
Roland Barr

Computer System
Architecture

COMPUTER SYSTEM
ARCHITECTURE

COMPUTER SYSTEM
ARCHITECTURE

Roland Barr

Computer System Architecture

by Roland Barr

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664327

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Computer System Architecture

181

Contents

Chapter 1 Internet Architecture 1

Chapter 2 Evolution of Network Operating System 20

Chapter 3 Network Architecture 46

Chapter 4 Operating Systems Structure 77

Chapter 5 System Software Architecture 126

1

Internet Architecture

INTRODUCTION

What is the Internet architecture? It is by definition a meta-

network, a constantly changing collection of thousands of

individual networks intercommunicating with a common

protocol.

The Internet’s architecture is described in its name, a short

from of the compound word “inter-networking”. This

architecture is based in the very specification of the standard

TCP/IP protocol, designed to connect any two networks which

may be very different in internal hardware, software, and

technical design. Once two networks are interconnected,

communication with TCP/IP is enabled end-to-end, so that

any node on the Internet has the near magical ability to

communicate with any other no matter where they are. This

openness of design has enabled the Internet architecture to

Computer System Architecture

2

grow to a global scale. In practice, the Internet technical

architecture looks a bit like a multi-dimensional river system,

with small tributaries feeding medium-sized streams feeding

large rivers. For example, an individual’s access to the

Internet is often from home over a modem to a local Internet

service provider who connects to a regional network

connected to a national network. At the office, a desktop

computer might be connected to a local area network with a

company connection to a corporate Intranet connected to

several national Internet service providers.

In general, small local Internet service providers connect

to medium-sized regional networks which connect to large

national networks, which then connect to very large

bandwidth networks on the Internet backbone. Most Internet

service providers have several redundant network cross-

connections to other providers in order to ensure continuous

availability. The companies running the Internet backbone

operate very high bandwidth networks relied on by

governments, corporations, large organizations, and other

Internet service providers. Their technical infrastructure often

includes global connections through underwater cables and

satellite links to enable communication between countries

and continents. As always, a larger scale introduces new

phenomena: the number of packets flowing through the

switches on the backbone is so large that it exhibits the kind

of complex non-linear patterns usually found in natural,

analog systems like the flow of water or development of the

rings of Saturn (RFC 3439, S2.2).

Each communication packet goes up the hierarchy of

Internet networks as far as necessary to get to its destination

Computer System Architecture

3

network where local routing takes over to deliver it to the

addressee. In the same way, each level in the hierarchy pays

the next level for the bandwidth they use, and then the large

backbone companies settle up with each other. Bandwidth

is priced by large Internet service providers by several

methods, such as at a fixed rate for constant availability of a

certain number of megabits per second, or by a variety of

use methods that amount to a cost per gigabyte. Due to

economies of scale and efficiencies in management,

bandwidth cost drops dramatically at the higher levels of

the architecture.

DEFINITION OF INTERNET

The Internet is a global network of computers. Every

computer that is connected to the Internet is considered a

part of that network. This means even your home computer.

It’s all a matter of degrees, you connect to your ISP’s network,

then your ISP connects to a larger network and so on. At the

top of the tree is the high-capacity backbones, all of these

interconnect at ‘Network Access Points’ ‘NAPs’ at important

regions around the world. The entire Internet is based on

agreements between these backbone providers who set in

place all the fibre optics lines and other technical aspects of

Computer System Architecture

4

the Internet. The first high speed backbone was created by

the ‘National Science Foundation’ in 1987.

The Internet was first created by the Advanced Research

Projects Agency (ARPA) of the U.S. government in 1960’s,

and was first known as the ARPANet. At this stage the

Internet’s first computers were at academic and government

institutions. They were mainly used for accessing files and

to send email. From 1983 onwards the Internet as we know

it today started to form with the introduction of the

communication protocol TCP/IP to ARPANet.

Since 1983 the Internet has accommodated alot of changes

and continues to keep developing. The last two decades has

seen the Internet accommodate such things as network LANs

and ATM and frame switched services. The Internet continues

to evolve with it becoming available on mobile phones and

pagers and possibly on televisions in the future. The actual

term “Internet” was finally defined in 1995 by FNC (The

Federal Networking Council). The resolution created by the

The Federal Networking Council (FNC) agrees that the

following language reflects our definition of the term

“Internet”. “Internet” refers to the global information system

that,

THE EVOLUTION OF THE INTERNET
The underpinnings of the Internet are formed by the global

interconnection of hundreds of thousands of otherwise

independent computers, communications entities and

information systems. What makes this interconnection

possible is the use of a set of communication standards,

procedures and formats in common among the networks and

Computer System Architecture

5

the various devices and computational facilities connected

to them. The procedures by which computers communicate

with each other are called “protocols.” While this

infrastructure is steadily evolving to include new capabilities,

the protocols initially used by the Internet are called the

“TCP/IP” protocols, named after the two protocols that formed

the principal basis for Internet operation.

On top of this infrastructure is an emerging set of

architectural concepts and data structures for heterogeneous

information systems that renders the Internet a truly global

information system.

In essence, the Internet is an architecture, although many

people confuse it with its implementation. When the Internet

is looked at as an architecture, it manifests two different

abstractions. One abstraction deals with communications

connectivity, packet delivery and a variety of end-end

communication services. The other abstraction deals with

the Internet as an information system, independent of its

underlying communications infrastructure, which allows

creation, storage and access to a wide range of information

resources, including digital objects and related services at

various levels of abstraction.

Interconnecting computers is an inherently digital problem.

Computers process and exchange digital information,

meaning that they use a discrete mathematical “binary” or

“two-valued” language of 1s and 0s. For communication

purposes, such information is mapped into continuous

electrical or optical waveforms.

The use of digital signaling allows accurate regeneration

and reliable recovery of the underlying bits. We use the terms

Computer System Architecture

6

“computer,” “computer resources” and “computation” to

mean not only traditional computers, but also devices that

can be controlled digitally over a network, information

resources such as mobile programs and other computational

capabilities.

The telephone network started out with operators who

manually connected telephones to each other through “patch

panels” that accepted patch cords from each telephone line

and electrically connected them to one another through the

panel, which operated, in effect, like a switch. The result

was called circuit switching, since at its conclusion, an

electrical circuit was made between the calling telephone

and the called telephone. Conventional circuit switching,

which was developed to handle telephone calls, is

inappropriate for connecting computers because it makes

limited use of the telecommunication facilities and takes too

long to set up connections. Although reliable enough for voice

communication, the circuit-switched voice network had

difficulty delivering digital information without errors.

For digital communications, packet switching is a better

choice, because it is far better suited to the typically “burst”

communication style of computers. Computers that

communicate typically send out brief but intense bursts of

data, then remain silent for a while before sending out the

next burst. These bursts are communicated as packets,

which are very much like electronic postcards.

The postcards, in reality packets, are relayed from

computer to computer until they reach their destination. The

special computers that perform this forwarding function are

called variously “packet switches” or “routers” and form the

Computer System Architecture

7

equivalent of many bucket brigades spanning continents and

oceans, moving buckets of electronic postcards from one

computer to another. Together these routers and the

communication links between them form the underpinnings

of the Internet.

Without packet switching, the Internet would not exist, as

we now know it. Going back to the postcard analogy,

postcards can get lost. They can be delivered out of order,

and they can be delayed by varying amounts. The same is

true of Internet packets, which, on the Internet, can even be

duplicated. The Internet Protocol is the postcard layer of the

Internet. The next higher layer of protocol, TCP, takes care

of re-sending the “postcards” to recover packets that might

have been lost, and putting packets back in order if they

have become disordered in transit.

Of course, packet switching is about a billion times faster

than the postal service or a bucket brigade would be. It also

has to operate over many different communications systems,

or substrata. The authors designed the basic architecture to

be so simple and undemanding that it could work with most

communication services. Many organizations, including

commercial ones, carried out research using the TCP/IP

protocols in the 1970s. Email was steadily used over the

nascent Internet during that time and to the present. It was

not until 1994 that the general public began to be aware of

the Internet by way of the World Wide Web application,

particularly after Netscape Communications was formed and

released its browser and associated server software.

Thus, the evolution of the Internet was based on two

technologies and a research dream. The technologies were

Computer System Architecture

8

packet switching and computer technology, which, in turn,

drew upon the underlying technologies of digital

communications and semiconductors. The research dream

was to share information and computational resources. But

that is simply the technical side of the story. Equally

important in many ways were the other dimensions that

enabled the Internet to come into existence and flourish.

This aspect of the story starts with cooperation and far-

sightedness in the U.S. Government, which is often derided

for lack of foresight but is a real hero in this story.

It leads on to the enthusiasm of private sector interests to

build upon the government funded developments to expand

the Internet and make it available to the general public.

Perhaps most important, it is fueled by the development of

the personal computer industry and significant changes in

the telecommunications industry in the 1980s, not the least

of which was the decision to open the long distance market

to competition.

The role of workstations, the Unix operating system and

local area networking (especially the Ethernet) are themes

contributing to the spread of Internet technology in the 1980s

into the research and academic community from which the

Internet industry eventually emerged.

Many individuals have been involved in the development

and evolution of the Internet covering a span of almost four

decades if one goes back to the early writings on the subject

of computer networking by Kleinrock, Licklider, Baran,

Roberts, and Davies. The ARPANET, described below, was

the first wide-area computer network. The NSFNET, which

followed more than a decade later under the leadership of

Computer System Architecture

9

Erich Bloch, Gordon Bell, Bill Wulf and Steve Wolff, brought

computer networking into the mainstream of the research

and education communities. It is not our intent here to

attempt to attribute credit to all those whose contributions

were central to this story, although we mention a few of the

key players

COMPUTER NETWORK HIERARCHY

Every computer that is connected to the Internet is part of

a network, even the one in your home. For example, you

may use a modem and dial a local number to connect to an

Internet Service Provider (ISP). At work, you may be part of a

local area network (LAN), but you most likely still connect to

the Internet using an ISP that your company has contracted

with. When you connect to your ISP, you become part of

their network. The ISP may then connect to a larger network

and become part of their network. The Internet is simply a

network of networks. Most large communications companies

have their own dedicated backbones connecting various

regions. In each region, the company has a Point of Presence

(POP). The POP is a place for local users to access the

company’s network, often through a local phone number or

dedicated line. The amazing thing here is that there is no

overall controlling network. Instead, there are several high-

level networks connecting to each other through Network

Access Points or NAPs.

INTERNET NETWORK EXAMPLE
Here’s an example. Imagine that Company A is a large ISP.

In each major city, Company A has a POP. The POP in each

Computer System Architecture

10

city is a rack full of modems that the ISP’s customers dial

into. Company A leases fibre optic lines from the phone

company to connect the POPs together.

Imagine that Company B is a corporate ISP. Company B

builds large buildings in major cities and corporations locate

their Internet server machines in these buildings. Company

B is such a large company that it runs its own fibre optic

lines between its buildings so that they are all

interconnected.

In this arrangement, all of Company A’s customers can

talk to each other, and all of Company B’s customers can

talk to each other, but there is no way for Company A’s

customers and Company B’s customers to intercommunicate.

Therefore, Company A and Company B both agree to connect

to NAPs in various cities, and traffic between the two

companies flows between the networks at the NAPs.

In the real Internet, dozens of large Internet providers

interconnect at NAPs in various cities, and trillions of bytes

of data flow between the individual networks at these points.

The Internet is a collection of huge corporate networks that

agree to all intercommunicate with each other at the NAPs.

In this way, every computer on the Internet connects to every

other.

THE FUNCTION OF AN INTERNET ROUTER

All of these networks rely on NAPs, backbones and routers

to talk to each other. What is incredible about this process is

that a message can leave one computer and travel halfway

across the world through several different networks and arrive

at another computer in a fraction of a second!

Computer System Architecture

11

The routers determine where to send information from

one computer to another.

Routers are specialized computers that send your messages

and those of every other Internet user speeding to their

destinations along thousands of pathways. A router has two

separate, but related, jobs:

• It ensures that information doesn’t go where it’s not

needed. This is crucial for keeping large volumes of

data from clogging the connections of “innocent

bystanders.”

• It makes sure that information does make it to the

intended destination.

In performing these two jobs, a router is extremely useful

in dealing with two separate computer networks. It joins the

two networks, passing information from one to the other. It

also protects the networks from one another, preventing the

traffic on one from unnecessarily spilling over to the other.

Regardless of how many networks are attached, the basic

operation and function of the router remains the same. Since

the Internet is one huge network made up of tens of

thousands of smaller networks, its use of routers is an

absolute necessity.

INTERNET BACKBONE
The National Science Foundation (NSF) created the first

high-speed backbone in 1987. Called NSFNET, it was a T1

line that connected 170 smaller networks together and

operated at 1.544 Mbps (million bits per second). IBM, MCI

and Merit worked with NSF to create the backbone and

developed a T3 (45 Mbps) backbone the following year.

Computer System Architecture

12

Backbones are typically fibre optic trunk lines. The trunk

line has multiple fibre optic cables combined together to

increase the capacity. Fibre optic cables are designated OC

for optical carrier, such as OC-3, OC-12 or OC-48. An OC-3

line is capable of transmitting 155 Mbps while an OC-48

can transmit 2,488 Mbps (2.488 Gbps). Compare that to a

typical 56K modem transmitting 56,000 bps and you see

just how fast a modern backbone is.

Today there are many companies that operate their own

high-capacity backbones, and all of them interconnect at

various NAPs around the world. In this way, everyone on the

Internet, no matter where they are and what company they

use, is able to talk to everyone else on the planet. The entire

Internet is a gigantic, sprawling agreement between

companies to intercommunicate freely.

INTERNET PROTOCOL IP ADDRESSES

Every machine on the Internet has a unique identifying

number, called an IP Address. The IP stands for Internet

Protocol, which is the language that computers use to

communicate over the Internet. A protocol is the pre-defined

way that someone who wants to use a service talks with that

service. The “someone” could be a person, but more often it

is a computer program like a Web browser.

A typical IP address looks like this:

To make it easier for us humans to remember, IP addresses

are normally expressed in decimal format as a dotted decimal

number like the one above. But computers communicate in

binary form. Look at the same IP address in binary:

Computer System Architecture

13

The four numbers in an IP address are called octets,

because they each have eight positions when viewed in binary

form. If you add all the positions together, you get 32, which

is why IP addresses are considered 32-bit numbers. Since

each of the eight positions can have two different states (1 or

zero), the total number of possible combinations per octet is

28 or 256. So each octet can contain any value between zero

and 255. Combine the four octets and you get 232 or a possible

4,294,967,296 unique values!

Out of the almost 4.3 billion possible combinations, certain

values are restricted from use as typical IP addresses. For

example, the IP address 0.0.0.0 is reserved for the default

network and the address 255.255.255.255 is used for

broadcasts.

The octets serve a purpose other than simply separating

the numbers. They are used to create classes of IP addresses

that can be assigned to a particular business, government

or other entity based on size and need. The octets are split

into two sections: Net and Host. The Net section always

contains the first octet. It is used to identify the network

that a computer belongs to. Host (sometimes referred to as

Node) identifies the actual computer on the network. The

Host section always contains the last octet. There are five IP

classes plus certain special addresses.

DOMAIN NAME SYSTEM
When the Internet was in its infancy, it consisted of a small

number of computers hooked together with modems and

telephone lines. You could only make connections by

providing the IP address of the computer you wanted to

Computer System Architecture

14

establish a link with. For example, a typical IP address might

be 216.27.22.162. This was fine when there were only a few

hosts out there, but it became unwieldy as more and more

systems came online.

The first solution to the problem was a simple text file

maintained by the Network Information Centre that mapped

names to IP addresses. Soon this text file became so large it

was too cumbersome to manage. In 1983, the University of

Wisconsin created the Domain Name System (DNS), which

maps text names to IP addresses automatically.

URL: UNIFORM RESOURCE LOCATOR
When you use the Web or send an e-mail message, you

use a domain name to do it. For example, the Uniform

Resource Locator (URL) “http://www.yahoo.com” contains

the domain name howstuffworks.com. So does this e-mail
address: example@yahoo.com. Every time you use a domain
name, you use the Internet’s DNS servers to translate the
human-readable domain name into the machine-readable
IP address. Top-level domain names, also called first-level
domain names, include.COM.ORG.NET.EDU and.GOV.
Within every top-level domain there is a huge list of second-
level domains.

Every name in the.COM top-level domain must be unique.
The left-most word, like www, is the host name. It specifies
the name of a specific machine (with a specific IP address) in
a domain. A given domain can, potentially, contain millions

of host names as long as they are all unique within that

domain. DNS servers accept requests from programs and

other name servers to convert domain names into IP

addresses.

Computer System Architecture

15

When a request comes in, the DNS server can do one of four

things with it:

• It can answer the request with an IP address because

it already knows the IP address for the requested

domain.

• It can contact another DNS server and try to find the

IP address for the name requested. It may have to do

this multiple times.

• It can say, “I don’t know the IP address for the domain

you requested, but here’s the IP address for a DNS

server that knows more than I do.”

• It can return an error message because the requested

domain name is invalid or does not exist.

A DNS EXAMPLE
Let’s say that you type the URL www.yahoo.com into your

browser. The browser contacts a DNS server to get the IP

address. A DNS server would start its search for an IP address

by contacting one of the root DNS servers. The root servers

know the IP addresses for all of the DNS servers that handle

the top-level domains (.COM.NET.ORG, etc.). Your DNS server

would ask the root for www.howstuffworks.com, and the root

would say, “I don’t know the IP address for

www.howstuffworks.com, but here’s the IP address for

the.COM DNS server.” Your name server then sends a query

to the.COM DNS server asking it if it knows the IP address

for www.howstuffworks.com. The DNS server for the COM

domain knows the IP addresses for the name servers handling

the www.yahoo.com domain, so it returns those.

Computer System Architecture

16

Your name server then contacts the DNS server for

www.yahoo.com and asks if it knows the IP address for

www.yahoo.com. It actually does, so it returns the IP address

to your DNS server, which returns it to the browser, which

can then contact the server for www.yahoo.com to get a Web

page.

One of the keys to making this work is redundancy. There

are multiple DNS servers at every level, so that if one fails,

there are others to handle the requests. The other key is

caching. Once a DNS server resolves a request, it caches the

IP address it receives.

Once it has made a request to a root DNS server for

any.COM domain, it knows the IP address for a DNS server

handling the.COM domain, so it doesn’t have to bug the root

DNS servers again for that information. DNS servers can do

this for every request, and this caching helps to keep things

from bogging down.

Even though it is totally invisible, DNS servers handle

billions of requests every day and they are essential to the

Internet’s smooth functioning. The fact that this distributed

database works so well and so invisibly day in and day out is

a testimony to the design.

INTERNET SERVERS AND CLIENTS

Internet servers make the Internet possible. All of the

machines on the Internet are either servers or clients. The

machines that provide services to other machines are servers.

And the machines that are used to connect to those services

are clients. There are Web servers, e-mail servers, FTP servers

and so on serving the needs of Internet users all over the

Computer System Architecture

17

world. When you connect to www.yahoo.com to read a page,

you are a user sitting at a client’s machine. You are accessing

the yahoo Web server. The server machine finds the page

you requested and sends it to you. Clients that come to a

server machine do so with a specific intent, so clients direct

their requests to a specific software server running on the

server machine. For example, if you are running a Web

browser on your machine, it will want to talk to the Web

server on the server machine, not the e-mail server.

A server has a static IP address that does not change very

often. A home machine that is dialing up through a modem,

on the other hand, typically has an IP address assigned by

the ISP every time you dial in. That IP address is unique for

your session — it may be different the next time you dial in.

This way, an ISP only needs one IP address for each modem

it supports, rather than one for each customer.

PORTS AND HTTP
Any server machine makes its services available using

numbered ports — one for each service that is available on

the server. For example, if a server machine is running a

Web server and a file transfer protocol (FTP) server, the Web

server would typically be available on port 80, and the FTP

server would be available on port 21. Clients connect to a

service at a specific IP address and on a specific port number.

Once a client has connected to a service on a particular

port, it accesses the service using a specific protocol. Protocols

are often text and simply describe how the client and server

will have their conversation. Every Web server on the Internet

conforms to the hypertext transfer protocol (HTTP). Networks,

routers, NAPs, ISPs, DNS and powerful servers all make the

Computer System Architecture

18

Internet possible. It is truly amazing when you realise that

all this information is sent around the world in a matter of

milliseconds! The components are extremely important in

modern life— without them, there would be no Internet. And

without the Internet, life would be very different indeed for

many of us.

INTERNET AND WORLD WIDE WEB

The Internet and the World Wide Web have a whole-to-

part relationship. The Internet is the large container, and

the Web is a part within the container. It is common in daily

conversation to abbreviate them as the “Net” and the “Web”,

and then swap the words interchangeably. But to be

technically precise, the Net is the restaurant, and the Web is

the most popular dish on the menu.

Here is the detailed explanation:

The Internet is a Big Collection of Computers and Cables.

The Internet is named for “interconnection of computer

networks”. It is a massive hardware combination of millions

of personal, business, and governmental computers, all

connected like roads and highways. The Internet started in

the 1960’s under the original name “ARPAnet”. ARPAnet was

originally an experiment in how the US military could

maintain communications in case of a possible nuclear strike.

With time, ARPAnet became a civilian experiment, connecting

university mainframe computers for academic purposes.

As personal computers became more mainstream in the

1980’s and 1990’s, the Internet grew exponentially as more

users plugged their computers into the massive network.

Today, the Internet has grown into a public spiderweb of

Computer System Architecture

19

millions of personal, government, and commercial computers,

all connected by cables and by wireless signals.

No single person owns the Internet. No single government

has authority over its operations. Some technical rules and

hardware/software standards enforce how people plug into

the Internet, but for the most part, the Internet is a free and

open broadcast medium of hardware networking.

THE WEB IS A BIG COLLECTION OF HTML PAGES
ON THE INTERNET

The World Wide Web, or “Web” for short, is that large

software subset of the Internet dedicated to broadcasting

HTML pages. The Web is viewed by using free software called

web browsers. Born in 1989, the Web is based on hypertext
transfer protocol, the language which allows you and me to
“jump” (hyperlink) to any other public web page. There are
over 40 billion public web pages on the Web today.

The Internet is a worldwide network of computers that
use common communication standards and interfaces to

provide the physical backbone for a number of interesting

applications. One of the most utilized of these Internet

applications is the World Wide Web. What sets the Web apart

is an easy-to-use interface to a complex network of computers

and data.

Computer System Architecture

20

2

Evolution of Network
Operating System

Modern network devices are complex entities composed of

both silicon and software. Thus, designing an efficient

hardware platform is not, by itself, sufficient to achieve an

effective, cost-efficient and operationally tenable product.

The control plane plays a critical role in the development

of features and in ensuring device usability.

Although progress from the development of faster CPU

boards and forwarding planes is visible, structural changes

made in software are usually hidden, and while vendor

collateral often offers a list of features in a carrier-class

package, operational experiences may vary considerably.

Products that have been through several generations of

software releases provide the best examples of the difference

made by the choice of OS. It is still not uncommon to find

routers or switches that started life under older, monolithic

Computer System Architecture

21

software and later migrated to more contemporary designs.

The positive effect on stability and operational efficiency is

easy to notice and appreciate.

However, migration from one network operating system to

another can pose challenges from non-overlapping feature

sets, noncontiguous operational experiences and inconsistent

software quality. These potential challenges make it is very

desirable to build a control plane that can power the hardware

products and features supported in both current and future

markets.

Developing a flexible, long-lasting and high-quality network

OS provides a foundation that can gracefully evolve to support

new needs in its height for up and down scaling, width for

adoption across many platforms, and depth for rich

integration of new features and functions. It takes time,

significant investment and in-depth expertise.

Most of the engineers writing the early releases of Junos

OS came from other companies where they had previously

built network software. They had firsthand knowledge of what

worked well, and what could be improved. These engineers

found new ways to solve the limitations that they’d

experienced in building the older operating systems.

Resulting innovations in Junos OS are significant and

rooted in its earliest design stages. Still, to ensure that our

products anticipate and fulfil the next generation of market

requirements, Junos OS is periodically reevaluated to

determine whether any changes are needed to ensure that it

continues to provide the reliability, performance and

resilience for which it is known. Contemporary network

operating systems are mostly advanced and specialized

Computer System Architecture

22

branches of POSIX-compliant software platforms and are

rarely developed from scratch. The main reason for this

situation is the high cost of developing a world-class operating

system all the way from concept to finished product. By

adopting a general purpose OS architecture, network vendors

can focus on routing-specific code, decrease time to market,

and benefit from years of technology and research that went

into the design of the original (donor) products.

