




FUNDAMENTALS OF
COMPUTER ALGORITHMS





FUNDAMENTALS OF
COMPUTER ALGORITHMS

Leland Reyes



Fundamentals of Computer Algorithms

by Leland Reyes

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664211

Published by:

Bibliotex

Canada

Website: www.bibliotex.com



Contents

Chapter 1 Introduction to Algorithm 1

Chapter 2 Computer Algorithms 63

Chapter 3 Computational Complexity Theory 92

Chapter 4 Algorithmic Efficiency 115

Chapter 5 Sorting of Algorithms 152





1

Introduction to Algorithm

In mathematics and computer science, an algorithm is

an effective method expressed as a finite list of well-defined

instructions for calculating a function. Algorithms are used

for calculation, data processing, and automated reasoning.

Starting from an initial state and initial input (perhaps

null), the instructions describe a computation that, when

executed, will proceed through a finite number of well-

defined successive states, eventually producing “output”

and terminating at a final ending state. The transition from

one state to the next is not necessarily deterministic; some

algorithms, known as randomized algorithms, incorporate

random input. A partial formalization of the concept began

with attempts to solve the Entscheidungsproblem (the

“decision problem”) posed by David Hilbert in 1928.

Subsequent formalizations were framed as attempts to define

“effective calculability” or “effective method”; those



Fundamentals of Computer Algorithms

2

formalizations included the Gödel–Herbrand–Kleene

recursive functions of 1930, 1934 and 1935, Alonzo Church’s

lambda calculus of 1936, Emil Post’s “Formulation 1” of

1936, and Alan Turing’s Turing machines of 1936–7 and

1939.

WHY ALGORITHMS ARE NECESSARY?
While there is no generally accepted formal definition of

“algorithm,” an informal definition could be “a set of rules

that precisely defines a sequence of operations.” For some

people, a programme is only an algorithm if it stops

eventually; for others, a programme is only an algorithm if

it stops before a given number of calculation steps.

A prototypical example of an algorithm is Euclid’s

algorithm to determine the maximum common divisor of

two integers; an example (there are others) is described by

the flow chart above and as an example in a later section.

Boolos & Jeffrey (1974, 1999) offer an informal meaning of

the word in the following quotation:

No human being can write fast enough, or long

enough, or small enough (“smaller and smaller without

limit ...you’d be trying to write on molecules, on atoms,

on electrons”) to list all members of an enumerably

infinite set by writing out their names, one after

another, in some notation. But humans can do

something equally useful, in the case of certain

enumerably infinite sets: They can give explicit

instructions for determining the nth member of the

set, for arbitrary finite n. Such instructions are to be

given quite explicitly, in a form in which they could



Fundamentals of Computer Algorithms

3

be followed by a computing machine, or by a human

who is capable of carrying out only very elementary

operations on symbols

The term “enumerably infinite” means “countable using

integers perhaps extending to infinity.” Thus Boolos and

Jeffrey are saying that an algorithm implies instructions for

a process that “creates” output integers from an arbitrary

“input” integer or integers that, in theory, can be chosen

from 0 to infinity. Thus an algorithm can be an algebraic

equation such as y = m + n — two arbitrary “input variables”

m and n that produce an output y. But various authors’

attempts to define the notion indicate that the word implies

much more than this, something on the order of (for the

addition example):

Precise instructions (in language understood by “the

computer”) for a fast, efficient, “good” process that

specifies the “moves” of “the computer” (machine or

human, equipped with the necessary internally

contained information and capabilities) to find, decode,

and then process arbitrary input integers/symbols m

and n, symbols + and = ... and “effectively” produce,

in a “reasonable” time, output-integer y at a specified

place and in a specified format.

The concept of algorithm is also used to define the notion

of decidability. That notion is central for explaining how

formal systems come into being starting from a small set

of axioms and rules. In logic, the time that an algorithm

requires to complete cannot be measured, as it is not

apparently related with our customary physical dimension.

From such uncertainties, that characterize ongoing work,



Fundamentals of Computer Algorithms

4

stems the unavailability of a definition of algorithm that

suits both concrete (in some sense) and abstract usage of

the term.

FORMALIZATION
Algorithms are essential to the way computers process

data. Many computer programmes contain algorithms that

specify the specific instructions a computer should perform

(in a specific order) to carry out a specified task, such as

calculating employees’ paychecks or printing students’ report

cards. Thus, an algorithm can be considered to be any

sequence of operations that can be simulated by a Turing-

complete system. Authors who assert this thesis include

Minsky (1967), Savage (1987) and Gurevich (2000):

Minsky: “But we will also maintain, with Turing

. . . that any procedure which could “naturally”

be called effective, can in fact be realized by a

(simple) machine. Although this may seem extreme,

the arguments . . . in its favour are hard to refute”.

Gurevich: “...Turing’s informal argument in favour

of his thesis justifies a stronger thesis: every

algorithm can be simulated by a Turing machine

... according to Savage [1987], an algorithm is a

computational process defined by a Turing

machine”.

Typically, when an algorithm is associated with processing

information, data is read from an input source, written to

an output device, and/or stored for further processing.

Stored data is regarded as part of the internal state of the



Fundamentals of Computer Algorithms

5

entity performing the algorithm. In practice, the state is

stored in one or more data structures. For some such

computational process, the algorithm must be rigorously

defined: specified in the way it applies in all possible

circumstances that could arise. That is, any conditional

steps must be systematically dealt with, case-by-case; the

criteria for each case must be clear (and computable).

Because an algorithm is a precise list of precise steps, the

order of computation will always be critical to the functioning

of the algorithm. Instructions are usually assumed to be

listed explicitly, and are described as starting “from the top”

and going “down to the bottom”, an idea that is described

more formally by flow of control. So far, this discussion of

the formalization of an algorithm has assumed the premises

of imperative programming. This is the most common

conception, and it attempts to describe a task in discrete,

“mechanical” means. Unique to this conception of formalized

algorithms is the assignment operation, setting the value

of a variable. It derives from the intuition of “memory” as

a scratchpad. There is an example below of such an

assignment. For some alternate conceptions of what

constitutes an algorithm see functional programming and

logic programming.

TERMINATION
Some writers restrict the definition of algorithm to

procedures that eventually finish. In such a category Kleene

places the “decision procedure or decision method or algorithm

for the question”. Others, including Kleene, include

procedures that could run forever without stopping; such



Fundamentals of Computer Algorithms

6

a procedure has been called a “computational method” or

“calculation procedure or algorithm (and hence a calculation

problem) in relation to a general question which requires

for an answer, not yes or no, but the exhibiting of some

object”. Minsky makes the pertinent observation, in regards

to determining whether an algorithm will eventually

terminate (from a particular starting state): But if the length

of the process isn’t known in advance, then “trying” it may

not be decisive, because if the process does go on forever—

then at no time will we ever be sure of the answer. As it

happens, no other method can do any better, as was shown

by Alan Turing with his celebrated result on the

undecidability of the so-called halting problem. There is no

algorithmic procedure for determining whether or not

arbitrary algorithms terminate from given starting states.

The analysis of algorithms for their likelihood of termination

is called termination analysis.

See the examples of (im-) “proper” subtraction at partial

function for more about what can happen when an algorithm

fails for certain of its input numbers—e.g., (i) non-

termination, (ii) production of “junk” (output in the wrong

format to be considered a number) or no number(s) at all

(halt ends the computation with no output), (iii) wrong

number(s), or (iv) a combination of these. Kleene proposed

that the production of “junk” or failure to produce a number

is solved by having the algorithm detect these instances and

produce e.g., an error message (he suggested “0”), or

preferably, force the algorithm into an endless loop. Davis

(1958) does this to his subtraction algorithm—he fixes his

algorithm in a second example so that it is proper subtraction



Fundamentals of Computer Algorithms

7

and it terminates. Along with the logical outcomes “true”

and “false” Kleene (1952) also proposes the use of a third

logical symbol “u” — undecided — thus an algorithm will

always produce something when confronted with a

“proposition”. The problem of wrong answers must be solved

with an independent “proof” of the algorithm e.g., using

induction: We normally require auxiliary evidence for this

[that the algorithm correctly defines a mu recursive function],

e.g, in the form of an inductive proof that, for each argument

value, the computation terminates with a unique value.

EXPRESSING ALGORITHMS
Algorithms can be expressed in many kinds of notation,

including natural languages, pseudocode, flowcharts,

programming languages or control tables (processed by

interpreters). Natural language expressions of algorithms

tend to be verbose and ambiguous, and are rarely used for

complex or technical algorithms. Pseudocode, flowcharts and

control tables are structured ways to express algorithms that

avoid many of the ambiguities common in natural language

statements, while remaining independent of a particular

implementation language. Programming languages are

primarily intended for expressing algorithms in a form that

can be executed by a computer, but are often used as a way

to define or document algorithms. There is a wide variety of

representations possible and one can express a given Turing

machine programme as a sequence of machine tables as

flowcharts, or as a form of rudimentary machine code or

assembly code called “sets of quadruples”. Sometimes it is

helpful in the description of an algorithm to supplement



Fundamentals of Computer Algorithms

8

small “flow charts” (state diagrams) with natural-language

and/or arithmetic expressions written inside “block diagrams”

to summarize what the “flow charts” are accomplishing.
Representations of algorithms are generally classed into three
accepted levels of Turing machine description:

• 1 High-level description:

“...prose to describe an algorithm, ignoring the
implementation details. At this level we do not need
to mention how the machine manages its tape or
head.”

• 2 Implementation description:

“...prose used to define the way the Turing machine
uses its head and the way that it stores data on its
tape. At this level we do not give details of states or
transition function.”

• 3 Formal description:

Most detailed, “lowest level”, gives the Turing

machine’s “state table”.

IMPLEMENTATION
Most algorithms are intended to be implemented as

computer programmes. However, algorithms are also

implemented by other means, such as in a biological neural

network (for example, the human brain implementing

arithmetic or an insect looking for food), in an electrical

circuit, or in a mechanical device.

COMPUTER ALGORITHMS
In computer systems, an algorithm is basically an instance

of logic written in software by software developers to be



Fundamentals of Computer Algorithms

9

effective for the intended “target” computer(s), in order for

the target machines to produce output from given input

(perhaps null). “Elegant” (compact) programmes, “good” (fast)

programmes : The notion of “simplicity and elegance” appears

informally in Knuth and precisely in Chaitin:

Knuth: “. . .we want good algorithms in some

loosely defined aesthetic sense. One criterion . .

. is the length of time taken to perform the algorithm

. . .. Other criteria are adaptability of the algorithm

to computers, its simplicity and elegance, etc”

Chaitin: “ . . . a programme is ‘elegant,’ by which

I mean that it’s the smallest possible programme

for producing the output that it does”

Chaitin prefaces his definition with: “I’ll show you

can’t prove that a programme is ‘elegant’” — such

a proof would solve the Halting problem (ibid).

Algorithm versus function computable by an algorithm:

For a given function multiple algorithms may exist. This will

be true, even without expanding the available instruction

set available to the programmer. Rogers observes that “It

is . . . important to distinguish between the notion of

algorithm, i.e. procedure and the notion of function

computable by algorithm, i.e. mapping yielded by procedure.

The same function may have several different algorithms”.

Unfortunately there may be a tradeoff between goodness

(speed) and elegance (compactness) — an elegant programme

may take more steps to complete a computation than one

less elegant. An example of using Euclid’s algorithm will be

shown below. Computers (and computors), models of



Fundamentals of Computer Algorithms

10

computation: A computer (or human “computor”) is a

restricted type of machine, a “discrete deterministic

mechanical device” that blindly follows its instructions.

Melzak’s and Lambek’s primitive models reduced this notion

to four elements: (i) discrete, distinguishable locations, (ii)

discrete, indistinguishable counters (iii) an agent, and (iv)

a list of instructions that are effective relative to the capability

of the agent.

Minsky describes a more congenial variation of Lambek’s

“abacus” model in his “Very Simple Bases for Computability”.

Minsky’s machine proceeds sequentially through its five (or

six depending on how one counts) instructions unless either

a conditional IF - THEN GOTO or an unconditional GOTO

changes programme flow out of sequence. Besides HALT,

Minsky’s machine includes three assignment (replacement,

substitution) operations: ZERO, SUCCESSOR, and

DECREMENT. Rarely will a programmer have to write “code”

with such a limited instruction set. But Minsky shows (as

do Melzak and Lambek) that his machine is Turing complete

with only four general types of instructions: conditional

GOTO, unconditional GOTO, assignment/replacement/

substitution, and HALT. Simulation of an algorithm:

computer(computor) language: Knuth advises the reader

that “the best way to learn an algorithm is to try it . . .

immediately take pen and paper and work through an

example”. But what about a simulation or execution of the

real thing? The programmer must translate the algorithm

into a language that the simulator/computer/computor

can effectively execute. Stone gives an example of this:

when computing the roots of a quadratic equation the



Fundamentals of Computer Algorithms

11

computor must know how to take a square root. If they

don’t then for the algorithm to be effective it must provide

a set of rules for extracting a square root.

This means that the programmer must know a “language”

that is effective relative to the target computing agent

(computer/computor). But what model should be used for

the simulation? Van Emde Boas observes “even if we base

complexity theory on abstract instead of concrete machines,

arbitrariness of the choice of a model remains. It is at this

point that the notion of simulation enters”. When speed is

being measured, the instruction set matters. For example,

the subprogramme in Euclid’s algorithm to compute the

remainder would execute much faster if the programmer

had a “modulus” (division) instruction available rather than

just subtraction (or worse: just Minsky’s “decrement”).

Structured programming, canonical structures: Per the

Church-Turing thesis any algorithm can be computed by

a model known to be Turing complete, and per Minsky’s

demonstrations Turing completeness requires only four

instruction types—conditional GOTO, unconditional GOTO,

assignment, HALT. Kemeny and Kurtz observe that while

“undisciplined” use of unconditional GOTOs and conditional

IF-THEN GOTOs can result in “spaghetti code” a programmer

can write structured programmes using these instructions;

on the other hand “it is also possible, and not too hard, to

write badly structured programmes in a structured

language”.

Tausworthe augments the three Böhm-Jacopini canonical

structures: SEQUENCE, IF-THEN-ELSE, and WHILE-DO,

with two more: DO-WHILE and CASE. An additional benefit



Fundamentals of Computer Algorithms

12

of a structured programme will be one that lends itself to

proofs of correctness using mathematical induction.

Canonical flowchart symbols: The graphical aide called a

flowchart offers a way to describe and document an algorithm

(and a computer programme of one). Like programme flow

of a Minsky machine, a flowchart always starts at the top

of a page and proceeds down. Its primary symbols are only

4: the directed arrow showing programme flow, the rectangle

(SEQUENCE, GOTO), the diamond (IF-THEN-ELSE), and

the dot (OR-tie). The Böhm-Jacopini canonical structures

are made of these primitive shapes. Sub-structures can

“nest” in rectangles but only if a single exit occurs from the

superstructure. The symbols and their use to build the

canonical structures are shown in the diagram.

EXAMPLES

SORTING EXAMPLE
One of the simplest algorithms is to find the largest

number in an (unsorted) list of numbers. The solution

necessarily requires looking at every number in the list, but

only once at each. From this follows a simple algorithm,

which can be stated in a high-level description English

prose, as: High-level description:

1. Assume the first item is largest.

2. Look at each of the remaining items in the list and

if it is larger than the largest item so far, make a note

of it.

3. The last noted item is the largest in the list when the

process is complete.



Fundamentals of Computer Algorithms

13

(Quasi-)formal description: Written in prose but much

closer to the high-level language of a computer

programme, the following is the more formal coding

of the algorithm.

EUCLID’S ALGORITHM
Euclid’s algorithm appears as Proposition II in Book VII

(“Elementary Number Theory”) of his Elements. Euclid poses

the problem: “Given two numbers not prime to one another,

to find their greatest common measure”. He defines “A

number [to be] a multitude composed of units”: a counting

number, a positive integer not including 0. And to “measure”

is to place a shorter measuring length s successively (q

times) along longer length l until the remaining portion r

is less than the shorter length s. In modern words, remainder

r = l - q*s, q being the quotient, or remainder r is the

“modulus”, the integer-fractional part left over after the

division. For Euclid’s method to succeed, the starting lengths

must satisfy two requirements: (i) the lengths must not be

0, AND (ii) the subtraction must be “proper”, a test must

guarantee that the smaller of the two numbers is subtracted

from the larger (alternately, the two can be equal so their

subtraction yields 0). Euclid’s original proof adds a third:

the two lengths are not prime to one another. Euclid

stipulated this so that he could construct a reductio ad

absurdum proof that the two numbers’ common measure

is in fact the greatest. While Nicomachus’ algorithm is the

same as Euclid’s, when the numbers are prime to one

another it yields the number “1” for their common measure.

So to be precise the following is really Nicomachus’ algorithm.



Fundamentals of Computer Algorithms

14

COMPUTER (COMPUTOR) LANGUAGE FOR
EUCLID’S ALGORITHM

Only a few instruction types are required to execute

Euclid’s algorithm—some logical tests (conditional GOTO),

unconditional GOTO, assignment (replacement), and

subtraction.

• A location is symbolized by upper case letter(s), e.g.

S, A, etc.

• The varying quantity (number) in a location will be

written in lower case letter(s) and (usually) associated

with the location’s name. For example, location L at

the start might contain the number l = 3009.

How “Elegant” works: In place of an outer “Euclid loop”,

“Elegant” shifts back and forth between two “co-loops”, an

A > B loop that computes A ! A - B, and a B d” A loop that

computes B ! B - A. This works because, when at last the

minuend M is less than or equal to the subtrahend S (

Difference = Minuend - Subtrahend), the minuend can

become s (the new measuring length) and the subtrahend

can become the new r (the length to be measured); in other

words the “sense” of the subtraction reverses.

TESTING THE EUCLID ALGORITHMS
Does an algorithm do what its author wants it to do?

A few test cases usually suffice to confirm core functionality.

One source uses 3009 and 884. Knuth suggested 40902,

24140. Another interesting case is the two relatively-prime

numbers 14157 and 5950. But exceptional cases must be

identified and tested. Will “Inelegant” perform properly when

R > S, S > R, R = S? Ditto for “Elegant”: B > A, A > B, A



Fundamentals of Computer Algorithms

15

= B? (Yes to all). What happens when one number is zero,

both numbers are zero? (“Inelegant” computes forever in all

cases; “Elegant” computes forever when A = 0.) What happens

if negative numbers are entered?

Fractional numbers? If the input numbers, i.e. the domain

of the function computed by the algorithm/programme, is

to include only positive integers including zero, then the

failures at zero indicate that the algorithm (and the

programme that instantiates it) is a partial function rather

than a total function. A notable failure due to exceptions

is the Ariane V rocket failure. Proof of programme correctness

by use of mathematical induction: Knuth demonstrates the

application of mathematical induction to an “extended”

version of Euclid’s algorithm, and he proposes “a general

method applicable to proving the validity of any algorithm”.

Tausworthe proposes that a measure of the complexity of

a programme be the length of its correctness proof.

MEASURING AND IMPROVING THE EUCLID
ALGORITHMS

Elegance (compactness) versus goodness (speed) : With

only 6 core instructions, “Elegant” is the clear winner

compared to “Inelegant” at 13 instructions. However,

“Inelegant” is faster (it arrives at HALT in fewer steps).

Algorithm analysis indicates why this is the case: “Elegant”

does two conditional tests in every subtraction loop, whereas

“Inelegant” only does one. As the algorithm (usually) requires

many loop-throughs, on average much time is wasted doing

a “B = 0?” test that is needed only after the remainder is

computed. Can the algorithms be improved?: Once the



Fundamentals of Computer Algorithms

16

programmer judges a programme “fit” and “effective” — that

is, it computes the function intended by its author—then

the question becomes, can it be improved? The compactness

of “Inelegant” can be improved by the elimination of 5 steps.

But Chaitin proved that compacting an algorithm cannot

be automated by a generalized algorithm; rather, it can only

be done heuristically, i.e. by exhaustive search (examples

to be found at Busy beaver), trial and error, cleverness,

insight, application of inductive reasoning, etc. Observe

that steps 4, 5 and 6 are repeated in steps 11, 12 and 13.

Comparison with “Elegant” provides a hint that these

steps together with steps 2 and 3 can be eliminated. This

reduces the number of core instructions from 13 to 8, which

makes it “more elegant” than “Elegant” at 9 steps. The

speed of “Elegant” can be improved by moving the B=0? test

outside of the two subtraction loops. This change calls for

the addition of 3 instructions (B=0?, A=0?, GOTO). Now

“Elegant” computes the example-numbers faster; whether

for any given A, B and R, S this is always the case would

require a detailed analysis.

ALGORITHMIC ANALYSIS
It is frequently important to know how much of a

particular resource (such as time or storage) is theoretically

required for a given algorithm. Methods have been developed

for the analysis of algorithms to obtain such quantitative

answers (estimates); for example, the sorting algorithm above

has a time requirement of O(n), using the big O notation

with n as the length of the list. At all times the algorithm

only needs to remember two values: the largest number



Fundamentals of Computer Algorithms

17

found so far, and its current position in the input list.

Therefore it is said to have a space requirement of O(1), if

the space required to store the input numbers is not counted,

or O(n) if it is counted. Different algorithms may complete

the same task with a different set of instructions in less

or more time, space, or ‘effort’ than others. For example,

a binary search algorithm will usually outperform a brute

force sequential search when used for table lookups on

sorted lists.

FORMAL VERSUS EMPIRICAL
The analysis and study of algorithms is a discipline of

computer science, and is often practiced abstractly without
the use of a specific programming language or
implementation. In this sense, algorithm analysis resembles
other mathematical disciplines in that it focuses on the
underlying properties of the algorithm and not on the
specifics of any particular implementation. Usually
pseudocode is used for analysis as it is the simplest and
most general representation. However, ultimately, most
algorithms are usually implemented on particular hardware
/ software platforms and their algorithmic efficiency is
eventually put to the test using real code. Empirical testing

is useful because it may uncover unexpected interactions

that affect performance. Benchmarks may be used to

compare before/after potential improvements to an algorithm

after programme optimization.

CLASSIFICATION
There are various ways to classify algorithms, each with

its own merits.



Fundamentals of Computer Algorithms

18

BY IMPLEMENTATION
One way to classify algorithms is by implementation

means.

• Recursion or iteration: A recursive algorithm is one

that invokes (makes reference to) itself repeatedly

until a certain condition matches, which is a method

common to functional programming. Iterative

algorithms use repetitive constructs like loops and

sometimes additional data structures like stacks to

solve the given problems. Some problems are naturally

suited for one implementation or the other. For

example, towers of Hanoi is well understood in

recursive implementation. Every recursive version

has an equivalent (but possibly more or less complex)

iterative version, and vice versa.

• Logical: An algorithm may be viewed as controlled

logical deduction. This notion may be expressed as:

Algorithm = logic + control. The logic component

expresses the axioms that may be used in the

computation and the control component determines

the way in which deduction is applied to the axioms.

This is the basis for the logic programming paradigm.

In pure logic programming languages the control

component is fixed and algorithms are specified by

supplying only the logic component. The appeal of

this approach is the elegant semantics: a change in

the axioms has a well defined change in the algorithm.

• Serial or parallel or distributed: Algorithms are usually

discussed with the assumption that computers

execute one instruction of an algorithm at a time.



Fundamentals of Computer Algorithms

19

Those computers are sometimes called serial

computers. An algorithm designed for such an

environment is called a serial algorithm, as opposed

to parallel algorithms or distributed algorithms.

Parallel algorithms take advantage of computer

architectures where several processors can work on
a problem at the same time, whereas distributed
algorithms utilize multiple machines connected with
a network. Parallel or distributed algorithms divide
the problem into more symmetrical or asymmetrical
subproblems and collect the results back together.
The resource consumption in such algorithms is not
only processor cycles on each processor but also the
communication overhead between the processors.
Sorting algorithms can be parallelized efficiently, but
their communication overhead is expensive. Iterative
algorithms are generally parallelizable. Some problems
have no parallel algorithms, and are called inherently
serial problems.

• Deterministic or non-deterministic: Deterministic
algorithms solve the problem with exact decision at
every step of the algorithm whereas non-deterministic
algorithms solve problems via guessing although
typical guesses are made more accurate through the
use of heuristics.

• Exact or approximate: While many algorithms reach

an exact solution, approximation algorithms seek an

approximation that is close to the true solution.

Approximation may use either a deterministic or a

random strategy. Such algorithms have practical value

for many hard problems.



Fundamentals of Computer Algorithms

20

• Quantum algorithm: Quantum algorithm run on a

realistic model of quantum computation. The term

is usually used for those algorithms which seem

inherently quantum, or use some essential feature

of quantum computation such as quantum

superposition or quantum entanglement.

BY DESIGN PARADIGM
Another way of classifying algorithms is by their design

methodology or paradigm. There is a certain number of

paradigms, each different from the other. Furthermore,

each of these categories will include many different types

of algorithms. Some commonly found paradigms include:

• Brute-force or exhaustive search. This is the naïve

method of trying every possible solution to see which

is best.

• Divide and conquer. A divide and conquer algorithm

repeatedly reduces an instance of a problem to one

or more smaller instances of the same problem

(usually recursively) until the instances are small

enough to solve easily. One such example of divide

and conquer is merge sorting. Sorting can be done

on each segment of data after dividing data into

segments and sorting of entire data can be obtained

in the conquer phase by merging the segments. A

simpler variant of divide and conquer is called a

decrease and conquer algorithm, that solves an

identical subproblem and uses the solution of this

subproblem to solve the bigger problem. Divide and

conquer divides the problem into multiple



Fundamentals of Computer Algorithms

21

subproblems and so the conquer stage will be more

complex than decrease and conquer algorithms. An

example of decrease and conquer algorithm is the

binary search algorithm.

• Dynamic programming. When a problem shows

optimal substructure, meaning the optimal solution

to a problem can be constructed from optimal

solutions to subproblems, and overlapping

subproblems, meaning the same subproblems are

used to solve many different problem instances, a

quicker approach called dynamic programming avoids

recomputing solutions that have already been

computed. For example, Floyd–Warshall algorithm,

the shortest path to a goal from a vertex in a weighted

graph can be found by using the shortest path to the

goal from all adjacent vertices. Dynamic programming

and memoization go together. The main difference

between dynamic programming and divide and

conquer is that subproblems are more or less

independent in divide and conquer, whereas

subproblems overlap in dynamic programming. The

difference between dynamic programming and

straightforward recursion is in caching or memoization

of recursive calls. When subproblems are independent

and there is no repetition, memoization does not

help; hence dynamic programming is not a solution

for all complex problems. By using memoization or

maintaining a table of subproblems already solved,

dynamic programming reduces the exponential nature

of many problems to polynomial complexity.



Fundamentals of Computer Algorithms

22

• The greedy method. A greedy algorithm is similar to

a dynamic programming algorithm, but the difference

is that solutions to the subproblems do not have to

be known at each stage; instead a “greedy” choice

can be made of what looks best for the moment. The

greedy method extends the solution with the best

possible decision (not all feasible decisions) at an

algorithmic stage based on the current local optimum

and the best decision (not all possible decisions)

made in a previous stage. It is not exhaustive, and

does not give an accurate answer to many problems.

But when it works, it will be the fastest method. The

most popular greedy algorithm is finding the minimal

spanning tree as given by Huffman Tree, Kruskal,

Prim, Sollin.

