

CPU SCHEDULING
ALGORITHMS

CPU SCHEDULING
ALGORITHMS

Bob Huber

CPU Scheduling Algorithms

by Bob Huber

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664259

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

CPU Scheduling Algorithms

191

Contents

Chapter 1 Introduction 1

Chapter 2 Scheduling Algorithms 50

Chapter 3 CPU/Process Scheduling 106

Chapter 4 Multiprocessor Scheduling 124

Chapter 5 Unix File System 140

Chapter 6 Computer Operating Software 158

1

Introduction

• What is CPU scheduling? Determining which

processes run when there are multiple runnable

processes. Why is it important? Because it can have

a big effect on resource utilization and the overall

performance of the system.

• By the way, the world went through a long period (late

80’s, early 90’s) in which the most popular operating

systems (DOS, Mac) had NO sophisticated CPU

scheduling algorithms. They were single threaded and

ran one process at a time until the user directs them to

run another process. Why was this true? More recent

systems (Windows NT) are back to having sophisticated

CPU scheduling algorithms. What drove the change, and

what will happen in the future?

• Basic assumptions behind most scheduling

algorithms:

CPU Scheduling Algorithms

2

– There is a pool of runnable processes contending

for the CPU.

– The processes are independent and compete for

resources.

– The job of the scheduler is to distribute the scarce

resource of the CPU to the different processes

“fairly” (according to some definition of fairness)

and in a way that optimizes some performance

criteria.

In general, these assumptions are starting to break down.

First of all, CPUs are not really that scarce - almost everybody

has several, and pretty soon people will be able to afford

lots. Second, many applications are starting to be structured

as multiple cooperating processes. So, a view of the scheduler

as mediating between competing entities may be partially

obsolete.

• How do processes behave? First, CPU/IO burst cycle.

A process will run for a while (the CPU burst), perform

some IO (the IO burst), then run for a while more

(the next CPU burst). How long between IO operations?

Depends on the process.

– IO Bound processes: processes that perform lots

of IO operations. Each IO operation is followed by

a short CPU burst to process the IO, then more

IO happens.

– CPU bound processes: processes that perform lots

of computation and do little IO. Tend to have a

few long CPU bursts.

One of the things a scheduler will typically do is switch

the CPU to another process when one process does IO. Why?

CPU Scheduling Algorithms

3

The IO will take a long time, and don’t want to leave the CPU

idle while wait for the IO to finish.

• When look at CPU burst times across the whole

system, have the exponential or hyperexponential

distribution in Fig.

• What are possible process states?

– Running - process is running on CPU.

– Ready - ready to run, but not actually running on

the CPU.

– Waiting - waiting for some event like IO to happen.

• When do scheduling decisions take place? When does

CPU choose which process to run? Are a variety of

possibilities:

– When process switches from running to waiting.

Could be because of IO request, because wait for

child to terminate, or wait for synchronization

operation (like lock acquisition) to complete.

– When process switches from running to ready -

on completion of interrupt handler, for example.

Common example of interrupt handler - timer

interrupt in interactive systems. If scheduler

switches processes in this case, it has preempted

the running process. Another common case

interrupt handler is the IO completion handler.

– When process switches from waiting to ready state

(on completion of IO or acquisition of a lock, for

example).

– When a process terminates.

• How to evaluate scheduling algorithm? There are many

possible criteria:

CPU Scheduling Algorithms

4

– CPU Utilization: Keep CPU utilization as high as

possible. (What is utilization, by the way?).

– Throughput: number of processes completed per

unit time.

– Turnaround Time: mean time from submission to

completion of process.

– Waiting Time: Amount of time spent ready to run

but not running.

– Response Time: Time between submission of

requests and first response to the request.

– Scheduler Efficiency: The scheduler doesn’t

perform any useful work, so any time it takes is

pure overhead. So, need to make the scheduler

very efficient.

• Big difference: Batch and Interactive systems. In batch

systems, typically want good throughput or

turnaround time. In interactive systems, both of these

are still usually important (after all, want some

computation to happen), but response time is usually

a primary consideration. And, for some systems,

throughput or turnaround time is not really relevant

- some processes conceptually run forever.

• Difference between long and short term scheduling.

Long term scheduler is given a set of processes and

decides which ones should start to run. Once they

start running, they may suspend because of IO or

because of preemption. Short term scheduler decides

which of the available jobs that long term scheduler

has decided are runnable to actually run.

CPU Scheduling Algorithms

5

• Let’s start looking at several vanilla scheduling

algorithms.

• First-Come, First-Served. One ready queue, OS runs

the process at head of queue, new processes come in

at the end of the queue. A process does not give up

CPU until it either terminates or performs IO.

• Consider performance of FCFS algorithm for three

compute-bound processes. What if have 4 processes

P1 (takes 24 seconds), P2 (takes 3 seconds) and P3

(takes 3 seconds). If arrive in order P1, P2, P3, what

is

– Waiting Time? (24 + 27)/3 = 17

– Turnaround Time? (24 + 27 + 30) = 27.

– Throughput? 30/3 = 10.

What about if processes come in order P2, P3, P1? What is

– Waiting Time? (3 + 3)/2 = 6

– Turnaround Time? (3 + 6 + 30) = 13.

– Throughput? 30/3 = 10.

• Shortest-Job-First (SJF) can eliminate some of the

variance in Waiting and Turnaround time. In fact, it is

optimal with respect to average waiting time. Big

problem: how does scheduler figure out how long will it

take the process to run?

• For long term scheduler running on a batch system,

user will give an estimate. Usually pretty good - if it

is too short, system will cancel job before it finishes.

If too long, system will hold off on running the process.

So, users give pretty good estimates of overall running

time.

CPU Scheduling Algorithms

6

• For short-term scheduler, must use the past to predict

the future. Standard way: use a time-decayed

exponentially weighted average of previous CPU bursts

for each process. Let Tn be the measured burst time

of the nth burst, sn be the predicted size of next CPU

burst. Then, choose a weighting factor w, where 0 <=

w <= 1 and compute sn+1 = w Tn + (1 - w)sn. s0 is

defined as some default constant or system average.

• w tells how to weight the past relative to future. If

choose w =.5, last observation has as much weight

as entire rest of the history. If choose w = 1, only

last observation has any weight. Do a quick example.

• Preemptive vs. Non-preemptive SJF scheduler.

Preemptive scheduler reruns scheduling decision when

process becomes ready. If the new process has priority

over running process, the CPU preempts the running

process and executes the new process. Non-

preemptive scheduler only does scheduling decision

when running process voluntarily gives up CPU. In

effect, it allows every running process to finish its

CPU burst.

• Consider 4 processes P1 (burst time 8), P2 (burst time

4), P3 (burst time 9) P4 (burst time 5) that arrive one

time unit apart in order P1, P2, P3, P4. Assume that

after burst happens, process is not reenabled for a

long time (at least 100, for example). What does a

preemptive SJF scheduler do? What about a non-

preemptive scheduler?

• Priority Scheduling. Each process is given a priority,

then CPU executes process with highest priority. If

CPU Scheduling Algorithms

7

multiple processes with same priority are runnable,

use some other criteria - typically FCFS. SJF is an

example of a priority-based scheduling algorithm. With

the exponential decay algorithm above, the priorities

of a given process change over time.

• Assume we have 5 processes P1 (burst time 10,

priority 3), P2 (burst time 1, priority 1), P3 (burst time

2, priority 3), P4 (burst time 1, priority 4), P5 (burst

time 5, priority 2). Lower numbers represent higher

priorities. What would a standard priority scheduler

do?

• Big problem with priority scheduling algorithms:

starvation or blocking of low-priority processes. Can

use aging to prevent this - make the priority of a

process go up the longer it stays runnable but isn’t

run.

• What about interactive systems? Cannot just let any

process run on the CPU until it gives it up - must

give response to users in a reasonable time. So, use

an algorithm called round-robin scheduling. Similar

to FCFS but with preemption. Have a time quantum

or time slice. Let the first process in the queue run

until it expires its quantum (i.e. runs for as long as

the time quantum), then run the next process in the

queue.

• Implementing round-robin requires timer interrupts.

When schedule a process, set the timer to go off after

the time quantum amount of time expires. If process

does IO before timer goes off, no problem - just run

next process. But if process expires its quantum, do

CPU Scheduling Algorithms

8

a context switch. Save the state of the running process

and run the next process.

• How well does RR work? Well, it gives good response

time, but can give bad waiting time. Consider the

waiting times under round robin for 3 processes P1

(burst time 24), P2 (burst time 3), and P3 (burst time

4) with time quantum 4. What happens, and what is

average waiting time? What gives best waiting time?

• What happens with really a really small quantum? It

looks like you’ve got a CPU that is 1/n as powerful as

the real CPU, where n is the number of processes.

Problem with a small quantum - context switch overhead.

• What about having a really small quantum supported

in hardware? Then, you have something called

multithreading. Give the CPU a bunch of registers and

heavily pipeline the execution. Feed the processes into

the pipe one by one. Treat memory access like IO -

suspend the thread until the data comes back from

the memory. In the meantime, execute other threads.

Use computation to hide the latency of accessing

memory.

• What about a really big quantum? It turns into FCFS.

Rule of thumb - want 80 percent of CPU bursts to be

shorter than time quantum.

• Multilevel Queue Scheduling - like RR, except have

multiple queues. Typically, classify processes into

separate categories and give a queue to each category.

So, might have system, interactive and batch

processes, with the priorities in that order. Could also

allocate a percentage of the CPU to each queue.

CPU Scheduling Algorithms

9

• Multilevel Feedback Queue Scheduling - Like

multilevel scheduling, except processes can move

between queues as their priority changes. Can be used

to give IO bound and interactive processes CPU

priority over CPU bound processes. Can also prevent

starvation by increasing the priority of processes that

have been idle for a long time.

• A simple example of a multilevel feedback queue

scheduling algorithm. Have 3 queues, numbered 0,

1, 2 with corresponding priority. So, for example,

execute a task in queue 2 only when queues 0 and 1

are empty.

• A process goes into queue 0 when it becomes ready.

When run a process from queue 0, give it a quantum

of 8 ms. If it expires its quantum, move to queue 1.

When execute a process from queue 1, give it a

quantum of 16. If it expires its quantum, move to queue

2. In queue 2, run a RR scheduler with a large

quantum if in an interactive system or an FCFS

scheduler if in a batch system. Of course, preempt

queue 2 processes when a new process becomes ready.

• Another example of a multilevel feedback queue

scheduling algorithm: the Unix scheduler. We will go

over a simplified version that does not include kernel

priorities. The point of the algorithm is to fairly allocate

the CPU between processes, with processes that have

not recently used a lot of CPU resources given priority

over processes that have.

• Processes are given a base priority of 60, with lower

numbers representing higher priorities. The system

CPU Scheduling Algorithms

10

clock generates an interrupt between 50 and 100

times a second, so we will assume a value of 60 clock

interrupts per second. The clock interrupt handler

increments a CPU usage field in the PCB of the

interrupted process every time it runs.

• The system always runs the highest priority process.

If there is a tie, it runs the process that has been

ready longest. Every second, it recalculates the priority

and CPU usage field for every process according to

the following formulas.

– CPU usage field = CPU usage field/2

– Priority = CPU usage field/2 + base priority

• So, when a process does not use much CPU recently,

its priority rises. The priorities of IO bound processes

and interactive processes therefore tend to be high

and the priorities of CPU bound processes tend to be

low (which is what you want).

• Unix also allows users to provide a “nice” value for

each process. Nice values modify the priority

calculation as follows:

– Priority = CPU usage field/2 + base priority + nice

value

So, you can reduce the priority of your process to be “nice”

to other processes (which may include your own).

• In general, multilevel feedback queue schedulers are

complex pieces of software that must be tuned to meet

requirements.

• Anomalies and system effects associated with

schedulers.

CPU Scheduling Algorithms

11

• Priority interacts with synchronization to create a

really nasty effect called priority inversion. A priority

inversion happens when a low-priority thread acquires

a lock, then a high-priority thread tries to acquire

the lock and blocks. Any middle-priority threads will

prevent the low-priority thread from running and

unlocking the lock. In effect, the middle-priority

threads block the high-priority thread.

• How to prevent priority inversions? Use priority

inheritance. Any time a thread holds a lock that other

threads are waiting on, give the thread the priority of

the highest-priority thread waiting to get the lock.

Problem is that priority inheritance makes the

scheduling algorithm less efficient and increases the

overhead.

• Preemption can interact with synchronization in a

multiprocessor context to create another nasty effect

- the convoy effect. One thread acquires the lock, then

suspends. Other threads come along, and need to

acquire the lock to perform their operations.

Everybody suspends until the lock that has the thread

wakes up. At this point the threads are synchronized,

and will convoy their way through the lock, serializing

the computation. So, drives down the processor

utilization.

• If have non-blocking synchronization via operations

like LL/SC, don’t get convoy effects caused by

suspending a thread competing for access to a

resource. Why not? Because threads don’t hold

resources and prevent other threads from accessing

them.

CPU Scheduling Algorithms

12

• Similar effect when scheduling CPU and IO bound

processes. Consider a FCFS algorithm with several

IO bound and one CPU bound process. All of the IO

bound processes execute their bursts quickly and

queue up for access to the IO device. The CPU bound

process then executes for a long time. During this

time all of the IO bound processes have their IO

requests satisfied and move back into the run queue.

But they don’t run - the CPU bound process is

running instead - so the IO device idles. Finally, the

CPU bound process gets off the CPU, and all of the

IO bound processes run for a short time then queue

up again for the IO devices. Result is poor utilization

of IO device - it is busy for a time while it processes

the IO requests, then idle while the IO bound

processes wait in the run queues for their short CPU

bursts. In this case an easy solution is to give IO

bound processes priority over CPU bound processes.

• In general, a convoy effect happens when a set of

processes need to use a resource for a short time, and

one process holds the resource for a long time, blocking

all of the other processes. Causes poor utilization of the

other resources in the system.

Scheduling Mechanisms
A multiprogramming operating system allows more than

one process to be loaded into the executabel memory at a

time and for the loaded process to share the CPU using time-

multiplexing. Part of the reason for using multiprogramming

is that the operating system itself is implemented as one or

CPU Scheduling Algorithms

13

more processes, so there must be a way for the operating

system and application processes to share the CPU. Another

main reason is the need for processes to perform I/O

operations in the normal course of computation. Since I/O

operations ordinarily require orders of magnitude more time

to complete than do CPU instructions, multiprograming

systems allocate the CPU to another process whenever a

process invokes an I/O operation.

Goals for Scheduling
Make sure your scheduling strategy is good enough with

the following criteria:

• Utilization/Efficiency: keep the CPU busy 100% of the

time with useful work

• Throughput: maximize the number of jobs processed

per hour.

• Turnaround time: from the time of submission to the

time of completion, minimize the time batch users

must wait for output

• Waiting time: Sum of times spent in ready queue -

Minimize this

• Response Time: time from submission till the first

response is produced, minimize response time for

interactive users

• Fairness: make sure each process gets a fair share of

the CPU.

Context Switching
Typically there are several tasks to perform in a computer

system.

CPU Scheduling Algorithms

14

So if one task requires some I/O operation, you want to

initiate the I/O operation and go on to the next task. You will

come back to it later.

This act of switching from one process to another is called

a “Context Switch”

When you return back to a process, you should resume

where you left off. For all practical purposes, this process

should never know there was a switch, and it should look

like this was the only process in the system.

To implement this, on a context switch, you have to:

• Save the context of the current process

• Select the next process to run

• Restore the context of this new process.

Scheduling in Context of Process
• Programme Counter

• Stack Pointer

• Registers

• Code + Data + Stack (also called Address Space)

• Other state information maintained by the OS for the

process (open files, scheduling info, I/O devices being

used etc.)

All this information is usually stored in a structure called

Process Control Block (PCB). All the above has to be saved

and restored.

What Does a Context_Switch() Routine Look Like
context_switch()

{

Push registers onto stack

CPU Scheduling Algorithms

15

Save ptrs to code and data.

Save stack pointer

Pick next process to execute

Restore stack ptr of that process/* You have now switched the

stack */

Restore ptrs to code and data.

Pop registers

Return

}

Non-Preemptive Vs Preemptive Scheduling
• Non-Preemptive: Non-preemptive algorithms are

designed so that once a process enters the running

state(is allowed a process), it is not removed from

the processor until it has completed its service time

(or it explicit ly yields the processor).

context_switch() is called only when the process

terminates or blocks.

• Preemptive: Preemptive algorithms are driven by the

notion of prioritized computation. The process with

the highest priority should always be the one

currently using the processor. If a process is

currently using the processor and a new process with

a higher priority enters, the ready list, the process

on the processor should be removed and returned

to the ready list until it is once again the highest-

priority process in the system. context_switch() is

called even when the process is running usually done

via a timer interrupt.

CPU Scheduling Algorithms

16

First In First Out (FIFO)
This is a Non-Premptive scheduling algorithm. FIFO strategy

assigns priority to processes in the order in which they

request the processor.

The process that requests the CPU first is allocated the

CPU first.When a process comes in, add its PCB to the tail

of ready queue. When running process terminates,

dequeue the process (PCB) at head of ready queue and

run it.

Consider the example with P1=24, P2=3, P3=3

Gantt Chart for FCFS: 0 - 24 P1, 25 - 27 P2, 28 - 30 P3

Turnaround time for P1 = 24

Turnaround time for P1 = 24 + 3

Turnaround time for P1 = 24 + 3 + 3

Average Turnaround time = (24*3 + 3*2 + 3*1)/3

In general we have (n*a + (n-1)*b +....)/n

If we want to minimize this, a should be the smallest,

followed by b and

so on.

Comments: While the FIFO algorithm is easy to implement,

it ignores the service time request and all other criteria that

may influence the performance with respect to turnaround

or waiting time.

Problem: One Process can monopolize CPU

Solution: Limit the amount of time a process can run

without a context switch. This time is called a time slice.

Round Robin
Round Robin calls for the distribution of the processing

time equitably among all processes requesting the processor.

CPU Scheduling Algorithms

17

Run process for one time slice, then move to back of queue.

Each process gets equal share of the CPU. Most systems use

some variant of this.

Choosing Time Slice
What happens if the time slice isnt chosen carefully?

• For example, consider two processes, one doing 1

ms computation followed by 10 ms I/O, the other

doing all computation. Suppose we use 20 ms time

slice and round-robin scheduling: I/O process runs

at 11/21 speed, I/O devices are only utilized 10/21

of time.

• Suppose we use 1 ms time slice: then compute-bound

process gets interrupted 9 times unnecessarily before

I/O-bound process is runnable

Problem: Round robin assumes that all processes are

equally important; each receives an equal portion of the CPU.

This sometimes produces bad results.

Consider three processes that start at the same time and

each requires three time slices to finish. Using FIFO how

long does it take the average job to complete (what is the

average response time)? How about using round robin?

CPU Scheduling Algorithms

18

* Process A finishes after 3 slices, B 6, and C 9. The average

is (3+6+9)/3 = 6 slices.

* Process A finishes after 7 slices, B 8, and C 9, so the

average is (7+8+9)/3 = 8 slices.

Round Robin is fair, but uniformly enefficient.

Solution: Introduce priority based scheduling.

Priority Based Scheduling
Run highest-priority processes first, use round-robin

among processes of equal priority. Re-insert process in run

queue behind all processes of greater or equal priority.

• Allows CPU to be given preferentially to important

processes.

• Scheduler adjusts dispatcher priorities to achieve the

desired overall priorities for the processes, e.g. one

process gets 90% of the CPU.

Comments: In priority scheduling, processes are allocated

to the CPU on the basis of an externally assigned priority.

The key to the performance of priority scheduling is in

choosing priorities for the processes.

Problem: Priority scheduling may cause low-priority

processes to starve

CPU Scheduling Algorithms

19

Solution: (AGING) This starvation can be compensated for

if the priorities are internally computed. Suppose one

parameter in the priority assignment function is the amount

of time the process has been waiting. The longer a process

waits, the higher its priority becomes. This strategy tends to

eliminate the starvation problem.

Shortest Job First
Maintain the Ready queue in order of increasing job

lengths. When a job comes in, insert it in the ready queue

based on its length. When current process is done, pick the

one at the head of the queue and run it.

This is provably the most optimal in terms of turnaround/

response time.

But, how do we find the length of a job?

Make an estimate based on the past behaviour.

Say the estimated time (burst) for a process is E0, suppose

the actual

time is measured to be T0.

Update the estimate by taking a weighted sum of these

two

ie. E1 = aT0 + (1-a)E0

in general, E(n+1) = aTn + (1-a)En (Exponential average)

if a=0, recent history no weightage

if a=1, past history no weightage.

typically a=1/2.

E(n+1) = aTn + (1-a)aTn-1 + (1-a)^jatn-j +...

Older information has less weightage

Comments: SJF is proven optimal only when all jobs are

available simultaneously.

CPU Scheduling Algorithms

20

Problem: SJF minimizes the average wait time because it

services small processes before it services large ones. While

it minimizes average wait time, it may penalize processes

with high service time requests. If the ready list is saturated,

then processes with large service times tend to be left in the

ready list while small processes receive service. In extreme

case, where the system has little idle time, processes with

large service times will never be served. This total starvation

of large processes may be a serious liability of this algorithm.

Solution: Multi-Level Feedback Queques

Multi-Level Feedback Queue
Several queues arranged in some priority order.

Each queue could have a different scheduling discipline/

time quantum.

Lower quanta for higher priorities generally.

Defined by:

• # of queues

• Scheduling algo for each queue

• When to upgrade a priority

• When to demote

Attacks both efficiency and response time problems.

• Give newly runnable process a high priority and a

very short time slice. If process uses up the time slice

without blocking then decrease priority by 1 and

double its next time slice.

• Often implemented by having a separate queue for

each priority.

• How are priorities raised? By 1 if it doesn’t use time

slice? What happens to a process that does a lot of

computation when it starts, then waits for user input?

CPU Scheduling Algorithms

21

Scheduling Concept
Within recent years the concept of the simultaneous

multithreading (SMT) processor has been gaining in

popularity. This hardware allows multiple processes to run

on the processor at the same time providing more potential

for instruction level parallelism. These new processors

suggest that the rules an operating system (OS) scheduler

follows need to be changed or at least modified. Our study

shows the combination of jobs selected to run on these

threads can significantly affect system performance. Our

research shows that scheduling policies are greatly affected

by the system workload and there most likely does not exist

a single, best scheduling policy. However, it can be shown

that a scheduler that tries to schedule processes doing a

large number of loads and stores together with jobs doing

few loads and stores consistently performs at levels close to

or better than all other scheduling policies examined. It can

also be seen that the more possibilities there are for

scheduling, the more necessary it is to have an intelligent

scheduler. In contrast, the few number of decisions to make

(few threads and/or few processes) the less important the

decision of a scheduler becomes.

Concepts

• Maximum CPU utilization obtained with

multiprogramming - several processes are kept in

memory, while one is waiting for I/O, the OS gives

the CPU to another process

• OS does CPU scheduling

• CPU scheduling depends on the observation that

processes cycle between CPU execution and I/O wait.

CPU Scheduling Algorithms

22

CPU Scheduler

Scheduling Decision
Selects from among the processes in memory that are ready

to execute, and allocates the CPU to one of them.

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state (e.g. I/O

request)

2. Switches from running to ready state (e.g. Interrupt)

3. Switches from waiting to ready (e.g. I/O completion)

4. Terminates

– Scheduling under 1 and 4 is non-preemptive

(cooperative)

– All other scheduling is preemptive - have to deal

with possibility that operations (system calls) may

be incomplete

CPU Scheduling Algorithms

23

Dispatcher
Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user programme

to restart that programme

• Dispatch latency – time it takes for the dispatcher to

stop one process and start another running

• Should be as low as possible.

Scheduling Criteria
• CPU utilization (max) – keep the CPU as busy as

possible

• Throughput (max) – # of processes that complete their

execution per time unit

• Turnaround time (min) – amount of time to execute a

particular process

• Waiting time (min) – amount of time a process has

been waiting in the ready queue

• Response time (min) – amount of time it takes from

when a request was submitted until the first response

is produced, not output (for time-sharing environment)

• In typical OS, we optimize each to various degrees

depending on what we are optimizing the OS.

Criteria for scheduling algorithms
(performance)

• CPU utilization

• Throughput (e.g., no. of processes completed/unit

time)

CPU Scheduling Algorithms

24

• Waiting time (the amount of time a job waits in the

queue)

• Turnaround time (the total time, including waiting

time, to complete a job)

• Response time.

In general, it is not possible to optimize all these criteria

for process scheduling using any algorithm (i.e., some of the

criteria may conflict, in some circumstances). Typically, the

criteria are prioritized, with most attention paid to the most

important criterion. e.g., in an interactive system, response

time may well be considered more important then CPU

utilization. In the operating systems course, you will study

some of the algorithms which are used for process scheduling.

CPU Scheduling is used to allocate the CPU to one of the

processes in memory that are ready to execute. On of the

main goals of scheduling is to maximize CPU utilization.