FIRST-GENERATION OS: MONOLITHIC
ARCHITECTURE

Typically, first-generation network operating systems for

routers and switches were proprietary images running in a

flat memory space, often directly from flash memory or ROM.

While supporting multiple processes for protocols, packet

handling and management, they operated using a

cooperative, multitasking model in which each process would

run to completion or until it voluntarily relinquished the CPU.

All first-generation network operating systems shared one

trait: They eliminated the risks of running full-size

commercial operating systems on embedded hardware.

Memory management, protection and context switching were

either rudimentary or nonexistent, with the primary goals

being a small footprint and speed of operation.

Nevertheless, first-generation network operating systems

made networking commercially viable and were deployed on

a wide range of products. The downside was that these

systems were plagued with a host of problems associated

with resource management and fault isolation; a single

runaway process could easily consume the processor or cause

the entire system to fail. Such failures were not uncommon

Computer System Architecture

23

in the data networks controlled by older software and could

be triggered by software errors, rogue traffic and operator

errors.

Legacy platforms of the first generation are still seen in

networks worldwide, although they are gradually being

pushed into the lowest end of the telecom product lines.

SECOND-GENERATION OS: CONTROL PLANE
MODULARITY

The mid-1990s were marked by a significant increase in

the use of data networks worldwide, which quickly challenged

the capacity of existing networks and routers. By this time,

it had become evident that embedded platforms could run

full-size commercial operating systems, at least on high-end

hardware, but with one catch: They could not sustain packet

forwarding with satisfactory data rates. A breakthrough solution

was needed. It came in the concept of a hard separation

between the control and forwarding plane—an approach that

became widely accepted after the success of the industry’s

first application-specific integrated circuit (ASIC)-driven

routing platform, the Juniper Networks M40. Forwarding

packets entirely in silicon was proven to be viable, clearing

the path for next generation network operating systems, led

by Juniper with its Junos OS.

Today, the original M40 routers are mostly retired, but

their legacy lives in many similar designs, and their blueprints

are widely recognized in the industry as the second-

generation reference architecture.

Second-generation network operating systems are free from

packet switching and thus are focused on control plane

functions. Unlike its first-generation counterparts, a second-

Computer System Architecture

24

generation OS can fully use the potential of multitasking,

multithreading, memory management and context

manipulation, all making systemwide failures less common.

Most core and edge routers installed in the past few years

are running second-generation operating systems, and it is

these systems that are currently responsible for moving the

bulk of traffic on the Internet and in corporate networks.

However, the lack of a software data plane in second-

generation operating systems prevents them from powering

low-end devices without a separate (hardware) forwarding

plane. Also, some customers cannot migrate from their older

software easily because of compatibility issues and legacy

features still in use.

These restrictions led to the rise of transitional (generation

1.5) OS designs, in which a first-generation monolithic image

would run as a process on top of the second-generation

scheduler and kernel, thus bridging legacy features with

newer software concepts. The idea behind “generation 1.5”

was to introduce some headroom and gradually move the

functionality into the new code, while retaining feature parity

with the original code base. Although interesting engineering

exercises, such designs were not as feature-rich as their

predecessors, nor as effective as their successors, making

them of questionable value in the long term.

THIRD-GENERATION OS: FLEXIBILITY,
SCALABILITY AND CONTINUOUS OPERATION

Although second-generation designs were very successful,

the past 10 years have brought new challenges.

Increased competition led to the need to lower operating

expenses and a coherent case for network software flexible

Computer System Architecture

25

enough to be redeployed in network devices across the larger

part of the end-to-end packet path. From multiple terabit

routers to Layer 2 switches and security appliances, the “best-
in-class” catchphrase can no longer justify a splintered
operational experience—true “network” operating systems
are clearly needed. Such systems must also achieve
continuous operation, so that software failures in the routing
code, as well as system upgrades, do not affect the state of
the network. Meeting this challenge requires availability and
convergence characteristics that go far beyond the hardware
redundancy available in second-generation routers.

Another key goal of third-generation operating systems is
the capability to run with zero downtime (planned and
unplanned). Drawing on the lesson learned from previous

designs regarding the difficulty of moving from one OS to

another, third-generation operating systems also should

make the migration path completely transparent to

customers. They must offer an evolutionary, rather than

revolutionary upgrade experience typical to the retirement

process of legacy software designs.

BASIC OS DESIGN CONSIDERATIONS
Choosing the right foundation (prototype) for an operating

system is very important, as it has significant implications

for the overall software design process and final product

quality and serviceability. This importance is why OEM

vendors sometimes migrate from one prototype platform to

another midway through the development process, seeking

a better fit. Generally, the most common transitions are from

a proprietary to a commercial code base and from a

commercial code base to an open-source software foundation.

Computer System Architecture

26

Regardless of the initial choice, as networking vendors

develop their own code, they get further and further away

from the original port, not only in protocol-specific

applications but also in the system area. Extensions such

as control plane redundancy, in-service software upgrades

and multi chassis operation require significant changes on

all levels of the original design. However, it is highly desirable

to continue borrowing content from the donor OS in areas
that are not normally the primary focus of networking
vendors, such as improvements in memory management,
scheduling, multi core and symmetric multiprocessing (SMP)
support, and host hardware drivers. With proper engineering
discipline in place, the more active and peer-reviewed the
donor OS is, the more quickly related network products can
benefit from new code and technology.

This relationship generally explains another market trend—
only two out of five network operating systems that emerged
in the routing markets over the past 10 years used a
commercial OS as a foundation.

Juniper’s main operating system, Junos OS, is an excellent
illustration of this industry trend. The basis of the Junos OS
kernel comes from the FreeBSD UNIX OS, an open-source

software system. The Junos OS kernel and infrastructure

have since been heavily modified to accommodate advanced

and unique features such as state replication, nonstop active

routing and in-service software upgrades, all of which do

not exist in the donor operating system. Nevertheless, the

Junos OS tree can still be synchronized with the FreeBSD

repository to pick the latest in system code, device drivers

and development tool chains, which allows Juniper Networks

engineers to concentrate on network-specific development.

Computer System Architecture

27

COMMERCIAL VERSUS OPEN-SOURCE
DONOR OS

The advantage of a more active and popular donor OS is

not limited to just minor improvements—the cutting edge of

technology creates new dimensions of product flexibility and

usability. Not being locked into a single-vendor framework

and roadmap enables greater control of product evolution

as well as the potential to gain from progress made by

independent developers.

This benefit is evident in Junos OS, which became a first

commercial product to offer hard resource separation of the

control plane and a real-time software data plane. Juniper-

specific extension of the original BSD system architecture

relies on multicore CPUs and makes Junos OS the only

operating system that powers both low-end software-only

systems and high-end multiple-terabit hardware platforms

with images built from the same code tree. This technology

and experience could not be created without support from

the entire Internet-driven community. The powerful

collaboration between leading individuals, universities and

commercial organizations helps Junos OS stay on the very

edge of operating system development. Further, this

collaboration works both ways:

Juniper donates to the free software movement, one

example being the Juniper Networks FreeBSD/MIPS port.

FUNCTIONAL SEPARATION AND PROCESS
SCHEDULING

Multiprocessing, functional separation and scheduling are

fundamental for almost any software design, including

network software. Because CPU and memory are shared

Computer System Architecture

28

resources, all running threads and processes have to access

them in a serial and controlled fashion. Many design choices

are available to achieve this goal, but the two most important

are the memory model and the scheduling discipline.

MEMORY MODEL
The memory model defines whether processes (threads)

run in a common memory space. If they do, the overhead for

switching the threads is minimal, and the code in different

threads can share data via direct memory pointers.
The downside is that a runaway process can cause damage

in memory that does not belong to it.
In a more complex memory model, threads can run in their

own virtual machines, and the operating system switches
the context every time the next thread needs to run. Because
of this context switching, direct communication between
threads is no longer possible and requires special Inter
Process Communication (IPC) structures such as pipes, files
and shared memory pools.

SCHEDULING DISCIPLINE
Scheduling choices are primarily between cooperative and

preemptive models, which define whether thread switching
happens voluntarily. A cooperative multitasking model allows
the thread to run to completion, and a preemptive design
ensures that every thread gets access to the CPU regardless

of the state of other threads.

VIRTUAL MEMORY/PREEMPTIVE SCHEDULING
PROGRAMMING MODEL

Virtual memory with preemptive scheduling is a great

design choice for properly constructed functional blocks,

Computer System Architecture

29

where interaction between different modules is limited and

well defined. This technique is one of the main benefits of

the second-generation OS designs and underpins the stability

and robustness of contemporary network operating systems.

However, it has its own drawbacks.

Notwithstanding the overhead associated with context

switching, consider the interaction between two threads, A

and B, both relying on the common resource R. Because

threads do not detect their relative scheduling in the

preemptive model, they can actually access R in a different

order and with varying intensity. For example, R can be

accessed by A, then B, then A, then A and then B again. If

thread B modifies resource R, thread A may get different

results at different times—and without any predictability.

For instance, if R is an interior gateway protocol (IGP) next

hop, B is an IGP process, and A is a BGP process, then BGP

route installation may fail because the underlying next hop

was modified midway through routing table modification. This

scenario would never happen in the cooperative multitasking

model, because the IGP process would release the CPU only

after it finishes the next-hop maintenance. This problem is

well researched and understood within software design

theory, and special solutions such as resource locks and

synchronization primitives are easily available in nearly every

operating system. However, the effectiveness of IPC depends

greatly on the number of interactions between different

processes. As the number of interacting processes increases,

so does the number of IPC operations. In a carefully designed

system, the number of IPC operations is proportional to the

number of processes (N). In a system with extensive IPC

Computer System Architecture

30

activity, this number can be proportional to N2. Exponential

growth of an IPC map is a negative trend not only because of

the associated overhead, but because of the increasing

number of unexpected process interactions that may escape

the attention of software engineers.

In practice, overgrown IPC maps result in systemwide “IPC

meltdowns” when major events trigger intensive interactions.

For instance, pulling a line card would normally affect

interface management, IGP, exterior gateway protocol and

traffic engineering processes, among others. When

interprocess interactions are not well contained, this event

may result in locks and tight loops, with multiple threads

waiting on each other and vital system operations such as

routing table maintenance and IGP computations temporarily

suspended. Such defects are signatures of improper

modularization, where similar or heavily interacting

functional parts do not run as one process or one thread.

The right question to ask is, “Can a system be too modular?”

The conventional wisdom says, “Yes.” Excessive modularity

can bring long-term problems, with code complexity, mutual

locks and unnecessary process interdependencies. Although

none of these may be severe enough to halt development,

feature velocity and scaling parameters can be affected.

Complex process interactions make programming for such

a network OS an increasingly difficult task.

On the other hand, the cooperative multitasking, shared

memory paradigm becomes clearly suboptimal if unrelated

processes are influencing each other via the shared memory

pool and collective restartability. A classic problem of first-

generation operating systems was systemwide failure due to

Computer System Architecture

31

a minor bug in a nonvital process such as SNMP or network

statistics. Should such an error occur in a protected and

independently restartable section of system code, the defect

could easily be contained within its respective code section.

This brings us to an important conclusion. No fixed

principle in software design fits all possible situations. Ideally,

code design should follow the most efficient paradigm and

apply different strategies in different parts of the network

OS to achieve the best marriage of architecture and function.

This approach is evident in Junos OS, where functional

separation is maintained so that cooperative multitasking

and preemptive scheduling can both be used effectively,

depending on the degree of IPC containment between

functional modules.

GENERIC KERNEL DESIGN
Kernels normally do not provide any immediately perceived

or revenue-generating functionality. Instead, they perform

housekeeping activities such as memory allocation and

hardware management and other system-level tasks. Kernel

threads are likely the most often run tasks in the entire

system. Consequently, they have to be robust and run with

minimal impact on other processes.

In the past, kernel architecture largely defined the

operating structure of the entire system with respect to

memory management and process scheduling. Hence,

kernels were considered important differentiators among

competing designs.

Historically, the disputes between the proponents and

opponents of lightweight versus complex kernel architectures

Computer System Architecture

32

came to a practical end when most operating systems became

functionally decoupled from their respective kernels.

Once software distributions became available with

alternate kernel configurations, researchers and commercial

developers were free to experiment with different designs.

For example, the original Carnegie-Mellon Mach

microkernel was originally intended to be a drop-in

replacement for the kernel in BSD UNIX and was later used

in various operating systems, including mkLinux and GNU
FSF projects. Similarly, some software projects that started
life as purely microkernel-based systems later adopted
portions of monolithic designs.

Over time, the radical approach of having a small kernel
and moving system functions into the user-space processes
did not prevail. A key reason for this was the overhead
associated with extra context switches between frequently
executed system tasks running in separate memory spaces.

Furthermore, the benefits associated with restart ability
of essentially all system processes proved to be of limited
value, especially in embedded systems. With the system code
being very well tested and limited to scheduling, memory
management and a handful of device drivers, the potential
errors in kernel subsystems are more likely to be related to
hardware failures than to software bugs.

This means, for example, that simply restarting a faulty
disk driver is unlikely to help the routing engine stay up and
running, as the problem with storage is likely related to a
hardware failure (for example, uncorrectable fault in a mass

storage device or system memory bank).

Another interesting point is that although both monolithic

and lightweight kernels were widely studied by almost all

Computer System Architecture

33

operating system vendors, few have settled on purist

implementations. For example, Apple’s Mac OS X was

originally based on microkernel architecture, but now runs

system processes, drivers and the operating environment in

BSD-like subsystems. Microsoft NT and derivative operating

systems also went through multiple changes, moving critical

performance components such as graphical and I/O

subsystems in and out of the system kernel to find the right

balance of stability, performance and predictability. These

changes make NT a hybrid operating system. On the other

hand, freeware development communities such as FSF,

FreeBSD and NetBSD have mostly adopted monolithic

designs (for example, Linux kernel) and have gradually

introduced modularity into selected kernel sections (for

example, device drivers).

So what difference does kernel architecture make to routing

and control?

MONOLITHIC VERSUS MICROKERNEL
NETWORK OPERATING SYSTEM DESIGNS

In the network world, both monolithic and microkernel

designs can be used with success.

However, the ever-growing requirements for a system

kernel quickly turn any classic implementation into a

compromise. Most notably, the capability to support a real-

time forwarding plane along with stateful and stateless

forwarding models and extensive state replication requires a

mix of features not available from any existing monolithic or

microkernel OS implementation.

This lack can be overcome in two ways.

Computer System Architecture

34

First, a network OS can be constrained to a limited class

of products by design. For instance, if the OS is not intended

for mid- to low-level routing platforms, some requirements

can be lifted. The same can be done for flow-based forwarding

devices, such as security appliances. This artificial restriction

allows the network operating systems to stay closer to their

general-purpose siblings—at the cost of fracturing the

product lineup. Different network element classes will now

have to maintain their own operating systems, along with

unique code bases and protocol stacks, which may negatively

affect code maturity and customer experience.

Second, the network OS can evolve into a specialized design

that combines the architecture and advantages of multiple

classic implementations.

This custom kernel architecture is a more ambitious

development goal because the network OS gets further away

from the donor OS, but the end result can offer the benefits

of feature consistency, code maturity, and operating

experience. This is the design path that Juniper selected for

Junos OS.

JUNOS OS KERNEL
According to the formal criteria, the Junos OS kernel is

fully customizable. At the very top is a portion of code that

can be considered a microkernel. It is responsible for real-

time packet operations and memory management, as well

as interrupts and CPU resources. One level below it is a more

conventional kernel that contains a scheduler, memory

manager and device drivers in a package that looks more

like a monolithic design.

Computer System Architecture

35

Finally, there are user-level (POSIX) processes that actually

serve the kernel and implement functions normally residing

inside the kernels of classic monolithic router operating

systems. Some of these processes can be compound or run

on external CPUs (or packet forwarding engines). In Junos

OS, examples include periodic hello management, kernel

state replication, and protected system domains (PSDs).

The entire structure is strictly hierarchical, with no

underlying layers dependent on the operations of the top

layers.

This high degree of virtualization allows the Junos OS

kernel to be both fast and flexible.

However, even the most advanced kernel structure is not

a revenue-generating asset of the network element.

Uptime is the only measurable metric of system stability

and quality. This is why the fundamental difference between

the Junos OS kernel and competing designs lies in the focus

on reliability.

Coupled with Juniper’s industry-leading nonstop active

routing and system upgrade implementation, kernel state

replication acts as the cornerstone for continuous operation.

In fact, the Junos OS redundancy scheme is designed to

protect data plane stability and routing protocol adjacencies

at the same time. With in-service software upgrade, networks

powered by Junos OS are becoming immune to the downtime

related to the introduction of new features or bug fixes,

enabling them to approach true continuous operation.

Continuous operation demands that the integrity of the

control and forwarding planes remains intact in the event of

failover or system upgrades, including minor and major

Computer System Architecture

36

release changes. Devices running Junos OS will not miss or

delay any routing updates when either a failure or a planned

upgrade event occurs.

This goal of continuous operation under all circumstances

and during maintenance tasks is ambitious, and it reflects

Juniper’s innovation and network expertise, which is unique

among network vendors.

PROCESS SCHEDULING IN JUNOS OS
Innovation in Junos OS does not stop at the kernel level;

rather, it extends to all aspects of system operation.

As mentioned before, there are two tiers of schedulers in

Junos OS, the topmost becoming active in systems with a

software data plane to ensure the real-time handling of

incoming packets. It operates in real time and ensures that

quality of service (QoS) requirements are met in the

forwarding path.

The second-tier (non-real-time) scheduler resides in the

base Junos OS kernel and is similar to its FreeBSD

counterpart. It is responsible for scheduling system and user

processes in a system to enable preemptive multitasking.

In addition, a third-tier scheduler exists within some

multithreaded user-level processes, where threads operate

in a cooperative, multitasking model. When a compound

process gets the CPU share, it may treat it like a virtual

CPU, with threads taking and leaving the processor according

to their execution flow and the sequence of atomic operations.

This approach allows closely coupled threads to run in a

cooperatively multitasking environment and avoid being

entangled in extensive IPC and resource-locking activities.

Computer System Architecture

37

ARCHITECTURE AND INFRASTRUCTURE
PARALLELISM

Advances in multicore CPU development and the capability
to run several routing processors in a system constitute the
basis for increased efficiency in a router control plane.
However, finding the right balance of price and performance
can also be very difficult. Unlike the data mining and
computational tasks of supercomputers, processing of
network updates is not a static job. A block of topology
changes cannot be prescheduled and then sliced across
multiple CPUs. In routers and switches, network state
changes asynchronously (as events happen), thus rendering
time-based load sharing irrelevant. Sometimes vendors try
to solve this dilemma by statically sharing the load in
functional, rather than temporal, domains. In other words,
they claim that if the router OS can use separate routing
processors for different tasks (for example, OSPF or BGP), it
can also distribute the bulk of data processing across multiple
CPUs. To understand whether this is a valid assumption,
let’s consider a typical CPU utilization capture. What is
interesting here is that the different processes are not
computationally active at the same time—OSPF and BGP do
not compete for CPU cycles. Unless the router runs multiple
same-level protocols simultaneously, the well-designed
network protocol stack stays fairly orthogonal. Different
protocols serve different needs and seldom converge at the

same time.
��������	
��
������
	�������	���

Date Average RIPOSPF BGP RIPng OSPF6 BGP4+ RA ISIS
01/22 15:48:19 3 0 0 0 0 0 0 0 0
01:22 15:48:20 3 0 1 0 0 0 0 0 0
01/22 15:49:18 3 0 0 1 0 0 0 0 0
Typical CPU times capture (from NEC 8800 product documentation).

Computer System Architecture

38

For instance, an IGP topology change may trigger a Dijkstra

algorithm computation; until it is complete, BGP nexthop

updates do not make much sense. At the same time, all

protected MPLS LSPs should fall on precomputed alternate

paths and not cause major RSVP activities.

Thus, the gain from placing different processes of a single

control plane onto physically separate CPUs may be limited,

while the loss from the overhead functions such as

synchronization and distributed memory unification may be

significant.

Does this mean that the concept of parallelism is not

applicable to the routing processors? Not at all. Good coding

practice and modern compilers can make excellent use of

multicore and SMP hardware, while clustered routing engines

are indispensable when building multichasis (single control

and data plane spanning multiple chassis) or segmented

(multiple control and data planes within a single physical

chassis) network devices. Furthermore, high-end designs may

allow for independent scaling of control and forwarding

planes, as implemented in the highly acclaimed Juniper

Networks JCS1200 Control System.

With immediate access to state-of-the art processor

technology, Juniper Networks engineers heavily employ

parallelism in the Junos OS control plane design, targeting

both elegance and functionality.

A functional solution is the one that speeds up the control

plane without unwanted side effects such as limitations in

forwarding capacity. When deployed in a JCS1200, Junos

OS can power multiple control plane instances (system

domains) at the same time without consuming revenue-

Computer System Architecture

39

generating slots in the router chassis. Moreover, the Junos

OS architecture can run multiple routing systems (including

third-party code) from a single rack of routing engines,

allowing an arbitrary mix-and-match of control plane and

data plane resources within a point of presence (POP).

These unique capabilities translate into immediate CAPEX

savings, because a massively parallel control plane can be

built independent of the forwarding plane and will never

confront a limited common resource (such as the number of

physical routers or a number of slots in each chassis).

Elegance means the design should also bring other

technical advantages: for instance, bypassing space and

power requirements associated with the embedded chassis

and thus enabling use of faster silicon and speeding up the

control plane. Higher CPU speed and memory limits can

substantially improve the convergence and scaling

characteristics of the entire routing domain.

The goal of Juniper design philosophy is tangible benefits

to our customers—without cutting corners.

FLEXIBILITY AND PORTABILITY
A sign of a good OS design is the capability to adapt the

common software platform to various needs. In the network

world, this equates to the adoption of new hardware and

markets under the same operating system.

The capability to extend the common operating system

over several products brings the following important benefits

to customers:

• Reduced OPEX from consistent UI experience and

common management interface

Computer System Architecture

40

• Same code for all protocols; no unique defects and

interoperability issues

• Common schedule for software releases; a unified

feature set in the control plane

• Accelerated technology introduction; once developed,

the feature ships on many platforms.

Technology companies are in constant search of innovation

both internally and externally. New network products can

be developed in-house or within partnerships or acquired.

Ideally, a modern network OS should be able to absorb

domestic (internal) hardware platforms as well as foreign

(acquired) products, with the latter being gradually folded

into the mainstream software line.

The capability to absorb in-house and foreign innovations

in this way is a function of both software engineering

discipline and a flexible, well-designed OS that can be adapted

to a wide range of applications.

On the contrary, the continuous emergence of internally

developed platforms from the same vendor featuring different

software trains and versions can signify the lack of a flexible

and stable software foundation.

For example, when the same company develops a core

router with one OS, an Ethernet switch with another and a

data centre switch with a third, this likely means that in-

house R&D groups considered and rejected readily available

OS designs as impractical or unfit.

Although partial integration may still exist through a

unified command-line interface (CLI) and shared code and

features, the main message is that the existing software

designs were not flexible enough to be easily adapted to new

Computer System Architecture

41

markets and possibilities. As a result, customers end up with

a fractured software lineup, having to learn and maintain

loosely related or completely unrelated software trains and

develop expertise in all of them—an operationally suboptimal

approach.

USE IN ROUTERS

Network Operating Systems (NOS) are embedded in a

router or hardware firewall that operates the functions in

the network layer (layer 3) of the OSI model.

Examples:

• JUNOS, used in routers and switches from Juniper

Networks,

• Cisco IOS (formerly “Cisco Internetwork Operating

System”).

• TiMOS, used in routers from Alcatel-Lucent

• Huawei VRP (Versatile Routing Platform), used in

routers from Huawei

• MikroTik RouterOS™ (is a router operating system

and software which turns a regular Intel PC or

MikroTik RouterBOARD™ hardware into a dedicated

router.)

• ZyNOS, used in network devices made by ZyXEL.