• Linear programming. When solving a problem using

linear programming, specific inequalities involving

the inputs are found and then an attempt is made

to maximize (or minimize) some linear function of the

inputs. Many problems (such as the maximum flow

for directed graphs) can be stated in a linear

programming way, and then be solved by a ‘generic’

algorithm such as the simplex algorithm. A more

complex variant of linear programming is called integer

programming, where the solution space is restricted

to the integers.

• Reduction. This technique involves solving a difficult

problem by transforming it into a better known

problem for which we have (hopefully) asymptotically

optimal algorithms. The goal is to find a reducing



Fundamentals of Computer Algorithms

23

algorithm whose complexity is not dominated by the

resulting reduced algorithm’s. For example, one

selection algorithm for finding the median in an

unsorted list involves first sorting the list (the

expensive portion) and then pulling out the middle

element in the sorted list (the cheap portion). This

technique is also known as transform and conquer.

• Search and enumeration. Many problems (such as

playing chess) can be modeled as problems on graphs.

A graph exploration algorithm specifies rules for

moving around a graph and is useful for such

problems. This category also includes search

algorithms, branch and bound enumeration and

backtracking.

1. Randomized algorithms are those that make some

choices randomly (or pseudo-randomly); for some problems,

it can in fact be proven that the fastest solutions must

involve some randomness. There are two large classes of

such algorithms:

(a) Monte Carlo algorithms return a correct answer with

high-probability. E.g. RP is the subclass of these that

run in polynomial time)

(b) Las Vegas algorithms always return the correct

answer, but their running time is only probabilistically

bound, e.g. ZPP.

2. In optimization problems, heuristic algorithms do not

try to find an optimal solution, but an approximate solution

where the time or resources are limited. They are not practical

to find perfect solutions. An example of this would be local



Fundamentals of Computer Algorithms

24

search, tabu search, or simulated annealing algorithms, a

class of heuristic probabilistic algorithms that vary the

solution of a problem by a random amount. The name

“simulated annealing” alludes to the metallurgic term

meaning the heating and cooling of metal to achieve freedom

from defects. The purpose of the random variance is to find

close to globally optimal solutions rather than simply locally

optimal ones, the idea being that the random element will

be decreased as the algorithm settles down to a solution.

Approximation algorithms are those heuristic algorithms

that additionally provide some bounds on the error. Genetic

algorithms attempt to find solutions to problems by

mimicking biological evolutionary processes, with a cycle of

random mutations yielding successive generations of

“solutions”. Thus, they emulate reproduction and “survival

of the fittest”. In genetic programming, this approach is

extended to algorithms, by regarding the algorithm itself as

a “solution” to a problem.

BY FIELD OF STUDY
Every field of science has its own problems and needs

efficient algorithms. Related problems in one field are often

studied together. Some example classes are search

algorithms, sorting algorithms, merge algorithms, numerical

algorithms, graph algorithms, string algorithms,

computational geometric algorithms, combinatorial

algorithms, medical algorithms, machine learning,

cryptography, data compression algorithms and parsing

techniques. Fields tend to overlap with each other, and

algorithm advances in one field may improve those of other,



Fundamentals of Computer Algorithms

25

sometimes completely unrelated, fields. For example,

dynamic programming was invented for optimization of

resource consumption in industry, but is now used in

solving a broad range of problems in many fields.

BY COMPLEXITY
Algorithms can be classified by the amount of time they

need to complete compared to their input size. There is a

wide variety: some algorithms complete in linear time relative

to input size, some do so in an exponential amount of time

or even worse, and some never halt. Additionally, some

problems may have multiple algorithms of differing

complexity, while other problems might have no algorithms

or no known efficient algorithms. There are also mappings

from some problems to other problems. Owing to this, it was

found to be more suitable to classify the problems themselves

instead of the algorithms into equivalence classes based on

the complexity of the best possible algorithms for them.

Burgin (2005, p. 24) uses a generalized definition of

algorithms that relaxes the common requirement that the

output of the algorithm that computes a function must be

determined after a finite number of steps. He defines a

super-recursive class of algorithms as “a class of algorithms

in which it is possible to compute functions not computable

by any Turing machine” (Burgin 2005, p. 107). This is

closely related to the study of methods of hypercomputation.

CONTINUOUS ALGORITHMS
The adjective “continuous” when applied to the word

“algorithm” can mean:



Fundamentals of Computer Algorithms

26

1. An algorithm operating on data that represents

continuous quantities, even though this data is

represented by discrete approximations – such

algorithms are studied in numerical analysis; or

2. An algorithm in the form of a differential equation

that operates continuously on the data, running on

an analog computer.

LEGAL ISSUES
Algorithms, by themselves, are not usually patentable.

In the United States, a claim consisting solely of simple

manipulations of abstract concepts, numbers, or signals

does not constitute “processes” (USPTO 2006), and hence

algorithms are not patentable (as in Gottschalk v. Benson).

However, practical applications of algorithms are sometimes

patentable. For example, in Diamond v. Diehr, the application

of a simple feedback algorithm to aid in the curing of

synthetic rubber was deemed patentable. The patenting of

software is highly controversial, and there are highly criticized

patents involving algorithms, especially data compression

algorithms, such as Unisys’ LZW patent. Additionally, some

cryptographic algorithms have export restrictions.

ETYMOLOGY
The word “Algorithm” or “Algorism” in some other writing

versions, comes from the name Al-Khwarizmi (c. 780-850),

a Persian mathematician, astronomer, geographer and a

scholar in the House of Wisdom in Baghdad, whose name

means “the native of Kharazm”, a city that was part of the

Greater Iran during his era and now is in modern day



Fundamentals of Computer Algorithms

27

Uzbekistan He wrote a treatise in Arabic language in the

9th century, which was translated into Latin in the 12th

century under the title Algoritmi de numero Indorum. This

title means “Algoritmi on the numbers of the Indians”,

where “Algoritmi” was the translator’s Latinization of Al-

Khwarizmi’s name. Al-Khwarizmi was the most widely read

mathematician in Europe in the late Middle Ages, primarily

through his other book, the Algebra. In late medieval Latin,

algorismus, the corruption of his name, simply meant the

“decimal number system” that is still the meaning of modern

English algorism. In 17th century French the word’s form,

but not its meaning, changed to algorithme. English adopted

the French very soon afterwards, but it wasn’t until the late

19th century that “Algorithm” took on the meaning that it

has in modern English.

ALGORITHM CHARACTERIZATIONS
The word algorithm does not have a generally accepted

definition. Researchers are actively working in formalizing

this term. This study will present some of the

“characterizations” of the notion of “algorithm” in more

detail.

THE PROBLEM OF DEFINITION
There is no generally accepted definition of algorithm.

Over the last 200 years the definition has become more

complicated and detailed as researchers have tried to pin

down the term. Indeed there may be more than one type

of “algorithm”. But most agree that algorithm has something

to do with defining generalized processes for the creation



Fundamentals of Computer Algorithms

28

of “output” integers from other “input” integers — “input

parameters” arbitrary and infinite in extent, or limited in

extent but still variable—by the manipulation of

distinguishable symbols (counting numbers) with finite

collections of rules that a person can perform with paper

and pencil. The most common number-manipulation

schemes—both in formal mathematics and in routine life—

are: (1) the recursive functions calculated by a person with

paper and pencil, and (2) the Turing machine or its Turing

equivalents—the primitive register machine or “counter

machine” model, the Random Access Machine model (RAM),

the Random access stored programme machine model (RASP)

and its functional equivalent “the computer”.

The reader is probably unfamiliar with the notion of a

“recursive function”. But when we are doing “arithmetic” we

are really calculating by the use of “recursive functions” in

the shorthand algorithms we learned in grade-school, for

example, adding and subtracting. The proofs that every

“recursive function” we can calculate by hand we can compute

by machine and vice versa—note the usage of the words

calculate versus compute — is remarkable. But this

equivalence together with the thesis (hypothesis, unproven

assertion) that this includes every calculation/computation

indicates why so much emphasis has been placed upon the

use of Turing-equivalent machines in the definition of specific

algorithms, and why the definition of “algorithm” itself often

refers back to “the Turing machine”. This is discussed in

more detail under Stephen Kleene’s characterization. The

following are summaries of the more famous

characterizations (Kleene, Markov, Knuth) together with



Fundamentals of Computer Algorithms

29

those that introduce novel elements—elements that further

expand the definition or contribute to a more precise

definition.

CHOMSKY HIERARCHY
There is more consensus on the “characterization” of the

notion of “simple algorithm”. All algorithms need to be

specified in a formal language, and the “simplicity notion”

arises from the simplicity of the language. The Chomsky

(1956) hierarchy is a containment hierarchy of classes of

formal grammars that generate formal languages. It is used

for classifying of programming languages and abstract

machines. From the Chomsky hierarchy perspective, if the

algorithm can be specified on a simpler language (than

unrestricted), it can be characterized by this kind of language,

else it is a typical “unrestricted algorithm”. Examples: a

“general purpose” macro language, like M4 is unrestricted

(Turing complete), but the C preprocessor macro language

is not, so any algorithm expressed in C preprocessor is a

“simple algorithm”.

CHARACTERIZATIONS OF THE NOTION OF
“ALGORITHM”

1881 John Venn’s negative reaction to W. Stanley Jevons’s

Logical Machine of 1870 In early 1870 W. Stanley Jevons

presented a “Logical Machine” (Jevons 1880:200) for

analyzing a syllogism or other logical form e.g. an argument

reduced to a Boolean equation. By means of what Couturat

(1914) called a “sort of logical piano [,] ... the equalities

which represent the premises ... are “played” on a keyboard



Fundamentals of Computer Algorithms

30

like that of a typewriter. ... When all the premises have been

“played”, the panel shows only those constituents whose

sum is equal to 1, that is, ... its logical whole. This mechanical

method has the advantage over VENN’s geometrical

method...” (Couturat 1914:75). For his part John Venn, a

logician contemporary to Jevons, was less than thrilled,

opining that “it does not seem to me that any contrivances

at present known or likely to be discovered really deserve

the name of logical machines” (italics added, Venn 1881:120).

But of historical use to the developing notion of “algorithm”

is his explanation for his negative reaction with respect to

a machine that “may subserve a really valuable purpose by

enabling us to avoid otherwise inevitable labor”:

(1) “There is, first, the statement of our data in accurate

logical language”,

(2) “Then secondly, we have to throw these statements

into a form fit for the engine to work with — in this

case the reduction of each proposition to its

elementary denials”,

(3) “Thirdly, there is the combination or further treatment

of our premises after such reduction,”

(4) “Finally, the results have to be interpreted or read

off. This last generally gives rise to much opening for

skill and sagacity.”

He concludes that “I cannot see that any machine can

hope to help us except in the third of these steps; so that

it seems very doubtful whether any thing of this sort really

deserves the name of a logical engine.”(Venn 1881:119-

121).



Fundamentals of Computer Algorithms

31

1943, 1952 STEPHEN KLEENE’S
CHARACTERIZATION

This section is longer and more detailed than the others

because of its importance to the topic: Kleene was the first

to propose that all calculations/computations—of every sort,

the totality of—can equivalently be (i) calculated by use of

five “primitive recursive operators” plus one special operator
called the mu-operator, or be (ii) computed by the actions
of a Turing machine or an equivalent model. Furthermore
he opined that either of these would stand as a definition
of algorithm. A reader first confronting the words that follow
may well be confused, so a brief explanation is in order.
Calculation means done by hand, computation means done
by Turing machine (or equivalent). (Sometimes an author
slips and interchanges the words). A “function” can be
thought of as an “input-output box” into which a person
puts natural numbers called “arguments” or “parameters”
(but only the counting numbers including 0—the positive
integers) and gets out a single positive integer (including 0)
(conventionally called “the answer”). Think of the “function-
box” as a little man either calculating by hand using “general
recursion” or computing by Turing machine (or an equivalent
machine). “Effectively calculable/computable” is more generic
and means “calculable/computable by some procedure,
method, technique ... whatever...”. “General recursive” was

Kleene’s way of writing what today is called just “recursion”;

however, “primitive recursion” — calculation by use of the

five recursive operators—is a lesser form of recursion that

lacks access to the sixth, additional, mu-operator that is

needed only in rare instances. Thus most of life goes on

requiring only the “primitive recursive functions.”



Fundamentals of Computer Algorithms

32

1943 “THESIS I”, 1952 “CHURCH’S THESIS”
In 1943 Kleene proposed what has come to be known

as Church’s thesis:

“Thesis I. Every effectively calculable function

(effectively decidable predicate) is general recursive”

(First stated by Kleene in 1943 (reprinted page

274 in Davis, ed. The Undecidable; appears also

verbatim in Kleene (1952) p.300)

In a nutshell: to calculate any function the only operations

a person needs (technically, formally) are the 6 primitive

operators of “general” recursion (nowadays called the

operators of the mu recursive functions). Kleene’s first

statement of this was under the section title “12. Algorithmic

theories”. He would later amplify it in his text (1952) as

follows:

“Thesis I and its converse provide the exact

definition of the notion of a calculation (decision)

procedure or algorithm, for the case of a function

(predicate) of natural numbers” (p. 301, boldface

added for emphasis)

(His use of the word “decision” and “predicate” extends

the notion of calculability to the more general manipulation

of symbols such as occurs in mathematical “proofs”.) This

is not as daunting as it may sound — “general” recursion

is just a way of making our everyday arithmetic operations

from the five “operators” of the primitive recursive functions

together with the additional mu-operator as needed. Indeed,

Kleene gives 13 examples of primitive recursive functions

and Boolos-Burgess-Jeffrey add some more, most of which



Fundamentals of Computer Algorithms

33

will be familiar to the reader—e.g. addition, subtraction,

multiplication and division, exponentiation, the CASE

function, concatenation, etc, etc; for a list see Some common

primitive recursive functions. Why general-recursive

functions rather than primitive-recursive functions?

Kleene et al. (cf §55 General recursive functions p. 270

in Kleene 1952) had to add a sixth recursion operator called

the minimization-operator (written as ì-operator or mu-

operator) because Ackermann (1925) produced a hugely-

growing function—the Ackermann function — and Rózsa

Péter (1935) produced a general method of creating recursive

functions using Cantor’s diagonal argument, neither of which

could be described by the 5 primitive-recursive-function

operators. With respect to the Ackermann function:

“...in a certain sense, the length of the computation

[sic] algorithm of a recursive function which is not

also primitive recursive grows faster with the

arguments than the value of any primitive recursive

function” (Kleene (1935) reprinted p. 246 in The

Undecidable, plus footnote 13 with regards to the

need for an additional operator, boldface added).

But the need for the mu-operator is a rarity. As indicated

above by Kleene’s list of common calculations, a person

goes about their life happily computing primitive recursive

functions without fear of encountering the monster numbers

created by Ackermann’s function (e.g. super-exponentiation).

1952 “TURING’S THESIS”
Turing’s Thesis hypothesizes the computability of “all

computable functions” by the Turing machine model and



Fundamentals of Computer Algorithms

34

its equivalents. To do this in an effective manner, Kleene

extended the notion of “computable” by casting the net

wider—by allowing into the notion of “functions” both “total

functions” and “partial functions”. A total function is one

that is defined for all natural numbers (positive integers

including 0). A partial function is defined for some natural

numbers but not all—the specification of “some” has to

come “up front”. Thus the inclusion of “partial function”

extends the notion of function to “less-perfect” functions.

Total- and partial-functions may either be calculated by

hand or computed by machine.

EXAMPLES:
“Functions”: include “common subtraction m-n” and

“addition m+n” “Partial function”: “Common subtraction”

m-n is undefined when only natural numbers (positive

integers and zero) are allowed as input — e.g. 6-7 is undefined

Total function: “Addition” m+n is defined for all positive

integers and zero. We now observe Kleene’s definition of

“computable” in a formal sense: Definition: “A partial function

ö is computable, if there is a machine M which computes

it” (Kleene (1952) p. 360) “Definition 2.5. An n-ary function

f(x1,... xn) is partially computable if there exists a Turing

machine Z such that

f(x1,... xn) = ØZ
(n)(x1,... xn)

In this case we say that [machine] Z computes f. If, in

addition, f(x1,... xn) is a total function, then it is called

computable” (Davis (1958) p. 10). Thus we have arrived at

Turing’s Thesis:



Fundamentals of Computer Algorithms

35

“Every function which would naturally be regarded

as computable is computable ... by one of his

machines...” (Kleene (1952) p.376)

Although Kleene did not give examples of “computable

functions” others have. For example, Davis (1958) gives

Turing tables for the Constant, Successor and Identity

functions, three of the five operators of the primitive recursive

functions: Computable by Turing machine:

Addition (also is the Constant function if one

operand is 0)

Increment (Successor function)

Common subtraction (defined only if x e” y). Thus “x -

y” is an example of a partially computable function. Proper

subtraction x4%y (as defined above) The identity function:

for each i, a function UZ
n = ØZ

n(x1,... xn) exists that plucks

xi out of the set of arguments (x1,... xn)

MULTIPLICATION
Boolos-Burgess-Jeffrey (2002) give the following as prose

descriptions of Turing machines for:

Doubling: 2*p

Parity

Addition

MULTIPLICATION
With regards to the counter machine, an abstract machine

model equivalent to the Turing machine:

Examples Computable by Abacus machine (cf

Boolos-Burgess-Jeffrey (2002))



Fundamentals of Computer Algorithms

36

Addition

Multiplication

Exponention: (a flow-chart/block diagram

description of the algorithm)

Demonstrations of computability by abacus machine

(Boolos-Burgess-Jeffrey (2002)) and by counter machine

(Minsky 1967): The six recursive function operators:

1. Zero function

2. Successor function

3. Identity function

4. Composition function

5. Primitive recursion (induction)

6. Minimization

The fact that the abacus/counter machine models can

simulate the recursive functions provides the proof that: If

a function is “machine computable” then it is “hand-

calculable by partial recursion”. Kleene’s Theorem XXIX :

“Theorem XXIX: “Every computable partial function

ö is partial recursive...” (italics in original, p. 374).

The converse appears as his Theorem XXVIII. Together

these form the proof of their equivalence, Kleene’s Theorem

XXX.

1952 CHURCH-TURING THESIS
With his Theorem XXX Kleene proves the equivalence of

the two “Theses” — the Church Thesis and the Turing

Thesis. (Kleene can only hypothesize (conjecture) the truth

of both thesis — these he has not proven):



Fundamentals of Computer Algorithms

37

THEOREM XXX: The following classes of partial

functions ... have the same members: (a) the partial

recursive functions, (b) the computable functions

...”(p. 376)

Definition of “partial recursive function”: “A partial

function ö is partial recursive in [the partial

functions] ø1, ... øn if there is a system of equations

E which defines ö recursively from [partial

functions] ø1, ... øn” (p. 326)

Thus by Kleene’s Theorem XXX: either method of making

numbers from input-numbers—recursive functions

calculated by hand or computated by Turing-machine or

equivalent—results in an “effectively calculable/computable

function”.

If we accept the hypothesis that every calculation/

computation can be done by either method equivalently we

have accepted both Kleene’s Theorem XXX (the equivalence)

and the Church-Turing Thesis (the hypothesis of “every”).

A BOTE OF DISSENT: “THERE’S MORE TO
ALGORITHM...” BLASS AND GUREVICH (2003)

The notion of separating out Church’s and Turing’s theses

from the “Church-Turing thesis” appears not only in Kleene

(1952) but in Blass-Gurevich (2003) as well. But there while

there are agreements, there are disagreements too:

“...we disagree with Kleene that the notion of

algorithm is that well understood. In fact the notion

of algorithm is richer these days than it was in

Turing’s days. And there are algorithms, of modern



Fundamentals of Computer Algorithms

38

and classical varieties, not covered directly by

Turing’s analysis, for example, algorithms that

interact with their environments, algorithms whose

inputs are abstract structures, and geometric or,

more generally, non-discrete algorithms” (Blass-

Gurevich (2003) p. 8, boldface added)

1954 A.A. MARKOV’S CHARACTERIZATION
A. A. Markov (1954) provided the following definition of

algorithm:

“1. In mathematics, “algorithm” is commonly

understood to be an exact prescription, defining

a computational process, leading from various

initial data to the desired result....”

“The following three features are characteristic of

algorithms and determine their role in mathematics:

“a) the precision of the prescription, leaving no place to

arbitrariness, and its universal comprehensibility —

the definiteness of the algorithm;

“b) the possibility of starting out with initial data, which

may vary within given limits — the generality of the

algorithm;

“c) the orientation of the algorithm toward obtaining

some desired result, which is indeed obtained in the

end with proper initial data — the conclusiveness of

the algorithm.” (p.1)

He admitted that this definition “does not pretend to

mathematical precision” (p. 1). His 1954 monograph was

his attempt to define algorithm more accurately; he saw his



Fundamentals of Computer Algorithms

39

resulting definition—his “normal” algorithm—as “equivalent

to the concept of a recursive function” (p. 3). His definition

included four major components (Chapter II.3 pp. 63ff):

“1. Separate elementary steps, each of which will be

performed according to one of [the substitution]

rules... [rules given at the outset]

“2. ... steps of local nature ... [Thus the algorithm won’t

change more than a certain number of symbols to

the left or right of the observed word/symbol]

“3. Rules for the substitution formulas ... [he called the

list of these “the scheme” of the algorithm]

“4. ...a means to distinguish a “concluding substitution”

[i.e. a distinguishable “terminal/final” state or states]

In his Introduction Markov observed that “the entire

significance for mathematics” of efforts to define algorithm

more precisely would be “in connection with the problem

of a constructive foundation for mathematics” (p. 2). Ian

Stewart (cf Encyclopedia Britannica) shares a similar belief:

“...constructive analysis is very much in the same algorithmic

spirit as computer science...”. For more see constructive

mathematics and Intuitionism. Distinguishability and

Locality: Both notions first appeared with Turing (1936–

1937) —

“The new observed squares must be immediately

recognizable by the computer [sic: a computer was

a person in 1936]. I think it reasonable to suppose

that they can only be squares whose distance

from the closest of the immediately observed

squares does not exceed a certain fixed amount.



Fundamentals of Computer Algorithms

40

Let us stay that each of the new observed squares

is within L squares of one of the previously observed

squares.” (Turing (1936) p. 136 in Davis ed.

Undecidable)

Locality appears prominently in the work of Gurevich

and Gandy (1980) (whom Gurevich cites). Gandy’s “Fourth

Principle for Mechanisms” is “The Principle of Local

Causality”:

“We now come to the most important of our

principles. In Turing’s analysis the requirement

that the action depend only on a bounded portion

of the record was based on a human limitiation.

We replace this by a physical limitation which we

call the principle of local causation. Its justification

lies in the finite velocity of propagation of effects

and signals: contemporary physics rejects the

possibility of instantaneous action at a distance.”

(Gandy (1980) p. 135 in J. Barwise et al.)

1936, 1963, 1964 GODEL’S
CHARACTERIZATION

1936: A rather famous quote from Kurt Gödel appears

in a “Remark added in proof [of the original German

publication] in his paper “On the Length of Proofs” translated

by Martin Davis appearing on pp. 82–83 of The Undecidable.

A number of authors—Kleene, Gurevich, Gandy etc. — have

quoted the following:

“Thus, the concept of “computable” is in a certain

definite sense “absolute,” while practically all other

familiar metamathematical concepts (e.g. provable,



Fundamentals of Computer Algorithms

41

definable, etc.) depend quite essentially on the

system with respect to which they are defined.” (p.

83)

1963: In a “Note” dated 28 August 1963 added to his

famous paper On Formally Undecidable Propostions (1931)

Gödel states (in a footnote) his belief that “formal systems”

have “the characteristic property that reasoning in them,

in principle, can be completely replaced by mechanical

devices” (p. 616 in van Heijenoort). “. . . due to “A. M.

Turing’s work a precise and unquestionaly adequate

definition of the general notion of formal system can now

be given [and] a completely general version of Theorems VI

and XI is now possible.” (p. 616). In a 1964 note to another

work he expresses the same opinion more strongly and in

more detail.

1964: In a Postscriptum, dated 1964, to a paper presented

to the Institute for Advanced Study in spring 1934, Gödel

amplified his conviction that “formal systems” are those

that can be mechanized:

“In consequence of later advances, in particular

of the fact that, due to A. M. Turing’s work, a

precise and unquestionably adequate definition of

the general concept of formal system can now be

given . . . Turing’s work gives an analysis of the

concept of “mechanical procedure” (alias

“algorithm” or “computational procedure” or “finite

combinatorial procedure”). This concept is shown

to be equivalent with that of a “Turing machine”.*

A formal system can simply be defined to be any

mechanical procedure for producing formulas,



Fundamentals of Computer Algorithms

42

called provable formulas . . . .” (p. 72 in Martin

Davis ed. The Undecidable: “Postscriptum” to “On

Undecidable Propositions of Formal Mathematical

Systems” appearing on p. 39, loc. cit.)

The * indicates a footnote in which Gödel cites the papers

by Allan Turing (1937) and Emil Post (1936) and then goes

on to make the following intriguing statement:

“As for previous equivalent definitions of

computability, which however, are much less

suitable for our purpose, see Alonzo Church, Am.

J. Math., vol. 58 (1936) [appearing in The

Undecidable pp. 100-102]).

Church’s definitions encompass so-called “recursion” and

the “lambda calculus” (i.e. the ë-definable functions). His

footnote 18 says that he discussed the relationship of

“effective calculatibility” and “recursiveness” with Gödel but

that he independently questioned “effectively calculability”

and “ë-definability”:

“We now define the notion . . . of an effectively

calculable function of positive integers by

identifying it with the notion of a recursive function

of positive integers18 (or of a ë-definable function

of positive integers.

“It has already been pointed out that, for every

function of positive integers which is effectively

calculable in the sense just defined, there exists

an algorithm for the calculation of its value.

“Conversely it is true . . .” (p. 100, The Undecidable).



Fundamentals of Computer Algorithms

43

It would appear from this, and the following, that far as

Gödel was concerned, the Turing machine was sufficient

and the lambda calculus was “much less suitable.”

He goes on to make the point that, with regards to

limitations on human reason, the jury is still out:

(“Note that the question of whether there exist finite

non-mechanical procedures not equivalent with any

algorithm, has nothing whatsoever to do with the

adequacy of the definition of “formal system” and

of “mechanical procedure.”) (p. 72, loc. cit.)

“(For theories and procedures in the more general

sense indicated in footnote the situation may be

different. Note that the results mentioned in the

postcript do not establish any bounds for the

powers of human reason, but rather for the

potentialities of pure formalism in mathematics.)

(p. 73 loc. cit.)

1967 MINSKY’S CHARACTERIZATION
Minsky (1967) baldly asserts that “an algorithm is “an

effective procedure” and declines to use the word “algorithm”

further in his text; in fact his index makes it clear what he

feels about “Algorithm, synonym for Ef fective

procedure”(p. 311):

“We will use the latter term [an effective procedure]

in the sequel. The terms are roughly synonymous,

but there are a number of shades of meaning used

in different contexts, especially for ‘algorithm’”

(italics in original, p. 105)



Fundamentals of Computer Algorithms

44

Other writers use the word “effective procedure”.

