texture, lighting, and

shading information as a description of the virtual scene.

The data contained in the scene file is then passed to a

rendering programme to be processed and output to a

digital image or raster graphics image file. The rendering

programme is usually built into the computer graphics

software, though others are available as plug-ins or entirely

separate programmes. The term “rendering” may be by

analogy with an “artist’s rendering” of a scene. Though the

technical details of rendering methods vary, the general

challenges to overcome in producing a 2D image from a 3D

representation stored in a scene file are outlined as the

graphics pipeline along a rendering device, such as a GPU.

A GPU is a purpose-built device able to assist a CPU in

performing complex rendering calculations. If a scene is to

look relatively realistic and predictable under virtual lighting,

the rendering software should solve the rendering equation.

The rendering equation doesn’t account for all lighting

phenomena, but is a general lighting model for computer-

generated imagery. ‘Rendering’ is also used to describe the

process of calculating effects in a video editing file to produce

final video output.

3D PROJECTION
3D projection is a method of mapping three dimensional

points to a two dimensional plane. As most current methods

for displaying graphical data are based on planar two

dimensional media, the use of this type of projection is

widespread, especially in computer graphics, engineering

and drafting.

Design and Analysis Techniques

50

RAY TRACING
Ray tracing is a technique for generating an image by

tracing the path of light through pixels in an image plane.

The technique is capable of producing a very high degree

of photorealism; usually higher than that of typical scanline

rendering methods, but at a greater computational cost.

SHADING
Shading refers to depicting depth in 3D models or

illustrations by varying levels of darkness. It is a process

used in drawing for depicting levels of darkness on paper

by applying media more densely or with a darker shade for

darker areas, and less densely or with a lighter shade for

lighter areas. There are various techniques of shading

including cross hatching where perpendicular lines of varying

closeness are drawn in a grid pattern to shade an area. The

closer the lines are together, the darker the area appears.

Likewise, the farther apart the lines are, the lighter the area

appears. The term has been recently generalized to mean

that shaders are applied.

TEXTURE MAPPING
Texture mapping is a method for adding detail, surface

texture, or colour to a computer-generated graphic or 3D

model. Its application to 3D graphics was pioneered by Dr

Edwin Catmull in 1974. A texture map is applied (mapped)

to the surface of a shape, or polygon. This process is akin

to applying patterned paper to a plain white box.

Multitexturing is the use of more than one texture at a time

on a polygon. Procedural textures (created from adjusting

Design and Analysis Techniques

51

parameters of an underlying algorithm that produces an

output texture), and bitmap textures (created in an image

editing application) are, generally speaking, common methods

of implementing texture definition from a 3D animation

programme, while intended placement of textures onto a

model’s surface often requires a technique known as UV

mapping.

ANTI-ALIASING
Rendering resolution-independent entities (such as 3D

models) for viewing on a raster (pixel-based) device such as

a LCD display or CRT television inevitably causes aliasing

artifacts mostly along geometric edges and the boundaries

of texture details; these artifacts are informally called

“jaggies”. Anti-aliasing methods rectify such problems,

resulting in imagery more pleasing to the viewer, but can

be somewhat computationally expensive. Various anti-

aliasing algorithms (such as supersampling) are able to be

employed, then customized for the most efficient rendering

performance versus quality of the resultant imagery; a

graphics artist should consider this trade-off if anti-aliasing

methods are to be used. A pre-anti-aliased bitmap texture

being displayed on a screen (or screen location) at a resolution

different than the resolution of the texture itself (such as

a textured model in the distance from the virtual camera)

will exhibit aliasing artifacts, while any procedurally-defined

texture will always show aliasing artifacts as they are

resolution-independent; techniques such as mipmapping

and texture filtering help to solve texture-related aliasing

problems.

Design and Analysis Techniques

52

4

The Evolution of Web Design

Since the first websites in the early 1992 s, designers

have been experimenting with the way websites look. Early

sites were entirely text-based, with minimal images and no

real layout to speak of other than headings and paragraphs.

However, the industry progressed, eventually bringing us

table-based designs, then Flash, and finally CSS-based

designs.

This article covers the brief history of the different eras

of web design, including a handful of examples of each type

of design.

THE FIRST WEB PAGES

In August 1991, Tim Berners-Lee published the first

website, a simple, text-based page with a few links. A copy

from 1992 of the original page still exists online. It had a

dozen or so links, and simply served to tell people what the

Design and Analysis Techniques

53

World Wide Web was all about. Subsequent pages were

similar, in that they were entirely text-based and had a

single-column design with inline links. Initial versions of

HTML (HyperText Markup Language) only allowed for very

basic content structure: headings (<h1>, <h2>, etc.),
paragraphs (<p>), and links (<a>). Subsequent versions of
HTML allowed the addition of images () to pages, and
eventually support for tables (<table>) was added.

WORLD WIDE WEB CONSORTIUM IS FORMED

In 1994, the World Wide Web Consortium (W3C) was
established, and they set HTML as the standard for marking
up web pages. This discouraged any single company from
building a proprietary browser and programming language,
which could have had a detrimental effect on the web as
a whole. The W3C continues to set standards for open web
markup and programming languages (such as JavaScript).

DESIGN ELEMENTS AND PRINCIPLES

Design elements and principles describe fundamental
ideas about the practice of good visual design.

As William Lidwell’s stated in Universal Principles of

Design:

“The best designers sometimes disregard the principles

of design. When they do so, however, there is usually some

compensating merit attained at the cost of the violation.

Unless you are certain of doing as well, it is best to abide

by the principles.”

These principles, which may overlap, are used in all

visual design fields, including graphic design, industrial

design, architecture and fine art.

Design and Analysis Techniques

54

DESIGN ELEMENTS

Design elements are the basic units of a painting, drawing,

design or other visual piece and include:

LINE

A fundamental mark or stroke used in drawing in which

the length is longer than the width. It is straight and has

two connected points form a line and every line has a
length, width, and direction it is straight.

Uses for lines in design

• Contour line: A line that defines or bounds an edge,
but not always the outside edge, could represent a fold
or color change.

• Divide space: A line that defines the edge of space can
also be created by a gap of negative space. Many uses
include to separate columns, rows of type, or to show
a change in document type.

• Decoration: Lines are used in linear shapes and
patterns to decorate many different substrates, and
can be used to create shadows representing tonal
value, called hatching.

COLOR

Color can play a large role in the elements of design with
the color wheel being used as a tool, and color theory
providing a body of practical guidance to color mixing and
the visual impacts of specific color combination.

Types of color

• Primary color: The three colors that are equal distant

on the color wheel and used to make up all other

colors; red, yellow, and blue.

Design and Analysis Techniques

55

• Secondary color: A mixture of two primary colors

including green, violet, and orange. Secondary colors

are a way to have more vibrant colors.

• Tertiary color: Colors formed from a primary and a

secondary color like yellow-green, red-violet, and yellow-

orange.

Perceptual attributes of color

• Hue: The redness, blueness, and greenness of a color.

• Value (lightness): Tints and shades of colors that are

created by adding black to a color for a shade and

white for a tint. Creating a tint or shade of a color

reduces the saturation.

• Saturation: Give a color brightness or dullness.

Ways color can guide the reader

• Aids organization: Develop a color strategy and stay

consistent with those colors.

• Gives emphasis: Create a hierarchy

• Provides direction: Using warm and cool colors to

relate parts with each other. Warm colors move

elements forward and cool colors move them back.

Display text using warm colors behind a cool color

background will stand out and direct the readers eye.

SHAPE

A shape is defined as an area that stands out from the

space next to or around it due to a defined or implied

boundary, or because of differences of value, color, or texture.

All objects are composed of shapes and all other ‘Elements

of Design’ are shapes in some way.

Design and Analysis Techniques

56

General Categories of Shapes

• Mechanical Shapes (Geometric Shapes): These are the

shapes that can be drawn using a ruler or compass.

Mechanical shapes, whether simple or complex,

produce a feeling of control or order.

• Organic Shapes: Freehand drawn shapes that are

complex and normally found in nature. Organic shapes

produce a natural feel.

TEXTURE (VISUAL ARTS)

Meaning the way a surface feels or is perceived to feel.

Texture can be added to attract or repel interest to an

element, depending on the pleasantness of the texture.

Types of texture

• Tactile texture: The actual three-dimension feel of a

surface that can be touched. Painter can use impasto

to build peaks and create texture.

• Visual texture: The illusion of the surfaces peaks and

valleys, like the tree pictured. Any texture shown in a

photo is a visual texture, meaning the paper is smooth

no matter how rough the image perceives it to be.

Most textures have a natural feel but still seem to repeat

a motif in some way. Regularly repeating a motif will result

in a texture appearing as apattern.

SPACE

In design, space is concerned with the area the design

will take place on. For a two-dimensional design space

concerns creating the illusion of a third dimension on a flat

surface.

Design and Analysis Techniques

57

Major Methods of Controlling the Illusion of Space

• Overlap: Where objects appear to be on top of each

other. This illusion makes the top element look closer
to the observer. There is no way to determine the
depth of the space, only the order of closeness.

• Shading: Adding gradation marks to make an object
of a two-dimensional surface seem three-dimensional.

• Five Kinds of Shading Light: Together these shadows
and highlights give an object a three-dimensional look.

1. Highlight

2. Transitional Light

3. Core of the Shadow

4. Reflected Light

5. Cast Shadow

• Linear Perspective: A concept relating to how an object
seems smaller the farther away it gets.

• Atmospheric Perspective: Based on how air acts as a
filter to change the appearance of distance objects.

FORM

Form is any three dimensional object. Form can be
measured, from top to bottom (height), side to side (width),
and from back to front (depth). Form is also defined by light
and dark. There are two types of form, geometric (man-
made) and natural (organic form). Form may be created by
the combining of two or more shapes. It may be enhanced

by tone, texture and color. It can be illustrated or constructed.

FORM FOLLOWS FUNCTION.

Originally a principle associated with modern architecture

and industrial design in the 20th century, the concept is

Design and Analysis Techniques

58

now used more widely as an exhortation to base the form

on the required functional use, and avoid ornamentation.

PRINCIPLES OF DESIGN

Principles applied to the elements of design that bring
them together into one design. How one applies these
principles determines how successful a design may be.

UNITY

According to Alex White, author of The Element of Graphic
Design, to achieve visual unity is a main goal of graphic
design. When all elements are in agreement, a design is
considered unified. No individual part is viewed as more
important than the whole design. A good balance between
unity and variety must be established to avoid a chaotic or
a lifeless design. Ways to achieve unity

• Proximity: Elements that are physically close, are
considered related.

• Similarity: Elements that are related should share
similar position, size, color, shape, or texture.

• Repetition and Rhythm: Recurring position, size, color,
and use of a graphic element shows unity. When the
repetition has a focal point interruption it is considered

rhythm.

• Theme with variation: Altering the basic theme achieves

unity and helps keep interest.

POINT, LINE, AND PLANE (PLP)

PLP are the three most basic shapes in visual design and

a good design contains all three. The key to using PLP is

making the shapes overlap and share elements.

Design and Analysis Techniques

59

• Point: In design, a point can be the smallest unit of

marking not simply a dot. Additionally, a point can

be a small plane or a short line.

• Line: The trace of a point in motion, a thin stroke, or

even a narrow plane can be considered a line. Typed

text automatically creates visual lines.

• Plane: A plane can be perceived as a trace of a line
in motion like dragging a piece of chalk across a
blackboard sideways (long side down). Wide lines and
large points may also create a plane.

BALANCE

It is a state of equalized tension and equilibrium, which
may not always be calm. A unified design is also visually
balanced so that no space takes away from the whole.

Types of balance

• Symmetrical: A formal balance is a mirror image of
one half of the picture. It is vertically centered, static,
and evokes a feeling of class or formality. The objects
in each half of the mirror image may not be identical,
but may be mirror images in sense of color, number
of objects or any other element of design.

• Asymmetrical: An informal balance that is attention
attracting and dynamic. It balances a number of items
of smaller size on one side with a larger one on
the other. The modern feel an asymmetrical design is
complex to create as it takes skills to distribute the
blank space.

• Radial: Balance arranged around a central element.

The elements placed in a radial balance seem to ‘radiate’

out from a central point in a circular fashion.

Design and Analysis Techniques

60

• Overall: This mosaic form of balance normally arises

from too many elements being put on a page. Due to

the lack of hierarchy and contrast, this form of balance

can look noisy.

HIERARCHY

A good design contains elements that lead the reader

through each element in order of its significance. The type

and images should be expressed starting from most

important to the least.

SCALE

Using the relative size of elements against each other can

attract attention to a focal point. When elements are designed

larger than life, scale is being used to show drama.

DOMINANCE

Dominance is created by contrasting size, positioning,

color, style, or shape. The focal point should dominate the

design with scale and contrast without sacrificing the unity

of the whole.

SIMILARITY AND CONTRAST

Some key aspects of a well designed document include

dramatic contrasts, scrupulous similarity, and active white

space. Planning a consistent and similar design is an

important aspect of a designers work to make their focal

point visible. Too much similarity is boring but without

similarity important elements will not exist. Also, without

contrast an image is uneventful so the key is to find the

balance between similarity and contrast.

Design and Analysis Techniques

61

Ways to Develop a Similar Environment

• Keep it simple and eliminate clutter. Do not fill white

spaces with garbage.

• Build a unique internal organization structure.

• Manipulate shapes of images and text to correlate

together.

• Express continuity from page to page (in publications).

Items to watch include headers, themes, borders, and

spaces.

• Develop a style manual and stick with the format.

Ways to Create Contrast

• Space

• Filled vs Empty

• Near vs Far

• 2-D vs 3-D

• Position

• Top vs Bottom

• Isolated vs Grouped

• Centered vs Off Centre

• Form

• Simple vs Complex

• Beauty vs Ugly

• Whole vs Broken

• Direction

• Vertical vs Horizontal

• Stability vs Movement

• Convex vs Concave

• Structure

Design and Analysis Techniques

62

• Organized vs Chaotic

• Serif vs Sans Serif

• Mechanical vs Hand Drawn

• Size

• Big vs Little

• Long vs Short

• Deep vs. Shallow

• Color

• Grayscale vs Color

• Light vs Dark

• Warm vs Cool

• Texture

• Fine vs Coarse

• Smooth vs Rough

• Sharp vs Dull

• Density

• Transparent vs Opaque

• Thick vs Thin

• Liquid vs Solid

• Gravity

• Light vs Heavy

• Stable vs Unstable

Movement is the path the viewer’s eye takes through the

artwork, often to focal areas. Such movement can be directed

along lines edges, shape and color within the artwork.

WEBSITE ARCHITECTURE

A website, also written as Web site, web site, or simply

site, is a set of related web pages containing content such

Design and Analysis Techniques

63

as text, images, video,audio, etc. A website is hosted on at

least one web server, accessible via a network such as the

Internet or a private local area network through an Internet

address known as a Uniform Resource Locator. All publicly

accessible websites collectively constitute the World Wide

Web.

A webpage is a document, typically written in plain text

interspersed with formatting instructions of Hypertext

Markup Language (HTML, XHTML). A webpage may

incorporate elements from other websites with suitable

markup anchors.

Webpages are accessed and transported with the

Hypertext Transfer Protocol (HTTP), which may optionally

employ encryption (HTTP Secure, HTTPS) to provide security

and privacy for the user of the webpage content. The user’s

application, often a web browser, renders the page content

according to its HTML markup instructions onto a display

terminal.

The pages of a website can usually be accessed from a

simple Uniform Resource Locator (URL) called the web

address. The URLs of the pages organize them into a

hierarchy, although hyperlinking between them conveys

the reader’s perceived site structure and guides the reader’s

navigation of the site which generally includes a home page

with most of the links to the site’s web content, and a

supplementary about, contact and link page.

Some websites require a subscription to access some or

all of their content. Examples of subscription websites include

many business sites, parts of news websites, academic

Design and Analysis Techniques

64

journal websites, gaming websites, file-sharing websites,

message boards, web-based email, social

networkingwebsites, websites providing real-time stock

market data, and websites providing various other services

(e.g., websites offering storing and/or sharing of images,

files and so forth).

HISTORY

The World Wide Web (WWW) was created in 1990 by

CERN physicist Tim Berners-Lee. On 30 April 1993, CERN

announced that the World Wide Web would be free to use

for anyone. Before the introduction of HTML and HTTP,

other protocols such as File Transfer Protocol and the

gopher protocol were used to retrieve individual files from

a server. These protocols offer a simple directory structure

which the user navigates and chooses files to download.

Documents were most often presented as plain text files

without formatting, or were encoded in word

processorformats.

OVERVIEW

Organized by function, a website may be

• a personal website

• a commercial website

• a government website

• a nonprofit organization website.

It could be the work of an individual, a business or other

organization, and is typically dedicated to some particular

topic or purpose. Any website can contain a hyperlink to

Design and Analysis Techniques

65

any other website, so the distinction between individual

sites, as perceived by the user, may sometimes be blurred.

Websites are written in, or dynamically converted to,

HTML (Hyper Text Markup Language) and are accessed

using a software interface classified as a user agent. Web

pages can be viewed or otherwise accessed from a range of

computer-based and Internet-enabled devices of various

sizes, including desktop computers, laptops, PDAs and cell

phones.

A website is hosted on a computer system known as a

web server, also called an HTTP server, and these terms can

also refer to the software that runs on these systems and

that retrieves and delivers the web pages in response to

requests from the website users. Apache is the most

commonly used web server software (according to Netcraft

statistics) and Microsoft’s IIS is also commonly used. Some

alternatives, such as Lighttpd, Hiawatha or Cherokee, are

fully functional and lightweight.

