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1

An Introduction to 3D
Computer Graphics

3D computer graphics (in contrast to 2D computer

graphics) are graphics that utilize a three-dimensional

representation of geometric data that is stored in the

computer for the purposes of performing calculations and

rendering 2D images. Such images may be for later display

or for real-time viewing. Despite these differences, 3D

computer graphics rely on many of the same algorithms as

2D computer vector graphics in the wire frame model and

2D computer raster graphics in the final rendered display.

In computer graphics software, the distinction between

2D and 3D is occasionally blurred; 2D applications may use

3D techniques to achieve effects such as lighting, and

primarily 3D may use 2D rendering techniques. 3D computer

graphics are often referred to as 3D models. Apart from the

rendered graphic, the model is contained within the graphical
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data file. However, there are differences. A 3D model is the

mathematical representation of any three-dimensional object

(either inanimate or living). A model is not technically a

graphic until it is visually displayed. Due to 3D printing, 3D

models are not confined to virtual space.

A model can be displayed visually as a two-dimensional

image through a process called 3D rendering, or used in

non--graphical computer simulations and calculations.

3D computer graphics rely on many of the same algorithms

as 2D computer vector graphics in the wire-frame model and

2D computer raster graphics in the final rendered display.

In computer graphics software, the distinction between 2D

and 3D is occasionally blurred; 2D applications may use 3D

techniques to achieve effects such as lighting, and 3D may

use 2D rendering techniques.

3D computer graphics are often referred to as 3D models.

Apart from the rendered graphic, the model is contained

within the graphical data file. However, there are differences.

A 3D model is the mathematical representation of any three-

dimensional object. A model is not technically a graphic until

it is displayed. Due to 3D printing, 3D models are not confined

to virtual space. A model can be displayed visually as a two-

dimensional image through a process called 3D rendering,

or used in non--graphical computer simulations and

calculations.

3D computer graphics creation falls into three basic phases:

• 3D Modelling: The process of forming a computer

model of an object’s shape

• Layout and Animation: The motion and placement

of objects within a scene
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• 3D Rendering: The computer calculations that, based

on light placement, surface types, and other

qualities, generate the image

MODELLING

3D MODELLING
Modelling is the process of taking a shape and moulding it

into a completed 3D mesh. The most typical means of creating

a 3D model is to take a simple object, called a primitive, and

extend or “grow” it into a shape that can be refined and

detailed. Primitives can be anything from a single point (called

a vertex), a two-dimensional line (an edge), a curve (a spline),

to three dimensional objects (faces or polygons). Using the

specific features of your chosen 3D software, each one of

these primitives can be manipulated to produce an object.

When you create a model in 3D, you’ll usually learn one

method to create your model, and go back to it time and

again when you need to create new models. There are three

basic methods you can use to create a 3D model, and 3D

artists should understand how to create a model using each

technique.

• Spline or Patch Modelling: A spline is a curve in 3D

space defined by at least two control points. The

most common splines used in 3D art are bezier

curves and NURBS (the software Maya has a strong

NURBS modelling foundation.) Using splines to

create a model is perhaps the oldest, most traditional

form of 3D modelling available. A cage of splines is

created to form a “skeleton” of the object you want
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to create. The software can then create a patch of

polygons to extend between two splines, forming a

3D skin around the shape. Spline modelling is not

used very often these days for character creation,

due to how long it takes to create good models. The

models that are produced usually aren’t useful for

animation without a lot of modification.

Spline modelling is used primarily for the creation
of hard objects, like cars, buildings, and furniture.
Splines are extremely useful when creating these
objects, which may be a combination of angular and
curved shapes. When creating a 3D scene that
requires curved shapes, spline modelling should be
your first choice.

• Box Modelling: Box modelling is possibly the most

popular technique, and bears a lot of resemblance

to traditional sculpting. In box modelling, one starts

with a primitive (usually a cube) and begins adding

detail by “slicing” the cube into pieces and extending

faces of the cube to gradually create the form you’re

after. People use box modelling to create the basic

shape of the model. Once practiced, the technique

is very quick to get acceptable results. The downside

is that the technique requires a lot of tweaking of

the model along the way. Also, it is difficult to create

a model that has a surface topology that lends well

to animation. Box modelling is useful as a way to

create organic models, like characters. Box modellers

can also create hard objects like buildings, however

precise curved shapes may be more difficult to create

using this technique.
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• Poly Modelling/ edge Extrusion: While it’s not the

easiest to get started with, poly modelling is perhaps

the most effective and precise technique. In poly

modelling, one creates a 3D mesh point-by-point,

face-by-face. Often one will start out with a single

quad (a 3D object consisting of 4 points) and extrude

an edge of the quad, creating a second quad attached

to the first. The 3D model is created gradually in

this way. While poly modelling is not as fast as box

modelling, it requires less tweaking of the mesh to

get it “just right,” and you can plan out the topology

for animation ahead of time. Poly modellers use the

technique to create either organic or hard objects,

though poly modelling is best suited for organic

models.

A Workflow that Works The workflow you choose to create

a model will largely depend on how comfortable you are with

a given technique, what object you’re creating, and what your

goals are for the final product. Someone who is creating an

architectural scene, for example, may create basic models

with cubes and other simple shapes to create an outline of

the finished project. Meshes can then be refined or replaced

with more detailed objects as you progress through the

project. This is an organized, well-planned way to create a

scene; it is a strategy used by professionals that makes scene

creation straightforward. Beginners, on the other hand, tend

to dive in headfirst and work on the most detailed objects

first. This is a daunting way to work, and can quickly lead to

frustration and overwhelm. Remember, sketch first, then

refine. Likewise, when creating an organic model, beginners
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tend to start with the most detailed areas first, and flesh out

the remaining parts later, a haphazard way to create a

character. This may be one reason why box modelling has

grown to be so widely popular. A modeller can easily create

the complete figure before refining the details, like eyes, lips,

and ears. Perhaps the best strategy is to use a hybrid workflow

when creating organic models. A well planned organic model

is created using a combination of box modelling and poly

modelling. The arms, legs, and torso can be sketched out

with box modelling, while the fine details of the head, hands,

and feet are poly modelled. This is a compromise professional

modellers seek which prevents them from getting bogged

down in details. It can make the difference between a

completed character, and one that is never fleshed out beyond

the head. Beginners would be wise to follow this advice. Mesh

Topology Another aspect of proper workflow is creating a

model with an ideal 3D mesh topology. Topology optimization

is usually associated with creating models used in animation.

Models created without topology that flows in a smooth,

circular pattern, may not animate correctly, which is why it

is important to plan ahead when creating any 3D object that

will be used for animation. The most frequently discussed

topology is the proper creation or placement of edgeloops.

An edgeloop is a ring of polygons placed in an area where the

model may deform, as in the case of animation.

These rings of polygons are usually placed around areas

where muscles might be, such as in the shoulder or elbow.

Edegeloop placement is critical when creating faces. When

edgeloops are ignored, models will exhibit “tearing” when

animated, and the model will need to be reworked or scrapped
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altogether in favour of a properly-planned model. Next Steps

The next step to creating great models is simply to practice

and examine the work of artists you admire. Some of the

best 3D modellers are also fantastic pencil-and-paper artists.

It will be well worth your time to practice drawing, whether

you’re a character creator or a wanna-be architect.

Good modelling requires a lot of dedication. You’ll need to

thoroughly understand the software you’re using, and the

principles of good 3D model creation laid out aboe. Character

artists will need to learn proportion and anatomy. The model

describes the process of forming the shape of an object. The

two most common sources of 3D models are those that an

artist or engineer originates on the computer with some kind

of 3D modelling tool, and models scanned into a computer

from real-world objects. Models can also be produced

procedurally or via physical simulation. Basically, a 3D model

is formed from points called vertices (or vertexes) that define

the shape and form polygons. A polygon is an area formed

from at least three vertexes (a triangle). A four-point polygon

is a quad, and a polygon of more than four points is an n-

gon. The overall integrity of the model and its suitability to

use in animation depend on the structure of the polygons.

LAYOUT AND ANIMATION
Before rendering into an image, objects must be placed

(laid out) in a scene. This defines spatial relationships between

objects, including location and size. Animation refers to the

temporal description of an object, i.e. how it moves and

deforms over time. Popular methods include keyframing,

inverse kinematics, and motion capture. These techniques
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are often used in combination. As with modelling, physical

simulation also specifies motion.

3D RENDERING
For those of us used to working in Photoshop and

Illustrator it is important to realise that all that work is 2D,

or two-dimensional. Photographs of real objects or painting

them from scratch in Painter, they are still 2D. This is because

we are either working with a pixel representation or flat

objects, like lines, text, paths, etc. This is true even if we are

attempting to simulate a 3D look. In 3D work, or three

dimensions, we are producing a description of real objects

with depth, scenes comprising many objects and the spatial

relationships between them, along with the required lighting

arrangements and viewing characteristics. The end result of

3D work is still usually 2D. This is either a still image or an

animation, but it’s still made up of pixels. In an ideal world

our output would be three-dimensional too, as in a

holographic projection or even a sculpture. This is a limitation

of the output technologies that we have to work with at

present, rather than an inherent characteristic of 3D work.

Since, 3D printers exist (they are actually more like a

numerically controlled milling machine in some ways), as do

using LCD shutter glasses for direct 3D display, working

completely in 3D is possible, just not the normal use.

Deep down, usually buried deep inside the software, our

3D work consists of rather mathematical descriptions of our

scenes, such as place a sphere of radius k, with it’s centre at

x, y, z point in space with a surface texture like stone.

Thankfully, we rarely have to deal with the numerical level
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unless we choose to. There are good reasons to dive down to

the numerical level at times, such as exact placement. 3D

software is largely click and drag operation these days for

most common operations. It is important to remember that

we are trying to represent things in the three-dimensional

world that we are used to living in. Just as navigating around

the real world can get you lost, so is it easy to become

disoriented in 3D software.

KEEPING ORIENTED IN 3D
In 3D software the convention is to use a set of three

coordinates, x, y and z. Co-ordinates can be absolute or

relative. Absolute coordinates apply to the entire world that

we are creating in the computer. Everything is specified

relative to a universal origin, the centre of your digital

universe, with coordinates of 0,0,0. Positive x values may lie

to the right, negative ones to the left. Positive y values may

be up and negative ones down from the origin. Positive z

may be in front of and negative ones behind the origin.

Absolute coordinates are used to position objects in our scene,

to place cameras and lights, etc. Relative coordinates have

their origin somewhere other than the world origin. For

instance, in creating an object made up of many parts it

may be more convenient to think in terms of positions relative

to what you wish to consider the centre of the object.

How the software works can have an impact on how easy

it is to keep oriented. Some Programmes, like Bryce, display

only one window, so you only have one view of your objects/

scene at a time. Other Programmes, like Vue d’Esprit or

Lightwave, by default give you four views: a front, left and
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top view plus the view through the main camera. This last

solution is generally preferred but does tend to work best

when you are using a large, high-resolution screen. This is

why most of the consumer level Programmes use the one

view approach, assuming home users have small screens,

whilst professional software takes the four-view approach.

THE STAGES OF 3D WORK
The following are the main stages of creating a 3D work:

• Create objects;

• Place objects in relation to each other in scene;

• Place light sources;

• Place the camera or observer;

• Add textures to objects;

• Add atmospheric effects;

• Render to produce a final image or animation movie.

The exact order of this sequence is partly up to you and

partly a function of the software that you are using. For

instance, some software separates the creation of objects

and their placing in the scene (as in Lightwave), others

combine this into one step (as in Bryce). Likewise, sometimes

the textures are placed on objects when you create them.

But they can also be added at the scene creation stage.

Each person gradually finds their own order of working that

suits their needs and the needs of the specific project. For

projects involving many people there may be different

order, or indeed some stages my be performed in parallel,

than for projects where you are doing the whole thing. The

order of steps can af fect the performance

of your software. The sequence given tends to produce the
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least delays with most software, for reasons that will become

clear as we progress through this series.

Creating objects and placing them in the scene is often

called ‘modelling’. This is because in creating an object and

then a scene we are building a ‘model’ of it in the computer.

Some software even separates the modelling function from

the rest of the software by splitting the process into two

Programmes. It is quite possible to do the modelling in on

manufacturer’s Programme and the rest of the process in

another. I quite frequently use three different Programmes

for this process, making use of the strengths of each, these

being Poser and Byrce and Lightwave.

Light sources and a camera are necessary if you are to see

anything of the wonderful model you have created. Light

sources and cameras can be treated in much the same way

as any other object. Light sources will have their own, special

characteristics though, like the type of light source, whether

it casts shadows, its colour, etc. The camera also has special

characteristics, like its field of view, resolution of the resulting

image(s), etc.

Rendering is the process of determining what the scene

looks like from the camera position taking into account all

the characteristics of the objects, light sources and their

interaction. Rendering is usually a time consuming process

for any scene of reasonable complexity. This can vary from a

‘go get a cup of coffee’ to ‘lunch’ up to a whole week, or more.

This is one reason why high complexity rendering of still

images or animations tends to require fast computers and

lots of memory. One reason that the order with which you

create your image(s) is important is that you will usually do
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lots of little test renders along the way. Thus you want to

leave the details which really slow the rendering down to as

late in the sequence as possible.

WHY WOULD WE WANT TO USE 3D
We need to represent solid objects, whether in a still image

for an ad or an animation to go in a movie. Since, real world

objects are 3D, there will be times when a 3D representation

is needed. Sure, we can paint or airbrush a 3D approximation

but it will have a particular look, assuming that we have the

skill level to create it. Working with 3D software creates a

different look. This can vary from one with a very computer

feel to a photorealistic one, depending on the software and

what we do with it.

The major advantage of working with 3D software is that

it is easy to produce changes. To change the viewpoint only

requires that we move the camera and render. To change

the lighting or reposition objects is equally easy. So having

created a scene once, we can produce many different images

from it. This is like photographing a real scene in everything

from wide-angle to close-up, and from different positions.

3D software gives you flexibility. This very flexibility allows

you to re-purpose images. You may do an illustration for a

magazine ad and then the client comes back and wants an

animation for a TV ad, or the web. Once you have built the

models, you can re-use them repeatedly

This screen grab of the old Metacreation’s Infiniti-D

4.5 shows a four window, working environment. Three

windows give front, top and side views whilst the fourth

shows the camera view. This type of display, common to
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most of the higher-end 3D packages, works best on a

high resolution, large screen.

The single view at atimedisplay, like this one from Bryce,

works well on smaller displays. Usually keyboard shortcuts

or button sallow you to switch between views. Whilstnot as

convenient as the four-window display it is quite workable.

It seems natural once you get used to it
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This simple cartoon bird was created out of basic object

types and rendered in Infiniti-D 4.5.A background image was

used.

WHAT SORTS OF OBJECTS
In most real scenes, the objects that we might want to

incorporate will be complex. Unfortunately most 3D modellers

and renderers don’t support basic object types like ‘tree’,

‘car’, ‘person’ or ‘house’. Such complex objects have to be

created out of the actual object types that the renderer

supports. The usual basic objects types are flat objects, like

planes and polygons, and 3D objects like spheres, cylinders,

cones, etc. Of course, you can also obtain libraries of already

created objects. Some 3D Programmes come with lots of

these, others few. There are web sites where people place

free ‘models’ that you can download. There are also companies

that specialise in creating ‘models’ that you can buy.

Polygons, for reasons that will become clearer later in this

series, are the mainstay of most 3D modellers and renderers.

A polygon is simply a shape made up of a number of straight

lines, joined together to define a closed shape. The points

that define the end of each line are called a vertex. Different

Programmes allow variations on the basic polygon. Some

Programmes require that polygons be totally flat, that all the

vertices lie in a flat plane. Others allow curved polygons.

Some require all polygons to have either three or four sides.

Others allow you to construct polygons with greater numbers

of sides. Many of these latter ones will actually subdivide the

polygon into three or four sided ones before rendering, though

this is usually hidden from the user. One major advantage
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of three sided polygons, triangles, is that they have to be

flat.  Only four sided or higher polygons can have some

vertices not in the same plane as the others. A variation on

the polygon that you find in most 3D software is the infinite

plane. As its name implies this plane is a flat surface that

stretches off into infinity. Infinite planes are useful for things

like water levels, cloud layers, etc.

Polygons are defined by the x, y, z coordinates of their

vertices. It is not unusual to be required to define the vertices

of a polygon in a particular order, such as clockwise or

anticlockwise when looking at the front face of the polygon.

Some software requires this to be able to calculate the surface

normal. Surface normals are incredibly important in 3D work

as they are used to work out how much light is hitting a

surface, and thus it’s colour. The surface normal points up

from the surface of the polygon. Some software treats

polygons as single sided, other software as double sided. 3D

software that has single sided polygons will not display them

if you are looking at their back surface. With such software

if you want a bowl, for example, you have to define polygons

forming both the inside and outside surfaces. Software that

uses double sided polygons does not have this requirement,

one layer of polygons can represent both the inside, and

outside surfaces, though this is not natural, since, the bowl

walls would have no thickness.

Basic 3D objects, like spheres, cylinders, boxes and cones

are also incredibly useful. We can construct planets from

spheres and tree trunks from cylinders, for instance. Since,

these are the basic forms used in the construction of most

man-made, and many natural, objects, they are indispensable.



3-D Computer Graphics

16

Many Programmes, when you use one of these, create the

basic object at a standard size. You can then usually modify

the object by stretching it into the form you want. Other

Programmes allow you to stretch out the shape when you

insert it into the scene. This stretching process allows you to

create oval footballs from a sphere, a rectangular building

from a square cube and a long spear from a squat cylinder.

Most software gives you the choice of doing this either by typing

in numbers or by clicking and dragging. This stage of modifying

the shape of your objects is usually much easy if you can

easily switch between different views of the object, like front,

side and top, either through having multiple views open at

once or by switching views in the one window.

Boxes, spheres, cylinders, cones, polygons and text objects

are the basic construction components available in most 3D

software, as shown in this render done with Newtek’s Inspire

3D. In some Programmes all these objects are constructed

out of polygons, in others they are primitive objects that are

rendered directly. If you examine the edges of the sphere

and cone you can see that they are constructed out of

polygons.

CREATING COMPOSITE OBJECTS
If all objects are treated as individual ones, you end up

with a heap of them to try to manage. Since, most basic
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objects will actually be used to construct more complex

objects it is useful to be able to group objects together that

form parts of a whole. Thus we might create an object ‘person’

with parts ‘head’, ‘body’, ‘arm12, ‘arm22, ‘leg12 and ‘leg22.

Then ‘leg12 consists of ‘upper’, ‘lower’ and ‘foot’. And so on.

Building up complex objects out of hierarchies of other parts

makes life a lot easier. If you want to move a whole object

you can simply select the top level and move it, knowing

that all the component parts will move too. Otherwise you

would have to separately select every component and move

them, and hope you didn’t forget some small parts.

Object hierarchies are most flexible when you can give

names to each component part. Such hierarchies are also

essential to making character animation easier. Some

Programmes allow you to readily display object hierarchies

in a diagram form that shows the relationships between parts,

similar to the folder hierarchy views that most operating

systems allow. Software that doesn’t do this is certainly

harder to use for some things.

This screen grab, from Ray Dream Studio, shows a cartoon

bird and it’s hierarchical construction. Unfortunately too few

Programmes provide this sort of display.
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Another type of object related to the above is a polygon

mesh. A mesh is a set of polygons which are joined together

to represent a surface of some complexity. A good example

of this is the polygon mesh that Bryce 3D uses to represent

the shape of the landscape. The process of creating a polygon

mesh usually does not require that the user manually

position each vertex of each polygon in the mesh. Various

other convenient methods are available. We’ll examine these

in later chapter.

This close-up of part of a bird model in Ray Dream Studio

shows how this Programme tessellates spheres into polygonal

meshes.

THERE DIFFERENCES OF APPROACH
There are two choices the software developers have to

make: what primitive objects are to be supported; and what

rendering method is to be used? These two questions are

interrelated. The rendering method determines what actual

primitive objects the software works with to create images.



3-D Computer Graphics

19

How we want the user interface to be will determine what

primitive objects are available to the user. For a number of

reasons that we will examine in the next part of the course,

certain rendering techniques can only actually support

polygons, whilst others can actually handle spheres,

cylinders, etc. So a Programme that has to use polygons for

rendering will convert a sphere into a polygonal

approximation, in a process called tessellation, before actually

rendering an image. This creates more primitive objects to

render but allows the renderer to be highly optimised for the

handling of polygons. A Programme which can directly

support spheres, say, does not have to do this conversion

and thus renders fewer objects in your scene but requires

specialised Programme code for each object type it supports.

Another use for polygon meshes is to represent irregular

objects, like this landscape in Bryce 3D.

These internal differences in approach are what make some

3D packages good for some types of work and others more

suitable for others. Some will handle transparent objects

superbly, other handle interior lighting well, for example.
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Some will make dealing with certain types of objects easy,

whereas others make those objects hard but others easy. It

is for these reasons that many people working with 3D

software will use a number of packages for different parts of

the process. Whilst this is certainly not necessary, it can be

a useful approach. It’s the same as people using Painter for

some things and Photoshop for others, sometimes switching

backwards and forwards between the two.

The designers of 3D software have to make a complex set

of choices based on their priorities. These choices lead to the

differences in single or double sided polygons, whether

tessellation is done and what types of rendering options are

available, to pick just three.

Some choices will speed up the execution of the Programme

whilst others will slow it down. These tradeoffs account for

the huge variety that we encounter in 3D Programmes.
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DISTINCTION FROM PHOTOREALISTIC 2D
GRAPHICS

Not all computer graphics that appear 3D are based on a

wireframe model. 2D computer graphics with 3D

photorealistic effects are often achieved without wireframe

modelling and are sometimes indistinguishable in the final

form. Some graphic art software includes filters that can be

applied to 2D vector graphics or 2D raster graphics on

transparent layers. Visual artists may also copy or visualize

3D effects and manually render photorealistic effects without

the use of filters.
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2

3-D Geometric Primitives

3D PRIMITIVES

Primitives are the building blocks of 3D—basic geometric

forms that you can use as is or modify with transforms and

Booleans. Although it’s possible to create most of these

objects by lathing or extruding 2D shapes, most software

packages build them in for speed and convenience.

The most common 3D primitives are cubes, pyramids,

cones, spheres, and tori. Like 2D shapes, these primitives

can have a resolution level assigned to them so that you

can make them look smoother by boosting the number of

sides and steps used to define them.

Inappropriate use of unmodified primitives is probably

one of the most common novice mistakes. By their very

nature, primitives have a mathematically perfect appearance

that screams, “I am a 3D object!” 2D shapes as the basis
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for your 3D objects. Primitives are best suited as building

blocks for more complex forms or for use in your scene’s

background, where any extra detail will be lost anyway.

Also, primitives can be very useful as foreground objects

when they’re altered through the use of transforms and

modifiers.

Some programs may offer an array of additional, more

sophisticated primitives that may be better suited to

foreground use because they offer beveled or rounded edges

instead of that “chopped-off 3D look”. A number of these

extended primitives would be a real chore to create from

scratch, so they can be a time-saver in that regard as well.

That about does it for building basic 3D objects. It’s time

to move on to the particulars of positioning these objects

in 3D space. It’s a big universe in there, so it’s essential

to know how to get around.

GEOMETRIC PRIMITIVE

The term geometric primitive, or prim, in computer

graphics and CAD systems is used in various senses, with

the common meaning of the simplest (i.e. ‘atomic’ or

irreducible) geometric objects that the system can handle

(draw, store). Sometimes the subroutines that draw the

corresponding objects are called “geometric primitives” as

well. The most “primitive” primitives are point and straight

line segment, which were all that early vector graphics

systems had. In constructive solid geometry, primitives are

simple geometric shapes such as a cube, cylinder, sphere,

cone, pyramid, torus.
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Modern 2D computer graphics systems may operate

with primitives which are lines (segments of straight lines,
circles and more complicated curves), as well as shapes
(boxes, arbitrary polygons, circles).

A common set of two-dimensional primitives includes
lines, points, and polygons, although some people prefer to
consider triangles primitives, because every polygon can be
constructed from triangles. All other graphic elements are
built up from these primitives. In three dimensions, triangles
or polygons positioned in three-dimensional space can be
used as primitives to model more complex 3D forms. In
some cases, curves (such as Bézier curves, circles, etc.) may
be considered primitives; in other cases, curves are complex

forms created from many straight, primitive shapes.

COMMON PRIMITIVES

• points

• lines and line segments

• planes

• circles and ellipses

• triangles, ‘quads’ or arbitrary polygons

• spline curves
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In 3D applications, basic geometric shapes and forms

are considered to be primitives rather than the above list.

Such shapes and forms include:

• spheres

• cubes or boxes

• toroids

• cylinders

• pyramids

• triangle meshes or polygon meshes are a common unit

from which scenes are composed, which are in turn

composed of connected vertices.

These are considered to be primitives in 3D modelling

because they are the building blocks for many other shapes

and forms. A 3D package may also include a list of extended

primitives which are more complex shapes that come with

the package. For example, a teapot is listed as a primitive

in 3D Studio Max.

IN 3D MODELLING

In CAD software or 3D modelling, the interface may

present the user with the ability to create primitives which

may be further modified by edits.  For example in the

practice of box modelling the user will start with a cuboid,

then use extrusion and other operations to create the model.

In this use the primitive is just a convenient starting point,

rather than the fundamental unit of modelling.

IN GRAPHICS HARDWARE

Various graphics accelerators exist with hardware

acceleration for rendering specific primitives such as lines
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or triangles, frequently with texture mapping and shaders.

Modern 3D accelerators typically accept sequences of

triangles as triangle strips.

3-D OBJECT REPRESENTATION

Representation schemes for solid objects are divided into

two categories as follows: 1. Boundary Representation ( B-

reps). It describes a three dimensional object as a set of

surfaces that separate the object interior from the

environment. Examples are polygon facets and spline

patches.

SPACE PARTITIONING REPRESENTATION

It describes the interior properties, by partitioning the

spatial region containing an object into a set of small,

nonoverlapping, contiguous solids(usually cubes). Eg: Octree

Representation.

POLYGON SURFACES

Polygon surfaces are boundary representations for a 3D

graphics object is a set of polygons that enclose the object

interior.

POLYGON TABLES

The polygon surface is specified with a set of vertex

coordinates and associated attribute parameters.

For each polygon input, the data are placed into tables

that are to be used in the subsequent processing.

Polygon data tables can be organized into two groups:

Geometric tables and attribute tables.
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Geometric Tables Contain vertex coordinates and

parameters to identify the spatial orientation of the polygon

surfaces.