This leads one to wonder: What is Minsky’s notion of “an

effective procedure”? He starts off with:

“...a set of rules which tell us, from moment to

moment, precisely how to behave” (p. 106)

But he recognizes that this is subject to a criticism:

“... the criticism that the interpretation of the
rules is left to depend on some person or agent”
(p. 106)

His refinement? To “specify, along with the statement of
the rules, the details of the mechanism that is to interpret

them”. To avoid the “cumbersome” process of “having to do
this over again for each individual procedure” he hopes to
identify a “reasonably uniform family of rule-obeying
mechanisms”. His “formulation”:

“(1) a language in which sets of behavioural rules
are to be expressed, and  “(2) a single machine
which can interpret statements in the language
and thus carry out the steps of each specified
process.” (italics in original, all quotes this para.
p. 107)

In the end, though, he still worries that “there remains

a subjective aspect to the matter. Different people may not

agree on whether a certain procedure should be called

effective” (p. 107). But Minsky is undeterred. He immediately

introduces “Turing’s Analysis of Computation Process” (his

chapter 5.2). He quotes what he calls “Turing’s thesis”

“Any process which could naturally be called an

effective procedure can be realized by a Turing



Fundamentals of Computer Algorithms

45

machine” (p. 108. (Minsky comments that in a

more general form this is called “Church’s thesis”).

After an analysis of “Turing’s Argument” (his chapter 5.3)

he observes that “equivalence of many intuitive formulations”

of Turing, Church, Kleene, Post, and Smullyan “...leads us

to suppose that there is really here an ‘objective’ or ‘absolute’

notion. As Rogers [1959] put it:

“In this sense, the notion of effectively computable

function is one of the few ‘absolute’ concepts

produced by modern work in the foundations of

mathematics’” (Minsky p. 111 quoting Rogers,

Hartley Jr (1959) The present theory of Turing

machine computability, J. SIAM 7, 114-130.)

1967 ROGERS’ CHARACTERIZATION
In his 1967 Theory of Recursive Functions and Effective

Computability Hartley Rogers’ characterizes “algorithm”

roughly as “a clerical (i.e., deterministic, bookkeeping)

procedure . . . applied to . . . symbolic inputs and which

will eventually yield, for each such input, a corresponding

symbolic output”(p. 1). He then goes on to describe the

notion “in approximate and intuitive terms” as having 10

“features”, 5 of which he asserts that “virtually all

mathematicians would agree [to]” (p. 2). The remaining 5 he

asserts “are less obvious than *1 to *5 and about which we

might find less general agreement” (p. 3). The 5 “obvious”

are:

• 1 An algorithm is a set of instructions of finite size,

• 2 There is a capable computing agent,



Fundamentals of Computer Algorithms

46

• 3 “There are facilities for making, storing, and

retrieving steps in a computation”

• 4 Given #1 and #2 the agent computes in “discrete

stepwise fashion” without use of continuous methods

or analogue devices”,

• 5 The computing agent carries the computation

forward “without resort to random methods or devices,

e.g., dice” (in a footnote Rogers wonders if #4 and #5

are really the same)

The remaining 5 that he opens to debate, are:

• 6 No fixed bound on the size of the inputs,

• 7 No fixed bound on the size of the set of instructions,

• 8 No fixed bound on the amount of memory storage

available,

• 9 A fixed finite bound on the capacity or ability of

the computing agent (Rogers illustrates with example

simple mechanisms similar to a Post-Turing machine

or a counter machine),

• 10 A bound on the length of the computation —

“should we have some idea, ‘ahead of time’, how long

the computationwill take?” (p. 5). Rogers requires

“only that a computation terminate after some finite

number of steps; we do not insist on an a priori

ability to estimate this number.” (p. 5).

1968, 1973 KNUTH’S CHARACTERIZATION
Knuth (1968, 1973) has given a list of five properties that

are widely accepted as requirements for an algorithm:



Fundamentals of Computer Algorithms

47

1. Finiteness: “An algorithm must always terminate after

a finite number of steps ... a very finite number, a

reasonable number”

2. Definiteness: “Each step of an algorithm must be

precisely defined; the actions to be carried out must

be rigorously and unambiguously specified for each

case”

3. Input: “...quantities which are given to it initially

before the algorithm begins. These inputs are taken

from specified sets of objects”

4. Output: “...quantities which have a specified relation

to the inputs”

5. Effectiveness: “... all of the operations to be performed

in the algorithm must be sufficiently basic that they

can in principle be done exactly and in a finite length

of time by a man using paper and pencil”

Knuth offers as an example the Euclidean algorithm for

determining the greatest common divisor of two natural

numbers (cf. Knuth Vol. 1 p. 2). Knuth admits that, while

his description of an algorithm may be intuitively clear, it

lacks formal rigor, since it is not exactly clear what “precisely

defined” means, or “rigorously and unambiguously specified”

means, or “sufficiently basic”, and so forth. He makes an

effort in this direction in his first volume where he defines

in detail what he calls the “machine language” for his

“mythical MIX...the world’s first polyunsaturated computer”

(pp. 120ff). Many of the algorithms in his books are written

in the MIX language. He also uses tree diagrams, flow

diagrams and state diagrams.



Fundamentals of Computer Algorithms

48

“Goodness” of an algorithm, “best” algorithms:

Knuth states that “In practice, we not only want

algorithms, we want good algorithms....” He

suggests that some criteria of an algorithm’s

goodness are the number of steps to perform the

algorithm, its “adaptability to computers, its

simplicity and elegance, etc.” Given a number of

algorithms to perform the same computation,

which one is “best”? He calls this sort of inquiry

“algorithmic analysis: given an algorithm, to

determine its performance characteristcis” (all

quotes this paragraph: Knuth Vol. 1 p. 7)

1972 STONE’S CHARACTERIZATION
Stone (1972) and Knuth (1968, 1973) were professors at

Stanford University at the same time so it is not surprising

if there are similarities in their definitions (boldface added

for emphasis):

“To summarize ... we define an algorithm to be a

set of rules that precisely defines a sequence of

operations such that each rule is effective and

definite and such that the sequence terminates in

a finite time.” (boldface added, p. 8)

Stone is noteworthy because of his detailed discussion

of what constitutes an “effective” rule – his robot, or person-

acting-as-robot, must have some information and abilities

within them, and if not the information and the ability must

be provided in “the algorithm”:

“For people to follow the rules of an algorithm, the

rules must be formulated so that they can be



Fundamentals of Computer Algorithms

49

followed in a robot-like manner, that is, without the

need for thought... however, if the instructions [to

solve the quadratic equation, his example] are to

be obeyed by someone who knows how to perform

arithmetic operations but does not know how to

extract a square root, then we must also provide

a set of rules for extracting a square root in order

to satisfy the definition of algorithm” (p. 4-5)

Furthermore “...not all instructions are acceptable,

because they may require the robot to have abilities beyond
those that we consider reasonable.” He gives the example
of a robot confronted with the question is “Henry VIII a King
of England?” and to print 1 if yes and 0 if no, but the robot
has not been previously provided with this information. And
worse, if the robot is asked if Aristotle was a King of England
and the robot only had been provided with five names, it
would not know how to answer. Thus:

“an intuitive definition of an acceptable sequence
of instructions is one in which each instruction
is precisely defined so that the robot is guaranteed
to be able to obey it” (p. 6)

After providing us with his definition, Stone introduces
the Turing machine model and states that the set of five-
tuples that are the machine’s instructions are “an algorithm
... known as a Turing machine program” (p. 9). Immediately

thereafter he goes on say that a “computation of a Turing

machine is described by stating:

“1. The tape alphabet

“2. The form in which the [input] parameters are

presented on the tape



Fundamentals of Computer Algorithms

50

“3. The initial state of the Turing machine

“4. The form in which answers [output] will be represented

on the tape when the Turing machine halts

“5. The machine programme” (italics added, p. 10)

This precise prescription of what is required for “a

computation” is in the spirit of what will follow in the work

of Blass and Gurevich.

1995 SOARE’S CHARACTERIZATION
“A computation is a process whereby we proceed from

initially given objects, called inputs, according to a fixed set

of rules, called a programme, procedure, or algorithm, through

a series of steps and arrive at the end of these steps with

a final result, called the output. The algorithm, as a set of

rules proceeding from inputs to output, must be precise

and definite with each successive step clearly determined.

The concept of computability concerns those objects which

may be specified in principle by computations . . .”

2000 BERLINSKI’S CHARACTERIZATION
While a student at Princeton in the mid-1960s, David

Berlinski was a student of Alonzo Church (cf p. 160). His

year-2000 book The Advent of the Algorithm: The 300-year

Journey from an Idea to the Computer contains the following

definition of algorithm:

“In the logician’s voice:

“an algorithm is

a finite procedure,

written in a fixed symbolic vocabulary,



Fundamentals of Computer Algorithms

51

governed by precise instructions,

moving in discrete steps, 1, 2, 3, . . .,

whose execution requires no insight, cleverness,

intuition, intelligence, or perspicuity,

and that sooner or later comes to an end.’” (boldface

and italics in the original, p. xviii)

2000, 2002 GUREVICH’S CHARACTERIZATION
A careful reading of Gurevich 2000 leads one to conclude

(infer?) that he believes that “an algorithm” is actually “a

Turing machine” or “a pointer machine” doing a computation.

An “algorithm” is not just the symbol-table that guides the

behaviour of the machine, nor is it just one instance of a

machine doing a computation given a particular set of input

parameters, nor is it a suitably-programmed machine with

the power off; rather an algorithm is the machine actually

doing any computation of which it is capable. Gurevich does

not come right out and say this, so as worded above this

conclusion (inference?) is certainly open to debate:

“ . . . every algorithm can be simulated by a Turing

machine . . . a programme can be simulated and

therefore given a precise meaning by a Turing

machine.” (p. 1)

“ It is often thought that the problem of formalizing

the notion of sequential algorithm was solved by

Church [1936] and Turing [1936]. For example,

according to Savage [1987], an algorithm is a

computational process defined by a Turing

machine. Church and Turing did not solve the



Fundamentals of Computer Algorithms

52

problem of formalizing the notion of sequential

algorithm. Instead they gave (different but

equivalent) formalizations of the notion of

computable function, and there is more to an

algorithm than the function it computes. (italics

added p. 3)

“Of course, the notions of algorithm and

computable function are intimately related: by

definition, a computable function is a function

computable by an algorithm. . . . (p. 4)

In Blass and Gurevich 2002 the authors invoke a dialog

between “Quisani” (“Q”) and “Authors” (A), using Yiannis

Moshovakis as a foil, where they come right out and flatly

state:

“A: To localize the disagreement, let’s first mention

two points of agreement. First, there are some

things that are obviously algorithms by anyone’s

definition — Turing machines, sequential-time

ASMs [Abstract State Machines], and the like. . .

.Second, at the other extreme are specifications

that would not be regarded as algorithms under

anyone’s definition, since they give no indication

of how to compute anything . . . The issue is how

detailed the information has to be in order to

count as an algorithm. . . . Moshovakis allows

some things that we would call only declarative

specifications, and he would probably use the

word “implementation” for things that we call

algorithms.” (paragraphs joined for ease of

readability, 2002:22)



Fundamentals of Computer Algorithms

53

This use of the word “implementation” cuts straight to

the heart of the question. Early in the paper, Q states his

reading of Moshovakis:

“...[H]e would probably think that your practical

work [Gurevich works for Microsoft] forces you to

think of implementations more than of algorithms.

He is quite willing to identify implementations

with machines, but he says that algorithms are

something more general. What it boils down to is

that you say an algorithm is a machine and

Moschovakis says it is not.” (2002:3)

But the authors waffle here, saying “[L]et’s stick to

“algorithm” and “machine”, and the reader is left, again,

confused. We have to wait until Dershowitz and Gurevich

2007 to get the following footnote comment:

“ . . . Nevertheless, if one accepts Moshovakis’s

point of view, then it is the “implementation” of

algorithms that we have set out to characterize.”(cf

Footnote 9 2007:6)

2003 BLASS AND GUREVICH’S
CHARACTERIZATION

Blass and Gurevich describe their work as evolved from

consideration of Turing machines and pointer machines,

specifically Kolmogorov-Uspensky machines (KU machines),

Schönhage Storage Modification Machines (SMM), and

linking automata as defined by Knuth. The work of Gandy

and Markov are also described as influential precursors.

Gurevich offers a ‘strong’ definition of an algorithm (boldface

added):



Fundamentals of Computer Algorithms

54

“...Turing’s informal argument in favour of his

thesis justifies a stronger thesis: every algorithm

can be simulated by a Turing machine....In practice,

it would be ridiculous...[Nevertheless,] [c]an one

generalize Turing machines so that any algorithm,

never mind how abstract, can be modeled by a

generalized machine?...But suppose such

generalized Turing machines exist. What would

their states be?...a first-order structure ... a

particular small instruction set suffices in all cases

... computation as an evolution of the state ...

could be nondeterministic... can interact with their

environment ... [could be] parallel and multi-agent

... [could have] dynamic semantics ... [the two

underpinings of their work are:] Turing’s thesis

...[and] the notion of (first order) structure of [Tarski

1933]” (Gurevich 2000, p. 1-2)

The above phrase computation as an evolution of the

state differs markedly from the definition of Knuth and

Stone—the “algorithm” as a Turing machine programme.

Rather, it corresponds to what Turing called the complete

configuration (cf Turing’s definition in Undecidable, p. 118)

— and includes both the current instruction (state) and the

status of the tape. [cf Kleene (1952) p. 375 where he shows

an example of a tape with 6 symbols on it—all other squares

are blank—and how to Gödelize its combined table-tape

status]. In Algorithm examples we see the evolution of the

state first-hand.



Fundamentals of Computer Algorithms

55

1995 – DANIEL DENNETT: EVOLUTION AS AN
ALGORITHMIC PROCESS

Philosopher Daniel Dennett analyses the importance of

evolution as an algorithmic process in his 1995 book

Darwin’s Dangerous Idea. Dennett identifies three key

features of an algorithm:

• Substrate neutrality: an algorithm relies on its logical

structure. Thus, the particular form in which an
algorithm is manifested is not important (Dennett’s
example is long division: it works equally well on
paper, on parchment, on a computer screen, or using
neon lights or in skywriting). (p. 51)

• Underlying mindlessness: no matter how complicated
the end-product of the algorithmic process may be,
each step in the algorithm is sufficiently simple to
be performed by a non-sentient, mechanical device.
The algorithm does not require a “brain” to maintain
or operate it. “The standard textbook analogy notes
that algorithms are recipes of sorts, designed to be
followed by novice cooks.”(p. 51)

• Guaranteed results: If the algorithm is executed
correctly, it will always produce the same results.
“An algorithm is a foolproof recipe.”(p. 51)

It is on the basis of this analysis that Dennett concludes
that “According to Darwin, evolution is an algorithmic

process” (p. 60). However, in the previous page he has gone

out on a much-further limb. In the context of his chapter

titled “Processes as Algorithms” he states:

“But then . . are there any limits at all on what

may be considered an algorithmic process? I guess



Fundamentals of Computer Algorithms

56

the answer is NO; if you wanted to, you can treat

any process at the abstract level as an algorithmic

process. . . If what strikes you as puzzling is the

uniformity of the [ocean’s] sand grains or the

strength of the [tempered-steel] blade, an

algorithmic explanation is what will satisfy your

curiosity — and it will be the truth. . . .

“No matter how impressive the products of an

algorithm, the underlying process always consists

of nothing but a set of individualy [sic] mindless

steps succeeding each other without the help of

any intelligent supervision; they are ‘automatic’ by

definition: the workings of an automaton.” (p. 59)

It is unclear from the above whether Dennett is stating

that the physical world by itself and without observers is

intrinsically algorithmic (computational) or whether a symbol-

processing observer is what is adding “meaning” to the

observations.

2002 JOHN SEARLE ADDS A CLARIFYING
CAVEAT TO DENNETT’S CHARACTERIZATION

John R. Searle and Daniel Dennett having been poking

at one-another’s philosophies of mind (cf philosophy of

mind) for the past 30 years. Dennett hews to the Strong

AI point of view that the logical structure of an algorithm

is sufficient to explain mind; Searle, of Chinese room fame

claims that logical structure is not sufficient, rather that:

“Syntax [i.e. logical structure] is by itself not sufficient for

semantic content [i.e. meaning]” (italics in original, Searle

2002:16). In other words, the “meaning” of symbols is relative



Fundamentals of Computer Algorithms

57

to the mind that is using them; an algorithm—a logical

construct—by itself is insufficient for a mind. Searle urges

a note of caution to those who want to define algorithmic

(computational) processes as intrinsic to nature (e.g.
cosmology, physics, chemistry, etc.):

“Computation . . . is observer-relative, and this is
because computation is defined in terms of symbol
manipulation, but the notion of a ‘symbol’ is not
a notion of physics or chemistry. Something is a
symbol only if it is used, treated or regarded as
a symbol. The chinese room argument showed
that semantics is not intrinsic to syntax. But what
this shows is that syntax is not intrinsic to physics.
. . . Something is a symbol only relative to some
observer, user or agent who assigns a symbolic
interpretation to it. . . you can assign a
computational interpretation to anything. But if
the question asks, ‘Is consciousness intrinsically
computational?’ the answer is: nothing is

intrinsically computational. Computation exists only

relative to some agent or observer who imposes a

computational interpretation on some

phenomenon. This is an obvious point. I should

have seen it ten years ago but I did not.” (italics

added, p. 17)

2002: BOOLOS-BURGESS-JEFFREY
SPECIFICATION OF TURING MACHINE
CALCULATION

An example in Boolos-Burgess-Jeffrey (2002) (pp. 31–32)

demonstrates the precision required in a complete



Fundamentals of Computer Algorithms

58

specification of an algorithm, in this case to add two numbers:

m+n. It is similar to the Stone requirements above.

(i) They have discussed the role of “number format” in

the computation and selected the “tally notation” to represent

numbers:

“Certainly computation can be harder in practice

with some notations than others... But... it is

possible in principle to do in any other notation,

simply by translating the data... For purposes of

framing a rigorously defined notion of

computability, it is convenient to use monadic or

tally notation” (p. 25-26)

(ii) At the outset of their example they specify the machine

to be used in the computation as a Turing machine. They

have previously specified (p. 26) that the Turing-machine

will be of the 4-tuple, rather than 5-tuple, variety. For more

on this convention see Turing machine.

(iii) Previously the authors have specified that the tape-

head’s position will be indicated by a subscript to the right

of the scanned symbol. For more on this convention see

Turing machine. (In the following, boldface is added for

emphasis):

“We have not given an official definition of what

it is for a numerical function to be computable by

a Turing machine, specifying how inputs or

arguments are to be represented on the machine,

and how outputs or values represented. Our

specifications for a k-place function from positive

integers to positive integers are as follows:



Fundamentals of Computer Algorithms

59

“(a) [Initial number format:] The arguments m1, ... mk, ...

will be represented in monadic [unary] notation by

blocks of those numbers of strokes, each block

separated from the next by a single blank, on an

otherwise blank tape.

Example: 3+2, 111B11

“(b) [Initial head location, initial state:] Initially, the
machine will be scanning the leftmost 1 on the tape,
and will be in its initial state, state 1.

Example: 3+2, 11111B11

“(c) [Successful computation — number format at Halt:]
If the function to be computed assigns a value n to
the arguments that are represented initially on the
tape, then the machine will eventually halt on a tape
containing a block of strokes, and otherwise blank...

Example: 3+2, 11111

“(d) [Successful computation — head location at Halt:] In
this case [c] the machine will halt scanning the left-
most 1 on the tape...

Example: 3+2, 1
n
1111

“(e) [Unsuccessful computation — failure to Halt or Halt
with non-standard number format:] If the function
that is to be computed assigns no value to the
arguments that are represented initially on the tape,
then the machine either will never halt, or will halt
in some nonstandard configuration...”(ibid)

Example: B
n
11111 or B11

n
111 or B11111

n

This specification is incomplete: it requires the location
of where the instructions are to be placed and their format

in the machine—



Fundamentals of Computer Algorithms

60

(iv) in the finite state machine’s TABLE or, in the case

of a Universal Turing machine on the tape, and

(v) the Table of instructions in a specified format.

This later point is important. Boolos-Burgess-Jeffrey give

a demonstration (p. 36) that the predictability of the entries

in the table allow one to “shrink” the table by putting the

entries in sequence and omitting the input state and the

symbol.

2006: SIPSER’S ASSERTION AND HIS THREE
LEVELS OF DESCRIPTION

For examples of this specification-method applied to the

addition algorithm “m+n” see Algorithm examples. Sipser

begins by defining ‘“algorithm” as follows:

“Informally speaking, an algorithm is a collection

of simple instructions for carrying out some task.

Commonplace in everyday life, algorithms

sometimes are called procedures or recipes (italics

in original, p. 154)

“...our real focus from now on is on algorithms.

That is, the Turing machine merely serves as a

precise model for the definition of algorithm .... we

need only to be comfortable enough with Turing

machines to believe that they capture all

algorithms” ( p. 156)

Does Sipser mean that “algorithm” is just “instructions”

for a Turing machine, or is the combination of “instructions

+ a (specific variety of) Turing machine”? For example, he

defines the two standard variants (multi-tape and non-



Fundamentals of Computer Algorithms

61

deterministic) of his particular variant (not the same as

Turing’s original) and goes on, in his Problems (pages 160-

161), to describes four more variants (write-once, doubly-

infinite tape (i.e. left- and right-infinite), left reset, and “stay

put instead of left). In addition, he imposes some constraints.

First, the input must be encoded as a string (p. 157) and

says of numeric encodings in the context of complexity theory:

“But note that unary notation for encoding

numbers (as in the number 17 encoded by the

uary string 11111111111111111) isn’t reasonable

because it is exponentially larger than truly

reasonable encodings, such as base k notation for

any k e” 2.”(p. 259)

van Emde Boas comments on a similar problem with

respect to the random access machine (RAM) abstract model

of computation sometimes used in place of the Turing

machine when doing “analysis of algorithms”: “The absence

or presence of multiplicative and parallel bit manipulation

operations is of relevance for the correct understanding of

some results in the analysis of algorithms.

“. . . [T]here hardly exists such as a thing as an

“innocent” extension of the standard RAM model

in the uniform time measures; either one only has

additive arithmetic or one might as well include

all reasonable multiplicative and/or bitwise

Boolean instructions on small operands.” (van

Emde Boas, 1990:26)

With regards to a “description language” for algorithms

Sipser finishes the job that Stone and Boolos-Burgess-



Fundamentals of Computer Algorithms

62

Jeffrey started (boldface added). He offers us three levels

of description of Turing machine algorithms (p. 157): High-

level description: “wherein we use ... prose to describe an

algorithm, ignoring the implementation details. At this level

we do not need to mention how the machine manages its

tape or head.” Implementation description: “in which we

use ... prose to describe the way that the Turing machine

moves its head and the way that it stores data on its tape.

At this level we do not give details of states or transition

function.” Formal description: “... the lowest, most detailed,

level of description... that spells out in full the Turing

machine’s states, transition function, and so on.”



Fundamentals of Computer Algorithms

63

2

Computer Algorithms

In computer systems, an algorithm is basically an

instance of logic written in software by software developers

to be effective for the intended “target” computer(s), in order

for the software on the target machines to do something.

For instance, if a person is writing software that is supposed

to print out a PDF document located at the operating system

folder “/My Documents” at computer drive “D:” every Friday,

they will write an algorithm that specifies the following

actions: “If today’s date (computer time) is ‘Friday,’ open

the document at ‘D:/My Documents’ and call the ‘print’

function”.

While this simple algorithm does not look into whether

the printer has enough paper or whether the document has

been moved into a different location, one can make this

algorithm more robust and anticipate these problems by

rewriting it as a formal CASE statement or as a (carefully



Fundamentals of Computer Algorithms

64

crafted) sequence of IF-THEN-ELSE statements. For example

the CASE statement might appear as follows (there are other

possibilities):

• Case 1: IF today’s date is NOT Friday THEN exit this

CASE instruction ELSE
• Case 2: IF today’s date is Friday AND the document

is located at ‘D:/My Documents’ AND there is paper
in the printer THEN print the document (and exit

this CASE instruction) ELSE
• Case 3: IF today’s date is Friday AND the document

is NOT located at ‘D:/My Documents’ THEN display
‘document not found’ error message (and exit this

CASE instruction) ELSE
• Case 4: IF today’s date is Friday AND the document

is located at ‘D:/My Documents’ AND there is NO
paper in the printer THEN, (i) display ‘out of paper’
error message (ii) exit. Note that CASE 3 includes
two possibilities: (i) the document is NOT located at
‘D:/My Documents’ AND there’s paper in the printer
OR (ii) the document is NOT located at ‘D:/My
Documents’ AND there’s NO paper in the printer.

The sequence of IF-THEN-ELSE tests might look like this:
• Test 1: IF today’s date is NOT Friday THEN done

ELSE TEST 2:
• Test 2: IF the document is NOT located at ‘D:/My

Documents’ THEN display ‘document not found’ error

message ELSE TEST 3:

• Test 3: IF there is NO paper in the printer THEN

display ‘out of paper’ error message ELSE print the

document.

These examples’ logic grants precedence to the instance

of “NO document at ‘D:/My Documents’ “.



Fundamentals of Computer Algorithms

65

ANALYSIS OF ALGORITHMS

PROGRAMS
When analyzing a Programme in terms of efficiency, we

want to look at questions such as, “How long does it take for

the Programme to run?” and “Is there another approach that

will get the answer more quickly?” Efficiency will always be

less important than correctness; if you don’t care whether a

Programme works correctly, you can make it run very quickly

indeed, but no one will think it’s much of an achievement!

On the other hand, a Programme that gives a correct answer

after ten thousand years isn’t very useful either, so efficiency

is often an important issue.

The term “efficiency” can refer to efficient use of almost

any resource, including time, computer memory, disk space,

or network bandwidth. In this section, however, we will deal

exclusively with time efficiency, and the major question that

we want to ask about a Programme is, how long does it take

to perform its task?

It really makes little sense to classify an individual

Programme as being “efficient” or “inefficient.” It makes more

sense to compare two (correct) Programmes that perform

the same task and ask which one of the two is “more efficient,”

that is, which one performs the task more quickly. However,

even here there are difficulties.

The running time of a Programme is not well-defined. The

run time can be different depending on the number and speed

of the processors in the computer on which it is run and, in

the case of Java, on the design of the Java Virtual Machine

which is used to interpret the Programme.



Fundamentals of Computer Algorithms

66

It can depend on details of the compiler which is used to

translate the Programme from high-level language to machine

language. Furthermore, the run time of a Programme depends

on the size of the problem which the Programme has to solve.

It takes a sorting Programme longer to sort 10000 items than

it takes it to sort 100 items.

When the run times of two Programmes are compared, it

often happens that Programme A solves small problems faster

than Programme B, while Programme B solves large problems

faster than Programme A, so that it is simply not the case

that one Programme is faster than the other in all cases.

In spite of these difficulties, there is a field of computer

science dedicated to analyzing the efficiency of Programmes.

The field is known as Analysis of Algorithms. The focus is on

algorithms, rather than on Programmes as such, to avoid

having to deal with multiple implementations of the same

algorithm written in different languages, compiled with

different compilers, and running on different computers.

Analysis of Algorithms is a mathematical field that abstracts

away from these down-and-dirty details.

Still, even though it is a theoretical field, every working

Programmemer should be aware of some of its techniques

and results. This section is a very brief introduction to some

of those techniques and results. Because this is not a

mathematics book, the treatment will be rather informal.

One of the main techniques of analysis of algorithms is

asymptotic analysis. The term “asymptotic” here means

basically “the tendency in the long run.” An asymptotic

analysis of an algorithm’s run time looks at the question of

how the run time depends on the size of the problem.