PEER-TO-PEER
In a Peer-to-peer network operating system users are

allowed to share resources and files located on their

computers and access shared resources from others. This

system is not based with having a file server or centralized

management source. A peer-to-peer network sets all

Computer System Architecture

42

connected computers equal; they all share the same abilities

to utilize resources available on the network.

Examples:

• AppleShare used for networking connecting Apple

products.

• Windows for Workgroups used for networking peer-

to-peer windows computers.

• Lantastic.

ADVANTAGES
• Ease of setup

• Less hardware needed, no server needs to be

purchased.

DISADVANTAGES
• No central location for storage.

• Lack of security that a client/server type offers.

CLIENT/SERVER
Client/server network operating systems allow the network

to centralize functions and applications in one or more

dedicated file servers. The server is the centre of the system,

allowing access to resources and instituting security. The

network operating system provides the mechanism to

integrate all the components on a network to allow multiple

users to simultaneously share the same resources regardless

of physical location.

Examples:

• Novell Netware

• Windows Server.

Computer System Architecture

43

ADVANTAGES
• Centralized servers are more stable.

• Security is provided through the server.

• New technology and hardware can be easily

integrated into the system.

• Servers are able to be accessed remotely from

different locations and types of systems.

DISADVANTAGES
• Cost of buying and running a server are high.

• Dependence on a central location for operation.

• Requires regular maintenance and updates.

SECURITY ISSUES INVOLVED IN

USING A CLIENT/SERVER NETWORK

In a client/server network security issues may evolve at

three different locations: the client, the network, and the

server. All three points need to be monitored for unauthorized

activity and need to be secured against hackers or

eavesdroppers.

THE CLIENT
The client is the end user of the network and needs to be

secured the most. The client end usually exposes data

through the screen of the computer. Client connections to

server should be secured through passwords and upon

leaving their workstations clients should make sure that their

connection to the server is securely cut off in order to make

sure that no hackers or intruders are able to reach the server

data. Not only securing the workstations connection to the

Computer System Architecture

44

server is important but also securing the files on the

workstation (client) is important as it ensures that no hackers

are able to reach the system. Another possibility is that of

introducing a virus or running unauthorized software on the

client workstation thus threatening the entire information

bank at the server.

The users themselves could also be a security threat if

they purposely leave their IDs logged in or use easy IDs and

passwords to enable hacking. Users may also be sharing

their passwords in order to give the hackers access to

confidential data. This can be overcome by giving passwords

to each client and regularly asking clients to change their

passwords. Also passwords should be checked for guess

ability and for their strength and uniqueness.

THE NETWORK
The network allows transmission of data from the clients

to the server. There are several points on the network where

a hacker could eavesdrop or steal important packets of

information. These packets may contain important

confidential data such as passwords or company details. It
is important that these networks are secured properly to
keep unauthorized professionals away from all the data stored
on the server. This can be done by encrypting important data
being sent on the network. However, encryption may not be
the only possible way of protecting networks as hackers can
work their way around encryption. Another method could
be conducting security audits regularly and ensuring

identification and authorisation of individuals at all points

along the network. This should discourage potential hackers.

Making the entire environment difficult to impersonate also

Computer System Architecture

45

makes sure that the clients are reaching the true files and

applications on the server and that the server is providing

information to authorized personnel only.

THE SERVER
The server can be secured by placing all the data in a

secure, centralized location that is protected through

permitting access to authorized personnel only. Virus

protection should also be available on server computers as

huge tons of data can be infected. Regular upgrades should

be provided to the servers as the software and the applications

need to be updated. Even the entire data on a server could

be encrypted in order to make sure that getting through to

the data takes a lot of effort and time.

Computer System Architecture

46

3

Network Architecture

Network architecture refers to the layout of the network,

consisting of the hardware, software, connectivity,
communication protocols and mode of transmission, such
as wired or wireless. Know about the types of network
classified according to the areas covered such as LAN, MAN
and WAN. Learn about the network topologies categorized
according to the layout of equipments and computers such
as star, loop, bus, or mesh topologies. There are many
communication protocols used in the networking technology.
It is important to know about the network architecture as
networks play a very important role in today’s world.

DEFINITION
Network architecture, is the logical and structural layout

of the network consisting of transmission equipment,

software and communication protocols and infrastructure

(wired or wireless) transmission of data and connectivity

between components.

Computer System Architecture

47

TOPOLOGY
There are 4 different network topologies: star network, a

bus or line network, a loop or ring network, and a mesh

network.

TYPES OF NETWORKS
The different topologies can be arranged in different ways

described as LAN (Local Area Network), MAN (Metropolitan

Area Network) and WAN (Wide Area Network) where the

network extends over a local area (<1 km), metropolitan (<100

km) and long distance.

NETWORK ARCHITECTURE (OSI)
Open Systems Interconnection (OSI) network architecture,

developed by International Organization for Standardization,

is an open standard for communication in the network across

different equipment and applications by different vendors.

Though not widely deployed, the OSI 7 layer model is

considered the primary network architectural model for inter-

computing and inter-networking communica-tions. In

addition to the OSI network architecture model, there exist

other network architecture models by many vendors, such

as IBM SNA (Systems Network Architecture), Digital

Equipment Corporation (DEC; now part of HP) DNA (Digital

Network Architecture), Apple computer’s AppleTalk, and

Novell’s NetWare. Network architecture provides only a

conceptual framework for communications between

computers. The model itself does not provide specific methods

of communication. Actual communication is defined by

various communication protocols.

Computer System Architecture

48

ENHANCE NETWORK ARCHITECTURE

WITH A SONA APPROACH

Good network architecture helps ensure that business

strategy and IT investments are aligned. As the backbone

for IT communications, the network element of enterprise

architecture is increasingly critical. Service Oriented Network

Architecture (SONA) is Cisco’s architectural approach to

designing advanced network capabilities into your

infrastructure. SONA provides guidance, best practices, and

blueprints for connecting network services and applications

to enable business solutions. SONA is an open framework

for network-based services used by enterprise applications

to drive business results. This framework includes three

interconnected layers.

Primary is the Core Common Services Layer, comprising

an extensive library of network-based service categories

working together to create functionality that can be used by

the Applications Layer, which contains all types of business

applications used across the enterprise. At the Physical

Infrastructure Layer, Cisco designs, tests, and validates sets

of modular, connected infrastructure elements organized by

places in the network (PINs).

These branch, campus, and data centre reference solutions

form a quick starting point for understanding how network-

based services can be deployed with business applications

in a variety of industries. The Core Common Services layer

is distinctive to Cisco in that no other vendor offers the

breadth and depth of integrated services throughout an

enterprise-class network architecture.

Computer System Architecture

49

This layer comprises seven major core service groups, which

deliver consistent and robust capabilities throughout the

network:

• Real-Time Communication Services offer session and

media management capabilities, contact centre

services, as well as presence functions.

• Mobility Services provide location information, as well

as device dependent functionality.

• Application Delivery Services use application

awareness to optimize performance.

• Security Services help protect the infrastructure,

data, and application layers from constantly evolving

threats, and also offer access-control and identity

functions.

• Management Services offer configuration and

reporting capabilities.

• Virtualization Services deliver abstraction between

physical and functional elements in the

infrastructure, allowing for more flexible and reliable

service operations and management.

• Transport Services help with resource allocation and

deliver on the overall QoS requirements of the

application, as well as routing and topology functions.

Cisco Core Common Services are centered on two

principles: application-focus and reusability. These services

use a variety of open protocols (such as SIP and XML) and

published APIs that allow IT developers as well as an

innovative community of global development partners to

improve reliability and performance and deliver new

capabilities.

Computer System Architecture

50

NETWORK LAYER

In the seven-layer OSI model of computer networking, the

network layer is layer 3.

The network layer is responsible for packet forwarding

including routing through intermediate routers, whereas the

data link layer is responsible for media access control, flow

control and error checking. The network layer provides the

functional and procedural means of transferring variable

length data sequences from a source to a destination host

via one or more networks while maintaining the quality of

service functions.

Functions of the network layer include:

• Connection model: connectionless communication. For

example, IP is connectionless, in that a datagram

can travel from a sender to a recipient without the

recipient having to send an acknowledgement.

Connection-oriented protocols exist at other, higher

layers of that model.

• Host addressing. Every host in the network must

have a unique address that determines where it is.

This address is normally assigned from a hierarchical

system, so you can be “Fred Murphy” to people in

your house, “Fred Murphy, 1 Main Street” to

Dubliners, or “Fred Murphy, 1 Main Street, Dublin” to

people in Ireland, or “Fred Murphy, 1 Main Street, Dublin,

Ireland” to people anywhere in the world. On the Internet,

addresses are known as Internet Protocol (IP) addresses.

• Message forwarding. Since many networks are

partitioned into subnetworks and connect to other

Computer System Architecture

51

networks for wide-area communications, networks

use specialized hosts, called gateways or routers to

forward packets between networks. This is also of

interest to mobile applications, where a user may

move from one location to another, and it must be

arranged that his messages follow him. Version 4 of

the Internet Protocol (IPv4) was not designed with

this feature in mind, although mobility extensions

exist. IPv6 has a better designed solution.

Within the service layering semantics of the OSI network

architecture the network layer responds to service requests

from the transport layer and issues service requests to the

data link layer.

NETWORK LAYER FUNCTIONS
Some of the specific jobs normally performed by the network

layer include:

• Logical Addressing: Every device that communicates

over a network has associated with it a logical

address, sometimes called a layer three address. For

example, on the Internet, the Internet Protocol (IP)

is the network layer protocol and every machine has

an IP address. Note that addressing is done at the

data link layer as well, but those addresses refer to

local physical devices. In contrast, logical addresses

are independent of particular hardware and must

be unique across an entire internetwork.

• Routing: Moving data across a series of

interconnected networks is probably the defining

function of the network layer. It is the job of the

Computer System Architecture

52

devices and software routines that function at the

network layer to handle incoming packets from
various sources, determine their final destination,
and then figure out where they need to be sent to
get them where they are supposed to go. The OSI
model more completely in this topic on the topic on
indirect device connection, and show how it works
by way of an OSI model analogy.

• Datagram Encapsulation: The network layer normally
encapsulates messages received from higher layers
by placing them into datagrams (also called packets)
with a network layer header.

• Fragmentation and Reassembly: The network layer
must send messages down to the data link layer for
transmission. Some data link layer technologies have
limits on the length of any message that can be sent.
If the packet that the network layer wants to send
is too large, the network layer must split the packet
up, send each piece to the data link layer, and then
have pieces reassembled once they arrive at the
network layer on the destination machine. A good
example is how this is done by the Internet Protocol.

• Error Handling and Diagnostics: Special protocols are

used at the network layer to allow devices that are

logically connected, or that are trying to route traffic,

to exchange information about the status of hosts

on the network or the devices themselves.

NETWORK PROTOCOL

A protocol is a set of rules that governs the communications

between computers on a network. These rules include

Computer System Architecture

53

guidelines that regulate the following characteristics of a

network: access method, allowed physical topologies, types

of cabling, and speed of data transfer.

TYPES OF NETWORK PROTOCOLS
The most common network protocols are:

• Ethernet

• Local Talk

• Token Ring

• FDDI

• ATM.

The following is some common-used network symbols to

draw different kinds of network protocols.

ETHERNET
The Ethernet protocol is by far the most widely used.

Ethernet uses an access method called CSMA/CD (Carrier

Sense Multiple Access/Collision Detection). This is a system

where each computer listens to the cable before sending

anything through the network. If the network is clear, the

computer will transmit. If some other node is already

transmitting on the cable, the computer will wait and try

again when the line is clear. Sometimes, two computers

Computer System Architecture

54

attempt to transmit at the same instant. When this happens

a collision occurs. Each computer then backs off and waits

a random amount of time before attempting to retransmit.

With this access method, it is normal to have collisions.

However, the delay caused by collisions and retransmitting

is very small and does not normally effect the speed of

transmission on the network. The Ethernet protocol allows

for linear bus, star, or tree topologies. Data can be transmitted

over wireless access points, twisted pair, coaxial, or fibre optic

cable at a speed of 10 Mbps up to 1000 Mbps.

FAST ETHERNET
To allow for an increased speed of transmission, the

Ethernet protocol has developed a new standard that

supports 100 Mbps. This is commonly called Fast Ethernet.

Fast Ethernet requires the use of different, more expensive

network concentrators/hubs and network interface cards.

In addition, category 5 twisted pair or fibre optic cable is

necessary. Fast Ethernet is becoming common in schools

that have been recently wired.

LOCAL TALK
Local Talk is a network protocol that was developed by

Apple Computer, Inc. for Macintosh computers. The method

used by Local Talk is called CSMA/CA (Carrier Sense Multiple

Access with Collision Avoidance). It is similar to CSMA/CD

except that a computer signals its intent to transmit before

it actually does so. Local Talk adapters and special twisted

pair cable can be used to connect a series of computers

through the serial port. The Macintosh operating system

allows the establishment of a peer-to-peer network without

Computer System Architecture

55

the need for additional software. With the addition of the

server version of AppleShare software, a client/server network

can be established.

The Local Talk protocol allows for linear bus, star, or tree

topologies using twisted pair cable. A primary disadvantage

of Local Talk is speed. Its speed of transmission is only 230

Kbps.

TOKEN RING
The Token Ring protocol was developed by IBM in the mid-

1980s. The access method used involves token-passing. In

Token Ring, the computers are connected so that the signal

travels around the network from one computer to another in

a logical ring. A single electronic token moves around the

ring from one computer to the next. If a computer does not

have information to transmit, it simply passes the token on

to the next workstation. If a computer wishes to transmit

and receives an empty token, it attaches data to the token.

The token then proceeds around the ring until it comes to

the computer for which the data is meant. At this point, the

data is captured by the receiving computer. The Token Ring

protocol requires a star-wired ring using twisted pair or fibre

optic cable. It can operate at transmission speeds of 4 Mbps

or 16 Mbps. Due to the increasing popularity of Ethernet,

the use of Token Ring in school environments has decreased.

FDDI
Fiber Distributed Data Interface (FDDI) is a network

protocol that is used primarily to interconnect two or more

local area networks, often over large distances. The access

method used by FDDI involves token-passing. FDDI uses a

Computer System Architecture

56

dual ring physical topology. Transmission normally occurs

on one of the rings; however, if a break occurs, the system

keeps information moving by automatically using portions

of the second ring to create a new complete ring. A major advantage

of FDDI is speed. It operates over fibre optic cable at 100 Mbps.

ATM
Asynchronous Transfer Mode (ATM) is a network protocol

that transmits data at a speed of 155 Mbps and higher. ATM

works by transmitting all data in small packets of a fixed

size; whereas, other protocols transfer variable length

packets. ATM supports a variety of media such as video,

CD-quality audio, and imaging. ATM employs a star topology,

which can work with fibre optic as well as twisted pair cable.

ATM is most often used to interconnect two or more local

area networks. It is also frequently used by Internet Service

Providers to utilize high-speed access to the Internet for their

clients. As ATM technology becomes more cost-effective, it

will provide another solution for constructing faster local area

networks.

GIGABIT ETHERNET
The most recent development in the Ethernet standard is

a protocol that has a transmission speed of 1 Gbps. Gigabit

Ethernet is primarily used for backbones on a network at

this time.

In the future, it will probably be used for workstation and

server connections also. It can be used with both fibre optic

cabling and copper. The 1000BaseTX, the copper cable used

for Gigabit Ethernet, is expected to become the formal

standard in 1999.

Computer System Architecture

57

Compare the Network Protocols

NETWORK DIAGRAMMING SOFTWARE
Edraw Network Diagrammer is a new, rapid and powerful

network design software for network drawings with rich

examples and templates. Easy to draw network topology,

Cisco network design diagram, LAN/WAN diagram, network

cabling diagrams, active directory, network planform and

physical network diagram.

TCP/IP PROTOCOL ARCHITECTURE

TCP/IP protocols map to a four-layer conceptual model

known as the DARPA model, named after the U.S. government

agency that initially developed TCP/IP. The four layers of the

DARPA model are: Application, Transport, Internet, and

Network Interface. Each layer in the DARPA model

corresponds to one or more layers of the seven-layer Open

Systems Interconnection (OSI) model.

Computer System Architecture

58

Figure shows the TCP/IP protocol architecture.

Fig. TCP/IP Protocol Architecture

NETWORK INTERFACE LAYER
The Network Interface layer (also called the Network Access

layer) is responsible for placing TCP/IP packets on the

network medium and receiving TCP/IP packets off the

network medium. TCP/IP was designed to be independent

of the network access method, frame format, and medium.

In this way, TCP/IP can be used to connect differing network

types. These include LAN technologies such as Ethernet and

Token Ring and WAN technologies such as X.25 and Frame

Relay. Independence from any specific network technology

gives TCP/IP the ability to be adapted to new technologies

such as Asynchronous Transfer Mode (ATM).

The Network Interface layer encompasses the Data Link

and Physical layers of the OSI model. Note that the Internet

layer does not take advantage of sequencing and

acknowledgment services that might be present in the Data-

Link layer. An unreliable Network Interface layer is assumed,

and reliable communications through session establishment

Computer System Architecture

59

and the sequencing and acknowledgment of packets is the

responsibility of the Transport layer.

INTERNET LAYER
The Internet layer is responsible for addressing, packaging,

and routing functions. The core protocols of the Internet layer

are IP, ARP, ICMP, and IGMP.

• The Internet Protocol (IP) is a routable protocol

responsible for IP addressing, routing, and the

fragmentation and reassembly of packets.

• The Address Resolution Protocol (ARP) is responsible

for the resolution of the Internet layer address to

the Network Interface layer address such as a

hardware address.

• The Internet Control Message Protocol (ICMP) is

responsible for providing diagnostic functions and

reporting errors due to the unsuccessful delivery of

IP packets.

• The Internet Group Management Protocol (IGMP) is

responsible for the management of IP multicast groups.

The Internet layer is analogous to the Network layer of the

OSI model.

TRANSPORT LAYER
The Transport layer (also known as the Host-to-Host

Transport layer) is responsible for providing the Application

layer with session and datagram communication services.

The core protocols of the Transport layer are Transmission

Control Protocol (TCP) and the User Datagram Protocol (UDP).

• TCP provides a one-to-one, connection-oriented,

reliable communications service. TCP is responsible

Computer System Architecture

60

for the establishment of a TCP connection, the

sequencing and acknowledgment of packets sent, and

the recovery of packets lost during transmission.

• UDP provides a one-to-one or one-to-many,

connectionless, unreliable communications service.

UDP is used when the amount of data to be

transferred is small (such as the data that would fit

into a single packet), when the overhead of

establishing a TCP connection is not desired or when

the applications or upper layer protocols provide

reliable delivery.

The Transport layer encompasses the responsibilities of

the OSI Transport layer and some of the responsibilities of

the OSI Session layer.

APPLICATION LAYER
The Application layer provides applications the ability to

access the services of the other layers and defines the

protocols that applications use to exchange data. There are

many Application layer protocols and new protocols are

always being developed.

The most widely-known Application layer protocols are those

used for the exchange of user information:

• The Hypertext Transfer Protocol (HTTP) is used to

transfer files that make up the Web pages of the

World Wide Web.

• The File Transfer Protocol (FTP) is used for interactive

file transfer.

• The Simple Mail Transfer Protocol (SMTP) is used

for the transfer of mail messages and attachments.

Computer System Architecture

61

• Telnet, a terminal emulation protocol, is used for

logging on remotely to network hosts.

Additionally, the following Application layer protocols help

facilitate the use and management of TCP/IP networks:

• The Domain Name System (DNS) is used to resolve

a host name to an IP address.

• The Routing Information Protocol (RIP) is a routing

protocol that routers use to exchange routing

information on an IP internetwork.

• The Simple Network Management Protocol (SNMP)

is used between a network management console and

network devices (routers, bridges, intelligent hubs)

to collect and exchange network management

information.

Examples of Application layer interfaces for TCP/IP

applications are Windows Sockets and NetBIOS. Windows

Sockets provides a standard application programming

interface (API) under Windows 2000. NetBIOS is an industry

standard interface for accessing protocol services such as

sessions, datagrams, and name resolution.

NETWORK ARCHITECTURES: LAYERS OF

OSI MODEL AND TCP/IP MODEL

NETWORK ARCHITECTURE
A Network is a conceptual framework that describes how

data and network information are communicated from an

application on one computer through network media to an

application on other computers in terms of different layers.

Network architecture is also known as Reference model. There

Computer System Architecture

62

mainly two classifications of Reference models and are Open

and closed. Open model is one which is open for everyone

and no secrecy is there. In a closed model, also known as

proprietary system the architecture is kept secret from users.

OSI model is an open model while IBM’s SNA 7 layer model

is a closed system. Here Let’s discuss two main reference

models OSI model and TCP/IP model.

OSI ARCHITECTURE
International Organization for Standardization (ISO)

developed OSI (Open Systems Interconnection) model in late

1970s. In this data communication functions are defined in

terms of 7 layers which are organized in the chronological

order of events occurring during a communications session.

The top 3 layers explains how applications with in end

stations communicate each other and also with users. The

bottom 4 layers defines end to end data transmission.

OSI MODEL LAYERS

Application Layer - Layer 7: This is the layer where users

communicate with computer. The main functions are file

Computer System Architecture

63

transfers, e-mail, enabling remote access and network

mangement activities. The common protocols in this layer

are HTTP, FTP, TFTP, Telnet etc.

Presentation Layer - Layer 6: Also known as ‘Syntax

layer’. This layer presents data to application layer in format

that can be processed by an end user. This is actually a

translator that provides coding and conversion functions.

Main tasks are data compression, decompression, encryption

and decryption.

Session Layer - Layer 5: This layer is responsible for

setting up, managing and then tearing down session between

two computers. The main function is to manage flow of data

communication during a connection between 2 computers.

Main services of fered are Dialogue control, Token

management and Synchronization. Dialogue control refers

to organizing a data communication session between two

computers via 3 modes namely simplex, half duplex and

full duplex. In token management during a session between

2 computers if a critical operation is to be done they

passes tokens and the one holding the token will do that

operation. Synchronization is used to manage timing signal

between session for the functions like insertion of check

points.

Transport Layer - Layer 4: Provides end to end data

transfer and establishes logic connections between sending

host and destination host. Main functions are Flow control,

Sequencing, error detection and recovery. Important

protocols in this layer are TCP and UDP

Network Layer - Layer 3: This layer is the domain of WAN.

Switches and Routers are devices of Network layer. Functions

Computer System Architecture

64

are Logical addressing and Routing. The common protocols

used by routers are RIP, EIGRP, OSPF etc.

Data-Link Layer - Layer 2: This functions the transfer of

data between the ends of a link. It has two sub-layers namely

Media Access Control Layer and Logical Link Control Layer.

Packets received from network layer are transformed into

frames. Devices in this layer are switches and bridges.

Functions are Framing packets, Sequence control, Error

control, Flow control, Physical addressing of devices in

network, switching of LAN. Main protocols in this layer are

HDLC, SDLC, PPP.

Physical Layer - Layer 1: Physical layer specifies electrical,

mechanical, procedural and functional requirements for

activating, maintaining and deactivating a physical link

between end systems. The main function is to send bits and

receive bits. Hub is the device in this layer. It also includes

hardware interfaces to connect physical media.

TCP/IP MODEL (INTERNET ARCHITECTURE)
TCP/IP (Transmission Control Protocol/Internet Protocol)

defines a large collection of protocols that allow computers

to communicate. It has a 4 layer architecture. TCP/ IP defines

each of these protocols inside document called Requests For

Comments (RFCs). By implementing the required protocols

in TCP/IP RFCs, a computer can be relatively confident that

it can communicate with other computers that also

implement TCP/IP.

Application Layer: Provide services to the application

software running on a computer. Application layer provides

an interface between software running on a computer and

Computer System Architecture

65

the network itself. Example for TCP/IP application is web

browser. Example protocols are HTTP, POP3, SMTP etc.

Transport Layer: Consists of mainly two protocol options.

Transmission control protocol (TCP) and User datagram

protocol (UDP). Each layer provides a service to the layer above

it. In same layer interaction on different computes, the two

computers use protocol to communicate with the same layer

on another computer. The protocol defined by each layer uses

a header that is transmitted between the computers to

communicate what each computer wants to do. While In

Adjacent layer interaction on the same computer, one layer

provides a service to a higher layer. The software or hardware

that implements the higher layer requests that the next lower

layer perform the needed function.

