

COMPUTER OPERATING
SYSTEM

COMPUTER OPERATING
SYSTEM

Floyd Richmond

Computer Operating System

by Floyd Richmond

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664242

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Operating System 1

Chapter 2 Functions of Operating System 29

Chapter 3 Linux and other Operating Systems 56

Chapter 4 Modern Network Devices and

Operating System 75

Chapter 5 Windows Operating System 148

1

Operating System

An operating system (OS) is software, consisting of

programmes and data, that runs on computers, manages

computer hardware resources, and provides common

services for execution of various application software.

For hardware functions such as input and output and

memory allocation, the operating system acts as an

intermediary between application programmes and the

computer hardware, although the application code is usually

executed directly by the hardware and will frequently call

the OS or be interrupted by it. Operating systems are found

on almost any device that contains a computer—from cellular

phones and video game consoles to supercomputers and

web servers.

Examples of popular modern operating systems for

personal computers are: Microsoft Windows, Mac OS X,

GNU/Linux, and Unix.

Computer Operating System

2

Types of Operating Systems
Real-time Operating System: It is a multitasking operating

system that aims at executing real-time applications. Real-

time operating systems often use specialized scheduling

algorithms so that they can achieve a deterministic nature

of behaviour. The main object of real-time operating systems

is their quick and predictable response to events. They

either have an event-driven or a time-sharing design. An

event-driven system switches between tasks based on their

priorities while time-sharing operating systems switch tasks

based on clock interrupts.

Multi-user and Single-user Operating Systems: The

operating systems of this type allow a multiple users to

access a computer system concurrently. Time-sharing

system can be classified as multi-user systems as they

enable a multiple user access to a computer through the

sharing of time. Single-user operating systems, as opposed

to a multi-user operating system, are usable by a single

user at a time. Being able to have multiple accounts on a

Windows operating system does not make it a multi-user

system. Rather, only the network administrator is the real

user. But for a Unix-like operating system, it is possible for

two users to login at a time and this capability of the OS

makes it a multi-user operating system.

Multi-tasking and Single-tasking Operating Systems:

When a single programme is allowed to run at a time, the

system is grouped under a single-tasking system, while in

case the operating system allows the execution of multiple

tasks at one time, it is classified as a multi-tasking operating

system. Multi-tasking can be of two types namely, pre-

Computer Operating System

3

emptive or co-operative. In pre-emptive multitasking, the

operating system slices the CPU time and dedicates one slot

to each of the programmes. Unix-like operating systems

such as Solaris and Linux support pre-emptive multitasking.

Cooperative multitasking is achieved by relying on each

process to give time to the other processes in a defined

manner. MS Windows prior to Windows 95 used to support

cooperative multitasking.

Distributed Operating System: An operating system that

manages a group of independent computers and makes

them appear to be a single computer is known as a

distributed operating system. The development of networked

computers that could be linked and communicate with each

other, gave rise to distributed computing. Distributed

computations are carried out on more than one machine.

When computers in a group work in cooperation, they make

a distributed system.

Embedded System: The operating systems designed for

being used in embedded computer systems are known as

embedded operating systems. They are designed to operate

on small machines like PDAs with less autonomy. They are

able to operate with a limited number of resources. They

are very compact and extremely efficient by design. Windows

CE and Minix 3 are some examples of embedded operating

systems.

Summary

Early computers were built to perform a series of single

tasks, like a calculator. Operating systems did not exist

in their modern and more complex forms until the early

Computer Operating System

4

1960s. Some operating system features were developed in

the 1950s, such as monitor programmes that could

automatically run different application programmes in

succession to speed up processing. Hardware features

were added that enabled use of runtime libraries, interrupts,

and parallel processing.

When personal computers by companies such as Apple

Inc., Atari, IBM and Amiga became popular in the 1980s,

vendors added operating system features that had previously

become widely used on mainframe and mini computers.

Later, many features such as graphical user interface were

developed specifically for personal computer operating

systems.

An operating system consists of many parts. One of the

most important components is the kernel, which controls

low-level processes that the average user usually cannot

see: it controls how memory is read and written, the order

in which processes are executed, how information is received

and sent by devices like the monitor, keyboard and mouse,

and decides how to interpret information received from

networks. The user interface is a component that interacts

with the computer user directly, allowing them to control

and use programmes.

The user interface may be graphical with icons and a

desktop, or textual, with a command line. Application

programming interfaces provide services and code libraries

that let applications developers write modular code reusing

well defined programming sequences in user space libraries

or in the operating system itself. Which features are

Computer Operating System

5

considered part of the operating system is defined differently

in various operating systems. For example, Microsoft

Windows considers its user interface to be part of the

operating system, while many versions of Linux do not.

History

In the early 1950s, a computer could execute only one

programme at a time. Each user had sole use of the computer

and would arrive at a scheduled time with programme and

data on punched paper cards and tape.

The programme would be loaded into the machine, and

the machine would be set to work until the programme

completed or crashed. Programmes could generally be

debugged via a front panel using toggle switches and

panel lights. It is said that Alan Turing was a master of

this on the early Manchester Mark 1 machine, and he

was already deriving the primitive conception of an

operating system from the principles of the Universal

Turing machine.

Later machines came with libraries of software, which

would be linked to a user’s programme to assist in operations

such as input and output and generating computer code

from human-readable symbolic code.

This was the genesis of the modern-day operating

system. However, machines still ran a single job at a

time. At Cambridge University in England the job queue

was at one time a washing line from which tapes were

hung with different colored clothes-pegs to indicate job-

priority.

Computer Operating System

6

Examples of Operating Systems

Microsoft Windows

Bootable Windows To Go USB flash drive

Microsoft Windows is a family of proprietary operating

systems designed by Microsoft Corporation and primarily

targeted to Intel architecture based computers, with an

estimated 88.9 percent total usage share on Web connected

computers. The newest version is Windows 7 for

workstations and Windows Server 2008 R2 for servers.

Windows 7 recently overtook Windows XP as most used OS.

Microsoft Windows originated in 1985 as an application

running on top of MS-DOS, which was the standard operating

system shipped on most Intel architecture personal

computers at the time. In 1995, Windows 95 was released

which only used MS-DOS as a bootstrap. For backwards

compatibility, Win9x could run real-mode MS-DOS and 16

bits Windows 3.x drivers. Windows Me, released in 2000,

was the last version in the Win9x family. Later versions

have all been based on the Windows NT kernel. Current

versions of Windows run on IA-32 and x86-64

microprocessors, although Windows 8 will support ARM

architecture. In the past, Windows NT supported non-Intel

architectures.

Server editions of Windows are widely used. In recent

years, Microsoft has expended significant capital in an effort

to promote the use of Windows as a server operating

Computer Operating System

7

environment. However, Windows’ usage on servers is not as

widespread as on personal computers, as Windows competes

against Linux and BSD for server market share.

Other

There have been many operating systems that were

significant in their day but are no longer so, such as

AmigaOS; OS/2 from IBM and Microsoft; Mac OS, the non-

Unix precursor to Apple’s Mac OS X; BeOS; XTS-300; RISC

OS; MorphOS and FreeMint. Some are still used in niche

markets and continue to be developed as minority platforms

for enthusiast communities and specialist

applications.OpenVMS formerly from DEC, is still under

active development by Hewlett-Packard. Yet other operating

systems are used almost exclusively in academia, for

operating systems education or to do research on operating

system concepts. A typical example of a system that fulfills

both roles is MINIX, while for example Singularity is used

purely for research.

Other operating systems have failed to win significant

market share, but have introduced innovations that have

influenced mainstream operating systems, not least Bell

Labs’ Plan 9.

Components

The components of an operating system all exist in order

to make the different parts of a computer work together.

All software—from financial databases to film editors—needs

to go through the operating system in order to use any of

the hardware, whether it be as simple as a mouse or

keyboard or complex as an Internet connection.

Computer Operating System

8

Kernel

A kernel connects the application software to the hardware of a
computer.

With the aid of the firmware and device drivers, the

kernel provides the most basic level of control over all of

the computer’s hardware devices. It manages memory access

for programs in the RAM, it determines which programs get

access to which hardware resources, it sets up or resets

the CPU’s operating states for optimal operation at all times,

and it organizes the data for long-term non-volatile storage

with file systems on such media as disks, tapes, flash

memory, etc.

Program Execution

The operating system provides an interface between an

application program and the computer hardware, so that

an application program can interact with the hardware only

by obeying rules and procedures programmed into the

operating system. The operating system is also a set of

services which simplify development and execution of

application programs. Executing an application program

involves the creation of a process by the operating system

kernel which assigns memory space and other resources,

establishes a priority for the process in multi-tasking

Computer Operating System

9

systems, loads program binary code into memory, and

initiates execution of the application program which then

interacts with the user and with hardware devices.

Interrupts

Interrupts are central to operating systems, as they

provide an efficient way for the operating system to interact

with and react to its environment. The alternative — having

the operating system “watch” the various sources of input

for events (polling) that require action — can be found in

older systems with very small stacks (50 or 60 bytes) but

are unusual in modern systems with large stacks.Interrupt-

based programming is directly supported by most modern

CPUs. Interrupts provide a computer with a way of

automatically saving local register contexts, and running

specific code in response to events. Even very basic

computers support hardware interrupts, and allow the

programmer to specify code which may be run when that

event takes place.

When an interrupt is received, the computer’s hardware

automatically suspends whatever program is currently

running, saves its status, and runs computer code previously

associated with the interrupt; this is analogous to placing

a bookmark in a book in response to a phone call. In

modern operating systems, interrupts are handled by the

operating system’s kernel. Interrupts may come from either

the computer’s hardware or from the running program.

When a hardware device triggers an interrupt, the

operating system’s kernel decides how to deal with this

event, generally by running some processing code. The

Computer Operating System

10

amount of code being run depends on the priority of the

interrupt (for example: a person usually responds to a

smoke detector alarm before answering the phone). The

processing of hardware interrupts is a task that is usually

delegated to software called device driver, which may be

either part of the operating system’s kernel, part of another

program, or both. Device drivers may then relay information

to a running program by various means.

A program may also trigger an interrupt to the operating

system. If a program wishes to access hardware for example,

it may interrupt the operating system’s kernel, which causes

control to be passed back to the kernel. The kernel will then

process the request. If a program wishes additional resources

(or wishes to shed resources) such as memory, it will trigger

an interrupt to get the kernel’s attention.

Modes

Privilege rings for the x86 available in protected mode.
Operating systems determine which processes run in each mode.

Modern CPUs support multiple modes of operation. CPUs

with this capability use at least two modes: protected mode

and supervisor mode. The supervisor mode is used by the

Computer Operating System

11

operating system’s kernel for low level tasks that need

unrestricted access to hardware, such as controlling how

memory is written and erased, and communication with

devices like graphics cards. Protected mode, in contrast, is

used for almost everything else. Applications operate within

protected mode, and can only use hardware by

communicating with the kernel, which controls everything

in supervisor mode. CPUs might have other modes similar

to protected mode as well, such as the virtual modes in

order to emulate older processor types, such as 16-bit

processors on a 32-bit one, or 32-bit processors on a 64-

bit one.

When a computer first starts up, it is automatically

running in supervisor mode. The first few programs to run

on the computer, being the BIOS or EFI,bootloader, and the

operating system have unlimited access to hardware - and

this is required because, by definition, initializing a protected

environment can only be done outside of one. However,

when the operating system passes control to another

program, it can place the CPU into protected mode.

In protected mode, programs may have access to a more

limited set of the CPU’s instructions. A user program may

leave protected mode only by triggering an interrupt, causing

control to be passed back to the kernel. In this way the

operating system can maintain exclusive control over things

like access to hardware and memory.

The term “protected mode resource” generally refers to

one or more CPU registers, which contain information that

the running program isn’t allowed to alter. Attempts to alter

these resources generally causes a switch to supervisor

Computer Operating System

12

mode, where the operating system can deal with the illegal

operation the program was attempting (for example, by

killing the program).

Memory Management

Among other things, a multiprogramming operating

system kernel must be responsible for managing all system

memory which is currently in use by programs. This ensures

that a program does not interfere with memory already in

use by another program. Since programs time share, each

program must have independent access to memory.

Cooperative memory management, used by many early

operating systems, assumes that all programs make

voluntary use of thekernel’s memory manager, and do not

exceed their allocated memory. This system of memory

management is almost never seen any more, since programs

often contain bugs which can cause them to exceed their

allocated memory. If a program fails, it may cause memory

used by one or more other programs to be affected or

overwritten. Malicious programs or viruses may purposefully

alter another program’s memory, or may affect the operation

of the operating system itself. With cooperative memory

management, it takes only one misbehaved program to

crash the system.

Memory protection enables the kernel to limit a process’

access to the computer’s memory. Various methods of

memory protection exist, including memory segmentation

and paging. All methods require some level of hardware

support (such as the 80286 MMU), which doesn’t exist in

all computers.

Computer Operating System

13

In both segmentation and paging, certain protected mode

registers specify to the CPU what memory address it should

allow a running program to access. Attempts to access

other addresses will trigger an interrupt which will cause

the CPU to re-enter supervisor mode, placing the kernel in

charge. This is called a segmentation violation or Seg-V for

short, and since it is both difficult to assign a meaningful

result to such an operation, and because it is usually a sign

of a misbehaving program, the kernel will generally resort

to terminating the offending program, and will report the

error.

Windows 3.1-Me had some level of memory protection,

but programs could easily circumvent the need to use it.

A general protection fault would be produced, indicating a

segmentation violation had occurred; however, the system

would often crash anyway.

Virtual Memory

The use of virtual memory addressing (such as paging

or segmentation) means that the kernel can choose what

memory each program may use at any given time, allowing

the operating system to use the same memory locations for

multiple tasks.

If a program tries to access memory that isn’t in its

current range of accessible memory, but nonetheless has

been allocated to it, the kernel will be interrupted in the

same way as it would if the program were to exceed its

allocated memory. Under UNIX this kind of interrupt is

referred to as a page fault.

Computer Operating System

14

Many operating systems can “trick” programs into using memory
scattered around the hard disk and RAM as if it is one

continuous chunk of memory, called virtual memory.

When the kernel detects a page fault it will generally

adjust the virtual memory range of the program which

triggered it, granting it access to the memory requested.

This gives the kernel discretionary power over where a

particular application’s memory is stored, or even whether

or not it has actually been allocated yet.

In modern operating systems, memory which is accessed

less frequently can be temporarily stored on disk or other

media to make that space available for use by other programs.

This is called swapping, as an area of memory can be used

by multiple programs, and what that memory area contains

can be swapped or exchanged on demand.

“Virtual memory” provides the programmer or the user

with the perception that there is a much larger amount of

RAM in the computer than is really there.

Computer Operating System

15

Multitasking

Multitasking refers to the running of multiple independent

computer programs on the same computer; giving the

appearance that it is performing the tasks at the same time.

Since most computers can do at most one or two things

at one time, this is generally done via time-sharing, which

means that each program uses a share of the computer’s

time to execute.

An operating system kernel contains a piece of software

called a scheduler which determines how much time each

program will spend executing, and in which order execution

control should be passed to programs. Control is passed to

a process by the kernel, which allows the program access

to the CPU and memory. Later, control is returned to the

kernel through some mechanism, so that another program

may be allowed to use the CPU. This so-called passing of

control between the kernel and applications is called a

context switch.

An early model which governed the allocation of time to

programs was called cooperative multitasking. In this model,

when control is passed to a program by the kernel, it may

execute for as long as it wants before explicitly returning

control to the kernel. This means that a malicious or

malfunctioning program may not only prevent any other

programs from using the CPU, but it can hang the entire

system if it enters an infinite loop.

Modern operating systems extend the concepts of

application preemption to device drivers and kernel code,

so that the operating system has preemptive control over

internal run-times as well.

Computer Operating System

16

The philosophy governing preemptive multitasking is

that of ensuring that all programs are given regular time

on the CPU. This implies that all programs must be limited

in how much time they are allowed to spend on the CPU

without being interrupted. To accomplish this, modern

operating system kernels make use of a timed interrupt. A

protected mode timer is set by the kernel which triggers a

return to supervisor mode after the specified time has

elapsed. On many single user operating systems cooperative

multitasking is perfectly adequate, as home computers

generally run a small number of well tested programs. The

AmigaOS is an exception, having pre-emptive multitasking

from its very first version. Windows NTwas the first version

of Microsoft Windows which enforced preemptive

multitasking, but it didn’t reach the home user market

untilWindows XP (since Windows NT was targeted at

professionals).

Disk Access and File Systems

Access to data stored on disks is a central feature of all

operating systems. Computers store data on disks using

files, which are structured in specific ways in order to allow

for faster access, higher reliability, and to make better use

out of the drive’s available space. The specific way in which

files are stored on a disk is called afile system, and enables

files to have names and attributes. It also allows them to

be stored in a hierarchy of directories or folders arranged

in a directory tree.

Early operating systems generally supported a single

type of disk drive and only one kind of file system. Early

file systems were limited in their capacity, speed, and in the

Computer Operating System

17

kinds of file names and directory structures they could use.

These limitations often reflected limitations in the operating

systems they were designed for, making it very difficult for

an operating system to support more than one file system.

While many simpler operating systems support a limited

range of options for accessing storage systems, operating

systems like UNIX and GNU/Linux support a technology

known as a virtual file system or VFS. An operating system

such as UNIX supports a wide array of storage devices,

regardless of their design or file systems, allowing them to

be accessed through a commonapplication programming

interface (API). This makes it unnecessary for programs to

have any knowledge about the device they are accessing.

A VFS allows the operating system to provide programs with

access to an unlimited number of devices with an infinite

variety of file systems installed on them, through the use

of specific device drivers and file system drivers. A connected

storage device, such as a hard drive, is accessed through

a device driver. The device driver understands the specific

language of the drive and is able to translate that language

into a standard language used by the operating system to

access all disk drives. On UNIX, this is the language of block

devices.

When the kernel has an appropriate device driver in

place, it can then access the contents of the disk drive in

raw format, which may contain one or more file systems.

A file system driver is used to translate the commands used

to access each specific file system into a standard set of

commands that the operating system can use to talk to all

file systems. Programs can then deal with these file systems

Computer Operating System

18

on the basis of filenames, and directories/folders, contained

within a hierarchical structure. They can create, delete,

open, and close files, as well as gather various information

about them, including access permissions, size, free space,

and creation and modification dates.

Various differences between file systems make supporting

all file systems difficult. Allowed characters in file names,

case sensitivity, and the presence of various kinds of file

attributes makes the implementation of a single interface

for every file system a daunting task. Operating systems

tend to recommend using (and so support natively) file

systems specifically designed for them; for example, NTFSin

Windows and ext3 and ReiserFS in GNU/Linux. However,

in practice, third party drives are usually available to give

support for the most widely used file systems in most

general-purpose operating systems (for example, NTFS is

available in GNU/Linux through NTFS-3g, and ext2/3 and

ReiserFS are available in Windows through FS-driver and

rfstool).

Support for file systems is highly varied among modern

operating systems, although there are several common file

systems which almost all operating systems include support

and drivers for. Operating systems vary on file system support

and on the disk formats they may be installed on. Under

Windows, each file system is usually limited in application

to certain media; for example, CDs must use ISO 9660 or

UDF, and as of Windows Vista, NTFS is the only file system

which the operating system can be installed on. It is possible

to install GNU/Linux onto many types of file systems. Unlike

other operating systems, GNU/Linux and UNIX allow any

Computer Operating System

19

file system to be used regardless of the media it is stored

in, whether it is a hard drive, a disc (CD,DVD...), a USB

flash drive, or even contained within a file located on another

file system.

Device Drivers

A device driver is a specific type of computer software

developed to allow interaction with hardware devices.

Typically this constitutes an interface for communicating

with the device, through the specific computer bus or

communications subsystem that the hardware is connected

to, providing commands to and/or receiving data from the

device, and on the other end, the requisite interfaces to the

operating system and software applications. It is a specialized

hardware-dependent computer program which is also

operating system specific that enables another program,

typically an operating system or applications software

package or computer program running under the operating

system kernel, to interact transparently with a hardware

device, and usually provides the requisite interrupt handling

necessary for any necessary asynchronous time-dependent

hardware interfacing needs.

The key design goal of device drivers is abstraction.

Every model of hardware (even within the same class of

device) is different. Newer models also are released by

manufacturers that provide more reliable or better

performance and these newer models are often controlled

differently. Computers and their operating systems cannot

be expected to know how to control every device, both now

and in the future. To solve this problem, operating systems

essentially dictate how every type of device should be

Computer Operating System

20

controlled. The function of the device driver is then to

translate these operating system mandated function calls

into device specific calls. In theory a new device, which is

controlled in a new manner, should function correctly if a

suitable driver is available. This new driver will ensure that

the device appears to operate as usual from the operating

system’s point of view.

Under versions of Windows before Vista and versions of

Linux before 2.6, all driver execution was co-operative,

meaning that if a driver entered an infinite loop it would

freeze the system. More recent revisions of these operating

systems incorporate kernel preemption, where the kernel

interrupts the driver to give it tasks, and then separates

itself from the process until it receives a response from the

device driver, or gives it more tasks to do.

Networking

Currently most operating systems support a variety of

networking protocols, hardware, and applications for using

them. This means that computers running dissimilar

operating systems can participate in a common network for

sharing resources such as computing, files, printers, and

scanners using either wired or wireless connections.

Networks can essentially allow a computer’s operating system

to access the resources of a remote computer to support

the same functions as it could if those resources were

connected directly to the local computer. This includes

everything from simple communication, to using networked

file systems or even sharing another computer’s graphics

or sound hardware. Some network services allow the

Computer Operating System

21

resources of a computer to be accessed transparently, such

as SSH which allows networked users direct access to a

computer’s command line interface.

Client/server networking allows a program on a computer,

called a client, to connect via a network to another computer,

called a server. Servers offer (or host) various services to

other network computers and users. These services are

usually provided through ports or numbered access points

beyond the server’s network address. Each port number is

usually associated with a maximum of one running program,

which is responsible for handling requests to that port. A

daemon, being a user program, can in turn access the local

hardware resources of that computer by passing requests

to the operating system kernel.

Many operating systems support one or more vendor-

specific or open networking protocols as well, for example,

SNA on IBM systems,DECnet on systems from Digital

Equipment Corporation, and Microsoft-specific protocols

(SMB) on Windows. Specific protocols for specific tasks may

also be supported such as NFS for file access. Protocols like

ESound, or esd can be easily extended over the network to

provide sound from local applications, on a remote system’s

sound hardware.

Security

A computer being secure depends on a number of

technologies working properly. A modern operating system

provides access to a number of resources, which are available

to software running on the system, and to external devices

like networks via the kernel.

Computer Operating System

22

The operating system must be capable of distinguishing

between requests which should be allowed to be processed,

and others which should not be processed. While some

systems may simply distinguish between “privileged” and

“non-privileged”, systems commonly have a form of requester

identity, such as a user name.

To establish identity there may be a process of

authentication. Often a username must be quoted, and

each username may have a password. Other methods of

authentication, such as magnetic cards or biometric data,

might be used instead. In some cases, especially

connections from the network, resources may be accessed

with no authentication at all (such as reading files over

a network share). Also covered by the concept of requester

identity is authorization; the particular services and

resources accessible by the requester once logged into a

system are tied to either the requester’s user account or

to the variously configured groups of users to which the

requester belongs.

In addition to the allow/disallow model of security, a

system with a high level of security will also offer auditing

options. These would allow tracking of requests for access

to resources (such as, “who has been reading this file?”).

Internal security, or security from an already running

program is only possible if all possibly harmful requests

must be carried out through interrupts to the operating

system kernel. If programs can directly access hardware

and resources, they cannot be secured.

External security involves a request from outside the

computer, such as a login at a connected console or some

Computer Operating System

23

kind of network connection. External requests are often

passed through device drivers to the operating system’s

kernel, where they can be passed onto applications, or

carried out directly.