Fundamentals of Computer Algorithms

67

The analysis is asymptotic because it only considers what

happens to the run time as the size of the problem increases

without limit; it is not concerned with what happens for

problems of small size or, in fact, for problems of any fixed

finite size. Only what happens in the long run, as the problem

size increases without limit, is important.

Showing that Algorithm A is asymptotically faster than

Algorithm B doesn’t necessarily mean that Algorithm A will

run faster than Algorithm B for problems of size 10 or size

1000 or even size 1000000 — it only means that if you keep

increasing the problem size, you will eventually come to a

point where Algorithm A is faster than Algorithm B. An

asymptotic analysis is only a first approximation, but in

practice it often gives important and useful information.

Using this notation, we might say, for example, that an

algorithm has a running time that is O(n2) or O(n) or O(log(n)).

These notations are read “Big-Oh of n squared,” “Big-Oh of

n,” and “Big-Oh of log n” (where log is a logarithm function).

More generally, we can refer to O(f(n)) (“Big-Oh of f of n”),

where f(n) is some function that assigns a positive real

number to every positive integer n. The “n” in this notation

refers to the size of the problem.

Before you can even begin an asymptotic analysis, you

need some way to measure problem size. Usually, this is not

a big issue. For example, if the problem is to sort a list of

items, then the problem size can be taken to be the number

of items in the list. When the input to an algorithm is an

integer, as in the case of an algorithm that checks whether a

given positive integer is prime, the usual measure of the size

of a problem is the number of bits in the input integer rather



Fundamentals of Computer Algorithms

68

than the integer itself. More generally, the number of bits in

the input to a problem is often a good measure of the size of

the problem.

To say that the running time of an algorithm is O(f(n))

means that for large values of the problem size, n, the running

time of the algorithm is no bigger than some constant times

f(n). (More rigorously, there is a number C and a positive

integer M such that whenever n is greater than M, the run

time is less than or equal to C*f(n).) The constant takes into

account details such as the speed of the computer on which

the algorithm is run; if you use a slower computer, you might

have to use a bigger constant in the formula, but changing

the constant won’t change the basic fact that the run time is

O(f(n)).

The constant also makes it unnecessary to say whether

we are measuring time in seconds, years, CPU cycles, or any

other unit of measure; a change from one unit of measure to

another is just multiplication by a constant. Note also that

O(f(n)) doesn’t depend at all on what happens for small

problem sizes, only on what happens in the long run as the

problem size increases without limit.

To look at a simple example, consider the problem of adding

up all the numbers in an array. The problem size, n, is the

length of the array. Using A as the name of the array, the

algorithm can be expressed in Java as:
total = 0;
for (int i = 0; i < n; i++)
total = total + A[i];

This algorithm performs the same operation, total = total

+ A[i], n times. The total time spent on this operation is a*n,

where a is the time it takes to perform the operation once.



Fundamentals of Computer Algorithms

69

Now, this is not the only thing that is done in the algorithm.

The value of i is incremented and is compared to n each time

through the loop.

This adds an additional time of b*n to the run time, for

some constant b. Furthermore, i and total both have to be

initialized to zero; this adds some constant amount c to the

running time.

The exact running time would then be (a+b)*n+c, where

the constants a, b, and c depend on factors such as how the

code is compiled and what computer it is run on. Using the

fact that c is less than or equal to c*n for any positive integer

n, we can say that the run time is less than or equal to

(a+b+c)*n. That is, the run time is less than or equal to a

constant times n. By definition, this means that the run time

for this algorithm is O(n).

If this explanation is too mathematical for you, we can

just note that for large values of n, the c in the formula

(a+b)*n+c is insignificant compared to the other term, (a+b)*n.

We say that c is a “lower order term.” When doing asymptotic

analysis, lower order terms can be discarded. A rough, but

correct, asymptotic analysis of the algorithm would go

something like this: Each iteration of the for loop takes a

certain constant amount of time. There are n iterations of

the loop, so the total run time is a constant times n, plus

lower order terms (to account for the initialization).

Disregarding lower order terms, we see that the run time is

O(n).

Note that to say that an algorithm has run time O(f(n)) is

to say that its run time is no bigger than some constant

times f(n) (for large values of n). O(f(n)) puts an upper limit



Fundamentals of Computer Algorithms

70

on the run time. However, the run time could be smaller,

even much smaller. For example, if the run time is O(n), it

would also be correct to say that the run time is O(n2) or

even O(n10). If the run time is less than a constant times n,

then it is certainly less than the same constant times n2 or

n10.

Of course, sometimes it’s useful to have a lower limit on

the run time. That is, we want to be able to say that the run

time is greater than or equal to some constant times f(n) (for

large values of n). The notation for this is Ω(f(n)), read “Omega

of f of n.” “Omega” is the name of a letter in the Greek

alphabet, and Ω is the upper case version of that letter. (To

be technical, saying that the run time of an algorithm is

Ω(f(n)) means that there is a positive number C and a positive

integer M such that whenever n is greater than M, the run

time is greater than or equal to C*f(n).) O(f(n)) tells you

something about the maximum amount of time that you

might have to wait for an algorithm to finish; Ω(f(n)) tells you

something about the minimum time.

The algorithm for adding up the numbers in an array has

a run time that is Ω(n) as well as O(n). When an algorithm

has a run time that is both Ω(f(n)) and O(f(n)), its run time is

said to be Θ(f(n)), read “Theta of f of n.” (Theta is another

letter from the Greek alphabet.) To say that the run time of

an algorithm is Θ(f(n)) means that for large values of n, the

run time is between a*f(n) and b*f(n), where a and b are

constants (with b greater than a, and both greater than 0).

Let’s look at another example. Consider the algorithm that

can be expressed in Java in the following method:



Fundamentals of Computer Algorithms

71

/**
* Sorts the n array elements A[0], A[1]..., A[n-1]

into increasing order.
*/
public static simpleBubbleSort(int[] A, int n) {
for (int i = 0; i < n; i++) {

// Do n passes through the array...
for (int j = 0; j < n-1; j++) {
if (A[j] > A[j+1]) {

// A[j] and A[j+1] are out of order, so swap them
int temp = A[j];
A[j] = A[j+1];
A[j+1] = temp;

}
}

}
}

Here, the parameter n represents the problem size. The

outer for loop in the method is executed n times. Each time

the outer for loop is executed, the inner for loop is exectued

n-1 times, so the if statement is executed n*(n-1) times. This

is n2-n, but since lower order terms are not significant in an

asymptotic analysis, it’s good enough to say that the if

statement is executed about n2 times.

In particular, the test A[j] > A[j+1] is executed about

n2times, and this fact by itself is enough to say that the run

time of the algorithm is W(n2), that is, the run time is at least

some constant times n2. Furthermore, if we look at other

operations — the assignment statements, incrementing i and

j, etc. — none of them are executed more than n2 times, so

the run time is also O(n2), that is, the run time is no more

than some constant times n2. Since it is both W(n2) and

O(n2), the run time of the simpleBubbleSort algorithm is

Q(n2).

You should be aware that some people use the notation

O(f(n)) as if it meant Θ(f(n)). That is, when they say that the



Fundamentals of Computer Algorithms

72

run time of an algorithm is O(f(n)), they mean to say that the

run time is about equal to a constant times f(n). For that,

they should use Θ(f(n)). Properly speaking, O(f(n)) means that

the run time is less than a constant times f(n), possibly much

less.

So far, the analysis has ignored an important detail. We

have looked at how run time depends on the problem size,

but in fact the run time usually depends not just on the size

of the problem but on the specific data that has to be

processed. For example, the run time of a sorting algorithm

can depend on the initial order of the items that are to be

sorted, and not just on the number of items.

To account for this dependency, we can consider either

the worst case run time analysis or the average case run

time analysis of an algorithm. For a worst case run time

analysis, we consider all possible problems of size n and look

at the longest possible run time for all such problems. For

an average case analysis, we consider all possible problems

of size n and look at the average of the run times for all such

problems. Usually, the average case analysis assumes that

all problems of size n are equally likely to be encountered,

although this is not always realistic — or even possible in

the case where there is an infinite number of different

problems of a given size.

In many cases, the average and the worst case run times

are the same to within a constant multiple. This means that

as far as asymptotic analysis is concerned, they are the same.

That is, if the average case run time is O(f(n)) or Θ(f(n)), then

so is the worst case. However, later in the book, we will

encounter a few cases where the average and worst case



Fundamentals of Computer Algorithms

73

asymptotic analyses differ. So, what do you really have to

know about analysis of algorithms to read the rest of this

book? We will not do any rigorous mathematical analysis,

but you should be able to follow informal discussion of simple

cases such as the examples that we have looked at in this

section.

Most important, though, you should have a feeling for

exactly what it means to say that the running time of an

algorithm is O(f(n)) or Θ(f(n)) for some common functions f(n).

The main point is that these notations do not tell you anything

about the actual numerical value of the running time of the

algorithm for any particular case.

They do not tell you anything at all about the running

time for small values of n. What they do tell you is something

about the rate of growth of the running time as the size of

the problem increases.

Suppose you compare two algorithms that solve the same

problem. The run time of one algorithm is Θ(n2), while the

run time of the second algorithm is Θ(n3). What does this tell

you? If you want to know which algorithm will be faster for

some particular problem of size, say, 100, nothing is certain.

As far as you can tell just from the asymptotic analysis, either

algorithm could be faster for that particular case — or in any

particular case. But what you can say for sure is that if you

look at larger and larger problems, you will come to a point

where the Θ(n2) algorithm is faster than the Θ(n3) algorithm.

Furthermore, as you continue to increase the problem size,

the relative advantage of the Θ(n2) algorithm will continue to

grow. There will be values of n for which the Θ(n2) algorithm

is a thousand times faster, a million times faster, a billion



Fundamentals of Computer Algorithms

74

times faster, and so on. This is because for any positive

constants a and b, the function a*n3 grows faster than the

function b*n2 as n gets larger. (Mathematically, the limit of

the ratio of a*n3 to b*n2 is infinite as n approaches infinity.)

This means that for “large” problems, a Θ(n2) algorithm

will definitely be faster than a Θ(n3) algorithm. You just don’t

know — based on the asymptotic analysis alone — exactly

how large “large” has to be. In practice, in fact, it is likely

that the Θ(n2) algorithm will be faster even for fairly small

values of n, and absent other information you would generally

prefer a Θ(n2) algorithm to a Θ(n3) algorithm.

So, to understand and apply asymptotic analysis, it is

essential to have some idea of the rates of growth of some

common functions. For the power functions n, n2, n3, n4...,

the larger the exponent, the greater the rate of growth of the

function.

Exponential functions such as 2n and 10n, where the n is

in the exponent, have a growth rate that is faster than that

of any power function. In fact, exponential functions grow so

quickly that an algorithm whose run time grows exponentially

is almost certainly impractical even for relatively modest

values of n, because the running time is just too long.

Another function that often turns up in asymptotic analysis

is the logarithm function, log(n). There are actually many

different logarithm functions, but the one that is usually

used in computer science is the so-called logarithm to the

base two, which is defined by the fact that log(2x) = x for any

number x. (Usually, this function is written log2(n), but I will

leave out the subscript 2, since I will only use the base-two

logarithm in this book.)



Fundamentals of Computer Algorithms

75

The logarithm function grows very slowly. The growth rate

of log(n) is much smaller than the growth rate of n. The growth

rate of n*log(n) is a little larger than the growth rate of n, but

much smaller than the growth rate of n2.

POINTS
• Introduction: Analysis of Selection Sort

• Introduction: Analysis of Merge Sort

• Asymptotic Notation

• Asymptotic Notation Continued

• Heapsort

• Heapsort Continued

• Priority Queues (more heaps)

• Quicksort

• Bounds on Sorting and Linear Time Sorts

• Stable Sorts and Radix Sort

• Begin Dynamic Programmeming

• More Dynamic Programmeming

• Begin Greedy Algorithms: Huffman’s Algorithm

• Dÿkstra’s Algorithm

• Beyond Asymptotic Analysis: Memory Access Time

• B-Trees

• More B-Trees: Insertion and Splitting

• Union/Find

• Warshall’s Algorithm, Floyd’s Algorithm

• Large Integer Arithmetic

• RSA Public-Key Cryptosystem

• Begin Algorithms and Structural Complexity Theory

• Continue Algorithms and Structural Complexity

Theory



Fundamentals of Computer Algorithms

76

• End Algorithms and Structural Complexity Theory

• Generating Permutations and Combinations

• Exam review with sample questions and solutions

MASTERS THEOREM

INTRODUCTION
In the analysis of algorithms, the master theorem, which

is a specific case of the Akra-Bazzi theorem, provides a

cookbook solution in asymptotic terms for recurrence

relations of types that occur in practice.

It was popularized by the canonical algorithms which

introduces and proves Nevertheless, not all recurrence

relations can be solved with the use of the master theorem.

Consider a problem that can be solved using recurrence

algorithm such as below:
procedure T( n: size of problem)

defined as:
ifn<kthen exit

Do work of amount f(n)
T(n/b)
T(n/b)
repeat for a total of a times...
T(n/b)
end procedure

In above algorithm we are dividing the problem in to

number of sub problems recursively, each sub problem being

of size n/b. This can be visualized as building a call tree with

each node of a tree an instance of one recursive call and its

child nodes being instance of next calls. In above example,

each node would have a number of child nodes.

Each node does amount of work that depends on size of

sub problem n passed to that instance of recursive call and



Fundamentals of Computer Algorithms

77

given by f(n). For example, if each recursive call is doing

sorting then size of work does by each node in the tree would

be at least O(nlog(n)). Total size of work done by entire tree is

sum of work performed by all the nodes in the tree.

Algorithm such as above can be represented as recurrence

relationship,
����� �� ����
�

� �
= +� �� � .

This recursive relationship can be successively substituted

in to itself and expanded to obtain expression for total amount

of work done[

Original Master theorem allows to easily calculate run time

of such a recursive algorithm in Big O notation without doing

expansion of above recursive relationship. A generalized form

of Master Theorem by Akra and Bazzi introduced in 1998 is

more usable, simpler and applicable on wide number of cases

that occurs in practice.

The master theorem concerns recurrence relations of the

form:
����� �� ����	
���� 
�� 
�
�

� �
= + ≥ >� �� �

In the application to the analysis of a recursive algorithm,

the constants and function take on the following significance:

• n is the size of the problem.

• a is the number of subproblems in the recursion.

• n/b is the size of each subproblem. (Here it is

assumed that all subproblems are essentially the

same size.)

• f (n) is the cost of the work done outside the recursive

calls, which includes the cost of dividing the problem

and the cost of merging the solutions to the

subproblems.



Fundamentals of Computer Algorithms

78

GENERIC FORM
If it is true that ( )���� ������� � � −∈

=  for some constant ε > 0

(using Big O notation)

it follows that:

( )���� ����� �= Θ

EXAMPLE
������ �� 
����

�
� �

= +� �� �
As one can see in the formula above, the variables get the

following values:
�

� �� ��� � ����� 
���� ���� � ��� � �= = = = =

Now we have to check that the following equation holds:

( )�������� � � −∈
=

( )� �
���� � � −∈
=

If we choose ε = 1, we get:

( ) ( )� � 
 �
���� � � � �−
= =

Since this equation holds, the first case of the master

theorem applies to the given recurrence relation, thus

resulting in the conclusion:

( )���� ����� � −
= Θ

If we insert the values from above, we finally get:

( )����� �= Θ

Thus the given recurrence relation T(n) was in Θ(n3).

CASE 2

GENERIC FORM
If it is true, for some constant k e” 0, that:

( )���� � ����� � ��� �= Θ

it follows that:

( )���� � � 
���� � ��� �+
= Θ



Fundamentals of Computer Algorithms

79

EXAMPLE
����� �� 
��
�

� �
= +� �� �

As we can see in the formula above the variables get the

following values:

a = 2, b = 2, k = 0, f(n) = 10n, logba = log2 2 = 1

Now we have to check that the following equation holds

(in this case k=0):

( )���� ����� �= Θ

If we insert the values from above, we get:

( ) ( )

�� � �= Θ = Θ

Since this equation holds, the second case of the master

theorem applies to the given recurrence relation, thus

resulting in the conclusion:

( )���� �����= Θ

If we insert the values from above, we finally get:

( )���� �����= Θ

Thus the given recurrence relation T(n) was in Θ(n log n).

DESIGNING OF ALGORITHMS

OVERVIEW
At first glance, the algorithms move-until-out and quick-

sort have little in common. One processes structures; the

other processes lists. One creates a new structure for the

generative step; the other splits up a list into three pieces

and recurs on two of them. In short, a comparison of the two

examples of generative recursion suggests that the design of

algorithms is an ad hoc activity and that it is impossible to

come up with a general design recipe. A closer look, however,

suggests a different picture.



Fundamentals of Computer Algorithms

80

First, even though we speak of algorithms as processes

that solve problems, they are still functions that consume

and produce data. In other words, we still choose data to

represent a problem, and we must definitely understand the

nature of our data if we wish to understand the process.

Second, we describe the processes in terms of data, for

example, “creating a new structure” or “partitioning a list of

numbers.”

Third, we always distinguish between input data for which

it is trivial to produce a solution and those for which it is

not. Fourth, the generation of problems is the key to the

design of algorithms. Although the idea of how to generate a

new problem might be independent of a data representation,

it must certainly be implemented for whatever form of

representation we choose for our problem. Finally, once the

generated problems have been solved, the solutions must be

combined with other values.

Let us examine the six general stages of our structural

design recipe in light of our discussion:

DATA ANALYSIS AND DESIGN
The choice of a data representation for a problem often

affects our thinking about the process. Sometimes the

description of a process dictates a particular choice of

representation. On other occasions, it is possible and

worthwhile to explore alternatives. In any case, we must

Analyse and define our data collections.

CONTRACT, PURPOSE, HEADER
We also need a contract, a definition header, and a purpose

statement. Since the generative step has no connection to the



Fundamentals of Computer Algorithms

81

structure of the data definition, the purpose statement should

not only specify what the function does but should also include

a comment that explains in general terms how it works.

FUNCTION EXAMPLES
In our previous design recipes, the function examples

merely specified which output the function should produce

for some given input. For algorithms, examples should

illustrate how the algorithm proceeds for some given input.

This helps us to design, and readers to understand, the

algorithm. For functions such as move-until-out the process

is trivial and doesn’t need more than a few words.

TEMPLATE
Our discussion suggests a general template for algorithms:

(define (generative-recursive-fun problem)
cond
[(trivially-solvable? problem)
(determine-solution problem)]
[else
(combine-solutions
... problem...

(generative-recursive-fun (generate-problem-
1 problem))
(generative-recursive-fun (generate-

problem-n problem)))]))

DEFINITION
This chapter is only a suggestive blueprint, not a definitive

shape. Each function in the template is to remind us that

we need to think about the following four questions:

• What is a trivially solvable problem?

• What is a corresponding solution?

• How do we generate new problems that are more

easily solvable than the original problem? Is there



Fundamentals of Computer Algorithms

82

one new problem that we generate or are there

several?

• Is the solution of the given problem the same as the

solution of (one of) the new problems? Or, do we

need to combine the solutions to create a solution

for the original problem? And, if so, do we need

anything from the original problem data?

To define the algorithm, we must express the answers to

these four questions in terms of our chosen data

representation.

TEST
Once we have a complete function, we must also test it. As

before, the goal of testing is to discover bugs and to eliminate

them. Remember that testing cannot validate that the

function works correctly for all possible inputs.

TERMINATION
Unfortunately, the standard recipe is not good enough for

the design of algorithms. Up to now, a function has always

produced an output for any legitimate input. That is, the

evaluation has always stopped. After all, by the nature of

our recipe, each natural recursion consumes an immediate

piece of the input, not the input itself. Because data is

constructed in a hierarchical manner, this means that the

input shrinks at every stage. Hence the function sooner or

later consumes an atomic piece of data and stops.

With functions based on generative recursion, this is no

longer true. The internal recursions don’t consume an

immediate component of the input but some new piece of

data, which is generated from the input.



Fundamentals of Computer Algorithms

83

In addition, even the slightest mistake in translating the

process description into a function definition may cause an

infinite loop. The problem is most easily understood with an

example. Consider the following definition of smaller-items,

one of the two “problem generators” for quick-sort:

;; smaller-items: (listof number) number →→→→→

(listof number)

;; to create a list with all those numbers on

alon

;; that are smaller than or equal to threshold

(define (smaller-items alon threshold)

(cond

[(empty? alon) empty]

[else (if (⇐⇐⇐⇐⇐ (first alon) threshold)

(cons (first alon) (smaller-items (rest

alon) threshold))

smaller-items (rest alon)

threshold))]))

Instead of < it employs ⇐ to compare numbers. As a result,

this function produces (list 5) when applied to (list 5) and 5.

The lesson from this example is that the design of

algorithms requires one more step in our design recipe: a

TERMINATION ARGUMENT, which explains why the process

produces an output for every input and how the function

implements this idea; or a warning, which explains when

the process may not terminate.

For quick-sort, the argument might look like this:

At each step, quick-sort partitions the list into two sublists

using smaller-items and larger-items. Each function

produces a list that is smaller than the input (the second



Fundamentals of Computer Algorithms

84

argument), even if the threshold (the first argument) is an

item on the list. Hence each recursive application of quick-
sortconsumes a strictly shorter list than the given one.
Eventually, quick-sort receives and returns empty.

Without such an argument an algorithm must be
considered incomplete. A good termination argument may
on occasion also reveal additional termination cases. For
example, (smaller-items N (list N)) and (larger-items N(list
N)) always produce empty for any N. Therefore we know that
quick-sort’s answer for (list N) is (list N). To add this knowledge

to quick-sort, we simply add a cond-clause:
(define (quick-sort alon)
(cond

[(empty? alon) empty]
[(empty? (rest alon)) alon]
[else (append

(quick-sort (smaller-items alon (first
alon)))
(list (first alon))
(quick-sort (larger-items alon (first
alon))))]))

The condition (empty? (rest alon)) is one way to ask whether
alon contains one item.

EXAMPLE
Define the function tabulate-div, which accepts a number

n and tabulates the list of all of its divisors, starting with 1
and ending in n. A number d is a divisior of a number n if
the remainder of dividing n by d is 0, that is, (= (remainder n
d) 0) is true. The smallest divisior of any number is 1; the
largest one is the number itself.

EXERCISE
Develop the function merge-sort, which sorts a list of

numbers in ascending order, using the following two auxiliary

functions:



Fundamentals of Computer Algorithms

85

• The first one, make-singles, constructs a list of one-

item lists from the given list of numbers. For

example,

• (equal? (make-singles (list 2 5 9 3))

• (list (list 2) (list 5) (list 9) (list 3)))

• The second one, merge-all-Neighbours, merges pairs

of Neighbouring lists. More specifically, it consumes

a list of lists (of numbers) and merges Neighbours.

For example,

• (equal? (merge-all-Neighbours (list (list 2) (list 5) (list

9) (list 3)))

• (list (list 2 5) (list 3 9)))

• (equal? (merge-all-Neighbours (list (list 2 5) (list 3

9)))

• (list (list 2 3 5 9)))

In general, this function yields a list that is approximately

half as long as the input. Why is the output not always half

as long as the input?

STRUCTURAL VERSUS GENERATIVE
RECURSION

The template for algorithms is so general that it even covers

functions based on structural recursion. Consider the version

with one termination clause and one generation step:
(define (generative-recursive-fun problem)

(cond
[(trivially-solvable? problem)
(determine-solution problem)]

[else
(combine-solutions

problem
(generative-recursive-fun (generate-

problem problem)))]))



Fundamentals of Computer Algorithms

86

If we replace trivially-solvable? with empty? and generate-

problem with rest, the outline is a template for a list-

processing function:
(define (generative-recursive-fun problem)

(cond
[(empty? problem) (determine-solution

problem)]
[else
(combine-solutions
problem
(generative-recursive-fun (rest
problem)))]))

MAKING CHOICES
A user cannot distinguish sort and quick-sort. Both

consume a list of numbers; both produce a list that consists

of the same numbers arranged in ascending order. To an

observer, the functions are completely equivalent. This raises

the question of which of the two a Programmemer should

provide. More generally, if we can develop a function using

structural recursion and an equivalent one using generative

recursion, what should we do? To understand this choice

better, let’s discuss another classical example of generative

recursion from mathematics: the problem of finding the

greatest common divisor of two positive natural numbers.

All such numbers have at least one divisor in common: 1.

On occasion, this is also the only common divisor. For

example, 2 and 3 have only 1 as common divisor because 2

and 3, respectively, are the only other divisors.

Then again, 6 and 25 are both numbers with several

divisors:

• 6 is evenly divisible by 1, 2, 3, and 6;

• 25 is evenly divisible by 1, 5, and 25.



Fundamentals of Computer Algorithms

87

Still, the greatest common divisior of 25 and 6 is 1. In

contrast, 18 and 24 have many common divisors:

• 18 is evenly divisible by 1, 2, 3, 6, 9, and 18;

• 24 is evenly divisible by 1, 2, 3, 4, 6, 8, 12, and 24.

The greatest common divisor is 6.

Following the design recipe, we start with a contract, a

purpose statement, and a header:
;; gcd: N[⇒⇒⇒⇒⇒ 1] N[⇒⇒⇒⇒⇒ 1] →→→→→ N
;; to find the greatest common divisior of n and m
(define (gcd n m)

...)

The contract specifies the precise inputs: natural numbers

that are greater or equal to 1 (not 0).

Now we need to make a decision whether we want to pursue

a design based on structural or on generative recursion. Since

the answer is by no means obvious, we develop both. For the

structural version, we must consider which input the function

should process: n, m, or both.

A moment’s consideration suggests that what we really

need is a function that starts with the smaller of the two and

outputs the first number smaller or equal to this input that

evenly divides both n and m.
;; gcd-structural: N[⇒⇒⇒⇒⇒ 1] N[⇒⇒⇒⇒⇒ 1] →→→→→ N ;; to find
the greatest common divisior of n and m
;; structural recursion using data definition
of N[⇒⇒⇒⇒⇒ 1] (define (gcd-structural n m) (local

((define (first-divisior-⇐⇐⇐⇐⇐ i)
(cond

[(= i 1) 1]
[else (cond

[(and (= (remainder n i) 0)
(= (remainder m i)
0)) i]

[else (first-divisior-⇐⇐⇐⇐⇐ (-
i 1))])])))

(first-divisior-⇐⇐⇐⇐⇐ (min m



Fundamentals of Computer Algorithms

88

n))))

The conditions “evenly divisible” have been encoded as (=

(remainder n i) 0) and (=(remainder m i) 0). The two ensure

that i divides n and m without a remainder. Testing gcd-

structural with the examples shows that it finds the expected

answers. Although the design of gcd-structural is rather

straightforward, it is also naive. It simply tests for every

number whether it divides both n and m evenly and returns

the first such number. For small natural numbers, this

process works just fine.

Consider the following example, however:
(gcd-structural 101135853 45014640)

The result is 177 and to get there gcd-structural had to

compare 101135676, that is, 101135853 – 177, numbers.

This is a large effort and even reasonably fast computers

spend several minutes on this task.

EXERCISES
Enter the definition of gcd-structural into the Definitions

window and evaluate (time (gcd-structural 101135853

45014640)) in the Interactionswindow.

After testing gcd-structural conduct the performance tests

in the Full Scheme language (without debugging), which

evaluates expressions faster than the lower language levels

but with less protection. Add (require-library “core.ss”) to

the top of the Definitions window. Have some reading handy!