Internetwork Layer: Internet protocol (IP), works much

like the postal service. IP defines logical addressing so that

each host computer can have a different IP address. Similarly,

IP defines the process of routing so that routers can choose

where to send data correctly.

Network Interface Layer: Defines the protocols and

hardware required to deliver data across some physical

network. The term network interface refers to the fact that

Computer System Architecture

66

this layer defines how to connect the host computer, which

is not part of the network, to the network. It is the interface

between the computer and network. Ethernet is one example

protocol at the TCP/IP network interface layer. Ethernet
defines the required cabling, addressing and protocols used
to create an Ethernet. IP relies on the network interface layer
to deliver IP packets across each physical network. IP
understands the overall network topology, things such as
which routers are connected to which networks, and what

the IP addressing schemes looks like.

COMPARISON OF OSI AND TCP/IP MODELS

SIMILARITIES
• Both of them use a layered architecture to explain

data communication process in computer networks.

• Each layer performs well-defined functions in both

models.

• Similar types of protocols are used in both models.

• OSI and TCP/IP reference models are open in nature.

• Both models give a good explanation on how various

types of network hardware and software interact

during a data communication process.

Computer System Architecture

67

• Data hiding principle is well maintained on each layer

in the two models. The core level functional details

of each layer are not revealed to other layers.

• Transport layer defines end-end data communication

process and error-correction techniques in both the

models.

• OSI and TCP/IP reference models process data in

the form of packets to perform routing.

GSM NETWORK ARCHITECTURE

A GSM network is made up of multiple components and

interfaces that facilitate sending and receiving of signalling

and traffic messages. It is a collection of transceivers,

controllers, switches, routers, and registers. A Public Land

Mobile Network (PLMN) is a network that is owned and

operated by one GSM service provider or administration,

which includes all of the components and equipment. For

example, all of the equipment and network resources that is

owned and operated by Cingular is considered a PLMN.

MOBILE STATION (MS)
The Mobile Station (MS) is made up of two components:

Mobile Equipment (ME)—This refers to the physical phone

itself. The phone must be able to operate on a GSM network.

Older phones operated on a single band only. Newer phones

are dual-band, triple-band, and even quad-band capable. A

quad-band phone has the technical capability to operate on

any GSM network worldwide. Each phone is uniquely

identified by the International Mobile Equipment Identity (IMEI)

number. This number is burned into the phone by the

Computer System Architecture

68

manufacturer. The IMEI can usually be found by removing

the battery of the phone and reading the panel in the battery

well.

It is possible to change the IMEI on a phone to reflect a

different IMEI. This is known as IMEI spoofing or IMEI

cloning. This is usually done on stolen phones. The average

user does not have the technical ability to change a phone’s

IMEI.

Subscriber Identity Module (SIM)—The SIM is a small smart

card that is inserted into the phone and carries information

specific to the subscriber, such as IMSI, TMSI, Ki (used for

encryption), Service Provider Name (SPN), and Local Area

Identity (LAI). The SIM can also store phone numbers

(MSISDN) dialed and received, the Kc (used for encryption),

phone books, and data for other applications. A SIM card

can be removed from one phone, inserted into another GSM

capable phone and the subscriber will get the same service

as always.

Each SIM card is protected by a 4-digit Personal

Identification Number (PIN). In order to unlock a card, the

user must enter the PIN. If a PIN is entered incorrectly three

times in a row, the card blocks itself and can not be used. It

can only be unblocked with an 8-digit Personal Unblocking

Key (PUK), which is also stored on the SIM card.

Computer System Architecture

69

BASE TRANSCEIVER STATION (BTS)
The BTS is the Mobile Station’s access point to the network.

It is responsible for carrying out radio communications

between the network and the MS. It handles speech encoding,

encryption, multiplexing (TDMA), and modulation/

demodulation of the radio signals. It is also capable of

frequency hopping. A BTS will have between 1 and 16

Transceivers (TRX), depending on the geography and user

demand of an area. Each TRX represents one ARFCN. One

BTS usually covers a single 120 degree sector of an area.

Usually a tower with 3 BTSs will accommodate all 360 degrees

around the tower. However, depending on geography and

user demand of an area, a cell may be divided up into one or

two sectors, or a cell may be serviced by several BTSs with

redundant sector coverage.

A BTS is assigned a Cell Identity. The cell identity is 16-bit

number (double octet) that identifies that cell in a particular

Location Area. The cell identity is part of the Cell Global

Identification (CGI), which is discussed in the section about

the Visitor Location Register (VLR).

Fig. 120 ° Sector

The interface between the MS and the BTS is known as

the Um Interface or the Air Interface.

Computer System Architecture

70

Fig. Um Interface

BASE STATION CONTROLLER (BSC)
The BSC controls multiple BTSs. It handles allocation of radio

channels, frequency administration, power and signal

measurements from the MS, and handovers from one BTS to
another (if both BTSs are controlled by the same BSC). A BSC
also functions as a “funneler”. It reduces the number of
connections to the Mobile Switching Center (MSC) and allows
for higher capacity connections to the MSC. A BSC my be

collocated with a BTS or it may be geographically separate. It

may even be collocated with the Mobile Switching Center (MSC).

Fig. Base Station Controller

The interface between the BTS and the BSC is known as

the Abis Interface.

Fig. Abis Interface

Computer System Architecture

71

The Base Transceiver Station (BTS) and the Base Station

Controller (BSC) together make up the Base Station System (BSS).

Fig. Base Station System

MOBILE SWITCHING CENTER (MSC)
The MSC is the heart of the GSM network. It handles call

routing, call setup, and basic switching functions. An MSC

handles multiple BSCs and also interfaces with other MSC’s

and registers. It also handles inter-BSC handoffs as well as

coordinates with other MSC’s for inter-MSC handoffs.

Fig. Mobile Switching Center

The interface between the BSC and the MSC is known as

the A Interface.

Fig. A Interface

GATEWAY MOBILE SWITCHING CENTER (GMSC)
There is another important type of MSC, called a Gateway

Mobile Switching Center (GMSC).

Computer System Architecture

72

Fig. Gateway Mobile Switching Center

The GMSC functions as a gateway between two networks.
If a mobile subscriber wants to place a call to a regular
land line, then the call would have to go through a GMSC
in order to switch to the Public Switched Telephone Network
(PSTN). For example, if a subscriber on the Cingular network
wants to call a subscriber on a T-Mobile network, the call

would have to go through a GMSC.

Fig. Connections between Two Networks

The interface between two Mobile Switching Centers (MSC)

is called the E Interface.

Fig. E Interface

HOME LOCATION REGISTER (HLR)
The HLR is a large database that permanently stores data

about subscribers. The HLR maintains subscriber-specific

Computer System Architecture

73

information such as the MSISDN, IMSI, current location of

the MS, roaming restrictions, and subscriber supplemental

features. There is logically only one HLR in any given network,

but generally speaking each network has multiple physical

HLRs spread out across its network.

VISITOR LOCATION REGISTER (VLR)
The VLR is a database that contains a subset of the

information located on the HLR. It contains similar

information as the HLR, but only for subscribers currently

in its Location Area. There is a VLR for every Location Area.

The VLR reduces the overall number of queries to the HLR

and thus reduces network traffic. VLRs are often identified

by the Location Area Code (LAC) for the area they service.

Fig. Visitor Location Register

LOCATION AREA CODE (LAC)
A LAC is a fixed-length code (two octets) that identifies a

location area within the network. Each Location Area is

serviced by a VLR, so we can think of a Location Area Code

(LAC) being assigned to a VLR.

LOCATION AREA IDENTITY (LAI)
An LAI is a globally unique number that identifies the

country, network provider, and LAC of any given Location

Computer System Architecture

74

Area, which coincides with a VLR. It is composed of the

Mobile Country Code (MCC), the Mobile Network Code

(MNC), and the Location Area Code (LAC). The MCC and

the MNC are the same numbers used when forming the

IMSI.

CELL GLOBAL IDENTIFICATION (CGI)

The CGI is a number that uniquely identifies a specific

cell within its location area, network, and country. The

CGI is composed of the MCC, MNC, LAI, and Cell Identity

(CI).
Cell Global Identity

CGI

MCC MNC LAC Cell ID
3 digits 2-3 digits up to 5 digits up to 5 digits

The VLR also has one other very important function: the

assignment of a Temporary Mobile Subscriber Identity (TMSI).

TMSIs are assigned by the VLR to a MS as it comes into its

Location Area. TMSIs are only allocated when in cipher mode.

The interface between the MSC and the VLR is known as

the B Interface and the interface between the VLR and the

HLR is known as the D Interface. The interface between two

VLRs is called the G Interface.

Fig. GSM Interfaces

Computer System Architecture

75

EQUIPMENT IDENTITY REGISTER (EIR)
The EIR is a database that keeps tracks of handsets on

the network using the IMEI. There is only one EIR per

network. It is composed of three lists. The white list, the

gray list, and the black list. The black list is a list if IMEIs

that are to be denied service by the network for some reason.

Reasons include the IMEI being listed as stolen or cloned or

if the handset is malfunctioning or doesnt have the technical

capabilities to operate on the network.

The gray list is a list of IMEIs that are to be monitored for

suspicious activity. This could include handsets that are

behaving oddly or not performing as the network expects it

to. The white list is an unpopulated list. That means if an

IMEI is not on the black list or on the gray list, then it is

considered good and is “on the white list”.

The interface between the MSC and the EIR is called the F

Interface.

Fig. Equipment Identity Register

AUTHENTICATION CENTER (AUC)
The AuC is responsible for generating the necessary

cryptovariables for authentication and encryption on the

network. These variables are the RAND, SRES, and Kc. The

Auc also stores the Ki for each IMSI on the network.

Computer System Architecture

76

Although it is not required, the Auc is normally physically

collocated with the HLR.

Fig. Authentication Center

There is one last interface that we haven’t discussed. The

interface between the HLR and a GMSC is called the C

Interface. This completes the introduction to the network

architecture of a GSM network. Below you will find a network

diagram with all of the components as well as the names of

all of the interfaces.

Fig. Full GSM Network

Computer System Architecture

77

4

Operating Systems Structure

SYSTEM COMPONENTS

Even though, not all systems have the same structure

many modern operating systems share the same goal of

supporting the following types of system components.

PROCESS MANAGEMENT

The operating system manages many kinds of activities

ranging from user programs to system programs like printer

spooler, name servers, file server etc. Each of these activities

is encapsulated in a process. A process includes the complete

execution context (code, data, PC, registers, OS resources

in use etc.).

It is important to note that a process is not a program.

A process is only ONE instant of a program in execution.

There are many processes can be running the same program.

Computer System Architecture

78

The five major activities of an operating system in regard

to process management are

• Creation and deletion of user and system processes.

• Suspension and resumption of processes.

• A mechanism for process synchronization.

• A mechanism for process communication.

• A mechanism for deadlock handling.

MAIN-MEMORY MANAGEMENT

Primary-Memory or Main-Memory is a large array of

words or bytes. Each word or byte has its own address.

Main-memory provides storage that can be access directly

by the CPU. That is to say for a program to be executed,

it must in the main memory.

The major activities of an operating in regard to memory-

management are:

• Keep track of which part of memory are currently

being used and by whom.

• Decide which processes are loaded into memory when

memory space becomes available.

• Allocate and de allocate memory space as needed.

FILE MANAGEMENT

A file is a collected of related information defined by its

creator. Computer can store files on the disk (secondary

storage), which provide long term storage. Some examples

of storage media are magnetic tape, magnetic disk and

optical disk. Each of these media has its own properties like

speed, capacity, data transfer rate and access methods.

Computer System Architecture

79

A file systems normally organized into directories to ease

their use. These directories may contain files and other

directions.

The five main major activities of an operating system in

regard to file management are

• The creation and deletion of files.

• The creation and deletion of directions.

• The support of primitives for manipulating files and

directions.

• The mapping of files onto secondary storage.

• The back up of files on stable storage media.

I/O SYSTEM MANAGEMENT

I/O subsystem hides the peculiarities of specific hardware

devices from the user. Only the device driver knows the

peculiarities of the specific device to whom it is assigned.

SECONDARY-STORAGE MANAGEMENT

Generally speaking, systems have several levels of storage,

including primary storage, secondary storage and cache

storage. Instructions and data must be placed in primary

storage or cache to be referenced by a running program.

Because main memory is too small to accommodate all data

and programs, and its data are lost when power is lost, the

computer system must provide secondary storage to back

up main memory. Secondary storage consists of tapes,

disks, and other media designed to hold information that

will eventually be accessed in primary storage (primary,

secondary, cache) is ordinarily divided into bytes or words

consisting of a fixed number of bytes. Each location in

Computer System Architecture

80

storage has an address; the set of all addresses available

to a program is called an address space. The three major

activities of an operating system in regard to secondary

storage management are:

• Managing the free space available on the secondary-

storage device.

• Allocation of storage space when new files have to be

written.

• Scheduling the requests for memory access.

NETWORKING

A distributed systems is a collection of processors that

do not share memory, peripheral devices, or a clock. The

processors communicate with one another through

communication lines called network.

The communication-network design must consider

routing and connection strategies, and the problems of

contention and security.

PROTECTION SYSTEM

If a computer systems has multiple users and allows the

concurrent execution of multiple processes, then the various

processes must be protected from one another’s activities.

Protection refers to mechanism for controlling the access

of programs, processes, or users to the resources defined

by a computer systems.

COMMAND INTERPRETER SYSTEM

A command interpreter is an interface of the operating

system with the user. The user gives commands with are

Computer System Architecture

81

executed by operating system (usually by turning them into

system calls). The main function of a command interpreter

is to get and execute the next user specified command.

Command-Interpreter is usually not part of the kernel,

since multiple command interpreters (shell, in UNIX

terminology) may be support by an operating system, and

they do not really need to run in kernel mode. There are

two main advantages to separating the command interpreter

from the kernel.

• If we want to change the way the command interpreter

looks, i.e., I want to change the interface of command

interpreter, I am able to do that if the command

interpreter is separate from the kernel. I cannot change

the code of the kernel so I cannot modify the interface.

• If the command interpreter is a part of the kernel it

is possible for a malicious process to gain access to

certain part of the kernel that it showed not have to

avoid this ugly scenario it is advantageous to have the

command interpreter separate from kernel

OPERATING SYSTEMS SERVICES

Following are the five services provided by an operating

systems to the convenience of the users.

PROGRAM EXECUTION

The purpose of a computer systems is to allow the user

to execute programs. So the operating systems provides an

environment where the user can conveniently run programs.

The user does not have to worry about the memory allocation

or multitasking or anything. These things are taken care

Computer System Architecture

82

of by the operating systems. Running a program involves

the allocating and deallocating memory, CPU scheduling in

case of multiprocess. These functions cannot be given to

the user-level programs. So user-level programs cannot

help the user to run programs independently without the

help from operating systems.

I/O OPERATIONS

Each program requires an input and produces output.

This involves the use of I/O. The operating systems hides

the user the details of underlying hardware for the I/O. All

the user sees is that the I/O has been performed without

any details. So the operating systems by providing I/O

makes it convenient for the users to run programs.

For efficiently and protection users cannot control I/O

so this service cannot be provided by user-level programs.

FILE SYSTEM MANIPULATION

The output of a program may need to be written into new

files or input taken from some files. The operating systems

provides this service. The user does not have to worry about

secondary storage management. User gives a command for

reading or writing to a file and sees his her task accomplished.

Thus operating systems makes it easier for user programs

to accomplished their task.

This service involves secondary storage management.

The speed of I/O that depends on secondary storage

management is critical to the speed of many programs and

hence I think it is best relegated to the operating systems

to manage it than giving individual users the control of it.

Computer System Architecture

83

It is not difficult for the user-level programs to provide these

services but for above mentioned reasons it is best if this

service s left with operating system.

COMMUNICATIONS

There are instances where processes need to communicate

with each other to exchange information. It may be between

processes running on the same computer or running on the

different computers. By providing this service the operating

system relieves the user of the worry of passing messages

between processes. In case where the messages need to be

passed to processes on the other computers through a

network it can be done by the user programs. The user

program may be customized to the specifics of the hardware

through which the message transits and provides the service

interface to the operating system.

ERROR DETECTION

An error is one part of the system may cause

malfunctioning of the complete system. To avoid such a

situation the operating system constantly monitors the

system for detecting the errors. This relieves the user of the

worry of errors propagating to various part of the system

and causing malfunctioning.

This service cannot allowed to be handled by user

programs because it involves monitoring and in cases altering

area of memory or deallocation of memory for a faulty

process. Or may be relinquishing the CPU of a process that

goes into an infinite loop. These tasks are too critical to be

handed over to the user programs. A user program if given

Computer System Architecture

84

these privileges can interfere with the correct (normal)

operation of the operating systems.

SYSTEM CALLS AND SYSTEM PROGRAMS

System calls provide an interface between the process

an the operating system. System calls allow user-level

processes to request some services from the operating system

which process itself is not allowed to do. In handling the

trap, the operating system will enter in the kernel mode,

where it has access to privileged instructions, and can

perform the desired service on the behalf of user-level

process. It is because of the critical nature of operations

that the operating system itself does them every time they

are needed. For example, for I/O a process involves a

system call telling the operating system to read or write

particular area and this request is satisfied by the operating

system.

System programs provide basic functioning to users so

that they do not need to write their own environment for

program development (editors, compilers) and program

execution (shells). In some sense, they are bundles of useful

system calls.

LAYERED APPROACH DESIGN

In this case the system is easier to debug and modify,

because changes affect only limited portions of the code,

and programmer does not have to know the details of the

other layers. Information is also kept only where it is needed

and is accessible only in certain ways, so bugs affecting that

data are limited to a specific module or layer.

Computer System Architecture

85

MECHANISMS AND POLICIES

The policies what is to be done while the mechanism

specifies how it is to be done. For instance, the timer

construct for ensuring CPU protection is mechanism. On

the other hand, the decision of how long the timer is set

for a particular user is a policy decision.

The separation of mechanism and policy is important to

provide flexibility to a system. If the interface between

mechanism and policy is well defined, the change of policy

may affect only a few parameters. On the other hand, if

interface between these two is vague or not well defined,

it might involve much deeper change to the system.

Once the policy has been decided it gives the programmer

the choice of using his/her own implementation. Also, the

underlying implementation may be changed for a more

efficient one without much trouble if the mechanism and

policy are well defined. Specifically, separating these two

provides flexibility in a variety of ways. First, the same

mechanism can be used to implement a variety of policies,

so changing the policy might not require the development

of a new mechanism, but just a change in parameters for

that mechanism, but just a change in parameters for that

mechanism from a library of mechanisms. Second, the

mechanism can be changed for example, to increase its

efficiency or to move to a new platform, without changing

the overall policy.

TYPES OF OPERATING SYSTEMS

Operating system can be classified into various categories

on the basic of several criteria, viz. a number of

Computer System Architecture

86

simultaneously active programs, the number of users

working simultaneously, and the number of processors in

the computer system, etc. The main operating systems are

as follows:

MULTI-USER

A multi-user operating system allows multiple users to

access a computer system at the same time. Time-sharing

systems and Internet servers can be classified as multi-user

systems as they enable multiple-user access to a computer

through the sharing of time. Single-user operating systems

have only one user but may allow multiple programs to run

at the same time.

MULTI-TASKING VS. SINGLE-TASKING

A multi-tasking operating system allows more than one

program to be running at the same time, from the point of

view of human time scales. A single-tasking system has

only one running program. Multi-tasking can be of two

types: pre-emptive and co-operative. In pre-emptive

multitasking, the operating system slices the CPU time and

dedicates one slot to each of the programs. Unix-like

operating systems such as Solaris and Linux support pre-

emptive multitasking, as does AmigaOS. Cooperative

multitasking is achieved by relying on each process to give

time to the other processes in a defined manner. 16-bit

versions of Microsoft Windows used cooperative multi-

tasking. 32-bit versions of both Windows NT and Win9x,

used pre-emptive multi-tasking. Mac OS prior to OS X used

to support cooperative multitasking.

Computer System Architecture

87

DISTRIBUTED

A distributed operating system manages a group of

independent computers and makes them appear to be a

single computer. The development of networked computers

that could be linked and communicate with each other gave

rise to distributed computing. Distributed computations

are carried out on more than one machine. When computers

in a group work in cooperation, they make a distributed

system.

EMBEDDED

Embedded operating systems are designed to be used in
embedded computer systems. They are designed to operate
on small machines like PDAs with less autonomy. They are
able to operate with a limited number of resources. They
are very compact and extremely efficient by design. Windows
CE and Minix 3 are some examples of embedded operating
systems.

BATCH OPERATING SYSTEM

Batch processing is a rudimentary operating system.
Batch processing generally requires the program, data, and
appropriate system commands to be submitted together in

the form of a job. Batch operating systems usually allow

little or no interaction between users and executing programs.

Batch processing has a greater potential for resource

utilization than simple serial processing in computer systems

serving multiple users. Due to turnaround delays and offline

debugging, batch is not very convenient for program

development. Programs that do not require interaction and

programs with long execution times may be served well by

Computer System Architecture

88

a batch operating system. Examples of such programs

include payroll, forecasting, statistical analysis, and large

scientific number-crunching programs. Serial processing

combined with batch like command files is also found in

many personal computers. Scheduling in batch is very

simple. Jobs are typically processed in order of their

submission, that is, first-come first-served basis.

Memory management in batch systems is also very simple.

Memory is usually divided into two areas. The resident

portion of the OS permanently occupies one of them, and

the other is used to load transient programs for execution.

When a transient program terminates, a new program is

loaded into the same area of memory. Since at most one

program is in execution at any time, batch systems do not

require any time-critical device management. For this reason,

many serial and I/O and ordinary batch operating systems

use simple, program controlled method of I/O. The lack of

contention for I/O devices makes their allocation and de-

allocation trivial.

Batch systems often provide simple forms of file

management. Since access to files is also serial, little

protection is needed. No concurrency control of file access

is required.

MULTIPROGRAMMING OPERATING SYSTEM

A multiprogramming system permits multiple programs

to be loaded into memory and execute the programs

concurrently. Concurrent execution of programs has a viable

potential for improving system throughput and resource

utilization relative to batch and serial processing. This

Computer System Architecture

89

potential is realized by a class of operating systems that

multiplex resources of a computer system among a multitude

of active programs. Such operating systems usually have

the prefix multi in their names, such as multitasking or

multiprogramming.

TIME-SHARING SYSTEM

Time-sharing is a popular representative of multi-

programmed, multi-user systems. In addition to general

program-development environments, many large computer-

aided design and text-processing systems belong to this

category. One of the primary objectives of the multi-user

systems in general, andthe time-sharing in particular, is

good terminal response time, giving the illusion to each user

of having a machine to oneself, as the time-sharing systems

often attempt to provide equitable sharing of common

resources. For example, when the system is loaded, users

with more demanding processing requirements are made to

wait longer.

This philosophy is reflected in the choice of scheduling

algorithm. Most time-sharing systems use time-slicing

scheduling. In this approach, programs are executed with

rotating priority that increases during waiting and drops

after the service is granted. In order to prevent programs

from monopolizing the processor, a program executing longer

than the system-defined time slice is interrupted by the

OS,andit is placed at the end of the queue of waiting

programs. This mode of operation generally provides quick

response time to interactive programs. Memory management

in time-sharing systems provides for isolation and protection

Computer System Architecture

90

of co-resident programs. Some forms of controlled sharing

are sometimes provided to conserve memory and possibly

to exchange data between programs. Being executed on

behalf of different users, programs in time-sharing systems

generally do not have much need to communicate with each

other.

As in most multi-user environments, allocation and de-

allocation of devices must be done in a manner that preserves

system integrity and provides good performance.

REAL-TIME SYSTEMS

Real time systems are used in time critical environments

where data must be processed extremely quickly because

the output influences immediate decisions. Real time systems

are used for space flights, airport traffic control, industrial

processes, sophisticated medical equipments, telephone

switching, etc. A real time system must be 100 percent

responsive in time. Response time is measured in fractions

of seconds. In real time systems correctness of computations

not only depends upon the logical correctness of computation

but also upon the time at which the results are produced.

If the timing constraints of the system are not met, system

failure is bound to occur. Real-time operating systems are

used in environments where a large number of events,

mostly external to the computer system, must be accepted

and processed in a short time or within certain deadlines.