Security of operating systems has long been a concern

because of highly sensitive data held on computers, both

of a commercial and military nature. The United States

Government Department of Defense (DoD) created the

Trusted Computer System Evaluation Criteria (TCSEC) which

is a standard that sets basic requirements for assessing the

effectiveness of security. This became of vital importance

to operating system makers, because the TCSEC was used

to evaluate, classify and selecttrusted operating systems

being considered for the processing, storage and retrieval

of sensitive or classified information.

Network services include offerings such as file sharing,

print services, email, web sites, and file transfer protocols

(FTP), most of which can have compromised security. At the

front line of security are hardware devices known as firewalls

or intrusion detection/prevention systems. At the operating

system level, there are a number of software firewalls

available, as well as intrusion detection/prevention systems.

Most modern operating systems include a software firewall,

which is enabled by default. A software firewall can be

configured to allow or deny network traffic to or from a

service or application running on the operating system.

Therefore, one can install and be running an insecure

service, such as Telnet or FTP, and not have to be threatened

by a security breach because the firewall would deny all

traffic trying to connect to the service on that port.

Computer Operating System

24

An alternative strategy, and the only sandbox strategy

available in systems that do not meet the Popek and Goldberg

virtualization requirements, is the operating system not

running user programs as native code, but instead either

emulates a processor or provides a host for a p-code based

system such as Java.

Internal security is especially relevant for multi-user

systems; it allows each user of the system to have private

files that the other users cannot tamper with or read.

Internal security is also vital if auditing is to be of any use,

since a program can potentially bypass the operating system,

inclusive of bypassing auditing.

User Interface

Every computer that is to be operated by an individual

requires a user interface. The user interface is not actually

a part of the operating system—it generally runs in a separate

program usually referred to as a shell, but is essential if

human interaction is to be supported.

The user interface requests services from the operating

system that will acquire data from input hardware devices,

such as a keyboard, mouse or credit card reader, and

requests operating system services to display prompts, status

messages and such on output hardware devices, such as

a video monitor or printer.

The two most common forms of a user interface have

historically been the command-line interface, where

computer commands are typed out line-by-line, and the

graphical user interface, where a visual environment (most

commonly a WIMP) is present.

Computer Operating System

25

Graphical user Interfaces

Most of the modern computer systems support graphical

user interfaces (GUI), and often include them. In some

computer systems, such as the original implementation of

Mac OS, the GUI is integrated into the kernel.

While technically a graphical user interface is not an

operating system service, incorporating support for one into

the operating system kernel can allow the GUI to be more

responsive by reducing the number of context switches

required for the GUI to perform its output functions. Other

operating systems are modular, separating the graphics

subsystem from the kernel and the Operating System. In

the 1980s UNIX, VMS and many others had operating

systems that were built this way. GNU/Linux and Mac OS

X are also built this way. Modern releases of Microsoft

Windows such asWindows Vista implement a graphics

subsystem that is mostly in user-space; however the graphics

drawing routines of versions between Windows NT 4.0 and

Windows Server 2003 exist mostly in kernel space.Windows

9x had very little distinction between the interface and the

kernel.

Many computer operating systems allow the user to

install or create any user interface they desire. The X Window

System in conjunction with GNOME or KDE is a commonly

found setup on most Unix and Unix-like (BSD, GNU/Linux,

Solaris) systems. A number of Windows shell replacements

have been released for Microsoft Windows, which offer

alternatives to the included Windows shell, but the shell

itself cannot be separated from Windows. Numerous Unix-

Computer Operating System

26

based GUIs have existed over time, most derived from X11.

Competition among the various vendors of Unix (HP, IBM,

Sun) led to much fragmentation, though an effort to

standardize in the 1990s to COSE and CDE failed for

various reasons, and were eventually eclipsed by the

widespread adoption of GNOME and KDE. Prior to free

software-based toolkits and desktop environments, Motif

was the prevalent toolkit/desktop combination (and was

the basis upon which CDE was developed).

Graphical user interfaces evolve over time. For example,

Windows has modified its user interface almost every time

a new major version of Windows is released, and the Mac

OS GUI changed dramatically with the introduction of Mac

OS X in 1999.

Real-time Operating Systems

A real-time operating system (RTOS) is a multitasking

operating system intended for applications with fixed

deadlines (real-time computing). Such applications include

some small embedded systems, automobile engine

controllers, industrial robots, spacecraft, industrial control,

and some large-scale computing systems.

An early example of a large-scale real-time operating

system was Transaction Processing Facility developed by

American Airlines andIBM for the Sabre Airline Reservations

System.

Embedded systems that have fixed deadlines use a real-

time operating system such as VxWorks, PikeOS, eCos,

QNX, MontaVista Linux and RTLinux. Windows CE is a

real-time operating system that shares similar APIs to

Computer Operating System

27

desktop Windows but shares none of desktop Windows’

codebase. Symbian OS also has an RTOS kernel (EKA2)

starting with version 8.0b.

Some embedded systems use operating systems such as

Palm OS, BSD, and GNU/Linux, although such operating

systems do not support real-time computing.

Operating System Development as a Hobby

Operating system development is one of the most

complicated activities in which a computing hobbyist may

engage. A hobby operating system may be classified as one

whose code has not been directly derived from an existing

operating system, and has few users andactive developers.

In some cases, hobby development is in support of a

“homebrew” computing device, for example, a simple single-

board computerpowered by a 6502 microprocessor. Or,

development may be for an architecture already in

widespread use. Operating system development may come

from entirely new concepts, or may commence by modeling

an existing operating system. In either case, the hobbyist

is his/her own developer, or may interact with a small and

sometimes unstructured group of individuals who have like

interests.

Examples of a hobby operating system include ReactOS

and Syllable.

Diversity of Operating Systems and Portability

Application software is generally written for use on a

specific operating system, and sometimes even for specific

hardware. When porting the application to run on another

OS, the functionality required by that application may be

Computer Operating System

28

implemented differently by that OS (the names of functions,

meaning of arguments, etc.) requiring the application to be

adapted, changed, or otherwise maintained.

This cost in supporting operating systems diversity can

be avoided by instead writing applications against software

platforms like Java, or Qt for web browsers. These

abstractions have already borne the cost of adaptation to

specific operating systems and their system libraries.

Another approach is for operating system vendors to

adopt standards. For example, POSIX and OS abstraction

layers provide commonalities that reduce porting costs.

Computer Operating System

29

2

Functions of Operating System

The operating system (sometimes referred to by its

abbreviation OS), is responsible for creating the link between

the material resources, the user and the applications (word

processor, video game, etc.). When a programme wants to

access a material resource, it does not need to send specific

information to the peripheral device but it simply sends the

information to the operating system, which conveys it to the

relevant peripheral via its driver. If there are no drivers,

each programme has to recognise and take into account the

communication with each type of peripheral! The operating

system thus allows the “dissociation” of programmes and

hardware, mainly to simplify resource management and

offer the user a simplified Man-machine interface (MMI) to

overcome the complexity of the actual machine.

An operating system is a software component that acts

as the core of a computer system. It performs various

Computer Operating System

30

functions and is essentially the interface that connects your

computer and its supported components. In this article, we

will discuss the basic functions of the operating system,

along with security concerns for the most popular types.

Drivers play a major role in the operating system. A driver

is a programme designed to comprehend the functions of

a particular device installed on the system.

The operating system performs other functions with

system utilities that monitor performance, debug errors

and maintain the system. It also includes a set of libraries

often used by applications to perform tasks to enable direct

interaction with system components. These common

functions run seamlessly and are transparent to most users.

Types of operating systems: There are several types of

operating systems, with Windows, Linux and Macintosh

suites being the most widely used.

The operating system has various roles:

• Management of the processor: The operating system is

responsible for managing allocation of the processor

between the different programmes using a scheduling

algorithm. The type of scheduler is totally dependent

on the operating system, according to the desired

objective.

• Management of the random access memory: The

operating system is responsible for managing the

memory space allocated to each application and, where

relevant, to each user. If there is insufficient physical

memory, the operating system can create a memory

zone on the hard drive, known as “virtual memory”.

Computer Operating System

31

The virtual memory lets you run applications requiring

more memory than there is available RAM on the

system. However, this memory is a great deal slower.

• Management of input/output: the operating system

allows unification and control of access of programmes

to material resources via drivers (also known as

peripheral administrators or input/output

administrators).

• Management of execution of applications: The operating

system is responsible for smooth execution of

applications by allocating the resources required for

them to operate. This means an application that is not

responding correctly can be “killed”.

• Management of authorisations: The operating system

is responsible for security relating to execution of

programmes by guaranteeing that the resources are

used only by programmes and users with the relevent

authorisations.

• File management: The operating system manages

reading and writing in the file system and the user

and application file access authorisations.

• Information management: The operating system

provides a certain number of indicators that can be

used to diagnose the correct operation of the machine.

Charateristics of Operating System
The definition of an operating system is “the software

that controls the hardware”. However, today, due to

microcode we need a better definition. We see an operating

system as the programs that make the hardware useable.

Computer Operating System

32

In brief, an operating system is the set of programs that

controls a computer. Some examples of operating systems

are UNIX, Mach, MS-DOS, MS-Windows, Windows/NT,

Chicago, OS/2, MacOS, VMS, MVS, and VM. Controlling

the computer involves software at several levels. We will

differentiate kernel services, library services, and application-

level services, all of which are part of the operating system.

Processes run Applications, which are linked together with

libraries that perform standard services. The kernel supports

the processes by providing a path to the peripheral devices.

The kernel responds to service calls from the processes and

interrupts from the devices. The core of the operating system

is the kernel, a control programme that functions in privileged

state (an execution context that allows all hardware

instructions to be executed), reacting to interrupts from

external devices and to service requests and traps from

processes. Generally, the kernel is a permanent resident of

the computer. It creates and terminates processes and

responds to their request for service.

Objectives

Modern Operating systems generally have following three

major goals. Operating systems generally accomplish these

goals by running processes in low privilege and providing

service calls that invoke the operating system kernel in

high-privilege state.

Hiding of Hardware
An abstraction is software that hides lower level details

and provides a set of higher-level functions. An operating

system transforms the physical world of devices, instructions,

Computer Operating System

33

memory, and time into virtual world that is the result of

abstractions built by the operating system. There are several

reasons for abstraction.

• First, the code needed to control peripheral devices is

not standardized. Operating systems provide

subroutines called device drivers that perform

operations on behalf of programs for example, input/

output operations.

• Second, the operating system introduces new functions

as it abstracts the hardware. For instance, operating

system introduces the file abstraction so that programs

do not have to deal with disks.

• Third, the operating system transforms the computer

hardware into multiple virtual computers, each

belonging to a different programme. Each programme

that is running is called a process. Each process views

the hardware through the lens of abstraction.

• Fourth, the operating system can enforce security

through abstraction.

Manage Resources

An operating system controls how processes (the active

agents) may access resources (passive entities).

Effective user Interface

The user interacts with the operating systems through

the user interface and usually interested in the “look and

feel” of the operating system. The most important components

of the user interface are the command interpreter, the file

system, on-line help, and application integration. The recent

Computer Operating System

34

trend has been towards increasingly integrated graphical

user interfaces that encompass the activities of multiple

processes on networks of computers.

Types of Operating Systems

As computers have progressed and developed so have

the types of operating systems. Below is a basic list of the

different types of operating systems and a few examples of

operating systems that fall into each of the categories. Many

computer operating systems will fall into more than one of

the below categories.

GUI
Graphical User Interface, a GUI Operating System contains

graphics and icons and is commonly navigated by using a

computer mouse. Below are some examples of GUI Operating

Systems.

System 7.x
Mac OS 9 is the latest public release of the Apple operating

system, which includes new and unique features not found

in any other operating system. Below are some of the new

features found with this new operating system.

• Sherlock 2: Which offers the capability of quickly

searching and purchasing online.

• 3D acceleration: Support for technologies such as

OpenGL, allowing improved video and a wider gaming

experience.

• Share files: Share files and folders over the Internet

with other Mac users.

Computer Operating System

35

• Colorsync 3.0: Manages colour even more efficiently.

• Synchronize: Synchronizes with Palm computing

products using HotSync software.

• TCP/IP: Provides access to TCP/IP networks.

• Lock system: Ensures that System Folders and

Applications do not accidentally get reconfigured by

having the capability of locking the system.

Windows 98
Microsoft Windows 98 is the upgrade to Microsoft Windows

95. While this was not as big as release as Windows 95,

Windows 98 has significant updates, fixes and support for

new peripherals. Below is a list of some of its new features.

• Protection: Windows 98 includes additional protection

for important files on your computer such as backing

up your registry automatically.

• Improved support: Improved support for new devices

such as AGP, DirectX, DVD, USB, MMX,

• FAT32: Windows 98 has the capability of converting

your drive to FAT32 without losing any information.

• Interface: Users of Windows 95 and NT will enjoy the

same easy interface.

• PnP: Improved PnP support, to detect devices even

better than Windows 95.

• Internet Explorer 4.0: Included Internet Explorer 4.0

• Customizable Taskbar: Windows adds many nice new

features to the taskbar that 95 and NT do not have.

• Includes Plus!: Includes features only found in Microsoft

Plus! free.

Computer Operating System

36

• Active Desktop: Includes Active Desktop that allows

for users to customise their desktop with the look of

the Internet.

Includes the same additional features as Windows 98;

however, includes additional fixes and all of Year 2000

patches have been included in Windows 98 Second Edition.

Below is a listing of the various new features Windows 98

SE includes.

Windows CE
Microsoft Windows CE 1.0 was originally released in

1996 to compete in the Palm Device Assistant Category.

Windows CE, as shown below, has many of the same features

as Windows 95.

In addition to the look of Windows 95, Windows CE also

includes similar applications such as Pocket Excel, Pocket

Word, and Pocket Power.

Multi-user
A multi-user operating system allows for multiple users

to use the same computer at the same time and/or different

times. See our multi-user dictionary definition for a complete

definition for a complete definition. Below are some examples

of multi-user operating systems.

Linux
Unix, which is not an acronym, was developed by some

of the members of the Multics team at the bell labs starting

in the late 1960’s by many of the same people who helped

create the Cprogramming language. The Unix today, however,

is not just the work of a couple of programmers. Many other

Computer Operating System

37

organizations, institutes and various other individuals

contributed significant additions to the system we now know

today.

Unix
Unix, which is not an acronym, was developed by some

of the members of the Multics team at the bell labs starting

in the late 1960’s by many of the same people who helped

create the Cprogramming language. The Unix today, however,

is not just the work of a couple of programmers. Many other

organizations, institutes and various other individuals

contributed significant additions to the system we now

know today.

Windows 2000
Windows 2000 is based of the Windows NT Kernel and

is sometimes referred to as Windows NT 5.0. Windows 2000

contains over 29 Million lines of code, mainly written in

C++. 8 Million of those lines alone are written for drivers.

Currently, Windows 2000 is by far one of the largest

commercial projects ever built.

Some of the significant features of Windows 2000

Professional are:

• Support for FAT16, FAT32 and NTFS.

• Increased uptime of the system and significantly fewer

OS reboot scenarios.

• Windows Installer tracks applications and recognizes

and replaces missing components.

• Protects memory of individual apps and processes to

avoid a single app bringing the system down.

Computer Operating System

38

• Encrypted File Systems protects sensitive data.

• Secure Virtual Private Networking (VPN) supports

tunneling in to private LAN over public Internet.

Multithreading

Operating systems that allow different parts of a software

programme to run concurrently.

Operating systems that would fall into this category are:

• Linux

• Unix

• Windows 2000.

Operating System
An operating system (OS) is a set of software that manages

computer hardwareresources and provides common services

for computer programs. The operating system is a vital

component of the system software in a computer system.

Application programs require an operating system to

function.

Time-sharing operating systems schedule tasks for

efficient use of the system and may also include accounting

for cost allocation of processor time, mass storage, printing,

and other resources.

For hardware functions such as input and output and

memory allocation, the operating system acts as an

intermediary between programs and the computer hardware,

although the application code is usually executed directly

by the hardware and will frequently make a system call to

an OS function or be interrupted by it. Operating systems

can be found on almost any device that contains a

Computer Operating System

39

computer—from cellular phones andvideo game consoles to

supercomputers and web servers.

Examples of popular modern operating systems include

Android, BSD, iOS, Linux, Mac OS X, Microsoft Windows,

Windows Phone, and IBM z/OS. All these, except Windows

and z/OS, share roots in UNIX.

Types

Real-time

A real-time operating system is a multitasking operating

system that aims at executing real-time applications. Real-

time operating systems often use specialized scheduling

algorithms so that they can achieve a deterministic nature

of behavior.

The main objective of real-time operating systems is

their quick and predictable response to events. They have

an event-driven or time-sharing design and often aspects

of both. An event-driven system switches between tasks

based on their priorities or external events while time-

sharing operating systems switch tasks based on clock

interrupts.

Multi-user

A multi-user operating system allows multiple users to

access a computer system concurrently. Time-sharing

system can be classified as multi-user systems as they

enable a multiple user access to a computer through the

sharing of time. Single-user operating systems, as opposed

to a multi-user operating system, are usable by a single

user at a time. Being able to use multiple accounts on a

Windows operating system does not make it a multi-user

Computer Operating System

40

system. Rather, only the network administrator is the real

user. But for a UNIX-like operating system, it is possible

for two users to login at a time and this capability of the

OS makes it a multi-user operating system.

Multi-tasking vs. Single-tasking

When only a single program is allowed to run at a time,

the system is grouped under a single-tasking system.

However, when the operating system allows the execution

of multiple tasks at one time, it is classified as a multi-

tasking operating system. Multi-tasking can be of two types:

pre-emptive or co-operative. In pre-emptive multitasking,

the operating system slices the CPU time and dedicates one

slot to each of the programs.

Unix-like operating systems such as Solaris and Linux

support pre-emptive multitasking, as does AmigaOS.

Cooperative multitasking is achieved by relying on each

process to give time to the other processes in a defined

manner. 16-bit versions of Microsoft Windows used

cooperative multi-tasking. 32-bit versions, both Windows

NT and Win9x, used pre-emptive multi-tasking. Mac OS

prior to OS X used to support cooperative multitasking.

Distributed

A distributed operating system manages a group of

independent computers and makes them appear to be a

single computer. The development of networked computers

that could be linked and communicate with each other gave

rise to distributed computing. Distributed computations are

carried out on more than one machine. When computers in

a group work in cooperation, they make a distributed system.

Computer Operating System

41

Embedded

Embedded operating systems are designed to be used in

embedded computer systems. They are designed to operate

on small machines like PDAs with less autonomy. They are

able to operate with a limited number of resources. They are

very compact and extremely efficient by design. Windows CE

and Minix 3 are some examples of embedded operating systems.

Summary

Early computers were built to perform a series of single

tasks, like a calculator. Operating systems did not exist in

their modern and more complex forms until the early 1960s.

Basic operating system features were developed in the 1950s,

such as resident monitorfunctions that could automatically

run different programs in succession to speed up processing.

Hardware features were added that enabled use of runtime

libraries, interrupts, and parallel processing. When personal

computers by companies such as Apple Inc., Atari,IBM and

Amiga became popular in the 1980s, vendors included

operating systems in them that had previously become

widely used on mainframe and mini computers.

History

In the 1940s, the earliest electronic digital systems had

no operating systems. Electronic systems of this time were

so primitive compared to those of today that instructions

were often entered into the system one bit at a time on rows

of mechanical switches or by jumper wires on plug boards.

These were special-purpose systems that, for example,

generated ballistics tables for the military or controlled the

printing of payroll checks from data on punched paper cards.

Computer Operating System

42

After programmable general purpose computers were invented,

machine languages (consisting of strings of the binary digits

0 and 1 on punched paper tape) were introduced that sped

up the programming process (Stern, 1981). In the early

1950s, a computer could execute only one program at a time.

Each user had sole use of the computer for a limited period

of time and would arrive at a scheduled time with program

and data on punched paper cards and/or punched tape.

The program would be loaded into the machine, and the

machine would be set to work until the program completed

or crashed. Programs could generally be debugged via a

front panel using toggle switches and panel lights. It is said

that Alan Turing was a master of this on the early Manchester

Mark 1 machine, and he was already deriving the primitive

conception of an operating system from the principles of the

Universal Turing machine.

OS/360 was used on most IBM mainframe computers beginning
in 1966, including the computers that helped NASA put a man

on the moon.

Computer Operating System

43

Later machines came with libraries of programs, which

would be linked to a user’s program to assist in operations

such as input and output and generating computer code

from human-readable symbolic code. This was the genesis

of the modern-day computer system. However, machines

still ran a single job at a time. At Cambridge University in

England the job queue was at one time a washing line from

which tapes were hung with different colored clothes-pegs

to indicate job-priority.

Mainframes

Through the 1950s, many major features were pioneered

in the field of operating systems, including batch processing,

input/output interrupt, buffering, multitasking, spooling,

runtime libraries, link-loading, and programs for sorting

records in files.

These features were included or not included in

application software at the option of application

programmers, rather than in a separate operating system

used by all applications. In 1959 the SHARE Operating

System was released as an integrated utility for the IBM

704, and later in the 709 and 7090 mainframes, although

it was quickly supplanted by IBSYS/IBJOB on the 709,

7090 and 7094.

During the 1960s, IBM’s OS/360 introduced the concept

of a single OS spanning an entire product line, which was

crucial for the success of the System/360 machines. IBM’s

current mainframe operating systems are distant

descendants of this original system and applications written

for OS/360 can still be run on modern machines.

Computer Operating System

44

OS/360 also pioneered the concept that the operating

system keeps track of all of the system resources that are

used, including program and data space allocation in main

memory and file space in secondary storage, and file locking

during update. When the process is terminated for any

reason, all of these resources are re-claimed by the operating

system.

The alternative CP-67 system for the S/360-67 started

a whole line of IBM operating systems focused on the

concept of virtual machines.

Other operating systems used on IBM S/360 series

mainframes included systems developed by IBM: COS/360

(Compatibility Operating System), DOS/360 (Disk Operating

System), TSS/360 (Time Sharing System), TOS/360 (Tape

Operating System), BOS/360 (Basic Operating System), and

ACP (Airline Control Program), as well as a few non-IBM

systems: MTS (Michigan Terminal System), MUSIC (Multi-

User System for Interactive Computing), and ORVYL

(Stanford Timesharing System).

Control Data Corporation developed the SCOPE operating

system in the 1960s, for batch processing. In cooperation

with the University of Minnesota, the Kronos and later the

NOS operating systems were developed during the 1970s,

which supported simultaneous batch and timesharing use.

Like many commercial timesharing systems, its interface

was an extension of the Dartmouth BASIC operating systems,

one of the pioneering efforts in timesharing and programming

languages. In the late 1970s, Control Data and the University

of Illinois developed the PLATO operating system, which

Computer Operating System

45

used plasma panel displays and long-distance time sharing

networks. Plato was remarkably innovative for its time,

featuring real-time chat, and multi-user graphical games.

Burroughs Corporation introduced the B5000in 1961 with

the MCP, (Master Control Program) operating system. The

B5000 was a stack machine designed to exclusively support

high-level languages with no machine language or assembler,

and indeed the MCP was the first OS to be written exclusively

in a high-level language – ESPOL, a dialect of ALGOL. MCP

also introduced many other ground-breaking innovations,

such as being the first commercial implementation of virtual

memory. During development of the AS400, IBM made an

approach to Burroughs to licence MCP to run on the AS400

hardware. This proposal was declined by Burroughs

management to protect its existing hardware production.

MCPis still in use today in the Unisys ClearPath/MCP line

of computers.

UNIVAC, the first commercial computer manufacturer,

produced a series of EXEC operating systems. Like all early

main-frame systems, this was a batch-oriented system that

managed magnetic drums, disks, card readers and line

printers. In the 1970s, UNIVAC produced the Real-Time

Basic (RTB) system to support large-scale time sharing, also

patterned after the Dartmouth BC system.

General Electric and MIT developed General Electric

Comprehensive Operating Supervisor (GECOS), which

introduced the concept of ringed security privilege levels.

After acquisition by Honeywell it was renamed to General

Comprehensive Operating System (GCOS).