STATIC WEBSITE

A static website is one that has web pages stored on the

server in the format that is sent to a client web browser.

It is primarily coded in Hypertext Markup Language (HTML).

Simple forms or marketing examples of websites, such

as classic website, a five-page website or a brochure website

are often static websites, because they present pre-defined,

static information to the user. This may include information

about a company and its products and services through

text, photos, animations, audio/video and interactive menus

and navigation.

Design and Analysis Techniques

66

This type of website usually displays the same information

to all visitors. Similar to handing out a printed brochure

to customers or clients, a static website will generally provide

consistent, standard information for an extended period of

time. Although the website owner may make updates

periodically, it is a manual process to edit the text, photos

and other content and may require basic website design

skills and software.

In summary, visitors are not able to control what

information they receive via a static website, and must

instead settle for whatever content the website owner has

decided to offer at that time.

They are edited using four broad categories of software:

• Text editors, such as Notepad or TextEdit, where

content and HTML markup are manipulated directly

within the editor program

• WYSIWYG offline editors, such as Microsoft FrontPage

and Adobe Dreamweaver (previously Macromedia

Dreamweaver), with which the site is edited using a

GUI interface and the final HTML markup is generated

automatically by the editor software

• WYSIWYG online editors which create media rich online

presentation like web pages, widgets, intro, blogs, and

other documents.

• Template-based editors, such as RapidWeaver and

iWeb, which allow users to quickly create and upload

web pages to a web server without detailed HTML

knowledge, as they pick a suitable template from a

palette and add pictures and text to it in a desktop

Design and Analysis Techniques

67

publishing fashion without direct manipulation of

HTML code.

DYNAMIC WEBSITE

A dynamic website is one that changes or customizes

itself frequently and automatically, based on certain criteria.

Dynamic websites can have two types of dynamic activity:

Code and Content. Dynamic code is invisible or behind the

scenes and dynamic content is visible or fully displayed.

DYNAMIC CODE

The first type is a web page with dynamic code. The code

is constructed dynamically on the fly using active

programming language instead of plain, static HTML.

A website with dynamic code refers to its construction

or how it is built, and more specifically refers to the code

used to create a single web page. A dynamic web page is

generated on the fly by piecing together certain blocks of

code, procedures or routines. A dynamically generated web

page would recall various bits of information from a database

and put them together in a pre-defined format to present

the reader with a coherent page. It interacts with users in

a variety of ways including by reading cookies recognizing

users’ previous history, session variables, server side

variables etc., or by using direct interaction (form elements,

mouse overs, etc.). A site can display the current state of

a dialogue between users, monitor a changing situation, or

provide information in some way personalized to the

requirements of the individual user.

Design and Analysis Techniques

68

DYNAMIC CONTENT

The second type is a website with dynamic content

displayed in plain view. Variable content is displayed

dynamically on the fly based on certain criteria, usually by

retrieving content stored in a database.

A website with dynamic content refers to how its

messages, text, images and other information are displayed

on the web page, and more specifically how its content

changes at any given moment. The web page content varies

based on certain criteria, either pre-defined rules or variable

user input. For example, a website with a database of news

articles can use a pre-defined rule which tells it to display

all news articles for today’s date. This type of dynamic

website will automatically show the most current news

articles on any given date. Another example of dynamic

content is when a retail website with a database of media

products allows a user to input a search request for the

keyword Beatles. In response, the content of the web page

will spontaneously change the way it looked before, and will

then display a list of Beatles products like CDs, DVDs and

books.

SOFTWARE SYSTEMS

There is a wide range of software systems, such as ANSI

C servlets, JavaServer Pages (JSP), the PHP, Perl, Python,

and Ruby programming languages, ASP.NET, Active Server

Pages (ASP), YUMA and ColdFusion (CFML) that are available

to generate dynamic web systems and dynamic sites. Sites

may also include content that is retrieved from one or more

databases or by usingXML-based technologies such as RSS.

Design and Analysis Techniques

69

Static content may also be dynamically generated either

periodically, or if certain conditions for regeneration occur

(cached) in order to avoid the performance loss of initiating

the dynamic engine on a per-user or per-connection basis.

Plug ins are available to expand the features and abilities

of web browsers to show active content or even create rich

Internet applications. Examples of such plug-ins are

Microsoft Silverlight,Adobe Flash, Adobe Shockwave or

applets written in Java. Dynamic HTML also provides for

user interactivity and realtime element updating within web

pages (i.e., pages don’t have to be loaded or reloaded to

effect any changes), mainly using the Document Object

Model (DOM) and JavaScript, support which is built-in to

most modern web browsers.

Turning a website into an income source is a common

practice for web developers and website owners. There are

several methods for creating a website business which fall

into two broad categories, as defined below.

CONTENT-BASED SITES

Some websites derive revenue by selling advertising space

on their site either through direct sales or through an

advertising network.

PRODUCT- OR SERVICE-BASED SITES

Some websites derive revenue by offering products or

services for sale. In the case of e-commerce websites, the

products or services may be purchased at the website itself,

by entering credit card or other payment information into

a payment form on the site. While most business websites

Design and Analysis Techniques

70

serve as a shop window for existing brick and mortar

businesses, it is increasingly the case that some websites

are businesses in their own right; that is, the products they

offer are only available for purchase on the web.

Websites occasionally derive income from a combination

of these two practices. For example, a website such as an

online auctions website may charge the users of its auction

service to list an auction, but also display third-party

advertisements on the site, from which it derives further

income.

SPELLING

The form “website” has become the most common spelling,

but “Web site” (capitalised) and “web site” are also widely

used, though declining. Some academia, some large book

publishers, and some dictionaries still use “Web site”,

reflecting the origin of the term in the proper name World

Wide Web. There has also been similar debate regarding

related terms such as web page, web server, and webcam.

Among leading style guides, the Reuters style guide, The

Chicago Manual of Style, and the AP Stylebook (since April

2010) all recommend “website”.

Among leading dictionaries and encyclopedias, the

Canadian Oxford Dictionary prefers “website”, and the Oxford

English Dictionary changed to “website” in 2004. Wikipedia

also uses “website”, but Encyclopædia Britannica (including

its Merriam-Webster subsidiary) uses “Web site”.

Among leading language-usage commentators, Garner’s

Modern American Usage acknowledges that “website” is the

Design and Analysis Techniques

71

standard form, but Bill Walsh, of The Washington Post,

argues for using “Web site” in his books and on his website

(however, The Washington Post itself uses “website”).

Among major Internet technology companies and

corporations, Google uses “website”, as does Apple, though

Microsoft uses both “website” and “web site”.

TYPES OF WEBSITES

Websites can be divided into two broad categories - static

and interactive. Interactive sites are part of the Web 2.0

community of sites, and allow for interactivity between the

site owner and site visitors. Static sites serve or capture

information but do not allow engagement with the audience

directly. Some websites may be included in one or more of

these categories. For example, a business website may

promote the business’s products, but may also host

informative documents, such aswhite papers. There are

also numerous sub-categories to the ones listed above. For

example, a porn site is a specific type of e-commerce site

or business site (that is, it is trying to sell memberships for

access to its site) or have social networking capabilities. A

fansite may be a dedication from the owner to a particular

celebrity.

Websites are constrained by architectural limits (e.g., the

computing power dedicated to the website). Very large

websites, such as Facebook, Yahoo!, Microsoft, and Google

employ many servers and load balancing equipment such

as Cisco Content Services Switches to distribute visitor

loads over multiple computers at multiple locations. As of

early 2011, Facebook utilized 9 data centers with

Design and Analysis Techniques

72

approximately 63,000 servers. In February 2009, Netcraft,

an Internet monitoring company that has tracked Web

growth since 1995, reported that there were 215,675,903

websites with domain names and content on them in 2009,

compared to just 18,000 websites in August 1995.

AWARDS

The Webby Awards, Favourite Website Awards, Interactive

Media Awards and WebAwards are prominent award

organizations recognizing the world’s best websites.

WEBSITE MONETIZATION

Website monetization is the process of converting existing

traffic being sent to a particular website into revenue. The

most popular ways of monetizing a website are by

implementing Pay per click (PPC) and Cost per impression

(CPI/CPM) advertising. Various ad networks facilitate a

webmaster in placing advertisements on pages of the website

to benefit from the traffic the site is experiencing.

PAY PER CLICK ADVERTISING

Pay per click (also called Cost per click) is a marketing

strategy put in place by search engines and various

Advertising networks, where an advert, usually targeted by

keywords or general topic, is placed on a relevant website.

The advertiser then pays for every click that is made on the

advert.

COST PER IMPRESSION ADVERTISING

Cost per impression (also called Cost per mille) is a

marketing strategy put in place by various Advertising

Design and Analysis Techniques

73

networks, where an advert is placed on a relevant website,

usually targeted to the content sector of that site. The

advertiser then pays for every time the advert is displayed

to a user.

BANNER ADVERTISING

Banner advertising consists of placing a graphical banner

advertisement on a webpage. The role of this banner is to

catch the eye of incoming traffic to the page, enticing readers

to click the advertisement. This form of monetization is

implemented by both affiliate programs and advertising

networks. Banners originally just referred to advertisements

of 468 x 60 pixels, but the term is now widely used to refer

to all sizes of display advertising on the internet.

BANNER AD TYPES

Banner ads come in various shapes and sizes and are

sized according to pixel dimensions. Typical banner sizes

include:

• Leaderboard 728 x 90

• Banner 468 x 60

• Skyscraper 120 x 600

• Wide Skyscraper 160 x 600

AFFILIATE PROGRAMS

Affiliate programs are another popular way of monetizing

existing website traffic. By joining a business’ affiliate

program, any searches for products within that business’

catalogue may earn affiliates a commission on each sale

that was originally referred through their website.

Design and Analysis Techniques

74

DATA MONETIZATION

Websites also generate valuable user data that can be

monetized through various methods. Data generated by

websites about their users can range from being

demographics to in-market data (i.e. in-market for a car).

This data can be sold through behavioral data exchanges

and used by advertisers to target their online media

campaigns. Websites can also generate revenue from their

newsletter and on-site registrations programs by helping to

bring in offline data associated with users during this process.

PAID MEMBERSHIP PROGRAMS

Membership or Continuity Programs Paid membership

programs are another way to monetize existing traffic.

Probably the most well known media membership sites are

the Wall Street Journal and the New York Times. In the

gaming world, Blizzard’s World of Warcraft has millions of

members. But there are many other kinds of member sites

that cover niche markets. Often people join to get access

to content and expertise, or for community, such as

discussion or bulletin boards. The term “continuity” is used

because the goal is to develop income continuity. Instead

of making a one-time sale of a product or service, the

membership site brings new, repeated income every month.

Besides news, other kinds of membership site include:

health, fitness, marketing, copy writing, social media

expertise, paper products, dating, paper crafting, scrap

booking, coaching, writing and many other applications.

Experts in the membership site field say that “people

come for content and stay for community.” The challenge

Design and Analysis Techniques

75

of a member site is to retain paying members. Some sites,

like the New York Times, offers some free content and then,

charges a fee for more in depth access, or access to special

kinds of content. Some sites offer downloads of audio or

video content, free graphics, free software that is only

available to members. Many sites also offer webinars to

members. The webinars are often recorded as video, audio

and also transcribed, creating more special content that’s

behind the pay wall.

Fees for membership vary widely. They can be billed

monthly, annually, or even lifetime memberships. The digital

access to the website is sometimes sold as part of a

combination package that also includes physical product.

For example, the Wall Street Journal offers a combination

paper subscription, which is delivered to the subscriber’s

door, combined with access to the website and the

smartphone app versions of the paper for about $140.

Another site that sells membership to large corporations in

the mobile phone industry, charges up to $12,000.00 a year

for membership, which gives tech employees the right to

pay to attend conferences on different aspects of the

technology of cellular phones, and to access, on the website,

recordings of past meetings.

Business sites may offer a special information package,

perhaps CDs or DVDs shipped to the new member as part

of a package that includes membership. Affiliate marketing

is sometimes used to build membership in membership

sites. Some sites continue to pay a percentage to the referring

affiliate as long as the member continues paying monthly

fees. Others pay a larger up front fee.

Design and Analysis Techniques

76

The page that marketers use a marketing or social media

“funnel” to bring potential new paying members to is called
a “squeeze” page. There is an annual Continuity Summit
meeting organized by Ryan Lee that brings together experts
in member sites.

WEBSITE WIREFRAME

A website wireframe, also known as a page schematic or
screen blueprint, is a visual guide that represents the skeletal
framework of a website. Wireframes are created by User
Experience professionals called Interaction Designers. The
interaction designers who have broad backgrounds in visual
design, information architecture and user research, create
wireframes for the purpose of arranging elements to best
accomplish a particular purpose. The purpose is usually
being informed by a business objective and a creative idea.
The wireframe depicts the page layout or arrangement of

the website’s content, including interface elements and

navigational systems, and how they work together. The

wireframe usually lacks typographic style, color, or graphics,

since the main focus lies in functionality, behaviour, and

priority of content. In other words, it focuses on “what a

screen does, not what it looks like.” Wireframes can be

pencil drawings or sketches on a whiteboard, or they can

be produced by means of a broad array of free or commercial

software applications.

Wireframes focus on

• The kinds of information displayed

• The range of functions available

• The relative priorities of the information and functions

Design and Analysis Techniques

77

• The rules for displaying certain kinds of information

• The effect of different scenarios on the display

The website wireframe connects the underlying conceptual

structure, or information architecture, to the surface, or

visual design of the website. Wireframes help establish

functionality, and the relationships between different screen

templates of a website. An iterative process, creating

wireframes is an effective way to make rapid prototypes of

pages, while measuring the practicality of a design concept.

Wireframing typically begins between “high-level structural

work—like flowcharts or site maps—and screen designs.”

Within the process of building a website, wireframing is

where thinking becomes tangible.

Aside from websites, wireframes are utilized for the

prototyping of mobile sites, computer applications, or other

screen-based products that involve human-computer

interaction. Future technologies and media will force

wireframes to adapt and evolve.

USES OF WIREFRAMES

Wireframes may be utilized by different disciplines.

Developers use wireframes to get a more tangible grasp of

the site’s functionality, while designers use them to push

the user interface (UI) process. User experience designers

and information architects use wireframes to show navigation

paths between pages. Business stakeholders use wireframes

to ensure that requirements and objectives are met through

the design. Other professionals who create wireframes include

information architects, interaction designers, user experience

designers, graphic designers, programmers, and product

Design and Analysis Techniques

78

managers. Working with wireframes may be a collaborative

effort since it bridges the information architecture to the

visual design. Due to overlaps in these professional roles,

conflicts may occur, making wireframing a controversial

part of the design process. Since wireframes signify a “bare

bones” aesthetic, it is difficult for designers to assess how

closely the wireframe needs to depict actual screen layouts.

Another difficulty with wireframes is that they don’t

effectively display interactive details. Modern UI design

incorporates various devices such as expanding panels,

hover effects, and carousels that pose a challenge for 2-D

diagrams. Wireframes may have multiple levels of detail and

can be broken up into two categories in terms of fidelity,

or how closely they resemble the end product. Low-fidelity

Resembling a rough sketch or a quick mock-up, low-fidelity

wireframes have less detail and are quick to produce. These

wireframes help a project team collaborate more effectively

since they are more abstract, using rectangles and labeling

to represent content. Dummy content, Latin filler text (lorem

ipsum), sample or symbolic content are used to represent

data when real content is not available.

High-fidelity High-fidelity wireframes are often used for

documenting because they incorporate a level of detail that

more closely matches the design of the actual webpage,

thus taking longer to create.

For simple or low-fidelity drawings, paper prototyping is

a common technique. Since these sketches are just

representations, annotations—adjacent notes to explain

behaviour–are useful. For more complex projects, rendering

wireframes using computer software is popular. Some tools

Design and Analysis Techniques

79

allow the incorporation of interactivity including Flash

animation, and front-end web technologies such as, HTML,

CSS, and JavaScript.

ELEMENTS OF WIREFRAMES

The skeleton plan of a website can be broken down into

three components: information design, navigation design,

and interface design. Page layout is where these components

come together, while wireframing is what depicts the

relationship between these components.

INFORMATION DESIGN

Information design is the presentation—placement and

prioritization of information in a way that facilitates

understanding. Information design is an area of graphic

design, meant to display information effectively for clear

communication. For websites, information elements should

be arranged in a way that reflects the goals and tasks of

the user.

NAVIGATION DESIGN

The navigation system provides a set of screen elements

that allow the user to move page to page through a website.

The navigation design should communicate the relationship

between the links it contains so that users understand the

options they have for navigating the site. Often, websites

contain multiple navigation systems such as a global

navigation, local navigation, supplementary navigation,

contextual navigation, and courtesy navigation.

Design and Analysis Techniques

80

INTERFACE DESIGN

User interface design includes selecting and arranging

interface elements to enable users to interact with the

functionality of the system. The goal is to facilitate usability

and efficiency as much as possible. Common elements

found in interface design are action buttons, text fields,

check boxes, radio buttons and drop-down menus.

WEB DESIGN DEFINITION

What is Web design? The definition of “Web Design” can

vary, depending on who you ask. Web designers working

for one company may perform different tasks than Web

designers working for another company. The basic answer

is that Web design is the design of a Web page or Website,

including the information and user interface design, but

not including programming. Programming falls under the

definition of Web development, or Web application

programming (to name two of many).