A primary objective of real-time systems is to provide

quick event-response time, and to meet the scheduling

deadlines. User convenience and resource utilization are of

Computer System Architecture

91

secondary concern to real-time system designers. It is not

uncommon for a real-time system to be expected to process

bursts of thousands of interrupts per second without missing

a single event. Such requirements usually cannot be met

by multi-programming alone, and real-time operating

systems usually rely on some specific policies and techniques

for doing their job.

The Multitasking operation is accomplished by scheduling

processes for execution, independent of each other. Each

process is assigned a certain level of priority that corresponds

to the relative importance of the event that if services. The

processor is normally allocated to the highest-priority process

among those that are ready to execute. Higher-priority

processes usually preempt execution of the lower-priority

processes. This form of scheduling, called priority-based

preemptive scheduling, is used by a majority of real-time

system. Unlike, say, time-sharing, the process population

in real-time systems is fairly static, and there is comparatively

little moving of programs between primary andsecondary

storage.

On the other hand, processes in real-time systems tend

to cooperate closely, thus necessitating support for both

separation and sharing of memory. Moreover, as already

suggested, time-critical device management is one of the

main characteristics of real-time systems. In addition to

providing sophisticated forms of interrupt management and

I/O buffering, real-time operating systems often provide

system calls to allow user processes to connect themselves

to interrupt victors and to service events directly. File

management is usually found only in larger installations of

Computer System Architecture

92

real-time system. In fact, some embedded real-time system,

such as an onboard automotive controller, may not even

have any secondary storage. The primary objective of file

management in real-time systems is usually the speed of

access, rather than efficient utilization of secondary storage.

COMBINATION OF OPERATING SYSTEMS

Different types of OS are optimized of geared up to serve

the needs of specific environments. In practice, however, a

given environment may not exactly fit in any of the described
models. For instance, both interactive program development
and lengthy simulation are often encountered in university
computing centers. For this reason, some commercial
operating systems provide a combination of the described
services. For example, a time-sharing system may support
interactive users and also incorporate a full- fledged batch
monitor. This allows computationally intensive non-
interactive programs to be run concurrently with interactive
programs. The common practice is to assign low priority to
batch jobs and thus execute batched programs only when

the processor would otherwise be idle. In other words, batch

may be used as a filler to improve processor utilization while

accomplishing a useful service of its own. Similarly, some

time-critical events, such as receipt and transmission of

network data packets, may be handled in real-time fashion

on systems that otherwise provide time-sharing services to

their terminal users.

DISTRIBUTED OPERATING SYSTEMS

A distributed computer system is a collection of

autonomous computer system capable of communication

Computer System Architecture

93

and cooperation via their hardware and software

interconnections. Historically, distributed computer system

has evolved from computer networks in which a number

of largely independent hosts are connected by communication

links and protocols. A distributed OS governs the operation

of a distributed computer system and provides a virtual

machine abstraction to its users. The key objective of a

distributed OS is transparency.

Ideally, component and resource distribution should be

hidden from users and application programs unless they

explicitly demand otherwise. Distributed operating system

usually provides the means for system-wide sharing of

resources, such as computational capacity, files and I/O

devices. In addition to typical operating- system services

provided at each node for the benefit of local clients, a

distributed OS may facilitate access to remote resources,

communication with remote processes, and distribution of

computations. The added services necessary for pooling of

shared system resources include global naming, distributed

file system, and facilities for distribution.

UNIX

The UNIX system is a multi-user, multi tasking operating

system which means that it allows a single or multiprocessor

computer to simultaneously execute several programs by

one or several users. It has one or several command

interpreters (shell) as well as a great number of commands

and many utilities (assembler, compilers for many languages,

text processing, email, etc.). Furthermore, it is highly

portable, which means that it is possible to implement a

Computer System Architecture

94

UNIX system on almost all hardware platforms. The UNIX

systems have a strong foothold in professional and university

environments thanks to their stability, their increased level

of security and observance of standards, notably in terms

of networks. The first “Unix” system was developed by Ken

Thompson in the Bell ATandT laboratories at Murray Hill

in New Jersey in the United States from 1965. Ken

Thompson’s aim was to develop a simple interactive operating

system; called “Multics” (Multiplexed Information and

Computing System) in order to run a game which he had

created (space travel, a simulation of the solar system).

Few commands used in UNIX are:

• ls: lists your files.

• more: shows the first part of a file, just as much as

will fit on one screen.

• Chmod: lets you change the read, write, and execute

permissions on your files.

• mv: moves a file (i.e. gives it a different name, or moves

it into a different directory

• cp: copies a file

• wc: tells you how many lines, words, and characters

there are in a file.

• pwd: tells where you are currently.

WINDOWS

The first version of Microsoft Windows (Microsoft Windows

1.0) came out in November 1985. It had a graphical user

interface, inspired by the user interface of the Apple

computers of the time. Windows 1.0 was not successful

Computer System Architecture

95

with the public, and Microsoft Windows 2.0, launchedon

December 9, 1987, did not do much better. It was on May

22, 1990 that Microsoft Windows became a success, with

Windows 3.0, then Windows 3.1 in 1992, and finally Microsoft

Windows for Workgroups, later renamed Windows 3.11,

which included network capabilities. Windows 3.1 cannot

be considered an entirely separate operating system because

it was only a graphical user interface running on top of MS-

DOS. Concurrent with these releases, Microsoft had been

selling (since 1992) an entirely 32-bit operating system

(which therefore was not based on MS-DOS) for professional

use, at a time when business primarily used mainframes.

It was Windows NT (for Windows “New Technology”). Windows

NT was not a new version of Windows 95 or an improvement

on it, but an entirely different operating system.

WINDOWS NT

Windows NT (for “New Technology”) is a 32-bit operating

system developed by Microsoft.

Windows NT’s outward appearance makes it look a lot

like Windows 95/98/Millennium, but Windows NT has a

separately developed kernel.

Because of this, Windows NT has the following

characteristics:

• Windows NT is a pre-emptive multitasking system.

• Windows NT is a multi-user system, which means that

depending on the user who is connected to the system,

the interface might be different, as might system

privileges.

Computer System Architecture

96

• Windows NT natively supports numerous network

features.

• Windows NT has more security, in particular for the

file system (NTFS) as well as for the robustness of the

OS.

Windows NT manages users, the network administrator

is able to control privileges for each user connected to the

system.

What’s more, with the NTFS file system, which includes

the capability to assign ownership for a file, each user or

user group can be assigned specific access privileges for

different system files.

When a user opens a session, the sequence

CTRL+ALT+DEL opens another dialog box called Windows

NT Security. These are the options it offers:

• Lock workstation: Ensures the computer’s security

without closing the session. All applications will

continue running. A system can only be unlocked by

the current user or by an administrator.

• Change password: Lets a user change his or her

password. The user must know the current password

to be able to change it.

• Close session: Closes the current session, but NT’s

services will stay active. For security reasons, you

should always close a session when you no longer

need to use the computer.

• Task manager: Shows which applications are running.

This option also lets you switch between applications

and end an application that has stopped responding.

Computer System Architecture

97

• Shut Down: Closes all files, saves system data, and

prepares the server to be safely switched off.

• Cancel: Closes the dialogue box.

Windows 8, the successor to Windows 7, was released

to the market on 26 October 2012.

CAUTION

For security reasons, we must always close our session

when we do not have longer use of computer.

WINDOWS98

Windows 98 is an operating system that allows use of

different types of applications or software. For example, it

allows you to use a word processing application to write a

letter, and a spreadsheet application to track your financial

information. Windows 98 is a graphical user interface (GUI).

It has pictures (graphical) that you use (user) to communicate

(interface) with the computer. This type of system is popular

because it’s logical, entertaining and easy to use.

This operating system has multitasking capabilities,

meaning that it can run several applications at the same

time. Multitasking allows you to view this lesson on the

Internet at the same time that you practise using other

applications with Windows 98.

The opening screen of Windows 98 is called the desktop.

This workspace on your computer screen contains:

• Start button.

• Taskbar.

• Icons or graphical pictures.

Computer System Architecture

98

WINDOW XP

Windows XP was introduced in November 2001 with a

great sales campaign. Compared with the previous Windows

Me, there has also been a very extensive updating of Windows.

The main features in the new program are:

• Technologically, Windows XP is based on the Windows

NT and Windows 2000 programs. With this, Windows

XP is a genuine 32 bit program.

• Windows XP replaces Windows 2000, Windows NT

and Windows 98/Me.

• Windows XP has a new user interface with new buttons,

icons and windows.

• Windows XP is optimized to work with digital pictures,

sound and video-recordings (with use of the modern

pc-plugs USB and FireWire).

WINDOWS OPERATING SYSTEM

An “operating system” is a program that manages the

resources of the computer. An operating system sets up a

consistent way for programs to request resources, such as

time on the processor, or space in memory, from the computer

itself. Operating systems look after all the devices attached

to the computer, such as printers, modems, disks, and

terminals. Another part of an operating system’s job is to

maintain a file system; that is, to set up a consistent way

for information to be stored and retrieved.

BACKGROUND OF OPERATING SYSTEM

The first version of Windows was released in November

of 1985. This program wasn’t very popular as it lacked

Computer System Architecture

99

functionality compared to the Apple operating system.

Version 1.0 was not a complete system. Instead, it simply

extended on MS-DOS. Version 2.0 was released two years

later and achieved slightly more popularity than its

predecessor. Version 2.03 was released in January of 2008.

This version offered a totally different look that resulted in

Apple filing a lawsuit against Microsoft with accusations of

infringement.

Windows version 3.0 was released in 1990, the first

edition to reach commercial success by selling two million

copies within its first six months. This version included

numerous improvements to the user interface along with

new multitasking capabilities. Version 3.1 offered a facelift

and was made available in March, 1992.

The Windows NT operating system was released in July

of 1993. This version was based on a new kernel and it was

considered to be the first designed for a professional platform.

NT was later upgraded to function as a home user operating

system with the release of Windows XP.

In August of 1995, Windows 95 was released. This

operating system offered a consumer solution with significant

changes to the user interface that also utilized preemptive

multitasking. Windows 95 was introduced to replace version

3.1 and Windows for Workgroups as well as MS-DOS. The

first Microsoft operating system to use the plug and play

system, Windows 95 revolutionized the desktop platform

and achieved mass popularity.

Next up was Windows 98, released in June of 1998. This

operating system was criticized for being slower and less

Computer System Architecture

100

reliable than version 95. Many of those issues were addressed

a year later with the unveiling of Windows 98 Second Edition.

Microsoft continued their line of professional operating

systems with Windows 2000 in February of 2000. The

consumer version was released as Windows ME in September

of that year. ME integrated several new technologies, most

notably the Universal Plug and Play.

Windows XP was released in October 2001. This version

was based on the NT kernel and managed to retain the

extreme functionality of its home-based predecessors. XP

was widely embraced by the public and came in two different

editions: Home and Professional. The Home Edition provided

exceptionable multimedia support while the Professional

edition offered excellent security and networking capabilities.

XP has since been succeeded by Vista but support will

continue through April of 2009.

WORKING OF OPERATING SYSTEM

When you turn on your computer, it’s nice to think that

you’re in control. There’s the trusty computer mouse, which

you can move anywhere on the screen, summoning up your

music library or Internet browser at the slightest whim.

Although it’s easy to feel like a director in front of your

desktop or laptop, there’s a lot going on inside, and the real

man behind the curtain handling the necessary tasks is the

operating system.

Most desktop or laptop PCs come pre-loaded with

Microsoft Windows. Macintosh computers come pre-loaded

with Mac OS X. Many corporate servers use the Linux or

UNIX operating systems. The operating system (OS) is the

Computer System Architecture

101

first thing loaded onto the computer — without the operating

system, a computer is useless.

More recently, operating systems have started to pop up

in smaller computers as well. If you like to tinker with

electronic devices, you’re probably pleased that operating

systems can now be found on many of the devices we use

every day, from cell phones to wireless access points. The

computers used in these little devices have gotten so powerful

that they can now actually run an operating system and

applications. The computer in a typical modern cell phone

is now more powerful than a desktop computer from 20

years ago, so this progression makes sense and is a natural

development.

The purpose of an operating system is to organize and

control hardware and software so that the device it lives in

behaves in a flexible but predictable way. In this chapter,

we’ll tell you what a piece of software must do to be called

an operating system, show you how the operating system

in your desktop computer works and give you some examples

of how to take control of the other operating systems around

you.

Not all computers have operating systems. The computer

that controls the microwave oven in your kitchen, for

example, doesn’t need an operating system. It has one set

of tasks to perform, very straightforward input to expect (a

numbered keypad and a few pre-set buttons) and simple,

never-changing hardware to control. For a computer like

this, an operating system would be unnecessary baggage,

driving up the development and manufacturing costs

significantly and adding complexity where none is required.

Computer System Architecture

102

Instead, the computer in a microwave oven simply runs a

single hard-wired program all the time.

For other devices, an operating system creates the ability

to:

• Serve a variety of purposes

• Interact with users in more complicated ways

• Keep up with needs that change over time

All desktop computers have operating systems. The most

common are the Windows family of operating systems

developed by Microsoft, the Macintosh operating systems

developed by Apple and the UNIX family of operating systems

(which have been developed by a whole history of individuals,

corporations and collaborators). There are hundreds of other

operating systems available for special-purpose applications,

including specializations for mainframes, robotics,

manufacturing, real-time control systems and so on.

In any device that has an operating system, there’s

usually a way to make changes to how the device works.

This is far from a happy accident; one of the reasons

operating systems are made out of portable code rather

than permanent physical circuits is so that they can be

changed or modified without having to scrap the whole

device.

For a desktop computer user, this means you can add

a new security update, system patch, new application or

even an entirely new operating system rather than junk

your computer and start again with a new one when you

need to make a change. As long as you understand how

an operating system works and how to get at it, in many

Computer System Architecture

103

cases you can change some of the ways it behaves. The

same thing goes for your phone, too.

MICROSOFT WINDOWS AND OTHER USERS

A Windows user can still use the above MS-DOS steps

if they wish to create a batch file.

If, however, you’re more comfortable using Microsoft

Windows or your operating system, you can use any text
editor, such as Notepad or WordPad, to create your batch
files, as long as the file extension ends with .bat. In the
below example we use the Windows notepad to create a
batch file.

• Click Start

• Click Run

• Type: notepad and press enter.

• Once notepad is open, type the below lines in the file
or copy and paste the below lines into notepad.

@echo off echo Hello this is a test batch file

pause

dir c:\windows

• Click File and click Save; browse to where you want
to save the file. For the file name, type “test.bat”, and
if your version of Windows has a “Save as type” option,
choose “All files”, otherwise it will save as a text file.
Once all of this has been done click the Save button

and exit notepad.

• Now, to run the batch file, simply double-click or run

the file like any other program. Once the batch file has

completed running it will close the window

automatically.

Computer System Architecture

104

WINDOWS SYSTEM PROTECTION

From the beginning of electronic computing until 15

years ago, the ‘game’ of attack and defense was played on

a system by system basis, with defenders relying on physical

security and ad-hoc operating system protection methods

and attackers guessing passwords or exploiting errors and

omissions to bypass normal system controls. Over the last

15 years, the computing environment has changed

dramatically, with widespread physical distribution of

computing power, almost complete loss of physical control

over computing hardware, and a dramatic increase in the

networking of computers, but defenses have not changed

substantially in terms of their reliance on physical security

and ad-hoc defenses. As a result, we see new classes of

attacks such as computer viruses, which exploit the lack

of physical control and fundamental weakness of existing

logical controls to spread transitively throughout the

computing world. Even the best protection systems available

today can quickly and easily be defeated by anyone with

physical access and ample knowledge, or by the application

of that expertise in a widespread computer virus attack.

One of the major factors in the successful application

of information protection techniques is the exploitation of

computational advantage. Computational advantage shows

up historically in cryptography, where Shannon’s theory

clearly demonstrates the effect of ‘workload’ on the complexity

of cryptanalysis and introduces the concepts of diffusion

and confusion as they relate to statistical attacks on

cryptosystems. Most modern cryptosystems exploit this as

their primary defense The same basic principle applies in

Computer System Architecture

105

computer virus analysis in which evolutionary viruses drive

the complexity of detection and eradication up dramatically

and in password protection in which we try to drive the

number of guesses required for a successful attack up by

limiting the use of obvious passwords . As we will see, one

of the major reasons attacks succeed is because of the

static nature of defense, and the dynamic nature of attack.

THE ULTIMATE ATTACK

The ultimate attack against any system begins with

physical access, and proceeds to disassembly and reverse

engineering of whatever programmed defenses are in place.

Even with a cryptographic key provided by the user, an

attacker can modify the mechanism to examine and exploit

the key, given ample physical access. Eventually, the attacker

can remove the defenses by finding decision points and

altering them to yield altered decisions.

Without physical protection, nobody has ever found a

defense against this attack, and it is unlikely that anyone

ever will. The reason is that any protection scheme other

than a physical one depends on the operation of a finite

state machine, and ultimately, any finite state machine can

be examined and modified at will, given enough time and

effort.

The best we can ever do is delay attack by increasing

the complexity of making desired alterations.

With any static defense in widespread use, attackers can

and may eventually find a technique to bypass protection

and incorporate the technique in a virus. In the modern

environment, this means that a virus writer can eventually

Computer System Architecture

106

exploit such a weakness to evade protection on a large

number of systems. This has already taken place to some

degree, with attackers producing computer viruses designed

to exploit low-level operating system assumptions and bypass

specific defensive products and techniques.

To the extent that defenses have generic weaknesses,

this problem will continue unabated, but even in the cases

of defenses with no known generic weaknesses, attackers

may succeed by using the ultimate attack and programming

the results into a virus.

Since the program that runs first ‘wins’ , and a virus in

the boot block of a floppy disk runs first on most modern

computer systems, an attacker might exploit knowledge

gained from an ultimate attack on one system by placing

the successful technique in a boot block initiated virus, and

carry the attack to numerous machines. In the case of low-

level viruses operating on IBM compatible PCs, the same

attacks that work against the DOS operating system (e.g.

The ‘Stoned’ virus and its variants) succeed even when the

Unix operating system is used.

THE ULTIMATE DEFENSE

The ultimate defense is to drive the complexity of the

ultimate attack up so high that the cost of attack is too high

to be worth performing. This is, in effect, security through

obscurity, and it is our general conclusion that all technical

information protection in computer systems relies at some

level either on physical protection, security through

obscurity, or combinations thereof.

Computer System Architecture

107

The goal of security through obscurity is to make the

difficulty of attack so great that in practice, it is not worth

performing, even though it could eventually be successful.

Successful attacks against obscurity defenses depend on

the ability to guess some key piece of information. The most

obvious example is attacking and defending passwords, and

since this problem demonstrates precisely the issues at

hand, we will use it as an example. In password protection,

there are generally three aspects to making attack difficult.

One aspect is making the size of the password space large,

so that the potential number of guesses required for an

attack is enormous. The second aspect is spreading the

probability density out so that there is relatively little

advantage to searching the space selectively. This is basically

the same as Shannon’s concept of diffusion. The third

aspect is obscuring the stored password information so that

the attacker cannot simply read it in stored form. This is

basically the same as Shannon’s concept of confusion.

In successful password attacks, the size of the password

space is usually substantial, but the way people select

passwords leads to very small high probability subspaces.

For example, the user’s identification to the system spelled

backwards is a very common authentication string. In

numerous studies performed over many years, the vast

majority of user’s passwords could be guessed in only a few

minutes . The third aspect of password protection usually

involves using access controls in combination with trapdoor

encryption to drive up the time required to try substantial

numbers of guesses.

Computer System Architecture

108

In the case of current operating systems, the size of the

space is enormous, consisting of all programs that fit in the

computer’s memory, but the operating system may only

have a very small number of versions, all of which are

almost identical, yielding a highly coherent subspace

consisting of only a few very closely tied points. Thus, only

a few guesses are required to determine precisely which

version of the operating system is in use, and even that may

not be required for many attacks. Operating systems also

provide no confusion in that the part of the program that

performs any given operation is immediately apparent to

the knowledgeable attacker. For this reason, low-level

operating system attack is quite simple. The problem for

defenders is to find a way to increase the difficulty of

operating system attack by reducing coherence. The ultimate

goal is to obscure defenses so as to make attackers require

repeated use of the ultimate attack in order to impact

substantial numbers of systems. One solution is to provide

each computer with a sound and unique defense. This

would tend to make it infeasible to design an automated

attack that could systematically bypass all of the defenses,

but then we would have to design a new defense for each

system, and the costs of defense would probably become

intolerable. We could trade off costs for probability of attack

by implementing some fixed number of different defenses,

thus requiring a fixed number of ultimate attacks for

complete success. This is essentially the situation in the

world today, where a wide variety of ad-hoc defenses are

on the market. Unfortunately, many of these defenses fall

to the same classes of attack, and the number is sufficiently

Computer System Architecture

109

small that defeating most of them requires relatively little

effort or expense. A more practical solution to this problem

might be the use of evolutionary defenses. In order to make

such a defensive strategy cost effective for numerous

variations (e.g. one per computer worldwide), we probably

have to provide some sort of automation. If the automation

is to be effective, it must produce a large search space and

provide a substantial degree of confusion, and diffusion.

This then is the goal of evolutionary defenses.

Evolution can be provided in many ways and at many

different places, ranging from a small finite number of

defenses provided by different vendors, and extending toward

a defensive system that evolves itself during each system

call. With more evolution, we get less performance, but

higher cost of attack. Thus, as in all protection functions,

there is a price to pay for increased protection. Assuming

we can find reasonably efficient mechanisms for effective

evolution, we may be able to create a great deal of diversity

at practically no cost to the end-user, while making the cost

of large scale attack very high. As a very pleasant side effect,

the ultimate attack may become necessary for each system

under attack. In other words, except for endemic flaws,

attackers may again be reduced to a case-by-case expert

attack and defense scenario involving physical access.

TECHNIQUES FOR PROGRAM IN WINDOWS

We will consider two programs equivalent if, given identical

input sequences, they produce identical output sequences.

The equivalence of two programs is undecidable as is the

determination of whether one program can evolve from

Computer System Architecture

110

another . This result would seem to indicate that evolution

has the potential for increasing complexity of analysis, and

thus difficulty of attack. In a practical operating system

design, we may also have very stringent requirements on

the space and time used by the protection mechanism, and

certain instruction sequences may be highly undesirable

because they impact some other aspect of system operation

or are incompatible across some similar machines. For this

reason, we may not be able to reach the levels of complexity

required to eliminate concerted human attack, but we may

succeed in increasing the complexity of automated attacks

to a level where the time required for attack is sufficient

to have noticeable performance impacts, even to a level

where no attacker is able to design a strong enough attack

to defeat more than a small number of evolutions.

We know that evolution is as general as Turing machine

computation , and that an exhaustive set of equivalent

programs is easily described mathematically (i.e. the

definition of equivalence), but this is not particularly helpful

in terms of designing practical evolutionary schemes. We

now describe a number of practical techniques we have

explored for program evolution and some results regarding

the space, time, and complexity issues introduced by these

techniques.

OPERATING SYSTEM PRINCIPLE

An operating system (OS) is a collection of software that

manages computer hardware resources and provides

common services for computer programs. The operating

system is an essential component of the system software

Computer System Architecture

111

in a computer system. Application programs usually require

an operating system to function.

Time-sharing operating systems schedule tasks for

efficient use of the system and may also include accounting

software for cost allocation of processor time, mass storage,

printing, and other resources.

For hardware functions such as input and output and

memory allocation, the operating system acts as an

intermediary between programs and the computer hardware,

although the application code is usually executed directly

by the hardware and will frequently make a system call to

an OS function or be interrupted by it. Operating systems

can be found on almost any device that contains a

computer—from cellular phones and video game consoles

to supercomputers and web servers.

Examples of popular modern operating systems include

Android, BSD, iOS, Linux, OS X, QNX, Microsoft Windows,

Windows Phone, and IBM z/OS. All these, except Windows,

Windows Phone and z/OS, share roots in UNIX.

Generally an operating system can be defined as follows:

(i) A technical layer of software for driving the hardware

of the computer, like disk drives, the keyboard, and

the screen.

(ii) A file system which provides a way of organizing files

logically.

(iii) A simple command language which enables users to

run their own programs and to manipulate their files

in a simple way. Some operating systems also provide

text editors, compilers, debuggers and a variety of

Computer System Architecture

112

other tools. Since the operating system (OS) is in

charge of a computer, all requests to use its resources

and devices need to go through the OS. An OS therefore

provides legal entry points into its code for performing

basic operations such as writing to devices.