Computer Operating System

46

Digital Equipment Corporation developed many operating

systems for its various computer lines, including TOPS-10

and TOPS-20 time sharing systems for the 36-bit PDP-10

class systems. Prior to the widespread use of UNIX, TOPS-

10 was a particularly popular system in universities, and

in the early ARPANET community.

In the late 1960s through the late 1970s, several hardware

capabilities evolved that allowed similar or ported software

to run on more than one system. Early systems had utilized

microprogramming to implement features on their systems

in order to permit different underlying computer

architectures to appear to be the same as others in a series.

In fact most 360s after the 360/40 (except the 360/165 and

360/168) were microprogrammed implementations. But soon

other means of achieving application compatibility were

proven to be more significant.

The enormous investment in software for these systems

made since 1960s caused most of the original computer

manufacturers to continue to develop compatible operating

systems along with the hardware. The notable supported

mainframe operating systems include:

• Burroughs MCP – B5000, 1961 to Unisys Clearpath/

MCP, present.

• IBM OS/360 – IBM System/360, 1966 to IBM z/OS,

present.

• IBM CP-67 – IBM System/360, 1967 to IBM z/VM,

present.

• UNIVAC EXEC 8 – UNIVAC 1108, 1967, to OS 2200

Unisys Clearpath Dorado, present.

Computer Operating System

47

Microcomputers

Mac OS by Apple Computer became the first widespread OS to
feature a graphical user interface. Many of its features such as

windows and icons would later become commonplace in GUIs.

The first microcomputers did not have the capacity or

need for the elaborate operating systems that had been

developed for mainframes and minis; minimalistic operating

systems were developed, often loaded from ROM and known

as monitors.

One notable early disk operating system was CP/M,

which was supported on many early microcomputers and

was closely imitated by Microsoft’s MS-DOS, which became

wildly popular as the operating system chosen for the IBM

PC (IBM’s version of it was called IBM DOS or PC DOS).

In the ’80s, Apple Computer Inc. (now Apple Inc.) abandoned

its popular Apple II series of microcomputers to introduce

the Apple Macintosh computer with an innovative Graphical

User Interface (GUI) to the Mac OS.

The introduction of the Intel 80386 CPU chip with 32-

bit architecture and pagingcapabilities, provided personal

computers with the ability to run multitasking operating

systems like those of earlier minicomputers and mainframes.

Microsoft responded to this progress by hiring Dave Cutler,

Computer Operating System

48

who had developed the VMS operating system forDigital

Equipment Corporation. He would lead the development of

the Windows NToperating system, which continues to serve

as the basis for Microsoft’s operating systems line. Steve

Jobs, a co-founder of Apple Inc., started NeXT Computer

Inc., which developed the Unix-like NEXTSTEP operating

system. NEXTSTEP would later be acquired by Apple Inc.

and used, along with code from FreeBSD as the core of Mac

OS X.

The GNU Project was started by activist and programmer

Richard Stallman with the goal of a complete free software

replacement to the proprietary UNIX operating system. While

the project was highly successful in duplicating the

functionality of various parts of UNIX, development of the

GNU Hurd kernel proved to be unproductive. In 1991,

Finnish computer science student Linus Torvalds, with

cooperation from volunteers collaborating over the Internet,

released the first version of the Linux kernel.

It was soon merged with the GNU user space components

and system software to form a complete operating system.

Since then, the combination of the two major components

has usually been referred to as simply “Linux” by the software

industry, a naming convention that Stallman and the Free

Software Foundation remain opposed to, preferring the name

GNU/Linux. The Berkeley Software Distribution, known as

BSD, is the UNIX derivative distributed by the University

of California, Berkeley, starting in the 1970s. Freely

distributed and ported to many minicomputers, it eventually

also gained a following for use on PCs, mainly as FreeBSD,

NetBSD and OpenBSD.

Computer Operating System

49

Examples of operating systems

UNIX and UNIX-like Operating Systems

Ken Thompson wrote B, mainly based on BCPL, which

he used to write Unix, based on his experience in the

MULTICS project. B was replaced by C, and Unix developed

into a large, complex family of inter-related operating systems

which have been influential in every modern operating

system.

The UNIX-like family is a diverse group of operating

systems, with several major sub-categories including System

V, BSD, and GNU/Linux. The name “UNIX” is a trademark

of The Open Group which licenses it for use with any

operating system that has been shown to conform to their

definitions. “UNIX-like” is commonly used to refer to the

large set of operating systems which resemble the original

UNIX.

Unix-like systems run on a wide variety of computer

architectures. They are used heavily for servers in business,

as well as workstations in academic and engineering

environments. Free UNIX variants, such asGNU/Linux and

BSD, are popular in these areas.

Four operating systems are certified by the The Open

Group (holder of the Unix trademark) as Unix. HP’s HP-UX

and IBM’s AIX are both descendants of the original System

V Unix and are designed to run only on their respective

vendor’s hardware. In contrast, Sun Microsystems’s Solaris

Operating System can run on multiple types of hardware,

including x86 and Sparc servers, and PCs. Apple’sMac OS

X, a replacement for Apple’s earlier (non-Unix) Mac OS, is

Computer Operating System

50

a hybrid kernel-based BSD variant derived from NeXTSTEP,

Mach, and FreeBSD.

Unix interoperability was sought by establishing the

POSIX standard. The POSIX standard can be applied to any

operating system, although it was originally created for

various Unix variants.

BSD and its Descendants

A subgroup of the Unix family is the Berkeley Software

Distribution family, which includes FreeBSD, NetBSD, and

OpenBSD, PC-BSD. These operating systems are most

commonly found on webservers, although they can also

function as a personal computer OS. The Internet owes

much of its existence to BSD, as many of the protocols now

commonly used by computers to connect, send and receive

data over a network were widely implemented and refined

in BSD. The world wide web was also first demonstrated

on a number of computers running an OS based on BSD

calledNextStep.

The first server for the World Wide Web ran on NeXTSTEP, based
on BSD.

BSD has its roots in Unix. In 1974, University of California,

Berkeley installed its first Unix system. Over time, students

Computer Operating System

51

and staff in the computer science department there began

adding new programs to make things easier, such as text

editors. When Berkely received new VAX computers in 1978

with Unix installed, the school’s undergraduates modified

Unix even more in order to take advantage of the computer’s

hardware possibilities. The Defense Advanced Research

Projects Agency of the US Department of Defense took

interest, and decided to fund the project. Many schools,

corporations, and government organizations took notice

and started to use Berkeley’s version of Unix instead of the

official one distributed by AT&T.

Steve Jobs, upon leaving Apple Inc. in 1985, formed

NeXT Inc., a company that manufactured high-end

computers running on a variation of BSD called NeXTSTEP.

One of these computers was used by Tim Berners-Lee as

the first webserver to create the World Wide Web.

Developers like Keith Bostic encouraged the project to

replace any non-free code that originated with Bell Labs.

Once this was done, however, AT&T sued. Eventually, after

two years of legal disputes, the BSD project came out ahead

and spawned a number of free derivatives, such as FreeBSD

and NetBSD.

Mac OS X

The standard user interface of Mac OS X

Computer Operating System

52

Mac OS X is a line of open core graphical operating

systems developed, marketed, and sold by Apple Inc., the

latest of which is pre-loaded on all currently

shippingMacintosh computers.

Mac OS X is the successor to the original Mac OS, which

had been Apple’s primary operating system since 1984.

Unlike its predecessor, Mac OS X is a UNIX operating

system built on technology that had been developed at

NeXTthrough the second half of the 1980s and up until

Apple purchased the company in early 1997.

The operating system was first released in 1999 as Mac

OS X Server 1.0, with a desktop-oriented version (Mac OS

X v10.0 “Cheetah”) following in March 2001.

Since then, six more distinct “client” and “server” editions

of Mac OS X have been released, the most recent being OS

X 10.8 “Mountain Lion”, which was first made available on

February 16, 2012 for developers, and to be released to the

public late summer 2012. Releases of Mac OS X are named

after big cats.

The server edition, Mac OS X Server, is architecturally

identical to its desktop counterpart but usually runs on

Apple’s line of Macintoshserver hardware. Mac OS X Server

includes work group management and administration

software tools that provide simplified access to key network

services, including a mail transfer agent, a Samba server,

an LDAP server, a domain name server, and others.

In Mac OS X v10.7 Lion, all server aspects of Mac OS

X Server have been integrated into the client version.

Computer Operating System

53

Linux and GNU

Ubuntu, desktop Linux distribution

Android, a popular mobile operating system using the Linux
kernel

Linux (or GNU/Linux) is a Unix-like operating system

that was developed without any actual Unix code, unlike

BSD and its variants. Linux can be used on a wide range

of devices from supercomputers to wristwatches. The Linux

kernelis released under an open source license, so anyone

can read and modify its code.

Computer Operating System

54

It has been modified to run on a large variety of electronics.

Although estimates suggest that Linux is used on 1.82%

of all personal computers, it has been widely adopted for

use in servers and embedded systems (such as cell phones).

Linux has superseded Unix in most places, and is used on

the 10 most powerful supercomputers in the world. The

Linux kernel is used in some popular distributions, such

as Red Hat, Debian, Ubuntu, Linux Mint and Google’s

Android.

The GNU project is a mass collaboration of programmers

who seek to create a completely free and open operating

system that was similar to Unix but with completely original

code. It was started in 1983 by Richard Stallman, and is

responsible for many of the parts of most Linux variants.

Thousands of pieces of software for virtually every

operating system are licensed under the GNU General Public

License. Meanwhile, the Linux kernel began as a side project

of Linus Torvalds, a university student from Finland. In

1991, Torvalds began work on it, and posted information

about his project on a newsgroup for computer students

and programmers. He received a wave of support and

volunteers who ended up creating a full-fledged kernel.

Programmers from GNU took notice, and members of both

projects worked to integrate the finished GNU parts with

the Linux kernel in order to create a full-fledged operating

system.

Google Chrome OS

Chrome is an operating system based on the Linux

kernel and designed by Google. Since Chrome OS targets

Computer Operating System

55

computer users who spend most of their time on the Internet,

it is mainly a web browser with no ability to run applications.

It relies on Internet applications(or Web apps) used in the

web browser to accomplish tasks such as word processing

and media viewing, as well as online storage for storing

most files.

Computer Operating System

56

3

Linux and other Operating Systems

It is important to understand the differences between

Linux and other operating systems, like MS-DOS, OS/2,

and the other implementations of UNIX for personal

computers. First of all, Linux coexists happily with other

operating systems on the same machine: you can run MS-

DOS and OS/2 along with Linux on the same system

without problems. There are even ways to interact between

various operating systems, as we'll see.

Why use Linux

Why use Linux, instead of a well known, well tested, and

well documented commercial operating system? We could

give you a thousand reasons. One of the most important,

however, is that Linux is an excellent choice for personal

UNIX computing. If you're a UNIX software developer, why

use MS-DOS at home? Linux allows you to develop and test

Computer Operating System

57

UNIX software on your PC, including database and X Window

System applications. If you're a student, chances are that

your university computing systems run UNIX. You can run

your own UNIX system and tailor it to your needs. Installing

and running Linux is also an excellent way to learn UNIX

if you don't have access to other UNIX machines. But let's

not lose sight. Linux isn't only for personal UNIX users. It

is robust and complete enough to handle large tasks, as

well as distributed computing needs. Many businesses--

especially small ones--have moved their systems to Linux

in lieu of other UNIX based, workstation environments.

Universities have found that Linux is perfect for teaching

courses in operating systems design. Large, commercial

software vendors have started to realise the opportunities

which a free operating system can provide.

Linux vs. MS-DOS

It's not uncommon to run both Linux and MS-DOS on

the same system. Many Linux users rely on MS-DOS for

applications like word processing. Linux provides its own

analogs for these applications, but you might have a good

reason to run MS-DOS as well as Linux. If your dissertation

is written using WordPerfect for MS-DOS, you may not be

able to convert it easily to TeX or some other format. Many

commercial applications for MS-DOS aren't available for

Linux yet, but there's no reason that you can't use both.

MS-DOS does not fully utilize the functionality of 80386

and 80486 processors. On the other hand, Linux runs

completely in the processor's protected mode, and utilizes

all of its features. You can directly access all of your available

Computer Operating System

58

memory (and beyond, with virtual RAM). Linux provides a

complete UNIX interface which is not available under MS-

DOS. You can easily develop and port UNIX applications to

Linux, but under MS-DOS you are limited to a subset of

UNIX functionality.

Linux and MS-DOS are different entities. MS-DOS is

inexpensive compared to other commercial operating systems

and has a strong foothold in the personal computer world.

No other operating system for the personal computer has

reached the level of popularity of MS-DOS, because justifying

spending $1,000 for other operating systems alone is

unrealistic for many users. Linux, however, is free, and you

may finally have the chance to decide for yourself. You can

judge Linux vs. MS-DOS based on your expectations and

needs. Linux is not for everybody. If you always wanted to

run a complete UNIX system at home, without the high cost

of other UNIX implementations for personal computers,

Linux may be what you're looking for.

Linux vs. The Other Guys

A number of other advanced operating systems have

become popular in the PC world. Specifically, IBM's OS/2

and Microsoft Windows have become popular for users

upgrading from MS-DOS. Both OS/2 and Windows NT are

full featured multitasking operating systems, like Linux.

OS/2, Windows NT, and Linux support roughly the same

user interface, networking, and security features. However,

the real difference between Linux and The Other Guys is

the fact that Linux is a version of UNIX, and benefits from

contributions of the UNIX community at large.

Computer Operating System

59

What makes UNIX so important? Not only is it the most

popular operating system for multiuser machines, it is a

foundation of the free software world. Much of the free

software available on the Internet is written specifically for

UNIX systems.

There are many implementations of UNIX from many

vendors. No single organization is responsible for its

distribution. There is a large push in the UNIX community

for standardization in the form of open systems, but no

single group controls this design. Any vendor (or, as it turns

out, any hacker) may develop a standard implementation

of UNIX. OS/2 and Microsoft operating systems, on the

other hand, are proprietary. The interface and design are

controlled by a single corporation, which develops the

operating system code. In one sense, this kind of organization

is beneficial because it sets strict standards for programming

and user interface design, unlike those found even in the

open systems community.

Several organizations have attempted the difficult task

of standardizing the UNIX programming interface. Linux, in

particular, is mostly compliant with the POSIX.1 standard.

As time goes by, it is expected that the Linux system will

adhere to other standards, but standardization is not the

primary goal of Linux development.

Linux vs. Other Implementations of UNIX

Several other implementations of UNIX exist for 80386

or better personal computers. The 80386 architecture

lends itself to UNIX, and vendors have taken advantage

of this.

Computer Operating System

60

Oher implementations of UNIX for the personal computer

are similar to Linux. Almost all commercial versions of UNIX

support roughly the same software, programming

environment, and networking features. However, there are

differences between Linux and commercial versions of UNIX.

Linux supports a different range of hardware than

commercial implementations. In general, Linux supports

most well-known hardware devices, but support is still

limited to hardware which the developers own. Commercial

UNIX vendors tend to support more hardware at the outset,

but the list of hardware devices which Linux supports is

expanding continuously. We'll cover the hardware

requirements for Linux in Section.

Many users report that Linux is at least as stable as

commercial UNIX systems. Linux is still under development,

but the two-pronged release philosophy has made stable

versions available without impeding development.

The most important factor for many users is price. Linux

software is free if you can download it from the Internet or

another computer network. If you do not have Internet

access, you can still purchase Linux inexpensively via mail

order on diskette, tape, or CD-ROM.

Of course, you may copy Linux from a friend who already

has the software, or share the purchase cost with someone

else. If you plan to install Linux on a large number of

machines, you need only purchase a single copy of the

software--Linux is not distributed with a ``single machine''

license.

Computer Operating System

61

The value of commercial UNIX implementations should

not be demeaned. In addition to the price of the software

itself, one often pays for documentation, support, and quality

assurance. These are very important factors for large

institutions, but personal computer users may not require

these benefits. In any case, many businesses and universities

have found that running Linux in a lab of inexpensive

personal computers is preferable to running a commercial

version of UNIX in a lab of workstations. Linux can provide

workstation functionality on a personal computer at a

fraction of the cost.

Linux systems have travelled the high seas of the North

Pacific, and manage telecommunications and data analysis

for an oceanographic research vessel. Linux systems are

used at research stations in Antarctica. Several hospitals

maintain patient records on Linux systems.

Other free or inexpensive implementations of UNIX are

available for the 80386 and 80486. One of the best known

is 386BSD, an implementation of BSD UNIX for the 80386.

The 386BSD package is comparable to Linux in many ways,

but which one is better depends on your needs and

expectations. The only strong distinction we can make is

that Linux is developed openly, and any volunteer can aid

in the development process, while 386BSD is developed by

a closed team of programmers. Because of this, serious

philosophical and design differences exist between the two

projects. The goal of Linux is to develop a complete UNIX

system from scratch (and have a lot of fun in the process),

and the goal of 386BSD is in part to modify the existing

BSD code for use on the 80386.

Computer Operating System

62

NetBSD is another port of the BSD NET/2 distribution

to several machines, including the 80386. NetBSD has a

slightly more open development structure, and is comparable

to 386BSD in many respects.

Another project of note is HURD, an effort by the Free

Software Foundation to develop and distribute a free version

of UNIX for many platforms. Contact the Free Software

Foundation (the address is given in Appendix C) for more

information about this project. At the time of this writing,

HURD is still under development.

Other inexpensive versions of UNIX exist as well, like

Minix, an academic but useful UNIX clone upon which early

development of Linux was based. Some of these

implementations are mostly of academic interest, while

others are full fledged systems.

Hardware Requirements

You must be convinced by now of how wonderful Linux

is, and of all the great things it can do for you. However,

before you rush out and install Linux, you need to be aware

of its hardware requirements and limitations.

Keep in mind that Linux is developed by users. This

means, for the most part, that the hardware supported by

Linux is that which the users and developers have access

to. As it turns out, most popular hardware and peripherals

for personal computers are supported. Linux supports more

hardware than some commercial implementations of UNIX.

However, some obscure devices aren't supported yet.

Another drawback of hardware support under Linux is

that many companies keep their hardware interfaces

Computer Operating System

63

proprietary. Volunteer Linux developers can't write drivers

for the devices because the manufacturer does not make

the technical specifications public. Even if Linux developers

could develop drivers for proprietary devices, they would be

owned by the company which owns the device interface,

which violates the GPL. Manufacturers that maintain

proprietary interfaces write their own drivers for operating

systems like MS-DOS and Microsoft Windows. Users and

third-party developers never need to know the details of the

interface.

In some cases, Linux programmers have attempted to

write hackish device drivers based on assumptions about

the interface. In other cases, developers work with the

manufacturer and try to obtain information about the device

interface, with varying degrees of success.

In the following sections, we attempt to summarize the

hardware requirements for Linux. The Linux Hardware

HOWTO contains a more complete listing of hardware

supported by Linux.

Disclaimer: Much hardware support for Linux is in the

development stage. Some distributions may or may not

support experimental features. This section lists hardware

which has been supported for some time and is known to

be stable. When in doubt, consult the documentation of

your Linux distribution. for more information about Linux

distributions.

Linux is available for many platforms in addition to Intel

80x86 systems. These include Macintosh, Amiga, Sun

SparcStation, and Digital Equipment Corporation Alpha

Computer Operating System

64

based systems. In this book, however, we focus on garden-

variety Intel 80386, 80486, and Pentium processors, and

clones by manufacturers like AMD, Cyrix, and IBM.

Motherboard and CPU Requirements

Linux currently supports systems with the Intel 80386,

80486, or Pentium CPU, including all variations like the

80386SX, 80486SX, 80486DX, and 80486DX2. Non-Intel

clones work with Linux as well. Linux has also been ported

to the DEC Alpha and the Apple PowerMac.

If you have an 80386 or 80486SX, you may also wish

to use a math coprocessor, although one isn't required. The

Linux kernel can perform FPU emulation if the machine

doesn't have a coprocessor. All standard FPU couplings are

supported, including IIT, Cyrix FasMath, and Intel.

Most common PC motherboards are based on the PCI

bus but also offer ISA slots. This configuration is supported

by Linux, as are EISA and VESA-bus systems. IBM's

MicroChannel (MCA) bus, found on most IBM PS/2 systems,

is significantly different, and support has been recently

added.

Memory Requirements

Linux requires very little memory, compared to other

advanced operating systems. You should have 4 megabytes

of RAM at the very least, and 16 megabytes is strongly

recommended. The more memory you have, the faster the

system will run. Some distributions require more RAM for

installation.

Linux supports the full 32-bit address range of the

processor. In other words, it uses all of your RAM

Computer Operating System

65

automatically. Linux will run with only 4 megabytes of RAM,

including bells and whistles like the X Window System and

emacs.

However, having more memory is almost as important

as having a faster processor. For general use, 16 megabytes

is enough, and 32 megabytes, or more, may be needed for

systems with a heavy user load.

Most Linux users allocate a portion of their hard drive

as swap space, which is used as virtual RAM. Even if your

machine has more than 16 megabytes of physical RAM, you

may wish to use swap space. It is no replacement for

physical RAM, but it can let your system run larger

applications by swapping inactive portions of code to disk.

The amount of swap space that you should allocate depends

on several factors;

Hard Drive Controller Requirements

It is possible to run Linux from a floppy diskette, or, for

some distributions, a live file system on CD-ROM, but for

good performance you need hard disk space. Linux can co-

exist with other operating systems--it only needs one or

more disk partitions. Linux supports all IDE and EIDE

controllers as well as older MFM and RLL controllers. Most,

but not all, ESDI controllers are supported. The general rule

for non-SCSI hard drive and floppy controllers is that if you

can access the drive from MS-DOS or another operating

system, you should be able to access it from Linux. Linux also

supports a number of popular SCSI drive controllers. This

includes most Adaptec and Buslogic cards as well as cards

based on the NCR chip sets.

Computer Operating System

66

Hard Drive Space Requirements

Of course, to install Linux, you need to have some amount

of free space on your hard drive. Linux will support more

than one hard drive on the same machine; you can allocate

space for Linux across multiple drives if necessary.

How much hard drive space depends on your needs and

the software you're installing. Linux is relatively small, as

UNIX implementations go. You could run a system in 20

megabytes of disk space. However, for expansion and larger

packages like X, you need more space. If you plan to let

more than one person use the machine, you need to allocate

storage for their files. Realistic space requirements range

from 200 megabytes to one gigabyte or more. Each Linux

distribution comes with literature to help you gauge the

precise amount of storage required for your software

configuration. Look at the information which comes with

your distribution or the appropriate installation section in.

Monitor and Video Adaptor Requirements

Linux supports standard Hercules, CGA, EGA, VGA, IBM

monochrome, Super VGA, and many accelerated video cards,

and monitors for the default, text-based interface. In general,

if the video card and monitor work under an operating

system like MS-DOS, the combination should work fine

under Linux. However, original IBM CGA cards suffer from

``snow'' under Linux, which is not pleasant to view. Graphical

environments like X have video hardware requirements of

their own. Rather than list them here, we relegate that

discussion to Section Popular video cards are supported

and new card support is added regularly.

Computer Operating System

67

Miscellaneous Hardware

You may also have devices like a CD-ROM drive, mouse,

or sound card, and may be interested in whether or not this

hardware is supported by Linux.

Mice and Other Pointing Devices

Typically, a mouse is used only in graphical environments

like X. However, several Linux applications that are not

associated with a graphical environment also use mice.

Linux supports standard serial mice like Logitech, MM

series, Mouseman, Microsoft (2-button), and Mouse Systems

(3-button). Linux also supports Microsoft, Logitech, and ATIXL

bus mice, and the PS/2 mouse interface. Pointing devices that

emulate mice, like trackballs and touchpads, should work also.

CD-ROM Drives

Many common CD-ROM drives attach to standard IDE

controllers. Another common interface for CD-ROM is SCSI.

SCSI support includes multiple logical units per device so

you can use CD-ROM ``jukeboxes.'' Additionally, a few

proprietary interfaces, like the NEC CDR-74, Sony CDU-

541 and CDU-31a, Texel DM-3024, and Mitsumi are

supported. Linux supports the standard ISO 9660 file system

for CD-ROMs, and the High Sierra file system extensions.