Typically, each process (programme) consists of CPU burst

cycles (the process needs to use the CPU for some calculation

or operation) and I/O cycles. When there are several

concurrently running processes, instead of waiting the

currently running process to perform its I/O operation, the

CPU can be assigned to another process and hence achieve

efficient use of system resources.

Performance Criteria
To compare the performance of different types of scheduling

algorithms, the following criteria are generally used:

Scheduling Algorithms:
First Come First Served: the process that requests the CPU

is allocated first.

CPU Scheduling Algorithms

25

Shortest Job First: the process with smallest CPU burst

gets the CPU.

Shortest Remaining Time First: pre-emptive version of

Shortest Job First

Round Robin: CPU is shared for intervals called time

quantum. Each process takes turns and uses the CPU for

that duration. algorithm and compute the values of different

performance criteria given above for each algorithm. Repeat

step

1. For prob2.cfg and prob3.cfg.

2. State which algorithm behaves better for which

performance criteria and the reasons.

Lab Work
In this experiment, your will be assigned a scheduling

problem. You are expected to encode the given problem for

the simulator, draw the resultant Gantt Chart and compute

the values of some performance criteria. You are also expected

to comment on the relative changes on the performance

criteria in the cases of minor modifications on the given

problem.

Central Processing Unit and
Signed Numbers

Addition

Adding Unsigned Numbers
Adding unsigned numbers in binary is quite easy. Recall

that with 4 bit numbers we can represent numbers from 0

to 15. Addition is done exactly like adding decimal numbers,

except that you have only two digits (0 and 1).

CPU Scheduling Algorithms

26

The only number facts to remember are that,

0+0 = 0, with no carry,

1+0 = 1, with no carry,

0+1 = 1, with no carry,

1+1 = 0, and you carry a 1.

so to add the numbers 0610=01102 and 0710=01112 (answer

= 1310 = 11012) we can write out the calculation (the results

of any carry is shown along the top row, in italics).
�������	
���
���		������	
������������	�
���
��
���

�
������

����
��������	�
��
��
�
��
����
����
��

The only difficulty adding unsigned numbers occurs when

you add numbers that are too large. Consider 13+5.
�������	
���
���	������	
���
�������	�
������
���
��
������

���
��������	�
����
��
��
�
��
��

�
�

The result is a 5 bit number. So the carry bit from adding

the two most significant bits represents a results

that overflows (because the sum is too big to be represented

with the same number of bits as the two addends).

Adding Signed Numbers

Adding signed numbers is not significantly different from

adding unsigned numbers. Recall that signed 4 bit numbers

(2’s complement) can represent numbers between-8 and 7.

To see how this addition works, consider three examples.

In this case the extra carry from the most significant bit

has no meaning. With signed numbers there are two ways to

get an overflow--if the result is greater than 7, or less than-8.

Let's consider these occurrences now.

CPU Scheduling Algorithms

27

�������	 ��
���	������	
��
������
������
������

�����
�������	�
�����
�
��

���
��

��

�������	 ��
���	������	
��
������
������
������

��
����������	�
���
���
��

���
�����
�

�������	 ��
���	������	
��
������
������
����
�

����

��������	�
����

�
����
��
���

��

In this case the extra carry from the most significant bit

has no meaning. With signed numbers there are two ways to

get an overflow—if the result is greater than 7, or less than-8.

Let’s consider these occurrences now.

�������	 ��
���	������	
��
������
������
������

����
��������	�
��
��
�
��

���
���

��

�������	 ��
���	������	
��
����
�
������
����
�

��

��������	�
���

��
����
��
��
��
�

Obviously both of these results are incorrect, but in this

case overflow is harder to detect. But you can see that if two

numbers with the same sign (either positive or negative) are

added and the result has the opposite sign, an overflow has

occurred. Typically DSP’s, including the 320C5x, can deal

somewhat with this problem by using something called

saturation arithmetic, in which results that result in overflow

are replaced by either the most positive number (in this case

CPU Scheduling Algorithms

28

7) if the overflow is in the positive direction, or by the most

negative number (-8) for overflows in the negative direction.

Adding Fractions

There is no further difficult in adding two signed fractions,

only the interpretation of the results differs. For instance

consider addition of two Q3 numbers shown (compare to the

example with two 4 bit signed numbers, above).

�������	 ����������	������	
��
����
����
����
��
��
����
�����

����
�������	�
�����
�
��

���
��

��

�������	 ����������	������	
��
����
�����
����
��
��
����
����

��
����������	�
���
���
��

���
�����
�

�������	 ����������	������	
��
����
���
����
��
��
����
��
��

���

��������	�
����

�
����
��
���

��

If you look carefully at these examples, you’ll see that the

binary representation and calculations are the same

as before, only the decimal representation has changed.

This is very useful because it means we can use the same

circuitry for addition, regardless of the interpretation of the

results.

Even the generation of overflows resulting in error

conditions remains unchanged (again compare with above)

�������	 ����������	������	
��
����
�
��
����
��
��
����������

���
��������	�
��
��
�
��

���
���

��

CPU Scheduling Algorithms

29

�������	 ����������	������	
��
����
��
��
����
��
��
���������

��

��������	�
���

��
����
��
��
��
�

2’s Complement

We do not just place a 1 in the MSB of a binary number to

make it negative. We must take the 2’s Complement of the

number. Taking the 2’s Complement of the number will cause

the MSB to become 1.

To obtain the 2’s complement of a number is a two step

process.

• Take the 1’s complement of the number by changing

every logic 1 bit in the number to a 0, and change

every logic 0 bit to a 1.

• Add 1 to the 1’s Complement of the binary number.

You now have the 2’s Complement of the original

number. You will notice that the MSB has become a 1.

The complement of a binary number, also known as the

1’s complement, requires us to change every logic 1 bit in a

number to a logic 0, and every logic 0 bit to a logic 1. Let’s

find the 1’s complement of 36H or 0011 0110 in binary. In

the following table, the 1’s Complement is shown in red.

Number format D7 D6 D5 D4 D3 D2 D1 D0

Unsigned number 0 0 1 1 0 1 1 0

1’s Complement 1 1 0 0 1 0 0 1

To obtain the 2’s complement of a binary number, we must

first obtain the 1’s complement of the number and then add

1. In the following table, the 1’s complement is RED and the

2’s Complement is in BLUE. The 2’s complement of 36H or

0011 0110 in binary is:

CPU Scheduling Algorithms

30

Number format D7 D6 D5 D4 D3 D2 D1 D0

Unsigned number 0 0 1 1 0 1 1 0

1’s Complement 1 1 0 0 1 0 0 1

2’s Complement 1 1 0 0 1 0 1 0

If we are using signed binary numbers and the MSB is

already logic 1, it means the value is the 2’s complement of

the number. The actual numeric value can be determined

by taking the 2’s complement of the number and keeping

track of the minus sign mentally.

Find the decimal value of the signed binary number 0FFH.

Number format D7 D6 D5 D4 D3 D2 D1 D0

Signed number 1 1 1 1 1 1 1 1

1’s Complement 0 0 0 0 0 0 0 0

2’s Complement 0 0 0 0 0 0 0 1

Therefore, 0FF is a signed number that has the value in

decimal of-1.

Using 2’s Complement Addition

If we add the 2’s Complement of a signed number to another

signed number, we are performing the mathematical

operation of subtraction. This is, in fact. how many 8-bit

microprocessors actually perform subtraction, they perform

2’s complement addition.

Let us see if 0FFH is really-1. If we add it to 01H, we expect

the result to be 0. One special condition about twos

complement addition, overflows (a CARRY OUT which SETS

the CARRY FLAG) from the register are ignored. So let’s see

what happens.
In Decimal CO D7 D6 D5 D4 D3 D2 D1 D0

1 X 0 0 0 0 0 0 0 1

–1 X 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

CPU Scheduling Algorithms

31

The last row of the table shows that the result is 0. The 1

in the CO (CARRY OUT) is ignored. If we ignore the CO, the

result is 0000 0000. Okay, so it works for a byte. How about

a Word? It is the same procedure. Only the MSB is used as

the sign bit, so the MSB of the low order byte is a weighted

position bit.

For 16-bit numbers:

• 8000H is negative because the high order bit is one.

• 0100H is positive because the high order bit is zero.

• 7FFFH is positive.

• 0FFFFH is negative.

• 0FFFH is positive.

Look Ahead Carry Adders

Purpose

• To Understand delays in digital circuits

• To Learn to use the Timing Simulator

• To Design a 16-bit carry-look ahead adder and

measure its delay.

Background: Circuit Delays

Up to now we have been interested in the functional

operation of logic circuits. In the previous labs you used the

logic simulator to verify that the circuits function properly.

However, there is one other important aspect to circuit design:

the speed at which it operates. The speed of a digital circuit

is very important, as it will determine the maximum frequency

at which it can work. Let us consider a PC that has a clock

frequency of 800 MHz. That means that each 1.25 ns (i.e.

period T=1/frequency) the PC will perform a computation!

As we will see, this will require clever circuit design.

CPU Scheduling Algorithms

32

There are several factors that contribute to the delay. One

is the propagation delay due to the internal structure of the

gates, another factor is the loading of the output buffers (due

to fan out and net delays), and a third factor is the

logic circuit itself.

Propagation Delay

When the input signal of a gate changes, the output signal

will not change instantaneously as is shown in Figure below.

��
��������������������� �!���"�

The propagation delay (or gate delay) of a gate is the time

difference between the change of the input and output

signals. There are two types of gate delays, TPHL and TPLH, as

indicated in Figure. The value of the propagation delay varies

from gate to gate and from logic family to family. In general

the more you are willing to pay for a device (or chip), the

faster it will be. The FPGAs we are using in the lab have gate

delays which vary between 1.5 and 4.5ns. The actual delay

depends on the way the logic gates have been mapped into

the LUTs (Look up table) of a CLB (Configurable Logic Block).

The I/O buffers have delays in the range of 2-4ns.

Fanout and Net Delays

 The propagation delay described above is caused by

parasitic capacitors inside the gates and the physical

limitations of the devices used to build these gates. Another

CPU Scheduling Algorithms

33

cause of delay is the capacitor associated with the loads seen

by a gate. The more capacitors that need to be charged or

discharged the longer it will take for the output to change.

Also, the longer the interconnection, the more resistance the

nets will have. The easiest way to visualize this is to use a

hydraulic equivalent of a capacitor and a resistor: a bucket

filled with water and a narrow pipe, respectively, as shown

in Figure. The more buckets connected to the drain (i.e. the

input inverter), the longer it will take to empty them. This

delay is the result of the fan out of the inverter.

Delay as a Result of Circuit Topography

Circuits that perform the same function can vary

significantly in their speeds. A good example is an adder

circuit. The one you designed in the previous lab is called

a ripple-adder and is considerably slower that a carry-look-

ahead adder or CLA [1,3,4].

Measuring Circuit Delays

The overall speed of a digital system can be measured on

an oscilloscope by comparing the input to the output signals.

However, during the design phase, the circuit has not yet

been fabricated and therefore, cannot be measured. In that

case it is possible to determine the delay of circuits by doing

a Timing Simulation. The advantage of a simulation is that

one can also determine the delay of internal nodes of a circuit.

This can be very helpful to understand which nodes or paths

are the slowest and thus limit the overall speed of the circuits.

These paths are called “Critical path”. It is important to

understand which paths are critical in a circuit so that one

can reduce their delay.

CPU Scheduling Algorithms

34

Ripple-carry vs. Carry-look-ahead Adders

One type of circuit where the effect of gate delays is

particularly clear, is an ADDER. In this lab you will be

measuring the delay of different types of adder circuits. The

4-bit adder you designed and implemented in the previous

lab is called a ripple-carry adder because the result of an

addition of two bits depends on the carry generated by the

addition of the previous two bits. Thus, the Sum of the most

significant bit is only available after the carry signal has

rippled through the adder from the least significant stage to

the most significant stage. This can be easily understood if

one considers the addition of the two 4-bit words: 1 1 1 12 +

0 0 0 12, as shown in Figure.

⎯⎯→

+

→
 � � �

� � � � #����$��"
� � � �

 �

�

% % % % %&'$��"
(
#������&�

��
��)**������� ��+����$���,&'$��"�-��&"�������
�.��!����������� ��.��#������&��/���

In this case, the addition of (1+1 = 102) in the least

significant stage causes a carry bit to be generated. This

carry bit will consequently generate another carry bit in the

next stage, and so on, until the final carry-out bit appears at

the output. As a result, the final Sum and Carry bits will be

valid after a considerable delay. The carry-out bit of the

first stage will be valid after 4 gate delays (2 associated

with the XOR gate and 1 each associated with the AND and

OR gates).

CPU Scheduling Algorithms

35

From the schematic of Figure, one finds that the next carry-

out (C2) will be valid after an additional 2 gate delays

(associated with the AND and OR gates) for a total of 6 gate

delays. In general the carry-out of a N-bit adder will be valid

after 2N+2 gate delays. The Sum bit will be valid an additional

2 gate delays after the carry-in signal. Thus the sum of the

most significant bit SN-1 will be valid after 2(N-1) + 2 +2 = 2N

+2 gate delays.

This delay may be in addition to any delays associated

with interconnections. It should be mentioned that in case

one implements the circuit in a FPGA, the delays may be

different from the above expression depending on how the

logic has been placed in the look up tables and how it has

been divided among different CLBs.

��
��0������������)**��1�-��&"���������.��������� ��.��#�����/���

The disadvantage of the ripple-carry adder is that it can

get very slow when one needs to add many bits. For instance,

for a 32-bit adder, the delay would be about 66 ns if one

assumes a gate delay of 1 ns. That would imply that the

CPU Scheduling Algorithms

36

maximum frequency one can operate this adder would be

only 15 MHz! For fast applications, a better design is required.

The carry-look-ahead adder solves this problem by

calculating the carry signals in advance, based on the input

signals. It is based on the fact that a carry signal will be

generated in two cases: (1) when both bits Ai and Bi are 1, or

(2) when one of the two bits is 1 and the carry-in (carry of the

previous stage) is 1.

Thus, one can write,

• COUT = Ci+1 = Ai.Bi + (Ai Å Bi).Ci. The “⊕” stands for

exclusive OR or XOR. One can write this expression

also, as

• Ci+1 = Gi + Pi.Ci in which:

• Gi = Ai.Bi

• Pi = (Ai Å Bi)

are called the Generate and Propagate term,

respectively. Lets assume that the delay through an

AND gate is one gate delay and through an XOR gate

is two gate delays. Notice that the Propagate and

Generate terms only depend on the input bits and thus

will be valid after two and one gate delay, respectively.

If one uses the above expression to calculate the carry

signals, one does not need to wait for the carry to ripple

through all the previous stages to find its proper value.

Let’s apply this to a 4-bit adder to make it clear.

• C1 = G0 + P0.C0

• C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0

• C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0

• C4 = G3 + P3.G2 + P3.P2.G1 + P3P2.P1.G0 +

P3P2.P1.P0.C0

CPU Scheduling Algorithms

37

Notice that the carry-out bit, Ci+1, of the last stage

will be available after four delays (two gate delays to

calculate the Propagate signal and two delays as a

result of the AND and OR gate). The Sum signal can

be calculated as follows,

• Si = Ai ⊕ Bi ⊕ Ci = Pi⊕ Ci. The Sum bit will thus be

available after two additional gate delays (due to the

XOR gate) or a total of six gate delays after the input

signals Ai and Bi have been applied. The advantage

is that these delays will be the same independent of

the number of bits one needs to add, in contrast to

the ripple counter.

The carry-look ahead adder can be broken up in two

modules:

– The Partial Full Adder, PFA, which generates Si,

Pi and Gi as defined by equations 3, 4 and 9

above; and

– The Carry Look-ahead Logic, which generates the

carry-out bits according to equations 5 to 8.

The 4-bit adder can then be built by using 4 PFAs

and the Carry Look-ahead logic block as shown in

Figure below. The disadvantage of the carry-

lookahead adder is that the carry logic is getting quite

complicated for more than 4 bits. For that reason,

carry-look-ahead adders are usually implemented as

4-bit modules and are used in a hierarchical

structure to realise adders that have multiples of 4

bits. Figure below shows the block diagram for a 16-

bit CLA adder. The circuit makes use of the same

CLA Logic block as the one used in the 4-bit adder.

CPU Scheduling Algorithms

38

��
��/���2�������'�� �����$���#3)�

Notice that each 4-bit adder provides a group

Propagate and Generate Signal, which is used by the

CLA Logic block. The group Propagate PG of a 4-bit

adder will have the following expressions,

• PG = P3.P2.P1.P0;

• GG = G3 + P3G2 + P3.P2.G1. + P3.P2.P1.G0

The group Propagate PG and Generate GG will be

available after 3 and 4 gate delays, respectively (one

or two additional delays than the Pi and Gi signals,

respectively).

��
��/���2�������'�� ������$���#3)�)**���

CPU Scheduling Algorithms

39

Generate and Propagate

Why generate and propagate. If you look at the Boolean

expressions for pi and gi, you will see that they both use

only xi and yi. Neither depend on the carry. Sincexi and yi are

available immediately, this gives us hope that we can avoid

waiting for carries.

This is how we do it. First, let’s write the c1 which is the

carry out for the adding bit 0 of x and y.
c1 = g0 + p0c0

Now, we write it for c2.
c2 = g1 + p1c1

At this point, we’ve used c1, which we’d rather avoid,

because it means waiting for that carry to be computed.

However, we just defined c1 as g0 + c0p0.

Let’s plug that in:
c2= g1 + p1(g0 + p0c0)
= g1 + p1g0 + p1p0c0

Notice that we no longer have c1. That means we no longer

have to wait for the carry!

Let’s go one more step further:
c3 = g2 + p2c2

Again, we would prefer to avoid using c2 since this requires

us to wait for the result to propagate across two adders.

However, we already have a Boolean expression for c2 (we

just computed it a moment ago) that doesn’t use any carries

except c0 which we have right away.
c3= g2 + p2c2
= g2 + p2(g1 + p1g0 + p1p0c0)
= g2 + p2g1 + p2p1g0 + p2p1p0c0

Already, you should be able to detect a pattern. By following

the same pattern, you’d expect:
c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

CPU Scheduling Algorithms

40

Multiplication

Multiplying unsigned numbers

Multiplying unsigned numbers in binary is quite easy.

Recall that with 4 bit numbers we can represent numbers

from 0 to 15.

Multiplication can be performed done exactly as with

decimal numbers, except that you have only two digits (0

and 1). The only number facts to remember are that 0*1=0,

and 1*1=1 (this is the same as a logical “and”).

Multiplication is dif ferent than addition in that

multiplication of an n bit number by an m bit number results

in an n+m bit number. Let’s take a look at an example where

n=m=4 and the result is 8 bits

�������� �������
���
�
��4��
���
�

������
�
�
����4
��
�
������

�
������
�
�
������
�
�
����

�����
��
����

���

In this case the result was 7 bit, which can be extended to

8 bits by adding a 0 at the left. When multiplying larger

numbers, the result will be 8 bits, with the leftmost set to 1,

as shown.
�������	 ������	
������
��4���
������

�������
��
����4���
�
�����

�
������
��
�����
��
����
�����
��
��
��
���

CPU Scheduling Algorithms

41

As long as there are n+m bits for the result, there is no

chance of overflow. For 2 four bit multiplicands, the largest

possible product is 15*15=225, which can be represented in

8 bits.

Multiplying signed numbers

There are many methods to multiply 2’s complement

numbers. The easiest is to simply find the magnitude of the

two multiplicands, multiply these together, and then use the

original sign bits to determine the sign of the result. If the

multiplicands had the same sign, the result must be positive,

if the they had different signs, the result is negative.

Multiplication by zero is a special case (the result is always

zero, with no sign bit).

Multiplying fractions

As you might expect, the multiplication of fractions can be

done in the same way as the multiplication of signed

numbers. The magnitudes of the two multiplicands are

multiplied, and the sign of the result is determined by the

signs of the two multiplicands.

There are a couple of complications involved in using

fractions. Although it is almost impossible to get an overflow

(since the multiplicands and results usually have magnitude

less than one), it is possible to get an overflow by multiplying-

1x-1 since the result of this is +1, which cannot be

represented by fixed point numbers.

The other difficulty is that multiplying two Q3 numbers,

obviously results in a Q6 number, but we have 8 bits in our

result (since we are multiplying two 4 bit numbers). This

means that we end up with two bits to the left of the decimal

CPU Scheduling Algorithms

42

point. These are sign extended, so that for positive numbers

they are both zero, and for negative numbers they are both

one. Consider the case of multiplying-1/2 by-1/2:

�������� ����������	�������
��5
���
��4
����
��5
����

��������

�
�����4
�

�
������

�
�����

�
������

���
������

���

This obviously presents a difficulty if we wanted to store

the number in a Q3 result, because if we took just the 4

leftmost bits, we would end up with two sign bits. So what

we’d like to do is shift the number to the left by one and then

take the 4 leftmost bit. This leaves us with 1110 which is

equal to-1/4, as expected.

On a 16 bit DSP two Q15 numbers are multiplied to get a

Q30 number with two sign bits. On the 320C50 there are

two ways to accomplish this. The first is to use the p-

scaler immediately after the multiplier, or the postscaler after

the accumulator. to shift the result to the left by one

Example for Multiplication

13 × 11 = 143

The paper-and-pencel method:

Improve the method so that only 2 numbers are added each

time:

CPU Scheduling Algorithms

43

Algorithm for Hardware Multiplication

Do n times:
{
if (q0 = 1) then A ←←←←← A + M;
right shift A and Q by 1 bit

}

Note: When A and Q are right shifted, the MSB of A is

filled with 0 and the LSB of A becomes the MSB of Q, and

the LSB of Q is lost.

Example

13 × 11 = 143

Always use three registers M, A, and Q. Initially, the

multiplicand 13 =(1101)2 is in M, the multiplier 11 =

(10111)2 is in Q, and A is zero.

CPU Scheduling Algorithms

44

[M] 1101

��� ���� ��� ����

6
�7��1��**�)�7�8)9���8:9 � ��
�

 ��
� �
��

���.��".� ��)(;

��
 ��
�

6
�7��1��**�)�7�8)9���8:9 � ��
�

�

�� ��
�

���.��".� ��)(;
 �

� ���

6
�7�
1���.��".� �1�)(;

�

6
�7��1��**�)�7�8)9���8:9 � ��
�

�

� ����

���.��".� ��)(;
 �

 ����

The upper half of the product (1010001111)2 = 143 is in

register A, while the lower half is in register Q.

Example for Division

÷
��
�� ����7����
��

CPU Scheduling Algorithms

45

Algorithm for Hardware Division (Restoring)

Do n times:
{
left shift A and Q by 1 bit
A ←←←←← A–M;
if A < 0 (an–1 = 1), then q0 ←←←←← 0,A ←←←←← A +

M (restore)
else q0 ←←←←← 1

}

Note: When A and Q are left shifted, the MSB of Q becomes

the LSB of A, and the MSB of A is lost. The LSB of Q is made

available for the next quotient bit.

Example

��� ���7��
�

÷

Initially, the divisor 3 = (0011)2 is in register M, the

dividend 8 = (1000)2 is in register Q, and register A is zero.

Note that subtraction by 3 = (0011)2 is implemented by adding

its 2’s complement 1101.

[M] 1101

��� ���� ��� ����

�� ��".� ��)(;

�

�
)�7�8)958:9 � ��
�
)�<�
 ��
�

)�7�8)9���8:9 �

��

�

�� ��".� ��)(;

�

�
)�7�8)958:9 � ��
�
)�<�

��

)�7�8)9���8:9 �

��

�

�� ��".� ��)(; ��

�
)�7�8)958:9 � ��
�
)�=�

�

� �� ��".� ��)(;

�

��
)�7�8)958:9 � ��
�

CPU Scheduling Algorithms

46

)�<�
 ����

�
)�7�8)9���8:9 �

��

�
 ����

The quotient (0010)2 = 2 is in register Q, and the reminder

(0010)2 = 2 is in register A.

Algorithm for Hardware Division (Non-restoring)

In the algorithm above, if the subtraction produces a non-

positive result (A > 0), registers A and Q are left shifted and

the next subtraction is carried out. But if the subtraction

produces a negative result (A < 0), the dividend need be first

restored by adding the divisor back before left shift A and Q

and the next subtraction:

• If A ≤ 0, then 2A–M (left shift and subtract);

• If A ≥ 0, then 2(A + M)–M = 2A + M (restore, left shift

and subtract).