At a smaller company, with fewer people and more overlap

of job descriptions, Web design can be defined as the whole

production of the Website from start to finish. To clarify this

a bit, let’s outline the process of creating a Website from

scratch.

Discovery: In this step, the Web designer finds out as

much about the company and its clients as possible, paying

special attention to the user audience of the Website.

Planning: Project definition documents are created as

a guide to the creation of the Website. It is important that

the scope, audience and goals of the Website are clearly

Design and Analysis Techniques

81

defined during this stage, so the resulting project definition

can be used as a touchstone to keep everyone on track

throughout the process.

Information Design: How will the information be broken

down and presented to the user? If what the user will be

looking for is well defined in the discovery and planning

stages, this will be an easier job. The information design,

or information architecture, step includes design of the

navigation and is the most critical step in making the

Website user-friendly.

Graphic Design: Graphic design may seem trivial to

some, but it is also a very important factor in the usability

of the Website. It isn’t just about making the Website look

pretty. It is also about visual balance and readable

typography, both of which are critical in the creation of a

user-friendly Web design.

When these steps have been completed, you have a

finished Web design. Loosely speaking, putting it together

is called Web production, and making it work is called Web

development.

Design and Analysis Techniques

82

5

Multidisciplinary Design and
Optimization

Multidisciplinary design and optimization is as the name

implies, the process of combining a full set of computational

design tools to create an optimum design. The process is

necessarily iterative in nature and all of the disciplines

normally utilized in an aircraft design are computationally

intensive. An MDO approach for an aircraft could include

aerodynamics, structures, and systems Computer Aided

Engineering (CAE) tools.

Initial design assumptions would be input to each CAE

toolset and the constraints and parameters to be optimized

defined. Each CAE suite would then compute design

parameters that would be utilized by the other CAE tools as

a subset of their required inputs. The ultimate design would

theoretically be structurally sounder, lighter and more cost

effective to fabricate.

Design and Analysis Techniques

83

The design timeframe would be also very much shortened.

The challenges to this process are in the exchange of data

between the CAE applications and the tuning of the entire

process to achieve convergence on the final solution set in

an efficient manner.

STRUCTURAL ANALYSIS
The optimization of analytical design tools is a process

that will lead to shortened design time frames, lighter and

more efficient designs, with reduced production and life cycle

costs of the final design. The many analytical tools now
available have been typically developed for specific
applications and are often not readily applicable outside of
their original design target arena.

An example lies in the structural analysis field where tools
developed for metallics will be much different from those
developed for composite materials where material properties
may vary according to axis.

The ability to rapidly define an optimized aircraft structure
having light weight, and improved fatigue and damage
tolerance capabilities, is a critical technology to maintain
competitive leadership in the development and supply of
future new aircraft.

This will be achieved by the extensive use of computerized

methods for structural analysis and design optimization, and

the analysis of failure and fracture mechanics.

The methods must be integrated with the in-house design

and manufacturing data bases, the 3-D CAD/CAMsystems,

and also be easy to use. Suppliers and partners will have

access to the resulting design information via Technical Data

Interchange (TDI). This will ensure consistency with an up-

Design and Analysis Techniques

84

to-date knowledge of the requirements for loads, interfaces

and the space envelopes available for their products. The

immediate dissemination to suppliers of information on

design changes will help diminish subsequent redesign

activity and the time and cost penalties incurred for rework.

The preliminary structural design will often use detailed

Finite Element Methods (FEM) for analysis, coupled with

constrained optimization, and the process must be highly

automated for rapid creation of FEM meshing for models. In

order to achieve shortened design cycle time, the loads and

dynamics stiffness requirements must become available

much sooner than at present. This will require early

development of MDO models for overall aerodynamic and

structural optimization that will define the static and dynamic

loads for flight and ground operations. Trade-off studies must

rapidly search for the best designs and arrive at realistic

structural sizes, providing space envelopes and accurate

weights to minimize subsequent redesign.

STRUCTURAL DESIGN, ANALYSIS AND
OPTIMIZATION

Shortened design cycle times are necessary for achieving

market advantage in the aerospace and defence sector.

Improvements in the structural analysis, design and

optimization of gas turbine engines is necessary to achieve

these goals while also meeting the overall objectives of

increased durability and efficiency at lower costs. A Multi-

disciplinary Design Optimization (MDO) approach that

combines finite element analysis and aerodynamic design

techniques is employed. MDO is necessary to rapidly

Design and Analysis Techniques

85

determine the structure of the engine and identify critical

areas requiring further or more detailed analysis.

Many of the structural and aerodynamic codes developed

by companies are proprietary in nature and the integration

and refinement of these codes is an on-going challenge.

COMPUTATIONAL FLUID DYNAMICS

COMPUTATIONAL DEVELOPMENT AND
VALIDATION

Computational Fluid Dynamics (CFD) has had the greatest

effect on both aircraft and engine design of any single design

tool over the past twenty-five years. Computational power

and cost have enabled widespread application and

development of CFD techniques. Computational fluid

dynamics is basically the use of computers to numerically

model flows of interest. Nodes in the flowpath are identified

and equations of motion solved at these locations to identify

flow parameters.

In essence a grid or mesh is defined over the surface of the

object that extends outwards into the flowfield containing

the object. Flow equations are then calculated at each node

in the grid, and iteratively re-calculated until all results for

each node are within an acceptable variance.

The equations used are either Euler based which do not

include viscous effects (boundary layers) directly, or Navier-

Stokes equations which include viscous effects and which

produce more accurate but computationally more demanding

solutions. Such methods can be used for external flows about

an aircraft or for internal flows in a gas turbine including

Design and Analysis Techniques

86

combustion. The Euler based analyses are typically less

computationally demanding but are less precise for modeling

separated flows on wings and bodies, or for internal reversed

flows. It should be noted that Navier first developed his

equations in 1823 and that Stokes refined them in 1845.

The development of solutions to these equations was not

feasible until the latter part of this century. Today much

R&D effort on NS methods is expended on improving

modeling of the turbulent flow terms for specific problems.

Numerous forms of Euler and Navier-Stokes solutions have

been developed to address particular design problems.

Solutions to these equations are dependent on

experimentation for both coefficients and for validation.

Mesh selection and node placement is critical to the

solution of the flowfield. The automated generation of meshes

is now in wide spread use and can often be linked to

Computer Aided Engineering and Design tools. The form of

the equation used, the density of the mesh or grid and

convergence requirements determine computational

demands. Complete aircraft solutions require huge computer

resources and much R&D is aimed at improving the speed

of the solution.

COMPUTATIONAL FLUID DYNAMICS - GAS
TURBINES

CFD is perhaps the single most critical technology for gas

turbine engines. Gas turbineCFD needs have typically posed

the greatest challenges to engine designers, and

computational power and code developers. While CFD is of

utmost importance to the engine designer it is a very specific

disciplinary design requirement and competence is held by

Design and Analysis Techniques

87

a very small number of engine design firms worldwide.

Computation techniques for gas turbine engines also tend

to be very module specific — compressor, transition duct,

combustor, turbine and exhaust duct/military afterburner

are examples. Computational techniques are often also

specific to engine size class and thus Canada, focusing on

small gas turbines, has a specific set of technology

requirements.

Advanced 3D CFD codes have been used to generate the

following design improvements:

• In the compressor to develop advanced swept airfoils

capable of high compression ratios that in turn yield

higher efficiency at less weight and with a smaller

parts count (significant life cycle cost factor);

• In the combustor for higher intensity (smaller volumes

with much higher energy density) combustors that

approach stoichiometric conditions to yield higher

efficiency with lower weight; and

• In the turbine to produce higher stage loading with

reduced turbine cooling air requirements that again

reduces weight and cost while reducing fuel burn.

COMBUSTION SYSTEMS COMPUTATION
The combustor of a gas turbine engine is that part of the

engine that receives the compressed air from the compressor.

Energy is added to the airflow in the combustor in the form

of chemical energy derived from fuel. The combustor

discharge air is expanded across a turbine or turbines where

energy is extracted to drive the compressor and gearbox of a

turboshaft/turboprop engine, or to provide jet thrust via a

Design and Analysis Techniques

88

turbofan and core nozzle in a thrust engine.

Small gas turbines, of the size that have typically been

designed and built in Canada pose significant design

challenges because of their size. Pratt and Whitney Canada

combustors are the highest intensity combustors in the

world, where intensity can be thought of as the amount of

energy converted per unit volume within the combustor.

The design objectives for gas turbine engines, including

small ones, are to increase both overall pressure ratios and

cycle temperatures, which lead to increased efficiency and

smaller size and weight, while simultaneously producing

reduced noise and noxious emissions levels. Combustor

technology development challenges for Canadian engine

manufacturers include.

• Computational fluid dynamics: CFD analyses are

complicated by the reverse flow designs typically selected

to maintain short combustors within small volumes.

Cooling flow and chemical additions to the CFD design

further complicate the process as the temperatures of

gases at the core of the flows are well above the melting

temperatures of the combustor materials. Pressure losses

and cooling flow requirements must be minimized to

improve performance.

• Materials: Increasing compressor ratios result in

increased compressor discharge temperatures and

decreased cooling capability. These increased

temperatures also push for higher fuel to air ratios

and higher temperatures within the combustor.

Stoichiometric ratio is that ratio when all oxygen is

consumed in the combustion process leaving less air

Design and Analysis Techniques

89

for cooling. Materials challenges in this environment

are the most demanding. Fuel injection and mixing:

CFD and injector specific techniques are required.

• Emissions: While not legislated and not contributing

significantly in absolute terms, there is a drive for

lower emissions that drives designs often in the opposite

direction to those factors identified above.

AERODYNAMICS AND FLIGHT MECHANICS
Aerodynamics is the study of forces on wing bodies and

controls due to air pressure and viscous (drag) effects. Flight

mechanics is the study of the resulting motion of objects

through the air and includes the stability and control

Behaviour. The laws of motion and aerodynamics are

combined to ensure that an aircraft flies in the intended

manner. Much of the aerodynamics and flight mechanics

work that is pursued for the purposes of aircraft designed

and built in Canada will pertain to such issues as the design

of improved wings, the integration of various components

onto an aircraft or issues such as flight in adverse conditions

where the handling qualities of an aircraft will be adversely

influenced by the build up of ice on the surface of the wing.

Advanced technology development in this field will be

directed towards supersonic transports and eventually

hypersonic flight. There are considerable differences between

fixed wing and rotary wing aircraft aerodynamics and flight

mechanics and both areas are of considerable interest to the

Canadian aerospace and defence industry. Technologies

relevant to Aerodynamics and Flight Mechanics are described

below,

Design and Analysis Techniques

90

ADVANCED AERODYNAMICS AND HANDLING
Included here are technologies that will enable the

Canadian Aerospace industry to contribute to the design of

advanced concept aircraft technologies or components or be

the lead design integrator.

These enabling technologies should be pursued dependent

on their links to, and pre-positioning for potential application

to specific aircraft platforms or types as follows:

• Future Transport Aircraft: Future transport aircraft

will have to demonstrate increased speed and load

carrying capabilities over greatly extended ranges.

Specific targets have been set by the U.S. for next

generation transport aircraft although no new advanced

concept transport aircraft are currently well advanced.

Wing loading factors will double over that of existing

aircraft with the development of materials new to the

transport aircraft envelope. For shorter-range aircraft,

a key enabling technology will be that of high efficiency

turboprop engines with cruise speeds above the M.72

range. Propulsion technology and propulsion

integration issues, aircraft design optimization, CFD,

and materials technology development and insertion

will be key to the success of the future transport

aircraft.

• Hypersonic Aircraft: Hypersonic aircraft are in exploratory

or advanced development model stage at this time and

will be used initially for low cost space launch and

delivery platforms and subsequently for commercial

transport. Propulsion technologies are significant to

hypersonic vehicle feasibility and are now the limiting

Design and Analysis Techniques

91

factor. Variable cycle engines, advanced materials,

endothermic fuels and fuel control technologies are key

aeropropulsion technology elements where

significantR&D remains unsatisfied. Numerous controls

and materials research topics require further investment

as well, although less uncertainty remains in these areas

due to advances made through the shuttle Programmes.

• Advanced Rotorcraft: Future rotorcraft will demons-

trate increased cruise speeds of 200 kts or greater

with tiltrotor speeds approaching 450 kts. These cruise

speeds will be possible at significantly reduced vibration

levels and with greatly increased range/fuel economy.

Many of the design concepts for attaining these

performance improvements are already in development,

however much work remains undone.

• Advanced Rotorcraft Flight Mechanics: For both

conventional helicopter and tiltrotor blades, the wings

and propulsion system operate in a very complex

aeromechanical environment. Aerodyn-amics,

structures, vibration and acoustics parameters are

inseparable and typically drive the design of the entire

air vehicle. In trimmed forward flight the advancing

blade tip will be moving at near sonic velocities whilst

the retreating blade is often in near stall conditions.

ADVANCED DESIGN AND DEVELOPMENT
General aviation aircraft pose specific design challenges

in all aspects of their design and fabrication. Increasing

availability of low cost and high performance avionics,

advanced composite designs and powerplant integration all

Design and Analysis Techniques

92

offer opportunities for general aviation aircraft designers and

builders. Many of the technologies being furthered for use in

military unmanned aerial vehicles will be of pertinence to

general aviation aircraft. Low cost gas turbine technologies

and composite structures development and certification

issues will likely be the technologies of greatest interest.

The development of technologies for military purposes will

underwrite some of the costs of introduction of those design

concepts into general aviation use.

EXPERIMENTAL ASSESSMENT AND
PERFORMANCE

Analytical design and analysis techniques are a prereq-

uisite to reductions in design cycle time, design and

production costs, and improved safety and environmental

impact. The development of these analytical or numerical

design techniques will remain heavily dependent on

experimental validation of design codes and performance

targets for another 10-15 years. Whereas in the past,

experimental resources such as wind tunnels were used

primarily for design development and refinement, in the

future they may increasingly be used for the validation of

computational design tools.

Notwithstanding the foregoing, there will continue to be a

requirement for national facilities including wind tunnels,

engine test facilities, flight test resources, and specialized

resources including icing tunnels and rig test facilities for

some time to come.

Experimental design and performance validation technology

investment will be required in the following areas to support

the aerospace industry in Canada:

Design and Analysis Techniques

93

• Data Capture and Analysis Automation: Automated

methods for intelligent data capture and analysis will

be required to reduce large facility run times and meet

the challenges of design tool validation. This will require

investment both in sensors and in computational tools;

• Experimental Code Development: Increased data

capture rates and fidelity will be required and will

necessitate the development of specific codes for

experimental design and performance validation.

Facilities and infrastructure will have to be maintained

or enhanced to achieve these goals; and

• Infrastructure Support: The maintenance of critical

national facilities will have to be supported in concert

with other government departments and industry.

The objective will not necessarily be to create new

facilities but rather to improve the functionality of

existing resources to meet the needs of new technology

developments.

AEROPROPULSION PERFORMANCE
ASSESSMENT

Test cells utilized for Canadian aero-engine Programmes,

and also those developed for sale, have typically been sea-

level static facilities offering little or no altitude, forward flight

velocity or temperature pressure simulation. Some limited

flying test bed capability exists in Canada for the testing of

engines.

That being said, the National Research Council has

participated in numerous international projects in the

process ensuring that a world leading test cell capability exists

Design and Analysis Techniques

94

both for engine qualification testing, performance testing and

for the development of performance assessment techniques.

Engine test cells take a number of forms. Sea level test

facilities are used for Engine Qualification Testing that

involves the monitoring of a relatively small number of

parameters over long periods where in-service usage is

evaluated in a time compressed manner.

Qualification testing also involves the ingestion of ice or

water to ensure that unacceptable engine degradation does

not occur in those instances. The NRC Institute for

Aerospace Research has developed world recognized icing

testing competencies and icing test facilities that are used

by Canadian and off-shore engine manufacturers for

qualification testing.

Altitude test cells are used to qualify engines over a full

flight envelope as opposed to the endurance type testing

previously described. The National Research Council in

colLabouration with Pratt and Whitney Canada have

developed and operated one small altitude test cell at NRC

for some time.

An initiative that began in 2000 will see the development

and commissioning of a somewhat larger and more capable

altitude facility, again as a colLabourative effort between NRC

and P&WC.

Test cells can also be used for the analysis of problems or

validation of problem resolution. In these cases the test cells

often require enhanced instrumentation suites and a much

more careful design to ensure that performance parameters

are correctly measured. World interest in advanced test cell

technologies has been directed at those required to support

Design and Analysis Techniques

95

hypersonic vehicles for military uses or for space launch

vehicles. This type of test cell is very resource intensive and

highly specialized and will likely be of little interest or utility

to any but a limited number of Canadian firms.

The Short Take Off and Vertical Landing (STOVL) version

of the F35 Joint Strike Fighter has recently posed new

challenges in the world of aeropropulsion testing. For this

testing, in-flow preparation, exhaust treatment, fan drive

systems, and 6 axis thrust measurement in the vertical axis

will all pose significant new challenges to the performance

assessment community.

ADVANCED D®ESIGN CONCEPTS

ANALYSIS AND DESIGN INTEGRATION
Advanced aerodynamics profile development in Canada will

be primarily directed at wing design for subsonic aircraft

carrying less than 120 passengers. The objective of work done

on advanced aerodynamic profiles will be to increase

efficiency and cruise speeds through reduced drag while

improving structural and control characteristics. Wing profile,

control surface effectiveness, airframe and engine interface

effects with the wing and wing tip designs are areas of

research and development interest. Also, developments

improving wing-flap high lift performance are important areas

for minimizing wing size required and hence costs.