Tape Drives

Any SCSI tape drive, including quarter inch, DAT, and

8MM are supported, if the SCSI controller is supported.

Devices that connect to the floppy controller like floppy tape

drives are supported as well, as are some other interfaces,

like QIC-02.

Computer Operating System

68

Printers

Linux supports the complete range of parallel printers.

If MS-DOS or some other operating system can access your

printer from the parallel port, Linux should be able to

access it, too. Linux printer software includes the UNIX

standard lp and lpr software. This software allows you to

print remotely via a network, if you have one. Linux also

includes software that allows most printers to handle

PostScript files.

Modems

As with printer support, Linux supports the full range

of serial modems, both internal and external. A great deal

of telecommunications software is available for Linux,

including Kermit, pcomm, minicom, and seyon. If your modem

is accessible from another operating system on the same

machine, you should be able to access it from Linux with

no difficulty.

Ethernet Cards

Many popular Ethernet cards and LAN adaptors are

supported by Linux. Linux also supports some FDDI, frame

relay, and token ring cards, and all Arcnet cards. A list of

supported network cards is included in the kernel source

of your distribution.

Sources of Linux Information

Many other sources of information about Linux are

available. In particular, a number of books about UNIX in

general will be of use, especially for readers unfamiliar with

UNIX. We suggest that you peruse one of these books before

Computer Operating System

69

attempting to brave the jungles of Linux. Information is also

available online in electronic form. You must have access

to an online network like the Internet, Usenet, or Fidonet

to access the information. A good place to start is If you

do not, you might be able to find someone who is kind

enough to give you hard copies of the documents.

Online Documents

Many Linux documents are available via anonymous FTP

from Internet archive sites around the world and networks

like Fidonet and CompuServe. Linux CD-ROM distributions

also contain the documents mentioned here. If you are can

send mail to Internet sites, you may be able to retrieve these

files using one of the FTP e-mail servers that mail you the

documents or files from the FTP sites. for more information

on using FTP e-mail servers.

Linux on World Wide Web

The Linux Documentation Project Home Page is on the

World Wide Web at http://sunsite.unc.edu/LDP This web

page lists many HOWTOs and other documents in HTML

format, as well as pointers to other sites of interest to Linux

users, like ssc.com, home of the Linux Journal, a monthly

magazine.

Comparison of Linux with MS-DOS and Windows

Linux Vs MS-DOS

DOS was the first operating system I learned to use. I

remember a test by my tutor in which one had to create

a hierarchical set of directories. This probably sounds trivial

to anyone familiar with graphical user interfaces, but then

Computer Operating System

70

the scenario was very different. It even looks ancient by

today’s standards. Windows 95 hadn’t been released at that

time, and Linux was unheard of in India. I liked DOS much

better than Windows 3.1, which looked quite flimsy and

unstable, not to mention that it was a big memory hog. DOS

is quite different from Linux in many ways.

DOS does not provide any graphical user interface and

you have to learn at least a dozen commands with its

numerous options to do some basic tasks like copying a file

or moving between the directories. Even a minor spelling

mistake can result in a ”Bad command or file name” error.

DOS does not support the concept of multi-users; each

and every user has to customise the system according to

his need every time he wants to work on it. It was also not

a multitasking system. This meant that you could not check

out the value of a calculation when typing a letter without

closing that application first. DOS also does not have any

in built security features. This was acceptable as long as

you did not want a networking system. There was other

variants of MS-DOS, like PC-DOS from IBM and some

others, which tried to add the missing features. Some of the

deficiencies have been resolved using third party utilities

but basic limitations like the arcane 640kb-memory limit

and single-tasking were not acceptable to many.

Now in case you are wondering why anyone would care

to use DOS, I will point out some advantages. Basically DOS

has had very different goals from that of Linux. It was a

very cheap system (as far as cost is concerned) and it was

quite usable with its minimalist set of features. It was a

Computer Operating System

71

simple system to work with. There weren’t too many

complications to worry about if you didn’t want to develop

anything on it. It was arguably the world’s most popular

operating system and it had a comfortable number of

applications for common tasks.

Files and Directories

The files in Linux can be very long, up-to 255 characters

like Windows, and they do not always have extensions. The

executable files are identified through an attribute rather

than the extension. File extensions are less important to

Linux than for DOS and Windows, since Linux usually

identifies files by a unique identification code called the

magic number that depends on the file type. Directories are

similar to that of DOS and follow a hierarchical structure.

The path names are separated by forward slashes (/)in

Linux whereas DOS and Windows uses back slashes (\). For

example:
% cd /mnt/cdrom

A / denotes the root and .. stands for the parent directory,

similar to DOS.

In bash shells, the ~ symbol maybe used to jump to the

home directory quickly. For example:
% cd ~

Linux Shell

Several of the DOS commands have Linux equivalents.

The Linux shell is similar to the DOS command line but

is far more powerful, and I found that it was also more

workable with features like colour highlighting and friendlier

navigation capabilities, depending on the particular shell

Computer Operating System

72

you are using. Most Linux distributions come with the Bash

(Bourne Again SHell) as the default. There are several others,

like the Korn shell and the C shell. They are usually similar.

It's recommended that you learn to work with one shell

completely before trying out the others. Things usually get

complicated if you want to run shell scripts, which are

similar to batch files (files with the .bat extension) under

DOS.

Running DOS Programmes Under Linux

There is a DOS emulator called dosemu www.dosemu.org

for Linux that is capable of running DOS programmes

under the Linux operating system. This software is still

under development; you may wish to try it out though. It

is known to be fairly usable at least for some applications.

If you are looking for Linux just to use DOS programmes

for free then try using FreeDOS www.freedos.org. That should

be much better than Linux.

Linux vs. Windows

As I have said before Windows is more or less similar

to Linux. When people are introduced to Linux they are at

first intimidated by the system. It has different kinds of

graphical interfaces and things don't always work as they

are expected to.

When users look at me in a puzzled manner I demonstrate

in some easy ways how common tasks like changing the

desktop wallpaper or playing a song is similar to Windows.

The problem with this kind of approach is that the users

complain very soon that Linux doesn't offer them much

more than Windows does :-).

Computer Operating System

73

I agree with them to a certain extent on this. There are

some limitations to what you can expect from an operating

system. You just can't expect Linux to work like a 3D-

shooter game or something. Of course, there are many

differences in the shell, the choice of user interfaces and

the philosophy and goals of the operating system. Linux is

developed as a open system in which the source code of the

core Linux system (kernel) is available for anyone for free

but how this could affect the end user is difficult to explain

initially.

The user interface is probably the first thing you notice

when you begin to use the Linux system. Windows offers

a single, monolithic user interface, which is more or less

the same across all the versions. In contrast, Linux has two

major desktop environments called KDE and Gnome. KDE

has a built-in window manager, while Gnome is supported

by many, such as Sawfish and Enlightenment. The decision

of choosing one among the desktop environments and

windows managers is left to you. Some of them can run

efficiently in a system with low amounts of memory and

some of them are designed to look like a game console. KDE

would be more similar to Windows, and Gnome with the

Enlightenment window manager was fancy enough for me.

Try out some of the popular ones before making the decision.

Let's take a look at Windows in more detail so that you can

clearly make out the differences.

Windows 9x Series

Before Windows 95 was released, all versions of Windows

until version 3.1 were graphical platforms on top of DOS.

Computer Operating System

74

This offered limited capability for multitasking and the

Programme Manager interface was cluttered with no distinct

hierarchy. Windows 95 was a 32-bit operating system and

a major improvement in user interface with its "Desktop"

concept adapted from the Macintosh user interface.

It also offered limited compatibility with previous versions

of Windows and DOS. Stability was also improved Windows

98 and Windows ME offered some more features though

nothing major was added. The more recent version called

Windows XP is considerably more stable due to incorporating

the Windows 2000 kernel, and is comparatively friendlier

and easier due to an attractive interface.

Windows NT Series

Windows NT is considerably stable but demands more

resources. It supports the Intel architecture, and at one

time the Digital alpha and MIPS processors, but I believe

those have been dropped now. It managed to replace UNIX

in small-scale networks due to the similarity to the popular

Windows 95 interface. The latest incarnation called Windows

2000 provides a few more administrative utilities and

services.

Computer Operating System

75

4

Modern Network Devices and
Operating System

Modern network devices are complex entities composed

of both silicon and software. Thus, designing an efficient

hardware platform is not, by itself, sufficient to achieve an

effective, cost-efficient and operationally tenable product. The

control plane plays a critical role in the development of

features and in ensuring device usability.

Although progress from the development of faster CPU

boards and forwarding planes is visible, structural changes

made in software are usually hidden, and while vendor

collateral often offers a list of features in a carrier-class

package, operational experiences may vary considerably.

Products that have been through several generations of

software releases provide the best examples of the difference

made by the choice of OS. It is still not uncommon to find

routers or switches that started life under older, monolithic

Computer Operating System

76

software and later migrated to more contemporary designs.

The positive effect on stability and operational efficiency is

easy to notice and appreciate.

However, migration from one network operating system

to another can pose challenges from non-overlapping feature

sets, noncontiguous operational experiences and

inconsistent software quality. These potential challenges

make it is very desirable to build a control plane that can

power the hardware products and features supported in both

current and future markets.

Developing a flexible, long-lasting and high-quality

network OS provides a foundation that can gracefully evolve

to support new needs in its height for up and down scaling,

width for adoption across many platforms, and depth for

rich integration of new features and functions. It takes time,

significant investment and in-depth expertise.

Most of the engineers writing the early releases of Junos

OS came from other companies where they had previously

built network software. They had firsthand knowledge of

what worked well, and what could be improved.

These engineers found new ways to solve the limitations

that they’d experienced in building the older operating

systems.

Resulting innovations in Junos OS are significant and

rooted in its earliest design stages. Still, to ensure that our

products anticipate and fulfil the next generation of market

requirements, Junos OS is periodically reevaluated to

determine whether any changes are needed to ensure that

it continues to provide the reliability, performance and

resilience for which it is known.

Computer Operating System

77

Contemporary network operating systems are mostly

advanced and specialized branches of POSIX-compliant

software platforms and are rarely developed from scratch.

The main reason for this situation is the high cost of

developing a world-class operating system all the way from

concept to finished product. By adopting a general purpose

OS architecture, network vendors can focus on routing-

specific code, decrease time to market, and benefit from years

of technology and research that went into the design of the

original (donor) products.

First-Generation OS: Monolithic Architecture

Typically, first-generation network operating systems for

routers and switches were proprietary images running in a

flat memory space, often directly from flash memory or ROM.

While supporting multiple processes for protocols, packet

handling and management, they operated using a

cooperative, multitasking model in which each process would

run to completion or until it voluntarily relinquished the CPU.

All first-generation network operating systems shared one

trait: They eliminated the risks of running full-size

commercial operating systems on embedded hardware.

Memory management, protection and context switching were

either rudimentary or nonexistent, with the primary goals

being a small footprint and speed of operation.

Nevertheless, first-generation network operating systems

made networking commercially viable and were deployed on

a wide range of products. The downside was that these

systems were plagued with a host of problems associated

with resource management and fault isolation; a single

runaway process could easily consume the processor or

Computer Operating System

78

cause the entire system to fail. Such failures were not

uncommon in the data networks controlled by older software

and could be triggered by software errors, rogue traffic and

operator errors.

Legacy platforms of the first generation are still seen in

networks worldwide, although they are gradually being

pushed into the lowest end of the telecom product lines.

Second-Generation OS: Control Plane Modularity

The mid-1990s were marked by a significant increase

in the use of data networks worldwide, which quickly

challenged the capacity of existing networks and routers.

By this time, it had become evident that embedded

platforms could run full-size commercial operating systems,

at least on high-end hardware, but with one catch: They could

not sustain packet forwarding with satisfactory data rates. A

breakthrough solution was needed. It came in the concept

of a hard separation between the control and forwarding

plane—an approach that became widely accepted after the

success of the industry’s first application-specific integrated

circuit (ASIC)-driven routing platform, the Juniper Networks

M40. Forwarding packets entirely in silicon was proven to

be viable, clearing the path for next generation network

operating systems, led by Juniper with its Junos OS.

Today, the original M40 routers are mostly retired, but

their legacy lives in many similar designs, and their

blueprints are widely recognized in the industry as the

second-generation reference architecture.

Second-generation network operating systems are free

from packet switching and thus are focused on control plane

Computer Operating System

79

functions. Unlike its first-generation counterparts, a second-

generation OS can fully use the potential of multitasking,

multithreading, memory management and context

manipulation, all making systemwide failures less common.

Most core and edge routers installed in the past few years

are running second-generation operating systems, and it is

these systems that are currently responsible for moving the

bulk of traffic on the Internet and in corporate networks.

However, the lack of a software data plane in second-

generation operating systems prevents them from powering

low-end devices without a separate (hardware) forwarding

plane. Also, some customers cannot migrate from their older

software easily because of compatibility issues and legacy

features still in use.

These restrictions led to the rise of transitional

(generation 1.5) OS designs, in which a first-generation

monolithic image would run as a process on top of the

second-generation scheduler and kernel, thus bridging

legacy features with newer software concepts. The idea

behind “generation 1.5” was to introduce some headroom

and gradually move the functionality into the new code, while

retaining feature parity with the original code base. Although

interesting engineering exercises, such designs were not as

feature-rich as their predecessors, nor as effective as their

successors, making them of questionable value in the long

term.

Third-Generation OS: Flexibility, Scalability and
Continuous Operation

Although second-generation designs were very

successful, the past 10 years have brought new challenges.

Computer Operating System

80

Increased competition led to the need to lower operating

expenses and a coherent case for network software flexible

enough to be redeployed in network devices across the larger

part of the end-to-end packet path. From multiple terabit

routers to Layer 2 switches and security appliances, the

“best-in-class” catchphrase can no longer justify a splintered

operational experience—true “network” operating systems

are clearly needed. Such systems must also achieve

continuous operation, so that software failures in the routing

code, as well as system upgrades, do not affect the state of

the network. Meeting this challenge requires availability and

convergence characteristics that go far beyond the hardware

redundancy available in second-generation routers.

Another key goal of third-generation operating systems

is the capability to run with zero downtime (planned and

unplanned). Drawing on the lesson learned from previous

designs regarding the difficulty of moving from one OS to

another, third-generation operating systems also should

make the migration path completely transparent to

customers. They must offer an evolutionary, rather than

revolutionary upgrade experience typical to the retirement

process of legacy software designs.

Basic OS Design Considerations

Choosing the right foundation (prototype) for an operating

system is very important, as it has significant implications

for the overall software design process and final product

quality and serviceability. This importance is why OEM

vendors sometimes migrate from one prototype platform to

another midway through the development process, seeking

Computer Operating System

81

a better fit. Generally, the most common transitions are from

a proprietary to a commercial code base and from a

commercial code base to an open-source software

foundation.

Regardless of the initial choice, as networking vendors

develop their own code, they get further and further away

from the original port, not only in protocol-specific

applications but also in the system area. Extensions such

as control plane redundancy, in-service software upgrades

and multi chassis operation require significant changes on

all levels of the original design.

However, it is highly desirable to continue borrowing

content from the donor OS in areas that are not normally

the primary focus of networking vendors, such as

improvements in memory management, scheduling, multi

core and symmetric multiprocessing (SMP) support, and host

hardware drivers. With proper engineering discipline in place,

the more active and peer-reviewed the donor OS is, the more

quickly related network products can benefit from new code

and technology.

This relationship generally explains another market

trend—only two out of five network operating systems that

emerged in the routing markets over the past 10 years used

a commercial OS as a foundation.

Juniper’s main operating system, Junos OS, is an

excellent illustration of this industry trend. The basis of the

Junos OS kernel comes from the FreeBSD UNIX OS, an

open-source software system. The Junos OS kernel and

infrastructure have since been heavily modified to

accommodate advanced and unique features such as state

Computer Operating System

82

replication, nonstop active routing and in-service software

upgrades, all of which do not exist in the donor operating

system.

Nevertheless, the Junos OS tree can still be synchronized

with the FreeBSD repository to pick the latest in system code,

device drivers and development tool chains, which allows

Juniper Networks engineers to concentrate on network-

specific development.

Commercial Versus Open-Source Donor OS

The advantage of a more active and popular donor OS is

not limited to just minor improvements—the cutting edge of

technology creates new dimensions of product flexibility and

usability. Not being locked into a single-vendor framework

and roadmap enables greater control of product evolution

as well as the potential to gain from progress made by

independent developers.

This benefit is evident in Junos OS, which became a first

commercial product to offer hard resource separation of the

control plane and a real-time software data plane. Juniper-

specific extension of the original BSD system architecture

relies on multicore CPUs and makes Junos OS the only

operating system that powers both low-end software-only

systems and high-end multiple-terabit hardware platforms

with images built from the same code tree. This technology

and experience could not be created without support from

the entire Internet-driven community. The powerful

collaboration between leading individuals, universities and

commercial organizations helps Junos OS stay on the very

edge of operating system development. Further, this

collaboration works both ways:

Computer Operating System

83

Juniper donates to the free software movement, one

example being the Juniper Networks FreeBSD/MIPS port.

Functional Separation and Process Scheduling

Multiprocessing, functional separation and scheduling

are fundamental for almost any software design, including

network software. Because CPU and memory are shared

resources, all running threads and processes have to access

them in a serial and controlled fashion. Many design choices

are available to achieve this goal, but the two most important

are the memory model and the scheduling discipline.

Memory Model

The memory model defines whether processes (threads)

run in a common memory space. If they do, the overhead

for switching the threads is minimal, and the code in different

threads can share data via direct memory pointers. The

downside is that a runaway process can cause damage in

memory that does not belong to it.

In a more complex memory model, threads can run in

their own virtual machines, and the operating system

switches the context every time the next thread needs to

run. Because of this context switching, direct communication

between threads is no longer possible and requires special

Inter Process Communication (IPC) structures such as pipes,

files and shared memory pools.

Scheduling Discipline

Scheduling choices are primarily between cooperative and

preemptive models, which define whether thread switching

happens voluntarily. A cooperative multitasking model allows

Computer Operating System

84

the thread to run to completion, and a preemptive design

ensures that every thread gets access to the CPU regardless

of the state of other threads.

Virtual Memory/Preemptive Scheduling
Programming Model

Virtual memory with preemptive scheduling is a great

design choice for properly constructed functional blocks,

where interaction between different modules is limited and

well defined. This technique is one of the main benefits of

the second-generation OS designs and underpins the

stability and robustness of contemporary network operating

systems. However, it has its own drawbacks.

Notwithstanding the overhead associated with context

switching, consider the interaction between two threads, A

and B, both relying on the common resource R. Because

threads do not detect their relative scheduling in the

preemptive model, they can actually access R in a different

order and with varying intensity. For example, R can be

accessed by A, then B, then A, then A and then B again. If

thread B modifies resource R, thread A may get different

results at different times—and without any predictability.

For instance, if R is an interior gateway protocol (IGP) next

hop, B is an IGP process, and A is a BGP process, then BGP

route installation may fail because the underlying next hop

was modified midway through routing table modification.

This scenario would never happen in the cooperative

multitasking model, because the IGP process would release

the CPU only after it finishes the next-hop maintenance. This

problem is well researched and understood within software

design theory, and special solutions such as resource locks

Computer Operating System

85

and synchronization primitives are easily available in nearly

every operating system. However, the effectiveness of IPC

depends greatly on the number of interactions between

different processes. As the number of interacting processes

increases, so does the number of IPC operations. In a

carefully designed system, the number of IPC operations is

proportional to the number of processes (N). In a system

with extensive IPC activity, this number can be proportional

to N2.

Exponential growth of an IPC map is a negative trend

not only because of the associated overhead, but because of

the increasing number of unexpected process interactions

that may escape the attention of software engineers.

In practice, overgrown IPC maps result in systemwide

“IPC meltdowns” when major events trigger intensive

interactions. For instance, pulling a line card would normally

affect interface management, IGP, exterior gateway protocol

and traffic engineering processes, among others. When

interprocess interactions are not well contained, this event

may result in locks and tight loops, with multiple threads

waiting on each other and vital system operations such as

routing table maintenance and IGP computations

temporarily suspended. Such defects are signatures of

improper modularization, where similar or heavily interacting

functional parts do not run as one process or one thread.

The right question to ask is, “Can a system be too modular?”

The conventional wisdom says, “Yes.” Excessive modularity

can bring long-term problems, with code complexity, mutual

locks and unnecessary process interdependencies. Although

none of these may be severe enough to halt development,

Computer Operating System

86

feature velocity and scaling parameters can be affected.

Complex process interactions make programming for such

a network OS an increasingly difficult task.

On the other hand, the cooperative multitasking, shared

memory paradigm becomes clearly suboptimal if unrelated

processes are influencing each other via the shared memory

pool and collective restartability. A classic problem of first-

generation operating systems was systemwide failure due

to a minor bug in a nonvital process such as SNMP or

network statistics. Should such an error occur in a protected

and independently restartable section of system code, the

defect could easily be contained within its respective code

section.

This brings us to an important conclusion. No fixed

principle in software design fits all possible situations. Ideally,

code design should follow the most efficient paradigm and

apply different strategies in different parts of the network

OS to achieve the best marriage of architecture and function.

This approach is evident in Junos OS, where functional

separation is maintained so that cooperative multitasking

and preemptive scheduling can both be used effectively,

depending on the degree of IPC containment between

functional modules.

Generic Kernel Design

Kernels normally do not provide any immediately

perceived or revenue-generating functionality. Instead, they

perform housekeeping activities such as memory allocation

and hardware management and other system-level tasks.

Kernel threads are likely the most often run tasks in the

entire system. Consequently, they have to be robust and

Computer Operating System

87

run with minimal impact on other processes. In the past,

kernel architecture largely defined the operating structure

of the entire system with respect to memory management

and process scheduling. Hence, kernels were considered

important differentiators among competing designs.

Historically, the disputes between the proponents and

opponents of lightweight versus complex kernel architectures

came to a practical end when most operating systems became

functionally decoupled from their respective kernels.

Once software distributions became available with

alternate kernel configurations, researchers and commercial

developers were free to experiment with different designs.

For example, the original Carnegie-Mellon Mach

microkernel was originally intended to be a drop-in

replacement for the kernel in BSD UNIX and was later used

in various operating systems, including mkLinux and GNU

FSF projects. Similarly, some software projects that started

life as purely microkernel-based systems later adopted

portions of monolithic designs.

Over time, the radical approach of having a small kernel

and moving system functions into the user-space processes

did not prevail. A key reason for this was the overhead

associated with extra context switches between frequently

executed system tasks running in separate memory spaces.

Furthermore, the benefits associated with restart ability

of essentially all system processes proved to be of limited

value, especially in embedded systems. With the system code

being very well tested and limited to scheduling, memory

management and a handful of device drivers, the potential

errors in kernel subsystems are more likely to be related to

Computer Operating System

88

hardware failures than to software bugs. This means, for

example, that simply restarting a faulty disk driver is unlikely

to help the routing engine stay up and running, as the

problem with storage is likely related to a hardware failure

(for example, uncorrectable fault in a mass storage device

or system memory bank).

Another interesting point is that although both

monolithic and lightweight kernels were widely studied by

almost all operating system vendors, few have settled on

purist implementations. For example, Apple’s Mac OS X was

originally based on microkernel architecture, but now runs

system processes, drivers and the operating environment in

BSD-like subsystems. Microsoft NT and derivative operating

systems also went through multiple changes, moving critical

performance components such as graphical and I/O

subsystems in and out of the system kernel to find the right

balance of stability, performance and predictability. These

changes make NT a hybrid operating system. On the other

hand, freeware development communities such as FSF,

FreeBSD and NetBSD have mostly adopted monolithic

designs (for example, Linux kernel) and have gradually

introduced modularity into selected kernel sections (for

example, device drivers).

So what difference does kernel architecture make to

routing and control?