Note that when A < 0, the restoration is avoided by

combining the two steps. This leads to a faster non-restoring

division algorithm:

Algorithm for Hardware Division (Non-restoring)

Do n times:
{ left shift A and Q by 1 bit
if (previous A ≥≥≥≥≥ 0) then A →→→→→ A–M
else A →→→→→ A + M;
if (current A ≥≥≥≥≥ 0) then q0 →→→→→ 1
else q0 →→→→→ 1

}
if (A < 0) then (remainder must be

positive)

[M] 0011

��� ���� ��� ����

�� ��".� ��)(;

�

�
)�7�8)958:9 � ��
�
)�<�
 ���

CPU Scheduling Algorithms

47

�� ��".� ��)(; ��

�
)�7�8)9���8:9 �

��
)�<�
 ����

�� ��".� ��)(; ���

�
)�7�8)9���8:9 �

��
)�=�

�

� �� ��".� ��)(;

�

��
)�7�8)958:9 � ��
�
)�<�
 ����

�
)�7�8)9���8:9�

��

�
 ����

The quotient (0010)2 = 2 is in register Q, and the

reminder (0010)2 = 2 is in register A. The restoring division

requires two operations (subtraction followed by an addition

to restore) for each zero in the quotient. But non-restoring

division only requires one operation (either addition or

subtraction) for each bit in quotient.

Booths algorithm and Array Multiplier

Definition of an Algorithm

In the introduction, we gave an informal definition of an

algorithm as “a set of instructions for solving a problem”

and we illustrated this definition with a recipe, directions to

a friend’s house, and instructions for changing the oil in a

car engine. You also created your own algorithm for putting

letters and numbers in order. While these simple algorithms

are fine for us, they are much too ambiguous for a computer.

In order for an algorithm to be applicable to a computer, it

must have certain characteristics. We will specify these

characteristics in our formal definition of an algorithm.

An algorithm is a well-ordered collection of unambi-

guous and effectively computable operations that when

CPU Scheduling Algorithms

48

executed produces a result and halts in a finite amount of

time. With this definition, we can identify five important

characteristics of algorithms.

• Algorithms are well-ordered.

• Algorithms have unambiguous operations.

• Algorithms have effectively computable operations.

• Algorithms produce a result.

• Algorithms halt in a finite amount of time.

These characteristics need a little more explanation, so

we will look at each one in detail.

Algorithms are Well-ordered

Since an algorithm is a collection of operations or

instructions, we must know the correct order in which to

execute the instructions. If the order is unclear, we may

perform the wrong instruction or we may be uncertain which

instruction should be performed next. This characteristic is

especially important for computers. A computer can only

execute an algorithm if it knows the exact order of steps to

perform.

Algorithms have Unambiguous Operations

Each operation in an algorithm must be sufficiently clear

so that it does not need to be simplified. Given a list of

numbers, you can easily order them from largest to smallest

with the simple instruction “Sort these numbers.” A

computer, however, needs more detail to sort numbers. It

must be told to search for the smallest number, how to find

the smallest number, how to compare numbers together, etc.

The operation “Sort these numbers” is ambiguous to a

computer because the computer has no basic operations for

CPU Scheduling Algorithms

49

sorting. Basic operations used for writing algorithms are

known as primitive operations or primitives. When an

algorithm is written in computer primitives, then the

algorithm is unambiguous and the computer can execute it.

Algorithms Produce a Result

In our simple definition of an algorithm, we stated that an

algorithm is a set of instructions for solving a problem. Unless

an algorithm produces some result, we can never be certain

whether our solution is correct. Have you ever given a

command to a computer and discovered that nothing

changed? What was your response? You probably thought

that the computer was malfunctioning because your

command did not produce any type of result.

Without some visible change, you have no way of

determining the effect of your command. The same is true

with algorithms. Only algorithms which produce results can

be verified as either right or wrong.

CPU Scheduling Algorithms

50

2

Scheduling Algorithms

First-Come-First-Served (FCFS) Scheduling
Other names of this algorithm are:

• First-In-First-Out (FIFO)

• Run-to-Completion

• Run-Until-Done

Perhaps, First-Come-First-Served algorithm is the simplest

scheduling algorithm is the simplest scheduling algorithm.

Processes are dispatched according to their arrival time on

the ready queue. Being a nonpreemptive discipline, once a

process has a CPU, it runs to completion. The FCFS

scheduling is fair in the formal sense or human sense of

fairness but it is unfair in the sense that long jobs make

short jobs wait and unimportant jobs make important jobs

wait.

FCFS is more predictable than most of other schemes since

it offers time. FCFS scheme is not useful in scheduling

CPU Scheduling Algorithms

51

interactive users because it cannot guarantee good response

time. The code for FCFS scheduling is simple to write and

understand. One of the major drawback of this scheme is

that the average time is often quite long. The First-Come-

First-Served algorithm is rarely used as a master scheme in

modern operating systems but it is often embedded within

other schemes.

Round Robin Scheduling
One of the oldest, simplest, fairest and most widely used

algorithm is round robin (RR). In the round robin scheduling,

processes are dispatched in a FIFO manner but are given a

limited amount of CPU time called a time-slice or a quantum.

If a process does not complete before its CPU-time expires,

the CPU is preempted and given to the next process waiting

in a queue. The preempted process is then placed at the

back of the ready list.

Round Robin Scheduling is preemptive (at the end of time-

slice) therefore it is effective in time-sharing environments

in which the system needs to guarantee reasonable response

times for interactive users. The only interesting issue with

round robin scheme is the length of the quantum. Setting

the quantum too short causes too many context switches

and lower the CPU efficiency. On the other hand, setting the

quantum too long may cause poor response time and

appoximates FCFS. In any event, the average waiting time

under round robin scheduling is often quite long.

Shortest-Job-First (SJF) Scheduling
Other name of this algorithm is Shortest-Process-Next

(SPN). Shortest-Job-First (SJF) is a non-preemptive discipline

CPU Scheduling Algorithms

52

in which waiting job (or process) with the smallest estimated

run-time-to-completion is run next. In other words, when

CPU is available, it is assigned to the process that has

smallest next CPU burst.

The SJF scheduling is especially appropriate for batch jobs

for which the run times are known in advance. Since the

SJF scheduling algorithm gives the minimum average time

for a given set of processes, it is probably optimal. The SJF

algorithm favors short jobs (or processors) at the expense of

longer ones. The obvious problem with SJF scheme is that it

requires precise knowledge of how long a job or process will

run, and this information is not usually available. The best

SJF algorithm can do is to rely on user estimates of run

times. In the production environment where the same jobs

run regularly, it may be possible to provide reasonable

estimate of run time, based on the past performance of the

process. But in the development environment users rarely

know how their programme will execute. Like FCFS, SJF is

non preemptive therefore, it is not useful in timesharing

environment in which reasonable response time must be

guaranteed.

Shortest-Remaining-Time (SRT) Scheduling
• The SRT is the preemtive counterpart of SJF and

useful in time-sharing environment.

• In SRT scheduling, the process with the smallest

estimated run-time to completion is run next,

including new arrivals.

• In SJF scheme, once a job begin executing, it run to

completion.

CPU Scheduling Algorithms

53

• In SJF scheme, a running process may be preempted

by a new arrival process with shortest estimated run-

time.

• The algorithm SRT has higher overhead than its

counterpart SJF.

• The SRT must keep track of the elapsed time of the

running process and must handle occasional

preemptions.

• In this scheme, arrival of small processes will run

almost immediately. However, longer jobs have even

longer mean waiting time.

Priority Scheduling
The basic idea is straightforward: each process is assigned

a priority, and priority is allowed to run. Equal-Priority

processes are scheduled in FCFS order. The shortest-Job-

First (SJF) algorithm is a special case of general priority

scheduling algorithm.

An SJF algorithm is simply a priority algorithm where the

priority is the inverse of the (predicted) next CPU burst. That

is, the longer the CPU burst, the lower the priority and vice

versa.

Priority can be defined either internally or externally.

Internally defined priorities use some measurable quantities

or qualities to compute priority of a process.

Examples of Internal priorities are:

• Time limits.

• Memory requirements.

• File requirements, for example, number of open files.

• CPU Vs I/O requirements.

CPU Scheduling Algorithms

54

Externally defined priorities are set by criteria that are

external to operating system such as:

• The importance of process.

• Type or amount of funds being paid for computer use.

• The department sponsoring the work.

• Politics.

Priority scheduling can be either preemptive or non

preemptive:

• A preemptive priority algorithm will preemptive the

CPU if the priority of the newly arrival process is

higher than the priority of the currently running

process.

• A non-preemptive priority algorithm will simply put

the new process at the head of the ready queue.

A major problem with priority scheduling is indefinite

blocking or starvation. A solution to the problem of indefinite

blockage of the low-priority process is aging. Aging is a

technique of gradually increasing the priority of processes

that wait in the system for a long period of time.

Multilevel Queue Scheduling
A multilevel queue scheduling algorithm partitions the

ready queue in several separate queues, for instance

In a multilevel queue scheduling processes are

permanently assigned to one queues.

The processes are permanently assigned to one another,

based on some property of the process, such as:

• Memory size

• Process priority

• Process type

CPU Scheduling Algorithms

55

Algorithm choose the process from the occupied queue

that has the highest priority, and run that process either:

• Preemptive or

• Non-preemptively

Each queue has its own scheduling algorithm or policy.

Possibility I
If each queue has absolute priority over lower-priority

queues then no process in the queue could run unless the

queue for the highest-priority processes were all empty. For

example, in the above figure no process in the batch queue

could run unless the queues for system processes, interactive

processes, and interactive editing processes will all empty.

Possibility II
 If there is a time slice between the queues then each queue

gets a certain amount of CPU times, which it can then

schedule among the processes in its queue. For instance;

• 80% of the CPU time to foreground queue using RR.

• 20% of the CPU time to background queue using

FCFS.

Since processes do not move between queue so, this policy

has the advantage of low scheduling overhead, but it is

inflexible.

Multilevel Feedback Queue Scheduling
Multilevel feedback queue-scheduling algorithm allows a

process to move between queues. It uses many ready queues

and associate a different priority with each queue.

The Algorithm chooses to process with highest priority from

the occupied queue and run that process either preemptively

CPU Scheduling Algorithms

56

or unpreemptively. If the process uses too much CPU time it

will moved to a lower-priority queue. Similarly, a process

that wait too long in the lower-priority queue may be moved

to a higher-priority queue may be moved to a highest-priority

queue. Note that this form of aging prevents starvation.

• A process entering the ready queue is placed in queue

0.

• If it does not finish within 8 milliseconds time, it is

moved to the tail of queue 1.

• If it does not complete, it is preempted and placed

into queue 2.

• Processes in queue 2 run on a FCFS basis, only when

queue 2 run on a FCFS basis, only when queue 0

and queue 1 are empty.

Interprocess Communication
Since processes frequently needs to communicate with

other processes therefore, there is a need for a well-structured

communication, without using interrupts, among processes.

Race Conditions
In operating systems, processes that are working together

share some common storage (main memory, file etc.) that

each process can read and write. When two or more processes

are reading or writing some shared data and the final result

depends on who runs precisely when, are called race

conditions. Concurrently executing threads that share data

need to synchronize their operations and processing in order

to avoid race condition on shared data. Only one ‘customer’

thread at a time should be allowed to examine and update

the shared variable. Race conditions are also possible in

CPU Scheduling Algorithms

57

Operating Systems. If the ready queue is implemented as a

linked list and if the ready queue is being manipulated during

the handling of an interrupt, then interrupts must be disabled

to prevent another interrupt before the first one completes.

If interrupts are not disabled than the linked list could become

corrupt.

Mutual Exclusion
A way of making sure that if one process is using a shared

modifiable data, the other processes will be excluded from

doing the same thing. Formally, while one process executes

the shared variable, all other processes desiring to do so at

the same time moment should be kept waiting; when that

process has finished executing the shared variable, one of

the processes waiting; while that process has finished

executing the shared variable, one of the processes waiting

to do so should be allowed to proceed. In this fashion, each

process executing the shared data (variables) excludes all

others from doing so simultaneously. This is called Mutual

Exclusion.

Note that mutual exclusion needs to be enforced only when

processes access shared modifiable data - when processes

are performing operations that do not conflict with one

another they should be allowed to proceed concurrently.

Mutual Exclusion Conditions
If we could arrange matters such that no two processes

were ever in their critical sections simultaneously, we could

avoid race conditions. We need four conditions to hold to

have a good solution for the critical section problem (mutual

exclusion).

CPU Scheduling Algorithms

58

• No two processes may at the same moment inside

their critical sections.

• No assumptions are made about relative speeds of

processes or number of CPUs.

• No process should outside its critical section should

block other processes.

• No process should wait arbitrary long to enter its

critical section.

Proposals for Achieving Mutual Exclusion
The mutual exclusion problem is to devise a pre-protocol

(or entry protocol) and a post-protocol (or exist protocol) to

keep two or more threads from being in their critical sections

at the same time.

Tanenbaum examine proposals for critical-section problem

or mutual exclusion problem.

Problem
When one process is updating shared modifiable data in

its critical section, no other process should allowed to enter

in its critical section.

Proposal 1 -Disabling Interrupts (Hardware
Solution)

Each process disables all interrupts just after entering in

its critical section and re-enable all interrupts just before

leaving critical section.

With interrupts turned off the CPU could not be switched

to other process. Hence, no other process will enter its critical

and mutual exclusion achieved.

CPU Scheduling Algorithms

59

Conclusion
Disabling interrupts is sometimes a useful interrupts is

sometimes a useful technique within the kernel of an

operating system, but it is not appropriate as a general

mutual exclusion mechanism for users process. The reason

is that it is unwise to give user process the power to turn off

interrupts.

Proposal 2 - Lock Variable (Software Solution)
In this solution, we consider a single, shared, (lock)

variable, initially 0. When a process wants to enter in its

critical section, it first test the lock. If lock is 0, the process

first sets it to 1 and then enters the critical section. If the

lock is already 1, the process just waits until (lock) variable

becomes 0. Thus, a 0 means that no process in its critical

section, and 1 means hold your horses - some process is in

its critical section.

Conclusion
The flaw in this proposal can be best explained by example.

Suppose process A sees that the lock is 0. Before it can set

the lock to 1 another process B is scheduled, runs, and sets

the lock to 1. When the process A runs again, it will also set

the lock to 1, and two processes will be in their critical section

simultaneously.

Proposal 3 - Strict Alteration
In this proposed solution, the integer variable ‘turn’ keeps

track of whose turn is to enter the critical section. Initially,

process A inspect turn, finds it to be 0, and enters in its

critical section. Process B also finds it to be 0 and sits in a

CPU Scheduling Algorithms

60

loop continually testing ‘turn’ to see when it becomes 1.

Continuously testing a variable waiting for some value to

appear is called the Busy-Waiting.

Conclusion
Taking turns is not a good idea when one of the processes is

much slower than the other. Suppose process 0 finishes its critical

section quickly, so both processes are now in their noncritical

section. This situation violates above mentioned condition 3.

Using Systems Calls ‘Sleep’ and ‘Wakeup’
Basically, what above mentioned solution do is this: when

a processes wants to enter in its critical section, it checks to

see if then entry is allowed. If it is not, the process goes into

tight loop and waits (i.e., start busy waiting) until it is allowed

to enter. This approach waste CPU-time.

Now look at some interprocess communication primitives

is the pair of steep-wakeup.

• Sleep

– It is a system call that causes the caller to block,

that is, be suspended until some other process

wakes it up.

• Wakeup

– It is a system call that wakes up the process.

Both ‘sleep’ and ‘wakeup’ system calls have one parameter

that represents a memory address used to match up ‘sleeps’

and ‘wakeups’.

The Bounded Buffer Producers and Consumers
The bounded buffer producers and consumers assumes

that there is a fixed buffer size i.e., a finite numbers of slots

are available.

CPU Scheduling Algorithms

61

Statement
To suspend the producers when the buffer is full, to

suspend the consumers when the buffer is empty, and to

make sure that only one process at a time manipulates a

buffer so there are no race conditions or lost updates. As an

example how sleep-wakeup system calls are used, consider

the producer-consumer problem also known as bounded

buffer problem. Two processes share a common, fixed-size

(bounded) buffer. The producer puts information into the

buffer and the consumer takes information out.

Trouble arises when:

1. The producer wants to put a new data in the buffer, but

buffer is already full. Solution: Producer goes to sleep and

to be awakened when the consumer has removed data.

2. The consumer wants to remove data the buffer but

buffer is already empty. Solution: Consumer goes to

sleep until the producer puts some data in buffer and

wakes consumer up.

Conclusion
This approaches also leads to same race conditions we have

seen in earlier approaches. Race condition can occur due to

the fact that access to ‘count’ is unconstrained. The essence

of the problem is that a wakeup call, sent to a process that is

not sleeping, is lost.

Semaphores

Definition
A semaphore is a protected variable whose value can be

accessed and altered only by the operations P and V and

CPU Scheduling Algorithms

62

initialization operation called ‘Semaphoiinitislize’. Binary

Semaphores can assume only the value 0 or the value 1 counting

semaphores also called general semaphores can assume only

nonnegative values. The P (or wait or sleep or down) operation

on semaphores S, written as P(S) or wait (S), operates as follows:

P(S): IF S > 0

THEN S:= S - 1

ELSE (wait on S)

The V (or signal or wakeup or up) operation on semaphore

S, written as V(S) or signal (S), operates as follows:

V(S): IF (one or more process are waiting on S)

THEN (let one of these processes proceed)

ELSE S:= S +1

Operations P and V are done as single, indivisible, atomic

action. It is guaranteed that once a semaphore operations has

stared, no other process can access the semaphore until

operation has completed. Mutual exclusion on the semaphore,

S, is enforced within P(S) and V(S). If several processes attempt

a P(S) simultaneously, only process will be allowed to proceed.

The other processes will be kept waiting, but the implementation

of P and V guarantees that processes will not suffer indefinite

postponement. Semaphores solve the lost-wakeup problem.

Producer-Consumer Problem Using Semaphores
The Solution to producer-consumer problem uses three

semaphores, namely, full, empty and mutex. The semaphore

‘full’ is used for counting the number of slots in the buffer

that are full. The ‘empty’ for counting the number of slots

that are empty and semaphore ‘mutex’ to make sure that

the producer and consumer do not access modifiable shared

section of the buffer simultaneously.

CPU Scheduling Algorithms

63

Initialization

• Set full buffer slots to 0. i.e., semaphore Full = 0.

• Set empty buffer slots to N. i.e., semaphore empty =

N.

• For control access to critical section set mutex to 1.

 i.e., semaphore mutex = 1.

Producer ()

WHILE (true)

produce-Item ();

P (empty);

P (mutex);

enter-Item ()

V (mutex)

V (full);

Consumer ()

WHILE (true)

P (full)

P (mutex);

remove-Item ();

V (mutex);

V (empty);

consume-Item (Item)

System Critical Section

Critical Section

CPU Scheduling Algorithms

64

The key to preventing trouble involving shared storage is

find some way to prohibit more than one process from reading

and writing the shared data simultaneously. That part of

the programme where the shared memory is accessed is

called the Critical Section. To avoid race conditions and flawed

results, one must identify codes in Critical Sections in each

thread. The characteristic properties of the code that form a

Critical Section are

• Codes that reference one or more variables in a “read-

update-write” fashion while any of those variables is

possibly being altered by another thread.

• Codes that alter one or more variables that are

possibly being referenced in “read-updata-write”

fashion by another thread.

• Codes use a data structure while any part of it is

possibly being altered by another thread.

• Codes alter any part of a data structure while it is

possibly in use by another thread.

Here, the important point is that when one process is

executing shared modifiable data in its critical section, no

other process is to be allowed to execute in its critical section.

Thus, the execution of critical sections by the processes is

mutually exclusive in time.

Critical Section Objects
A critical section object provides synchronization similar to

that provided by a mutex object, except that a critical section

can be used only by the threads of a single process. Event,

mutex, and semaphore objects can also be used in a single-

process application, but critical section objects provide a

CPU Scheduling Algorithms

65

slightly faster, more efficient mechanism for mutual-exclusion

synchronization (a processor -specific test and set

instruction). Like a mutex object, a critical section object

can be owned by only one thread at a time, which makes it

useful for protecting a shared resource from simultaneous

access. Unlike a mutex object, there is no way to tell whether

a critical section has been abandoned.

Starting with Windows Server 2003 with Service Pack 1

(SP1), threads waiting on a critical section do not acquire

the critical section on a first-come, first-serve basis. This

change increases performance significantly for most code.

However, some applications depend on FIFO ordering and

may perform poorly or not at all on current versions of

Windows (for example, applications that have been using

critical sections as a rate-limiter). To ensure that your code

continues to work correctly, you may need to add an

additional level of synchronization. For example, suppose

you have a producer thread and a consumer thread that are

using a critical section object to synchronize their work.

Create two event objects, one for each thread to use to signal

that it is ready for the other thread to proceed. The consumer

thread will wait for the producer to signal its event before

entering the critical section, and the producer thread will

wait for the consumer thread to signal its event before

entering the critical section. After each thread leaves the

critical section, it signals its event to release the other thread.

Windows Server 2003 and Windows XP/2000: Threads that

are waiting on a critical section are added to a wait queue;

they are woken and generally acquire the critical section in

the order in which they were added to the queue. However, if

CPU Scheduling Algorithms

66

threads are added to this queue at a fast enough rate,

performance can be degraded because of the time it takes to

awaken each waiting thread.

The process is responsible for allocating the memory used

by a critical section. Typically, this is done by simply declaring

a variable of type CRITICAL_SECTION. Before the threads of

the process can use it, initialize the critical section by using

the Initialize Critical Section or Initialize Critical Section And

Spin Count function.

A thread uses the EnterCriticalSection or

TryEnterCriticalSection function to request ownership of a

critical section. It uses the Leave Critical Section function to

release ownership of a critical section. If the critical section

object is currently owned by another thread, Enter Critical

Section waits indefinitely for ownership. In contrast, when a

mutex object is used for mutual exclusion, the wait functions

accept a specified time-out interval. The Try Enter Critical

Section function attempts to enter a critical section without

blocking the calling thread.

When a thread owns a critical section, it can make

additional calls to Enter Critical Section or Try Enter Critical

Section without blocking its execution. This prevents a thread

from deadlocking itself while waiting for a critical section

that it already owns. To release its ownership, the thread

must call Leave Critical Section one time for each time that

it entered the critical section. There is no guarantee about

the order in which waiting threads will acquire ownership of

the critical section.

A thread uses the Initialize CriticalSection And Spin Count

or SetCriticalSectionSpinCount function to specify a spin

CPU Scheduling Algorithms

67

count for the critical section object. Spinning means that

when a thread tries to acquire a critical section that is locked,

the thread enters a loop, checks to see if the lock is released,

and if the lock is not released, the thread goes to sleep. On

single-processor systems, the spin count is ignored and the

critical section spin count is set to 0 (zero). On multiprocessor

systems, if the critical section is unavailable, the calling

thread spins dwSpin Count times before performing a wait

operation on a semaphore that is associated with the critical

section. If the critical section becomes free during the spin

operation, the calling thread avoids the wait operation.

Any thread of the process can use the DeleteCriticalSection

function to release the system resources that are allocated

when the critical section object is initialized. After this

function is called, the critical section object cannot be used

for synchronization.

When a critical section object is owned, the only other

threads affected are the threads that are waiting for

ownership in a call to EnterCriticalSection. Threads that are

not waiting are free to continue running.

Semaphores
The CommonPoint application system provides two kinds

of semaphores: readers/writer locks and counting

semaphores, though the readers/writer lock style of

semaphore is preferred.

A readers/writer lock semaphore contains no explicit

reference associating it with the shared data it protects. You

maintain the association simply by programming cooperating

threads to acquire the semaphore before accessing the data.

CPU Scheduling Algorithms

68

This style of programming allows multiple threads (readers)

to read the data associated with the semaphore

simultaneously, but allows only one thread at a time (a writer)

to modify the data.

When a thread acquires a readers/writer lock in shared

mode, other threads can also hold the lock in shared mode

at the same time. When a thread acquires the lock in

restricted mode, no other thread can hold or acquire the lock

until it’s released. By convention you only use shared mode

for reading the data associated with the semaphore; you use

restricted mode for writing.

When using a semaphore to represent an operation rather

than data, releasing restricted access to the semaphore could

signal the end of the operation. Other threads that depend

on the operation being complete could simply acquire the

semaphore in restricted mode before proceeding. You can

use a message stream to accomplish this coordination if you

need to communicate detailed information between threads,

but this method is slower than using a semaphore.

Local and Recoverable Semaphores
The CommonPoint application system provides two kinds

of readers/writer lock semaphores: local semaphores, which

can only be used within tasks, and recoverable semaphores,

which can be shared among tasks. A recoverable semaphore

CPU Scheduling Algorithms

69

has the ability to recover when the thread holding the

semaphore unexpectedly terminates without releasing the

semaphore; in this case, the recoverable semaphore restores

itself to an unlocked state and unblocks any threads waiting

to acquire it.

This capability is essential for preventing deadlocks

involving semaphores that are shared among tasks.

These rules govern the acquisition and release of readers/

writer lock semaphores:

• A thread that acquires a semaphore in restricted mode

becomes the owner of the semaphore. Once the

semaphore is acquired in restricted mode, no other

thread can acquire the semaphore in any mode, and

only the owner is allowed to release the semaphore.

• When a thread attempts to acquire a semaphore in

restricted mode while any other threads hold the

semaphore in either mode, the thread blocks until all

other threads release the semaphore.