Attribute tables Contain attribute information for an

object such as parameters specifying the degree of

transparency of the object and its surface reflectivity and

texture characteristics. A convenient organization for storing

geometric data is to create three lists:

1. The Vertex Table: Coordinate values for each vertex

in the object are stored in this table.

2. The Edge Table: It contains pointers back into the

vertex table to identify the vertices for each polygon

edge.

3. The Polygon Table: It contains pointers back into the

edge table to identify the edges for each polygon.

Listing the geometric data in three tables provides a

convenient reference to the individual components (vertices,

edges and polygons) of each object.

The object can be displayed efficiently by using data from

the edge table to draw the component lines.

Extra information can be added to the data tables for

faster information extraction. For instance, edge table can

be expanded to include forward points into the polygon

table so that common edges between polygons can be

identified more rapidly.

E1 : V1, V2, S1

E2 : V2, V3, S1

E3 : V3, V1, S1, S2
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E4 : V3, V4, S2

E5 : V4, V5, S2

E6 : V5, V1, S2

is useful for the rendering procedure that must vary

surface shading smoothly across the edges from one polygon

to the next. Similarly, the vertex table can be expanded so

that vertices are cross-referenced to corresponding edges.

Additional geometric information that is stored in the

data tables includes the slope for each edge and the

coordinate extends for each polygon. As vertices are input,

we can calculate edge slopes and we can scan the coordinate

values to identify the minimum and maximum x, y and z

values for individual polygons.

The more information included in the data tables will be

easier to check for errors. Some of the tests that could be

performed by a graphics package are:

1. That every vertex is listed as an endpoint for at least

two edges.

2. That every edge is part of at least one polygon.

3. That every polygon is closed.

4. That each polygon has at least one shared edge.

5. That if the edge table contains pointers to polygons,

every edge referenced by a polygon pointer has a

reciprocal pointer back to the polygon.

Plane Equations:

To produce a display of a 3D object, we must process

the input data representation for the object through several

procedures such as,
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• Transformation of the modeling and world coordinate

descriptions to viewing coordinates.

• Then to device coordinates:

• Identification of visible surfaces

• The application of surface-rendering procedures.

For these processes, we need information about the

spatial orientation of the individual surface components of

the object. This information is obtained from the vertex

coordinate value and the equations that describe the polygon

planes.

The equation for a plane surface is Ax + By+ Cz + D = 0

Where (x, y, z) is any point on the plane, and the

coefficients A,B,C and D are constants describing the spatial

properties of the plane.

We can obtain the values of A, B,C and D by solving a

set of three plane equations using the coordinate values for

three non collinear points in the plane.

For that, we can select three successive polygon vertices

(x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) and solve the

following set of simultaneous linear plane equations for the

ratios A/D, B/D and C/D.

(A/D)xk + (B/D)yk + (c/D)zk = -1, k=1,2,3

The solution for this set of equations can be obtained

in determinant form, using Cramer’s rule as

Expanding the determinants , we can write the

calculations for the plane coefficients in the form:

A = y1 (z2 –z3 ) + y2(z3 –z1 ) + y3 (z1 –z2 )

B = z1 (x2 -x3 ) + z2 (x3 -x1 ) + z3 (x1 -x2 )
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C = x1 (y2 –y3 ) + x2 (y3 –y1 ) + x3 (y1 -y2 )

D = -x1 (y2 z3 -y3 z2 ) - x2 (y3 z1 -y1 z3 ) - x3 (y1 z2

-y2 z1)

As vertex values and other information are entered into

the polygon data structure, values for A, B, C and D are

computed for each polygon and stored with the other polygon

data.

Plane equations are used also to identify the position of

spatial points relative to the plane surfaces of an object. For

any point (x, y, z) hot on a plane with parameters A,B,C,D,

we have

Ax + By + Cz + D – 0

We can identify the point as either inside or outside the

plane surface according o the sigh (negative or positive) of

Ax + By + Cz + D:

If Ax + By + Cz + D < 0, the point (x, y, z) is inside the

surface. If Ax + By + Cz + D > 0, the point (x, y, z) is outside

the surface.

These inequality tests are valid in a right handed Cartesian

system, provided the plane parmeters A,B,C and D were

calculated using vertices selected in a counter clockwise

order when viewing the surface in an outside-to-inside

direction.

Polygon Meshes

A single plane surface can be specified with a function

such as fillArea. But when object surfaces are to be tiled,

it is more convenient to specify the surface facets with a

mesh function. One type of polygon mesh is the triangle
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strip.A triangle strip formed with 11 triangles connecting

13 vertices. Another similar function in the quadrilateral

mesh, which generates a mesh of (n-1) by (m-1)

quadrilaterals, given the coordinates for an n by m array

of vertices.

Curved Lines and Surfaces Displays of three dimensional

curved lines and surface can be generated from an input

set of mathematical functions defining the objects or from

a set of user specified data points. When functions are

specified, a package can project the defining equations for

a curve to the display plane and plot pixel positions along

the path of the projected function. For surfaces, a functional

description in decorated to produce a polygon-mesh

approximation to the surface.

Spline Representations A Spline is a flexible strip used

to produce a smooth curve through a designated set of

points. Several small weights are distributed along the length

of the strip to hold it in position on the drafting table as

the curve is drawn.

The Spline curve refers to any sections curve formed

with polynomial sections satisfying specified continuity

conditions at the boundary of the pieces.

A Spline surface can be described with two sets of

orthogonal spline curves. Splines are used in graphics

applications to design curve and surface shapes, to digitize

drawings for computer storage, and to specify animation

paths for the objects or the camera in the scene. CAD

applications for splines include the design of automobiles

bodies, aircraft and spacecraft surfaces, and ship hulls.
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Interpolation and Approximation Splines Spline curve can

be specified by a set of coordinate positions called control

points which indicates the general shape of the curve. These

control points are fitted with piecewise continuous parametric

polynomial functions in one of the two ways. 1. When

polynomial sections are fitted so that the curve passes

through each control point the resulting curve is said to

interpolate the set of control points.

A set of six control points interpolated with piecewise

continuous polynomial sections

When the polynomials are fitted to the general control

point path without necessarily passing through any control

points, the resulting curve is said to approximate the set

of control points.

A set of six control points approximated with piecewise

continuous polynomial sections.

Interpolation curves are used to digitize drawings or to

specify animation paths. Approximation curves are used as

design tools to structure object surfaces. A spline curve is

designed , modified and manipulated with operations on the

control points.The curve can be translated, rotated or scaled

with transformation applied to the control points. The convex

polygon boundary that encloses a set of control points is

called theconvex hull. The shape of the convex hull is to

imagine a rubber band stretched around the position of the

control points so that each control point is either on the

perimeter of the hull or inside it. Convex hull shapes (dashed

lines) for two sets of control points.
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PARAMETRIC CONTINUITY CONDITIONS

For a smooth transition from one section of a piecewise

parametric curve to the next various continuity conditions

are needed at the connection points.

If each section of a spline in described with a set of

parametric coordinate functions or the form x = x(u), y =

y(u), z = z(u), u1<= u <= u2

We set parametric continuity by matching the parametric

derivatives of adjoining curve sections at their common

boundary.

Zero order parametric continuity referred to as C0

continuity, means that the curves meet. (i.e) the values of

x,y, and z evaluated at u2 for the first curve section are

equal. Respectively, to the value of x,y, and z evaluated at

u1 for the next curve section. First order parametric

continuity referred to as C1 continuity means that the first

parametric derivatives of the coordinate functions in equation

(a) for two successive curve sections are equal at their

joining point.

Second order parametric continuity, or C2 continuity

means that both the first and second parametric derivatives

of the two curve sections are equal at their intersection.

Higher order parametric continuity conditions are defined

similarly.

GEOMETRIC CONTINUITY CONDITIONS

To specify conditions for geometric continuity is an

alternate method for joining two successive curve sections.

The parametric derivatives of the two sections should be
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proportional to each other at their common boundary instead

of equal to each other.

Zero order Geometric continuity referred as G0 continuity

means that the two curves sections must have the same

coordinate position at the boundary point.

First order Geometric Continuity referred as G1 continuity

means that the parametric first derivatives are proportional

at the interaction of two successive sections.

Second order Geometric continuity referred as G2

continuity means that both the first and second parametric

derivatives of the two curve sections are proportional at

their boundary. Here the curvatures of two sections will

match at the joining position.

Spline specifications There are three methods to specify

a spline representation:

1. We can state the set of boundary conditions that are

imposed on the spline; (or)

2. We can state the matrix that characterizes the spline;

(or)

3. We can state the set of blending functions that

determine how specified geometric constraints on the

curve are combined to calculate positions along the

curve path.

To illustrate these three equivalent specifications, suppose

we have the following parametric cubic polynomial

representation for the x coordinate along the path of a

spline section.

x(u)=axu3 + axu2 + cxu + dx 0<= u <=1
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Boundary conditions for this curve might be set on the

endpoint coordinates x(0) and x(1) and on the parametric

first derivatives at the endpoints x’(0) and x’(1). These

boundary conditions are sufficient to determine the values

of the four coordinates ax, bx, cx and dx. From the boundary

conditions we can obtain the matrix that characterizes this

spline curve by first rewriting as the matrix product

where U is the row matrix of power of parameter u and

C is the coefficient column matrix. Using we can write the

boundary conditions in matrix form and solve for the

coefficient matrix C.

C = Mspline . Mgeom

Where Mgeom in a four element column matrix containing

the geometric constraint values on the spline and Mspline

in the 4 * 4 matrix that transforms the geometric constraint

values to the polynomial coefficients and provides a

characterization for the spline curve.

Matrix Mgeom contains control point coordinate values

and other geometric constraints. We can substitute the

matrix representation for C into equation to obtain.

x (u) = U . Mspline . Mgeom

The matrix Mspline, characterizing a spline

representation, called the basis matriz is useful for

transforming from one spline representation to another.

Finally we can expand equation to obtain a polynomial

representation for coordinate x in terms of the geometric

constraint parameters.

x(u) = Ó gk. BFk(u) where gk are the constraint

parameters, such as the control point coordinates and slope
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of the curve at the control points and BFk(u) are the

polynomial blending functions.

3D ANIMATION SOFTWARE IN THE 1990S

There were many developments, mergers and deals in

the 3D software industry in the ’90s and later.

• Wavefront followed the success of Personal Visualiser

with the release of Dynamation in 1992, a powerful

tool for interactively creating and modifying realistic,

natural images of dynamic events. In 1993, Wavefront

acquired Thomson Digital Images (TDI), with their

innovative product Explore, a tool suite that included

3Design for modelling, Anim for animation, and

Interactive Photorealistic Renderer(IPR) for rendering.

In 1995, Wavefront was bought by Silicon Graphics,

and merged with Alias.

• Alias Research continued the success of PowerAnimator

with movies like Terminator 2: Judgment Day, Batman

Returns and Jurassic Park, and in 1993 started the

development of a new entertainment software, which

was later to be named Maya. Alias found customers

in animated film, TV series, visual effects, and video

games, and included many prominent studios, such

as Industrial Light & Magic,Pixar, Sony Pictures

Imageworks, Walt Disney, and Warner Brothers. Other

Alias products were developed for applications in

architecture and engineering. In 1995, SGI purchased

both Alias Research and Wavefront in a 3-way deal,

and the merged companyAlias Wavefront was launched.
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• Alias Wavefront’s new mission was to focus on

developing the world’s most advanced tools for the

creation of digital content.PowerAnimator continued

to be used for visual effects and movies (such as Toy

Story and Batman Forever), and also for video games.

Further development of the Maya software went ahead,

adding new features such as motion capture, facial

animation, motion blur, and “time warp” technology.

CAD industrial design products like AliasStudio and

Alias Designer became standardized on Alias|Wavefront

software. In 1998, Alias|Wavefront launched Maya as

its new 3D flagship product, and this soon became the

industry’s most important animation tool. Maya was

the merger of three packages—Wavefront’s Advanced

Visualizer, Alias’s Power Animator, and TDI’s Explore.

In 2003 the company was renamed simply “Alias”. In

2004, SGI sold the business to a private investment

firm, and it was later renamed to Alias Systems

Corporation. In 2006, the company was bought by

Autodesk.

• Softimage developed further features for Creative

Environment, including the Actor Module (1991) and

Eddie (1992), including tools such as inverse

kinematics, enveloping, metaclay, flock animation, and

many others. Softimage customers include many

prominent production companies, and Softimage has

been used to create animation for hundreds of major

feature films and games. In 1994,Microsoft acquired

Softimage, and renamed the package Softimage 3D,

releasing a Windows NT port two years later. In 1998,



3-D Computer Graphics

38

after helping to port the products to Windows and

financing the development of Softimage and

Softimage|DS, Microsoft sold the Softimage unit to

Avid Technology, who was looking to expand its visual

effect capabilities. Then, in 2008, Autodesk acquired

the brand and the animation assets of Softimage from

Avid, thereby ending Softimage Co. as a distinct entity.

The video-related assets of Softimage, including

Softimage|DS (now Avid|DS) continue to be owned by

Avid.

• Autodesk Inc’s PC DOS-based 3D Studio was eventually

superseded in 1996 when The Yost Group developed

3D Studio Max for Windows NT. Priced much lower

than most competitors, 3D Studio Max was quickly

seen as an affordable solution for many professionals.

Of all animation software, 3D Studio Max serves the

widest range of users. It is used in film and broadcast,

game development, corporate and industrial design,

education, medical, and web design. In 2006, Autodesk

acquired Alias, bringing theStudioTools and Maya

software products under the Autodesk banner, with

3D Studio Max rebranded as Autodesk 3ds Max, and

Mayaas Autodesk Maya. Now one of the largest software

companies in the world, Autodesk serves more than

4 million customers in over 150 countries.

• Side Effects Software’s PRISMS was used extensively

to create visual effects for broadcast and feature films

into the ’90s, with projects like Twister, Independence

Day, and Titanic. In 1996, Side Effects Software

introduced Houdini, a next-generation 3D package
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that proved to be more sophisticated and artist-friendly

than its predecessor. Houdini is used around the world

to develop cutting edge 3D animation in the film,

broadcast and gaming industries, and Side Effects

Software has consistently proved itself to be an industry

innovator.

CGI IN THE 2000S

2000 BREAKTHROUGH CAPTURE OF THE
REFLECTANCE FIELD OVER THE HUMAN FACE

In 2000, a team led by Paul Debevec managed to

adequately capture (and simulate) the reflectance field over

the human face using the simples of light stages. which was

the last missing piece of the puzzle to make digital look-

alikes of known actors.

MOTION CAPTURE, PHOTOREALISM, AND
UNCANNY VALLEY

The first mainstream cinema film fully made with motion

capture was the 2001 Japanese-American Final Fantasy:

The Spirits Withindirected by Hironobu Sakaguchi, which

was also the first to use photorealistic CGI characters. The

film was not a box-office success. Some commentators have

suggested this may be partly because the lead CGI characters

had facial features which fell into the “uncanny valley”. In

2002, Peter Jackson’s The Lord of the Rings: The Two Towers

was the first feature film to use a real-time motion capture

system, which allowed the actions of actor Andy Serkis to

be fed direct into the 3D CGI model of Gollum as it was
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being performed. Motion capture is seen by many as replacing

the skills of the animator, and lacking the animator’s ability

to create exaggerated movements that are impossible to

perform live. The end credits of Pixar’s film Ratatouille

(2007) carry a stamp certifying it as “100% Pure Animation

— No Motion Capture!” However, proponents point out that

the technique usually includes a good deal of adjustment

work by animators as well. Nevertheless, in 2010, the US

Film Academy (AMPAS) announced that motion-capture

films will no longer be considered eligible for “Best Animated

Feature Film” Oscars, stating “Motion capture by itself is

not an animation technique.”

VIRTUAL CINEMATOGRAPHY

The early 2000s saw the advent of fully virtual

cinematography with its audience debut considered to be

in the 2003 movies Matrix Reloadedand Matrix Revolutions

with its digital look-alikes so convincing that it is often

impossible to know if some image is a human imaged with

a camera or a digital look-alike shot with a simulation of

a camera. The scenes built and imaged within virtual

cinematography are the ”Burly brawl” and the end showdown

between Neo and Agent Smith. With conventional

cinematographic methods the burly brawl would have been

prohibitively time consuming to make with years of

compositing required for a scene of few minutes. Also a

human actor could not have been used for the end showdown

in Matrix Revolutions: Agent Smith’s cheekbone gets

punched in by Neo leaving the digital look-alike naturally

unhurt.
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3D ANIMATION SOFTWARE IN THE 2000S

• Blender (software) is a free open source virtual

cinematography package, used by professionals and

enthusiasts alike.

• Poser is another DIY 3D graphics program especially

aimed at user-friendly animation of soft objects

• Pointstream Software is a professional optical flow

program that uses a pixel as its basic primitive form

usually tracked over a multi-camera setup from the

esteemed Arius3D, makers of the XYZRGB scanner,

used in the production process of the Matrix sequels

CGI IN THE 2010S

In SIGGRAPH 2013 Activision and USC presented a

real-time digital face look-alike of “Ira” utilizing the USC

light stage X by Ghosh et al. for both reflectance field and

motion capture. The end result, both precomputed and

real-time rendered with the state-of-the-artGraphics

processing unit: Digital Ira, looks fairly realistic. Techniques

previously confined to high-end virtual cinematography

systems are rapidly moving into the video games and

leisure applications.

FURTHER DEVELOPMENTS

New developments in computer animation technologies

are reported each year in the USA at SIGGRAPH, the largest

annual conference on computer graphics and interactive

techniques, and also at Eurographics, and at other

conferences around the world.
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SOFTWARE

3D computer graphics software produces computer-

generated imagery (CGI) through 3D modeling and 3D
rendering or produces 3D models for analytic, scientific and
industrial purposes.

MODELING

3D modeling software is a class of 3D computer graphics
software used to produce 3D models. Individual programs
of this class are called modeling applications or modelers.

3D modelers allow users to create and alter models via
their 3D mesh. Users can add, subtract, stretch and
otherwise change the mesh to their desire. Models can be
viewed from a variety of angles, usually simultaneously.
Models can be rotated and the view can be zoomed in and
out.

3D modelers can export their models to files, which can
then be imported into other applications as long as the
metadata are compatible. Many modelers allow importers
and exporters to be plugged-in, so they can read and write
data in the native formats of other applications.

Most 3D modelers contain a number of related features,

such as ray tracers and other rendering alternatives and

texture mapping facilities. Some also contain features that

support or allow animation of models. Some may be able

to generate full-motion video of a series of rendered scenes

(i.e. animation).

COMPUTER-AIDED DESIGN (CAD)

Computer aided design software may employ the same

fundamental 3D modeling techniques that 3D modeling
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software use but their goal differs. They are used in computer-

aided engineering, computer-aided manufacturing, Finite

element analysis, product lifecycle management, 3D printing

and computer-aided architectural design.

COMPLEMENTARY TOOLS

After producing video, studios then edit or composite the

video using programs such as Adobe Premiere Pro or Final

Cut Pro at the mid-level, or Autodesk Combustion, Digital

Fusion, Shake at the high-end. Match moving software is

commonly used to match live video with computer-generated

video, keeping the two in sync as the camera moves.

Use of real-time computer graphics engines to create a

cinematic production is called machinima.

COMMUNITIES

There are a multitude of websites designed to help,

educate and support 3D graphic artists. Some are managed

by software developers and content providers, but there are

standalone sites as well. These communities allow for

members to seek advice, post tutorials, provide product

reviews or post examples of their own work.

DIFFERENCES WITH OTHER TYPES OF

COMPUTER GRAPHICS

DISTINCTION FROM PHOTOREALISTIC 2D
GRAPHICS

Not all computer graphics that appear 3D are based on

a wireframe model. 2D computer graphics with 3D
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photorealistic effects are often achieved without wireframe

modeling and are sometimes indistinguishable in the final

form. Some graphic art software includes filters that can

be applied to 2D vector graphics or 2D raster graphics on

transparent layers. Visual artists may also copy or visualize

3D effects and manually render photorealistic effects without

the use of filters.

PSEUDO-3D AND TRUE 3D

Some video games use restricted projections of three-

dimensional environments, such as isometric graphics or

virtual cameras with fixed angles, either as a way to improve

performance of the game engine, or for stylistic and gameplay

concerns. Such games are said to use pseudo-3D graphics.

By contrast, games using 3D computer graphics without

such restrictions are said to use true 3D.
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3

Theory of Graphic Design

Graphic design has often looked to architecture as an

intellectual model. We long to infuse our work with the same

kind of dense theoretical knowledge and the same kind of

broad ranging, legendary critiques. But we’re not architects.

We’re graphic designers. Our role is less defined. We cross

between print and web, 2-D and 3-D. Our work is easier

to produce and more ephemeral. This fluidity, coupled with

a discipline-wide pragmatic streak, makes it difficult to

establish a defined body of graphic design theory.

OR DOES IT?

Graphic designers have written about the ideas behind

their work since the inception of the profession. Consider

F. T. Marinetti, László Moholy-Nagy, Herbert Bayer, Josef

Müller-Brockman, Karl Gerstner, Katherine McCoy, Jan

van Toorn and, more recently, Jessica Helfand, Dmitri Siegel
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and Kenya Hara. This body of work is small compared to

architecture and fine arts, but it is passionate and smart.

Texts about graphic design fall under different categories

of “theory.” Some analyze the process of making. Think

Bauhaus experiments, methodologies that fall under the

umbrella of International Typographic Style, and

contemporary explorations labeled “design research.” Some

texts examine the ideas behind the visual work. Authors

“read” designs or design texts and put them into a wider

historical/cultural context. And some apply outside

theoretical discourses to the field of graphic design—

deconstruction, semiotics, gender studies. Many seminal

texts, of course, blur such categorizations.

Through my research I work to emphasize the value of

our own theoretical base and inspire others to read and

write more. Working on a recent book project got me thinking

about a range of issues that face the profession today.

Theory can help us address them.

(Clockwise from left): Katherine McCoy’s “See Read” poster

for Cranbrook Graduate Design, 1989, a photographic collage
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of recent graduate student work overlaid by a list of possibly

opposing design values and a diagram of communication

theories—a model for how deconstruction and structuralist/

poststructuralist literary theories might be applied to graphic

design’s visual and verbal processes; a spread from László

Moholy-Nagy’s Malerei, Photographie, Film (Painting,

Photography, Film), 1925; and a spread from Graphic Design:

The New Basics (New York: Princeton Architectural Press,

2008), written and designed by Ellen Lupton and Jennifer

Cole Phillips, in which Lupton explores emerging universals

within the practice of graphic design, including newly relevant

concepts like transparency and layering.

DESIGN INCREASINGLY LIVES IN THE ACTIONS
OF ITS USERS

Think Flickr, Facebook, Etsy, Lulu, Threadless and the

multitude of blogs. Users approach software and the web

with the expectation of filling in their own content and

shaping their own visual identities—often with guidance

from prepackaged forms.

Dmitri Siegel calls this phenomenon ”the templated

mind.”Designers are grappling with their own place in this

DIY phenomenon.

Creativity is no longer the sole territory of a separate

“creative class.” Designers can lead this new participatory

culture by developing frameworks that enable others to

create; doing so, however, means allowing our once-

specialized skills to become more widespread and accessible.

That transfer of knowledge is threatening to some, liberating

to others.
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TECHNOLOGY ALTERS OUR AESTHETICS EVEN
AS WE STRUGGLE AGAINST IT

Designers everywhere strive to create unique visual voices

despite the prevalence of stock photography and the

monolithic hold of Adobe Creative Suite. Simultaneously, as
noted by design and media critic Lev Manovich, specific
techniques, artistic languages, and vocabularies previously
isolated within individual professions are being imported
and exported across software applications and professions.

This new common language of hybridity and
“remixability,” through which most visual artists now work,
is unlike anything seen before. Technology has irreversibly
changed our sense of aesthetics, giving us both more power
and less.

WE SHOULD ENCOURAGE COLLABORATION
AND COMMUNAL EXPERIENCE

What’s the good of multi-touch technology if we don’t
want to sit down together? Collaboration and community
fuel world-changing design solutions. Despite our
connections online, many people are experiencing a growing
sense of personal isolation. How can we, as designers,
combat that isolation with projects that foster community?

Media activist Kalle Lasn has warned designers: “We have

lost our plot. Our story line. We have lost our soul.” Producing

work that fosters real connections may be one way of getting

that soul back.

WE ALL WRITE MORE TODAY THAN WE DID 15
YEARS AGO

Blogs, emails, Twitter-we communicate with many more

people through text than through speech. If grammar imparts
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order and structure to our thoughts, then this increase in

writing brings value to our society and our discipline. Design

authorship, an issue debated by influential figures like

Michael Rock, Ellen Lupton and Jessica Helfand over the

course of the last decade, foregrounded the active relationship

between text and image and between a discipline and its

discourse. The expansion of written communication makes

possible thoughtful contributions to the larger discourse of

design by a wider slice of the graphic design population.

THE CENTRAL METAPHOR OF OUR CURRENT
SOCIETY IS THE NETWORK

Even if we don’t all understand the computer codes that
run the back end of our digital age, we can comprehend
the networked structure of our day and design to meet it.
Avant-garde artists at the beginning of the last century,
including F. T. Marinetti, László Moholy-Nagy and Aleksandr
Rodchenko, were adept at activating their own networks:
newspapers, magazines, lectures and written
correspondence. Recently, I heard lectures by Emily Pilloton
of Project H and Cameron Sinclair of Architecture for
Humanity, two young designers who are creating
opportunities, locally and around the world, for designers
to improve basic human living conditions. The connectivity
of the web is critical to their success. Efficient networks for
spreading change and prosperity are already in place. We
just have to grasp them. Designers in the early 20th century
rose to the challenges of their societies. We too can take
on the complexities of our time, the rising millennium.
Delving into our theoretical base equips us to address
critical material problems in the world and our discipline.
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COLOR THEORY

Color theory tutorials cover the aesthetics as well as the

visual impact of color combinations in web design. Learn

to use colors based on their emotional message. Smart use

of appropriate colors can make a site not only look

professional, but also be easier to navigate and apprehend.

Not to mention, color scheme of a site defines the first

impression and has a great impact on a leave/stay factor.

BLOW UP YOUR WEBSITE CONVERSIONS USING
COLOR

Human beings make decisions based on their senses all

the time, especially when it comes to online purchases. Of

those senses, sight is the biggest decision maker for most.

For that reason, the colors you choose for your website

design can have the most impact on turning your website

visitors into customers.

COLOR PSYCHOLOGY

In order to gain an understanding of the colors you

should use for your website, you need an understanding

of how color affects human behavior.

Though some are skeptic of the actual effects of colors

on human behavior, study after study has shown that

colors play a big part in daily decision making.