Analysts of Traditional
Physical Security Systems

Analysts of traditional physical security systems have

suggested two further design principles which, unfortunately,

apply only imperfectly to computer systems.

Computer Operating System

89

Work Factor

Compare the cost of circumventing the mechanism with

the resources of a potential attacker. The cost of

circumventing, commonly known as the “work factor,” in

some cases can be easily calculated. For example, the

number of experiments needed to try all possible four letter

alphabetic passwords is 264 = 456 976.

If the potential attacker must enter each experimental

password at a terminal, one might consider a four-letter

password to be adequate. On the other hand, if the attacker

could use a large computer capable of trying a million

passwords per second, as might be the case where industrial

espionage or military security is being considered, a four-

letter password would be a minor barrier for a potential

intruder.

The trouble with the work factor principle is that many

computer protection mechanisms are not susceptible to

direct work factor calculation, since defeating them by

systematic attack may be logically impossible. Defeat can

be accomplished only by indirect strategies, such as waiting

for an accidental hardware failure or searching for an error

in implementation. Reliable estimates of the length of such

a wait or search are very difficult to make.

Compromise Recording

It is sometimes suggested that mechanisms that reliably

record that a compromise of information has occurred can

be used in place of more elaborate mechanisms that

completely prevent loss. For example, if a tactical plan is

known to have been compromised, it may be possible to

Computer Operating System

90

construct a different one, rendering the compromised version

worthless. An unbreakable padlock on a flimsy file cabinet

is an example of such a mechanism.

Although the information stored inside may be easy to

obtain, the cabinet will inevitably be damaged in the process

and the next legitimate user will detect the loss. For another

example, many computer systems record the date and time

of the most recent use of each file. If this record is

tamperproof and reported to the owner, it may help discover

unauthorized use.

In computer systems, this approach is used rarely, since

it is difficult to guarantee discovery once security is broken.

Physical damage usually is not involved, and logical damage

(and internally stored records of tampering) can be undone

by a clever attacker. As is apparent, these principles do not

represent absolute rules—they serve best as warnings. If

some part of a design violates a principle, the violation is a

symptom of potential trouble, and the design should be

carefully reviewed to be sure that the trouble has been

accounted for or is unimportant.

Considerations Surrounding Protection

Briefly, then, we may outline our discussion to this point.

The application of computers to information handling

problems produces a need for a variety of security

mechanisms. We are focusing on one aspect, computer

protection mechanisms—the mechanisms that control

access to information by executing programmes. At least four

levels of functional goals for a protection system can be

identified: all-or-nothing systems, controlled sharing, user-

programmed sharing controls, and putting strings on

Computer Operating System

91

information. But at all levels, the provisions for dynamic

changes to authorization for access are a severe complication.

Since no one knows how to build a system without flaws,

the alternative is to rely on eight design principles, which

tend to reduce both the number and the seriousness of any

flaws: Economy of mechanism, fail-safe defaults, complete

mediation, open design, separation of privilege, least privilege,

least common mechanism, and psychological acceptability.

Finally, some protection designs can be evaluated by

comparing the resources of a potential attacker with the work

factor required to defeat the system, and compromise

recording may be a useful strategy.

Technical Underpinnings

The Development Plan

At this point we begin a development of the technical

basis of information protection in modern computer systems.

There are two ways to approach the subject: from the top

down, emphasizing the abstract concepts involved, or from

the bottom up, identifying insights by, studying example

systems. We shall follow the bottom-up approach,

introducing a series of models of systems as they are, (or

could be) built in real life. The reader should understand

that on this point the authors’ judgment differs from that of

some of their colleagues. The top-down approach can be very

satisfactory when a subject is coherent and self-contained,

but for a topic still containing ad hoc strategies and

competing world views, the bottom-up approach seems safer.

Our first model is of a multiuser system that completely

isolates its users from one another. We shall then see how

Computer Operating System

92

the logically perfect walls of that system can be lowered in a

controlled way to allow limited sharing of information

between users.

The mechanics of sharing using two different models:

the capability system and the access control list system. It

then extends these two models to handle the dynamic

situation in which authorizations can change under control

of the programmes running inside the system. Further

extensions to the models control the dynamics. The final

model (only superficially explored) is of protected objects and

protected subsystems, which allow arbitrary modes of

sharing that are unanticipated by the system designer. These

models are not intended so much to explain the particular

systems as they are to explain the underlying concepts of

information protection.

Our emphasis throughout the development is on direct

access to information (for example, using LOAD and STORE

instructions) rather than acquiring information indirectly (as

when calling a data base management system to request

the average value of a set of numbers supposedly not directly

accessible).

Control of such access is the function of the protected

subsystems developed near the end of the paper. Herein lies

perhaps the chief defect of the bottom-up approach, since

conceptually there seems to be no reason to distinguish

direct and indirect access, yet the detailed mechanics are

typically quite different. The beginnings of a top-down

approach based on a message model that avoids

distinguishing between direct and indirect information

access may be found in a paper by Lampson.

Computer Operating System

93

The Essentials of Information Protection

For purposes of discussing protection, the information

stored in a computer system is not a single object. When

one is considering direct access, the information is divided

into mutually exclusive partitions, as specified by its various

creators. Each partition contains a collection of information,

all of which is intended to be protected uniformly. The

uniformity of protection is the same kind of uniformity that

applies to all of the diamonds stored in the same vault: any

person who has a copy of the combination can obtain any of

the diamonds. Thus the collections of information in the

partitions are the fundamental objects to be protected.

Conceptually, then, it is necessary to build an

impenetrable wall around each distinct object that warrants

separate protection, construct a door in the wall through

which access can be obtained, and post a guard at the door

to control its use.

Control of use, however, requires that the guard have

some way of knowing which users are authorized to have

access, and that each user have some reliable way of

identifying himself to the guard. This authority check is

usually implemented by having the guard demand a match

between something he knows and something the prospective

user possesses. Both protection and authentication

mechanisms can be viewed in terms of this general model.

Before extending this model, we pause to consider two

concrete examples, the multiplexing of a single computer

system among several users and the authentication of a

user’s claimed identity. These initial examples are complete

isolation systems—no sharing of information can happen.

Computer Operating System

94

Later we will extend our model of guards and walls in the

discussion of shared information.

An Isolated Virtual Machine

A typical computer consists of a processor, a linearly

addressed memory system, and some collection of input/

output devices associated with the processor. It is relatively

easy to use a single computer to simulate several, each of

which is completely unaware of the existence of the others,

except that each runs more slowly than usual.

Such a simulation is of interest, since during the intervals

when one of the simulated (commonly called virtual)

processors is waiting for an input or output operation to

finish, another virtual processor may be able to progress at

its normal rate. Thus a single processor may be able to take

the place of several. Such a scheme is the essence of a

multiprogramming system.

To allow each virtual processor to be unaware of the

existence of the others, it is essential that some isolation

mechanism be provided.

One such mechanism is a special hardware register called

a descriptor register. In this figure, all memory references by

the processor are checked by an extra piece of hardware

that is interposed in the path to the memory. The descriptor

register controls exactly which part of memory is accessible.

The descriptor register contains two components: a base

value and a bound value.

The base is the lowest numbered address the programme

may use, and the bound is the number of locations beyond

the base that may be used. We will call the value in the

Computer Operating System

95

descriptor register a descriptor, as it describes an object (in

this case, one programme) stored in memory. The programme

controlling the processor has full access to everything in the

base-bound range, by virtue of possession of its one

descriptor. As we go on, we shall embellish the concept of a

descriptor: it is central to most implementations of protection

and of sharing of information.

So far, we have not provided for the dynamics of a

complete protection scheme: we have not discussed who

loads the descriptor register. If any running programme could

load it with any arbitrary value, there would be no protection.

The instruction that loads the descriptor register with a new

descriptor must have some special controls—either on the

values it will load or on who may use it.

It is easier to control who may use the descriptor, and a

common scheme is to introduce an additional bit in the

processor state. This bit is called the privileged state bit. All

attempts to load the descriptor register are checked against

the value of the privileged state bit; the privileged state bit

must be ON for the register to be changed. One programme

runs with the privileged state bit ON, and controls the

simulation of the virtual processors for the other

programmes. All that is needed to make the scheme complete

is to ensure that the privileged state bit cannot be changed

by the user programmes except, perhaps, by an instruction

that simultaneously transfers control to the supervisor

programme at a planned entry location. (In most

implementations, the descriptor register is not used in the

privileged state.)

Computer Operating System

96

Fig. Use of a Descriptor Register to sSimulate Multiple Virtual Machines.
Programme C is in Control of tho Processor. The Privileged State bit has
Value OFF, indicating that Programme C is a User Programme. When

Programme S is Running, the Privileged State bit has Value ON. In this (and
later) Figures, Lower Addresses are Nearer the Bottom of the Figure.

One might expect the supervisor programme to maintain

a table of values of descriptors, one for each virtual processor.

When the privileged state bit is OFF, the index in this table

of the programme currently in control identifies exactly which

programme—and thus which virtual processor—is

accountable for the activity of the real processor. For

protection to be complete, a virtual processor must not be

able to change arbitrarily the values in the table of

descriptors. If we suppose the table to be stored inside the

supervisor programme, it will be inaccessible to the virtual

processors. We have here an example of a common strategy

and sometime cause of confusion: the protection

mechanisms not only protect one user from another, they

may also protect their own implementation. We shall

encounter this strategy again.

So far, this virtual processor implementation contains

three protection mechanisms that we can associate with our

Computer Operating System

97

abstractions. For the first, the information being protected

is the distinct programmes. The guard is represented by the

extra piece of hardware that enforces the descriptor

restriction. The impenetrable wall with a door is the hardware

that forces all references to memory through the descriptor

mechanism. The authority check on a request to access

memory is very simple. The requesting virtual processor is

identified by the base and bound values in the descriptor

register, and the guard checks that the memory location to which

access is requested lies within the indicated area of memory.

The second mechanism protects the contents of the

descriptor register. The wall, door, and guard are

implemented in hardware, as with the first mechanism. An

executing programme requesting to load the descriptor

register is identified by the privileged state bit. If this bit is

OFF, indicating that the requester is a user programme, then

the guard does not allow the register to be loaded. If this bit

is ON, indicating that the requester is the supervisor

programme, then the guard does allow it.

The third mechanism protects the privileged state bit. It

allows an executing programme identified by the privileged

state bit being OFF (a user programme) to perform the single

operation “turn privileged state bit ON and transfer to the

supervisor programme.” An executing programme identified

by the privileged state bit being ON is allowed to turn the

bit OFF. This third mechanism is an embryonic form of the

sophisticated protection mechanisms required to implement

protected subsystems. The supervisor programme is an

example of a protected subsystem, of which more will be

said later.

Computer Operating System

98

The supervisor programme is part of all three protection

mechanisms, for it is responsible for maintaining the integrity

of the identifications manifest in the descriptor register and

the privileged state bit. If the supervisor does not do its job

correctly, virtual processors could become labelled with the

wrong base and bound values, or user programmes could

become labelled with a privileged state bit that is ON, The

supervisor protects itself from the user programmes with

the same isolation hardware that separates users, an

example of the “economy of mechanism” design principle.

With an appropriately sophisticated and careful

supervisor programme, we now have an example of a system

that completely isolates its users from one another. Similarly

isolated permanent storage can be added to such a system

by attaching some longterm storage device (e.g., magnetic

disk) and developing a similar descriptor scheme for its use.

Since long-term storage is accessed less frequently than

primary memory, it is common to implement its descriptor

scheme with the supervisor programmes rather than

hardware, but the principle is the same. Data streams to

input or output devices can be controlled similarly. The

combination of a virtual processor, a memory area, some

data streams, and an isolated region of long-term storage is

known as a virtual machine.

Long-term storage does, however, force us to face one

further issue. Suppose that the virtual machine

communicates with its user through a typewriter terminal.

If a new user approaches a previously unused terminal and

requests to use a virtual machine, which virtual machine

(and, therefore, which set of long-term stored information)

Computer Operating System

99

should he be allowed to use? We may solve this problem

outside the system, by having the supervisor permanently

associate a single virtual machine and its long-term storage

area with a single terminal.

Then, for example, padlocks can control access to the

terminal. If, on the other hand, a more flexible system is

desired, the supervisor programme must be prepared to

associate any terminal with any virtual machine and, as a

result, must be able to verify the identity of the user at a

terminal. Schemes for performing this authentication are

the subject of our next example.

Authentication Mechanisms

Our second example is of an authentication mechanism:

a system that verifies a user’s claimed identity. The

mechanics of this authentication mechanism differ from

those of the protection mechanisms for implementing virtual

machines mainly because not all of the components of the

system are under uniform physical control. In particular,

the user himself and the communication system connecting

his terminal to the computer are components to be viewed

with suspicion.

Conversely, the user needs to verify that he is in

communication with the expected computer system and the

intended virtual machine. Such systems follow our abstract

model of a guard who demands a match between something

he knows and something the requester possesses. The

objects being protected by the authentication mechanism

are the virtual machines. In this case, however, the requester

is a computer system user rather than an executing

Computer Operating System

100

programme, and because of the lack of physical control over

the user and the communication system, the security of the

computer system must depend on either the secrecy or the

unforgeability of the user’s identification. In time-sharing

systems, the most common scheme depends on secrecy. The

user begins by typing the name of the person he claims to

be, and then the system demands that the user type a

password, presumably known only to that person.

There are, of course, many possible elaborations and

embellishments of this basic strategy. In cases where the

typing of the password may be observed, passwords may be

good for only one use, and the user carries a list of

passwords, crossing each one off the list as he uses it.

Passwords may have an expiration date, or usage count, to

limit the length of usefulness of a compromised one. The

list of acceptable passwords is a piece of information that

must be carefully guarded by the system.

In some systems, all passwords are passed through a

hard-to-invert transformation before being stored, an idea

suggested by R. Needham. When the user types his

password, the system transforms it also and compares the

transformed versions. Since the transform is supposed to

be hard to invert (even if the transform itself is well known),

if the stored version of a password is compromised, it may

be very difficult to determine what original password is

involved. It should be noted, however, that “hardness of

inversion” is difficult to measure. The attacker of such a

system does not need to discern the general inversion, only

the particular one applying to some transformed password

he has available.

Computer Operating System

101

Passwords as a general technique have some notorious

defects. The most often mentioned defect lies in choice of

password—if a person chooses his own password, he may

choose something easily guessed by someone else who knows

his habits. In one recent study of some 300 self-chosen

passwords on a typical time-sharing system, more than 50

percent were found to be short enough to guess by exhaustion,

derived from the owner’s name, or something closely

associated with the owner, such as his telephone number or

birth date. For this reason, some systems have programmes

that generate random sequences of letters for use as

passwords.

They may even require that all passwords be system-

generated and changed frequently. On the other hand,

frequently changed random sequences of letters are hard to

memorize, so such systems tend to cause users to make

written copies of their passwords, inviting compromise. One

solution to this problem is to provide a generator of

“pronounceable” random passwords based on digraph or

higher order frequency statistics to make memorization easier.

A second significant defect is that the password must be

exposed to be used. In systems where the terminal is distant

from the computer, the password must be sent through some

communication system, during which passage a wiretapper

may be able to intercept it. An alternative approach to secrecy

is unforgeability.

The user is given a key, or magnetically striped plastic

card, or some other unique and relatively difficult-to-fabricate

object. The terminal has an input device that examines the

object and transmits its unique identifying code to the

Computer Operating System

102

computer system, which treats the code as a password that

need not be kept secret. Proposals have been made for

fingerprint readers and dynamic signature readers in order

to increase the effort required for forgery.

The primary weakness of such schemes is that the hard-

to-fabricate object, after being examined by the specialized

input device, is reduced to a stream of bits to be transmitted

to the computer. Unless the terminal, its object reader, and

its communication lines to the computer are physically

secured against tampering, it is relatively easy for an intruder

to modify the terminal to transmit any sequence of bits he

chooses. It may be necessary to make the acceptable bit

sequences a secret after all. On the other hand, the scheme

is convenient, resists casual misuse, and provides a

conventional form of accountability through the physical

objects used as keys.

A problem common to both the password and the

unforgeable object approach is that they are “one-way”

authentication schemes. They authenticate the user to the

computer system, but not vice-versa. An easy way for an

intruder to penetrate a password system, for example, is to

intercept all communications to and from the terminal and

direct them to another computer—one that is under the

interceptor’s control. This computer can be programmed to

“masquerade,” that is, to act just like the system the caller

intended to use, up to the point of requesting him to type

his password. After receiving the password, the masquerader

gracefully terminates the communication with some

unsurprising error message, and the caller may be unaware

that his password has been stolen. The same attack can be

Computer Operating System

103

used on the unforgeable object system as well. A more

powerful authentication technique is sometimes used to

protect against masquerading. Suppose that a remote

terminal is equipped with enciphering circuitry, such as the

LUCIFER system, that scrambles all signals from that

terminal. Such devices normally are designed so that the

exact encipherment is determined by the value of a key,

known as the encryption ortransformation key.

For example, the transformation key may consist of a

sequence of 1000 binary digits read from a magnetically

striped plastic card. In order that a recipient of such an

enciphered signal may comprehend it, he must have a

deciphering circuit primed with an exact copy of the

transformation key, or else he must cryptanalyse the

scrambled stream to try to discover the key. The strategy of

encipherment/decipherment is usually invoked for the

purpose of providing communications security on an

otherwise unprotected communications system. However, it

can simultaneously be used for authentication, using the

following technique, first published in the unclassified

literature by Feistel.

The user, at a terminal, begins bypassing the enciphering

equipment. He types his name. This name passes,

unenciphered, through the communication system to the

computer. The computer looks up the name, just as with

the password system. Associated with each name, instead

of a secret password, is a secret transformation key. The

computer loads this transformation key into its enciphering

mechanism, turns it on, and attempts to communicate with

the user. Meanwhile, the user has loaded his copy of the

Computer Operating System

104

transformation key into his enciphering mechanism and

turned it on. Now, if the keys are identical, exchange of some

standard hand-shaking sequence will succeed. If they are

not identical, the exchange will fail, and both the user and

the computer system will encounter unintelligible streams

of bits. If the exchange succeeds, the computer system is

certain of the identity of the user, and the user is certain of

the identity of the computer.

The secret used for authentication—the transformation

key—has not been transmitted through the communication

system. If communication fails (because the user is

unauthorized, the system has been replaced by a

masquerader, or an error occurred), each party to the

transaction has immediate warning of a problem.

Relatively complex elaborations of these various strategies

have been implemented, differing both in economics and in

assumptions about the psychology of the prospective user.

For example, Branstad explored in detail strategies of

authentication in multinode computer networks. Such

elaborations, though fascinating to study and analyse, are

diversionary to our main topic of protection mechanisms.

Shared Information

The virtual machines are totally independent, as far as

information accessibility was concerned. Each user might

just as well have his own private computer system. With

the steadily declining costs of computer manufacture there

are few technical reasons not to use a private computer. On

the other hand, for many applications some sharing of

information among users is useful, or even essential. For

Computer Operating System

105

example, there may be a library of commonly used, reliable

programmes. Some users may create new programmes that

other users would like to use. Users may wish to be able to

update a common data base, such as a file of airline seat

reservations or a collection of programmes that implement

a biomedical statistics system. In all these cases, virtual

machines are inadequate, because of the total isolation of

their users from one another. Before extending the virtual

machine example any further, let us return to our abstract

discussion of guards and walls.

Implementations of protection mechanisms that permit

sharing fall into the two general categories described by

Wilkes:

• “List-oriented” implementations, in which the guard

holds a list of identifiers of authorized users, and

the user carries a unique unforgeable identifier that

must appear on the guard’s list for access to be

permitted. A store clerk checking a list of credit

customers is an example of a list-oriented

implementation in practice. The individual might

use his driver’s license as a unique unforgeable

identifier.

• “Ticket-oriented” implementations, in which the guard

holds the description of a single identifier, and each

user has a collection of unforgeable identifiers, or

tickets, corresponding to the objects to which he has

been authorized access. A locked door that opens

with a key is probably the most common example of

a ticket-oriented mechanism; the guard is

implemented as the hardware of the lock, and the

Computer Operating System

106

matching key is the (presumably) unforgeable

authorizing identifier.

Authorization, defined as giving a user access to some

object, is different in these two schemes. In a list-oriented

system, a user is authorized to use an object by having his

name placed on the guard’s list for that object. In a ticket-

oriented system, a user is authorized by giving him a ticket

for the object.

We can also note a crucial mechanical difference between

the two kinds of implementations. The list-oriented

mechanism requires that the guard examine his list at the

time access is requested, which means that some kind of

associative search must accompany the access. On the other

hand, the ticket-oriented mechanism places on the user the

burden of choosing which ticket to present, a task he can

combine with deciding which information to access. The

guard only need compare the presented ticket with his own

expectation before allowing the physical memory access.

Because associative matching tends to be either slower or

more costly than simple comparison, list-oriented

mechanisms are not often used in applications where traffic

is high.

On the other hand, ticket-oriented mechanisms typically

require considerable technology to control forgery of tickets

and to control passing tickets around from one user to

another. As a rule, most real systems contain both kinds of

sharing implementations—a list-oriented system at the

human interface and a ticket-oriented system in the

underlying hardware implementation. This kind of

arrangement is accomplished by providing, at the higher

Computer Operating System

107

level, a list-oriented guard whose only purpose is to hand

out temporary tickets which the lower level (ticket-oriented)

guards will honor. Some added complexity arises from the

need to keep authorizations, as represented in the two

systems, synchronized with each other. Computer protection

systems differ mostly in the extent to which the architecture

of the underlying ticket-oriented system is visible to the user.

Finally, let us consider the degenerate cases of list- and

ticket-oriented systems. In a list-oriented system, if each

guard’s list of authorized users can contain only one entry,

we have a “complete isolation” kind of protection system, in

which no sharing of information among users can take place.

Similarly, in a ticket-oriented system, if there can be only

one ticket for each object in the system, we again have a

“complete isolation” kind of protection system.

Thus the “complete isolation” protection system turns

out to be a particular degenerate case of both the list-oriented

and the ticket-oriented protection implementations. These

observations are important in examining real systems, which

usually consist of interacting protection mechanisms, some

of which are list-oriented, some of which are ticket-oriented,

and some of which provide complete isolation and therefore

may happen to be implemented as degenerate examples of

either of the other two, depending on local circumstances.

We should understand the relationship of a user to these

transactions. We are concerned with protection of

information from programmes that are executing. The user

is the individual who assumes accountability for the actions

of an executing programme. Inside the computer system, a

programme is executed by a virtual processor, so one or more

Computer Operating System

108

virtual processors can be identified with the activities directed

by the user. In a list-oriented system it is the guard’s

business to know whose virtual processor is attempting to

make an access.

The virtual processor has been marked with an

unforgeable label identifying the user accountable for its

actions, and the guard inspects this label when making

access decisions. In a ticket-oriented system, however, the

guard cares only that a virtual processor present the

appropriate unforgeable ticket when attempting an access.

The connection to an accountable user is more diffuse, since

the guard does not know or care how the virtual processor

acquired the tickets. In either case, we conclude that in

addition to the information inside the impenetrable wall,

there are two other things that must be protected: the guard’s

authorization information, and the association between a

user and the unforgeable label or set of tickets associated

with his virtual processors.

Since an association with some user is essential for

establishing accountability for the actions of a virtual

processor, it is useful to introduce an abstraction for that

accountability—theprincipal. A principal is, by definition, the

entity accountable for the activities of a virtual processor.

In the situations discussed so far, the principal corresponds

to the user outside the system. However, there are situations

in which a one-to-one correspondence of individuals with

principals is not adequate. For example, a user may be

accountable for some very valuable information and

authorized to use it. On the other hand, on some occasion

he may wish to use the computer for some purpose unrelated

Computer Operating System

109

to the valuable information. To prevent accidents, he may

wish to identify himself with a different principal, one that

does not have access to the valuable information—following

the principle of least privilege. In this case there is a need

for two different principals corresponding to the same user.