• When a thread releases restricted-mode ownership of

a semaphore, all threads waiting to acquire the

semaphore in shared mode are unblocked (and

allowed to acquire the semaphore) before threads

waiting to acquire the semaphore in restricted mode.

• Threads waiting to acquire a semaphore in restricted

mode are allowed to acquire the semaphore on a first-

come-first-served basis.

• When a semaphore is destroyed, all threads waiting

to acquire it receive a T Kernel Exception with an

error code of Semaphore Deleted.

CPU Scheduling Algorithms

70

Software Metrics in Algorithmic

In computer science, efficiency is used to describe

properties of an algorithm relating to how much of various

types of resources it consumes. Algorithmic efficiency can

be thought of as analogous to engineering productivity for

a repeating or continuous process, where the goal is to

reduce resource consumption, including time to completion,

to some acceptable, optimal level.

Software Metrics

The two most frequently encountered and measurable

metrics of an algorithm are:-

• speed or running time - the time it takes for an

algorithm to complete, and

• ‘space’ - the memory or ‘non-volatile storage’ used by

the algorithm during its operation.

�������	�
��
���������	

• transmission size - such as required bandwidth during

normal operation or

• size of external memory- such as temporary disk

space used to accomplish its task

�������
��������

• the size of required ‘longterm’ disk space required

after its operation to record its output or maintain

its required function during its required useful lifetime

(examples: a data table, archive or a computer log)

and also

• the performance per watt and the total energy,

consumed by the chosen hardware implementation

CPU Scheduling Algorithms

71

(with its System requirements, necessary auxiliary

support systems including interfaces, cabling,

switching, cooling and security), during its required

useful lifetime. See Total cost of ownership for other

potential costs that might be associated with any

particular implementation.

(An extreme example of these metrics might be to consider

their values in relation to a repeated simple algorithm for

calculating and storing (ð+n) to 50 decimal places running

for say, 24 hours, either on a “pocket calculator” sized

processor such as an ipod or an early mainframe operating

in its own purpose-built heated or air conditioned unit.) The

process of making code more efficient is known as

optimization and in the case of automatic optimization (i.e.

compiler optimization - performed by compilers on request

or by default), usually focus on space at the cost of speed,

or vice versa.

There are also quite simple programming techniques and

‘avoidance strategies’ that can actually improve both at the

same time, usually irrespective of hardware, software or

language. Even the re-ordering of nested conditional

statements - to put the least frequently occurring condition

first (example: test patients for blood type =’AB-’, before

testing age > 18, since this type of blood occurs in only

about 1 in 100 of the population - thereby eliminating the

second test at runtime in 99% of instances), can reduce

actual instruction path length, something an optimizing

compiler would almost certainly not be aware of - but which

a programmer can research relatively easily even without

specialist medical knowledge.

CPU Scheduling Algorithms

72

History

The first machines that were capable of computation

were severely limited by purely mechanical considerations.

As later electronic machines were developed they were, in

turn, limited by the speed of their electronic counterparts.

As software replaced hard-wired circuits, the efficiency of

algorithms also became important. It has long been

recognized that the precise ‘arrangement of processes’ is

critical in reducing elapse time.

• “In almost every computation a great variety of

arrangements for the succession of the processes is

possible, and various considerations must influence

the selections amongst them for the purposes of a

calculating engine. One essential object is to choose

that arrangement which shall tend to reduce to a

minimum the time necessary for completing the

calculation”

Ada Lovelace 1815-1852, generally considered as ‘the

first programmer’ who worked on Charles Babbage’s early

mechanical general-purpose computer

• “In established engineering disciplines a 12%

improvement, easily obtained, is never considered

marginal and I believe the same viewpoint should

prevail in software engineering”

Extract from “Structured Programming with go to

Statements” by Donald Knuth, renowned computer scientist

and Professor Emeritus of the Art of Computer Programming

at Stanford University.

CPU Scheduling Algorithms

73

• “The key to performance is elegance, not battalions

of special cases” attributed to Jon Bentley and

(Malcolm) Douglas McIlroy

Speed

The absolute speed of an algorithm for a given input can

simply be measured as the duration of execution (or clock

time) and the results can be averaged over several executions

to eliminate possible random effects. Most modern processors

operate in a multi-processing & multi-programming

environment so consideration must be made for parallel

processes occurring on the same physical machine,

eliminating these as far as possible. For superscalar

processors, the speed of a given algorithm can sometimes

be improved through instruction-level parallelism within a

single processor (but, for optimal results, the algorithm may

require some adaptation to this environment to gain

significant advantage (‘speedup’), becoming, in effect, an

entirely different algorithm). A relative measure of an

algorithms performance can sometimes be gained from the

total instruction path length which can be determined by

a run time Instruction Set Simulator (where available). An

estimate of the speed of an algorithm can be determined

in various ways. The most common method uses time

complexity to determine the Big-O of an algorithm. See

Run-time analysis for estimating how fast a particular

algorithm may be according to its type (example: lookup

unsorted list, lookup sorted list etc.) and in terms of

scalability - its dependence on ‘size of input’, processor

power and other factors.

CPU Scheduling Algorithms

74

Memory

Often, it is possible to make an algorithm faster at the

expense of memory. This might be the case whenever the

result of an ‘expensive’ calculation is cached rather than

recalculating it afresh each time. The additional memory

requirement would, in this case, be considered additional

overhead although, in many situations, the stored result

occupies very little extra space and can often be held in pre-

compiled static storage, reducing not just processing time

but also allocation & deallocation of working memory. This

is a very common method of improving speed, so much so

that some programming languages often add special features

to support it, such as C++’s ‘mutable’ keyword. The memory

requirement of an algorithm is actually two separate but

related things:-

• The memory taken up by the compiled executable

code (the object code or binary file) itself (on disk or

equivalent, depending on the hardware and language).

This can often be reduced by preferring run-time

decision making mechanisms (such as virtual

functions and run-time type information) over certain

compile-time decision making mechanisms (such as

macro substitution and templates). This, however,

comes at the cost of speed.

• Amount of temporary “dynamic memory” allocated

during processing. For example, dynamically pre-

caching results, as mentioned earlier, improves speed

at the cost of this attribute. Even the depth of sub-

routine calls can impact heavily on this cost and

increase path length too, especially if there are ‘heavy’

CPU Scheduling Algorithms

75

dynamic memory requirements for the particular

functions invoked. The use of copied function

parameters (rather than simply using pointers to

earlier, already defined, and sometimes static values)

actually doubles the memory requirement for this

particular memory metric (as well as carrying its own

processing overhead for the copying itself. This can

be particularly relevant for quite ‘lengthy’ parameters

such as html script, JavaScript source programmes

or extensive freeform text such as letters or emails.

Rematerialization

It has been argued that Rematerialization (re-calculating)

may occasionally be more efficient than holding results in

cache. This is the somewhat non-intuitive belief that it can

be faster to re-calculate from the input - even if the answer

is already known - when it can be shown, in some special

cases, to decrease “register pressure”. Some optimizing

compilers have the ability to decide when this is considered

worthwhile based on a number of criteria such as complexity

and no side effects, and works by keeping track of the

expression used to compute each variable, using the concept

of available expressions. This is most likely to be true when

a calculation is very fast (such as addition or bitwise

operations), while the amount of data which must be cached

would be very large, resulting in inefficient storage. Small

amounts of data can be stored very efficiently in registers

or fast cache, while in most contemporary computers large

amounts of data must be stored in slower memory or even

slower hard drive storage, and thus the efficiency of storing

data which can be computed quickly drops significantly.

CPU Scheduling Algorithms

76

Precomputation

Precomputing a complete range of results prior to

compiling, or at the beginning of an algorithm’s execution,

can often increase algorithmic efficiency substantially. This

becomes advantageous when one or more inputs is

constrained to a small enough range that the results can

be stored in a reasonably sized block of memory. Because

memory access is essentially constant in time complexity

(except for caching delays), any algorithm with a component

which has worse than constant efficiency over a small input

range can be improved by precomputing values. In some

cases efficient approximation algorithms can be obtained by

computing a discrete subset of values and interpolating for

intermediate input values, since interpolation is also a

linear operation.

Transmission Size

Data compression algorithms can be useful because they

help reduce the consumption of expensive resources, such

as hard disk space or transmission bandwidth. This however

also comes at a cost - which is additional processing time

to compress and subsequently decompress. Depending upon

the speed of the data transfer, compression may reduce

overall response times which, ultimately, equates to speed

- even though processing within the computer itself takes

longer. For audio, MP3 is a compression method used

extensively in portable sound systems. The efficiency of a

data compression algorithm relates to the compression factor

and speed of achieving both compression and decompression.

For the purpose of archiving an extensive database, it might

CPU Scheduling Algorithms

77

be considered worthwhile to achieve a very high compression

ratio, since decompression is less likely to occur on the

majority of the data.

Data Presentation

Output data can be presented to the end user in many

ways - such as via punched tape or card, digital displays,

local display monitors, remote computer monitors or printed.

Each of these has its own inherent initial cost and, in some

cases, an ongoing cost (e.g. refreshing an image from

memory). As an example, the web site “Google” recently

showed, as its logo, an image of the Vancouver olympics

that is around 8K of gif image.

The normally displayed Google image is a PNG image of

28K (or 48K), yet the raw text string for “Google” occupies

only 6 octets or 48 bits (4,778 or 8192 times less). This

graphically illustrates that how data is presented can

significantly effect the overall efficiency of transmission

(and also the complete algorithm - since both GIF and PNG

images require yet more processing). It is estimated by

“Internet World Stats” that there were 1,733,993,741 internet

users in 2009 and, to transmit this new image to each one

of them, would require around 136,000 billion (109)octets

of data to be transmitted - at least once - into their personal

web cache. In “Computational Energy Cost of TCP”, co-

authors Bokyung Wang and Suresh Singh examine the

energy costs for TCP and calculated, for their chosen example,

a cost of 0.022 Joules per packet (of approx 1489 octets).

On this basis, a total of around 2,000,000,000 joules (2 GJ)

of energy might be expended by TCP elements alone to

CPU Scheduling Algorithms

78

display the new logo for all users for the first time. To

maintain or re-display this image requires still more

processing and consequential energy cost (in contrast to

printed output for instance).

Encoding and Decoding Methods (Compared and
Contrasted)

When data is encoded for any ‘external’ use, it is possible

to do so in an almost unlimited variety of different formats

that are sometimes conflicting. This content encoding (of

the raw data) may be designed for:

• optimal readability – by humans

• optimal decoding speed – by other computer

programmes

• optimal compression – for archiving or data

transmission

• optimal compatibility – with “legacy” or other existing

formats or programming languages

• optimal security – using encryption

(For character level encoding, see the various encoding

techniques such as EBCDIC or ASCII)

It is unlikely that all of these goals could be met with

a single ‘generic’ encoding scheme and so a compromise will

often be the desired goal and will often be compromised by

the need for standardization and/or legacy and compatibility

issues.

Encoding Efficiently

For data encoding whose destination is to be input for

further computer processing, readability is not an issue –

CPU Scheduling Algorithms

79

since the receiving processors algorithm can decode the

data to any other desirable form including human readable.

From the perspective of algorithmic efficiency, minimizing

subsequent decoding (with zero or minimal parsing) should

take highest priority. The general rule of thumb is that any

encoding system that ‘understands’ the underlying data

structure - sufficiently to encode it in the first place - should

be equally capable of easily encoding it in such a way that

makes decoding it highly efficient. For variable length data

with possibly omitted data values, for instance, this almost

certainly means the utilization of declarative notation (i.e.

including the length of the data item as a prefix to the data

so that a de-limiter is not required and parsing completely

eliminated). For keyword data items, tokenizing the key to

an index (integer) after its first occurrence not only reduces

subsequent data size but, furthermore, reduces future

decoding overhead for the same items that are repeated. For

more ‘generic’ encoding for efficient data compression see

Arithmetic encoding and entropy encoding articles.

Historically, optimal encoding was not only worthwhile

from an efficiency standpoint but was also common practise

to conserve valuable memory, external storage and processor

resources. Once validated a country name for example could

be held as a shorter sequential country code which could

then also act as an index for subsequent ‘decoding’, using

this code as an entry number within a table or record

number within a file. If the table or file contained fixed

length entries, the code could easily be converted to an

absolute memory address or disk address for fast retrieval.

The ISBN system for identifying books is a good example

CPU Scheduling Algorithms

80

of a practical encoding method which also contains a built-

in hierarchy. According to recent articles in New Scientist

and Scientific American; “TODAY’S telecommunications

networks could use one ten-thousandth of the power they

presently consume if smarter data-coding techniques were

used”, according to Bell Labs, based in Murray Hill, New

Jersey It recognizes that this is only a theoretical limit but

nevertheless sets itself a more realistic, practical goal of a

1,000 fold reduction within 5 years with future, as yet

unidentified, technological changes.

Examples of Several Common Encoding Methods

• Comma separated values (CSV - a list of data values

separated by commas)

• Tab separated values (TSV) - a list of data values

separated by ‘tab’ characters

• HyperText Markup Language (HTML) - the

predominant markup language for web pages

• Extensible Markup Language (XML) - a generic

framework for storing any amount of text or any data

whose structure can be represented as a tree with

at least one element - the root element.

• JavaScript Object Notation (JSON) - human-readable

format for representing simple data structures

The last of these, (JSON) is apparently widely used for

internet data transmission, primarily it seems because the

data can be uploaded by a single JavaScript ‘eval’ statement

- without the need to produce what otherwise would likely

have been a more efficient purpose built encoder/decoder.

There are in fact quite large amounts of repeated (and

CPU Scheduling Algorithms

81

therefore redundant data) in this particular format, and

also in HTML and XML source, that could quite easily be

eliminated. XML is recognized as a verbose form of encoding.

Binary XML has been put forward as one method of reducing

transfer and processing times for XML and, while there are

several competing formats, none has been widely adopted

by a standards organization or accepted as a de facto

standard. It has also been criticized by Jimmy Zhang for

essentially trying to solve the wrong problem There are a

number of freely available products on the market that

partially compress HTML files and perform some or all of

the following:

• merge lines

• remove unnecessary whitespace characters

• remove unnecessary quotation marks. For example,

BORDER=”0" will be replaced with BORDER=0)

• replace some tags with shorter ones (e.g. replace

STRIKE tags with S, STRONG with B and EM with

I)

• remove HTML comments (comments within scripts

and styles are not removed)

• remove <!DOCTYPE..> tags

• remove named meta tags

The effect of this limited form of compression is to make

the HTML code smaller and faster to load, but more difficult

to read manually (so the original HTML code is usually

retained for updating), but since it is predominantly meant

to be processed only by a browser, this causes no problems.

Despite these small improvements, HTML, which is the

CPU Scheduling Algorithms

82

predominant language for the web still remains a

predominantly source distributed, interpreted markup

language, with high redundancy.

Kolmogorov Complexity

The study of encoding techniques has been examined in

depth in an area of computer science characterized by a

method known as Kolmogorov complexity where a value

known as (‘K’) is accepted as ‘not a computable function’.

The Kolmogorov complexity of any computable object is the

length of the shortest programme that computes it and then

halts. The invariance theorem shows that it is not really

important which computer is used. Essentially this implies

that there is no automated method that can produce an

optimum result and is therefore characterized by a

requirement for human ingenuity or Innovation. See also

Algorithmic probability.

Effect of Programming Paradigms

The effect that different programming paradigms have

on algorithmic efficiency is fiercely contested, with both

supporters and antagonists for each new paradigm. Strong

supporters of structured programming, such as Dijkstra for

instance, who favour entirely goto-less programmes are met

with conflicting evidence that appears to nullify its supposed

benefits. The truth is, even if the structured code itself

contains no gotos, the optimizing compiler that creates the

binary code almost certainly generates them (and not

necessarily in the most efficient way). Similarly, OOP

protagonists who claim their paradigm is superior are met

with opposition from strong sceptics such as Alexander

CPU Scheduling Algorithms

83

Stepanov who suggested that OOP provides a mathematically

limited viewpoint and called it, “almost as much of a hoax

as Artificial Intelligence” In the long term, benchmarks,

using real-life examples, provide the only real hope of

resolving such conflicts - at least in terms of run-time

efficiency.

Optimization Techniques

The word optimize is normally used in relation to an

existing algorithm/computer programme (i.e. to improve

upon completed code). In this section it is used both in the

context of existing programmes and also in the design and

implementation of new algorithms, thereby avoiding the

most common performance pitfalls. It is clearly wasteful to

produce a working programme - at first using an algorithm

that ignores all efficiency issues - only to then have to

redesign or rewrite sections of it if found to offer poor

performance. Optimization can be broadly categorized into

two domains:-

• Environment specific - that are essentially worthwhile

only on certain platforms or particular computer

languages

• General techniques - that apply irrespective of

platform

Environment Specific

Optimization of algorithms frequently depends on the

properties of the machine the algorithm will be executed on

as well as the language the algorithm is written in and

chosen data types. For example, a programmer might

optimize code for time efficiency in an application for home

CPU Scheduling Algorithms

84

computers (with sizable amounts of memory), but for code

destined to be embedded in small, “memory-tight” devices,

the programmer may have to accept that it will run more

slowly, simply because of the restricted memory available

for any potential software optimization. For a discussion of

hardware performance, see article on Computer performance

which covers such things as CPU clock speed, cycles per

instruction and other relevant metrics. For a discussion on

how the choice of particular instructions available on a

specific machine effect efficiency, see later section ‘Choice

of instruction and data type’.

General Techniques

• Linear search such as unsorted table look-ups in

particular can be very expensive in terms of execution

time but can be reduced significantly through use of

efficient techniques such as indexed arrays and binary

searches. Using a simple linear search on first

occurrence and using a cached result thereafter is

an obvious compromise.

• Use of indexed programme branching, utilizing branch

tables or “threaded code” to control programme flow,

(rather than using multiple conditional IF statements

or unoptimized CASE/SWITCH) can drastically reduce

instruction path length, simultaneously reduce

programme size and even also make a programme

easier to read and more easily maintainable (in effect

it becomes a ‘decision table’ rather than repetitive

spaghetti code).

• Loop unrolling performed manually, or more usually

by an optimizing compiler, can provide significant

CPU Scheduling Algorithms

85

savings in some instances. By processing ‘blocks’ of

several array elements at a time, individually

addressed, (for example, within a While loop), much

pointer arithmetic and end of loop testing can be

eliminated, resulting in decreased instruction path

lengths. Other Loop optimizations are also possible.

Tunnel Vision

There are many techniques for improving algorithms,

but focusing on a single favourite technique can lead to a

“tunnel vision” mentality. For example, in this X86 assembly

example, the author offers loop unrolling as a reasonable

technique that provides some 40% improvements to his

chosen example.

However, the same example would benefit significantly

from both inlining and use of a trivial hash function. If they

were implemented, either as alternative or complementary

techniques, an even greater percentage gain might be

expected. A combination of optimizations may provide ever

increasing speed, but selection of the most easily

implemented and most effective technique, from a large

repertoire of such techniques, is desirable as a starting

point.

Dependency Trees and Spreadsheets

Spreadsheets are a ‘special case’ of algorithms that self-

optimize by virtue of their dependency trees that are inherent

in the design of spreadsheets to reduce re-calculations

when a cell changes. The results of earlier calculations are

effectively cached within the workbook and only updated

if another cells changed value effects it directly.

CPU Scheduling Algorithms

86

Table Lookup

Table lookups can make many algorithms more efficient,

particularly when used to bypass computations with a high

time complexity. However, if a wide input range is required,

they can consume significant storage resources. In cases

with a sparse valid input set, hash functions can be used

to provide more efficient lookup access than a full table.

Hash Function Algorithms

A hash function is any well-defined procedure or

mathematical function which converts a large, possibly

variable-sized amount of data into a small datum, usually

a single integer that may serve as an index to an array. The

values returned by a hash function are called hash values,

hash codes, hash sums, or simply hashes. Hash functions

are frequently used to speed up table lookups. The choice

of a hashing function (to avoid a linear or brute force search)

depends critically on the nature of the input data, and their

probability distribution in the intended application.

Trivial Hash Function

Sometimes if the datum is small enough, a “trivial hash

function” can be used to effectively provide constant time

searches at almost zero cost. This is particularly relevant

for single byte lookups (e.g. ASCII or EBCDIC characters)

Searching Strings

Searching for particular text strings (for instance “tags”

or keywords) in long sequences of characters potentially

generates lengthy instruction paths. This includes searching

for delimiters in comma separated files or similar processing

CPU Scheduling Algorithms

87

which can be very simply and effectively eliminated (using

declarative notation for instance). Several methods of

reducing the cost for general searching have been examined

and the “Boyer–Moore string search algorithm” (or Boyer–

Moore–Horspool algorithm, a similar but modified version)

is one solution that has been proven to give superior results

to repetitive comparisons of the entire search string along

the sequence.

Hot Spot Analyzers

Special system software products known as “performance

analyzers” are often available from suppliers to help diagnose

“hot spots” - during actual execution of computer

programmes - using real or test data - they perform a

Performance analysis under generally repeatable conditions.

They can pinpoint sections of the programme that might

benefit from specifically targeted programmer optimization

without necessarily spending time optimizing the rest of the

code. Using programme re-runs, a measure of relative

improvement can then be determined to decide if the

optimization was successful and by what amount. Instruction

Set Simulators can be used as an alternative to measure

the instruction path length at the machine code level between

selected execution paths, or on the entire execution.

Regardless of the type of tool used, the quantitative values

obtained can be used in combination with anticipated

reductions (for the targeted code) to estimate a relative or

absolute overall saving. For example if 50% of the total

execution time (or path length) is absorbed in a subroutine

whose speed can be doubled by programmer optimization,

an overall saving of around 25% might be expected (Amdahl

CPU Scheduling Algorithms

88

law). Efforts have been made at the University of California,

Irvine to produce dynamic executable code using a

combination of hot spot analysis and run-time programme

trace tree. A JIT like dynamic compiler was built by Andreas

Gal and others, “in which relevant (i.e., frequently executed)

control flows are ...discovered lazily during execution”

Benchmarking & Competitive Algorithms

For new versions of software or to provide comparisons

with competitive systems, benchmarks are sometimes used

which assist with gauging an algorithms relative

performance. If a new sort algorithm is produced for example

it can be compared with its predecessors to ensure that at

least it is efficient as before with known data - taking into

consideration any functional improvements. Benchmarks

can be used by customers when comparing various products

from alternative suppliers to estimate which product will

best suit their specific requirements in terms of functionality

and performance. For example in the mainframe world

certain proprietary sort products from independent software

companies such as Syncsort compete with products from

the major suppliers such as IBM for speed. Some benchmarks

provide opportunities for producing an analysis comparing

the relative speed of various compiled and interpreted

languages for example and The Computer Language

Benchmarks Game compares the performance of

implementations of typical programming problems in several

programming languages. (Even creating “do it yourself”

benchmarks to get at least some appreciation of the relative

performance of different programming languages, using a

CPU Scheduling Algorithms

89

variety of user specified criteria, is quite simple to produce

as this “Nine language Performance roundup” by Christopher

W. Cowell-Shah demonstrates by example)

Compiled Versus Interpreted Languages

A compiled algorithm will, in general, execute faster than

the equivalent interpreted algorithm simply because some

processing is required even at run time to ‘understand’ (i.e.

interpret) the instructions to effect an execution. A compiled

programme will normally output an object or machine code

equivalent of the algorithm that has already been processed

by the compiler into a form more readily executed by

microcode or the hardware directly. The popular Perl

language is an example of an interpreted language and

benchmarks indicate that it executes approximately 24

times more slowly than compiled C.

Optimizing Compilers

Many compilers have features that attempt to optimize

the code they generate, utilizing some of the techniques

outlined in this study and others specific to the compilation

itself. Loop optimization is often the focus of optimizing

compilers because significant time is spent in programme

loops and parallel processing opportunities can often be

facilitated by automatic code re-structuring such as loop

unrolling. Optimizing compilers are by no means perfect.

There is no way that a compiler can guarantee that, for all

programme source code, the fastest (or smallest) possible

equivalent compiled programme is output; such a compiler

is fundamentally impossible because it would solve the

halting problem. Additionally, even optimizing compilers

CPU Scheduling Algorithms

90

generally have no access to runtime metrics to enable them

to improve optimization through ‘learning’.

Just-in-Time Compilers

‘On-the-fly’ processors known today as just-in-time or

‘JIT’ compilers combine features of interpreted languages

with compiled languages and may also incorporate elements

of optimization to a greater or lesser extent. Essentially the

JIT compiler can compile small sections of source code

statements (or bytecode) as they are newly encountered and

(usually) retain the result for the next time the same source

is processed. In addition, pre-compiled segments of code

can be in-lined or called as dynamic functions that

themselves perform equally fast as the equivalent ‘custom’

compiled function. Because the JIT processor also has

access to run-time information (that a normal compiler

can’t have) it is also possible for it to optimize further

executions depending upon the input and also perform

other run-time introspective optimization as execution

proceeds. A JIT processor may, or may not, incorporate self

modifying code or its equivalent by creating ‘fast path’

routes through an algorithm. It may also use such techniques

as dynamic Fractional cascading or any other similar runtime

device based on collected actual runtime metrics. It is

therefore entirely possible that a JIT compiler might (counter

intuitively) execute even faster than an optimally ‘optimized’

compiled programme.