Operating systems may be classified by both the number

of tasks they can perform ‘simultaneously’, and on the basis

of users ofthe system simultaneously. There are:

1. Single-user or multi-user.

2. Single-task or multi-tasking.

A multi-user system must clearly be multi-tasking. The

first of these (MS/PC DOS/Windows 3x) are single user,

single-task systems, which are built on a ROM - based

library of basic functions known as the BIOS. These are

system calls which write to the screen or to disk, etc.

Although all the operating systems can serve as interrupts,

and therefore simulate the appearance of multitasking in

some situations, the older PC environments cannot be

thought of as a multi-tasking system in any sense. Only a

single user application could be opened at any time. Windows

95 replaced the old co-routine approach of quasi-

multitasking with a true context switching approach, but

only as a single user system, without proper memory

protection. Windows NT added a proper kernel with memory

protection, based on the VMS system, originally written for

the DEC/Vax. Later versions of Windows NT and Windows

2000 (a security and kernel enhanced version of NT) allowed

multiple logins also through a terminal server. Windows

2000 thus has a comparable functionality to UNIX in this

respect Amiga DOS is an operating system for the

Computer System Architecture

113

Commodore Amiga computer. It is based on the UNIX model

and is a fully multi-tasking, single-user system. Several

programs may run actively at any time. The operating system

includes a window environment which means that each

independent program has a screen of its own and does not

therefore have to compete for the screen with other programs.

This has been a major limitation on multi-tasking operating

systems in the past.

Operating system (OS) is a program or set of programs,

which acts as an interface between a user of the computer

and the computer hardware. The main purpose of an OS

is to provide an environment in which we can execute

programs.

The main goals of the OS are: (i) to make the computer

system convenient to use, and (ii) to make use of computer

hardware in an efficient manner. Operating System is system

software, which may be viewed as a collection of software

consisting of procedures for operating the computer and for

providing an environment for execution of programs. It’s an

interface between user and computer. So, OS does everything

in a computer to work together smoothly and efficiently.

Basically, an OS has three main responsibilities: (a) to

perform basic tasks, such as recognizing input from the

keyboard, sending output to the display screen, keeping

track of files and directories on the disk, and controlling

peripheral devices namely disk drives and printers (b) to

ensure that different programs and users running at the

same time do not interfere with each other; and (c) to

provide a software platform on top of which other programs

can run. The OS is also responsible for security, ensuring

Computer System Architecture

114

that unauthorized users do not access the system. The first

two responsibilities address the need for managing the

computer hardware and the application programs that use

the hardware. The third responsibility focuses on providing

an interface between application software and hardware so

that application software can be efficiently developed. Since

the OS is already responsible for managing the hardware,

it should provide a programming interface for application

developers. As a user, one normally interacts with the OS

through a set of commands. The commands are accepted

and executed by a part of the OS, called as the command

processor or command line interpreter.

In order to understand operating systems, we must

understand at the outset the computer hardware and the

development of OS. Hardware means the physical machine

and its electronic components, including memory chips,

input/output devices, storage devices and the central

processing unit. Software is a program written for the

computer system. Main memory is where the data and

instructions are stored for processing. Input/output devices

are the peripherals attached to a system, such as keyboard,

printers, disk drives, CD drives, magnetic tape drives,

modem, monitor, etc. The central processing unit is the

brain of a computer system; it has circuitry to control

interpretation and execution of instructions. It controls the

operation of entire computer system. All the storage

references, data manipulations and I/O operations are

performed by the CPU. The entire computer system can be

divided into four parts or components: (1) the hardware, (2)

the OS, (3) the application and system programs, and (4)

Computer System Architecture

115

the users. Hardware provides the basic computing power.

The system programs the way in which these resources are

used to solve the computing problems of the users. There

may be many different users trying to solve variety of

problems. The OS controls and coordinates the use of the

hardware among various users vis-a-vis the application

programs.

We can view an OS as a resource allocator. A computer

system has many resources, which are required to solve a

computing problem. These resources are the CPU time,

memory space, files storage space, input/output devices,

etc. The OS acts as a manager of all the resources and

allocates them to the specific programs and users as required

to perform diffrent tasks. Since there can be many conflicting

requests for the resources, the OS must decide which

requests are to be allocated resources to operate the

computer system fairly and efficiently.

An OS can also be viewed as a control program, for the

various I/O devices and the users programs. A control

program controls the execution of the user programs to

prevent errors and improper use of the computer resources.

It is especially concerned with the operation and control of

I/O devices. As stated above, the fundamental goal of a

computer system is to execute user programs and solve

user problems. For this goal,computer hardware is devised.

But a bare hardware is not easy to use and for this purpose

application or system programs are developed. Various

programs require some common operations, such as

controlling/use of some input/output devices and the use

of CPU time for execution. The common functions of

Computer System Architecture

116

controlling and allocation of resources between different

users and application programs is brought together into

one piece of software called operating system. It is easy to

define operating systems by what they do rather than what

they are. The primary goal of the operating systems is

convenience for the user to use the computer. Operating

system makes it easier for user. A secondary goal is an

efficient operation of the computer system. The large

computer systems are very expensive, and it is desirable to

make them as efficient as possible. Operating system thus

makes an optimal use of computer resources. In order to

understand what operating systems are and what they do,

we have to study how they are developed. Operating systems

and the computer architecture have a great influence on

each other. To facilitate the use of the hardware, operating

systems have been developed.

First, professional computer operators were used to

operate the computer. The programmers no longer operated

the machine. As soon as one job was finished, an operator

could start the next one and if some errors crept in the

program, the operator could take a dump of memory and

registers, and from this the programmer had to debug the

programs.

The second major solution to reduce the setup time was

to batch together jobs of similar needs and run through the

computer as a group. But there were still problems. For

example, when a job stopped, the operator would have to

notice it by observing the console, determining why the

program stopped; would take a dump, if necessary and start

with the next job. To overcome this idle time, automatic job

Computer System Architecture

117

sequencing was introduced. But even with batching

technique, the faster computers allowed expensive time lags

between the CPU and the I/O devices. Eventually several

factors helped improve the performance of CPU. First, the

speed of I/O devices became faster. Second, to use more
of the available storage area in these devices, records were
blocked before they were retrieved. Third, to reduce the gap
in speed between the I/O devices and the CPU, an interface
called the control unit was placed between them to perform
the function of buffering. A buffer is an interim storage area
that works as the slow input device which reads a record;
and the control unit places each character of the record into
the buffer. When the buffer is full, the entire record is
transmitted to the CPU. The process is just opposite to the
output devices. Fourth, in addition to buffering, an early
form of spooling was developed by moving off-line the
operations of card reading, printing, etc. SPOOL is an
acronym that stands for, Simultaneous Peripherals
Operations On-Line. For example, incoming jobs would be
transferred from the card decks to tape/disks off-line, and
then they would be read into the CPU from the tape/disks
at a speed much faster than the card reader.

Moreover, the range and extent of services provided by
an OS depends on a number of factors. Among other things,
the needs and characteristics of the target environmental
that the OS is intended to support largely determine user-

visible functions of an operating system. For example, an

OS intended for program development in an interactive

environment may have a quite different set of system calls

and commands than the OS designed for run-time support

of a car engine.

Computer System Architecture

118

UNIX AND UNIX-LIKE OPERATING SYSTEMS

Unix was originally written in assembly language. Ken

Thompson wrote B, mainly based on BCPL, based on his

experience in the MULTICS project.

B was replaced by C, and Unix, rewritten in C, developed

into a large, complex family of inter-related operating systems

which have been influential in every modern operating

system.

The UNIX-like family is a diverse group of operating

systems, with several major sub-categories including System

V, BSD, and Linux. The name “UNIX” is a trademark of The

Open Group which licenses it for use with any operating

system that has been shown to conform to their definitions.

“UNIX-like” is commonly used to refer to the large set of

operating systems which resemble the original UNIX.

Unix-like systems run on a wide variety of computer

architectures. They are used heavily for servers in business,

as well as workstations in academic and engineering

environments.

Free UNIX variants, such as Linux and BSD, are popular

in these areas. Four operating systems are certified by the

The Open Group (holder of the Unix trademark) as Unix.

HP’s HP-UX and IBM’s AIX are both descendants of the

original System V Unix and are designed to run only on

their respective vendor’s hardware. In contrast, Sun

Microsystems’s Solaris Operating System can run on multiple

types of hardware, including x86 and Sparc servers, and

PCs. Apple’s OS X, a replacement for Apple’s earlier (non-

Unix) Mac OS, is a hybrid kernel-based BSD variant derived

Computer System Architecture

119

from NeXTSTEP, Mach, and FreeBSD. Unix interoperability

was sought by establishing the POSIX standard. The POSIX

standard can be applied to any operating system, although

it was originally created for various Unix variants.

OS X

OS X (formerly “Mac OS X”) is a line of open core graphical

operating systems developed, marketed, and sold by Apple

Inc., the latest of which is pre-loaded on all currently shipping

Macintosh computers. OS X is the successor to the original

Mac OS, which had been Apple’s primary operating system

since 1984. Unlike its predecessor, OS X is a UNIX operating

system built on technology that had been developed at

NeXT through the second half of the 1980s and up until

Apple purchased the company in early 1997. The operating

system was first released in 1999 as Mac OS X Server 1.0,

with a desktop-oriented version (Mac OS X v10.0 “Cheetah”)

following in March 2001. Since then, six more distinct

“client” and “server” editions of OS X have been released,

the most recent being OS X 10.8 “Mountain Lion”, which

was first made available on February 16, 2012 for developers,

and was then released to the public on July 25, 2012.

Releases of OS X are named after big cats.

GOOGLE CHROMIUM OS

Chromium is an operating system based on the Linux

kernel and designed by Google. Since Chromium OS targets

computer users who spend most of their time on the Internet,

it is mainly a web browser with limited ability to run local

applications, though it has a built-in file manager and

Computer System Architecture

120

media player. Instead, it relies on Internet applications (or

Web apps) used in the web browser to accomplish tasks

such as word processing.

MICROSOFT WINDOWS

Microsoft Windows is a family of proprietary operating

systems designed by Microsoft Corporation and primarily

targeted to Intel architecture based computers, with an

estimated 88.9 percent total usage share on Web connected

computers. The newest version is Windows 8 for workstations

and Windows Server 2012 for servers. Windows 7 recently

overtook Windows XP as most used OS.

Microsoft Windows originated in 1985 as an operating

environment running on top of MS-DOS, which was the

standard operating system shipped on most Intel architecture

personal computers at the time.

In 1995, Windows 95 was released which only used MS-

DOS as a bootstrap. For backwards compatibility, Win9x

could run real-mode MS-DOS and 16 bits Windows 3.x

drivers.

Windows ME, released in 2000, was the last version in

the Win9x family. Later versions have all been based on the

Windows NT kernel. Current versions of Windows run on

IA-32 and x86-64 microprocessors, although Windows 8

will support ARM architecture. In the past, Windows NT

supported non-Intel architectures.

Server editions of Windows are widely used. In recent

years, Microsoft has expended significant capital in an effort

to promote the use of Windows as a server operating system.

Computer System Architecture

121

However, Windows’ usage on servers is not as widespread

as on personal computers, as Windows competes against

Linux and BSD for server market share.

OTHER

There have been many operating systems that were

significant in their day but are no longer so, such as

AmigaOS; OS/2 from IBM and Microsoft; Mac OS, the non-

Unix precursor to Apple’s Mac OS X; BeOS; XTS-300; RISC

OS; MorphOS and FreeMint. Some are still used in niche

markets and continue to be developed as minority platforms

for enthusiast communities and specialist applications.

OpenVMS formerly from DEC, is still under active

development by Hewlett-Packard. Yet other operating systems

are used almost exclusively in academia, for operating

systems education or to do research on operating system

concepts. A typical example of a system that fulfills both

roles is MINIX, while for example Singularity is used purely

for research.

Other operating systems have failed to win significant

market share, but have introduced innovations that have

influenced mainstream operating systems, not least Bell

Labs’ Plan 9.

EXTENDED MACHINE VIEW OF AN OPERATING
SYSTEM

There arises a need to identify the system resources that

must be managed by the OS, using the process viewpoint.

Here we know role of the corresponding resource manager.

We now ask the questions: How are these resource managers

Computer System Architecture

122

activated and where do they reside? Does memory manager

ever invoke the process scheduler? Does scheduler ever call

upon the services of a memory manager? Is the concept of

process only for the user or is it used by the OS also?

The OS provides many instructions in addition to the

Bare Machine Instructions (A Bare machine is a machine

without its software clothing, and it does not provide the

environment which most programmers desired for). The

instructions that form a part of aBare machine plus those

provided by the OS constitute the instructions set of the

extended machine. The OS kernel runs on the bare machine;

and the user programs run on the extended machine. This

means that the kernel of OS is written by using the

instructions of Bare machine only; whereas the users can

write their programs by making use of instructions provided

by the extended machine. The OS kernel runs on the Bare

machine; user programs run on the extended machine. This

means that the kernel of OS is written by using the

instructions of the bare machine only; whereas the users

can write their programs by making use of instructions

provided by the extended machine.

SCHEDULING ALGORITHMS

THE SCHEDULING BASICS

Process scheduling is one of the most important functions

of an operating system that supports multiprogramming.

Such a function is heavily dependent on queues. There are

three types of queues that are used in process scheduling:

Computer System Architecture

123

• Job Queue –This contains all processes that have been

introduced into the system

• Ready Queue – It contains all the processes that are

waiting for CPU time, and can be selected to run at

any time

• Device Queue – It contains processes waiting on a

certain device. Each device has its own queue for

processes that need input/output from it.

SCHEDULING STATISTICS

To gauge the performance of a scheduling algorithm,

several statistics are used.

• Turnaround Time = Time Job Finished - Time Job

First Ready

• Average Turnaround Time = Average of Turnaround

Time of all jobs

• Throughput = Number of Jobs Finished / Total CPU

Time

• CPU Utilization = (Total CPU Time - Idle Time)/Total

CPU Time

The general goals of scheduling are:

• To reduce average turnaround time.

• To increase the throughput

• To increase CPU Utilization

FIRST COME FIRST SERVE

This algorithm is self-explanatory. This is the simplest

(but least efficient) algorithm used to schedule processes for

execution.

Computer System Architecture

124

The first process to arrive in the ready queue will be

executed first. Since this is not a preemptive algorithm, an

incoming process is not allowed to take over the CPU if the

running process is not complete. Thus, the running process

will continue until it is completed.

SHORTEST JOB FIRST

In this algorithm, if more than one process is ready for

execution, the scheduler selects the process with the shortest

“burst time” (time to finish) and assigns it to the CPU.

This is also a non-preemptive algorithm, so as soon as

a process is assigned to the CPU, it will not be replaced until

it is completed.

SHORTEST REMAINING TIME FIRST

This is similar to Shortest Job First, but this algorithm

is preemptive.

If a new process becomes ready, the scheduler will check

if its burst time is shorter than the remaining time of the

currently running process, then the new process will

“preempt” the current process. The current process will be

returned to the ready queue.

MEMORY TRANSLATION

Each process treats the computer’s memory as its own

private playground. How can give each process the illusion

that it can have reference addresses in memory as it wants,

but not have them step on each other’s toes?

The trick is by distinguishing between the virtual

addresses – the addresses used in the process code and the

Computer System Architecture

125

physical addresses – the actual addresses in memory. Each

process is actually given a fraction of physical memory. The

memory management unit translates the virtual address in

the code to a physical address within the user’s space, and

the translation remains invisible to the process.

Computer System Architecture

126

5

System Software Architecture

SYSTEM SOFTWARE
System software is computer software designed to operate

the computer hardware and to provide a platform for running

application software. The most basic types of system software

are:

• The computer BIOS and device firmware, which

provide basic functionality to operate and control the

hardware connected to or built into the computer.

• The operating system (prominent examples being

Microsoft Windows, Mac OS X and Linux), which

allows the parts of a computer to work together by

performing tasks like transferring data between

memory and disks or rendering output onto a display

device. It also provides a platform to run high-level

system software and application software.

Computer System Architecture

127

• Utility software, which helps to analyze, configure,

optimize and maintain the computer.

In some publications, the term system software is also

used to designate software development tools (like a compiler,

linker or debugger). Computer purchasers seldom buy a

computer primarily because of its system software (But

purchasers of devices like mobile phones because of there

system software, as is the case with the iPhone, as the

system software of such devices is difficult for the end-user

to modify). Rather, system software serves as a useful (even

necessary) level of infrastructure code, generally built-in or

pre-installed. In contrast to system software, software that

allows users to do things like create text documents, play

games, listen to music, or surf the web is called application

software.

TYPES OF SYSTEM SOFTWARE PROGRAMMES
System software helps use the operating system and

computer system. It includes diagnostic tools, compilers,

servers, windowing systems, utilities, language translator,

data communication programmes, database systems and

more. The purpose of system software is to insulate the

applications programmer as much as possible from the

complexity and specific details of the particular computer

being used, especially memory and other hardware features,

and such accessory devices as communications, printers,

readers, displays, keyboards, etc. Specific kinds of system

software include:

• Loaders

• Linkers

Computer System Architecture

128

• Utility software

• Desktop environment / Graphical user interface

• Shells

• BIOS

• Hypervisors

• Boot loaders

• Database Management Systems(SQL, NoSQL)

If system software is stored on non-volatile memory such
as integrated circuits, it is usually termed firmware.

SYSTEMS ARCHITECTURE
A system architecture or systems architecture is the

conceptual model that defines the structure, behaviour,
and more views of a system. An architecture description is
a formal description and representation of a system,
organized in a way that supports reasoning about the
structure of the system which comprises system components,
the externally visible properties of those components, the
relationships (e.g. the behaviour) between them, and provides
a plan from which products can be procured, and systems
developed, that will work together to implement the overall
system. The language for architecture description is called
the architecture description language (ADL).

OVERVIEW
There is no universally agreed definition of which aspects

constitute a system architecture, and various organizations

define it in different ways, including:

• The fundamental organization of a system, embodied

in its components, their relationships to each other

Computer System Architecture

129

and the environment, and the principles governing

its design and evolution.

• The composite of the design architectures for products

and their life cycle processes.

• A representation of a system in which there is a

mapping of functionality onto hardware and software

components, a mapping of the software architecture

onto the hardware architecture, and human

interaction with these components.

• An allocated arrangement of physical elements which

provides the design solution for a consumer product

or life-cycle process intended to satisfy the

requirements of the functional architecture and the

requirements baseline.

• An architecture is the most important, pervasive,

top-level, strategic inventions, decisions, and their

associated rationales about the overall structure (i.e.,

essential elements and their relationships) and

associated characteristics and behaviour.

• A description of the design and contents of a computer

system. If documented, it may include information

such as a detailed inventory of current hardware,

software and networking capabilities; a description

of long-range plans and priorities for future purchases,

and a plan for upgrading and/or replacing dated

equipment and software.

• A formal description of a system, or a detailed plan

of the system at component level to guide its

implementation.

Computer System Architecture

130

• The structure of components, their interrelationships,

and the principles and guidelines governing their

design and evolution over time.

A system architecture can best be thought of as a set

of representations of an existing (or To Be Created) system.

It is used to convey the informational content of the elements

comprising a system, the relationships among those

elements, and the rules governing those relationships. The

architectural components and set of relationships between

these components that an architecture describes may consist

of hardware, software, documentation, facilities, manual

procedures, or roles played by organizations or people. A

system architecture is primarily concerned with the internal

interfaces among the system’s components or subsystems,

and the interface between the system and its external

environment, especially the user. (In the specific case of

computer systems, this latter, special interface, is known

as the computer human interface, AKA human computer

interface, or CHI; formerly called the man-machine interface.)

A system architecture can be contrasted with system

architecture engineering, which is the method and discipline

for effectively implementing the architecture of a system:

• It is a method because a sequence of steps is

prescribed to produce or change the architecture of

a system within a set of constraints.

• It is a discipline because a body of knowledge is used

to inform practitioners as to the most effective way

to architect the system within a set of constraints.

Computer System Architecture

131

HISTORY
It is important to keep in mind that the modern systems

architecture did not appear out of nowhere. Systems

architecture depends heavily on practices and techniques

which were developed over thousands of years in many

other fields most importantly being, perhaps, civil

architecture. Prior to the advent of digital computers, the

electronics and other engineering disciplines used the term

system as it is still commonly used today. However, with

the arrival of digital computers and the development of

software engineering as a separate discipline, it was often

necessary to distinguish among engineered hardware

artifacts, software artifacts, and the combined artifacts. A

programmable hardware artifact, or computing machine,

that lacks its software programme is impotent; even as a

software artifact, or programme, is equally impotent unless

it can be used to alter the sequential states of a suitable

(hardware) machine. However, a hardware machine and its

software programme can be designed to perform an almost

illimitable number of abstract and physical tasks. Within

the computer and software engineering disciplines (and,

often, other engineering disciplines, such as

communications), then, the term system came to be defined

as containing all of the elements necessary (which generally

includes both hardware and software) to perform a useful

function.

Consequently, within these engineering disciplines, a

system generally refers to a programmable hardware machine

and its included programme. And a systems engineer is

defined as one concerned with the complete device, both

Computer System Architecture

132

hardware and software and, more particularly, all of the

interfaces of the device, including that between hardware

and software, and especially between the complete device

and its user (the CHI). The hardware engineer deals (more

or less) exclusively with the hardware device; the software

engineer deals (more or less) exclusively with the software

programme; and the systems engineer is responsible for

seeing that the software programme is capable of properly

running within the hardware device, and that the system

composed of the two entities is capable of properly interacting

with its external environment, especially the user, and

performing its intended function. By analogy, then, a systems

architecture makes use of elements of both software and

hardware and is used to enable design of such a composite

system. A good architecture may be viewed as a ‘partitioning

scheme,’ or algorithm, which partitions all of the system’s

present and foreseeable requirements into a workable set

of cleanly bounded subsystems with nothing left over. That

is, it is a partitioning scheme which is exclusive, inclusive,

and exhaustive.

A major purpose of the partitioning is to arrange the

elements in the sub systems so that there is a minimum

of communications needed among them. In both software

and hardware, a good sub system tends to be seen to be

a meaningful “object”. Moreover, a good architecture provides

for an easy mapping to the user’s requirements and the

validation tests of the user’s requirements. Ideally, a mapping

also exists from every least element to every requirement

and test. A robust architecture is said to be one that exhibits

an optimal degree of fault-tolerance, backward compatibility,

Computer System Architecture

133

forward compatibility, extensibility, reliability,

maintainability, availability, serviceability, usability, and

such other quality attributes as necessary and/or desirable.

TYPES OF SYSTEMS ARCHITECTURES
Several types of systems architectures (underlain by the

same fundamental principles) have been identified as follows:

• Collaborative Systems (such as the Internet, intelligent

transportation systems, and joint air defense systems)

• Manufacturing Systems

• Social Systems

• Software and Information Technology Systems

• Strategic Systems Architecture

SYSTEMS ENGINEERING
Systems engineering is an interdisciplinary field of

engineering that focuses on how complex engineering projects

should be designed and managed over the life cycle of the

project. Issues such as logistics, the coordination of different

teams, and automatic control of machinery become more

difficult when dealing with large, complex projects. Systems

engineering deals with work-processes and tools to handle

such projects, and it overlaps with both technical and

human-centered disciplines such as control engineering,

industrial engineering, organizational studies, and project

management.

HISTORY
The term systems engineering can be traced back to Bell

Telephone Laboratories in the 1940s. The need to identify

Computer System Architecture

134

and manipulate the properties of a system as a whole,

which in complex engineering projects may greatly differ

from the sum of the parts’ properties, motivated the

Department of Defense, NASA, and other industries to apply

the discipline. When it was no longer possible to rely on

design evolution to improve upon a system and the existing

tools were not sufficient to meet growing demands, new
methods began to be developed that addressed the complexity
directly. The evolution of systems engineering, which
continues to this day, comprises the development and
identification of new methods and modeling techniques.
These methods aid in better comprehension of engineering
systems as they grow more complex. Popular tools that are
often used in the systems engineering context were developed
during these times, including USL, UML, QFD, and IDEF0.
In 1990, a professional society for systems engineering, the
National Council on Systems Engineering (NCOSE), was
founded by representatives from a number of U.S.
corporations and organizations. NCOSE was created to
address the need for improvements in systems engineering
practices and education.