Similarly, one can envision a data base that is to be

modified only if a committee agrees. Thus there might be an

authorized principal that cannot be used by any single

individual; all of the committee members must agree upon

its use simultaneously.

Because the principal represents accountability, that

authorizing access is done in terms of principals. That is, if

one wishes a friend to have access to some file, the

authorization is done by naming a principal only that friend

can use.

For each principal we may identify all the objects in the

system which the principal has been authorized to use. We

will name that set of objects the domain of that principal.

Summarizing, then, a principal is the unforgeable identifier

attached to a virtual processor in a list-oriented system.

When a user first approaches the computer system, that

user must identify the principal to be used. Some

authentication mechanism, such as a request for a secret

password, establishes the user’s right to use that principal.

The authentication mechanism itself may be either list- or

ticket-oriented or of the complete isolation type.

Then a computation is begun in which all the virtual

processors of the computation are labelled with the

identifier of that principal, which is considered accountable

for all further actions of these virtual processors. The

Computer Operating System

110

authentication mechanism has allowed the virtual

processor to enter the domain of that principal. That

description makes apparent the importance of the

authentication mechanism. Clearly, one must carefully

control the conditions under which a virtual processor

enters a domain. Finally, we should note that in a ticket-

oriented system there is no mechanical need to associate an

unforgeable identifier with a virtual processor, since the tickets

themselves are presumed unforgeable. Nevertheless, a

collection of tickets can be considered to be a domain, and

therefore correspond to some principal, even though there

may be no obvious identifier for that principal. Thus

accountability in ticket-oriented systems can be difficult to

pinpoint.

Now we shall return to our example system and extend

it to include sharing. Consider for a moment the problem of

sharing a library programme—say, a mathematical function

subroutine. We could place a copy of the math routine in

the long-term storage area of each virtual machine that had

a use for it.

This scheme, although workable, has several defects.

Most obvious, the multiple copies require multiple storage

spaces. More subtly, the scheme does not respond well to

changes. If a newer, better math routine is written, upgrading

the multiple copies requires effort proportional to the number

of users. These two observations suggest that one would like

to have some scheme to allow different users access to a

single master copy of the programme.

The storage space will be smaller and the communication

of updated versions will be easier. In terms of the virtual

Computer Operating System

111

machine model of our earlier example, we can share a single

copy of the math routine by adding to the real processor a

second descriptor register, placing the math routine

somewhere in memory by itself and placing a descriptor for

it in the second descriptor register.

Following the previous strategy, we assume that the

privileged state bit assures that the supervisor programme

is the only one permitted to load either descriptor register.

In addition, some scheme must be provided in the

architecture of the processor to permit a choice of which

descriptor register is to be used for each address generated

by the processor. A simple scheme would be to let the high-

order address bit select the descriptor register. Thus, all

addresses in the lower half of the address range would be

interpreted relative to descriptor register 1, and addresses

in the upper half of the address range would be relative to

descriptor register 2. An alternate scheme, suggested by

Dennis, is to add explicitly to the format of instruction words

a field that selects the descriptor register intended to be used

with the address in that instruction.

The use of descriptors for sharing information is

intimately related to the addressing architecture of the

processor, a relation that can cause considerable confusion.

The reason why descriptors are of interest for sharing

becomes apparent by comparing parts a and b. When

programme A is in control, it can have access only to itself

and the math routine; similarly, when programme B is in

control, it can have access only to itself and the math

routine. Since neither programme has the power to change

the descriptor register, sharing of the math routine has been

Computer Operating System

112

accomplished while maintaining isolation of programme A

from programme B.

Fig. Sharing of a Math Routine by use of Two Descriptor Registors. (a)
Programme A in Control of Processor. (b) Programme B in Control of

Processor.

The effect of sharing is shown even more graphically

redrawn with two virtual processors, one executing

programme A and the other executing programme B.

Whether or not there are actually two processors is less

important than the existence of the conceptually parallel

access paths. Every virtual processor of the system may be

viewed as having its own real processor, capable of access

to the memory in parallel with that of every other virtual

processor. There may be an underlying processor

multiplexing facility that distributes a few real processors

Computer Operating System

113

among the many virtual processors, but such a multiplexing

facility is essentially unrelated to protection. Recall that a

virtual processor is not permitted to load its own protection

descriptor registers. Instead, it must call or trap to the

supervisor programme S which call or trap causes the

privileged state bit to go ON and thereby permits the

supervisor programme to control the extent of sharing among

virtual processors. The processor multiplexing facility must

be prepared to switch the entire state of the real processor

from one virtual processor to another, including the values

of the protection descriptor registers.

Fig. Redrawn to Show Sharing of a Math Routine by Two Virtual Processors
Simultaneously.

Although the basic mechanism to permit information

sharing is now in place, a remarkable variety of implications

that follow from its introduction require further mechanisms.

These implications include the following.

• If virtual processor P1 can overwrite the shared math

routine, then it could disrupt the work of virtual

processor P2.

• The shared math routine must be careful about

making modifications to itself and about where in

Computer Operating System

114

memory it writes temporary results, since it is to be

used by independent computations, perhaps

simultaneously.

• The scheme needs to be expanded and generalized

to cover the possibility that more than one

programme or data base is to be shared.

• The supervisor needs to be informed about which

principals are authorized to use the shared math

routine (unless it happens to be completely public

with no restrictions).

Let us consider these four implications in order. If the

shared area of memory is a procedure, then to avoid the

possibility that virtual processor P1 will maliciously overwrite

it, we can restrict the methods of access. Virtual processor

P1 needs to retrieve instructions from the area of the shared

procedure, and may need to read out the values of constants

embedded in the programme, but it has no need to write

into any part of the shared procedure. We may accomplish

this restriction by extending the descriptor registers and the

descriptors themselves to includeaccessing permission, an

idea introduced for different reasons in the original

Burroughs B5000 design. For example, we may add two bits,

one controlling permission to read and the other permission

to write in the storage area defined by each descriptor. In

virtual processor P1, descriptor 1 would have both

permissions granted, while descriptor 2 would permit only

reading of data and execution of instructions. An alternative

scheme would be to attach the permission bits directly to

the storage areas containing the shared programme or data.

Such a scheme is less satisfactory because, unlike the

Computer Operating System

115

descriptors so far outlined, permission bits attached to the

data would provide identical access to all processors that

had a descriptor. Although identical access for all users of

the shared math routine might be acceptable, a data base

could not be set up with several users having permission to

read but a few also having permission to write.

Fig. A Descriptor Containing READ and WRITE Permission Bits

The second implication of a shared procedure, mentioned

before, is that the shared procedure must be careful about

where it stores temporary results, since it may be used

simultaneously by several virtual processors. In particular,

it should avoid modifying itself. The enforcement of access

permission by descriptor bits further constrains the

situation. To prevent programme A from writing into the

shared math routine, we have also prohibited the shared

math routine from writing into itself, since the descriptors

do not change when, for example, programme A transfers

control to the math routine. The math routine will find that

it can read but not write into itself, but that it can both read

and write into the area of programme A. Thus programme A

might allocate an area of its own address range for the math

routine to use as temporary storage.

As for the third implication, the need for expansion, we

could generalize our example to permit several distinct

shared items merely by increasing the number of descriptor

registers and informing the supervisor which shared objects

should be addressable by each virtual processor. However,

there are two substantially dif ferent forms of this

Computer Operating System

116

generalization—capability systems and access control list

systems. The capability systems are ticket-oriented, while

access control list systems are list-oriented. Most real

systems use a combination of these two forms, the capability

system for speed and an access control list system for the

human interface. Before we can pursue these

generalizations, and the fourth implication, authorization,

more groundwork must be laid.

The development of protection continues with a series of

successively more sophisticated models. The initial model,

of a capability system, explores the use of encapsulated but

copyable descriptors as tickets to provide a flexible

authorization scheme.

In this context we establish the general rule that

communication external to the computer must precede

dynamic authorization of sharing. The limitations of

copyable descriptors—primarily lack of accountability for

their use—lead to analysis of revocation and the observation

that revocation requires indirection. That observation in

turn leads to the model of access control lists embedded in

indirect objects so as to provide detailed control of

authorization.

The use of access control lists leads to a discussion of

controlling changes to authorizations, there being at least

two models of control methods which differ in their

susceptibility to abuse. Additional control of authorization

changes is needed when releasing sensitive data to a

borrowed programme, and this additional control implies a

nonintuitive constraint on where data may be written by the

borrowed programme. The concept of implementing arbitrary

Computer Operating System

117

abstractions, such as extended types of objects, as

programmes in separate domains.

Research Networking

Research Networking (RN) is about using web-based tools

to discover and use research and scholarly information about

people and resources. Research Networking tools (RN tools)

serve as knowledge management systems for the research

enterprise.

RN tools connect institution-level/enterprise systems,

national research networks, publicly available research data

(e.g., grants and publications), and restricted/proprietary

data by harvesting information from disparate sources into

compiled expertise profiles for faculty, investigators, scholars,

clinicians, community partners, and facilities.

RN tools facilitate the development of new collaborations

and team science to address new or existing research

challenges through the rapid discovery and recommendation

of researchers, expertise, and resources.

RN tools differ from search engines such as Google in

that they access information in databases and other data

not limited to web pages.

They also differ from social networking systems such as

LinkedIn or Facebook in that they represent a compendium

of data ingested from authoritative and verifiable sources

rather than predominantly individually-asserted information,

making RN tools more reliable.

Yet, RN tools have sufficient flexibility to allow for profile

editing. RN tools also provide resources to bolster human

connector systems: they can make non-intuitive matches, they

Computer Operating System

118

do not depend on serendipity, and they do not have a propensity

to return only to previously identified collaborations/

collaborators. RN tools also generally have associated analytical

capabilities that enable evaluation of collaboration and cross-

disciplinary research/scholarly activity, especially over time.

Importantly, data harvested into robust RN tools is accessible

for broad repurposing, especially if available as linked open

data (RDF triples). Thus RN tools enhance research support

activities by providing data for customized, up-to-date web

pages, CV/biosketch generation, and data tables for grant

proposals.

The Developing Trend of Computer Net-
work Management System

Computer network management system is now starting

to enter the application layer. Traditionally, computer

network management system mainly concerned about the

various network equipment, which was in the network layer.

Centered around equipment or equipment assemblage, it

used SNMP to control and manage equipment. Web users

have higher demand on network as well as network

bandwidth.

Some demands concern the transmission of time

sensitive data, such as real-time audio and video, but some

data are not time sensitive. Therefore, considering the limit

current network bandwidth, it is imperative to change the

previous practice of not differentiating service content, but

to provide high quality service to all individual users

according to the service contents, so as to better utilize the

resources of bandwidth. This is called QOS (Quality of

Computer Operating System

119

Services). With this idea, network management starts to move

the controlling force from network layer to application layer.

R1MON2 has tried this way, which was an important change

to network management system. In spite of all the versatile

technologies used in network management system, as a

result of standardization activities and the need for system

interconnection.

Distributed Network Management

The key of distributed object is to solve the problem of cross-

platform connection and interaction, and to realise distributed

application system. The CORBA presented by OMG is quite

an ideal platform. Distributed network management is to set

up multi domain management processes. Domain management

process takes charges of the objects in the domain, and at the

same time, different domains coordinates and interacts with

each other, so as to perform the management of global area

network.

Thus, not only is the load of central network management

reduced, but time lag for transmission of information on

network management is decreased as well, which makes

management more effective. Distributed technologies mainly

have two aspects: one utilizes CORBA, and the other mobile

agent technology. In the near future, centralized distributed

network management model can be used to realise the

functions of centralization and data acquisition distribution.

Integrated Network Management

Integrated network management requires network

management system provide the multitier management

Computer Operating System

120

support. It can keep all the sub networks in perspective

through one operating platform, understanding its operating

businesses, identifying and eliminating failures.

Thus, the multi interlinked networks management is

fulfilled. With network management having become more and

more important, many different network management

systems have emerged, including those that manage SDH

networks and IP networks.

The networks managed by these systems interlinks with

and interdependent on with each other. There are multi

network management systems at the same time. They are

independent, in charge of different parts of the network.

There can even be a few network management systems with

same contents existing concurrently. They come from

different manufacturers, and manage their equipment

respectively, which has greatly made network management

more complex.

Businesses Monitoring

Traditionally, network management aims at network

equipment, and could not directly reflect the impact of

equipment failure on businesses. Up until now, some

network products have realised the monitoring of processes.

However, for some services, even though the services end,

but the processes still exist.

The monitoring of services cannot be clearly shown. For

customers, they are concerned more about the services they

get, such as quantity and quality of programs. Therefore,

the monitoring of services and businesses is the further goal

of management.

Computer Operating System

121

Intelligent Management

It supports strategic management and network

management system self diagnosis and self adjustment.

Network management is the method of managing the tools

that belong to a network and maintaining, administering all

the systems that are connected in the network. For one to

be able to efficiently manage a network that person should

be a qualified network administrator and should have in

depth knowledge of the functionalities of the network and

different topologies of network. There are two aspects in any

network, one is the logical aspect and the other is the

physical level. The network administrator should be good at

both the logical and the physical aspects to be able to

troubleshoot efficiently.

Network Administration Functions

The main task of network administration is to keep the

network running smoothly 24 hours a day. The main

function is to monitor the network constantly and look for

possible trouble, detect and rectify the trouble before the

network gets affected.

The network administration part of the job involves the

resources available on the network and their functioning.

The administrator is required to keep a track of all the

resources available in the network and ensure they are

functioning properly.

Network maintenance part of the job involves installing

updates frequently, updating the service packs for the

network software’s and also applying patches for the routers

when needed. The software and the hardware for the network

Computer Operating System

122

must be constantly monitored for updates and maintained

in order for the network to function properly.

The provisioning part of the job is accommodating extra

resources on the network or upgrading the devices on the

network. Suddenly if an entirely new device is introduced to

the network, the network may stop functioning, so in order

to avoid this the administrator needs to make extra

provisions for possible devices at the beginning itself with

precision.

Network Architecture

The network administrator needs to have a thorough

understanding of the network architecture in order to be

able to troubleshoot when there are problems. Most of the

networks follow a similar architecture and function in the

same way. The network architecture is designed in such a

way that if the normal functioning is disrupted in any way

then the network will send out an e-mail to the

administrator, of any unwanted event, or shutdowns.

Since the administrator is notified of the problem it gets

taken care of immediately. The disaster recovery is also apart

of network planning and management. The network

architecture itself plays a pro-active role in the network by

aiding in the functioning of the network. The other crucial

part of the network is the network protocol. Most networks

use the Simple Network Management Protocol and some

others use the Common Management Information Protocol.

Network Management History

By the time computers gained popularity, the demand

for networks has also been increasing. Companies and people

Computer Operating System

123

started needing systems which would work in an

environment and still required the controls to be in one place.

As and when more devices were introduced it became difficult

to add one individual device for each computer. Companies

needed an easier way of managing the resources. A Network

was the perfect answer; however networks were not easy

and needed advanced working technology.

When the network initially began it was difficult, but

today networks have advanced through software and

topologies and there are many efficient methods to handle

them.

There are many kinds of networks today like cable

networks, wireless networks, digital networks, Satellite

connections and all these networks work on similar network

topologies. Companies use a combination of these networks

for their functionalities. Based on these networks internet

and intra company networks have promoted business to a

large extent.

Fault Management-State of the Art

The terms fault, error and failure have often been

confused. Incorrect interpretation of these terms may

lead to their misuses. Definitions distinguishing them

can be found in Wang’s paper. A fault is a software or

hardware defect in a system that disrupts

communication or degrades performance. An error is the

incorrect output of a system component. If a component

presents an error, we say the component fails. This is a

component failure.

Failure or component failure corresponds to the

production of an error by this component. It is essential that

Computer Operating System

124

we distinguish the terms. The fault is the direct or indirect

cause of the errors. The errors are manifestations of the fault.

The failure is the overall result of the fault. However, if a

component produces errors, we cannot conclude that there

is a fault within the component.

Network faults can be characterised by several aspects

such as their symptoms, propagation (transmission of an

error from a component to another), duration in the network

and severity. Though network faults can be distinguished

through their characteristics, it is worth noting that it is

difficult to measure these properties accurately since they

are subjected to the manner in which they are controlled

and managed. The occurrence of a fault may be detected by

users through symptoms that may be produced by some

network components as a result of error. Fault symptoms

can be associated to four types of error-timing errors, timely

errors, commission errors and omission errors.

These symptoms may take one of the following forms:

• An output with an expected value comes either too

early or too late: This situation is due to a timing

error. It is usually seen by users as a slow response

or a time-out, when their applications are indirectly

influenced by the effects of the faults.

• An output with an unexpected value within the

specified time interval: This situation is due to a timely

error which usually indicates a minor fault in the

applications or underlying software and hardware.

• An output with an unexpected value outside the

specified time interval: This is due to a commission

error. If no response is produced, it is associated with

Computer Operating System

125

an omission error. An omission error can be regarded

as a special case of commission error. A commission

error usually implies a severe fault has occurred in

the network.

If these symptoms are observed, there is a possibility that

a fault has occurred somewhere in the network resulting in

the components to produce erroneous outputs (errors). A

fault in one component may have consequences on other

associated components. Besides failing its own system, it

may produce errors which could be transmitted to other

components and degrade other systems as well. In this way,

a fault in a single component may have global effects on the

network. This phenomenon is referred to as fault

propagation. A fault which occurs in an isolated systems

may not affect other systems because there is no interaction

between them. However, when the isolated systems are

connected together by communications, errors produced by

a fault may travel in a packet to other systems. A component

can fail as a result of faults within it and the erroneous input

produced by faults in other components.

This is one of the major characteristics of network faults.

Media for fault propagation include parameter, data and

traffic. The duration of a network fault, though recognised

as one of its important criteria is somewhat difficult to

measure.

This is due to three reasons. Firstly, a fault will not be

perceived until it produces errors. Secondly, it may take a

long time for a particular fault to be isolated. Finally, the

effects of network faults may not be eliminated automatically

when the faults are removed. They will remain for some time

Computer Operating System

126

until the operation is completely restored. Therefore, network

faults can only be generally divided according to their

duration into three groups: permanent, intermittent and

transient. A permanent fault will exist in the network until

a repair action has been taken.

This results in permanent maximum degradation of the

service. An intermittent fault occurs in a discontinuous and

a periodic manner. Its outcome will be failures in current

processes. This implies maximum degradation of the service

level for a short period of time. A transient fault will

momentarily cause a minor degradation of the service. Faults

of the first type will cause an event report to be sent out

and changes made in the network configuration to prohibit

further utilisation of this resource.

For a fault of the second type, the severity of the fault

may transfer from being intermittent to being permanent if

an excessive occurrence of this kind of fault becomes

significant. Finally, a transient fault will usually be masked

by the error recovery procedures of network protocols and

therefore may not be observed by the users. It is fundamental

for a designer of a fault management system to have

knowledge of fault characteristics. This is because not all

faults will have the same priority. The fault management

system designer will have to decide which faults must be

managed.

Fault Management Process

Recent literature suggests that a comprehensive fault

management system is composed of monitoring, reporting,

logging, trouble ticketing, filtering, correlating, diagnosis and

recovery activities. The domain in which the fault

Computer Operating System

127

management system will operate. For the purpose, we have

chosen to divide the activities associated with fault

management into four major categories, namely detection,

isolation, correction and administration. Error detection

provides the capability to recognise faults. It consists of

monitoring and reporting activities. Information provided by

monitoring devices must be current, timely, accurate,

relevant and complete. Reporting activity include

investigation of critical criteria which require notification and

a mechanism for report generation. It also involves

determining appropriate destination for sending notifications.

Its purpose is to isolate the actual fault, given a number

of possible hypotheses of faults. Testing may be the most

appropriate way of isolating the fault at this stage. Isolation

comprises four activities: filtration, interpretation, correlation

and diagnosis. Filtration involves analysing management

information in order to identify new faults or if the fault has

occurred before, to update its count.

Filtration discards management information notifications

that are of no significance and routes applicable notifications

to their appropriate destinations within the system.

Important information contained in the event reports must

be extracted. Here the nature, structure and significance of

the event report are examined.

Important information such as the name of the event

report which normally represents the predefined condition

that was met and triggers the generation of the event report

itself. Other useful information is the time when the event

report was generated. This information is important when

performing correlation activity so that we may distinguish

Computer Operating System

128

which events are related, and which are not. Correlation

proves to be helpful, when two or more notifications received

are actually due to a single fault. Through correlation, some

faults may be indirectly detected.

Hypotheses can be drawn from alarm correlation giving

possible causes of fault. The objective of the diagnosis process

is to isolate the cause of a fault down to a network resource.

Given a set of probable causes, the diagnosis process is

carried out. It involves identification and analysis of problems

by gathering, examining and testing the symptoms,

information and facts.

Once isolated, the effect of the fault must be minimized

through bypass and recovery, and permanent repair

instituted. Where applicable, steps must be taken to ensure

that problems do not recur. This procedure consists of three

activities: reconfiguration, recovery and restoration.

Reconfiguration or bypassing involves activating

redundant resources specifically assigned to backup critical

entities, suspending services, or re-allocating resources to

more important uses. The objective is to reduce the

immediate impact of the failure.

This function may be in a mixture of manual, semi-auto

and automatic procedures. It may be possible for a fault to

recover before any reconfiguration attempt is made. This

depends on the nature of the failure, the criticality of the

service and the expected time required to recover/

reconfigure. Once a fault has been rectified, the repair needs

to be tested and the entity returned to service. This needs

to be scheduled at an appropriate time and depends on the

expected service disruption in doing so.

Computer Operating System

129

Fault administration service ensures that faults are not

lost or neglected, but they are solved in a timeous fashion.

This involves monitoring fault records, maintaining an

archive of fault information, analysing trends, tracking costs,

educating personnel and enforcing company policy with

regards to problem resolution. It consists of three activities:

logging, tracking and trend analysis. Logging maintains a

log of event reports on faults that have occurred in the

network.

This will be used for trend analysis, reporting and future

diagnosis of the same type of or similar failures. Tracking

keeps track of existing problems and persons responsible

for and/or working on each one, facilitates communication

between problem solving entities and prevents duplicate

problem solving efforts.

This includes prioritisation of open faults due to their

severity, and escalation of fault isolation or correction

processes based on duration and severity of the faults. The

current open fault records need to be ordered according to

a priority scheme such that the most costly, or potentially

costly failures are timeously resolved.

The whole activities may be accomplished using a trouble

ticket system. Important information includes the frequency

of occurrence of a particular failure and how much down

time the various users are experiencing. Trends may indicate

a need to redesign areas of the communication environment,

replace inferior equipment, enhance problem solving

expertise, acquire new problem solving tools, improve

problem solving procedures, improve education, renegotiate

service level agreements. In this project, all activities in fault

Computer Operating System

130

detection and isolation procedures and some aspects in

recovery and administration procedures are implemented.

Typical Problems

One of the most critical problem associated with fault

monitoring as given by Dupuy and Stallings is unobservable

faults. In this situation, certain faults are inherently

unobservable through local observation. For example, the

existence of a deadlock between co-operating distributed

processes may not be observable locally. Other faults may

not be observable because the vendor equipment is not

instrumented to record the occurrence of a fault.

Other problems are defined by Fried and Tjong as follows.

Too many related observation: A single failure can affect many

active communication paths. The failure of a WAN back-bone

will affect all active communication between the token-ring

stations and stations on the Ethernet LANs, as well as voice

communication between the PBXs.

Furthermore, a failure in one layer of the communications

architecture can cause degradation or failures in all the

dependent higher layers. This kind of failure is an example

of propagation of failures. Because a single failure may

generate many secondary failures, they may occur around

the same time and may often obscure the single underlying

problem.

Absence of automated testing tools: Testing to isolate

faults is difficult, expensive and time consuming. It requires

significant expertise in device behaviours and tools to pursue

testing. Even such a simple task as tracing the progressions

of packets along a virtual circuit is typically impossible to

Computer Operating System

131

accomplish. This leads to empirical rules of operation as “the

only way to test if a virtual circuit is up, is to take it down”.