Laminar flow control is a term that deserves discussion.

Airflow over wings begins as a laminar or ordered flowfield

and will transition to a higher drag producing turbulent flow

based on flow characteristics such as speed and wing

Design and Analysis Techniques

96

influences including wing shape, surface roughness.

It has been estimated that if laminar flow could be

maintained on the wings of a large aircraft, fuel savings of

up to 25% could be achieved. Wing and flight characteristics

of small aircraft are such that laminar flow can be relatively

easily maintained over much of the flight envelope. A variety

of methods can be used to increase laminar flow regions on

aircraft of larger size and having higher Reynolds numbers

and sweep angles. Computational fluid dynamics will be the

most important technology relevant to the development of

advanced aerodynamic profiles. A number of areas require

R&D activity and support for aircraft design particular to

Canadian aerospace interests. Large-scaleCFD code

refinement and validation is one area requiring work to

improve accuracy and reduce computational times for MDO

by more rapid design convergence. These CFD codes will also

require validation in Labouratories and in wind tunnels.

ALL-ELECTRIC AIRCRAFT CONCEPT
DEVELOPMENT

The all-electric aircraft will utilize electronic actuators to

replace equivalent hydraulic system components. The intent

is to save weight and increase reliability. For example,

electrical generators would provide power to electric actuators

for flight control surface movement rather than equivalent

hydraulic powered components. Electric power cables are

lighter and less prone to damage or service induced

degradation such as fitting vibration that results in leakage

in hydraulic systems. Alternate power supply redundancy is

an additional advantage of this concept. Challenges

Design and Analysis Techniques

97

associated with this type of technology insertion would be

related to electromagnetic interference (EMI), and rapid load

fluctuations imposed on the power generation engines.

FLY-BY-LIGHT CONCEPT DEVELOPMENT
Fly-by-Light (FBL) technology involves the replacement of

electronic data transmission, mechanical control linkages,

and electronic sensors with optical components and

subsystems. Benefits include lower initial acquisition and

life cycle costs, reduced weight, and increased aircraft

performance and reliability. Fibre-optic cables are essentially

immune to electroma-gnetic interference and therefore not

affected by fields generated by other lines or electrical devices

in close proximity, nor are they affected by lightning strikes.

For flight controls, hydraulic or electric actuators are still

employed but receive their command inputs via fibre-optic

cables. Weight reductions are significant as the fibre-optic

cables need only be protected from physical damage, whereas

electric cables must be insulated and shielded increasing

weight significantly. Also with a FBL connection multiple

routes can be readily provided that are well separated to

provide control redundancy.

There are a number of enabling technologies that must be

developed in order to enable photonics technology insertion.

Fibre-optic connectors for in-line and end connections must

be developed that are durable and insensitive to in-service

maintenance activities. Fibre-optic sensors development will

also be necessary to allow the achievement of the full range

of benefits that can be obtained in fly-by-light aircraft.

This technology is usually associated with smart structures

Design and Analysis Techniques

98

concepts such as smart skins where fibre-optic cabling can

be readily embedded in a composite lay-up to achieve

dispersed damage, stress, temperature or vibration sensing

capability.

DETECTION MANAGEMENT AND CONTROL
SYSTEMS

Regional airliners and helicopters operating in lower level

airspace are increasingly exposed to hazardous icing

conditions. This has increased the need for technologies for

proactive and reactive ice detection and protection. Reactive

technologies are those related to the detection of runback

icing and attempt to monitor real-time or infer likely

aerodynamic performance degradation.

Proactive systems forecast the potential for icing conditions

and provide on-board avoidance advisory information.

Reactive systems provide reasonable protection of the aircraft

within the regulated flight envelope but are essentially go/

no-go decision aids.

Aircraft on Search and Rescue Missions and most civil

transport aircraft often do not have the option of avoiding

hazardous icing conditions and should have pro-active pilot

advisors and ice removal systems.

Reactive ice detection devices include: Embedded sensors

that are mounted on the wing surface in a critical location

and monitor ice build-up; and aerodynamic performance

sensors that typically monitor pressure within the boundary

layer of the wing to determine lift performance degradation.

Proactive systems require the remote measurement of

Liquid Water Content (LWC), Outside Air Temperature (OAT)

Design and Analysis Techniques

99

and Mean Volume Diameter (MVD) of the liquid water.

Knowledge of these three parameters is required to predict

hazardous icing conditions. Additional R&D work on MVD

measurement is required.

Ice control and removal systems may use heated air from

the engines or electrical heat elements to remove ice from

airfoil surfaces. Coatings that are termed"iceophobic" may

also be applied to minimize ice build-up. CFD tools are needed

to Analyse ice-buildup characteristics, assess aerodynamic

degradation, and improve ice removal air supply performance.

This technology area is of particular interest because of

the types of aircraft produced in Canada and because of

climatic conditions.

DESIGN TECHNIQUES
Two issues predominate in the environmental design

factors technology category for aeropropulsion systems —

external noise and exhaust emissions.

A previously stated objective for noise reduction is in the

order of 6 EPNdB (Effective Perceived Noise in dB). This

objective can be achieved through the utilization of larger

by-pass ratio fans, innovative design concepts for turbo fans

and sound conscious designs in the combustor and exhaust

nozzles/liners.

Generally speaking, noise improvements and fuel efficiency

must be improved to meet future regulatory requirements

without sacrifice of overall engine efficiency. Of special

interest will be advanced ducted propulsors (ADF) that offer

both noise attenuation and increased efficiency potential.

This technology area will be heavily dependent on

Design and Analysis Techniques

100

computational design techniques and multidisciplinary

design optimization. The reduction in aircraft emissions is

also a regulated requirement. While small aircraft engines

contribute an insignificant amount of pollution they are still

the targets of increased environmental scrutiny. Regulatory

requirements are targeted at Nitrous Oxides (NOx), Carbon

Monoxide (CO) and visible particulate emissions. CFD

analysis techniques specific to combustion processes will be

the major tool used to lower aeropropulsion emissions.

Design and Analysis Techniques

101

6

Analysis of Algorithms

PROGRAMMES
When analyzing a Programme in terms of efficiency, we

want to look at questions such as, “How long does it take for

the Programme to run?” and “Is there another approach that

will get the answer more quickly?” Efficiency will always be

less important than correctness; if you don’t care whether a

Programme works correctly, you can make it run very quickly

indeed, but no one will think it’s much of an achievement!

On the other hand, a Programme that gives a correct answer

after ten thousand years isn’t very useful either, so efficiency

is often an important issue.

The term “efficiency” can refer to efficient use of almost

any resource, including time, computer memory, disk space,

or network bandwidth. However, we will deal exclusively with

time efficiency, and the major question that we want to ask

about a Programme is, how long does it take to perform its

Design and Analysis Techniques

102

task? It really makes little sense to classify an individual

Programme as being “efficient” or “inefficient.” It makes more

sense to compare two (correct) Programmes that perform

the same task and ask which one of the two is “more efficient,”

that is, which one performs the task more quickly. However,

even here there are difficulties. The running time of a

Programme is not well-defined. The run time can be different

depending on the number and speed of the processors in

the computer on which it is run and, in the case of Java, on

the design of the Java Virtual Machine which is used to

interpret the Programme.

It can depend on details of the compiler which is used to

translate the Programme from high-level language to machine

language. Furthermore, the run time of a Programme depends

on the size of the problem which the Programme has to solve.

It takes a sorting Programme longer to sort 10000 items than

it takes it to sort 100 items. When the run times of two

Programmes are compared, it often happens that Programme

A solves small problems faster than Programme B, while

Programme B solves large problems faster than Programme

A, so that it is simply not the case that one Programme is

faster than the other in all cases.

In spite of these difficulties, there is a field of computer

science dedicated to analyzing the efficiency of Programmes.

The field is known as Analysis of Algorithms. The focus is on

algorithms, rather than on Programmes as such, to avoid

having to deal with multiple implementations of the same

algorithm written in different languages, compiled with

different compilers, and running on different computers.

Analysis of Algorithms is a mathematical field that abstracts

Design and Analysis Techniques

103

away from these down-and-dirty details. Still, even though

it is a theoretical field, every working Programmemer should

be aware of some of its techniques and results. This is a very

brief introduction to some of those techniques and results.

Because this is not a mathematics book, the treatment will

be rather informal.

One of the main techniques of analysis of algorithms is

asymptotic analysis. The term “asymptotic” here means

basically “the tendency in the long run.” An asymptotic

analysis of an algorithm’s run time looks at the question of

how the run time depends on the size of the problem. The

analysis is asymptotic because it only considers what

happens to the run time as the size of the problem increases

without limit; it is not concerned with what happens for

problems of small size or, in fact, for problems of any fixed

finite size. Only what happens in the long run, as the problem

size increases without limit, is important.

Showing that Algorithm A is asymptotically faster than

Algorithm B doesn’t necessarily mean that Algorithm A will

run faster than Algorithm B for problems of size 10 or size

1000 or even size 1000000 — it only means that if you keep

increasing the problem size, you will eventually come to a

point where Algorithm A is faster than Algorithm B. An

asymptotic analysis is only a first approximation, but in

practice it often gives important and useful information.

Using this notation, we might say, for example, that an

algorithm has a running time that is O(n2) or O(n) or O(log(n)).

These notations are read “Big-Oh of n squared,” “Big-Oh of

n,” and “Big-Oh of log n” (where log is a logarithm function).

More generally, we can refer to O(f(n)) (“Big-Oh of f of n”),

Design and Analysis Techniques

104

where f(n) is some function that assigns a positive real

number to every positive integer n. The “n” in this notation

refers to the size of the problem.

Before you can even begin an asymptotic analysis, you

need some way to measure problem size. Usually, this is not

a big issue. For example, if the problem is to sort a list of

items, then the problem size can be taken to be the number

of items in the list. When the input to an algorithm is an

integer, as in the case of an algorithm that checks whether a

given positive integer is prime, the usual measure of the size

of a problem is the number of bits in the input integer rather

than the integer itself. More generally, the number of bits in

the input to a problem is often a good measure of the size of

the problem.

To say that the running time of an algorithm is O(f(n))

means that for large values of the problem size, n, the running

time of the algorithm is no bigger than some constant times

f(n). (More rigorously, there is a number C and a positive

integer M such that whenever n is greater than M, the run

time is less than or equal to C*f(n).) The constant takes into

account details such as the speed of the computer on which

the algorithm is run; if you use a slower computer, you might

have to use a bigger constant in the formula, but changing

the constant won’t change the basic fact that the run time is

O(f(n)).

The constant also makes it unnecessary to say whether

we are measuring time in seconds, years, CPU cycles, or any

other unit of measure; a change from one unit of measure to

another is just multiplication by a constant. Note also that

O(f(n)) doesn’t depend at all on what happens for small

Design and Analysis Techniques

105

problem sizes, only on what happens in the long run as the

problem size increases without limit.

To look at a simple example, consider the problem of adding

up all the numbers in an array. The problem size, n, is the

length of the array. Using A as the name of the array, the

algorithm can be expressed in Java as:
���������	

�����������	�����	����
�������������������	

This algorithm performs the same operation, total = total

+ A[i], n times. The total time spent on this operation is a*n,

where a is the time it takes to perform the operation once.

Now, this is not the only thing that is done in the algorithm.

The value of i is incremented and is compared to n each time

through the loop. 4This adds an additional time of b*n to the

run time, for some constant b. Furthermore, i and total both

have to be initialized to zero; this adds some constant amount

c to the running time. The exact running time would then be

(a+b)*n+c, where the constants a, b, and c depend on factors

such as how the code is compiled and what computer it is

run on. Using the fact that c is less than or equal to c*n for

any positive integer n, we can say that the run time is less

than or equal to (a+b+c)*n.

That is, the run time is less than or equal to a constant

times n. By definition, this means that the run time for this

algorithm is O(n). If this explanation is too mathematical for

you, we can just note that for large values of n, the c in the

formula (a+b)*n+c is insignificant compared to the other term,

(a+b)*n. We say that c is a “lower order term.” When doing

asymptotic analysis, lower order terms can be discarded. A

rough, but correct, asymptotic analysis of the algorithm would

Design and Analysis Techniques

106

go something like this: Each iteration of the for loop takes a

certain constant amount of time. There are n iterations of

the loop, so the total run time is a constant times n, plus

lower order terms (to account for the initialization).

Disregarding lower order terms, we see that the run time is

O(n).

Note that to say that an algorithm has run time O(f(n)) is

to say that its run time is no bigger than some constant

times f(n) (for large values of n). O(f(n)) puts an upper limit

on the run time. However, the run time could be smaller,

even much smaller. For example, if the run time is O(n), it

would also be correct to say that the run time is O(n2) or

even O(n10). If the run time is less than a constant times n,

then it is certainly less than the same constant times n2 or

n10.

Of course, sometimes it’s useful to have a lower limit on

the run time. That is, we want to be able to say that the run

time is greater than or equal to some constant times f(n) (for

large values of n). The notation for this is Ω(f(n)), read “Omega

of f of n.” “Omega” is the name of a letter in the Greek

alphabet, and Ω is the upper case version of that letter.

(To be technical, saying that the run time of an algorithm

is Ω(f(n)) means that there is a positive number C and a

positive integer M such that whenever n is greater than M,

the run time is greater than or equal to C*f(n).) O(f(n)) tells

you something about the maximum amount of time that you

might have to wait for an algorithm to finish; Ω(f(n)) tells you

something about the minimum time.

The algorithm for adding up the numbers in an array has

a run time that is Ω(n) as well as O(n). When an algorithm

Design and Analysis Techniques

107

has a run time that is both Ω(f(n)) and O(f(n)), its run time is

said to be Θ(f(n)), read “Theta of f of n.” (Theta is another

letter from the Greek alphabet.) To say that the run time of

an algorithm is Θ(f(n)) means that for large values of n, the

run time is between a*f(n) and b*f(n), where a and b are

constants (with b greater than a, and both greater than 0).

Let’s look at another example. Consider the algorithm that

can be expressed in Java in the following method:
���
��� ��� ��� ���� �!�����"

��#���
��

$%&�!�����!���$��'%&&����������������� ���(

�����������	�����	�����(

���)����$����������%"��������������

�������*����	�*���� �	�*����(

����*��+���*�����(
�����*����#���*���������%���
���#��������,�$ ����

������$�����*�	
��*������*���	
��*���������$	

-
-

-
-

Here, the parameter n represents the problem size. The

outer for loop in the method is executed n times. Each time

the outer for loop is executed, the inner for loop is exectued

n-1 times, so the if statement is executed n*(n-1) times. This

is n2-n, but since lower order terms are not significant in an

asymptotic analysis, it’s good enough to say that the if

statement is executed about n2 times.

In particular, the test A[j] > A[j+1] is executed about

n2times, and this fact by itself is enough to say that the run

time of the algorithm is W(n2), that is, the run time is at least

Design and Analysis Techniques

108

some constant times n2. Furthermore, if we look at other

operations — the assignment statements, incrementing i and

j, etc. — none of them are executed more than n2 times, so

the run time is also O(n2), that is, the run time is no more

than some constant times n2. Since it is both W(n2) and

O(n2), the run time of the simpleBubbleSort algorithm is

Q(n2).

You should be aware that some people use the notation

O(f(n)) as if it meant Θ(f(n)). That is, when they say that the

run time of an algorithm is O(f(n)), they mean to say that the

run time is about equal to a constant times f(n). For that,

they should use Θ(f(n)). Properly speaking, O(f(n)) means that

the run time is less than a constant times f(n), possibly much

less.

So far, the analysis has ignored an important detail. We

have looked at how run time depends on the problem size,

but in fact the run time usually depends not just on the size

of the problem but on the specific data that has to be

processed. For example, the run time of a sorting algorithm

can depend on the initial order of the items that are to be

sorted, and not just on the number of items.

To account for this dependency, we can consider either

the worst case run time analysis or the average case run

time analysis of an algorithm. For a worst case run time

analysis, we consider all possible problems of size n and look

at the longest possible run time for all such problems. For

an average case analysis, we consider all possible problems

of size n and look at the average of the run times for all such

problems. Usually, the average case analysis assumes that

all problems of size n are equally likely to be encountered,

Design and Analysis Techniques

109

although this is not always realistic — or even possible in

the case where there is an infinite number of different

problems of a given size.

In many cases, the average and the worst case run times

are the same to within a constant multiple. This means that

as far as asymptotic analysis is concerned, they are the same.

That is, if the average case run time is O(f(n)) or Θ(f(n)), then

so is the worst case. However, later in the book, we will

encounter a few cases where the average and worst case

asymptotic analyses differ.

So, what do you really have to know about analysis of

algorithms to read the rest of this book? We will not do any

rigorous mathematical analysis, but you should be able to

follow informal discussion of simple cases such as the

examples that we have looked. Most important, though, you

should have a feeling for exactly what it means to say that

the running time of an algorithm is O(f(n)) or Θ(f(n)) for some

common functions f(n).

The main point is that these notations do not tell you

anything about the actual numerical value of the running

time of the algorithm for any particular case. They do not tell

you anything at all about the running time for small values

of n. What they do tell you is something about the rate of

growth of the running time as the size of the problem

increases. Suppose you compare two algorithms that solve

the same problem. The run time of one algorithm is Θ(n2),

while the run time of the second algorithm is Θ(n3). What

does this tell you? If you want to know which algorithm will

be faster for some particular problem of size, say, 100, nothing

is certain. As far as you can tell just from the asymptotic

Design and Analysis Techniques

110

analysis, either algorithm could be faster for that particular

case — or in any particular case.