A study by Satyendra Singh (Department of Administrative

Studies, University of Winnipeg, Winnipeg,

Canada) published in the Journal of Management

History revealed that it only takes 90 seconds for a customer

to make a decision regarding a product, and, on average,
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75 percent of the time, that decision is based on the color

of the product alone. With this information in mind, it’s

clear that colors have a significant influence on customer’s

purchasing decisions. A large part of understanding color

psychology is knowing what colors mean. Listed below are

some of the most common color.

BLACK

Authority and Power. Popular in the fashion realm because

it gives the illusion of thin.

WHITE

Innocence, purity, and sterility. Light, neutral, and

provides excellent contrast with darker colors.

RED

Love, passion, rage. Can induce a faster heart rate and

breathing, and is a popular color for the food industry.

BLUE

Peace, trust. Puts people at ease and makes them more

trusting of a company.

GREEN

Nature, tranquility. Catches attention when used in the

right shades and is perfect for environmentally friendly

messages.

YELLOW

Optimism, overstimulation. It catches attention, but can

be unpleasantly overwhelming when used excessively.
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ORANGE

Confidence, impulsiveness. Gives the feeling of haste or

impulse, which is perfect for retail websites.

PURPLE

Luxury, wealth, sophistication. Connotes femininity and

romance, though it can appear artificial if paired with the

wrong colors.

BROWN

Solid, reliable, traditional. Creates an atmosphere of

trust and genuineness. Knowing the meaning of each of

these colors and using them correctly in your website design

can be the most important step you take to gain customers

and retain their loyalty.

USING COLORS APPROPRIATELY

Color helps catch a website visitor’s attention, which

is integral for driving conversions. In general, colors that

stand out against a complementary background are more

likely to be remembered than those that blend in. So if the

purpose of your webpage is to entice users to try your

product, the button proclaiming “Try it for free,” should

stand out against the other colors on your webpage.

Overall, remember that converting isn’t always about

what looks good. It’s about keeping with the overall theme

of your website while making important parts stand out.

Keeping with the theme doesn’t always mean that the colors

will match. It often means that the background colors will

be conducive to the purpose of your products, and the CTAs
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will be surrounded in bright, contrasting colors meant to

stand out.

Just be cautious with your color use. Too many colors

on one web page will only overwhelm the user, hurting your

conversions. If you have too many colors on one page, no

particular part will stand out, and the call to action won’t

be clear.

COLORS FOR GENDERS

Different colors usually mean different things for each

gender, so if your website is gender specific, this tip is for

you. Women tend to gravitate towards blue, purple, and

green and stray from gray, orange and brown. Men generally

prefer blue, green, and black, but avoid purple, orange, and

brown. With this information in mind, it’s probably safe to

assume that if your site is gender neutral, blues, greens,

blacks, and whites will go over well with your customers.

CTA PRIMARY ACTIONS

When it comes to your calls to action, primary colors

tend to go over best. Bright reds, yellows, and blues feel

very familiar to customers and help to cultivate a relationship

of trust between you and your company. They’re also very

effective at catching attention, and when paired against a

neutral backdrop, it creates an extremely compelling call

to action that most customers won’t be able to resist.

Overall, when it comes to enticing website visitors to become

customers, never underestimate the power of color. It’s one

of the biggest and most important secrets for efficient web

design.
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HOW TO USE COLOR TO ENHANCE YOUR
DESIGNS

People are physically, psychologically, and socially

influenced by color. Color has been found to have connections

to health and it can help set the mood through which your

designs are seen. Color communicates meaning and so we

need to be conscious of what meaning we’re conveying when

we choose to use one color over another. It’s not enough

for a designer to use a color simply because he or she likes

that color.

Color is a tool in the designer’s toolbox much the same

as a grid or whitespace and it’s important to understand

how to use that tool.

Last week we talked about the color theory and how we

could represent color and choose different color schemes.

This week we’ll take a look at the meaning colors

communicate, how we can better control our designs through

our color choices and finally how to go about choosing a

color scheme that reinforces the message your design aims

to communicate.
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COLOR MEANING

The first and perhaps most important thing to understand

about the meaning of color is that there is no substantive

evidence that support a universal system of color meaning.

It’s not that colors themselves have specific meaning, but

rather that we have culturally assigned meanings to them.

While some color symbolism exists globally (red as the

color of a stop sign, yellow for caution), color symbolism

tends to be more common within a given culture than

across different cultures (white is used for weddings in

Western cultures and for funerals in Eastern cultures).

Even within a single culture individual differences will

exist. You and we will not necessarily be affected in the

same way by seeing the same color.

The above means that it’s important to understand who

your target audience is and how your audience attaches

meaning to color. Again it’s not that a color has a specific

meaning on its own. It’s that we’ve culturally assigned

meaning to colors. Keep that in mind as you read some of

the specifics about the colors mentioned below.

Warm Colors: For the sake of simplicity let’s define warm

colors as red, orange and yellow. These are the colors of fire.

They radiate warmth. Warm colors are more often associated

with passion, energy, impulsiveness, happiness, coziness,

and comfort. They draw attention and have the advantage

of being inviting and harmonious.
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Cool Colors: Again for the sake of simplicity let’s define

cool colors as green, blue, and violet. These are the colors

of water. Cool colors are more often associated with calm,

trust, and professionalism. The are also associated with

sadness and melancholy. The have the advantage of being

professional and harmonious, but can also turn people off

by the coolness they radiate.

Note: The demarcation point between warm and cool

colors falls somewhere between yellow/green and violate

red. Green and purple don’t fall neatly into either warm or

cool camps. The tend to take on the properties of one or

the other based on the surrounding context.

Red: is the color of fire and blood. It’s emotionally intense.

Red is associated with energy, war, danger, strength, power,

determination, action, confidence, courage, vitality, passion,

desire, and love. It can enhance metabolism, increase

respiration, and raise blood pressure. Red has a high visibility

and advances to the foreground. It is often used for buttons

in order to get people to take impulsive action.

Yellow: is the color of the sun. Bright yellow attracts

attention, though it can also be distracting when overused.

Yellow is associated with joy, happiness, wisdom, and

intellectual energy. It stimulates mental activity and
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generates muscle energy. Yellow produces a warming effect,

arouses cheerfulness and is often used to evoke pleasant

feelings. Shades of yellow can become dingy lessening the

pleasing effect.

Blue: is the color of the sky and the sea. It has the

opposite effect of red and slows metabolism, breathing, and

heart rate. It’s seen as a masculine color. Blue is associated

with trust, loyalty, wisdom, intelligence, expertise, confidence,

stability and depth. It creates a calming effect, suppresses

appetite and has been considered to be beneficial to both

body and mind. Blue is often used for corporate sites given

the previously mentioned associations.

Orange: combines the energy or red with the happiness

of yellow. It’s not as aggressive as red and calls to mind

healthy food (citrus).. Orange is associated with joy, sunshine,

the tropics, enthusiasm, happiness, fascination, creativity,

determination, attraction, success, encouragement,

stimulation, and strength. It can increase appetite and

evokes thoughts of fall and harvest.
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Green: is the color of nature. It symbolizes growth, hope,

freshness, and fertility. In countries with green money such

as the U.S. it evokes thoughts and feelings of financial

wealth. Green is associated with healing, stability, endurance,

harmony, safety. life, and well being. It can sometimes

signify a lack of experience and is often used to indicate

the safety of drugs and medical products in advertising.

Purple: combines the stability of blue and the energy of

red. It conveys wealth and extravagance and is seen as the

color or royalty. It symbolizes power, nobility, luxury, and

ambition. Purple is associated with wisdom, dignity,

independence, creativity, mystery, and magic. Light purple

is seen as feminine and purple is a popular color with

children. Purple occurs less frequently in nature and some

may consider it artificial. In Catholic cultures it is

representative of death and in some Islamic nations it is

associated with prostitution.

White: is associated with light, goodness, innocence,

purity, virginity. It usually has positive connotations and

is seen as clean and safe.

Black: is associated with power, elegance, formality,

death, evil, and mystery. It denotes strength and authority,
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is seen as formal and elegant, and brings forth feelings of

fear and the unknown.

Gray: is the color of sorrow, detachment, and isolation.

It connotes responsibility and conservative practicality. It’s

a neutral color and creates a non-invasive feeling. It’s

associated with security, maturity, and dependability. It

can be used to reduce the intense energy of another color

and to emphasize a willingness to comply. Some people who

prefer gray many be seen as the lone wolf type or narrow-

minded.

Brown: is the color of the earth and tends to blend into

the background. It’s associated with material things, order,

and convention. It’s connection to the earth gives it stability.

Brown can convey a solid and wholesome feeling.

The following articles offer additional information about

the possible meaning some will associate with a given color.

The Visual Effect of Color in Your Designs

Using colors that don’t work well together, using too

many colors, or even not enough could drive people away

before they have a chance to absorb your content. Ideally

you should plan and choose a color scheme from the start

and you should be consistent in how you use color in your



3-D Computer Graphics

60

design. Color is used to attract attention, group related

elements, convey meaning, and generally enhance the

aesthetics of your site. It can be used to organize your

elements and create a visual hierarchy in your design.

A small dose of color that contrasts with your main color

will draw attention. It will give emphasis. Repeating colors

on elements like page headings gives an immediate visual

cue that those headings are related.

Warmer colors advance into the foreground while cooler

colors recede into the background. Your choice in warm and

cool colors can affect the figure/ground relationship of your

elements. Since cooler colors recede you may decide to use

them for background elements and because warmed colors

advance they make a good choice for elements in the

foreground.

By mixing warm and cool colors you can create depth

in your design. Consider Van Gogh’s Cornfield with Cypress

above. Color is not the only way Van Gogh gives depth to

the painting, but notice how the colors add to the depth.
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The mountains, sky and clouds use cooler colors, while the

cornfield uses warmer colors.

You might choose a warmer color for the type on top on

an image to ensure it’s seen. Naturally it depends on the

colors in the image as it will be more important to make

sure the text color contrasts.

Darker colors tend to be seen first and carry more visual

weight. A larger area of a lighter color is necessary to

balance the visual weight.

Highly saturated colors (pure hues) are perceived as

more dynamic. They attract attention. Too many saturated

colors can compete and cause eye fatigue. Desaturated

colors lend themselves to performance and efficiency. They

might be a better choice to help people complete a specific

task. Desaturated/Bright colors are perceived as friendly

and professional. Desaturated/Dark colors are seen as

serious and professional.

Be careful about using too many colors. You want to limit

colors in the same way you limit fonts. You need enough

to be able to offer contrast, but not too much to lack

similarity. 5 colors is generally a good maximum, though

you can use more. The more colors you use the harder it

will be to use them effectively.

CLASSICAL GRAPHIC DESIGN THEORY

Here is a short introduction to graphic design theory,

explaining the different aspects of design which are

considered when composing a piece of fine art or producing

a graphic layout in commercial art. I call it classic theory

because it forms the basis for many decisions in design.
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ELEMENTS OF DESIGN

LINE DESIGN

A line is a form with width and length, but no depth.

Artists use lines to create edges, the outlines of objects. A

line is created by the movement of the artist’s pen. 

LINE DIRECTION

The direction of a line can convey mood.

Horizontal lines are calm and quiet,

vertical lines suggest more of a potential for movement,

while diagonal lines strongly suggest movement and give

more of a feeling of vitality to a picture.
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CONTOUR AND GESTURE

Lines used to follow the edges of forms are called contour

drawings

Drawings which seem to depict more movement than

actual outline are called gesture drawings.

LINE AS VALUE

Lines or crosshatching can also be used to create areas

of grey inside a drawing. These areas of darker shading

inside a figure, called areas of value, can give a more three-

dimensional feeling to an object.

SHAPE DESIGN

A shape is an enclosed object. Shapes can be created

by line, or by color and value changes which define their

edges.

Volume and Mass: Shape is considered to be a two-

dimensional element, while three-dimensional elements have
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volume or mass. Therefore, a painting has shapes, while a

sculpture has volume and mass.

POSITIVE/NEGATIVE SHAPES

In a picture, the shapes that the artist has placed are

considered the positive shapes. The spaces around the

shapes are the negative spaces. It is just as important to

consider the negative space in a picture as the positive

shapes. Sometimes artists create pieces that have no

distinction between positive and negative spaces. M. C.

Escher was a master at creating drawings where there was

no distinction between positive and negative space. Here

are two examples of Escher’s work which show the interplay

between positive and negative space:
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TEXTURE DESIGN

Texture is the surface quality of an object. We experience

texture when we touch objects and feel their roughness,

smoothness or patterns. Texture is the artist’s way of

mapping these tactile impressions on to the two-dimensional

picture. Texture is created by varying the pattern of light

and dark areas on an object.

Value : Value refers to the relative lightness or darkness

of a certain area. Value can be used for emphasis. Variations

in value are used to create a focal point for the design of

a picture. A light figure on a dark background will be

immediately recognized as the center of attention, similarly

for a dark figure on a mostly white background. Gradations

of value are also used to create the illusion of depth. Areas

of light and dark can give a three-dimensional impression,

such as when shading areas of a person’s face. 

DRAWING BY MARGUERITE SMITH,

SASKATOON

COLOR 

Color occurs when light in different wavelengths strikes

our eyes. Objects have no color of their own, only the ability

to reflect a certain wavelength of light back to our eyes. As

you know, color can vary in differing circumstances. For

example, grass can appear gray in the morning or evening

or bright green at noon. Colors appear different depending

on whether you view them under incandescent, florescent

or natural sunlight. Colors also change according to their
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surroundings. You can see this by looking at the color

squares below - the reddish outline box is the same color

in all the examples.

PROPERTIES OF COLOR 

HUE 

Hue refers to the color itself. Each different hue is a

different reflected wavelength of light. White light broken

in a prism has seven hues: red, orange, yellow, green, blue,

indigo and violet. White light occurs when all the wavelengths

are reflected back to your eye, and black light occurs when

no light is reflected to your eye. This is the physics of light.

When it comes to using color in art, things get quite

messy. Looking at the color wheel above, when using color

pigments, the three primary colors used are yellow, blue

and red. These three colors are blended together to produce

other colors, called secondary colors, such as green, orange
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and purple. Mix enough colors together, and you get black.

Pretty strange, eh?

COMPUTER COLORS

Computer colors are produced by combining the three

colors of red, green and blue together. Believe it or not, you

can get yellow by combining these colors.

PRINTER COLORS

Things get even dicier on computers when you go to print

out these colors. Printing uses the CYMK convention which
takes cyan (light blue), yellow, magenta (pinky red) and
black inks and tries to recreate the color that your computer
created with red, green and blue light. 

COLOR VALUE 

Color value refers to the lightness or darkness of the hue.

Adding white to a hue produces a high-value color, often

called a tint. Adding black to a hue produces a low-value

color, often called a shade. 
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INTENSITY 

Intensity, also called chroma or saturation, refers to the

brightness of a color. A color is at full intensity when not

mixed with black or white - a pure hue. You can change

the intensity of a color, making it duller or more neutral by

adding gray to the color. You can also change the intensity

of a color by adding its complement (this is the color found

directly opposite on the traditional color wheel). When

changing colors this way, the color produced is called a

tone.

When you mix complementary colors together, you

produce a dull tone. However, when you put complementary

colors side by side, you increase their intensity. This effect

is called simultaneous contrast - each color simultaneously

intensifies the visual brightness of the other color. 

Below are some examples of how this works, using a

program called Metacreations painter. As you can see, you

choose a hue from the outer ring. Inside the triangle, you

can vary the saturation of the hue (amount of color), the

tint or the shade.

OPTICAL COLOR MIXING 

When small dots of color are placed adjacent to each

other, your eye will combine the colors into a blended color.

This is the principle used when printing color in magazines.

Dots of cyan, magenta, yellow and black are distributed in

a pattern on the paper, and depending on the quantity of

a certain dot, you will see a specific color on the page. Paul

Signac used a technique called pointillism that involved

creating art using the combination of dots to form images.  
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COLOR AND SPACE 

Certain colors have an advancing or receding quality,

based on how our eye has to adjust to see them. Warm

colors such as red, orange or yellow seem to come forward

while cool colors such as blue and green seem to recede

slightly. In the atmosphere, distant objects appear bluish

and the further away an object appears, the less colorful

and distinct it becomes. Artists use this to give an illusion

of depth, by using more neutral and grayish colors in the

background. 

COLOR SCHEMES

MONOCHROMATIC 

This color scheme involves the use of only one hue. The

hue can vary in value, and black or white may be added

to create various shades or tints.

ANALOGOUS 

This color scheme involves the use of colors that are

located adjacent on the color wheel. The hues may vary in

value. The color scheme for this site is analogous, with the

colors varying only slightly from each other.

COMPLEMENTARY 

This color scheme involves the use of colors that are

located opposite on the color wheel such as red and green,

yellow and purple, or orange and blue. Complementary

colors produce a very exciting, dynamic pattern. 
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TRIADIC 

This color scheme involves the use of colors that are

equally spaced on the color wheel. The primary colors of

yellow, red and green could be used together in a color

scheme to produce a lively result. 

Check out Color Picker web software. This application

will allow you to choose a color and then display its

complementary or triadic match. Hint: read the instructions

first, then click on the link which says “Open Color Picker

2”. Color Picker 2.

COLOR DISCORD

While monochromatic, analogous, complementary or

triadic color schemes are considered to be harmonious,

there are some color schemes considered dissonant.

Discordant colors are visually disturbing - we say they

clash. Colors that are widely separated on the color wheel

(but not complementary or triadic) are considered to be

discordant. Discordant colors can be eye-catching and are

often used for attention-getting devices in advertising.

ILLUSION OF SPACE AND DEPTH

We live in a three-dimensional world of depth. When we

look around us, some things seem closer, some further

away. The artist can also show the illusion of depth by using

the following means:

• Size & Vertical Location

• Overlapping

• Detail (Aerial or Atmospheric Perspective)

• Linear Perspective.
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SIZE & VERTICAL LOCATION

Since objects in our environment look smaller when they

are farther away, the easiest way to show depth is to vary

the size of objects, with closer objects being larger and more

distant objects being smaller. As well, we perceive objects

that are higher on the page and smaller as being further

away than objects which are in the forefront of a picture. 

OVERLAPPING 

When objects are partially obscured by other objects in

front of them, we perceive them as further back than the

covering objects.

We do not see them as incomplete forms, just further

back.

DETAIL (AERIAL OR ATMOSPHERIC
PERSPECTIVE) 

Atmospheric perspective uses color and value contrasts

to show depth. Objects which are further away generally
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have less distinct contrast - they may fade into the

background or become indistinct dark areas. The foreground

objects will be clear with sharper contrast.  Here is a link

to Leonardo da Vinci’s use of aerial perspective: Investigating

aerial perspective.

LINEAR PERSPECTIVE (CONVERGING LINES)

Linear perspective is based on the idea that all lines will

converge on a common point on the horizon called the

vanishing point. You have observed linear perspective when

you notice that the lines on the highway appear to meet

at a point in the distance.
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Artists use linear perspective to create a focal point for

a picture. Any walls, ceilings, floors or other objects with

lines will appear to come together at the horizon line.

These lines converging lead our eyes towards that point.

Often, the most important object or person in the picture

will be located at that point. You can see in the drawing

above how all the lines in the drawing seem to lead your

eye toward the church in the center back of the drawing.

Other types of perspective, such as two-point or multipoint

perspective are also used. Two-point perspective, which

occurs when you display a building from a corner view, as

opposed to a front view, is often used by architects to show

a more three-dimensional view of a building.
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4

3 Dimensional Transformation

BASIC TRANSFORMATION
Animation are produced by moving the ‘camera’ or the

objects in a scene along animation paths. Changes in

orientation, size and shape are accomplished with geometric

transformations that alter the coordinate descriptions of the

objects. The basic geometric transformations are translation,

rotation, and scaling. Other transformations that are often

applied to objects include reflection and shear.

USE OF TRANSFORMATIONS IN CAD
In mathematics, “Transformation” is the elementary term

used for a variety of operation such as rotation, translation,

scaling, reflection, shearing etc. CAD is used throughout the

engineering process from conceptual design and layout,

through detailed engineering and analysis of components to
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definition of manufacturing methods. Every aspect of

modelling in CAD is dependent on the transformation to view

model from different directions we need to perform rotation

operation. To move an object to a different location translation

operation is done. Similarly Scaling operation is done to resize

the object.

COORDINATE SYSTEMS
In CAD three types of coordinate systems are needed in

order to input, store and display model geometry and

graphics. These are the Model Coordinate System (MCS), the

World Coordinate System (WCS) and the Screen Coordinate

System (SCS).

MODEL COORDINATE SYSTEM
The MCS is defined as the reference space of the model

with respect to which all the model geometrical data is stored.

The origin of MCS can be arbitrary chosen by the user.

WORLD COORDINATE SYSTEM
Every object have its own MCS relative to which its

geometrical data is stored. Incase of multiple objects in

the same working space then there is need of a World

Coordinate System which relates each MCS to each other
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with respect to the orientation of the WCS. It can be seen

by the picture shown below.

SCREEN COORDINATE SYSTEM
In contrast to the MCS and WCS the Screen Coordinate

System is defined as a two dimensional device-dependent

coordinate system whose origin is usually located at the lower

left corner of the graphics display as shown in the picture

below. A transformation operation from MCS coordinates to

SCS coordinates is performed by the software before

displaying the model views and graphics.

VIEWING TRANSFORMATIONS
The objects are modelled in WCS, before these object

descriptions can be projected to the view plane, they must

be transferred to viewing coordinate system. The view plane

or the projection plane, is set up perpendicular to the viewing
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zv axis. The World coordinate positions in the scene are

transformed to viewing coordinates, then viewing coordinates

are projected onto the view plane.

The transformation sequence to align WCS with Viewing

Coordinate System is.

• Translate the view reference point to the origin of

the world coordinate system.

• Apply rotations to align xv, yv, and zv with the world

xw, yw and zw axes, respectively.

HIDDEN LINES AND SURFACES
In displaying objects, there frequently occurs overlapping,

meaning that the objects which are closer are visible, and

those behind them are non-visible, because they appear as

hidden behind them. There have been designed many, rather

complex algorithms for solving this issue. Their goal is to

find out objects whose parts are visible only from the observer

place. Sometimes it is necessary to draw also edges of

overlapped objects, most often by dash lines. The visibility

algorithms always depend on the fact of how the objects are

represented in an area. The optimal variant is to have objects

described using their limits, best by surfaces. Most of these

algorithms too are prepared for this sort of representation of

objects.

VISIBILITY ALGORITHM CATEGORIZATION
Sutherland, Sproull and Schumacker termed the visibility

algorithms according to their approaches and principles used.

They are either image area or object area types. According

to, the visibility algorithms can be split depending on the

form of output data.
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• Line alghorithm (Hidden line eliminator) On the

output we receive a set of abscissas representing

visible edges. The advantage of this solution is the

fact that we have a set of vectors, and we are not

limited due to issues of resolution. In this case, we

can scale the scene without any loss in quality.

• Raster alghorithm (Hidden surface eliminator) On the

output, we receive a set of pixels representing the

specific points of the scene in the fixed given

resolution, without any option to scale the scene.

Here it is, however, possible to draw also surfaces

with shading and lighting.

PRE-PROCESSING OF DATA
Because it is time demanding to calculate all algorithms,

at the beginning it is necessary to analyse the object in the

scene. This is called data pre-processing. First, all objects

outside the visual angle, are excluded and all polygons of

which the scalar vector product (of the normal vector of the

polygon and the direction of view) is positive, and the given

polygon is then reversed

RENDERING AND ILLUMINATION
One of the most important aspects of computer graphics

is simulating the illumination in a scene. Computer-

generated images are two-dimensional arrays of computed

pixel values, with each pixel coordinate having three numbers

indicating the amount of red, green, and blue light coming

from the corresponding direction in the scene. Figuring out

what these numbers should be for a scene is not trivial,

because each pixel’s colour is based both on how the object
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at that pixel reflects light and the light that illuminates it.

Furthermore, the illumination comes not only directly from

the light sources in the scene, but also indirectly from all of

the surrounding surfaces in the form of “bounce” light. The

complexities of the behaviour of light — one reason the world

around us appears rich and interesting — make generating

“photoreal” images both conceptually and computationally

complex. As a simple example, suppose we stand at the back

of a square white room in which the left wall is painted red,

the right wall is painted blue, and the light comes from the

ceiling. If we take a digital picture of this room and examine

its pixel values, we will indeed find that the red wall is red

and the blue wall is blue. But when we look closely at the

white wall in front of us, we will notice that it isn’t perfectly

white. Towards the right it becomes bluish, and towards the

left it becomes pink. The reason for this is indirect

illumination: towards the right, blue light from the blue wall

adds to the illumination on the back wall, and towards the

left, red light does the same.

Indirect illumination is responsible for more than the

somewhat subtle effect of white surfaces picking up the

colours of nearby objects — it is often responsible for most,

sometimes all, of the illumination on an object or in a scene.

If I sit in a white room illuminated by a small skylight in the

morning, the indirect light from the patch of sunlight on the

wall lights the rest of the room, not the direct light from the

sun itself. If light did not bounce between surfaces, the room

would be nearly dark!

In early computer graphics, interreflections of light between

surfaces in a scene were poorly modelled. Light falling on
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each surface was computed solely as a function of the light

coming directly from light sources, with perhaps a roughly

determined amount of “ambient” light added irrespective of

the actual colours of light in the scene. The groundbreaking

publication showing that indirect illumination could be

modelled and computed accurately was presented at

SIGGRAPH 84, when Goral et al. of Cornell University

described how they had simulated the appearance of the

red, white, and blue room example using a technique known

as radiosity.

Inspired by physics techniques for simulating heat transfer,

the Cornell researchers first divided each wall of the box

into a 7 × 7 grid of patches; for each patch, they determined

the degree of its visibility to every other patch, noting that

patches reflect less light if they are farther apart or facing

away from each other. The final light colour of each patch

could then be written as its inherent surface colour times

the sum of the light coming from every other patch in the

scene. Despite the fact that the illumination arriving at each

patch depends on the illumination arriving (and thus leaving)

every other patch, the radiosity equation could be solved in

a straightforward way as a linear system of equations.

The result that Goral et al. obtained correctly modelled

that the white wall would subtly pick up the red and blue of

the neighbouring surfaces. Soon after this experiment, when

Cornell researchers constructed such a box with real wood

and paint, they found that photographs of the box matched

their simulations so closely that people could not tell the

difference under controlled conditions. The first “photoreal”

image had been rendered!



3-D Computer Graphics

81

One limitation of this work was that the time required to

solve the linear system increased with the cube of the number

of patches in the scene, making the technique difficult to

use for complex models (especially in 1984). Another

limitation was that all of the surfaces in the radiosity model

were assumed to be painted in matte colours, with no shine

or gloss.