Self-Modifying Code

As mentioned above, just-in-time compilers often make

extensive use of self-modifying code to generate the actual

CPU Scheduling Algorithms

91

machine instructions required to be executed. The technique

can also be used to reduce instruction path lengths in

application programmes where otherwise repetitive

conditional tests might otherwise be required within the

main programme flow. This can be particularly useful where

a sub routine may have embedded debugging code that is

either active (testing mode) or inactive (production mode)

depending upon some input parameter. A simple solution

using a form of dynamic dispatching is where the sub

routine entry point is dynamically ‘swapped’ at initialization,

depending upon the input parameter. Entry point A) includes

the debugging code prologue and entry point B) excludes

the prologue; thus eliminating all overhead except the initial

‘test and swap’ (even when test/debugging is selected, when

the overhead is simply the test/debugging code itself).

Genetic Algorithm

In the world of performance related algorithms it is worth

mentioning the role of genetic algorithms which compete

using similar methods to the natural world in eliminating

inferior algorithms in favour of more efficient versions.

Object Code Optimizers

Some proprietary programme optimizers such as the

“COBOL Optimizer” developed by Capex Corporation in the

mid 1970’s for COBOL, actually took the unusual step of

optimizing the Object code (or binary file) after normal

compilation. This type of optimizer, recently sometimes

referred to as a “post pass” optimizer or peephole optimizer,

depended, in this case, upon knowledge of ‘weaknesses’ in

the standard IBM COBOL compiler and actually replaced

CPU Scheduling Algorithms

92

(or patched) sections of the object code with more efficient

code. A number of other suppliers have recently adopted

the same approach.

Alignment of Data

Most processors execute faster if certain data values are

aligned on word, doubleword or page boundaries. If possible

design/specify structures to satisfy appropriate alignments.

This avoids exceptions.

Locality of Reference

To reduce Cache miss exceptions by providing good spatial

locality of reference, specify ‘high frequency’/volative working

storage data within defined structure(s) so that they are

also allocated from contiguous sections of memory (rather

than possibly scattered over many pages). Group closely

related data values also ‘physically’ close together within

these structures. Consider the possibility of creating an

‘artificial’ structure to group some otherwise unrelated, but

nevertheless frequently referenced, items together.

Choice of Instruction or Data Type

Particularly in an Assembly language (although also

applicable to HLL statements), the choice of a particular

‘instruction’ or data type, can have a large impact on

execution efficiency. In general, instructions that process

variables such as signed or unsigned 16-bit or 32-bit integers

are faster than those that process floating point or packed

decimal. Modern processors are even capable of executing

multiple ‘fixed point’ instructions in parallel with the

simultaneous execution of a floating point instruction. If the

largest integer to be encountered can be accommodated by

CPU Scheduling Algorithms

93

the ‘faster’ data type, defining the variables as that type will

result in faster execution - since even a non-optimizing

compiler will, in-effect, be ‘forced’ to choose appropriate

instructions that will execute faster than would have been

the case with data types associated with ‘slower’ instructions.

Assembler programmers (and optimizing compiler writers)

can then also benefit from the ability to perform certain

common types of arithmetic for instance - division by 2, 4,

8 etc. by performing the very much faster binary shift right

operations (in this case by 1, 2 or 3 bits).

If the choice of input data type is not under the control

of the programmer, although prior conversion (outside of a

loop for instance) to a faster data type carries some overhead,

it can often be worthwhile if the variable is then to be used

as a loop counter, especially if the count could be quite a

high value or there are many input values to process. As

mentioned above, choice of individual assembler instructions

(or even sometimes just their order of execution) on particular

machines can effect the efficiency of an algorithm. See

Assembly Optimization Tips for one quite numerous arcane

list of various technical (and sometimes non-intuitive)

considerations for choice of assembly instructions on

different processors that also discusses the merits of each

case.

Sometimes microcode or hardware quirks can result

in unexpected performance differences between processors

that assembler programmers can actively code for - or

else specifically avoid if penalties result - something even

the best optimizing compiler may not be designed to

handle.

CPU Scheduling Algorithms

94

Data Granularity

The greater the granularity of data definitions (such as

splitting a geographic address into separate street/city/

postal code fields) can have performance overhead

implications during processing. Higher granularity in this

example implies more procedure calls in Object-oriented

programming and parallel computing environments since

the additional objects are accessed via multiple method

calls rather than perhaps one.

Subroutine Granularity

For structured programming and procedural

programming in general, great emphasis is placed on

designing programmes as a hierarchy of (or at least a set

of) subroutines. For object oriented programming, the method

call (a subroutine call) is the standard method of testing

and setting all values in objects and so increasing data

granularity consequently causes increased use of

subroutines. The greater the granularity of subroutine usage,

the larger the proportion of processing time devoted to the

mechanism of the subroutine linkages themselves.The

presence of a (called) subroutine in a programme contributes

nothing extra to the functionality of the programme. The

extent to which subroutines (and their consequent memory

requirements) influences the overall performance of the

complete algorithm depends to a large extent on the actual

implementation. In assembly language programmes, the

invocation of a subroutine need not involve much overhead,

typically adding just a couple of machine instructions to the

normal instruction path length, each one altering the control

CPU Scheduling Algorithms

95

flow either to the subroutine or returning from it (saving the

state on a stack being optional, depending on the complexity

of the subroutine and its requirement to reuse general

purpose registers). In many cases, small subroutines that

perform frequently used data transformations using ‘general

purpose’ work areas can be accomplished without the need

to save or restore any registers, including the return register.

By contrast, HLL programmes typically always invoke a

‘standard’ procedure call (the calling convention), which

involves saving the programme state by default and usually

allocating additional memory on the stack to save all registers

and other relevant state data (the prologue and epilogue

code). Recursion in a HLL programme can consequently

consume significant overhead in both memory and execution

time managing the stack to the required depth. Guy Steele

pointed out in a 1977 paper that a well-designed

programming language implementation can have very low

overheads for procedural abstraction (but laments, in most

implementations, that they seldom achieve this in practice

- being “rather thoughtless or careless in this regard”).

Steele concludes that “we should have a healthy respect for

procedure calls” (because they are powerful) but he also

cautioned “use them sparingly” See section Avoiding costs

for discussion of how inlining subroutines can be used to

improve performance. For the Java language, use of the

“final” keyword can be used to force method inlining (resulting

in elimination of the method call, no dynamic dispatch and

the possibility to constant-fold the value - with no code

executed at runtime)

CPU Scheduling Algorithms

96

Choice of Language / Mixed Languages

Some computer languages can execute algorithms more

efficiently than others. As stated already, interpreted

languages often perform less efficiently than compiled

languages. In addition, where possible, ‘high-use’, and time-

dependent sections of code may be written in a language

such as assembler that can usually execute faster and

make better use of resources on a particular platform than

the equivalent HLL code on the same platform. This section

of code can either be statically called or dynamically invoked

(external function) or embedded within the higher level code

(e.g. Assembler instructions embedded in a ‘C’ language

program). The effect of higher levels of abstraction when

using a HLL has been described as the Abstraction penalty

Programmers who are familiar with assembler language (in

addition to their chosen HLL) and are also familiar with the

code that will be generated by the HLL, under known

conditions, can sometimes use HLL language primitives of

that language to generate code almost identical to assembler

language. This is most likely to be possible only in languages

that support pointers such as PL/1 or C. This is facilitated

if the chosen HLL compiler provides an optional assembler

listing as part of its printout so that various alternatives

can be explored without also needing specialist knowledge

of the compiler internals.

Software Validation Versus Hardware Validation

An optimization technique that was frequently taken

advantage of on ‘legacy’ platforms was that of allowing the

hardware (or microcode) to perform validation on numeric

data fields such as those coded in (or converted to) packed

CPU Scheduling Algorithms

97

decimal (or packed BCD). The choice was to either spend

processing time checking each field for a valid numeric

content in the particular internal representation chosen or

simply assume the data was correct and let the hardware

detect the error upon execution. The choice was highly

significant because to check for validity on multiple fields

(for sometimes many millions of input records), it could

occupy valuable computer resources. Since input data fields

were in any case frequently built from the output of earlier

computer processing, the actual probability of a field

containing invalid data was exceedingly low and usually the

result of some ‘corruption’. The solution was to incorporate

an ‘event handler’ for the hardware detected condition (‘data

exception)’ that would intercept the occasional errant data

field and either ‘report, correct and continue’ or, more usually,

abort the run with a core dump to try to determine the

reason for the bad data.

Similar event handlers are frequently utilized in today’s

web based applications to handle other exceptional

conditions but repeatedly parsing data input, to ensure its

validity before execution, has nevertheless become much

more commonplace - partly because processors have become

faster (and the perceived need for efficiency in this area less

significant) but, predominantly - because data structures

have become less ‘formalized’ (e.g. .csv and .tsv files) or

uniquely identifiable (e.g. packed decimal). The potential

savings using this type of technique may have therefore

fallen into general dis-use as a consequence and therefore

repeated data validations and repeated data conversions

have become an accepted overhead. Ironically, one

CPU Scheduling Algorithms

98

consequence of this move to less formalized data structures

is that a corruption of say, a numeric binary integer value,

will not be detected at all by the hardware upon execution

(for instance: is an ASCII hexadecimal value ‘20202020’ a

valid signed or unsigned binary value - or simply a string

of blanks that has corrupted it?)

Algorithms for Vector & Superscalar Processors

Algorithms for vector processors are usually different

than those for scalar processors since they can process

multiple instructions and/or multiple data elements in

parallel.

The process of converting an algorithm from a scalar to

a vector process is known as vectorization and methods for

automatically performing this transformation as efficiently

as possible are constantly sought. There are intrinsic

limitations for implementing instruction level parallelism in

Superscalar processors but, in essence, the overhead in

deciding for certain if particular instruction sequences can

be processed in parallel can sometimes exceed the efficiency

gain in so doing. The achievable reduction is governed

primarily by the (somewhat obvious) law known as Amdahl’s

law, that essentially states that the improvement from parallel

processing is determined by its slowest sequential

component. Algorithms designed for this class of processor

therefore require more care if they are not to unwittingly

disrupt the potential gains.

Avoiding Costs

• Defining variables as integers for indexed arrays

instead of floating point will result in faster execution.

CPU Scheduling Algorithms

99

• Defining structures whose structure length is a

multiple of a power of 2 (2,4,8,16 etc.), will allow the

compiler to calculate array indexes by shifting a

binary index by 1, 2 or more bits to the left, instead

of using a multiply instruction will result in faster

execution. Adding an otherwise redundant short filler

variable to ‘pad out’ the length of a structure element

to say 8 bytes when otherwise it would have been 6

or 7 bytes may reduce overall processing time by a

worthwhile amount for very large arrays. See for

generated code differences for C as for example.

• Storage defined in terms of bits, when bytes would

suffice, may inadvertently involve extremely long path

lengths involving bitwise operations instead of more

efficient single instruction ‘multiple byte’ copy

instructions. (This does not apply to ‘genuine’

intentional bitwise operations - used for example

instead of multiplication or division by powers of 2

or for TRUE/FALSE flags.)

• Unnecessary use of allocated dynamic storage when

static storage would suffice, can increase the

processing overhead substantially - both increasing

memory requirements and the associated allocation/

deallocation path length overheads for each function

call.

• Excessive use of function calls for very simple

functions, rather than in-line statements, can also

add substantially to instruction path lengths and

stack/unstack overheads. For particularly time critical

systems that are not also code size sensitive,

CPU Scheduling Algorithms

100

automatic or manual inline expansion can reduce

path length by eliminating all the instructions that

call the function and return from it. (A conceptually

similar method, loop unrolling, eliminates the

instructions required to set up and terminate a loop

by, instead; repeating the instructions inside the

loop multiple times. This of course eliminates the

branch back instruction but may also increase the

size of the binary file or, in the case of JIT built code,

dynamic memory. Also, care must be taken with this

method, that re-calculating addresses for each

statement within an unwound indexed loop is not

more expensive than incrementing pointers within

the former loop would have been. If absolute indexes

are used in the generated (or manually created)

unwound code, rather than variables, the code created

may actually be able to avoid generated pointer

arithmetic instructions altogether, using offsets

instead).

Memory Management

Whenever memory is automatically allocated (for example

in HLL programmes, when calling a procedure or when

issuing a system call), it is normally released (or ‘freed’/

‘deallocated’/ ‘deleted’) automatically when it is no longer

required - thus allowing it to be re-used for another purpose

immediately. Some memory management can easily be

accomplished by the compiler, as in this example. However,

when memory is explicitly allocated (for example in OOP

when “new” is specified for an object), releasing the memory

is often left to an asynchronous ‘garbage collector’ which

CPU Scheduling Algorithms

101

does not necessarily release the memory at the earliest

opportunity (as well as consuming some additional CPU

resources deciding if it can be). The current trend

nevertheless appears to be towards taking full advantage

of this fully automated method, despite the tradeoff in

efficiency - because it is claimed that it makes programming

easier. Some functional languages are known as ‘lazy

functional languages’ because of the significant use of

garbage collection and can consume much more memory

as a result.

• Array processing may simplify programming but use

of separate statements to sum different elements of

the same array(s) may produce code that is not easily

optimized and that requires multiple passes of the

arrays that might otherwise have been processed in

a single pass. It may also duplicate data if array

slicing is used, leading to increased memory usage

and copying overhead.

• In OOP, if an object is known to be immutable, it can

be copied simply by making a copy of a reference to

it instead of copying the entire object. Because a

reference (typically only the size of a pointer) is usually

much smaller than the object itself, this results in

memory savings and a boost in execution speed.

Readability, Trade Offs and Trends

One must be careful, in the pursuit of good coding style,

not to over-emphasize efficiency. Frequently, a clean,

readable and ‘usable’ design is much more important than

a fast, efficient design that is hard to understand. There

CPU Scheduling Algorithms

102

are exceptions to this ‘rule’ (such as embedded systems,

where space is tight, and processing power minimal) but

these are rarer than one might expect.

However, increasingly, for many ‘time critical’ applications

such as air line reservation systems, point-of-sale

applications, ATMs (cash-point machines), Airline Guidance

systems, Collision avoidance systems and numerous modern

web based applications - operating in a real-time environment

where speed of response is fundamental - there is little

alternative.

Determining if Optimization is Worthwhile

The essential criteria for using optimized code are of

course dependent upon the expected use of the algorithm.

If it is a new algorithm and is going to be in use for many

years and speed is relevant, it is worth spending some time

designing the code to be as efficient as possible from the

outset. If an existing algorithm is proving to be too slow or

memory is becoming an issue, clearly something must be

done to improve it. For the average application, or for one-

off applications, avoiding inefficient coding techniques and

encouraging the compiler to optimize where possible may

be sufficient. One simple way (at least for mathematicians)

to determine whether an optimization is worthwhile is as

follows: Let the original time and space requirements

(generally in Big-O notation) of the algorithm be O
1
 and O

2
.

Let the new code require N1 and N2 time and space

respectively. If N1N2 < O1O2, the optimization should be

carried out. However, as mentioned above, this may not

always be true.

CPU Scheduling Algorithms

103

Implications for Algorithmic Efficiency

A recent report, published in December 2007, from Global

Action Plan, a UK-based environmental organization found

that computer servers are “at least as great a threat to the

climate as SUVs or the global aviation industry” drawing

attention to the carbon footprint of the IT industry in the

UK. According to an Environmental Research Letters report

published in September 2008, “Total power used by

information technology equipment in data centers

represented about 0.5% of world electricity consumption in

2005. When cooling and auxiliary infrastructure are included,

that figure is about 1%. The total data center power demand

in 2005 is equivalent (in capacity terms) to about seventeen

1000 MW power plants for the world.” Some media reports

claim that performing two Google searches from a desktop

computer can generate about the same amount of carbon

dioxide as boiling a kettle for a cup of tea, according to new

research; however, the factual accuracy of this comparison

is disputed, and the author of the study in question asserts

that the two-searches-tea-kettle statistic is a misreading of

his work.

Greentouch, a recently established consortium of leading

Information and Communications Technology (ICT) industry,

academic and non-governmental research experts, has set

itself the mission of reducing reduce energy consumption

per user by a factor of 1000 from current levels. “A thousand-

fold reduction is roughly equivalent to being able to power

the world’s communications networks, including the Internet,

for three years using the same amount of energy that it

currently takes to run them for a single day”. The first

CPU Scheduling Algorithms

104

meeting in February 2010 will establish the organization’s

five-year plan, first year deliverables and member roles and

responsibilities. Intellectual property issues will be addressed

and defined in the forum’s initial planning meetings. The

conditions for research and the results of that research will

be high priority for discussion in the initial phase of the

research forum’s development. Computers having become

increasingly more powerful over the past few decades,

emphasis was on a ‘brute force’ mentality. This may have

to be reconsidered in the light of these reports and more

effort placed in future on reducing carbon footprints through

optimization. It is a timely reminder that algorithmic

efficiency is just another aspect of the more general

thermodynamic efficiency. The genuine economic benefits

of an optimized algorithm are, in any case, that more

processing can be done for the same cost or that useful

results can be shown in a more timely manner and ultimately,

acted upon sooner.

Criticism of the Current State of Programming

• David May FRS a British computer scientist and

currently Professor of Computer Science at University

of Bristol and founder and CTO of XMOS

Semiconductor, believes one of the problems is that

there is a reliance on Moore’s law to solve inefficiencies.

He has advanced an ‘alternative’ to Moore’s law (May’s

law) stated as follows:

Software efficiency halves every 18 months, compensating

Moore’s Law. In ubiquitous systems, halving the instructions

executed can double the battery life and big data sets bring

CPU Scheduling Algorithms

105

big opportunities for better software and algorithms:

Reducing the number of operations from N x N to N x log(N)

has a dramatic effect when N is large... for N = 30 billion,

this change is as good as 50 years of technology

improvements

• Software author Adam N. Rosenburg in his blog “The

failure of the Digital computer”, has described the

current state of programming as nearing the “Software

event horizon”, (alluding to the fictitious “shoe event

horizon” described by Douglas Adams in his

Hitchhiker’s Guide to the Galaxy book). He estimates

there has been a 70 dB factor loss of productivity or

“99.99999 percent, of its ability to deliver the goods”,

since the 1980s - “When Arthur C. Clarke compared

the reality of computing in 2001 to the computer HAL

in his book 2001: A Space Odyssey, he pointed out

how wonderfully small and powerful computers were

but how disappointing computer programming had

become”.

• Conrad Weisert gives examples, some of which were

published in ACM SIGPLAN (Special Interest Group

on Programming Languages) Notices, December, 1995

in: “Atrocious Programming Thrives”

CPU Scheduling Algorithms

106

3

CPU/Process Scheduling

The assignment of physical processors to processes allows

processors to accomplish work. The problem of determining

when processors should be assigned and to which processes

is called processor scheduling or CPU scheduling.

When more than one process is runable, the operating

system must decide which one first. The part of the operating

system concerned with this decision is called the scheduler,

and algorithm it uses is called the scheduling algorithm.

Goals of Scheduling (Objectives)
Many objectives must be considered in the design of a

scheduling discipline. In particular, a scheduler should

consider fairness, efficiency, response time, turnaround time,

throughput, etc., Some of these goals depends on the system

one is using for example batch system, interactive system or

real-time system, etc. but there are also some goals that are

desirable in all systems.

CPU Scheduling Algorithms

107

Goals

Fairness
Fairness is important under all circumstances. A scheduler

makes sure that each process gets its fair share of the CPU

and no process can suffer indefinite postponement.

Note that giving equivalent or equal time is not fair. Think

of safety control and payroll at a nuclear plant.

Policy Enforcement
The scheduler has to make sure that system’s policy is

enforced.

For example, if the local policy is safety then the safety

control processesmust be able to run whenever they want to,

even if it means delay in payroll processes.

Efficiency
Scheduler should keep the system (or in particular CPU)

busy cent percent of the time when possible. If the CPU and

all the Input/Output devices can be kept running all the

time, more work gets done per second than if some

components are idle.

Response Time
A scheduler should minimize the response time for

interactive user.

Turnaround
A scheduler should minimize the time batch users must

wait for an output.

CPU Scheduling Algorithms

108

Throughput
A scheduler should maximize the number of jobs processed

per unit time.

A little thought will show that some of these goals are

contradictory.

It can be shown that any scheduling algorithm that favors

some class of jobs hurts another class of jobs. The amount

of CPU time available is finite, after all.

Preemptive Vs. Non-preemptive Scheduling
The Scheduling algorithms can be divided into two

categories with respect to how they deal with clock interrupts.

Nonpreemptive Scheduling
A scheduling discipline is non-preemptive if, once a process

has been given the CPU, the CPU cannot be taken away from

that process.

Following are some characteristics of non-preemptive

scheduling

1. In non-preemptive system, short jobs are made to wait

by longer jobs but the overall treatment of all

processes is fair.

2. In non-preemptive system, response times are more

predictable because incoming high priority jobs can

not displace waiting jobs.

3. In non-preemptive scheduling, a schedular executes

jobs in the following two situations.

– When a process switches from running state to

the waiting state.

– When a process terminates.

CPU Scheduling Algorithms

109

Preemptive Scheduling
A scheduling discipline is preemptive if, once a process

has been given the CPU can taken away. The strategy of

allowing processes that are logically runable to.

Inter Processes Communication

Caveat
The material in this topic uses the os.fork() function

which is not available under Microsoft Windows. (One

reason is that Windows, compared to Unix, is very slow to

create new processes so that in practice you would never

use fork() even if you could!

There is another solution to this problem - threading -

that works on both Unix and Windows which we will cover

in a later topic.) If you are using Windows I recommend

that you read the concept sections at the top because the

principles will be used in the next topic. But there is no

point in typing in the examples as they will not work. If you

are using any form of Unix, including MacOS X then it

should all work as advertised.

What Does Inter Processes Communication
Mean

As the name suggests Inter-Process communications or IPC,

is the mechanism whereby one process can communicate,

that is, exchange data, with another process. You will recall

if you read the Using the Operating System topic that a

process is an executing programme.

Also that one process can communicate to another using

various means such as os.popen or the subprocess module’s

CPU Scheduling Algorithms

110

features. While these techniques are very useful for

communicating with other programmes they do not provide

the fine grained control that’s sometimes needed for larger

scale applications.

In these applications it is quite common for several

processes to be used, each performing a dedicated task and

other processes requesting services from them.

As an example a web server might have one process for

listening to web requests from browsers and serving up simple

HTML but use another process for serving more complex

data queries, and possibly yet another process for handling

ftp requests and the like.

Each process is tuned to perform one job well. In addition

this architecture allows the administrator to share the

processing load over several processes so that if there are a

lot of ftp requests a second ftp process can be started and

the ftp requests distributed between the two processes.

Do I Really Care
While you might not expect to be writing such large scale

applications it can still be a useful technique and the

principles involved are important in many of the later topics

we will discuss such as network programming.

Even quite small applications can benefit from this

approach particularly where there could be many users

accessing a common resource, such as a database. Also if

you are reading data from various communications ports it

is useful to have a process per network connection so that

blockages in one network do not prevent the other networks

from being read.

CPU Scheduling Algorithms

111

Clint/Server
You may have heard the term client/server being bandied

around and this is a very common software architecture for

business applications. Client/Server refers to every specific

type of IPC arrangement whereby one process, the client,

makes requests of another process, the server. The server

never requests anything from the client. There can be many

client processes accessing a single server. Servers can in

turn be clients to other servers - this is known as N-Tier

Client/Server computing.

So Client/Server computing always uses IPC but IPC is

not always client/server based. It is quite possible to have a

network of processes each sending messages to the others

without and rigid demarcation between clients and servers,

this is often called peer to peer computing, While it may sound

like an attractive model it turns out to be quite difficult to

manage beyond a very small number of processes and the

more rigid client/server approach is generally easier to design

and operate.

You may have noticed a similarity in terminology to Object

Oriented Programming with the use of messages between

processes being similar to the sending of messages between

objects. It turns out that there is indeed a lot of synergy

between an object model and an IPC model and some IPC

architectures have developed that capitalize on these

synergies. One such architecture is the Common Object

Request Broker Architecture or CORBA. In this architecture

we can register objects with a central Object Request Broker

or ORB and messages sent to the object from anywhere in

the architecture get routed to whichever process registered

CPU Scheduling Algorithms

112

the object. We will not be looking at CORBA in this tutorial

but there are Python implementations of ORBs that you can

investigate if you are interested. We’re nearly ready to start

writing some code. There are several different mechanisms

for communicating between processes and we will consider

two of them. The first IPC mechanism we are going to look at

uses a mechanism called a pipe to exchange data between

the two processes.