But what you can say for sure is that if you look at larger

and larger problems, you will come to a point where the Θ(n2)

algorithm is faster than the Θ(n3) algorithm.

Furthermore, as you continue to increase the problem size,

the relative advantage of the Θ(n2) algorithm will continue to

grow. There will be values of n for which the Θ(n2) algorithm

is a thousand times faster, a million times faster, a billion

times faster, and so on. This is because for any positive

constants a and b, the function a*n3 grows faster than the

function b*n2 as n gets larger. (Mathematically, the limit of

the ratio of a*n3 to b*n2 is infinite as n approaches infinity.)

This means that for “large” problems, a Θ(n2) algorithm

will definitely be faster than a Θ(n3) algorithm. You just don’t

know — based on the asymptotic analysis alone — exactly

how large “large” has to be. In practice, in fact, it is likely

that the Θ(n2) algorithm will be faster even for fairly small

values of n, and absent other information you would generally

prefer a Θ(n2) algorithm to a Θ(n3) algorithm.

So, to understand and apply asymptotic analysis, it is

essential to have some idea of the rates of growth of some

common functions. For the power functions n, n2, n3, n4, ...,

the larger the exponent, the greater the rate of growth of the

function. Exponential functions such as 2n and 10n, where

the n is in the exponent, have a growth rate that is faster

than that of any power function.

In fact, exponential functions grow so quickly that an

algorithm whose run time grows exponentially is almost

certainly impractical even for relatively modest values of n,

Design and Analysis Techniques

111

because the running time is just too long. Another function

that often turns up in asymptotic analysis is the logarithm

function, log(n). There are actually many different logarithm

functions, but the one that is usually used in computer

science is the so-called logarithm to the base two, which is

defined by the fact that log(2x) = x for any number x. (Usually,

this function is written log2(n), but I will leave out the

subscript 2, since I will only use the base-two logarithm in

this book.) The logarithm function grows very slowly. The

growth rate of log(n) is much smaller than the growth rate of

n. The growth rate of n*log(n) is a little larger than the growth

rate of n, but much smaller than the growth rate of n2.

POINTS
• Introduction: Analysis of Selection Sort

• Introduction: Analysis of Merge Sort

• Asymptotic Notation

• Asymptotic Notation Continued

• Heapsort

• Heapsort Continued

• Priority Queues (more heaps)

• Quicksort

• Bounds on Sorting and Linear Time Sorts

• Stable Sorts and Radix Sort

• Begin Dynamic Programming

• More Dynamic Programming

• Begin Greedy Algorithms: Huffman’s Algorithm

• Dÿkstra’s Algorithm

• Beyond Asymptotic Analysis: Memory Access Time

Design and Analysis Techniques

112

• B-Trees

• More B-Trees: Insertion and Splitting

• Union/Find

• Warshall’s Algorithm, Floyd’s Algorithm

• Large Integer Arithmetic

• RSA Public-Key Cryptosystem

• Begin Algorithms and Structural Complexity Theory

• Continue Algorithms and Structural Complexity Theory

• End Algorithms and Structural Complexity Theory

• Generating Permutations and Combinations

• Exam review with sample questions and solutions.

DATA ANALYSIS AND DESIGN

The choice of a data representation for a problem often

affects our thinking about the process. Sometimes the

description of a process dictates a particular choice of

representation. On other occasions, it is possible and

worthwhile to explore alternatives. In any case, we must

Analyse and define our data collections.

CONTRACT, PURPOSE, HEADER

We also need a contract, a definition header, and a

purpose statement. Since the generative step has no

connection to the structure of the data definition, the purpose

statement should not only specify what the function does

but should also include a comment that explains in general

terms how it works.

Design and Analysis Techniques

113

FUNCTION EXAMPLES

In our previous design recipes, the function examples merely

specified which output the function should produce for some

given input. For algorithms, examples should illustrate how

the algorithm proceeds for some given input. This helps us

to design, and readers to understand, the algorithm. For

functions such as move-until-out the process is trivial and

doesn’t need more than a few words.

TEMPLATE

Our discussion suggests a general template for algorithms:
���������	���
�����
���
���������
������
����
���
�����������������
������
�����
���������������
�������
�����
������������������
�����
��������

�	���
�����
���
���������	���
�����
������
���
�������

�	���
�����
���
���������	���
���� �
���������
�����������

RANDOMIZED ALGORITHMS

Randomization has become a standard approach in

algorithm design and it can be applied in a wide range of

problems. Often it leads to more efficient, simpler and

shorter solutions than their deterministic counterparts. As

opposed to a deterministic algorithm, a randomized algorithm

takes a source of random numbers and makes random

choices during execution. Hence, the behaviour of the

algorithm can change even on a fixed input and is likely

to be good on every input.

Design and Analysis Techniques

114

The first class of randomized algorithms are Las Vegas

algorithms, which always give correct results, the only

variation from one run to another being its running time.

The running time is a random variable whose expectation

is bounded, for example by a polynomial. The second class

are Monte Carlo algorithms, whose running time is

deterministic, but whose results are only correct with a

probability of ≥1/3. A widely known example of a Monte

Carlo algorithm is the Miller-Rabin primality test.

QUICKSORT

Quicksort is a divide and conquer sorting algorithm

developed by Tony Hoare, who published the first version

in the Communications of ACM.

The algorithm works by first partitioning (dividing/

rearranging) an input array containing the elements to be

sorted into 2 sub-arrays around an element called the pivot

x, such that all the elements in the lower (left) sub-array

are ≤ the pivot x ≤ all the elements in the upper (right) sub-

array. Following the division is the conquer step, which

recursively sorts both sub-arrays. Eventually, there is no

work required to combine the sub-arrays since they are

sorted in place. A lot of people actually see the recursiveness

of Quicksort as one of its weaknesses.
void quicksort(int s[], int l, int h)

{

int p;/* index of partition */

if ((h - l) > 0) {

p = partition(s, l, h);

quicksort(s, l, p - 1);

quicksort(s, p + 1, h);

}

Design and Analysis Techniques

115

}

int partition(int s[], int l, int h)

{

int i;

int p;/* pivot element index */

int firsthigh;/* divider position for pivot element */

p = h;

firsthigh = l;

for (i = l; i < h; i++)

if(s[i] < s[p]{

swap(&s[i], &s[firsthigh]);

firsthigh++;

}

swap(&s[p], &s[firsthigh]);

return(firsthigh);

}

void swap(int *a, int *b)

{

int x;

x = *a;

*a = *b;

*b = x;

}

Most of people know that Quicksort has an expected

running time of ()logn nθ on an input array of n elements,

which is remarkably efficient. If we are unlucky though, it

has worst case running time of ()2nθ - which is worse than

Heapsort and Mergesort. This behaviour occurs when the

partitioning routine produces one sub-array with n–1

elements and another one with 0 elements. That happens

when the input array n is already sorted, no matter if

forward or backwards. In this situation, even insertion sort

would run in the shorter time of O(n). So what can we do

about that? What is an easy way to improve the performance

of Quicksort? There are actually two ways. One would be

to randomize the input array. Another one, the one we will

Design and Analysis Techniques

116

talk about now, is to pick the pivot randomly.

RANDOMIZED QUICKSORT

The above implementation automatically selects the last

element in each sub-array as the pivot. We will now look
at a technique called random sampling. So instead of always
taking the last element in each sub-array, we will select a
random element as the pivot during the partitioning. One
possible implementation based on our previous code looks
like this:

int partition(int s[], int l, int h)

{

int i;

int p;/* pivot element index */

int firsthigh;/* divider position for pivot element */

p = l + (random() % (h - l + 1);

swap(&s[p], &s);

firsthigh = l;

for (i = l; i < h; i++)

if(s[i] < s) {

swap(&s[i], &s[firsthigh]);

firsthigh++;

}

swap(&s, &s[firsthigh]);

return(firsthigh);

}

Well, so what are the advantages of the randomized

version? The running time is independent of input ordering.

• The algorithms does not makes any assumptions about

the distribution of the elements in the input array.

Already sorted arrays will work as well as random

ones.

Design and Analysis Techniques

117

• No specific input that can produce the worst case

behaviour, which is determined only by the random

number generator.

As we can see, by introducing some randomness the

worst case running time of ()2nθ becomes increasingly

unlikely and leaves us with the property that the algorithm

has a worst-case expected running time of ()logn nθ . So how

to we proof the correctness of this assumption? This is

where some probabilistic analysis comes in handy. The

following proof is taken from Manuel Blum’s lecture notes

from his class CMU 15-451 on algorithms.

ANALYSIS OF RANDOMIZED QUICKSORT

First of all, let’s assume that no two elements in the

input array are equal. We will be writing will be the quantity

we care about (the total number of comparisons) as a sum

of simpler random variables, and then just analyze the

simpler ones. Define a random variable Xij to be 1 if the

algorithm does compare the ith smallest and jth smallest

elements during the sort and 0 if it does not. This is called

an expectation variable. X denotes the total number of

comparisons made by the algorithm. Since we never compare

the same pair of elements twice, we have

1 1

n n

ij
i j i

X X
= = +

=

and therefore

[]
1 1

n n

ij
i j i

E X E X
= = +

 =

Let’s consider one of these Xij for i<j. Denote the ith

smallest element by in the array by ei and the jth smallest

element by ej, and conceptually imagine lining up the

Design and Analysis Techniques

118

elements in sorted order. If the pivot we choose happens

to be either ei or ej then we compare them. If our pivot is

less than ei or greater than ej then both end up in the same

bucket and we have to choose another pivot. So, we can

think of this like a dart game: we throw a dart at random

into the array: if we hit ei or ej then Xij becomes 1, if we

hit between them Xij becomes 0, and otherwise we throw

another dart. At each step, the probability that Xij equals

1 conditioned on the event that the game ends in that step

is exactly ()2 / 1j i− + . So now we can say that the overall

probability that Xij equals 1 is ()2 / 1j i− + .

In other words, for a given element i, it is compared to

element i+1 with probability 1, to element i+ 2 with probability

2/3, to element i+3 with probability 2/4, to element ..., yes,

and so on. That gives us

[]
1

1 1 1 1 1
2 ...

2 3 4 5 1

n

i

E X
n i=

= + + + + +

 − +

The quantity 1 1/ 2 1/ 3 ... 1/ n+ + + + , denoted Hn, is called the

nth harmonic number and is in the range []ln ,1 lnn n+ (this

can be seen by considering the integral of () 1/ .f x x=

Therefore,

[] ()2 1 2 ln .nE X n H n n< − ≤

SUMMONING THE EVIL

In 1999 Doug McIlroy from Dartmouth College published

a paper called A Killer Adversary for Quicksort which

describes a simple way to find the inputs that even force

the randomized Quicksort into the worst case running time

of ()2nθ . It also provides a simple C program illustrating the

technique.

Design and Analysis Techniques

119

Quicksort can be made to go quadratic by constructing

input on the fly in response to the sequence of items

compared. The technique is illustrated by a specific adversary

for the standard C qsort function. The general method

works against any implementation of quicksort–even a

randomizing one–that satisfies certain very mild and realistic

assumptions.

CONCLUSION AND ONE MORE THING

This is just a very trivial example of randomized algorithms

and many of you are likely to be already familiar with it.

Though, if this post happens to attract some interest in this

topic, I might write up some more posts about randomized

algorithms.

STRING MATCHING

Input Description: A text string t of length n. A patterns

string p of length m.

Problem: Find the first (or all) instances of the pattern

in the text.

Excerpt from The Algorithm Design Manual: String

matching is fundamental to database and text processing

applications. Every text editor must contain a mechanism

to search the current document for arbitrary strings.

Design and Analysis Techniques

120

Pattern matching programming languages such as Perl

and Awk derive much of their power from their built-in

string matching primitives, making it easy to fashion

programs that filter and modify text.

Spelling checkers scan an input text for words in the

dictionary and reject any strings that do not match.

REGULAR EXPRESSIONS

A regular expression is contained in slashes, and matching

occurs with the =~ operator. The following expression is true

if the string the appears in variable $sentence.
$sentence =~/the/

The RE is case sensitive, so if

$sentence = “The quick brown fox”;

then the above match will be false. The operator !~ is used

for spotting a non-match. In the above example
$sentence !~/the/

is true because the string the does not appear in

$sentence.

THE $_ SPECIAL VARIABLE

We could use a conditional as
if ($sentence =~/under/)

{

print “We’re talking about rugby\n”;

}

which would print out a message if we had either of the

following
$sentence = “Up and under”;

$sentence = “Best winkles in Sunderland”;

But it’s often much easier if we assign the sentence to

Design and Analysis Techniques

121

the special variable $_ which is of course a scalar. If we do

this then we can avoid using the match and non-match

operators and the above can be written simply as
if (/under/)

{

print “We’re talking about rugby\n”;

}

The $_ variable is the default for many Perl operations

and tends to be used very heavily.

MORE ON RES

In an RE there are plenty of special characters, and it

is these that both give them their power and make them

appear very complicated. It’s best to build up your use of

REs slowly; their creation can be something of an art form.

Here are some special RE characters and their meaning:

. # Any single character except a newline

^ # The beginning of the line or string

$ # The end of the line or string

* # Zero or more of the last character

+ # One or more of the last character

? # Zero or one of the last character

and here are some example matches. Remember that should

be enclosed in/.../slashes to be used.

t.e # t followed by anthing followed by e

This will match the # tre# tle # but

not te # tale

^f # f at the beginning of a line

^ftp # ftp at the beginning of a line

Design and Analysis Techniques

122

e$ # e at the end of a line

tle$ # tle at the end of a line

und*# un followed by zero or more d characters

This will match un

und

undd

unddd (etc)

.*# Any string without a newline. This is because

the. matches anything except a newline and

the * means zero or more of these.

^$ # A line with nothing in it.

There are even more options. Square brackets are used

to match any one of the characters inside them. Inside

square brackets a - indicates “between” and a ^ at the

beginning means “not”:

[qjk] # Either q or j or k

[^qjk] # Neither q nor j nor k

[a-z] # Anything from a to z inclusive

[^a-z] # No lower case letters

[a-zA-Z] # Any letter

[a-z]+ # Any non-zero sequence of lower case letters

At this point you can probably skip to the end and do

at least most of the exercise. The rest is mostly just for

reference.

A vertical bar | represents an “or” and parentheses (...)

can be used to group things together:

Design and Analysis Techniques

123

jelly|cream # Either jelly or cream

(eg|le)gs # Either eggs or legs

(da)+ # Either da or dada or dadada or...

Here are some more special characters:

\n # A newline

\t # A tab

\w # Any alphanumeric (word) character.

The same as [a-zA-Z0-9_]

\W # Any non-word character.

The same as [^a-zA-Z0-9_]

\d # Any digit. The same as [0-9]

\D # Any non-digit. The same as [^0-9]

\s # Any whitespace character: space,

tab, newline, etc

\S # Any non-whitespace character

\b # A word boundary, outside [] only

\B # No word boundary

Clearly characters like $, |, [,), \,/and so on are peculiar

cases in regular expressions. If you want to match for one

of those then you have to preceed it by a backslash. So:

\| # Vertical bar

\[# An open square bracket

\) # A closing parenthesis

* # An asterisk

\^ # A carat symbol

Design and Analysis Techniques

124

\/ # A slash

\\ # A backslash

and so on.

SOME EXAMPLE RES

As was mentioned earlier, it’s probably best to build up

your use of regular expressions slowly. Here are a few

examples. Remember that to use them for matching they

should be put in/.../slashes

[01] # Either “0” or “1”

\/0 # A division by zero: “/0”

\/0 # A division by zero with a space: “/0”

\/\s0 # A division by zero with a whitespace:

“/0” where the space may be a tab etc.

\/*0 # A division by zero with possibly some

spaces: “/0” or “/0” or “/0” etc.

\/\s*0 # A division by zero with possibly some

whitespace.

\/\s*0\.0* # As the previous one, but with decimal

point and maybe some 0s after it. Accepts

“/0.” and “/0.0” and “/0.00” etc and

“/0.” and “/0.0” and “/0.00” etc.

EXERCISE

Previously your program counted non-empty lines. Alter

it so that instead of counting non-empty lines it counts only

lines with

Design and Analysis Techniques

125

• the letter x

• the string the

• the string the which may or may not have a capital

t

• the word the with or without a capital. Use \b to detect

word boundaries.

In each case the program should print out every line, but

it should only number those specified. Try to use the $_

variable to avoid using the = ~ match operator explicitly.

NP-COMPLETENESS

So far we’ve seen a lot of good news: such-and-such a

problem can be solved quickly (in close to linear time, or at

least a time that is some small polynomial function of the

input size). NP-completeness is a form of bad news: evidence

that many important problems can’t be solved quickly.

CARING

These NP-complete problems really come up all the time.

Knowing they’re hard lets you stop beating your head against

a wall trying to solve them, and do something better:

• Use a heuristic. If you can’t quickly solve the problem

with a good worst case time, maybe you can come up

with a method for solving a reasonable fraction of the

common cases.

• Solve the problem approximately instead of exactly. A

lot of the time it is possible to come up with a provably

fast algorithm, that doesn’t solve the problem exactly

but comes up with a solution you can prove is close

to right.