Since mathematicians recognized the inefficiency of the

“structural algorithm” a long time ago, they studied the

problem of finding divisiors in more depth.

The essential insight is that for two natural numbers larger

and smaller, their greatest common divisor is equal to the



Fundamentals of Computer Algorithms

89

greatest common divisior of smaller and theremainder of

larger divided into smaller.

Here is how we can put this insight into equational form:
(gcd larger smaller)

=(gcd smaller (remainder larger smaller))

Since (remainder larger smaller) is smaller than both larger

and smaller, the right-hand side use of gcd consumes smaller

first.

Here is how this insight applies to our small example:

• The given numbers are 18 and 24.

• According to the mathematicians’ insight, they have

the same greatest common divisor as 18 and 6.

• And these two have the same greatest common

divisor as 6 and 0.

And here we seem stuck because 0 is nothing expected.

But, 0 can be evenly divided by every number, so we have

found our answer: 6.

Working through the example not only explains the idea

but also suggests how to discover the case with a trivial

solution. When the smaller of the two numbers is 0, the result

is the larger number.

Putting everything together, we get the following definition:
;; gcd-generative: N[⇒⇒⇒⇒⇒ 1] N[⇒⇒⇒⇒⇒1] →→→→→ N
;; to find the greatest common divisior of n and m
;; generative recursion: (gcd n m) = (gcd n
(remainder m n)) if (⇐⇐⇐⇐⇐ m n)

(define (gcd-generative n m)
(local ((define (clever-gcd larger smaller)

(cond
[(= smaller 0) larger]
[else (clever-gcd smaller

(remainder larger smaller))])))
(clever-gcd (max m n) (min m n))))

The local definition introduces the workhorse of the

function: clever-gcd, a function based on generative



Fundamentals of Computer Algorithms

90

recursion. Its first line discovers the trivially solvable case

by comparing smaller to 0 and produces the matching

solution.

The generative step uses smaller as the new first argument

and (remainder largersmaller) as the new second argument

to clever-gcd, exploiting the above equation.

If we now use gcd-generative with our complex example

from above:
(gcd-generative 101135853 45014640)

we see that the response is nearly instantaneous. A hand-

evaluation shows that clever-gcd recurs only nine times

before it produces the solution: 177. In short, generative

recursion has helped find us a much faster solution to our

problem.

PROCESS
For the maximum subarray problem, if you didn’t know

any better, you’d probably implement a solution that Analyses

every possible subarray, and returns the one with the

maximum sum:
class Array
def sum

result = 0
self.each do |i|

result+=i
end
return result

end
#test every sub array - brute force!
def max_sub_array_order_ncubed

left_index = 0
right_index = 0
max_value = self [left_ index.. right_

index].sum
for i in (0..self.length)

for j in (i..self.length



Fundamentals of Computer Algorithms

91

this_value = self[i..j].sum
if (this_value > max_value)
max_value = this_value
left_index=i
right_index=j

end
 end

end
return self[left_index..right_index]

 end
end

If you were a bit more clever, you might notice that

self[i..j].sum is equal toself[i..(j–1)].sum + self[j] in the

innermost loop (the sum method itself), and use an

accumulator there as opposed to calculating it each time.

That takes you down from n3 to n2 time.

But there are (at least) two other ways to solve this problem:

• A divide and conquer approach that uses recursion

and calculates the left and right maximum

contiguous subarrays (MCS), along with the MCS that

contains the right-most element in the left side and

the left-most element in the right side. It compares

the three and returns the one with the maximum

sum. This gets us to O(n log n) time.

• An approach I’ll call “expanding sliding window.” If

memory serves me correct, this aptly describes it or

was the way a professor of mine described it. In any

case, the “expanding sliding window” can do it in

one pass (O(n) time), at the cost of a few more

variables.



Fundamentals of Computer Algorithms

92

3

Computational Complexity Theory

Computational complexity theory is a branch of the theory

of computation in theoretical computer science and

mathematics that focuses on classifying computational

problems according to their inherent difficulty. In this

context, a computational problem is understood to be a task

that is in principle amenable to being solved by a computer

(which basically means that the problem can be stated by

a set of mathematical instructions). Informally, a

computational problem consists of problem instances and

solutions to these problem instances. For example, primality

testing is the problem of determining whether a given number

is prime or not. The instances of this problem are natural

numbers, and the solution to an instance is yes or no based

on whether the number is prime or not. A problem is

regarded as inherently difficult if solving the problem requires

a large amount of resources, whatever the algorithm used



Fundamentals of Computer Algorithms

93

for solving it. The theory formalizes this intuition, by

introducing mathematical models of computation to study

these problems and quantifying the amount of resources

needed to solve them, such as time and storage. Other

complexity measures are also used, such as the amount of

communication (used in communication complexity), the

number of gates in a circuit (used in circuit complexity) and

the number of processors (used in parallel computing). One

of the roles of computational complexity theory is to

determine the practical limits on what computers can and

cannot do. Closely related fields in theoretical computer

science are analysis of algorithms and computability theory.

A key distinction between analysis of algorithms and

computational complexity theory is that the former is devoted

to analyzing the amount of resources needed by a particular

algorithm to solve a problem, whereas the latter asks a more

general question about all possible algorithms that could

be used to solve the same problem. More precisely, it tries

to classify problems that can or cannot be solved with

appropriately restricted resources. In turn, imposing

restrictions on the available resources is what distinguishes

computational complexity from computability theory: the

latter theory asks what kind of problems can be solved in

principle algorithmically.

COMPUTATIONAL PROBLEMS

PROBLEM INSTANCES
A computational problem can be viewed as an infinite

collection of instances together with a solution for every

instance. The input string for a computational problem is



Fundamentals of Computer Algorithms

94

referred to as a problem instance, and should not be confused

with the problem itself. In computational complexity theory,

a problem refers to the abstract question to be solved. In

contrast, an instance of this problem is a rather concrete

utterance, which can serve as the input for a decision

problem. For example, consider the problem of primality

testing. The instance is a number and the solution is “yes”

if the number is prime and “no” otherwise. Alternately, the

instance is a particular input to the problem, and the

solution is the output corresponding to the given input. To

further highlight the difference between a problem and an

instance, consider the following instance of the decision

version of the traveling salesman problem: Is there a route

of length at most 2000 kilometres passing through all of

Germany’s 15 largest cities? The answer to this particular

problem instance is of little use for solving other instances

of the problem, such as asking for a round trip through all

sites in Milan whose total length is at most 10 km. For this

reason, complexity theory addresses computational problems

and not particular problem instances.

REPRESENTING PROBLEM INSTANCES
When considering computational problems, a problem

instance is a string over an alphabet. Usually, the alphabet

is taken to be the binary alphabet (i.e., the set {0,1}), and

thus the strings are bitstrings. As in a real-world computer,

mathematical objects other than bitstrings must be suitably

encoded. For example, integers can be represented in binary

notation, and graphs can be encoded directly via their

adjacency matrices, or by encoding their adjacency lists in



Fundamentals of Computer Algorithms

95

binary. Even though some proofs of complexity-theoretic

theorems regularly assume some concrete choice of input

encoding, one tries to keep the discussion abstract enough

to be independent of the choice of encoding. This can be

achieved by ensuring that different representations can be

transformed into each other efficiently.

DECISION PROBLEMS AS FORMAL LANGUAGES
Decision problems are one of the central objects of study

in computational complexity theory. A decision problem is

a special type of computational problem whose answer is
either yes or no, or alternately either 1 or 0. A decision
problem can be viewed as a formal language, where the
members of the language are instances whose answer is
yes, and the non-members are those instances whose output
is no. The objective is to decide, with the aid of an algorithm,
whether a given input string is member of the formal language
under consideration. If the algorithm deciding this problem
returns the answer yes, the algorithm is said to accept the
input string, otherwise it is said to reject the input. An
example of a decision problem is the following. The input
is an arbitrary graph. The problem consists in deciding

whether the given graph is connected, or not. The formal

language associated with this decision problem is then the

set of all connected graphs—of course, to obtain a precise

definition of this language, one has to decide how graphs

are encoded as binary strings.

FUNCTION PROBLEMS
A function problem is a computational problem where

a single output (of a total function) is expected for every



Fundamentals of Computer Algorithms

96

input, but the output is more complex than that of a

decision problem, that is, it isn’t just yes or no. Notable

examples include the traveling salesman problem and the

integer factorization problem. It is tempting to think that

the notion of function problems is much richer than the

notion of decision problems. However, this is not really the

case, since function problems can be recast as decision

problems. For example, the multiplication of two integers

can be expressed as the set of triples (a, b, c) such that the

relation a × b = c holds. Deciding whether a given triple is

member of this set corresponds to solving the problem of

multiplying two numbers.

MEASURING THE SIZE OF AN INSTANCE
To measure the difficulty of solving a computational

problem, one may wish to see how much time the best

algorithm requires to solve the problem. However, the running

time may, in general, depend on the instance. In particular,

larger instances will require more time to solve. Thus the

time required to solve a problem (or the space required, or

any measure of complexity) is calculated as function of the

size of the instance. This is usually taken to be the size of

the input in bits. Complexity theory is interested in how

algorithms scale with an increase in the input size. For

instance, in the problem of finding whether a graph is

connected, how much more time does it take to solve a

problem for a graph with 2n vertices compared to the time

taken for a graph with n vertices? If the input size is n, the

time taken can be expressed as a function of n. Since the

time taken on different inputs of the same size can be



Fundamentals of Computer Algorithms

97

different, the worst-case time complexity T(n) is defined to

be the maximum time taken over all inputs of size n. If T(n)

is a polynomial in n, then the algorithm is said to be a

polynomial time algorithm. Cobham’s thesis says that a

problem can be solved with a feasible amount of resources

if it admits a polynomial time algorithm.

MACHINE MODELS AND

COMPLEXITY MEASURES

TURING MACHINE
A Turing machine is a mathematical model of a general

computing machine. It is a theoretical device that

manipulates symbols contained on a strip of tape. Turing

machines are not intended as a practical computing

technology, but rather as a thought experiment representing

a computing machine. It is believed that if a problem can

be solved by an algorithm, there exists a Turing machine

that solves the problem. Indeed, this is the statement of the

Church–Turing thesis. Furthermore, it is known that

everything that can be computed on other models of

computation known to us today, such as a RAM machine,

Conway’s Game of Life, cellular automata or any

programming language can be computed on a Turing

machine. Since Turing machines are easy to analyze

mathematically, and are believed to be as powerful as any

other model of computation, the Turing machine is the most

commonly used model in complexity theory. Many types of

Turing machines are used to define complexity classes,



Fundamentals of Computer Algorithms

98

such as deterministic Turing machines, probabilistic Turing

machines, non-deterministic Turing machines, quantum

Turing machines, symmetric Turing machines and

alternating Turing machines. They are all equally powerful

in principle, but when resources (such as time or space)

are bounded, some of these may be more powerful than

others.

A deterministic Turing machine is the most basic Turing

machine, which uses a fixed set of rules to determine its

future actions. A probabilistic Turing machine is a

deterministic Turing machine with an extra supply of random

bits. The ability to make probabilistic decisions often helps

algorithms solve problems more efficiently. Algorithms that

use random bits are called randomized algorithms. A non-

deterministic Turing machine is a deterministic Turing

machine with an added feature of non-determinism, which

allows a Turing machine to have multiple possible future

actions from a given state. One way to view non-determinism

is that the Turing machine branches into many possible

computational paths at each step, and if it solves the problem

in any of these branches, it is said to have solved the

problem. Clearly, this model is not meant to be a physically

realizable model, it is just a theoretically interesting abstract

machine that gives rise to particularly interesting complexity

classes. For examples, see nondeterministic algorithm.

OTHER MACHINE MODELS
Many machine models different from the standard multi-

tape Turing machines have been proposed in the literature,

for example random access machines. Perhaps surprisingly,



Fundamentals of Computer Algorithms

99

each of these models can be converted to another without

providing any extra computational power. The time and

memory consumption of these alternate models may vary.

What all these models have in common is that the machines

operate deterministically. However, some computational

problems are easier to analyze in terms of more unusual

resources. For example, a nondeterministic Turing machine

is a computational model that is allowed to branch out to

check many different possibilities at once. The

nondeterministic Turing machine has very little to do with

how we physically want to compute algorithms, but its

branching exactly captures many of the mathematical models

we want to analyze, so that nondeterministic time is a very

important resource in analyzing computational problems.

COMPLEXITY MEASURES
For a precise definition of what it means to solve a

problem using a given amount of time and space, a

computational model such as the deterministic Turing

machine is used. The time required by a deterministic Turing

machine M on input x is the total number of state transitions,

or steps, the machine makes before it halts and outputs

the answer (“yes” or “no”). A Turing machine M is said to

operate within time f(n), if the time required by M on each

input of length n is at most f(n). A decision problem A can

be solved in time f(n) if there exists a Turing machine

operating in time f(n) that solves the problem. Since

complexity theory is interested in classifying problems based

on their difficulty, one defines sets of problems based on

some criteria. For instance, the set of problems solvable



Fundamentals of Computer Algorithms

100

within time f(n) on a deterministic Turing machine is then

denoted by DTIME(f(n)). Analogous definitions can be made

for space requirements. Although time and space are the

most well-known complexity resources, any complexity

measure can be viewed as a computational resource.

Complexity measures are very generally defined by the

Blum complexity axioms. Other complexity measures used

in complexity theory include communication complexity,

circuit complexity, and decision tree complexity.

BEST, WORST AND AVERAGE CASE
COMPLEXITY

The best, worst and average case complexity refer to

three different ways of measuring the time complexity (or

any other complexity measure) of different inputs of the

same size. Since some inputs of size n may be faster to solve

than others, we define the following complexities:

• Best-case complexity: This is the complexity of solving

the problem for the best input of size n.

• Worst-case complexity: This is the complexity of

solving the problem for the worst input of size n.

• Average-case complexity: This is the complexity of

solving the problem on an average. This complexity

is only defined with respect to a probability

distribution over the inputs. For instance, if all inputs

of the same size are assumed to be equally likely to

appear, the average case complexity can be defined

with respect to the uniform distribution over all inputs

of size n.



Fundamentals of Computer Algorithms

101

For example, consider the deterministic sorting algorithm

quicksort. This solves the problem of sorting a list of integers

that is given as the input. The best-case scenario is when

the input is already sorted, and the algorithm takes time

O(n log n) for such inputs. The worst-case is when the input

is sorted in reverse order, and the algorithm takes time O(n2)

for this case. If we assume that all possible permutations

of the input list are equally likely, the average time taken

for sorting is O(n log n).

UPPER AND LOWER BOUNDS ON THE
COMPLEXITY OF PROBLEMS

To classify the computation time (or similar resources,

such as space consumption), one is interested in proving

upper and lower bounds on the minimum amount of time

required by the most efficient algorithm solving a given

problem. The complexity of an algorithm is usually taken

to be its worst-case complexity, unless specified otherwise.

Analyzing a particular algorithm falls under the field of

analysis of algorithms. To show an upper bound T(n) on the

time complexity of a problem, one needs to show only that

there is a particular algorithm with running time at most

T(n). However, proving lower bounds is much more difficult,

since lower bounds make a statement about all possible

algorithms that solve a given problem. The phrase “all

possible algorithms” includes not just the algorithms known

today, but any algorithm that might be discovered in the

future. To show a lower bound of T(n) for a problem requires

showing that no algorithm can have time complexity lower

than T(n). Upper and lower bounds are usually stated using



Fundamentals of Computer Algorithms

102

the big Oh notation, which hides constant factors and

smaller terms. This makes the bounds independent of the

specific details of the computational model used. For

instance, if T(n) = 7n2 + 15n + 40, in big Oh notation one

would write T(n) = O(n2).

COMPLEXITY CLASSES

DEFINING COMPLEXITY CLASSES
A complexity class is a set of problems of related

complexity. Simpler complexity classes are defined by the

following factors:

• The type of computational problem: The most

commonly used problems are decision problems.

However, complexity classes can be defined based on

function problems, counting problems, optimization

problems, promise problems, etc.

• The model of computation: The most common model

of computation is the deterministic Turing machine,

but many complexity classes are based on

nondeterministic Turing machines, Boolean circuits,

quantum Turing machines, monotone circuits, etc.

• The resource (or resources) that are being bounded

and the bounds: These two properties are usually

stated together, such as “polynomial time”,

“logarithmic space”, “constant depth”, etc.

Of course, some complexity classes have complex

definitions that do not fit into this framework. Thus, a

typical complexity class has a definition like the following:



Fundamentals of Computer Algorithms

103

The set of decision problems solvable by a deterministic

Turing machine within time f(n). (This complexity class is

known as DTIME(f(n)).) But bounding the computation time

above by some concrete function f(n) often yields complexity

classes that depend on the chosen machine model. For

instance, the language {xx | x is any binary string} can be

solved in linear time on a multi-tape Turing machine, but

necessarily requires quadratic time in the model of single-

tape Turing machines. If we allow polynomial variations in
running time, Cobham-Edmonds thesis states that “the
time complexities in any two reasonable and general models
of computation are polynomially related” (Goldreich 2008,
Chapter 1.2).

This forms the basis for the complexity class P, which
is the set of decision problems solvable by a deterministic
Turing machine within polynomial time. The corresponding
set of function problems is FP.

IMPORTANT COMPLEXITY CLASSES
Many important complexity classes can be defined by

bounding the time or space used by the algorithm. Some
important complexity classes of decision problems. Other

important complexity classes include BPP, ZPP and RP,

which are defined using probabilistic Turing machines; AC

and NC, which are defined using Boolean circuits and BQP

and QMA, which are defined using quantum Turing

machines. #P is an important complexity class of counting

problems (not decision problems). Classes like IP and AM

are defined using Interactive proof systems. ALL is the class

of all decision problems.



Fundamentals of Computer Algorithms

104

REDUCTION
Many complexity classes are defined using the concept

of a reduction. A reduction is a transformation of one

problem into another problem. It captures the informal

notion of a problem being at least as difficult as another

problem. For instance, if a problem X can be solved using

an algorithm for Y, X is no more difficult than Y, and we

say that X reduces to Y. There are many different types of

reductions, based on the method of reduction, such as

Cook reductions, Karp reductions and Levin reductions,

and the bound on the complexity of reductions, such as

polynomial-time reductions or log-space reductions. The

most commonly used reduction is a polynomial-time

reduction. This means that the reduction process takes

polynomial time. For example, the problem of squaring an

integer can be reduced to the problem of multiplying two

integers. This means an algorithm for multiplying two

integers can be used to square an integer. Indeed, this can

be done by giving the same input to both inputs of the

multiplication algorithm. Thus we see that squaring is not

more difficult than multiplication, since squaring can be

reduced to multiplication.

This motivates the concept of a problem being hard for

a complexity class. A problem X is hard for a class of

problems C if every problem in C can be reduced to X. Thus

no problem in C is harder than X, since an algorithm for

X allows us to solve any problem in C. Of course, the notion

of hard problems depends on the type of reduction being

used. For complexity classes larger than P, polynomial-time

reductions are commonly used. In particular, the set of



Fundamentals of Computer Algorithms

105

problems that are hard for NP is the set of NP-hard problems.

If a problem X is in C and hard for C, then X is said to be

complete for C. This means that X is the hardest problem

in C. (Since many problems could be equally hard, one

might say that X is one of the hardest problems in C.) Thus

the class of NP-complete problems contains the most difficult

problems in NP, in the sense that they are the ones most

likely not to be in P. Because the problem P = NP is not

solved, being able to reduce a known NP-complete problem,

Ð
2
, to another problem, Ð

1
, would indicate that there is no

known polynomial-time solution for Ð
1
.

This is because a polynomial-time solution to Ð
1
 would

yield a polynomial-time solution to Ð2. Similarly, because

all NP problems can be reduced to the set, finding an NP-

complete problem that can be solved in polynomial time

would mean that P = NP.

IMPORTANT OPEN PROBLEMS

P VERSUS NP PROBLEM
The complexity class P is often seen as a mathematical

abstraction modeling those computational tasks that admit

an efficient algorithm. This hypothesis is called the Cobham–

Edmonds thesis. The complexity class NP, on the other

hand, contains many problems that people would like to

solve efficiently, but for which no efficient algorithm is

known, such as the Boolean satisfiability problem, the

Hamiltonian path problem and the vertex cover problem.

Since deterministic Turing machines are special

nondeterministic Turing machines, it is easily observed that



Fundamentals of Computer Algorithms

106

each problem in P is also member of the class NP. The

question of whether P equals NP is one of the most important

open questions in theoretical computer science because of

the wide implications of a solution. If the answer is yes,

many important problems can be shown to have more

efficient solutions. These include various types of integer

programming problems in operations research, many

problems in logistics, protein structure prediction in biology,

and the ability to find formal proofs of pure mathematics

theorems. The P versus NP problem is one of the Millennium

Prize Problems proposed by the Clay Mathematics Institute.

There is a US$1,000,000 prize for resolving the problem.

PROBLEMS IN NP NOT KNOWN TO BE IN P OR
NP-COMPLETE

It was shown by Ladner that if P ‘“ NP then there exist

problems in NP that are neither in P nor NP-complete. Such

problems are called NP-intermediate problems. The graph

isomorphism problem, the discrete logarithm problem and

the integer factorization problem are examples of problems

believed to be NP-intermediate. They are some of the very

few NP problems not known to be in P or to be NP-complete.

The graph isomorphism problem is the computational

problem of determining whether two finite graphs are

isomorphic. An important unsolved problem in complexity

theory is whether the graph isomorphism problem is in P,

NP-complete, or NP-intermediate. The answer is not known,

but it is believed that the problem is at least not NP-

complete. If graph isomorphism is NP-complete, the

polynomial time hierarchy collapses to its second level.



Fundamentals of Computer Algorithms

107

Since it is widely believed that the polynomial hierarchy

does not collapse to any finite level, it is believed that graph

isomorphism is not NP-complete.

The best algorithm for this problem, due to Laszlo Babai

and Eugene Luks has run time 2O(“(n log n)) for graphs with n

vertices. The integer factorization problem is the

computational problem of determining the prime factorization

of a given integer. Phrased as a decision problem, it is the

problem of deciding whether the input has a factor less than

k. No efficient integer factorization algorithm is known, and

this fact forms the basis of several modern cryptographic

systems, such as the RSA algorithm. The integer factorization

problem is in NP and in co-NP (and even in UP and co-UP).

If the problem is NP-complete, the polynomial time hierarchy

will collapse to its first level (i.e., NP will equal co-NP). The

best known algorithm for integer factorization is the general

number field sieve, which takes time O(e(64/9)1/3(n.log 2)1/3(log (n.log

2))2/3) to factor an n-bit integer. However, the best known

quantum algorithm for this problem, Shor’s algorithm, does

run in polynomial time. Unfortunately, this fact doesn’t say

much about where the problem lies with respect to non-

quantum complexity classes.

SEPARATIONS BETWEEN OTHER COMPLEXITY
CLASSES

Many known complexity classes are suspected to be

unequal, but this has not been proved. For instance P” NP”

PP” PSPACE, but it is possible that P = PSPACE. If P is not

equal to NP, then P is not equal to PSPACE either. Since

there are many known complexity classes between P and



Fundamentals of Computer Algorithms

108

PSPACE, such as RP, BPP, PP, BQP, MA, PH, etc., it is

possible that all these complexity classes collapse to one

class. Proving that any of these classes are unequal would

be a major breakthrough in complexity theory. Along the

same lines, co-NP is the class containing the complement

problems (i.e. problems with the yes/no answers reversed)

of NP problems. It is believed that NP is not equal to co-

NP; however, it has not yet been proven. It has been shown

that if these two complexity classes are not equal then P

is not equal to NP. Similarly, it is not known if L (the set

of all problems that can be solved in logarithmic space) is

strictly contained in P or equal to P. Again, there are many

complexity classes between the two, such as NL and NC,

and it is not known if they are distinct or equal classes.

INTRACTABILITY
Problems that can be solved but not fast enough for the

solution to be useful are called intractable. In complexity

theory, problems that lack polynomial-time solutions are

considered to be intractable for more than the smallest

inputs. In fact, the Cobham–Edmonds thesis states that

only those problems that can be solved in polynomial time

can be feasibly computed on some computational device.

Problems that are known to be intractable in this sense

include those that are EXPTIME-hard. If NP is not the same

as P, then the NP-complete problems are also intractable

in this sense. To see why exponential-time algorithms might

be unusable in practice, consider a programme that makes

2n operations before halting. For small n, say 100, and

assuming for the sake of example that the computer does



Fundamentals of Computer Algorithms

109

1012 operations each second, the programme would run for

about 4 × 1010 years, which is roughly the age of the universe.

Even with a much faster computer, the programme would

only be useful for very small instances and in that sense

the intractability of a problem is somewhat independent of

technological progress. Nevertheless a polynomial time

algorithm is not always practical.

If its running time is, say, n15, it is unreasonable to

consider it efficient and it is still useless except on small

instances. What intractability means in practice is open to

debate. Saying that a problem is not in P does not imply

that all large cases of the problem are hard or even that

most of them are. For example the decision problem in

Presburger arithmetic has been shown not to be in P, yet

algorithms have been written that solve the problem in

reasonable times in most cases. Similarly, algorithms can

solve the NP-complete knapsack problem over a wide range

of sizes in less than quadratic time and SAT solvers routinely

handle large instances of the NP-complete Boolean

satisfiability problem.

CONTINUOUS COMPLEXITY THEORY
Continuous complexity theory can refer to complexity

theory of problems that involve continuous functions that

are approximated by discretizations, as studied in numerical

analysis. One approach to complexity theory of numerical

analysis is information based complexity. Continuous

complexity theory can also refer to complexity theory of the

use of analog computation, which uses continuous dynamical

systems and differential equations. Control theory can be



Fundamentals of Computer Algorithms

110

considered a form of computation and differential equations

are used in the modelling of continuous-time and hybrid

discrete-continuous-time systems.

HISTORY
Before the actual research explicitly devoted to the

complexity of algorithmic problems started off, numerous

foundations were laid out by various researchers. Most

influential among these was the definition of Turing machines

by Alan Turing in 1936, which turned out to be a very

robust and flexible notion of computer. Fortnow & Homer

(2003) date the beginning of systematic studies in

computational complexity to the seminal paper “On the

Computational Complexity of Algorithms” by Juris Hartmanis

and Richard Stearns (1965), which laid out the definitions

of time and space complexity and proved the hierarchy

theorems. According to Fortnow & Homer (2003), earlier

papers studying problems solvable by Turing machines

with specific bounded resources include John Myhill’s

definition of linear bounded automata (Myhill 1960),

Raymond Smullyan’s study of rudimentary sets (1961), as

well as Hisao Yamada’s paper on real-time computations

(1962). Somewhat earlier, Boris Trakhtenbrot (1956), a

pioneer in the field from the USSR, studied another specific

complexity measure. As he remembers:

However, [my] initial interest [in automata theory]

was increasingly set aside in favour of

computational complexity, an exciting fusion of

combinatorial methods, inherited from switching

theory, with the conceptual arsenal of the theory



Fundamentals of Computer Algorithms

111

of algorithms. These ideas had occurred to me

earlier in 1955 when I coined the term “signalizing

function”, which is nowadays commonly known as

“complexity measure”.

—Boris Trakhtenbrot, From Logic to Theoretical
Computer Science – An Update. In: Pillars of

Computer Science, LNCS 4800, Springer 2008.