A subsequent watershed work in the field was presented

at SIGGRAPH 86, by Jim Kajiya from Caltech, who published

the “The Rendering Equation,” which generalized the ideas

of light transport to any kind of geometry and any sort of

surface reflectance. The titular equation of Kajiya’s paper

stated in general terms that the light leaving a surface in

each direction is a function of the light arriving from all

directions upon the surface, convolved by a function that

describes how the surface reflects light. The latter function,

called the bidirectional reflectance distribution function

(BRDF), is constant for diffuse surfaces but varies according

to the incoming and outgoing directions of light for surfaces

with shine and gloss.

Kajiya described a process for rendering images according

to this equation using a randomized numerical technique

known as path tracing. Like the earlier fundamental

technique of ray tracing, path tracing generates images by

tracing rays from a camera to surfaces in the scene, then

tracing rays out from these surfaces to determine the

incidental illumination on the surfaces. In path tracing, rays

are traced not only in the direction of light sources, but also

randomly in all directions to account for indirect light from

the rest of the scene. This simple scene shows realistic light
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interactions among both diffuse and glossy surfaces, as well

as other complex effects, such as light refracting through

translucent objects. Although still computationally intensive,

Kajiya’s randomized process for estimating solutions to the

rendering equation made the problem tractable both

conceptually and computationally.

BRINGING REALITY INTO THE COMPUTER
Using the breakthroughs in rendering techniques

developed in the mid-1980s, it was no simple endeavour to

produce synthetic images with the full richness and realism

of images in the real world. Photographs appear “real” because

shapes in the real world are typically distinctive and detailed,

and surfaces in the real world reflect light in interesting ways,

with different characteristics that vary across surfaces. And

also, very importantly, light in the real world is interesting

because typically there are different colours and intensities

of light coming from every direction, which dramatically and

subtly shape the appearance of the forms in a scene.

Computer-generated scenes, when constructed from simple

shapes, textured with ideal plastic and metallic reflectance

properties, and illuminated by simple point and area light

sources, lack “realism” no matter how accurate or

computationally intensive the lighting simulation. As a result,

creating photoreal images was still a matter of skilled artistry

rather than advanced technology. Digital artists had to adjust

the appearance of scenes manually.

Realistic geometry in computer-generated scenes was

considerably advanced in the mid-1980s when 3D digitizing

techniques became available for scanning the shapes of real-
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world objects into computer-graphics Programmes. The

Cyberware 3D scanner, an important part of this evolution,

transforms objects and human faces into 3D polygon models

in a matter of seconds by moving a stripe of laser light across

them. An early use of this scanner in a motion picture was

in Star Trek IV for an abstract time-travel sequence showing

a collage of 3D models of the main characters’ heads. 3D

digitization techniques were also used to capture artists’

models of extinct creatures to build the impressive digital

dinosaurs for Jurassic Park.

DIGITIZING AND RENDERING WITH REAL-
WORLD ILLUMINATION

Realism in computer graphics advanced again with

techniques that can capture illumination from the real world

and use it to create lighting in computer-generated scenes.

If we consider a particular place in a scene, the light at that

place can be described as the set of all colours and intensities

of light coming towards it from every direction. As it turns

out, there is a relatively straightforward way to capture this

function for a real-world location by taking an image of a

mirrored sphere, which reflects light coming from the whole

environment towards the camera. Other techniques for

capturing omnidirectional images include fisheye lenses, tiled

panoramas, and scanning panoramic cameras.

The first and simplest form of lighting from images taken

from a mirrored sphere is known as environment mapping.

In this technique, the image is directly warped and applied

to the surface of the synthetic object. The technique using

images of a real scene was used independently by Gene Miller
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and Mike Chou and Williams. Soon after, the technique was

used to simulate reflections on the silvery, computer-

generated spaceship in the 1986 film Flight of the Navigator

and, most famously, on the metallic T1000 “terminator”

character in the 1991 film Terminator 2. In all of these

examples, the technique not only produced realistic

reflections on the computer-graphics object, but also made

the object appear to have truly been in the background

environment. This was an important advance for realism in

visual effects. Computer-graphics objects now appeared to

be illuminated by the light of the environment they were in.

Environment mapping produced convincing results for

shiny objects, but innovations were necessary to extend the

technique to more common computer-graphics models, such

as creatures, digital humans, and cityscapes. One limitation

of environment mapping is that it cannot reproduce the

effects of object surfaces shadowing themselves or of light

reflecting between surfaces. The reason for this limitation is

that the lighting environment is applied directly to the object

surface according to its surface orientation, regardless of

the degree of visibility of each surface in the environment.

For surface points on the convex hull of an object, correct

answers can be obtained. However, for more typical points

on an object, appearance depends both on which directions

of the environment they are visible to and light received from

other points on the object.

A second limitation of the traditional environment mapping

process is that a single digital or digitized photograph of an

environment rarely captures the full range of light visible in

a scene. In a typical scene, directly visible light sources are
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usually hundreds or thousands of times brighter than

indirect illumination from the rest of the scene, and both

types of illumination must be captured to represent the

lighting accurately. This wide dynamic range typically exceeds

the dynamic range of both digital and film cameras, which

are designed to capture a range of brightness values of just

a few hundred to one. As a result, light sources typically

become “clipped” at the saturation point of the image sensor,

leaving no record of their true colour or intensity. This is not

a major problem for shiny metal surfaces, because shiny

reflections would become clipped anyway in the final rendered

images. However, when lighting more typical surfaces —

surfaces that blur the incidental light before reflecting it back

towards the camera — the effect of incorrectly capturing the

intensity of direct light sources in a scene can be significant.

We developed a technique to capture the full dynamic range

of light in a scene, up to and including direct light sources.

Photographs are taken using a series of varying exposure

settings on the camera; brightly exposed images record

indirect light from the surfaces in the scene, and dimly

exposed images record the direct illumination from the light

sources without clipping. Using techniques to derive the

response curve of the imaging system (i.e. how recorded pixel

values correspond to levels of scene brightness), we assemble

this series of limited-dynamic-range images into a single high-

dynamic image representing the full range of illumination

for every point in the scene. Using IEEE floating-point

numbers for the pixel values of these high-dynamic-range

images (called HDR images or HDRIs), ranges exceeding even

one to a million can be captured and stored.
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The following year we presented an approach to

illuminating synthetic objects with measurements of real-

world illumination known as image-based lighting (IBL),

which addresses the remaining limitations of environment

mapping. The first step in IBL is to map the image onto the

inside of a surface, such as an infinite sphere, surrounding

the object, rather than mapping the image directly onto the

surface of the object.

We then use a global illumination system to simulate this

image of incidental illumination actually lighting the surface

of the object. In this way, the global illumination algorithm

traces rays from each object point out into the scene to

determine what is lighting it.

Some of the rays have a free path away from the object

and thus strike the environmental lighting surface. In this

way, the illumination from each visible part of the

environment can be accounted for. Other rays strike other

parts of the object, blocking the light it would have received

from the environment in that direction.

If the system computes additional ray bounces, the colour

of the object at the occluding surface point is computed in a

similar way; otherwise, the algorithm approximates the light

arriving from this direction as zero. The algorithm sums up

all of the light arriving directly and indirectly from the

environment at each surface point and uses this sum as the

point’s illumination. The elegance of this approach is that it

produces all of the effects of the real object’s appearance

illuminated by the light of the environment, including self-

shadowing, and it can be applied to any material, from metal

to plastic to glass.
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The techniques of HDRI and IBL, and the techniques and

systems derived from them, are now widely used in the visual-

effects industry and have provided visual-effects artists with

new lighting and compositing tools that give digital actors,

airplanes, cars, and creatures the appearance of actually

being present during filming, rather than added later via

computer graphics. Examples of elements illuminated in this

way include the transforming mutants in X-Men and X-Men

2, virtual cars and stunt actors in The Matrix Reloaded, and

whole cityscapes in The Time Machine. In latest computer

animation, we extended the techniques to capture the full

range of light of an outdoor illumination environment — from

the pre-dawn sky to a direct view of the sun — to illuminate

a virtual 3D model of the Parthenon on the Athenian

Acropolis.

APPLYING IMAGE-BASED LIGHTING TO ACTOR
In a laboratory’s most recent work, we have examined the

problem of illuminating real objects and people, rather than

computer-graphics models, with light captured from real-

world environments. To accomplish this we use a series of

light stages to measure directly how an object transforms

incidental environmental illumination into reflected radiance,

a data set we call the reflectance field of an object.

The first version of the light stage consisted of a spotlight

attached to a two-bar rotation mechanism that rotated the

light in a spherical spiral about a person’s face in

approximately one minute. At the same time, one or more

digital video cameras recorded the object’s appearance under

every form of directional illumination.
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From this set of data, we could render the object under

any form of complex illumination by computing linear

combinations of the colour channels of the acquired images.

The illumination could be chosen to be measurements of

illumination in the real world or the illumination present in

a virtual environment, allowing the image of a real person to

be photorealistically composited into a scene with the correct

illumination.

An advantage of this photometric approach for capturing

and rendering objects is that the object need not have well

defined surfaces or easy-to-model reflectance properties. The

object can have arbitrary self-shadowing, interreflection,

translucency, and fine geometric detail. This is helpful for

modelling and rendering human faces, which exhibit all of

these properties, as do many objects we encounter in our

everyday lives.

Recently, a group constructed two additional light stages.

Light Stage 2 uses a rotating semicircular arm of strobe lights

to illuminate the face from a large number of directions in

about eight seconds, much more quickly than Light Stage 1.

For this short a period of time, an actor can hold a steady

facial expression for the entire capture session. By blending

the geometry and reflectance of faces with different facial

expressions, they have been able to create novel animated

performances that can be realistically rendered from new

points of view and under arbitrary illumination (Hawkins et

al., in press). Mark Sagar and his colleagues at Sony Pictures

Imageworks used related techniques to create the digital

stunt actors of Tobey Maguire and Alfred Molina from light

stage data sets for the film Spider-Man 2.
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For Light Stage 3, we built a complete sphere of 156 light

sources that can illuminate an actor from all directions

simultaneously. Each light consists of a collection of red,

green, and blue LEDs interfaced to a computer so that any

light can be set to any colour and intensity. The light stage

can be used to reproduce the illumination from a captured

lighting environment by using the light stage as a 156-pixel

display device for the spherical image of incidental

illumination. A person standing inside the sphere then

becomes illuminated by a close approximation of the light

that was originally captured. When composited over a

background image of the environment, it appears nearly as

if the person were there. This technique may improve on

how green screens and virtual sets are used today. Actors in

a studio can be filmed lit as if they were somewhere else,

giving visual-effects artists much more control over the

realism of the lighting process.

In our latest tests, we use a high-frame camera to capture

how an actor appears under several rapidly cycling basis

lighting conditions throughout the course of a performance.

In this way, we can simulate the actor’s appearance under a

wide variety of different illumination conditions after filming,

providing directors and cinematographers with never-before-

available control of the actor’s lighting during postproduction.

A REMAINING FRONTIER: DIGITIZING
REFLECTANCE PROPERTIES

Significant challenges remain in the capture and

simulation of physically accurate illumination in computer

graphics. Although techniques for capturing object geometry
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and lighting are maturing, techniques for capturing object

reflectance properties — the way the surfaces of a real-world

object respond to light — are still weak. In a recent project, a

laboratory presented a relatively simple technique for

digitizing surfaces with varying colour and shininess

components.

They found that by moving a neon tube light source across

a relatively flat object and recording the light’s reflections

using a video camera they could independently estimate the

diffuse colour and the specular properties of every point on

the object. For example, we digitized a 15th-century

illuminated manuscript with coloured inks and embossed

gold lettering). Using the derived maps for diffuse and

specular reflection, we were able to render computer-graphics

versions of the manuscript under any sort of lighting

environment with realistic glints and reflections from different

object surfaces.

A central complexity in digitizing reflectance properties for

more general objects is that the way each point on an object’s

surface responds to light is a complex function of the direction

of incidental light and the viewing direction — the surface’s

four-dimensional BRDF. In fact, the behaviour of many

materials and objects is even more complicated than this, in

that incidental light on other parts of the object may scatter

within the object material, an effect known as subsurface

scattering. Because this effect is a significant component of

the appearance of human skin, it has been the subject of

interest in the visual-effects industry. New techniques for

simulating subsurface scattering effects on computer-

generated models have led to more realistic renderings of
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computer-generated actors and creatures, such as the

Gollum character in Lord of the Rings.

Obtaining models of how real people and objects scatter

light in their full generality is a subject of ongoing research.

In a recent study, Goesele et al. (in press) used a computer-

controlled laser to shine a narrow beam onto every point of a

translucent alabaster sculpture and recorded images of the

resulting light scattering using a specially chosen high-

dynamic-range camera. By making the simplifying

assumption that any point on the object would respond

equally to any incidental and radiant light direction, the

dimensionality of the problem was reduced from eight to four

dimensions yielding a full characterization of the object’s

interaction with light under these assumptions. As research

in this area continues, we hope to develop the capability of

digitizing anything — no matter what it is made of or how it

reflects light — so it can become an easily manipulated,

photoreal computer model. For this, we will need new

acquisition and analysis techniques and continued increases

in computing power and memory capacity.
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5

Orthographic Projections

FIRST ANGLE PROJECTION 

Orthographic projections are a way of representing 3D

objects in 2D. It is useful in accurately representing the vari-

ous sides of a 3D object. When you draw in orthographic,

the front, side and plan views are drawn separately.

First angle projection is the standard orthographic pro-

jection used in Europe and Asia. First angle orthographic

projection will always show the left view to the right of the

front view as if the shape has been rolled to the right. The

plan view is shown below as if it were rolled down.

When you draw an Orthographic, you must always use

construction lines. This saves you from measuring the same

measurements twice when you draw the side and plan views.

The symbol for First Angle Projection is shown. It shown a

cone shape drawn in first angle.
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Now copy the isometric view of the ‘L’ shape, then draw
the first angle orthographic projection. Then, turn over the
page and choose three shapes to draw in first angle. It is

helpful to label the front, side and plan views first.

Opposite is a simple L-shape, drawn in three

dimensions. Below is the same shape drawn in orthographic

projection.

This orthographic projection appears to have three sepa-

rate drawings but they are the same L-shape. The first draw-
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ing is the front view (drawn looking straight at the front of

the L-shape), the second is a drawing of the L-shape seen

from the side and last of all a drawing from above known as

a plan view. These lines are faint guidelines and they are

drawn to help keep each view in line, level and the same

size.

This is an example of first angle orthographic project.

There is another type called third angle which is used com-

monly. The front, side and plan views are in different posi-

tions

THE FRONT VIEW

It is seen that standing directly in front of the L-shape,

would only see the front edges, not the sides.

THE SIDE VIEW

Fig. First Angle Projection

Now imagine standing directly at the side of the L-shape,

the drawing opposite shows exactly what you would see.
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Another example of first angle orthographic projection

is shown below. Follow the lines as the front, side and plan

view are constructed.

The final arrangement of the views are shown in the

drawing below. Notice how the symbol for first angle

orthographic projection has been added and the paper has

a title block and borderline.

THIRD ANGLE PROJECTION
The 3rd angle projection is the most favoured of the two

projections and is commonly seen on technical and archi-

tectural drawings Tabs can display the 3rd angle projection

with the right hand view.  Students can also display projec-

tions rendered naturally, or solid white with lines, or as line

drawings with the hidden lines included!
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Figure below shows a third-angle projection of a cube.

As you can see, you get a front view on the vertical plane, a

top view on the horizontal plane, and a right side view on the

profile plane.

Again you assume that the vertical plane is already in

the plane of your drawing paper. To get the other two views

into the same plane, you rotate them both clockwise. Figure

below shows a third-angle projection of an object brought

into a single plane.  The top view is above the front view; the

right side of the object, as shown in the front view, is to-

wards the right side view; and the top, as shown in the front

view, is towards the top view:

Figure below shows the basic principles of the method by

which you would actually make he projection shown n  figure.

Draw a horizontal line AB and a vertical line CD, intersecting

at O. AB represents the joint between the horizontal and the

vertical plane; CD represents the joint between these two and
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the profile plane. Any one of the three views could be drawn

first, and the other two projected from it. Assume that the

front view is drawn first on the basis of given dimensions of

the front face. Draw the front view, and project it upward

with vertical projection lines to draw the top view. Project the

top view to CD with horizontal projection lines. With O as a

center, use a compass to extend these projection lines to AB.

Draw the right side view by extending the projection lines

from AB vertically downward and by projecting the right side

of the front view horizontally to the right

PLANES OF PROJECTION
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 STANDARD VIEWS

ALTERNATIVE VIEWS 

FOUR QUADRANTS
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FIRST ANGLE EXAMPLES

����������

The 1st Angle Projection the section of the box we use is

always the top left corner, which seems to make sense.
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THIRD-ANGLE PROJECTION EXAMPLES
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PROJECTION OF SOLIDS

The solid figures are drawn in two different forms of vis-

ibility. When first presented to the youngest pupils it is bet-

ter to work with those of the first type (full solids). Later,

when we want pupils to imagine even the back part of the

solid, we use the other form, in which a dashed line marks

the invisible edges.

Interactive objects can also be used to construct sec-

tions of solids, making a decision about the mutual posi-

tion of lines, which can be added into the interactive poly-

hedron, etc.

When working on a task, one can complete the task with

the figure as presented. If the orientation of the figure is not

suitable for the task, we can turn the solid into an optimal

position.

Taking measurements of diagonals and angles is clearer

if we use colour to highlight the triangles with which we are

working. By rotating the object, pupils can better image the

situation in space. When making a decision about the mu-

tual position of lines in a figure, pupils can add the required

lines into interactive polyhedron. By rotating the object, pupil

can better image the situation in space. We can use the same
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method to convince a pupil that he or she is wrong to con-

sider the illusive point of intersection of skew lines to be a

real point.

The generation of a cone or cylinder by rotating a tri-

angle or rectangle can be demonstrated to the class as a

whole.

PROJECTIONS

The second group of teaching files are used to illustrate

vertical, oblique and central projections. We can study the

features of a particular projection by applying the projection

to a cube.

Parameters of each projection are variable. In this way

we can compare oblique projections, which differ by the angle

between the x, y axes and by the ratio of units on those axes.

Later we can experimentally verify whether a given projec-

tion preserves parallelism, perpedincularity or length.
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We recommend showing the illustration of central pro-

jections because of their similarity to our visual perception

of the world. Pupils who use only parallel projection in maths

lessons would certainly be interested in it because of an at-

tractive link between mathematics and art.

TYPES OF SOLIDS

CUBE
The cube is a mathematical body formed by six equal

squares. 

Other names are cubus or hexahedron.

In the 1980’s Rubik’s cube was so popular that it was

simply called “the cube”.

There are 12 equal edges. 
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Three edges meet in a corner and stand perpendicularly

on each other in pairs.

The length of an edge is a. There are

• The 12 square diagonals of the length d’=sqr(2)*a. 

• The four space diagonals of the length d=sqr(3)*a. 

• The volume V=a³, the surface O=6*a². 

The circumscribed sphere has the radius R=a*sqr(3)/2,

the inscribed sphere the radius r=a/2.

CUBES IN PERSPECTIVE

If students shall draw the picture of a cube in perspective

and you tell them before that all edges of the cube are equal

some of them draw the picture on the left.There is the

question, how much you must shorten to get a nice view.

If you have the choice of the following four drawings most

people would choose picture 3 as the best.

The sloping line is about half as large as the true length

of an egde. Thus you get the ratio k=1/2. The ratio depends

on the angles of the sloping lines. The three following

statements produce good pictures:
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The mathematical base is the “sloping parallel

projection”, where all ratios and angles are possible. You

choose simple angles and simple ratios. Every real 2d-tripod

OABC can be produced by parallel projection of a Cartesian

3d-tripod O’A’B’C’.

CUBES IN PERSPECTIVE

Actually the drawing with equal edges on the left was not

used as a picture of a cube. Nevertheless you may take it.

The advantage is that the length in direction of the lines

are real. The “isometric perspective” (30° instead of 45°) is

not so distorted and preferred.

CENTRAL PROJECTION

Think of the edge model of a cube.

If you project it with light which comes from a point

you can get the picture on the left.
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NETS OF A CUBE

Think of a paper cube and cut it along the edges. You get

nets of a cube. There are 11 nets.

STEREOGRAM
You can see the cube three-dimensionally in the follow-

ing picture.

SHADOW PICTURES OF A ROTATING CUBE

A nice exhibit is a rotating edge model of a cube. It is

produced by parallel rays.

You see the figures on the left one after the other on a

screen (square on the top, hexagon with diagonal and a rect-

angle with a middle line).

You don’t believe that these figures come from a cube

and must look twice.
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The cube is positioned in the way, that two edges in op-

posite lie on top of each other. An axis (red) is interrupted in

the middle. 

MODEL WITH SQUARES

This is the well known way to build a cube.

Draw a net and give the edges stripes for gluing.

Flex the stripes and glue them on the pointed fields with

the same colour. The cube will be closed with a lid on the

right. 

MODEL WITH EDGES
There are different methods of building cubes with rods.

Remove the top of a match and connect the sticks with

two-component gluing.

Take a toothpick or chopstick and connect them with

balls of modelling clay.

Cut equal wire pieces with pincers and connect them by

soldering, so that they form a cube. It is clever to fix the

three pieces of a corner and let them touch before soldering.

You can manage if you use “die helfende Hand” (the helping

hand) for two ends and the real hand for the third end. Cut

drinking straws in equal pieces and connect them with tri-

pods of florist’s wire or paper clips.

More exact: There are building kits, which use 12 straws

and 8 tripods of plastic.
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You can make tripods (below) yourself. You bend them

twice in six lines. There are bends in the tops, the two ends

of a wire meet in the middle.

You can find a clever fashionable toy: Bar magnets form

the edges, steel balls the corners.

The centre of the cube is a symmetry centre. 

The cube has nine symmetry planes.

Three planes lie parallel to the side squares and go

through the centre (picture).

Six planes go through opposite edges and two body di-

agonals. They divide the cube into prisms. You can find 13

rotation axes. If you turn around one of these axes, the cube

goes back to itself.

The following picture illustrates these facts. The num-

bers under the cubes indicate the number of turns.
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ALL DIAGONALS OF THE SURFACE SQUARES

ALL SPATIAL DIAGONALS

CUBE WITH CUT CORNERS

Cut the corners of a cube. Divide the edges in three equal

pieces to do this. You get a body formed by 6 octogons and 8

equilateral triangles. 



3-D Computer Graphics

110

CUBEOCTAHEDRON

Cut the corners of a cube. Take half the edges.You get a

body formed by 6 squares and 8 equilateral triangles..

TETRAHEDRON IN THE CUBE

Draw some square diagonals and you will get a tetrahedron.

OCTAHEDRON IN THE CUBE

Join the centres of the squares by lines. You get an

octahedron. If you join the centres of the triangles of a octa-

hedron, a cube develops again. Cube and octahedron are

dual to each other.

THREE PYRAMIDS OF EQUAL VOLUMES

THE LARGEST SQUARE INSIDE A CUBE
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The red square is the largest square which fits a cube.

The corners of the square divide the edges in 1:3. 

CUBE IN THE CUBE

The red cube is the smallest cube which touches all sides

of the black cube.

HEXAGON INSIDE A CUBE

Join centres of some edges. You get an intersection

through the cube.The intersection line is a hexagon of the

edge length sqrt(2)/2*a, if a is the edge of the cube.

A SPATIAL EQUILATERAL HEXAGONS

The ancient Greeks could get rid of the plague after an

answer of the oracle of Delos, if they doubled the volume of

its cube altar. (This is one version of the legend.)
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The problem of the cube duplication goes to the equation

2a³=x³ and the solution x=a*2(1/3).

This was no solution, because the distance x had to be

found from the length a only with circle and ruler.Circles

and straight lines lead to linear and quadratic equations,

which x³ = a³ does not belong to. You can form polycubes,

if you add cubes touching in one or several squares as

shown. 

There are many puzzles based on polycubes. Here is my

“hit list”:

HYPERCUBE (4DIMENSIONAL CUBE)

If you like, every representation of a cube in the plane

is a optical illusions. You think you see a 3D cube, though

the drawing plane is 2D. Well known illusions with cubes

are “tilt figures”. I restrict on them.



3-D Computer Graphics

113

The Necker cube (on the left) shows a cube in two

perspectives (on the right).

You switch over from one sight to the other. A square is

sometimes in front or in the back. You can only see one

view at one moment.

From below or above three or five cubes. Five or three

cubes? How many cubes?

The five pictures above are ambiguous.

TETRAHEDRA

The tetrahedron has 4 faces, 4 vertices, and 6 edges.

Each face is an equilateral triangle. Three faces meet at each

vertex.Begin with a tetrahedron of edge length s. Its faces

are equilateral triangles. The length of their sides is s, and

the measure of their interior angles is p/3.

First, find the area of each triangular face. Multiply that

by the number of faces to get the total surface area, A.
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The dihedral angle formula can be applied here because

three faces meet at each vertex. All of the faces are

equilateral triangles, so let a = b = g = p/3.
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Find the apothem of a face, and use it in the calculations

for the inradius and circumradius.
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Now, the volume formula.
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 The tetrahedron is also a pyramid, and its height is

the sum of the inradius and the circumradius. Use that

fact and apply the pyramid volume formula. Redundant

calculations like this are a good way of checking the results.
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OTHER PROPERTIES
The tetrahedron is its own dual, meaning that if the cen-

ters of the adjacent faces are connected with line segments,

the resulting figure is another tetrahedron. The smaller tet-

rahedron shown here has one-ninth the
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volume of the larger one, but it is not possible to assemble

nine tetrahedrons into one.

The tetrahedron has 24 symmetries. Tetrahedra do not

pack space, but it is possible to pack space by combining

tetrahedra and octahedra. The tetrahedron has no parallel

faces, no parallel edges, and no diametrically opposite

vertices. All of these properties are unique among the

Platonic solids.

When the midpoints of the adjacent edges of a

tetrahedron are connected, an octahedron is formed.

A cross-section of a tetrahedron can be an equilateral

triangle or a square.