Design and Analysis Techniques

126

• Use an exponential time solution anyway. If you really

have to solve the problem exactly, you can settle down

to writing an exponential time algorithm and stop

worrying abou t finding a better solution.

• Choose a better abstraction. The NP-complete abstract

problem you’re trying to solve presumably comes from

ignoring some of the seemingly unimportant details of

a more complicated real world problem. Perhaps some

of those details shouldn’t have been ignored, and

make the difference between what you can and can’t

solve.

Design and Analysis Techniques

127

7

Analysing Animated Cartoons and
their Evolution

Cartoons have been and continue to be an important part

of our societal culture. Expressive, comedic, and at times

political, cartoons appeal to all audiences-both children and

adults. “Cartoon” comes from the Italian word “cartone” which

means “large paper” (Lobo, 2002). In its simplest form,

cartoons are large, pictorial images that serve the purpose of

telling a story or commenting on a social or political issue.

What makes cartoons so effective despite their simplicity?

According to Pulitzer Prize winning author and cartoonist

Art Spiegelman, “Comics are the way brains think.

You have small clusters of words in the mind when you

speak to someone. These clusters become iconic, abstracting

images indicating a visual that becomes real in your brain.”

It is important to know the origin of cartoons and how

they have evolved over the centuries to fully appreciate the

Design and Analysis Techniques

128

cartoons and animations that are produced today. With this

knowledge comes the realization that little has changed in

the purpose cartoons serve.

The words animation and cartoon have been associated

with lively and usually humorous images.

Random House Webster’s Unabridged Dictionary defines

animation as giving life or liveliness to something and the

word cartoon as sketches or drawings similar to the ones we

have seen in newspapers. When these words are combined

to animated cartoon they refer to a “motion picture consisting

of a sequence of drawings, each so slightly different that

when filmed and run through a projector the figures seem to

move”. The animated cartoons discussed in this research

refer to the oldest form of animated cartoons, the traditional

animation and the latest computerized technology of

animation.

Cartoons or animation as we know it today have changed

dramatically during the past 100 years. However, animation

is much older than that. A recent discovery revealed a 5.200

year old bowl containing a series of related animations of a

goat and a fish.

Thousand year old cave paintings and burial chambers

which have series of animations that show images can also

be related to animation but since, there is no possibility of

viewing them in motion they do not qualify as animated

cartoons. Whether this sort of animation classifies as an early

form of animation is highly debated.

The main aim of this chapter is to inform readers of the

history of animated cartoons in relation to their evolution

through time and how they have followed latest technologies

Design and Analysis Techniques

129

throughout the years. The focus is on American and

European cartoon animation, since, Asia has their well known

Anime cartoons and they need a special research all together

and will therefore not be covered here. Animation such as

seen in Wallace and Gromit or Robot

Chicken will not be covered either, but they do represent

the stop motion technique mentioned later on. The paper

will begin by covering the early creators of cartoon animation

and early devices. It will then move on to cartoon animation

as a business model and take a look at the latest trend and

technology in cartoon animation. It ends with the authors

conclusions about where cartoon animation is headed in the

future.

EARLIEST CARTOONS: EGYPTIANS

The stories and the messages found within cartoons are

in reality another means of mass communication. In their

most primitive form, cartoons can be found as far back as

1300 BC. In Scott McCloud’s Understanding Comics , he

theorizes that cartoons have been with us since, those ancient

times. He points to various murals found along the sides of

pyramids and monuments that depict stories. One, for

example, describes the daily trials and tribulations that

farmers would go through. At the end of the mural, the farmer

is beaten to death by one of the pharaoh’s tax collectors. It is

during this beating that the farmer exclaims, “I hate

Mondays!” Here, the Egyptians display their sense of humour

and they tell a story through the use of pictures. Therefore,

they are implementing the use of what we now consider to

be cartoons.

Design and Analysis Techniques

130

."%��/�������������	������� !�
����"�#$��$�%������������$������������&�
��
�

GREEK ANIMATORS
Egyptians were not the only ones that implemented the

use of cartoons in their culture. The Greeks did as well,

however theirs are present on their pottery. Greek vases are

broken down into two genres: the black figured, and the red

figured. The black figured vases from 6th and 5th centuries

BC are much more pictorial than the earlier vases. These

vases were painted with black figures on reddish orange clay.

The paintings give us a unique understanding into the

Greek legends, myths, and the lives of the ordinary people

within their society. Examples of stories painted onto the

vases are from the Trojan War, the adventures of Odysseus,

and those of Dionysos, the Greek god of wine. The red figured

vases had a more three dimensional look to them. It is evident

here Greek culture tried to gain more depth in their artwork.

The characters were usually outlined in black leaving the

bare, red clay to show through as the design. This technique

also allowed the artist more freedom and therefore the designs

on these vases were much more pictorially complicated. It is

amazing because from these primitive cartoons we can see

how they influenced the foundations of our own society: our

government, our literature, and even in our architecture.

Here again is a group of images that tell a story and or express

social and political ideas. What we now consider to be

cartoons existed even back then.

Design and Analysis Techniques

131

JAPANESE ART
On the other side of the world, the Japanese culture had

also developed their own cartoons. These were the first to be

on a paper-like substance; they depicted their cartoons on

scrolls. Their cartoons told continuous stories. These scrolls

first appeared around the 11th and 12th centuries. The “Tale

of Genji” picture scrolls are some of the most famous in the

Japanese culture. They are also very similar to the ukiyoe

prints from the 18th and 19th centuries. In both cases, the

figures have the same facial structures and are expressed

with simple lines and flat colouring.

In the case of the “Tale of Genji” scrolls, an entire novel is

told by the pictures with bare minimal text. This is also one

of the earliest examples where pictures are combined with

some text to tell a story. Cartoons continue to be an important

aspect of the Japanese culture. Their modern cartoons are

called “mangas” and are obviously descendents of these early

scrolls and ukiyoe prints. They maintain the same line quality

and colouring. The Japanese culture is another example of a

culture that has stories told by means of pictures as an

important part of their history.

."%��/�'���
������������$�� %�������(��)�"�

EARLY AMERICAN CARTOONS
Along with the development of the printing press, artists

and philosophers feared that the new technology would

Design and Analysis Techniques

132

further sequester men. As a result, they strived to develop a

“new language” where pictures and words could be combined;

cartoons are acknowledged for the first time at this period.
Early artists such as William Hogarth used this new art form
as if it were a stage play that incorporates balloons with text.
Zincography and photoengraving aided in this new art form’s
explosion in popularity. Pictures combined with text gave
new means to consolidate the advances of all other forms of
communication in a cost-effective manner. Thus the birth of
cartoons as we know them today.

As time progressed, the printing press, zincography, and
photoengraving enabled cartoons to be mass-produced and
widely distributed for the first time. This in turn enabled
cartoons to be reached by and to affect a larger audience.
The printing press reproduced cartoons in black and white
and the first political cartoons emerged from its development.

Benjamin Franklin designed one of the first political cartoons
in 1754 and to this day it is one of the most famous political

cartoons: the “JOIN, or DIE” snake. It discussed the need for

the colonies to work together, and while it was most potent

during the Revolutionary War, it was originally intended to

unite the colonies against the threat of the Indians.

."%��/�*��)�����&
��+���,�� -./01��
�2/�"����+��

20TH CENTURY CARTOONING
Modern cartoons first appeared around the early 1900s.

Different types of cartooning began to emerge and they are

Design and Analysis Techniques

133

classified into the following five groups: illustrative, comic

strips, gag strips, animated, and political. Some form of these

five different groups appears in most, if not all, newspapers

and magazines today. Illustrative cartoons explain stories.

They are used in teaching materials and in advertisements.

These cartoons have little meaning and are mostly found in

schoolbooks.

Comic strips are more often than not found in newspapers

and magazines and their purpose is, in essence, to be funny;

their intent is to induce laughter from their readers. One of

the most famous comic strip artists was Charles Schultz,

creator of the Peanuts comic strip.

Gag strips are usually composed of a single picture

combined with one to two sentences and also have the job of

producing laughter. Animated cartoons are the latest of the

cartoon form. They can be done by both hand and by

computer and appeal to children as well as to adults. The

main characteristic of animated cartoons that differentiates

them from the other types is that animated cartoons also

involve the medium of movement.

Political cartoons are intended for adults and usually

convey a point of view concerning a societal issue current to

its time of publication. These also appear in newspapers and

magazines.

WALT DISNEY
Cartoons did not evolve on their own; various influential

people made their own lasting mark on this art and

communication form. The first and foremost important

person from the field of animated cartoons is Walt Disney.

His first cartoon character was named Oswald Rabbit. This

Design and Analysis Techniques

134

was his first comic strip as well as his first cartoon series.

He created this character as well as the strip along with his

brother. Following the creation and success of Oswald Rabbit

came Steamboat Willie, one of the most famous cartoon

characters. Steamboat Willie led the way for Mickey Mouse,

Minnie Mouse, Donald, Daisy, and the other Disney

characters. Disney created the first full-length animated film

back in 1937 with Snow White and the Seven Dwarfs. This

was also Disney’s first attempt at a musical, and it was a

tremendous success. The success of this film spawned the

creation of many other animated, musical, and feature films.

."%��/�3������������2�����,���������	
��

CHUCK JONES
Another influential person in the field of cartoons is Chuck

Jones. While his name may not be as well known as Disney,

his characters make up for it. Like Disney, Jones created

characters for predominantly animated cartoons. In 1932,

Jones was a cell washer at Ubbe Iwerks Studios and he later

joined the Leon Schliesinger Studios.

Not long after, Warner Brothers bought these studios. The

characters he created there are part of what put Warner

Brothers on the map. These characters are an integral part

Design and Analysis Techniques

135

of our society: Bugs Bunny, Daffy Duck, Elmer Fudd, and

Porkey Pig. Jones not only created the characters but also

did their animations as well as their voices and personas.

However Jones did not solely work for Warner Brothers, he

also created some characters on his own. These characters

may also seem familiar: Road Runner, Wile E. Coyote, Marvin

the Martian, Pepe le Pew, and Gossemer. Jones may not be

as well known as others like Disney, however his impact

upon the cartooning community is just as immeasurable.

."%��/�*�	��*�����#��$��������$�
�4�
��
�*
��$�
����
�����
����$���������

HANNA-BARBERA
Another group that made their mark on cartooning is

William Hanna and Joseph Barbera; this duo is better known

as Hanna-Barbera. From 1960 to 1966, Hanna-Barbera’s

cartoons “The Flintstones” and “Atom Ant” were broadcast.

Their success led to the creation of other memorable cartoons

such as “Yogi Bear”, “Johnny Quest”, “The Jetsons”, “Tom

and Jerry”, and the very memorable “Scooby Doo.” There

are many others that joined the Hanna-Barbera cartoon

family; these are just a few examples. For over 60 years these

two cartoonists and animators shaped what we think of when

Design and Analysis Techniques

136

we hear, “Saturday morning cartoons.” William Denby Hanna

was born in Melrose, New Mexico, in 1910. Soon after, his

family moved to Los Angeles. There he was an active member

of the Boy Scouts. Joseph Roland Barbera was born in 1911

in the Little Italy section of New York’s Lower East Side, but

was raised in Brooklyn. In 1937, Bill Hanna and Joe Barbera

joined forces. Coming from different backgrounds and

experiences, and possessing different talents, they were

worried about their compatibility. However the gamble was

a success and they completely complimented each other.

."%���5�%�������-�

����666��

."%���5�3������2����7888��

Since, the masterminds of animated cartoons have been

acknowledged, the comic strip area of cartooning must not

be forgotten. As previously mentioned, Charles Schultz is

the Walt Disney of this type of cartooning. From when he

was little, Schultz knew that he wanted a job as a cartoonist.

After returning from the war, Schultz began his working

career lettering tombstones in St. Paul, Minnesota, however

Design and Analysis Techniques

137

this did not last long. From there he took a job at a Roman

Catholic magazine called Timeless Topix. He did work there

– both pictorial and written. Working for Timeless Topix was

his first real job in cartooning. He took a second job as a

teacher to pay the bills and it was as a teacher that he met

many of the people he would later use as models for

characters in the Peanuts strip. Then, on October 2, 1950,

the world was introduced to some characters that would

change their lives forever. During the time when America

was still rejoicing from the war and no person was supposed

to be unhappy, Schulz introduced us to Charlie Brown,

Snoopy, Lucy, and the rest of the Peanuts gang. At our first

introduction, we were introduced to the “L’il Folks”, but we

came to know them as the Peanuts crew. His work was new

and different. Everyone could identify with main character

who had the same problems as they did. The only difference

was that that character acknowledged his problems. Charlie

Brown represented the inner psyche of the American people.

Schultz had the pulse of the every American in his hand and

to this day the Peanuts strip is the most widely syndicated

strip ever. It has appeared in over two thousand six hundred

different newspapers in seventy-five countries and in twenty-

one different languages. Charles Schultz and his most

popular character, Charlie Brown, will forever impact the

American people and the way they view themselves.

MODERN MASTERS
As times change, cartoons and the way in which they are

made change as well. Back in 1995, Disney joined up with

Pixar to create Toy Story, the first full-length feature film

created entirely on a computer. Toy Story’s success led to

Design and Analysis Techniques

138

the production of other computer-animated movies such as

A Bug’s Life in 1998, Toy Story 2 in 1999, and more recently,

Monster’s INC. in 2001. It is particularly true of these cartoons

that they appeal to all audiences. Some of the dialogue and

situations are so that only an adult would be able to fully

appreciate the humour and wit behind them. On the other

hand, the bright and playful colours, the characters, and

the basic story lines are for the children. Either way, this

new type of cartoon continues to entertain any and every

person.

Since, these films are made completely by a computer, the

production aspects of these films vary from the traditional

animated films. The animators at Pixar, in creating the films,

neither draw nor paint each successive scene like done in

traditional animations. Using Pixar’s animation software, the

animators choreograph the movements and facial expressions

in each of the scenes and then computers generates the “in

between” frames, which are adjusted as needed. Currently,

computer animation in the cartoon genre is at its peak.

COMPUTER GAMES

Computer gaming is a vibrant multibillion dollar industry

that offers exciting career opportunities for computer

scientists as well as visual artists.

Computer games in the 21st century are a form of

entertainment that rivals listening to music and watching

movies. In fact, according to a study from research firm NPD

Group, published in 2008, 72 percent of the U.S. population

actively play games. Computer games can vary wildly in their

themes and style, but at a basic level involve manipulating

Design and Analysis Techniques

139

events on-screen via a control input device, such as a joypad

or keyboard, in order to accomplish in-game objectives.

HISTORY
The evolution of computer gaming can be traced back to

tic-tac-toe simulators on 1940s cathode ray tube devices, as

well as very basic titles played on mainframe machines.

Gaming truly exploded into the public domain, though, with

the advent of coin-op machines in arcades, which began to

appear in the early 1970s. Arcade titles such as “Pong” by

Atari and “Death Race” were popular. The first home gaming

console, the Magnavox Odyssey, appeared in 1972. From

there, both console and PC gaming began to escalate in terms

of both popularity and power, with big names such as

Microsoft, Sony, Nintendo and Sega all releasing home

consoles. By 2011, PCs and gaming consoles support titles

that feature vast worlds and highly advanced 3D graphics.

GAME FORMATS
Video gaming can be divided roughly into two spheres: PC

gaming, involving personal computers such as laptop devices,

and console gaming. PC gaming utilizes a computer’s mouse

and keyboard to direct the action on-screen, and includes

everything from Flash-technology games played over the

Internet to complex titles purchased from stores. Gaming

consoles utilize video display signals, with the in-game action

taking place on a TV screen. Twenty-first-century consoles

allow access to the Internet, a feature not found on earlier

machines. Portable devices such as the Nintendo DS as well

as cell phones, which contain a small screen and compact

controls, allow for handheld gaming.

Design and Analysis Techniques

140

GENRES
Among games, several genres have achieved popularity and

continue to influence new titles. These include shooter games,

which find players blasting enemies on the screen, and often

use a first-person perspective, as seen in titles such as

“Quake” and “Halo.” Platform games, such as the “Super

Mario” series, see players directing characters across 2D or

3D environments, with precise timing used to avoid enemies

and obstacles. In role-playing games, such as “Fallout,”

players create a character and take part in quests, often

developing their character as they progress. Sports titles

simulate real-life activities, and include everything from

Formula One to professional wrestling games.

 MULTIPLAYER
Many games allow more than one player to participate,

typically simultaneously. In the 21st century, multiplayer

gaming usually takes place via the Internet, with players all

in their own home, with their own copies of the game. Popular

Internet games include “World of Warcraft,” a role-playing

title enjoyed by thousands of players who interact online.

Gaming consoles allow two or more players to participate at

once, however, by using multiple control devices attached to

one machine.

GAME PROGRAMMING

Game programming, a subset of game development, is the

software development of video games. Though often engaged

in by professional game programmers, many novices may

program games as a hobby. Some software engineering

Design and Analysis Techniques

141

students program games as exercises for learning a

programming language or operating system.

DEVELOPMENT PROCESS
Professional game development usually begins with a game

design, which itself has several possible origins. Occasionally

the game development process starts with no clear design in
mind, but as a series of experimentation. For example, game
designer Will Wright began development of The Sims by getting
programmers to experiment with several ideas.

PROTOTYPING
Programmers are often required to produce prototypes of

game play ideas and features. A great deal of prototyping
may take place during pre-production, before the design
document is complete, and may help determine what features
the design specifies. Prototypes are developed quickly with
very little time for up-front design and mostly act as a proof
of concept or to test ideas.