In 1967, Manuel Blum developed an axiomatic complexity
theory based on his axioms and proved an important result,
the so called, speed-up theorem. The field really began to
flourish when the US researcher Stephen Cook and, working
independently, Leonid Levin in the USSR, proved that there
exist practically relevant problems that are NP-complete.

In 1972, Richard Karp took this idea a leap forward with
his landmark paper, “Reducibility Among Combinatorial
Problems”, in which he showed that 21 diverse combinatorial
and graph theoretical problems, each infamous for its
computational intractability, are NP-complete.

MODEL OF COMPUTATION
In computability theory and computational complexity

theory, a model of computation is the definition of the set

of allowable operations used in computation and their

respective costs. It is used for measuring the complexity of

an algorithm in execution time and or memory space: by

assuming a certain model of computation, it is possible to

analyze the computational resources required or to discuss

the limitations of algorithms or computers.

Some examples of models include Turing machines,

recursive functions, lambda calculus, and production



Fundamentals of Computer Algorithms

112

systems. In model-driven engineering, the model of

computation explains how the behaviour of the whole system

is the result of the behaviour of each of its components. In

the field of runtime analysis of algorithms, it is common to

specify a computational model in terms of primitive operations

allowed which have unit cost, or simply unit-cost operations.

A commonly used example is the random access machine,

which has unit cost for read and write access to all of its

memory cells. In this respect, it differs from the above

mentioned Turing machine model.

There are many models of computation, differing in the

set of admissible operations and their computations cost.

They fall into the following broad categories: abstract

machine, used in proofs of computability and upper bounds

on computational complexity of algorithms, and decision

tree models, used in proofs of lower bounds on computational

complexity of algorithmic problems. A key point which is

often overlooked is that published lower bounds for problems

are often given for a model of computation that is more

restricted than the set of operations that you could use in

practice and therefore there are algorithms that are faster

than what would naively be thought possible.

PARTIAL FUNCTION
In mathematics, a partial function from X to Y is a

function ƒ: X’ ’! Y, where X’ is a subset of X. It generalizes

the concept of a function by not forcing f to map every

element of X to an element of Y (only some subset X’ of X).

If X’ = X, then ƒ is called a total function and is equivalent

to a function. Partial functions are often used when the



Fundamentals of Computer Algorithms

113

exact domain, X’, is not known (e.g. many functions in

computability theory). Specifically, we will say that for any

x ” X, either:

• ƒ(x) = y ” Y (it is defined as a single element in Y) or

• ƒ(x) is undefined.

DOMAIN OF A PARTIAL FUNCTION
There are two distinct meanings in current mathematical

usage for the notion of the domain of a partial function.

Most mathematicians, including recursion theorists, use

the term “domain of f” for the set of all values x such that

f(x) is defined ( X’ above). But some, particularly category

theorists, consider the domain of a partial function f:X’!Y

to be X, and refer to X’ as the domain of definition.

Occasionally, a partial function with domain X and codomain

Y is written as f: X ø! Y, using an arrow with vertical stroke.

A partial function is said to be injective or surjective when

the total function given by the restriction of the partial

function to its domain of definition is. A partial function

may be both injective and surjective, but the term bijection

generally only applies to total functions. An injective partial

function may be inverted to an injective partial function,

and a partial function which is both injective and surjective

has an injective function as inverse.

DISCUSSION AND EXAMPLES
A partial function that is not a total function since the

element 1 in the left-hand set is not associated with anything

in the right-hand set.



Fundamentals of Computer Algorithms

114

NATURAL LOGARITHM
Consider the natural logarithm function mapping the

real numbers to themselves. The logarithm of a non-positive

real is not a real number, so the natural logarithm function

doesn’t associate any real number in the codomain with any

non-positive real number in the domain. Therefore, the

natural logarithm function is not a total function when

viewed as a function from the reals to themselves, but it

is a partial function. If the domain is restricted to only

include the positive reals (that is, if the natural logarithm

function is viewed as a function from the positive reals to

the reals), then the natural logarithm is a total function.

BOTTOM TYPE
In some automated theorem proving systems a partial

function is considered as returning the bottom type when

it is undefined. The Curry-Howard correspondence uses

this to map proofs and computer programmes to each other.

In computer science a partial function corresponds to a

subroutine that raises an exception or loops forever. The

IEEE floating point standard defines a Not-a-number value

which is returned when a floating point operation is

undefined and exceptions are suppressed, e.g. when the

square root of a negative number is requested.



Fundamentals of Computer Algorithms

115

4

Algorithmic Efficiency

In computer science, efficiency is used to describe

properties of an algorithm relating to how much of various

types of resources it consumes. Algorithmic efficiency can

be thought of as analogous to engineering productivity for

a repeating or continuous process, where the goal is to

reduce resource consumption, including time to completion,

to some acceptable, optimal level.

SOFTWARE METRICS
The two most frequently encountered and measurable

metrics of an algorithm are:-

• speed or running time - the time it takes for an

algorithm to complete, and

• ‘space’ - the memory or ‘non-volatile storage’ used by

the algorithm during its operation. but also might

apply to



Fundamentals of Computer Algorithms

116

• transmission size - such as required bandwidth during

normal operation or

• size of external memory- such as temporary disk

space used to accomplish its task and perhaps even

• the size of required ‘longterm’ disk space required

after its operation to record its output or maintain

its required function during its required useful lifetime

(examples: a data table, archive or a computer log)

and also

• the performance per watt and the total energy,

consumed by the chosen hardware implementation

(with its System requirements, necessary auxiliary

support systems including interfaces, cabling,

switching, cooling and security), during its required

useful lifetime. See Total cost of ownership for other

potential costs that might be associated with any

particular implementation.

(An extreme example of these metrics might be to consider

their values in relation to a repeated simple algorithm for

calculating and storing (ð+n) to 50 decimal places running

for say, 24 hours, either on a “pocket calculator” sized

processor such as an ipod or an early mainframe operating

in its own purpose-built heated or air conditioned unit.) The

process of making code more efficient is known as

optimization and in the case of automatic optimization (i.e.

compiler optimization - performed by compilers on request

or by default), usually focus on space at the cost of speed,

or vice versa. There are also quite simple programming

techniques and ‘avoidance strategies’ that can actually



Fundamentals of Computer Algorithms

117

improve both at the same time, usually irrespective of

hardware, software or language. Even the re-ordering of

nested conditional statements - to put the least frequently

occurring condition first (example: test patients for blood

type =’AB-’, before testing age > 18, since this type of blood

occurs in only about 1 in 100 of the population - thereby

eliminating the second test at runtime in 99% of instances),

can reduce actual instruction path length, something an

optimizing compiler would almost certainly not be aware of

- but which a programmer can research relatively easily

even without specialist medical knowledge.

HISTORY
The first machines that were capable of computation

were severely limited by purely mechanical considerations.

As later electronic machines were developed they were, in

turn, limited by the speed of their electronic counterparts.

As software replaced hard-wired circuits, the efficiency of

algorithms also became important. It has long been

recognized that the precise ‘arrangement of processes’ is

critical in reducing elapse time.

• “In almost every computation a great variety of

arrangements for the succession of the processes is

possible, and various considerations must influence

the selections amongst them for the purposes of a

calculating engine. One essential object is to choose

that arrangement which shall tend to reduce to a

minimum the time necessary for completing the

calculation”



Fundamentals of Computer Algorithms

118

Ada Lovelace 1815-1852, generally considered as ‘the

first programmer’ who worked on Charles Babbage’s early

mechanical general-purpose computer

• “In established engineering disciplines a 12%

improvement, easily obtained, is never considered

marginal and I believe the same viewpoint should

prevail in software engineering”

Extract from “Structured Programming with go to

Statements” by Donald Knuth, renowned computer scientist

and Professor Emeritus of the Art of Computer Programming

at Stanford University.

• “The key to performance is elegance, not battalions

of special cases” attributed to Jon Bentley and

(Malcolm) Douglas McIlroy

SPEED
The absolute speed of an algorithm for a given input can

simply be measured as the duration of execution (or clock

time) and the results can be averaged over several executions

to eliminate possible random effects. Most modern processors

operate in a multi-processing & multi-programming

environment so consideration must be made for parallel

processes occurring on the same physical machine,

eliminating these as far as possible. For superscalar

processors, the speed of a given algorithm can sometimes

be improved through instruction-level parallelism within a

single processor (but, for optimal results, the algorithm may

require some adaptation to this environment to gain

significant advantage (‘speedup’), becoming, in effect, an

entirely different algorithm). A relative measure of an



Fundamentals of Computer Algorithms

119

algorithms performance can sometimes be gained from the

total instruction path length which can be determined by

a run time Instruction Set Simulator (where available). An

estimate of the speed of an algorithm can be determined

in various ways. The most common method uses time

complexity to determine the Big-O of an algorithm. See

Run-time analysis for estimating how fast a particular

algorithm may be according to its type (example: lookup

unsorted list, lookup sorted list etc.) and in terms of

scalability - its dependence on ‘size of input’, processor

power and other factors.

MEMORY
Often, it is possible to make an algorithm faster at the

expense of memory. This might be the case whenever the

result of an ‘expensive’ calculation is cached rather than

recalculating it afresh each time. The additional memory

requirement would, in this case, be considered additional

overhead although, in many situations, the stored result

occupies very little extra space and can often be held in pre-

compiled static storage, reducing not just processing time

but also allocation & deallocation of working memory. This

is a very common method of improving speed, so much so

that some programming languages often add special features

to support it, such as C++’s ‘mutable’ keyword. The memory

requirement of an algorithm is actually two separate but

related things:-

• The memory taken up by the compiled executable

code (the object code or binary file) itself (on disk or

equivalent, depending on the hardware and language).



Fundamentals of Computer Algorithms

120

This can often be reduced by preferring run-time

decision making mechanisms (such as virtual

functions and run-time type information) over certain

compile-time decision making mechanisms (such as

macro substitution and templates). This, however,

comes at the cost of speed.

• Amount of temporary “dynamic memory” allocated

during processing. For example, dynamically pre-

caching results, as mentioned earlier, improves speed

at the cost of this attribute. Even the depth of sub-

routine calls can impact heavily on this cost and

increase path length too, especially if there are ‘heavy’

dynamic memory requirements for the particular

functions invoked. The use of copied function

parameters (rather than simply using pointers to

earlier, already defined, and sometimes static values)

actually doubles the memory requirement for this

particular memory metric (as well as carrying its own

processing overhead for the copying itself. This can

be particularly relevant for quite ‘lengthy’ parameters

such as html script, JavaScript source programmes

or extensive freeform text such as letters or emails.

REMATERIALIZATION
It has been argued that Rematerialization (re-calculating)

may occasionally be more efficient than holding results in

cache. This is the somewhat non-intuitive belief that it can

be faster to re-calculate from the input - even if the answer

is already known - when it can be shown, in some special

cases, to decrease “register pressure”. Some optimizing



Fundamentals of Computer Algorithms

121

compilers have the ability to decide when this is considered

worthwhile based on a number of criteria such as complexity

and no side effects, and works by keeping track of the

expression used to compute each variable, using the concept

of available expressions.

This is most likely to be true when a calculation is very

fast (such as addition or bitwise operations), while the

amount of data which must be cached would be very large,

resulting in inefficient storage. Small amounts of data can

be stored very efficiently in registers or fast cache, while in

most contemporary computers large amounts of data must

be stored in slower memory or even slower hard drive

storage, and thus the efficiency of storing data which can

be computed quickly drops significantly.

PRECOMPUTATION
Precomputing a complete range of results prior to

compiling, or at the beginning of an algorithm’s execution,

can often increase algorithmic efficiency substantially. This

becomes advantageous when one or more inputs is

constrained to a small enough range that the results can

be stored in a reasonably sized block of memory. Because

memory access is essentially constant in time complexity

(except for caching delays), any algorithm with a component

which has worse than constant efficiency over a small input

range can be improved by precomputing values. In some

cases efficient approximation algorithms can be obtained by

computing a discrete subset of values and interpolating for

intermediate input values, since interpolation is also a

linear operation.



Fundamentals of Computer Algorithms

122

TRANSMISSION SIZE
Data compression algorithms can be useful because they

help reduce the consumption of expensive resources, such

as hard disk space or transmission bandwidth. This however

also comes at a cost - which is additional processing time

to compress and subsequently decompress. Depending upon

the speed of the data transfer, compression may reduce

overall response times which, ultimately, equates to speed

- even though processing within the computer itself takes

longer. For audio, MP3 is a compression method used

extensively in portable sound systems. The efficiency of a

data compression algorithm relates to the compression factor

and speed of achieving both compression and decompression.

For the purpose of archiving an extensive database, it might

be considered worthwhile to achieve a very high compression

ratio, since decompression is less likely to occur on the

majority of the data.

DATA PRESENTATION
Output data can be presented to the end user in many

ways - such as via punched tape or card, digital displays,

local display monitors, remote computer monitors or printed.

Each of these has its own inherent initial cost and, in some

cases, an ongoing cost (e.g. refreshing an image from

memory). As an example, the web site “Google” recently

showed, as its logo, an image of the Vancouver olympics

that is around 8K of gif image. The normally displayed

Google image is a PNG image of 28K (or 48K), yet the raw

text string for “Google” occupies only 6 octets or 48 bits

(4,778 or 8192 times less). This graphically illustrates that



Fundamentals of Computer Algorithms

123

how data is presented can significantly effect the overall

efficiency of transmission (and also the complete algorithm

- since both GIF and PNG images require yet more

processing). It is estimated by “Internet World Stats” that

there were 1,733,993,741 internet users in 2009 and, to

transmit this new image to each one of them, would require

around 136,000 billion (109)octets of data to be transmitted

- at least once - into their personal web cache. In

“Computational Energy Cost of TCP”, co-authors Bokyung

Wang and Suresh Singh examine the energy costs for TCP

and calculated, for their chosen example, a cost of 0.022

Joules per packet (of approx 1489 octets). On this basis,

a total of around 2,000,000,000 joules (2 GJ) of energy

might be expended by TCP elements alone to display the

new logo for all users for the first time. To maintain or re-

display this image requires still more processing and

consequential energy cost (in contrast to printed output for

instance).

ENCODING AND DECODING METHODS
(COMPARED AND CONTRASTED)

When data is encoded for any ‘external’ use, it is possible

to do so in an almost unlimited variety of different formats

that are sometimes conflicting. This content encoding (of

the raw data) may be designed for:

• optimal readability – by humans

• optimal decoding speed – by other computer

programmes

• optimal compression – for archiving or data

transmission



Fundamentals of Computer Algorithms

124

• optimal compatibility – with “legacy” or other existing

formats or programming languages

• optimal security – using encryption

(For character level encoding, see the various encoding

techniques such as EBCDIC or ASCII )

It is unlikely that all of these goals could be met with

a single ‘generic’ encoding scheme and so a compromise will

often be the desired goal and will often be compromised by

the need for standardization and/or legacy and compatibility

issues.

ENCODING EFFICIENTLY
For data encoding whose destination is to be input for

further computer processing, readability is not an issue –

since the receiving processors algorithm can decode the

data to any other desirable form including human readable.

From the perspective of algorithmic efficiency, minimizing

subsequent decoding (with zero or minimal parsing) should

take highest priority. The general rule of thumb is that any

encoding system that ‘understands’ the underlying data

structure - sufficiently to encode it in the first place - should

be equally capable of easily encoding it in such a way that

makes decoding it highly efficient. For variable length data

with possibly omitted data values, for instance, this almost

certainly means the utilization of declarative notation (i.e.

including the length of the data item as a prefix to the data

so that a de-limiter is not required and parsing completely

eliminated). For keyword data items, tokenizing the key to

an index (integer) after its first occurrence not only reduces

subsequent data size but, furthermore, reduces future



Fundamentals of Computer Algorithms

125

decoding overhead for the same items that are repeated. For

more ‘generic’ encoding for efficient data compression see

Arithmetic encoding and entropy encoding articles.

Historically, optimal encoding was not only worthwhile
from an efficiency standpoint but was also common practise
to conserve valuable memory, external storage and processor
resources. Once validated a country name for example could
be held as a shorter sequential country code which could
then also act as an index for subsequent ‘decoding’, using
this code as an entry number within a table or record
number within a file. If the table or file contained fixed
length entries, the code could easily be converted to an
absolute memory address or disk address for fast retrieval.
The ISBN system for identifying books is a good example
of a practical encoding method which also contains a built-
in hierarchy. According to recent articles in New Scientist
and Scientific American; “TODAY’S telecommunications

networks could use one ten-thousandth of the power they

presently consume if smarter data-coding techniques were

used”, according to Bell Labs, based in Murray Hill, New

Jersey It recognizes that this is only a theoretical limit but

nevertheless sets itself a more realistic, practical goal of a

1,000 fold reduction within 5 years with future, as yet

unidentified, technological changes.

EXAMPLES OF SEVERAL COMMON ENCODING
METHODS

• Comma separated values (CSV - a list of data values

separated by commas)

• Tab separated values (TSV) - a list of data values

separated by ‘tab’ characters



Fundamentals of Computer Algorithms

126

• HyperText Markup Language (HTML) - the

predominant markup language for web pages

• Extensible Markup Language (XML) - a generic

framework for storing any amount of text or any data

whose structure can be represented as a tree with

at least one element - the root element.

• JavaScript Object Notation (JSON) - human-readable

format for representing simple data structures

The last of these, (JSON) is apparently widely used for
internet data transmission, primarily it seems because the
data can be uploaded by a single JavaScript ‘eval’ statement
- without the need to produce what otherwise would likely
have been a more efficient purpose built encoder/decoder.
There are in fact quite large amounts of repeated (and
therefore redundant data) in this particular format, and
also in HTML and XML source, that could quite easily be
eliminated. XML is recognized as a verbose form of encoding.
Binary XML has been put forward as one method of reducing

transfer and processing times for XML and, while there are

several competing formats, none has been widely adopted

by a standards organization or accepted as a de facto

standard. It has also been criticized by Jimmy Zhang for

essentially trying to solve the wrong problem There are a

number of freely available products on the market that

partially compress HTML files and perform some or all of

the following:

• merge lines

• remove unnecessary whitespace characters

• remove unnecessary quotation marks. For example,

BORDER=”0" will be replaced with BORDER=0)



Fundamentals of Computer Algorithms

127

• replace some tags with shorter ones (e.g. replace

STRIKE tags with S, STRONG with B and EM with

I)

• remove HTML comments (comments within scripts

and styles are not removed)

• remove <!DOCTYPE..> tags

• remove named meta tags

The effect of this limited form of compression is to make

the HTML code smaller and faster to load, but more difficult

to read manually (so the original HTML code is usually

retained for updating), but since it is predominantly meant

to be processed only by a browser, this causes no problems.

Despite these small improvements, HTML, which is the

predominant language for the web still remains a

predominantly source distributed, interpreted markup

language, with high redundancy.

KOLMOGOROV COMPLEXITY
The study of encoding techniques has been examined in

depth in an area of computer science characterized by a

method known as Kolmogorov complexity where a value

known as (‘K’) is accepted as ‘not a computable function’.

The Kolmogorov complexity of any computable object is the

length of the shortest programme that computes it and then

halts. The invariance theorem shows that it is not really

important which computer is used. Essentially this implies

that there is no automated method that can produce an

optimum result and is therefore characterized by a

requirement for human ingenuity or Innovation. See also

Algorithmic probability.



Fundamentals of Computer Algorithms

128

EFFECT OF PROGRAMMING PARADIGMS
The effect that different programming paradigms have

on algorithmic efficiency is fiercely contested, with both

supporters and antagonists for each new paradigm. Strong

supporters of structured programming, such as Dijkstra for

instance, who favour entirely goto-less programmes are met

with conflicting evidence that appears to nullify its supposed

benefits. The truth is, even if the structured code itself

contains no gotos, the optimizing compiler that creates the

binary code almost certainly generates them (and not

necessarily in the most efficient way). Similarly, OOP

protagonists who claim their paradigm is superior are met

with opposition from strong sceptics such as Alexander

Stepanov who suggested that OOP provides a mathematically

limited viewpoint and called it, “almost as much of a hoax

as Artificial Intelligence” In the long term, benchmarks,

using real-life examples, provide the only real hope of

resolving such conflicts - at least in terms of run-time

efficiency.

OPTIMIZATION TECHNIQUES
The word optimize is normally used in relation to an

existing algorithm/computer programme (i.e. to improve

upon completed code). In this section it is used both in

the context of existing programmes and also in the design

and implementation of new algorithms, thereby avoiding

the most common performance pitfalls. It is clearly

wasteful to produce a working programme - at first using

an algorithm that ignores all efficiency issues - only to

then have to redesign or rewrite sections of it if found to



Fundamentals of Computer Algorithms

129

offer poor performance. Optimization can be broadly

categorized into two domains:-

• Environment specific - that are essentially worthwhile

only on certain platforms or particular computer

languages

• General techniques - that apply irrespective of

platform

ENVIRONMENT SPECIFIC
Optimization of algorithms frequently depends on the

properties of the machine the algorithm will be executed on

as well as the language the algorithm is written in and

chosen data types. For example, a programmer might

optimize code for time efficiency in an application for home

computers (with sizable amounts of memory), but for code

destined to be embedded in small, “memory-tight” devices,

the programmer may have to accept that it will run more

slowly, simply because of the restricted memory available

for any potential software optimization. For a discussion of

hardware performance, see article on Computer performance

which covers such things as CPU clock speed, cycles per

instruction and other relevant metrics. For a discussion on

how the choice of particular instructions available on a

specific machine effect efficiency, see later section ‘Choice

of instruction and data type’.

GENERAL TECHNIQUES
• Linear search such as unsorted table look-ups in

particular can be very expensive in terms of execution

time but can be reduced significantly through use of



Fundamentals of Computer Algorithms

130

efficient techniques such as indexed arrays and binary

searches. Using a simple linear search on first

occurrence and using a cached result thereafter is

an obvious compromise.

• Use of indexed programme branching, utilizing branch

tables or “threaded code” to control programme flow,

(rather than using multiple conditional IF statements

or unoptimized CASE/SWITCH) can drastically reduce

instruction path length, simultaneously reduce

programme size and even also make a programme

easier to read and more easily maintainable (in effect

it becomes a ‘decision table’ rather than repetitive

spaghetti code).

• Loop unrolling performed manually, or more usually

by an optimizing compiler, can provide significant

savings in some instances. By processing ‘blocks’ of

several array elements at a time, individually

addressed, (for example, within a While loop), much

pointer arithmetic and end of loop testing can be

eliminated, resulting in decreased instruction path

lengths. Other Loop optimizations are also possible.

TUNNEL VISION
There are many techniques for improving algorithms,

but focusing on a single favourite technique can lead to a

“tunnel vision” mentality. For example, in this X86 assembly

example, the author offers loop unrolling as a reasonable

technique that provides some 40% improvements to his

chosen example. However, the same example would benefit

significantly from both inlining and use of a trivial hash



Fundamentals of Computer Algorithms

131

function. If they were implemented, either as alternative or

complementary techniques, an even greater percentage gain

might be expected. A combination of optimizations may

provide ever increasing speed, but selection of the most

easily implemented and most effective technique, from a

large repertoire of such techniques, is desirable as a starting

point.

DEPENDENCY TREES AND SPREADSHEETS
Spreadsheets are a ‘special case’ of algorithms that self-

optimize by virtue of their dependency trees that are inherent

in the design of spreadsheets to reduce re-calculations

when a cell changes. The results of earlier calculations are

effectively cached within the workbook and only updated

if another cells changed value effects it directly.

TABLE LOOKUP
Table lookups can make many algorithms more efficient,

particularly when used to bypass computations with a high

time complexity. However, if a wide input range is required,

they can consume significant storage resources. In cases

with a sparse valid input set, hash functions can be used

to provide more efficient lookup access than a full table.

HASH FUNCTION ALGORITHMS
A hash function is any well-defined procedure or

mathematical function which converts a large, possibly

variable-sized amount of data into a small datum, usually

a single integer that may serve as an index to an array. The

values returned by a hash function are called hash values,



Fundamentals of Computer Algorithms

132

hash codes, hash sums, or simply hashes. Hash functions

are frequently used to speed up table lookups. The choice

of a hashing function (to avoid a linear or brute force search)

depends critically on the nature of the input data, and their

probability distribution in the intended application.

TRIVIAL HASH FUNCTION
Sometimes if the datum is small enough, a “trivial hash

function” can be used to effectively provide constant time

searches at almost zero cost. This is particularly relevant

for single byte lookups (e.g. ASCII or EBCDIC characters)

SEARCHING STRINGS
Searching for particular text strings (for instance “tags”

or keywords) in long sequences of characters potentially

generates lengthy instruction paths. This includes searching

for delimiters in comma separated files or similar processing

which can be very simply and effectively eliminated (using

declarative notation for instance). Several methods of

reducing the cost for general searching have been examined

and the “Boyer–Moore string search algorithm” (or Boyer–

Moore–Horspool algorithm, a similar but modified version)

is one solution that has been proven to give superior results

to repetitive comparisons of the entire search string along

the sequence.

HOT SPOT ANALYZERS
Special system software products known as “performance

analyzers” are often available from suppliers to help diagnose

“hot spots” - during actual execution of computer



Fundamentals of Computer Algorithms

133

programmes - using real or test data - they perform a

Performance analysis under generally repeatable conditions.

They can pinpoint sections of the programme that might

benefit from specifically targeted programmer optimization

without necessarily spending time optimizing the rest of the

code. Using programme re-runs, a measure of relative

improvement can then be determined to decide if the

optimization was successful and by what amount. Instruction

Set Simulators can be used as an alternative to measure

the instruction path length at the machine code level between

selected execution paths, or on the entire execution.

Regardless of the type of tool used, the quantitative values

obtained can be used in combination with anticipated

reductions (for the targeted code) to estimate a relative or

absolute overall saving. For example if 50% of the total

execution time (or path length) is absorbed in a subroutine

whose speed can be doubled by programmer optimization,

an overall saving of around 25% might be expected (Amdahl

law). Efforts have been made at the University of California,

Irvine to produce dynamic executable code using a

combination of hot spot analysis and run-time programme

trace tree. A JIT like dynamic compiler was built by Andreas

Gal and others, “in which relevant (i.e., frequently executed)

control flows are ...discovered lazily during execution”

BENCHMARKING & COMPETITIVE ALGORITHMS
For new versions of software or to provide comparisons

with competitive systems, benchmarks are sometimes used

which assist with gauging an algorithms relative

performance. If a new sort algorithm is produced for example



Fundamentals of Computer Algorithms

134

it can be compared with its predecessors to ensure that at

least it is efficient as before with known data - taking into

consideration any functional improvements. Benchmarks

can be used by customers when comparing various products

from alternative suppliers to estimate which product will

best suit their specific requirements in terms of functionality

and performance. For example in the mainframe world

certain proprietary sort products from independent software

companies such as Syncsort compete with products from

the major suppliers such as IBM for speed. Some benchmarks

provide opportunities for producing an analysis comparing

the relative speed of various compiled and interpreted

languages for example and The Computer Language

Benchmarks Game compares the performance of

implementations of typical programming problems in several

programming languages. (Even creating “do it yourself”

benchmarks to get at least some appreciation of the relative

performance of different programming languages, using a

variety of user specified criteria, is quite simple to produce

as this “Nine language Performance roundup” by Christopher

W. Cowell-Shah demonstrates by example)

COMPILED VERSUS INTERPRETED LANGUAGES
A compiled algorithm will, in general, execute faster than

the equivalent interpreted algorithm simply because some

processing is required even at run time to ‘understand’ (i.e.

interpret) the instructions to effect an execution. A compiled

programme will normally output an object or machine code

equivalent of the algorithm that has already been processed

by the compiler into a form more readily executed by



Fundamentals of Computer Algorithms

135

microcode or the hardware directly. The popular Perl

language is an example of an interpreted language and

benchmarks indicate that it executes approximately 24

times more slowly than compiled C.