A planar projection of a tetrahedron can be an equilateral

triangle or a square.
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6

Design and Analysis Technologies

The Design and Analysis Technologies critical technology

area includes technologies or processes that are pervasive

within the aerospace and defence sector. The technology

elements within the Design Technologies critical technology

area are depicted in the figure below and described in

subsequent paragraphs:

MULTIDISCIPLINARY DESIGN AND

OPTIMIZATION

Multidisciplinary design and optimization is as the name

implies, the process of combining a full set of computational

design tools to create an optimum design. The process is

necessarily iterative in nature and all of the disciplines

normally utilized in an aircraft design are computationally

intensive.
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An MDO approach for an aircraft could include

aerodynamics, structures, and systems Computer Aided

Engineering (CAE) tools. Initial design assumptions would

be input to each CAE toolset and the constraints and

parameters to be optimized defined. Each CAE suite would

then compute design parameters that would be utilized by

the other CAE tools as a subset of their required inputs.

The ultimate design would theoretically be structurally

sounder, lighter and more cost effective to fabricate. The

design timeframe would be also very much shortened. The

challenges to this process are in the exchange of data

between the CAE applications and the tuning of the entire

process to achieve convergence on the final solution set in

an efficient manner.

STRUCTURAL ANALYSIS
The optimization of analytical design tools is a process

that will lead to shortened design time frames, lighter and

more efficient designs, with reduced production and life cycle

costs of the final design. The many analytical tools now

available have been typically developed for specific

applications and are often not readily applicable outside of

their original design target arena. An example lies in the

structural analysis field where tools developed for metallics

will be much different from those developed for composite

materials where material properties may vary according to

axis. The ability to rapidly define an optimized aircraft

structure having light weight, and improved fatigue and

damage tolerance capabilities, is a critical technology to

maintain competitive leadership in the development and
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supply of future new aircraft. This will be achieved by the

extensive use of computerized methods for structural

analysis and design optimization, and the analysis of failure

and fracture mechanics. The methods must be integrated
with the in-house design and manufacturing data bases, the
3-D CAD/CAMsystems, and also be easy to use. Suppliers
and partners will have access to the resulting design
information via Technical Data Interchange (TDI). This will
ensure consistency with an up-to-date knowledge of the
requirements for loads, interfaces and the space envelopes
available for their products. The immediate dissemination
to suppliers of information on design changes will help
diminish subsequent redesign activity and the time and cost
penalties incurred for rework.

The preliminary structural design will often use detailed
Finite Element Methods (FEM) for analysis, coupled with
constrained optimization, and the process must be highly
automated for rapid creation of FEM meshing for models. In
order to achieve shortened design cycle time, the loads and
dynamics stiffness requirements must become available
much sooner than at present. This will require early
development of MDO models for overall aerodynamic and
structural optimization that will define the static and

dynamic loads for flight and ground operations. Trade-off

studies must rapidly search for the best designs and arrive

at realistic structural sizes, providing space envelopes and

accurate weights to minimize subsequent redesign.

STRUCTURAL DESIGN, ANALYSIS AND
OPTIMIZATION

Shortened design cycle times are necessary for achieving

market advantage in the aerospace and defence sector.

Improvements in the structural analysis, design and
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optimization of gas turbine engines is necessary to achieve

these goals while also meeting the overall objectives of

increased durability and efficiency at lower costs.

A Multi-disciplinary Design Optimization (MDO) approach

that combines finite element analysis and aerodynamic

design techniques is employed. MDO is necessary to rapidly

determine the structure of the engine and identify critical

areas requiring further or more detailed analysis.

Many of the structural and aerodynamic codes developed

by companies are proprietary in nature and the integration

and refinement of these codes is an on-going challenge.

COMPUTATIONAL FLUID DYNAMICS

COMPUTATIONAL DEVELOPMENT AND
VALIDATION

Computational Fluid Dynamics (CFD) has had the

greatest effect on both aircraft and engine design of any single

design tool over the past twenty-five years. Computational

power and cost have enabled widespread application and

development of CFD techniques. Computational fluid

dynamics is basically the use of computers to numerically

model flows of interest. Nodes in the flowpath are identified

and equations of motion solved at these locations to identify

flow parameters. In essence a grid or mesh is defined over

the surface of the object that extends outwards into the

flowfield containing the object. Flow equations are then

calculated at each node in the grid, and iteratively re-

calculated until all results for each node are within an

acceptable variance. The equations used are either Euler
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based which do not include viscous effects (boundary layers)

directly, or Navier-Stokes equations which include viscous

effects and which produce more accurate but

computationally more demanding solutions. Such methods

can be used for external flows about an aircraft or for internal
flows in a gas turbine including combustion. The Euler based
analyses are typically less computationally demanding but
are less precise for modeling separated flows on wings and
bodies, or for internal reversed flows. It should be noted that
Navier first developed his equations in 1823 and that Stokes
refined them in 1845. The development of solutions to these
equations was not feasible until the latter part of this century.
Today much R&D effort on NS methods is expended on
improving modeling of the turbulent flow terms for specific
problems. Numerous forms of Euler and Navier-Stokes
solutions have been developed to address particular design
problems. Solutions to these equations are dependent on
experimentation for both coefficients and for validation.

Mesh selection and node placement is critical to the
solution of the flowfield. The automated generation of meshes
is now in wide spread use and can often be linked to
Computer Aided Engineering and Design tools. The form of
the equation used, the density of the mesh or grid and
convergence requirements determine computational
demands. Complete aircraft solutions require huge computer

resources and much R&D is aimed at improving the speed

of the solution.

COMPUTATIONAL FLUID DYNAMICS - GAS
TURBINES

CFD is perhaps the single most critical technology for gas

turbine engines. Gas turbineCFD needs have typically posed
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the greatest challenges to engine designers, and computational

power and code developers. While CFD is of utmost

importance to the engine designer it is a very specific

disciplinary design requirement and competence is held by a

very small number of engine design firms worldwide.

Computation techniques for gas turbine engines also tend

to be very module specific — compressor, transition duct,

combustor, turbine and exhaust duct/military afterburner

are examples. Computational techniques are often also

specific to engine size class and thus Canada, focusing on

small gas turbines, has a specific set of technology

requirements.

Advanced 3D CFD codes have been used to generate the

following design improvements:

• In the compressor to develop advanced swept airfoils

capable of high compression ratios that in turn yield

higher efficiency at less weight and with a smaller

parts count (significant life cycle cost factor);

• In the combustor for higher intensity (smaller

volumes with much higher energy density)

combustors that approach stoichiometric conditions

to yield higher efficiency with lower weight; and

• In the turbine to produce higher stage loading with

reduced turbine cooling air requirements that again

reduces weight and cost while reducing fuel burn.

COMBUSTION SYSTEMS COMPUTATION
The combustor of a gas turbine engine is that part of the

engine that receives the compressed air from the compressor.

Energy is added to the airflow in the combustor in the form
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of chemical energy derived from fuel. The combustor

discharge air is expanded across a turbine or turbines where

energy is extracted to drive the compressor and gearbox of

a turboshaft/turboprop engine, or to provide jet thrust via

a turbofan and core nozzle in a thrust engine.

Small gas turbines, of the size that have typically been

designed and built in Canada pose significant design

challenges because of their size. Pratt and Whitney Canada

combustors are the highest intensity combustors in the

world, where intensity can be thought of as the amount of

energy converted per unit volume within the combustor. The

design objectives for gas turbine engines, including small

ones, are to increase both overall pressure ratios and cycle

temperatures, which lead to increased efficiency and smaller

size and weight, while simultaneously producing reduced

noise and noxious emissions levels.

Combustor technology development challenges for

Canadian engine manufacturers include.

Computational fluid dynamics: CFD analyses are

complicated by the reverse flow designs typically selected to

maintain short combustors within small volumes. Cooling

flow and chemical additions to the CFD design further

complicate the process as the temperatures of gases at the

core of the flows are well above the melting temperatures of

the combustor materials. Pressure losses and cooling flow

requirements must be minimized to improve performance.

Materials: Increasing compressor ratios result in

increased compressor discharge temperatures and decreased

cooling capability. These increased temperatures also push

for higher fuel to air ratios and higher temperatures within
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the combustor. Stoichiometric ratio is that ratio when all

oxygen is consumed in the combustion process leaving less

air for cooling. Materials challenges in this environment are

the most demanding. Fuel injection and mixing: CFD and

injector specific techniques are required.

Emissions: While not legislated and not contributing

significantly in absolute terms, there is a drive for lower

emissions that drives designs often in the opposite direction

to those factors identified above.

AERODYNAMICS AND FLIGHT MECHANICS

Aerodynamics is the study of forces on wing bodies and

controls due to air pressure and viscous (drag) effects. Flight

mechanics is the study of the resulting motion of objects

through the air and includes the stability and control

Behaviour. The laws of motion and aerodynamics are

combined to ensure that an aircraft flies in the intended

manner. Much of the aerodynamics and flight mechanics

work that is pursued for the purposes of aircraft designed

and built in Canada will pertain to such issues as the design

of improved wings, the integration of various components

onto an aircraft or issues such as flight in adverse conditions

where the handling qualities of an aircraft will be adversely

influenced by the build up of ice on the surface of the wing.

Advanced technology development in this field will be directed

towards supersonic transports and eventually hypersonic

flight. There are considerable differences between fixed wing

and rotary wing aircraft aerodynamics and flight mechanics

and both areas are of considerable interest to the Canadian

aerospace and defence industry.
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Technologies relevant to Aerodynamics and Flight

Mechanics are described below:

ADVANCED AERODYNAMICS AND HANDLING
Included here are technologies that will enable the

Canadian Aerospace industry to contribute to the design of

advanced concept aircraft technologies or components or be

the lead design integrator.

These enabling technologies should be pursued dependent

on their links to, and pre-positioning for potential application

to specific aircraft platforms or types as follows:

• Future Transport Aircraft: Future transport aircraft

will have to demonstrate increased speed and load

carrying capabilities over greatly extended ranges.

Specific targets have been set by the U.S. for next

generation transport aircraft although no new

advanced concept transport aircraft are currently

well advanced. Wing loading factors will double over

that of existing aircraft with the development of

materials new to the transport aircraft envelope. For

shorter-range aircraft, a key enabling technology will

be that of high efficiency turboprop engines with

cruise speeds above the M.72 range. Propulsion

technology and propulsion integration issues,

aircraft design optimization, CFD, and materials

technology development and insertion will be key to

the success of the future transport aircraft.

• Hypersonic Aircraft: Hypersonic aircraft are in

exploratory or advanced development model stage at

this time and will be used initially for low cost space
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launch and delivery platforms and subse-quently for

commercial transport. Propulsion technologies are

significant to hypersonic vehicle feasibility and are

now the limiting factor. Variable cycle engines,
advanced materials, endothermic fuels and fuel
control technologies are key aeropropulsion
technology elements where significantR&D remains
unsatisfied. Numerous controls and materials
research topics require further investment as well,
although less uncertainty remains in these areas due
to advances made through the shuttle Programmes.

• Advanced Rotorcraft: Future rotorcraft will demon-
strate increased cruise speeds of 200 kts or greater
with tiltrotor speeds approaching 450 kts. These
cruise speeds will be possible at significantly reduced
vibration levels and with greatly increased range/fuel
economy. Many of the design concepts for attaining
these performance improvements are already in
development, however much work remains undone.

• Advanced Rotorcraft Flight Mechanics: For both
conventional helicopter and tiltrotor blades, the wings
and propulsion system operate in a very complex
aeromechanical environment. Aerodyn-amics,
structures, vibration and acoustics parameters are
inseparable and typically drive the design of the entire

air vehicle. In trimmed forward flight the advancing

blade tip will be moving at near sonic velocities whilst

the retreating blade is often in near stall conditions.

ADVANCED DESIGN AND DEVELOPMENT
General aviation aircraft pose specific design challenges

in all aspects of their design and fabrication. Increasing
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availability of low cost and high performance avionics,

advanced composite designs and powerplant integration all

offer opportunities for general aviation aircraft designers and

builders.

Many of the technologies being furthered for use in

military unmanned aerial vehicles will be of pertinence to

general aviation aircraft.

Low cost gas turbine technologies and composite

structures development and certification issues will likely

be the technologies of greatest interest.

The development of technologies for military purposes

will underwrite some of the costs of introduction of those

design concepts into general aviation use.

EXPERIMENTAL ASSESSMENT AND
PERFORMANCE

Analytical design and analysis techniques are a

prerequisite to reductions in design cycle time, design and

production costs, and improved safety and environmental

impact. The development of these analytical or numerical

design techniques will remain heavily dependent on

experimental validation of design codes and performance

targets for another 10-15 years. Whereas in the past,

experimental resources such as wind tunnels were used

primarily for design development and refinement, in the

future they may increasingly be used for the validation of

computational design tools.

Notwithstanding the foregoing, there will continue to be

a requirement for national facilities including wind tunnels,

engine test facilities, flight test resources, and specialized

resources including icing tunnels and rig test facilities for
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some time to come. Experimental design and performance

validation technology investment will be required in the

following areas to support the aerospace industry in Canada:

• Data Capture and Analysis Automation: Automated

methods for intelligent data capture and analysis will

be required to reduce large facility run times and

meet the challenges of design tool validation. This

will require investment both in sensors and in

computational tools;

• Experimental Code Development: Increased data

capture rates and fidelity will be required and will

necessitate the development of specific codes for

experimental design and performance validation.

Facilities and infrastructure will have to be

maintained or enhanced to achieve these goals; and

• Infrastructure Support: The maintenance of critical

national facilities will have to be supported in concert

with other government departments and industry.

The objective will not necessarily be to create new

facilities but rather to improve the functionality of

existing resources to meet the needs of new

technology developments.

AEROPROPULSION PERFORMANCE
ASSESSMENT

Test cells utilized for Canadian aero-engine Programmes,

and also those developed for sale, have typically been sea-

level static facilities offering little or no altitude, forward flight

velocity or temperature pressure simulation. Some limited

flying test bed capability exists in Canada for the testing of
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engines. That being said, the National Research Council has

participated in numerous international projects in the

process ensuring that a world leading test cell capability

exists both for engine qualification testing, performance

testing and for the development of performance assessment

techniques.

Engine test cells take a number of forms. Sea level test

facilities are used for Engine Qualification Testing that

involves the monitoring of a relatively small number of

parameters over long periods where in-service usage is

evaluated in a time compressed manner. Qualification testing

also involves the ingestion of ice or water to ensure that

unacceptable engine degradation does not occur in those

instances. The NRC Institute for Aerospace Research has

developed world recognized icing testing competencies and

icing test facilities that are used by Canadian and off-shore

engine manufacturers for qualification testing.

Altitude test cells are used to qualify engines over a full

flight envelope as opposed to the endurance type testing

previously described.

The National Research Council in colLabouration with

Pratt and Whitney Canada have developed and operated one

small altitude test cell at NRC for some time. An initiative

that began in 2000 will see the development and

commissioning of a somewhat larger and more capable

altitude facility, again as a colLabourative effort between NRC

and P&WC.

Test cells can also be used for the analysis of problems

or validation of problem resolution. In these cases the test

cells often require enhanced instrumentation suites and a
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much more careful design to ensure that performance

parameters are correctly measured. World interest in

advanced test cell technologies has been directed at those

required to support hypersonic vehicles for military uses or

for space launch vehicles.

This type of test cell is very resource intensive and highly

specialized and will likely be of little interest or utility to any

but a limited number of Canadian firms. The Short Take

Off and Vertical Landing (STOVL) version of the F35 Joint

Strike Fighter has recently posed new challenges in the world

of aeropropulsion testing. For this testing, in-flow

preparation, exhaust treatment, fan drive systems, and 6

axis thrust measurement in the vertical axis will all pose

significant new challenges to the performance assessment

community.

ADVANCED CONCEPTS OF DESIGN

ANALYSIS AND DESIGN INTEGRATION
Advanced aerodynamics profile development in Canada

will be primarily directed at wing design for subsonic aircraft

carrying less than 120 passengers. The objective of work done

on advanced aerodynamic profiles will be to increase

efficiency and cruise speeds through reduced drag while

improving structural and control characteristics. Wing

profile, control surface effectiveness, airframe and engine

interface effects with the wing and wing tip designs are areas

of research and development interest. Also, developments

improving wing-flap high lift performance are important

areas for minimizing wing size required and hence costs.
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Laminar flow control is a term that deserves discussion.

Airflow over wings begins as a laminar or ordered flowfield

and will transition to a higher drag producing turbulent flow

based on flow characteristics such as speed and wing

influences including wing shape, surface roughness. It has

been estimated that if laminar flow could be maintained on

the wings of a large aircraft, fuel savings of up to 25% could

be achieved.

Wing and flight characteristics of small aircraft are such

that laminar flow can be relatively easily maintained over

much of the flight envelope. A variety of methods can be

used to increase laminar flow regions on aircraft of larger

size and having higher Reynolds numbers and sweep angles.

Computational fluid dynamics will be the most important

technology relevant to the development of advanced

aerodynamic profiles. A number of areas require R&D activity

and support for aircraft design particular to Canadian

aerospace interests. Large-scaleCFD code refinement and

validation is one area requiring work to improve accuracy

and reduce computational times for MDO by more rapid

design convergence. These CFD codes will also require

validation in Labouratories and in wind tunnels.

ALL-ELECTRIC AIRCRAFT CONCEPT
DEVELOPMENT

The all-electric aircraft will utilize electronic actuators

to replace equivalent hydraulic system components. The

intent is to save weight and increase reliability. For example,

electrical generators would provide power to electric

actuators for flight control surface movement rather than
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equivalent hydraulic powered components. Electric power

cables are lighter and less prone to damage or service

induced degradation such as fitting vibration that results

in leakage in hydraulic systems. Alternate power supply

redundancy is an additional advantage of this concept.

Challenges associated with this type of technology insertion

would be related to electromagnetic interference (EMI), and

rapid load fluctuations imposed on the power generation

engines.

FLY-BY-LIGHT CONCEPT DEVELOPMENT
Fly-by-Light (FBL) technology involves the replacement

of electronic data transmission, mechanical control linkages,

and electronic sensors with optical components and

subsystems. Benefits include lower initial acquisition and

life cycle costs, reduced weight, and increased aircraft

performance and reliability.

Fibre-optic cables are essentially immune to

electromagnetic interference and therefore not affected by

fields generated by other lines or electrical devices in close

proximity, nor are they affected by lightning strikes. For flight

controls, hydraulic or electric actuators are still employed but

receive their command inputs via fibre-optic cables. Weight

reductions are significant as the fibre-optic cables need only

be protected from physical damage, whereas electric cables

must be insulated and shielded increasing weight significantly.

Also with a FBL connection multiple routes can be readily

provided that are well separated to provide control

redundancy. There are a number of enabling technologies that

must be developed in order to enable photonics technology
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insertion. Fibre-optic connectors for in-line and end connections

must be developed that are durable and insensitive to in-service

maintenance activities. Fibre-optic sensors development will

also be necessary to allow the achievement of the full range of

benefits that can be obtained in fly-by-light aircraft. This

technology is usually associated with smart structures concepts

such as smart skins where fibre-optic cabling can be readily

embedded in a composite lay-up to achieve dispersed damage,

stress, temperature or vibration sensing capability.

DETECTION MANAGEMENT AND CONTROL
SYSTEMS

Regional airliners and helicopters operating in lower level

airspace are increasingly exposed to hazardous icing

conditions. This has increased the need for technologies for

proactive and reactive ice detection and protection. Reactive

technologies are those related to the detection of runback

icing and attempt to monitor real-time or infer likely

aerodynamic performance degradation.

Proactive systems forecast the potential for icing

conditions and provide on-board avoidance advisory

information. Reactive systems provide reasonable protection

of the aircraft within the regulated flight envelope but are

essentially go/no-go decision aids. Aircraft on Search and

Rescue Missions and most civil transport aircraft often do

not have the option of avoiding hazardous icing conditions

and should have pro-active pilot advisors and ice removal

systems.

Reactive ice detection devices include: embedded sensors

that are mounted on the wing surface in a critical location



3-D Computer Graphics

134

and monitor ice build-up; and aerodynamic performance

sensors that typically monitor pressure within the boundary

layer of the wing to determine lift performance degradation.

Proactive systems require the remote measurement of Liquid

Water Content (LWC), Outside Air Temperature (OAT) and

Mean Volume Diameter (MVD) of the liquid water. Knowledge

of these three parameters is required to predict hazardous

icing conditions. Additional R&D work on MVD measurement

is required.

Ice control and removal systems may use heated air from

the engines or electrical heat elements to remove ice from airfoil

surfaces. Coatings that are termed"iceophobic" may also be

applied to minimize ice build-up. CFD tools are needed to

Analyse ice-buildup characteristics, assess aerodynamic

degradation, and improve ice removal air supply performance.

This technology area is of particular interest because of the

types of aircraft produced in Canada and because of climatic

conditions.

DESIGN TECHNIQUES
A previously stated objective for noise reduction is in the

order of 6 EPNdB (Effective Perceived Noise in dB). This

objective can be achieved through the utilization of larger

by-pass ratio fans, innovative design concepts for turbo fans

and sound conscious designs in the combustor and exhaust

nozzles/liners. Generally speaking, noise improvements and

fuel efficiency must be improved to meet future regulatory

requirements without sacrifice of overall engine efficiency.

Of special interest will be advanced ducted propulsors (ADF)

that offer both noise attenuation and increased efficiency



3-D Computer Graphics

135

potential. This technology area will be heavily dependent on

computational design techniques and multidisciplinary

design optimization.

The reduction in aircraft emissions is also a regulated

requirement. While small aircraft engines contribute an

insignificant amount of pollution they are still the targets of

increased environmental scrutiny. Regulatory requirements

are targeted at Nitrous Oxides (NOx), Carbon Monoxide (CO)

and visible particulate emissions. CFD analysis techniques

specific to combustion processes will be the major tool used

to lower aeropropulsion emissions.
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7

Computer Graphics Software

In computer graphics, graphics software or image editing

software is a programme or collection of programmes that

enable a person to manipulate visual images on a computer.

Computer graphics can be classified into two distinct

categories: raster graphics and vector graphics. Before

learning about computer software that manipulates or

displays these graphics types, you should be familiar with

both. Many graphics programmes focus exclusively on either

vector or raster graphics, but there are a few that combine

them in interesting and sometimes unexpected ways. It is

simple to convert from vector graphics to raster graphics,

but going the other way is harder. Some software attempts

to do this. Most graphics programmes have the ability to

import and export one or more graphics file formats. The

use of a swatch is a palette of active colours that are

selected and rearranged by the preference of the user. A
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swatch may be used in a programme or be part of the

universal palette on an operating system, it is used to

change the colour of a project, that may be text, image or

video editing.

Several graphics programmes support animation, or

digital video. Vector graphics animation can be described

as a series of mathematical transformations that are applied

in sequence to one or more shapes in a scene. Raster

graphics animation works in a similar fashion to film-based

animation, where a series of still images produces the illusion

of continuous movement.

HISTORY
SuperPaint (1973) was one of the earliest graphics software

applications. Fauve Matisse (later Macromedia xRes) was a

pioneering programme of the early 1990s, notably

introducing layers in customer software. Currently Adobe

Photoshop is one of the most used and best-known graphics

programmes, having displaced more custom hardware

solutions in the early 1990s, but was initially subject to

various litigation. GIMP is a popular open source alternative

to Adobe Photoshop. Other applications include:

• JPhotoBrush Pro, Java-based multi-platform,

freeware.

• Corel Paint Shop Pro

INTEGRATED SOFTWARE
Integrated software is software for personal computers

that combines the most commonly used functions of many
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productivity software programmes into one application. The

integrated software genre has been largely overshadowed by

fully functional office suites, most notably Microsoft Office,

but at one time was considered the “killer application” type

responsible for the rise and dominance of the IBM PC in

the desktop business computing world. In the early days

of the PC before GUIs became common, user interfaces were

text-only and were operated mostly by function key and

modifier key sequences. Every programme used a different

set of keystrokes, making it difficult for a user to master

more than one or two programmes. Programmes were loaded

from floppy disk, making it very slow and inconvenient to

switch between programmes and difficult or impossible to

exchange data between them (to transfer the results from

a spreadsheet to a word processor document for example).

In response to these limitations, vendors created

multifunction “integrated” packages, eliminating the need

to switch between programmes and presenting the user

with a more consistent interface.

The potential for greater ease-of-use made integrated

software attractive to home markets as well as business,

and packages such as the original AppleWorks for the Apple

II and Jane for the Commodore 128 were developed in the

1980s to run on most popular home computers of the day.

Commodore even produced the Plus/4 computer with a

simple integrated suite built into ROM. Context MBA was

an early example of the genre, and featured spreadsheet,

database, chart-making, word processing and terminal

emulation functions. However, because it was written in

Pascal for portability, it ran slowly on the relatively
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underpowered systems of the day. Lotus 1-2-3, which

followed it, had fewer functions but was written in assembler,

providing it with a speed advantage that allowed it to become

the predominant business application for personal

computers. The integrated software market of today is

exemplified by entry-level programmes such as Microsoft

Works which are often bundled with personal computers as

“starter” productivity suites.

SYSTEMS ARCHITECTURE
A system architecture or systems architecture is the

conceptual model that defines the structure, behaviour,

and more views of a system. An architecture description is
a formal description and representation of a system,
organized in a way that supports reasoning about the
structure of the system which comprises system components,
the externally visible properties of those components, the
relationships (e.g. the behaviour) between them, and provides
a plan from which products can be procured, and systems
developed, that will work together to implement the overall
system. The language for architecture description is called
the architecture description language (ADL).

OVERVIEW
There is no universally agreed definition of which aspects

constitute a system architecture, and various organizations
define it in different ways, including:

• The fundamental organization of a system, embodied
in its components, their relationships to each other

and the environment, and the principles governing

its design and evolution.
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• The composite of the design architectures for products

and their life cycle processes.

• A representation of a system in which there is a

mapping of functionality onto hardware and software

components, a mapping of the software architecture

onto the hardware architecture, and human

interaction with these components.

• An allocated arrangement of physical elements which

provides the design solution for a consumer product

or life-cycle process intended to satisfy the

requirements of the functional architecture and the

requirements baseline.

• An architecture is the most important, pervasive,

top-level, strategic inventions, decisions, and their

associated rationales about the overall structure (i.e.,

essential elements and their relationships) and

associated characteristics and behaviour.

• A description of the design and contents of a computer

system. If documented, it may include information

such as a detailed inventory of current hardware,

software and networking capabilities; a description

of long-range plans and priorities for future purchases,

and a plan for upgrading and/or replacing dated

equipment and software.

• A formal description of a system, or a detailed plan

of the system at component level to guide its

implementation.

• The structure of components, their interrelationships,

and the principles and guidelines governing their

design and evolution over time.
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A system architecture can best be thought of as a set

of representations of an existing (or To Be Created) system.