GAME DESIGN
Though the programmer’s main job is not to develop the

game design, the programmers often contribute to the design,

as do game artists. The game designer will solicit input from

both the producer and the art and programming lead for

ideas and strategies for the game design. Often individuals

in non-lead positions also contribute, such as copywriters

and other programmers and artists.

Programmers often closely follow the game design

document. As the game development progresses, the design

document changes as programming limitations and new

capabilities are discovered and exploited.

Design and Analysis Techniques

142

 PRODUCTION
During production, programmers churn out a great deal

of source code to create the game described in the game’s

design document. Along the way, the design document is

modified to meet limitations or expanded to exploit new

features. The design document is very much a “living

document” much of whose life is dictated by programmer’s

schedules, talent and resourcefulness.

While many programmers have some say in a game’s

content, most game producers solicit input from the lead

programmer as to the status of a game programming

development. The lead is responsible for knowing the status

of all facets of the game’s programming and for pointing out

limitations. The lead programmer may also pass on

suggestions from the programmers as to possible features

they’d like to implement. With today’s visually rich content,

the programmer must often interact with the art staff. This

very much depends on the programmer’s role, of course. For

example, a 3D graphics programmer may need to work side

by side with the game’s 3D modelers discussing strategies

and design considerations, while an AI programmer may need

to interact very little, if at all, with the art staff. To help artists

and level designers with their tasks, programmers may

volunteer or be called upon to develop tools and utilities.

Many of these may be ad-hoc and buggy due to time

constraints (time for development of such tools is often not

included in a game’s schedule) as well as because they are

only for in-house use anyway. Many game tools are developed

in RAD languages for quicker development and may be

discarded after the completion of the game.

Design and Analysis Techniques

143

TESTING
The formal quality assurance testing process, performed

by professional game testers, begins well into game

development. High-budget titles may begin testing with the

first playable alpha, while low-budget and casual games might

not enter testing until a release candidate is ready. The

programmers’ task is to fix errors and bugs as such are

discovered by the QA teams.

NEARING COMPLETION
Final tasks include “polishing” the game, such as

programmers fixing occasional bugs—from minor to

catastrophic—that may arise during the last phases of testing.

Game developers may have a beta testing period, but the

definition of such varies from developer to developer. Often a

beta contains all of the game’s features, but may have a few

bugs or incomplete content. Few games are given a public

beta period, for example, to measure stress tolerance for game

servers. When the game is deemed complete, it is said to

have “gone gold” and is shipped off to the publisher.

Depending on circumstances, the publisher may then subject

it to its own quality assurance or may begin pressing the

game from the gold master.

MAINTENANCE
Once a game ships, the maintenance phase for the video

game begins. Programmers wait for a period to get as many

bug reports as possible. Once the developer thinks they’ve

obtained enough feedback, the programmers start working

on a patch. The patch may take weeks or months to develop,

but it’s intended to fix most bugs and problems with the

Design and Analysis Techniques

144

game. Occasionally a patch may include extra features or

content or may even alter gameplay.

DURATION
Most modern games take from one to three years to

complete. The length of development depends on a number

of factors, but programming is required throughout all phases

of development except the very early stages of game design.

TOOLS
Game development programs are generated from source

code to the actual program (called the executable) by a

compiler. Source code can be generated by almost any text

editor, but most professional game programmers use a full

Integrated Development Environment (IDE). Once again,

which IDE one uses depends on the target platform. Popular

ones for Xbox and Windows development are Microsoft Visual

Studio and CodeWarrior.

In addition to IDEs, many game development companies

create custom tools developed to be used in-house. Some of

these include prototypes and asset conversion tools

(programs that change artwork, for example, into the game’s

custom format). Some custom tools may even be delivered

with the game, such as a level editor.

Game development companies are often very willing to

spend thousands of dollars to make sure their programmers

are well equipped with the best tools. A well outfitted

programmer may have two to three development systems

dominating their office or cubicle.

Once the game’s initial design has been agreed upon, the

development language must be decided upon. The choice

Design and Analysis Techniques

145

depends upon many factors, such as language familiarity of

the programming staff, target platforms (such as PlayStation

or Microsoft Windows), the execution speed requirements

and the language of any game engines, APIs or libraries being

used.
0�&��/�1��"�����"�2��"%�"��

Language Strengths Weaknesses

Assembly Low overhead Error-prone, slow development,

difficult for novices, not portable

C Widely known, numerous tools No built-in OO support, difficult for

large projects or multiple platforms.

C++ Built-in OO support, widely

used, numerous tools No protection from memory leaks

C# Very OO, RAD language,

easy to use High memory usage

Java Very OO, easy to use portable Not generally available on game

consoles

Eiffel, Smalltalk, Ada, etc. Fringe game languages, few game

development tools

Scripting languages like Lua, Python, etc. Often used for gameplay scripting,

but not for the bulk of the game code

itself

Today, because it is object oriented and compiles to binary

(the native language of the target platform), the most popular

game development language is C++. However, Java and C

are also popular, but inappropriate for some projects.

Assembly language is necessary for some video game console

programming and in some routines that need to be as fast

as possible, or require very little overhead. C# is popular for

developing game development tools.

High-level scripting languages are increasingly being used

as embedded extensions to the underlying game written in

a low or mid-level programming language such as C++. Many

developers have created custom languages for their games,

such as id Software’s QuakeC and Epic Games’

UnrealScript. Others have chosen existing ones like Lua

Design and Analysis Techniques

146

and Python in order to avoid the difficulties of creating a

language from scratch and teaching other programmers a

proprietary language.

Vertex and pixel shaders are increasingly used in game

development as programmable GPUs have become more

prevalent. This has led to the increasing use of High Level

Shader Languages in game programming, such as nVidia’s

Cg, though it cannot be used for all of game logic.

APIS AND LIBRARIES
A key decision in game programming is which, if any, APIs

and libraries to use. Today, there are numerous libraries

available which take care of key tasks of game programming.

Some libraries can handle sound processing, input, and

graphics rendering. Some can even handle some AI tasks

such as pathfinding. There are even entire game engines

that handle most of the tasks of game programming and

only require coding game logic.

Which APIs and libraries one chooses depends largely on

the target platform. For example, libraries for PlayStation 2

development are not available for Microsoft Windows and

vice-versa. However, there are game frameworks available

that allow or ease cross-platform development, so

programmers can program a game in a single language and

have the game run on several platforms, such as the Wii,

PlayStation 3, Xbox 360, Xbox, PSP and Microsoft Windows.

GRAPHIC APIS
Today, graphics are a key defining feature of most games.

While 2D graphics used to be the norm for games released

through the mid-1990s, most games now boast full 3D

Design and Analysis Techniques

147

graphics. This is true even for games which are largely 2D in

nature, such as Civilization III.

The most popular personal computer target platform is

Microsoft Windows. Since it comes pre-installed on almost

ninety percent of PCs sold, it has an extremely large user

base. The two most popular 3D graphics APIs for Microsoft

Windows are Direct3D and OpenGL. The benefits and

weaknesses of each API are hotly debated among Windows

game programmers. Both are natively supported on most

modern 3D hardware for the PC.

DirectX is a collection of game APIs. Direct3D is DirectX’s

3D API. Direct3D is freely available from Microsoft, as are

the rest of the DirectX APIs. Microsoft developed DirectX for

game programmers and continues to add features to the API.

The DirectX specification is not controlled by an open

arbitration committee and Microsoft is free to add, remove

or change features. Direct3D is not portable; it is designed

specifically for Microsoft Windows and no other platform

(though a form of Direct3D is used on Microsoft’s Xbox,

Windows Phone 7.5 smartphones and mobile devices which

run the Pocket PC operating system). The DirectX API is

updated far more often than OpenGL implementations. As a

result, new features of the latest 3D cards are included in

the API much faster than with OpenGL.

OpenGL is a portable API specification. Code written with

OpenGL is easily ported between platforms with a compatible

implementation. Quake II was ported from Windows to Linux

by a fan of the game. OpenGL is a standard maintained by

the OpenGL Architecture Review Board (ARB). The ARB meets

periodically to update the standard by adding emerging

Design and Analysis Techniques

148

support for features of the latest 3D hardware. Since it is

standards based and has been around the longest, OpenGL

is used by and taught in colleges and universities around

the world. In addition, the development tools provided by

the manufacturers of some video game consoles (such as

the Nintendo GameCube, the Nintendo DS, and the PSP)

use graphic APIs that resemble OpenGL.

OpenGL often lags behind on feature updates due to the

lack of a permanent development team and the requirement
that implementations begin development after the standard
has been published. Programmers who choose to use it can
access some hardware’s latest 3D features, but only through
non-standardized extensions. The situation may change in
the future as the OpenGL architecture review board (ARB)
has passed control of the specification to the Khronos Group
in an attempt to counter the problem.

OTHER APIS
For development on Microsoft Windows, the various APIs

of DirectX may be used for input, sound effects, music,
networking and the playback of videos. Many commercial
libraries are available to accomplish these tasks, but since

DirectX is available for free, it is the most widely used.

For console programming, the console manufacturers

provide facilities for rendering graphics and the other tasks

of game development. The console manufacturers also provide

complete development systems, without which one cannot

legally market nor develop games for their system. Third-

party developers also sell toolkits or libraries that ease the

development on one or more of these tasks or provide special

benefits, such as cross-platform development capabilities.

Design and Analysis Techniques

149

GAME STRUCTURE
The central component of any game, from a programming

standpoint, is the game loop. The game loop allows the game

to run smoothly regardless of a user’s input or lack thereof.

Most traditional software programs respond to user input

and do nothing without it. For example, a word processor

formats words and text as a user types. If the user doesn’t

type anything, the word processor does nothing. Some

functions may take a long time to complete, but all are

initiated by a user telling the program to do something.

Games, on the other hand, must continue to operate

regardless of a user’s input. The game loop allows this. A

highly simplified game loop, in pseudocode, might look

something like this:
while(user doesn’t exit)
 check for user input
 run AI
 move enemies
 resolve collisions
 draw graphics
 play sounds
end while

The game loop may be refined and modified as game

development progresses, but most games are based on this

basic idea.

Game loops differ depending on the platform they are

developed for. For example, games written for DOS and most

consoles can dominate and exploit available processing

resources without restraint. However, game for a modern

PC operating system such as Microsoft Windows must operate

within the constraints of the process scheduler. Some modern

games run multiple threads so that, for example, the

computation of character AI can be decoupled from the

Design and Analysis Techniques

150

generation of smooth motion within the game. This has the

disadvantage of (slightly) increased overhead, but the game

may run more smoothly and efficiently on hyper-threading

or multicore processors and on multiprocessor platforms.

With the computer industry’s focus on CPUs with more cores

that can execute more threads, this is becoming increasingly

important. Consoles like the Xbox 360 and PlayStation 3

already have more than one core per processor, and execute

more than one thread per core.

HOBBYISTS
The only platforms widely available for hobbyists to

program are consumer operating systems. This is because

development on game consoles requires special development

systems that cost thousands of dollars. Often these must be

obtained from the console manufacturer and are only sold

or leased to professional game development studios. However,

Microsoft distributes a game development framework, XNA,

which runs on both Microsoft Windows and Xbox 360. Games

written for Windows often can be ported to Xbox with few

changes. This allows individuals and small teams to develop

games for consoles. Some hobbyists also develop homebrew

games, especially for handheld systems or obsolete consoles.

INTERACTIVE EVOLUTION OF PARTICLE

SYSTEMS FOR COMPUTER GRAPHICS

AND ANIMATION

Content generation means creating models, levels,

textures, animations, lighting, etc. for computer graphics in

Design and Analysis Techniques

151

games, movies, and television. For media developers, content

generation consumes significant time and money to produce

today’s complex graphics and game content. In part to

address this problem, in the video game industry, it is

becoming increasingly popular to provide extensive character

customization tools within games and to distribute tools that

allow users to create their own content outside of the game

as well. Furthermore, there is a new trend towards content

generation tools as games themselves, that is, sandbox games

such as The Sims1, Second Life2, and Spore3. These games

feature creating houses, vehicles, clothing, and creatures as

primary game play features. Thus, there is a growing need

for powerful and user-friendly content generation tools both

to reduce the content bottleneck and further empower users.

An emerging approach to this problem is automated content

generation through Interactive Evolutionary Computation

(IEC), that is, automating content creation though user

interaction.

This paper presents such an automated content generation

method for particle systems, demonstrating the promise of

IEC for practical content generation.

Particle systems are ubiquitous in computer graphics for

producing animated effects such as fire, smoke, clouds,

gunfire, water, cloth, explosions, magic, lighting, electricity,

flocking, and many others. They are defined by (1) a set of

points in space and (2) a set of rules guiding their behaviour

and appearance, e.g. velocity, colour, size, shape,

transparency, rotation, etc.

Since such rule sets are often complex, creating each new

effect requires considerable mathematics and programming

Design and Analysis Techniques

152

knowledge. For example, consider designing a spherical flame

shield of pulsing colours effect for a futuristic video game or

movie. Alternatively, consider designing a particle weapon

effect that fires multiple curving arcs toward the target. In

current practice, the precise mechanics for either scenario

must be hand coded by a programmer. To simplify design,

particle effect packages typically provide developers with a

set of particle system classes, each suitable for a certain

type of effect. Content developers manipulate the parameters

of each particle system class by hand to produce the desired

effect. The problem is that there is no way to efficiently explore

the range of effects within each class.

To address this problem, this paper presents a new design,

representation, and animation approach for particle systems

in which (1) artificial neural networks (ANNs) control particle

system behaviour, (2) the NeuroEvolution of Augmenting

Topologies (NEAT) method produces sophisticated particle

system behaviours by evolving increasingly complex ANNs,

and (3) evolution is guided by user preference through an

IEC interface.

Two prototype systems are discussed, NEAT Particles, a

general-purpose particle effect generator, and NEAT

Projectiles, which is specialized to evolve particle weapon

effects for video games. Both systems interactively evolve

ANNs with NEAT to control the motion and appearance of

particles. An IEC interface provides a user-friendly method

to evolve unique content.

In this way, NEAT Particles shows how IEC can enable

practical content generation that provides an easy alternative

to current, potentially cumbersome practice. In particular,

Design and Analysis Techniques

153

NEAT Particles and NEAT Projectiles (1) enable users without

programming or artistic skill to evolve unique particle system

effects through a simple interface, (2) allow developers to

evolve a broad range of effects within each particle class,

and (3) serve as concept generators, enabling novel effect

types to be easily discovered. By allowing users to evolve

particle behaviour without knowledge of physics or

programming, NEAT Particles and NEAT Projectiles are a step

toward the larger goal of automated content generation for

games, simulations, and movies.

BACKGROUND
The particle systems, IEC, and NEAT, which are

components of NEAT Particles and NEAT Projectiles.

PARTICLE SYSTEMS
The first computer -generated particle system in

commercial computer graphics, called the Genesis Effect,

appeared in Star Trek II: The Wrath of Khan. Soon after,

particle systems effects became widespread on television as

well. Nearly all modern video games include a particle system

engine; special effects in games such as magical spells and

futuristic weapons are usually implemented with particle

systems.

In addition to diffuse phenomena such as fire, smoke, and

explosions, particle systems can also model concrete objects

such as dense trees in a forest, folded cloth and fabric, and

simulated fluid motion. Realistic particle movement is often

achieved by simulating real-world physics. At a more abstract

level, particle systems can simulate animal and insect flocking

as well as swarming behaviour. The prevalence and diversity

Design and Analysis Techniques

154

of particle system applications demonstrates their importance

to computer graphics in modern media and games.

INTERACTIVE EVOLUTIONARY
COMPUTATION (IEC)

IEC is an approach to evolutionary computation (EC) in

which human evaluation replaces the fitness function. A

typical IEC application presents to the user the current

generation of content. The user then interactively determines

which members of the population will reproduce and the

IEC application automatically generates the next generation

of content based on the user’s input. Through repeated

rounds of content generation and fitness assignment, IEC

enables unique content to evolve that suits the user’s

preferences. In some cases such content cannot be discovered

or created in any other way.

IEC aids especially in evolving content for which fitness

functions would be difficult or impossible to formalize (e.g.

for aesthetic appeal). Thus, graphical content generation is

a common application of IEC. IEC was first introduced in

Biomorphs, which aims to illustrate theories about natural

evolution. Biomorphs are patterns encoded as Lindenmayer

Systems (Lsystems), i.e. grammars that specify the order in

which a set of replacement rules are carried out.

Representations in genetic art (i.e. IEC applied to art) often

vary, including linear or non-linear functions, fractals, and

automata. Some notable examples include (1) Mutator, a

cartoon and facial animation system, (2) SBART, a two-

dimensional art exploration tool, (3) a tool that evolves implicit

surface models such as fruits and pots, and (4) a system for

Design and Analysis Techniques

155

evolving quadric models used as machine components. A

progression of four user-selected parents in the evolution of

a spaceship with a genetic art tool. In the example, the user

starts by selecting a simple image that vaguely resembles

what they wish to create and continues to evolve more

complex images through selection until satisfied with the

result. The sequence of images demonstrates the potential

of IEC as an engine for content generation. These images,

from Delphi NEAT Genetic Art (DNGA), are produced by ANNs

evolved by NEAT.