As a result of growing involvement from systems engineers
outside of the U.S., the name of the organization was changed
to the International Council on Systems Engineering
(INCOSE) in 1995. Schools in several countries offer graduate

programmes in systems engineering, and continuing

education options are also available for practicing engineers.

CONCEPT
Systems engineering signifies both an approach and,

more recently, a discipline in engineering. The aim of

Computer System Architecture

135

education in systems engineering is to simply formalize the

approach and in doing so, identify new methods and research

opportunities similar to the way it occurs in other fields of

engineering. As an approach, systems engineering is holistic

and interdisciplinary in flavour.

ORIGINS AND TRADITIONAL SCOPE
The traditional scope of engineering embraces the design,

development, production and operation of physical systems,

and systems engineering, as originally conceived, falls within

this scope. “Systems engineering”, in this sense of the term,

refers to the distinctive set of concepts, methodologies,

organizational structures (and so on) that have been

developed to meet the challenges of engineering functional

physical systems of unprecedented complexity. The Apollo

programme is a leading example of a systems engineering

project.

The use of the term “ system engineer “ has evolved over

time to embrace a wider, more holistic concept of “systems”

and of engineering processes. This evolution of the definition

has been a subject of ongoing controversy [9], and the term

continues to be applied to both the narrower and broader

scope.

HOLISTIC VIEW
Systems engineering focuses on analyzing and eliciting

customer needs and required functionality early in the

development cycle, documenting requirements, then

proceeding with design synthesis and system validation

while considering the complete problem, the system lifecycle.

Computer System Architecture

136

Oliver et al. claim that the systems engineering process can

be decomposed into

• a Systems Engineering Technical Process, and

• a Systems Engineering Management Process.

Within Oliver’s model, the goal of the Management Process

is to organize the technical effort in the lifecycle, while the

Technical Process includes assessing available information,

defining effectiveness measures, to create a behaviour model,

create a structure model, perform trade-off analysis, and

create sequential build & test plan. Depending on their

application, although there are several models that are used

in the industry, all of them aim to identify the relation

between the various stages mentioned above and incorporate

feedback. Examples of such models include the Waterfall

model and the VEE model.

INTERDISCIPLINARY FIELD

System development often requires contribution from

diverse technical disciplines. By providing a systems (holistic)

view of the development effort, systems engineering helps

mold all the technical contributors into a unified team

effort, forming a structured development process that

proceeds from concept to production to operation and, in

some cases, to termination and disposal. This perspective

is often replicated in educational programmes in that systems

engineering courses are taught by faculty from other

engineering departments which, in effect, helps create an

interdisciplinary environment.

Computer System Architecture

137

MANAGING COMPLEXITY
The need for systems engineering arose with the increase

in complexity of systems and projects, in turn exponentially

increasing the possibility of component friction, and therefore

the reliability of the design. When speaking in this context,

complexity incorporates not only engineering systems, but

also the logical human organization of data. At the same

time, a system can become more complex due to an increase

in size as well as with an increase in the amount of data,

variables, or the number of fields that are involved in the

design. The International Space Station is an example of

such a system. The development of smarter control

algorithms, microprocessor design, and analysis of

environmental systems also come within the purview of

systems engineering. Systems engineering encourages the

use of tools and methods to better comprehend and manage

complexity in systems. Some examples of these tools can

be seen here:

• System model, Modeling, and Simulation,

• System architecture,

• Optimization,

• System dynamics,

• Systems analysis,

• Statistical analysis,

• Reliability analysis, and

• Decision making

Taking an interdisciplinary approach to engineering

systems is inherently complex since the behaviour of and

interaction among system components is not always

Computer System Architecture

138

immediately well defined or understood. Defining and

characterizing such systems and subsystems and the

interactions among them is one of the goals of systems

engineering. In doing so, the gap that exists between informal

requirements from users, operators, marketing organizations,

and technical specifications is successfully bridged.

SCOPE
One way to understand the motivation behind systems

engineering is to see it as a method, or practice, to identify

and improve common rules that exist within a wide variety
of systems. Keeping this in mind, the principles of systems
engineering — holism, emergent behaviour, boundary, et al.
— can be applied to any system, complex or otherwise,
provided systems thinking is employed at all levels. Besides
defense and aerospace, many information and technology
based companies, software development firms, and industries
in the field of electronics & communications require systems
engineers as part of their team. An analysis by the INCOSE
Systems Engineering center of excellence (SECOE) indicates
that optimal effort spent on systems engineering is about
15-20% of the total project effort. At the same time, studies
have shown that systems engineering essentially leads to
reduction in costs among other benefits. However, no
quantitative survey at a larger scale encompassing a wide
variety of industries has been conducted until recently.
Such studies are underway to determine the effectiveness
and quantify the benefits of systems engineering. Systems
engineering encourages the use of modeling and simulation
to validate assumptions or theories on systems and the

interactions within them.

Computer System Architecture

139

Use of methods that allow early detection of possible

failures, in safety engineering, are integrated into the design

process. At the same time, decisions made at the beginning

of a project whose consequences are not clearly understood

can have enormous implications later in the life of a system,

and it is the task of the modern systems engineer to explore

these issues and make critical decisions. There is no method

which guarantees that decisions made today will still be

valid when a system goes into service years or decades after

it is first conceived but there are techniques to support the

process of systems engineering. Examples include the use

of soft systems methodology, Jay Wright Forrester’s System

dynamics method and the Unified Modeling Language (UML),

each of which are currently being explored, evaluated and

developed to support the engineering decision making

process.

EDUCATION
Education in systems engineering is often seen as an

extension to the regular engineering courses, reflecting the

industry attitude that engineering students need a

foundational background in one of the traditional engineering

disciplines (e.g. automotive engineering, mechanical

engineering, industrial engineering, computer engineering,

electrical engineering) plus practical, real-world experience

in order to be effective as systems engineers. Undergraduate

university programmes in systems engineering are rare.

INCOSE maintains a continuously updated Directory of

Systems Engineering Academic Programmes worldwide. As

of 2006, there are about 75 institutions in United States

Computer System Architecture

140

that offer 130 undergraduate and graduate programmes in

systems engineering. Education in systems engineering can

be taken as SE-centric or Domain-centric.

• SE-centric programmes treat systems engineering as

a separate discipline and all the courses are taught

focusing on systems engineering practice and

techniques.

• Domain-centric programmes offer systems engineering

as an option that can be exercised with another

major field in engineering.

Both these patterns cater to educate the systems engineer

who is able to oversee interdisciplinary projects with the

depth required of a core-engineer.

SYSTEMS ENGINEERING TOPICS
Systems engineering tools are strategies, procedures,

and techniques that aid in performing systems engineering

on a project or product. The purpose of these tools vary from

database management, graphical browsing, simulation, and

reasoning, to document production, neutral import/export

and more.

SYSTEM
There are many definitions of what a system is in the

field of systems engineering. Below are a few authoritative

definitions:

• ANSI/EIA-632-1999: “An aggregation of end products

and enabling products to achieve a given purpose.”

• IEEE Std 1220-1998: “A set or arrangement of

Computer System Architecture

141

elements and processes that are related and whose

behaviour satisfies customer/operational needs and

provides for life cycle sustainment of the products.”

• ISO/IEC 15288:2008: “A combination of interacting

elements organized to achieve one or more stated

purposes.”

• NASA Systems Engineering Handbook: “(1) The

combination of elements that function together to

produce the capability to meet a need. The elements

include all hardware, software, equipment, facilities,

personnel, processes, and procedures needed for this

purpose. (2) The end product (which performs

operational functions) and enabling products (which

provide life-cycle support services to the operational

end products) that make up a system.”

• INCOSE Systems Engineering Handbook:

“homogeneous entity that exhibits predefined

behaviour in the real world and is composed of

heterogeneous parts that do not individually exhibit

that behaviour and an integrated configuration of

components and/or subsystems.”

• INCOSE: “A system is a construct or collection of

different elements that together produce results not

obtainable by the elements alone. The elements, or

parts, can include people, hardware, software,

facilities, policies, and documents; that is, all things

required to produce systems-level results. The results

include system level qualities, properties,

characteristics, functions, behaviour and

performance. The value added by the system as a

Computer System Architecture

142

whole, beyond that contributed independently by the

parts, is primarily created by the relationship among

the parts; that is, how they are interconnected.”

THE SYSTEMS ENGINEERING PROCESS
Depending on their application, tools are used for various

stages of the systems engineering process:

USING MODELS
Models play important and diverse roles in systems

engineering. A model can be defined in several ways,

including:

• An abstraction of reality designed to answer specific

questions about the real world

• An imitation, analogue, or representation of a real

world process or structure; or

• A conceptual, mathematical, or physical tool to assist

a decision maker.

Together, these definitions are broad enough to

encompass physical engineering models used in the

verification of a system design, as well as schematic models

like a functional flow block diagram and mathematical (i.e.,

quantitative) models used in the trade study process. This

section focuses on the last. The main reason for using

mathematical models and diagrams in trade studies is to

provide estimates of system effectiveness, performance or

technical attributes, and cost from a set of known or

estimable quantities. Typically, a collection of separate

models is needed to provide all of these outcome variables.

Computer System Architecture

143

The heart of any mathematical model is a set of meaningful

quantitative relationships among its inputs and outputs.

These relationships can be as simple as adding up

constituent quantities to obtain a total, or as complex as

a set of differential equations describing the trajectory of

a spacecraft in a gravitational field. Ideally, the relationships

express causality, not just correlation.

TOOLS FOR GRAPHIC REPRESENTATIONS
Initially, when the primary purpose of a systems engineer

is to comprehend a complex problem, graphic representations

of a system are used to communicate a system’s functional

and data requirements. Common graphical representations

include:

• Functional Flow Block Diagram (FFBD)

• VisSim

• Data Flow Diagram (DFD)

• N2 (N-Squared) Chart

• IDEF0 Diagram

• UML Use case diagram

• UML Sequence diagram

• USL Function Maps and Type Maps.

• Enterprize Architecture frameworks, like TOGAF,

MODAF, Zachman Frameworks etc.

A graphical representation relates the various subsystems

or parts of a system through functions, data, or interfaces.

Any or each of the above methods are used in an industry

based on its requirements. For instance, the N2 chart may

be used where interfaces between systems is important.

Computer System Architecture

144

Part of the design phase is to create structural and

behavioural models of the system. Once the requirements

are understood, it is now the responsibility of a systems

engineer to refine them, and to determine, along with other

engineers, the best technology for a job. At this point starting

with a trade study, systems engineering encourages the use

of weighted choices to determine the best option. A decision

matrix, or Pugh method, is one way (QFD is another) to

make this choice while considering all criteria that are

important. The trade study in turn informs the design

which again affects the graphic representations of the system

(without changing the requirements). In an SE process, this

stage represents the iterative step that is carried out until

a feasible solution is found. A decision matrix is often

populated using techniques such as statistical analysis,

reliability analysis, system dynamics (feedback control), and

optimization methods. At times a systems engineer must

assess the existence of feasible solutions, and rarely will

customer inputs arrive at only one. Some customer

requirements will produce no feasible solution. Constraints

must be traded to find one or more feasible solutions.

The customers’ wants become the most valuable input

to such a trade and cannot be assumed. Those wants/

desires may only be discovered by the customer once the

customer finds that he has overconstrained the problem.

Most commonly, many feasible solutions can be found, and

a sufficient set of constraints must be defined to produce

an optimal solution. This situation is at times advantageous

because one can present an opportunity to improve the

design towards one or many ends, such as cost or schedule.

Computer System Architecture

145

Various modeling methods can be used to solve the problem

including constraints and a cost function. Systems Modeling

Language (SysML), a modeling language used for systems

engineering applications, supports the specification, analysis,

design, verification and validation of a broad range of complex

systems. Universal Systems Language (USL) is a systems

oriented object modeling language with executable (computer

independent) semantics for defining complex systems,

including software.

RELATED FIELDS AND SUB-FIELDS
Many related fields may be considered tightly coupled to

systems engineering. These areas have contributed to the

development of systems engineering as a distinct entity.

COGNITIVE SYSTEMS ENGINEERING
Cognitive systems engineering (CSE) is a specific approach

to the description and analysis of human-machine systems

or sociotechnical systems. The three main themes of CSE

are how humans cope with complexity, how work is

accomplished by the use of artefacts, and how human-

machine systems and socio-technical systems can be

described as joint cognitive systems. CSE has since its

beginning become a recognised scientific discipline,

sometimes also referred to as Cognitive Engineering. The

concept of a Joint Cognitive System (JCS) has in particular

become widely used as a way of understanding how complex

socio-technical systems can be described with varying

degrees of resolution. The more than 20 years of experience

with CSE has been described extensively.

Computer System Architecture

146

CONFIGURATION MANAGEMENT
Like systems engineering, Configuration Management as

practiced in the defence and aerospace industry is a broad

systems-level practice. The field parallels the taskings of

systems engineering; where systems engineering deals with

requirements development, allocation to development items

and verification, Configuration Management deals with

requirements capture, traceability to the development item,

and audit of development item to ensure that it has achieved

the desired functionality that systems engineering and/or

Test and Verification Engineering have proven out through

objective testing.

CONTROL ENGINEERING
Control engineering and its design and implementation

of control systems, used extensively in nearly every industry,

is a large sub-field of systems engineering. The cruise control

on an automobile and the guidance system for a ballistic

missile are two examples. Control systems theory is an

active field of applied mathematics involving the investigation

of solution spaces and the development of new methods for

the analysis of the control process.

INDUSTRIAL ENGINEERING
Industrial engineering is a branch of engineering that

concerns the development, improvement, implementation

and evaluation of integrated systems of people, money,

knowledge, information, equipment, energy, material and

process. Industrial engineering draws upon the principles

and methods of engineering analysis and synthesis, as well

Computer System Architecture

147

as mathematical, physical and social sciences together with

the principles and methods of engineering analysis and

design to specify, predict and evaluate the results to be

obtained from such systems.

INTERFACE DESIGN
Interface design and its specification are concerned with

assuring that the pieces of a system connect and inter-

operate with other parts of the system and with external

systems as necessary. Interface design also includes assuring

that system interfaces be able to accept new features,

including mechanical, electrical and logical interfaces,

including reserved wires, plug-space, command codes and

bits in communication protocols. This is known as

extensibility. Human-Computer Interaction (HCI) or Human-

Machine Interface (HMI) is another aspect of interface design,

and is a critical aspect of modern systems engineering.

Systems engineering principles are applied in the design of

network protocols for local-area networks and wide-area

networks.

MECHATRONIC ENGINEERING
Mechatronic engineering, like Systems engineering, is a

multidisciplinary field of engineering that uses dynamical

systems modeling to express tangible constructs. In that

regards it is almost indistinguishable from Systems

Engineering, but what sets it apart is the focus on smaller

details rather than larger generalizations and relationships.

As such, both fields are distinguished by the scope of their

projects rather than the methodology of their practice.

Computer System Architecture

148

OPERATIONS RESEARCH
Operations research supports systems engineering. The

tools of operations research are used in systems analysis,

decision making, and trade studies. Several schools teach

SE courses within the operations research or industrial
engineering department, highlighting the role systems
engineering plays in complex projects. Operations research,
briefly, is concerned with the optimization of a process
under multiple constraints.

PERFORMANCE ENGINEERING
Performance engineering is the discipline of ensuring a

system will meet the customer’s expectations for performance
throughout its life. Performance is usually defined as the
speed with which a certain operation is executed or the
capability of executing a number of such operations in a unit
of time. Performance may be degraded when an operations
queue to be executed is throttled when the capacity is of the
system is limited. For example, the performance of a packet-
switched network would be characterised by the end-to-end
packet transit delay or the number of packets switched
within an hour. The design of high-performance systems
makes use of analytical or simulation modeling, whereas the
delivery of high-performance implementation involves
thorough performance testing. Performance engineering relies
heavily on statistics, queueing theory and probability theory

for its tools and processes.

PROGRAMME MANAGEMENT AND PROJECT
MANAGEMENT

Programme management (or programme management)

has many similarities with systems engineering, but has

Computer System Architecture

149

broader-based origins than the engineering ones of systems

engineering. Project management is also closely related to

both programme management and systems engineering.

PROPOSAL ENGINEERING
Proposal engineering is the application of scientific and

mathematical principles to design, construct, and operate

a cost-effective proposal development system. Basically,

proposal engineering uses the “systems engineering process”

to create a cost effective proposal and increase the odds of

a successful proposal.

RELIABILITY ENGINEERING
Reliability engineering is the discipline of ensuring a

system will meet the customer’s expectations for reliability

throughout its life; i.e. it will not fail more frequently than

expected. Reliability engineering applies to all aspects of the

system. It is closely associated with maintainability,

availability and logistics engineering. Reliability engineering

is always a critical component of safety engineering, as in

failure modes and effects analysis (FMEA) and hazard fault

tree analysis, and of security engineering. Reliability

engineering relies heavily onstatistics, probability theory

and reliability theory for its tools and processes.

SAFETY ENGINEERING
The techniques of safety engineering may be applied by

non-specialist engineers in designing complex systems to

minimize the probability of safety-critical failures. The

“System Safety Engineering” function helps to identify “safety

Computer System Architecture

150

hazards” in emerging designs, and may assist with

techniques to “mitigate” the effects of (potentially) hazardous

conditions that cannot be designed out of systems.

SECURITY ENGINEERING
Security engineering can be viewed as an interdisciplinary

field that integrates the community of practice for control

systems design, reliability, safety and systems engineering.

It may involve such sub-specialties as authentication of

system users, system targets and others: people, objects

and processes.

SOFTWARE ENGINEERING
From its beginnings, software engineering has helped

shape modern systems engineering practice. The techniques

used in the handling of complexes of large software-intensive

systems has had a major effect on the shaping and reshaping

of the tools, methods and processes of SE.

SYSTEMS DESIGN
Systems design is the process of defining the architecture,

components, modules, interfaces, and data for a system to

satisfy specified requirements. One could see it as the

application of systems theory to product development. There

is some overlap with the disciplines of systems analysis,

systems architecture and systems engineering. If the broader

topic of product development “blends the perspective of

marketing, design, and manufacturing into a single approach

to product development, then design is the act of taking the

marketing information and creating the design of the product

Computer System Architecture

151

to be manufactured. Systems design is therefore the process

of defining and developing systems to satisfy specified

requirements of the user. Until the 1990s systems design

had a crucial and respected role in the data processing

industry. In the 1990s standardization of hardware and

software resulted in the ability to build modular systems.

The increasing importance of software running on generic

platforms has enhanced the discipline of software

engineering. Object-oriented analysis and design methods

are becoming the most widely used methods for computer

systems design. The UML has become the standard language

in object-oriented analysis and design. It is widely used for

modeling software systems and is increasingly used for high

designing non-software systems and organizations.

LOGICAL DESIGN
The logical design of a system pertains to an abstract

representation of the data flows, inputs and outputs of the

system. This is often conducted via modelling, using an

over-abstract (and sometimes graphical) model of the actual

system. In the context of systems design, modelling can

undertake the following forms, including

PHYSICAL DESIGN
The physical design relates to the actual input and

output processes of the system. This is laid down in terms

of how data is input into a system, how it is verified/

authenticated, how it is processed, and how it is displayed

as output. Physical design, in this context, does not refer

to the tangible physical design of an information system.

Computer System Architecture

152

To use an analogy, a personal computer’s physical design

involves input via a keyboard, processing within the CPU,

and output via a monitor, printer, etc. It would not concern

the actual layout of the tangible hardware, which for a PC

would be a monitor, CPU, motherboard, hard drive, modems,

video/graphics cards, USB slots, etc.

ALTERNATIVE DESIGN METHODOLOGIES

RAPID APPLICATION DEVELOPMENT (RAD)
Rapid application development (RAD) is a methodology

in which a systems designer produces prototypes for an

end-user. The end-user reviews the prototype, and offers

feedback on its suitability. This process is repeated until

the end-user is satisfied with the final system.

JOINT APPLICATION DESIGN (JAD)
Joint application design (JAD) is a methodology which

evolved from RAD, in which a systems designer consults

with a group consisting of the following parties:

• Executive sponsor

• Systems Designer

• Managers of the system

JAD involves a number of stages, in which the group

collectively develops an agreed pattern for the design and

implementation of the system.

TOPICS OF SYSTEMS DESIGN
• Requirements analysis - analyzes the needs of the

end users or customers

Computer System Architecture

153

• Benchmarking — is an effort to evaluate how current

systems are used

• Systems architecture - creates a blueprint for the

design with the necessary specifications for the

hardware, software, people and data resources. In

many cases, multiple architectures are evaluated

before one is selected.

• Design — designers will produce one or more ‘models’

of what they see a system eventually looking like,

with ideas from the analysis section either used or

discarded. A document will be produced with a

description of the system, but nothing is specific —

they might say ‘touchscreen’ or ‘GUI operating system’,

but not mention any specific brands;

• Computer programming and debugging in the software

world, or detailed design in the consumer, enterprize

or commercial world - specifies the final system

components.

• System testing - evaluates the system’s actual

functionality in relation to expected or intended

functionality, including all integration aspects.

SYSTEMS ARCHITECT
In systems engineering, the systems architect is the

high-level designer of a system to be implemented. The

systems architect establishes the basic structure of the

system, defining the essential core design features and

elements that provide the framework for all that follows,

and are the hardest to change later. The systems architect

provides the engineering view of the users’ vision for what

Computer System Architecture

154

the system needs to be and do, and the paths along which

it must be able to evolve, and strives to maintain the

integrity of that vision as it evolves during detailed design

and implementation.

OVERVIEW
In systems engineering, the systems architect is

responsible for:

• Interfacing with the user(s) and sponsor(s) and all
other stakeholders in order to determine their
(evolving) needs.

• Generating the highest level of system requirements,
based on the user’s needs and other constraints
such as cost and schedule.

• Ensuring that this set of high level requirements is
consistent, complete, correct, and operationally
defined.

• Performing cost-benefit analyses to determine whether
requirements are best met by manual, software, or
hardware functions; making maximum use of
commercial off-the-shelf or already developed
components.

• Developing partitioning algorithms (and other
processes) to allocate all present and foreseeable
requirements into discrete partitions such that a
minimum of communications is needed among
partitions, and between the user and the system.

• Partitioning large systems into (successive layers of)

subsystems and components each of which can be

handled by a single engineer or team of engineers or

subordinate architect.

Computer System Architecture

155

• Interfacing with the design and implementation

engineers, or subordinate architects, so that any

problems arising during design or implementation

can be resolved in accordance with the fundamental

architectural concepts, and user needs and

constraints.

• Ensuring that a maximally robust architecture is

developed.

• Generating a set of acceptance test requirements,

together with the designers, test engineers, and the

user, which determine that all of the high level

requirements have been met, especially for the

computer-human-interface.

• Generating products such as sketches, models, an

early user guide, and prototypes to keep the user and

the engineers constantly up to date and in agreement

on the system to be provided as it is evolving.

• Ensuring that all architectural products and products

with architectural input are maintained in the most

current state and never allowed to become obsolete.

MAIN TOPICS OF SYSTEMS ARCHITECT
Large systems architecture was developed as a way

to handle systems too large for one person to conceive

of, let alone design. Systems of this size are rapidly

becoming the norm, so architectural approaches and

architects are increasingly needed to solve the problems

of large systems.

Computer System Architecture

156

USERS AND SPONSORS
Engineers as a group do not have a reputation for

understanding and responding to human needs comfortably

or for developing humanly functional and aesthetically

pleasing products. Architects are expected to understand

human needs and develop humanly functional and

aesthetically pleasing products. A good architect is a

translator between the user/sponsor and the engineers—

and even among just engineers of different specialities. A

good architect is also the principal keeper of the user’s

vision of the end product— and of the process of deriving

requirements from and implementing that vision.

Determining what the users/sponsors actually need, rather

than what they say they want, is not engineering. An architect

does not follow an exact procedure. S/he communicates

with users/sponsors in a highly interactive way— together

they extract the true requirements necessary for the

engineered system. The architect must remain constantly

in communication with the end users. Therefore, the architect

must be intimately familiar with the user’s environment

and problem. (The engineer need only be very knowledgeable

of the potential engineering solution space.)

HIGH LEVEL REQUIREMENTS
The user/sponsor should view the architect as the user’s

representative and provide all input through the architect.