It is used to convey the informational content of the elements

comprising a system, the relationships among those

elements, and the rules governing those relationships. The

architectural components and set of relationships between

these components that an architecture describes may consist

of hardware, software, documentation, facilities, manual

procedures, or roles played by organizations or people. A

system architecture is primarily concerned with the internal

interfaces among the system’s components or subsystems,

and the interface between the system and its external

environment, especially the user. (In the specific case of

computer systems, this latter, special interface, is known

as the computer human interface, AKA human computer

interface, or CHI; formerly called the man-machine interface.)

A system architecture can be contrasted with system

architecture engineering, which is the method and discipline

for effectively implementing the architecture of a system:

• It is a method because a sequence of steps is

prescribed to produce or change the architecture of

a system within a set of constraints.

• It is a discipline because a body of knowledge is used

to inform practitioners as to the most effective way

to architect the system within a set of constraints.

HISTORY
It is important to keep in mind that the modern systems

architecture did not appear out of nowhere. Systems

architecture depends heavily on practices and techniques
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which were developed over thousands of years in many

other fields most importantly being, perhaps, civil

architecture. Prior to the advent of digital computers, the

electronics and other engineering disciplines used the term

system as it is still commonly used today. However, with

the arrival of digital computers and the development of

software engineering as a separate discipline, it was often

necessary to distinguish among engineered hardware

artifacts, software artifacts, and the combined artifacts. A

programmable hardware artifact, or computing machine,

that lacks its software programme is impotent; even as a

software artifact, or programme, is equally impotent unless

it can be used to alter the sequential states of a suitable

(hardware) machine. However, a hardware machine and its

software programme can be designed to perform an almost

illimitable number of abstract and physical tasks. Within

the computer and software engineering disciplines (and,

often, other engineering disciplines, such as

communications), then, the term system came to be defined

as containing all of the elements necessary (which generally

includes both hardware and software) to perform a useful

function.

Consequently, within these engineering disciplines, a

system generally refers to a programmable hardware machine

and its included programme. And a systems engineer is

defined as one concerned with the complete device, both

hardware and software and, more particularly, all of the

interfaces of the device, including that between hardware

and software, and especially between the complete device

and its user (the CHI). The hardware engineer deals (more
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or less) exclusively with the hardware device; the software

engineer deals (more or less) exclusively with the software

programme; and the systems engineer is responsible for

seeing that the software programme is capable of properly

running within the hardware device, and that the system

composed of the two entities is capable of properly interacting

with its external environment, especially the user, and

performing its intended function. By analogy, then, a systems

architecture makes use of elements of both software and

hardware and is used to enable design of such a composite

system. A good architecture may be viewed as a ‘partitioning

scheme,’ or algorithm, which partitions all of the system’s

present and foreseeable requirements into a workable set

of cleanly bounded subsystems with nothing left over. That

is, it is a partitioning scheme which is exclusive, inclusive,

and exhaustive.

A major purpose of the partitioning is to arrange the

elements in the sub systems so that there is a minimum

of communications needed among them. In both software

and hardware, a good sub system tends to be seen to be

a meaningful “object”. Moreover, a good architecture

provides for an easy mapping to the user’s requirements

and the validation tests of the user’s requirements. Ideally,

a mapping also exists from every least element to every

requirement and test. A robust architecture is said to be

one that exhibits an optimal degree of fault-tolerance,

backward compatibility, forward compatibility, extensibility,

reliability, maintainability, availability, serviceability,

usability, and such other quality attributes as necessary

and/or desirable.
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TYPES OF SYSTEMS ARCHITECTURES
Several types of systems architectures (underlain by the

same fundamental principles) have been identified as follows:

• Collaborative Systems (such as the Internet, intelligent

transportation systems, and joint air defense systems)

• Manufacturing Systems

• Social Systems

• Software and Information Technology Systems

• Strategic Systems Architecture

SYSTEMS ARCHITECT
In systems engineering, the systems architect is the

high-level designer of a system to be implemented. The

systems architect establishes the basic structure of the

system, defining the essential core design features and

elements that provide the framework for all that follows,

and are the hardest to change later. The systems architect

provides the engineering view of the users’ vision for what

the system needs to be and do, and the paths along which

it must be able to evolve, and strives to maintain the

integrity of that vision as it evolves during detailed design

and implementation.

OVERVIEW
In systems engineering, the systems architect is

responsible for:

• Interfacing with the user(s) and sponsor(s) and all

other stakeholders in order to determine their

(evolving) needs.
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• Generating the highest level of system requirements,

based on the user’s needs and other constraints

such as cost and schedule.

• Ensuring that this set of high level requirements is

consistent, complete, correct, and operationally

defined.

• Performing cost-benefit analyses to determine whether

requirements are best met by manual, software, or

hardware functions; making maximum use of

commercial off-the-shelf or already developed

components.

• Developing partitioning algorithms (and other

processes) to allocate all present and foreseeable

requirements into discrete partitions such that a

minimum of communications is needed among

partitions, and between the user and the system.

• Partitioning large systems into (successive layers of)

subsystems and components each of which can be

handled by a single engineer or team of engineers or

subordinate architect.

• Interfacing with the design and implementation

engineers, or subordinate architects, so that any

problems arising during design or implementation

can be resolved in accordance with the fundamental

architectural concepts, and user needs and

constraints.

• Ensuring that a maximally robust architecture is

developed.

• Generating a set of acceptance test requirements,

together with the designers, test engineers, and the
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user, which determine that all of the high level

requirements have been met, especially for the

computer-human-interface.

• Generating products such as sketches, models, an

early user guide, and prototypes to keep the user and

the engineers constantly up to date and in agreement

on the system to be provided as it is evolving.

• Ensuring that all architectural products and products

with architectural input are maintained in the most

current state and never allowed to become obsolete.

MAIN TOPICS OF SYSTEMS ARCHITECT
Large systems architecture was developed as a way to

handle systems too large for one person to conceive of, let

alone design. Systems of this size are rapidly becoming the

norm, so architectural approaches and architects are

increasingly needed to solve the problems of large systems.

USERS AND SPONSORS
Engineers as a group do not have a reputation for

understanding and responding to human needs comfortably

or for developing humanly functional and aesthetically

pleasing products. Architects are expected to understand

human needs and develop humanly functional and

aesthetically pleasing products. A good architect is a

translator between the user/sponsor and the engineers—

and even among just engineers of different specialities. A

good architect is also the principal keeper of the user’s

vision of the end product— and of the process of deriving

requirements from and implementing that vision.
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Determining what the users/sponsors actually need, rather

than what they say they want, is not engineering. An architect

does not follow an exact procedure. S/he communicates

with users/sponsors in a highly interactive way— together

they extract the true requirements necessary for the

engineered system. The architect must remain constantly

in communication with the end users. Therefore, the architect

must be intimately familiar with the user’s environment

and problem. (The engineer need only be very knowledgeable

of the potential engineering solution space.)

HIGH LEVEL REQUIREMENTS
The user/sponsor should view the architect as the user’s

representative and provide all input through the architect.

Direct interaction with project engineers is generally

discouraged as the chance of mutual misunderstanding is

very high. The user requirements’ specification should be

a joint product of the user and architect: the user brings

his needs and wish list, the architect brings knowledge of

what is likely to prove doable within cost and time

constraints. When the user needs are translated into a set

of high level requirements is also the best time to write the

first version of the acceptance test, which should, thereafter,

be religiously kept up to date with the requirements. That

way, the user will be absolutely clear about what s/he is

getting. It is also a safeguard against untestable

requirements, misunderstandings, and requirements creep.

The development of the first level of engineering requirements

is not a purely analytical exercise and should also involve

both the architect and engineer. If any compromises are to
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be made— to meet constraints like cost, schedule, power,

or space, the architect must ensure that the final product

and overall look and feel do not stray very far from the user’s

intent. The engineer should focus on developing a design

that optimizes the constraints but ensures a workable and

reliable product.

The architect is primarily concerned with the comfort

and usability of the product; the engineer is primarily

concerned with the producibility and utility of the product.

The provision of needed services to the user is the true

function of an engineered system. However, as systems

become ever larger and more complex, and as their emphases

move away from simple hardware and software components,

the narrow application of traditional systems development

principles is found to be insufficient— the application of the

more general principles of systems, hardware, and software

architecture to the design of (sub)systems is seen to be

needed. An architecture is also a simplified model of the

finished end product— its primary function is to define the

parts and their relationships to each other so that the whole

can be seen to be a consistent, complete, and correct

representation of what the user had in mind— especially

for the computer-human-interface. It is also used to ensure

that the parts fit together and relate in the desired way.

It is necessary to distinguish between the architecture

of the user’s world and the engineered systems architecture.

The former represents and addresses problems and solutions

in the user’s world. It is principally captured in the computer-

human-interfaces (CHI) of the engineered system. The

engineered system represents the engineering solutions—
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how the engineer proposes to develop and/or select and

combine the components of the technical infrastructure to

support the CHI. In the absence of an experienced architect,

there is an unfortunate tendency to confuse the two

architectures. But— the engineer thinks in terms of hardware

and software and the technical solution space, whereas the

user may be thinking in terms of solving a problem of

getting people from point A to point B in a reasonable

amount of time and with a reasonable expenditure of energy,

or of getting needed information to customers and staff. A

systems architect is expected to combine knowledge of both

the architecture of the user’s world and of (all potentially

useful) engineering systems architectures. The former is a

joint activity with the user; the latter is a joint activity with

the engineers. The product is a set of high level requirements

reflecting the user’s requirements which can be used by the

engineers to develop systems design requirements. Because

requirements evolve over the course of a project, especially

a long one, an architect is needed until the system is

accepted by the user: the architect is the best insurance

that all changes and interpretations made during the course

of development do not compromise the user’s viewpoint.

COST/BENEFIT ANALYSES
Most engineers are specialists. They know the applications

of one field of engineering science intimately, apply their

knowledge to practical situations— that is, solve real world

problems, evaluate the cost/benefits of various solutions

within their specialty, and ensure the correct operation of

whatever they design. Architects are generalists. They are
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not expected to be experts in any one technology but are

expected to be knowledgeable of many technologies and

able to judge their applicability to specific situations. They

also apply their knowledge to practical situations, but

evaluate the cost/benefits of various solutions using different

technologies, for example, hardware versus software versus

manual, and assure that the system as a whole performs

according to the user’s expectations. Many commercial-off-

the-shelf or already developed hardware and software

components may be selected independently according to

constraints such as cost, response, throughput, etc. In

some cases, the architect can already assemble the end

system unaided. Or, s/he may still need the help of a

hardware or software engineer to select components and to

design and build any special purpose function. The architects

(or engineers) may also enlist the aid of specialists— in

safety, security, communications, special purpose hardware,

graphics, human factors, test and evaluation, quality control,

RMA, interface management, etc. An effective systems

architectural team must have immediate access to specialists

in critical specialties.,

PARTITIONING AND LAYERING
An architect planning a building works on the overall

design, making sure it will be pleasing and useful to its

inhabitants. While a single architect by himself may be

enough to build a single-family house, many engineers may

be needed, in addition, to solve the detailed problems that

arise when a novel high-rise building is designed. If the job

is large and complex enough, parts of the architecture may
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be designed as independent components. That is, if we are

building a housing complex, we may have one architect for

the complex, and one for each type of building, as part of

an architectural team. Large automation systems also require

an architect and much engineering talent. If the engineered

system is large and complex enough, the systems architect

may defer to a hardware architect and a software architect

for parts of the job, although they all may be members of

a joint architectural team. The architect should sub-allocate

the system requirements to major components or subsystems

that are within the scope of a single hardware or software

engineer, or engineering manager and team. But the architect

must never be viewed as an engineering supervisor. (If the

item is sufficiently large and/or complex, the chief architect

will sub-allocate portions to more specialized architects.)

Ideally, each such component/subsystem is a sufficiently

stand-alone object that it can be tested as a complete

component, separate from the whole, using only a simple

testbed to supply simulated inputs and record outputs.

That is, it is not necessary to know how an air traffic control

system works in order to design and build a data

management subsystem for it.

It is only necessary to know the constraints under which

the subsystem will be expected to operate. A good architect

ensures that the system, however complex, is built upon

relatively simple and “clean” concepts for each (sub)system

or layer and is easily understandable by everyone, especially

the user, without special training. The architect will use a

minimum of heuristics to ensure that each partition is well

defined and clean of kludges, work-arounds, short-cuts, or
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confusing detail and exceptions. As user needs evolve, (once

the system is fielded and in use), it is a lot easier subsequently

to evolve a simple concept than one laden with exceptions,

special cases, and lots of “fine print.” Layering the

architecture is important for keeping the architecture

sufficiently simple at each layer so that it remains

comprehensible to a single mind. As layers are ascended,

whole systems at lower layers become simple components

at the higher layers, and may disappear altogether at the

highest layers.

ACCEPTANCE TEST
The acceptance test is a principal responsibility of the

systems architect. It is the chief means by which the architect

will prove to the user that the system is as originally planned

and that all subordinate architects and engineers have met

their objectives.

COMMUNICATIONS WITH USERS AND
ENGINEERS

A building architect uses sketches, models, and drawings.

An automation systems (or software or hardware) architect

should use sketches, models, and prototypes to discuss

different solutions and results with users, engineers, and

other architects. An early, draft version of the user’s manual

is invaluable, especially in conjunction with a prototype. A

set of (engineering) requirements as a sole, or even principal,

means of communicating with the users is explicitly to be

avoided. Nevertheless, it is important that a workable, well

written set of requirements, or specification, be created which



3-D Computer Graphics

153

is understandable to the customer (so that they can properly

sign off on it). But it must use precise and unambiguous

language so that designers and other implementers are left

in no doubt as to meanings or intentions. In particular, all

requirements must be testable, and the initial draft of the

test plan should be developed contemporaneously with the

requirements. All stakeholders should sign off on the

acceptance test descriptions, or equivalent, as the sole

determinant of the satisfaction of the requirements, at the

outset of the programme.

SYSTEMS ENGINEERING
Systems engineering is an interdisciplinary field of

engineering that focuses on how complex engineering projects

should be designed and managed over the life cycle of the

project. Issues such as logistics, the coordination of different

teams, and automatic control of machinery become more

difficult when dealing with large, complex projects. Systems

engineering deals with work-processes and tools to handle

such projects, and it overlaps with both technical and

human-centered disciplines such as control engineering,

industrial engineering, organizational studies, and project

management.

HISTORY
The term systems engineering can be traced back to Bell

Telephone Laboratories in the 1940s. The need to identify

and manipulate the properties of a system as a whole,

which in complex engineering projects may greatly differ

from the sum of the parts’ properties, motivated the
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Department of Defense, NASA, and other industries to apply

the discipline. When it was no longer possible to rely on

design evolution to improve upon a system and the existing

tools were not sufficient to meet growing demands, new

methods began to be developed that addressed the complexity

directly. The evolution of systems engineering, which

continues to this day, comprises the development and

identification of new methods and modeling techniques.

These methods aid in better comprehension of engineering

systems as they grow more complex. Popular tools that are

often used in the systems engineering context were developed

during these times, including USL, UML, QFD, and IDEF0.

In 1990, a professional society for systems engineering, the

National Council on Systems Engineering (NCOSE), was

founded by representatives from a number of U.S.

corporations and organizations. NCOSE was created to

address the need for improvements in systems engineering

practices and education.

As a result of growing involvement from systems engineers

outside of the U.S., the name of the organization was changed

to the International Council on Systems Engineering

(INCOSE) in 1995. Schools in several countries offer graduate

programmes in systems engineering, and continuing

education options are also available for practicing engineers.

CONCEPT
Systems engineering signifies both an approach and,

more recently, a discipline in engineering. The aim of

education in systems engineering is to simply formalize the

approach and in doing so, identify new methods and research
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opportunities similar to the way it occurs in other fields of

engineering. As an approach, systems engineering is holistic

and interdisciplinary in flavour.

ORIGINS AND TRADITIONAL SCOPE
The traditional scope of engineering embraces the design,

development, production and operation of physical systems,

and systems engineering, as originally conceived, falls within

this scope. “Systems engineering”, in this sense of the term,

refers to the distinctive set of concepts, methodologies,

organizational structures (and so on) that have been

developed to meet the challenges of engineering functional

physical systems of unprecedented complexity. The Apollo

programme is a leading example of a systems engineering

project.

The use of the term “ system engineer “ has evolved over

time to embrace a wider, more holistic concept of “systems”

and of engineering processes. This evolution of the definition

has been a subject of ongoing controversy [9], and the term

continues to be applied to both the narrower and broader

scope.

HOLISTIC VIEW
Systems engineering focuses on analyzing and eliciting

customer needs and required functionality early in the

development cycle, documenting requirements, then

proceeding with design synthesis and system validation

while considering the complete problem, the system lifecycle.

Oliver et al. claim that the systems engineering process can

be decomposed into
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• a Systems Engineering Technical Process, and

• a Systems Engineering Management Process.

Within Oliver’s model, the goal of the Management Process

is to organize the technical effort in the lifecycle, while the

Technical Process includes assessing available information,

defining effectiveness measures, to create a behaviour model,

create a structure model, perform trade-off analysis, and

create sequential build & test plan. Depending on their

application, although there are several models that are used

in the industry, all of them aim to identify the relation

between the various stages mentioned above and incorporate

feedback. Examples of such models include the Waterfall

model and the VEE model.

INTERDISCIPLINARY FIELD
System development often requires contribution from

diverse technical disciplines. By providing a systems (holistic)

view of the development effort, systems engineering helps

mold all the technical contributors into a unified team

effort, forming a structured development process that

proceeds from concept to production to operation and, in

some cases, to termination and disposal. This perspective

is often replicated in educational programmes in that systems

engineering courses are taught by faculty from other

engineering departments which, in effect, helps create an

interdisciplinary environment.

MANAGING COMPLEXITY
The need for systems engineering arose with the increase

in complexity of systems and projects, in turn exponentially
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increasing the possibility of component friction, and therefore

the reliability of the design. When speaking in this context,

complexity incorporates not only engineering systems, but

also the logical human organization of data. At the same

time, a system can become more complex due to an increase

in size as well as with an increase in the amount of data,

variables, or the number of fields that are involved in the

design. The International Space Station is an example of

such a system. The development of smarter control

algorithms, microprocessor design, and analysis of

environmental systems also come within the purview of

systems engineering. Systems engineering encourages the

use of tools and methods to better comprehend and manage

complexity in systems. Some examples of these tools can

be seen here:

• System model, Modeling, and Simulation,

• System architecture,

• Optimization,

• System dynamics,

• Systems analysis,

• Statistical analysis,

• Reliability analysis, and

• Decision making

Taking an interdisciplinary approach to engineering

systems is inherently complex since the behaviour of and

interaction among system components is not always

immediately well defined or understood. Defining and

characterizing such systems and subsystems and the

interactions among them is one of the goals of systems
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engineering. In doing so, the gap that exists between informal

requirements from users, operators, marketing organizations,

and technical specifications is successfully bridged.

SCOPE
One way to understand the motivation behind systems

engineering is to see it as a method, or practice, to identify

and improve common rules that exist within a wide variety

of systems. Keeping this in mind, the principles of systems

engineering — holism, emergent behaviour, boundary, et al.

— can be applied to any system, complex or otherwise,

provided systems thinking is employed at all levels. Besides

defense and aerospace, many information and technology

based companies, software development firms, and industries

in the field of electronics & communications require systems

engineers as part of their team. An analysis by the INCOSE

Systems Engineering center of excellence (SECOE) indicates

that optimal effort spent on systems engineering is about

15-20% of the total project effort. At the same time, studies

have shown that systems engineering essentially leads to

reduction in costs among other benefits. However, no

quantitative survey at a larger scale encompassing a wide

variety of industries has been conducted until recently.

Such studies are underway to determine the effectiveness

and quantify the benefits of systems engineering. Systems

engineering encourages the use of modeling and simulation

to validate assumptions or theories on systems and the

interactions within them.

Use of methods that allow early detection of possible

failures, in safety engineering, are integrated into the design
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process. At the same time, decisions made at the beginning

of a project whose consequences are not clearly understood

can have enormous implications later in the life of a system,

and it is the task of the modern systems engineer to explore

these issues and make critical decisions. There is no method

which guarantees that decisions made today will still be valid

when a system goes into service years or decades after it is

first conceived but there are techniques to support the process

of systems engineering. Examples include the use of soft

systems methodology, Jay Wright Forrester’s System dynamics

method and the Unified Modeling Language (UML), each of

which are currently being explored, evaluated and developed

to support the engineering decision making process.

EDUCATION
Education in systems engineering is often seen as an

extension to the regular engineering courses, reflecting the

industry attitude that engineering students need a

foundational background in one of the traditional engineering

disciplines (e.g. automotive engineering, mechanical

engineering, industrial engineering, computer engineering,

electrical engineering) plus practical, real-world experience

in order to be effective as systems engineers. Undergraduate

university programmes in systems engineering are rare.

INCOSE maintains a continuously updated Directory of

Systems Engineering Academic Programmes worldwide. As

of 2006, there are about 75 institutions in United States

that offer 130 undergraduate and graduate programmes in

systems engineering. Education in systems engineering can

be taken as SE-centric or Domain-centric.
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• SE-centric programmes treat systems engineering as

a separate discipline and all the courses are taught

focusing on systems engineering practice and

techniques.

• Domain-centric programmes offer systems engineering

as an option that can be exercised with another

major field in engineering.

Both these patterns cater to educate the systems engineer

who is able to oversee interdisciplinary projects with the

depth required of a core-engineer.

SYSTEMS ENGINEERING TOPICS
Systems engineering tools are strategies, procedures,

and techniques that aid in performing systems engineering

on a project or product. The purpose of these tools vary from

database management, graphical browsing, simulation, and

reasoning, to document production, neutral import/export

and more.

SYSTEM
There are many definitions of what a system is in the

field of systems engineering. Below are a few authoritative

definitions:

• ANSI/EIA-632-1999: “An aggregation of end products

and enabling products to achieve a given purpose.”

• IEEE Std 1220-1998: “A set or arrangement of

elements and processes that are related and whose

behaviour satisfies customer/operational needs and

provides for life cycle sustainment of the products.”
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• ISO/IEC 15288:2008: “A combination of interacting

elements organized to achieve one or more stated

purposes.”

• NASA Systems Engineering Handbook: “(1) The

combination of elements that function together to

produce the capability to meet a need. The elements

include all hardware, software, equipment, facilities,

personnel, processes, and procedures needed for this

purpose. (2) The end product (which performs

operational functions) and enabling products (which

provide life-cycle support services to the operational

end products) that make up a system.”

• INCOSE Systems Engineering Handbook:

“homogeneous entity that exhibits predefined

behaviour in the real world and is composed of

heterogeneous parts that do not individually exhibit

that behaviour and an integrated configuration of

components and/or subsystems.”

• INCOSE: “A system is a construct or collection of

different elements that together produce results not

obtainable by the elements alone. The elements, or

parts, can include people, hardware, software,

facilities, policies, and documents; that is, all things

required to produce systems-level results. The results

include system level qualities, properties,

characteristics, functions, behaviour and

performance. The value added by the system as a

whole, beyond that contributed independently by the

parts, is primarily created by the relationship among

the parts; that is, how they are interconnected.”
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THE SYSTEMS ENGINEERING PROCESS
Depending on their application, tools are used for various

stages of the systems engineering process:

USING MODELS
Models play important and diverse roles in systems

engineering. A model can be defined in several ways,

including:

• An abstraction of reality designed to answer specific

questions about the real world

• An imitation, analogue, or representation of a real

world process or structure; or

• A conceptual, mathematical, or physical tool to assist

a decision maker.

Together, these definitions are broad enough to

encompass physical engineering models used in the

verification of a system design, as well as schematic models

like a functional flow block diagram and mathematical (i.e.,

quantitative) models used in the trade study process. This

section focuses on the last. The main reason for using

mathematical models and diagrams in trade studies is to

provide estimates of system effectiveness, performance or

technical attributes, and cost from a set of known or

estimable quantities. Typically, a collection of separate

models is needed to provide all of these outcome variables.

The heart of any mathematical model is a set of meaningful

quantitative relationships among its inputs and outputs.

These relationships can be as simple as adding up

constituent quantities to obtain a total, or as complex as

a set of differential equations describing the trajectory of
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a spacecraft in a gravitational field. Ideally, the relationships

express causality, not just correlation.

TOOLS FOR GRAPHIC REPRESENTATIONS
Initially, when the primary purpose of a systems engineer

is to comprehend a complex problem, graphic representations

of a system are used to communicate a system’s functional

and data requirements. Common graphical representations

include:

• Functional Flow Block Diagram (FFBD)

• VisSim

• Data Flow Diagram (DFD)

• N2 (N-Squared) Chart

• IDEF0 Diagram

• UML Use case diagram

• UML Sequence diagram

• USL Function Maps and Type Maps.

• Enterprize Architecture frameworks, like TOGAF,

MODAF, Zachman Frameworks etc.

A graphical representation relates the various subsystems

or parts of a system through functions, data, or interfaces.

Any or each of the above methods are used in an industry

based on its requirements. For instance, the N2 chart may

be used where interfaces between systems is important.

Part of the design phase is to create structural and

behavioural models of the system. Once the requirements

are understood, it is now the responsibility of a systems

engineer to refine them, and to determine, along with other

engineers, the best technology for a job. At this point starting
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with a trade study, systems engineering encourages the use

of weighted choices to determine the best option. A decision

matrix, or Pugh method, is one way (QFD is another) to

make this choice while considering all criteria that are

important. The trade study in turn informs the design

which again affects the graphic representations of the system

(without changing the requirements). In an SE process, this

stage represents the iterative step that is carried out until

a feasible solution is found. A decision matrix is often

populated using techniques such as statistical analysis,

reliability analysis, system dynamics (feedback control), and

optimization methods. At times a systems engineer must

assess the existence of feasible solutions, and rarely will

customer inputs arrive at only one. Some customer

requirements will produce no feasible solution. Constraints

must be traded to find one or more feasible solutions.

The customers’ wants become the most valuable input

to such a trade and cannot be assumed. Those wants/

desires may only be discovered by the customer once the

customer finds that he has overconstrained the problem.

Most commonly, many feasible solutions can be found, and

a sufficient set of constraints must be defined to produce

an optimal solution. This situation is at times advantageous

because one can present an opportunity to improve the

design towards one or many ends, such as cost or schedule.

Various modeling methods can be used to solve the problem

including constraints and a cost function. Systems Modeling

Language (SysML), a modeling language used for systems

engineering applications, supports the specification, analysis,

design, verification and validation of a broad range of complex
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systems. Universal Systems Language (USL) is a systems

oriented object modeling language with executable (computer

independent) semantics for defining complex systems,

including software.

RELATED FIELDS AND SUB-FIELDS
Many related fields may be considered tightly coupled to

systems engineering. These areas have contributed to the

development of systems engineering as a distinct entity.