The process of recovery typically involves a combination

of automatic local resetting combined with manual activation

of recovery procedures. Recovery presents a number of

interesting technical challenges. Which include automatic

recovery as a source of fault: Since most network devices or

processes are designed to recover automatically from local

failures, this can also be a source of faults. The problem in

fault administration is the maintenance of fault reports log

which has been made dif ficult due to the lack of

functionalities for creating or deleting records. The logging

facility is usually performed in a static manner, where logging

characteristics are stagnant. Therefore, some important fault

occurrences are unable to be recorded. If log attribute values

can be changed, the logging behaviour may also be altered.

FMS: A Fault Management System Based on the
OSI Standards

In order to overcome the problems, we have designed and

implemented FMS. It offers three types of fault management

applications as depicted namely the Fault Maintenance

Application (FMA), the Log Maintenance Application (LMA),

and the Diagnostic Test

Application (DTA). These fault management applications

work together with the OSI Agent to perform fault

management tasks on the network resources. The OSI Agent

serves as a fault-monitoring agent. It has the capability to

independently report errors to FMA. It can also issue a report

when a monitored variable crosses a threshold. This allows

Computer Operating System

132

the FMS to anticipate faults. In addition, it maintains a log

of events. These logs can be accessed and manipulated by

LMA. DTA provides a set of diagnostic tests which may be

invoked by the user. This facility is beneficial to the network

administrator whenever there is any suspicion that some of

the resources are not functioning as desired.

The paragraphs that follow explain how these facilities

help in increasing fault management efficiency. The FMA

solves the problems of unobservable fault due to ill-equipped

vendor equipment to record the occurrence of a fault. This

is done by monitoring the real resource critical properties

and when significant events involving these properties occur,

these events are reported to FMA so that further investigation

is initiated.

FMA acts upon the receipt of these events by performing

other fault management processes on them. These processes

include event interpretation and filtration, event correlation,

invocation of predefined diagnostic tests and initiating

recovery process. Event or alarm correlation is used by the

FMA to solve the problems of too many related observation.

In addition, the reporting criteria is designed to be reasonably

tight to reduce the volume of alarms received by the FMA.

In accomplishing this objective, only events that require

attention are reported.

Thus, in the FMS implementation, event reports are equal

to alarms. Nevertheless, the objective to anticipate failure is

neither neglected nor sacrificed. Hence, a number of

managed objects are designed to issue event reports when

the monitored attributes cross thresholds. Automated testing

is provided in FMA by scheduling the execution of predefined

Computer Operating System

133

diagnostic tests for every event report that is received, so

that the source of failure becomes apparent.

Subsequently, recovery action pertaining to the diagnosis

is carried out automatically. On the other hand, the DTA

provides a function that allows diagnostic tests to be invoked

by the user. This facility proves to be beneficial to the

experienced user who wants to skip trivial tests and choose

only specific ones.

This results in lower consumption of the network

resources for the purpose of management. The lack of

adequate tools for systematic auditing is overcome by the

supports provided by the LMA. The LMA has the capability

to initiate error condition (events) logging. Furthermore, the

LMA can access these logs and control logging behaviour by

setting their log attribute values. Other supports include

facilities for deleting logs and log records, and reviewing

events (by reviewing log records) for diagnostic purpose or

trend analysis.

Monolithic Versus Microkernel Network Op-
erating System Designs

In the network world, both monolithic and microkernel

designs can be used with success.

However, the ever-growing requirements for a system

kernel quickly turn any classic implementation into a

compromise. Most notably, the capability to support a real-

time forwarding plane along with stateful and stateless

forwarding models and extensive state replication requires

a mix of features not available from any existing monolithic

or microkernel OS implementation.

Computer Operating System

134

This lack can be overcome in two ways.

First, a network OS can be constrained to a limited class

of products by design. For instance, if the OS is not intended

for mid- to low-level routing platforms, some requirements

can be lifted. The same can be done for flow-based forwarding

devices, such as security appliances. This artificial restriction

allows the network operating systems to stay closer to their

general-purpose siblings—at the cost of fracturing the

product lineup. Different network element classes will now

have to maintain their own operating systems, along with

unique code bases and protocol stacks, which may negatively

affect code maturity and customer experience.

Second, the network OS can evolve into a specialized

design that combines the architecture and advantages of

multiple classic implementations.

This custom kernel architecture is a more ambitious

development goal because the network OS gets further away

from the donor OS, but the end result can offer the benefits

of feature consistency, code maturity, and operating

experience. This is the design path that Juniper selected for

Junos OS.

Junos OS Kernel

According to the formal criteria, the Junos OS kernel is

fully customizable. At the very top is a portion of code that

can be considered a microkernel. It is responsible for real-

time packet operations and memory management, as well

as interrupts and CPU resources. One level below it is a more

conventional kernel that contains a scheduler, memory

manager and device drivers in a package that looks more

like a monolithic design.

Computer Operating System

135

Finally, there are user-level (POSIX) processes that

actually serve the kernel and implement functions normally

residing inside the kernels of classic monolithic router

operating systems. Some of these processes can be

compound or run on external CPUs (or packet forwarding

engines). In Junos OS, examples include periodic hello

management, kernel state replication, and protected system

domains (PSDs).

The entire structure is strictly hierarchical, with no

underlying layers dependent on the operations of the top

layers.

This high degree of virtualization allows the Junos OS

kernel to be both fast and flexible.

However, even the most advanced kernel structure is not

a revenue-generating asset of the network element.

Uptime is the only measurable metric of system stability

and quality. This is why the fundamental difference between

the Junos OS kernel and competing designs lies in the focus

on reliability.

Coupled with Juniper’s industry-leading nonstop active

routing and system upgrade implementation, kernel state

replication acts as the cornerstone for continuous operation.

In fact, the Junos OS redundancy scheme is designed to

protect data plane stability and routing protocol adjacencies

at the same time. With in-service software upgrade, networks

powered by Junos OS are becoming immune to the downtime

related to the introduction of new features or bug fixes,

enabling them to approach true continuous operation.

Continuous operation demands that the integrity of the

control and forwarding planes remains intact in the event

Computer Operating System

136

of failover or system upgrades, including minor and major

release changes. Devices running Junos OS will not miss or

delay any routing updates when either a failure or a planned

upgrade event occurs.

This goal of continuous operation under all

circumstances and during maintenance tasks is ambitious,

and it reflects Juniper’s innovation and network expertise,

which is unique among network vendors.

Process Scheduling in Junos OS

Innovation in Junos OS does not stop at the kernel level;

rather, it extends to all aspects of system operation.

As mentioned before, there are two tiers of schedulers in

Junos OS, the topmost becoming active in systems with a

software data plane to ensure the real-time handling of

incoming packets. It operates in real time and ensures that

quality of service (QoS) requirements are met in the

forwarding path.

The second-tier (non-real-time) scheduler resides in the

base Junos OS kernel and is similar to its FreeBSD

counterpart. It is responsible for scheduling system and user

processes in a system to enable preemptive multitasking.

In addition, a third-tier scheduler exists within some

multithreaded user-level processes, where threads operate

in a cooperative, multitasking model. When a compound

process gets the CPU share, it may treat it like a virtual

CPU, with threads taking and leaving the processor according

to their execution flow and the sequence of atomic operations.

This approach allows closely coupled threads to run in a

cooperatively multitasking environment and avoid being

entangled in extensive IPC and resource-locking activities.

Computer Operating System

137

The UNIX System

The UNIX system has been around for a long time, and

many people may remember it as it existed in the previous

decades. Many IT professionals who encountered UNIX

systems in the past found it uncompromising. While its

power was impressive, its command-line interface required

technical competence, its syntax was not intuitive, and its

interface was unfriendly.

Moreover, in the UNIX system's early days, security was

virtually nonexistent. Subsequently, the UNIX system

became the first operating system to suffer attacks mounted

over the nascent Internet. As the UNIX system matured,

however, the organization of security shifted from centralized

to distributed authentication and authorization systems.

Now, a single Graphical User Interface is shipped and

supported by all major vendors has replaced command-line

syntax, and security systems, up to and including B1,

provide appropriate controls over access to the UNIX system.

The Value of Standards

The UNIX system's increasing popularity spawned the

development of a number of variations of the UNIX operating

system in the 1980s, and the existence of these caused a

mid-life crisis. Standardization had progressed slowly and

methodically in domains such as telecommunications and

third-generation languages; yet no one had addressed

standards at the operating system level. For suppliers, the

thought of a uniform operating environment was

disconcerting. Consumer lock-in was woven tightly into the

fabric of the industry. Individual consumers, particularly

Computer Operating System

138

those with UNIX system experience, envisioned standardized

environments, but had no way to pull the market in their

direction.

However, for one category of consumer-governments-the

standardization of the UNIX system was both desirable and

within reach. Governments have clout and are the largest

consumers of information technology products and services

in the world. Driven by the need to improve commonality,

both US and European governments endorsed a shift to the

UNIX system.

The Institute of Electrical and Electronic Engineers POSIX

family of standards, along with standards from ISO, ANSI

and others, led the way. Consortia such as the X/Open

Company (merged with the Open Software Foundation in

1995 to form The Open Group) hammered out draft

standards to accelerate the process.

In 1994, the definitive specification of what constitutes

a UNIX system was finalized through X/Open Company's

consensus process. The Single UNIX Specification was born-

not from a theoretical, ivory tower approach, but by analysing

the applications that were in use in businesses across the

world. With the active support of government and commercial

buyers alike, vendors began to converge on products that

implement the Single UNIX Specification, and now all major

vendors have products labeled UNIX 95, which indicates that

the vendor guarantees that the product conforms to the

Single UNIX Specification.

Vendors continue to add value to the UNIX system,

particularly in areas of new technology, however that value

will always be built upon a single, consensus standard.

Computer Operating System

139

Meanwhile, the functionality of the UNIX system was

established and the mid-life crisis was resolved. Suppliers

today provide UNIX systems that are built upon a single,

consensus standard. It is also important to remember that

even when variance among UNIX systems was at its worst, IT

professionals agreed that migration among UNIX system

variants was far easier than migration among the proprietary

alternatives.

Now with UNIX 95 branded products available from all

major systems vendors, the buyer can for the first time buy

systems from different manufacturers, safe in the knowledge

that each one is guaranteed to implement the complete

functionality of the Single UNIX Specification and will

continue to do so. UNIX system suppliers can assure

customers that they own a standards-based system by

registering them to use the Open Brand. Below is a list of

suppliers who give users this guarantee.

UNIX and Windows NT

It is common these days to read analysts' accounts and

IS professionals' experiences that compare and contrast the

UNIX system with Microsoft Corporation's latest operating

system, called Windows NT. Opinions vary, of course, but a

number of common themes have emerged. The key

differences between these operating environments are as

follows: The UNIX system today is more robust, reliable and

scalable. Analysts say this observation, which is widely

reported from many different viewpoints, makes practical

sense. Engineers at Microsoft are retracing the steps that

the UNIX system has completed. How else could it be?

Computer Operating System

140

In sharp contrast to the open standards that define the

UNIX system, Windows NT technology remains fiercely

proprietary. Microsoft remains ambivalent to the world of

standards. Choosing NT entangles customers with

nonstandard utilities, directories, and software tools that do

not conform to any de jure or consensus standards. The

UNIX system today is available on a wide spectrum of

computer hardware.

Particularly when high performance is at issue, hardware

suppliers suggest the UNIX system, rather than Windows

NT. The primary appeal of NT is for low-end, office-centered,

departmental applications. Unit shipment growth rates for

Windows NT exceed the rates for the UNIX system, which is

to be expected for a new product. However, revenue growth

in UNIX systems sales is much higher than NT. It is

reasonable to expect Windows NT to take a share in the

operating systems market, along with other more specialized

operating systems. There is no evidence today to indicate

that NT will be dominant; in fact, most IT professionals

predict that it will not.

Windows NT Server 4.0 is still not a full-function server

operating system. While it does support multi-user

computing via third-party add-on tools, it lacks certain

fundamental features that the UNIX system is known for

providing, such as directory services for managing user

access and peripherals over a distributed enterprise network.

The presence of the UNIX system in the marketplace has

been good for Windows NT. The UNIX system established

the market for cross-platform client and server operating

environments that NT seeks to address. In turn, NT will

Computer Operating System

141

improve the market for UNIX systems in the future. That is,

competition among UNIX system providers will be enhanced

by competition with NT. The choice between open and

proprietary products will be quite crisp.

Today's UNIX System

The key to the continuing growth of the UNIX system is

the free-market demands placed upon suppliers who produce

and support software built to public standards. The "open

systems" approach is in bold contrast to other operating

environments that lock in their customers with high

switching costs. UNIX system suppliers, on the other hand,

must constantly provide the highest quality systems in order

to retain their customers. Those who become dissatisfied

with one UNIX system implementation retain the ability to

easily move to another UNIX system implementation.

The continuing success of the UNIX system should come

as no surprise. No other operating environment enjoys the

support of every major system supplier. Mention the UNIX

system and IT professionals immediately think not only of

the operating system itself, but also of the large family of

hardware and application software that the UNIX system

supports. In the IT marketplace, the UNIX system has been

the catalyst for sweeping changes that have empowered

consumers to seek the best-of-breed without the arbitrary

constraints imposed by proprietary environments. The

market's pull for the UNIX system was amplified by other

events as well. The availability of relational database

management systems, the shift to the client/server

architecture, and the introduction of low-cost UNIX system

Computer Operating System

142

servers together set the stage for business applications to

flourish. For client/server systems, the networking strengths

of the UNIX system shine. Standardized relational database

engines delivered on low-cost high-performance UNIX system

servers offered substantial cost savings over proprietary

alternatives.

UNIX System Existence

There is every reason to believe that the UNIX system

will continue to be the platform of choice for innovative

development. In the near term, for example, UNIX system

vendors will define the scope of Java and provide the

distributed computing environment into which the Network

Computer terminal will fit and enable it to thrive and grow.

How will Java and the Network Computer terminal

manifest themselves? The exact answer is unknown;

however, in open computing, the process for finding that

answer is well understood. The UNIX system community has

set aside (via consensus standards) the wasteful task of

developing arbitrary dif ferences among computing

environments. Rather than building proprietary traps, this

community is actively seeking ways to add value to the UNIX

system with improved scalability, reliability, price/

performance, and customer service. Java and the Network

Computer terminal offer several potential advantages for

consumers. One key advantage is a smaller, lighter,

standards-based client. A second advantage is a specification

that is not controlled by one company, but is developed to

the benefit of all by an open, consensus process. Thirdly,

greater code reuse and a component software market based

Computer Operating System

143

on Object technology, such as CORBA and Java. All of these

options and more are being deployed first by members of

the UNIX system community.

Industrial Strength UNIX System

Today's UNIX system is robust, scalable, and it continues

to provide uniform access to a wide variety of computing

hardware. For these reasons the UNIX system continues to

be the operating system of choice for mission-critical

systems. The UNIX system is the key enabler for enterprises

that wish to keep switching costs as low as possible. That

is, the UNIX system remains the only open alternative to

locking in on a proprietary operating system.

Scalability is here today, enabling application to run on

small-scale systems through to the largest servers necessary.

The UNIX system is available on hardware ranging from low-

cost PC-class servers on through parallel architectures that

harness together 60 or more processors. This range is wider

and the choices of hardware more cost effective than any

other system. The UNIX system is the only option for

Massively Parallel Processing (MPP).

A robust operating system is tough enough to perform

successfully under a variety of different operating conditions.

By virtue of its worldwide deployment by an international

community of system vendors, the UNIX system has earned

the reputation for robustness. Uniform operating system

services are at the heart of the standardized UNIX system.

Many enterprise systems are assembled with hardware from

several different sources. Atop these different hardware

platforms, the UNIX operating system provides a uniform

Computer Operating System

144

platform for database management systems and application

software. The market for the UNIX system continues to

expand.

IDC estimates the market at US$ 39 billion in 1996 and

forecasts the market to be US$ 50 billion in the year 2000.

In addition, the installed base of the UNIX system has an

estimated value of US$ 122 billion. These market estimates

lead to several conclusions about the UNIX system, as

follows: An annual market of US$ 39 billion is large enough

to remain attractive to many suppliers and to provide

sufficient revenue to fund continuing high levels of

investment in support and product enhancement.

The UNIX system's growth rates, which appear modest

in comparison to the unit shipment growth of newer

products, are anchored by an enormous installed base. High

unit shipment growth rates are typical of new entries in a

marketplace. In key benchmarks and mission-critical

applications, the UNIX system consistently performs better.

The UNIX system is the dominant software platform for

Relational Database Management Systems. Investment in

developing and enhancing UNIX system products is

significantly larger than in any other operating

environment.

Single UNIX Specification

Today, The Open Group's UNIX 95 brand may be applied

to any operating system product that is guaranteed to meet

the Single UNIX Specification. The Single UNIX Specification

is designed to give software developers a single set of APIs

to be supported by every UNIX system. The most significant

Computer Operating System

145

consequence of the Single UNIX Specification initiative is

that it shifts the focus of attention away from incompatible

UNIX system product implementations on to compliance

with a single, agreed-upon set of APIs. If an operating

system meets the specification, and commonly available

applications can run on it, then it can reliable viewed as

open.

So, the future looks as though it will be about a set of

sturdy and dependable specifications standing as a firm

foundation upon which many competing product

implementations will be built.

By developing a single specification for the UNIX system,

The Open Group and the computer industry have completed

the foundation of open systems. The next version of the Single

UNIX Specification, known as Version 2 was announced in

March 1997. Products guaranteed to conform to this

specification will carry the label UNIX 98.

Single UNIX Specification

The Single UNIX Specification, Version 2 contains the

following enhancements:

• Year 2000 Alignment-changes to minimize the impact

of the Millennium Rollover.

• Threads: POSIX 1003.1c-1995. The Threads

extensions permit development of applications to

make significant performance gains on multiprocessor

hardware.

• Large File Summit extensions to permit UNIX systems

to support files of arbitrary sizes, this is of particular

relevance to database applications.

Computer Operating System

146

• Networking Services: The specifications are aligned

with the POSIX 1003.1g standard.

• MSE: The Multibyte Support Extension is now aligned

with ISO C amendment 1, 1995.

• Dynamic linking extensions to permit applications to

share common code across many applications, and

ease maintenance of bug fixes and performance

enhancements for applications.

• N-bit cleanup (64 bit and beyond), to remove any

architectural dependencies in the Single UNIX

Specification. This is of particular relevance with the

ongoing move to 64 bit CPUs.

• The real-time extensions are an optional feature

group, allowing procurement of X/Open real-time

systems with predictable, bounded behaviour.

• Inclusion of the existing specifications for the

graphical user interface, CDE as an option in the

UNIX 98 brand.

Benefits for Application Developers

• Improved portability.

• Faster development through the increased number

of standard interfaces.

• More innovation is possible, due to the reduced time

spent porting applications.

Benefits for Users

The Single UNIX Specification will evolve and develop in

response to market needs protecting users investment in

existing systems and applications. The availability of the

Computer Operating System

147

UNIX system from multiple suppliers gives users freedom of

choice rather than being locked in to a single supplier. And

the wide range of applications-built on the UNIX system's

strengths of scalability, availability and reliability-ensure that

mission critical business needs can be met.

Computer Operating System

148

5

Windows Operating System

Microsoft first started developing the Interface Manager

(later renamed Microsoft Windows) in September 1981. While

the first prototypes used Multiplan and Word-like menus

at the bottom of the screen, the interface was modified in

1982 to utilize pull-down menus and dialogues, as used on

the Xerox Star.

On November 10, 1983, at the Plaza Hotel in New York

City, Microsoft Corporation officially announced Microsoft

Windows, a next-generation operating system that would

supply a graphical user interface (GUI) and a multitasking

environment for IBM computers.

This was after the release of the Apple Lisa, and prior

to Digital Research announcing GEM, and DESQ from

Quarterdeck and the Amiga Workbench , or GEOS/GeoWorks

Ensemble, IBM OS/2, NeXTstep or even DeskMate from

Computer Operating System

149

Tandy. Windows assured an easy-to-use graphical interface,

device-independent graphics and multitasking support. The

development was held up several times, however, and the

Windows 1.0 arrive at store shelves in November 1985. The

selection of applications was thin, however, and Windows

sales were moderate.

Windows 1.0 package, included: MS-DOS Executive,

Calendar, Cardfile, Notepad, Terminal, Calculator, Clock,

Reversi, Control Panel, PIF (Programme Information File)

Editor, Print Spooler, Clipboard, RAMDrive, Windows Write,

Windows Paint.

Microsoft Windows version 1.0 was viewed as buggy,

rough, and sluggish. This bumpy start was made sorrier by

a threatened lawsuit from Apple Computers. In September

1985, Apple lawyers warned Bill Gates that Windows 1.0

infringed on Apple copyrights and patents, and that his

corporation had stolen Apple’s trade secrets.

Microsoft Windows had similar drop-down menus, tiled

windows and mouse support. Bill Gates and his head counsel

Bill Neukom, chose to make an offer to license features of

Apple’s operating system. Apple concurred and a contract

was drawn up.

The key to this is: Microsoft wrote the licensing agreement

to include use of Apple features in Microsoft Windows version

1.0 and all future Microsoft software programmes. As it

turned out, this move by Bill Gates was as intelligent as

his decision to purchase QDOS from Seattle Computer

Products and his persuading IBM to let Microsoft keep the

licensing rights to MS-DOS.

Computer Operating System

150

Windows 1.0 fluttered on the market until January 1987,

when a Windows-compatible programme called Aldus

PageMaker 1.0 was brought out. PageMaker was the first

WYSIWYG desktop-publishing programme for the PC. Later

that year, Microsoft released a Windows-compatible

spreadsheet called Excel.

Other popular and functional software like Microsoft

Word and Corel Draw helped advance Windows, yet, Microsoft

recognized that Windows required further development.

Microsoft Windows version 2.0 came out in December 1987,

and evidenced somewhat more popular than its predecessor.

A great deal of the popularity for Windows 2.0 came through

its inclusion as a “run-time version” with Microsoft’s new

graphical applications, Excel and Word for Windows.

They could be operated from MS-DOS, executing Windows

for the length of their activity, and shutting down Windows

upon exit.

Microsoft Windows incurred a major boost about this

time when Aldus PageMaker came out in a Windows version,

having previously run exclusively on Macintosh. Some

computer historians date this, the introduction of a

significant and non-Microsoft application for Windows, as

the start of the success of Windows.

Versions 2.0x used the real-mode memory model, which

held it to a maximum of 1 megabyte of memory. In such

a form, it could run under a different multitasker like

DESQview, which used the 286 Protected Mode.

Subsequently, two new versions were published: Windows/

286 2.1 and Windows/386 2.1.Like preceding versions of

Computer Operating System

151

Windows, Windows/286 2.1 used the real-mode memory

model, but was the first version to support the HMA.

Windows/386 2.1 had a protected mode kernel with

LIM-standard EMS emulation, the predecessor to XMS which

would at last shift the topology of IBM PC computing. All

Windows and DOS-based applications at the time were real

mode, running over the protected mode kernel by using the

virtual 8086 mode, which was new with the 80386 processor.

After Versions 2.0 and beyond were released, Apple began

filing suit against IBM for various copyright infringements.

In their defence, Microsoft claimed that their licensing

agreement actually afforded them the rights to use Apple

features.

Apple claimed that Microsoft had encroached on 170 of

their copyrights. After a four-year court case, Microsoft

won. The courts stated that the licensing agreement gave

Microsoft the rights to use all but nine of the copyrights,

and Microsoft later convinced the courts that the other nine

copyrights shouldn’t be covered by copyright law. Bill Gates

asserted that Apple had acquired ideas from the graphical

user interface developed by Xerox for Xerox’s Alto and Star

computers.

On June 1, 1993, Judge Vaughn R. Walker of the U.S.

District Court of Northern California ruled in Microsoft’s

favour in the Apple vs. Microsoft & Hewlett-Packard copyright

suit. The judge granted Microsoft’s and Hewlett-Packard’s

motions to dismiss the last remaining copyright infringement

claims against Microsoft Windows versions 2.03 and 3.0,

as well as HP NewWave.