Direct interaction with project engineers is generally

discouraged as the chance of mutual misunderstanding is

very high. The user requirements’ specification should be

a joint product of the user and architect: the user brings

Computer System Architecture

157

his needs and wish list, the architect brings knowledge of

what is likely to prove doable within cost and time

constraints. When the user needs are translated into a set

of high level requirements is also the best time to write the

first version of the acceptance test, which should, thereafter,

be religiously kept up to date with the requirements. That

way, the user will be absolutely clear about what s/he is

getting. It is also a safeguard against untestable

requirements, misunderstandings, and requirements creep.

The development of the first level of engineering requirements

is not a purely analytical exercise and should also involve

both the architect and engineer. If any compromises are to

be made— to meet constraints like cost, schedule, power,

or space, the architect must ensure that the final product

and overall look and feel do not stray very far from the user’s

intent. The engineer should focus on developing a design

that optimizes the constraints but ensures a workable and

reliable product.

The architect is primarily concerned with the comfort

and usability of the product; the engineer is primarily

concerned with the producibility and utility of the product.

The provision of needed services to the user is the true

function of an engineered system. However, as systems

become ever larger and more complex, and as their emphases

move away from simple hardware and software components,

the narrow application of traditional systems development

principles is found to be insufficient— the application of the

more general principles of systems, hardware, and software

architecture to the design of (sub)systems is seen to be

needed. An architecture is also a simplified model of the

Computer System Architecture

158

finished end product— its primary function is to define the

parts and their relationships to each other so that the whole

can be seen to be a consistent, complete, and correct

representation of what the user had in mind— especially

for the computer-human-interface. It is also used to ensure

that the parts fit together and relate in the desired way.

It is necessary to distinguish between the architecture

of the user’s world and the engineered systems architecture.

The former represents and addresses problems and solutions

in the user’s world. It is principally captured in the computer-

human-interfaces (CHI) of the engineered system. The

engineered system represents the engineering solutions—

how the engineer proposes to develop and/or select and

combine the components of the technical infrastructure to

support the CHI. In the absence of an experienced architect,

there is an unfortunate tendency to confuse the two

architectures. But— the engineer thinks in terms of hardware

and software and the technical solution space, whereas the

user may be thinking in terms of solving a problem of

getting people from point A to point B in a reasonable

amount of time and with a reasonable expenditure of energy,

or of getting needed information to customers and staff. A

systems architect is expected to combine knowledge of both

the architecture of the user’s world and of (all potentially

useful) engineering systems architectures. The former is a

joint activity with the user; the latter is a joint activity with

the engineers. The product is a set of high level requirements

reflecting the user’s requirements which can be used by the

engineers to develop systems design requirements. Because

requirements evolve over the course of a project, especially

Computer System Architecture

159

a long one, an architect is needed until the system is

accepted by the user: the architect is the best insurance

that all changes and interpretations made during the course

of development do not compromise the user’s viewpoint.

COST/BENEFIT ANALYSES
Most engineers are specialists. They know the applications

of one field of engineering science intimately, apply their

knowledge to practical situations— that is, solve real world

problems, evaluate the cost/benefits of various solutions

within their specialty, and ensure the correct operation of

whatever they design. Architects are generalists. They are

not expected to be experts in any one technology but are

expected to be knowledgeable of many technologies and

able to judge their applicability to specific situations. They

also apply their knowledge to practical situations, but

evaluate the cost/benefits of various solutions using different

technologies, for example, hardware versus software versus

manual, and assure that the system as a whole performs

according to the user’s expectations. Many commercial-off-

the-shelf or already developed hardware and software

components may be selected independently according to

constraints such as cost, response, throughput, etc. In

some cases, the architect can already assemble the end

system unaided. Or, s/he may still need the help of a

hardware or software engineer to select components and to

design and build any special purpose function. The architects

(or engineers) may also enlist the aid of specialists— in

safety, security, communications, special purpose hardware,

graphics, human factors, test and evaluation, quality control,

Computer System Architecture

160

RMA, interface management, etc. An effective systems

architectural team must have immediate access to specialists

in critical specialties.,

PARTITIONING AND LAYERING
An architect planning a building works on the overall

design, making sure it will be pleasing and useful to its

inhabitants. While a single architect by himself may be

enough to build a single-family house, many engineers may

be needed, in addition, to solve the detailed problems that

arise when a novel high-rise building is designed. If the job

is large and complex enough, parts of the architecture may

be designed as independent components. That is, if we are

building a housing complex, we may have one architect for

the complex, and one for each type of building, as part of

an architectural team. Large automation systems also require

an architect and much engineering talent. If the engineered

system is large and complex enough, the systems architect

may defer to a hardware architect and a software architect

for parts of the job, although they all may be members of

a joint architectural team. The architect should sub-allocate

the system requirements to major components or subsystems

that are within the scope of a single hardware or software

engineer, or engineering manager and team. But the architect

must never be viewed as an engineering supervisor. (If the

item is sufficiently large and/or complex, the chief architect

will sub-allocate portions to more specialized architects.)

Ideally, each such component/subsystem is a sufficiently

stand-alone object that it can be tested as a complete

component, separate from the whole, using only a simple

Computer System Architecture

161

testbed to supply simulated inputs and record outputs.

That is, it is not necessary to know how an air traffic control

system works in order to design and build a data

management subsystem for it.

It is only necessary to know the constraints under which

the subsystem will be expected to operate. A good architect

ensures that the system, however complex, is built upon

relatively simple and “clean” concepts for each (sub)system

or layer and is easily understandable by everyone, especially

the user, without special training. The architect will use a

minimum of heuristics to ensure that each partition is well

defined and clean of kludges, work-arounds, short-cuts, or

confusing detail and exceptions. As user needs evolve, (once

the system is fielded and in use), it is a lot easier subsequently

to evolve a simple concept than one laden with exceptions,

special cases, and lots of “fine print.” Layering the

architecture is important for keeping the architecture

sufficiently simple at each layer so that it remains

comprehensible to a single mind. As layers are ascended,

whole systems at lower layers become simple components

at the higher layers, and may disappear altogether at the

highest layers.

ACCEPTANCE TEST
The acceptance test is a principal responsibility of the

systems architect. It is the chief means by which the architect

will prove to the user that the system is as originally planned

and that all subordinate architects and engineers have met

their objectives.

Computer System Architecture

162

COMMUNICATIONS WITH USERS AND
ENGINEERS

A building architect uses sketches, models, and drawings.

An automation systems (or software or hardware) architect

should use sketches, models, and prototypes to discuss

different solutions and results with users, engineers, and

other architects. An early, draft version of the user’s manual

is invaluable, especially in conjunction with a prototype. A

set of (engineering) requirements as a sole, or even principal,

means of communicating with the users is explicitly to be

avoided. Nevertheless, it is important that a workable, well

written set of requirements, or specification, be created which

is understandable to the customer (so that they can properly

sign off on it). But it must use precise and unambiguous

language so that designers and other implementers are left

in no doubt as to meanings or intentions. In particular, all

requirements must be testable, and the initial draft of the

test plan should be developed contemporaneously with the

requirements. All stakeholders should sign off on the

acceptance test descriptions, or equivalent, as the sole

determinant of the satisfaction of the requirements, at the

outset of the programme.

ENTERPRIZE SOFTWARE
Enterprize software, also known as enterprize application

software (EAS), is software used in organizations, such as

in a business or government, as opposed to software chosen

by individuals (for example, retail software). Enterprize

software is an integral part of a (Computer Based) Information

System. Services provided by enterprize software are typically

Computer System Architecture

163

business-oriented tools such as online shopping and online

payment processing, interactive product catalogue,

automated billing systems, security, content management,

IT service management, customer relationship management,

resource planning, business intelligence, HR management,

manufacturing, application integration, and forms

automation.

DEFINITIONS
While there is no single, widely accepted list of enterprize

software characteristics, this section is intended to

summarize definitions from multiple sources. Enterprize

software describes a collection of computer programmes

with common business applications, tools for modeling how

the entire organization works, and development tools for

building applications unique to the organization. The software

is intended to solve an enterprize-wide problem (rather than

a departmental problem) and often written using an

Enterprize Software Architecture. Enterprize level software

aims to improve the enterprize’s productivity and efficiency

by providing business logic support functionality. Capterra

broadly defines enterprize software in the following manner:

• Targets any type of organization — corporations,

partnerships, sole proprietorships, nonprofits,

government agencies — but does not directly target

consumers.

• Targets any industry.

• Targets both large and small organizations — from

Fortune 500 to “mom and pop” businesses.

Computer System Architecture

164

• Includes function-specific (Accounting, HR, Supply

Chain, etc.) and industry-specific (Manufacturing,

Retail, Healthcare, etc.) solutions.

Due to the cost of building or buying what is often non-

free proprietary software, only large enterprizes attempt to

implement such enterprize software that models the entire

business enterprize and is the core IT system of governing

the enterprize and the core of communication within the

enterprize. As business enterprizes have similar departments

and systems in common, enterprize software is often available

as a suite of programmes that have attached enterprize

development tools to customize the programmes to the

specific enterprize. Generally, these tools are complex

enterprize programming tools that require specialist

capabilities. Thus, one often sees job listings for a

programmer who is required to have specific knowledge of

a particular set of enterprize tools, such as “must be an SAP

developer”. Characteristics of enterprize software are

performance, scalability, and robustness. Enterprize software

typically has interfaces to other enterprize software (for

example LDAP to directory services) and is centrally managed

(a single admin page for example).

ENTERPRIZE APPLICATION SOFTWARE
Enterprize application software is application software

that performs business functions such as order processing,

procurement, production scheduling, customer information

management, and accounting. It is typically hosted on servers

and provides simultaneous services to a large number of

users, typically over a computer network. This is in contrast

Computer System Architecture

165

to a single-user application that is executed on a user’s

personal computer and serves only one user at a time.

TYPES
• Enterprize software can be designed and implemented

by an information technology (IT) group within a

company.

• It may also be purchased from an independent

enterprize software developer, that often installs and

maintains the software for their customers.

Installation, customization, and maintenance can also

be outsourced to an IT consulting company.

• Another model is based on a concept called on-

demand software, or Software as a Service (SaaS).

The on-demand model of enterprize software is made

possible through the widespread distribution of

broadband access to the Internet. Software as a

Service vendors maintain enterprize software on

servers within their own company data center and

then provide access to the software to their enterprize

customers via the Internet.

Enterprize software is often categorized by the business

function that it automates - such as accounting software

or sales force automation software. Similarly for industries

- for example, there are enterprize systems devised for the

health care industry, or for manufacturing enterprizes.

DEVELOPERS
Major organizations in the enterprize software field include

SAP, IBM, BMC Software, HP Software Division, Redwood

Computer System Architecture

166

Software, UC4 Software, JBoss (Red Hat), Microsoft, Adobe

Systems, Oracle Corporation, Inquest Technologies,

Computer Associates, and ASG Software Solutions but there

are thousands of competing vendors.

CRITICISM
The word enterprize can have various connotations.

Sometimes the term is used merely as a synonym for

organization, whether it be very large (e.g., a corporation

with thousands of employees), very small (a sole

proprietorship), or an intermediate size. Often the term is

used only to refer to very large organizations, although it

has become a corporate-speak buzzword and may be heard

in other uses. Some enterprize software vendors using the

latter definition develop highly complex products that are

often overkill for smaller organizations, and the application

of these can be a very frustrating task. Thus, sometimes

“enterprize” might be used sarcastically to mean overly

complex software. The adjective “enterprizey” is sometimes

used to make this sarcasm explicit. In this usage, the term

“enterprizey” is intended to go beyond the concern of “overkill

for smaller organizations” to imply the software is overly

complex even for large organizations and simpler solutions

are available.

APPLICATION SOFTWARE
Application software, also known as an application or an

“app”, is computer software designed to help the user to

perform singular or multiple related specific tasks. Examples

include enterprize software, accounting software, office

Computer System Architecture

167

suites, graphics software and media players. Many

application programmes deal principally with documents.

Application software is contrasted with system software and

middleware, which manage and integrate a computer’s

capabilities, but typically do not directly apply them in the

performance of tasks that benefit the user. A simple, if

imperfect, analogy in the world of hardware would be the

relationship of an electric light bulb (an application) to an

electric power generation plant (a system). The power station

merely generates electricity, not itself of any real use until

harnessed to an application like the electric light that

performs a service that benefits the user. Application software

applies the power of a particular computing platform or

system software to a particular purpose. Some apps such

as Microsoft Office are available in versions for several

different platforms; others have narrower requirements.

TERMINOLOGY
In information technology, an application is a computer

programme designed to help people perform an activity. An

application thus differs from an operating system (which

runs a computer), a utility (which performs maintenance

or general-purpose chores), and a programming language

(with which computer programmes are created). Depending

on the activity for which it was designed, an application can

manipulate text, numbers, graphics, or a combination of

these elements. Some application packages offer considerable

computing power by focusing on a single task, such as word

processing; others, called integrated software, offer somewhat

less power but include several applications. User-written

Computer System Architecture

168

software tailors systems to meet the user’s specific needs.

User-written software include spreadsheet templates, word

processor macros, scientific simulations, graphics and

animation scripts. Even email filters are a kind of user

software. Users create this software themselves and often

overlook how important it is.

The delineation between system software such as

operating systems and application software is not exact,

however, and is occasionally the object of controversy. For

example, one of the key questions in the United States v.

Microsoft antitrust trial was whether Microsoft’s Internet

Explorer web browser was part of its Windows operating

system or a separable piece of application software. As

another example, the GNU/Linux naming controversy is, in

part, due to disagreement about the relationship between

the Linux kernel and the operating systems built over this

kernel. In some types of embedded systems, the application

software and the operating system software may be

indistinguishable to the user, as in the case of software

used to control a VCR, DVD player or microwave oven. The

above definitions may exclude some applications that may

exist on some computers in large organizations. For an

alternative definition of an app: see Application Portfolio

Management.

APPLICATION SOFTWARE CLASSIFICATION
Application software falls into two general categories;

horizontal applications and vertical applications. Horizontal

Application are the most popular and its widely spread in

departments or companies. Vertical Applications are designed

Computer System Architecture

169

for a particular type of business or for specific division in

a company. There are many types of application software:

• An application suite consists of multiple applications

bundled together. They usually have related functions,

features and user interfaces, and may be able to

interact with each other, e.g. open each other’s files.

Business applications often come in suites, e.g.

Microsoft Office, OpenOffice.org and iWork, which

bundle together a word processor, a spreadsheet,

etc.; but suites exist for other purposes, e.g. graphics

or music.

• Enterprize software addresses the needs of

organization processes and data flow, often in a large

distributed environment. (Examples include financial

systems, customer relationship management (CRM)

systems and supply-chain management software).

Note that Departmental Software is a sub-type of

Enterprize Software with a focus on smaller

organizations or groups within a large organization.

(Examples include Travel Expense Management and

IT Helpdesk)

• Enterprize infrastructure software provides common

capabilities needed to support enterprize software

systems. (Examples include databases, email servers,

and systems for managing networks and security.)

• Information worker software addresses the needs of

individuals to create and manage information, often

for individual projects within a department, in contrast

to enterprize management. Examples include time

management, resource management, documentation

Computer System Architecture

170

tools, analytical, and collaborative. Word processors,

spreadsheets, email and blog clients, personal

information system, and individual media editors
may aid in multiple information worker tasks.

• Content access software is software used primarily to
access content without editing, but may include
software that allows for content editing. Such software
addresses the needs of individuals and groups to
consume digital entertainment and published digital
content. (Examples include Media Players, Web
Browsers, Help browsers and Games)

• Educational software is related to content access
software, but has the content and/or features adapted
for use in by educators or students. For example, it
may deliver evaluations (tests), track progress through
material, or include collaborative capabilities.

• Simulation software are computer software for
simulation of physical or abstract systems for either
research, training or entertainment purposes.

• Media development software addresses the needs of
individuals who generate print and electronic media
for others to consume, most often in a commercial
or educational setting. This includes Graphic Art
software, Desktop Publishing software, Multimedia
Development software, HTML editors, Digital
Animation editors, Digital Audio and Video
composition, and many others.

• Mobile applications run on hand-held devices such
as mobile phones, personal digital assistants and
enterprize digital assistants : see mobile application

development.

Computer System Architecture

171

• Product engineering software is used in developing

hardware and software products. This includes

computer aided design (CAD), computer aided

engineering (CAE), computer language editing and

compiling tools, Integrated Development

Environments, and Application Programmer

Interfaces.

• A command-driven interface is one in which you type

in commands to make the computer do something.

You have to know the commands and what they do

and they have to be typed correctly. DOS and Unix

are examples of command-driven interfaces.

• A graphical user interface (GUI) is one in which you

select command choices from various menus, buttons

and icons using a mouse. It is a user-friendly interface.

The Windows and Mac OS are both graphical user

interfaces.

Applications can also be classified by computing platform.

INFORMATION WORKER SOFTWARE
•

o Enterprize Resource Planning

o Accounting software

o Task and Scheduling

o Field service management

• Data Management

o Contact Management

o Spreadsheet

o Personal Database

Computer System Architecture

172

• Documentation

o Document Automation/Assembly

o Word Processing

o Desktop publishing software

o Diagramming Software

o Presentation software

o Analytical software

o Computer algebra systems

o Numerical computing

o List of numerical software

o Physics software

o Science software

o List of statistical software

o Neural network software

• Collaborative software

o E-mail

o Blog

• Reservation systems

• Financial Software

o Day trading software

o Banking systems

o Clearing systems

o arithmetic software

CONTENT ACCESS SOFTWARE
• Electronic media software

o Web browser

o Media Players

o Hybrid editor players

Computer System Architecture

173

ENTERTAINMENT SOFTWARE
• Digital pets

• Screen savers

• Video Games

o Arcade games

o Emulators for console games

o Personal computer games

o Console games

o Mobile games

EDUCATIONAL SOFTWARE

CLASSROOM MANAGEMENT
• Learning/Training Management Software

• Reference software

• Sales Readiness Software

• Survey Management

ENTERPRIZE INFRASTRUCTURE SOFTWARE
• Business workflow software

• Database management system (DBMS) software

• Digital asset management (DAM) software

• Document Management software

• Geographic Information System (GIS) software

SIMULATION SOFTWARE
• Computer simulators

o Scientific simulators

o Social simulators

Computer System Architecture

174

o Battlefield simulators

o Emergency simulators

o Vehicle simulators

- Flight simulators

- Driving simulators

o Simulation games

- Vehicle simulation games

MEDIA DEVELOPMENT SOFTWARE
• Image organizer

• Media content creating/editing

o 3D computer graphics software

o Animation software

o Graphic art software

o Image editing software

- Raster graphics editor

- Vector graphics editor

o Video editing software

o Sound editing software

- Digital audio editor

o Music sequencer

- Scorewriter

o Hypermedia editing software

- Web Development Software

PRODUCT ENGINEERING SOFTWARE
• Hardware Engineering

o Computer-aided engineering

Computer System Architecture

175

o Computer-aided design (CAD)

o Finite Element Analysis

• Software Engineering

o Computer Language Editor

o Compiler Software

o Integrated Development Environments

o Game creation software

o Debuggers

o Programme testing tools

o License manager

ACCOUNTING SOFTWARE
Accounting software is application software that records

and processes accounting transactions within functional

modules such as accounts payable, accounts receivable,

payroll, and trial balance. It functions as an accounting

information system. It may be developed in-house by the

company or organization using it, may be purchased from

a third party, or may be a combination of a third-party

application software package with local modifications. It

varies greatly in its complexity and cost. The market has

been undergoing considerable consolidation since the mid

1990s, with many suppliers ceasing to trade or being bought

by larger groups.

MODULES
Accounting software is typically composed of various

modules, different sections dealing with particular areas of

accounting. Among the most common are:

Computer System Architecture

176

CORE MODULES
• Accounts receivable—where the company enters

money received

• Accounts payable—where the company enters its

bills and pays money it owes

• General ledger—the company’s “books”

• Billing—where the company produces invoices to

clients/customers

• Stock/Inventory—where the company keeps control

of its inventory

• Purchase Order—where the company orders inventory

• Sales Order—where the company records customer

orders for the supply of inventory

• Cash Book—where the company records collection

and payment

NON CORE MODULES
• Debt Collection—where the company tracks attempts

to collect overdue bills (sometimes part of accounts

receivable)

• Electronic payment processing

• Expense—where employee business-related expenses

are entered

• Inquiries—where the company looks up information

on screen without any edits or additions

• Payroll—where the company tracks salary, wages,

and related taxes

• Reports—where the company prints out data

• Timesheet—where professionals (such as attorneys

Computer System Architecture

177

and consultants) record time worked so that it can

be billed to clients

• Purchase Requisition—where requests for purchase

orders are made, approved and tracked

(Different vendors will use different names for these

modules)

IMPLEMENTATIONS
In many cases, implementation (i.e. the installation and

configuration of the system at the client) can be a bigger

consideration than the actual software chosen when it comes

down to the total cost of ownership for the business. Most

midmarket and larger applications are sold exclusively

through resellers, developers and consultants. Those

organizations generally pass on a license fee to the software

vendor and then charge the client for installation,

customization and support services. Clients can normally

count on paying roughly 50-200% of the price of the software

in implementation and consulting fees. Other organizations

sell to, consult with and support clients directly, eliminating

the reseller.

CATEGORIES

PERSONAL ACCOUNTING
Mainly for home users that use accounts payable type

accounting transactions, managing budgets and simple

account reconciliation at the inexpensive end of the

market.

Computer System Architecture

178

LOW END
At the low end of the business markets, inexpensive

applications software allows most general business

accounting functions to be performed. Suppliers frequently

serve a single national market, while larger suppliers offer

separate solutions in each national market. Many of the low

end products are characterized by being “single-entry”

products, as opposed to double-entry systems seen in many
businesses. Some products have considerable functionality
but are not considered GAAP or IFRS/FASB compliant.
Some low-end systems do not have adequate security nor
audit trails.

MID MARKET
The mid-market covers a wide range of business software

that may be capable of serving the needs of multiple national
accountancy standards and allow accounting in multiple
currencies. In addition to general accounting functions, the
software may include integrated or add-on management
information systems, and may be oriented towards one or
more markets, for example with integrated or add-on project
accounting modules. Software applications in this market
typically include the following features:

• Industry-standard robust databases

• Industry-standard reporting tools

• Tools for configuring or extending the application (eg

an SDK, access to programme code.

HIGH END
The most complex and expensive business accounting

software is frequently part of an extensive suite of software

Computer System Architecture

179

often known as Enterprize resource planning or ERP software.

These applications typically have a very long implementation

period, often greater than six months. In many cases, these

applications are simply a set of functions which require

significant integration, configuration and customization to

even begin to resemble an accounting system. The advantage

of a high-end solution is that these systems are designed

to support individual company specific processes, as they

are highly customizable and can be tailored to exact business

requirements. This usually comes at a significant cost in

terms of money and implementation time.

VERTICAL MARKET
Some business accounting software is designed for specific

business types. It will include features that are specific to

that industry. The choice of whether to purchase an industry-

specific application or a general-purpose application is often

very difficult. Concerns over a custom-built application or

one designed for a specific industry include:

• Smaller development team

• Increased risk of vendor business failing

• Reduced availability of support

This can be weighed up against:

• Less requirement for customization

• Reduced implementation costs

• Reduced end-user training time and costs

Some important types of vertical accounting software

are:

Computer System Architecture

180

• Banking

• Construction

• Medical

• Nonprofit

• Point of Sale (Retail)

• Daycare accounting (a.k.a. Child care management

software)

HYBRID SOLUTIONS
As technology improves, software vendors have been

able to offer increasingly advanced software at lower prices.

This software is suitable for companies at multiple stages

of growth. Many of the features of Mid Market and High End

software (including advanced customization and extremely

scalable databases) are required even by small businesses

as they open multiple locations or grow in size. Additionally,

with more and more companies expanding overseas or

allowing workers to home office, many smaller clients have

a need to connect multiple locations. Their options are to

employ software-as-a-service or another application that

offers them similar accessibility from multiple locations

over the internet. Bob Frankston has noted that his VisiCalc

wasn’t an early accounting programme and that software

that “overly tuned for such function (Javelin, Lotus Improv,

etc.) completely failed.”

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Internet Architecture
	Chapter 2 Evolution of Network Operating System
	Chapter 3 Network Architecture
	Chapter 4 Operating Systems Structure
	Chapter 5 System Software Architecture