COGNITIVE SYSTEMS ENGINEERING
Cognitive systems engineering (CSE) is a specific approach

to the description and analysis of human-machine systems

or sociotechnical systems. The three main themes of CSE

are how humans cope with complexity, how work is

accomplished by the use of artefacts, and how human-

machine systems and socio-technical systems can be

described as joint cognitive systems. CSE has since its

beginning become a recognised scientific discipline,

sometimes also referred to as Cognitive Engineering. The

concept of a Joint Cognitive System (JCS) has in particular

become widely used as a way of understanding how complex

socio-technical systems can be described with varying

degrees of resolution. The more than 20 years of experience

with CSE has been described extensively.

CONFIGURATION MANAGEMENT
Like systems engineering, Configuration Management as

practiced in the defence and aerospace industry is a broad

systems-level practice. The field parallels the taskings of
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systems engineering; where systems engineering deals with

requirements development, allocation to development items

and verification, Configuration Management deals with

requirements capture, traceability to the development item,

and audit of development item to ensure that it has achieved

the desired functionality that systems engineering and/or

Test and Verification Engineering have proven out through

objective testing.

CONTROL ENGINEERING
Control engineering and its design and implementation

of control systems, used extensively in nearly every industry,

is a large sub-field of systems engineering. The cruise control

on an automobile and the guidance system for a ballistic

missile are two examples. Control systems theory is an

active field of applied mathematics involving the investigation

of solution spaces and the development of new methods for

the analysis of the control process.

INDUSTRIAL ENGINEERING
Industrial engineering is a branch of engineering that

concerns the development, improvement, implementation

and evaluation of integrated systems of people, money,

knowledge, information, equipment, energy, material and

process. Industrial engineering draws upon the principles

and methods of engineering analysis and synthesis, as well

as mathematical, physical and social sciences together with

the principles and methods of engineering analysis and

design to specify, predict and evaluate the results to be

obtained from such systems.



3-D Computer Graphics

167

INTERFACE DESIGN
Interface design and its specification are concerned with

assuring that the pieces of a system connect and inter-

operate with other parts of the system and with external

systems as necessary. Interface design also includes assuring

that system interfaces be able to accept new features,

including mechanical, electrical and logical interfaces,

including reserved wires, plug-space, command codes and

bits in communication protocols. This is known as

extensibility. Human-Computer Interaction (HCI) or Human-

Machine Interface (HMI) is another aspect of interface design,

and is a critical aspect of modern systems engineering.

Systems engineering principles are applied in the design of

network protocols for local-area networks and wide-area

networks.

MECHATRONIC ENGINEERING
Mechatronic engineering, like Systems engineering, is a

multidisciplinary field of engineering that uses dynamical

systems modeling to express tangible constructs. In that

regards it is almost indistinguishable from Systems

Engineering, but what sets it apart is the focus on smaller

details rather than larger generalizations and relationships.

As such, both fields are distinguished by the scope of their

projects rather than the methodology of their practice.

OPERATIONS RESEARCH
Operations research supports systems engineering. The

tools of operations research are used in systems analysis,

decision making, and trade studies. Several schools teach
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SE courses within the operations research or industrial

engineering department, highlighting the role systems

engineering plays in complex projects. Operations research,

briefly, is concerned with the optimization of a process

under multiple constraints.

PERFORMANCE ENGINEERING
Performance engineering is the discipline of ensuring a

system will meet the customer’s expectations for performance

throughout its life. Performance is usually defined as the

speed with which a certain operation is executed or the

capability of executing a number of such operations in a

unit of time. Performance may be degraded when an

operations queue to be executed is throttled when the

capacity is of the system is limited. For example, the

performance of a packet-switched network would be

characterised by the end-to-end packet transit delay or the

number of packets switched within an hour. The design of

high-performance systems makes use of analytical or

simulation modeling, whereas the delivery of high-

performance implementation involves thorough performance

testing. Performance engineering relies heavily on statistics,

queueing theory and probability theory for its tools and

processes.

PROGRAMME MANAGEMENT AND PROJECT
MANAGEMENT

Programme management (or programme management)

has many similarities with systems engineering, but has

broader-based origins than the engineering ones of systems
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engineering. Project management is also closely related to

both programme management and systems engineering.

PROPOSAL ENGINEERING
Proposal engineering is the application of scientific and

mathematical principles to design, construct, and operate

a cost-effective proposal development system. Basically,

proposal engineering uses the “systems engineering process”

to create a cost effective proposal and increase the odds of

a successful proposal.

RELIABILITY ENGINEERING
Reliability engineering is the discipline of ensuring a

system will meet the customer’s expectations for reliability

throughout its life; i.e. it will not fail more frequently than

expected. Reliability engineering applies to all aspects of the

system. It is closely associated with maintainability,

availability and logistics engineering. Reliability engineering

is always a critical component of safety engineering, as in

failure modes and effects analysis (FMEA) and hazard fault

tree analysis, and of security engineering. Reliability

engineering relies heavily onstatistics, probability theory

and reliability theory for its tools and processes.

SAFETY ENGINEERING
The techniques of safety engineering may be applied by

non-specialist engineers in designing complex systems to

minimize the probability of safety-critical failures. The

“System Safety Engineering” function helps to identify “safety

hazards” in emerging designs, and may assist with
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techniques to “mitigate” the effects of (potentially) hazardous

conditions that cannot be designed out of systems.

SECURITY ENGINEERING
Security engineering can be viewed as an interdisciplinary

field that integrates the community of practice for control

systems design, reliability, safety and systems engineering.

It may involve such sub-specialties as authentication of

system users, system targets and others: people, objects

and processes.

SOFTWARE ENGINEERING
From its beginnings, software engineering has helped

shape modern systems engineering practice. The techniques

used in the handling of complexes of large software-intensive

systems has had a major effect on the shaping and reshaping

of the tools, methods and processes of SE.

SYSTEMS DESIGN
Systems design is the process of defining the architecture,

components, modules, interfaces, and data for a system to

satisfy specified requirements. One could see it as the

application of systems theory to product development. There

is some overlap with the disciplines of systems analysis,

systems architecture and systems engineering. If the broader

topic of product development “blends the perspective of

marketing, design, and manufacturing into a single approach

to product development, then design is the act of taking the

marketing information and creating the design of the product

to be manufactured. Systems design is therefore the process
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of defining and developing systems to satisfy specified

requirements of the user. Until the 1990s systems design

had a crucial and respected role in the data processing

industry. In the 1990s standardization of hardware and

software resulted in the ability to build modular systems.

The increasing importance of software running on generic

platforms has enhanced the discipline of software

engineering. Object-oriented analysis and design methods

are becoming the most widely used methods for computer

systems design. The UML has become the standard language

in object-oriented analysis and design. It is widely used for

modeling software systems and is increasingly used for high

designing non-software systems and organizations.

LOGICAL DESIGN
The logical design of a system pertains to an abstract

representation of the data flows, inputs and outputs of the

system. This is often conducted via modelling, using an

over-abstract (and sometimes graphical) model of the actual

system. In the context of systems design, modelling can

undertake the following forms, including

PHYSICAL DESIGN
The physical design relates to the actual input and

output processes of the system. This is laid down in terms

of how data is input into a system, how it is verified/

authenticated, how it is processed, and how it is displayed

as output. Physical design, in this context, does not refer

to the tangible physical design of an information system.

To use an analogy, a personal computer’s physical design
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involves input via a keyboard, processing within the CPU,

and output via a monitor, printer, etc. It would not concern

the actual layout of the tangible hardware, which for a PC

would be a monitor, CPU, motherboard, hard drive, modems,

video/graphics cards, USB slots, etc.

ALTERNATIVE DESIGN METHODOLOGIES

RAPID APPLICATION DEVELOPMENT (RAD)
Rapid application development (RAD) is a methodology

in which a systems designer produces prototypes for an

end-user. The end-user reviews the prototype, and offers

feedback on its suitability. This process is repeated until

the end-user is satisfied with the final system.

JOINT APPLICATION DESIGN (JAD)
Joint application design (JAD) is a methodology which

evolved from RAD, in which a systems designer consults

with a group consisting of the following parties:

• Executive sponsor

• Systems Designer

• Managers of the system

JAD involves a number of stages, in which the group

collectively develops an agreed pattern for the design and

implementation of the system.

TOPICS OF SYSTEMS DESIGN
• Requirements analysis - analyzes the needs of the

end users or customers
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• Benchmarking — is an effort to evaluate how current

systems are used

• Systems architecture - creates a blueprint for the

design with the necessary specifications for the

hardware, software, people and data resources. In

many cases, multiple architectures are evaluated

before one is selected.

• Design — designers will produce one or more ‘models’

of what they see a system eventually looking like,

with ideas from the analysis section either used or

discarded. A document will be produced with a

description of the system, but nothing is specific —

they might say ‘touchscreen’ or ‘GUI operating system’,

but not mention any specific brands;

• Computer programming and debugging in the software

world, or detailed design in the consumer, enterprize

or commercial world - specifies the final system

components.

• System testing - evaluates the system’s actual

functionality in relation to expected or intended

functionality, including all integration aspects.

SYSTEM SOFTWARE
System software is computer software designed to

operate the computer hardware and to provide a platform

for running application software. The most basic types of

system software are:

• The computer BIOS and device firmware, which

provide basic functionality to operate and control the

hardware connected to or built into the computer.
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• The operating system (prominent examples being

Microsoft Windows, Mac OS X and Linux), which

allows the parts of a computer to work together by

performing tasks like transferring data between

memory and disks or rendering output onto a display

device. It also provides a platform to run high-level

system software and application software.

• Utility software, which helps to analyze, configure,

optimize and maintain the computer.

In some publications, the term system software is also

used to designate software development tools (like a compiler,

linker or debugger). Computer purchasers seldom buy a

computer primarily because of its system software (But

purchasers of devices like mobile phones because of there

system software, as is the case with the iPhone, as the

system software of such devices is difficult for the end-user

to modify). Rather, system software serves as a useful (even

necessary) level of infrastructure code, generally built-in or

pre-installed. In contrast to system software, software that

allows users to do things like create text documents, play

games, listen to music, or surf the web is called application

software.

TYPES OF SYSTEM SOFTWARE PROGRAMMES
System software helps use the operating system and

computer system. It includes diagnostic tools, compilers,

servers, windowing systems, utilities, language translator,

data communication programmes, database systems and

more. The purpose of system software is to insulate the

applications programmer as much as possible from the
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complexity and specific details of the particular computer

being used, especially memory and other hardware features,
and such accessory devices as communications, printers,
readers, displays, keyboards, etc. Specific kinds of system
software include:

• Loaders

• Linkers

• Utility software

• Desktop environment / Graphical user interface

• Shells

• BIOS

• Hypervisors

• Boot loaders

• Database Management Systems(SQL, NoSQL)

If system software is stored on non-volatile memory such

as integrated circuits, it is usually termed firmware.

ENTERPRIZE SOFTWARE
Enterprize software, also known as enterprize application

software (EAS), is software used in organizations, such as
in a business or government, as opposed to software chosen
by individuals (for example, retail software). Enterprize
software is an integral part of a (Computer Based) Information
System. Services provided by enterprize software are typically
business-oriented tools such as online shopping and online
payment processing, interactive product catalogue,
automated billing systems, security, content management,
IT service management, customer relationship management,
resource planning, business intelligence, HR management,

manufacturing, application integration, and forms

automation.
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DEFINITIONS
While there is no single, widely accepted list of enterprize

software characteristics, this section is intended to

summarize definitions from multiple sources. Enterprize

software describes a collection of computer programmes

with common business applications, tools for modeling how

the entire organization works, and development tools for

building applications unique to the organization. The software

is intended to solve an enterprize-wide problem (rather than

a departmental problem) and often written using an

Enterprize Software Architecture. Enterprize level software

aims to improve the enterprize’s productivity and efficiency

by providing business logic support functionality. Capterra

broadly defines enterprize software in the following manner:

• Targets any type of organization — corporations,

partnerships, sole proprietorships, nonprofits,

government agencies — but does not directly target

consumers.

• Targets any industry.

• Targets both large and small organizations — from

Fortune 500 to “mom and pop” businesses.

• Includes function-specific (Accounting, HR, Supply

Chain, etc.) and industry-specific (Manufacturing,

Retail, Healthcare, etc.) solutions.

Due to the cost of building or buying what is often non-

free proprietary software, only large enterprizes attempt to

implement such enterprize software that models the entire

business enterprize and is the core IT system of governing

the enterprize and the core of communication within the
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enterprize. As business enterprizes have similar departments

and systems in common, enterprize software is often available

as a suite of programmes that have attached enterprize

development tools to customize the programmes to the

specific enterprize. Generally, these tools are complex

enterprize programming tools that require specialist
capabilities. Thus, one often sees job listings for a
programmer who is required to have specific knowledge of
a particular set of enterprize tools, such as “must be an SAP
developer”. Characteristics of enterprize software are
performance, scalability, and robustness. Enterprize software
typically has interfaces to other enterprize software (for
example LDAP to directory services) and is centrally managed
(a single admin page for example).

ENTERPRIZE APPLICATION SOFTWARE
Enterprize application software is application software

that performs business functions such as order processing,
procurement, production scheduling, customer information
management, and accounting. It is typically hosted on servers
and provides simultaneous services to a large number of
users, typically over a computer network. This is in contrast
to a single-user application that is executed on a user’s
personal computer and serves only one user at a time.

TYPES
• Enterprize software can be designed and implemented

by an information technology (IT) group within a

company.

• It may also be purchased from an independent

enterprize software developer, that often installs and
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maintains the software for their customers.

Installation, customization, and maintenance can also

be outsourced to an IT consulting company.

• Another model is based on a concept called on-

demand software, or Software as a Service (SaaS).

The on-demand model of enterprize software is made

possible through the widespread distribution of

broadband access to the Internet. Software as a

Service vendors maintain enterprize software on

servers within their own company data center and

then provide access to the software to their enterprize

customers via the Internet.

Enterprize software is often categorized by the business

function that it automates - such as accounting software

or sales force automation software. Similarly for industries

- for example, there are enterprize systems devised for the

health care industry, or for manufacturing enterprizes.

DEVELOPERS
Major organizations in the enterprize software field include

SAP, IBM, BMC Software, HP Software Division, Redwood

Software, UC4 Software, JBoss (Red Hat), Microsoft, Adobe

Systems, Oracle Corporation, Inquest Technologies,

Computer Associates, and ASG Software Solutions but there

are thousands of competing vendors.

CRITICISM
The word enterprize can have various connotations.

Sometimes the term is used merely as a synonym for

organization, whether it be very large (e.g., a corporation
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with thousands of employees), very small (a sole

proprietorship), or an intermediate size. Often the term is

used only to refer to very large organizations, although it

has become a corporate-speak buzzword and may be heard

in other uses. Some enterprize software vendors using the

latter definition develop highly complex products that are

often overkill for smaller organizations, and the application

of these can be a very frustrating task. Thus, sometimes

“enterprize” might be used sarcastically to mean overly

complex software. The adjective “enterprizey” is sometimes

used to make this sarcasm explicit. In this usage, the term

“enterprizey” is intended to go beyond the concern of “overkill

for smaller organizations” to imply the software is overly

complex even for large organizations and simpler solutions

are available.

APPLICATION SOFTWARE
Application software, also known as an application or an

“app”, is computer software designed to help the user to

perform singular or multiple related specific tasks. Examples

include enterprize software, accounting software, office

suites, graphics software and media players. Many

application programmes deal principally with documents.

Application software is contrasted with system software and

middleware, which manage and integrate a computer’s

capabilities, but typically do not directly apply them in the

performance of tasks that benefit the user. A simple, if

imperfect, analogy in the world of hardware would be the

relationship of an electric light bulb (an application) to an

electric power generation plant (a system). The power station
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merely generates electricity, not itself of any real use until

harnessed to an application like the electric light that

performs a service that benefits the user. Application software

applies the power of a particular computing platform or

system software to a particular purpose. Some apps such

as Microsoft Office are available in versions for several

different platforms; others have narrower requirements.

TERMINOLOGY
In information technology, an application is a computer

programme designed to help people perform an activity. An

application thus differs from an operating system (which

runs a computer), a utility (which performs maintenance

or general-purpose chores), and a programming language

(with which computer programmes are created). Depending

on the activity for which it was designed, an application can

manipulate text, numbers, graphics, or a combination of

these elements. Some application packages offer considerable

computing power by focusing on a single task, such as word

processing; others, called integrated software, offer somewhat

less power but include several applications. User-written

software tailors systems to meet the user’s specific needs.

User-written software include spreadsheet templates, word

processor macros, scientific simulations, graphics and

animation scripts. Even email filters are a kind of user

software. Users create this software themselves and often

overlook how important it is.

The delineation between system software such as

operating systems and application software is not exact,

however, and is occasionally the object of controversy. For
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example, one of the key questions in the United States v.

Microsoft antitrust trial was whether Microsoft’s Internet

Explorer web browser was part of its Windows operating

system or a separable piece of application software. As

another example, the GNU/Linux naming controversy is, in

part, due to disagreement about the relationship between

the Linux kernel and the operating systems built over this

kernel. In some types of embedded systems, the application

software and the operating system software may be

indistinguishable to the user, as in the case of software

used to control a VCR, DVD player or microwave oven. The

above definitions may exclude some applications that may

exist on some computers in large organizations. For an

alternative definition of an app: see Application Portfolio

Management.

APPLICATION SOFTWARE CLASSIFICATION
Application software falls into two general categories;

horizontal applications and vertical applications. Horizontal

Application are the most popular and its widely spread in

departments or companies. Vertical Applications are designed

for a particular type of business or for specific division in

a company. There are many types of application software:

• An application suite consists of multiple applications

bundled together. They usually have related

functions, features and user interfaces, and may be

able to interact with each other, e.g. open each

other’s files. Business applications often come in

suites, e.g. Microsoft Office, OpenOffice.org and

iWork, which bundle together a word processor, a
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spreadsheet, etc.; but suites exist for other purposes,

e.g. graphics or music.

• Enterprize software addresses the needs of

organization processes and data flow, often in a large

distributed environment. (Examples include financial

systems, customer relationship management (CRM)

systems and supply-chain management software).

Note that Departmental Software is a sub-type of

Enterprize Software with a focus on smaller

organizations or groups within a large organization.

(Examples include Travel Expense Management and

IT Helpdesk)

• Enterprize infrastructure software provides common

capabilities needed to support enterprize software

systems. (Examples include databases, email servers,

and systems for managing networks and security.)

• Information worker software addresses the needs of

individuals to create and manage information, often

for individual projects within a department, in contrast

to enterprize management. Examples include time

management, resource management, documentation

tools, analytical, and collaborative. Word processors,

spreadsheets, email and blog clients, personal

information system, and individual media editors

may aid in multiple information worker tasks.

• Content access software is software used primarily to

access content without editing, but may include

software that allows for content editing. Such software

addresses the needs of individuals and groups to

consume digital entertainment and published digital
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content. (Examples include Media Players, Web

Browsers, Help browsers and Games)

• Educational software is related to content access

software, but has the content and/or features adapted

for use in by educators or students. For example, it

may deliver evaluations (tests), track progress through

material, or include collaborative capabilities.

• Simulation software are computer software for

simulation of physical or abstract systems for either

research, training or entertainment purposes.

• Media development software addresses the needs of

individuals who generate print and electronic media

for others to consume, most often in a commercial

or educational setting. This includes Graphic Art

software, Desktop Publishing software, Multimedia

Development software, HTML editors, Digital

Animation editors, Digital Audio and Video

composition, and many others.

• Mobile applications run on hand-held devices such

as mobile phones, personal digital assistants and

enterprize digital assistants : see mobile application

development.

• Product engineering software is used in developing

hardware and software products. This includes

computer aided design (CAD), computer aided

engineering (CAE), computer language editing and

compiling tools, Integrated Development

Environments, and Application Programmer

Interfaces.
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• A command-driven interface is one in which you type

in commands to make the computer do something.

You have to know the commands and what they do

and they have to be typed correctly. DOS and Unix

are examples of command-driven interfaces.

• A graphical user interface (GUI) is one in which you

select command choices from various menus, buttons

and icons using a mouse. It is a user-friendly interface.

The Windows and Mac OS are both graphical user

interfaces.
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8

Sketchpad and Design Process

Construction of a drawing with Sketchpad is itself a model

of the design process. The locations of the points and lines

of the drawing model the variables of a design, and the

geometric constraints applied to the points and lines of the

drawing model the design constraints which limit the values

of design variables. The ability of Sketchpad to satisfy the

geometric constraints applied to the parts of a drawing models

the ability of a good designer to satisfy all the design

conditions imposed by the limitations of his materials, cost,

etc. In fact, since, designers in many fields produce nothing

themselves but a drawing of a part, design conditions may

well be thought of as applying to the drawing of a part rather

than to the part itself. When such design conditions are added

to Sketchpad’s vocabulary of constraints, the computer will

be able to assist a user not only in arriving at a nice looking

drawing, but also in arriving at a sound design.
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PRESENT USEFULNESS
As more and more applications have been made, it has

become clear that the properties of Sketchpad drawings make

them most useful in four broad areas:

For storing and updating drawings: Each time a drawing is
made, a description of that drawing is stored in the computer
in a form that is readily transferred to magnetic tape. A library
of drawings will thus develop, parts of which may be used in
other drawings at only a fraction of the investment of time
that was put into the original drawing.

For gaining scientific or engineering understanding of

operations that can be described graphically: A drawing in
the Sketchpad system may contain explicit statements about
the relations between its parts so that as one part is changed
the implications of this change become evident throughout
the drawing. For instance, Sketchpad makes it easy to study
mechanical linkages, observing the path of some parts when
others are moved.

As a topological input device for circuit simulators, etc.: Since,
the storage structure of Sketchpad reflects the topology of
any circuit or diagram, it can serve as an input for many
network or circuit simulating Programmes. The additional
effort required to draw a circuit completely from scratch with
the Sketchpad system may well be recompensed if the

properties of the circuit are obtainable through simulation

of the circuit drawn.

For highly repetitive drawings: The ability of the computer

to reproduce any drawn symbol anywhere at the press of a

button, and to recursively include subpictures within

subpictures makes it easy to produce drawings which are

composed of huge numbers of parts all similar in shape.
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RING STRUCTURE
The basic n-component element structure described by

Ross has been somewhat expanded in the implementation

of Sketchpad so that all references made to a particular n-

component element or block are collected together by a string

of pointers which originates within that block. For example,

not only may the end points of a line segment be found by

following pointers in the line block (n-component element),

but also all the line segments which terminate on a particular

point may be found by following a string of pointers which

starts within the point block. This string of pointers closes

on itself; the last pointer points back to the first, hence the

name “ring.” The ring points both ways to make it easy to

find both the next and the previous member of the ring in

case, as when deleting, some change must be made to them.

BASIC OPERATIONS
The basic ring structure operations are:

• Inserting a new member into a ring at some specified

location on it, usually first or last.

• Removing a member from a ring.

• Putting all the members of one ring, in order, into

another at some specified location in it, usually first

or last.

• Performing some auxiliary operation on each member

of a ring in either forward or reverse order.

These basic ring structure operations are implemented by

short sections of Programme defined as MACRO instructions

in the compiler language. By suitable treatment of zero and

one member rings, the basic Programmes operate without
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making special cases. Subroutines are used for setting up

new n-component elements in free spaces in the storage

structure. As parts of the drawing are deleted, the registers

which were used to represent them become free. New

components are set up at the end of the storage area,

lengthening it, while free blocks are allowed to accumulate.

Garbage collection periodically compacts the storage

structure by removal of the free blocks.

GENERIC STRUCTURE, HIERARCHIES
The main part of Sketchpad can perform basic operations

on any drawing part, calling for help from routines specific

to particular types of parts when that is necessary. For

example, the main Programme can show any part on the

display system by calling the appropriate display subroutine.

The big power of the clear-cut separation of the general and

the specific is that it is easy to change the details of specific

parts of the Programme to get quite different results without

any need to change the general parts.

Figure : Generic Structure. The n-component Elements for each
Point or line, etc. are Collected under the Generic Blocks

“Lines,” “Points,” etc. Shown.
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In the data storage structure the separation of general

and specific is accomplished by collecting all things of one

type together in a ring under a generic heading. The generic

heading contains all the information which makes this type

of thing different from all other types of things. Thus the

data storage structure itself contains all the specific

information. The generic blocks are further gathered together

under super-generic or generic-generic blocks.

EXPANDING SKETCHPAD
Addition of new types of things to the Sketchpad system’s

vocabulary of picture parts requires only the construction of

a new generic block (about 20 registers) and the writing of

appropriate subroutines for the new type. The subroutines

might be easy to write, as they usually are for new constraints,

or difficult to write, as for adding ellipse capability, but at

least a finite, well-defined task faces one to add a new ability

to the system. Without a generic structure it would be almost

impossible to add the instructions required to handle a new

type of element.

LIGHT PEN
In Sketchpad the light pen is time shared between the

functions of coordinate input for positioning picture parts

on the drawing and demonstrative input for pointing to

existing picture parts to make changes. Although almost any

kind of coordinate input device could be used instead of the

light pen for positioning, the demonstrative input uses the

light pen optics as a sort of analog computer to remove from

consideration all but a very few picture parts which happen

to fall within its field of view, saving considerable Programme
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time. Drawing systems using storage display devices of the

Memotron type may not be practical because of the loss of

this analog computation feature.

PEN TRACKING
To initially establish pen tracking, the Sketchpad user must

inform the computer of an initial pen location. This has come

to be known as “inking-up” and is done by “touching” any

existing line or spot on the display, whereupon the tracking

cross appears. If no picture has yet been drawn, the letters

INK are always displayed for this purpose. Sketchpad uses

loss of tracking as a “termination signal” to stop drawing.

The user signals that he is finished drawing by flicking the

pen too fast for the tracking Programme to follow.

DEMONSTRATIVE USE OF PEN
During the 90% of the time that the light pen and display

system are free from the tracking chore, spots are very rapidly

displayed to exhibit the drawing being built, and thus the

lines and circles of the drawing appear. The light pen is

sensitive to these spots and reports any which fall within its

field of view.

The one-half inch diameter field of view of the light pen,

although well suited to tracking, is relatively large for pointing.

Therefore, the Sketchpad system will reject any seen part

which is further from the centre of the light pen than some

small minimum distance; about 1/8 inch was found to be

suitable. For every kind of picture part some method must

be provided for computing its distance from the light pen

centre or indicating that this computation cannot be made.
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Figure : Areas in Which Pen must lie to “aim at” Existing Drawing Parts (solid
lines).