NEUROEVOLUTION OF AUGMENTING
TOPOLOGIES

The NEAT method was originally developed to solve control

and sequential decision tasks. The ANNs evolved with NEAT

can control agents that select actions based on their sensory

inputs. While previous methods that evolved ANNs (i.e.

neuroevolution methods) evolved either fixed topology

networks, or arbitrary random-topology networks, NEAT is

the first to begin evolution with a population of small, simple

networks and complexify the network topology into diverse

species over generations, leading to increasingly sophisticated

behaviour. Compared to traditional reinforcement learning

techniques, which predict the long-term reward for taking

actions in different states, the recurrent networks that evolve

in NEAT are robust in continuous domains and in domains

that require memory, making many applications possible.

In this paper, particle systems are controlled by ANNs evolved

by NEAT. NEAT is well-suited to this task because (1) it is a

proven method for evolving ANNs, and (2) it was employed

Design and Analysis Techniques

156

successfully in prior genetic art applications. NEAT is based

on three key principles. First, in order to allow ANN structures

to increase in complexity over generations, a method is

needed to keep track of which gene is which. Otherwise, it is

not clear in later generations which individual is compatible

with which, or how their genes should be combined to

produce offspring. NEAT solves this problem by assigning a

unique historical marking to every new piece of network

structure that appears through a structural mutation.

The historical marking is a number assigned to each gene

corresponding to its order of appearance over the course of

evolution. The numbers are inherited during crossover

unchanged, and allow NEAT to perform crossover without

the need for expensive topological analysis.

That way, genomes of different organizations and sizes stay

compatible throughout evolution, solving the previously open

problem of matching different topologies in an evolving

population.

Second, traditionally NEAT speciates the population so that

individuals compete primarily within their own niches instead

of with the population at large. This way, topological

innovations are protected and have time to optimize their

structure before competing with other niches in the

population. NEAT uses the historical markings on genes to

determine to which species different individuals belong.

However, in this work, because a human performs selection

rather than an automated process, the usual speciation

procedure in NEAT is unecessary.

Third, unlike other systems that evolve network topologies

and weights, NEAT begins with a uniform population of

Design and Analysis Techniques

157

simple networks with no hidden nodes. New structure is

introduced incrementally as structural mutations occur, and

only those structures survive that are found to be useful

through fitness evaluations. This way, NEAT searches

through a minimal number of weight dimensions and finds

the appropriate complexity level for the problem.

This process of complexification has important implications

for search. While it may not be practical to find a solution in

a high-dimensional space by searching in that space directly,

it may be possible to find it by first searching in lower

dimensional spaces and complexifying the best solutions into

the high-dimensional space. For IEC, complexification means

that content can become more elaborate and intricate over

generations.

Since its inception, NEAT has been applied to a broad array

of research areas. Most notable for the approach in this paper

is NERO, an interactive, realtime war game in which ANN-

controlled soldiers are evolved. Because NEAT is a strong

method for evolving controllers for dynamic physical systems,

it can naturally be extended to evolve the motion of particles

in particle effects as well.

APPROACH - NEAT PARTICLES
NEAT Particles combines IEC and NEAT to enable users

to evolve complex particle systems. ANNs control particle

system behaviour, NEAT evolves the ANNs, and an IEC

interface gives the user control over evolution. NEAT Particles

consists of five major components: 1) particle systems, 2)

ANNs, 3) physics, 4) rendering, and 5) evolution.

Design and Analysis Techniques

158

PARTICLE SYSTEM REPRESENTATION
A particle system is specified by an absolute system position

in three-dimensional space and a set of particles. Each

individual particle is defined by its position, velocity, colour,

and size. Particle lifespan unfolds in three phases.

• At birth particles are introduced into space relative

to system position and according to a generation

shape that defines the volume within which new

particles may spawn.

• During its lifetime, each particle changes and moves

according to a set of rules, i.e. an update function.

• Each particle dies, and is removed from the system,

when its time to live has expired.

NEAT Particles effects are divided into classes for two

primary reasons: (1) user convenience and (2) performance.

First, to evolve effects in a reasonable time frame, it is helpful

to divide the search space for the user. Second, effects may

be highly dependent upon certain variables, and unaffected

by other variables. For performance reasons, it is not feasible

to evolve all possible particle variables simultaneously. A

better approach is implemented in NEAT Particles, in which

only key variables are evolved in each particle effect class.

Five particle system classes are implemented in NEAT

Particles to facilitate evolving a variety of common types of

effects.

• The generic system models effects such as fire,

smoke, and explosions. Each particle has a position,

velocity, colour, and size.

Design and Analysis Techniques

159

• The plane system warps individual particles into

different shapes for bright flashes, lens flares, and

engine exhaust effects. A single particle in the plane

system is represented by four points, each of which

has position, velocity, and colour.

• The beam system models beam, laser, or electricity

effects using Bezier curves. Each particle in the beam

system is a control point for the Bezier curve,

including its position, velocity, and colour attributes.

• The rotator system models effects whose primary

behaviour is orbital rotation, common in many

applications. Each particle in a rotator system has

rotation, position, and colour attributes.

• The trail system behaves similarly to the generic

system, but additionally drops a trail of static

particles behind each moving particle.

By providing an array of particle system classes, NEAT

Particles allows designers to evolve a substantial variety of

effects while conveniently constraining the search space

during any particular run.

ARTIFICIAL NEURAL NETWORK

IMPLEMENTATION

ANNs control particle behaviour in NEAT Particles for two

primary reasons. First, ANNs are a proven method for

autonomous control. Second, NEAT is a powerful method

for evolving ANNs for control and sequential decision tasks.

An important question is why evolving ANNs is preferable to

Design and Analysis Techniques

160

directly evolving the variables of a traditional particle system

implementation. While feasible, such an approach still

ultimately relies on hand-coded rules (which constitute such

systems), which thus depend on programmers to make the

search possible. For example, in a traditional particle system

implementation, when a new effect class is needed it requires

programmers to define the effect parameters (e.g. colour

change, motion pattern physics, etc.). In contrast, in NEAT

Particles the effects of any class are represented by the same

structure: ANNs.

The ANN for each particle effect dictates the characteristics

and behaviour of the system. Therefore, each particle effect

class includes its own ANN input and output configuration.

In NEAT Particles, the ANN replaces the math and physics

rules that must be programmed in traditional particle

systems. Because special effects in most movie and game

graphics need to be visually appealing yet not necessarily

physically plausible, ANNs do not need to equate to physically

realistic models. However, evolved ANN-controlled particle

behaviours (e.g. spin in a spiral while changing colour from

green to orange) are still compatible with rules in physically

accurate particle simulations such as gravity, friction, or

collision. Every particle in a system is guided by the same

ANN. However, the ANN is activated separately for each

particle. During every frame of animation in NEAT Particles

an update function is executed that (1) loads inputs, (2)

activates the ANN, and (3) reads outputs. The ANN outputs

Design and Analysis Techniques

161

determine particle behaviour for the current frame of

animation.

An appropriate set of inputs and outputs is associated

with each effect class as follows.

The primary inputs in NEAT Particles are position and

distance from centre of the system. The main outputs are

velocity and colour. These are good inputs and outputs

because they can encode significant variety over the long

term. However, because animation happens in real-time, the

change in position and distance from centre are small from

one frame to the next, producing incremental changes that

look smooth.

The generic particle system ANN takes the current position

of the particle (px, py, pz) and distance from the centre of the

system (dc) as inputs. Distance from centre introduces the

potential for symmetry by allowing particles to move in

relation to the system centre. The outputs are the velocity

(vx, vy, vz) and colour (R, G, B) of the particle for the next

frame of animation. The generic particle system produces

behaviours suitable for explosions, fire, and smoke effects.

Each particle in the plane system consists four co-planar

points that may be warped into different shapes. Because

the corners must be coplanar for rendering purposes, the y

component of velocity for each corner is fixed. Thus, the

inputs to the plane system ANN are the position of each corner

(px, pz) and the distance from the centre of the plane (dc).

The warped quads of plane systems are commonly found in

Design and Analysis Techniques

162

explosions, engine thrust, and glow effects.The beam system

ANN controls directed beam effects. To produce twisting

beams, a Bezier curve is implemented with mobile control

points directed by the ANN. The inputs are the position of

each Bezier control point (px, py, pz) and distance of the

control point from a the centre of the system (dc). The outputs

are the velocity (vx, vy, vz) and colour (R, G, B) of the control

point for the next frame of animation. Beam systems produce

curving, multi-coloured beams typically found in futuristic

weapons, magic spells, lightning, and energy effects.

The rotator system enables evolving rotationbased effects.

The inputs to the ANN are particle position (px, py, pz) and

distance from the centre of the system (dc). The outputs are

rotation around the x, y, and z axes (rx, ry, rz) and colour (R,

G, B). Rotation-based particle systems are common in

explosions, halos, and energy effects.

The trail system behaves similarly to the generic system

yet provides a more complex visual effect by periodically

dropping stationary particles that shrink and fade out.

Therefore, the trail system ANN takes the same inputs and

emits the same outputs as the generic ANN. Trail systems

are convenient because they provide a computationally

inexpensive form of motion blur or visual trail behind moving

objects. ANNs control particle behaviour and ANN input/

outputs divide effects into classes, which shrinks the search

space for users. While ANN topology and weights significantly

contribute to particle behaviour, activation functions within

each node play an important role as well.

Design and Analysis Techniques

163

ACTIVATION FUNCTIONS

Unlike traditional ANNs, NEAT Particles ANN hidden nodes

and output nodes contain an activation function selected

from a set of eight possibilities. Theoretically, ANNs with a

single activation function can evolve any behaviour ; however,

multiple activation functions are preferable in NEAT Particles

because the user can obtain variety more quickly and thereby

evolve toward the intended effect sooner.

PHYSICS

Each frame of animation, after the ANN is activated, the

velocity for each particle is determined by the outputs. To

animate a particle each frame (i.e. move the particle through

space) a linear motion model calculates the position of the

particle at time t based on time elapsed _ since the last frame

of animation:

Pt = Pt – 1 + V _ s,

where Pt is the particle’s new position vector, Pt–1 is the

particle’s position vector in the previous animation frame, V

is the particle’s velocity vector, and s is a scaling value to

adjust the speed of animation.

RENDERING

NEAT Particles renders particles to the screen with

billboarding, a technique in which two-dimensional bitmap

textures are mapped onto a plane (i.e. a quad) that faces

perpendicular to the camera. The corners of the quad are

offsets from the particle position. By facing the quad toward

Design and Analysis Techniques

164

the camera the billboarding method convincingly conveys

the illusion of translucent three-dimensional particles in

space. The billboarding technique is implemented in NEAT

Particles because it is the most common and versatile method

to render particles. An alternative particle rendering method

is point sprites ; however, they do not allow arbitrary warping

of particle shape required for the beam and plane systems.

There are several ways to optimize particle system rendering

including level of detail (LOD), batch rendering, and GPU

acceleration. NEAT Particles is compatible with all such

methods; however they are not explored in this

implementation.

EVOLUTION

Evolution in NEAT Particles follows a similar procedure to

other IEC applications. The user is initially presented a

population of nine randomized particle systems represented

by simple ANNs. Each individual system and its ANN can be

inspected by zooming in on the system. If the initial population

of nine systems is unsatisfactory, a new random batch of

effects can be generated by restarting evolution. The user

begins evolution by selecting a single system from the

population to spawn a new generation. A population of eight

new systems (i.e. offspring) is then generated from the ANN

of the selected system (i.e. parent) by mutating its connection

weights and possibly adding new nodes and connections.

That is, offspring complexify following the NEAT method.

Design and Analysis Techniques

165

Evolution proceeds with repeated rounds of selection and

offspring production until the user is satisfied with the

results. If the user is unsatisfied with an entire new

generation, an undo function recalls the previous generation.

Specifically, each new generation preserves the parent exactly

and the other eight members of the population are mutated

from the parent. For each offspring, a uniformly random

number of connections (between one and the number of

connections in the network) are mutated by a uniformly

random value between “0.5 and 0.5. Adding new nodes and

connections is controlled by separate mutation rates. The

probability of adding a new connection is 0.3 and the

probability of adding a new node is 0.2. New nodes are

assigned a random activation function and connected into

the existing ANN. These parameters were found to be effective

for IEC in preliminary experimentation.

Through complexification, particle system effects become

increasingly sophisticated as evolution progresses. Thus,

complex and unique effects are discovered that follow user

preferences. The explains evolving particle system content

for a more specialized purpose, weapons effects for video

games.

NEAT PROJECTILES

NEAT Projectiles is an extension of NEAT Particles designed

to evolve particle weapon effects for video games. The aim is

to exhibit a concrete, practical application of NEAT Particles

Design and Analysis Techniques

166

that can potentially enhance content generation in existing

real-world products. NEAT Projectiles uses similar rendering,

physics, and activation functions as NEAT Particles.

Furthermore, the same IEC interface drives evolution. The

major differences are (1) the projectile classes, (2) the

projectile constraints, and (3) the ANN inputs and outputs.

PROJECTILE CLASSES

Three classes of weapon-like systems are implemented in

NEAT Projectiles to mirror common weapon models in video

games: (1) dumb weapons, (2) directed weapons, and (3) smart

weapons. Dumb weapons fire simple, non-target aware

projectiles and exhibit a fixed behaviour in flight. Directed

weapons fire projectiles that may be steered by the user

during flight. Smart weapons see the target; like a heat-

seeking missile, the in-flight behaviour of smart projectiles

is influenced by target motion.

PROJECTILE CONSTRAINT

Particle weapons provide two new significant constraints

on particle motion beyond generic particle effects. First, to

avoid weapons firing backward, projectile velocity is limited

to overall forward motion. Second, evolved projectile weapons

fire in the same pattern regardless of what direction the

weapon is facing. It would not make sense for projectiles

emitted from a weapon to behave differently when a user

points the weapon in different directions. Therefore, projectile

coordinates are defined relative to the heading of the gun

Design and Analysis Techniques

167

when it is fired. The new projectile classes and constraint

mechanisms also influence the interpretation of NEAT

Projectiles ANNs, as explained next.

PROJECTILE ANNS

Because there is more than one way to make particles act

as projectiles, two approaches are implemented and tested

in NEAT Particles: (1) the offset-constrained model and (2)

the force constrained model. In the offset-constrained model,

a 90° offset cone in front of each particle is computed in each

frame. The outputs from each particle’s ANN represent a

vector within the offset cone, which becomes the particle’s

new velocity. Offset angles are computed differently for each

weapon type. A particle fired from the dumb weapon has a

fixed offset in the direction the gun was facing on discharge.

The directed weapon allows the user to influence projectiles

while in flight; therefore particle offset is constrained to a

90° cone around the vector the weapon is currently facing.

Particles fired from the smart weapon seek their target.

Therefore, the smart particle’s offset is constrained to the

90° cone around a vector from the projectile to the target.

In the force-constrained model, the ANN is similar to that

used in the generic system of NEAT Particles; however a push

force is applied to constrain particle movement to a general

direction. The direction of the push force depends on the

weapon type. The dumb weapon projectile is pushed in the

direction of the gun when it discharges. The directed projectile

pushes in the direction the gun is currently facing. The smart

Design and Analysis Techniques

168

weapon pushes projectiles in the direction of the target. The

combination of constraint model, classes, and correct ANN

design minimizes defective offspring while allowing a

sufficiently large variety of unique weapons to evolve, which

is integral to efficiently producing useful content though IEC.

EXPERIMENTAL RESULTS

NEAT Particles and NEAT Projectiles work in practice to

produce useful particle system content. All particle systems

reported were evolved in between five and ten minutes and

between 20 and 30 user-guided generations. The starting

point is a single curving beam to the target, which is marked

with a cross. During evolution the beam splits. Finally, the

desired effect is achieved with two stylized, parallel arcs that

track the target. Preliminary testing of both NEAT Projectiles

constraint models suggests that, compared to the force-

constrained model, the offset-constrained model over-

constrains evolution. It generates less variety in evolved

weapon effects. However, unlike the force-constrained model,

it also produces no offspring that fire back at the user. Thus,

both models have their pros and cons.

COMPARISONS

To compare the quality of IEC particle effects to those

generated by traditional methods, two hand-coded particle

emitters were implemented with the same rendering method

as NEAT Particles. The resulting effects exhibit similar visual

quality; however, they are limited to simple behaviours

Design and Analysis Techniques

169

because the behavioral complexity of hand-coded particle

systems is dependent upon mathematics, physics, and

programming, which become increasingly difficult to

coordinate through hand-coded policies as more is added.

Another interesting comparison can be drawn with the IEC

fireworks application by Tsuneto, which produces a

specialized class of particle effects. In this system, fireworks

are defined by real-world attributes such as powder type,

explosive payload, number of stages, stage configuration, etc.

A rule-based physics system defines the behaviour of

fireworks based on these attributes.

Through repeated selection in an IEC interface, users can

evolve fireworks to suit their preferences. Thus, unlike NEAT

Particles, this system demonstrates evolving the variables of

a rule system. In contrast, NEAT Particles evolves the

behaviour rules themselves. Both approaches offer unique

advantages. The special rule set of the fireworks application

allows it to focus on a specific class of effects. NEAT Particles

in contrast can evolve effects in a large variety of classes

because of its generality and lack of domain-specific

parameters.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Principles of Design
	Chapter 2 Virtual Design and Construction
	Chapter 3 Electronic Design Automation
	Chapter 4 The Evolution of Web Design
	Chapter 5 Multidisciplinary Design and Optimization
	Chapter 6 Analysis of Algorithms
	Chapter 7 Analysing Animated Cartoons and their Evolution