What is a Pipe
Conceptually a pipe can be thought of much like a hose-

pipe, in that it is a conduit where we pour data in at one end

and it flows out at the other. A pipe looks a lot like a file in

that it is treated as a sequential data stream. Unlike a file, a

pipe has two ends, so when we create a pipe we get two end

points back in return. We can write to one end point and

read from the other. Also unlike a file, there is no physical

storage of data when we close a pipe, anything that was

written in one end but not read out from the other end will

be lost.

We can illustrate the use of pipes as conduits between

processes in the following diagram:

Here we see two processes which I’ve called Parent and

Child, for reasons that will become apparent shortly. The

Parent can write to Pipe A. and read from Pipe B. The Child

can read from Pipe A and write to Pipe B.

CPU Scheduling Algorithms

113

Note that each pipe can be used to send a request or return

data depending upon which process is initiating the

transaction.

OK, enough theory, let’s roll up our sleeves, write some

code and see how we can build an IPC mechanism using

Python. The general idea is that we will create a parent

process which will open two pipes. We then fork or spawn off

a clone of the process, the child, which is an exact copy of

the parent process, including the same two pipes. We can

then use the pipes to communicate between parent and child.

The first thing to do is see how we use pipes to send and

receive data. We create a pipe using the os.pipe() function

which returns two file descriptors, one for each end of the

pipe. We can then use the os.read/write functions to send

data along the pipe.:

import os

create the pipe

receive, transmit = os.pipe()

data = ‘Here is a data string’

length = os.write(transmit, data)

1024 size buffer to ensure all data received

print ‘The pipe contains:’, os.read(receive, 1024)

Of course this is all happening within a single process so

its not really very useful. But once we clone our process we

can separate the reading and writing code and really start to

achieve something. So how do we spawn our clone process?

Spawning Process
The mechanism used for spawning a child process is to

use the os.fork() system call. This returns different values

CPU Scheduling Algorithms

114

depending on whether you are in the original, parent process

or in the new child process. In the original process the

returned value is the process ID or pid of the child process.

If you are in the child process then the return value from

fork is zero.

This means that in the code we will have an if statement

that tests the fork() return value and if it is zero performs

the child functions and if non zero does the parent function.

To keep things manageable it is usually best to put those

functions into separate modules and call the functions as

required. In our example here we won’t do that since the

code is short and a single listing will suffice. (Again I stress

that Microsoft Windows does not support the fork() function

so the code will not work under Windows. Windows users

will need to wait till the next topic to find out how to write

client-server programmes, sorry, but complain to Microsoft

not me!)

What we are going to do is create a child process that can

perform a simple text formatting operation for us, it will

return the value that we pass to it prefixed and postfixed

with the phrase ‘Ni’.

Here we go:

import os,signal

create pipes

ServerReceive,ClientSend = os.pipe()

ClientReceive, ServerSend = os.pipe()

pid = os.fork()

if pid == 0: # in child

while True: # serve forever

data = os.read(ServerReceive,1024)

CPU Scheduling Algorithms

115

data = ‘Ni!\n’ + data + ‘\nNi!’

os.write(ServerSend,data)

else: # in parent

data = [‘The Knights who say Ni!’,

 ‘Appear in the film “Monty Python and the Holy Grail” ‘]

for line in data:

os.write(ClientSend,line)

print os.read(ClientReceive,1024)

now terminate the child process

os.kill(pid,signal.SIGTERM)

Note that we use the pid received from fork to terminate the

child process. If we failed to do this the child would become a

background or daemon process running silently, forever

waiting for data to appear on its input pipe. The actual

termination is done using the os.kill() function which, despite

the name, is actually used to send any signal to any process.

Signal SIGTERM is the terminate signal as defined in the signal

module. The full list is platform dependent and definitively

documented in the documentation for the libc C library for

your platform, but it is more easily obtained by using

>>> dir (signal)

at the Python interactive prompt or, on a Unix system, by

typing:

$ kill -l

at the operating system prompt (Note, that’s an ‘ell’ not a

one). In the latter case you also get the numeric value which

can be used in kill() directly but at the risk of losing platform

independence.

Let’s review what we have done: So far we have created

pipes, and transmitted data along them. We have spawned a

CPU Scheduling Algorithms

116

child process, sent data to it, manipulated the data in the

child process and sent data back to the parent. Finally we

terminated the child process. That’s really all you need for

basic IPC, the complexity of the processing is simply a matter

of writing more complex functions for the child. So lets see a

real example in action. It’s time to revisit the address book

again.

Address Book Using
Back in the files topic we built a version of our address

book using a dictionary. Let’s reuse that example but this

time we will build a client/server version. Notice that the

original code broke one of the good practice rules, with User

Interface code in my helper functions. If we were to try to

use this code we would get messages from the child process

mixed up with messages from the parent. We need to tweak

the code slightly so that we can turn it into a reusable module.

The main thing is to remove any print statements from the

functions and pass the data in as arguments. We also want

to return a result from each function.

Once we have done that we can import the code and access

the helper functions without executing the main() function.

The functions that we will make available are therefore:

• ReadBook(filename)

• SaveBook(book, filename)

• AddEntry(book, name, data)

• RemoveEntry(book, name)

• FindEntry(book, name)

The modified code looks like this:

def readBook(filename=’addbook.dat’):

import os

CPU Scheduling Algorithms

117

book = {}

if os.path.exists(filename):

store = file(filename,’r’)

for line in store:

 name,entry = line.strip().split(‘:’)

 book[name] = entry

else:

 store = file(filename,’w’) # create new empty file

store.close()

return book

def saveBook(book, filename = “addbook.dat”):

store = file(filename,’w’)

for name,entry in book.items():

 line = “%s:%s” % (name,entry)

 store.write(line + ‘\n’)

store.close()

def addEntry(book, name, data):

book[name] = data

return ‘Added entry for ‘ + name

def removeEntry(book, name):

del(book[name])

return ‘Deleted entry for ‘ + name

def findEntry(book, name):

if name in book.keys():

result = “%s: %s” % (name, book[name])

else: result = “Sorry, no entry for: “ + name

return result

Note that I’ve ignored the user interface functions because

we don’t need them here but you might want to try making

the necessary modifications to allow it to still function as a

CPU Scheduling Algorithms

118

standalone programme as well as serve as a module for the

client/server version as an exercise.

Once you’ve fixed up the code and got it working as a stand-

alone programme once more (or just saved the code above as

address_srv.py, which is what I’ve done), we can proceed to

writing our client/server code.

The client/server code will comprise our standard structure

of creating pipes and forking the process. In the child process

we will read the incoming pipe and interpret the data as a

command followed by the arguments supplied and then call

the relevant database function. In the parent, or client

process, we will present the user with a menu and depending

on the choice, request any needed additional data before

sending the combined data string to the child or server

process. The client will then read back the response and

present it to the user.

The main programme looks like this:

import os, signal, address_srv

fromClient,toServer = os.pipe()

fromServer,toClient = os.pipe()

pid = os.fork()

if pid == 0:

addresses = address_srv.readBook()

while True:

s = os.read(fromClient,1024)

cmd,data = s.split(‘:’)

if cmd == “add”:

 details = data.split(‘,’)

 name = details[0]

 entry = ‘,’.join(details)

CPU Scheduling Algorithms

119

 s = address_srv.addEntry(addresses, name, entry)

 address_srv.saveBook(addresses)

elif cmd == “rem”:

 s = address_srv.removeEntry(addresses, data)

 address_srv.saveBook(addresses)

elif cmd == “fnd”:

 s = address_srv.findEntry(addresses, data)

else: s = “ERROR: Unrecognized command: “ + cmd

os.write(toClient,s)

else:

menu = ‘’’

1) Add Entry

2) Delete Entry

3) Find Entry

4) Quit

‘’’

while True:

print menu

try: choice = int(raw_input(‘Choose an option ‘))

except: continue

if choice == 1:

 name = raw_input(‘Enter the name: ‘)

 num = raw_input(‘Enter the House number: ‘)

 street= raw_input(‘Enter the Street name: ‘)

 town = raw_input(‘Enter the Town: ‘)

 phone = raw_input(‘Enter the Phone number: ‘)

 data = “%s,%s,%s,%s,%s” % (name,num,street,town,phone)

 cmd = “add:%s” % data

elif choice == 2:

 name = raw_input(‘Enter the name: ‘)

CPU Scheduling Algorithms

120

 cmd = ‘rem:%s’ % name

elif choice == 3:

 name = raw_input(‘Enter the name: ‘)

 cmd = ‘fnd:%s’ % name

elif choice == 4:

 break

else:

 print “Invalid choice, must be between 1 and 4.”

 continue

os.write(toServer, cmd)

 print “\nRESULT: “, os.read(fromServer,1024)

os.kill(pid, signal.SIGTERM)

Obviously we could tidy that up a bit more by using some

functions for the if/elif chains but the example is small

enough for that not to be necessary. A couple of points to

note are the use of break to stop the loop and continue to go

round to the top of the loop again. We didn’t discuss these in

the looping topic but hopefully their use is obvious and if

not the documentation describes them in more detail. An

obvious extension to this exercise would be to use the

database version of the address book as the server instead

of the dictionary version. I’ll leave that as an exercise for the

keen students among you. The big snag with this form of

client/server programming is that the server can only talk

to the client that started it. It would be much better if the

server could be started first and then multiple clients attach

to it. That’s exactly what we will do at the end of the next

topic where we introduce networking.

CPU Scheduling Algorithms

121

Process Scheduling

Using Operating System Scheduling on z/OS
Systems

On z/OS operating system scheduling servers, SAS 9.2

supports the scheduling of flows that have a single time event

as a trigger. The jobs in a flow are submitted to the Job Entry

Subsystem (JES) for execution in an asynchronous manner.

How Operating System Scheduling Works on z/
OS Systems

When you schedule a flow, Schedule Manager creates the

following files:

• A REXX programme called RunFlow_yyymmddhh

mmsssss.rex, which submits each batch job to run

on the requested schedule.

• A file called jobname.status, which contains information

about the status of the job.

• The following files, each of which invokes the REXX

programme to log the job status.

• Logstart_jobname, which is executed as the first step

of each job

• Logend_jobname, which is executed as the last step

of the job if all previous steps have a return code of 0

• Logfail_jobname, which is executed as the last step of

the job if any of the previous steps has a return code

other than 0

• Flowname.cmd, which contains the statements that

execute the programme for the flow. This file is passed

to the at command to be executed when the time event

trigger occurs.

CPU Scheduling Algorithms

122

• Flowname.log, which contains the log information for

the flow.

• Flowname.status, which contains the current status

of the flow.

The files are written to a subdirectory called username/

flowdefname in the Control Directory that was specified in

the operating system scheduling server definition, where

username is the identity that scheduled the flow.

Manually Submitting a Flow for Execution on a
z/OS Scheduling Server

Note: On z/OS, unexpected results can occur if you

manually submit a flow without having selected Manually

Schedule when you scheduled the flow. If you need to

manually submit a flow that has been scheduled on a z/OS

operating system scheduling server, follow these steps:

1. Change to the directory where the flow’s files are

located (/outdir/username/flowdefname), where outdir

is the value of the Control Directory attribute in the

operating system scheduling server definition.

2. At the USS prompt, type a command with the

following syntax: RunFlow_yyymmddhhmmsssss.rex

<runonce|start> Specify runonce if you want to run

the flow just once, or specify start if you want to

resume a recurrence that was specified for the flow.

Canceling a Scheduled Flow on a z/OS Operating System

Scheduling Server. If you need to cancel a flow that has been

scheduled on a z/OS operating system scheduling server,

follow these steps:

1. At the USS prompt, type at -l.

CPU Scheduling Algorithms

123

Note: Type a lowercase L, not the numeral 1.

A list of jobs appears, as in the following example:

1116622800.a Fri May 20 17:00:00 2005

1116734400.a Sun May 22 00:00:00 2005

1116820800.a Mon May 23 00:00:00 2005

1116620801.a Mon May 23 00:00:00 2005

1117029000.a Wed May 25 09:50:00 2005

2. For each job that you want to cancel, type the

following command at the USS prompt: at -r at-jobid,

where jobid is the first part of each line of the list of

jobs (for example, at -r 1116622800.a).

CPU Scheduling Algorithms

124

4

Multiprocessor Scheduling

The multiprocessor scheduling problem can be described

as the problem of fairly distributing a workload on a

distributed computer system consisting of multiple

processors with distributed local memories. Many researchers

have worked on the problem of multiprocessor scheduling

and various algorithms have been proposed. Proposed

solution methods in the literature fall under two major

categories: Heuristics and physical optimization algorithms.

Heuristic procedures are mainly geometry based methods

whereas physical optimization algorithms are derived from

the natural sciences. In the case of heuristics, Hellstorn and

Kanal (1992) proposed a solution for multiprocessor

scheduling problem using an asymmetric mean-field neural

network model.

In the case of physical optimization, Hou, Ansari and Ren

(1993) proposed a genetic algorithm based solution and

CPU Scheduling Algorithms

125

Driessche and Piessens (1992) developed parallel versions of

the genetic algorithm. Hwang and Xu (1993) proposed a

simulated annealing algorithm for solving the multiprocessor

scheduling problem. In this study, the behaviour of simulated

annealing and genetic algorithms on the multiprocessor

scheduling problem are examined under different situations.

In addition, the modified-uniform simulated annealing

algorithm (MSA), the enhanced simulated annealing

algorithm (Enh_SA) (Loganantharaj, 1997) the multithread

simulated annealing algorithm (Mul_SA), and multi-thread

modified-uniform simulated annealing algorithm (Mul_MSA)

are investigated. Simulation results are presented and

compared.

Problem
The general problem of multiprocessor scheduling can be

stated as scheduling a set of computational tasks onto a

multiprocessor system so that a set of performance criteria

will be optimized. The goal (or programme) assigned to the

multicomputer is divided into several programme modules Mi.

The interrelationship among Mi can be specified by a

programme graph after compilation. Each programme

module, Mi for i=1,2,É,m, corresponds to one node in the

graph. The edge connections in the programme graph

correspond to communication paths among programme

modules. The module weight, Wi, reflects the code segment

length and size of the data set used in Mi, giving an

approximated estimate of the CPU cycles, needed to execute

Mi. The edge weight, eij, reflects the expected communication

cost between the two programme modules.

CPU Scheduling Algorithms

126

The assumptions made in this work are the following:

• The Multiprocessor is a distributed-memory message-

passing multicomputer whose processors are

connected by a static point-to-point interconnection

network.

• The Routing used is a wormhole routing.

• The computation model used is a loosely synchronous

computation model in which processors perform

compute-communication cycles in SPMD (Single

Programme, Multiple Data) scheme.

• The edges of the graph are bi-directional between any

pair of modules Mi and Mj. i.e. eij =eji.

• Bi-directional links are assumed between all pairs of

computer nodes in a multicomputer.

• The distance between any two computer nodes is

defined as the number of hops between them.

Scheduling Methods
SA is a physical optimization technique which accepts a

bad criteria in order to reach a global minimum (or optimal

solution). SA starts with a randomly generated initial solution.

In each iteration, the solution is randomly perturbed. If such

a perturbation results in negative or zero change in the

system energy, then it is accepted. To prevent premature

convergence when trapped in a bad optimum, the simulated

annealing accepts positive changes in energy with a certain

temperature dependent probability. In order to apply the

simulated annealing algorithm for solving the multiprocessor

scheduling problem the following steps are followed:

• Give an initial value for the temperature T and assign

a constant value for K (cooling schedule).

CPU Scheduling Algorithms

127

• Distribute the jobs (tasks) on the processors randomly.

• Evaluate the system weight, for this initial random

generation, using the objective function OF so.

• Select two processors a and b, randomly (the selected

processes a and b must be different). Then select (also

randomly) two tasks, one from a and another one from

b.

• Swap the selected tasks between the two processors

a and b.

• Evaluate again the system weight, for this

perturbation, using the objective function OFso.

• If the new system weight is smaller than the previous

one, accept this new state and use it as a new starting

point for the next perturbation.

• If not, generate a random number, RND, between 0

and 1. If RND< e[Previous system weight - new system

weight]/T], accept the situation and use it as a new

starting point for the next perturbation. If not, reject

and keep the previous one as the starting point for

the next perturbation.

• Repeat the steps starting from part 4 for n successive

rejections (in this study n = 3).

• Change the temperature T as follows: T = T * K.

• Repeat the steps starting from part 4 for a new

temperature until the temperature becomes less or

equal to 1. The value of the cooling factor is problem-

dependent and has to be determined experimentally.

Deadlock
A set of process is in a deadlock state if each process in

the set is waiting for an event that can be caused by only

CPU Scheduling Algorithms

128

another process in the set. In other words, each member of

the set of deadlock processes is waiting for a resource that

can be released only by a deadlock process. None of the

processes can run, none of them can release any resources,

and none of them can be awakened. It is important to note

that the number of processes and the number and kind of

resources possessed and requested are unimportant. The

resources may be either physical or logical. Examples of

physical resources are Printers, Tape Drivers, Memory Space,

and CPU Cycles. Examples of logical resources are Files,

Semaphores, and Monitors.

The simplest example of deadlock is where process 1 has

been allocated non-shareable resources A, say, a tap drive,

and process 2 has be allocated non-sharable resource B,

say, a printer. Now, if it turns out that process 1 needs

resource B (printer) to proceed and process 2 needs resource

A (the tape drive) to proceed and these are the only two

processes in the system, each is blocked the other and all

useful work in the system stops. This situation ifs termed

deadlock. The system is in deadlock state because each

process holds a resource being requested by the other process

neither process is willing to release the resource it holds.

Preemptable and Nonpreemptable Resources
Resources come in two flavors: preemptable and

nonpreemptable. A preemptable resource is one that can be

taken away from the process with no ill effects. Memory is

an example of a preemptable resource. On the other hand, a

nonpreemptable resource is one that cannot be taken away

from process (without causing ill effect). For example, CD

CPU Scheduling Algorithms

129

resources are not preemptable at an arbitrary moment.

Reallocating resources can resolve deadlocks that involve

preemptable resources. Deadlocks that involve

nonpreemptable resources are difficult to deal with.

Necessary and Sufficient Deadlock Conditions
Coffman identified four (4) conditions that must hold

simultaneously for there to be a deadlock.

Mutual Exclusion Condition
The resources involved are non-shareable.

Explanation:
At least one resource (thread) must be held in a non-

shareable mode, that is, only one process at a time claims

exclusive control of the resource. If another process requests

that resource, the requesting process must be delayed until

the resource has been released.

Hold and Wait Condition
Requesting process hold already, resources while waiting

for requested resources.

Explanation:
There must exist a process that is holding a resource

already allocated to it while waiting for additional resource

that are currently being held by other processes.

No-Preemptive Condition
Resources already allocated to a process cannot be

preempted.

CPU Scheduling Algorithms

130

Explanation:
Resources cannot be removed from the processes are used

to completion or released voluntarily by the process holding

it.

Circular Wait Condition
The processes in the system form a circular list or chain

where each process in the list is waiting for a resource held

by the next process in the list. As an example, consider the

traffic deadlock in the following figure

Consider each section of the street as a resource.

1. Mutual exclusion condition applies, since only one

vehicle can be on a section of the street at a time.

2. Hold-and-wait condition applies, since each vehicle is

occupying a section of the street, and waiting to move

on to the next section of the street.

3. No-preemptive condition applies, since a section of the

street that is a section of the street that is occupied

by a vehicle cannot be taken away from it.

4. Circular wait condition applies, since each vehicle is

waiting on the next vehicle to move. That is, each

vehicle in the traffic is waiting for a section of street

held by the next vehicle in the traffic.

CPU Scheduling Algorithms

131

The simple rule to avoid traffic deadlock is that a vehicle

should only enter an intersection if it is assured that it will

not have to stop inside the intersection. It is not possible to

have a deadlock involving only one single process. The

deadlock involves a circular “hold-and-wait” condition

between two or more processes, so “one” process cannot hold

a resource, yet be waiting for another resource that it is

holding. In addition, deadlock is not possible between two

threads in a process, because it is the process that holds

resources, not the thread that is, each thread has access to

the resources held by the process.

Dealing with Deadlock Problem
In general, there are four strategies of dealing with deadlock

problem:

1. The Ostrich Approach

Just ignore the deadlock problem altogether.

2. Deadlock Detection and Recovery

Detect deadlock and, when it occurs, take steps to recover.

3. Deadlock Avoidance

Avoid deadlock by careful resource scheduling.

4. Deadlock Prevention

Prevent deadlock by resource scheduling so as to negate

at least one of the four conditions.

Deadlock Prevention
Havender in his pioneering work showed that since all four

of the conditions are necessary for deadlock to occur, it follows

that deadlock might be prevented by denying any one of the

conditions.

CPU Scheduling Algorithms

132

Elimination of “Mutual Exclusion” Condition
The mutual exclusion condition must hold for non-sharable

resources. That is, several processes cannot simultaneously

share a single resource. This condition is difficult to eliminate

because some resources, such as the tap drive and printer,

are inherently non-shareable. Note that shareable resources

like read-only-file do not require mutually exclusive access

and thus cannot be involved in deadlock.

Elimination of “Hold and Wait” Condition
There are two possibilities for elimination of the second

condition. The first alternative is that a process request be

granted all of the resources it needs at once, prior to

execution. The second alternative is to disallow a process

from requesting resources whenever it has previously

allocated resources.

This strategy requires that all of the resources a process

will need must be requested at once. The system must grant

resources on “all or none” basis. If the complete set of

resources needed by a process is not currently available,

then the process must wait until the complete set is available.

While the process waits, however, it may not hold any

resources. Thus the “wait for” condition is denied and

deadlocks simply cannot occur. This strategy can lead to

serious waste of resources. For example, a programme

requiring ten tap drives must request and receive all ten

derives before it begins executing. If the programme needs

only one tap drive to begin execution and then does not need

the remaining tap drives for several hours. Then substantial

computer resources (9 tape drives) will sit idle for several

CPU Scheduling Algorithms

133

hours. This strategy can cause indefinite postponement

(starvation). Since not all the required resources may become

available at once.

Elimination of “No-preemption” Condition
The nonpreemption condition can be alleviated by forcing

a process waiting for a resource that cannot immediately be

allocated to relinquish all of its currently held resources, so

that other processes may use them to finish. Suppose a

system does allow processes to hold resources while

requesting additional resources. Consider what happens

when a request cannot be satisfied. A process holds resources

a second process may need in order to proceed while second

process may hold the resources needed by the first process.

This is a deadlock. This strategy require that when a process

that is holding some resources is denied a request for

additional resources. The process must release its held

resources and, if necessary, request them again together with

additional resources. Implementation of this strategy denies

the “no-preemptive” condition effectively.

High Cost: When a process release resources the process

may lose all its work to that point. One serious consequence

of this strategy is the possibility of indefinite postponement

(starvation). A process might be held off indefinitely as it

repeatedly requests and releases the same resources.

Elimination of “Circular Wait” Condition
The last condition, the circular wait, can be denied by

imposing a total ordering on all of the resource types and

than forcing, all processes to request the resources in order

(increasing or decreasing). This strategy impose a total

CPU Scheduling Algorithms

134

ordering of all resources types, and to require that each

process requests resources in a numerical order (increasing

or decreasing) of enumeration. With this rule, the resource

allocation graph can never have a cycle. For example, provide

a global numbering of all the resources, as shown.
1 � Card reader
2 � Printer
3 � Plotter
4 � Tape drive
5 � Card punch

Now the rule is this: processes can request resources

whenever they want to, but all requests must be made in

numerical order. A process may request first printer and then

a tape drive (order: 2, 4), but it may not request first a plotter

and then a printer (order: 3, 2). The problem with this strategy

is that it may be impossible to find an ordering that satisfies

everyone.

Deadlock Avoidance
This approach to the deadlock problem anticipates

deadlock before it actually occurs. This approach employs

an algorithm to access the possibility that deadlock could

occur and acting accordingly. This method differs from

deadlock prevention, which guarantees that deadlock cannot

occur by denying one of the necessary conditions of deadlock.

If the necessary conditions for a deadlock are in place, it is

still possible to avoid deadlock by being careful when

resources are allocated. Perhaps the most famous deadlock

avoidance algorithm, due to Dijkstra, is the Banker’s

algorithm. So named because the process is analogous to

that used by a banker in deciding if a loan can be safely

made.

CPU Scheduling Algorithms

135

Banker’s Algorithm
Customers � Processes

Units � Resources, say, tape
drive

Banker � Operating System

Customers Used Max
A
B
C
D

0
0
0
0

6
5
4
7

Available Units = 10

In the above figure, we see four customers each of whom

has been granted a number of credit nits. The banker reserved

only 10 units rather than 22 units to service them. At certain

moment, the situation becomes

Customers Used Max
A
B
C
D

1
1
2
4

6
5
4
7

Available Units = 2

Safe State The key to a state being safe is that there is at

least one way for all users to finish. In other analogy, the

state of figure above is safe because with 2 units left, the

banker can delay any request except C’s, thus letting C finish

and release all four resources. With four units in hand, the banker

can let either D or B have the necessary units and so on.

Unsafe State Consider what would happen if a request

from B for one more unit were granted in above figure.