OPTIMIZING COMPILERS
Many compilers have features that attempt to optimize

the code they generate, utilizing some of the techniques

outlined in this study and others specific to the compilation

itself. Loop optimization is often the focus of optimizing

compilers because significant time is spent in programme

loops and parallel processing opportunities can often be

facilitated by automatic code re-structuring such as loop

unrolling. Optimizing compilers are by no means perfect.

There is no way that a compiler can guarantee that, for all

programme source code, the fastest (or smallest) possible

equivalent compiled programme is output; such a compiler

is fundamentally impossible because it would solve the

halting problem. Additionally, even optimizing compilers

generally have no access to runtime metrics to enable them

to improve optimization through ‘learning’.

JUST-IN-TIME COMPILERS
‘On-the-fly’ processors known today as just-in-time or

‘JIT’ compilers combine features of interpreted languages

with compiled languages and may also incorporate elements

of optimization to a greater or lesser extent. Essentially the

JIT compiler can compile small sections of source code

statements (or bytecode) as they are newly encountered and

(usually) retain the result for the next time the same source



Fundamentals of Computer Algorithms

136

is processed. In addition, pre-compiled segments of code

can be in-lined or called as dynamic functions that

themselves perform equally fast as the equivalent ‘custom’

compiled function. Because the JIT processor also has

access to run-time information (that a normal compiler

can’t have) it is also possible for it to optimize further

executions depending upon the input and also perform

other run-time introspective optimization as execution

proceeds. A JIT processor may, or may not, incorporate self

modifying code or its equivalent by creating ‘fast path’

routes through an algorithm. It may also use such techniques

as dynamic Fractional cascading or any other similar runtime

device based on collected actual runtime metrics. It is

therefore entirely possible that a JIT compiler might (counter

intuitively) execute even faster than an optimally ‘optimized’

compiled programme.

SELF-MODIFYING CODE
As mentioned above, just-in-time compilers often make

extensive use of self-modifying code to generate the actual

machine instructions required to be executed. The technique

can also be used to reduce instruction path lengths in

application programmes where otherwise repetitive

conditional tests might otherwise be required within the

main programme flow. This can be particularly useful where

a sub routine may have embedded debugging code that is

either active (testing mode) or inactive (production mode)

depending upon some input parameter. A simple solution

using a form of dynamic dispatching is where the sub

routine entry point is dynamically ‘swapped’ at initialization,



Fundamentals of Computer Algorithms

137

depending upon the input parameter. Entry point A) includes

the debugging code prologue and entry point B) excludes

the prologue; thus eliminating all overhead except the initial

‘test and swap’ (even when test/debugging is selected, when

the overhead is simply the test/debugging code itself).

GENETIC ALGORITHM
In the world of performance related algorithms it is worth

mentioning the role of genetic algorithms which compete

using similar methods to the natural world in eliminating

inferior algorithms in favour of more efficient versions.

OBJECT CODE OPTIMIZERS
Some proprietary programme optimizers such as the

“COBOL Optimizer” developed by Capex Corporation in the

mid 1970’s for COBOL, actually took the unusual step of

optimizing the Object code (or binary file) after normal

compilation. This type of optimizer, recently sometimes

referred to as a “post pass” optimizer or peephole optimizer,

depended, in this case, upon knowledge of ‘weaknesses’ in

the standard IBM COBOL compiler and actually replaced

(or patched) sections of the object code with more efficient

code. A number of other suppliers have recently adopted

the same approach.

ALIGNMENT OF DATA
Most processors execute faster if certain data values are

aligned on word, doubleword or page boundaries. If possible

design/specify structures to satisfy appropriate alignments.

This avoids exceptions.



Fundamentals of Computer Algorithms

138

LOCALITY OF REFERENCE
To reduce Cache miss exceptions by providing good spatial

locality of reference, specify ‘high frequency’/volative working

storage data within defined structure(s) so that they are

also allocated from contiguous sections of memory (rather

than possibly scattered over many pages). Group closely

related data values also ‘physically’ close together within

these structures. Consider the possibility of creating an

‘artificial’ structure to group some otherwise unrelated, but

nevertheless frequently referenced, items together.

CHOICE OF INSTRUCTION OR DATA TYPE
Particularly in an Assembly language (although also

applicable to HLL statements), the choice of a particular

‘instruction’ or data type, can have a large impact on

execution efficiency. In general, instructions that process

variables such as signed or unsigned 16-bit or 32-bit integers

are faster than those that process floating point or packed

decimal. Modern processors are even capable of executing

multiple ‘fixed point’ instructions in parallel with the

simultaneous execution of a floating point instruction. If the

largest integer to be encountered can be accommodated by

the ‘faster’ data type, defining the variables as that type will

result in faster execution - since even a non-optimizing

compiler will, in-effect, be ‘forced’ to choose appropriate

instructions that will execute faster than would have been

the case with data types associated with ‘slower’ instructions.

Assembler programmers (and optimizing compiler writers)

can then also benefit from the ability to perform certain

common types of arithmetic for instance - division by 2, 4,



Fundamentals of Computer Algorithms

139

8 etc. by performing the very much faster binary shift right

operations (in this case by 1, 2 or 3 bits). If the choice of

input data type is not under the control of the programmer,

although prior conversion (outside of a loop for instance)

to a faster data type carries some overhead, it can often be

worthwhile if the variable is then to be used as a loop

counter, especially if the count could be quite a high value

or there are many input values to process. As mentioned

above, choice of individual assembler instructions (or even

sometimes just their order of execution) on particular

machines can effect the efficiency of an algorithm. See

Assembly Optimization Tips for one quite numerous arcane

list of various technical (and sometimes non-intuitive)

considerations for choice of assembly instructions on

different processors that also discusses the merits of each

case. Sometimes microcode or hardware quirks can result

in unexpected performance differences between processors

that assembler programmers can actively code for - or else

specifically avoid if penalties result - something even the

best optimizing compiler may not be designed to handle.

DATA GRANULARITY
The greater the granularity of data definitions (such as

splitting a geographic address into separate street/city/

postal code fields) can have performance overhead

implications during processing. Higher granularity in this

example implies more procedure calls in Object-oriented

programming and parallel computing environments since

the additional objects are accessed via multiple method

calls rather than perhaps one.



Fundamentals of Computer Algorithms

140

SUBROUTINE GRANULARITY
For structured programming and procedural

programming in general, great emphasis is placed on

designing programmes as a hierarchy of (or at least a set

of) subroutines. For object oriented programming, the method

call (a subroutine call) is the standard method of testing

and setting all values in objects and so increasing data

granularity consequently causes increased use of

subroutines. The greater the granularity of subroutine usage,

the larger the proportion of processing time devoted to the

mechanism of the subroutine linkages themselves.The

presence of a (called) subroutine in a programme contributes

nothing extra to the functionality of the programme. The

extent to which subroutines (and their consequent memory

requirements) influences the overall performance of the

complete algorithm depends to a large extent on the actual

implementation. In assembly language programmes, the

invocation of a subroutine need not involve much overhead,

typically adding just a couple of machine instructions to the

normal instruction path length, each one altering the control

flow either to the subroutine or returning from it (saving the

state on a stack being optional, depending on the complexity

of the subroutine and its requirement to reuse general

purpose registers). In many cases, small subroutines that

perform frequently used data transformations using ‘general

purpose’ work areas can be accomplished without the need

to save or restore any registers, including the return register.

By contrast, HLL programmes typically always invoke a

‘standard’ procedure call (the calling convention), which

involves saving the programme state by default and usually



Fundamentals of Computer Algorithms

141

allocating additional memory on the stack to save all registers

and other relevant state data (the prologue and epilogue

code). Recursion in a HLL programme can consequently

consume significant overhead in both memory and execution

time managing the stack to the required depth. Guy Steele

pointed out in a 1977 paper that a well-designed

programming language implementation can have very low

overheads for procedural abstraction (but laments, in most

implementations, that they seldom achieve this in practice

- being “rather thoughtless or careless in this regard”).

Steele concludes that “we should have a healthy respect for

procedure calls” (because they are powerful) but he also

cautioned “use them sparingly” See section Avoiding costs

for discussion of how inlining subroutines can be used to

improve performance. For the Java language, use of the

“final” keyword can be used to force method inlining (resulting

in elimination of the method call, no dynamic dispatch and

the possibility to constant-fold the value - with no code

executed at runtime)

CHOICE OF LANGUAGE / MIXED LANGUAGES
Some computer languages can execute algorithms more

efficiently than others. As stated already, interpreted

languages often perform less efficiently than compiled

languages. In addition, where possible, ‘high-use’, and time-

dependent sections of code may be written in a language

such as assembler that can usually execute faster and

make better use of resources on a particular platform than

the equivalent HLL code on the same platform. This section

of code can either be statically called or dynamically invoked



Fundamentals of Computer Algorithms

142

(external function) or embedded within the higher level code

(e.g. Assembler instructions embedded in a ‘C’ language

program). The effect of higher levels of abstraction when

using a HLL has been described as the Abstraction penalty

Programmers who are familiar with assembler language (in

addition to their chosen HLL) and are also familiar with the

code that will be generated by the HLL, under known

conditions, can sometimes use HLL language primitives of

that language to generate code almost identical to assembler

language. This is most likely to be possible only in languages

that support pointers such as PL/1 or C. This is facilitated

if the chosen HLL compiler provides an optional assembler

listing as part of its printout so that various alternatives

can be explored without also needing specialist knowledge

of the compiler internals.

SOFTWARE VALIDATION VERSUS HARDWARE
VALIDATION

An optimization technique that was frequently taken

advantage of on ‘legacy’ platforms was that of allowing the

hardware (or microcode) to perform validation on numeric

data fields such as those coded in (or converted to) packed

decimal (or packed BCD). The choice was to either spend

processing time checking each field for a valid numeric

content in the particular internal representation chosen or

simply assume the data was correct and let the hardware

detect the error upon execution. The choice was highly

significant because to check for validity on multiple fields

(for sometimes many millions of input records), it could

occupy valuable computer resources. Since input data fields



Fundamentals of Computer Algorithms

143

were in any case frequently built from the output of earlier

computer processing, the actual probability of a field

containing invalid data was exceedingly low and usually the

result of some ‘corruption’. The solution was to incorporate

an ‘event handler’ for the hardware detected condition (‘data

exception)’ that would intercept the occasional errant data

field and either ‘report, correct and continue’ or, more usually,

abort the run with a core dump to try to determine the

reason for the bad data.

Similar event handlers are frequently utilized in today’s

web based applications to handle other exceptional

conditions but repeatedly parsing data input, to ensure its

validity before execution, has nevertheless become much

more commonplace - partly because processors have become

faster (and the perceived need for efficiency in this area less

significant) but, predominantly - because data structures

have become less ‘formalized’ (e.g. .csv and .tsv files) or

uniquely identifiable (e.g. packed decimal). The potential

savings using this type of technique may have therefore

fallen into general dis-use as a consequence and therefore

repeated data validations and repeated data conversions

have become an accepted overhead. Ironically, one

consequence of this move to less formalized data structures

is that a corruption of say, a numeric binary integer value,

will not be detected at all by the hardware upon execution

(for instance: is an ASCII hexadecimal value ‘20202020’ a

valid signed or unsigned binary value - or simply a string

of blanks that has corrupted it?)



Fundamentals of Computer Algorithms

144

ALGORITHMS FOR VECTOR & SUPERSCALAR
PROCESSORS

Algorithms for vector processors are usually different

than those for scalar processors since they can process

multiple instructions and/or multiple data elements in

parallel. The process of converting an algorithm from a

scalar to a vector process is known as vectorization and

methods for automatically performing this transformation

as efficiently as possible are constantly sought. There are

intrinsic limitations for implementing instruction level

parallelism in Superscalar processors  but, in essence, the

overhead in deciding for certain if particular instruction

sequences can be processed in parallel can sometimes exceed

the efficiency gain in so doing. The achievable reduction is

governed primarily by the (somewhat obvious) law known

as Amdahl’s law, that essentially states that the improvement

from parallel processing is determined by its slowest

sequential component. Algorithms designed for this class

of processor therefore require more care if they are not to

unwittingly disrupt the potential gains.

AVOIDING COSTS
• Defining variables as integers for indexed arrays

instead of floating point will result in faster execution.

• Defining structures whose structure length is a

multiple of a power of 2 (2,4,8,16 etc.), will allow the

compiler to calculate array indexes by shifting a

binary index by 1, 2 or more bits to the left, instead

of using a multiply instruction will result in faster

execution. Adding an otherwise redundant short filler



Fundamentals of Computer Algorithms

145

variable to ‘pad out’ the length of a structure element

to say 8 bytes when otherwise it would have been 6

or 7 bytes may reduce overall processing time by a

worthwhile amount for very large arrays. See for

generated code differences for C as for example.

• Storage defined in terms of bits, when bytes would

suffice, may inadvertently involve extremely long path

lengths involving bitwise operations instead of more

efficient single instruction ‘multiple byte’ copy

instructions. (This does not apply to ‘genuine’

intentional bitwise operations - used for example

instead of multiplication or division by powers of 2

or for TRUE/FALSE flags.)

• Unnecessary use of allocated dynamic storage when

static storage would suffice, can increase the

processing overhead substantially - both increasing

memory requirements and the associated allocation/

deallocation path length overheads for each function

call.

• Excessive use of function calls for very simple

functions, rather than in-line statements, can also

add substantially to instruction path lengths and

stack/unstack overheads. For particularly time critical

systems that are not also code size sensitive,

automatic or manual inline expansion can reduce

path length by eliminating all the instructions that

call the function and return from it. (A conceptually

similar method, loop unrolling, eliminates the

instructions required to set up and terminate a loop

by, instead; repeating the instructions inside the



Fundamentals of Computer Algorithms

146

loop multiple times. This of course eliminates the

branch back instruction but may also increase the

size of the binary file or, in the case of JIT built code,

dynamic memory. Also, care must be taken with this

method, that re-calculating addresses for each

statement within an unwound indexed loop is not

more expensive than incrementing pointers within

the former loop would have been. If absolute indexes

are used in the generated (or manually created)

unwound code, rather than variables, the code created

may actually be able to avoid generated pointer

arithmetic instructions altogether, using offsets

instead).

MEMORY MANAGEMENT
Whenever memory is automatically allocated (for example

in HLL programmes, when calling a procedure or when

issuing a system call), it is normally released (or ‘freed’/

‘deallocated’/ ‘deleted’) automatically when it is no longer

required - thus allowing it to be re-used for another purpose

immediately. Some memory management can easily be

accomplished by the compiler, as in this example. However,

when memory is explicitly allocated (for example in OOP

when “new” is specified for an object), releasing the memory

is often left to an asynchronous ‘garbage collector’ which

does not necessarily release the memory at the earliest

opportunity (as well as consuming some additional CPU

resources deciding if it can be). The current trend

nevertheless appears to be towards taking full advantage

of this fully automated method, despite the tradeoff in



Fundamentals of Computer Algorithms

147

efficiency - because it is claimed that it makes programming

easier. Some functional languages are known as ‘lazy

functional languages’ because of the significant use of

garbage collection and can consume much more memory

as a result.

• Array processing may simplify programming but use

of separate statements to sum different elements of

the same array(s) may produce code that is not easily

optimized and that requires multiple passes of the

arrays that might otherwise have been processed in

a single pass. It may also duplicate data if array

slicing is used, leading to increased memory usage

and copying overhead.

• In OOP, if an object is known to be immutable, it can

be copied simply by making a copy of a reference to

it instead of copying the entire object. Because a

reference (typically only the size of a pointer) is usually

much smaller than the object itself, this results in

memory savings and a boost in execution speed.

READABILITY, TRADE OFFS AND TRENDS
One must be careful, in the pursuit of good coding style,

not to over-emphasize efficiency. Frequently, a clean,

readable and ‘usable’ design is much more important than

a fast, efficient design that is hard to understand. There

are exceptions to this ‘rule’ (such as embedded systems,

where space is tight, and processing power minimal) but

these are rarer than one might expect. However, increasingly,

for many ‘time critical’ applications such as air line

reservation systems, point-of-sale applications, ATMs (cash-



Fundamentals of Computer Algorithms

148

point machines), Airline Guidance systems, Collision

avoidance systems and numerous modern web based

applications - operating in a real-time environment where

speed of response is fundamental - there is little alternative.

DETERMINING IF OPTIMIZATION IS
WORTHWHILE

The essential criteria for using optimized code are of

course dependent upon the expected use of the algorithm.

If it is a new algorithm and is going to be in use for many

years and speed is relevant, it is worth spending some time

designing the code to be as efficient as possible from the

outset. If an existing algorithm is proving to be too slow or

memory is becoming an issue, clearly something must be

done to improve it. For the average application, or for one-

off applications, avoiding inefficient coding techniques and

encouraging the compiler to optimize where possible may

be sufficient. One simple way (at least for mathematicians)

to determine whether an optimization is worthwhile is as

follows: Let the original time and space requirements

(generally in Big-O notation) of the algorithm be O1 and O2.

Let the new code require N
1
 and N

2
 time and space

respectively. If N
1
N

2
 < O

1
O

2
, the optimization should be

carried out. However, as mentioned above, this may not

always be true.

IMPLICATIONS FOR ALGORITHMIC EFFICIENCY
A recent report, published in December 2007, from Global

Action Plan, a UK-based environmental organization found

that computer servers are “at least as great a threat to the



Fundamentals of Computer Algorithms

149

climate as SUVs or the global aviation industry” drawing

attention to the carbon footprint of the IT industry in the

UK. According to an Environmental Research Letters report

published in September 2008, “Total power used by

information technology equipment in data centers

represented about 0.5% of world electricity consumption in

2005. When cooling and auxiliary infrastructure are included,

that figure is about 1%. The total data center power demand

in 2005 is equivalent (in capacity terms) to about seventeen

1000 MW power plants for the world.” Some media reports

claim that performing two Google searches from a desktop

computer can generate about the same amount of carbon

dioxide as boiling a kettle for a cup of tea, according to new

research; however, the factual accuracy of this comparison

is disputed, and the author of the study in question asserts

that the two-searches-tea-kettle statistic is a misreading of

his work.

Greentouch, a recently established consortium of leading

Information and Communications Technology (ICT) industry,

academic and non-governmental research experts, has set

itself the mission of reducing reduce energy consumption

per user by a factor of 1000 from current levels. “A thousand-

fold reduction is roughly equivalent to being able to power

the world’s communications networks, including the Internet,

for three years using the same amount of energy that it

currently takes to run them for a single day”. The first

meeting in February 2010 will establish the organization’s

five-year plan, first year deliverables and member roles and

responsibilities. Intellectual property issues will be addressed

and defined in the forum’s initial planning meetings. The



Fundamentals of Computer Algorithms

150

conditions for research and the results of that research will

be high priority for discussion in the initial phase of the

research forum’s development. Computers having become

increasingly more powerful over the past few decades,

emphasis was on a ‘brute force’ mentality. This may have

to be reconsidered in the light of these reports and more

effort placed in future on reducing carbon footprints through

optimization. It is a timely reminder that algorithmic

efficiency is just another aspect of the more general

thermodynamic efficiency. The genuine economic benefits

of an optimized algorithm are, in any case, that more

processing can be done for the same cost or that useful

results can be shown in a more timely manner and ultimately,

acted upon sooner.

CRITICISM OF THE CURRENT STATE OF
PROGRAMMING

• David May FRS a British computer scientist and

currently Professor of Computer Science at University

of Bristol and founder and CTO of XMOS

Semiconductor, believes one of the problems is that

there is a reliance on Moore’s law to solve inefficiencies.

He has advanced an ‘alternative’ to Moore’s law (May’s

law) stated as follows:

Software ef ficiency halves every 18 months,

compensating Moore’s Law. In ubiquitous systems, halving

the instructions executed can double the battery life and

big data sets bring big opportunities for better software

and algorithms: Reducing the number of operations from

N x N to N x log(N) has a dramatic effect when N is large...



Fundamentals of Computer Algorithms

151

for N = 30 billion, this change is as good as 50 years of

technology improvements

• Software author Adam N. Rosenburg in his blog “The

failure of the Digital computer”, has described the

current state of programming as nearing the “Software

event horizon”, (alluding to the fictitious “shoe event

horizon” described by Douglas Adams in his

Hitchhiker’s Guide to the Galaxy book). He estimates

there has been a 70 dB factor loss of productivity or

“99.99999 percent, of its ability to deliver the goods”,

since the 1980s - “When Arthur C. Clarke compared

the reality of computing in 2001 to the computer HAL

in his book 2001: A Space Odyssey, he pointed out

how wonderfully small and powerful computers were

but how disappointing computer programming had

become”.

• Conrad Weisert gives examples, some of which were

published in ACM SIGPLAN (Special Interest Group

on Programming Languages) Notices, December, 1995

in: “Atrocious Programming Thrives”



Fundamentals of Computer Algorithms

152

5

Sorting of Algorithms

INTRODUCTION

It is not always possible to say that one algorithm is better

than another, as relative performance can vary depending

on the type of data being sorted. In some situations, most of

the data are in the correct order, with only a few items needing

to be sorted. In other situations the data are completely mixed

up in a random order and in others the data will tend to be

in reverse order. Different algorithms will perform differently

according to the data being sorted. Four common algorithms

are the exchange or bubble sort, the selection sort, the

insertion sort and the quick sort. The selection sort is a good

one to use with students. It is intuitive and very simple to

Programme. It offers quite good performance, its particular

strength being the small number of exchanges needed. For

a given number of data items, the selection sort always goes



Fundamentals of Computer Algorithms

153

through a set number of comparisons and exchanges, so its

performance is predictable. Procedure SelectionSort (d:

DataArrayType; n: integer) {n is the number of elements}
for k = 1 to n–1 do begin
small = k
for j = k+1 to n do

if d[j] < d[small] then small = j

{Swap elements k and small}

Swap(d, k, small)

end

EXCHANGE (BUBBLE) SORT

Element 1 2 3 4 5 6 7 8
Data 27 63 1 72 64 58 14 9

1st pass 27 1 63 64 58 14 9 72

2nd pass 1 27 63 58 14 9 64 72

3rd pass 1 27 58 14 9 63 64 72...

The first two data items (27 and 63) are compared and the

smaller one placed on the left hand side. The second and

third items (63 and 1) are then compared and the smaller

one placed on the left and so on.

After all the data has been passed through once, the largest

data item (72) will have “bubbled” through to the end of the

list. At the end of the second pass, the second largest data

item (64) will be in the second last position. For n data items,

the process continues for n-1 passes, or until no exchanges

are made in a single pass.

INSERTION SORT

Element 1 2 3 4 5 6 7 8
Data 27 63 1 72 64 58 14 9

1st pass 27 63 1 72 64 58 9 14

2nd pass 27 63 1 72 64 9 14 58

3rd pass 27 63 1 72 9 14 58 64...



Fundamentals of Computer Algorithms

154

The insertion sort starts with the last two elements and

creates a correctly sorted sub-list, which in the example

contains 9 and 14. It then looks at the next element (58) and

inserts it into the sub-list in its correct position.

It takes the next element (64) and does the same,

continuing until the sub-list contains all the data.

SELECTION SORT
Element 1 2 3 4 5 6 7 8
Data 27 63 1 72 64 58 14 9
1st pass 1 63 27 72 64 58 14 9
2nd pass 1 9 27 72 64 58 14 63
3rd pass 1 9 14 72 64 58 27 63...

The selection sort marks the first element (27). It then

goes through the remaining data to find the smallest number

(1). It swaps this with the first element and the smallest

element is now in its correct position. It then marks the

second element (63) and looks through the remaining data

for the next smallest number (9). These two numbers are

then swapped. This process continues until n-1 passes have

been made.

QUICK SORT
Element 1 2 3 4 5 6 7 8
Data 27 63 1 72 64 58 14 9
1st pass 1 9 63 72 64 58 14 27
2nd pass 1 9 14 27 64 58 72 63
3rd pass 1 9 14 27 58 63 72 64
4th pass 1 9 14 27 58 63 64 72 sorted!

The quick sort takes the last element (9) and places it such

that all the numbers in the left sub-list are smaller and all

the numbers in the right sub-list are bigger. It then quick

sorts the left sub-list ({1}) and then quick sorts the right sub-



Fundamentals of Computer Algorithms

155

list. This is a recursive algorithm, since it is defined in terms

of itself. This reduces the complexity of Programmeming it,

however it is the least intuitive of the four algorithms.

COMPARING THE ALGORITHMS

There are two important factors when measuring the

performance of a sorting algorithm. The algorithms have to

compare the magnitude of different elements and they have

to move the different elements around. So counting the

number of comparisons and the number of exchanges or

moves made by an algorithm offer useful performance

measures. When sorting large record structures, the number

of exchanges made may be the principal performance

criterion, since exchanging two records will involve a lot of

work. When sorting a simple array of integers, then the

number of comparisons will be more important.

It has been said that the only thing going for the bubble

(exchange) sort is its catchy name. The logic of the algorithm

is simple to understand and it is fairly easy to Programme. It

can also be Programmemed to detect when it has finished

sorting. The selection sort, by comparison, always goes

through the same amount of work regardless of the data

and the quick sort performs particularly badly with ordered

data. However, in general the bubble sort is a very inefficient

algorithm.

The insertion sort is a little better and whilst it cannot

detect that it has finished sorting, the logic of the algorithm

means that it comes to a rapid conclusion when dealing with

sorted data.

The selection sort is a good one to use with students. It is



Fundamentals of Computer Algorithms

156

intuitive and very simple to Programme. It offers quite good

performance, its particular strength being the small number

of exchanges needed. For a given number of data items, the

selection sort always goes through a set number of

comparisons and exchanges, so its performance is

predictable.

The first three algorithms all offer O(n2) performance, that

is sorting times increase with the square of the number of

elements being sorted. That means that if you double the

number of elements being sorted, then there will be a four-

fold increase in the time taken.

Ten times more elements increases the time taken by a

factor of 100! This is not a problem with small data sets, but

with hundreds or thousands of elements, this becomes very

significant. With most large data sets, the quick sort is a

vastly superior algorithm (although as you might expect, it

is much more complex), as the table below shows.

RANDOM DATA SET: NUMBER
Sort/Elements 50 100 200 300 400 500
Selection Sort 1225 4950 19900 44850 79800 124750
Exchange Sort 1410 5335 20300 45650 79866 126585
Insertion Sort 1391 5399 20473 44449 78779 123715
Quick Sort 399 990 1954 3384 5066 6256

It should be pointed out that the methods above all belong

to one family, they are all internal sorting algorithms. This

means that they can only be used when the entire data

structure to be sorted can be held in the computer’s main

memory. There will be situations where this is not possible,

for example when sorting a very large transaction file which



Fundamentals of Computer Algorithms

157

is stored on, say, magnetic tape or disc.

DESCRIPTION

BUBBLE SORT
Exchange two adjacent elements if they are out of order.

Repeat until array is sorted.