After eliminating all parts seen by the pen which lie outside

the smaller effective field of view, the Sketchpad system

considers objects topologically related to the ones actually

seen. End points of lines and attachment points of instances

(subpictures) are especially important. One can thus aim at

the end point of a line even though only the line is displayed.

The various regions within which the pen must lie to be

considered aimed at a line segment, a circle arc, their end

points, or their intersection.

PSEUDO PEN LOCATION
When the light pen is aimed at a picture part, the exact

location of the light pen is ignored in favour of a “pseudo pen

location” exactly on the part aimed at. If no object is aimed

at, the pseudo pen location is taken to be the actual pen

location.

The pseudo pen location is displayed as a bright dot which

is used as the “point of the pencil” in all drawing operations.

As the light pen is moved into the areas outline the dot will

lock onto the existing parts of the drawing, and any moving

picture parts will jump to their new locations as the pseudo
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pen location moves to lie on the appropriate picture part.

With just the basic drawing creation and manipulation

functions of “draw,” “move,” and “delete,” and the power of

the pseudo pen location and demonstrative language

Programmes, it is possible to make fairly extensive drawings.

Most of the constructions normally provided by straight edge

and compass are available in highly accurate form. Most

important, however, the pseudo pen location and

demonstrative language give the means for entering the

topological properties of a drawing into the machine.

DISPLAY GENERATION
The display system, or “scope,” on the TX-2 is a ten bit per

axis electrostatic deflection system able to display spots at a

maximum rate of about 100,000 per second. The coordinates

of the spots which are to be seen on the display are stored in

a large table so that computation and display may proceed

independently. If, instead of displaying each spot

successively, the display Programme displays them in a

random order or with interlace, the flicker of the display is

reduced greatly.

MARKING OF DISPLAY FILE
Of the 36 bits available to store each display spot in the

display file, 20 give the coordinates of that spot for the display

system, and the remaining 16 give the address of the n-

component element which is responsible for adding that spot

to the display. Thus, all the spots in a line are tagged with

the ring structure address of that line, and all the spots in

an instance (sub-picture) are tagged as belonging to that
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instance. The tags are used to identify the particular part of

the drawing being aimed at by the light pen. If a part of the

drawing is being moved by the light pen, its display spots

will be recomputed as quickly as possible to show it in

successive positions. The display spots for such moving parts

are stored at the end of the display file so that the display of

the many non--moving parts need not be disturbed. Moving

parts are made invisible to the light pen.

MAGNIFICATION OF PICTURES
The shaft position encoder knobs are used to tell the

Programme to change the display scale factor or the portion

of the page displayed. The range of magnification of 2000

available makes it possible to work, in effect, on a 7-inch

square portion of a drawing about ¼ mile on a side. For a

magnified picture, Sketchpad computes which portion(s) of

a curve will appear on the display and generates display spots

for those portions only. The “edge detection” problem is the

problem of finding suitable end points for the portion of a

curve which appears on the display. In concept the edge

detection problem is trivial. In terms of Programme time for

lines and circles the problem is a small fraction of the total

computational load of the system, but in terms of Programme

logical complexity the edge detection problem is a difficult

one. For example, the computation of the intersection of a

circle with any of the edges of the scope is easy, but

computation of the intersection of a circle with all four edges

may result in as many as eight intersections, some pairs of which

may be identical, the scope corners. Now which of these

intersections are actually to be used as starts of circle arcs?
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LINE AND CIRCLE GENERATION

All of Sketchpad’s displays are generated from straight line

segments, circle arcs, and single points.

The generation of the lines and circles is accomplished by

means of the difference equations:
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for circles, where subscripts i indicate successive display

spots, subscript c indicates the circle centre, and R is the

radius of the circle in Scope Units. In implementing these

difference equations in the Programme, the fullest possible

use is made of the coordinate arithmetic capability of the

TX-2 so that both the x and y equation computations are

performed in parallel on 18 bit subwords. Even so, about ¾

of the total Sketchpad computation time is spent in line and

circle generation. A vector and circle generating display would

materially reduce the computational load of Sketchpad.

For computers which do only one addition at a time, the

difference equations:
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should be used to generate circles. Equations (3) approximate

a circle well enough and are known to close exactly both in

theory and when implemented, because the x and y equations

are dissimilar.
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DIGITS AND TEXT
Text, to put legends on a drawing, is displayed by means

of special tables which indicate the locations of line and circle

segments to make up the letters and numbers. Each piece

of text appears as a single line of not more than 36 equally

spaced characters which can be changed by typing. Digits to

display the value of an indicated scalar at any position and

in any size and rotation are formed from the same type face

as text. It is possible to display up to five decimal digits with

sign; binary to decimal conversion is provided, and leading

zeros are suppressed.

Subpictures, whose use was seen in the introductory

example above, are each represented in storage as a single

n-component element. A subpicture is said to be an “instance”

of its “master picture.” To display an instance, all of the lines,

text, etc. of its master picture must be shown in miniature

on the display. The instance display Programme makes use

of the line, circle, number, and text display Programmes and

itself to expand the internal structure of the instance.

DISPLAY OF ABSTRACTIONS
The usual picture for human consumption displays only

lines, circles, text, digits, and instances. However, certain

very useful abstractions which give the drawing the properties

desired by the user are represented in the ring structure

storage. For example, the fact that the start and end points

of a circle arc should be equidistant from the circle’s centre

point is represented in storage by a “constraint” block. To

make it possible for a user to manipulate these abstractions,

each abstraction must be able to be seen on the display if
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desired. Not only does displaying abstractions make it

possible for the human user to know that they exist, but

also makes it possible for him to aim at them with the light

pen and, for example, erase them. To avoid confusion, the

display for particular types of objects may be turned on or

off selectively by toggle switches. Thus, for example, one can

turn on display of constraints as well as or instead of the

lines and circles which are normally seen.

Figure : Display of Constraints.

If their selection toggle switch is on, constraints are

displayed. The central circle and code letter are located at

the average location of the variables constrained. The four

arms of a constraint extend from the top, right side, bottom,

and left side of the circle to the first, second, third, and fourth

variables constrained, respectively. If fewer than four

variables are constrained, excess arms are omitted. The

constraints are shown applied to “dummy variables” each of

which shows as an X.

Figure : Three Sets of Digits Displaying the Same Scalar Value.
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Another abstraction that can be displayed if desired is the

value of a set of digits. For example, three sets of digits all

displaying the same scalar value, -5978. The digits themselves

may be moved, rotated, or changed in size, without changing

the value displayed. If we wish to change the value, we point

at its abstract display. The three sets of digits, all display the

same value, as indicated by the lines connecting them to the

#; changing this value would make all three sets of digits

change. Constraints may be applied independently to either

the position of the digits or their value as indicated by the

two constraints in the figure.

RECURSIVE FUNCTIONS
In the process of making the Sketchpad system operate, a

few very general functions were developed which make no

reference at all to the specific types of entities on which they

operate. These general functions give the Sketchpad system

the ability to operate on a wide range of problems. The

motivation for making the functions as general as possible

came from the desire to get as much result as possible from

the programming effort involved. For example, the general

function for expanding instances makes it possible for

Sketchpad to handle any fixed geometry subpicture. The

power obtained from the small set of generalized functions

in Sketchpad is one of the most important results of the

research.

In order of historical development, the recursive functions

in use in the Sketchpad system are:

• Expansion of instances, making it possible to have

subpictures within subpictures to as many levels

as desired.
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• Recursive deletion, whereby removal of certain

picture parts will remove other picture parts in order

to maintain consistency in the ring structure.

• Recursive merging, whereby combination of two
similar picture parts forces combination of similarly
related other picture parts, making possible
application of complex definitions to an object
picture.

RECURSIVE DELETING
If a thing upon which other things depend is deleted, the

dependent things must be deleted also. For example, if a point
is to be deleted, all lines which terminate on the point must
also be deleted. Otherwise, since, the n-component elements
for lines contain no positional information, where would these
lines end? Similarly, deletion of a variable requires deletion
of all constraints on that variable; a constraint must have
variables to act on.

RECURSIVE MERGING
If two things of the same type which are independent are

merged, a single thing of that type results, and all things which

depended on either of the merged things depend on the result*

of the merger. For example, if two points are merged, all lines
which previously terminated on either point now terminate
on the single resulting point. In Sketchpad, if a thing is being
moved with the light pen and the termination flick of the
pen is given while aiming at another thing of the same type,
the two things will merge. Thus, if one moves a point to

another point and terminates, the points will merge,

connecting all lines which formerly terminated on either. This

makes it possible to draw closed polygons.
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Figure : Applying a Two-constraint Definition to turn a Quadrilateral
into a Parallelogram.

If two things of the same type which do depend on other

things are merged, the things depended on by one will be forced

to merge, respectively, with the things depended on by the

other. The result* of merging two dependent things depends,

respectively, on the results* of the mergers it forces. For

example, if two lines are merged, the resultant line must

refer to only two end points, the results of merging the pairs

of end points of the original lines. All lines which terminated

on any of the four original end points now terminate on the

appropriate one of the remaining pair. More important and

useful, all constraints which applied to any of the four original

end points now apply to the appropriate one of the remaining
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pair. This makes it possible to speak of line segments as

being parallel even though (because line segments contain

no numerical information to be constrained) the parallelism

constraint must apply to their end points and not to the line

segments themselves. If we wish to make two lines both

parallel and equal in length, the steps outlined. More obscure

relationships between dependent things may be easily defined

and applied. For example, constraint complexes can be

defined to make line segments be collinear, to make a line be

tangent to a circle, or to make the values represented by two

sets of digits be equal. The “result” of a merger is a single

thing of the same type as the merged things.

RECURSIVE DISPLAY OF INSTANCES
The block of registers which represents an instance is

remarkably small considering that it may generate a display

of any complexity. For the purposes of display, the instance

block makes reference to its master picture. The instance

will appear on the display as a figure geometrically similar to

its master picture at a location, size, and rotation indicated

by the four numbers which constitute the “value” of the

instance. The value of an instance is considered numerically

as a four dimensional vector. The components of this vector

are the coordinates of the centre of the instance and its actual

size as it appears on the drawing times the sine and cosine

of the rotation angle involved. In displaying an instance of a

picture, reference is made to the master picture to find out

what picture parts are to be shown. The master picture

referred to may contain instances, however, requiring further

reference, and so on until a picture is found which contains
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no instances. At each stage in the recursion, any picture

parts displayed must be relocated so that they will appear at

the correct position, size and rotation on the display. Thus,

at each stage of the recursion, some transformation is applied

to all picture parts before displaying them. If an instance is

encountered, the transformation represented by its value

must be adjoined to the existing transformation for display

of parts within it. When the expansion of an instance within

an instance is finished, the transformation must be restored

for continuation at the higher level.

ATTACHERS AND INSTANCES
Many symbols must be integrated into the rest of the

drawing by attaching lines to the symbols at appropriate

points, or by attaching the symbols directly to each other.

For example, circuit symbols must be wired up, geometric

patterns made by fitting shapes together, or mechanisms

composed of links tied together appropriately. An instance

may have any number of attachment points, and a point

may serve as attacher for any number of instances. The light

pen has the same affinity for the attachers of an instance

that it has for the end point of a line.

An “instance-point” constraint, shown with code T, is used

to relate an instance to each of its attachment points. An

instance-point constraint is satisfied only when the point

bears the same relationship to the instance that a master

point in the master picture for that instance bears to the

master picture coordinate system.

Any point may be an attacher of an instance, but the point

must be designated as an attacher in the master drawing of
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the instance. For example, when one first draws a resistor,

the ends of the resistor must be designated as attachers if

wiring is to be attached to instances of it. At each level of

building complex pictures, the attachers must be designated

anew. Thus of the three attachers of a transistor it is possible

to select one or two to be the attachers of a flip-flop.

Figure : Definition Pictures to be Copied.

BUILDING A DRAWING,

THE COPY FUNCTION

At the start of the Sketchpad effort certain ad hoc drawing

functions were programmed as the atomic operations of the
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system. Each such operation, controlled by a push button,

creates in the ring structure a specific set of new drawing

parts. For example, the “draw” button creates a line segment

and two new end points (unless the light pen happens to be

aimed at a point in which case only one new point need be

created). Similarly, there are atomic operations for drawing

circles, applying a horizontal or vertical constraint to the

end points of a line aimed at, and for adding a “point-on-
line” constraint whenever a point is moved onto a line and
left there. The atomic operations make it possible to create
in the ring structure new picture components and relate them
topologically. The atomic operations are, of course, limited
to creating points, lines, circles, and two or three types of
constraints. Since, implementation of the copy function it
has become possible to create in the ring structure any
predefined combination of picture parts and constraints at
the press of a button. The recursive merging function makes

it possible to relate the copied set of picture parts to any

existing parts. For example, if a line segment and its two end

points are copied into the object picture, the action of the

“draw” button may be exactly duplicated in every respect.

Along with the copied line, however, one might copy as well a

constraint, Code H, to make the line horizontal, or two

constraints to make the line both horizontal and three inches

long, or any other variation one cares to put into the ring

structure to be copied.

When one draws a definition picture to be copied, certain

portions of it to be used in relating it to other object picture

parts are designated as “attachers.” Anything at all may be

designated: for example, points, lines, circles, text, even

constraints!.
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The rules used for combining points when the “draw” button

is pressed are generalized so that:

For copying a picture, the last-designated attacher is left

moving with the light pen. The next-to-last-designated

attacher is recursively merged with whatever object the pen

is aimed at when the copying occurs, if that object is of like
type. Previously designated attachers are recursively merged
with previously designated object picture parts, if of like type,
until either the supply of designated attachers or the supply
of designated object picture parts is exhausted. The last-
designated attacher may be recursively merged with any other
object of like type when the termination flick is given.
Normally only two designated attachers are used because it
is hard to keep track of additional ones.

If the definition picture consists of two line segments, their
four end points, and a constraint, Code M, on the points
which makes the lines equal in length, with the two lines
designated as attachers, copying enables the user to make
any two lines equal in length. If the pen is aimed at a line
when “copy” is pushed, the first of the two copied lines merges
with it (taking its position and never actually being seen).
The other copied line is left moving with the light pen and
will merge with whatever other line the pen is aimed at when

termination occurs. Since, merging is recursive, the copied

equal-length constraint, Code M, will apply to the end points

of the desired pair of object picture lines.

COPYING INSTANCES
The internal structure of an instance is entirely fixed. The

internal structure of a copy, however, is entirely variable. An

instance always retains its identity as a single part of the
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drawing; one can only delete an entire instance. Once a

definition picture is copied, however, the copy loses all identity

as a unit; individual parts of it may be deleted at will. One

might expect that there was intermediate ground between

the fixed-internal-structure instance and the loose-internal-

structure copy. One might wish to produce a collection of

picture parts, some of which were fixed internally and some

of which were not. The entire range of variation between the

instance and the copy can be constructed by copying instances.

For example, the arrow can be copied into an object picture

to result in a fixed-internal-structure diamond arrowhead

with a flexible tail. As the definition is set up, drawing

diamond-arrowheaded lines is just like drawing ordinary

lines. One aims the light pen where the tail is to end, presses

“copy,” and moves off with an arrowhead following the pen.

The diamond arrowhead in this case will not rotate (constraint

Code E), and will not change size (constraint Code F).

Copying pre-joined instances can produce vast numbers

of joined instances very easily. For example, the definition,

when repetitively copied, will result in a row of joined, equal

size (constraint Code S) diamonds. In this case the instances

themselves are attachers. Although each press of the “copy”

button copies two new instances into the object picture, one

of these is merged with the last instance in the growing row.

In the final row, therefore, each instance carries all

constraints which are applied to either of the instances in

the definition. This is why only one of the instances carries

the erect constraint, Code E.
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CONSTRAINT SATISFACTION
The major feature which distinguishes a Sketchpad

drawing from a paper and pencil drawing is the user’s ability

to specify to Sketchpad mathematical conditions on already

drawn parts of his drawing which will be automatically

satisfied by the computer to make the drawing take the exact

shape desired. The process of fixing up a drawing to meet

new conditions applied to it after it is already partially

complete is very much like the process a designer goes

through in turning a basic idea into a finished design. As

new requirements on the various parts of the design are

thought of, small changes are made to the size or other

properties of parts to meet the new conditions. By making

Sketchpad able to find new values for variables which satisfy

the conditions imposed, it is hoped that designers can be

relieved of the need of much mathematical detail. The effort

expended in making the definition of constraint types as

general as possible was aimed at making design constraints

as well as geometric constraints equally easy to add to the

system.

DEFINITION OF A CONSTRAINT TYPE
Each constraint type is entered into the system as a generic

block indicating the various properties of that particular

constraint type. The generic block tells how many variables

are constrained, which of these variables may be changed in

order to satisfy the constraint, how many degrees of freedom

are removed from the constrained variables, and a code letter

for human reference to this constraint type.

The definition of what a constraint type does is a subroutine

which will compute, for the existing values of the variables
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of a particular constraint of that type, the error introduced

into the system by that particular constraint. For example,

the defining subroutine for making points have the same x

coordinate (to make a line between them vertical) computes

the difference in their x coordinates. What could be simpler?

The computed error is a scalar which the constraint

satisfaction routine will attempt to reduce to zero by

manipulation of the constrained variables. The computation

of the error may be non--linear or time dependent, or it may

involve parameters not a part of the drawing such as the

setting of toggle switches, etc.

When the one pass method of satisfying constraints to be

described later on fails, the Sketchpad system falls back on

the reliable but slow method of relaxation to reduce the errors

indicated by various computation subroutines to smaller and

smaller values. For simple constructions such as the hexagon

illustrated, the relaxation procedure is sufficiently fast to be

useful. However, for complex systems of variables, especially

directly connected instances, relaxation is unacceptably slow.

Fortunately it is for just such directly connected instances

that the one pass method shows the most striking success.

ONE PASS METHOD
Sketchpad can often find an order in which the variables

of a drawing may be re-evaluated to completely satisfy all

the conditions on them in just one pass. For the cases in

which the one pass method works, it is far better than

relaxation: it gives correct answers at once; relaxation may

not give a correct solution in any finite time. Sketchpad can

find an order in which to re-evaluate the variables of a drawing
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for most of the common geometric constructions. Ordering

is also found easily for the mechanical linkages. Ordering

cannot be found for the bridge truss problem.

The way in which the one pass method works is simple in

principle and was easy to implement as soon as the nuances

of the ring structure manipulations were understood. To

visualize the one pass method, consider the variables of the

drawing as places and the constraints relating variables as

passages through which one might pass from one variable

to another. Variables are adjacent to each other in the maze

formed by the constraints if there is a single constraint which

constrains them both. Variables are totally unrelated if there

is no path through the constraints by which to pass from

one to the other.

Suppose that some variable can be found which has so

few constraints applying to it that it can be re-evaluated to

completely satisfy all of them. Such a variable we shall call a

“free” variable. As soon as a variable is recognized as free,

the constraints which apply to it are removed from further

consideration, because the free variable can be used to satisfy

them. Removing these constraints, however, may make

adjacent variables free. Recognition of these new variables

as free removes further constraints from consideration and

may make other adjacent variables free, and so on throughout

the maze of constraints. The manner in which freedom

spreads is much like the method used in Moore’s algorithm

to find the shortest path through a maze. Having found that

a collection of variables is free, Sketchpad will re-evaluate

them in reverse order, saving the first-found free variable

until last. In re-evaluating any particular variable, Sketchpad
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uses only those constraints which were present when that

variable was found to be free.

EXAMPLES AND CONCLUSIONS
The library tape and thus serve to illustrate not only how

the Sketchpad system can be used, but also how it actually

has been used so far. We conclude from these examples that

Sketchpad drawings can bring invaluable understanding to

a user.

For drawings where motion of the drawing, or analysis of

a drawn problem is of value to the user, Sketchpad excels.

For highly repetitive drawings or drawings where accuracy

is required, Sketchpad is sufficiently faster than conventional

techniques to be worthwhile. For drawings which merely

communicate with shops, it is probably better to use

conventional paper and pencil.

PATTERNS
The instance facility enables one to draw any symbol and

duplicate its appearance anywhere on an object drawing at

the push of a button. This facility made the hexagonal pattern

we saw. It took about one half hour to generate 900 hexagons,

including the time taken to figure out how to do it. Plotting

them takes about 25 minutes. The drafting department

estimated it would take two days to produce a similar pattern.

Figure : Zig-Zag for Delay Line.

The instance facility also made it easy to produce long

lengths of the zig-zag pattern. A single “zig” was duplicated
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in multiples of five and three, etc. Five hundred zigs were

generated in a single row. Four such rows were plotted one-

half inch apart to be used for producing a printed circuit

delay line. Total time taken was about 45 minutes for

constructing the figure and about 15 minutes to plot it.

A somewhat less repetitive pattern to be used for encoding

the time in a digital clock. Each cross in the figure marks

the position of a hole. The holes are placed so that a binary

coded decimal (BCD) number will indicate the time. Total

time for placing crosses was 20 minutes, most of which was

spent trying to interpret a pencil sketch of their positions.

Figure : Binary Coded Decimal Encoder for Clock. Encoder was Plotted
Exactly 12 Inches in Diameter for Direct use as a Layout.

LINKAGES

Figure : Three Bar Linkage. The Paths of Four Points on the Central Link
are Traced. This is a 15 Second time Exposure of a

Moving Sketchpad Drawing.

By far the most interesting application of Sketchpad so

far has been drawing and moving linkages. The ability to

draw and then move linkages opens up a new field of graphical
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manipulation that has never before been available. It is

remarkable how even a simple linkage can generate complex

motions. For example, only three moving parts. In this linkage

a central “ link is suspended between two links of different

lengths. As the shorter link rotates, the longer one oscillates

as can be seen in the multiple exposure. The motion of four

points on the upright part of the “ may be seen.

To make the three bar linkage, an instance shaped like

the “ was drawn and given 6 attachers, two at its joints with

the other links and four at the places whose paths were to

be observed. Connecting the “ shaped subpicture onto a

linkage composed of three lines with fixed length created the

picture shown. The driving link was rotated by turning a

knob below the scope. Total time to construct the linkage

was less than 5 minutes, but over an hour was spent playing

with it.

A linkage that would be difficult to build physically. This

linkage is based on the complete quadrilateral. The three

circled points and the two lines which extend out of the top

of the picture to the right and left are fixed. Two moving lines

are drawn from the lower circled points to the intersections

of the long fixed lines with the driving lever. The intersection

of these two moving lines (one must be extended) has a box

around it. It can be shown theoretically that this linkage

produces a conic section which passes through the place

labeled “point on curve” and is tangent to the two lines

marked “tangent.” A time exposure of the moving point in

many positions. At first, this linkage was drawn and working

in 15 minutes. Since, then we have rebuilt it time and again

until now we can produce it from scratch in about 3 minutes.
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Figure : Conic Drawing Linkage. As the “Driving Lever” is Moved, the
Point shown with a box Around it (in A) traces a Conic Section.

This Conic can be Seen in the Time Exposure (B).

DIMENSION LINES
To make it possible to have an absolute scale in drawings,

a constraint is provided which forces the value displayed by

a set of digits to indicate the distance between two points on

the drawing. This distance-indicating constraint is used to

make the number in a dimension line correspond to its length.

Putting in a dimension line is as easy as drawing any other

line. One points to where one end is to be left, copies the

definition of the dimension line by pressing the “copy” button,

and then moves the light pen to where the other end of the

dimension line is to be. The first dimension line took about

15 minutes to construct, but that need never be repeated

since, it is a part of the library.

BRIDGES
One of the largest untapped fields for application of

Sketchpad is as an input Programme for other computation

Programmes. The ability to place lines and circles graphically,

when coupled with the ability to get accurately computed

results pictorially displayed, should bring about a revolution
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in computer application. By using Sketchpad’s relaxation

procedure we were to demonstrate analysis of the force

distribution in the members of a pin connected truss.

A bridge is first drawn with enough constraints to make it

geometrically accurate. These constraints are then deleted

and each member is made to behave like a bridge beam. A

bridge beam is constrained to maintain constant length, but

any change in length is indicated by an associated number.

Under the assumption that each bridge beam has a cross-

sectional area proportional to its length, the numbers

represent the forces in the beams. The basic bridge beam

definition (consisting of two constraints and a number) may

be copied and applied to any desired line in a bridge picture

by pointing to the line and pressing the “copy” button.

Figure : Cantilever and Arch Bridges. The Numbers Indicate the Forces
in the Various Members as Computed by Sketchpad. Central

load is not Exactly Vertical.

Having drawn a basic bridge shape, one can experiment

with various loading conditions and supports effect of making
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minor modifications is. For example, an arch bridge

supported both as a three-hinged arch (two supports) and

as a cantilever (four supports). For nearly identical loading

conditions the distribution of forces is markedly different in

these two cases.

ARTISTIC DRAWINGS

Figure : Winking girl, “Nefertite,” and her Component Parts.

Sketchpad need not be applied exclusively to engineering

drawings. For example, the girl “Nefertite” can be made to

wink by changing which of the three types of eyes is placed

in position on her otherwise eyeless face. In the same way

that linkages can be made to move, a stick figure could be

made to pedal a bicycle or Nefertite’s hair could be made to

swing. The ability to make moving drawings suggests that

Sketchpad might be used for making animated cartoons.

ELECTRICAL CIRCUIT DIAGRAMS
Unfortunately, electrical circuits require a great many

symbols which have not yet been drawn properly with

Sketchpad and therefore are not in the library. After some

time is spent working on the basic electrical symbols it may

be easier to draw circuits. So far, however, circuit drawing

has proven difficult.
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Figure : Circuit Diagram. These are parts of the Large
Circuit Mentioned in the Text.

The circuits are parts of an analog switching scheme. You

can see in the figure that the more complicated circuits are

made up of simpler symbols and circuits. It is very difficult,

however, to plan far enough ahead to know what composites

of circuit symbols will be useful as subpictures of the final

circuit. The simple circuits were compounded into a big circuit

involving about 40 transistors. Including much trial and error,

the time taken by a new user (for the big circuit not shown)

was ten hours. At the end of that time the circuit was still

not complete in every detail and he decided it would be better

to draw it by hand after all.
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CONCLUSIONS
The circuit experience points out the most important fact

about Sketchpad drawings. It is only worthwhile to make

drawings on the computer if you get something more out of

the drawing than just a drawing. In the repetitive patterns

we saw in the first examples, precision and ease of

constructing great numbers of parts were valuable. In the

linkage examples, we were able to gain an understanding of

the behaviour of a linkage as well as its appearance. In the

bridge examples we got design answers which were worth

far more than the computer time put into them. If we had a

circuit simulation Programme connected to Sketchpad so

that we would have known whether the circuit we drew

worked, it would have been worth our while to use the

computer to draw it. We are as yet a long way from being

able to produce routine drawings economically with the

computer.
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