We would have following situation

Customers Used Max
A
B
C
D

1
2
2
4

6
5
4
7

Available Units =
1

This is an unsafe state.

If all the customers namely A, B, C, and D asked for their

maximum loans, then banker could not satisfy any of them

and we would have a deadlock.

CPU Scheduling Algorithms

136

Important Note: It is important to note that an unsafe state

does not imply the existence or even the eventual existence

a deadlock. What an unsafe state does imply is simply that

some unfortunate sequence of events might lead to a

deadlock.

The Banker’s algorithm is thus to consider each request

as it occurs, and see if granting it leads to a safe state. If it

does, the request is granted, otherwise, it postponed until

later.

Haberman has shown that executing of the algorithm has

complexity proportional to N2 where N is the number of

processes and since the algorithm is executed each time a

resource request occurs, the overhead is significant.

Deadlock Detection
Deadlock detection is the process of actually determining

that a deadlock exists and identifying the processes and

resources involved in the deadlock. The basic idea is to check

allocation against resource availability for all possible

allocation sequences to determine if the system is in

deadlocked state a. Of course, the deadlock detection

algorithm is only half of this strategy.

Once a deadlock is detected, there needs to be a way to

recover several alternatives exists:

• Temporarily prevent resources from deadlocked

processes.

• Back off a process to some check point allowing

preemption of a needed resource and restarting the

process at the checkpoint later.

• Successively kill processes until the system is

deadlock free.

CPU Scheduling Algorithms

137

These methods are expensive in the sense that each

iteration calls the detection algorithm until the system proves

to be deadlock free. The complexity of algorithm is O(N2) where

N is the number of proceeds. Another potential problem is

starvation; same process killed repeatedly.

SYSTEM MODEL
A system consists of a finite number or resources to be

distributed among a number of competing processes. The

resources are partitioned into several types, each of which

consists of some number of identical instances.

Under the normal mode of operation, a process may utilize

a resource in only the following sequence:

• Request If the request cannot be granted immediately

(for example, if the resource is a printer, the process

can acquire the resource.

• Use: The process can operate on the resource (for,

example, if the resource is a printer, the process can

print on the printer).

• Release: The process releases the resource.

DEADLOCK CHARACTERIZATION
A deadlock situation can arise if the following four

conditions hold simultaneously in a system:

Mutual Exclusion
East one resource must be held in a non-sharable mode;

that is, only one process at a time can use the resource.

If another process requests that resource, the requesting

process must be delayed until the resource has been

released.

CPU Scheduling Algorithms

138

Hold and Wait
Tthere must exist a process that is holding at least one

resource and is waiting to acquire additional resources that

are currently being held by other processes. No preemption

resources cannot be preempted; that is, the process holding

it after that process has completed its task can release a

resource only voluntarily by the process holding it, after that

process has completed its task. Circular wait, there must

exist a set {Po,P1,Pn} of waiting processes such that P0 is

waiting for a resource that is held by P1,P1 is waiting for a

resource that is held by P2,Pn-1 is waiting for a resource

that held by Pn and Pn is waiting for a resource that is held

by Po.

Necessary Conditions
Mutual exclusion: At least one resource must be held in a

non-sharable mode.

• Hold and wait: a process holding at least one resource

is waiting to acquire additional resources held by

others

• No preemption: a resource can be released only

voluntarily by the process holding it, after it has

completed its task

• Circular wait: there exists a set {P0, P1, …, P0} of

waiting processes such that P0 is waiting for a

resource that is held by P1, P1 is waiting for a

resource that is held by P2, …, Pn–1 is waiting for a

resource that is held by Pn, and Pn is waiting for a

resource that is held by P0.

Deadlock can arise if four conditions hold

simultaneously Resource-Allocation Graph.

CPU Scheduling Algorithms

139

• A set of vertices V and a set of edges E.

• V is partitioned into two types:

– P = {P1, P2, …, Pn} (All processes in the system)

– R = {R1, R2, …, Rm} (All resources in the system).

• Two kinds of edges

– Request edge Rj®– directed edge P1

– Assignment edge Pi®– directed edge Rj continuation

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Example of a Resource Allocation Graph

Resource Allocation Graph With A Cycle But No Deadlock.

CPU Scheduling Algorithms

140

5

Unix File System

Overview
In Unix, the operating system comprises of files which are

arranged in a tree structure. We call files as everything which

includes:

– Programmes

– Directories

– Images

– Texts

– Services etc.

Sometimes a file with a special attribute, but a file

nevertheless.

Introduction
File system in Unix is a service which supports an abstract

representation of the secondary storage to the Operating

System. It organizes data logically for random access by the

CPU Scheduling Algorithms

141

Operating System. In Unix, the virtual file system provides

the interface between the data representation by kernel to

the user process and the data presentation to the kernel in

memory along with the file and directory system cache. Due

to such performance disparity among disk and CPU/memory,

file system performance is a paramount point for any

Operating System. The file structure in Unix looks as shown

in figure below.

��������������������������	
��

������������

Generally, UNIX File System has:

– File system is organized in tree structure.

– File tree can be arbitrarily deep.

– File name must NOT LONGER than 256 chars.

– Single path name must NOT LONGER than 1023

chars.

CPU Scheduling Algorithms

142

In Unix, the classical file system shown in fig comprises of:

• Sequentially from a predefined disk addresses (cylinder

0, sector 0):

– Boot block (Master Boot Record)

– Superblock

– I-node hash-array

– Data blocks

• Boot block, which is a hardware specific programme

that automatically load UNIX at system startup time.

• Super block in Unix contains two lists:

– A chain of free data block numbers

– A chain of free i-node numbers.

������������������������		�
����������	
���

File System in Unix carries storage devices. It is done through:

– Number of disks which is attached to the computer

system

– Network disks by Storage Area Network

– Disks such as IDE and SATA which can access

#surface, #track, #sector

– Smart disks such as SCSI, SAN, NAS which access

#sector

CPU Scheduling Algorithms

143

– Sequential accessing.

In UNIX, there are certain special files called as directories

which carry information about other files. We can say that a

UNIX directory is a file whose data is an array or list of

filename and i-node pairs which has:

– Owner, group owner, size, access permissions, etc.

– File operations on directories

– Directory in shape of an I-node type structure.

– Flag in the structure which shows its type.

Types of Files
Files in UNIX file system are arranged in multilevel

hierarchy structure which is called as directory tree as shown

in fig. The figure shows an arrangement of a family tree which

shows how UNIX file system is organized. The structure looks

like an inverted tree or root system of plant. In the figure, at

the top, there is a single directory which is known as root shown

by a/(slash). In this, all other files are descendents of root. The

number of levels is random, though most UNIX systems share

similar organizational features. It is observed that UNIX file

system contains several different types of files such as.

��	
���

CPU Scheduling Algorithms

144

Ordinary Files
• Stores information such as text or image. This is the

type of file that you usually work with.

• Always located within/under a directory file

• Do not contain other files.

Directories
• Branching points in the hierarchical tree

• Used to organize groups of files

• Contains ordinary files, special files or other directories

• Simply used for organizing files.

• In this, files are descendants of root directory, (named/

) located at top of the tree.

Special Files
• It shows physical devices such as printer, tape drive

or terminal for Input/Ouput operations

• In Unix, any device attached to system is considered

as a file:

• As by default, a command treats your terminal as

standard input file (stdin) for command input

• As your terminal is also treated as standard output

file (stdout) for command output

• Carries two types of I/O command: character and

block

• It is found under directories named/dev.

Pipes
– It is special type of file in UNIX which allows you to

link your commands together.

CPU Scheduling Algorithms

145

– It is a temporary file which exists so as to keep data

from one command till it is read by another.

– To pipe the output from one command into another

command, we show:

who | wc -l

The above command will tell you how many users are

presently logged into the system. Here the standard output

from who command is a list of all users currently logged into

the system. We see that this particular output is piped into

the wc command assuming it as standard input. In this, -l

option command shows the numbers of lines in standard

input and gives the result on its standard output terminal.

The file structure in Unix comprises of three kinds of files:

• Byte sequence

• Record sequence

• Tree

����������������������
��

�������������������	
���

The file type in Unix consist of

• Executable file

• Archive.

CPU Scheduling Algorithms

146

In Unix, files can be accessed through:

Sequential access, where:

• Reading of all bytes/records is done from starting

• It cannot jump around and could rewind or back up

• It is easy with mag tape medium.

Random access, where:

• Reading of bytes/records is done in any order

• Data base systems is required.

��������������������������
������������

• Possibility of reading appears

• Initially read and then move file marker.

CPU Scheduling Algorithms

147

�����������������������	���
��

����

������������������������	�
�����	�����
�
�������

Representation of Files
In Unix, all devices are shown by files called as special

files which are present in/dev directory. So, device files

and other files are named and accessed in same way.

CPU Scheduling Algorithms

148

In Unix:

• Regular file is an ordinary data file present in the disk.

• Block special file shows a device with characteristics

similar to a disk.

• Character special file shows a device with

characteristics same as keyboard.

Inode
In UNIX, all the files description is stored in a structure

known as inode. It carries information about:

– File-size

– Location

– Time of last access

– Time of last modification

– Permission

��������������������������	��
�
�������������

CPU Scheduling Algorithms

149

In this, directories are also shown as files. The descriptions

about the file are done by inode pointers towards the data

blocks of particular file as shown in figures.

�������������������������

�����
���

��������������������� �!�����

�����
���

If the file is large, inode has indirect pointer to a block of

pointers to additional data blocks. A data block carries file of

size 8k.

CPU Scheduling Algorithms

150

��������������������������	��
�
�������������������
�������������

Inode consists of the following fields as shown in fig:

– File owner identifier

– File type

– File access permissions

– File access times

– Number of links

– File size

– Location of the file data

Block Layout
In a block layout of inode, a file is associated:

• An inode of inode list

• Blocks of data area

These blocks serves as an information platforms for inode

files. In the figure shown, using block of 1K and address of 4

CPU Scheduling Algorithms

151

bytes, the maximum size exist is 10K + 256K + 64M + 16G. It

gives a slow access to heavy files.

Structure of Regular Files

����������������������������������	
��

������������

• Processes access data in a file by byte offset and view

a file as a stream of bytes

• The kernel accesses the inode and converts the logical

file block into the appropriate disk block

• Algorithm bmap

– The kernel calculates logical block number in file

from byte offset

– The kernel calculates start byte in block for I/O

– The kernel calculates number of bytes to copy to

user

CPU Scheduling Algorithms

152

– The kernel checks if read-ahead is applicable, then

marks inode

– The kernel determines level of indirection.

File Type and Permission
UNIX commands allow you to set permissions. File by file,

allowing you to control who can read a file, write to a file or

view a file on a Web page. Files uploaded to ones Unix account

are automatically owned by him. Unless he give permission

for other group members to edit or change a file, they cannot

make modifications.

Every file or folder in UNIX has access permissions. There

are three types of permissions:

• Read access

• Write access

• Execute access.

Permissions are defined for three types of users:

• The owner of the file

• The group that the owner belongs to

• Other users

Example: -rwxr—r—

0123456789

In above example:

• Symbol in 0 position is similar to symbol in-. It is

either “d” if item is a directory or “l” if it is a link or

“-” if the item is a regular file.

• Symbols in positions from 1 to 3 are rwx which has

permission for owner of file.

• Symbols in positions from 4 to 6 shows r— having

permissions for group.

CPU Scheduling Algorithms

153

• Symbols in positions from 7 to 9 shows r— having

permissions for others.

r = Read access is allowed

w= Write access is allowed

x = Execute access is allowed

- = Replaces “r”, “w” or “x” if according access type is denied.

Access permissions for files and folders mean different

things from the user standpoint.

It is seen that every file in UNIX has following attributes:

• Owner permissions: The owner’s permissions

determine what actions the owner of the file can

perform on the file.

• Group permissions: The group’s permissions determine

what actions a user, who is a member of the group

that a file belongs to, can perform on the file.

• Other (world) permissions: The permissions for others

indicate what action all other users can perform on the file.

Directories
A directory is a file which consists of a number of records

that contains the following fields:

• A pointer to the next record

• A number identifying an inode

• A number identifying the length of record

• A string that contains name of record which is

commonly called as filename. (possibly some padding).

Directory in Unix file system is a sequence of lines or entries

of variable length where each line contains an i-node number

and a file name mapping: <filename, inode #>. In this, the

directory data is stored as binary. Some earlier versions of

UNIXs allow: od -c dir-name. Since directories are files, but

CPU Scheduling Algorithms

154

UNIX give the permission – rwx- which explains:

- r, lists directory contents

- w, add a file to the directory

- x, cd to the directory

In Unix, there exist: single level and two level directory

system as shown:

Single level

������������������������������"�������

���

In the single level directory system, there are 4 files which

are owned by 4 users A,B,C and D.

Two level

���������������������#$����"�������

����	�	
���

The figure shows a two level directory system in which,

letters represents the owners of files and directories. Figure

below shows a consolidated hierarchical directory systems.

���������������������%�����
��
�������

������	
��	�

CPU Scheduling Algorithms

155

Working with Files and Directories

Creating a File
To create a file in Unix, use open system call with some

arguments and tell it to create a file. While doing this, a free

inode is found and is initialized. In this, an entry is created

in the current directory which points to the inode. We see

that the file was initially empty and carries no data blocks.

Creating a Directory
To create a directory in Unix, use either shell command

mkdir or system call with same name. We see when a directory

is created:

– A file is created

– An inode is allocated

– Is identified as a directory.

�������������������������
����������

����

Finally, a link to inode is created in current directory and

in new directory; following two entries are created such as:

– “.” Which points to directory’s own inode

– “..” Which points to parent’s inode.

CPU Scheduling Algorithms

156

Removing Files
To remove a file in Unix, use shell command rm or system

call unlink. While doing this, we see that:

– The directory entry is freed

– The record pointer of previous entry is reset

– The file reference counter is decreased by one

– If file reference counter reaches to zero, then data

blocks and inode are freed.

Reading a Directory
To read a directory means to open it. Opening of directory

is simply like seeing other file and read the data structures.

To open a directory, it is easy to use the three standard

functions such as;

– Opendir

– Readdir

– Closedir.

Reading an Inode
To read an inode, it is easy to read it with stat system

calls. There is more than one stat function. Consider an

example shown:

struct stat s;

d=opendir(“nameofdirectory”);

while (f=readdir(d)) {

//(use f)

stat(f->d_name, &s);

//(use s)

}

closedir(d);

CPU Scheduling Algorithms

157

Some of the common file management commands are

describe below:
Command Function
ls List the contents of the current directory.

ls - F List contents of current directory in terms of files, directories and exe.

ls -a List the contents of the current directory, including hidden files.

ls -l List the contents of the current directory in details.

pwd Print the path of the current directory.

cd Navigate to another directory.

Command Function
mkdir Make a directory.

rmdir Remove an empty directory.

cp Copy files.

mv Move (rename) files.

rm Remove files.

rm -i Remove files with confirmation.

rm -r Remove a directory. The contents of the directory is also removed.

rm -f Remove files, overriding any confirmation.

CPU Scheduling Algorithms

158

6

Computer Operating Software

Earlier in 1960’s, operating system serves as software

which handles the hardware. Presently, we see operating

system as set of programmes that create the hardware to

work. Generally, operating system is set of programmes to

facilitate controls of a computer.

There are different types of operating systems such as:

• UNIX,

• MS-DOS,

• MS-Windows,

• Windows/NT,

• VM

Over protecting of computer, engages software at numerous

levels. We will distinguish kernel services, library services,

as well as application-level services, all of which are division

of an operating system. Processes run applications, which

are related together by means of libraries that carry out

CPU Scheduling Algorithms

159

standard services. The kernel supports the development by

providing a path to the peripheral devices. The kernel reacts

to service calls as of the processes as well as interrupts from

the devices. The centre of the operating system is the kernel,

a organize programme with the purpose to function in

restricted state, act in response to interrupts from external

devices as well as service requests along with traps from

processes. In order to run Computer hardware, we require

an Operating System that will be able to recognize all

hardware components and enable us to work on it.

Definition/Function
An operating system also known as OS is a software

programme that enables the computer hardware to

communicate and operate with the computer software.

Operating systems perform basic tasks:

• Recognizing input from the keyboard

• Sending output to Monitor

• keeping track of files and directories

• Controlling peripheral such as disk drives and

printers.

The operating system is system software that is stored

on the storage device such as hard disk, CD-ROM or floppy

disk. When a computer is switched on, the operating

system is transferred from the storage device into main

memory through ROM.

An operating system controls and coordinates the operations

of the computer system. It manages the computer hardware,

controls the execution of application programmes and provides

the set of services to the users. It acts as an interface between

CPU Scheduling Algorithms

160

user and the computer. The users interact with the operating

system indirectly through application programme.

���������������������&����
������	
���$�
�������
�������$����

�����������������������	�
�������&����
������	
���

CPU Scheduling Algorithms

161

The work of the operating system involves:

• Managing the processor.

• Managing Random Access Memory

• Managing Input/Output

• Managing execution of applications

• Managing Files

• Controlling Information management.

Basic Idea
The definition of an operating system is “the software that

controls the hardware”. However, today, due to microcode

we need a better definition. We see an operating system as

the programmes that make the hardware useable. In brief,

an operating system is the set of programmes that controls

a computer. Some examples of operating systems are UNIX,

Mach, MS-DOS, MS-Windows, Windows/NT, Chicago, OS/

2, MacOS, VMS, MVS, and VM.

Controlling the computer involves software at several levels.

We will differentiate kernel services, library services, and

application-level services, all of which are part of the operating

system. Processes run Applications, which are linked together

with libraries that perform standard services. The kernel

supports the processes by providing a path to the peripheral

devices. The kernel responds to service calls from the

processes and interrupts from the devices. The core of the

operating system is the kernel, a control programme that

functions in privileged state (an execution context that allows

all hardware instructions to be executed), reacting to

interrupts from external devices and to service requests and

traps from processes. Generally, the kernel is a permanent

CPU Scheduling Algorithms

162

resident of the computer. It creates and terminates processes

and responds to their request for service.

Operating Systems are resource managers. The main

resource is computer hardware in the form of processors,

storage, input/output devices, communication devices, and

data. Some of the operating system functions are:

implementing the user interface, sharing hardware among

users, allowing users to share data among themselves,

preventing users from interfering with one another,

scheduling resources among users, facilitating input/output,

recovering from errors, accounting for resource usage,

facilitating parallel operations, organizing data for secure and

rapid access, and handling network communications.

Objectives
Modern Operating systems generally have following three

major goals. Operating systems generally accomplish these

goals by running processes in low privilege and providing

service calls that invoke the operating system kernel in high-

privilege state.

To Hide Details of Hardware by Creating
Abstraction

An abstraction is software that hides lower level details

and provides a set of higher-level functions. An operating

system transforms the physical world of devices, instructions,

memory, and time into virtual world that is the result of

abstractions built by the operating system. There are several

reasons for abstraction. First, the code needed to control

peripheral devices is not standardized. Operating systems

provide subroutines called device drivers that perform

CPU Scheduling Algorithms

163

operations on behalf of programmes for example, input/

output operations. Second, the operating system introduces

new functions as it abstracts the hardware. For instance,

operating system introduces the file abstraction so that

programmes do not have to deal with disks. Third, the

operating system transforms the computer hardware into

multiple virtual computers, each belonging to a different

programme. Each programme that is running is called a

process. Each process views the hardware through the lens

of abstraction. Fourth, the operating system can enforce

security through abstraction.

Manage Resources
An operating system controls how processes (the active

agents) may access resources (passive entities).

Provide a Pleasant and Effective User Interface
The user interacts with the operating systems through the

user interface and usually interested in the “look and feel” of

the operating system. The most important components of

the user interface are the command interpreter, the file

system, on-line help, and application integration. The recent

trend has been towards increasingly integrated graphical user

interfaces that encompass the activities of multiple processes

on networks of computers.

One can view Operating Systems from two points of views:

Resource manager and Extended machines. Form Resource

manager point of view Operating Systems manage the

different parts of the system efficiently and from extended

machines point of view Operating Systems provide a virtual

machine to users that is more convenient to use. The

CPU Scheduling Algorithms

164

structurally Operating Systems can be design as a monolithic

system, a hierarchy of layers, a virtual machine system, an

exokernel, or using the client-server model. The basic

concepts of Operating Systems are processes, memory

management, I/O management, the file systems, and

security.

History of Operating Systems
Historically operating systems have been tightly related to

the computer architecture, it is good idea to study the history

of operating systems from the architecture of the computers

on which they run. Operating systems have evolved through

a number of distinct phases or generations which

corresponds roughly to the decades.

The 1940’s - First Generations
The earliest electronic digital computers had no operating

systems. Machines of the time were so primitive that

programmes were often entered one bit at time on rows of

mechanical switches (plug boards). Programming languages

were unknown (not even assembly languages). Operating

systems were unheard of.

The 1950’s - Second Generation
By the early 1950’s, the routine had improved somewhat

with the introduction of punch cards. The General Motors

Research Laboratories implemented the first operating

systems in early 1950’s for their IBM 701. The system of the

50’s generally ran one job at a time. These were called single-

stream batch processing systems because programmes and

data were submitted in groups or batches.

CPU Scheduling Algorithms

165

The 1960’s - Third Generation
The systems of the 1960’s were also batch processing

systems, but they were able to take better advantage of

the computer’s resources by running several jobs at once.

So operating systems designers developed the concept of

multiprogramming in which several jobs are in main

memory at once; a processor is switched from job to job as

needed to keep several jobs advancing while keeping the

peripheral devices in use.

For example, on the system with no multiprogramming,

when the current job paused to wait for other I/O operation

to complete, the CPU simply sat idle until the I/O finished.

The solution for this problem that evolved was to partition

memory into several pieces, with a different job in each

partition. While one job was waiting for I/O to complete,

another job could be using the CPU.

Another major feature in third-generation operating system

was the technique called spooling (simultaneous peripheral

operations on line). In spooling, a high-speed device like a

disk interposed between a running programme and a low-

speed device involved with the programme in input/output.

Instead of writing directly to a printer, for example, outputs

are written to the disk. Programmes can run to completion

faster, and other programmes can be initiated sooner when

the printer becomes available, the outputs may be printed.

Note that spooling technique is much like thread being

spun to a spool so that it may be later be unwound as needed.

Another feature present in this generation was time-sharing

technique, a variant of multiprogramming technique, in

which each user has an on-line (i.e., directly connected)

CPU Scheduling Algorithms

166

terminal. Because the user is present and interacting with

the computer, the computer system must respond quickly

to user requests, otherwise user productivity could suffer.

Time sharing systems were developed to multiprogram large

number of simultaneous interactive users.

Fourth Generation
With the development of LSI (Large Scale Integration)

circuits, chips, operating system entered in the system

entered in the personal computer and the workstation age.

Microprocessor technology evolved to the point that it become

possible to build desktop computers as powerful as the

mainframes of the 1970s. Two operating systems have

dominated the personal computer scene: MS-DOS, written

by Microsoft, Inc. for the IBM PC and other machines using

the Intel 8088 CPU and its successors, and UNIX, which is

dominant on the large personal computers using the Motorola

6899 CPU family.

Evolution of Operating System

Basic Idea of OS
In computing an operating system (OS) is the system

software responsible for the direct control and management

of hardware and basic system operations. Additionally, it

provides a foundation upon which to run application software

such as word processing programmes and web browsers.

Early computers lacked operating systems. A human

operator would manually load and run programmes. When

programmes were developed to load and run other

programmes, it was natural to draw their name from the

CPU Scheduling Algorithms

167

human job they replaced. Today, the term is most often used

colloquially to mean all the software which “comes with” a

computer system before any applications are installed. The

operating system ensures that other applications are able to

use memory, input and output devices and have access to

the file system. If multiple applications are running, the

operating system schedules these such that all processes

have sufficient processor time where possible and do not

interfere with each other.

In general, the operating system is the first layer of software

loaded into computer memory when it starts up. As the first

software layer, all other software that gets loaded after it

depends on this software to provide them with various

common core services.

These common core services include, but are not limited

to: disk access, memory management, task scheduling and

user interfacing. Since these basic common services are

assumed to be provided by the OS, there is no need to re-

implement those same functions over and over again in every

other piece of software that you may use. The portion of code

that performs these core services is called the “kernel” of the

operating system.

Operating system kernels had been evolved from libraries

that provided the core services into unending programmes

that control system resources because of the early needs of

accounting for computer usage and then protecting those

records. It is also noteworthy that some people use “kernel”

to mean the core piece of the OS that deals most directly

with the hardware, and have a slightly broader definition of

“operating system”. They would define “operating system” to

CPU Scheduling Algorithms

168

refer to the kernel plus some of the basic computer

programmes and libraries that are necessary to use the

kernel.

Modern Operating Systems
As of 2005, the major operating systems in widespread

use on general-purpose computers have consolidated into

two main families.

• Unix like family and

• Microsoft like family.