This is a slow algorithm:
#include <stdlib.h>
#include <stdio.h>
#define uint32 unsigned int
typedef int (*CMPFUN)(int, int);
void ArraySort(int This[], CMPFUN fun_ptr,

uint32 ub)
{
/* bubble sort */
uint32 indx;
uint32 indx2;
int temp;
int temp2;
int flipped;
if (ub ⇐⇐⇐⇐⇐ 1)
return;
indx = 1;
do
{
flipped = 0;
for (indx2 = ub - 1; indx2 ⇒⇒⇒⇒⇒ indx; —

indx2)
{
temp = This[indx2];
temp2 = This[indx2 - 1];
if ((*fun_ptr)(temp2, temp) > 0)
{

This[indx2 - 1] = temp;
This[indx2] = temp2;
flipped = 1;
}

}
} while ((++indx < ub) && flipped);

}



Fundamentals of Computer Algorithms

158

#define ARRAY_SIZE 14
int my_array[ARRAY_SIZE];
void fill_array()
{
int indx;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{
my_array[indx] = rand();
}
/* my_array[ARRAY_SIZE - 1] = ARRAY_SIZE/

3; */
}

int cmpfun(int a, int b)
{
if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}
int main()
{

int indx;
int indx2;
for (indx2 = 0; indx2 < 80000; ++indx2)
{
fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);
for (indx=1; indx < ARRAY_SIZE; ++indx)
{
if (my_array[indx - 1] > my_array[indx])
{

printf(“bad sort\n”);
return(1);
}

}
}
return(0);

}

SELECTION SORT
Find the largest element in the array, and put it in the

proper place. Repeat until array is sorted. This is also slow.



Fundamentals of Computer Algorithms

159

#include <stdlib.h>
#include <stdio.h>
#define uint32 unsigned int
typedef int (*CMPFUN)(int, int);
void ArraySort(int This[], CMPFUN fun_ptr,

uint32 the_len)
{

/* selection sort */
uint32 indx;
uint32 indx2;
uint32 large_pos;
int temp;
int large;
if (the_len ⇐⇐⇐⇐⇐ 1)
return;
for (indx = the_len – 1; indx > 0; —indx)
{

/* find the largest number, then put it at
the end of the array */
large = This[0];
large_pos = 0;
for (indx2 = 1; indx2 ⇐⇐⇐⇐⇐ indx; ++indx2)

{
temp = This[indx2];
if ((*fun_ptr)(temp,large) > 0)
{

large = temp;
large_pos = indx2;
}

}
This[large_pos] = This[indx];
This[indx] = large;
}

}
#define ARRAY_SIZE 14
int my_array[ARRAY_SIZE];
void fill_array()
{
int indx;
for (indx=0; indx < ARRAY_SIZE; ++indx)

{
my_array[indx] = rand();
}
/* my_array[ARRAY_SIZE - 1] = ARRAY_SIZE/

3; */



Fundamentals of Computer Algorithms

160

}
int cmpfun(int a, int b)
{
if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}
int main()
{

int indx;
int indx2;
for (indx2 = 0; indx2 < 80000; ++indx2)
{

fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);
for (indx=1; indx < ARRAY_SIZE; ++indx)
{

if (my_array[indx - 1] > my_array[indx])
{
printf(“bad sort\n”);
return(1);

}
}

}
return(0);

}

INSERTION SORT
Scan successive elements for out of order item, then insert

the item in the proper place. Sort small array fast, big array

very slowly.
#include <stdlib.h>
#include <stdio.h>
#define uint32 unsigned int
typedef int (*CMPFUN)(int, int);
void ArraySort(int This[], CMPFUN fun_ptr,

uint32 the_len)
{

/* insertion sort */
uint32 indx;



Fundamentals of Computer Algorithms

161

int cur_val;
int prev_val;

if (the_len Ü 1)
return;

prev_val = This[0];
for (indx = 1; indx < the_len; ++indx)
{
cur_val = This[indx];
if ((*fun_ptr)(prev_val, cur_val) > 0)
{
/* out of order: array[indx-1] > array[indx]

*/
uint32 indx2;
This[indx] = prev_val;/* move up the larger

item first */
/* find the insertion point for the smaller

item */
for (indx2 = indx - 1; indx2 > 0;)
{

int temp_val = This[indx2 - 1];
if ((*fun_ptr)(temp_val, cur_val) > 0)
{

This[indx2—] = temp_val;
/* still out of order, move up 1 slot to

make room */
}
else
break;

}
This[indx2] = cur_val;/* insert the smaller

item right here */
}
else
{

/* in order, advance to next element */
prev_val = cur_val;
}

}
}

#define ARRAY_SIZE 14

int my_array[ARRAY_SIZE];

uint32 fill_array()



Fundamentals of Computer Algorithms

162

{
int indx;
uint32 checksum = 0;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{

checksum += my_array[indx] = rand();
}
return checksum;
}
int cmpfun(int a, int b)
{

if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}
int main()
{

int indx;
int indx2;
uint32 checksum1;
uint32 checksum2;
for (indx2 = 0; indx2 < 80000; ++indx2)
{

checksum1 = fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);
for (indx=1; indx < ARRAY_SIZE; ++indx)
{

if (my_array[indx - 1] > my_array[indx])
{
printf(“bad sort\n”);
return(1);

}
}
checksum2 = 0;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{

checksum2 += my_array[indx];
}
if (checksum1 != checksum2)
{

printf(“bad checksum%d%d\n”, checksum1,
checksum2);
}

}



Fundamentals of Computer Algorithms

163

return(0);
}

QUICK SORT
Partition array into two segments. The first segment all

elements are less than or equal to the pivot value. The second

segment all elements are greater or equal to the pivot value.

Sort the two segments recursively. Quicksort is fastest on

average, but sometimes unbalanced partitions can lead to

very slow sorting.
#include <stdlib.h>
#include <stdio.h>
#define INSERTION_SORT_BOUND 16/* boundary

point to use insertion sort */
#define uint32 unsigned int
typedef int (*CMPFUN)(int, int);
/* explain function
* Description:
* fixarray::Qsort() is an internal subroutine

that implements quick sort.
*
* Return Value: none
*/

void Qsort(int This[], CMPFUN fun_ptr, uint32
first, uint32 last)
{
uint32 stack_pointer = 0;
int first_stack[32];
int last_stack[32];
for (;;)

{
if (last - first ⇐⇐⇐⇐⇐ INSERTION_SORT_BOUND)
{

/* for small sort, use insertion sort
*/

uint32 indx;
int prev_val = This[first];
int cur_val;
for (indx = first + 1; indx Ü last;

++indx)
{
cur_val = This[indx];



Fundamentals of Computer Algorithms

164

if ((*fun_ptr)(prev_val, cur_val) > 0)
{
/* out of order: array[indx-1] > array[indx]

*/
uint32 indx2;

This[indx] = prev_val;/* move up the larger
item first */

/* find the insertion point for the smaller
item */
for (indx2 = indx - 1; indx2 > first;)
{

int temp_val = This[indx2 - 1];
if ((*fun_ptr)(temp_val, cur_val) > 0)
{

This[indx2—] = temp_val;
/* still out of order, move up 1 slot

to make room */
}
else

break;
}
This[indx2] = cur_val;/* insert the smaller

item right here */
}
else
{

/* in order, advance to next element */
prev_val = cur_val;

}
}

}
else
{

int pivot;
/* try quick sort */
{
int temp;
uint32 med = (first + last) >> 1;
/* Choose pivot from first, last, and median

position. */
/* Sort the three elements. */
temp = This[first];
if ((*fun_ptr)(temp, This[last]) > 0)
{

This[first] = This[last]; This[last] =



Fundamentals of Computer Algorithms

165

temp;
}
temp = This[med];
if ((*fun_ptr)(This[first], temp) > 0)

{
This[med] = This[first]; This[first] =

temp;
}
temp = This[last];
if ((*fun_ptr)(This[med], temp) > 0)
{

This[last] = This[med]; This[med] = temp;
}
pivot = This[med];

}
{

uint32 up;
{

uint32 down;
/* First and last element will be loop

stopper. */
/* Split array into two partitions. */
down = first;
up = last;
for (;;)
{

do
{

++down;
} while ((*fun_ptr)(pivot, This[down]) > 0);
 do
 {

—up;
} while ((*fun_ptr)(This[up], pivot) > 0);
 if (up > down)
 {

int temp;
/* interchange L[down] and L[up] */
temp = This[down]; This[down]= This[up];

This[up] = temp;
}
 else
 break;
}
}



Fundamentals of Computer Algorithms

166

{
 uint32 len1;/* length of first segment */
uint32 len2;/* length of second segment

*/
 len1 = up - first + 1;
len2 = last - up;
/* stack the partition that is larger */
if (len1 Þ len2)
{

first_stack[stack_pointer] = first;
last_stack[stack_pointer++] = up;

 first = up + 1;
/* tail recursion elimination of
* Qsort(This,fun_ptr,up + 1,last)
*/

}
else

{
first_stack[stack_pointer] = up + 1;
last_stack[stack_pointer++] = last;

 last = up;
/* tail recursion elimination of
* Qsort(This,fun_ptr,first,up)
*/

}
}
continue;

}
/* end of quick sort */
}
if (stack_pointer > 0)
{

/* Sort segment from stack. */
first = first_stack[—stack_pointer];
last = last_stack[stack_pointer];

}
else

break;
}/* end for */

}
void ArraySort(int This[], CMPFUN fun_ptr,
uint32 the_len)
{
Qsort(This, fun_ptr, 0, the_len - 1);

}



Fundamentals of Computer Algorithms

167

#define ARRAY_SIZE 250000
int my_array[ARRAY_SIZE];
uint32 fill_array()
{
int indx;
uint32 checksum = 0;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{

checksum += my_array[indx] = rand();
}
return checksum;

}
int cmpfun(int a, int b)
{
if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}
int main()
{

int indx;
uint32 checksum1;
uint32 checksum2 = 0;
checksum1 = fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);
for (indx=1; indx < ARRAY_SIZE; ++indx)
{

if (my_array[indx - 1] > my_array[indx])
{

printf(“bad sort\n”);
return(1);
}

}
for (indx=0; indx < ARRAY_SIZE; ++indx)
{
checksum2 += my_array[indx];

}
if (checksum1 != checksum2)
{

printf(“bad checksum%d%d\n”, checksum1,
checksum2);

return(1);



Fundamentals of Computer Algorithms

168

}
return(0);

}

MERGE SORT
Start from two sorted runs of length 1, merge into a single

run of twice the length. Repeat until a single sorted run is

left. Mergesort needs N/2 extra buffer. Performance is second

place on average, with quite good speed on nearly sorted

array. Mergesort is stable in that two elements that are

equally ranked in the array will not have their relative

positions flipped.
#include <stdlib.h>
#include <stdio.h>
#define uint32 unsigned int

typedef int (*CMPFUN)(int, int);
#define INSERTION_SORT_BOUND 8/* boundary

point to use insertion sort */
void ArraySort(int This[], CMPFUN fun_ptr,

uint32 the_len)
{
uint32 span;
uint32 lb;
uint32 ub;
uint32 indx;
uint32 indx2;
if (the_len Ü 1)
return;

span = INSERTION_SORT_BOUND;
/* insertion sort the first pass */
{

int prev_val;
int cur_val;
int temp_val;
for (lb = 0; lb < the_len; lb += span)
{

if ((ub = lb + span) > the_len) ub =
the_len;

prev_val = This[lb];
for (indx = lb + 1; indx < ub; ++indx)
{



Fundamentals of Computer Algorithms

169

cur_val = This[indx];
if ((*fun_ptr)(prev_val, cur_val) > 0)
{

/* out of order: array[indx-1] >
array[indx] */

This[indx] = prev_val;/* move up the
larger item first */
/* find the insertion point for the

smaller item */
for (indx2 = indx - 1; indx2 > lb;)

{
temp_val = This[indx2 - 1];
if ((*fun_ptr)(temp_val, cur_val) >

0)
{

This[indx2—] = temp_val;
/* still out of order, move up 1

slot to make room */
}

else
break;

}
This[indx2] = cur_val;/* insert the

smaller item right here */
}
else
{

/* in order, advance to next element */
prev_val = cur_val;

}
}

}
}
/* second pass merge sort */
{
uint32 median;
int* aux;
aux = (int*) malloc(sizeof(int) * the_len/

2);

while (span < the_len)
{

/* median is the start of second file */
for (median = span; median < the_len;)
{



Fundamentals of Computer Algorithms

170

indx2 = median - 1;
if ((*fun_ptr)(This[indx2], This[median])

> 0)
{

/* the two files are not yet sorted */
if ((ub = median + span) > the_len)
{

ub = the_len;
}
/* skip over the already sorted largest

elements */
while ((*fun_ptr)(This[—ub], This[indx2])

⇒⇒⇒⇒⇒ 0)
{
}
/* copy second file into buffer */
for (indx = 0; indx2 < ub; ++indx)
{

*(aux + indx) = This[++indx2];
}
—indx;

indx2 = median - 1;
lb = median - span;
/* merge two files into one */
for (;;)

{
if ((*fun_ptr)(*(aux + indx), This[indx2])

⇒⇒⇒⇒⇒ 0)
{

This[ub—] = *(aux + indx);
if (indx > 0) —indx;
else
{
/* second file exhausted */
for (;;)
{

This[ub—] = This[indx2];
if (indx2 > lb) —indx2;

 else goto mydone;/* done */
}

}
}
else
{

This[ub—] = This[indx2];



Fundamentals of Computer Algorithms

171

if (indx2 > lb) —indx2;
else
{

/* first file exhausted */
for (;;)
{

This[ub—] = *(aux + indx);
if (indx > 0) —indx;
else goto mydone;/* done */

}
}

}
}

}
mydone:
median += span + span;
}
span += span;

}
free(aux);

}
}
#define ARRAY_SIZE 250000
int my_array[ARRAY_SIZE];
uint32 fill_array()
{

int indx;
uint32 sum = 0;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{

sum += my_array[indx] = rand();
}
return sum;

}

int cmpfun(int a, int b)
{

if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}
int main()



Fundamentals of Computer Algorithms

172

{
int indx;
uint32 checksum, checksum2;
checksum = fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);
checksum2 = my_array[0];
for (indx=1; indx < ARRAY_SIZE; ++indx)
{

checksum2 += my_array[indx];
if (my_array[indx - 1] > my_array[indx])
{

printf(“bad sort\n”);
return(1);

}
}
if (checksum != checksum2)
{

printf(“bad checksum%d%d\n”, checksum,
checksum2);

return(1);
}
return(0);
}

HEAP SORT
Form a tree with parent of the tree being larger than its

children. Remove the parent from the tree successively. On

average, Heapsort is third place in speed. Heapsort does not

need extra buffer, and performance is not sensitive to initial

distributions.
#include <stdlib.h>
#include <stdio.h>
#define uint32 unsigned int
typedef int (*CMPFUN)(int, int);
void ArraySort(int This[], CMPFUN fun_ptr,

uint32 the_len)
{

/* heap sort */
uint32 half;
uint32 parent;
if (the_len ⇐⇐⇐⇐⇐ 1)

return;



Fundamentals of Computer Algorithms

173

half = the_len >> 1;
for (parent = half; parent Þ 1; —parent)

{
int temp;
int level = 0;
uint32 child;
child = parent;
/* bottom-up downheap */
/* leaf-search for largest child path */
while (child ⇐⇐⇐⇐⇐ half)
{

++level;
child += child;
if ((child < the_len) &&
((*fun_ptr)(This[child], This[child - 1])
> 0))

++child;
}
/* bottom-up-search for rotation point */
temp = This[parent - 1];
for (;;)

{
if (parent == child)

break;
if ((*fun_ptr)(temp, This[child - 1]) ⇐⇐⇐⇐⇐

0)
break;

child > ⇒ ⇒ ⇒ ⇒ ⇒ 1;
—level;

}
/* rotate nodes from parent to rotation point

*/
for (;level > 0; —level)
{

This[(child >> level) - 1] =
This[(child >> (level - 1)) - 1];

}
This[child - 1] = temp;

}
—the_len;

do
{

int temp;
int level = 0;
uint32 child;



Fundamentals of Computer Algorithms

174

/* move max element to back of array */
temp = This[the_len];
This[the_len] = This[0];
This[0] = temp;
child = parent = 1;
half = the_len >> 1;
/* bottom-up downheap */
/* leaf-search for largest child path */
while (child ⇐⇐⇐⇐⇐ half)
{

++level;
child += child;
if ((child < the_len) &&

((*fun_ptr)(This[child], This[child - 1])
> 0))

++child;
}
/* bottom-up-search for rotation point */
for (;;)
{
if (parent == child)

break;
if ((*fun_ptr)(temp, This[child - 1]) ⇐⇐⇐⇐⇐ 0)

break;
child >⇒⇒⇒⇒⇒ 1;
—level;

}
/* rotate nodes from parent to rotation point

*/
for (;level > 0; —level)
{
This[(child >> level) - 1] =

This[(child >> (level - 1)) - 1];
}
This[child - 1] = temp;
} while (—the_len ⇒⇒⇒⇒⇒ 1);

}
#define ARRAY_SIZE 250000
int my_array[ARRAY_SIZE];
void fill_array()
{

int indx;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{
my_array[indx] = rand();



Fundamentals of Computer Algorithms

175

}
}

int cmpfun(int a, int b)
{

if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}
int main()

{
int indx;
fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);
for (indx=1; indx < ARRAY_SIZE; ++indx)
{

if (my_array[indx - 1] > my_array[indx])
{
printf(“bad sort\n”);
return(1);

}
}
return(0);

}

SHELL SORT
Sort every Nth element in an array using insertion sort.

Repeat using smaller N values, until N = 1. On average,

Shellsort is fourth place in speed. Shellsort may sort some

distributions slowly.
#include <stdlib.h>
#include <stdio.h>
#define uint32 unsigned int
typedef int (*CMPFUN)(int, int);
/* Calculated from the combinations of 9 *

(4^n - 2^n) + 1,
* and 4^n - 3 * 2^n + 1
*/
uint32 hop_array[] =
{



Fundamentals of Computer Algorithms

176

1,
5,
19,
41,
109,
209,
505,
929,
2161,
3905,
8929,
16001,
36289,
64769,
146305,
260609,
587521,
1045505,
2354689,
4188161,
9427969,
16764929,
37730305,
67084289,
150958081,
268386305,
603906049,
1073643521,
2415771649,
0xffffffff};
void ArraySort(int This[], CMPFUN fun_ptr,

uint32 the_len)
{

/* shell sort */
int level;
for (level = 0; the_len > hop_array[level];

++level);
do
{

uint32 dist;
uint32 indx;
dist = hop_array[—level];
for (indx = dist; indx < the_len; ++indx)
{

int cur_val;



Fundamentals of Computer Algorithms

177

uint32 indx2;
cur_val = This[indx];
indx2 = indx;
do
{

int early_val;
early_val = This[indx2 - dist];
if ((*fun_ptr)(early_val, cur_val)

⇐⇐⇐⇐⇐ 0)
break;

This[indx2] = early_val;
indx2 -= dist;

} while (indx2 ⇒⇒⇒⇒⇒ dist);
This[indx2] = cur_val;

}
} while (level Þ 1);

}
#define ARRAY_SIZE 250000
int my_array[ARRAY_SIZE];
uint32 fill_array()
{

int indx;
uint32 checksum = 0;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{

checksum += my_array[indx] = rand();
}
return checksum;

}
int cmpfun(int a, int b)

{
if (a > b)

return 1;
else if (a < b)
return -1;

else
return 0;

}
int main()
{
int indx;
uint32 sum1;
uint32 sum2;
sum1 = fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);



Fundamentals of Computer Algorithms

178

for (indx=1; indx < ARRAY_SIZE; ++indx)
{

if (my_array[indx - 1] > my_array[indx])
{

printf(“bad sort\n”);
return(1);

}
}
for (indx = 0; indx < ARRAY_SIZE; ++indx)
{

sum2 += my_array[indx];
}
if (sum1 != sum2)
{

printf(“bad checksum\n”);
return(1);

}
return(0);

}

COMBO SORT
Sorting algorithms can be mixed and matched to yield the

desired properties. We want fast average performance, good

worst case performance, and no large extra storage

requirement. We can achieve the goal by starting with the

Quicksort (fastest on average). We modify Quicksort by sorting

small partitions by using Insertion Sort (best with small

partition). If we detect two partitions are badly balanced, we

sort the larger partition by Heapsort (good worst case

performance). Of course we cannot undo the bad partitions,

but we can stop the possible degenerate case from continuing

to generate bad partitions.
#include <stdlib.h>
#include <stdio.h>
#define uint32 unsigned int
typedef int (*CMPFUN)(int, int);
void HelperHeapSort(int This[], CMPFUN

fun_ptr, uint32 first, uint32 the_len)
{



Fundamentals of Computer Algorithms

179

/* heap sort */
uint32 half;
uint32 parent;
if (the_len Ü 1)

return;
half = the_len >> 1;
for (parent = half; parent ⇒⇒⇒⇒⇒ 1; —parent)
{

int temp;
int level = 0;
uint32 child;
child = parent;
/* bottom-up downheap */

/* leaf-search for largest child path */
while (child ⇐⇐⇐⇐⇐ half)

{
++level;
child += child;

if ((child < the_len) &&
((*fun_ptr)(This[first + child],

This[first + child - 1]) > 0))
++child;

}
/* bottom-up-search for rotation point */
temp = This[first + parent - 1];
for (;;)
{

if (parent == child)
break;

if ((*fun_ptr)(temp, This[first + child -
1]) ⇐⇐⇐⇐⇐ 0)

break;
child >⇒⇒⇒⇒⇒ 1;
—level;

}
/* rotate nodes from parent to rotation point

*/
for (;level > 0; —level)
{

This[first + (child >> level) - 1] =
This[first + (child >> (level - 1)) -

1];
}
This[first + child - 1] = temp;

}



Fundamentals of Computer Algorithms

180

—the_len;
do
{

int temp;
int level = 0;
uint32 child;
/* move max element to back of array */
temp = This[first + the_len];
This[first + the_len] = This[first];
This[first] = temp;
child = parent = 1;
half = the_len >> 1;
/* bottom-up downheap */

/* leaf-search for largest child path */
while (child ⇐⇐⇐⇐⇐ half)
{
++level;
child += child;
if ((child < the_len) &&

((*fun_ptr)(This[first + child],
This[first + child - 1]) > 0))

++child;
}
/* bottom-up-search for rotation point */
for (;;)
{

if (parent == child)
break;

if ((*fun_ptr)(temp, This[first + child -
1]) ⇐⇐⇐⇐⇐ 0)
break;

child >⇒⇒⇒⇒⇒ 1;
—level;

}
/* rotate nodes from parent to rotation point

*/
for (;level > 0; —level)
{
This[first + (child >> level) - 1] =

This[first + (child >> (level - 1)) - 1];
}
This[first + child - 1] = temp;
} while (—the_len Þ 1);

}
#define INSERTION_SORT_BOUND 16/* boundary point



Fundamentals of Computer Algorithms

181

to use insertion sort */
/* explain function
* Description:
* fixarray::Qsort() is an internal subroutine t h a t
implements quick sort.
*
* Return Value: none
*/
void Qsort(int This[], CMPFUN fun_ptr, uint32
first, uint32 last)
{

uint32 stack_pointer = 0;
int first_stack[32];
int last_stack[32];
for (;;)

{
if (last - first Ü INSERTION_SORT_BOUND)
{

/* for small sort, use insertion sort */
uint32 indx;
int prev_val = This[first];
int cur_val;
for (indx = first + 1; indx ⇐⇐⇐⇐⇐ last;

++indx)
{
cur_val = This[indx];
if ((*fun_ptr)(prev_val, cur_val) > 0)

{
uint32 indx2;
/* out of order */
This[indx] = prev_val;
for (indx2 = indx - 1; indx2 > first; —

indx2)
{

int temp_val = This[indx2 - 1];
if ((*fun_ptr)(temp_val, cur_val) > 0)

{
This[indx2] = temp_val;

}
else

break;
}

This[indx2] = cur_val;
}
else



Fundamentals of Computer Algorithms

182

{
/* in order, advance to next element */
prev_val = cur_val;
}

}
}
else
{

int pivot;
/* try quick sort */

{
int temp;
uint32 med = (first + last) >> 1;
/* Choose pivot from first, last, and median

position. */
/* Sort the three elements. */
temp = This[first];
if ((*fun_ptr)(temp, This[last]) > 0)

{
This[first] = This[last]; This[last] = temp;

}
temp = This[med];
if ((*fun_ptr)(This[first], temp) > 0)
{

This[med] = This[first]; This[first] = temp;
}
temp = This[last];
if ((*fun_ptr)(This[med], temp) > 0)
{
This[last] = This[med]; This[med] = temp;

}
pivot = This[med];

}
{

uint32 up;
{

uint32 down;
/* First and last element will be loop

stopper. */
/* Split array into two partitions. */
down = first;
up = last;
for (;;)

 {
do



Fundamentals of Computer Algorithms

183

{
++down;

} while ((*fun_ptr)(pivot, This[down]) >
0);

 do
{

—up;
} while ((*fun_ptr)(This[up], pivot) >

0);

if (up > down)
{

int temp;
/* interchange L[down] and L[up] */
temp = This[down]; This[down]=

This[up]; This[up] = temp;
}
else

break;
}

}
{

uint32 len1;/* length of first
segment */

uint32 len2;/* length of second
segment */

len1 = up - first + 1;
len2 = last - up;
if (len1 ⇒⇒⇒⇒⇒ len2)
{

if ((len1 >> 5) > len2)
{

/* badly balanced partitions, heap
sort first segment */

HelperHeapSort(This, fun_ptr,
first,len1);

}
else
{

first_stack[stack_pointer] = first;
/* stack first segment */
last_stack[stack_pointer++] = up;

}
first = up + 1;



Fundamentals of Computer Algorithms

184

/* tail recursion elimination of
* Qsort(This,fun_ptr,up + 1,last)
*/

}
else

{
if ((len2 >> 5) > len1)
{

/* badly balanced partitions, heap
sort second segment */
HelperHeapSort(This, fun_ptr, up

+ 1, len2);
}
else
{

first_stack[stack_pointer] = up +1;
/* stack second segment */

last_stack[stack_pointer++] = last;
}
last = up;
/* tail recursion elimination of
* Qsort(This,fun_ptr,first,up)
*/

}
}

continue;
}
/* end of quick sort */

}
if (stack_pointer > 0)
{

/* Sort segment from stack. */
first = first_stack[—stack_pointer];
last = last_stack[stack_pointer];

}
else

break;
}/* end for */

}
void ArraySort(int This[], CMPFUN fun_ptr,
uint32 the_len)
{
Qsort(This, fun_ptr, 0, the_len - 1);

}
#define ARRAY_SIZE 250000



Fundamentals of Computer Algorithms

185

int my_array[ARRAY_SIZE];
void fill_array()
{
int indx;
for (indx=0; indx < ARRAY_SIZE; ++indx)
{

my_array[indx] = rand();
}

}
int cmpfun(int a, int b)
{

if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}
int main()
{
int indx;
fill_array();
ArraySort(my_array, cmpfun, ARRAY_SIZE);
for (indx=1; indx < ARRAY_SIZE; ++indx)
{

if (my_array[indx - 1] > my_array[indx])
{

printf(“bad sort\n”);
return(1);

}
}
return(0);

}


	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Introduction to Algorithm
	Chapter 2 Computer Algorithms
	Chapter 3 Computational Complexity Theory
	Chapter 4 Algorithmic Efficiency
	Chapter 5 Sorting of Algorithms