Computer Operating System

152

What would have occurred if Microsoft had lost the

lawsuit? Microsoft Windows might never have become the

predominant operating system that it is today.

Features

Some individuals with disabilities require assistive

technology (AT) in order to access computers. Hundreds of

Windows AT third-party products are available, making it

possible for almost anyone to use Windows® applications,

regardless of their disabilities. The Microsoft® Windows®

operating systems also provides a core set of basic

accessibility features and AT applications, which can be

deployed on all computers in a computer lab or classroom

without additional cost. These applications provide students

with basic accessibility features from any workstation,

maximizing the inclusiveness of the learning environment.

It should be noted that the AT applications that are

bundled with Windows provide only a minimum level of

accessibility, not the full set of features that many users

require for equal access to the operating system, educational

programmes, and other software applications. Therefore,

many educational entities deploy the standard set of Windows

AT on all workstations by default, but addditionally 1)

provide a small number of dedicated workstations that are

equipped with commonly requested third party AT, and 2)

are prepared to purchase and install additional AT as needed

by specific students.

It should also be noted that the availability of AT does

not itself guarantee accessibility. Software applications must

be designed in a way that is compatible with AT and other

Computer Operating System

153

accessibility features of the operating system. The following

is a list of basic accessibility features that are included with

Windows XP. Previous versions of Windows also included

several of these same features.

Display and Readability

These features are designed to increase the visibility of

items on the screen.

• Font style, colour, and size of items on the desktop—

using the Display options, choose font colour, size and

style combinations.

• Icon size—make icons larger for visibility, or smaller

for increased screen space.

• Screen resolution—change pixel count to enlarge

objects on screen.

• High contrast schemes—select colour combinations

that are easier to see.

• Cursor width and blink rate—make the cursor easier

to locate, or eliminate the distraction of its blinking.

• Microsoft Magnifier—enlarge portion of screen for better

visibility.

Sounds and Speech

These features are designed to make computer sounds

easier to hear or distinguish - or, visual alternatives to

sound. Speech-to-text options are also available.

• Sound Volume: Turn computer sound up or down.

• Sound Schemes: Associate computer sounds with

particular system events.

• ShowSounds: Display captions for speech and sounds.

Computer Operating System

154

• SoundSentry: Display visual warnings for system

sounds.

• Notification: Get sound or visual cues when accessibility

features are turned on or off.

• Text-to-Speech: Hear window command options and

text read aloud.

Keyboard and Mouse

These features are designed to make the keyboard and

mouse faster and easier to use.

Mouse Options:

• Double-Click Speed: Choose how fast to click the mouse

button to make a selection.

• ClickLock: Highlight or drag without holding down the

mouse button.

• Pointer Speed: Set how fast the mouse pointer moves

on screen.

• SnapTo: Move the pointer to the default button in a

dialog box.

• Cursor Blink Rate: Choose how fast the cursor blinks—

or, if it blinks at all.

• Pointer Trails: Follow the pointer motion on screen.

• Hide Pointer While Typing: Keep pointer from hiding

text while typing.

• Show Location of Pointer: Quickly reveal the pointer

on screen.

• Reverse the function of the right and left mouse buttons:

Reverse actions controlled by the right and left mouse

buttons.

Computer Operating System

155

• Pointer schemes: Choose size and colour options for

better visibility.

Keyboard Options

• Character Repeat Rate: Set how quickly a character

repeats when a key is struck.

• Dvorak Keyboard Layout: Choose alternative keyboard

layouts for people who type with one hand or finger.

• Sticky Keys: Allow pressing one key at a time (rather

than simultaneously) for key combinations.

• Filter Keys: Ignore brief or repeated keystrokes and

slow down the repeat rate.

• Toggle Keys: Hear tones when pressing certain keys.

• MouseKeys: Move the mouse pointer using the

numerical keypad.

• Extra Keyboard Help: Get ToolTips or other keyboard

help in programmes that provide it.

Accessibility Wizard

The Accessibility Wizard is designed to help new users

quickly and easily set up groups of accessibility options

that address visual, hearing and dexterity needs all in one

place.

The Accessibility Wizard asks questions about accessibility

needs. Then, based on the answers, it configures utilities

and settings for individual users.

The Accessibility Wizard can be run again at any time

to make changes, or changes can be made to individual

settings through Control Panel.

Computer Operating System

156

Structure

System Components

Even though, not all systems have the same structure

many modern operating systems share the same goal of

supporting the following types of system components.

Process Management

The operating system manages many kinds of activities

ranging from user programs to system programs like printer

spooler, name servers, file server etc. Each of these activities

is encapsulated in a process. A process includes the complete

execution context (code, data, PC, registers, OS resources

in use etc.). It is important to note that a process is not

a programme. A process is only ONE instant of a programme

in execution. There are many processes can be running the

same programme.

The five major activities of an operating system in regard

to process management are:

• Creation and deletion of user and system processes.

• Suspension and resumption of processes.

• A mechanism for process synchronization.

• A mechanism for process communication.

• A mechanism for deadlock handling.

Main-Memory Management

Primary-Memory or Main-Memory is a large array of

words or bytes. Each word or byte has its own address.

Main-memory provides storage that can be access directly

by the CPU. That is to say for a programme to be executed,

it must in the main memory.

Computer Operating System

157

The major activities of an operating in regard to memory-

management are:

• Keep track of which part of memory are currently

being used and by whom.

• Decide which process are loaded into memory when

memory space becomes available.

• Allocate and deallocate memory space as needed.

File Management

A file is a collected of related information defined by its

creator. Computer can store files on the disk (secondary

storage), which provide long term storage. Some examples

of storage media are magnetic tape, magnetic disk and

optical disk. Each of these media has its own properties like

speed, capacity, data transfer rate and access methods. A

file systems normally organized into directories to ease their

use. These directories may contain files and other directions.

The five main major activities of an operating system in

regard to file management are:

• The creation and deletion of files.

• The creation and deletion of directions.

• The support of primitives for manipulating files and

directions.

• The mapping of files onto secondary storage.

• The back up of files on stable storage media.

I/O System Management

I/O subsystem hides the peculiarities of specific hardware

devices from the user. Only the device driver knows the

peculiarities of the specific device to whom it is assigned.

Computer Operating System

158

Secondary-Storage Management

Generally speaking, systems have several levels of storage,

including primary storage, secondary storage and cache

storage. Instructions and data must be placed in primary

storage or cache to be referenced by a running programme.

Because main memory is too small to accommodate all data

and programs, and its data are lost when power is lost, the

computer system must provide secondary storage to back

up main memory. Secondary storage consists of tapes,

disks, and other media designed to hold information that

will eventually be accessed in primary storage (primary,

secondary, cache) is ordinarily divided into bytes or words

consisting of a fixed number of bytes. Each location in

storage has an address; the set of all addresses available

to a programme is called an address space.

The three major activities of an operating system in regard

to secondary storage management are:

• Managing the free space available on the secondary-

storage device.

• Allocation of storage space when new files have to be

written.

• Scheduling the requests for memory access.

Networking

A distributed systems is a collection of processors that

do not share memory, peripheral devices, or a clock. The

processors communicate with one another through

communication lines called network. The communication-

network design must consider routing and connection

strategies, and the problems of contention and security.

Computer Operating System

159

Protection System

If a computer systems has multiple users and allows the

concurrent execution of multiple processes, then the various

processes must be protected from one another’s activities.

Protection refers to mechanism for controlling the access

of programs, processes, or users to the resources defined

by a computer systems.

Command Interpreter System

A command interpreter is an interface of the operating

system with the user. The user gives commands with are

executed by operating system (usually by turning them into

system calls). The main function of a command interpreter

is to get and execute the next user specified command.

Command-Interpreter is usually not part of the kernel,

since multiple command interpreters (shell, in UNIX

terminology) may be support by an operating system, and

they do not really need to run in kernel mode.

Operating Systems Services

Following are the five services provided by an operating

systems to the convenience of the users.

Programme Execution

The purpose of a computer systems is to allow the user

to execute programs. So the operating systems provides an

environment where the user can conveniently run programs.

The user does not have to worry about the memory allocation

or multitasking or anything. These things are taken care

of by the operating systems.

Running a programme involves the allocating and

deallocating memory, CPU scheduling in case of

Computer Operating System

160

multiprocess. These functions cannot be given to the user-

level programs. So user-level programs cannot help the

user to run programs independently without the help from

operating systems.

I/O Operations

Each programme requires an input and produces output.

This involves the use of I/O. The operating systems hides

the user the details of underlying hardware for the I/O. All

the user sees is that the I/O has been performed without

any details. So the operating systems by providing I/O

makes it convenient for the users to run programs. For

efficiently and protection users cannot control I/O so this

service cannot be provided by user-level programs.

File System Manipulation

The output of a programme may need to be written into

new files or input taken from some files. The operating

systems provides this service. The user does not have to

worry about secondary storage management. User gives a

command for reading or writing to a file and sees his her

task accomplished. Thus operating systems makes it easier

for user programs to accomplished their task.

This service involves secondary storage management.

The speed of I/O that depends on secondary storage

management is critical to the speed of many programs and

hence I think it is best relegated to the operating systems

to manage it than giving individual users the control of it.

It is not difficult for the user-level programs to provide these

services but for above mentioned reasons it is best if this

service s left with operating system.

Computer Operating System

161

Communications

There are instances where processes need to communicate

with each other to exchange information. It may be between

processes running on the same computer or running on the

different computers. By providing this service the operating

system relieves the user of the worry of passing messages

between processes.

In case where the messages need to be passed to processes

on the other computers through a network it can be done

by the user programs. The user programme may be

customised to the specifics of the hardware through which

the message transits and provides the service interface to

the operating system.

Error Detection

An error is one part of the system may cause

malfunctioning of the complete system. To avoid such a

situation the operating system constantly monitors the

system for detecting the errors. This relieves the user of the

worry of errors propagating to various part of the system

and causing malfunctioning.

System Calls and System Programs

System calls provide an interface between the process

an the operating system. System calls allow user-level

processes to request some services from the operating system

which process itself is not allowed to do. In handling the

trap, the operating system will enter in the kernel mode,

where it has access to privileged instructions, and can

perform the desired service on the behalf of user-level

process.

Computer Operating System

162

It is because of the critical nature of operations that the

operating system itself does them every time they are needed.

For example, for I/O a process involves a system call telling

the operating system to read or write particular area and

this request is satisfied by the operating system.

System programs provide basic functioning to users so

that they do not need to write their own environment for

programme development (editors, compilers) and programme

execution (shells). In some sense, they are bundles of useful

system calls.

Layered Approach Design

In this case the system is easier to debug and modify,

because changes affect only limited portions of the code,

and programmer does not have to know the details of the

other layers.

Information is also kept only where it is needed and is

accessible only in certain ways, so bugs affecting that data

are limited to a specific module or layer.

Mechanisms and Policies

The policies what is to be done while the mechanism

specifies how it is to be done. For instance, the timer

construct for ensuring CPU protection is mechanism. On

the other hand, the decision of how long the timer is set

for a particular user is a policy decision.

The separation of mechanism and policy is important to

provide flexibility to a system. If the interface between

mechanism and policy is well defined, the change of policy

may affect only a few parameters. On the other hand, if

Computer Operating System

163

interface between these two is vague or not well defined,

it might involve much deeper change to the system.

Structure of Operating Systems
As modern operating systems are large and complex

careful engineering is required. There are four different

structures that have shown in this document in order to

get some idea of the spectrum of possibilities. These are by

no mean s exhaustive, but they give an idea of some designs

that have been tried in practice.

Monolithic Systems

This approach well known as “The Big Mess”. The

structure is that there is no structure. The operating system

is written as a collection of procedures, each of which can

call any of the other ones whenever it needs to. When this

technique is used, each procedure in the system has a well-

defined interface in terms of parameters and results, and

each one is free to call any other one, if the latter provides

some useful computation that the former needs.

 For constructing the actual object programme of the

operating system when this approach is used, one compiles

all the individual procedures, or files containing the

procedures, and then binds them all together into a single

object file with the linker.

In terms of information hiding, there is essentially none-

every procedure is visible to every other one i.e. opposed

to a structure containing modules or packages, in which

much of the information is local to module, and only officially

designated entry points can be called from outside the

module.

Computer Operating System

164

Layered System

A generalization of the approach for organizing the

operating system as a hierarchy of layers, each one

constructed upon the one below it. The system had 6 layers.

Layer 0 dealt with allocation of the processor, switching

between processes when interrupts occurred or timers

expired. Above layer 0, the system consisted of sequential

processes, each of which could be programmed without

having to worry about the fact that multiple processes were

running on a single processor. In other words, layer 0

provided the basic multiprogramming of the CPU.

Layer 1: Did the memory management. It allocated

space for processes in main memory and on a

512k word drum used for holding parts of

processes (pages)for which there was no room in

main memory. Above layer 1, processes did not

have to worry about whether they were in memory

or on the drum; the layer 1 software took care

of making sure pages were brought into memory

whenever they were needed.

Layer 2: Handled communication between each process

and the operator console. Above this layer each

process effectively had its own operator console.

Layer 3 took care of managing the I/O devices

and buffering the information streams to and

from them. Above layer 3 each process could

deal with abstract I/O devices with nice

properties, instead of real devices with many

peculiarities. Layer 4 was where the user

programs were found. They did not have to worry

Computer Operating System

165

about process, memory, console, or I/O

management. The system operator process was

located I layer 5.

Virtual Machines

The heart of the system, known as the virtual machine

monitor, runs on the bare hardware and does the

multiprogramming, providing not one, but several virtual

machines to the next layer up. However, unlike all other

operating systems, these virtual machines are not extended

machines, with files and other nice features. Instead, they

are exact copies of the bare hardware, including kernel/

user mod, I/O, interrupts, and everything else the real

machine has.

For reason of Each virtual machine is identical to the

true hardware, each one can run any operating system that

will run directly on the hard ware. Different virtual machines

can, and usually do, run different operating systems. Some

run one of the descendants of OF/360 for batch processing,

while other ones run a single-user, interactive system called

CMS (conversational Monitor System) fro timesharing users.

Client-server Model

A trend in modern operating systems is to take this idea

of moving code up into higher layers even further, and

remove as much as possible from the operating system,

leaving a minimal kernel.

The usual approach is to implement most of the operating

system functions in user processes. To request a service,

such as reading a block of a file, a user process (presently

Computer Operating System

166

known as the client process) sends the request to a server

process, which then does the work and sends back the

answer.

In client-Server Model, all the kernel does is handle the

communication between clients and servers. By splitting

the operating system up into parts, each of which only

handles one fact of the system, such as file service, process

service,

Terminal service, or memory service, each part becomes

small and manageable; furthermore, because all the servers

run as user-mode processes, and not in kernel mode, they

do not have direct access to the hardware. As a consequence,

if a bug in the file server is triggered, the file service may

crash, but this will not usually bring the whole machine

down.

Types of Operating System

Microsoft Windows isn’t the only operating system for

personal computers, or even the best... it’s just the best-

distributed. Its inconsistent behaviour and an interface

that changes with every version are the main reasons people

find computers difficult to use. Microsoft adds new bells

and whistles in each release, and claims that this time

they’ve solved the countless problems in the previous

versions... but the hype is never really fulfilled. Windows

7 offers little new: it’s basically Vista without quite so many

mistakes built into it. The upgrade prices serve primarily

to keep the cash flowing to Microsoft, to subsidize their

efforts to take over other markets. A slew of intrusive

“features” in the recent versions benefit Microsoft at the

Computer Operating System

167

expensive of both your privacy and your freedom. Switching

to Windows Vista or Windows 7 requires buying new

hardware and learning a new system, so instead consider

switching to something better. More than 1 in 10 people on

the web already have.

• ≅ ç If you can’t say “no” to Windows (which is

understandable in many cases), you can still say “no

more”. The simplest alternative to Windows Vista/7

is a previously-installed version of Windows. Windows

Vista/7 isn’t a simple upgrade; it’s a drastically different

operating system, which may not even run your existing

software, or work properly on hardware just a few

years old, so installing the “upgrade” is a risk.

The Mac OS user interface inspired the creation of

Windows, and is still the target Microsoft is trying to

equal. As a popular consumer product, there’s plenty

of software available for it, and it’s moving beyond its

traditional niches of graphic design, education, and

home use, into general business use (after all, Apple

Corp. runs on it). OS X (ten), uses Unix technology,

which makes it more stable and secure than Windows.

But the real star is OS X’s visual interface, which

shows the difference between Microsoft’s guesswork

in this area and Apple’s innovative design work: it’s

both beautiful and easy to use.

• ç�Linux (“LIH-nux”) is a free Unix-like operating

system, originally developed by programmers who who

simply love the challenge of solving problems and

producing quality software... even if that means giving

the resulting product away. Not coincidentally, there’s

Computer Operating System

168

also a wealth of free software for it. Unlike proprietary

operating systems, which are usually controlled in

every detail by a single company, Linux has a standard

consistent core (called the “kernel”) around which

many varieties (known as “distributions”) have been

produced by various companies and organisations.

Some are aimed at geeks, some focus on the needs

of business users, and some are designed with typical

home users in mind. Businesses might prefer RedHat/

Fedora, Novell/SUSE, or CentOS. Geeks should check

out Debian, Slackware, and Gentoo. Linux is a first-

rate choice for servers; this site is a Linux system

• ç�Google’s Chrome OS is still vapourware so far, and

it’s arguably just another flavour of Linux, but it

promises to be a viable alternative to Windows on

small portable “netbooks” which will come with it

preinstalled. The user interface is going to be based

on Google’s web browser of the same name, and take

advantage of technology to make online apps like

Google Docs work even if you’re not online.

• ≅ ç BeOS was designed with multimedia in mind,

including the kinds of features that Microsoft is just

recently tacking onto Windows. Although Microsoft

successfully drove Be Corp. out of business through

illegal interference with their marketing efforts, reports

of BeOS’s death are exaggerated: The source code for

BeOS has been licensed to a European software firm

whose Zeta is effectively the much-longed-for BeOS

R6. The free BeOS R5 Personal Edition is still available

to download, and has been packaged with all the

Computer Operating System

169

latest drivers and free add-ons as BeOS Max Edition.

And the Haiku project is creating an open duplicate

of BeOS R5, which will then be enhanced

• ç�FreeBSD is commonly called “the free Unix”. It’s

descended from the classic 1970’s Berkeley Software

Distribution of Unix (from before the OS became

“UNIX”®), making it one of the most mature and stable

operating systems around. It’s “free” as in “free beer”

(you can download it for nothing) and as in “free

speech” (you can do pretty much whatever you like

with it... like when Microsoft took code from it to add

better networking to Windows NT).

• ç�OpenBSD is “the other free Unix”. It’s similar to

FreeBSD both in the Berkeley code it’s based on, and

the licensing terms. One key advantage it has over its

BSD siblings (and nearly any other OS) is that it’s

incredibly secure from attack, as implied by its blowfish

mascot, and made explicit by their boast of only one

remotely-exploitable hole-ever -in their default

installation. (Compare that to Windows’ hundreds.)

“Open” is a reference to their code auditing process,

not a welcome-mat forcrackers. It’s not as speedy as

FreeBSD, but it’s safer. It’s also available for some

hardware plaforms FreeBSD doesn’t support, including

Mac 68K, PPC.

• ç�NetBSD is “the other other free Unix”. It’s the work

of another group of volunteer developers using the net

to collaborate (hence the name of their product). Their

mission is to get the OS to run-and run well-on

hardware platforms no other Unix supports. In addition

Computer Operating System

170

to most of the usual suspects above, it’s been ported

to run on the NeXT box, MIPSmachines, the good Atari

computers, the BeBox, WinCE-compatible handhelds,

ARM processors, and even game machines like the

Playstation 2 or the orphaned Sega Dreamcast.

• ç�Darwin is a cousin of Free/Open/NetBSD, and the

free foundation on which the commercial Mac OS X

is built. Although its development was originally

managed rather tightly by Apple (understandable,

because their business depends on it) they’ve loosened

the leash, making participation in the development

more open. Darwin is making progress towards

becoming an open-source OS in its own right.

• ç Syllable is a free alternative OS for standard PCs.

It uses some of the better ideas from Unix, BeOS,

AmigaOS, and others, and is compatible enough with

portable software written for Unix that many have

already been ported over to it. It’s not a full-featured

OS yet, but it’s functional enough to be used with

built-in web and e-mail clients, and media players.

• Amiga owners used to taunt PC and Mac users with

their smoothly-multitasking graphical operating

system, back when the Macs couldn’t multitask, and

PCs weren’t even graphical. Even though the “classic”

Amiga machines are no longer being produced, there’s

been a lot of activity in Amigaspace in the meantime:

The OS has been updated to support current technology

with Amiga OS 4, emulation layers called AmigaOS XL

and AMIthlon were created to run Amiga OS on modern

PC hardware, Amiga Forever is an emulator for

Computer Operating System

171

Windows and other operating systems, and a new

hardware platform and OS called AmigaOne have been

introduced to try to carry on the Amiga legacy.

• MorphOS began as a project to port the Amiga OS to

the then-new PowerPC architecture, but has since

morphed into an OS in its own right. It runs on certain

PowerPC/G3/G4-based systems, and has better-than-

standard-emulation support for Amiga OS 3.1

applications as well as native apps built for MorphOS.

• RISC OS is the operating system of the former Acorn

line of computers (best known in the UK), which has

been revived and updated for faster performance and

to meet current OS standards (e.g. long filenames,

large hard drives). It doesn’t run on standard PCs, but

on systems specifically designed for it (such as the

RiscPC and A7000), using the high-speed StrongARM

processors. The OS itself is stored in electronic ROM rather

than having to be loaded into RAM from a hard drive

• ç�GNU’s Not Unix. In fact, that phrase is what G.N.U.

is a (recursive) abbrevation for. It is a Unix-like

operating system being developed as a long-term project

by the Free Software Foundation to offer a fully-free

alternative to the commercial and BSD versions of

Unix. Although you’ll find many key components of

GNU used in Linux and BSD packages under the GNU

General Public license (GPL), a fully GNU system will

use the Hurd, GNU’s own free-software kernel. The

Hurd has some design advantages over the Linux

kernel, but is still far from finished, and requires

serious expertise with OS development to install.

Computer Operating System

172

• ç�Minix is an open-source Unix-like operating system

originally developed for educational purposes. Because

of its relative simplicity and ample documentation, its

creator says that a few months studying the source

code should teach you most of how such things work.

(It inspired Linus Torvalds to create Linux.) Versions

1 and 2 serve primarily as teaching examples, but

version 3 has also become useful in its own right,

intended for highly reliable uses on low-end 386-level

hardware.

• �There are also a bunch of commercial UNIX systems,

which are typically customised to run on expensive,

high-end, proprietary hardware sold by the same

vendor. Most of them have names other than “Unix”

due to old trademark issues. They’re better as

alternatives to the server versions of Windows, not the

desktop versions of Windows such as 98/XP/Vista.

• ≅ IBM’s OS/2warp was once supposed to replace MS

Windows, back when Emperor IBM and Darth Microsoft

were planning to rule the galaxy together. Then Darth

decided he didn’t need the Emperor, struck confidential

deals with other hardware vendors and software

developers, and made Windows (just barely) powerful

enough to fill OS/2’s intended role. Windows didn’t

really beat OS/2 technically, but it won the Marketing

Wars, which is what mattered. Unfortunately, IBM has

given up on OS/2’s future. A third-party package called

eComStation is a licensed effort to update and maintain

OS/2.

Computer Operating System

173

• ç Believe it or not, DOS (with or without Windows 3.1)

is still a viable option for many uses. There was an

incredible amount of software developed for it, and it

still works. Plus, DOS runs like a champ, on old

hardware that no one else wants. You can even fit it

on a diskette, to boot it on nearly any PC anywhere.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Operating System
	Chapter 2 Functions of Operating System
	Chapter 3 Linux and other Operating Systems
	Chapter 4 Modern Network Devices and Operating System
	Chapter 5 Windows Operating System