Mainframe computers and embedded systems use a variety

of different operating systems, many with no direct

connection to Windows or Unix. The Unix-like family is a

more diverse group of operating systems, with several major

sub-categories including SystemV, BSD and Linux. The name

“Unix” is a trademark of The Open Group which licenses it

for use to any operating system that has been shown to

confirm to the definitions that they have cooperatively

developed. The name is commonly used to refer to the large

set of operating systems which resemble the original Unix.

Unix systems run on a wide variety of machine

architectures. Unix systems are used heavily as server

systems in business, as well as workstations in academic

and engineering environments. Free Software Unix variants,

such as Linux and BSD are increasingly popular, and have

made inroads on the desktop market as well. Some

proprietary Unix variants like HP’s HP-UX and IBM’s AIX

are designed to run only on that vendor’s proprietary

hardware while others can run on the vendor’s proprietary

hardware and also on industry-standard PCs. Sun’s formerly

CPU Scheduling Algorithms

169

proprietary Solaris (it is becoming open-source under the

CDDL license) is one such versatile but true Unix (it can run

on Sun’s servers but also on smaller x86 systems). Apple’s

Mac OS X, a BSD variant, has replaced Apple’s earlier (non-

Unix) Mac OS in a small but dedicated market, becoming

one of the most popular Unix systems in the process. The

Microsoft-like family of operating systems originated as a

graphical layer on top of the older MS-DOS environment for

the IBM PC. Modern versions are based on the newer

Windows NT core that first took shape in OS/2. Windows

runs on 32 and 64-bit Intel and AMD computers.

Unix System V
System V, previously known as AT&T System V, was one

of the versions of the Unix computer OS. It was originally

developed by AT&T and first released in 1983. Four major

versions of System V were released, termed Releases 1, 2, 3

and 4. System V Release 4, or SVR4, was the most successful

version, and the source of several common Unix features,

such as “SysV init scripts”, used to control system startup

and shutdown, and the System V Interface Definition(SVID),

a standard defining how System V systems should work.

While AT&T sold their own hardware which ran System

V, many customers ran a version from a reseller, based on

AT&T’s reference implementation. Popular SysV derivatives

include Dell SVR4 and Bull SVR4. The most widely used

versions of System V today are SCO Open Server, Based on

System V Release 3, and Sun Microsystems Solaris

Operating Environment and SCO Unix Ware, both based

on System V Release 4.

CPU Scheduling Algorithms

170

System V was an enhancement over AT&T’s first

commercial UNIX called System III. Traditionally, System V

has been considered one of the two major “flavors” of UNIX,

the other being BSD. However, with the advent of UNIX

implementations developed from neither code base, such as

Linux and QNX, this generalization is not as accurate as it

once was, and in any case standardization efforts such as

POSIX are tending to reduce the differences between

implementations.

There are five releases of SVR, namely:

1. SVR 1: The first version of System V was released in

1983. It introduced features such as the vi editor and

cursors from the Berkley Software Distribution of

UNIX developed at the University of California, Berkley

(UCB). It also added support for inter-process comn

using messages, semaphores and shared memory.

2. SVR 2: System V Release 2 was released in 1984. It

added Unix shell functions and the SVID.

3. SVR 3: System V Release 3 was released in 1987. It

included STREAMS, remote file sharing (RFS), shared

libraries and the Transport Layer Interface(TLI).

4. SVR 4: System V Release 4.0 was announced on 1

Nov1989 and was released in 1990. A joint project of

Unix Systems Labs and Sun Microsystems, it

combined technology from Release 3 as well as 4.3

BSD, Xenix and Sun OS. TCP/IP and csh support

from BSD. Network file system(NFS), memory mapped

files, a new shared library system support from Sun

OS. Other improvements were ksh, ANSI C,

internationalization support, ABI and support for

CPU Scheduling Algorithms

171

standards such as POSIX, X/Open and SVID 3. SVR

4.1 added asynchronous I/O. SVR 4.2 added support

for the Veritas file system, access control lists(ACLs),

and dynamically loadable kernel modules.

5. SVR 5: Produced by the SCO group.

Berkley Software Distribution (BSD)
Berkeley Software Distribution (BSD) is the UNIX derivative

distributed by the University of California, Berkeley starting

in the 1970s. The name is also used collectively for the

modern descendants of these distributions.

BSD pioneered many of the advances of modern

computing. Berkeley’s Unix was the first to include library

support for the IP stacks, Berkeley sockets. By integrating

sockets with the UNIX operating system file descriptors, users

of their library found it almost as easy to read and write data

across the network, as it was to put data on a disk. The

AT&T laboratory eventually released their own STREAMS

library, which incorporated much of the same functionality

in a software stack with better architectural layers, but the

already widely-distributed sockets library, together with the

unfortunate omission of a function call for polling a set of

open sockets (an equivalent of the select call in the Berkeley

library), made it difficult to justify porting applications to

the new API. Today, it continues to be used as technology

testbed by academic organizations, as well as high-technology

examples in a lot of commercial and free products. It is

increasingly being used on embedded devices as well. The

general quality of its source code design and clean writing,

as well as its documentation, make such systems a heaven

for programmers.

CPU Scheduling Algorithms

172

It is an interesting fact that BSD operating systems can

run native software of several other operating systems on

the same architecture, using binary compatibility. This, much

faster than emulation, allows for instance to run applications

intended for Linux on a BSD operating system at full speed.

This makes BSD not only suitable for server environments,

but also for workstation ones, considering the increasing

availability of commercial or closed-source software for Linux.

It also allows to migrate old commercial software which only

used to run on commercial UNIX platforms to a modern BSD

operating system, while retaining functionality of the previous

system until it can fully be replaced by a better alternative.

Like AT&T Unix, the BSD kernel is monolithic, meaning

that device drivers in the kernel run inprivileged mode, as

part of the core of the operating system. Early versions of

BSD were used to form Sun Microsystems’ Sun OS, founding

the first wave of popular Unix workstations.

GNU General Public License
The GNU General Public License (GNU GPL or simply GPL)

is a free software license, originally written by Richard

Stallman for the GNU project (a project to create a complete

free software OS). It has since become the most popular

license for free software (or “open source software”). The latest

version of the license, version 2, was released in 1991.

The GPL grants the recipients of a computer programme the

following rights, or “freedoms”:

• The freedom to run the programme, for any purpose.

• The freedom to study how the programme works, and

modify it. (Access to the source code is a precondition

for this)

CPU Scheduling Algorithms

173

• The freedom to redistribute copies.

• The freedom to improve the programme, and release

the improvements to the public. (Access to the source

code is a precondition for this).

In contrast, the end user license that come with proprietary

software rarely grant the end user any rights (other than the

right to use the software, although it is debatable whether

one requires a license for use per se), and may even attempt

to restrict activities normally permitted by law, such as

reverse engineering.

The primary difference between the GPL and more

“permissive” free software licenses such as the BSD license

is that the GPL seeks to ensure that the above freedoms are

preserved in copies and in derivative works. It does this using

a legal mechanism known as copyleft, invented by Stallman,

which requires derivative works of GPL-licensed programmes

to also be licensed under the GPL. In contrast, BSD-style

licenses allow for derivative works to be redistributed as

proprietary software.

By some measures, the GPL is the single most popular

license for free and Open Source software. As of April 2004,

the GPL accounted for nearly 75% of the 23,479 free-software

projects listed on Freshmeat, and about 68% of the projects

listed on SourceForge. (It should be noted that these two

sites are owned by OSTG, a company that advocates Linux

and the GPL).

The GPL does not give the licensee unlimited redistribution

rights. The right to redistribute is granted only if the licensee

includes the source code (or a legally-binding offer to provide

the source code), including any modifications made.

CPU Scheduling Algorithms

174

Furthermore, the distributed copies, including the

modifications, must also be licensed under the terms of the

GPL.

This requirement is known as copyleft, and it gets its legal

teeth from the fact that the programme is copyrighted.

Because it is copyrighted, a licensee has no right to modify

or redistribute it (barring fair use), except under the terms

of the copyleft. One is only required to accept the terms of

the GPL if one wishes to exercise rights normally restricted

by copyright law, such as redistribution. Conversely, if one

distributes copies of the work without abiding by the terms

of the GPL (for instance, by keeping the source code secret),

they can be sued by the original author under copyright law.

Many distributors of GPL’ed programmes bundle the source

code with the executables. An alternative method of satisfying

the copyleft is to provide a written offer to provide the source

code on a physical medium (such as a CD) upon request. In

practice, many GPL’ed programmes are distributed over the

Internet, and the source code is made available over FTP.

For Internet distribution, this complies with the license.

The copyleft only applies when a person seeks to

redistribute the programme. One is allowed to make private

modified versions, without any obligation to divulge the

modifications as long as the modified software is not

distributed to anyone else. Note that the copyleft only applies

to the software and not to its output (unless that output is

itself a derivative work of the programme); for example, a

web portal running a modified GPL content management

system is not required to distribute its changes to the

underlying software. (It has been suggested that this be

changed for version 3 of the GPL).

CPU Scheduling Algorithms

175

Free BSD and Linux
Almost all code in Free BSD is under the BSD license (one

notable exception being the compiler, gcc). The BSD license

puts very few restrictions on what can be done with code

placed under it. Essentially, the only restrictions are that

the user must attribute the previous contributors (i.e. the

user can’t claim it was all his work), the user cannot claim

that the previous contributors endorse the user’s product,

and the user cannot hold the contributors liable for any

mistakes in the code. After meeting those restrictions,

essentially anything else can be done with the code, including

distributing closed-source modified versions.

The Linux kernel and much of the utilities commonly

distributed with it are under the GNU General Public License

(GPL). The GPL allows free use of the software licensed under

it under essentially the same restrictions as the BSDL with

the additional requirement that if modified code is distributed,

then the changes must be made available in source code for

all to use. Generally, Linux is less centralized than Free BSD.

Linux by itself is only a kernel. To function as an operating

system, other utilities are required. These other utilities are

gathered from various sources and collected together with

the kernel by various groups in distributions. Kernel and

system utilities are developed independently and merged

together to form an operating system. This means that the

kernel has one version, and all the other utilities in the

operating system have others. Free BSD is more centralized.

The kernel and basic system utilities are developed, versioned,

and distributed together. Other programmes, such as X and

web browsers, can be brought in from elsewhere, but the

CPU Scheduling Algorithms

176

basic system comes from one source and is designed

specifically for the Free BSD operating system. Being

versioned together in the same CVS tree is an advantage.

Changes must consider all affected parts, not just the

particular part being changed. This leads to a more cohesive,

polished system. In fact, the concept of a kernel version

different from the rest of the system does not really exist in

Free BSD.

The two systems share much of the same functionality.

They are often able to run programmes coded for the other

system. When a complete desktop environment, such as

GNOME or KDE is running, the two systems are often difficult

to tell apart. Free BSD can also run Linux programmes due

to a very lightweight Linux subsystem, which is capable of

running even commercial Linux software.

Parts of Operating System

Resident Part
It is called as kernel that contains critical functions. It is

loaded inside the main memory during the booting. It

performs various functions residing in the main memory.

Non-resident Part
This part of operating system is loaded into main memory

when required. It includes:

• Disk Operating System (DOS) developed by Microsoft.

• Operating System 2 (QS/2) developed by IBM.

• XENIX or ZENIX developed by Microsoft.

• WTNOWS developed by Microsoft

• WINDOWS- NE.

CPU Scheduling Algorithms

177

Evolution of operating system
Initially, the computer utilises batch operating systems

where batches of jobs are run without taking a break. These

programmes are punched into cards where the processing

was performed by copied into tape. After finishing the first

job, the computer would soon start with the next job on the

tape. Professional operators when interacted with computer

found that users drop such jobs and finally returned to hold

the result soon after running of particular job. It was quiet

difficult for users as expensive computer were made to involve

in such type of processing of jobs.

During late 1960s, invent of time sharing operating systems

led to replacement of batch systems. Users when involved

directly by way of printing terminal found that Western

Electric Teletype shown was ok. With this time sharing OS,

many users shared the computer and then spent only a

fraction of second on every job before moving to the next job.

It is found that a fast computer will work for many user’s

jobs at the same time thereby making the illusion that they

were full attentive while receiving such jobs.

Printing terminals found that the programmes were set of

characters or command line user interfaces (CLI) where user

had to type responses in order to typed commands which

led to scrolled down the instructions on paper. During mid

1970, the personal computers allows pockets and Altair 8800

were initially used for commercial purposes for an individuals.

In the start of 1975, the Altair was sold to hobbyists in kit

form. It was without the operating system because it has

only toggle switches and light emitting diodes which serves

as input and output.

CPU Scheduling Algorithms

178

After sometimes, people started connected terminals and

floppy disk drives to Altairs. During the year 1976, Digital

Research introduced CP/M operating system for such

Computer.

CP/M and later on DOS had CLIs which were similar to

time shared operating systems where computer was only for

a particular user. With the success of Apple Macintosh in

1984, the particular system pushed the state of hardware

art which were restricted to small with black and white

display.

As hardware continued to develop, many colour Macs were

under developed position and soon Microsoft introduced

Windows as its GUI operating system.

It was found that the Macintosh operating system was

based on decades of research on graphically-oriented

personal computer operating systems and applications.

Computer applications today require a single machine to

perform many operations and the applications may compete

for the resources of the machine. This demands a high

degree of coordination which can be handled by system

software known as an operating system.

Internal Parts
The internal part of the OS is often called the kernel which

comprises of:

• File Manager

• Device Drivers

• Memory Manager

• Scheduler

• Dispatcher.

CPU Scheduling Algorithms

179

���������������������!�
����
�����&��

Operating System and Function
The operating system is the core software component of

your computer. It performs many functions and is, in very

basic terms, an interface between your computer and the

outside world.. The operating system provides an interface

to these parts using what is referred to as “drivers”. This is

why sometimes when you install a new printer or other piece

of hardware, your system will ask you to install more software

called a driver.

Purpose of a Driver
A driver is a specially written programme which understands

the operation of the device it interfaces to, such as a printer,

video card, sound card or CD ROM drive. It translates

commands from the operating system or user into commands

understood by the component computer part it interfaces

with. It also translates responses from the component

computer part back to responses that can be understood by

the operating system, application programme, or user. The

below diagram gives a graphical depiction of the interfaces

between the operating system and the computer component.

CPU Scheduling Algorithms

180

Operating System Functions
The operating system provides for several other functions

including:

• System tools (programmes) used to monitor computer

performance, debug problems, or maintain parts of

the system.

• A set of libraries or functions which programmes may

use to perform specific tasks especially relating to

interfacing with computer system components.

The operating system makes these interfacing functions

along with its other functions operate smoothly and these

functions are mostly transparent to the user.

Operating System Concerns
As mentioned previously, an operating system is a

computer programme. Operating systems are written by

human programmers who make mistakes. Therefore there

can be errors in the code even though there may be some

testing before the product is released. Some companies

have better software quality control and testing than others

so you may notice varying levels of quality from operating

system to operating system.

Errors in operating systems cause three main types of

problems:

1. System crashes and instabilities - These can happen

due to a software bug typically in the operating

system, although computer programmes being run on

the operating system can make the system more

unstable or may even crash the system by themselves.

This varies depending on the type of operating system.

A system crash is the act of a system freezing and

CPU Scheduling Algorithms

181

becoming unresponsive which would cause the user

to need to reboot.

2. Security flaws - Some software errors leave a door

open for the system to be broken into by unauthorized

intruders. As these flaws are discovered, unauthorized

intruders may try to use these to gain illegal access

to your system. Patching these flaws often will help

keep your computer system secure. How this is done

will be explained later.

3. Sometimes errors in the operating system will cause

the computer not to work correctly with some

peripheral devices such as printers.

Operating System Types
There are many types of operating systems. The most

common is the Microsoft suite of operating systems.

They include from most recent to the oldest:

• Windows XP Professional Edition: A version used by

many businesses on workstations. It has the ability

to become a member of a corporate domain.

• Windows XP Home Edition: A lower cost version of

Windows XP which is for home use only and should

not be used at a business.

• Windows 2000: A better version of the Windows NT

operating system which works well both at home and

as a workstation at a business. It includes

technologies which allow hardware to be automatically

detected and other enhancements over Windows NT.

• Windows ME: A upgraded version from windows 98

but it has been historically plagued with programming

errors which may be frustrating for home users.

CPU Scheduling Algorithms

182

• Windows 98: This was produced in two main versions.

The first Windows 98 version was plagued with

programming errors but the Windows 98 Second

Edition which came out later was much better with

many errors resolved.

• Windows NT: A version of Windows made specifically

for businesses of fering better control over

workstation capabilities to help network

administrators.

• Windows 95: The first version of Windows after the

older Windows 3.x versions offering a better interface

and better library functions for programmes.

Operating system structure-monolithic
layered

The means of operating system architecture usually follows

the leave-taking of particular principle which guides to re-

structure the operating system mainly into relatively

independent parts that can easily provide basic independent

features by keeping complicated designs in manageable

conditions.

Apart from controlling complexity, the architecture of

operating system influences key features that are in terms of

robustness or efficiency as:

• The OS receives importance which allows to work if

not then protected resources like physical devices or

application memory. With such importance, the

various related parts of OS or OS as a whole will be

both accidental and malicious privileges misuse gets

lowered.

CPU Scheduling Algorithms

183

• By breaking OS into different parts will led to adverse

effect on ef ficiency as overhead linked with

communication among individual parts gets

exacerbated when coupled with hardware

mechanisms.

Monolithic Systems
Aboriginal concept of the operating system arrangement

brings about no definite accommodation for the

discriminating nature of the operating system. Furthermore

the concept follows the separation of concern; no action is

acted to limit the blessings granted to the single parts of the

operating system. The complete operating system acts with

maximum approvals. The communication overhead inside

the basic operating system is identical as communication

overhead in many other software, which are considered

relatively low.

It is seen that CP/M and DOS are examples of monolithic

operating systems that share common address space with

certain applications. It is found in CP/M, 16 bit address space

will begins with system variables along with application area

additionally ends with 3 parts of O/S which are known as:

• CCP or Console Command Processor

• BDOS or Basic Disk Operating System

• BIOS or Basic Input/Output System.

If we see that in a DOS Operating System, there exists a

20 bit address space that begins with an array of interrupt

vectors along with system variables that are followed by local

DOS and its application area which will end with memory

block utilised by video card and BIOS as shown in fig.

CPU Scheduling Algorithms

184

���������������������'�����
��
�&����
������	
��	�

Virtual machine and Client server

Virtual Machine
A virtual machine (VM) abides an operating system OS or

conduct environment that is embedded on software which

copies consecrated hardware. The end user embraces the

equivalent experience on a virtual machine as they would

acquire on dedicated hardware. Individualized software

designated a hypervisor copies the PC client or server’s CPU,

memory, hard disk, network as well as other hardware

resources collectively, allowing virtual appliances to

participate the resources. The hypervisor can copy integral

virtual hardware platforms that are occasional from each

other, assigning virtual machines to run Linux as well as

Windows server operating systems on the identical underlying

physical aggregation.

Virtualization conserves costs by depreciating the need

for physical hardware systems. Virtual machines additional

desirably use hardware, which lowers the quantities of

hardware as well as associated maintenance costs, along

CPU Scheduling Algorithms

185

with reduces power furthermore cooling demand. They also

allay management due to virtual hardware does not collapse.

Administrators can take advantage of virtual circumstances

to simplify backups, disaster recovery, new deployments as

well as elementary system administration tasks.

Virtual machines do not constrain distinguished

hypervisor-specific hardware. Virtualization appears

although require more bandwidth, storage along with

processing capacity than a conventional server or desktop if

the physical hardware is going to host multiple running

virtual machines. VMs can easily move, be copied and

reassigned between host servers to optimize hardware

resource utilization. Because VMs on a physical host can

consume unequal resource quantities, IT professionals must

balance VMs with available resources.

Client Server
Client/server is a programme relationship in which one

programme (the client) requests a service or resource from

another programme (the server). It is seen that in client/

server model, the programmes are used by single computer

only. It serves as an important concept for networking. Here,

the client makes a connection with the server through local

area network (LAN) or wide-area network (WAN) like Internet.

After clearing the client’s request, the connection gets

terminated. In this case, Web browser serves as a client

programme which further appeals for a service from the

server. The service and resource of the server will show the

delivery of such Web page.

Computer assignments in which the server accomplishes

a request created by a client are very customary furthermore

CPU Scheduling Algorithms

186

the client/server model has serve one of the main concepts

of network computing. Most business approaches facilitate

the client/server model as appears acts the Internet’s core

programme, TCP/IP. For exemplary, when you examine a

bank account from the computer, a client approximation in

computer overtures a request to a server programme at the

bank which in twist forward a approach to its own client

programme and conveys a request to a database server at

another bank computer. Once the account balance sheet

has been acquired from the database, it is acknowledged

back to the bank data client, who in turn applies it back to

the client in his/her personal computer that displays the

information.

Both client programmes as well as server programmes are

usual constituent of a larger programme or application. On

account of multiple client programmes participate the

services of the equivalent server programme, a special server

identified a daemon may be charged due to anticipate client

requests. In marketing, the client/server had been once used

to differentiate allocated computing by personal computers

(PCs) from the monolithic, concentrated computing model

exercised by mainframes. This differentiation has largely

evaporated, although, as mainframes along with their

applications possess additionally turned to the client/server

model further become part of network computing.

Types of Operating System

Introduction
There are abundant Operating Systems those monopolize

be constructed for functioning the performances which are

CPU Scheduling Algorithms

187

demanded by the user. There are many different types of

Operating Systems which acquire the ability to behave the

entreaties acquired from different approach. The Operating

system can behave in a unique operation and furthermore

multiple movements at duration, so there are many categories

of operating systems those are arranged by utilizing their

working mechanisms.

There are many types of operating system such as:

• Serial Processing

• Batch Processing

• Multi-Programming

• Real Time System

• Distributed Operating System

• Multiprocessing

• Parallel operating systems.

Real Time Systems
There appears additionally an operating system which is

comprehended as Real Time Processing System in which

duration is already adjusted. Indicates duration to show the

after-effects after acquiring has adjusted by the Processor

or CPU. Real Time System is exercised at those areas in which

we binds higher along with well-timed return. Such categories

of approaches are exercised in reservation, so when we

discriminate the demand, the CPU will conduct at that

duration.

There are two types of Real Time System:

• Hard Real Time System: In Hard Real Time System,

time is fixed and we can’t change any moments of

time of processing as the CPU will process the data

as we enter it.

CPU Scheduling Algorithms

188

• Soft Real Time System: In Soft Real Time System,

some moments can be change as after giving the

command to CPU, the CPU will perform the operation

after certain microseconds.

Multi-user System
As we comprehend that in case of Batch Processing System,

there are results many jobs by the System. The System

foremost compose a batch furthermore and will accomplish

all jobs which gets saved in the Batch. Also, the innermost

difficulty is that if a mechanism or jobs needs an input as

well as output operation, in such case, it is not achievable

and there will be the wastage of the duration when composing

the batch processing as CPU will remain idle during the

particular time.

Although with the help of multi programming we can

achieve multiple programmes on the system at a duration

as besides in multi-programming, the CPU determination

never gets idle, so with the help of Multi-Programming we

can achieve ample algorithms on system when functioning

with programme and can acknowledge the supplement or

other programme for sprinting extra CPU that will at that

time behaves as secondary programme following the

completion of original programme. Also in this, we can further

differentiate our input means which a user can additionally

interact with the system.

The multi-programming operating systems never utilize

many cards on account of approach that is accessed on the

spot by the user. Since the Operating System also utilizes

the process of allocation and de-allocation of the memory

CPU Scheduling Algorithms

189

which shows providing memory space to all the running and

all waiting processes. There must be the proper management

of all the running jobs.

Distributed System
Distributed means data is stored and processed on multiple

locations. When a data is stored on to the multiple computers,

those are placed in different locations. Distributed in terms of

network means, network collections of computers connected

with each other.

If you want to take some data from other computer, then

we uses the distributed processing system, as we can also

insert and remove the data from one location to another

location. In this, data is shared between many users, and

we can also access all the Input and Output Devices by

Multiple Users.

Other Types
There are other worthwhile types of operating systems not

made by Microsoft. The greatest problem with these operating

systems lies in the fact that not as many application

programmes are written for them. However if you can get

the type of application programmes you are looking for, one

of the systems listed below may be a good choice.

• Unix: A system that has been around for many years

and it is very stable. It is primary used to be a server

rather than a workstation and should not be used by

anyone who does not understand the system. It can

be difficult to learn. Unix must normally run an a

computer made by the same company that produces

the software.

CPU Scheduling Algorithms

190

• Linux: Linux is similar to Unix in operation but it is

free. It also should not be used by anyone who does

not understand the system and can be difficult to learn.

• Apple MacIntosh: Most recent versions are based on

Unix but it has a good graphical interface so it is

both stable (does not crash often or have as many

software problems as other systems may have) and

easy to learn. One drawback to this system is that it

can only be run on Apple produced hardware.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Introduction
	Chapter 2 Scheduling Algorithms
	Chapter 3 CPU/Process Scheduling
	Chapter 4 Multiprocessor Scheduling
	Chapter 5 Unix File System
	Chapter 6 Computer Operating Software

